
Artix ESB
Java Router, Getting Started

Version 5.1
December 2007

Making Software Work Together™

Java Router, Getting Started
IONA Technologies

Version 5.1

Published 19 Dec 2007
Copyright © 1999-2007 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together, Adaptive Runtime Technology, Orbacus,
IONA University, and IONA XMLBus are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Table of Contents
Preface ... 11

Document Conventions ... 12
Introducing Java Router .. 15

Architecture ... 16
How to Develop a Router Application .. 19

Java Router Tutorial ... 21
Tutorial Overview ... 22
Tutorial: SOAP Client .. 24
Tutorial: CORBA Server ... 27
Tutorial: Router ... 33
Tutorial: Building and Running the Demonstration .. 36

Defining Routes in Java DSL .. 37
Implementing a RouteBuilder Class .. 38
Basic Java DSL Syntax .. 40
Processors ... 44
Languages for Expressions and Predicates .. 50
Transforming Message Content .. 55

Defining Routes in XML .. 63
Using the Router Schema in an XML File ... 64
Defining a Basic Route in XML .. 66
Processors ... 67
Languages for Expressions and Predicates .. 74
Transforming Message Content .. 76

3

4

List of Figures
1. Architecture of the Java Router .. 16
2. Overview of the Java Router Tutorial ... 22
3. Generating CORBA Stub Code ... 27
4. Local Routing Rules .. 41

5

6

List of Tables
1. Properties for Simple Language ... 51
2. Transformation Methods from the ProcessorType Class 56
3. Methods from the Builder Class ... 57
4. Modifier Methods from the ValueBuilder Class 58
5. Elements for Expression and Predicate Languages 74

7

8

List of Examples
1. GreeterService Service .. 24
2. SOAP Client main() Method .. 25
3. CORBA Server main() Function ... 27
4. Multibinding Router Code .. 34
5. Implementation of a RouteBuilder Class 38
6. Implementing a Custom Processor Class 49
7. Simple Transformation of Incoming Messages 55
8. Using Artix Data Services to Marshal and Unmarshal 61
9. Specifying the Router Schema Location 64
10. Router Schema in a Spring Configuration File 65
11. Basic Route in XML .. 66
12. Using Artix Data Services to Marshal and Unmarshal 78

9

10

Preface

Table of Contents
Document Conventions ... 12

11

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as

fixed width

classes, functions, variables, and data structures. For
example, text might refer to the
javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

import java.util.logging.Logger;

Fixed width italic words or characters in code and
commands represent variable values you must supply,

Fixed width

italic
such as arguments to commands or path names for your
particular system. For example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Italic

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences dialog.

Bold

Keying conventions
This book uses the following keying conventions:

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

No prompt

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

%

12

Document Conventions

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

#

The notation > represents the MS-DOS or Windows

command prompt.

>

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

...

Brackets enclose optional items in format and syntax
descriptions.

[]

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

{ }

In format and syntax descriptions, a vertical bar separates
items in a list of choices enclosed in {} (braces).

|

Admonition conventions
This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may
also provide information about workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be
encountered. These errors are unlikely to cause damage to your data
or your systems.

Warnings display information about errors that may cause damage to
your systems. Possible damage from these errors include system
failures and loss of data.

13

Admonition conventions

14

Introducing Java Router
Summary

This chapter describes the architecture of the Java Router and introduces
some basic concepts that are important for understanding how the router
works.

Table of Contents
Architecture ... 16
How to Develop a Router Application .. 19

15

Architecture
Overview

Figure 1, “Architecture of the Java Router” gives a general overview of the
Java Router architecture. This architecture is designed with the basic
requirement in mind that the router should be deployable in a wide variety
of different container types.

Figure 1. Architecture of the Java Router

Router
The router service is represented by a Camel context object, which
encapsulates routing rules (in the form of RouteBuilder objects) and

components (which enable the router to bind to various network protocols
and other resources). The router application itself consists either of Java code
or XML configuration, or possibly a combination of the two.

Endpoints
In general, an endpoint is a specific source or a sink of messages, identified
by a URI. In practice, this means that an endpoint maps either to a network
location or to some other resource that can produce or absorb a stream of
messages. Within a routing rule, endpoints are used in two distinct ways: the
source endpoint appears at the start of a rule (for example, in a from()

16

Architecture

command) and acts as a source of request messages and a sink for reply
messages (if any); the target endpoint appears at the end of a rule (for
example, in a to() command) and acts as a sink for request messages and

a source of reply messages.

Components
A component is a plug-in that integrates the router core with a particular
network protocol or external resource. From the perspective of a router
developer, a component appears to be a factory for creating a specific type
of endpoint. For example, there is a file component that can be used to create
endpoints that read/write messages to and from particular directories or files.
There is a CXF component that enables you to create endpoints that
communicate with Web services (and related protocols).

Typically, before you can use a particular component, you need to configure
it and add it to the Camel context. Some components, however, are embedded
in the router core and do not need to be configured. The embedded
components are as follows:

• Bean.

• Direct.

• File.

• JMX.

• Log.

• Mock.

• SEDA.

• Timer.

• VM.

17

Architecture

For more details about the available components see the Deployment Guide
and the list of Camel components
[http://activemq.apache.org/camel/components.html].

RouteBuilders
The RouteBuilder classes encapsulate the routing rules. A router developer

defines custom classes that inherit from RouteBuilder and adds instances

of these classes to the CamelContext.

Deployment options
The router architecture is designed to facilitate deploying the router into
different kinds of container. The following deployment options are currently
supported:

• Spring container deployment—the router application is deployed into a
Spring container and you can use the Spring configuration file to configure
components and define routes.

• Standalone deployment—you must write a main() method in the

application code, which is responsible for creating and registering
RouteBuilder objects as well as configuring and registering components.

For more details about the deployment options, see the Deployment Guide.

Camel context
A CamelContext represents a single Camel routing rulebase. It defines the

context used to configure routes and details which policies should be used
during message exchanges between endpoints.

18

Architecture

http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

How to Develop a Router Application
Outline of the development steps

The following steps give a broad outline of what is involved in developing a
router application:

1. Choose a deployment option—the router architecture is designed to support
multiple deployment options. Currently, the following deployment options
are supported:

• Spring container deployment.

• Standalone deployment.

2. Define routing rules in Java DSL or in XML—depending on the deployment
option, you define the routing rules either in Java DSL or in XML.

3. Configure components—if you need to use components not already
embedded in the router core, you must configure the components using
either Java code or (in the case of a Spring container) XML.

4. Deploy the router—to deploy the router, follow the instructions for the
particular container or deployment option that you have chosen. See the
Deployment Guide for details.

19

How to Develop a Router Application

20

Java Router Tutorial
Summary

This tutorial describes a Java Router demonstration in some detail, explaining
the code for each part of the application and describing how to build and
run the demonstration.

Table of Contents
Tutorial Overview ... 22
Tutorial: SOAP Client .. 24
Tutorial: CORBA Server ... 27
Tutorial: Router ... 33
Tutorial: Building and Running the Demonstration .. 36

21

Tutorial Overview
Overview

Figure 2, “Overview of the Java Router Tutorial” gives an overview of the
multibinding router demonstration, which forms the basis for the tutorial in
this chapter. Essentially, this demonstration shows how the router can switch
messages between different binding/transport combinations. For example, in
this demonstration, the incoming requests are received from the client in
SOAP/HTTP format. The request messages are then routed to a CORBA server
in IIOP (Internet Inter-ORB Protocol) format.

Figure 2. Overview of the Java Router Tutorial

To implement this route, the router requires just a single component: the CXF
component, which is capable of supporting SOAP/HTTP endpoints as well as
CORBA endpoints. The route itself is just a straightforward link between the
source endpoint (SOAP/HTTP) and the target endpoint (CORBA). No additional
processing is performed in the router.

Location of demonstration code
The code for the multibinding demonstration can be found in the following

location:

ArtixInstallDir/java/samples/router/multibinding

Tutorial stages
The tutorial consists of the following stages:

• Tutorial: SOAP Client.

• Tutorial: CORBA Server.

• Tutorial: Router.

22

Tutorial Overview

• Tutorial: Building and Running the Demonstration

23

Tutorial Overview

Tutorial: SOAP Client
Overview

The SOAP client connects directly to the router, which exposes a SOAP/HTTP
endpoint in order to listen for request messages from the client. The client is
an entirely conventional JAX-WS client, implemented using the Artix Java
runtime. The WSDL contract used by the client defines a Greeter interface

(port type), a GreeterService service, and a GreeterPort port (for

SOAP/HTTP). These basic features of the WSDL contract and the client
application code are all described in this section.

Greeter port type
The Greeter port type in the WSDL contract,

samples/router/multibinding/greeter.wsdl, defines the

operations the SOAP client can call. The following operations are supported:

• sayHi—returns a salutation.

• greetMe—takes a string argument (the user's name) and returns a

personalized greeting.

• pingMe—has no arguments or return value, but is capable of raising a

fault exception.

• greetMeOneWay—has one string argument, but no return value (a oneway

operation).

GreeterService service
Example 1, “GreeterService Service” shows the WSDL fragment for the SOAP
service, GreeterService, that the client connects to.

