
Progress Actional Integration
Guide

Version 4.2, May 2008

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2008 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: June 23, 2008

Contents

List of Figures 5

Preface 7
What is covered in this book 7
Who should read this book 7
Organization of this book 8
The Artix Documentation Library 8

Chapter 1 Artix�Actional Integration 9
Artix�Actional Interaction Architecture 10

Chapter 2 Configuring Artix�Actional Integration 17
Prerequisites 18
Configuring Actional for Artix Integration 19
Configuring Artix Java Services for Actional Integration 22
Viewing Artix Endpoints in Actional 25

Chapter 3 Deployment Scenarios 31
Deployment with IBM WebSphere and J2EE Connector 32
Native Deployment with IBM WebSphere 35

Index 43
3

CONTENTS
4

List of Figures

Figure 1: Artix�Actional Integration Architecture 11

Figure 2: Actional Server Administration Console 15

Figure 3: Actional Server Network Overview 25

Figure 4: Actional Server Path Explorer 26

Figure 5: Service Facade in Path Explorer 27

Figure 6: Service Facade in More Detail 28

Figure 7: Service Facade Extra Hop 29

Figure 8: Specifying a New Shared Library 37

Figure 9: Specifying Application Properties 39
5

LIST OF FIGURES
 6

Preface
What is covered in this book
Artix supports integration with the following Progress Actional SOA
management products:

� Actional for SOA Operations

� Actional Continuous Service Optimization (Actional CSO)

This guide explains how to enable Artix solutions to be monitored by these
Actional products. This guide applies to Artix Web service applications
written using Java APIs for XML-Based Remote Procedure Call (JAX-RPC).

Who should read this book
This guide is aimed at system administrators using Actional to monitor SOA
environments, system architects designing SOA environments, and
developers writing SOA applications with Artix. System administrators do
not require detailed knowledge of the technology that is used to create
distributed enterprise applications.

This book assumes that you already have a working knowledge of Actional
SOA management products. For more information, see
http://www.actional.com.
7

http://www.actional.com/

PREFACE
Organization of this book
This book contains the following chapter:

� Chapter 1 describes the architecture of the Artix integration with
Actional.

� Chapter 2 explains how to configure the Artix integration with Actional,
and shows examples from Artix�Actional integration demos.

� Chapter 3 gives guidelines on deploying Artix�Actional integration in
some example production environments.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 8

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Artix�Actional
Integration
Artix provides support for integration with Progress Actional
SOA management products.

In this chapter This chapter includes the following section:

Artix�Actional Interaction Architecture page 10
9

CHAPTER 1 | Artix�Actional Integration
Artix�Actional Interaction Architecture

Overview Integration between Artix and Actional enables Artix services to be
monitored by Actional SOA management products. For example, you can
use Actional SOA management tools to perform monitoring, auditing, and
reporting on Artix services. You can also correlate and track messages
through your network to perform dependency mapping and root cause
analysis.

The Artix�Actional integration is deployed on Artix service endpoints to
enable reporting of management data back to the Actional server. The data
reported back to Actional includes system administration metrics such as
response time, fault location, auditing, and alerts based on policies and
rules.

This Artix�Actional integration can be used with Artix Web service
applications written in Java (JAX-RPC).

Artix�Actional integration
architecture

The Actional SOA management system includes an Actional server and an
Actional agent. An Actional agent is run on each Artix service endpoint node
that you wish to manage.

The Artix service endpoint to be managed by Actional uses Actional�s
interceptor API to send monitoring data to the Actional agent. The Actional
server pings the Actional agent periodically to retrieve the monitoring data. It
analyzes this data and represents it in the Actional SOA management GUI
tools. In addition, any alerts triggered at the Actional agent are sent
immediately to the Actional server.

Figure 1 shows how Artix Web service applications are integrated with
Actional using this architecture.
10

Artix�Actional Interaction Architecture

The main components in this architecture are:

� �Actional server�

� �Actional agent�

� �Artix interceptors�

� �Actional agent interceptor API�

� �Artix service endpoints�

� �Service consumers�

Figure 1: Artix�Actional Integration Architecture
11

CHAPTER 1 | Artix�Actional Integration
Actional server The Actional server is a central management server that manages service
endpoint nodes containing an Actional agent.

