
Artix ESBTM

Making Software Work TogetherTM

IBM Tivoli Integration Guide
Version 5.0, July 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: June 29, 2007

Contents

List of Figures 5

Preface 7
What is covered in this book 7
Who should read this book 7
Organization of this book 7
The Artix Documentation Library 8

Chapter 1 Integrating with IBM Tivoli� 9
Introduction 10
The IONA Tivoli Integration 13

Chapter 2 Configuring your IONA Product 17
Setting up your Artix Environment 18
Setting up your Orbix Environment 20

Chapter 3 Configuring your Tivoli Environment 25
Creating a Tivoli Installation Bundle 26
Installing the Resource Model in the Tivoli Server 28
Pushing the Resource Model out to your Host 32
Configuring the Resource Model for your Endpoint 34

Chapter 4 Extending to a Production Environment 37
Configuring an Artix Production Environment 38
Configuring an Orbix Production Environment 42

Chapter 5 Using the IONA Tivoli Integration 47
Detecting Common Server Problems 48
Tracking Server Performance Metrics 50
Stopping, Starting, and Restarting Servers 51
3

CONTENTS
Appendix A IONA Tivoli Resource Model 53
Thresholds 54
Events 56
Parameters 57
WBEM/CIM Definition 58

Index 61
4

List of Figures

Figure 1: Overview of the IONA Tivoli Integration 12

Figure 2: Example IONA Tivoli Deployment 15

Figure 3: Orbix Configuration GUI 20

Figure 4: Selecting Tivoli Agent Configuration 21

Figure 5: Selecting Performance Logging 22

Figure 6: Tivoli Profile Manager 29

Figure 7: Edit Resource Model 30

Figure 8: Contents of the IONA Server Task Library 33

Figure 9: The configure_provider Task 39

Figure 10: The configure_provider Task 44
5

LIST OF FIGURES
 6

Preface
What is covered in this book
IONA�s products support integration with Enterprise Management Systems
such as IBM Tivoli�, BMC Patrol�, CA WSDM�, and HP OpenView�.
This book explains how to integrate Artix and Orbix with IBM Tivoli.

Who should read this book
This book is aimed at system administrators using IBM Tivoli to manage
distributed enterprise environments, and developers writing distributed
enterprise applications. Administrators do not require detailed knowledge of
the technology that is used to create distributed enterprise applications.

This book assumes that you already have a good working knowledge of the
IBM Tivoli Management Framework and IBM Tivoli Monitoring (formerly
known as Distributed Monitoring).

Organization of this book
This book contains the following chapters:

� Chapter 1 introduces Enterprise Management Systems, and IONA�s
integration with IBM Tivoli.

� Chapter 2 describes how to configure your IONA product for integration
with IBM Tivoli.
7

PREFACE
� Chapter 3 describes how to configure your IBM Tivoli environment for
integration with IONA products.

� Chapter 4 describes how to extend your integration from a test
environment into a production environment.

� Chapter 5 explains how to perform common tasks such as tracking
server metrics or starting a server.

� Appendix A lists the contents of the IONA Tivoli resource model,
describing its thresholds, events and parameters.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 8

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Integrating with
IBM Tivoli�
This chapter introduces the integration of IONA products with
the IBM Tivoli� Enterprise Management System (EMS).

In this chapter This chapter contains the following sections:

Introduction page 10

The IONA Tivoli Integration page 13
9

CHAPTER 1 | Integrating with IBM Tivoli�
Introduction

Overview IONA�s products support integration with Enterprise Management Systems
such as IBM Tivoli. This section includes the following topics:

� �The application life cycle�.

� �Enterprise Management Systems�.

� �IONA EMS integration�.

� �IONA Tivoli integration tasks�.

� �Integration overview�.

The application life cycle Most enterprise applications go through a rigorous development and testing
process before they are put into production. When applications are in
production, developers rarely expect to manage those applications. They
usually move on to a new project while the day-to-day running of the
applications are managed by a production team. In some cases, the
applications are deployed in a data center that is owned by a third party,
and the team that monitors the applications belong to a different
organization.

Enterprise Management Systems Different organizations have different approaches to managing their
production environment, but most will have at least one Enterprise
Management System (EMS).

For example, the main Enterprise Management Systems include IBM Tivoli,
HP OpenView�, and BMC Patrol�. These systems are popular because
they give a top-to-bottom view of every part of the IT infrastructure. This
means that if an application fails because the /tmp directory fills up on a
particular host, for example, the disk space is reported as the fundamental
reason for the failure. The various application errors that arise are
interpreted as symptoms of the underlying problem with disk space. This is
much better than being swamped by an event storm of higher level failures
that all originate from the same underlying problem. This is the fundamental
strength of integrated management.
10

Introduction
IONA EMS integration IONA's Orbix and Artix products are designed to integrate with Enterprise
Management Systems. IONA's common management instrumentation layer
provides a base that can be used to integrate with any EMS.

In addition, IONA provides packaged integrations that provide out-of-the-box
integration with major EMS products. This guide describes IONA�s
integration with the IBM Tivoli products.

IONA Tivoli integration tasks The IONA Tivoli integration performs key enterprise management tasks (for
example, posting an event if a server dies). This enables automated recovery
actions to be taken.

The IONA Tivoli integration also tracks key server metrics (for example,
number of invocations received; and average, maximum and minimum
response times). Events can be generated when any of these parameters go
out of bounds.

In addition, you can also perform an extensible set of actions on servers. The
default actions are start, stop and restart.

Integration overview In the IONA Tivoli integration, these key server performance metrics are
logged by the IONA performance logging plugins. Log file interpreting
utilities are then used to analyze the logged data. Figure 1 shows a
simplified overview of the IONA Tivoli integration at work. In this example, a
restart command is issued to an unresponsive server (for example, locator or
naming service).

The IONA performance logging plugins collect data relating to server
response times and log it periodically in the performance logs. The IONA
Tivoli resource model executes periodically on each host and uses the IONA
log file interpreter to collect and summarize the logged data. It compares the
response times and other values against user defined thresholds. If these
values exceed the threshold, an event is fired. This event can be used to
trigger an option from the Tivoli task library to restart the unresponsive
server.
11

CHAPTER 1 | Integrating with IBM Tivoli�
Figure 1: Overview of the IONA Tivoli Integration
12

The IONA Tivoli Integration
The IONA Tivoli Integration

Overview This section describes the requirements and main components of IONA's
Tivoli integration. This section includes the following topics:

� �IONA requirements�.

