
Artix ESB
Developing Artix Applications with JAX-WS

Version 5.1
December 2007

Making Software Work Together™

Developing Artix Applications with JAX-WS
IONA Technologies

Version 5.1

Published 05 Nov 2008
Copyright © 2001-2008 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 17

What is Covered in This Book ... 18
Who Should Read This Book .. 19
How to Use This Book .. 20
The Artix ESB Documentation Library ... 21

I. Basic Programming Tasks ... 23
Starting from Java Code .. 27

Service Enabling a Java Class ... 28
Creating the SEI .. 29
Annotating the Code ... 32
Generating WSDL .. 44

Developing a Consumer without a WSDL Contract ... 46
Creating a Service Object ... 47
Adding a Port to a Service .. 49
Getting a Proxy for an Endpoint ... 51
Implementing the Consumer's Business Logic ... 53

Starting from a WSDL Contract .. 55
A WSDL Contract .. 56
Developing a Service Starting from a WSDL Contract .. 59

Generating the Starting Point Code ... 60
Implementing the Service Provider ... 64

Developing a Consumer Starting from a WSDL Contract .. 66
Generating the Stub Code .. 67
Implementing a Consumer ... 70

Publishing a Service .. 75
Generating a Server Mainline .. 76
Writing a Server Mainline ... 77

Developing RESTful Services ... 81
Introduction to RESTful Services .. 82
Using Automatic REST Mappings ... 86
Using Java REST Annotations ... 89
Publishing a RESTful Service .. 93

II. Working with Data Types ... 97
Basic Data Binding Concepts ... 101

Working with External Schema Definitions .. 102
XML Namespace Mapping .. 105
The Object Factory ... 108
Adding Classes to the Runtime Marshaller .. 110

Using XML Elements .. 115
Using Simple Types .. 121

Primitive Types .. 122

3

Simple Types Defined by Restriction ... 125
Enumerations .. 128
Lists ... 131
Unions .. 135
Simple Type Substitution ... 137

Using Complex Types ... 139
Basic Complex Type Mapping .. 140
Attributes ... 146
Deriving Complex Types from Simple Types .. 152
Deriving Complex Types from Complex Types .. 155
Occurrence Constraints .. 159

Occurrence Constraints on the All Element ... 160
Occurrence Constraints on the Choice Element .. 161
Occurrence Constraints on Elements ... 164
Occurrence Constraints on Sequences ... 165

Using Model Groups ... 168
Using Wild Card Types .. 173

Using Any Elements ... 174
Using XML Schema anyType ... 179
Using Unbound Attributes .. 182

Using Type Substitution .. 185
Substitution Groups in XML Schema ... 186
Substitution Groups in Java .. 190
Widget Vendor Example ... 197

The checkWidgets Operation ... 199
The placeWidgetOrder Operation .. 202

Customizing How Types are Generated ... 207
Basics of Customizing Type Mappings ... 208
Specifying the Java Class of an XML Schema Primitive .. 211
Generating Java Classes for Simple Types ... 219
Customizing Enumeration Mapping .. 221
Customizing Fixed Value Attribute Mapping .. 226
Specifying the Base Type of an Element or an Attribute .. 229

III. Advanced Programming Tasks ... 233
Developing Asynchronous Applications ... 237

WSDL for Asynchronous Examples ... 238
Generating the Stub Code .. 240
Implementing an Asynchronous Client with the Polling Approach 243
Implementing an Asynchronous Client with the Callback Approach 246

Using Raw XML Messages ... 251
Using XML in a Consumer with the Dispatch Interface .. 252

Usage Modes .. 253
Data Types ... 255
Working with Dispatch Objects .. 258

4

Using XML in a Service Provider with the Provider Interface .. 265
Messaging Modes .. 266
Data Types ... 268
Implementing a Provider Object ... 270

Working with Contexts .. 275
Understanding Contexts ... 276
Working with Contexts in a Service Implementation .. 280
Working with Contexts in a Consumer Implementation .. 287
Working with JMS Message Properties .. 291

Inspecting JMS Message Headers .. 292
Inspecting the Message Header Properties .. 294
Setting JMS Properties .. 296

Index .. 299

5

6

List of Figures
1. Message Contexts and Message Processing Path 277

7

8

List of Tables
1. @WebService Properties ... 33
2. @SOAPBinding Properties ... 36
3. @WebMethod Properties ... 37
4. @RequestWrapper Properties ... 38
5. @ResponseWrapper Properties ... 39
6. @WebFault Properties .. 39
7. @WebParam Properties ... 41
8. @WebResult Properties ... 42
9. Generated Classes for a Service Provider 62
10. Attributes Used to Define an Element 115
11. Properties for the @XmlRootElement Annotation 119
12. XML Schema Primitive Type to Java Native Type Mapping 122
13. Primitive Schema Type to Java Wrapper Class Mapping 124
14. List Type Facets ... 131
15. Elements for Defining How Elements Appear in a Complex
Type ... 140
16. Attributes Used to Define Attributes in XML Schema 146
17. Attributes of the XML Schema Any Element 175
18. Properties for Declaring a JAXB Element is a Member of a
Substitution Group ... 190
19. Attributes for Customizing the Generation of a Java Class for an
XML Schema Type ... 211
20. Values for Customizing Enumeration Member Name
Generation ... 221
21. Attributes for Customizing a Generated Enumeration Class 222
22. Parameters for createDispatch() ... 259
23. @WebServiceProvider Properties .. 271
24. Properties Available in the Service Implementation Context 283
25. Consumer Context Properties ... 290
26. JMS Header Properties .. 294
27. Settable JMS Header Properties ... 296

9

10

List of Examples
1. Simple SEI ... 30
2. Simple Implementation Class .. 31
3. Interface with the @WebService Annotation 34
4. Annotated Service Implementation Class 34
5. Specifying an RPC/LITERAL SOAP Binding with the @SOAPBinding
Annotation ... 36
6. SEI with Annotated Methods ... 40
7. Fully Annotated SEI .. 42
8. Generated WSDL from an SEI ... 44
9. Service create() Methods ... 47
10. Creating a Service Object ... 48
11. The addPort() Method ... 49
12. Adding a Port to a Service Object ... 50
13. The getPort() Method .. 51
14. Getting a Service Proxy .. 51
15. Consumer Implemented without a WSDL Contract 53
16. HelloWorld WSDL Contract ... 56
17. Generating Service Starting Point Code from Ant 61
18. Implementation of the Greeter Service 64
19. Generating Service Starting Point Code from Ant 67
20. Outline of a Generated Service Class 70
21. The Greeter Service Endpoint Interface 71
22. Consumer Implementation Code .. 72
23. Generated Server Mainline ... 76
24. Custom Server Mainline ... 79
25. Invalid REST Request .. 84
26. Wrapped REST Request ... 84
27. Widget Catalog CRUD Class ... 86
28. URI Template Syntax .. 90
29. Using a URI Template ... 90
30. SEI for a Widget Ordering Service ... 90
31. WidgetOrdering with REST Annotations 91
32. Setting a Server Factory's Service Class 93
33. Setting Wrapped Mode .. 93
34. Selecting the REST Binding .. 94
35. Setting the Base URI .. 94
36. Setting the Service Invoker ... 94
37. Publishing the WidgetCatalog Service as a RESTful Endpoint 94
38. Example of a Schema that Includes Another Schema 102
39. Example of an Included Schema .. 103
40. Example of a Schema that Includes Another Schema 103

11

41. Example of an Included Schema .. 104
42. Complex Type Object Factory Entry 108
43. Element Object Factory Entry .. 109
44. Syntax for Configuring a Server to Load Extra JAXB Classes 110
45. Configuring a JAX-WS Client to Load Extra JAXB Classes 111
46. Adding Classes to a Service Provider 111
47. Adding Classes to a Service Consumer 113
48. Simple XML Schema Element Definition 116
49. XML Schema Element Definition with an In-Line Type 116
50. Object Factory Method for a Globally Scoped Element 117
51. Object Factory for a Simple Element 117
52. Using a Globally Scoped Element ... 118
53. WSDL Using an Element as a Message Part 118
54. Java Method Using a Global Element as a Part 119
55. XML Schema Element with a Default Value 120
56. Object Factory Method for an Element with a Default Value 120
57. Simple Type Syntax ... 125
58. Postal Code Simple Type ... 126
59. Credit Request with Simple Types ... 126
60. Provider Configured to Use Schema Validation 127
61. XML Schema Defined Enumeration 128
62. Generated Enumerated Type for a String Bases XML Schema
Enumeration ... 129
63. List Type Example .. 131
64. Syntax for XML Schema List Types .. 131
65. Definition of a List Type ... 132
66. Alternate Syntax for List Types ... 132
67. WSDL with a List Type Message Part 133
68. Java Method with a List Type Parameter 133
69. Simple Union Type ... 135
70. Union with an Anonymous Member Type 135
71. XML Schema Complex Type .. 141
72. Mapping of an All Complex Type .. 142
73. Mapping of a Choice Complex Type 143
74. Mapping of a Sequence Complex Type 144
75. XML Schema Defining and Attribute 147
76. Attribute with an In-Line Data Description 147
77. Attribute Group Definition ... 148
78. Complex Type with an Attribute Group 148
79. techDoc Description ... 149
80. techDoc Java Class ... 149
81. dvdType Java Class ... 150
82. Deriving a Complex Type from a Simple Type by Extension 152
83. Deriving a Complex Type from a Simple Type by Restriction 152

12

84. idType Java Class ... 153
85. Deriving a Complex Type by Extension 155
86. Defining a Complex Type by Restriction 156
87. WidgetOrderBillInfo .. 157
88. Choice Occurrence Constraints .. 161
89. Java Representation of Choice Structure with an Occurrence
Constraint .. 163
90. Sequence with Occurrence Constraints 165
91. Java Representation of Sequence with an Occurrence
Constraint .. 167
92. XML Schema Model Group ... 168
93. Complex Type with a Model Group .. 169
94. Instance of a Type with a Model Group 169
95. Type with a Group .. 170
96. XML Schema Type Defined with an Any Element 174
97. XML Document with an Any Element 174
98. Complex Type Defined with an Any Element 176
99. Java Class with an Any Element ... 176
100. Complex Type with a Wild Card Element 179
101. Java Representation of a Wild Card Element 179
102. Complex Type with an Undeclared Attribute 182
103. Class for a Complex Type with an Undeclared Attribute 183
104. Working with Undeclared Attributes 184
105. Using a Substitution Group ... 186
106. Substitution Group with Complex Types 187
107. XML Document using a Substitution Group 188
108. Abstract Head Definition .. 188
109. Object Factory Method for a Substitution Group 190
110. WSDL Interface Using a Substitution Group 192
111. Generated Interface Using a Substitution Group 192
112. Complex Type Using a Substitution Group 193
113. Java Class for a Complex Type Using a Substitution Group 193
114. Setting a Member of a Substitution Group 194
115. Getting the Value of a Member of the Substitution Group 196
116. Widget Ordering Interface ... 197
117. Widget Ordering SEI .. 197
118. Consumer Invoking checkWidgets() 199
119. Service Implementation of checkWidgets() 200
120. Setting a Substitution Group Member 202
121. Implementation of placeWidgetOrder() 204
122. JAXB Customization Namespace .. 208
123. Specifying the JAXB Customization Version 208
124. Customized XML Schema ... 209
125. JAXB External Binding Declaration Syntax 209

13

126. XML Schema File ... 210
127. External Binding Declaration ... 210
128. Global Primitive Type Customization 212
129. Binding File for Customizing a Simple Type 212
130. Binding File for Customizing an Element in a Complex Type 213
131. JAXB Adapter Class .. 214
132. Customized Object Factory Method for a Global Element 216
133. Customized Complex Type .. 217
134. in-Line Customization to Force Generation of Java Classes for
SimpleTypes ... 219
135. Binding File to Force Generation of Constants 219
136. Simple Type for Customized Mapping 220
137. Customized Mapping of a Simple Type 220
138. Customization to Force Type Safe Member Names 222
139. In-line Customization of an Enumerated Type 223
140. In-line Customization of an Enumerated Type Using a Combined
Mapping .. 224
141. Binding File for Customizing an Enumeration 225
142. In-Line Customization to Force Generation of Constants 226
143. Binding File to Force Generation of Constants 226
144. In-Line Customization to Force Generation of Constants 227
145. Binding File to Force Generation of Constants 227
146. Mapping of a Fixed Value Attribute to a Java Constant 228
147. Fixed Value Attribute Mapped to a Java Constant 228
148. In-Line Customization of a Base Type 230
149. External Binding File to Customize a Base Type 230
150. Java Class with a Modified Base Class 231
151. WSDL Contract for Asynchronous Example 238
152. Template for an Asynchronous Binding Declaration 240
153. Service Endpoint Interface with Methods for Asynchronous
Invocations .. 241
154. Non-Blocking Polling Approach for an Asynchronous Operation
Call .. 243
155. Blocking Polling Approach for an Asynchronous Operation
Call .. 245
156. The javax.xml.ws.AsyncHandler Interface 247
157. Callback Implementation Class .. 247
158. Callback Approach for an Asynchronous Operation Call 248
159. The createDispatch() Method .. 258
160. Creating a Dispatch Object ... 259
161. The Dispatch.invoke() Method ... 261
162. Making a Synchronous Invocation Using a Dispatch Object 261
163. The Dispatch.invokeAsync() Method for Polling 262
164. The Dispatch.invokeAsync() Method Using a Callback 262

14

165. The Dispatch.invokeOneWay() Method 263
166. Making a One Way Invocation Using a Dispatch Object 263
167. Specifying that a Provider Implementation Uses Message
Mode .. 266
168. Specifying that a Provider Implementation Uses Payload
Mode .. 267
169. Provider<SOAPMessage> Implementation 272
170. Provider<DOMSource> Implementation 274
171. The MessageContext.setScope() Method 278
172. Obtaining a Context Object in a Service Implementation 280
173. The MessageContext.get() Method 281
174. Getting a Property from a Service's Message Context 282
175. The MessageContext.put() Method 282
176. Setting a Property in a Service's Message Context 282
177. The getRequestContext() Method .. 288
178. The getResponseContext() Method 288
179. Getting a Consumer's Request Context 288
180. Reading a Response Context Property 289
181. Setting a Request Context Property 289
182. Getting JMS Message Headers in a Service Implementation 292
183. Getting the JMS Headers from a Consumer Response
Header .. 293
184. Reading the JMS Header Properties 294
185. Setting JMS Properties using the Request Context 297

15

16

Preface
What is Covered in This Book ... 18
Who Should Read This Book .. 19
How to Use This Book .. 20
The Artix ESB Documentation Library ... 21

17

What is Covered in This Book
This book describes how to use the JAX-WS 2.0 APIs to develop applications
with Artix ESB.

18

Who Should Read This Book
This book is intended for developers using Artix ESB. It assumes that you
have a good understanding of the following:

• general programming concepts.

• general SOA concepts.

• Java 5.

• the runtime environment into which you are deploying services.

19

How to Use This Book
This book is organized into the following chapters:

• Starting from Java Code on page 27 describes how to develop SOA
applications with out using WSDL documents.

• Starting from a WSDL Contract on page 55 describes how to develop SOA
applications using a WSDL document as a starting point.

• Publishing a Service on page 75 describes how to publish a service using
a stand alone Java application.

• Developing Asynchronous Applications on page 237 describes how to
develop service consumers that can interact with service providers
asynchronously.

• Using Raw XML Messages on page 251 describes how to use the Dispatch

and Provider interfaces to develop applications that work with raw XML

instead of JAXB object.

• Working with Contexts on page 275 describes how to manipulate message
and transport properties programaticaly.

• Developing RESTful Services on page 81 describes how to use the Artix
ESB API's annotations to create RESTful services.

20

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library
[http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm].

21

http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.1/library_intro/index.htm

22

Part I. Basic Programming Tasks
The JAX-WS programming model makes it easy to develop service providers and consumers. You can either start
directly with Java code, or you can start from WSDL documents. This part guides you through the steps for
creating and publishing endpoints. It also inclludes a chapter on developing services that follow REST principles.

Starting from Java Code .. 27
Service Enabling a Java Class ... 28

Creating the SEI .. 29
Annotating the Code ... 32
Generating WSDL .. 44

Developing a Consumer without a WSDL Contract ... 46
Creating a Service Object ... 47
Adding a Port to a Service .. 49
Getting a Proxy for an Endpoint ... 51
Implementing the Consumer's Business Logic ... 53

Starting from a WSDL Contract .. 55
A WSDL Contract .. 56
Developing a Service Starting from a WSDL Contract .. 59

Generating the Starting Point Code ... 60
Implementing the Service Provider ... 64

Developing a Consumer Starting from a WSDL Contract .. 66
Generating the Stub Code .. 67
Implementing a Consumer ... 70

Publishing a Service .. 75
Generating a Server Mainline .. 76
Writing a Server Mainline ... 77

Developing RESTful Services ... 81
Introduction to RESTful Services .. 82
Using Automatic REST Mappings ... 86
Using Java REST Annotations ... 89
Publishing a RESTful Service .. 93

25

26

Starting from Java Code
One of the advantages of JAX-WS is that it does not require you to start with a WSDL document that defines
their service. You can start with Java code that defines the features you want to expose as services. The code
may be a class, or classes, from a legacy application that is being upgraded. It may also be a class that is currently
being used as part of a non-distributed application and implements features that you want to use in a distributed
manner. You annotate the Java code and generate a WSDL document from the annotated code. If you do not
wish to work with WSDL at all, you can create the entire application without ever generating WSDL.

Service Enabling a Java Class ... 28
Creating the SEI .. 29
Annotating the Code ... 32
Generating WSDL .. 44

Developing a Consumer without a WSDL Contract ... 46
Creating a Service Object ... 47
Adding a Port to a Service .. 49
Getting a Proxy for an Endpoint ... 51
Implementing the Consumer's Business Logic ... 53

27

Service Enabling a Java Class
Creating the SEI .. 29
Annotating the Code ... 32
Generating WSDL .. 44

To create a service starting from Java you need to do the following:

1. Create on page 29 a Service Endpoint Interface (SEI) that defines the
methods you wish to expose as a service.

Tip
You can work directly from a Java class, but working from an
interface is the recommended approach. Interfaces are better
for sharing with the developers who will be responsible for
developing the applications consuming your service. The
interface is smaller and does not provide any of the service's
implementation details.

2. Add on page 32 the required annotations to your code.

3. Generate on page 44 the WSDL contract for your service.

Tip
If you intend to use the SEI as the service's contract, it is not
necessary to generate a WSDL contract.

4. Publish on page 75 the service as a service provider.

28

Starting from Java Code

Creating the SEI
The service endpoint interface (SEI) is the piece of Java code that is shared
between a service implementation and the consumers that make requests on
it. It defines the methods implemented by the service and provides details
about how the service will be exposed as an endpoint. When starting with a
WSDL contract, the SEI is generated by the code generators. However, when
starting from Java, it is the up to a developer to create the SEI.

There are two basic patterns for creating an SEI:

• Green field development

You are developing a new service from the ground up. When starting fresh,
it is best to start by creating the SEI first. You can then distribute the SEI
to any developers that are responsible for implementing the service providers
and consumers that use the SEI.

Note
The recommended way to do green field service development is
to start by creating a WSDL contract that defines the service and
its interfaces. See Starting from a WSDL Contract on page 55.

• Service enablement

In this pattern, you typically have an existing set of functionality that is
implemented as a Java class and you want to service enable it. This means
that you will need to do two things:

1. Create an SEI that contains only the operations that are going to be
exposed as part of the service.

2. Modify the existing Java class so that it implements the SEI.

29

Creating the SEI

Note
You can add the JAX-WS annotations to a Java class, but that is
not recommended.

Writing the interface
The SEI is a standard Java interface. It defines a set of methods that a class
will implement. It can also define a number of member fields and constants
to which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to
operations exposed by a service. The SEI corresponds to a wsdl:portType

element. The methods defined by the SEI correspond to wsdl:operation

elements in the wsdl:portType element.

Tip
JAX-WS defines an annotation that allows you to specify methods
that are not exposed as part of a service. However, the best practice
is to leave such methods out of the SEI.

Example 1 on page 30 shows a simple SEI for a stock updating service.

Example 1. Simple SEI

package com.iona.demo;

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

Implementing the interface
Because the SEI is a standard Java interface, the class that implements it is
just a standard Java class. If you started with a Java class you will need to
modify it to implement the interface. If you are starting fresh, the
implementation class will need to implement the SEI.

Example 2 on page 31 shows a class for implementing the interface in
Example 1 on page 30.

30

Starting from Java Code

Example 2. Simple Implementation Class

package com.iona.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
...

public Quote getQuote(String ticker)
{
Quote retVal = new Quote();
retVal.setID(ticker);
retVal.setVal(Board.check(ticker));1

Date retDate = new Date();
retVal.setTime(retDate.toString());
return(retVal);

}
}

1
Board is an assumed class whose implementation is left to the reader.

31

Creating the SEI

Annotating the Code
JAX-WS relies on the annotation feature of Java 5. The JAX-WS annotations
are used to specify the metadata used to map the SEI to a fully specified
service definition. Among the information provided in the annotations are the
following:

• The target namespace for the service.

• The name of the class used to hold the request message.

• The name of the class used to hold the response message.

• If an operation is a one way operation.

• The binding style the service uses.

• The name of the class used for any custom exceptions.

• The namespaces under which the types used by the service are defined.

Tip
Most of the annotations have sensible defaults and do not need to
be specified. However, the more information you provide in the
annotations, the better defined your service definition. A solid service
definition increases the likelihood that all parts of a distributed
application will work together.

Required Annotations

In order to create a service from Java code you are only required to add one
annotation to your code. You must add the @WebService() annotation on

both the SEI and the implementation class.

The @WebService annotation
The @WebService annotation is defined by the javax.jws.WebService

interface and it is placed on an interface or a class that is intended to be used
as a service. @WebService has the following properties:

32

Starting from Java Code

Table 1. @WebService Properties

DescriptionProperty

Specifies the name of the service interface. This property is mapped to the name attribute of

the wsdl:portType element that defines the service's interface in a WSDL contract. The default

is to append PortType to the name of the implementation class. a

name

Specifies the target namespace under which the service is defined. If this property is not
specified, the target namespace is derived from the package name.

targetNamespace

Specifies the name of the published service. This property is mapped to the name attribute of

the wsdl:service element that defines the published service. The default is to use the name

of the service's implementation class. a

serviceName

Specifies the URI at which the service's WSDL contract is stored. The default is the URI at
which the service is deployed.

wsdlLocation

Specifies the full name of the SEI that the implementation class implements. This property is
only used when the attribute is used on a service implementation class.

endpointInterface

Specifies the name of the endpoint at which the service is published. This property is mapped
to the name attribute of the wsdl:port element that specifies the endpoint details for a published

service. The default is the append Port to the name of the service's implementation class. a

portName

aWhen you generate WSDL from an SEI the interface's name is used in place of the implementation class' name.

Tip
You do not need to provide values for any of the @WebService

annotation's properties. However, it is recommended that you provide
as much information as you can.

Annotating the SEI
The SEI requires that you add the @WebService annotation. Since the SEI

is the contract that defines the service, you should specify as much detail as
you can about the service in the @WebService annotation's properties.

Example 3 on page 34 shows the interface defined in Example 1 on page 30
with the @WebService annotation.

33

Annotating the Code

Example 3. Interface with the @WebService Annotation

package com.iona.demo;

import javax.jws.*;

@WebService(name="quoteUpdater", ❶
targetNamespace="http:\\demos.iona.com", ❷

serviceName="updateQuoteService", ❸
wsdlLocation="http:\\demos.iona.com\quoteExampleService?wsdl", ❹
portName="updateQuotePort") ❺

public interface quoteReporter
{
public Quote getQuote(String ticker);

}

The @WebService annotation in Example 3 on page 34 does the following:

❶ Specifies that the value of the name attribute of the wsdl:portType

element defining the service interface is quoteUpdater.

❷ Specifies that the target namespace of the service is
http:\\demos.iona.com.

❸ Specifies that the value of the name of the wsdl:service element

defining the published service is updateQuoteService.

❹ Specifies that the service will publish its WSDL contract at
http:\\demos.iona.com\quoteExampleService?wsdl.

❺ Specifies that the value of the name attribute of the wsdl:port element

defining the endpoint exposing the service is updateQuotePort.