The Actional server hosts a database and pings Actional agents to obtain
management data at configured time intervals. It analyzes the management
data and displays it in an Actional console�for example, the Actional
Server Administration Console. This is a Web application deployed on
Apache Tomcat, runtime management and agent configuration modes.

By default, the Actional server uses port 4040. The default Actional server
database is Apache Derby.

Actional agent An Actional agent is run on each Artix service endpoint node that you wish
to manage. Actional agents are used to provide instrumentation data back to
the Actional server.

Actional agents are provisioned from the Actional server to establish initial
contact and send configuration to the Actional agent. There is one Actional
agent per service endpoint node. By default, the Actional agent uses port
4041.

Artix interceptors At the level of an endpoint node, Artix interceptors send the instrumentation
data to the Actional agent using an Actional-specific API. These interceptors
essentially push events to the Actional agent.

The data is analyzed and stored in the Actional agent for retrieval later by
the Actional server. However, any alerts triggered at the Actional agent are
sent immediately to the Actional server.

Artix Java handlers

In Artix Java, interceptors are also known as Java handlers. For example, at
the implementation level, Java handlers are used as follows:

1. Artix initializes a Java plug-in that loads a Java handler factory.

2. The handler factory creates client-side request and message handlers,
and server-side request and message handlers.
12

Artix�Actional Interaction Architecture
3. When the Artix client-side request handler is invoked, Artix initiates an
client Actional interaction object, and sets the following data on this
object:

♦ Service name

♦ Port name

♦ Operation name

♦ Endpoint URL

♦ IP address

♦ Correlation ID

4. When client message handler is invoked, Artix gets the message
payload and sets it in the client Actional interaction object.

5. On the Artix server side, when the request reaches the server-side
message handler, Artix starts a server Actional interaction object and
sets the message payload.

6. When the server-side request handler is invoked, Artix sets the same
data listed in step 3 on the server Actional interaction object.

Actional agent interceptor API The Actional Agent Interceptor SDK is an Actional-specific API used to send
the management instrumentation data from the service endpoint to the
Actional agent.

The Artix service application to be managed by Actional must use the
Actional Agent Interceptor SDK to send monitoring data to the Actional
agent. For detailed information on how to use this API, see the Actional
product documentation.
13

CHAPTER 1 | Artix�Actional Integration
Artix service endpoints An Artix service endpoint is a service built using Artix, and described using
WSDL. The endpoint can be implemented in Java (JAX-RPC). However, the
main characteristic of an Artix service endpoint is that it can be described in
WSDL, and classified as a service, which can be consumed.

Service consumers Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers can be
built using Artix, or any product that supports the technology used by the
endpoint. For example, a pure CORBA client could be a consumer for a
CORBA endpoint. A .NET client could be a consumer for an Artix SOAP
endpoint.

Actional SOA management
system

In this document, Actional is the general term used to describe the Actional
SOA management system in which all data is stored and viewed. This
simplifies the architecture of Actional for the sake of this discussion.

Figure 2 shows an example of the Actional Server Administration Console.
Managed endpoint nodes are displayed as orange boxes, and unmanaged
nodes are displayed as grey boxes. The green arrow indicates the message
flow through various nodes.

Clicking on each of the nodes shows more in-depth information regarding
the response time, alerts and warnings, and so on. The organization of the
information in this web console is in the form of Node�Group�Service�
Operation. In Artix, this translates to Node�Service�Port�Operation.
14

Artix�Actional Interaction Architecture

Further information For detailed information on using Actional features, see the Actional product
documentation.

For more information on Artix Java request/response handlers, see the
Developing Artix Applications in Java.

Figure 2: Actional Server Administration Console
15

http://www.iona.com/support/docs/artix/4.2/java_pguide/index.htm

CHAPTER 1 | Artix�Actional Integration
16

CHAPTER 2

Configuring Artix�
Actional
Integration
This chapter explains how to configure integration between
Artix and Actional SOA management products, and shows
examples from Artix�Actional integration demos.

In this chapter This chapter includes the following sections:

Prerequisites page 18

Configuring Actional for Artix Integration page 19

Configuring Artix Java Services for Actional Integration page 22

Viewing Artix Endpoints in Actional page 25
17

CHAPTER 2 | Configuring Artix�Actional Integration
Prerequisites

Overview This section describes prerequisites for integration between Artix and
Actional SOA management products.