� �Tivoli requirements�.

� �Main components�.

� �IONA Tivoli resource model�.

� �IONA Tivoli task library�.

� �Integration and setup utilities�.

� �Example IONA Tivoli deployment�.

IONA requirements IONA's Artix and Orbix products are fully integrated with IBM Tivoli. You
must have at least one of the following installed:

� Artix 2.0.1 or higher.

� Orbix 6.1 or higher.

Tivoli requirements IONA's products are fully integrated with IBM Tivoli Management
Framework and IBM Tivoli Monitoring.

To use the IONA Tivoli integration, you must have at least the following
versions installed:

� IBM Tivoli Management Framework 4.1 or higher.

� IBM Tivoli Monitoring 5.1.1 (Fix Pack 04) or higher.

Main components The IONA Tivoli integration package contains three main parts:

� A Tivoli Monitoring resource model.

� A Tivoli task library.

� Integration and setup utilities.
13

CHAPTER 1 | Integrating with IBM Tivoli�
IONA Tivoli resource model For an introduction to Tivoli resource models, see the IBM Tivoli Monitoring
User Guide. The IONA Tivoli resource model enables Tivoli to track key
attributes of Artix and Orbix services and customer-built servers that are
based on Artix and Orbix. These attributes include:

� Server liveness.

� Number of incoming invocations received by the server.

� Maximum, average, and minimum response times of the server.

The resource model defines events that fire when a server's liveness cannot
be verified, or when any of the other attribute values go beyond thresholds
that can be set by the user.

The IONA Tivoli resource model is described in detail in Appendix A.

IONA Tivoli task library The IONA Tivoli task library contains a set of tasks that can be used to
configure and check the IONA Tivoli integration.

This task library can also be used to start, stop, or restart monitored servers.
It can also be extended to perform any number of actions on a monitored
server. These actions can be performed automatically as a result of receiving
an event. For example, if an event fires to indicate that a server is no longer
alive, you can configure Tivoli to use the IONA Tivoli task library to issue a
restart for that server.

Integration and setup utilities Both the IONA Tivoli resource model and task library must be installed and
configured to work correctly. The IONA Tivoli integration package contains a
number of setup utilities that help you achieve this task. These utilities are
described in detail in �Configuring your Tivoli Environment� on page 25.

Example IONA Tivoli deployment The high-level overview in Figure 2 shows a typical deployment of an IONA
Tivoli integration. This deployment is explained as follows:

1. The IONA Tivoli resource model and task library are installed on the
Tivoli region server.

2. The administrator customizes a monitoring profile based on the IONA
Tivoli resource model.

3. The monitoring profile is distributed through the gateways to each of
the Tivoli endpoints (managed hosts). In this example, there are three
Tivoli endpoints�two based on Windows, and one on Solaris.
14

The IONA Tivoli Integration
4. The monitoring profile executes inside the Tivoli Monitoring Agent,
periodically checking the status and response times of the IONA
services and IONA-based applications.

These steps are explained in more detail in �Configuring your Tivoli
Environment� on page 25 and �Extending to a Production Environment� on
page 37.

Figure 2: Example IONA Tivoli Deployment
15

CHAPTER 1 | Integrating with IBM Tivoli�
16

CHAPTER 2

Configuring your
IONA Product
This chapter explains the steps that you need to perform in
Artix or Orbix so that they can be managed using IBM Tivoli.

In this chapter This chapter contains the following sections:

Setting up your Artix Environment page 18

Setting up your Orbix Environment page 20
17

CHAPTER 2 | Configuring your IONA Product
Setting up your Artix Environment

Overview The best way to learn how to use the IONA Tivoli integration is to start with
a host that has both Tivoli and Artix installed. This section explains the
configuration steps in your Artix environment. It includes the following
topics:

� �EMS configuration files�.

� �The servers.conf file�.

� �The server_commands.txt file�.

� �Stopping Artix applications on Windows�.

� �Further information�.

EMS configuration files You must create the following two text files to configure the Tivoli
integration:

� servers.conf
� server_commands.txt

These files are used to track your Artix applications in Tivoli, and should be
stored for later use (for example, c:\iona\artix\my_ems_files).

Creating a servers.conf file The servers.conf file is used to instruct Tivoli to track your Artix servers. It
contains the locations of performance log files for specified servers. Each
entry must take the following format:

This example entry instructs Tivoli to track the myapplication server, and
reads performance data from the following log file:

You must add entries for the log file of each Artix server on this host that you
wish Tivoli to track. Tivoli uses the servers.conf file to locate these log
files, and then scans the logs for information about the server's key
performance indicators.

myapplication, 1, /path/to/myproject/log/myapplication_perf.log

/path/to/myproject/log/myapplication_perf.log
18

Setting up your Artix Environment
Creating a server_commands.txt
file

The servers.conf file is used to instruct Tivoli how to start, stop, and
restart your Artix servers. It contains the locations of the relevant scripts for
specified servers. Each entry must take the following format:

In this example, each entry specifies a script that can be used to stop, start,
or restart the myapplication server. When the IONA Tivoli task library
receives an instruction to start myapplication, it looks up the
server_commands.txt file, and executes the script specified in the
appropriate entry.

You must add entries that specify the relevant scripts for each server on this
host that you wish Tivoli to track.

Stopping Artix applications on
Windows

On Windows, stop scripts are not generated by default. While it is
straightforward to terminate a process on UNIX by sending it a kill signal,
there is no straightforward equivalent on most Windows platforms.

On Windows XP, you can use the taskkill command in your stop scripts.
On older versions of Windows, you can write your own stop scripts based on
a variety of methods. There are many options for implementing a stop script
including adding a Web service interface to control the shutdown of your
server, or simply making use of a utility such as pskill from
www.sysinternals.com.

See also, the following article on the Microsoft support pages:

How to terminate an application cleanly in Win32
(http://support.microsoft.com/default.aspx?scid=kb;EN-US;q178893)

Further information For details of how configure Artix servers to use the performance logging,
see �Configuring an Artix Production Environment� on page 38.