Annotating the service
implementation In addition to annotating the SEI with the @WebService annotation, you also

have to annotate the service implementation class with the @WebService

annotation. When adding the annotation to the service implementation class
you only need to specify the endpointInterface property. As shown in
Example 4 on page 34 the property needs to be set to the full name of the
SEI.

Example 4. Annotated Service Implementation Class

package org.eric.demo;

import javax.jws.*;

34

Starting from Java Code

@WebService(endpointInterface="com.iona.demo.quoteReporter")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
{
...
}

}

Optional Annotations

While the @WebService annotation is sufficient for service enabling a Java

interface or a Java class, it does not provide a lot of information about how
the service will be exposed as a service provider. The JAX-WS programming
model uses a number of optional annotations for adding details about your
service, such as the binding it uses, to the Java code. You add these
annotations to the service's SEI.

Tip
The more details you provide in the SEI the easier it will be for
developers to implement applications that can use the functionality
it defines. It will also provide for better generated WSDL contracts.

Defining the Binding Properties with Annotations

If you are using a SOAP binding for your service, you can use JAX-WS
annotations to specify a number of the bindings properties. These properties
correspond directly to the properties you can specify in a service's WSDL
contract.

The @SOAPBinding annotation
The @SOAPBinding annotation is defined by the

javax.jws.soap.SOAPBinding interface. It provides details about the SOAP

binding used by the service when it is deployed. If the @SOAPBinding

annotation is not specified, a service is published using a wrapped doc/literal
SOAP binding.

You can put the @SOAPBinding annotation on the SEI and any of the SEI's

methods. When it is used on a method, setting of the method's @SOAPBinding

annotation take precedence.

Table 2 on page 36 shows the properties for the @SOAPBinding annotation.

35

Annotating the Code

Table 2. @SOAPBinding Properties

DescriptionValuesProperty

Specifies the style of the SOAP message. If RPC style is specified,

each message part within the SOAP body is a parameter or return

Style.DOCUMENT (default)

Style.RPC

style

value and will appear inside a wrapper element within the
soap:body element. The message parts within the wrapper element

correspond to operation parameters and must appear in the same
order as the parameters in the operation. If DOCUMENT style is

specified, the contents of the SOAP body must be a valid XML
document, but its form is not as tightly constrained.

Specifies how the data of the SOAP message is streamed.Use.LITERAL (default)use

Use.ENCODED
a

Specifies how the method parameters, which correspond to message
parts in a WSDL contract, are placed into the SOAP message body.

ParameterStyle.BARE

ParameterStyle.WRAPPED

(default)

parameterStyle
b

A parameter style of BARE means that each parameter is placed into

the message body as a child element of the message root. A
parameter style of WRAPPED means that all of the input parameters

are wrapped into a single element on a request message and that
all of the output parameters are wrapped into a single element in
the response message.

a
Use.ENCODED is not currently supported.

bIf you set the style to RPC you must use the WRAPPED parameter style.

Example 5 on page 36 shows an SEI that uses rpc/literal SOAP messages.

Example 5. Specifying an RPC/LITERAL SOAP Binding with the
@SOAPBinding Annotation

package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{

36

Starting from Java Code

...
}

Defining Operation Properties with Annotations

When the runtime maps your Java method definitions into XML operation
definitions it fills in details such as:

• what the exchanged messages look like in XML.

• if the message can be optimized as a one way message.

• the namespaces where the messages are defined.

The @WebMethod annotation
The @WebMethod annotation is defined by the javax.jws.WebMethod

interface. It is placed on the methods in the SEI. The @WebMethod annotation

provides the information that is normally represented in the wsdl:operation

element describing the operation to which the method is associated.

Table 3 on page 37 describes the properties of the @WebMethod annotation.

Table 3. @WebMethod Properties

DescriptionProperty

Specifies the value of the associated wsdl:operation

element's name. The default value is the name of the

method.

operationName

Specifies the value of the soapAction attribute of the

soap:operation element generated for the method. The

default value is an empty string.

action

Specifies if the method should be excluded from the service
interface. The default is false.

exclude

The @RequestWrapper
annotation The @RequestWrapper annotation is defined by the

javax.xml.ws.RequestWrapper interface. It is placed on the methods in

the SEI. As the name implies, @RequestWrapper specifies the Java class

that implements the wrapper bean for the method parameters that are included

37

Annotating the Code

in the request message sent in a remote invocation. It is also used to specify
the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

Table 4 on page 38 describes the properties of the @RequestWrapper

annotation.

Table 4. @RequestWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the request message. The default

localName

value is the name of the method or the value of the
@WebMethod annotation's operationName property.

Specifies the namespace under which the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

The @ResponseWrapper
annotation The @ResponseWrapper annotation is defined by the

javax.xml.ws.ResponseWrapper interface. It is placed on the methods in

the SEI. As the name implies, @ResponseWrapper specifies the Java class

that implements the wrapper bean for the method parameters that are included
in the response message sent in a remote invocation. It is also used to specify
the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the response messages.

Table 5 on page 39 describes the properties of the @ResponseWrapper

annotation.

38

Starting from Java Code

Table 5. @ResponseWrapper Properties

DescriptionProperty

Specifies the local name of the wrapper element in the
XML representation of the response message. The default

localName

value is the name of the method with Response appended

or the value of the @WebMethod annotation's

operationName property with Response appended.

Specifies the namespace under which the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the wrapper element.

className

Tip
Only the className property is required.

The @WebFault annotation
The @WebFault annotation is defined by the javax.xml.ws.WebFault

interface. It is placed on exceptions that are thrown by your SEI. The
@WebFault annotation is used to map the Java exception to a wsdl:fault

element. This information is used to marshall the exceptions into a
representation that can be processed by both the service and its consumers.

Table 6 on page 39 describes the properties of the @WebFault annotation.

Table 6. @WebFault Properties

DescriptionProperty

Specifies the local name of the fault element.name

Specifies the namespace under which the fault element
is defined. The default value is the target namespace of
the SEI.

targetNamespace

Specifies the full name of the Java class that implements
the exception.

faultName

39

Annotating the Code

Important
The name property is required.

The @OneWay annotation
The @OneWay annotation is defined by the javax.jws.OneWay interface. It

is placed on the methods in the SEI that will not require a response from the
service. The @OneWay annotation tells the run time that it can optimize the

execution of the method by not waiting for a response and not reserving any
resources to process a response.

Example
Example 6 on page 40 shows an SEI whose methods are annotated.

Example 6. SEI with Annotated Methods

package com.iona.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.iona.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.iona.com/types",

className="org.eric.demo.Quote")
public Quote getQuote(String ticker);

}

Defining Parameter Properties with Annotations

The method parameters in the SEI coresspond to the wsdl:message elements

and their wsdl:part elements. JAX-WS provides annotations that allow you

to describe the wsdl:part elements that are generated for the method

parameters.

The @WebParam annotation
The @WebParam annotation is defined by the javax.jws.WebParam interface.

It is placed on the parameters on the methods defined in the SEI. The
@WebParam annotation allows you to specify the direction of the parameter,

40

Starting from Java Code

if the parameter will be placed in the SOAP header, and other properties of
the generated wsdl:part.

Table 7 on page 41 describes the properties of the @WebParam annotation.

Table 7. @WebParam Properties

DescriptionValuesProperty

Specifies the name of the parameter as it appears in the WSDL. For RPC
bindings, this is name of the wsdl:part representing the parameter. For

name

document bindings, this is the local name of the XML element representing
the parameter. Per the JAX-WS specification, the default is argN, where N

is replaced with the zero-based argument index (i.e., arg0, arg1, etc.).

Specifies the namespace for the parameter. It is only used with document
bindings where the parameter maps to an XML element. The defaults is to
use the service's namespace.

targetNamespace

Specifies the direction of the parameter.Mode.IN (default)mode

Mode.OUT

Mode.INOUT

Specifies if the parameter is passed as part of the SOAP header.false (default)header

true

Specifies the value of the name attribute of the wsdl:part element for the

parameter when the binding is document.

partName

The @WebResult annotation
The @WebResult annotation is defined by the javax.jws.WebResult

interface. It is placed on the methods defined in the SEI. The @WebResult

annotation allows you to specify the properties of the generated wsdl:part

that is generated for the method's return value.

Table 8 on page 42 describes the properties of the @WebResult annotation.

41

Annotating the Code

Table 8. @WebResult Properties

DescriptionProperty

Specifies the name of the return value as it appears in the
WSDL. For RPC bindings, this is name of the wsdl:part

name

representing the return value. For document bindings, this
is the local name of the XML element representing the
return value. The default value is return.

Specifies the namespace for the return value. It is only
used with document bindings where the return value maps

targetNamespace

to an XML element. The defaults is to use the service's
namespace.

Specifies if the return value is passed as part of the SOAP
header.

header

Specifies the value of the name attribute of the wsdl:part

element for the return value when the binding is
document.

partName

Example
Example 7 on page 42 shows an SEI that is fully annotated.

Example 7. Fully Annotated SEI

package com.iona.demo;

import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.iona.com",
name="quoteReporter")

@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.iona.com/types",

className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.iona.com/types",

className="org.eric.demo.Quote")
@WebResult(targetNamespace="http://demo.iona.com/types",

name="updatedQuote")

42

Starting from Java Code

public Quote getQuote(
@WebParam(targetNamespace="http://demo.iona.com/types",

name="stockTicker",
mode=Mode.IN)

String ticker
);

}

43

Annotating the Code

Generating WSDL
Once you have annotated your code, you can generate a WSDL contract for
your service using the artix java2wsdl command. For a detailed listing of
options for the artix java2wsdl command see artix java2wsdl in the Artix ESB
Command Reference.

Example
Example 8 on page 44 shows the WSDL contract generated for the SEI shown
in Example 7 on page 42.

Example 8. Generated WSDL from an SEI

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"

xmlns:tns="http://demo.eric.org/"
xmlns:ns1=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="http://demo.eric.org/types"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema>
<xs:complexType name="quote">
<xs:sequence>
<xs:element name="ID" type="xs:string" minOccurs="0"/>
<xs:element name="time" type="xs:string" minOccurs="0"/>
<xs:element name="val" type="xs:float"/>

</xs:sequence>
</xs:complexType>

</xsd:schema>
</wsdl:types>
<wsdl:message name="getStockQuote">
<wsdl:part name="stockTicker" type="xsd:string">
</wsdl:part>

</wsdl:message>
<wsdl:message name="getStockQuoteResponse">
<wsdl:part name="updatedQuote" type="tns:quote">
</wsdl:part>

</wsdl:message>
<wsdl:portType name="quoteReporter">
<wsdl:operation name="getStockQuote">
<wsdl:input name="getQuote" message="tns:getStockQuote">

</wsdl:input>
<wsdl:output name="getQuoteResponse" message="tns:getStockQuoteResponse">

</wsdl:output>
</wsdl:operation>

</wsdl:portType>

44

Starting from Java Code

http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf

<wsdl:binding name="quoteReporterBinding" type="tns:quoteReporter">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getStockQuote">
<soap:operation style="rpc"/>
<wsdl:input name="getQuote">
<soap:body use="literal"/>

</wsdl:input>
<wsdl:output name="getQuoteResponse">
<soap:body use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="quoteReporterService">
<wsdl:port name="quoteReporterPort" binding="tns:quoteReporterBinding">
<soap:address location="http://localhost:9000/quoteReporterService"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

45

Generating WSDL

Developing a Consumer without a WSDL Contract
Creating a Service Object ... 47
Adding a Port to a Service .. 49
Getting a Proxy for an Endpoint ... 51
Implementing the Consumer's Business Logic ... 53

To create a consumer without a WSDL contract you need to do the following:

1. Create a Service object for the service on which the consumer will

invoke operations.

2. Add a port to the Service object.

3. Get a proxy for the service using the Service object's getPort()

method.

4. Implement the consumer's business logic.

46

Starting from Java Code

Creating a Service Object
The javax.xml.ws.Service class represents the wsdl:service element

that contains the definition of all of the endpoints that expose a service. As
such it provides methods that allow you to get endpoints, defined by
wsdl:port elements, that are proxies for making remote invocations on a

service.

Note
The Service class provides the abstractions that allow the client

code to work with Java types as opposed to XML documents.

The create() methods
The Service class has two static create() methods that can be used to

create a new Service object. As shown in Example 9 on page 47, both of

the create() methods take the QName of the wsdl:service element the

Service object will represent and one takes a URI specifying the location of

the WSDL contract.

Tip
All services publish there WSDL contracts. For SOAP/HTTP services
the URI is usually the URI at which the service is published appended
with ?wsdl.

Example 9. Service create() Methods

public static Service create(URL wsdlLocation,
QName serviceName)

throws WebServiceException;

public static Service create(QName serviceName)
throws WebServiceException;

The value of the serviceName parameter is a QName. The value of its

namespace part is the target namespace of the service. The service's target
namespace is specified in the targetNamespace property of the @WebService

47

Creating a Service Object

annotation. The value of the QName's local part is the value of wsdl:service

element's name attribute. You can determine this value in a number of ways:

1. It is specified in the serviceName property of the @WebService annotation.

2. You append Service to the value of the name property of the @WebService

annotation.

3. You append Service to the name of the SEI.

Example
Example 10 on page 48 shows code for creating a Service object for the

SEI shown in Example 7 on page 42.

Example 10. Creating a Service Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{

❶ QName serviceName = new QName("http://demo.iona.com", "stockQuoteReporter");
❷ Service s = Service.create(serviceName);

...
}

}

The code in Example 10 on page 48 does the following:

❶ Builds the QName for the service using the targetNamespace property
and the name property of the @WebService annotation.

❷ Call the single parameter create() method to create a new Service

object.

Note
Using the single parameter create() frees you from having

any dependencies on accessing an WSDL contract.

48

Starting from Java Code

Adding a Port to a Service
The endpoint information for a service is defined in a wsdl:port element

and the Service object will create a proxy instance for each of the endpoints

defined in a WSDL contract if one is specified. If you do not specify a WSDL
contract when you create your Service object, the Service object has no

information about the endpoints that implement your service and cannot
create any proxy instances. In this case, you must provide the Service object

with the information that would be in a wsdl:port element using the

addPort() method.

The addPort() method
The Service class defines an addPort() method, shown in

Example 11 on page 49, that is used in cases where there is no WSDL
contract available to the consumer implementation. The addPort() method

allows you to give a Service object the information, which is typically stored

in a wsdl:port element, needed to create a proxy for a service

implementation.

Example 11. The addPort() Method

void addPort(QName portName,
String bindingId,
String endpointAddress)

throws WebServiceException;

The value of the portName is a QName. The value of its namespace part is

the target namespace of the service. The service's target namespace is
specified in the targetNamespace property of the @WebService annotation.

The value of the QName's local part is the value of wsdl:port element's

name attribute. You can determine this value in a number of ways:

1. It is specified in the portName property of the @WebService annotation.

2. You append Port to the value of the name property of the @WebService

annotation.

3. You append Port to the name of the SEI.

49

Adding a Port to a Service

The value of the bindingId parameter is a string that uniquely identifies the

type of binding used by the endpoint. For a SOAP binding you would use the
standard SOAP namespace: http://schemas.xmlsoap.org/soap/. If the

endpoint is not using a SOAP binding, the value of the bindingId parameter

will be determined by the binding developer.

The value of the endpointAddress parameter is the address at which the

endpoint is published. For a SOAP/HTTP endpoint, the address will be an
HTTP address. Transports other than HTTP will use different address schemes.

Example
Example 12 on page 50 shows code for adding a port to the Service object

created in Example 10 on page 48.

Example 12. Adding a Port to a Service Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
...

❶ QName portName = new QName("http://demo.iona.com", "stockQuoteReporterPort");
❷ s.addPort(portName,
❸ "http://schemas.xmlsoap.org/soap/",
❹ "http://localhost:9000/StockQuote");

...
}

}

The code in Example 12 on page 50 does the following:

❶ Creates the QName for the portName parameter.

❷ Calls the addPort() method.

❸ Specifies that the endpoint uses a SOAP binding.

❹ Specifies the address at which the endpoint is published.

50

Starting from Java Code

Getting a Proxy for an Endpoint
A service proxy is an object that provides all of the methods exposed by a
remote service and handles all of the details required to make the remote
invocations. The Service object provides service proxies for all of the

endpoints of which it is aware through the getPort() method. Once you

have a service proxy, you can invoke its methods. The proxy forwards the
invocation to the remote service endpoint using the connection details specified
in the service's contract.

The getPort() method
The getPort() method, shown in Example 13 on page 51, returns a service

proxy for the specified endpoint. The returned proxy is of the same class as
the SEI.

Example 13. The getPort() Method

public <T> T getPort(QName portName,
Class<T> serviceEndpointInterface)

throws WebServiceException;

The value of the portName parameter is a QName that identifies the

wsdl:port element that defines the endpoint for which the proxy is created.

The value of the serviceEndpointInterface parameter is the class of the

SEI.

Tip
When you are working without a WSDL contract the value of the
portName parameter is typically the same as the value used for the

portName parameter when calling addPort().

Example
Example 14 on page 51 shows code for getting a service proxy for the
endpoint added in Example 12 on page 50.

Example 14. Getting a Service Proxy

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

51

Getting a Proxy for an Endpoint

public class Client
{
public static void main(String args[])
{
...
quoteReporter proxy = s.getPort(portName, quoteReporter.class);
...

}
}

52

Starting from Java Code

Implementing the Consumer's Business Logic
Once you a service proxy for a remote endpoint, you can invoke its methods
as if it were a local object. The calls will block until the remote method
completes.

Note
If a method is annotated with the @OneWay annotation, the call will

return immediately.

Example
Example 15 on page 53 shows a consumer for the service defined in
Example 7 on page 42.

Example 15. Consumer Implemented without a WSDL Contract

package com.iona.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");

❶ Service s = Service.create(serviceName);

QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
❷ s.addPort(portName, "http://schemas.xmlsoap.org/soap/", "http://localhost:9000/EricStock
Quote");

❸ quoteReporter proxy = s.getPort(portName, quoteReporter.class);

❹ Quote quote = proxy.getQuote("ALPHA");
System.out.println("Stock "+quote.getID()+" is worth "+quote.getVal()+" as of

"+quote.getTime());
}

}

The code in Example 15 on page 53 does the following:

53

Implementing the Consumer's Business Logic

❶ Creates a Service object.

❷ Adds an endpoint definition to the Service object.

❸ Gets a service proxy from the Service object.

❹ Invokes an operation on the service proxy.

54

Starting from Java Code

Starting from a WSDL Contract
The recommended way to develop service-oriented applications is to start from a WSDL contract. The WSDL
contract provides an implementation neutral way of defining the operations a service exposes and the data that
is exchanged with the service. Artix ESB provides tools to generate JAX-WS annotated starting point code from
a WSDL contract. The code generators create all of the classes needed to implement any abstract data types
defined in the contract. This approach simplifies the development of widely distributed applications.

A WSDL Contract .. 56
Developing a Service Starting from a WSDL Contract .. 59

Generating the Starting Point Code ... 60
Implementing the Service Provider ... 64

Developing a Consumer Starting from a WSDL Contract .. 66
Generating the Stub Code .. 67
Implementing a Consumer ... 70

55

A WSDL Contract
Example 16 on page 56 shows the HelloWorld WSDL contract. This contract
defines a single interface, Greeter, in the wsdl:portType element. The

contract also defines the endpoint which will implement the service in the
wsdl:port element.

Example 16. HelloWorld WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"><element name="sayHi">

<complexType/>
</element>
<element name="sayHiResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMe">
<complexType>
<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMeResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>

</sequence>
</complexType>

</element>
<element name="greetMeOneWay">
<complexType>

56

Starting from a WSDL Contract

<sequence>
<element name="requestType" type="string"/>

</sequence>
</complexType>

</element>
<element name="pingMe">
<complexType/>

</element>
<element name="pingMeResponse">
<complexType/>

</element>
<element name="faultDetail">
<complexType>
<sequence>
<element name="minor" type="short"/>
<element name="major" type="short"/>

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

<wsdl:message name="sayHiRequest">
<wsdl:part element="x1:sayHi" name="in"/>

</wsdl:message>
<wsdl:message name="sayHiResponse">
<wsdl:part element="x1:sayHiResponse" name="out"/>

</wsdl:message>
<wsdl:message name="greetMeRequest">
<wsdl:part element="x1:greetMe" name="in"/>

</wsdl:message>
<wsdl:message name="greetMeResponse">
<wsdl:part element="x1:greetMeResponse" name="out"/>

</wsdl:message>
<wsdl:message name="greetMeOneWayRequest">
<wsdl:part element="x1:greetMeOneWay" name="in"/>

</wsdl:message>
<wsdl:message name="pingMeRequest">
<wsdl:part name="in" element="x1:pingMe"/>

</wsdl:message>
<wsdl:message name="pingMeResponse">
<wsdl:part name="out" element="x1:pingMeResponse"/>

</wsdl:message>
<wsdl:message name="pingMeFault">
<wsdl:part name="faultDetail" element="x1:faultDetail"/>

</wsdl:message>

<wsdl:portType name="Greeter">
❶ <wsdl:operation name="sayHi">

57

A WSDL Contract

<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>

❷ <wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>

</wsdl:operation>

❸ <wsdl:operation name="greetMeOneWay">
<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>

</wsdl:operation>

❹ <wsdl:operation name="pingMe">
<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
...

</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The Greeter interface defined in Example 16 on page 56 defines the

following operations:

❶ sayHi — has a single output parameter, of xsd:string.

❷ greetMe — has an input parameter, of xsd:string, and an output
parameter, of xsd:string.

❸ greetMeOneWay — has a single input parameter, of xsd:string. Because
this operation has no output parameters, it is optimized to be a oneway
invocation (that is, the consumer does not wait for a response from the
server).

❹ pingMe — has no input parameters and no output parameters, but it
can raise a fault exception.

58

Starting from a WSDL Contract

Developing a Service Starting from a WSDL Contract
Generating the Starting Point Code ... 60
Implementing the Service Provider ... 64

Once you have a WSDL document, the process for developing a JAX-WS
service provider is three steps:

1. Generate on page 60 starting point code.

2. Implement the service provider's operations.

3. Publish on page 75 the implemented service.

59

Developing a Service Starting from a WSDL Contract

Generating the Starting Point Code
JAX-WS specifies a detailed mapping from a service defined in WSDL to the
Java classes that will implement that service as a service provider. The logical
interface, defined by the wsdl:portType element, is mapped to a service

endpoint interface (SEI). Any complex types defined in the WSDL are mapped
into Java classes following the mapping defined by the Java Architecture for
XML Binding (JAXB) specification. The endpoint defined by the wsdl:service

element is also generated into a Java class that is used by consumers to
access service providers implementing the service.

The artix wsdl2java command automates the generation of this code. It also
provides options for generating starting point code for your implementation
and an ant based makefile to build the application. artix wsdl2java provides
a number of arguments for controlling the generated code.

Running artix wsdl2java
You can generate the code needed to develop your service provider using the
following command:

artix wsdl2java -ant -impl -server -d outputDirmyService.wsdl

The command does the following:

• The -ant argument generates a Ant makefile, called build.xml, for your

application.

• The -impl argument generates a shell implementation class for each

wsdl:portType element in the WSDL contract.

• The -server argument generates a simple main() to launch your service

provider as a stand alone application.

• The -d outputDir argument tells artix wsdl2java to write the generated

code to a directory called outputDir.

• myService.wsdl is the WSDL contract from which code is generated.

60

Starting from a WSDL Contract

For a complete list of the arguments for artix wsdl2java see artix wsdl2java
in the Artix ESB Command Reference.

Generating code from Ant
If you are using Apache Ant as your build system, you can call the code
generator using Ant's java task as shown in Example 17 on page 61.

Example 17. Generating Service Starting Point Code from Ant

<project name="myProject" basedir=".">
<property name="my.home" location ="InstallDir"/>

<path id="my.classpath">
<fileset dir="${my.home}/lib">

<include name="*.jar"/>
</fileset>

</path>

<target name="ServiceGen">
<java classname="org.apache.cxf.tools.wsdlto.WSDLToJava"

fork="true">
<arg value="-ant"/>
<arg value="-impl"/>
<arg value="-server"/>
<arg value="-d"/>
<arg value="outputDir"/>
<arg value="myService.wsdl"/>
<classpath>
<path refid="my.classpath"/>

</classpath>
</java>
...

</target>
...

</project>

The command line options are passed to the code generator using the task's
arg element. Arguments that require two strings, such as -d, must be split

into two arg elements.

Generated code
Table 9 on page 62 describes the files generated for creating a service
provider.