Supported product versions You must have the following version of Artix installed:

� Artix 4.2 (patch 20080620).

This supports integration with the following Actional product versions:

� Actional for SOA Operations 7.1 and 7.2.

� Actional Continuous Service Optimization (Actional CSO) 7.1 and 7.2.

Supported protocols and
transports

The following protocols and transports are supported:

� SOAP over HTTP

� SOAP over JMS

Actional agents You must ensure that Actional agents have been set up on each Artix service
endpoint node that you wish to manage. The provisioning of Actional agents
is performed using the Actional server. For some basic details, see
�Configuring Actional for Artix Integration� on page 19.

For full details of how to set up Actional agents on endpoint nodes, see the
Actional product documentation.

Further information For information on the full range of platform versions and database versions
supported by Actional, see the Actional product documentation.

The Artix integration supports the full range of operating system platforms
supported by Artix 4.2. For more details, see the Artix Installation Guide.
18

http://www.iona.com/support/docs/artix/4.2/install_guide/index.htm

Configuring Actional for Artix Integration
Configuring Actional for Artix Integration

Overview These section provides some basic configuration guidelines for Actional
agent and server configuration. For full details, see the Actional product
documentation.

This basic configuration will help to set up the Artix�Actional integration
demos. For information on how to run these demos, see the readme.txt
files in the following directories:

Actional agent configuration No specific Actional agent configuration settings are required for integration
with Artix. For example, for the purposes of the Actional�Artix integration
demos, the Actional agent can be started with the default configuration
settings.

Actional server configuration The following sample configuration steps describe how to set up the
Actional server to run an simple Artix�Actional demo:

1. Install the Actional server with typical installation options, and select
the Apache Derby database.

2. Specify the following URL in your browser:

localhost:4040/lgserver.

3. If this is a new installation click Start, and follow new the Actional
server setup steps.

Otherwise, if the Actional server is already installed, perform the
following steps:

i. In the Actional console Web interface, select the Configure radio
button in the top left of the screen.

ii. Select Platform tab. This displays the general configuration
settings.

ArtixInstallDir/Version/demos/advanced/management/monitoring/actional_http_handler
ArtixInstallDir/Version/demos/advanced/management/monitoring/actional_jms_handler
19

CHAPTER 2 | Configuring Artix�Actional Integration
Creating a managed node To create a managed node for a simple Artix demo, perform the following
steps:

1. In the Actional Configure view menu bar, open the Network tab. This
displays the Network Nodes.

2. Select Add. This displays Node Creation / Managing Agents.

3. Click Managed Node.

Configuring a new node To configure a managed node for the demo, perform the following steps in
the wizard:

Step 1: New Node - Identification

1. Specify the Name as agent1.

2. Specify the Display icon as auto-discover (you can select IONA Artix
from the drop down list, if desired).

3. Click Next.

Step 2: New Node - Management

1. Specify the Transport as HTTP/S.

2. Supply the Actional agent user name and password.

3. Ensure that Override Agent Database is checked.

4. Click Next.

Step 3: New Node - Agents

1. Specify the following URL:

http://HostName:4041/lgagent

You can specify a host name or an IP_ADDRESS.

2. Ensure that Limit functionality to Operational Visibility is not checked.

3. Click Add. The agent URL is added.

4. Click Next.
20

Configuring Actional for Artix Integration
Step 4: New Node - Endpoints

1. For Endpoints, add the hostname, fully qualified hostname, and IP
address.

2. Click Next.

Step 5: New Node - Filters

1. Do not specify any filters for the demo.

2. Click Next.

Step 6: New Node - Trust Zone

1. Do not specify a trust zone the demo.

2. Click Finish

The node is created, and needs to be provisioned.

Provisioning a new node To provision the new node, perform the following steps:

1. Select the Deployment tab from the Configure menu bar.

2. The Provisioning page is displayed, and agent1 is listed as not
provisioned.

3. Select the agent1 check box.

4. Click Provision. This displays a message when complete:
Successfully provisioned.

5. Click the Manage radio button on the Actional Web interface. You
should see agent1 added to the Network Overview screen.
21

CHAPTER 2 | Configuring Artix�Actional Integration
Configuring Artix Java Services for Actional
Integration

Overview This section explains how to configure Artix Java (JAX-RPC) services for
integration with Actional. It shows some examples from the Artix�Actional
integration demos:

Configuring the Artix monitoring
plug-in

Configuring the Artix monitoring plug-in includes the following steps:

� Specifying the plug-in name

� Adding the Java handlers to the interceptor chain

� Configuring the monitoring tool

You can configure the monitoring plug-in by editing your Artix configuration
(artix.cfg) file.