Example 1. GreeterService Service
<wsdl:definitions name="Greeter"
targetNamespace="http://cxf.iona.com/demo/greeter"

...
<wsdl:service name="GreeterService">

<wsdl:port binding="tns:GreeterSOAPBinding"
name="GreeterPort">

<soap:address
location="http://localhost:9090/GreeterContext/GreeterPort"/>

</wsdl:port>

24

Tutorial: SOAP Client

</wsdl:service>
</wsdl:definitions>

From this WSDL fragment, we can read off the qualified names (QName) of
the WSDL service and port. The value of the targetNamespace attribute

in the definitions element determines the namespace of the service and

port. Hence, the service and port QNames are as follows:

• Service QName is
{http://cxf.iona.com/demo/greeter}GreeterService

• Port QName is
{http://cxf.iona.com/demo/greeter}GreeterPort

Note
The value of the location attribute in the soap:address element

is ignored, because the client overrides this address in the application
code. See Example 2, “SOAP Client main() Method”.

Router address
Instead of connecting to the address given in the wsdl:port element (see

Example 1, “GreeterService Service”), the client connects to the router
process, which acts as a proxy for the CORBA service. The address that the
client actually connects to is the following:

http://localhost:9000/router

Client main() method
The SOAP client is a standard JAX-WS client, implemented using the Artix
Java runtime. The main() method creates a Greeter proxy in order to

access the GreeterService service (as defined by the WSDL fragment,

Example 1, “GreeterService Service”).

Example 2. SOAP Client main() Method
package demo.router.soap;

import javax.xml.ws.Service;
import static javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_BINDING;

import demo.router.Greeter;

25

Tutorial: SOAP Client

import static demo.router.Constants.*;

public final class Client {
...
public static void main(String args[]) throws Exception

{

// create a service and get the router port
Service service = Service.create(SERVICE_NAME); ❶
service.addPort(PORT_NAME, SOAP11HTTP_BINDING,

ROUTER_TRANSPORT); ❷
Greeter greeter = service.getPort(PORT_NAME,

Greeter.class);

// make a invocation to the service
String reply = greeter.greetMe("CORBA service"); ❸
System.out.println(reply);

}
}

The preceding code can be explained as follows:

❶ The SERVICE_NAME constant is defined to be

{http://cxf.iona.com/demo/greeter}GreeterService.

❷ The PORT_NAME constant is defined to be

{http://cxf.iona.com/demo/greeter}GreeterPort. The

ROUTER_TRANSPORT constant is defined to be

http://localhost:9000/router and this value overrides the

address that appears in the soap:address element of the WSDL

contract.
❸ Invoke the remote greetMe operation, using the greeter proxy object.

26

Tutorial: SOAP Client

Tutorial: CORBA Server
Overview

In this scenario, the CORBA server responds to IIOP request messages from
the router. The CORBA server is implemented using the Java version of Orbix.
Because the server is a fully-fledged CORBA application, it is necessary to
describe the Greeter interface in terms of OMG IDL (Interface Definition
Language) in order to generate the requisite CORBA stub code. Figure 3,
“Generating CORBA Stub Code” gives a schematic overview of how the stub
code is generated in this demonstration.

Figure 3. Generating CORBA Stub Code

The starting point is a WSDL contract, greeter.wsdl, which is the contract

used by the SOAP client (see Tutorial: SOAP Client). The Apache Ant build
file calls the Yoko WSDL-to-IDL tool,
org.apache.yoko.tools.WSDLToIDL, in order to convert this WSDL

contract into an IDL file. The Java idlj tool is then called in order to generate

stub code for the CORBA server.

CORBA server main() function
Example 3, “CORBA Server main() Function” shows an extract from the
CORBA server's main() function. The server instantiates an object of

GreeterImpl type, which implements the Greeter interface and makes

it accessible through the URL, corbaloc::localhost:40000/greeter.

Example 3. CORBA Server main() Function
package demo.router.corba;

import java.util.Properties;

import com.iona.corba.IT_CORBA.WELL_KNOWN_ADDRESSING_POLICY_ID;
import com.iona.corba.IT_PlainTextKey.Forwarder;

27

Tutorial: CORBA Server

import
com.iona.corba.IT_PortableServer.PERSISTENCE_MODE_POLICY_ID;
import
com.iona.corba.IT_PortableServer.PersistenceModePolicyValue;
import
com.iona.corba.IT_PortableServer.PersistenceModePolicyValueHelper;

import org.omg.CORBA.Any;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Policy;
import org.omg.CORBA.UserException;

import org.omg.PortableServer.IdAssignmentPolicyValue;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;
import org.omg.PortableServer.POAManager;

public class Server {
org.omg.CORBA.ORB orb;

private static POA createPOA(String name, org.omg.CORBA.ORB
orb,

POA rootPOA, POAManager
rootPOAManager, String wakey) { ❶

// Create POA with PERSISTENT life span,
DIRECT_PERSISTENCE persistence mode,

// and a well-known addressing policy.
// ... (not shown)

}

int runCorbaServer() throws UserException {
// Resolve Root POA
POA rootPOA =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
❷

// Get a reference to the POA manager
POAManager manager = rootPOA.the_POAManager(); ❸
POA poa = createPOA("hello_world", orb, rootPOA,

manager, "greeter");

GreeterImpl hwImpl = new GreeterImpl(poa); ❹

byte[] oid = "GreeterServer".getBytes();
poa.activate_object_with_id(oid, hwImpl); ❺

org.omg.CORBA.Object obj =

28

Tutorial: CORBA Server

poa.create_reference_with_id(oid, GreeterHelper.id()); ❻
Greeter hello = GreeterHelper.narrow(obj);

try {
Forwarder forwarder =

(Forwarder)orb.resolve_initial_references("IT_PlainTextKeyForwarder");

forwarder.add_plain_text_key("greeter", hello);
❼

} catch (Exception ex) {
throw new RuntimeException("Could not register

the corbaloc address");
}

// Run implementation
manager.activate(); ❽
System.out.println("Server ready...");
orb.run();

return 0;
}

public void run() {
java.util.Properties props = new Properties();
props.putAll(System.getProperties());
props.put("org.omg.CORBA.ORBClass",

"com.iona.corba.art.artimpl.ORBImpl"); ❾
props.put("org.omg.CORBA.ORBSingletonClass",

"com.iona.corba.art.artimpl.ORBSingleton");

String[] arguments = new String[10]; ❿
arguments[0] = "-ORBdomain_name";
arguments[1] = "artix";
arguments[2] = "-ORBgreeter:iiop:host";
arguments[3] = "localhost";
arguments[4] = "-ORBgreeter:iiop:port";
arguments[5] = "40000";

try {
orb = ORB.init(arguments, props);
runCorbaServer();

} catch (Exception ex) {
ex.printStackTrace();

}

// ...
}

29

Tutorial: CORBA Server

public void shutdownServer() {
if (orb != null) {

try {
orb.shutdown(false);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

public static void main(String[] args) {
try {

Server s = new Server();
s.run();

} catch (Exception ex) {
ex.printStackTrace();
System.exit(-1);

} finally {
System.out.println("done!");

}
}

}

Where the preceding C++ code can be explained as follows:

❶ The createPOA() method creates an instance of a POA (Portable

Object Adapter) which represents a collection of CORBA objects that
share the same set of policies. In particular, all of the CORBA objects
in a POA share the same endpoint address. This method creates a POA
instance with the following policy settings:

• Life-span policy is PERSISTENT—which means that object references

remain valid even after you stop and restart the server.

• ID assignment policy is USER_ID—which means that the developer

specifies object identifiers explicitly, instead of relying on the ORB to
auto-generate one.

• Persistence mode policy is DIRECT_PERSISTENT—which means

that clients establish connections directly to the server, instead of
going through the Orbix locator.

• Well-known addressing policy is greeter—which enables you to

configure the CORBA endpoint's address using configuration variables
of the form greeter:iiop:host and greeter:iiop:port.

30

Tutorial: CORBA Server

❷ Get a reference to the root POA object, rootPOA, using the ORB

initialization service. The root POA is a factory for POA objects.
❸ Get a reference to the POA manager, which is used to start and stop the

CORBA service.

Note
Every POA instance has an associated POA manager. Because
of the hierarchical relationship between POA instances, the root
POA's POA manager can be used to start or stop all of the
endpoints (that is, POA instances) simultaneously.

❹ Create the object (of GreeterImpl type), that implements the

Greeter interface.

❺ Associate the GreeterImpl object with the CORBA endpoint (POA

instance). In CORBA terminology, this is called activating the object.
When you activate the object, you also assign its object ID (which gets
embedded into the object reference).

❻ The following two lines create an object reference for the Greeter CORBA
object. The object reference, hello, encapsulates the information that

is needed to remotely access the Greeter CORBA object (for example,
clients would obtain the object reference in order to access the CORBA
object).

❼ The code in this try block initializes a plain text key, which is used as

an alias for the object reference. The purpose of this code is to enable
you to use a plain, human-readable URL to access the CORBA service.
In this example, the URL is
corbaloc::localhost:40000/greeter. By setting the forwarder

as shown, you can specify the corbaloc URL using /greeter in

place of an unreadable object key.
❽ Start the CORBA service by calling activate() on the root POA

manager. This has the effect of spawning a sub-thread that starts to
listen for incoming CORBA request messages.

❾ Set the system properties for passing to the ORB.init() method. The

effect of setting the org.omg.CORBA.ORBClass property and the

org.omg.CORBA.ORBSingletonClass property as shown is that

the Java interpreter uses the Orbix implementation of
org.omg.CORBA.ORB (if you did not set these properties as shown,

31

Tutorial: CORBA Server

the ORB implementation would default to Sun's implementation, which
is embedded in the Java runtime).