61

Generating the Starting Point Code

http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf

Table 9. Generated Classes for a Service Provider

DescriptionFile

The SEI. This file contains the interface your
service provider implements. You should not
edit this file.

portTypeName.java

The endpoint. This file contains the Java class
consumers will use to make requests on the
service.

serviceName.java

The skeleton implementation class. You will
modify this file to build your service provider.

portTypeNameImpl.java

A basic server mainline that allows you to
deploy your service provider as a stand alone

portTypeNameServer.java

process. For more information see Publishing
a Service on page 75.

In addition, artix wsdl2java will generate Java classes for all of the types
defined in the WSDL contract.

Generated packages
The generated code is placed into packages based on the namespaces used
in the WSDL contract. The classes generated to support the service (based
on the wsdl:portType element, the wsdl:service element, and the

wsdl:port element) are placed in a package based on the target namespace

of the WSDL contract. The classes generated to implement the types defined
in the types element of the contract are placed in a package based on the

targetNamespace attribute of the types element.

The mapping algorithm is as follows:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid Internet domain, for example
it ends in .com or .gov, the leading www. is stripped off the string, and

the two remaining components are flipped.

3. If the final string in the namespace ends with a file extension of the
pattern .xxx or .xx, the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting
string and separated by dots.

62

Starting from a WSDL Contract

5. All letters are made lowercase.

63

Generating the Starting Point Code

Implementing the Service Provider
Once the starting point code is generated, you must provide the business logic
for each of the operations defined in the service's interface.

Generating the implementation
code You generate the implementation class used to build your service provider

with wsdl2java's -impl flag.

Tip
If your service's contract includes any custom types defined in XML
Schema, you will also need to ensure that the classes for the types
are also generated and available.

Generated code
The implementation code consists of two files:

• portTypeName.java is the service interface(SEI) for the service.

• portTypeNameImpl.java is the class you will use to implement the

operations defined by the service.

Implement the operation's logic
You provide the business logic for your service's operations by completing the
stub methods in portTypeNameImpl.java. For the most part, you use standard

Java to implement the business logic. If your service uses custom XML Schema
types, you will need to use the generated classes for each type to manipulate
them. There are also some Artix ESB specific APIs that you can use to access
some advanced features.

Example
For example, an implementation class for the service defined in
Example 16 on page 56 may look like Example 18 on page 64. Only the
code portions highlighted in bold must be inserted by the programmer.

Example 18. Implementation of the Greeter Service

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
targetNamespace = "http://apache.org/hello_world_soap_http",

64

Starting from a WSDL Contract

endpointInterface = "org.apache.hello_world_soap_http.Greeter")

public class GreeterImpl implements Greeter {

public String greetMe(String me) {
System.out.println("Executing operation greetMe");
System.out.println("Message received: " + me + "\n");
return "Hello " + me;

}

public void greetMeOneWay(String me) {
System.out.println("Executing operation greetMeOneWay\n");
System.out.println("Hello there " + me);

}

public String sayHi() {
System.out.println("Executing operation sayHi\n");
return "Bonjour";

}

public void pingMe() throws PingMeFault {
FaultDetail faultDetail = new FaultDetail();
faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1);
System.out.println("Executing operation pingMe, throwing PingMeFault exception\n");

throw new PingMeFault("PingMeFault raised by server", faultDetail);
}

}

65

Implementing the Service Provider

Developing a Consumer Starting from aWSDL Contract
Generating the Stub Code .. 67
Implementing a Consumer ... 70

66

Starting from a WSDL Contract

Generating the Stub Code
You use artix wsdl2java to generate the stub code from the WSDL contract.
The stub code provides the supporting code that is required to invoke
operations on the remote service.

For consumers, artix wsdl2java can generate the following kinds of code:

• Stub code — supporting files for implementing a consumer.

• Starting point code — sample code that connects to the remote service
and invokes every operation on the remote service.

• Ant build file — a build.xml file intended for use with the ant build utility.

It has targets for building and for running the sample consumer.

Running artix wsdl2java
You generate consumer code using artix wsdl2java. Enter the following
command at a command-line prompt:

artix wsdl2java -ant -client -d outputDir hello_world.wsdl

Where outputDir is the location of a directory where you would like to put

the generated files and hello_world.wsdl is a file containing the contract

shown in Example 16 on page 56. The -ant option generates an ant

build.xml file, for use with the ant build utility. The -client option

generates starting point code for the consumer's main() method.

For a complete list of the arguments available for artix wsdl2java see artix
wsdl2java in the Artix ESB Command Reference.

Generating code from Ant
If you are using Apache Ant as your build system, you can call the code
generator using Ant's java task as shown in Example 19 on page 67.

Example 19. Generating Service Starting Point Code from Ant

<project name="myProject" basedir=".">
<property name="fsf.home" location ="InstallDir"/>

<path id="fsf.classpath">
<fileset dir="${fsf.home}/lib">

<include name="*.jar"/>
</fileset>

67

Generating the Stub Code

http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf
http://www.iona.com/support/docs/artix/5.0/command_ref/command_ref.pdf

</path>

<target name="ServiceGen">
<java classname="org.apache.cxf.tools.wsdlto.WSDLToJava"

fork="true">
<arg value="-ant"/>
<arg value="-client"/>
<arg value="-d"/>
<arg value="outputDir"/>
<arg value="myService.wsdl"/>
<classpath>
<path refid="fsf.classpath"/>

</classpath>
</java>
...

</target>
...

</project>

The command line options are passed to the code generator using the task's
arg element. Arguments that require two strings, such as -d, must be split

into two arg elements.

Generated code
The preceding command generates the following Java packages:

• org.apache.hello_world_soap_http

This package name is generated from the
http://apache.org/hello_world_soap_http target namespace. All

of the WSDL entities defined in this target namespace (for example, the
Greeter port type and the SOAPService service) map to Java classes in the
corresponding Java package.

• org.apache.hello_world_soap_http.types

This package name is generated from the
http://apache.org/hello_world_soap_http/types target namespace.

All of the XML types defined in this target namespace (that is, everything
defined in the wsdl:types element of the HelloWorld contract) map to

Java classes in the corresponding Java package.

The stub files generated by artix wsdl2java fall into the following categories:

68

Starting from a WSDL Contract

• Classes representing WSDL entities (in the
org.apache.hello_world_soap_http package) — the following classes

are generated to represent WSDL entities:

• Greeter is a Java interface that represents the Greeter wsdl:portType

element. In JAX-WS terminology, this Java interface is the service
endpoint interface (SEI).

• SOAPService is a Java service class (extending javax.xml.ws.Service)

that represents the SOAPService wsdl:service element.

• PingMeFault is a Java exception class (extending

java.lang.Exception) that represents the pingMeFault wsdl:fault

element.

• Classes representing XML types (in the
org.objectweb.hello_world_soap_http.types package) — in the

HelloWorld example, the only generated types are the various wrappers for
the request and reply messages. Some of these data types are useful for
the asynchronous invocation model.

69

Generating the Stub Code

Implementing a Consumer
This section describes how to write the code for a simple Java client, based
on the WSDL contract from Example 16 on page 56. To implement the
consumer, you need to use the following stubs:

• Service class (SOAPService).

• SEI (Greeter).

Generated service class
Example 20 on page 70 shows the typical outline of a generated service
class, ServiceName_Service1, which extends the javax.xml.ws.Service

base class.

Example 20. Outline of a Generated Service Class

@WebServiceClient(name="..." targetNamespace="..."
wsdlLocation="...")

public class ServiceName extends javax.xml.ws.Service
{
...
public ServiceName(URL wsdlLocation, QName serviceName) { }

public ServiceName() { }

@WebEndpoint(name="SoapPort")
public Greeter getPortName() { }
.
.
.

}

The ServiceName class in Example 20 on page 70 defines the following

methods:

• Constructor methods — the following forms of constructor are defined:

• ServiceName(URL wsdlLocation, QName serviceName) constructs

a service object based on the data in the ServiceName service in the

WSDL contract that is obtainable from wsdlLocation.

1If the name attribute of the wsdl:service element ends in Service the _Service is not used.

70

Starting from a WSDL Contract

• ServiceName() is the default constructor, which constructs a service

object based on the service name and WSDL contract that were provided
at the time the stub code was generated (for example, when running
artix wsdl2java). Using this constructor presupposes that the WSDL
contract remains available at its original location.

• getPortName() methods — for every PortName port defined on the

ServiceName service, artix wsdl2java generates a corresponding

getPortName() method in Java. Therefore, a wsdl:service element that

defines multiple endpoints will generate a service class with multiple
getPortName() methods.

Service endpoint interface
For every port type defined in the original WSDL contract, you can generate
a corresponding SEI. A service endpoint interface is the Java mapping of a
wsdl:portType element. Each operation defined in the original

wsdl:portType element maps to a corresponding method in the SEI. The

operation's parameters are mapped as follows:

1. The input parameters are mapped to method arguments.

2. The first output parameter is mapped to a return value.

3. If there is more than one output parameter, the second and subsequent
output parameters map to method arguments (moreover, the values of
these arguments must be passed using Holder types).

For example, Example 21 on page 71 shows the Greeter SEI, which is
generated from the wsdl:portType element defined in

Example 16 on page 56. For simplicity, Example 21 on page 71 omits the
standard JAXB and JAX-WS annotations.

Example 21. The Greeter Service Endpoint Interface

/* Generated by WSDLToJava Compiler. */

package org.apache.hello_world_soap_http;
...

public interface Greeter
{
public String sayHi();
public String greetMe(String requestType);
public void greetMeOneWay(String requestType);

71

Implementing a Consumer

public void pingMe() throws PingMeFault;
}

Consumer main function
Example 22 on page 72 shows the generated code that implements the
HelloWorld consumer. The consumer connects to the SoapPort port on the
SOAPService service and then proceeds to invoke each of the operations
supported by the Greeter port type.

Example 22. Consumer Implementation Code

package demo.hw.client;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {

private static final QName SERVICE_NAME =
new QName("http://apache.org/hello_world_soap_http",

"SOAPService");

private Client()
{
}

public static void main(String args[]) throws Exception
{

❶ if (args.length == 0)
{
System.out.println("please specify wsdl");
System.exit(1);

}

❷ URL wsdlURL;
File wsdlFile = new File(args[0]);
if (wsdlFile.exists())
{
wsdlURL = wsdlFile.toURL();

}
else
{
wsdlURL = new URL(args[0]);

}

72

Starting from a WSDL Contract

System.out.println(wsdlURL);
❸ SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);
❹ Greeter port = ss.getSoapPort();

String resp;

❺ System.out.println("Invoking sayHi...");
resp = port.sayHi();
System.out.println("Server responded with: " + resp);
System.out.println();

System.out.println("Invoking greetMe...");
resp = port.greetMe(System.getProperty("user.name"));
System.out.println("Server responded with: " + resp);
System.out.println();

System.out.println("Invoking greetMeOneWay...");
port.greetMeOneWay(System.getProperty("user.name"));
System.out.println("No response from server as method is OneWay");
System.out.println();

❻ try {
System.out.println("Invoking pingMe, expecting exception...");
port.pingMe();

} catch (PingMeFault ex) {
System.out.println("Expected exception: PingMeFault has occurred.");
System.out.println(ex.toString());

}
System.exit(0);

}
}

The Client.main() method from Example 22 on page 72 proceeds as

follows:

❶ The runtime is implicitly initialized — that is, provided the Artix ESB
runtime classes are loaded. Hence, there is no need to call a special
function in order to initialize Artix ESB.

❷ The consumer expects a single string argument that gives the location
of the WSDL contract for HelloWorld. The WSDL contract's location is
stored in wsdlURL.

❸ You create a service object (passing in the WSDL contract's location and
service name).

❹ Call the appropriate getPortName() method to obtain an instance of

the particular port you need. In this case, the SOAPService service
supports only the SoapPort port, which is of Greeter type.

73

Implementing a Consumer

❺ The consumer invokes each of the methods supported by the Greeter

service endpoint interface.
❻ In the case of the pingMe() method, the example code shows how to

catch the PingMeFault fault exception.

74

Starting from a WSDL Contract

Publishing a Service
When you want to deploy a JAX-WS service as a standalone Java application, you need to write a server mainline.
This mainline publishes an endpoint for your service.

Generating a Server Mainline .. 76
Writing a Server Mainline ... 77

Artix ESB provides a number of ways to publish a service as a service provider.
How you publish a service depends on the deployment environment you are
using. If you are deploying your service into one of the containers supported
by Artix ESB you do not need to write any additional code. However, if you
are going to deploy your service as a stand-alone Java application, you will
need to write a main() that publishes the service as a self-contained service

provider.

75

Generating a Server Mainline
The artix wsdl2java tool's -server flag causes the tool to generate a simple

server mainline. The generated server mainline, as shown in
Example 23 on page 76, publishes one service provider for each port defined

in the WSDL contract.

Example
Example 23 on page 76 shows a generated server mainline.

Example 23. Generated Server Mainline

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer {

protected GreeterServer() throws Exception {
System.out.println("Starting Server");

❶ Object implementor = new GreeterImpl();
❷ String address = "http://localhost:9000/SoapContext/SoapPort";
❸ Endpoint.publish(address, implementor);

}

public static void main(String args[]) throws Exception {
new GreeterServer();
System.out.println("Server ready...");

Thread.sleep(5 * 60 * 1000);
System.out.println("Server exiting");
System.exit(0);

}
}

The code in Example 23 on page 76 does the following:

❶ Instantiates a copy of the service implementation object.

❷ Creates the address for the endpoint based on the contents of the
address child of the wsdl:port element in the endpoint's contract.

❸ Publishes the endpoint.

76

Publishing a Service

Writing a Server Mainline
If you used the Java first development model or you do not want to use the
generated server mainline you can write your own. To write your server
mainline you must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service provider.

2. Create an optional server context to use when publishing the service
provider.

3. Publish the service provider using one of the publish().

Instantiating an service provider
You can instantiate an Endpoint using one of the following three methods

provided by Endpoint:

• static Endpoint create(Object implementor);

This create() method returns an Endpoint for the specified service

implementation. The created Endpoint is created using the information

provided by the implementation class'javax.xml.ws.BindingType

annotation if it is present. If the annotation is not present, the Endpoint

will use a default SOAP 1.1/HTTP binding.

• static Endpoint create(URI bindingID,
Object implementor);

This create() method returns an Endpoint for the specified

implementation object using the specified binding. This method overrides
the binding information provided by the javax.xml.ws.BindingType

annotation if it is present. If the bindingID cannot be resolved, or is null,

the binding specified in the javax.xml.ws.BindingType is used to create

the Endpoint. If neither the bindingID or the

javax.xml.ws.BindingType can be used, the Endpoint is created using

a default SOAP 1.1/HTTP binding.

• static Endpoint publish(String address,
Object implementor);

77

Writing a Server Mainline

The publish() method creates an Endpoint for the specified

implementation and publishes it. The binding used for the Endpoint is

determined by the URL scheme of the provided address. The list of

bindings available to the implementation are scanned for a binding that
supports the URL scheme. If one is found the Endpoint is created and

published. If one is not found, the method fails.

Tip
Using publish() is the same as invoking one of the create()

methods and then invoking the publish() method used to publish

to an address on page 78.

Important
The implementation object passed to any of the Endpoint creation

methods must either be an instance of a class annotated with
javax.jws.WebService and meeting the requirements for being

an SEI implementation or be an instance of a class annotated with
javax.xml.ws.WebServiceProvider and implementing the

Provider interface.

Publishing a service provider
You can publish a service provider using one of the following Endpoint

methods:

• void publish(String address);

This publish() method publishes the service provider at the address

specified.

Important
The address's URL scheme must be compatible with one of the

service provider's bindings.

• void publish(Object serverContext);

78

Publishing a Service

This publish() method publishes the service provider based on the

information provided in the specified server context. The server context
must define an address for the endpoint and it also must be compatible
with one of the service provider's available bindings.

Example
Example 24 on page 79 shows code for publishing a service provider.

Example 24. Custom Server Mainline

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer
{
protected GreeterServer() throws Exception
{
}

public static void main(String args[]) throws Exception
{

❶ GreeterImpl impl = new GreeterImpl();
❷ Endpoint endpt.create(impl);
❸ endpt.publish("http://localhost:9000/SoapContext/SoapPort");

boolean done = false;
❹ while(!done)

{
...

}

System.exit(0);
}

}

The code in Example 24 on page 79 does the following:

❶ Instantiates a copy of the service's implementation object.

❷ Creates an unpublished Endpoint for the service implementation.

❸ Publish the service provider at
http://localhost:9000/SoapContext/SoapPort.

❹ Loop until the server should be shutdown.

79

Writing a Server Mainline

80

Developing RESTful Services
RESTful services take the concepts of lose coupling and coarse grained interfaces one step farther than standard
Web services. Built using the REST architectural style, they rely solely on the four HTTP verbs to access the
operations provided by a service. Artix ESB provides a robust mechanism for building RESTful services using
straightforward Java classes and annotations.

Introduction to RESTful Services .. 82
Using Automatic REST Mappings ... 86
Using Java REST Annotations ... 89
Publishing a RESTful Service .. 93

81

Introduction to RESTful Services
Overview

Representational State Transfer (REST) is an architectural style first described
in a doctoral dissertation by a researcher named Roy Fielding. In REST, servers
expose resources using a URI, and clients access these resources using the
four HTTP verbs. As clients receive representations of a resource they are
placed in a state. When they access a new resource, typically by following a
link, they change, or transition, their state. In order to work, REST assumes
that resources are capable of being represented using a pervasive standard
grammar.

The World Wide Web is the most ubiquitous example of a system designed
on REST principles. Web browsers act as clients accessing resources hosted
on Web servers. The resources are represented using HTML or XML grammars
that all Web browsers can consume. The browsers can also easily follow the
links to new resources.

The advantages of REST style systems is that they are highly scalable and
highly flexible. Because the resources are accessed and manipulated using
the four HTTP verbs, the resources are exposed using a URI, and the resources
are represented using standard grammars, clients are not as affected by
changes to the servers. Also, REST style systems can take full advantage of
the scalability features of HTTP such as caching and proxies.

Basic REST principles
RESTful architectures adhere to the following basic principles:

• Application state and functionality are divided into resources.

• Resources are addressable using standard URIs that can be used as
hypermedia links.

• All resources use only the four HTTP verbs.

• DELETE

• GET

• POST

• PUT

• All resources provide information using the MIME types supported by HTTP.

82

Developing RESTful Services

• The protocol is stateless.

• The protocol is cacheable.

• The protocol is layered.

Resources
Resources are central to REST. A resource is a source of information that can
be addressed using a URI. In the early days of the Web, resources were largely
static documents. In the modern Web, a resource can be any source of
information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address.
A representation is a document containing the data provided by the resource.
For example, the method of a Web service that provides access to a customer
record wourld be a resource, the copy of the customer record exchanged
between the service and the consumer is a representation of the resource.

REST best practices
When designing RESTful services it is helpful to keep in mind the following:

• Provide a distinct URI for each resource you wish to expose.

For example, if you are building a system that deals with driving records,
each record should have a unique URI. If the system also provides
information on parking violations and speeding fines, each type of resource
should also have a unique base. For example, speeding fines could be
accessed through /speeding/driverID and parking violations could be

accessed through /parking/driverID.

• Use nouns in your URIs.

Using nouns highlights the fact that resources are things and not actions.
URIs such as /ordering imply an actions, whereas /orders implies a

thing.

• Methods that map to GET should not change any data.

• Use links in your responses.

Putting links to other resources in your responses makes it easier for clients
to follow a chain of data. For example, if your service returns a collection
of resources, it would be easier for a client to access each of the individual

83

Introduction to RESTful Services

resources using the provided links. If links are not included, a client needs
to have additional logic to follow the chain to a specific node.

• Make your service stateless.

Requiring the client or the service to maintain state information forces a
tight coupling between the two. Tight couplings make upgrading and
migrating more difficult. Maintaining state can also make recovery from
communication errors more difficult.

Wrapped mode vs. unwrapped
mode RESTful services can only send or receive one XML element. To enable the

mapping of methods that use more than one parameter, Artix ESB can use
wrapped mode. In wrapped mode, Artix ESB wraps the parameters with a
root element derived from the operation name. For example, the operation
Car findCar(String make, String model) could not be mapped to an

XML POST request like the one shown in Example 25 on page 84.

Example 25. Invalid REST Request

<name>Dodge</name>
<model>Daytona</company>

Example 25 on page 84 is invalid because it has two root XML elements,
which is not allowed. Instead, the parameters would have to be wrapped with
the operation name to make the POST valid. The resulting request is shown

in Example 26 on page 84.

Example 26. Wrapped REST Request

<findCar>
<make>Dodge</make>
<model>Daytona</model>

</findCar>

By default, Artix ESB uses unwrapped mode, because, for cases where
operations use a single parameter, it creates prettier XML. Using unwrapped
mode, however, requires that you constrain your service interfaces to sending
and receiving single elements. If your operation needs to take multiple
parameters, you must combine them in an object. With the findCar()

84

Developing RESTful Services

example above, you would want to create a FindCar class that holds the

make and model data.

Implementing REST with Artix
ESB Artix ESB uses an HTTP binding to map Java interfaces into RESTful services.

There are two ways to map the methods of the Java interface into resources:

• Convention based mapping (see Using Automatic REST
Mappings on page 86)

• Java REST annotations (see Using Java REST Annotations on page 89)

85

Introduction to RESTful Services

Using Automatic REST Mappings
Overview

To simplify the creation of RESTful service endpoints, Artix ESB can map the
methods of a CRUD (Create, Read, Update, and Destroy) based Java bean
class to URIs automatically. The mapping looks for keywords in the method
names of the bean, such as get, add, update, or remove, and maps them
onto HTTP verbs. It then uses the remainder of the method name to create
a URI by pluralizing the field name and appending it to the base URI at which
the endpoint is published.

Note
For more information about publishing RESTful endpoints, see
Publishing a RESTful Service on page 93.

Typical CRUD class
Example 27 on page 86 shows a CRUD based class for updating a catalog
of widgets.

Example 27. Widget Catalog CRUD Class

import javax.jws.WebService;

@WebService
public interface WidgetCatalog
{
Collection<Widget> getWidgets();
Widget getWidget(long id);
void addWidget(Widget widget);
void updateWidget(Widget widget);
void removeWidget(String type, long num);
void deleteWidget(Widget widget);

}

Important
You must use the @WebService annotation on any class or interface

that you wish to expose as a RESTful endpoint.

The class has six operations that are mapped to a URI/verb pair:

• getWidgets() is mapped to a GET at baseURI/widgets.

86

Developing RESTful Services

• getWidget() is mapped to a GET at baseURI/widgets/id.

• addWidget() is mapped to a POST at baseURI/widgets.

• updateWidget() is mapped to a PUT at baseURI/widgets.

• removeWidget() is mapped to a DELETE at baseURI/widgets/type/num.

• deleteWidget() is mapped to a DELETE at baseURI/widgets.

Mapping to GET
When Artix ESB sees a method name in the form of getResource(), it maps

the method to a GET. The URI is generated by appending the plural form of

Resource to the base URI at which the endpoint is published. If Resource

is already plural, it is not pluralized. For example, getCustomer() is mapped

to a GET on /customers. The method getCustomers() would result in the

same mapping.

Any method parameters are appended to the URI. For example,
getWidget(long id) is mapped to /widgets/id and getCar(String

make, String model) would be mapped to /cars/make/model. A call to

getCar(plymouth, roadrunner) would be executed by a GET to

/cars/plymouth/roadrunner.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

Mapping to POST
Methods of the form addResource() or createResource() are mapped to

POST. The URI is generated by pluralizing Resource. For example

createCar(Car car) would be mapped to a POST at /cars.

Mapping to PUT
Methods of the form updateResource() are mapped to PUT. The URI is

generated by pluralizing Resource and appending any parameters except the

resource to be updated. For example updateHitter(long number, long

87

Using Automatic REST Mappings

rotation, Hitter hitter) would be mapped to a PUT at

/hitters/number/rotation.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

Mapping to DELETE
Methods of the form deleteResource() or removeResource() are mapped

to DELETE. The URI is generated by pluralizing Resource and appending any

parameters. For example removeCar(String make, long num) would be

mapped to a DELETE at /cars/make/num.

Important
Artix ESB only supports get methods that use XML primitives in their
parameter list.