Specifying the plug-in name

To set the monitoring plug-in factory class, and load the plug-in name, add
the following settings:

ArtixInstallDir/Version/demos/advanced/management/monitoring/actional_http_handler
ArtixInstallDir/Version/demos/advanced/management/monitoring/actional_jms_handler

Configure the plug-in factory class:
plugins:monitoring_plugin:classname =
 "com.iona.jbus.management.monitoring.interceptors.MonitoringPlugInFactory";

Load the java plug-in:
orb_plugins = ["soap", "java"];

Load the monitoring plug-in:
java_plugins = ["monitoring_plugin"];
22

Configuring Artix Java Services for Actional Integration
Adding the monitoring handlers to the interceptor chain

You must specify monitoring handlers to the request-level and message-level
interceptor lists, on both the client side and server side:

For more details on configuring binding lists and interceptors, see Artix
Configuration Reference.

Configuring the monitoring tool

You must also configure the name of the reporting tool (in this case,
actional). actional is currently the only supported value. For example:

Optimizing your Actional
integration

Artix provides the following configuration options to enable you to fine-tune
the behavior of the monitoring plug-in.

Reporting the message payload

You can enable reporting of the message payload on the server side (for
example, a SOAP message over HTTP). If this option is set to false, only
the payload size is reported. The default value is:

Specifying the maximum size of the payload

You can specify the maximum size in bytes of the message payload to
report. If a message payload exceeds this value, only its size is reported,
regardless of the value of the enable_si_payload option. An example setting
is:

The default value is -1 (unlimited).

Add the client-side handlers to the interceptors chain.
binding:artix:client_request_interceptor_list= "monitoring_handler";
binding:artix:client_message_interceptor_list= "monitoring_handler";

Add the server-side handlers to the interceptors chain.
binding:artix:server_request_interceptor_list= "monitoring_handler";
binding:artix:server_message_interceptor_list= "monitoring_handler";

plugins:monitoring_plugin:know_report_tool= "actional";

plugins:monitoring_plugin:enable_si_payload = "true";

plugins:monitoring_plugin:max_reported_payload_size= "1024";
23

../config_ref/index.html
../config_ref/index.html

CHAPTER 2 | Configuring Artix�Actional Integration
Enabling a service facade

The service facade feature enables reporting of all interactions with an extra
representation of the target service on the client side. This is also known
informally as an extra hop. This is useful when it is impossible to report
what service is being invoked by the client (for example, where a JMS queue
exists in the invocation chain). The default value is:

Sample configuration The following sample configuration shows some example settings in a
my_app configuration scope:

plugins:monitoring_plugin:show_service_facade= "false";

my_app {

 monitoring_jms_handler {

 plugins:monitoring_plugin:classname =
 "com.iona.jbus.management.monitoring.interceptors.MonitoringPlugInFactory";

 orb_plugins = ["soap", "java"];
 java_plugins = ["monitoring_plugin"];

 # Name of the report tool
 plugins:monitoring_plugin:know_report_tool= "actional";

 # Enable the report of the payload (default = "true")
 plugins:monitoring_plugin:enable_si_payload = "true";

 # Maximum size of the reported payload (default is -1 unlimited)
 plugins:monitoring_plugin:max_reported_payload_size= "-1";

 client {
 binding:artix:client_request_interceptor_list= "monitoring_handler";
 binding:artix:client_message_interceptor_list= "monitoring_handler";

 # Enable service Facade representation
 plugins:monitoring_plugin:show_service_facade= "true";
 };

 server {
 binding:artix:server_request_interceptor_list= "monitoring_handler";
 binding:artix:server_message_interceptor_list= "monitoring_handler";
 };
};
24

Viewing Artix Endpoints in Actional
Viewing Artix Endpoints in Actional

Overview When your Artix service endpoints and consumers have been configured for
integration with Actional, they can be monitored using the Actional SOA
management tools.