Note
The org.omg.CORBA.ORBSingletonClass property setting

is actually ineffective, because the ORB singleton object is
already instantiated at this point. This is not important for this
demonstration, because the the ORB singleton object is not
needed here.

❿ The ORB initialization parameters defined here are used to configure
the Orbix ORB. In particular, the settings for greeter:iiop:host

and greeter:iiop:port specify the physical address of the CORBA

endpoint (POA instance). Recall that the well-known addressing policy
(set in the createPOA() method) assocates the prefix, greeter:,

with the CORBA endpoint.

32

Tutorial: CORBA Server

Tutorial: Router
Overview

The router in the multibinding demonstration implements a simple routing

rule: a SOAP/HTTP source endpoint (which listens for operation invocations
from a SOAP client) is linked to a CORBA target endpoint. The purpose of
this demonstration is to show that the router can route messages between
different protocol bindings, transforming and redirecting the messages as it
does so.

CXF component
The CXF component provides the router with access to the Artix Java runtime.
In particular, the CXF component provides access to all of the bindings and
transports supported by the Java runtime, including SOAP/HTTP, SOAP/JMS,
CORBA, and so on. Using the CXF component, you can define endpoint URIs
for any of these bindings and transports (where the URI prefix is cxf://).

Note
There is no need to add the CXF component to the Camel context;
it is automatically added by the router core.

Source endpoint
The source endpoint for the routing rule is given by the following CXF endpoint
URI:

cxf://http://localhost:9000/router
?serviceClass=demo.router.Greeter&dataFormat=POJO

Target endpoint
The target endpoint for the routing rule is given by the following CXF endpoint
URI:

cxf://corbaloc::localhost:40000/greeter
?serviceClass=demo.router.Greeter&dataFormat=POJO

&portName={http://cxf.iona.com/demo/greeter}GreeterCORBAPort

&serviceName={http://cxf.iona.com/demo/greeter}GreeterCORBAService

33

Tutorial: Router

&wsdlURL=greeter-corba.wsdl

Router code
Example 4, “Multibinding Router Code” shows the contents of the
Router.java file, which implements a standalone router. The router defines

a single rule to route messages from SOAP/HTTP source endpoint to a CORBA
target endpoint.

Example 4. Multibinding Router Code
package demo.router;

import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.impl.DefaultCamelContext;

public class Router {

protected static final String URI_QRY =
"?serviceClass=demo.router.Greeter&dataFormat=POJO";

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() { ❶

public void configure() {
from(getFromURI()).to(getToURI()); ❷

}
};

}

protected CamelContext createCamelContext() throws
Exception {

return new DefaultCamelContext();
}

protected String getFromURI() { ❸
return "cxf://" + Constants.ROUTER_TRANSPORT + URI_QRY;

}

protected String getToURI() { ❹
return "cxf://" + Constants.SVC_TRANSPORT + URI_QRY

+
"&portName={http://cxf.iona.com/demo/greeter}GreeterCORBAPort"

+
"&serviceName={http://cxf.iona.com/demo/greeter}GreeterCORBAService"

34

Tutorial: Router

+ "&wsdlURL=greeter-corba.wsdl";
}

public void run() throws Exception { ❺
CamelContext context = createCamelContext();
context.addRoutes(createRouteBuilder());
context.start();

}

public static void main(String [] args) throws Exception
{

Router router = new Router();
router.run();
System.out.println("Router ready...");

}
}

The preceding code can be explained as follows:

❶ Create a org.apache.camel.builder.RouteBuilder object to

define the router rules. This line of code uses the Java syntax for creating
and instantiating a class on the fly.

❷ This router has just one routing rule: connect a SOAP/HTTP endpoint
(from which it receives client requests) to a CORBA endpoint.

❸ The getFromURI()method constructs the URI for the source endpoint,

which is a SOAP/HTTP endpoint. See Source endpoint for details.
❹ The getToURI() method constructs the URI for the target endpoint,

which is a CORBA endpoint. See Target endpoint for details.
❺ The code in the Router.run() method follows the usual outline for

a standalone deployment of the router: it creates a Camel context, adds
a RouteBuilder object, and then starts the router service.

35

Tutorial: Router

Tutorial: Building and Running the Demonstration
Overview

In this stage of the tutorial, you will use the Apache Ant [http://ant.apache.org/]
build tool to build and run the multibinding demonstration.

Steps to run and build the
multibinding demonstration Perform the following steps to build and run the multibinding

demonstration:

1. You must build the demonstration using the Java runtime. If you have not
already done so, you need to configure your environment to use the Java
runtime. For each command window that you open, you should enter the
following:

• Windows

> ArtixInstallDir\java\bin\artix_java_env.bat

• UNIX (for a bourne-compatible shell)

% . ArtixInstallDir/java/bin/artix_java_env

2. To build the demonstration, open a command window, change directory
to samples/router/multibinding and enter the following command:

ant build

3. To run the CORBA Greeter service, enter the following command:

ant server

4. To run the router, enter the following command:

ant router

5. To run the SOAP client, enter the following command:

ant client

36

Tutorial: Building and Running the
Demonstration

http://ant.apache.org/
http://ant.apache.org/

Defining Routes in Java DSL
Summary

You can define routing rules in Java, using a domain specific language (DSL).
The routing rules represent the core of a router application and Java DSL is
currently the most flexible way to define them.

Table of Contents
Implementing a RouteBuilder Class .. 38
Basic Java DSL Syntax .. 40
Processors ... 44
Languages for Expressions and Predicates .. 50
Transforming Message Content .. 55

37

Implementing a RouteBuilder Class
Overview

In Java Router, you define routes by implementing a RouteBuilder class.

You must override a single method, RouteBuilder.configure(), and

in this method define the routing rules you want to associate with the
RouteBuilder. The rules themselves are defined using a Domain Specific

Language (DSL), which is implemented as a Java API.

You can define as many RouteBuilder classes as you like in a router

application. Ultimately, each RouteBuilder class must get instantiated

once and registered with the CamelContext object. Normally, however,

the lifecycle of the RouteBuilder objects is managed automatically by the

container in which you deploy the router. The core task for a router developer
is simply to implement one or more RouteBuilder classes.

RouteBuilder class
The org.apache.camel.builder.RouteBuilder class is the base

class for implementing your own route builder types. It defines an abstract
method, configure(), that you must override in your derived

implementation class. In addition, RouteBuilder also defines methods

that are used to initiate the routing rules (for example, from(),

intercept(), and exception()).

Implementing a RouteBuilder
Example 5, “Implementation of a RouteBuilder Class” shows an example of
a simpler RouteBuilder implementation. You need only define a single

method, configure(), which contains a list of routing rules (one Java

statement for each rule).

Example 5. Implementation of a RouteBuilder Class
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
// Define routing rules here:

from("file:src/data?noop=true").to("file:target/messages");

38

Implementing a RouteBuilder Class

// More rules can be included, in you like.
// ...

}
}

Where the rule of the form from(URL1).to(URL2) instructs the router to

read messages from the file system located in directory, src/data, and

send them to files located in the directory, target/messages. The option,

?noop=true, specifies that the source messages are not to be deleted from

the src/data directory.

39

Implementing a RouteBuilder Class

Basic Java DSL Syntax
What is a DSL?

A Domain Specific Language (DSL) is essentially a mini-language designed
for a special purpose. The DSL is not required to be logically complete; it
need only have enough expressive power to describe problems adequately in
the chosen domain.

Typically, a DSL does not require a dedicated parser, interpreter, or compiler.
You can piggyback a DSL on top of an existing object-oriented host language
by observing that it is possible to map an API in a host language to a
specialized language syntax: that is, a sequence of commands in the DSL
maps to a chain of method invocations in the host language. For example, a
sequence of commands in some hypothetical DSL that might look like this:

command01;
command02;
command03;

Can be mapped to a chain of Java invocations, like this:

command01().command02().command03()

You could even define blocks, for example:

command01().startBlock().command02().command03().endBlock()

The syntax of the DSL is implicitly defined by the type system of the
specialized API. For example, the return type of a method determines which
methods can legally be invoked next (equivalent to the next command in the
DSL).

Router rule syntax
The Java Router defines a router DSL for defining routing rules. You can use
this DSL to define rules in the body of a RouteBuilder.configure()

implementation. Figure 4, “Local Routing Rules” shows an overview of the
basic syntax for defining local routing rules.

40

Basic Java DSL Syntax

Figure 4. Local Routing Rules

A local rule always starts with a from("EndpointURL") method, which

specifies the source of messages for the routing rule. You can then add an
arbitrarily long chain of processors to the rule (for example, filter()),

finishing off the rule with a to("EndpointURL") method, which specifies

the target for the messages that pass through the rule. It is not always
necessary to end a rule with to(), however. There are alternative ways of

specifying the message target in a rule.

Note
It is also possible to define a global routing rule, by starting the rule
with a special processor type (such as intercept(),

exception(), errorHandler(), and so on). This kind of rule

lies outside the scope of the Getting Started guide.

Sources and targets
A local rule always starts by defining a source endpoint, using
from("EndpointURL"), and typically (but not always) ends by defining

a target endpoint, using to("EndpointURL"). The endpoint URLs,

EndpointURL, can use any of the components configured at deploy time.