For a complete explanation of performance logging configuration, see
Configuring and Deploying Artix Solutions.

myapplication,start=/path/to/myproject/bin/start_myapplication.sh
myapplication,stop=/path/to/myproject/bin/stop_myapplication.sh
myapplication,restart=/path/to/myproject/bin/restart_myapplication.sh
19

../deploy/cpp/ndex.htm
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q178893

CHAPTER 2 | Configuring your IONA Product
Setting up your Orbix Environment

Overview The best way to learn how to use the IONA Tivoli integration is to start with
an Orbix installation on a host that is also a Tivoli endpoint. This section
explains the configuration steps in your Orbix environment. It includes the
following:

� �Creating an Orbix configuration domain�.

� �Generating EMS configuration files�.

� �Configuring performance logging�.

� �Tivoli configuration files�.

� �The servers.conf file�.

� �The server_commands.txt file�.

� �Further information�.

Figure 3: Orbix Configuration GUI
20

Setting up your Orbix Environment
Creating an Orbix configuration
domain

You must first create the Orbix configuration domain that you want to
monitor using the Orbix Configuration GUI.

To start the Orbix Configuration GUI, enter itconfigure on the command
line. The first screen is shown in Figure 3.

Generating EMS configuration
files

To generate Tivoli agent configuration files, perform the following steps:

1. Click Go straight into itconfigure in the welcome dialog.

1. Select File|New|Expert from the GUI main menu. This displays the
Domain Details screen, as shown in Figure 4.

2. Select the Generate EMS Configuration Files checkbox. This will
generate configuration files required for your IONA Tivoli integration.

3. Proceed as normal following the steps in the wizard until you get to the
Select Services screen (see �Configuring performance logging�).

Figure 4: Selecting Tivoli Agent Configuration
21

CHAPTER 2 | Configuring your IONA Product
Configuring performance logging To configure performance logging, take the following steps:

1. In the Select Services screen, click Settings to launch the Domain
Defaults dialog, shown in Figure 5.

2. Select the Performance Logging option in the Other Properties box,
shown in Figure 5. This ensures that, by default, all your selected
services are configured for monitoring.

If you want to enable Tivoli to start, stop, or restart your servers, also
select the Launch Service on Domain Startup option, in the Service
Launching box.

Alternatively, you can configure these settings separately for each
service by selecting the service, and clicking the Edit button.

3. Click Apply, and then Close.

Figure 5: Selecting Performance Logging
22

Setting up your Orbix Environment
4. Click Next to view a Confirmation screen for your selected
configuration.

5. Click Next to deploy your configuration.

6. Click Finish to exit.

Tivoli configuration files When the domain is created, you can start it like any other domain, using
the start script in your OrbixInstall/etc/bin directory. Selecting the
performance logging feature has enabled some extra configuration and
logging. In your OrbixInstall/var/domain-name directory, you will find the
following Tivoli configuration files:

The servers.conf file When you open the servers.conf file, you will see a number of entries in
the following form:

ServerName, number, /Path/to/a/Log/File

For example:

Note: When configuring Tivoli integration, you must also configure
performance logging. This step is not optional. However, you can configure
performance logging without Tivoli integration. For full details, see the
Orbix Management User�s Guide.

servers.conf Used by the IONA Tivoli resource model.

server_commands.txt Used by the IONA Tivoli task library.

mydomain_locator_myhost, 1,
/opt/iona/var/mydomain/logs/locator_myhost_perf.log
23

CHAPTER 2 | Configuring your IONA Product
The servers.conf file lists the servers that you want Tivoli to monitor on a
particular host. To begin with, assume that you are running all services in
the domain on one host. For example, assume your servers.conf file has
the above entry. When you have started your domain, you should see a log
file in the following location:

/opt/iona/var/mydomain/logs/locator_perf.log

There will be one of these files for each server that you want to monitor. The
IONA Tivoli resource model uses the servers.conf file to locate these logs
and then scans the logs for information about the server's key performance
indicators.

The server_commands.txt file When you open the server_commands.txt file, you will see a number of
entries of the form:

ServerName,Action=/Path/to/Script

For example:

Each entry in this file contains a pointer to a script that implements an
action on a particular server. In this example, the action is a start action for
the server mydomain_locator_myhost. When the IONA Tivoli task library
receives an instruction to start the locator in a domain named mydomain on a
host named myhost, it looks up the server_commands.txt file on myhost,
and execute the script pointed to in this entry.

Further information For details of how to manually configure servers to use the performance
logging plugins, see �Extending to a Production Environment� on page 37.

For a complete explanation of performance logging configuration, see the
Orbix Management User�s Guide.

mydomain_locator_myhost,start
=/opt/iona/var/mydomain/locator_myhost_start.sh
24

CHAPTER 3

Configuring your
Tivoli Environment
This chapter explains the steps that you must perform in your
IBM Tivoli environment. It assumes that you already have a
good working knowledge of the IBM Tivoli Management
Framework and IBM Tivoli Monitoring (formerly known as
Distributed Monitoring).

In this chapter This chapter contains the following sections:

Creating a Tivoli Installation Bundle page 26

Installing the Resource Model in the Tivoli Server page 28

Pushing the Resource Model out to your Host page 32

Configuring the Resource Model for your Endpoint page 34
25

CHAPTER 3 | Configuring your Tivoli Environment
Creating a Tivoli Installation Bundle

Overview Your Tivoli integration comes in a .tar file called tivoli_integration.tar.
This file is located in the following directory:

This section explains how to create a Tivoli install bundle from the
tivoli_integration.tar file. You will create an install bundle named
tivoli_install.tar.

Creating an install bundle To create a Tivoli install bundle, perform the following steps:

1. Untar the tivoli_integration.tar file into any directory on the host
that you want to monitor, using the following command:

tar xvf tivoli_integration.tar

There should be three subdirectories:

2. Go into the bin directory and run the create_tivoli_install_bundle
shell script.

ArtixInstallDir\artix_Version\cxx_java\management\Tivoli

bin
resource-model
task-library

Note: This is a bash script. On Windows (with Tivoli installed), you
must use the bash environment that is installed with Tivoli. If you
invoke the script with no arguments, it prints out a page of
instructions.
26

Creating a Tivoli Installation Bundle
The create_tivoli_install_bundle script takes the following
arguments:

3. Decide which region to use in your Tivoli deployment, and which
profile manager you want the IONA profile to be installed in.

4. Run the create_tivoli_install_bundle shell script with all three
values specified. This results in a new tar file called
tivoli_install.tar.

Configuration directory The configuration directory where the
servers.conf and server_commands.txt
files are located:

Artix

For example, c:/my_ems_files).