For example, when you run the Artix�Actional SOAP over JMS demo, the
Actional Server Administration Console displays the server queues and
agent nodes. Invocations are displayed as arrows flowing to and from the
queues. For details on how to run this demo, see the readme.txt file in the
following directory:

Network overview Figure 3 shows a running SOAP over JMS demo displayed in the Network
Overview screen of the Actional Server Administration Console.

ArtixInstallDir/Version/demos/advanced/management/monitoring/actional_jms_handler

Figure 3: Actional Server Network Overview
25

CHAPTER 2 | Configuring Artix�Actional Integration
In Figure 3, the JMS queue is displayed on top, and the instrumented Artix
application is displayed below. The interactions between the client and
server applications are recorded by agent100, which is installed on the
machine that runs the demo. This agent reports monitoring data back to the
Actional server.

The arrows between the agent and the JMS queue represent the
invocations: out to the queue from the client application, and back from the
queue showing the message received by the service from the queue.

The arrow that loops from agent100 back to itself is the extra hop, or service
facade call. For more details, see �Enabling a service facade� on page 24.

Path Explorer Figure 4 shows the example JMS queue displayed in the Path Explorer
screen of the Actional Server Administration Console.

To view this screen, select the JMS queue object in Figure 3, and select the
Path Explorer tab at the top left. This example shows the invocations from
the point of view of the JMS queue.

Figure 4: Actional Server Path Explorer
26

Viewing Artix Endpoints in Actional
Viewing a service facade Figure 5 shows what is displayed when you expand agent100 in Figure 4,
and select the FACADEsayHI operation.

In Figure 5, the facade service appears to make a call to the JMS queue.
However, the consumer is the actor that performs the invocation. Without
the facade, you would only see an arrow from the consumer directly to the
JMS queue. You would not know what service port or operation is invoked
through the queue. This is because the queue acts as an opaque buffer for
all messages.

Adding the service facade enables you to represent where the call is going.
The small arrow head displayed to the right of consumer is the extra hop
invocation from the consumer to the facade. The small arrow head
displayed to the left of the FACADEsayHi operation is the other end of the
invocation. The Actional console displays the call to the JMS queue as if it
originates from the service facade.

Figure 5: Service Facade in Path Explorer
27

CHAPTER 2 | Configuring Artix�Actional Integration
Figure 6 shows the display when you expand the agent100 object on the
right of Figure 5. This represents the call from the JMS queue to the service
being invoked. The names used for the facade in Figure 5 are constructed
from the names for the service, endpoint and operation by prefixing them
with FACADE.

Figure 7 shows the interaction from the point of view of agent100. In this
example, the agent has central position, and calls to and from the JMS
queue are displayed. The arrow looping back to agent100 is the internal
extra hop interaction with the service facade.

Figure 6: Service Facade in More Detail
28

Viewing Artix Endpoints in Actional

For more information on service facades, see �Enabling a service facade� on
page 24.

Further information Actional

For information on how to set up and run the Actional server, Actional
agent, and Actional Server Administration Console, see the Actional product
documentation.

Artix

For more information on Artix configuration, see the following:

� Configuring and Deploying Artix Solutions

� Artix Configuration Reference

Figure 7: Service Facade Extra Hop
29

../deploy/index.htm
../config_ref/index.html

CHAPTER 2 | Configuring Artix�Actional Integration
30

CHAPTER 3

Deployment
Scenarios
This chapter gives general guidelines on deploying Artix�
Actional integration in example production environments.

In this chapter This chapter includes the following sections:

Deployment with IBM WebSphere and J2EE Connector page 32

Native Deployment with IBM WebSphere page 35
31

CHAPTER 3 | Deployment Scenarios
Deployment with IBM WebSphere and J2EE
Connector

Overview This section gives basic guidelines for integrating Artix and Actional in an
example deployment scenario that includes an IBM WebSphere 5.1
environment with an Artix J2EE Connector.

Artix J2EE Connector is a resource adaptor that enables J2EE applications
and Artix Web services to talk to each other. It is also used to manage
connections, transactions, and security.

For more details on WebSphere, see the IBM WebSphere product
documentation. For more details on Artix J2EE Connector, see Artix for
J2EE.

IBM WebSphere deployment Follow these general guidelines when deploying IBM WebSphere:

� Before starting WebSphere, ensure that the Artix environment script
(artix_env) has been sourced.