For example, you could use a file endpoint, file:MyMessageDirectory,

a CXF endpoint, cxf:MyServiceName, or an ActiveMQ endpoint,

41

Basic Java DSL Syntax

activemq:queue:MyQName. For a complete list of component types, see

http://activemq.apache.org/camel/components.html.

Processors
A processor is a method that can access and modify the stream of messages
passing through a rule. If a message is part of a remote procedure call (InOut
call), the processor can potentially act on the messages flowing in both
directions: on the request messages, flowing from source to target, and on
the reply messages, flowing from target back to source (see Message
exchanges). Processors can take expression or predicate arguments, that
modify their behavior. For example, the rule shown in Figure 4, “Local Routing
Rules” includes a filter() processor that takes an xpath() predicate as

its argument.

Expressions and predicates
Expressions (evaluating to strings or other data types) and predicates
(evaluating to true or false) occur frequently as arguments to the built-in
processor types. You do not have to worry much about which type to pass to
an expression argument, because they are usually automatically converted to
the type you need. For example, you can usually just pass a string into an
expression argument. Predicate expressions are useful for defining conditional
behaviour in a route. For example, the following filter rule propagates In
messages, only if the foo header is equal to the value bar:

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");

Where the filter is qualified by the predicate,
header("foo").isEqualTo("bar"). To construct more sophisticated

predicates and expressions, based on the message content, you can use one
of the expression and predicate languages (see Languages for Expressions
and Predicates).

Message exchanges
When a router rule is activated, it can process messages passing in either
direction: that is, from source to target or from target back to source. For
example, if a router rule is mediating a remote procedure call (RPC), the rule
would process requests, replies, and faults. How do you manage message
correlation in this case? One of the most effective and straightforward ways
is to use a message exchange object as the basis for processing messages.
Java Router uses message exchange objects (of
org.apache.camel.Exchange type) in its API for processing router rules.

The basic idea of the message exchange is that, instead of accessing requests,
replies, and faults separately, you encapsulate the correlated messages inside

42

Basic Java DSL Syntax

http://activemq.apache.org/camel/components.html

a single object (an Exchange object). Message correlation now becomes

trivial from the perspective of a processor, because correlated messages are
encapsulated in a single Exchange object and processors gain access to

messages through the Exchange object.

Using an Exchange object makes it easy to generalize message processing

to different kinds ofmessage exchange pattern. For example, an asynchronous
protocol might define a message exchange pattern that consists of a single
message that flows from the source to the target (an In message). An RPC
protocol, on the other hand, might define a message exchange pattern that
consists of a request message correlated with either a reply or fault message.
Currently, Java Router supports the following message exchange patterns:

• InOnly

• RobustInOnly

• InOut

• InOptionalOut

• OutOnly

• RobustOutOnly

• OutIn

• OutOptionalIn

Where these message exchange patterns are represented by constants in the
enumeration type, org.apache.camel.ExchangePattern.

43

Basic Java DSL Syntax

Processors
Overview

To enable the router to something more interesting than simply connecting a
source endpoint to a target endpoint, you can add processors to your route.
A processor is a command you can insert into a routing rule in order to perform
arbitrary processing of the messages that flow through the rule. Java Router
provides a wide variety of different processors, as follows:

• Filter.

• Choice.

• Pipeline

• Recipient list.

• Splitter.

• Aggregator.

• Resequencer.

• Throttler.

• Delayer.

• Load balancer

• Custom processor.

Filter
The filter() processor can be used to prevent uninteresting messages

from reaching the target endpoint. It takes a single predicate argument: if the
predicate is true, the message exchange is allowed through to the target; if
the predicate is false, the message exchange is blocked. For example, the
following filter blocks a message exchange, unless the incoming message
contains a header, foo, with value equal to bar:

from("SourceURL").filter(header("foo").isEqualTo("bar")).to("TargetURL");

Choice
The choice() processor is a conditional statement that is used to route

incoming messages to alternative targets. The alternative targets are each

44

Processors

preceded by a when() method, which takes a predicate argument. If the

predicate is true, the following target is selected, otherwise processing proceeds
to the next when()method in the rule. For example, the following choice()

processor directs incoming messages to either Target1, Target2, or

Target3, depending on the values of Predicate1 and Predicate2:

from("SourceURL").choice().when(Predicate1).to("Target1")
.when(Predicate2).to("Target2")
.otherwise().to("Target3");

Pipeline
The pipeline() processor is used to link together a chain of targets, where

the output of one target is fed into the input of the next target in the pipeline
(analogous to the UNIX pipe command). The pipeline() method takes

an arbitrary number of endpoint arguments, which specify the sequence of
endpoints in the pipeline. For example, to pass messages from SourceURL

to Target1 to Target2 to Target3 in a pipeline, you could use the

following rule:

from("SourceURL").pipeline("Target1","Target2","Target3");

Recipient list
If you want the messages from a source endpoint, SourceURL, to be sent

to more than one target, there are two alternative approaches you can use.
One approach is to invoke the to() method with multiple target endpoints

(static recipient list), for example:

from("SourceURL").to("Target1","Target2","Target3");

The alternative approach is to invoke the recipientList() processor,

which takes a list of recipients as its argument (dynamic recipient list). The
advantage of the recipientList() processor is that the list of recipients

can be calculated at runtime. For example, the following rule generates a
recipient list by reading the contents of the recipientListHeader from

the incoming message:

45

Processors

from("SourceURL").recipientList(header("recipientListHeader").tokenize(","));

Splitter
The splitter() processor is used to split a message into parts, which are

then processed as separate messages. The splitter()method takes a list

argument, where each item in the list represents a message part that is to be
re-sent as a separate message. For example, the following rule splits the body
of an incoming message into separate lines and then sends each line to the
target in a separate message:

from("SourceURL").splitter(bodyAs(String.class).tokenize("\n")).to("TargetURL");

Aggregator
The aggregator() processor is used to aggregate related incoming

messages into a single message. In order to distinguish which messages are
eligible to be aggregated together, you need to define a correlation key for
the aggregator. The correlation key is normally derived from a field in the
message (for example, a header field). Messages that have the same
correlation key value are eligible to be aggregated together. You can also
optionally specify an aggregation algorithm to the aggregator() processor

(the default algorithm is to pck the latest message with a given value of the
correlation key and to discard the older messages with that correlation key
value).

For example, if you are monitoring a data stream that reports stock prices in
real time, you might only be interested in the latest price of each stock symbol.
In this case, you could configure an aggregator to transmit only the latest
price for a given stock and discard the older (out-of-date) price notifications.
The following rule implements this functionality, where the correlation key is
read from the stockSymbol header and the default aggregator algorithm is

used:

from("SourceURL").aggregator(header("stockSymbol")).to("TargetURL");

Resequencer
A resequencer() processor is used to re-arrange the order in which

incoming messages are transmitted. The resequencer() method takes a

sequence number as its argument (where the sequence number is calculated
from the contents of a field in the incoming message). Naturally, before you
can start re-ordering messages, you need to wait until a certain number of
messages have been received from the source. There are a couple of different
ways to specify how long the resequencer() processor should wait before

46

Processors

attempting to re-order the accumulated messages and forward them to the
target, as follows:

• Batch resequencing—(the default) wait until a specified number of
messages have accumulated before starting to re-order and forward
messages. This processing option is specified by invoking
resequencer().batch(). For example, the following resequencing

rule would re-order messages based on the timeOfDay header, waiting

until at least 300 messages have accumulated or 4000 ms have elapsed
since the last message received.

from("SourceURL").resequencer(header("timeOfDay").batch(new
BatchResequencerConfig(300, 4000L)).to("TargetURL");

• Stream resequencing—transmit messages as soon as they ariive unless
the resequencer detects a gap in the incoming message stream (missing
sequence numbers), in which case the resequencer waits until the missing
messages arrive and then forwards the messages in the correct order. To
avoid the resequencer blocking forever, you can specify a timeout (default
is 1000 ms), after which time the message sequence is transmitted with
unresolved gaps. For example, the following resequencing rule detects gaps
in the message stream by monitoring the value of the sequenceNumber

header, where the maximum buffer size is limited to 5000 and the timeout
is specified to be 4000 ms:

from("SourceURL").resequencer(header("sequenceNumber")).stream(new
StreamResequencerConfig(5000, 4000L)).to("TargetURL");

Throttler
The throttler() processor is used to ensure that a target endpoint does

not get overloaded. The throttler works by limiting the number of messages
that can pass through per second. If the incoming messages exceed the
specified rate, the throttler accumulates excess messages in a buffer and
transmits them more slowly to the target endpoint. For example, to limit the
rate of throughput to 100 messages per second, you can define the following
rule:

from("SourceURL").throttler(100).to("TargetURL");

Delayer
The delayer() processor is used to hold up messages for a specified length

of time. The delay can either be relative (wait a specified length of time after

47

Processors

receipt of the incoming message) or absolute (wait until a specific time). For
example, to add a delay of 2 seconds before transmitting received messages,
you can use the following rule:

from("SourceURL").delayer(2000).to("TargetURL");

To wait until the absolute time specified in the processAfter header, you

can use the following rule:

from("SourceURL").delayer(header("processAfter").to("TargetURL");

The delayer() method is overloaded, such that an integer is interpreted

as a relative delay and an expression (for example, a string) is interpreted as
an absolute delay.