Orbix

OrbixInstall/var/DomainName

Note: On Windows, you must use a
forward slash character (/) when
specifying this location.

Region name The name of the Tivoli administrative
region that you want this host/application
to be in.

Profile manager The name of the Tivoli profile manager that
you want the IONA profile to be installed
in.
27

CHAPTER 3 | Configuring your Tivoli Environment
Installing the Resource Model in the Tivoli
Server

Overview This section explains how to install the IONA Tivoli resource model from the
tivoli_install.tar file that you created.

Installing the IONA Tivoli resource
model

To install the IONA Tivoli resource model and task library into your Tivoli
server, perform the following steps:

1. Transfer the tivoli_install.tar file to your Tivoli region server, and
untar it to a temporary location, using the following command:

2. Start a Tivoli shell environment (see your Tivoli documentation for
details). On Windows, type bash, to run in a bash shell. Change to your
temporary location, and you will see a new directory structure starting
with a directory named iona.

3. Change directory into iona/bin. This contains the following shell
scripts:

4. Run the create_profile.sh script. This adds the IONA Tivoli resource
model to the resource model database and creates a new profile
named IONAProfile.

5. Open the Tivoli Desktop and select the region that you specified when
you created the install bundle, followed by the profile manager that you
specified. In the Profile Manager GUI, you will see a new profile called
IONAProfile, as shown in Figure 6.

tar xvf tivoli_install.tar

import_tll.sh
create_profile.sh
28

Installing the Resource Model in the Tivoli Server
Figure 6: Tivoli Profile Manager
29

CHAPTER 3 | Configuring your Tivoli Environment
6. Open the IONAProfile, and then open the resource model IONAServer
Monitor. You will see a resource model with default thresholds and
indications, as shown in Figure 7.

Figure 7: Edit Resource Model
30

Installing the Resource Model in the Tivoli Server
Figure 7 shows that the profile has been initialized with default
threshold values. Appendix A describes these thresholds in detail; you
do not need to be concerned with these now.

7. If you want Tivoli to log historical data on the attributes of each server,
click the Logging... button for the profile, and then check the box
marked Enable Data Logging to put logging into effect. This will record
historical data for each attribute.

8. Click Modify & Close.
31

CHAPTER 3 | Configuring your Tivoli Environment
Pushing the Resource Model out to your Host

Overview This section explains how to push the IONA Tivoli resource model out to the
endpoint where your IONA product is running (Orbix or Artix).

Pushing out the resource model To push the IONA Tivoli resource model out to the endpoint where your
IONA product is running, perform the following steps:

1. Add the Tivoli endpoint where your IONA product is installed as a
subscriber to the profile manager, and distribute the IONAProfile to
this endpoint.

The resource model should now be running on the endpoint, but it will
not yet be able to collect any meaningful data because it needs to be
pointed to the servers.conf file.

2. Return to the directory where you untarred tivoli_install.tar, and
change directory to iona/bin.

3. Run the import_tll.sh script. This installs the task library.

4. Reopen the Tivoli region that you are using on the desktop. You should
now see a task library called IONAServerTaskLibrary.

5. Open the task library. It contains the following four tasks (also shown
in Figure 8):

6. Run the check_deployment task on the endpoint that contains your
correctly configured Artix or Orbix installation. It prints out diagnostics
to indicate that it has found your servers.conf file and your
server_commands.txt file. This task also verifies the contents of these
files.

check_deployment
configure_provider
list_server_commands
server_command
32

Pushing the Resource Model out to your Host
7. If the check_deployment task runs successfully, try running
list_server_commands. This shows a list of actions that you can run
on each server, for example:

Executing this command stops the Orbix locator in mydomain. You can
execute any of these server commands by running the server_command
task. This is an exercise for later (described in �Configuring the
resource model� on page 34).

Figure 8: Contents of the IONA Server Task Library

mydomain_locator_myhost,stop
33

CHAPTER 3 | Configuring your Tivoli Environment
Configuring the Resource Model for your
Endpoint

Overview This section explains how to configure the IONA Tivoli resource model for
your endpoint host, and how to test that your integration is configured
correctly. It includes the following topics:

� �Configuring the resource model�.

� �Testing your Tivoli integration�.

� �Further information�.

Configuring the resource model To configure the resource model for your endpoint, perform the following
steps:

1. First, verify that the configure_provider script uses the correct
location for the servers.conf file, and then execute the
configure_provider task.

2. You must restart the Tivoli Monitoring Engine on the endpoint to pick
up this new information. You can do this using the following
command:

3. When this process has finished, it is safe to execute a restart using the
following command:

4. View the status of your deployed resource model by opening the Tivoli
Web Health Console, and view the data for your host. If all the servers
in your domain are running, everything should be fine with no errors.

wdmcmd -e endpoint_name -stop

Note: On Windows, you might need to allow some time before
restarting. This is because it takes time to shut down the Tivoli M12
provider, which hosts the resource model.

wdmcmd -e endpoint_name -restart
34

Configuring the Resource Model for your Endpoint
5. Verify that monitoring is working correctly by killing one of your
servers. The effect is not immediately visible on the Web Health
Console. The delay depends on cycle time setting in the profile. The
default is 60 seconds. However, the Web Health Console can take
longer to refresh.

The quickest way to check the status is by executing the following
command:

This shows the status of any errors in the deployed resource models.

6. You should be able to start the server again using the task library. Go
to the task library and execute the server_command task. Fill in the
name of the server and the action to perform on it (for example, in this
case, mydomain_locator_myhost, start). You should see your server
start and your health return to 100% in the Web Health Console soon
after that.

Testing your Tivoli integration When you have checked that you can start and stop servers and monitor
their liveness, you can try some of the other available thresholds.

For example, the IONA Tivoli resource model provides a threshold called
NumInvocations upper bound. This emits an event when the number of
operations that a server receives exceeds a certain threshold, which can
indicate that an overload is in progress. You can set the threshold,
redistributing the profile. You can test this by writing clients to frequently
contact the server in question until the threshold is exceeded.

Further information For full details on how to use the Tivoli Monitoring product, see the Tivoli
Monitoring User Guide.

wdmlseng -e endpoint_name -verbose
35

CHAPTER 3 | Configuring your Tivoli Environment
36

CHAPTER 4

Extending to a
Production
Environment
This section describes how to extend an IONA Tivoli integration
from a test environment to a production environment.