� Deploy the Artix J2EE Connector resource adapter archive (artix.rar)
on WebSphere. Instructions for deploying on WebSphere are described
in Artix for J2EE.

� Follow the instructions in the Actional Interceptor Guide to enable
WebSphere instrumentation.

� Ensure that a copy of actional-sdk.jar is present in your
$WAS_HOME/classes directory.
32

../j2ee?index.htm
../j2ee?index.htm
../j2ee?index.htm

Deployment with IBM WebSphere and J2EE Connector
Artix J2EE Connector deployment In this example deployment scenario, which includes an Artix J2EE
Connector, you also need to update your Artix J2EE Connector classloader
firewall configuration file (artix_j2ee_ce.xml).

� Add the following entries under the ce:environment element:

� Add the following entries under the ce:loader element (using the fully
qualified path):

Artix deployment When deploying an Artix and Actional integration, you need to add some
configuration entries to your Artix configuration file (artix.cfg). For
example, you must configure the Artix monitoring plug-in; you can also set
additional options such as payload reporting and service facade.

For full details, see �Configuring Artix Java Services for Actional Integration�
on page 22.

Example Artix configuration scope

The following example shows a j2ee configuration scope from an Artix
configuration file (.cfg):

<ce:filter type="pattern" > com.actional. </ce:filter>
<ce:filter type="negative-pattern"> javax.xml.soap. </ce:filter>
<ce:filter type="negative-pattern"> com.iona.jbus.jms. </ce:filter>
<ce:filter type="negative-pattern"> com.iona.jbus.management. </ce:filter>

<ce:location> path/to/it_bus_management_monitoring.jar </ce:location>
<ce:location> $IT_PRODUCT_DIR/lib/sun/saaj/1.2.1/saaj-api.jar </ce:location>
33

CHAPTER 3 | Deployment Scenarios
j2ee {

plugins:monitoring_plugin:classname="com.iona.jbus.management.monitoring.intercept
ors.MonitoringPlugInFactory";

 plugins:monitoring_plugin:know_report_tool= "actional";

 event_log:filters = ["*=*"];

 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop", "iiop", "soap",
"java"];

 java_plugins = ["monitoring_plugin"];

 binding:artix:client_request_interceptor_list= "monitoring_handler";
 binding:artix:client_message_interceptor_list= "monitoring_handler";
 binding:artix:server_request_interceptor_list= "monitoring_handler";
 binding:artix:server_message_interceptor_list= "monitoring_handler";

 plugins:monitoring_plugin:enable_si_payload="true";
 plugins:monitoring_plugin:max_reported_payload_size="-1";
 plugins:monitoring_plugin:show_service_facade="true";

 tx {

 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop",

 "ws_coordination_service", "soap", "ots", "java"];

 plugins:bus:default_tx_provider:plugin = "wsat_tx_provider";

 xa {
 poa:j2ee_rm:direct_persistent="true";
 poa:j2ee_rm:well_known_address:port="58502";
 initial_references:TransactionFactory:plugin = "ots_encina";
 };
 };
};
34

Native Deployment with IBM WebSphere
Native Deployment with IBM WebSphere

Overview This section gives basic guidelines for integrating Artix and Actional in an
example deployment scenario that includes a native IBM WebSphere 5.1
environment (without Artix J2EE Connector).

For more details on WebSphere, see the IBM WebSphere product
documentation.

Native WebSphere deployment Using Artix natively with WebSphere requires specific WebSphere
configuration settings. For example, WebSphere classloaders do not use the
system classpath. This means that you must specify classloader
configuration to WebSphere without causing class clashes�WebSphere has
some common components with Artix; but different versions.

Here are some important deployment considerations:

� The WebSphere server runs as a single process with multiple threads.
Because Artix limits creation of only one Artix bus per process by
default, you must initialize different Artix buses in WebSphere with
different ORB IDs. Different ORB names are not sufficient.

� WebSphere reads the shared library path from the starting shell. You
must start a shell environment, source your Artix environment, and
then start WebSphere from that shell. If your Artix environment is not
set before starting the WebSphere server, this results in failure.