Load balancer
The loadBalance() processor is used to load balance message exchanges

over a list of target endpoints. It is possible to customize the load balancing
strategy. For example, to load balance incoming messages exchanges using
a round robin algorithm (each endpoint in the target list is tried in sequence),
you can use the following rule:

from("SourceURL").loadBalance().roundRobin().to("TargetURL_01",
"TargetURL_02", "TargetURL_03");

Alternatively, you can customize the load balancing algorithm by implementing
your own LoadBalancer class, as follows:

public class MyLoadBalancer implements
org.apache.camel.processor.loadbalancer.LoadBalancer {

...
};

from("SourceURL").loadBalance().setLoadBalancer(new
MyLoadBalancer())

.to("TargetURL_01", "TargetURL_02", "TargetURL_03");

Custom processor
If none of the standard processors described here provide the functionality
you need, you can always define your own custom processor. To create a
custom processor, define a class that implements the
org.apache.camel.Processor interface and override the process()

method in this class. For example, the following custom processor,
MyProcessor, removes the header named foo from incoming messages:

48

Processors

Example 6. Implementing a Custom Processor Class
public class MyProcessor implements org.apache.camel.Processor
{

public void process(org.apache.camel.Exchange exchange)
{

inMessage = exchange.getIn();
if (inMessage != null) {

inMessage.removeHeader("foo");
}

}
};

To insert the custom processor into a router rule, invoke the process()

method, which provides a generic mechanism for inserting processors into
rules. For example, the following rule invokes the processor defined in
Example 6, “Implementing a Custom Processor Class”:

org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL").process(myProc).to("TargetURL");

49

Processors

Languages for Expressions and Predicates
Overview

To provide you with greater flexibility when parsing and processing messages,
Java Router supports language plug-ins for various scripting languages. For
example, if an incoming message is formatted as XML, it is relatively easy to
extract the contents of particular XML elements or attributes from the message
using a language such as XPath. The Java Router implements script builder
classes, which encapsulate the imported languages. Each languages is
accessed through a static method that takes a script expression as its
argument, processes the current message using that script, and then returns
an expression or a predicate. In order to be usable as an expression or a
predicate, the script builder classes implement the following interfaces:

org.apache.camel.Expression<E>
org.apache.camel.Predicate<E>

In addition to this, the ScriptBuilder class (which wraps scripting

languages such as JavaScript, and so on) inherits from the following interface:

org.apache.camel.Processor

Which implies that the languages associated with the ScriptBuilder class

can also be used as message processors (see Custom processor).

Simple
The simple language is a very limited expression language that is built into
the router core. This language can be useful, if you need to eliminate
dependancies on third-party libraries whilst testing. Otherwise, you should
use one of the other languages. To use the simple language in your application
code, include the following import statement in your Java source files:

import org.apache.camel.language.simple.SimpleLanguage.simple;

The simple language provides various elementary expressions that return
different parts of a message exchange. For example, the expression,
simple("header.timeOfDay"), would return the contents of a header

called timeOfDay from the incoming message. You can also construct

predicates by testing expressions for equality. For example, the predicate,
simple("header.timeOfDay = '14:30'"), tests whether the

timeOfDay header in the incoming message is equal to 14:30. Table 1,

“Properties for Simple Language” shows the list of elementary expressions
supported by the simple language.

50

Languages for Expressions and
Predicates

Table 1. Properties for Simple Language

DescriptionElementary Expression

Access the body of the incoming
message.

body

Access the body of the outgoing
message.

out.body

Access the contents of the
HeaderName header from the

incoming message.

header.HeaderName

Access the contents of the
HeaderName header from the

outgoing message.

out.header.HeaderName

Access the PropertyName property

on the exchange.

property.PropertyName

XPath
The xpath() static method parses message content using the XPath language

(to learn about XPath, see the W3 Schools tutorial,
http://www.w3schools.com/xpath/default.asp). To use the XPath language in
your application code, include the following import statement in your Java
source files:

import static org.apache.camel.builder.xml.XPathBuilder.xpath;

You can pass an XPath expression to xpath() as a string argument. The

XPath expression implicitly acts on the message content and returns a node
set as its result. Depending on the context, the return value is interpreted
either as a predicate (where an empty node set is interpreted as false) or an
expression. For example, if you are processing an XML message with the
following content:

<person user="paddington">
<firstName>Paddington</firstName>
<lastName>Bear</lastName>
<city>London</city>

</person>

You could choose which target endpoint to route the message to, based on
the content of the city element, using the following rule:

51

Languages for Expressions and
Predicates

http://www.w3schools.com/xpath/default.asp

from("file:src/data?noop=true").
choice().

when(xpath("/person/city =
'London'")).to("file:target/messages/uk").

otherwise().to("file:target/messages/others");

Where the return value of xpath() is treated as a predicate in this example.

XQuery
The xquery() static method parses message content using the XQuery

language (to learn about XQuery, see the W3 Schools tutorial,
http://www.w3schools.com/xquery/default.asp). XQuery is a superset of the
XPath language; hence, any valid XPath expression is also a valid XQuery
expression. To use the XQuery language in your application code, include the
following import statement in your Java source files:

import static
org.apache.camel.builder.saxon.XQueryBuilder.xquery;

You can pass an XQuery expression to xquery() in several different ways.

For simple expressions, you can pass the XQuery expressions as a string,
java.lang.String. For longer XQuery expressions, on the other hand,

you might prefer to store the expression in a file, which you can then reference
by passing a java.io.File argument or a java.net.URL argument to

the overloaded xquery() method. The XQuery expression implicitly acts on

the message content and returns a node set as its result. Depending on the
context, the return value is interpreted either as a predicate (where an empty
node set is interpreted as false) or an expression.

JoSQL
The sql() static method enables you to call on the JoSQL (SQL for Java

objects) language to evaluate predicates and expressions in Java Router.
JoSQL employs a SQL-like query syntax to perform selection and ordering
operations on data from in-memory Java objects—JoSQL is not a database,
however. In the JoSQL syntax, each Java object instance is treated like a
table row and each object method is treated like a column name. Using this
syntax, it is possible to construct powerful statements for extracting and
compiling data from collections of Java objects. For details, see
http://josql.sourceforge.net/.

To use the JoSQL language in your application code, include the following
import statement in your Java source files:

52

Languages for Expressions and
Predicates

http://www.w3schools.com/xquery/default.asp
http://josql.sourceforge.net/

import static org.apache.camel.builder.sql.SqlBuilder.sql;

OGNL
The ognl() static method enables you to call on OGNL (Object Graph

Navigation Language) expressions, which can then be used as predicates and
expressions in a router rule. For details, see http://www.ognl.org/.

To use the OGNL language in your application code, include the following
import statement in your Java source files:

import static
org.apache.camel.language.ognl.OgnlExpression.ognl;

EL
The el() static method enables you to call on the Unified Expression

Language (EL) to construct predicates and expressions in a router rule. The
EL was originally specified as part of the JSP 2.1 standard (JSR-245), but
is now available as a standalone language. Java Router integrates with JUEL
(http://juel.sourceforge.net/), which is an open source implementation of the
EL language.

To use the EL language in your application code, include the following import
statement in your Java source files:

import static org.apache.camel.language.juel.JuelExpression.el;

Groovy
The groovy() static method enables you to call on the Groovy scripting

language to construct predicates and expressions in a route. To use the Groovy
language in your application code, include the following import statement in
your Java source files:

import static
org.apache.camel.builder.camel.script.ScriptBuilder.*;

JavaScript
The javaScript() static method enables you to call on the JavaScript

scripting language to construct predicates and expressions in a route. To use
the JavaScript language in your application code, include the following import
statement in your Java source files:

53

Languages for Expressions and
Predicates

http://www.ognl.org/
http://juel.sourceforge.net/

import static
org.apache.camel.builder.camel.script.ScriptBuilder.*;

PHP
The php() static method enables you to call on the PHP scripting language

to construct predicates and expressions in a route. To use the PHP language
in your application code, include the following import statement in your Java
source files:

import static
org.apache.camel.builder.camel.script.ScriptBuilder.*;

Python
The python() static method enables you to call on the Python scripting

language to construct predicates and expressions in a route. To use the Python
language in your application code, include the following import statement in
your Java source files:

import static
org.apache.camel.builder.camel.script.ScriptBuilder.*;

Ruby
The ruby() static method enables you to call on the Ruby scripting language

to construct predicates and expressions in a route. To use the Ruby language
in your application code, include the following import statement in your Java
source files:

import static
org.apache.camel.builder.camel.script.ScriptBuilder.*;

Bean
You can also use Java beans to evaluate predicates and expressions. For
example, to evaluate the predicate on a filter using the isGoldCustomer()

method on the bean instance, myBean, you can use a rule like the following:

from("SourceURL")
.filter().method("myBean", "isGoldCustomer")
.to("TargetURL");

A discussion of bean integration in Java Router is beyond the scope of this
Getting Started guide. For details, see
http://activemq.apache.org/camel/bean-language.html.

54

Languages for Expressions and
Predicates

http://activemq.apache.org/camel/bean-language.html

Transforming Message Content
Overview

Java Router supports a variety of approaches to transforming message content.
In addition to a simple native API for modifying message content, Java Router
supports integration with serveral different third-party libraries and
transformation standards. The following kinds of transformation are discussed
in this section:

• Simple transformations.

• Marshalling and unmarshalling.

• Artix Data Services.