In this chapter This chapter contains the following sections:

Configuring an Artix Production Environment page 38

Configuring an Orbix Production Environment page 42
37

CHAPTER 4 | Extending to a Production Environment
Configuring an Artix Production Environment

Overview When you have performed the basic setup steps, then you can move on to
the deployment-based production tasks. These include:

� �Monitoring your own Artix applications�.

� �Monitoring an Artix application on multiple hosts�.

� �Monitoring multiple Artix applications on the same host�.

� �Further information�.

Monitoring your own Artix
applications

You must add the following settings to your Artix server�s configuration file:

my_application {

Ensure that bus_response_monitor is in your orb_plugins list.
orb_plugins = [...,"bus_response_monitor"];

Collector period (in seconds). How often performance information is logged.
plugins:it_response_time_collector:period = "60";

Set the name of the file which holds the performance log
plugins:it_response_time_collector:filename =
"/opt/myapplication/log/myapplication_perf.log";

}

Note: The specified plugins:it_response_time_collector:period
should divide evenly into your cycle time (for example, a period of 20 and
a cycle time of 60).
38

Configuring an Artix Production Environment
Monitoring an Artix application on
multiple hosts

The same principles apply when monitoring your server on multiple hosts.
Each host has one servers.conf file. In the following example, assume that
you want to run the prdserver on an endpoint host called dublin:

1. Create the servers.conf and server_commands.txt files for the
servers that you want to monitor on the dublin host (see �Setting up
your Artix Environment� on page 18 for details).

2. Run the configure_provider task selecting the dublin endpoint. Enter
the location of the servers.conf file on the dublin host, shown in
Figure 9.

3. Restart the Tivoli Monitoring Engine on dublin as described in
�Configuring the Resource Model for your Endpoint� on page 34.

Now you should be able to monitor prdserver on dublin.

Figure 9: The configure_provider Task
39

CHAPTER 4 | Extending to a Production Environment
Example task

Suppose you want to execute the stop script for the prdserver on the
dublin endpoint. Assuming your server_commands.txt file is complete, you
can open the server_command task selecting the dublin endpoint. The script
takes the following parameters:

The Server Name and Server Id is myapplication_prdserver. The action is
stop, but the Server Command File Location defaults to whatever this
location was on the host where you first generated the tivoli_install.tar.

You must retype this location so that it points to the correct location on the
dublin host. Use the same path for your servers.conf and
server_commands.txt files on all hosts, if possible. If not, enter a new
location each time that you want to invoke an action on a different host.

Alternatively, you can use the server_command task as a template for a new
task. After changing the value of server_commands.txt, and filling in the
other fields, instead of clicking Set & Execute, click Save.... You can
rename this task as, for example, stop_prdserver_on_dublin.

If you want more flexibility in deciding which parameters to default and
which to leave open, you can create a custom task library based on the
IONA Tivoli task library. A description of how this is done is beyond the
scope of this document. If you need to do this, contact IONA Professional
Services.

Server Command File Location, (location of server_commands.txt)
Server Name,
Server Action,
Server Id
40

Configuring an Artix Production Environment
Monitoring multiple Artix
applications on the same host

Sometimes you may need to deploy multiple separate Artix applications on
the same host. The solution is to merge the servers.conf and
server_commands.txt files from each of the applications into single
servers.conf and server_commands.txt files.

For example, if the servers.conf file from the UnderwriterCalc application
looks as follows:

And the servers.conf file for the ManagePolicy application looks as
follows:

The merged servers.conf file will then include the following two lines:

Exactly the same procedure applies to the server_commands.txt file.

Further information For full details on how to use the Tivoli Monitoring product, see your Tivoli
Monitoring User Guide.

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_perf.log

ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_perf.log
ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log
41

CHAPTER 4 | Extending to a Production Environment
Configuring an Orbix Production Environment

Overview When you have performed the basic setup steps, then you can move on to
the deployment-based production tasks. These include:

� �Monitoring your own Orbix applications�.

� �Monitoring your Orbix servers on multiple hosts�.

� �Monitor multiple Orbix domains on the same host�.

� �Further information�.

Monitoring your own Orbix
applications

You can use the Orbix Configuration tool to enable Tivoli management of
Orbix services. Enabling Tivoli to manage your own Orbix applications
involves the following steps:

1. You must configure your application to use performance logging (see
the Orbix Management User�s Guide for a full description). For
example, suppose you have a server executable named
myapplication_prdserver that executes with the ORB name
myapplication.prdserver. The typical configuration would be as
follows:

C++ applications

myapplication {
 prdserver {

binding:server_binding_list = [�it_response_time_logger+OTS�, ��];
plugins:it_response_time_collector:period = "30";
plugins:it_response_time_collector:server-id

="myapplication_prdserver";
plugins:it_response_time_collector:filename =

"/opt/myapplication/logs/prdserver/prdserver_perf.log";
}

}

42

Configuring an Orbix Production Environment
Java applications

2. The most important configuration values are the server-id and the
C++ filename or Java log_properties used by the
response_time_collector. You can add these values to the
servers.conf file to make the IONA Tivoli resource model aware of
your application as follows:

3. Restart your endpoint. Now Tivoli will monitor the execution of the
myapplication_prdserver.

4. To control the myapplication_prdserver server through the
server_command task, edit the server_commands.txt file. For example
you could add the following entries to the server_commands.txt file:

myapplication {
 prdserver {

binding:server_binding_list = [�it_response_time_logger+OTS�, �...�];
 plugins:it_response_time_collector:period = "30";
 plugins:it_response_time_collector:server-id = "myapplication_prdserver";

plugins:it_response_time_collector:log_properties = [�log4j.rootCategory=INFO, A1�,
�log4j.appender.A1=com.iona.management.logging.log4jappender.TimeBasedRollingFile
Appender�,

�log4j.appender.A1.File=/opt/myapplications/logs/prdserver_perf.log�,
�log4j.appender.A1.layout=org.apache.log4j.PatternLayout�,
�log4j.appender.A1.layout.ConversionPattern=%d{ISO8601} %-80m %n�];
}

}

Note: The specified plugins:it_response_time_collector:period
should divide evenly into your cycle time (for example, a period of 20 and
a cycle time of 60).

myapplication_prdserver, 1,
/opt/myapplication/logs/prdserver/prdserver_perf.log

myapplication_prdserver,start =
/opt/myapplication/scripts/prdserver_start.sh

myapplication_prdserver,stop =
/opt/myapplication/scripts/prdserver_stop.sh

myapplication_prdserver,restart =
/opt/myapplication/scripts/prdserver_restart.sh
43

CHAPTER 4 | Extending to a Production Environment
The prdserver_start.sh, prdserver_stop.sh and
prdserver_restart.sh scripts will be written by you.