88

Developing RESTful Services

Using Java REST Annotations
Overview

While the convention-based REST mappings provide an easy way to create
a service that maintains a collection of data, or looks like it does, it does not
provide the flexibility to create a full range of RESTful services that require
operations whose names don't fit into the CRUD format. Artix ESB provides
a collection of annotations that allows you to define the mapping of an
operation to an HTTP verb/URI combination. The REST annotations allow
you to specify which verb to use for an operation and to specify a template
for creating a URI for the exposed resource.

Specifying the HTTP verb
Artix ESB uses four annotations for specifying the HTTP verb that will be used
for a method:

• org.codehaus.jra.Delete specifies that the method maps to a DELETE.

• org.codehaus.jra.Get specifies that the method maps to a GET.

• org.codehaus.jra.Post specifies that the method maps to a POST.

• org.codehaus.jra.Put specifies that the method maps to a PUT.

When you map your methods to HTTP verbs, you must ensure that the
mapping makes sense. For example, if you map a method that is intended
to submit a purchase order, you would map it to a PUT or a POST. Mapping

it to a GET or a DELETE would result in unpredictable behavior.

Specifying the URI
You specify the URI of the resource using the
org.codehaus.jra.HttpResource annotation. HttpResource has one

required attribute, location, that specifies the location of the resource in

relationship to the base URI specified when publishing the service (see
Publishing a RESTful Service on page 93. For example, if you specify carts

as the location of the resource and the base URI is
http://myexample.iona.org, the full URI for the resource will be

http://myexample.iona.org/carts.

Using URI templates
In addition to specifying hard coded resource locations, Artix ESB provides a
facility for creating URIs on the fly using either the method's parameters or a
field from the JAXB bean in the parameter list. When providing a value for

89

Using Java REST Annotations

the HttpResource annotation's location parameter you provide a URI

template using the syntax in Example 28 on page 90.

Example 28. URI Template Syntax

@HttpResource(location="resourceName/{param1}/../{paramN}")

resourceName can be any valid string, and forms the base of the location.

Each param is the name of either a method parameter or a field in the JAXB

bean in the parameter list. To create the URI, Artix ESB replaces param with

the value of the associated parameter. For example, if you have the method
shown in Example 29 on page 90 and wanted to access the record at id 42,
you would perform a GET at http://myexample.iona.com/records/42.

Example 29. Using a URI Template

@Get
@HttpResource(location="\records\{id}")
Record fetchRecord(long id);

Important
Artix ESB only supports XML primitives in URI templates.

Example
If you wanted to implement a system for ordering widgets out of the catalog
defined by Example 27 on page 86 you may use an SEI like the one shown
in Example 30 on page 90.

Example 30. SEI for a Widget Ordering Service

@WebService
public interface WidgetOrdering
{
void placeOrder(WidgetOrder order);
OrderStatus checkOrder(long orderNum);
void changeOrder(WidgetOrder order, long orderNum);
void cancelOrder(long orderNum);

}

WidgetOrdering does not match any of the naming conventions outlined in

Using Automatic REST Mappings on page 86 so the RESTful binding cannot
automatically map the methods to verb/URI combinations. You will need to
provide the mappings using the Java REST annotations. To do this, you need

90

Developing RESTful Services

to consider what each method in the interface does and how it correlates to
one of the HTTP verbs:

• placeOrder() creates a new order on the system. Resource creation

correlates with POST.

• checkOrder() looks up an order's status and returns it to the user.

Returning resources correlates with GET.

• changeOrder() updates an order that has already been placed. Updating

an existing record correlates with PUT.

• cancelOrder() removes an order from the system. Removing a resource

correlates with DELETE.

For the URI, you would use a resource name that hinted at the purpose of
the resource. For this example, the resource name used is orders because

it is assumed that the base URI at which the endpoint is published provides
information about what is being ordered. For the methods that use orderNum

to identify a particular order, URI templating is used to append the value of
the parameter to the end of the URI.

Example 31 on page 91 shows WidgetOrdering with the required

annotations.

Example 31. WidgetOrdering with REST Annotations

import org.codehause.jra.*;

@WebService
public interface WidgetOrdering
{
@Post
@HttpResource(location="\orders")
void placeOrder(WidgetOrder order);

@Get
@HttpResource(location="\orders\{orderNum}")
OrderStatus checkOrder(long orderNum);

@Put
@HttpResource(location="\orders\{orderNum}")
void changeOrder(WidgetOrder order, long orderNum);

91

Using Java REST Annotations

@Delete
@HttpResource(location="\orders\{orderNum}")
void cancelOrder(long orderNum);

}

To check the status of order number 236, you would perform a GET at

baseURI/orders/236.

92

Developing RESTful Services

Publishing a RESTful Service
Overview

You publish RESTful services using the JaxWsServerFactoryBean object.

Using the JaxWsServerFactoryBean object, you specify the base URI for

the resources implemented by the service and whether the resources use
wrapped messages. You can then create a Server object to start listening

for requests to access the service's resources.

Procedure
To publish your RESTful service, do the following:

1. Create a new JaxWsServerFactoryBean.

2. Set the server factory's service class to the class of your RESTful service's
SEI using the factory's setServiceClass() method as shown in

Example 32 on page 93.

Example 32. Setting a Server Factory's Service Class

// Service factory sf obtained previously
sf.setServiceClass(widgetService.class);

3. If you want to use wrapped mode, set the factory's wrapped property to
true using the setWrapped() method as shown in

Example 33 on page 93.

Example 33. Setting Wrapped Mode

sf.getServiceFactory().setWrapped(true);

Note
For more information about using wrapped mode or unwrapped
mode, see Wrapped mode vs. unwrapped mode on page 84.

4. Set the server factory's binding to the REST binding using the
setBindingId() method.

93

Publishing a RESTful Service

The REST binding is selected using the constant
HttpBindingFactory.HTTP_BINDING_ID as shown in

Example 34 on page 94.

Example 34. Selecting the REST Binding

// Server factory sf obtained previously
sf.setBindingId(HttpBindingFactory.HTTP_BINDING_ID);

5. Set the base URI for the service's resources using the setAddress()

method as shown in Example 35 on page 94.

Example 35. Setting the Base URI

sf.setAddress("http://localhost:9000");

6. Set server factory's service invoker to an instance of your service's
implementation class as shown in Example 36 on page 94.

Example 36. Setting the Service Invoker

widgetService service = new widgetServiceImpl();
sf.getServiceFactory().setInvoker(new BeanInvoker(ser
vice));

7. Create a new Server object from the server factory using the factory's

create() method.

Example
Example 37 on page 94 shows the code for publishing a RESTful service at
http://jfu:9000. All of the resources implemented by the service will use

the published URI as the base address.

Example 37. Publishing the WidgetCatalog Service as a RESTful Endpoint

JaxWsServerFactoryBean sf = new JaxWsServerFactoryBean();
sf.setServiceClass(WidgetCatalog.class);

sf.setBindingId(HttpBindingFactory.HTTP_BINDING_ID);
sf.setAddress("http://jfu:9000");

widgetService service = new WidgetCatalogImpl();
sf.setServiceFactory.setInvoker(new BeanInvoker(service));

94

Developing RESTful Services

Server svr = sf.create();

If you used Example 37 on page 94 to publish the service defined by
Example 27 on page 86, you would:

• Retrieve a list of all widgets in the catalog using a GET at

http://jfu:9000/widgets.

• Retrieve information about widget 34 using a GET at

http://jfu:9000/widgets/34.

• Modify a widget using a PUT at http://jfu:9000/widgets with an XML

document describing the widget to modify.

• Delete 15 round widgets from the catalog using a DELETE at

http://jfu:9000/widgets/round/15.

95

Publishing a RESTful Service

96

Part II. Working with Data Types
Service-oriented design abstracts data into a common exchange format. Typically, this format is an XML grammar
defined in XML Schema. To save the developer from working directly with XML documents, the JAX-WS
specification calls for XML Schema types to be marshaled into Java objects. This marshaling is done in accordance
with the Java Architecture for XML Binding (JAXB) specification. JAXB defines bindings for mapping between
XML Schema constructs and Java objects and rules for how to marshal the data. It also defines an extensive
customization framework for controlling how data is handled.

Basic Data Binding Concepts ... 101
Working with External Schema Definitions .. 102
XML Namespace Mapping .. 105
The Object Factory ... 108
Adding Classes to the Runtime Marshaller .. 110

Using XML Elements .. 115
Using Simple Types .. 121

Primitive Types .. 122
Simple Types Defined by Restriction ... 125
Enumerations .. 128
Lists ... 131
Unions .. 135
Simple Type Substitution ... 137

Using Complex Types ... 139
Basic Complex Type Mapping .. 140
Attributes ... 146
Deriving Complex Types from Simple Types .. 152
Deriving Complex Types from Complex Types .. 155
Occurrence Constraints .. 159

Occurrence Constraints on the All Element ... 160
Occurrence Constraints on the Choice Element .. 161
Occurrence Constraints on Elements ... 164
Occurrence Constraints on Sequences ... 165

Using Model Groups ... 168
Using Wild Card Types .. 173

Using Any Elements ... 174
Using XML Schema anyType ... 179
Using Unbound Attributes .. 182

Using Type Substitution .. 185
Substitution Groups in XML Schema ... 186
Substitution Groups in Java .. 190
Widget Vendor Example ... 197

The checkWidgets Operation ... 199
The placeWidgetOrder Operation .. 202

Customizing How Types are Generated ... 207
Basics of Customizing Type Mappings ... 208
Specifying the Java Class of an XML Schema Primitive .. 211
Generating Java Classes for Simple Types ... 219
Customizing Enumeration Mapping .. 221
Customizing Fixed Value Attribute Mapping .. 226
Specifying the Base Type of an Element or an Attribute .. 229

99

100

Basic Data Binding Concepts
There are a number of general topics that apply to how Artix ESB handles type mapping.

Working with External Schema Definitions .. 102
XML Namespace Mapping .. 105
The Object Factory ... 108
Adding Classes to the Runtime Marshaller .. 110

101

Working with External Schema Definitions
Overview

Artix ESB supports the including and importing of schema definitions, using
the <include/> and <import/> schema tags. These tags enable you to

insert definitions from external files or resources into the scope of a schema
element. The essential difference including and importing is this:

• Including brings in definitions that belong to the same target namespace
as the enclosing schema element.

• Importing brings in definitions that belong to a different target namespace
from the enclosing schema element.

If you do not need to reference the types defined in a schema document as
part of the service definition, you can also generate Java code for a schema
document that does not appear in a WSDL. This is useful when using wildcard
types.

xsd:include syntax
The include directive has the following syntax:

<include schemaLocation="anyURI" />

The referenced schema, given by anyURI, must either belong to the same

target namespace as the enclosing schema or not belong to any target
namespace at all. If the referenced schema does not belong to any target
namespace, it is automatically adopted into the enclosing schema’s namespace
when it is included.

Example 38 on page 102 shows an example of an XML schema that includes
another XML Schema.

Example 38. Example of a Schema that Includes Another Schema

<definitions targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns:tns="http://schemas.iona.com/tests/schema_parser"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://schemas.iona.com/tests/schema_parser"

xmlns="http://www.w3.org/2001/XMLSchema">
<include schemaLocation="included.xsd"/>
<complexType name="IncludingSequence">
<sequence>
<element name="includedSeq" type="tns:IncludedSequence"/>

102

Basic Data Binding Concepts

</sequence>
</complexType>

</schema>
</types>
...

</definitions>

Example 39 on page 103 shows the contents of the included schema file.

Example 39. Example of an Included Schema

<schema targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns="http://www.w3.org/2001/XMLSchema">

<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>

</sequence>
</complexType>

</schema>

xsd:import syntax
The import directive has the following syntax:

<import namespace="namespaceAnyURI"
schemaLocation="schemaAnyURI" />

The imported definitions must belong to the namespaceAnyURI target

namespace. If namespaceAnyURI is blank or remains unspecified, the

imported schema definitions are unqualified.

Example 40 on page 103 shows an example of an XML Schema that imports
another XML Schema.

Example 40. Example of a Schema that Includes Another Schema

<definitions targetNamespace="http://schemas.iona.com/tests/schema_parser"
xmlns:tns="http://schemas.iona.com/tests/schema_parser"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://schemas.iona.com/tests/schema_parser"

xmlns="http://www.w3.org/2001/XMLSchema">
<import namespace="http://schemas.iona.com/tests/imported_types"

schemaLocation="included.xsd"/>
<complexType name="IncludingSequence">
<sequence>

103

Working with External Schema Definitions

<element name="includedSeq" type="tns:IncludedSequence"/>
</sequence>

</complexType>
</schema>

</types>
...

</definitions>

Example 41 on page 104 shows the contents of the imported schema file.

Example 41. Example of an Included Schema

<schema targetNamespace="http://schemas.iona.com/tests/imported_types"
xmlns="http://www.w3.org/2001/XMLSchema">

<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>

</sequence>
</complexType>

</schema>

Using non-referenced schema
documents Using types defined in a schema document that is not referenced in the

service's WSDL document is a three step process:

1. Convert the schema document to a WSDL document using the xsd2wsdl
tool.

2. Generate Java for the types using the artix wsdl2java tool on the
generated WSDL document.

Important
You will get a warning from the artix wsdl2java tool stating that
the WSDL document does not define any services. You can
ignore this warning.

3. Add the generated classes to your classpath.

104

Basic Data Binding Concepts

XML Namespace Mapping
Overview

XML Schema type, group, and element definitions are scoped using
namespaces. The namespaces prevent possible naming clashes between
entities that use the same name. Java packages serve a similar purpose.
Therefore, Artix ESB maps the target namespace of a schema document into
a package containing the classes needed to implement the structures defined
in the XML Schema.

Package naming
The name of the generated package is derived from a schema's target
namespace using the following algorithm:

1. The URI scheme, if present, is stripped.

Note
Artix ESB will only strip the http:, https:, and urn: schemes.

For example, the namespace
http:\\www.widgetvendor.com\types\widgetTypes.xsd becomes
\\widgetvendor.com\types\widgetTypes.xsd.

2. The trailing file type identifier, if present, is stripped.

\\www.widgetvendor.com\types\widgetTypes.xsd becomes

\\widgetvendor.com\types\widgetTypes.

3. The resulting string is broken into a list of strings using / and : as

separators.

\\www.widgetvendor.com\types\widgetTypes becomes the list

{"www.widegetvendor.com", "types", "widgetTypes"}.

4. If the first string in the list is an internet domain name, it is decomposed
as follows:

a. The leading www. is stripped.

b. The remaining string is split into its component parts using the .

as the separator.

105

XML Namespace Mapping

c. The order of the list is reversed.

{"www.widegetvendor.com", "types", "widgetTypes"} becomes

{"com", "widegetvendor", "types", "widgetTypes"}

Note
Internet domain names end in one of the following: .com, .net,

.edu, .org, .gov, or one of the two-letter country codes.

5. The strings are converted into all lower case.

{"com", "widegetvendor", "types", "widgetTypes"} becomes

{"com", "widegetvendor", "types", "widgettypes"}.

6. The strings are normalized into valid Java package name components
as follows:

a. If the strings contain any special characters, the special characters
are converted to an underscore(_).

b. If any of the strings are a Java keyword, the keyword is prefixed
with an underscore(_).

c. If any of the strings begin with a numeral, the string is prefixed with
an underscore(_).

7. The strings are concatenated using . as a separator.

{"com", "widegetvendor", "types", "widgettypes"} becomes

the package name com.widgetvendor.types.widgettypes.

The XML Schema constructs defined in the namespace
http:\\www.widgetvendor.com\types\widgetTypes.xsd are mapped to the Java
package com.widgetvendor.types.widgettypes.

Package contents
A JAXB generated package contains the following:

• a class implementing each complex type defined in the schema

106

Basic Data Binding Concepts

For more information on complex type mapping see Using Complex
Types on page 139.

• an enum type for any simple types defined using the enumeration facet

For more information on how enumerations are mapped see
Enumerations on page 128.

• a public ObjectFactory class that contains methods for instantiating

objects from the schema

For more information on the ObjectFactory class see The Object

Factory on page 108.

• a package-info.java file that provides metadata about the classes in

the package

107

XML Namespace Mapping

The Object Factory
Overview

JAXB uses an object factory to provide a mechanism for instantiating instances
of JAXB generated constructs. The object factory contains methods for
instantiating all of the XML schema defined constructs in the package's scope.
The only exception is that enumerations do not get a creation method in the
object factory.

Complex type factory methods
For each Java class generated to implement an XML schema complex type,
the object factory contains a method for creating an instance of the class.
This method takes the form:

typeName createtypeName();

For example, if your schema contained a complex type named widgetType,

Artix ESB will generate a class called WidgetType to implement it.

Example 42 on page 108 shows the generated creation method in the object
factory.

Example 42. Complex Type Object Factory Entry

public class ObjectFactory
{
...
WidgetType createWidgetType()
{
return new WidgetType();

}
...

}

Element factory methods
For elements that are declared in the schema's global scope, Artix ESB inserts
a factory method into the object factory. As discussed in Using XML
Elements on page 115, XML Schema elements are mapped to JAXBElement<T>

objects. The creation method takes the form:

public JAXBElement<elementType> createelementName(elementType
value);

For example if you had an element named comment that was of type xsd:string,

Artix ESB would generate the object factory method shown in
Example 43 on page 109

108

Basic Data Binding Concepts

Example 43. Element Object Factory Entry

public class ObjectFactory
{
...
@XmlElementDecl(namespace = "...", name = "comment")
public JAXBElement<String> createComment(String value) {

return new JAXBElement<String>(_Comment_QNAME, String.class, null, value);
}

...
}

109

The Object Factory

Adding Classes to the Runtime Marshaller
Overview

When the Artix ESB runtime reads and writes XML data it uses a map that
associates the XML Schema types with their representative Java types. By
default, the map contains all of the types defined in the target namespace of
the WSDL contract's schema element. This can pose a problem when using

type and element substitution. You may substitute an element defined in an
alternate namespace for one in the target namesapce. If the runtime does not
now about the Java class supporting the error, it will raise a marshaling error.

The addition of types from namespaces other than the schema namespace
used by an application's schema element can be accomplished by either

configuration properties or by programmatic means .

Configuring an endpoint to load
extra classes You configure the Artix ESB runtime to load extra classes by adding the

extraClasses to your server's org.apache.cxf.jaxb.JAXBDataBinding

bean. This is shown in Example 44 on page 110.

Example 44. Syntax for Configuring a Server to Load Extra JAXB Classes

<jaxws:server ...>
<jaxws:dataBinding>

<bean class="org.apache.cxf.jaxb.JAXBDataBinding">
<property name="extraClass">
<list>
<value>class1</value>
<value>class2</value>
...
<value>classN</value>

</list>
</property>

</bean>
</jaxws:dataBinding>

</jaxws:server>

The runtime will load the listed classes and add them to the endpoint's JAXB
context. Once added to the JAXB context, the classes will be available for
marshaling and unmarshaling data.

You can also add the extraClasses property to your client's
org.apache.cxf.jaxb.JAXBDataBinding bean..

110

Basic Data Binding Concepts

Example 45 on page 111 shows an example of configuring a JAX-WS client
to load extra classes.

Example 45. Configuring a JAX-WS Client to Load Extra JAXB Classes

<jaxws:client ...>
<jaxws:dataBinding>

<bean class="org.apache.cxf.jaxb.JAXBDataBinding">
<property name="extraClass">
<list>
<value>class1</value>
<value>class2</value>
...
<value>classN</value>

</list>
</property>

</bean>
</jaxws:dataBinding>

</jaxws:client>

Programmatically adding classes
to a service provider You programatically add extra classes to the JAXB context to a service provider

using an org.apache.cxf.jaxws.JaxWsServerFactoryBean object and

adding the jaxb.additionalContextClasses property to it. The
jaxb.additionalContextClasses property takes an array of Class objects. Each

Class object in the array will be added to the JAXB context and will be

available for marshaling.

Example 46 on page 111 shows code for adding extra classes to the JAXB
context.

Example 46. Adding Classes to a Service Provider

import org.apache.cxf.jaxws.*;
...
wsdlURL = new URL(args[0]);
String address = "http://localhost:9000/SoapContext/WidgetPort";

JaxWsServerFactoryBean sf = new JaxWsServerFactoryBean(); ❶
...
Map props = sf.getProperties(); ❷
if (props == null)
{
props = new HashMap<String, Object>();

}
props.put("jaxb.additionalContextClasses",

111

Adding Classes to the Runtime Marshaller

new Class[] {org.apache.cxf.systest.jaxb.model.ExtendedWidget.class}); ❸
sf.setProperties(props); ❹

sf.setWsdlURL(wsdlURL.toString()); ❺
sf.setAddress(address); ❻
sf.setServiceClass(WidgetImpl.class); ❼
sf.setServiceBean(new WidgetImpl()); ❽
sf.setStart(false); ❾
Server server = sf.create(); ❿
server.start(); 11

The code in Example 46 on page 111 does the following:

❶ Instantiates a JAX-WS server factory.

❷ Gets the properties set on the server factory.

❸ Adds the jaxb.additionalContextClasses property to the server factory's
property map.

The jaxb.additionalContextClasses property takes an array of Java Class

objects.
❹ Sets the updated property list back on the server factory.

❺ Sets the location of the WSDL document.

❻ Sets the address.

❼ Sets the implementation class.

❽ Sets the service bean to an instance of the implementation class.

❾ Tells the factory not to start the server when it is created.

❿ Creates a new Server object from the factory.

11 Calls the server's start() method so it can start listening for requests.

Programmatically adding classes
to a service consumer You programatically add extra classes to the JAXB context to a service

consumer using an org.apache.cxf.jaxws.JaxWsProxyFactoryBean

object and adding the jaxb.additionalContextClasses property to it. The
jaxb.additionalContextClasses property takes an array of Class objects. Each

Class object in the array will be added to the JAXB context and will be

available for marshaling.

You will need to use the JaxWsProxyFactoryBean object you created to

instantiate any proxies that need to have access to the additional classes.

112

Basic Data Binding Concepts

You can create proxies using the factory's create() method and casting the

result to the appropriate class.

Example 47 on page 113 shows code for adding extra classes to the JAXB
context.

Example 47. Adding Classes to a Service Consumer

import org.apache.cxf.jaxws.*;
...
QName SERVICE_NAME = new QName("http://apache.org/widget_example", "WidgetService");
wsdlURL = new URL(args[0]);

JaxWsProxyFactoryBean pf = new JaxWsProxyFactoryBean(); ❶

Map props = sf.getProperties(); ❷
if (props == null)
{
props = new HashMap<String, Object>();

}
props.put("jaxb.additionalContextClasses",

new Class[] {org.apache.cxf.systest.jaxb.model.ExtendedWidget.class}); ❸
pf.setProperties(props); ❹
...
pf.setWsdlURL(wsdlURL.toString()); ❺
pf.setServiceClass(WidgetConsumer.class); ❻
pf.setServiceName(SERVICE_NAME); ❼
WidgetConsumer proxy = (WidgetConsumer)pf.create(); ❽

The code in Example 47 on page 113 does the following:

❶ Instantiates a JAX-WS proxy factory.

❷ Gets the properties set on the proxy factory.

❸ Adds the jaxb.additionalContextClasses property to the proxy factory's
property map.

The jaxb.additionalContextClasses property takes an array of Java Class

objects.
❹ Sets the updated property list back on the proxy factory.

❺ Sets the location of the WSDL document.

❻ Sets the SEI class.

❼ Sets the name of the service.

113

Adding Classes to the Runtime Marshaller

❽ Creates a new proxy object from the factory.

More information
For more information on using Artix ESB configuration see Configuring and
Deploying Artix Solutions, Java Runtime
[http://www.iona.com/support/docs/artix/5.1/deploy/java/index.htm].

114

Basic Data Binding Concepts

http://www.iona.com/support/docs/artix/5.1/deploy/java/index.htm
http://www.iona.com/support/docs/artix/5.1/deploy/java/index.htm
http://www.iona.com/support/docs/artix/5.1/deploy/java/index.htm

Using XML Elements
XML Schema elements are used to define an instance of an element in an XML document. Elements are defined
either in the global scope of an XML Schema document or they are defined as a member of a complex type.
When they are defined in the global scope, Artix ESB maps them to a JAXB element class that makes manipulating
them easier.

Overview
An element instance in an XML document is defined by an XML Schema
element element in the global scope of an XML Schema document. To make

it easier for Java developers to work with elements, Artix ESB maps globally
scoped elements to either a special JAXB element class or to a Java class
that is generated to match its content type.