Simple transformations
The Java DSL has a built-in API that enables you to perform simple
transformations on incoming and outgoing messages. For example, the rule
shown in Example 7, “Simple Transformation of Incoming Messages” would
append the text, World!, to the end of the incoming message body.

Example 7. Simple Transformation of Incoming Messages
from("SourceURL").setBody(body().append("
World!")).to("TargetURL");

Where the setBody() command replaces the content of the incoming

message's body. You can use the following API classes to perform simple
transformations of the message content in a router rule:

• org.apache.camel.model.ProcessorType

• org.apache.camel.builder.Builder

• org.apache.camel.builder.ValueBuilder

ProcessorType class
The org.apache.camel.model.ProcessorType class defines the DSL

commands you can insert directly into a router rule—for example, the
setBody() command in Example 7, “Simple Transformation of Incoming

Messages”. Table 2, “Transformation Methods from the ProcessorType Class”

55

Transforming Message Content

shows the ProcessorType methods that are relevant to transforming

message content:

Table 2. Transformation Methods from the ProcessorType Class

DescriptionMethod

Converts the IN message body to the specified type.Type convertBodyTo(Class type)

Converts the FAULT message body to the specified type.Type convertFaultBodyTo(Class type)

Converts the OUT message body to the specified type.Type convertOutBodyTo(Class type)

Adds a processor which removes the header on the
FAULT message.

Type removeFaultHeader(String name)

Adds a processor which removes the header on the IN
message.

Type removeHeader(String name)

Adds a processor which removes the header on the OUT
message.

Type removeOutHeader(String name)

Adds a processor which removes the exchange property.Type removeProperty(String name)

Adds a processor which sets the body on the IN message.ExpressionClause<ProcessorType<Type>>

setBody()

Adds a processor which sets the body on the IN message.ExpressionClause<ProcessorType<Type>>

setBody()

Adds a processor which sets the body on the FAULT
message.

Type setFaultBody(Expression expression)

Adds a processor which sets the header on the FAULT
message.

Type setFaultHeader(String name,

Expression expression)

Adds a processor which sets the header on the IN
message.

ExpressionClause<ProcessorType<Type>>

setHeader(String name)

Adds a processor which sets the header on the IN
message.

Type setHeader(String name, Expression

expression)

Adds a processor which sets the body on the OUT
message.

ExpressionClause<ProcessorType<Type>>

setOutBody()

56

Transforming Message Content

DescriptionMethod

Adds a processor which sets the body on the OUT
message.

Type setOutBody(Expression expression)

Adds a processor which sets the header on the OUT
message.

ExpressionClause<ProcessorType<Type>>

setOutHeader(String name)

Adds a processor which sets the header on the OUT
message.

Type setOutHeader(String name, Expression

expression)

Adds a processor which sets the exchange property.ExpressionClause<ProcessorType<Type>>

setProperty(String name)

Adds a processor which sets the exchange property.Type setProperty(String name, Expression

expression)

Builder class
The org.apache.camel.builder.Builder class provides access to

message content in contexts where expressions or predicates are expected.
In other words, Builder methods are typically invoked in the arguments of

DSL commands—for example, the body() command in Example 7, “Simple

Transformation of Incoming Messages”. Table 3, “Methods from the Builder
Class” summarizes the static methods available in the Builder class.

Table 3. Methods from the Builder Class

DescriptionMethod

Returns a predicate and value builder for the inbound
body on an exchange.

static <E extends Exchange>

ValueBuilder<E> body()

Returns a predicate and value builder for the inbound
message body as a specific type.

static <E extends Exchange,T>

ValueBuilder<E> bodyAs(Class<T> type)

Returns a constant expression.static <E extends Exchange>

ValueBuilder<E> constant(Object value)

Returns a predicate and value builder for the fault body
on an exchange.

static <E extends Exchange>

ValueBuilder<E> faultBody()

57

Transforming Message Content

DescriptionMethod

Returns a predicate and value builder for the fault
message body as a specific type.

static <E extends Exchange,T>

ValueBuilder<E> faultBodyAs(Class<T>

type)

Returns a predicate and value builder for headers on an
exchange.

static <E extends Exchange>

ValueBuilder<E> header(String name)

Returns a predicate and value builder for the outbound
body on an exchange.

static <E extends Exchange>

ValueBuilder<E> outBody()

Returns a predicate and value builder for the outbound
message body as a specific type.

static <E extends Exchange>

ValueBuilder<E> outBody()

Returns an expression for the given system property.static <E extends Exchange>

ValueBuilder<E> systemProperty(String

name)

Returns an expression for the given system property.static <E extends Exchange>

ValueBuilder<E> systemProperty(String

name, String defaultValue)

ValueBuilder class
The org.apache.camel.builder.ValueBuilder class enables you

to modify values returned by the Builder methods. In other words, the

methods in ValueBuilder provide a simple way of modifying message

content. Table 4, “Modifier Methods from the ValueBuilder Class” summarizes
the methods available in the ValueBuilder class. That is, the table shows

only the methods that are used to modify the value they are invoked on (for
full details, see the API Reference documentation).

Table 4. Modifier Methods from the ValueBuilder Class

DescriptionMethod

Appends the string evaluation of this expression with the
given value.

ValueBuilder<E> append(Object value)

Converts the current value to the given type using the
registered type converters.

ValueBuilder<E> convertTo(Class type)

58

Transforming Message Content

DescriptionMethod

Converts the current value a String using the registered
type converters.

ValueBuilder<E> convertToString()

Replaces all occurrencies of the regular expression with
the given replacement.

ValueBuilder<E> regexReplaceAll(String

regex, Expression<E> replacement)

Replaces all occurrencies of the regular expression with
the given replacement.

ValueBuilder<E> regexReplaceAll(String

regex, String replacement)

Tokenizes the string conversion of this expression using
the given regular expression.

ValueBuilder<E> regexTokenize(String

regex)

ValueBuilder<E> tokenize()

Tokenizes the string conversion of this expression using
the given token separator.

ValueBuilder<E> tokenize(String token)

Marshalling and unmarshalling
You can convert between low-level and high-level message formats using the
following commands:

• marshal()—convert a high-level data format to a low-level data format.

• unmarshal()—convert a low-level data format to a high-level data format.

Java Router supports marshalling and unmarshalling of the following data
formats:

• Java serialization—enables you to convert a Java object to a blob of binary
data. For this data format, unmarshalling converts a binary blob to a Java
object and marshalling converts a Java object to a binary blob. For example,
to read a serialized Java object from an endpoint, SourceURL, and convert

it to a Java object, you could use the following rule:

from("SourceURL").unmarshal().serialization()
.<FurtherProcessing>.to("TargetURL");

• JAXB—provides a mapping between XML schema types and Java types
(see https://jaxb.dev.java.net/). For JAXB, unmarshalling converts an XML
data type to a Java object and marshalling converts a Java object to an
XML data type. Before you can use JAXB data formats, you must compile
your XML schema using a JAXB compiler in order to generate the Java

59

Transforming Message Content

https://jaxb.dev.java.net/

classes that represent the XML data types in the schema. This is called
binding the schema. After you have bound the schema, you can define a
rule to unmarshal XML data to a Java object, using code like the following:

org.apache.camel.spi.DataFormat jaxb = new
org.apache.camel.model.dataformat.JaxbDataFormat("GeneratedPackageName");

from("SourceURL").unmarshal(jaxb)
.<FurtherProcessing>.to("TargetURL");

Where GeneratedPackagename is the name of the Java package

generated by the JAXB compiler, which contains the Java classes
representing your XML schema.

• XMLBeans—provides an alternative mapping between XML schema types
and Java types (see http://xmlbeans.apache.org/). For XMLBeans,
unmarshalling converts an XML data type to a Java object and marshalling
converts a Java object to an XML data type. For example, to unmarshal
XML data to a Java object using XMLBeans, you can use code like the
following:

from("SourceURL").unmarshal().xmlBeans()
.<FurtherProcessing>.to("TargetURL");

• XStream—provides another mapping between XML types and Java types
(see http://xstream.codehaus.org/). XStream is a serialization library (like
Java serialization), enabling you to convert any Java object to XML. For
XStream, unmarshalling converts an XML data type to a Java object and
marshalling converts a Java object to an XML data type. For example, to
unmarshal XML data to a Java object using XStream, you can use code
like the following:

from("SourceURL").unmarshal().xstream()
.<FurtherProcessing>.to("TargetURL");

• Artix Data Services—Java Router also integrates with Artix Data Services,
enabling you to integrate stub code generated by Artix Data Services. See
Artix Data Services for details.

Artix Data Services
Artix Data Services is a powerful tool for converting documents and messages
between different data formats. In Artix Data Services, you can use a graphcial
tool to define complex mapping rules (including processing of data content)
and then generate stub code to implement the mapping rules (see IONA Artix

60

Transforming Message Content

http://xmlbeans.apache.org/
http://xstream.codehaus.org/
http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795

Data Services
[http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795]
home page and the Artix Data Services documentation
[http://www.iona.com/support/docs/artix/data_services/3.6/index.xml] for
more details). The marshal() and unmarshal() DSL commands are

capable of consuming Artix Data Services stub code in order to perform
transformations on message formats. For example, Example 8, “Using Artix
Data Services to Marshal and Unmarshal” shows a rule that unmarshals XML
documents into a canonical format (Java objects) and then marshals the
canonical format into the tag/value pair format.