Monitoring your Orbix servers on
multiple hosts

The same principles apply when monitoring your Orbix servers on multiple
hosts. Each host has one servers.conf file. In the following example,
assume that you want to run the prdserver on an endpoint host called
dublin:

1. Write the servers.conf and server_commands.txt files for the servers
that you want to monitor on the dublin host (see �Setting up your
Orbix Environment� on page 20 for details).

2. Run the configure_provider task selecting the dublin endpoint. Enter
the location of the servers.conf file on the dublin host, shown in
Figure 9.

3. Restart the Monitoring Engine on dublin as described in �Configuring
the Resource Model for your Endpoint� on page 34.

Now you should be able to monitor prdserver on dublin.

Figure 10: The configure_provider Task
44

Configuring an Orbix Production Environment
Example task

Suppose you want to execute the stop script for the prdserver on the
dublin endpoint. Assuming your server_commands.txt file is complete, you
can open the server_command task selecting the dublin endpoint. The script
takes the following parameters:

The Server Name and Server Id is myapplication_prdserver. The action is
stop, but the Server Command File Location defaults to whatever this
location was on the host where you first generated the tivoli_install.tar.

You must retype this location so that it points to the correct location on the
dublin host. Use the same path for your servers.conf and
server_commands.txt files on all hosts, if possible. If not, enter a new
location each time that you want to invoke an action on a different host.

Alternatively, you can use the server_command task as a template for a new
task. After changing the value of server_commands.txt, and filling in the
other fields, instead of clicking Set & Execute, click Save.... You can
rename this task as, for example, stop_prdserver_on_dublin.

If you want more flexibility in deciding which parameters to default and
which to leave open, you can create a custom task library based on the
IONA Tivoli task library. A description of how this is done is beyond the
scope of this document. If you need to do this, contact IONA Professional
Services.

Monitor multiple Orbix domains
on the same host

You may have more than one Orbix configuration domain running on the
same host. Tivoli is not aware of concepts like Orbix configuration domains
and the current solution for this is to have the IONA Tivoli resource model
perform monitoring of all domains on the same host. This means having
only one servers.conf or server_commands.txt file for each host.

This could potentially cause problems if you have servers on the same host
that have the same ORB name and by extension the same default value for
the following variable:

plugins:it_response_time_collector:server-id

Server Command File Location, (location of server_commands.txt)
Server Name,
Server Action,
Server Id
45

CHAPTER 4 | Extending to a Production Environment
This is why, by default, the server IDs are generated with the domain name
added as prefix and the host name added as suffix (for example,
mydomain_locator_myhost).

A typical servers.conf file with two domains (mydomain and yourdomain)
would look as follows:

Similarly for the task library:

Further information For full details on how to use the Tivoli Monitoring product, see your Tivoli
Monitoring User Guide.

mydomain_locator, 1,
/opt/iona/var/domains/mydomain/logs/locator_myhost_perf.log
...
yourdomain_locator, 1,
/opt/iona/var/domains/yourdomain/logs/locator_yourhost_perf.log

mydomain_locator_myhost , start,
/opt/iona/etc/bin/mydomain_locator_start.sh
...
yourdomain_locator_yourhost , start,
/opt/iona/etc/bin/yourdomain_locator_start.sh
46

CHAPTER 5

Using the IONA
Tivoli Integration
This chapter explains how to perform common tasks using the
IONA Tivoli integration. For example, how to access historical
data, or detect when a server is down.

In this chapter This chapter contains the following sections:

Detecting Common Server Problems page 48

Tracking Server Performance Metrics page 50

Stopping, Starting, and Restarting Servers page 51
47

CHAPTER 5 | Using the IONA Tivoli Integration
Detecting Common Server Problems

Overview This section explains how to detect common server problems using the
IONA Tivoli integration. It includes the following:

� �Detecting possible server crashes�.

� �Detecting problems with response times�.

� �Detecting heavy traffic�.

� �Enabling data logging for your servers�.

� �Further information�.

Detecting possible server crashes An Ev_IONAServer_ServerStatus_matches event is sent when a server
listed in servers.conf fails to log a status=running message since the
beginning of the last cycle. The Ev_IONAServer_ServerStatus_matches
event contains information about the identity of the server that has stopped
running.

The cycle time can be set appropriately before you distribute your profile. It
is important that the configured value of the
plugins:it_response_time_collector:period is always less than the
cycle time. Otherwise, you may get spurious events of this type. The
specified period should divide evenly into your cycle time (for example, a
period of 20 and a cycle time of 60).

For more details on configuration variables, see �Extending to a Production
Environment� on page 37.

Detecting problems with response
times

If the average response time of a server exceeds the average response time
threshold (Thr_IONAServer_Resource_Model_AvgResponseTime_gt), an
event is emitted to warn the user. A higher than expected response time
may indicate a heavy load or possibly a failure that is causing an
unexpectedly slow response for users. This threshold should be set
appropriately for the servers that you are monitoring. This can be done in a
profile or a policy.
48

Detecting Common Server Problems
There is also a threshold for maximum response times
(Thr_IONAServer_Resource_Model_MaxResponseTime_gt). The maximum
response time refers to the slowest operation that took place on a server
during the last collection cycle. Typically, this value can vary a lot more than
the average response time, so you might want to set this threshold higher
than the average response time.

Detecting heavy traffic The NumInvocations parameter tracks the number of invocations being
processed by the server during each cycle. You must treat this metric with
caution because it is not normalized and can be prone to sampling errors.

For example, small differences in the actual cycle time could mean that you
pick up an extra log entry during the lifetime of a particular cycle. This can
lead to a spike in the data.

The effect of this is lessened when the ratio of cycle time/collector period
increases. For example, if the performance logging plugin logs data every 60
seconds and the cycle time is 60 seconds, the error could be as much as
+/- 100%. If the ratio of cycle time/collector period is 10, the error for this
parameter is +/- 10%.