� �WebSphere configuration steps� on page 36 describes how to add
core Artix JARs to the WebSphere extended classloader, but it does not
include all Artix JARs. If you use a non-standard Artix subsystem (for
example, AmberPoint), you may need to add additional JARs to the
list.
35

CHAPTER 3 | Deployment Scenarios
Before you begin Follow these general guidelines:

� Before starting WebSphere, ensure that the Artix environment script
(artix_env) has been sourced.

� Follow the instructions in the Actional Interceptor Guide to enable
WebSphere instrumentation.

� Ensure that a copy of actional-sdk.jar is present in your
$WAS_HOME/classes directory.

WebSphere configuration steps In a native IBM WebSphere deployment, perform the following steps.

1. Start WebSphere server, from a console that has already has the Artix
environment set (using the artix_env script).

2. Launch the WebSphere administration console. This is generally
available on: HostName:9090/admin. If no security is turned on, enter
any user name to login

3. In the main menu on the left, select Environment|Shared Libraries.

4. On the Shared Libraries screen, in the Scope definition, select the
Server radio button. This causes the shared library definition to
applicable only the server level.

5. Click Apply.

6. To create a new shared library entry, select New.
36

Native Deployment with IBM WebSphere
7. In the Configuration tab, enter a shared library name in Name text box;
for example, Artix Environment (see Figure 8).

8. In the Classpath text box, paste the full path to the following Artix JAR
libraries:

Figure 8: Specifying a New Shared Library
37

CHAPTER 3 | Deployment Scenarios
9. Select Apply and Save.

10. In the main menu, select Application|Enterprise Applications.

11. Select the application that will use Artix natively (for example,
DefaultApplication in Figure 9).

12. On the Configuration tab, in General Properties, set the Classloader
Mode to PARENT_LAST.

13. Set the WAR Classloader Policy to Application.

14. Scroll down to Additional Properties, and select Libraries.

ArtixInstallDir/etc
ArtixInstallDir/lib/apache/jakarta-log4j/1.2.6/log4j.jar
ArtixInstallDir/artix/4.2/etc
ArtixInstallDir/lib/common/ifc/1.3/ifc.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/it_bus.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/it_bus-api.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/it_context_library.jar
ArtixInstallDir/lib/ws_common/jaxrpc/1.3/it_jaxrpc.jar
ArtixInstallDir/lib/ws_common/saaj/1.3/it_saaj.jar
ArtixInstallDir/lib/ws_common/reflect/1.3/it_ws_reflect.jar
ArtixInstallDir/lib/ws_common/reflect/1.3/it_ws_reflect_types.jar
ArtixInstallDir/lib/ws_common/wsdl/1.3/it_wsdl.jar
ArtixInstallDir/lib/jaxrpc/jaxrpc/1.1/jaxrpc-api.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/jms.jar
ArtixInstallDir/lib/sun/saaj/1.2.1/saaj-api.jar
ArtixInstallDir/lib/apache/xalan/2.3.1/xalan.jar
ArtixInstallDir/lib/apache/xerces/2.5.0/xercesImpl.jar
ArtixInstallDir/lib/apache/xerces/2.5.0/xmlParserAPIs.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/it_jms_transport.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/it_bus_management.jar
ArtixInstallDir/lib/artix/java_runtime/4.2/it_bus_management_monitoring.jar
ArtixInstallDir/lib/activemq/activemq/4.0.1/incubator-activemq-4.0.1.jar
38

Native Deployment with IBM WebSphere

15. Select Add. This displays a list of predefined shared libraries, including
the one you defined earlier.

16. Select the shared library you defined (for example, Artix
Environment).

17. Select Apply and Save.

Figure 9: Specifying Application Properties
39

CHAPTER 3 | Deployment Scenarios
18. In the main menu, select Servers|Application
Servers|server1|Process Definition.

19. In Generic JVM Arguments, add the following:

20. Select Apply and Save.

Artix deployment When deploying an Artix and Actional integration, you must specify some
configuration entries in your Artix configuration file (artix.cfg). For
example, you must configure the Artix monitoring plug-in; you can also set
additional options such as payload reporting and service facade.

For full details, see �Configuring Artix Java Services for Actional Integration�
on page 22.