How the element is mapped depends on if the element is defined using a
named type referenced by the type attribute or if the element is defined using

an in-line type definition. Elements defined with in-line type definitions are
mapped to Java classes.

Tip
It is recommended that elements are defined using a named type
because in-line types are not reusable by other elements in the
schema.

XML Schema mapping
In XML Schema elements are defined using element elements. element

elements has one required attribute. The name specifies the name of the

element as it will appear in an XML document.

In addition to the name attribute element elements have the optional attributes

listed in Table 10 on page 115

Table 10. Attributes Used to Define an Element

DescriptionAttribute

Specifies the type of the element. The type can be any XML Schema primitive type or any
named complex type defined in the contract. If this attribute is not specified, you will need
to include an in-line type definition.

type

115

DescriptionAttribute

Specifies if an element can be left out of a document entirely. If nillable is set to true,

the element can be omitted from any document generated using the schema.

nillable

Specifies if an element can be used in an instance document. true indicates that the

element cannot appear in the instance document. Instead, another element whose

abstract

substitutionGroup attribute contains the QName of this element must appear in this

element's place. For information on how this attribute effects code generation see Java
mapping of abstract elements on page 119.

Specifies the name of an element that can be substituted with this element. For more
information on using type substitution see Using Type Substitution on page 185.

substitutionGroup

Specifies a default value for an element. For information on how this attribute effects code
generation see Java mapping of elements with a default value on page 120.

default

Specifies a fixed value for the element.fixed

Example 48 on page 116 shows a simple element definition.

Example 48. Simple XML Schema Element Definition

<element name="joeFred" type="xsd:string" />

An element can also define its own type using an in-line type definition. In-line
types are specified using either a complexType element or a simpleType

element. Once you specify if the type of data is complex or simple, you can
define any type of data needed using the tools available for each type of data.

Example 49 on page 116 shows an element definition with an in-line type
definition.

Example 49. XML Schema Element Definition with an In-Line Type

<element name="skate">
<complexType>
<sequence>
<element name="numWheels" type="xsd:int" />
<element name="brand" type="xsd:string" />

</sequence>

116

Using XML Elements

</complexType>
</element>

Java mapping of elements with a
named type By default, globally defined elements are mapped to JAXBElement<T> objects

where the template class is determined by the value of the element element's

type attribute. For primitive types, the template class is derived using the

wrapper class mapping described in Wrapper classes on page 123. For complex
types, the Java class generated to support the complex type is used as the
template class.

To support the mapping and relieve the developer of needing to worry about
an element's QName, an object factory method is generated for each globally
defined element as shown in Example 50 on page 117.

Example 50. Object Factory Method for a Globally Scoped Element

public class ObjectFactory {

private final static QName _name_QNAME = new QName("targetNamespace", "localName");

...

@XmlElementDecl(namespace = "targetNamespace", name = "localName")
public JAXBElement<type> createname(type value);

}

For example the element defined in Example 48 on page 116 would result in
the object factory method shown in Example 51 on page 117.

Example 51. Object Factory for a Simple Element

public class ObjectFactory {

private final static QName _JoeFred_QNAME = new QName("...", "joeFred");

...

@XmlElementDecl(namespace = "...", name = "joeFred")
public JAXBElement<String> createJoeFred(String value);

}

Example 52 on page 118 shows an example of using a globally scoped element
in Java.

117

Example 52. Using a Globally Scoped Element

JAXBElement<String> element = createJoeFred("Green");
String color = element.getValue();

Using elements with named types
in WSDL If a globally scoped element is used to define a message part, the generated

Java parameter is not an instance of JAXBElement<T>. Instead it is mapped

to a regular Java type or class.

Given the WSDL fragment shown in Example 53 on page 118, the resulting
method would have a parameter of type String.

Example 53. WSDL Using an Element as a Message Part

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"><element name="sayHi">

<element name="sayHi" type="string"/>
<element name="sayHiResponse" type="string"/>

</schema>
</wsdl:types>

<wsdl:message name="sayHiRequest">
<wsdl:part element="x1:sayHi" name="in"/>

</wsdl:message>
<wsdl:message name="sayHiResponse">
<wsdl:part element="x1:sayHiResponse" name="out"/>

</wsdl:message>

<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>
</wsdl:portType>
...

</wsdl:definitions>

118

Using XML Elements

Example 54 on page 119 shows the generated method signature for the sayHi

operation.

Example 54. Java Method Using a Global Element as a Part

String sayHi(String in);

Java mapping of elements with
an in-line type When an element is defined using an in-line type, it is mapped to Java

following the same rules used for mapping other types to Java. The rules for
simple types are described in Using Simple Types on page 121. The rules for
complex types are described in Using Complex Types on page 139.

When a Java class is generated for an element with an in-line type definition,
the generated class is decorated with the @XmlRootElement annotation. The

@XmlRootElement annotation has two useful properties: name and

namespace. These attributes are described in Table 11 on page 119.

Table 11. Properties for the @XmlRootElement Annotation

DescriptionProperty

Specifies the value of the XML Schema element element's name attribute.name

Specifies the namespace in which the element is defined. If this element is defined in the target
namespace, the property is not specified.

namespace

The @XmlRootElement annotation is not used if the element meets one or

more of the following conditions:

• the element's nillable attribute is set to true.

• the element is the head element of a substitution group.

For more information on substitution groups see Using Type
Substitution on page 185.

Java mapping of abstract
elements When the element's abstract attribute is set to true the object factory

method for instantiating instances of the type is not generated. If the element

119

is defined using an in-line type, the Java class supporting the in-line type will
be generated.

Java mapping of elements with a
default value When the element's default attribute is used the defaultValue property is

added to the generated @XmlElementDecl annotation. For example, the

element defined in Example 55 on page 120 would result in the object factory
method shown in Example 56 on page 120.

Example 55. XML Schema Element with a Default Value

<element name="size" type="xsd:int" default="7"/>

Example 56. Object Factory Method for an Element with a Default Value

@XmlElementDecl(namespace = "...", name = "size", defaultValue = "7")
public JAXBElement<Integer> createUnionJoe(Integer value) {

return new JAXBElement<Integer>(_Size_QNAME, Integer.class, null, value);
}

120

Using XML Elements

Using Simple Types
XML Schema simple types are either XML Schema primitive types like xsd:int or are defined using the simpleType

element. They are used to specify elements that do not contain any children or attributes. They are generally
mapped to native Java constructs and do not require the generation of special classes to implement them.
Enumerated simple types do result in generated code because they are mapped to Java enum types.

Primitive Types .. 122
Simple Types Defined by Restriction ... 125
Enumerations .. 128
Lists ... 131
Unions .. 135
Simple Type Substitution ... 137

121

Primitive Types
Overview

When a message part is defined using one of the XML Schema primitive types,
the generated parameter's type is mapped to a corresponding Java native
type. The same pattern is used when mapping elements that are defined
within the scope of a complex type. The resulting field will be of the
corresponding Java native type.

Mappings
Table 12 on page 122 lists the mapping between XML Schema primitive types
and Java native types.

Table 12. XML Schema Primitive Type to Java Native Type Mapping

Java TypeXML Schema Type

Stringxsd:string

BigIntegerxsd:integer

intxsd:int

longxsd:long

shortxsd:short

BigDecimalxsd:decimal

floatxsd:float

doublexsd:double

booleanxsd:boolean

bytexsd:byte

QNamexsd:QName

XMLGregorianCalendarxsd:dateTime

byte[]xsd:base64Binary

byte[]xsd:hexBinary

longxsd:unsignedInt

intxsd:unsignedShort

shortxsd:unsignedByte

XMLGregorianCalendarxsd:time

122

Using Simple Types

Java TypeXML Schema Type

XMLGregorianCalendarxsd:date

XMLGregorianCalendarxsd:g

Objectxsd:anySimpleType a

Stringxsd:anySimpleType b

Durationxsd:duration

QNamexsd:NOTATION
aFor elements of this type.
bFor attributes of this type.

Wrapper classes
Mapping XML Schema primitive types to Java primitives does not work for
all possible XML Schema constructs. Several cases require that an XML
Schema primitive type is mapped to the Java primitive’s corresponding wrapper
type. These cases include:

• an element element with its nillable attribute set to true as shown in

bellow:

<element name="finned" type="xsd:boolean"
nillable="true" />

• an element element with its minOccurs attribute set to 0 and its

maxOccurs attribute set to 1 or its maxOccurs attribute not specified as

shown below:

<element name="plane" type="xsd:string" minOccurs="0" />

• an attribute element with its use attribute set to optional, or not

specified, and having neither its default attribute nor its fixed attribute

specified as shown in bellow:

<element name="date">
<complexType>
<sequence/>
<attribute name="calType" type="xsd:string"

use="optional" />

123

Primitive Types

</complexType>
</element>

Table 13 on page 124 shows how XML Schema primitive types are mapped
into Java wrapper classes in these cases.

Table 13. Primitive Schema Type to Java Wrapper Class Mapping

Java TypeSchema Type

java.lang.Integerxsd:int

java.lang.Longxsd:long

java.lang.Shortxsd:short

java.lang.Floatxsd:float

java.lang.Doublexsd:double

java.lang.Booleanxsd:boolean

java.lang.Bytexsd:byte

java.lang.Shortxsd:unsignedByte

java.lang.Integerxsd:unsignedShort

java.lang.Longxsd:unsignedInt

java.math.BigIntegerxsd:unsignedLong

java.lang.Stringxsd:duration

124

Using Simple Types

Simple Types Defined by Restriction
Overview

XML Schema allows you to create simple types by deriving a new type from
another primitive type or simple type. Simple types are described using a
simpleType element.

The new types are described by restricting the base type with one or more of
a number of facets. These facets limit the possible valid values that can be
stored in the new type. For example, you could define a simple type, SSN,
which is a string of exactly 9 characters.

Each of the primitive XML Schema types has their own set of optional facets.

Procedure
To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Based on the available facets for the chosen base type, determine what
restrictions define the new type.

3. Using the syntax shown in this section, enter the appropriate simpleType
element into the types section of your contract.

Defining a simple type in XML
Schema Example 57 on page 125 shows the syntax for describing a simple type.

Example 57. Simple Type Syntax

<simpleType name="typeName">
<restriction base="baseType">
<facet value="value" />
<facet value="value" />
...

</restriction>
</simpleType>

The type description is enclosed in a simpleType element and identified by

the value of the name attribute. The base type from which the new simple

type is being defined is specified by the base attribute of the

xsd:restriction element. Each facet element is specified within the

restriction element. The available facets and their valid setting depends

on the base type. For example, xsd:string has six facets including:

125

Simple Types Defined by Restriction

• length

• minLength

• maxLength

• pattern

• whitespace

Example 58 on page 126 shows the definition for a simple type that represents
the two-letter postal code used for US states. It can only contain two,
uppercase letters. TX would be a valid value, but tx or tX would not be valid

values.

Example 58. Postal Code Simple Type

<xsd:simpleType name="postalCode">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}" />

</xsd:restriction>
</xsd:simpleType>

Mapping to Java
Artix ESB maps user-defined simple types to the Java type of the simple type’s
base type. So, any message using the simple type postalCode, shown in
Example 58 on page 126, would be mapped to a String because the base

type of postalCode is s. For example, the WSDL fragment shown in
Example 59 on page 126 would result in a Java method, state(), which

took a parameter, postalCode, of String.

Example 59. Credit Request with Simple Types

<message name="stateRequest">
<part name="postalCode" type="postalCode" />

</message>
...
<portType name="postalSupport">
<operation name="state">
<input message="tns:stateRequest" name="stateRec" />
<output message="tns:stateResponse" name="credResp" />

126

Using Simple Types

</operation>
</portType>

Enforcing facets
By default, Artix ESB does not enforce any of the facets than can be used to
restrict a simple type. However, you can configure Artix ESB endpoints to
enforce the facets by enabling schema validation.

You configure Artix ESB endpoints to use schema validation by setting their
schema-validation-enabled property to true. Example 60 on page 127 shows
the configuration for a provider that uses schema validation

Example 60. Provider Configured to Use Schema Validation

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
wsdlLocation="wsdl/hello_world.wsdl"
createdFromAPI="true">

<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />

</jaxws:properties>
</jaxws:endpoint>

For more information on configuring Artix ESB see ????.

127

Simple Types Defined by Restriction

Enumerations
Overview

In XML Schema enumerated types are simple types that are defined using
the xsd:enumeration facet. Unlike atomic simple types, they are mapped

into Java enums.

Defining an enumerated type in
XML Schema Enumerations are a simple type using the xsd:enumeration facet. Each

xsd:enumeration facet defines one possible value for the enumerated type.

Example 61 on page 128 shows the definition for an enumerated type. It has
the possible values: big, large, mungo, and gargantuan.

Example 61. XML Schema Defined Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>
<enumeration value="gargantuan"/>

</restriction>

Mapping to Java
XML Schema enumerations whose base type is xsd:string are automatically
mapped into Java enum type. You can instruct the code generator to map
enumerations with other base types to Java enum types by using the
customizations described in Customizing Enumeration Mapping on page 221.

The enum type is created as follows:

1. The name of the type is taken from the name attribute of the simple type

definition and converted to a Java identifier.

In general this means converting the first character of the XML Schema's
name to an uppercase letter. If the first character of the XML Schema's
name is an invalid character, an underscrore (_) is prepended to the

name.

2. For each enumeration facet, an enum constant is generated based on

the value of the value attribute.

128

Using Simple Types

The constant's name is derived by converting all of the lowercase letters
in the value to their uppercase equivalent.

3. A constructor is generated that takes the Java type mapped from the
enumeration's base type.

4. A public method called value() is generated to access the facet value

that is represented by an instance of the type.

The return type of the value() method is the base type of the XML

Schema type.

5. A public method called fromValue() is generated to create an instance

of the enum type based on a facet value.

The parameter type of the value() method is the base type of the XML

Schema type.

6. The class is decorated with the @XmlEnum annotation.

The enumerated type defined in Example 61 on page 128 would be mapped
to the enum type shown in Example 62 on page 129.

Example 62. Generated Enumerated Type for a String Bases XML Schema
Enumeration

@XmlType(name = "widgetSize")
@XmlEnum
public enum WidgetSize {

@XmlEnumValue("big")
BIG("big"),
@XmlEnumValue("large")
LARGE("large"),
@XmlEnumValue("mungo")
MUNGO("mungo"),
@XmlEnumValue("gargantuan")
GARGANTUAN("gargantuan");
private final String value;

WidgetSize(String v) {
value = v;

}

public String value() {
return value;

129

Enumerations

}

public static WidgetSize fromValue(String v) {
for (WidgetSize c: WidgetSize.values()) {

if (c.value.equals(v)) {
return c;

}
}
throw new IllegalArgumentException(v);

}

}

130

Using Simple Types

Lists
Overview

XML Schema supports a mechanism for defining data types that are a list of
space separated simple types. An example of an element, primeList, using

a list type is shown in Example 63 on page 131.

Example 63. List Type Example

<primeList>1 3 5 7 9 11 13<\primeList>

XML Schema list types are generally mapped to Java List<T> objects. The

only variation to this pattern is when a message part is mapped directly to
an instance of an XML Schema list type.

Defining list types in XML Schema
XML Schema list types are simple types and as such are defined using a
simpleType element. The most common syntax used to define a list type is

shown in Example 64 on page 131.

Example 64. Syntax for XML Schema List Types

<simpleType name="listType">
<list itemType="atomicType">
<facet value="value" />
<facet value="value" />
...

</list>
</simpleType>

The value given for atomicType defines the type of the elements in the list.

It can only be one of the built in XML Schema atomic types, like xsd:int or
xsd:string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can
also use facets to further constrain the properties of the list type.
Table 14 on page 131 shows the facets used by list types.

Table 14. List Type Facets

EffectFacet

Defines the number of elements in an instance of the list
type.

length

131

Lists

EffectFacet

Defines the minimum number of elements allowed in an
instance of the list type.

minLength

Defines the maximum number of elements allowed in an
instance of the list type.

maxLength

Defines the allowable values for elements in an instance of
the list type.

enumeration

Defines the lexical form of the elements in an instance of the
list type. Patterns are defined using regular expressions.

pattern

For example, the definition for the simpleList element shown in

Example 63 on page 131, is shown in Example 65 on page 132.

Example 65. Definition of a List Type

<simpleType name="primeListType">
<list itemType="int"/>

</simpleType>
<element name="primeList" type="primeListType"/>

In addition to the syntax shown in Example 64 on page 131 you can also
define a list type using the less common syntax shown in
Example 66 on page 132.

Example 66. Alternate Syntax for List Types

<simpleType name="listType">
<list>
<simpleType>
<restriction base="atomicType">
<facet value="value"/>
<facet value="value"/>
...

</restriction>
</simpleType>

</list>
</simpleType>

Mapping list type elements to
Java When an element is defined as being of a list type, the list type is mapped

to a collection property. A collection property is a Java List<T> object. The

template class used by the List<T> is the wrapper class mapped from the

132

Using Simple Types

list's base type. For example, the list type defined in Example 65 on page 132
would be mapped to a List<Integer>.

For more information on wrapper type mapping see Wrapper
classes on page 123.

Mapping list type parameters to
Java When a message part is defined as being of a list type or is mapped to an

element of a list type, the resulting method parameter is mapped to an array
instead of a List<T> object. The base type of the array is the wrapper class

of the list type's base class.

For example, the WSDL fragment in Example 67 on page 133 would result
in the method signature in Example 68 on page 133.

Example 67. WSDL with a List Type Message Part

<definitions ...>
...
<types ...>
<schema ... >
<simpleType name="primeListType">
<list itemType="int"/>

</simpleType>
<element name="primeList" type="primeListType"/>

</schemas>
</types>
<message name="numRequest">
<part name="inputData" element="xsd1:primeList" />

</message>
<message name="numResponse">;
<part name="outputData" type="xsd:int">

...
<portType name="numberService">
<operation name="primeProcessor">
<input name="numRequest" message="tns:numRequest" />
<output name="numResponse" message="tns:numResponse" />

</operation>
...

</portType>
...

</definitions>

Example 68. Java Method with a List Type Parameter

public interface NumberService {

@XmlList

133

Lists

@WebResult(name = "outputData", targetNamespace = "", partName = "outputData")
@WebMethod
public int primeProcessor(

@WebParam(partName = "inputData", name = "primeList", targetNamespace = "...")
java.lang.Integer[] inputData

);
}

134

Using Simple Types

Unions
Overview

In XML Schema, a union is a construct that allows you to describe a type
whose data can be one of any number of simple types. For example, you
could define a type whose value could be either the integer 1 or the string

first. Unions are mapped to Java Strings.

Defining union types in XML
Schema XML Schema unions are defined using a simpleType element. They contain

at least one union element that define the member types of the union. The

member types of the union are the valid types of data that can be stored in
an instance of the union. You define them using the union element's

memberTypes attribute. The value of the memberTypes attribute contains a

list of one or more defined simple type names. Example 69 on page 135
shows the definition of a union that can store either an integer or a string.

Example 69. Simple Union Type

<simpleType name="orderNumUnion">
<union memberTypes="xsd:string xsd:int" />

</simpleType>

In addition to specifying named types to be a member type of a union, you
can also define anonymous simple types to be a member type of a union.
This is done by adding the anonymous type definition inside of the union

element. Example 70 on page 135 shows an example of a union containing
an anonymous member type restricting the possible values of a valid integer
to 1 through 10.

Example 70. Union with an Anonymous Member Type

<simpleType name="restrictedOrderNumUnion">
<union memberTypes="xsd:string">
<simpleType>
<restriction base="xsd:int">
<minInclusive value="1" />
<maxInclusive value="10" />

</restriction>
</simpleType>

135

Unions

</union>
</simpleType>

Mapping to Java
XML Schema union types are mapped to Java String objects. By default,

Artix ESB will not validate the contents of the generated object. To have Artix
ESB validate the contents you will need to configure the runtime to use schema
validation as described in Enforcing facets on page 127.

136

Using Simple Types

Simple Type Substitution
Overview

XML allows for simple type substitution between compatible types using the
xsi:type attribute. The default mapping of simple types to Java primitive

types, however, does not fully support simple type substitution. The runtime
can handle basic simple type substitution, but information is lost. The code
generators can be customized to generate Java classes that will facilitate
lossless simple type substitution.

Default mapping and marshaling
The default mapping of simple types to Java primitive types presents problems
for supporting simple type substitution. Java primitive types do not support
any type of type substitution. The Java virtual machine will balk if an attempt
is made to pass a short into a variable that expects an int.

To get around the limitations imposed by the Java type system, Artix ESB
will allow for simple type substitution when the value of the element's
xsi:type attribute meets one of the following conditions:

• It specifies a primitive type that is compatible with the element's schema
type.

• It specifies a type that derives by restriction from the element’s schema
type.

• It specifies a complex type that derives by extension from element’s schema
type.

When the runtime does the type substitution it does not retain any knowledge
of the type specified in the element's xsi:type attribute. If the type

substitution was from a complex type to a simple type, only the value directly
related to the simple type is preserved. Any other elements and attributes
added by extension are lost.

Supporting lossless type
substitution You can customize the generation of simple types to facilitate lossless support

of simple type substitution in two ways:

• Set the globalBindings customization element's mapSimpleTypeDef to

true.

This instructs the code generator to create Java value classes for all named
simple types defined in the global scope.

137

Simple Type Substitution

For more information see Generating Java Classes for Simple
Types on page 219.

• Add a javaType element to the globalBindings customization element

This instructs the code generators to map all instances of an XML Schema
primitive type to s specific class of object.

For more information see Specifying the Java Class of an XML Schema
Primitive on page 211.

• Add a baseType customization element to the specific element's you want

to customize.

The baseType customization element allows you to tell the code generator

what type to map a property. To ensure the best compatibility for simple
type substitution, you should use java.lang.Object as the base type.

For more information see Specifying the Base Type of an Element or an
Attribute on page 229.

138

Using Simple Types

Using Complex Types
Complex types can contain multiple elements and have attributes. They are mapped into Java classes that can
hold the data represented by the type definition. Typically, the mapping is into a bean with a set of properties
representing the elements and attributes of the content model..

Basic Complex Type Mapping .. 140
Attributes ... 146
Deriving Complex Types from Simple Types .. 152
Deriving Complex Types from Complex Types .. 155
Occurrence Constraints .. 159

Occurrence Constraints on the All Element ... 160
Occurrence Constraints on the Choice Element .. 161
Occurrence Constraints on Elements ... 164
Occurrence Constraints on Sequences ... 165

Using Model Groups ... 168

139

Basic Complex Type Mapping
Overview

XML Schema complex types define constructs containing richer information
than a simple type. The most simple complex types define an empty element
with an attribute. More intricate complex types are made up of a collection
of elements.

By default, an XML Schema complex type is mapped to a Java class with a
member variable to represent each element and attribute listed in the XML
Schema definition. The class will have setters and getters for each member
variable.

Defining in XML Schema
XML Schema complex types are defined using the complexType element.

The complexType element wraps the rest of elements used to define the

structure of the data. It can appear either as the parent element of a named
type definition or as the child of an element element anonymously defining

the structure of the information stored in the element. When the complexType

element is used to define a named type, it requires the use of the name

attribute. The name attribute specifies a unique identifier for referencing the

type.

Complex type definitions that contain one or more elements will have one of
the child elements described in Table 15 on page 140. These elements
determine how the specified elements will appear in an instance of the type.

Table 15. Elements for Defining How Elements Appear in a Complex Type

DescriptionElement

All of the elements defined as part of the complex type must
appear in an instance of the type. However, they can appear in
any order.

all

Only one of the elements defined as part of the complex type can
appear in an instance of the type.

choice

All of the elements defined as part of the complex type must
appear in an instance of the type. They must also appear in the
order specified in the type definition.

sequence

140

Using Complex Types

Note
If a complex type definition only uses attributes, you do not need
one of the elements described in Table 15 on page 140.

Once you have chosen how the elements will appear, you define the elements
by adding one or more element element children to the definition.

Example 71 on page 141 shows a complex type definition in XML Schema.

Example 71. XML Schema Complex Type

<complexType name="sequence">
<sequence>
<element name="name" type="xsd:string" />
<element name="street" type="xsd:short" />
<element name="city" type="xsd:string" />
<element name="state" type="xsd:string" />
<element name="zipCode" type="xsd:string" />

</sequence>
</complexType>

Mapping to Java
XML Schema complex types are mapped to Java classes. Each element in
the complex type definition is mapped to a member variable in the Java class.
Getter and setter methods are also generated for each element in the complex
type.