Enabling data logging for your
servers

Before you distribute your IONAProfile, or indeed any profile based on the
IONA Tivoli resource model, it is recommended that you enable logging in
the profile as follows:

1. In the Tivoli Monitoring Profile window, double click on IONAServer
Monitor in the top pane.

2. This launches an Edit Resource Model window, click on the Logging�
button in this window.

3. Ensure that the Enable Data Logging button is checked.

4. Click Apply Changes and Close.

5. Click Modify & Close in the Edit Resource Model window.

If you do this before distributing the profile, the Tivoli Agent will track and
summarize data for all of the attributes in the resource model. You can use
these historical logs for a number of tasks (for example, server downtime,
explained in the next section).

Further information For descriptions of all the events, thresholds, and parameters in the IONA
Tivoli resource model, see Appendix A.
49

CHAPTER 5 | Using the IONA Tivoli Integration
Tracking Server Performance Metrics

Overview This section explains how to track key server performance metrics (for
example, server downtime and response time). It includes:

� �Examining server downtime�.

� �Tracking other server performance metrics�.

Examining server downtime To examine server downtime, perform the following steps:

1. Open the Web Health Console and connect to a machine that is
running your profile.

2. In the top pane (the one labelled Resource Models on Hostname),
select the Historical Data radio button.

3. In the bottom pane, choose the IONAServer_Resource_Model in the
left-hand drop-down box, and
IONAServer_Resource_Model_Availability in the right-hand
drop-down box.

4. In the left-hand selection, choose the name of the server that you want
to examine.

5. In the right-hand selection, choose ServerStatus.

A table is displayed that shows when the server was running, and for what
periods (if any) that its status was unknown. This will most likely be
because the server was not running.

Tracking other server performance
metrics

Follow steps 1-4 listed for �Examining server downtime�. But this time,
choose a different metric on the right.

For example, to view a history of the average response time of your server,
choose AvgResponseTime (AVG). The data is displayed in tabular form for
the last hour, by default. However, you can choose to view data for longer
periods. The range of graphical presentation options, such as line and bar
charts, can give a useful insight into your server usage patterns.

Another metric of interest is NumOperations. This tracks the throughput of
your server. Viewing the history can help you identify times when the server
usage peaks.
50

Stopping, Starting, and Restarting Servers
Stopping, Starting, and Restarting Servers

Overview This section explains how to use the IONAServerTaskLibrary to perform
actions on servers (for example, stop, start, or restart). It includes:

� �Establishing which servers and operations are tracked�.

� �Example of starting the locator service�.

Establishing which servers and
operations are tracked

The IONAServerTaskLibrary enables you to stop, start or restart your
servers. To check what servers are recognized by the system and what
operations are defined for them, perform the following steps:

1. Double click on the IONAServerTaskLibrary.

2. Double click on list_server_commands.

3. Click the Display on Desktop checkbox.

4. Click the endpoint on which to execute the task.

5. Select Execute & Dismiss.

6. Verify that the Server Command File Location is correct (this is the
server_commands.txt file).

7. Click Set & Execute.

A list of recognized servers and the operations supported for those servers is
displayed.

Example of starting the locator
service

To start an Orbix locator service (for example, in the domain foo, on the
host patrick) perform the following steps:

1. Double click on the IONAServerTaskLibrary.

2. Double click on server_command.

3. Click the Display on Desktop checkbox. Select the endpoint on which
to execute the task.

4. Click Execute & Dismiss.
51

CHAPTER 5 | Using the IONA Tivoli Integration
5. Verify that the Server Commands File Location is correct (this is for
the server_commands.txt file)

6. Fill in the name and ID of the server (foo_locator_patrick) and the
action (start).

7. Click Set & Execute.
52

APPENDIX A

IONA Tivoli
Resource Model
This appendix describes the contents of the IONA Tivoli
resource model. It includes descriptions of the thresholds,
events, and parameters used in this model, along with a
WBEM/CIM definition.

In this appendix This chapter contains the following sections:

Thresholds page 54

Events page 56

Parameters page 57

WBEM/CIM Definition page 58
53

APPENDIX A | IONA Tivoli Resource Model
Thresholds
This section describes the thresholds in the IONA Tivoli resource model. It
lists an internal name and description of each threshold.

Thr_IONAServer_Resource_Model_AvgResponseTime_gt

When the AvgResponseTime counter exceeds this threshold, the
Ev_IONAServer_Resource_Model_AvgResponseTime_too_high event is
generated.

The default value is 50.

This threshold corresponds to the AvgResponseTime upper bound threshold
displayed in the Profile Manager GUI.

Thr_IONAServer_Resource_Model_MaxResponseTime_gt

When the MaxResponseTime counter exceeds this threshold, the
Ev_IONAServer_Resource_Model_MaxResponseTime_too_high event is
generated.

The default value is 250.

This threshold corresponds to the MaxResponseTime upper bound
threshold displayed in the Profile Manager GUI.

Thr_IONAServer_Resource_Model_NumInvocations_lt

When the NumInvocations counter is lower than this threshold, the
Ev_IONAServer_Resource_Model_NumInvocations_too_low event is
generated.

The default value is 0.

This threshold corresponds to the NumInvocations lower bound threshold
displayed in the Profile Manager GUI. This threshold is useful for detecting
server hangs when used in conjunction with a ping client that is run at
regular intervals.
54

Thresholds
Thr_IONAServer_Resource_Model_NumInvocations_gt

When the NumInvocations counter exceeds this threshold the
Ev_IONAServer_Resource_Model_NumInvocations_too_high event is
generated.

The default value is 100000.

This threshold corresponds to the NumInvocations upper bound threshold
displayed in the Profile Manager GUI.
55

APPENDIX A | IONA Tivoli Resource Model
Events
This section describes the events in the IONA Tivoli resource model. It lists
an internal name and description of each event.

Ev_IONAServer_Resource_Model_AvgResponseTime_too_high

This event is generated when the AvgResponseTime counter exceeds the
AvgResponseTime upper bound threshold.

Ev_IONAServer_Resource_Model_MaxResponseTime_too_high

This event is generated when the MaxResponseTime counter exceeds the
MaxResponseTime upper bound threshold.

Ev_IONAServer_Resource_Model_NumInvocations_too_low

This event is generated when the NumInvocations counter is lower than the
NumInvocations lower bound threshold.

Ev_IONAServer_Resource_Model_NumInvocations_too_high

This event is generated when the server is receiving a large number of
invocations, and when the NumInvocations counter exceeds the
NumInvocations upper bound threshold. This can be an indication of
overload.