Example 8. Using Artix Data Services to Marshal and
Unmarshal
from("SourceURL")

. unmarshal().artixDS(DocumentElement.class,
ArtixDSContentType.Xml)

. marshal().artixDS(ArtixDSContentType.TagValuePair)
. to("TargetURL");

Note
Artix Data Services is licensed separately from Java Router.

61

Transforming Message Content

http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795
http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795
http://www.iona.com/support/docs/artix/data_services/3.6/index.xml
http://www.iona.com/support/docs/artix/data_services/3.6/index.xml

62

Defining Routes in XML
Summary

You can define routing rules in XML. This approach is not as flexible as Java
DSL, but has the advantage that it is easy to reconfigure the routing rules
at runtime.

Table of Contents
Using the Router Schema in an XML File ... 64
Defining a Basic Route in XML .. 66
Processors ... 67
Languages for Expressions and Predicates .. 74
Transforming Message Content .. 76

63

Using the Router Schema in an XML File
Overview

The root element of the router schema is camelContext, which is defined

in the XML namespace,
http://activemq.apache.org/camel/schema/spring. Router

configurations are typically embedded in other XML configuration files (for
example, in a Spring configuration file). In general, whenever a router
configuration is embedded in another configuration file, you need to specify
the location of the router schema (so that the router configuration can be
parsed). For example, Example 9, “ Specifying the Router Schema Location”
shows how to embed the router configuration, camelContext, in an arbitrary

document, DocRootElement.

Example 9. Specifying the Router Schema Location
<DocRootElement ...

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://activemq.apache.org/camel/schema/spring

http://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

<camelContext id="camel"
xmlns="http://activemq.apache.org/camel/schema/spring">

<!-- Define your routing rules here -->
</camelContext>

</DocRootElement>

Where the schema location is specified to be
http://activemq.apache.org/camel/schema/spring/camel-spring.xsd,

which gives the location of the schema on the Apache Web site. This location
always contains the latest, most up-to-date version of the XML schema. If
you prefer to tie your configuration to a specific version of the schema, change
the schema file name to camel-spring-Version.xsd, where Version

can be one of: 1.0.0, 1.1.0, or 1.2.0. For example, the location of schema

version 1.2.0 would be specified as
http://activemq.apache.org/camel/schema/spring/camel-spring-1.2.0.xsd.

Example 10, “Router Schema in a Spring Configuration File” shows an
example of embedding a router configuration, camelContext, in a Spring

configuration file.

64

Using the Router Schema in an XML
File

Example 10. Router Schema in a Spring Configuration File
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/camel-spring.xsd">

<camelContext id="camel"
xmlns="http://activemq.apache.org/camel/schema/spring">

<!-- Define your routing rules in here -->
</camelContext>
<!-- Other Spring configuration -->
<!-- ... -->

</beans>

65

Using the Router Schema in an XML
File

Defining a Basic Route in XML
Basic concepts

In order to understand how to build a route using XML, you need to understand
some of the basic concepts of the routing language—for example, sources
and targets, processors, expressions and predicates, and message exchanges.
For definitions and explanations of these concepts see Basic Java DSL Syntax.

Example of a basic route
Example 11, “Basic Route in XML” shows an example of a basic route in
XML, which connects a source endpoint, SourceURL, directly to a destination

endpoint, TargetURL.

Example 11. Basic Route in XML
<camelContext id="CamelContextID"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<to uri="TargetURL"/>

</route>
</camelContext>

Where CamelContextID is an arbitrary, unique identifier for the Camel

context. The route is defined by a route element and there can be multiple

route elements under the camelContext element.

66

Defining a Basic Route in XML

Processors
Overview

To enable the router to something more interesting than simply connecting a
source endpoint to a target endpoint, you can add processors to your route.
A processor is a command you can insert into a routing rule in order to perform
arbitrary processing of the messages that flow through the rule. Java Router
provides a wide variety of different processors, as follows:

• Filter.

• Choice.

• Recipient list.

• Splitter.

• Aggregator.

• Resequencer.

• Throttler.

• Delayer.

Filter
The filter processor can be used to prevent uninteresting messages from

reaching the target endpoint. It takes a single predicate argument: if the
predicate is true, the message exchange is allowed through to the target; if
the predicate is false, the message exchange is blocked. For example, the
following filter blocks a message exchange, unless the incoming message
contains a header, foo, with value equal to bar:

<camelContext id="filterRoute"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<filter>
<simple>header.foo = 'bar'</simple>
<to uri="TargetURL"/>

</filter>

67

Processors

</route>
</camelContext>

Choice
The choice processor is a conditional statement that is used to route

incoming messages to alternative targets. The alternative targets are each
enclosed in a when element, which takes a predicate argument. If the

predicate is true, the current target is selected, otherwise processing proceeds
to the next when element in the rule. For example, the following choice()

processor directs incoming messages to either Target1, Target2, or

Target3, depending on the values of the predicates:

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<choice>
<when>
<!-- First predicate -->
<simple>header.foo = 'bar'</simple>
<to uri="Target1"/>

</when>
<when>
<!-- Second predicate -->
<simple>header.foo = 'manchu'</simple>
<to uri="Target2"/>

</when>
<otherwise>
<to uri="Target3"/>

</otherwise>
</choice>

</route>
</camelContext>

Recipient list
If you want the messages from a source endpoint, SourceURL, to be sent

to more than one target, there are two alternative approaches you can use.
One approach is to include multiple to elements in the route, for example:

<camelContext id="staticRecipientList"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<to uri="Target1"/>
<to uri="Target2"/>

68

Processors

<to uri="Target3"/>
</route>

</camelContext>

The alternative approach is to add arecipientList element, which takes

a list of recipients as its argument (dynamic recipient list). The advantage of
using the recipientList element is that the list of recipients can be

calculated at runtime. For example, the following rule generates a recipient
list by reading the contents of the recipientListHeader from the

incoming message:

<camelContext id="dynamicRecipientList"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<recipientList>
<!-- Requires XPath 2.0 -->

<xpath>tokenize(/headers/recipientListHeader,"\s+")</xpath>
</recipientList>

</route>
</camelContext>

Splitter
The splitter processor is used to split a message into parts, which are

then processed as separate messages. The splitter element must contain

an expression that returns a list, where each item in the list represents a
message part that is to be re-sent as a separate message. For example, the
following rule splits the body of an incoming message into separate sections
(represented by a top-level section element) and then sends each section

to the target in a separate message:

<camelContext id="splitterRoute"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<splitter>
<xpath>/section</xpath>
<to uri="seda:b"/>

</splitter>

69

Processors

</route>
</camelContext>

Aggregator
The aggregator processor is used to aggregate related incoming messages

into a single message. In order to distinguish which messages are eligible to
be aggregated together, you need to define a correlation key for the aggregator.
The correlation key is normally derived from a field in the message (for
example, a header field). Messages that have the same correlation key value
are eligible to be aggregated together. You can also optionally specify an
aggregation algorithm to the aggregator processor (the default algorithm

is to pck the latest message with a given value of the correlation key and to
discard the older messages with that correlation key value).

For example, if you are monitoring a data stream that reports stock prices in
real time, you might only be interested in the latest price of each stock symbol.
In this case, you could configure an aggregator to transmit only the latest
price for a given stock and discard the older (out-of-date) price notifications.
The following rule implements this functionality, where the correlation key is
read from the stockSymbol header and the default aggregator algorithm is

used:

<camelContext id="aggregatorRoute"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<aggregator>
<simple>header.stockSymbol</simple>
<to uri="TargetURL"/>

</aggregator>
</route>

</camelContext>

Resequencer
A resequencer processor is used to re-arrange the order in which incoming

messages are transmitted. The resequencer element needs to be provided

with a sequence number (where the sequence number is calculated from the
contents of a field in the incoming message). Naturally, before you can start
re-ordering messages, you need to wait until a certain number of messages
have been received from the source. There are a couple of different ways to
specify how long the resequencer processor should wait before attempting

to re-order the accumulated messages and forward them to the target, as
follows:

70

Processors

• Batch resequencing—(the default) wait until a specified number of
messages have accumulated before starting to re-order and forward
messages. For example, the following resequencing rule would re-order
messages based on the timeOfDay header, waiting until at least 300

messages have accumulated or 4000 ms have elapsed since the last
message received.