All generated Java classes are decorated with the @XmlType annotation. If

the mapping is for a named complex type, the annotations name is set to the
value of the complexType element's name attribute. If the complex type is

defined as part of an element definition, the value of the @XmlType

annotation's name property is the value of the element element's name

attribute.

Note
As described in Java mapping of elements with an in-line
type on page 119, the generated class will be decorated with the
@XmlRootElement annotation if it is generated for a complex type

defined as part of an element definition.

141

Basic Complex Type Mapping

To provide the runtime with guidelines about how the elements of the XML
Schema complex type should be handled, the code generators alter the
annotations used to decorate the class and its member variables.

all complex type
All complex types are defined using the all element. They are annotated

as follows:

• The @XmlType annotation's propOrder property is empty.

• Each element is decorated with the @XmlElement annotation.

• The @XmlElement annotation's required property is set to true.

Example 72 on page 142 shows the mapping for an all complex type
with two elements.

Example 72. Mapping of an All Complex Type

@XmlType(name = "all", propOrder = {

})
public class All {

@XmlElement(required = true)
protected BigDecimal amount;
@XmlElement(required = true)
protected String type;

public BigDecimal getAmount() {
return amount;

}

public void setAmount(BigDecimal value) {
this.amount = value;

}

public String getType() {
return type;

}

public void setType(String value) {
this.type = value;

}
}

142

Using Complex Types

choice complex type
Choice complex types are defined using the choice element. They are

annotated as follows:

• The @XmlType annotation's propOrder property lists the names of the

elements in the order they appear in the XML Schema definition.

• None of the member variables are annotated.

Example 73 on page 143 shows the mapping for a choice complex type
with two elements.

Example 73. Mapping of a Choice Complex Type

@XmlType(name = "choice", propOrder = {
"address",
"floater"

})
public class Choice {

protected Sequence address;
protected Float floater;

public Sequence getAddress() {
return address;

}

public void setAddress(Sequence value) {
this.address = value;

}

public Float getFloater() {
return floater;

}

public void setFloater(Float value) {
this.floater = value;

}

}

sequence complex type
A sequence complex type is defined using the sequence element. It is

annotated as follows:

143

Basic Complex Type Mapping

• The @XmlType annotation's propOrder property lists the names of the

elements in the order they appear in the XML Schema definition.

• Each element is decorated with the @XmlElement annotation.

• The @XmlElement annotation's required property is set to true.

Example 74 on page 144 shows the mapping for the complex type defined
in Example 71 on page 141.

Example 74. Mapping of a Sequence Complex Type

@XmlType(name = "sequence", propOrder = {
"name",
"street",
"city",
"state",
"zipCode"

})
public class Sequence {

@XmlElement(required = true)
protected String name;
protected short street;
@XmlElement(required = true)
protected String city;
@XmlElement(required = true)
protected String state;
@XmlElement(required = true)
protected String zipCode;

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public short getStreet() {
return street;

}

public void setStreet(short value) {
this.street = value;

}

public String getCity() {

144

Using Complex Types

return city;
}

public void setCity(String value) {
this.city = value;

}

public String getState() {
return state;

}

public void setState(String value) {
this.state = value;

}

public String getZipCode() {
return zipCode;

}

public void setZipCode(String value) {
this.zipCode = value;

}
}

145

Basic Complex Type Mapping

Attributes
Overview

Artix ESB supports the use of attribute elements and attributeGroup

elements within the scope of a complexType element. When defining

structures for an XML document attribute declarations provide a means of
adding information to be specified within the tag, not the value that the tag
contains. For example, when describing the XML element <value
currency="euro">410<\value> in XML Schema currency would be described
using an attribute element as shown in Example 75 on page 147.

The attributeGroup element allows you to define a group of reusable

attributes that can be referenced by all complex types defined by the schema.
For example, if you are defining a series of elements that all use the attributes
category and pubDate, you could define an attribute group with these

attributes and reference them in all the elements that use them. This is shown
in Example 77 on page 148.

When describing data types for use in developing application logic, attributes
whose use attribute is set to either optional or required are treated as

elements of a structure. For each attribute declaration contained within a
complex type description, an element is generated in the class for the attribute
along with the appropriate getter and setter methods.

Defining an attribute in XML
Schema An XML Schema attribute element has one required attribute, name, that

is used to identify the attribute. It also has four optional attributes that are
described in Table 16 on page 146.

Table 16. Attributes Used to Define Attributes in XML Schema

DescriptionAttribute

Specifies if the attribute is required. Valid values are required,

optional, or prohibited. optional is the default value.

use

Specifies the type of value the attribute can take. If it is not used
the schema type of the attribute must be defined in-line.

type

Specifies a default value to use for the attribute. It is only used
when the attribute element's use attribute is set to optional.

default

146

Using Complex Types

DescriptionAttribute

Specifies a fixed value to use for the attribute. It is only used when
the attribute element's use attribute is set to optional.

fixed

Example 75 on page 147 shows an attribute element defining an attribute,
currency, whose value is a string.

Example 75. XML Schema Defining and Attribute

<element name="value">
<complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:integer">
<xsd:attribute name="currency" type="xsd:string"

use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

If the type attribute is omitted from the attribute element, the format of

the data must be described in-line. Example 76 on page 147 shows an
attribute element for an attribute, category, that can take the values

autobiography, non-fiction, or fiction.

Example 76. Attribute with an In-Line Data Description

<attribute name="category" use="required">
<simpleType>
<restriction base="xsd:string">
<enumeration value="autobiography"/>
<enumeration value="non-fiction"/>
<enumeration value="fiction"/>

</restriction>
</simpleType>

</attribute>

Using an attribute group in XML
Schema Using an attribute group in a complex type definition is a two step process:

1. Define the attribute group.

An attribute group is defined using an attributeGroup element with

a number of attribute child elements. The attributeGroup requires

147

Attributes

a name attribute that defines the string used to refer to the attribute

group. The attribute elements define the members of the attribute

group and are specified as shown in Defining an attribute in XML
Schema on page 146. Example 77 on page 148 shows the description of
the attribute group catalogIndecies. The attribute group has two

members: category is optional. pubDate is required.

Example 77. Attribute Group Definition

<attributeGroup name="catalogIndices">
<attribute name="category" type="catagoryType" />
<attribute name="pubDate" type="dateTime"

use="required" />
</attributeGroup>

2. Use the attribute group in the definition of a complex type.

You use attribute groups in complex type definitions by using the
attributeGroup element with the ref attribute. The value of the ref

attribute is the name given the attribute group that you want to use as
part of the type definition. For example if you wanted to use the attribute
group catalogIndecies in the complex type dvdType, you would use

<attributeGroup ref="catalogIndecies" /> as shown in
Example 78 on page 148.

Example 78. Complex Type with an Attribute Group

<complexType name="dvdType">
<sequence>
<element name="title" type="xsd:string" />
<element name="director" type="xsd:string" />
<element name="numCopies" type="xsd:int" />

</sequence>
<attributeGroup ref="catalogIndices" />

</complexType>

Mapping attributes to Java
Attributes are mapped to Java similarly to member elements. Required
attributes and optional attributes are mapped to member variables in the
generated Java class. The member variables are decorated with the
@XmlAttribute annotation. If the attribute is required, the @XmlAttribute

annotation's required property will be set to true.

148

Using Complex Types

The complex type defined in Example 79 on page 149 will be mapped to the
Java class shown in Example 80 on page 149.

Example 79. techDoc Description

<complexType name="techDoc">
<all>
<element name="product" type="xsd:string" />
<element name="version" type="xsd:short" />

</all>
<attribute name="usefullness" type="xsd:float"

use="optional" default="0.01" />
</complexType>

Example 80. techDoc Java Class

@XmlType(name = "techDoc", propOrder = {

})
public class TechDoc {

@XmlElement(required = true)
protected String product;
protected short version;
@XmlAttribute
protected Float usefullness;

public String getProduct() {
return product;

}

public void setProduct(String value) {
this.product = value;

}

public short getVersion() {
return version;

}

public void setVersion(short value) {
this.version = value;

}

public float getUsefullness() {
if (usefullness == null) {

return 0.01F;
} else {

return usefullness;
}

149

Attributes

}

public void setUsefullness(Float value) {
this.usefullness = value;

}
}

As shown in Example 80 on page 149, the default attribute and the fixed

attribute instruct the code generators to add code to the getter method
generated for the attribute. This additional code ensures that the specified
value is returned if no value is set.

Important
The fixed attribute is treated the same as the default attribute.

If you want the fixed attribute to be treated as a Java constant you

can use the customization described in Customizing Fixed Value
Attribute Mapping on page 226.

Mapping attribute Groups to Java
Attribute groups are mapped into Java as if the members of the group were
explicitly used in the type definition. If your attribute group has three members,
and it is used in a complex type, the generated class for that type will include
a member variable, along with the getter and setter methods, for each member
of the attribute group. For example, the complex type defined in
Example 78 on page 148, Artix ESB would generate a class that contained
the member variables category and pubDate to support the members of

the attribute group used in the definition as shown in Example 81 on page 150.

Example 81. dvdType Java Class

@XmlType(name = "dvdType", propOrder = {
"title",
"director",
"numCopies"

})
public class DvdType {

@XmlElement(required = true)
protected String title;
@XmlElement(required = true)
protected String director;
protected int numCopies;
@XmlAttribute
protected CatagoryType category;

150

Using Complex Types

@XmlAttribute(required = true)
@XmlSchemaType(name = "dateTime")
protected XMLGregorianCalendar pubDate;

public String getTitle() {
return title;

}

public void setTitle(String value) {
this.title = value;

}

public String getDirector() {
return director;

}

public void setDirector(String value) {
this.director = value;

}

public int getNumCopies() {
return numCopies;

}

public void setNumCopies(int value) {
this.numCopies = value;

}

public CatagoryType getCatagory() {
return catagory;

}

public void setCatagory(CatagoryType value) {
this.catagory = value;

}

public XMLGregorianCalendar getPubDate() {
return pubDate;

}

public void setPubDate(XMLGregorianCalendar value) {
this.pubDate = value;

}

}

151

Attributes

Deriving Complex Types from Simple Types
Overview

Artix ESB supports derivation of a complex type from a simple type. A simple
type has, by definition, neither sub-elements nor attributes. Hence, one of
the main reasons for deriving a complex type from a simple type is to add
attributes to the simple type.

There are two ways of deriving a complex type from a simple type:

• by extension

• by restriction

Derivation by extension
Example 82 on page 152 shows an example of a complex type,
internationalPrice, derived by extension from the xsd:decimal primitive type
to include a currency attribute.

Example 82. Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">
<simpleContent>

<extension base="xsd:decimal">
<attribute name="currency" type="xsd:string"/>

</extension>
</simpleContent>
</complexType>

The simpleContent element indicates that the new type does not contain

any sub-elements. The extension element specifies that the new type extends

xsd:decimal.

Derivation by restriction
Example 83 on page 152 shows an example of a complex type, idType, that
is derived by restriction from xsd:string. The defined type restricts the possible
values of xsd:stringto values that are ten characters in length. It also adds an
attribute to the type.

Example 83. Deriving a Complex Type from a Simple Type by Restriction

<complexType name="idType">
<simpleContent>
<restriction base="xsd:string">
<length value="10" />
<attribute name="expires" type="xsd:dateTime" />

152

Using Complex Types

</restriction>
</simpleContent>

</complexType>

As is Example 82 on page 152 the simpleContent element signals that the

new type does not contain any children. This example uses a restriction

element to constrain the possible values used in the new type. The attribute

element adds the element to the new type.

Mapping to Java
A complex type derived from a simple type is mapped to a Java class that is
decorated with the @XmlType annotation. The generated class will contain a

member variable, value, of the simple type from which the complex type is

derived. The member variable will be decorated with the @XmlValue

annotation. The class will also have a getValue() method and a setValue()

method. In addition, the generated class will have a member variable, and
the associated getter and setter methods, for each attribute that extends the
simple type.

Example 84 on page 153 shows the Java class generated for the idType type
defined in Example 83 on page 152.

Example 84. idType Java Class

@XmlType(name = "idType", propOrder = {
"value"

})
public class IdType {

@XmlValue
protected String value;
@XmlAttribute
@XmlSchemaType(name = "dateTime")
protected XMLGregorianCalendar expires;

/**
* Gets the value of the value property.
*
* @return
* possible object is
* {@link String }
*
*/
public String getValue() {

return value;

153

Deriving Complex Types from Simple Types

}

/**
* Sets the value of the value property.
*
* @param value
* allowed object is
* {@link String }
*
*/
public void setValue(String value) {

this.value = value;
}

/**
* Gets the value of the expires property.
*
* @return
* possible object is
* {@link XMLGregorianCalendar }
*
*/
public XMLGregorianCalendar getExpires() {

return expires;
}

/**
* Sets the value of the expires property.
*
* @param value
* allowed object is
* {@link XMLGregorianCalendar }
*
*/
public void setExpires(XMLGregorianCalendar value) {

this.expires = value;
}

}

154

Using Complex Types

Deriving Complex Types from Complex Types
Overview

Using XML Schema, you can derive new complex types by extending or
restricting other complex types using the complexContent element. When

generating the Java class to represent the derived complex type, Artix ESB
extends the base type’s class. In this way, the generated Java code preserves
the inheritance hierarchy intended in the XML Schema.

Schema syntax
You derive complex types from other complex types by using the
complexContent element and either the extension element or the

restriction element. The complexContent element specifies that the

included data description includes more than one field. The extension

element and the restriction element, which are children of the

complexContent element, specifies the base type being modified to create

the new type. The base type is specified by the base attribute.

Extending a complex type
You extend a complex type using the extension element to define the

additional elements and attributes that make up the new type. All elements
that are allowed in a complex type description are allowable as part of the
new type’s definition. For example, you could add an anonymous enumeration
to the new type, or you could use the choice element to specify that only

one of the new fields is to be valid at a time.

Example 85 on page 155 shows an XML Schema fragment that defines two
complex types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo
is derived by extending widgetOrderInfo to include two new elements:
orderNumber and amtDue.

Example 85. Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>
<element name="order_date" type="xsd:dateTime"/>
<element name="type" type="xsd1:widgetSize"/>
<element name="shippingAddress" type="xsd1:Address"/>

</sequence>
<attribute name="rush" type="xsd:boolean" use="optional" />

</complexType>
<complexType name="widgetOrderBillInfo">

155

Deriving Complex Types from Complex Types

<complexContent>
<extension base="xsd1:widgetOrderInfo">
<sequence>
<element name="amtDue" type="xsd:decimal"/>
<element name="orderNumber" type="xsd:string"/>

</sequence>
<attribute name="paid" type="xsd:boolean"

default="false" />
</extension>

</complexContent>
</complexType>

Restricting a complex type
You restrict a complex type using the restriction element to limit the

possible values of the base type's elements or attributes. When restricting a
complex type you must list all of the elements and attributes of the base type.
For each element you can add restrictive attributes to the definition. For
example, you could add a maxOccurs attribute to an element to limit the

number of times it can occur. You could also use the fixed attribute to force

one or more of the elements to have predetermined values.

Example 86 on page 156 shows an example of defining a complex type by
restricting another complex type. The restricted type, wallawallaAddress, can
only be used for addresses in Walla Walla, Washington because the values
for city, state, and zipCode have been fixed.

Example 86. Defining a Complex Type by Restriction

<complexType name="Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short" maxOccurs="3"/>
<element name="city" type="xsd:string"/>
<element name="state" type="xsd:string"/>
<element name="zipCode" type="xsd:string"/>

</sequence>
</complexType>
<complexType name="wallawallaAddress">
<complexContent>
<restriction base="xsd1:Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short"

maxOccurs="3"/>
<element name="city" type="xsd:string"

fixed="WallaWalla"/>

156

Using Complex Types

<element name="state" type="xsd:string"
fixed="WA" />

<element name="zipCode" type="xsd:string"
fixed="99362" />

</sequence>
</restriction>

</complexContent>
</complexType>

Mapping to Java
As it does with all complex types, Artix ESB generates a class to represent
complex types derived from another complex type. The Java class generated
for the derived complex type extends the Java class generated to support the
base complex type.

Important
To ensure that the runtime can find all of the classes needed to
handle the derived types you may need to configure the runtime to
load additional classes. This is described in Adding Classes to the
Runtime Marshaller on page 110.

When the new complex type is derived by extension, the generated class will
include member variables for all of the added elements and attributes. The
new member variables will be generated according to the same mappings as
all other elements.

When the new complex type is derived by restriction, the generated class will
have no new member variables. The generated class will simply be a shell
that does not provide any additional functionality. It is entirely up to you to
ensure that the restrictions defined in the XML Schema are enforced.

For example, the schema in Example 85 on page 155 would result in the
generation of two Java classes: WidgetOrderInfo and

WidgetBillOrderInfo. WidgetOrderBillInfo would extend

WidgetOrderInfo because widgetOrderBillInfo is derived by extension from

widgetOrderInfo. Example 87 on page 157 shows the generated class for
widgetOrderBillInfo.

Example 87. WidgetOrderBillInfo

@XmlType(name = "widgetOrderBillInfo", propOrder = {
"amtDue",
"orderNumber"

})

157

Deriving Complex Types from Complex Types

public class WidgetOrderBillInfo
extends WidgetOrderInfo

{
@XmlElement(required = true)
protected BigDecimal amtDue;
@XmlElement(required = true)
protected String orderNumber;
@XmlAttribute
protected Boolean paid;

public BigDecimal getAmtDue() {
return amtDue;

}

public void setAmtDue(BigDecimal value) {
this.amtDue = value;

}

public String getOrderNumber() {
return orderNumber;

}

public void setOrderNumber(String value) {
this.orderNumber = value;

}

public boolean isPaid() {
if (paid == null) {

return false;
} else {

return paid;
}

}

public void setPaid(Boolean value) {
this.paid = value;

}
}

158

Using Complex Types

Occurrence Constraints
Occurrence Constraints on the All Element ... 160
Occurrence Constraints on the Choice Element .. 161
Occurrence Constraints on Elements ... 164
Occurrence Constraints on Sequences ... 165

XML Schema allows you to specify the occurrence constraints on four of the
XML Schema elements that make up a complex type definition:

• all

• choice

• element

• sequence

159

Occurrence Constraints

Occurrence Constraints on the All Element
XML Schema

Complex types defined with the all element do not allow for multiple

occurrences of the structure defined by the all element. You can, however,

make the structure defined by the all element optional by setting its

minOccurs attribute to 0.

Mapping to Java
Setting the all element's minOccurs attribute to 0 has no effect on the

generated Java class.

160

Using Complex Types

Occurrence Constraints on the Choice Element
Overview

By default, the results of a choice element can only appear once in an

instance of a complex type. You can change the number of times the element
chosen to represent the structure defined by a choice element is allowed to

appear using its minOccurs attribute and its mxOccurs attribute. Using these

attributes you can specify that the choice type can occur zero to an unlimited
number of times in an instance of a complex type. The element chosen for
the choice type does not need to be the same for each occurrence of the type.

Using in XML Schema
The minOccurs attribute specifies the minimum number of times the choice

type must appear. Its value can be any positive integer. Setting the minOccurs

attribute to 0 specifies that the choice type does not need to appear inside

an instance of the complex type.

The maxOccurs attribute specifies the maximum number of times the choice

type can appear. Its value can be any non-zero, positive integer or unbounded.

Setting the maxOccurs attribute to unbounded specifies that the choice type

can appear an infinite number of times.

Example 88 on page 161 shows the definition of a choice type, ClubEvent,
with choice occurrence constraints. The choice type overall can be repeated
0 to unbounded times.

Example 88. Choice Occurrence Constraints

<complexType name="ClubEvent">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="MemberName" type="xsd:string"/>
<element name="GuestName" type="xsd:string"/>

</choice>
</complexType>

Mapping to Java
Unlike single instance choice structures, XML Schema choice structures that
can occur multiple times are mapped to a Java class with a single member
variable. This single member variable is a List<T> object that holds all of

the data for the multiple occurrences of the sequence. For example, if the
sequence defined in Example 88 on page 161 occurred two times the list
would have 2 items.

161

Occurrence Constraints on the Choice Element

The name of the Java class' member variable is derived by concatenating the
names of the member elements. The element names are separated by Or and

the first letter of the variable name is converted to lower case. For example,
the member variable generated from Example 88 on page 161 would be
named memberNameOrGuestName.

The type of object stored in the list depends on the relationship between the
types of the member elements.

• If the member elements are of the same type the generated list will contain
JAXBElement<T> objects. The base type of the JAXBElement<T> objects

is determined by the normal mapping of the member elements' type.

• If the member elements are of different types and their Java representations
implement a common interface, the list will contains objects of the common
interface.

• If the member elements are of different types and their Java representations
extend a common base class, the list will contains objects of the common
base class.

• If none of the other conditions are met, the list will contain Object objects.

The generated Java class will only have a getter method for the member
variable. The getter method returns a reference to the live list. Any
modifications made to the returned list will effect the actual object.

The Java class will be decorated with the @XmlType annotation. The

annotation's name property will be set to the value of the name attribute from

the parent element of the XML Schema definition. The annotation's propOrder
property will contain the single member variable representing the elements
in the sequence.

The member variable representing the elements in the choice structure are
decorated with the @XmlElements annotation. The @XmlElements annotation

contains a comma separated list of @XmlElement annotations. The list will

have one @XmlElement annotation for each member element defined in the

XML Schema definition of type. The @XmlElement annotations in the list will

have their name property set to the value of the XML Schema element

162

Using Complex Types

element's name attribute and their type property set to the Java class resulting

from the mapping of the XML Schema element element's type.

Example 89 on page 163 shows the Java mapping for the XML Schema choice
structure defined in Example 88 on page 161.

Example 89. Java Representation of Choice Structure with an Occurrence Constraint

@XmlType(name = "ClubEvent", propOrder = {
"memberNameOrGuestName"

})
public class ClubEvent {

@XmlElementRefs({
@XmlElementRef(name = "GuestName", type = JAXBElement.class),
@XmlElementRef(name = "MemberName", type = JAXBElement.class)

})
protected List<JAXBElement<String>> memberNameOrGuestName;

public List<JAXBElement<String>> getMemberNameOrGuestName() {
if (memberNameOrGuestName == null) {

memberNameOrGuestName = new ArrayList<JAXBElement<String>>();
}
return this.memberNameOrGuestName;

}

}

minOccurs set to 0
If only the minOccurs element is specified and its value is 0, the code

generators will generate the Java class as if the minOccurs attribute were

not set.

163

Occurrence Constraints on the Choice Element

Occurrence Constraints on Elements
Overview

You can specify how many times a specific element in a complex type appears
using the element element's minOccurs attribute and maxOccurs attribute.

The default value for both attributes is 1.

minOccurs set to 0
When you set one of the complex type's member element's minOccurs

attribute to 0, the @XmlElement annotation decorating the corresponding

Java member variable is changed. Instead of having its required property set
to true, the @XmlElement annotation's required property is set to false.

minOccurs set to a value greater
than 1 In XML Schema you can specify that an element must occur more than once

in an instance of the type by setting the element element's minOccurs

attribute to a value greater than one. However, the generated Java class will
not support the XML Schema constraint. Artix ESB generates the supporting
Java member variable as if the minOccurs attribute were not set.

Elements with maxOccurs set
When you want a member element to appear multiple times in an instance
of a complex type, you set the element's maxOccurs attribute to a value

greater than 1. You can set the maxOccurs attribute's value to unbounded

to specify that the member element can appear an unlimited number of times.

The code generators map a member element with the maxOccurs attribute

set to a value greater than 1 to Java member variable that is an List<T>

object. The base class of the list is determined by mapping the element's type
to Java. For XML Schema primitive types, the wrapper classes are used as
described in Wrapper classes on page 123. For example, if the member element
is of type xsd:int the generated member variable would be a List<Integer>

object.

164

Using Complex Types

Occurrence Constraints on Sequences
Overview

By default, the contents of a sequence element can only appear once in an

instance of a complex type. You can change the number of times the sequence
of elements defined by a sequence element is allowed to appear using its

minOccurs attribute and its maxOccurs attribute. Using these attributes you

can specify that the sequence type can occur zero to an unlimited number of
times in an instance of a complex type.

Using XML Schema
The minOccurs attribute specifies the minimum number of times the sequence

must occur in an instance of the defined complex type. Its value can be any
positive integer. Setting the minOccurs attribute to 0 specifies that the

sequence does not need to appear inside an instance of the complex type.