Ev_IONAServer_Server_Status_matches

This event is generated when the status of the server is unknown.
56

Parameters
Parameters
This section describes the parameter in the IONA Tivoli resource model. It
lists an internal name and description.

Par_Problematic_Status_Values_eqs

This specifies values that indicate a problem with the server status. Possible
values are as follows:

� unknown
� shutdown_started
� shutdown_complete
57

APPENDIX A | IONA Tivoli Resource Model
WBEM/CIM Definition
WBEM/CIM refers to Web-Based Enterprise Management/Common
Information Model. The WBEM/CIM definition for the IONA Tivoli resource
model is as follows:

#pragma namespace ("\\\\.\\ROOT\\CIMV2")

[
Dynamic,
M12_Instrumentation("Java.com.iona.management.provider.tivoli.AR

TILTProviderImpl | | ENUM"),
Provider("M12JavaProvider")
]
class IONAServer
{
 [Key, Description("The unique name of an IONA Server

Replica")]
 string Identifier;

 [
 Dynamic,

M12_Instrumentation("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),

 Provider("M12JavaProvider")
]
 uint32 NumInvocations;

 [
 Dynamic,

M12_Instrumentation("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),

 Provider("M12JavaProvider")
]
 uint32 MaxResponseTime;
58

WBEM/CIM Definition
 [
 Dynamic,

M12_Instrumentation("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),

 Provider("M12JavaProvider")
]
 uint32 MinResponseTime;

 [
 Dynamic,

M12_Instrumentation("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),

 Provider("M12JavaProvider")
]
 uint32 AvgResponseTime;

 [
 Dynamic,

M12_Instrumentation("Java.com.iona.management.provider.tivoli
.ARTILTProviderImpl | | GET"),

 Provider("M12JavaProvider")
]
 string ServerStatus;

};
59

APPENDIX A | IONA Tivoli Resource Model
60

Index

A
Apply Changes and Close 49
average response time 48, 50
AvgResponseTime 50
AvgResponseTime upper bound 54

B
binding:server_binding_list 42, 43
bus_response_monitor 38

C
C++ configuration 42
check_deployment task 32
configure_provider 34, 39, 44
configure_provider task 32
crash, server 48
create_profile.sh 28
create_tivoli_install_bundle 26, 27
cycle time 35, 43, 48

D
Display on Desktop 51
Domain Settings 21

E
Edit Resource Model 49
EMS 10
Enable Data Logging 31, 49
Enterprise Management System 10
events 56
Ev_IONAServer_Resource_Model_MaxResponseTime

_too_high 56
Ev_IONAServer_Resource_Model_NumInvocations_t

oo_high 56
Ev_IONAServer_Resource_Model_NumInvocations_t

oo_low 56
Ev_IONAServer_Server_Status_matches 56
Ev_IONAServer_ServerStatus_matches 48
Execute & Dismiss 51

F
filename 43

G
Generate EMS Configuration Files 21

I
import_tll.sh 28
IONAProfile 28, 49
IONAServer Monitor 30, 49
IONAServer_Resource_Model 50
IONAServer_Resource_Model_Availability 50
IONAServerTaskLibrary 32, 51
IONA Tivoli resource model 49
itconfigure tool 21
it_response_time_logger 42, 43

J
Java configuration 43

L
Launch Service on Domain Startup 22
list_server_commands task 32
log file interpreter 11
Logging... 31, 49
log_properties 43

M
maximum response time 49
MaxResponseTime upper bound 54
Modify & Close 31, 49
Monitoring Profile 49

N
NumInvocations 49
NumInvocations lower bound 54
NumInvocations upper bound 35, 55, 56
NumOperations 50
61

INDEX
O
Orbix Configuration tool 21, 42
orb_plugins 38
Other Properties 22

P
parameters 57
Par_Problematic_Status_Values_eqs 57
performance log files 18
performance logging

configuration 22
plugins 11

plugins:it_response_time_collector:filename 38, 42
plugins:it_response_time_collector:log_properties 4

3
plugins:it_response_time_collector:period 38, 42,

43, 48
plugins:it_response_time_collector:server-id 42, 43,

45
Profile Manager 28, 54
pskill 19

R
resource model

events 56
parameters 57
thresholds 54

response time 11
average 48
maximum 49

response_time_collector 43

S
Save... 40, 45
server_command 40, 45
Server Command File Location 40, 45, 51
server_commands.txt 23, 32, 40, 41, 45, 51
server_command task 32, 35, 43
server crash 48
server-id 43
servers.conf file 23, 32, 39, 41, 44
ServerStatus 50

Service Launching 22
Set & Execute 40, 45, 51
setup utilities 14
shutdown_complete 57
shutdown_started 57
stopping

applications on Windows 19

T
taskkill 19
threshold

average response time 48
maximum response time 49

thresholds 54
Thr_IONAServer_Resource_Model_AvgResponseTim

e_gt 48, 54
Thr_IONAServer_Resource_Model_MaxResponseTim

e_gt 49, 54
Thr_IONAServer_Resource_Model_NumInvocations_

gt 55
Thr_IONAServer_Resource_Model_NumInvocations_

lt 54
Tivoli Desktop 28
tivoli_install.tar 27, 40, 45
tivoli_integration.tar 26
Tivoli Management Framework 13
Tivoli Monitoring 13
Tivoli profile manager 27
Tivoli region name 27
Tivoli task library 14, 19
Tivoli Web Health Console 34

U
unknown 57

W
WBEM/CIM definition 58
wdmcmd 34
wdmlseng 35
Web Health console 50
Windows

stopping applications 19
62

	List of Figures
	Preface
	What is covered in this book
	Who should read this book
	Organization of this book
	The Artix Documentation Library

	Integrating with IBM Tivoli™
	Introduction
	The IONA Tivoli Integration

	Configuring your IONA Product
	Setting up your Artix Environment
	Setting up your Orbix Environment

	Configuring your Tivoli Environment
	Creating a Tivoli Installation Bundle
	Installing the Resource Model in the Tivoli Server
	Pushing the Resource Model out to your Host
	Configuring the Resource Model for your Endpoint

	Extending to a Production Environment
	Configuring an Artix Production Environment
	Configuring an Orbix Production Environment

	Using the IONA Tivoli Integration
	Detecting Common Server Problems
	Tracking Server Performance Metrics
	Stopping, Starting, and Restarting Servers

	IONA Tivoli Resource Model
	Thresholds
	Events
	Parameters
	WBEM/CIM Definition

	Index