Example Artix configuration scope

The following shows an example configuration scope from an Artix
configuration file (.cfg):

-Dorg.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

demos {

 hello_world_soap_http {

plugins:monitoring_plugin:classname="com.iona.jbus.management.monitoring.
interceptors.MonitoringPlugInFactory";

 plugins:monitoring_plugin:know_report_tool= "actional";

 orb_plugins = ["local_log_stream", "xmlfile_log_stream", "soap", "java"];

 java_plugins = ["monitoring_plugin"];

 binding:artix:client_request_interceptor_list= "monitoring_handler";
 binding:artix:client_message_interceptor_list= "monitoring_handler";
 binding:artix:server_request_interceptor_list= "monitoring_handler";
 binding:artix:server_message_interceptor_list= "monitoring_handler";

 plugins:monitoring_plugin:enable_si_payload="true";
 plugins:monitoring_plugin:max_reported_payload_size="-1";
 plugins:monitoring_plugin:show_service_facade="false";
 };
};
40

Native Deployment with IBM WebSphere
Further information Actional

For information on how to set up and run the Actional server, Actional
agent, and Actional Server Administration Console, see the Actional product
documentation.

Artix

For more information on Artix configuration, see the following:

� Configuring and Deploying Artix Solutions

� Artix Configuration Reference

IBM WebSphere

For more details on WebSphere, see the IBM WebSphere product
documentation.

Artix J2EE Connector

For more details on Artix J2EE Connector, see Artix for J2EE.
41

../deploy/index.htm
../config_ref/index.html
../j2ee?index.htm

CHAPTER 3 | Deployment Scenarios
42

Index

A
Actional agent 12, 18
Actional Agent Interceptor SDK 13
Actional Continuous Service Optimization 7, 18
Actional CSO 7, 18
Actional for SOA Operations 7, 18
Actional interaction object 13
actional-sdk.jar 32, 36
Actional server 12
Actional server, configuration 19
Actional Server Administration Console 12, 14, 25
Additional Properties 38
alerts 10, 12
Apache Derby 12, 19
Apache Tomcat 12
artix.cfg 22
artix.rar 32
artix_env 32, 36
Artix interceptors 12
artix_j2ee_ce.xml 33
Artix J2EE Connector 32, 35
Artix Java handlers 12
Artix service endpoint 14

B
binding:artix:client_message_interceptor_list 23
binding:artix:client_request_interceptor_list 23
binding:artix:server_message_interceptor_list 23
binding:artix:server_request_interceptor_list 23

C
ce:environment 33
ce:loader 33
Classloader Mode 38
consumer 14
correlation ID 13

D
database 12, 19
dependency mapping 10
developers 7

E
endpoint 14
endpoint URL 13
extra hop 24, 28

F
facade 24, 27
factory class 22

G
General Properties 38
Generic JVM Arguments 40

H
handler factory 12
handlers 12

I
IBM WebSphere 32, 35, 41
interceptor chain 22
IP address 13
it_bus_management_monitoring.jar 33, 38

J
J2EE Connector 32, 35
Java handlers 12, 22
java_plugins 22
JAX-RPC 7

L
logging 40

M
managed node 20
managed node, configuration 20
message handlers 12
monitoring plug-in 22

N
Network Overview 21, 25
43

INDEX
O
operation name 13
ORB IDs 35
ORB names 35
orb_plugins 22

P
PARENT_LAST 38
Path Explorer 26
plugins:monitoring_plugin:classname 22
plugins:monitoring_plugin:enable_si_payload 23
plugins:monitoring_plugin:know_report_tool 23
plugins:monitoring_plugin:max_reported_payload_si

ze 23
plugins:monitoring_plugin:show_service_facade 24
port name 13
Process Definition 40
provisioning 21

R
resource adapter archive 32

response time 10

S
service consumer 14
service endpoint 14
service facade 24, 27
service name 13
Shared Libraries 36
SOAP over HTTP 18
SOAP over JMS 18
system administrators 7
system architects 7

T
Tomcat 12

W
WAR Classloader Policy 38
WebSphere 32, 35, 41
44

	List of Figures
	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	The Artix Documentation Library

	Artix-Actional Integration
	Artix-Actional Interaction Architecture

	Configuring Artix- Actional Integration
	Prerequisites
	Configuring Actional for Artix Integration
	Configuring Artix Java Services for Actional Integration
	Viewing Artix Endpoints in Actional

	Deployment Scenarios
	Deployment with IBM WebSphere and J2EE Connector
	Native Deployment with IBM WebSphere

	Index