The maxOccurs attribute specifies the upper limit for how many times the

sequence can occur in an instance of the defined complex type. Its value can
be any non-zero, positive integer or unbounded. Setting the maxOccurs

attribute to unbounded specifies that the sequence can appear an infinite

number of times.

Example 90 on page 165 shows the definition of a sequence type, CultureInfo,
with sequence occurrence constraints. The sequence can be repeated 0 to 2
times.

Example 90. Sequence with Occurrence Constraints

<complexType name="CultureInfo">
<sequence minOccurs="0" maxOccurs="2">
<element name="Name" type="string"/>
<element name="Lcid" type="int"/>

</sequence>
</complexType>

Mapping to Java
Unlike single instance sequences, XML Schema sequences that can occur
multiple times are mapped to a Java class with a single member variable.
This single member variable is a List<T> object that holds all of the data

for the multiple occurrences of the sequence. For example, if the sequence
defined in Example 90 on page 165 occurred two times the list would have
4 items.

165

Occurrence Constraints on Sequences

The name of the Java class' member variable is derived by concatenating the
names of the member elements. The element names are separated by And

and the first letter of the variable name is converted to lower case. For
example, the member variable generated from Example 90 on page 165 would
be named nameAndLcid.

The type of object stored in the list depends on the relationship between the
types of the member elements.

• If the member elements are of the same type the generated list will contain
JAXBElement<T> objects. The base type of the JAXBElement<T> objects

is determined by the normal mapping of the member elements' type.

• If the member elements are of different types and their Java representations
implement a common interface, the list will contains objects of the common
interface.

• If the member elements are of different types and their Java representations
extend a common base class, the list will contains objects of the common
base class.

• If none of the other conditions are met, the list will contain Object objects.

The generated Java class will only have a getter method for the member
variable. The getter method returns a reference to the live list. Any
modifications made to the returned list will effect the actual object.

The Java class will be decorated with the @XmlType annotation. The

annotation's name property will be set to the value of the name attribute from

the parent element of the XML Schema definition. The annotation's propOrder
property will contain the single member variable representing the elements
in the sequence.

The member variable representing the elements in the sequence are decorated
with the @XmlElements annotation. The @XmlElements annotation contains

a comma separated list of @XmlElement annotations. The list will have one

@XmlElement annotation for each member element defined in the XML

Schema definition of type. The @XmlElement annotations in the list will have

their name property set to the value of the XML Schema element element's

166

Using Complex Types

name attribute and their type property set to the Java class resulting from the

mapping of the XML Schema element element's type.

Example 91 on page 167 shows the Java mapping for the XML Schema
sequence defined in Example 90 on page 165.

Example 91. Java Representation of Sequence with an Occurrence
Constraint

@XmlType(name = "CultureInfo", propOrder = {
"nameAndLcid"

})
public class CultureInfo {

@XmlElements({
@XmlElement(name = "Name", type = String.class),
@XmlElement(name = "Lcid", type = Integer.class)

})
protected List<Serializable> nameAndLcid;

public List<Serializable> getNameAndLcid() {
if (nameAndLcid == null) {

nameAndLcid = new ArrayList<Serializable>();
}
return this.nameAndLcid;

}

}

minOccurs set to 0
If only the minOccurs element is specified and its value is 0, the code

generators will generate the Java class as if the minOccurs attribute were

not set.

167

Occurrence Constraints on Sequences

Using Model Groups
Overview

XML Schema model groups are a convenient shortcut that enables you to
reference a group of elements from a user-defined complex type.For example,
you could define a group of elements that are common to several types in
your application and then reference the group repeatedly. Model groups are
defined using the group element and are similar to complex type definitions.

The mapping of model groups to Java is also similar to the mapping for
complex types.

Defining a model group in XML
Schema You define a model group in XML Schema using the group element with the

name attribute. The value of the name attribute is a string that is used to refer

to the group throughout the schema. The group element, like the

complexType element, can have either the sequence element, the all

element, or the choice element as its immediate child.

Inside the child element, you define the members of the group using element

elements. For each member of the group, you specify one element element.

Group members can use any of the standard attributes for the element

element including minOccurs and maxOccurs. So, if your group has three

elements and one of them can occur up to three times, you would define a
group with three element elements, one of which would use maxOccurs="3".

Example 92 on page 168 shows a model group with three elements.

Example 92. XML Schema Model Group

<group name="passenger">
<sequence>
<element name="name" type="xsd:string" />
<element name="clubNum" type="xsd:long" />
<element name="seatPref" type="xsd:string"

maxOccurs="3" />
</sequence>

</group>

Using a model group in a type
definition Once a model group has been defined, you can use it as part of a complex

type definition. To use a model group in a complex type definition, you use
the group element with the ref attribute. The value of the ref attribute is

168

Using Complex Types

the name given to the group when it was defined. For example, to use the
group defined in Example 92 on page 168 you would use <group
ref="tns:passenger" /> as shown in Example 93 on page 169.

Example 93. Complex Type with a Model Group

<complexType name="reservation">
<sequence>
<group ref="tns:passenger" />
<element name="origin" type="xsd:string" />
<element name="destination" type="xsd:string" />
<element name="fltNum" type="xsd:long" />

</sequence>
</complexType>

When a model group is used in a type definition, the group becomes a member
of the type. So an instance of reservation would have four member elements.
The first of which would be passenger and it would contain the member

elements defined by the group Example 92 on page 168. An example of an
instance of reservation as shown in Example 94 on page 169.

Example 94. Instance of a Type with a Model Group

<reservation>
<passenger>
<name>A. Smart</name>
<clubNum>99</clubNum>
<seatPref>isle1</seatPref>

</passenger>
<origin>LAX</origin>
<destination>FRA</destination>
<fltNum>34567</fltNum>

</reservation>

Mapping to Java
By default, a model group is only mapped into Java artifacts when it is
included in a complex type definition. When generating code for a complex
type that includes a model group, Artix ESB simply includes the member
variables for the model group into the Java class generated for the type. The
member variables representing the model group will be annotated based on
the definitions of the model group.

Example 95 on page 170 shows the Java class generated for the complex
type defined in Example 93 on page 169.

169

Using Model Groups

Example 95. Type with a Group

@XmlType(name = "reservation", propOrder = {
"name",
"clubNum",
"seatPref",
"origin",
"destination",
"fltNum"

})
public class Reservation {

@XmlElement(required = true)
protected String name;
protected long clubNum;
@XmlElement(required = true)
protected List<String> seatPref;
@XmlElement(required = true)
protected String origin;
@XmlElement(required = true)
protected String destination;
protected long fltNum;

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public long getClubNum() {
return clubNum;

}

public void setClubNum(long value) {
this.clubNum = value;

}

public List<String> getSeatPref() {
if (seatPref == null) {

seatPref = new ArrayList<String>();
}
return this.seatPref;

}

public String getOrigin() {
return origin;

}

170

Using Complex Types

public void setOrigin(String value) {
this.origin = value;

}

public String getDestination() {
return destination;

}

public void setDestination(String value) {
this.destination = value;

}

public long getFltNum() {
return fltNum;

}

public void setFltNum(long value) {
this.fltNum = value;

}

Multiple occurrences
You can specify that the model group appears more than once by setting the
group element's maxOccurs attribute to a value greater than one. To allow

for multiple occurrences of the model group Artix ESB maps the model group
to a List<T> object. The List<T> object is generated following the rules for

the group's first child. If the group is defined using a sequence element see

Occurrence Constraints on Sequences on page 165. If the group is defined
using a choice element see Occurrence Constraints on the Choice

Element on page 161.

171

Using Model Groups

172

Using Wild Card Types
There are instances when a schema author wants to defer binding elements or attributes to a defined type. For
these cases, XML Schema provides three mechanisms for specifying wild card place holders. These are all mapped
to Java in ways that preserve their XML Schema functionality.

Using Any Elements ... 174
Using XML Schema anyType ... 179
Using Unbound Attributes .. 182

173

Using Any Elements
Overview

The XML Schema any element is used to create a wildcard place holder in

complex type definitions. When an XML element is instantiated for an XML
Schema any element, it can be any valid XML element. The any element

does not place any restrictions on either the content or the name of the
instantiated XML element.

For example given the complex type definied in Example 96 on page 174 you
could instantiate either of the XML elements shown in
Example 97 on page 174.

Example 96. XML Schema Type Defined with an Any Element

<element name="FlyBoy">
<complexType>
<sequence>
<any />
<element name="rank" type="xsd:int" />

</sequence>
</complexType>

</element>

Example 97. XML Document with an Any Element

<FlyBoy>
<learJet>CL-215</learJet>
<rank>2</rank>

</element>
<FlyBoy>
<viper>Mark II</viper>
<rank>1</rank>

</element>

XML Schema any elements are mapped to either a Java Object object or a

Java org.w3c.dom.Element object.

Specifying in XML Schema
The any element can be used when defining sequence complex types and

choice complex types. In most cases, the any element is an empty element.

It can, however, take an annotation element as a child.

Table 17 on page 175 describes the any element's attributes.

174

Using Wild Card Types

Table 17. Attributes of the XML Schema Any Element

DescriptionAttribute

Specifies the namespace of the elements that can be used to instantiate the element in an
XML document. The valid values are:

namespace

##any

Specifies that elements from any namespace can be used. This is the default.

##other

Specifies that elements from any namespace other than the parent element's namespace
can be used.

##local

Specifies elements without a namespace must be used.

##targetNamespace

Specifies that elements from the parent element's namespace must be used.

space delimited list of URIs, ##local, and ##targetNamespace

Specifies that elements from any of the listed namespaces can be used.

Specifies the maximum number of times an instance of the element can appear in the parent
element. The default value is 1. To specify that an instance of the element can appear an

unlimited number of times, you can set the attribute's value to unbounded.

maxOccurs

Specifies the minimum number of times an instance of the element can appear in the parent
element. The default value is 1.

minOccurs

Specifies how the element used to instantiate the any element should be validated. Valid
values are:

processContents

strict

Specifies that the element must be validated against the proper schema. This is the
default value.

lax

Specifies that the element should be validated against the proper schema. If it cannot
be validated, no errors are thrown.

skip

Specifies that the element should not be validated.

175

Using Any Elements

Example 98 on page 176 shows a complex type defined with an any element

Example 98. Complex Type Defined with an Any Element

<complexType name="surprisePackage">
<sequence>
<any processContents="lax" />
<element name="to" type="xsd:string" />
<element name="from" type="xsd:string" />

</sequence>
</complexType>

Mapping to Java
XML Schema any elements result in the creation of a Java property named

any. The property has associated getter and setter methods. The type of the

resulting property depends on the value of the element's processContents

attribute. If the any element's processContents attribute is set skip, the

element is mapped to a org.w3c.dom.Element object. For all other values

of the processContents attribute an any element is mapped to a Java

Object object.

The generated property is decorated with the @XmlAnyElement annotation.

This annotation has an optional lax property that instructs the runtime what
to do when marshaling the data. Its default value is false which instructs

the runtime to automatically marshal the data into a org.w3c.dom.Element

object. Setting lax to true instructs the runtime to attempt to marshal the

data into JAXB types. When the any element's processContents attribute

is set skip, the lax property is set to its default. For all other values of the

processContents attribute, lax is set to true.

Example 99 on page 176 shows how the complex type defined in
Example 98 on page 176 is mapped to a Java class.

Example 99. Java Class with an Any Element

public class SurprisePackage {

@XmlAnyElement(lax = true)
protected Object any;
@XmlElement(required = true)
protected String to;

176

Using Wild Card Types

@XmlElement(required = true)
protected String from;

public Object getAny() {
return any;

}

public void setAny(Object value) {
this.any = value;

}

public String getTo() {
return to;

}

public void setTo(String value) {
this.to = value;

}

public String getFrom() {
return from;

}

public void setFrom(String value) {
this.from = value;

}

}

Marshaling
If the Java property for an any element has its lax set to false or the property

is not specified, the runtime will make no attempt to parse the XML data into
JAXB objects. The data will always be stored in a DOM Element object.

If the Java property for an any element has its lax set to true, the runtime

will attempt to marshal the XML data into appropriate JAXB objects. The
runtime attempts to identify the proper JAXB classes using the following
method:

1. It checks the element's tag of the XML element against the list of elements
known to the runtime. If it finds a match, the runtime marshals the XML
data into the proper JAXB class for the element.

2. It checks the XML element's xsi:type attribute. If it finds a match, the

runtime marshals the XML element into the proper JAXB class for that
type.

177

Using Any Elements

3. If it cannot find a match is marshals the XML data into a DOM Element

object.

An application's runtime generally knows about all of the types generated
from the schema's included in its contract. This includes the types defined in
the contract's wsdl:types element, any data types added to the contract

through inclusion, and any types added to the contract through importing
other schemas. You can also make the runtime aware of additional types as
described in Adding Classes to the Runtime Marshaller on page 110.

Unmarshaling
If the Java property for an any element has its lax set to false or the property

is not specified, the runtime will only accept DOM Element objects.

Attempting to use any other type of object will result in a marshaling error.

If the Java property for an any element has its lax set to true, the runtime

uses its internal map between Java data types and the XML Schema constructs
they represent to determine the XML structure to write to the wire. If it knows
the class and can map it to an XML Schema construct, it writes out the data
and inserts an xsi:type attribute to identify the type of data the element

contains.

If the runtime cannot map the Java object to a known XML Schema construct,
it will throw a marshaling exception. You can add types to the runtime's map
using the method described in Adding Classes to the Runtime
Marshaller on page 110.

178

Using Wild Card Types

Using XML Schema anyType
Overview

The XML Schema type xsd:anyType is the root type for all XML Schema types.
All of the primitives are derivatives of this type as are all user defined complex
types. As a result, elements defined as being of xsd:anyType can contain data
in the form of any of the XML Schema primitives as well as any complex type
defined in a schema document.

In Java the closest matching type is the Object class. It is the class from

which all other Java classes are sub-typed.

Using in XML Schema
You use the xsd:anyType type as you would any other XML Schema complex
type. It can be used as the value of an element element's type element. It

can also be used as the base type from which other types are defined.

Example 100 on page 179 shows an example of a complex type that contains
an element of type xsd:anyType.

Example 100. Complex Type with a Wild Card Element

<complexType name="wildStar">
<sequence>
<element name="name" type="xsd:string" />
<element name="ship" type="xsd:anyType" />

</sequence>
</complexType>

Mapping to Java
Elements that are of type xsd:anyType are mapped to Object objects.

Example 101 on page 179 shows the mapping of Example 100 on page 179
to a Java class.

Example 101. Java Representation of a Wild Card Element

public class WildStar {

@XmlElement(required = true)
protected String name;
@XmlElement(required = true)
protected Object ship;

public String getName() {
return name;

}

179

Using XML Schema anyType

public void setName(String value) {
this.name = value;

}

public Object getShip() {
return ship;

}

public void setShip(Object value) {
this.ship = value;

}
}

This mapping allows you to place any data into the property representing the
wild card element. The Artix ESB runtime handles the marshaling and
unmarshaling of the data into usable Java representation.

Marshaling
When Artix ESB marshals XML data into Java types, it attempts to marshal
anyType elements into known JAXB objects. To determine if it is possible to
marshal an anyType element into a JAXB generated object, the runtime
inspects the element's xsi:type attribute to determine actual type used to

construct the data in the element. If the xsi:type attribute is not present,

the runtime will attempt to identify the element's actual data type by
introspection. If the element's actual data type is determined to be one of the
types known by the application's JAXB context, the element will be marshaled
into a JAXB object of the proper type.

If the runtime cannot determine the actual data type of the element or the
actual data type of the element is not a known type, the runtime marshals
the content into a org.w3c.dom.Element object. You will then need to work

with the element's content using the DOM APis.

An application's runtime generally knows about all of the types generated
from the schema's included in its contract. This includes the types defined in
the contract's wsdl:types element, any data types added to the contract

through inclusion, and any types added to the contract through importing
other schemas. You can also make the runtime aware of additional types
using the method described in Adding Classes to the Runtime
Marshaller on page 110.

Unmarshalling
When Artix ESB unmarshals Java types into XML data, it uses its internal
map between Java data types and the XML Schema constructs they represent

180

Using Wild Card Types

to determine the XML structure to write to the wire. If it knows the class and
can map it to an XML Schema construct, it writes out the data and inserts
an xsi:type attribute to identify the type of data the element contains. If

the data is stored in a org.w3c.dom.Element object, the runtime will write

the XML structure represented by the object but it will not include an
xsi:type attribute.

If the runtime cannot map the Java object to a known XML Schema construct,
it will throw a marshaling exception. You can add types to the runtime's map
using the method described in Adding Classes to the Runtime
Marshaller on page 110.

181

Using XML Schema anyType

Using Unbound Attributes
Overview

XML Schema has a mechanism that allows you to leave a place holder for
an arbitrary attribute in a complex type definition. Using this mechanism, you
could define a complex type that can have any attribute. For example, you
could create a type that defines the elements <robot name="epsilon" />,
<robot age="10000" />, or <robot type="weevil" /> without specifying the
three attributes. This can be particularly useful when you need to provide for
a bit of flexibility in your data.

Defining in XML Schema
Undeclared attributes are defined in XML Schema using the anyAttribute

element. It can be used wherever an attribute element can be used. The
anyAttribute element has no attributes as shown in

Example 102 on page 182.

Example 102. Complex Type with an Undeclared Attribute

<complexType name="arbitter">
<sequence>
<element name="name" type="xsd:string" />
<element name="rate" type="xsd:float" />

</sequence>
<anyAttribute />

</complexType>

The defined type, arbitter, has two elements and can have one attribute of
any type. The elements

• <officer rank="12"><name>...</name><rate>...</rate></officer>

• <lawyer type="divorce"><name>...</name><rate>...</rate></lawyer>

• <judge><name>...</name><rate>...</rate></judge>

can all be generated from the complex type arbitter.

Mapping to Java
When a complex type containing an anyAttribute element is mapped to

Java, the code generator adds a member called otherAttributes to the
generated class. otherAttributes is of type java.util.Map<QName, String>

and it has a getter method that returns a live instance of the map. Because
the map returned from the getter is live, any modifications to the map are

182

Using Wild Card Types

automatically applied. Example 103 on page 183 shows the class generated
for the complex type defined in Example 102 on page 182.

Example 103. Class for a Complex Type with an Undeclared Attribute

public class Arbitter {

@XmlElement(required = true)
protected String name;
protected float rate;

@XmlAnyAttribute
private Map<QName, String> otherAttributes = new HashMap<QName, String>();

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public float getRate() {
return rate;

}

public void setRate(float value) {
this.rate = value;

}

public Map<QName, String> getOtherAttributes() {
return otherAttributes;

}

}

Working with undeclared
attributes The otherAttributes member of the generated class expects to be populated

with a Map object. The map is keyed using QNames. Once you get the map ,

you can access any attributes set on the object and set new attributes on the
object.

Example 104 on page 184 shows code for working with undeclared attributes.

183

Using Unbound Attributes

Example 104. Working with Undeclared Attributes

Arbitter judge = new Arbitter();
Map<QName, String> otherAtts = judge.getOtherAttributes(); ❶

QName at1 = new QName("test.apache.org", "house"); ❷
QName at2 = new QName("test.apache.org", "veteran");

otherAtts.put(at1, "Cape"); ❸
otherAtts.put(at2, "false");

String vetStatus = otherAtts.get(at2); ❹

The code in Example 104 on page 184 does the following:

❶ Gets the map containing the undeclared attributes.

❷ Creates QNames to work with the attributes.

❸ Sets the values for the attributes into the map.

❷ Retrieves the value for one of the attributes.

184

Using Wild Card Types

Using Type Substitution
There are a number of general topics that apply to how Artix ESB handles type mapping.

Substitution Groups in XML Schema ... 186
Substitution Groups in Java .. 190
Widget Vendor Example ... 197

The checkWidgets Operation ... 199
The placeWidgetOrder Operation .. 202

185

Substitution Groups in XML Schema
Overview

A substitution group is a feature of XML schema that allows you to specify
elements that can replace another element in documents generated from that
schema. The replaceable element is called the head element and must be
defined in the schema’s global scope. The elements of the substitution group
must be of the same type as the head element or a type that is derived from
the head element’s type.

In essence, a substitution group allows you to build a collection of elements
that can be specified using a generic element. For example, if you are building
an ordering system for a company that sells three types of widgets you may
define a generic widget element that contains a set of common data for all
three widget types. Then you could define a substitution group that contains
a more specific set of data for each type of widget. In your contract you could
then specify the generic widget element as a message part instead of defining
a specific ordering operation for each type of widget. When the actual message
is built, the message can then contain any of the elements of the substitution
group.

Syntax
Substitution groups are defined using the substitutionGroup attribute of

the XML Schema element element. The value of the substitutionGroup

attribute is the name of the element that the element being defined can
replace. For example if your head element was widget, then by adding the
attribute substitutionGroup="widget" to an element named woodWidget would

specify that anywhere widget was used, you could substitute woodWidget.

This is shown in Example 105 on page 186.

Example 105. Using a Substitution Group

<element name="widget" type="xsd:string" />
<element name="woodWidget" type="xsd:string"

substitutionGroup="widget" />

Type restrictions
The elements of a substitution group must be of the same type as the head
element or of a type derived from the head element’s type. For example, if
the head element is of type xsd:int all members of the substitution group must
be of type xsd:int or of type derived from xsd:int. You could also define a
substitution group similar to the one shown in Example 106 on page 187

186

Using Type Substitution

where the elements of the substitution group are of types derived from the
head element’s type.

Example 106. Substitution Group with Complex Types

<complexType name="widgetType">
<sequence>
<element name="shape" type="xsd:string" />
<element name="color" type="xsd:string" />

</sequence>
</complexType>
<complexType name="woodWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="woodType" type="xsd:string" />

</sequence>
</extension>

</complexContent>
</complexType>
<complexType name="plasticWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="moldProcess" type="xsd:string" />

</sequence>
</extension>

</complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"

substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"

substitutionGroup="widget" />
<complexType name="partType">
<sequence>
<element ref="widget" />

</sequence>
</complexType>
<element name="part" type="partType" />

The head element of the substitution group, widget, is defined as being of

type widgetType. Each element of the substitution group then extends
widgetType to include data specific to ordering the specific type of widget.

Based on the schema in Example 106 on page 187, the part elements in

Example 107 on page 188 are valid.

187

Substitution Groups in XML Schema

Example 107. XML Document using a Substitution Group

<part>
<widget>
<shape>round</shape>
<color>blue</color>

</widget>
</part>
<part>
<plasticWidget>
<shape>round</shape>
<color>blue</color>
<moldProcess>sandCast</moldProcess>

</plasticWidget>
</part>
<part>
<woodWidget>
<shape>round</shape>
<color>blue</color>
<woodType>elm</woodType>

</woodWidget>
</part>

Abstract head elements
You can define an abstract head element that can never appear in a document
produced using your schema. Abstract head elements are similar to abstract
classes in Java in that they are used as the basis for defining more specific
implementations of a generic class. Abstract heads also prevent the use of
the generic element in the final product.

You declare an abstract head element by setting the abstract attribute of

element element to true as shown in Example 108 on page 188. Using this

schema, a valid review element could contain either a positiveComment

element or a negativeComment element, but not a comment element.

Example 108. Abstract Head Definition

<element name="comment" type="xsd:string" abstract="true" />
<element name="positiveComment" type="xsd:string"

substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"

substitutionGroup="comment" />
<element name="review">
<complexContent>
<all>
<element name="custName" type="xsd:string" />

188

Using Type Substitution

<element name="impression" ref="comment" />
</all>

</complexContent>
</element>

189

Substitution Groups in XML Schema

Substitution Groups in Java
Overview

Artix ESB, as specified by the JAXB specification, supports substitution groups
using Java's native class hierarchy and the ability of the JAXBElement class'

support for wildcard definitions. Because the members of a substitution group
must all share a common base type, the classes generated to support the
elements' types will also share a common base type. In addition, Artix ESB
maps instances of the head element to JAXBElement<? extends T>

properties.

Generated object factory methods
The object factory generated to support a package containing a substitution
group has methods for each of the elements in the substitution group. For
each of the members of the substitution group, except for the head element,
the @XmlElementDecl annotation decorating the object factory method

includes the two additional properties described in Table 18 on page 190.

Table 18. Properties for Declaring a JAXB Element is a Member of a Substitution Group

DescriptionProperty

Specifies the namespace in which the head element is defined.substitutionHeadNamespace

Specifies the value of the head element's name attribute.substitutionHeadName

The object factory method for the head element of the substitution group's
@XmlElementDecl will just contain the default namespace property and the

default name property.