<camelContext id="batchResequencer"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL" />
<resequencer>
<!-- Sequence ordering based on timeOfDay header -->
<simple>header.timeOfDay</simple>
<to uri="TargetURL" />
<!--
batch-config can be ommitted for default (batch)

resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>
</route>

</camelContext>

• Stream resequencing—transmit messages as soon as they ariive unless
the resequencer detects a gap in the incoming message stream (missing
sequence numbers), in which case the resequencer waits until the missing
messages arrive and then forwards the messages in the correct order. To
avoid the resequencer blocking forever, you can specify a timeout (default
is 1000 ms), after which time the message sequence is transmitted with
unresolved gaps. For example, the following resequencing rule detects gaps
in the message stream by monitoring the value of the sequenceNumber

header, where the maximum buffer size is limited to 5000 and the timeout
is specified to be 4000 ms:

<camelContext id="streamResequencer"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<resequencer>
<simple>header.sequenceNumber</simple>
<to uri="TargetURL" />
<stream-config capacity="5000" timeout="4000"/>

</resequencer>

71

Processors

</route>
</camelContext>

Throttler
The throttler processor is used to ensure that a target endpoint does not

get overloaded. The throttler works by limiting the number of messages that
can pass through per second. If the incoming messages exceed the specified
rate, the throttler accumulates excess messages in a buffer and transmits
them more slowly to the target endpoint. For example, to limit the rate of
throughput to 100 messages per second, you can define the following rule:

<camelContext id="throttlerRoute"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<throttler maximumRequestsPerPeriod="100"

timePeriodMillis="1000">
<to uri="TargetURL"/>

</throttler>
</route>

</camelContext>

Delayer
The delayer processor is used to hold up messages for a specified length

of time. The delay can either be relative (wait a specified length of time after
receipt of the incoming message) or absolute (wait until a specific time). For
example, to add a delay of 2 seconds before transmitting received messages,
you can use the following rule:

<camelContext id="delayerRelative"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<delayer>
<delay>2000</delay>
<to uri="TargetURL"/>

</delayer>
</route>

</camelContext>

To wait until the absolute time specified in the processAfter header, you

can use the following rule:

<camelContext id="delayerRelative"
xmlns="http://activemq.apache.org/camel/schema/spring">

72

Processors

<route>
<from uri="SourceURL"/>
<delayer>
<simple>header.processAfter</simple>
<to uri="TargetURL"/>

</delayer>
</route>

</camelContext>

Load balancer
The loadBalance processor is used to load balance message exchanges

over a list of target endpoints. For example, to load balance incoming messages
exchanges using a round robin algorithm (each endpoint in the target list is
tried in sequence), you can use the following rule:

<camelContext id="loadBalancer"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<loadBalance>
<to uri="TargetURL_01"/>
<to uri="TargetURL_02"/>
<roundRobin/>

</loadBalance>
</route>

</camelContext>

Currently, it is not possible to customize the load balancing algorithm in XML.

73

Processors

Languages for Expressions and Predicates
Overview

In the definition of a route, it is frequently necessary to evaluate expressions
and predicates. For example, if a route includes a filter processor, you need
to evaluate a predicate to determine whether or not a message is to be allowed
through the filter. To facilitate the evaluation of expressions and predicates,
Java Router supports multiple language plug-ins, which can be accessed
through XML elements.

Elements for expressions and
predicates Table 5, “Elements for Expression and Predicate Languages” lists the elements

that you can insert whenever the context demands an expression or a
predicate. The content of the element must be a script written in the relevant
language. At runtime, the return value of the script is read by the parent
element.

Table 5. Elements for Expression and Predicate Languages

DescriptionLanguageElement

A simple expression language, native
to Java Router (see Simple).

N/Asimple

The XPath language, which is used
to select element, attribute, and text

XPathxpath

nodes from XML documents (see
http://www.w3schools.com/xpath/default.asp).
The XPath expression is applied to
the current message.

The XQuery language, which is an
extension of XPath (see

XQueryxquery

http://www.w3schools.com/xquery/default.asp).
The XQuery expression is applied to
the current message.

The JoSQL language, which is a
language for extracting and

JoSQLsql

manipulating data from collections of
Java objects, using a SQL-like syntax
(see http://josql.sourceforge.net/).

The OGNL (Object Graph Navigation
Language) language (see
http://www.ognl.org/).

OGNLognl

74

Languages for Expressions and
Predicates

http://www.w3schools.com/xpath/default.asp
http://www.w3schools.com/xquery/default.asp
http://josql.sourceforge.net/
http://www.ognl.org/

DescriptionLanguageElement

The Unified Expression Language
(EL), originally developed as part of

ELel

the JSP standard (see
http://juel.sourceforge.net/).

The Groovy scripting language (see
http://groovy.codehaus.org/).

Groovygroovy

The JavaScript scripting language (see
http://developer.mozilla.org/en/docs/JavaScript),

JavaScriptjavaScript

also known as ECMAScript (see
http://www.ecmascript.org/).

The PHP scripting language (see
http://www.php.net/).

PHPphp

The Python scripting language (see
http://www.python.org/).

Pythonpython

The Ruby scripting language (see
http://www.ruby-lang.org/).

Rubyruby

Not really a language. The bean

element is actually a mechanism for

Beanbean

integrating with Java beans. You use
the bean element to obtain an

expression or predicate by invoking a
method on a Java bean.

75

Languages for Expressions and
Predicates

http://juel.sourceforge.net/
http://groovy.codehaus.org/
http://developer.mozilla.org/en/docs/JavaScript
http://www.ecmascript.org/
http://www.php.net/
http://www.python.org/
http://www.ruby-lang.org/

Transforming Message Content
Overview

This section describes how you can transform messages using the features
provided in XML configuration.

Marshalling and unmarshalling
You can convert between low-level and high-level message formats using the
following elements:

• marshal—convert a high-level data format to a low-level data format.

• unmarshal—convert a low-level data format to a high-level data format.

Java Router supports marshalling and unmarshalling of the following data
formats:

• Java serialization—enables you to convert a Java object to a blob of binary
data. For this data format, unmarshalling converts a binary blob to a Java
object and marshalling converts a Java object to a binary blob. For example,
to read a serialized Java object from an endpoint, SourceURL, and convert

it to a Java object, you could use the following rule:

<camelContext id="serialization"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<unmarshal>
<serialization/>

</unmarshal>
<to uri="TargetURL"/>

</route>
</camelContext>

• JAXB—provides a mapping between XML schema types and Java types
(see https://jaxb.dev.java.net/). For JAXB, unmarshalling converts an XML
data type to a Java object and marshalling converts a Java object to an
XML data type. Before you can use JAXB data formats, you must compile
your XML schema using a JAXB compiler in order to generate the Java
classes that represent the XML data types in the schema. This is called
binding the schema. After you have bound the schema, you can define a
rule to unmarshal XML data to a Java object, as follows:

<camelContext id="jaxb"
xmlns="http://activemq.apache.org/camel/schema/spring">

76

Transforming Message Content

https://jaxb.dev.java.net/

<route>
<from uri="SourceURL"/>
<unmarshal>
<jaxb prettyPrint="true"

contextPath="GeneratedPackageName"/>
</unmarshal>
<to uri="TargetURL"/>

</route>
</camelContext>

Where GeneratedPackagename is the name of the Java package

generated by the JAXB compiler, which contains the Java classes
representing your XML schema.

• XMLBeans—provides an alternative mapping between XML schema types
and Java types (see http://xmlbeans.apache.org/). For XMLBeans,
unmarshalling converts an XML data type to a Java object and marshalling
converts a Java object to an XML data type. For example, to unmarshal
XML data to a Java object using XMLBeans, define a rule like the following:

<camelContext id="xmlBeans"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<unmarshal>
<xmlBeans prettyPrint="true"/>

</unmarshal>
<to uri="TargetURL"/>

</route>
</camelContext>

• XStream—is currently not supported in XML configuration.

• Artix Data Services—Java Router also integrates with Artix Data Services,
enabling you to integrate stub code generated by Artix Data Services. See
Artix Data Services for details.

Artix Data Services
Artix Data Services is a powerful tool for converting documents and messages
between different data formats. In Artix Data Services, you can use a graphcial
tool to define complex mapping rules (including processing of data content)
and then generate stub code to implement the mapping rules (see IONA Artix
Data Services
[http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795]
home page and the Artix Data Services documentation

77

Transforming Message Content

http://xmlbeans.apache.org/
http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795
http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795
http://www.iona.com/products/artix/data_services.htm?WT.mc_id=125795
http://www.iona.com/support/docs/artix/data_services/3.6/index.xml

[http://www.iona.com/support/docs/artix/data_services/3.6/index.xml] for
more details). The marshal and unmarshal elements are capable of

consuming Artix Data Services stub code in order to perform transformations
on message formats. For example, Example 12, “Using Artix Data Services
to Marshal and Unmarshal” shows a rule that unmarshals XML documents
into a canonical format (Java objects) and then marshals the canonical format
into the tag/value pair format.

Example 12. Using Artix Data Services to Marshal and
Unmarshal
<camelContext id="artixDS"
xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="SourceURL"/>
<unmarshal>
<artixDS contentType="Xml"

elementTypeName="iso.std.iso.x20022.tech.xsd.pacs.x008.x001.x01.DocumentElement"/>

</unmarshal>
<marshal>
<artixDS contentType="TagValuePair"/>

</marshal>
<to uri="TargetURL"/>

</route>
</camelContext>

Where the contentType attribute can be set to one of the following values:

TagValuePair, Sax, Xml, Java, Text, Binary, Auto, Default.

Note
Artix Data Services is licensed separately from Java Router.

78

Transforming Message Content

http://www.iona.com/support/docs/artix/data_services/3.6/index.xml

	Java Router, Getting Started
	Table of Contents
	Preface
	Document Conventions

	Introducing Java Router
	Architecture
	How to Develop a Router Application

	Java Router Tutorial
	Tutorial Overview
	Tutorial: SOAP Client
	Tutorial: CORBA Server
	Tutorial: Router
	Tutorial: Building and Running the Demonstration

	Defining Routes in Java DSL
	Implementing a RouteBuilder Class
	Basic Java DSL Syntax
	Processors
	Languages for Expressions and Predicates
	Transforming Message Content

	Defining Routes in XML
	Using the Router Schema in an XML File
	Defining a Basic Route in XML
	Processors
	Languages for Expressions and Predicates
	Transforming Message Content