In addition to the element instantiation methods, the object factory contains
a method for instantiating an object representing the head element. If the
members of the substitution group are all of complex types, the object factory
will also contain methods for instantiating instances of each complex type
used.

Example 109 on page 190 shows the object factory method for the substitution
group defined in Example 106 on page 187.

Example 109. Object Factory Method for a Substitution Group

public class ObjectFactory {

private final static QName _Widget_QNAME = new QName(...);
private final static QName _PlasticWidget_QNAME = new QName(...);

190

Using Type Substitution

private final static QName _WoodWidget_QNAME = new QName(...);

public ObjectFactory() {
}

public WidgetType createWidgetType() {
return new WidgetType();

}

public PlasticWidgetType createPlasticWidgetType() {
return new PlasticWidgetType();

}

public WoodWidgetType createWoodWidgetType() {
return new WoodWidgetType();

}

@XmlElementDecl(namespace="...", name = "widget")
public JAXBElement<WidgetType> createWidget(WidgetType value) {

return new JAXBElement<WidgetType>(_Widget_QNAME, WidgetType.class, null, value);
}

@XmlElementDecl(namespace = "...", name = "plasticWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")

public JAXBElement<PlasticWidgetType> createPlasticWidget(PlasticWidgetType value) {
return new JAXBElement<PlasticWidgetType>(_PlasticWidget_QNAME, PlasticWidget

Type.class, null, value);
}

@XmlElementDecl(namespace = "...", name = "woodWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")

public JAXBElement<WoodWidgetType> createWoodWidget(WoodWidgetType value) {
return new JAXBElement<WoodWidgetType>(_WoodWidget_QNAME, WoodWidgetType.class,

null, value);
}

}

Substitution groups in interfaces
If the head element of a substitution group is used as a message part in one
of an operation's messages, the resulting method parameter will be an object
of the class generated to support that element. It will not necessarily be an
instance of the JAXBElement<? extends T> class. The runtime relies on

Java's native type hierarchy to support the type substitution. Java will catch
any attempts to use unsupported types.

191

Substitution Groups in Java

Example 111 on page 192 shows the SEI generated for the interface shown
in Example 110 on page 192. The interface uses the substitution group defined
in Example 106 on page 187.

Example 110. WSDL Interface Using a Substitution Group

<message name="widgetMessage">
<part name="widgetPart" element="xsd1:widget" />

</message>
<message name="numWidgets">
<part name="numInventory" type="xsd:int" />

</message>
<message name="badSize">
<part name="numInventory" type="xsd:int" />

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order" />
<output message="tns:widgetOrderBill" name="bill" />
<fault message="tns:badSize" name="sizeFault" />

</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />

</operation>
</portType>

Example 111. Generated Interface Using a Substitution Group

@WebService(targetNamespace = "...", name = "orderWidgets")
public interface OrderWidgets {

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")
@WebMethod
public int checkWidgets(

@WebParam(partName = "widgetPart", name = "widget", targetNamespace = "...")
com.widgetvendor.types.widgettypes.WidgetType widgetPart

);
}

Important
To ensure that the runtime knows about all of the classes needed to
support the element substitution, You will need to configure your
application to load the extra classes. See Adding Classes to the

192

Using Type Substitution

Runtime Marshaller on page 110 for information on the required
configuration.

Substitution groups in complex
types When the head element of a substitution group is used as an element in a

complex type, the code generator maps the element to a JAXBElement<?

extends T> property. It does not map it to a property containing an instance

of the generated class generated to support the substitution group.

For example the complex type defined in Example 112 on page 193 would
result in the Java class shown in Example 113 on page 193. The complex
type uses the substitution group defined in Example 106 on page 187.

Example 112. Complex Type Using a Substitution Group

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>
<element ref="xsd1:widget"/>

</sequence>
</complexType>

Example 113. Java Class for a Complex Type Using a Substitution Group

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "widgetOrderInfo", propOrder =
{"amount","widget",})
public class WidgetOrderInfo {

protected int amount;
@XmlElementRef(name = "widget", namespace = "...", type

= JAXBElement.class)
protected JAXBElement<? extends WidgetType> widget;
public int getAmount() {

return amount;
}

public void setAmount(int value) {
this.amount = value;

}

public JAXBElement<? extends WidgetType> getWidget() {
return widget;

}

public void setWidget(JAXBElement<? extends WidgetType>
value) {

193

Substitution Groups in Java

this.widget = ((JAXBElement<? extends WidgetType>)
value);

}

}

Setting a substitution group
property How you work with a substitution group depends on whether the code

generator mapped it to a straight Java class or a JAXBElement<? extends

T> class. When the element is simply mapped to an object of the generated

value class, you can work with the object as you would any other Java object
that is part of a type hierarchy. You can substitute any of the subclasses for
the parent class. You can inspect the object to determine its exact class and
cast it appropriately.

Tip
The JAXB specification recommends that you use the object factory
methods for instantiating objects of the generated classes. However,
you do not have to follow this recommendation in your application
code.

When the code generators create a JAXBElement<? extends T> object to

hold instances of a substitution group, you must wrap the element's value in
a JAXBElement<? extends T> object. The easiest way to do this is by using

the element creation methods provided by the object factory. They provide
an easy means for creating an element based on its value.

Example 114 on page 194 shows code for setting an instance of a substitution
group.

Example 114. Setting a Member of a Substitution Group

ObjectFactory of = new ObjectFactory(); ❶
PlasticWidgetType pWidget = of.createPlasticWidgetType(); ❷
pWidget.setShape = "round';
pWidget.setColor = "green";
pWidget.setMoldProcess = "injection";

JAXBElement<PlasticWidgetType> widget = of.createPlasticWidget(pWidget); ❸

WidgetOrderInfo order = of.createWidgetOrderInfo(); ❹
order.setWidget(widget); ❺

194

Using Type Substitution

The code in Example 114 on page 194 does the following:

❶ Instantiates an object factory.

❷ Instantiates a PlasticWidgetType object.

❸ Instantiates a JAXBElement<PlasticWidgetType> object to hold a

plastic widget element.
❹ Instantiates a WidgetOrderInfo object.

❺ Sets the WidgetOrderInfo object's widget to the JAXBElement object

holding the plastic widget element.

Getting the value of a substitution
group property The object factory methods do not help when extracting the element's value

from a JAXBElement<? extends T> object. You need to use the

JAXBElement<? extends T> object's getValue() method. To determine

the type of object returned by the getValue() method you have several

options:

• Use the isInstance() method of all the possible classes to determine

the class of the element's value object.

• Use the JAXBElement<? extends T> object's getName() method to

determine the element's name.

The getName() method returns a QName. Using the local name of the

element, you should be able to determine the proper class for the value
object.

• Use the JAXBElement<? extends T> object's getDeclaredType()

method to determine the class of the value object.

The getDeclaredType() method returns the Class object of the element's

value object. There is a possibility that the getDeclaredType() method

will return the base class for the head element regardless of the actual class
of the value object.

Example 115 on page 196 shows code retrieving the value from a substitution
group. To determine the proper class of the element's value object the example
uses the element's getName() method.

195

Substitution Groups in Java

Example 115. Getting the Value of a Member of the Substitution Group

String elementName = order.getWidget().getName().getLocalPart();
if (elementName.equals("woodWidget")
{
WoodWidgetType widget=order.getWidget().getValue();

}
else if (elementName.equals("plasticWidget")
{
PlasticWidgetType widget=order.getWidget().getValue();

}
else
{
WidgetType widget=order.getWidget().getValue();

}

196

Using Type Substitution

Widget Vendor Example
The checkWidgets Operation ... 199
The placeWidgetOrder Operation .. 202

This section shows an example of substitution groups being used in Artix ESB
to solve a real world application. A service and consumer are developed using
the widget substitution group defined in Example 106 on page 187. The
service offers two operations: checkWidgets and placeWidgetOrder.

Example 116 on page 197 shows the interface for the ordering service.

Example 116. Widget Ordering Interface

<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>

</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation"

type="xsd1:widgetOrderBillInfo"/>
</message>
<message name="widgetMessage">
<part name="widgetPart" element="xsd1:widget" />

</message>
<message name="numWidgets">
<part name="numInventory" type="xsd:int" />

</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />

</operation>
</portType>

Example 117 on page 197 shows the generated Java SEI for the interface.

Example 117. Widget Ordering SEI

@WebService(targetNamespace = "http://widgetVendor.com/widgetOrderForm", name = "orderWid
gets")
public interface OrderWidgets {

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")

197

Widget Vendor Example

@WebMethod
public int checkWidgets(

@WebParam(partName = "widgetPart", name = "widget", targetNamespace = "http://wid
getVendor.com/types/widgetTypes")

com.widgetvendor.types.widgettypes.WidgetType widgetPart
);

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "widgetOrderConformation", targetNamespace = "", partName = "widget

OrderConformation")
@WebMethod
public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(

@WebParam(partName = "widgetOrderForm", name = "widgetOrderForm", targetNamespace
= "")

com.widgetvendor.types.widgettypes.WidgetOrderInfo widgetOrderForm
) throws BadSize;

}

Note
Because the example is to demonstrate the use of substitution groups,
some of the business logic is not shown.

198

Using Type Substitution

The checkWidgets Operation
Overview

checkWidgets is a simple operation that has a parameter that is the head

member of a substitution group. This operation demonstrates how to deal
with individual parameters that are members of a substitution group. The
consumer must ensure that the parameter is a valid member of the substitution
group. The service must properly determine which member of the substitution
group was sent in the request.

Consumer implementation
The generated method signature uses the Java class supporting the type of
the substitution group's head element. Because members of a substitution
group must be either of the same type or of a type derived from the type of
the head element, the Java classes generated to support the types of all of
the members of the substitution group share inherit from the Java class
supporting the head element's type. Java's type hierarchy natively supports
using subclasses in place of the parent class.

Because of how Artix ESB generates the types for a substitution group and
Java's type hierarchy, the client can invoke checkWidgets() without using

any special code. When developing the logic to invoke checkWidgets() you

can pass in an object of one of the classes generated to support the widget
substitution group. The service's implementation should be able to handle it
correctly.

Example 118 on page 199 shows a consumer invoking checkWidgets().

Example 118. Consumer Invoking checkWidgets()

System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
case '1':
{
WidgetType widget = new WidgetType();
...
break;

199

The checkWidgets Operation

}
case '2':
{
WoodWidgetType widget = new WoodWidgetType();
...
break;

}
case '3':
{
PlasticWidgetType widget = new PlasticWidgetType();
...
break;

}
default :
System.out.println("Invaid Widget Selection!!");

}

proxy.checkWidgets(widgets);

Service implementation
The service's implementation of checkWidgets() gets a widget description

as a WidgetType object, checks the inventory of widgets, and returns the

number of widgets in stock. Because all of the classes used to implement the
substitution group inherit from the same base class, you can implement
checkWidgets() without using any JAXB specific APIs.

Because all of the types defining the different members of the substitution
group for widget extend the WidgetType class, you can use instanceof

to determine what type of widget was passed in and simply cast the
widgetPart object into the more restrictive type if appropriate. Once you

have the proper type of object, you can check the inventory of the right kind
of widget.

Example 119 on page 200 shows a possible implementation.

Example 119. Service Implementation of checkWidgets()

public int checkWidgets(WidgetType widgetPart)
{
if (widgetPart instanceof WidgetType)
{
return checkWidgetInventory(widgetType);

}
else if (widgetPart instanceof WoodWidgetType)
{

200

Using Type Substitution

WoodWidgetType widget = (WoodWidgetType)widgetPart;
return checkWoodWidgetInventory(widget);

}
else if (widgetPart instanceof PlasticWidgetType)
{
PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
return checkPlasticWidgetInventory(widget);

}
}

201

The checkWidgets Operation

The placeWidgetOrder Operation
Overview

placeWidgetOrder uses two complex types containing the substitution

group. This operation demonstrates how one might go about using such a
structure in a Java implementation. Both the consumer and the service have
to get and set members of a substitution group.

Consumer implementation
To invoke placeWidgetOrder() the consumer needs to construct a widget

order that contains one element of the widget substitution group. When adding
the widget to the order, the consumer should use the object factory methods
generated for each element of the substitution group to ensure that the runtime
and the service can correctly process the order. For example, if an order is
being placed for a plastic widget, ObjectFactory.createPlasticWidget()

should be used to create the element before adding it to the order.

Example 120 on page 202 shows consumer code for setting the widget
property of the WidgetOrderInfo object.

Example 120. Setting a Substitution Group Member

ObjectFactory of = new ObjectFactory();

WidgetOrderInfo order = new of.createWidgetOrderInfo();
...
System.out.println();
System.out.println("What color widgets do you want to order?");
String color = reader.readLine();
System.out.println();
System.out.println("What shape widgets do you want to order?");
String shape = reader.readLine();
System.out.println();
System.out.println("What type of widgets do you want to or
der?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
case '1':
{

202

Using Type Substitution

WidgetType widget = of.createWidgetType();
widget.setColor(color);
widget.setShape(shape);
JAXB<WidgetType> widgetElement = of.createWidget(widget);

order.setWidget(widgetElement);
break;

}
case '2':
{
WoodWidgetType woodWidget = of.createWoodWidgetType();
woodWidget.setColor(color);
woodWidget.setShape(shape);
System.out.println();
System.out.println("What type of wood are your widgets?");

String wood = reader.readLine();
woodWidget.setWoodType(wood);
JAXB<WoodWidgetType> widgetElement = of.createWoodWid

get(woodWidget);
order.setWoodWidget(widgetElement);
break;

}
case '3':
{
PlasticWidgetType plasticWidget = of.createPlasticWidget

Type();
plasticWidget.setColor(color);
plasticWidget.setShape(shape);
System.out.println();
System.out.println("What type of mold to use for your

widgets?");
String mold = reader.readLine();
plasticWidget.setMoldProcess(mold);
JAXB<WidgetType> widgetElement = of.createPlasticWid

get(plasticWidget);
order.setPlasticWidget(widgetElement);
break;

}
default :
System.out.println("Invaid Widget Selection!!");
}

Service implementation
The placeWidgetOrder() method receives an order in the form of a

WidgetOrderInfo object, processes the order, and returns a bill to the

consumer in the form of a WidgetOrderBillInfo object. The orders can be

203

The placeWidgetOrder Operation

for either a plain widget, a plastic widget, or a wooden widget. The type of
widget ordered is determined by what type of object is stored in
widgetOrderForm object’s widget property. The widget property is a

substitution group and can contain either a widget element, a woodWidget

element, or a plasticWidget element.

The implementation has to determine which of the possible elements is stored
in the order. This can be accomplished using the JAXBElement<? extends

T> object's getName() method to determine the element's QName. The

QName can then be used to determine which element in the substitution
group is in the order. Once you know which element is included in the bill,
you can extract its value into the proper type of object.

Example 121 on page 204 shows a possible implementation.

Example 121. Implementation of placeWidgetOrder()

public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(WidgetOrderInfo
widgetOrderForm)
{
❶ ObjectFactory of = new ObjectFactory();

❷ WidgetOrderBillInfo bill = new WidgetOrderBillInfo()

// Copy the shipping address and the number of widgets
// ordered from widgetOrderForm to bill
...

❸ int numOrdered = widgetOrderForm.getAmount();

❹ String elementName = widgetOrderForm.getWidget().getName().getLocalPart();
❺ if (elementName.equals("woodWidget")
{

❻ WoodWidgetType widget=order.getWidget().getValue();
buildWoodWidget(widget, numOrdered);

// Add the widget info to bill
❼ JAXBElement<WoodWidgetType> widgetElement = of.createWoodWidget(widget);
❽ bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.75;
❾ bill.setAmountDue(amtDue);
}
else if (elementName.equals("plasticWidget")
{

204

Using Type Substitution

PlasticWidgetType widget=order.getWidget().getValue();
buildPlasticWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<PlasticWidgetType> widgetElement = of.createPlasticWidget(widget);
bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.90;
bill.setAmountDue(amtDue);

}
else
{
WidgetType widget=order.getWidget().getValue();
buildWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<WidgetType> widgetElement = of.createWidget(widget);
bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.30;
bill.setAmountDue(amtDue);

}

return(bill);
}

The code in Example 121 on page 204 does the following:

❶ Instantiates an object factory to create elements.

❷ Instantiates a WidgetOrderBillInfo object to hold the bill.

❸ Gets the number of widgets ordered.

❹ Gets the local name of the element stored in the order.

❺ Checks to see if the element is a woodWidget element.

❻ Extracts the value of the element from the order into the proper type of
object.

❼ Creates a JAXBElement<T> object to be placed into the bill.

❽ Sets the bill object's widget property.

❾ Sets the bill object's amountDue property.

205

The placeWidgetOrder Operation

206

Customizing How Types are Generated
The JAXB default mappings cover most uses of XML Schema used when using service-oriented design to create
Java applications. For instances where the default mappings are insufficient, JAXB provides an extensive
customization mechanism.

Basics of Customizing Type Mappings ... 208
Specifying the Java Class of an XML Schema Primitive .. 211
Generating Java Classes for Simple Types ... 219
Customizing Enumeration Mapping .. 221
Customizing Fixed Value Attribute Mapping .. 226
Specifying the Base Type of an Element or an Attribute .. 229

Important
JAXB customizations are ignored if you are using the wsdlgen tool.

207

Basics of Customizing Type Mappings
Overview

You customize how the code generators map XML Schema constructs to Java
constructs using XML elements that are defined by the JAXB specification.
These elements can be specified in-line with XML Schema constructs. If you
cannot, or do not want to, modify the XML Schema definitions, you can also
specify the customizations in external binding document.

Namespace
The elements used to customize the JAXB data bindings are defined in the
namespace http://java.sun.com/xml/ns/jaxb. You will have to add a namespace
declaration similar to Example 122 on page 208 in the root element of all
XML documents defining JAXB customizations.

Example 122. JAXB Customization Namespace

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

Version declaration
When using the JAXB customizations, you must indicate the JAXB version
being used. This is done by adding an jaxb:version attribute to the root

element of the external binding declaration. If you are using in-line
customization, you need to include the jaxb:version attribute in the schema

element containing the customizations. The value of the attribute is always
2.0.

Example 123 on page 208 shows an example of the jaxb:version attribute

used in a schema element.

Example 123. Specifying the JAXB Customization Version

< schema ...
jaxb:version="2.0">

Using in-line customization
The most direct way to customize how the code generators map XML Schema
constructs to Java constructs is to add the customization elements directly
to the XML Schema definitions. The JAXB customization elements are placed
inside of the xsd:appinfo element of the XML schema construct that is

being modified.

208

Customizing How Types are Generated

Example 124 on page 209 shows an example of a schema containing in-line
JAXB customization.

Example 124. Customized XML Schema

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<complexType name="size">
<annotation>
<appinfo>
<jaxb:class name="widgetSize" />

</appinfo>
</annotation>
<sequence>
<element name="longSize" type="xsd:string" />
<element name="numberSize" type="xsd:int" />

</sequence>
</complexType>

<schema>

Using an external binding
declaration When you cannot, or do not want to, add make changes to the XML Schema

document that defines your type, you can specify the customizations using
an external binding declaration. An external binding declaration consists of a
number of nested jaxb:bindings elements. Example 125 on page 209

shows the syntax of an external binding declaration.

Example 125. JAXB External Binding Declaration Syntax

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings [schemaLocation="schemaUri" | wsdlLocation="wsdlUri">
<jaxb:bindings node="nodeXPath">
binding declaration

</jaxb:bindings>
...

</jaxb:bindings>
<jaxb:bindings>

The schemaLocation attribute and the wsdlLocation attribute are used to

identify the schema document to which the modifications are applied. You
use the schemaLocation attribute if you are generating code from a schema

209

Basics of Customizing Type Mappings

document. You use the wsdlLocation attribute if you are generating code

from a WSDL document.

The node attribute is used to identify the specific XML schema construct that

is to be modified. It is an XPath statement that resolves to an XML Schema
element.

Given the schema document widgetSchema.xsd, shown in

Example 126 on page 210, the external binding declaration shown in
Example 127 on page 210 modifies the generation of the complex type size.

Example 126. XML Schema File

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
version="1.0">

<complexType name="size">
<sequence>
<element name="longSize" type="xsd:string" />
<element name="numberSize" type="xsd:int" />

</sequence>
</complexType>

<schema>

Example 127. External Binding Declaration

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="wsdlSchema.xsd">
<jaxb:bindings node="xsd:complexType[@name='size']">

<jaxb:class name="widgetSize" />
</jaxb:bindings>

</jaxb:bindings>
<jaxb:bindings>

You instruct the code generators to use the external binging declaration using
the artix wsdl2java tool's -b binding-file option as shown below:

artix wsdl2java -b widgetBinding.xml widget.wsdl

210

Customizing How Types are Generated

Specifying the Java Class of an XML Schema Primitive
Overview

By default, XML Schema types are mapped to Java primitive types. While
this is the most logical mapping between XML Schema and Java, it does not
always satisfy the requirements of the application developer. You may want
to map an XML Schema primitive type to a Java class that can hold extra
information. You may want to map an XML primitive type to a class that
allows for simple type substitution.

The JAXB javaType customization element allows you to customize the

mapping between an XML Schema primitive type and a Java primitive type.
It can be used to customize the mappings at both the global level and the
individual instance level. You can place the javaType element as part of a

simple type definition or the definition of a part of a complex type.

When using the javaType customization element you need to specify methods

for converting the XML representation of the primitive type to and from the
target Java class. Some mappings have default conversion methods. For
instances where there are not default mappings, Artix ESB provides JAXB
methods to ease the development of the needed methods.

Syntax
The javaType customization element takes four attributes.

Table 19 on page 211 describes these attributes.

Table 19. Attributes for Customizing the Generation of a Java Class for an XML Schema Type

DescriptionRequiredAttribute

Specifies the name of the Java class to which the XML Schema primitive type will be
mapped. It must be a valid Java class name or the name of a Java primitive type. You

Yesname

are responsible for ensuring that this class exists and is accessible to your application.
The code generator will not check for this class.

Specifies the XML Schema primitive type that is being customized. This attribute is only
used when the javaType element is used as a child of the globalBindings element.

NoxmlType

Specifies method responsible for parsing the string-based XML representation of the data
into an instance of the Java class. For more information see Specifying the
converters on page 214.

NoparseMethod

Specifies method responsible for converting a Java object to the string-based XML
representation of the data. For more information see Specifying the converters on page 214.

NoprintMethod

211

Specifying the Java Class of an XML Schema Primitive

The javaType customization element can be used in three ways:

to modify all instances of an XML Schema primitive type
The javaType element modifies all instances of an XML Schema type

in the schema document when used as a child of the globalBindings

customization element. When used in this manner, you must specify a
value for the xmlType attribute that identifies the XML Schema primitive

type being modified.

Example 128 on page 212 shows an in-line global customization that
instructs the code generators to use java.lang.Integer for all instances

of xsd:short in the schema.

Example 128. Global Primitive Type Customization

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings ...>
<jaxb:javaType name="java.lang.Integer"

xmlType="xsd:short" />
</globalBindings

</appinfo>
</annotation>
...

</schema>

to modify a simple type definition
The javaType element modifies the class generated for all instances of

an XML simple type when it is applied to a named simple type definition.
When you use the javaType element to modify a simple type definition,

you do not use the xmlType attribute.

Example 129 on page 212 shows an external binding file that modifies
the generation of a simple type named zipCode.

Example 129. Binding File for Customizing a Simple Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

212

Customizing How Types are Generated

jaxb:version="2.0">
<jaxb:bindings wsdlLocation="widgets.wsdl">
<jaxb:bindings node="xsd:simpleType[@name='zipCode']">

<jaxb:javaType name="com.widgetVendor.widgetTypes.zipCodeType"
parseMethod="com.widgetVendor.widgetTypes.support.parseZipCode"
printMethod="com.widgetVendor.widgetTypes.support.printZipCode" />

</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings>

to modify an element or attribute of a complex type definition
The javaType can be applied to individual parts of a complex type

definition by including it as part of a JAXB property customization. The
javaType element is placed as a child to the property's baseType

element. When you use the javaType element to modify a specific part

of a complex type definition, you do not use the xmlType attribute.

Example 130 on page 213 shows a binding file that modifies an element
of a complex type.

Example 130. Binding File for Customizing an Element in a Complex Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="enumMap.xsd">
<jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
<jaxb:bindings node="xsd:element[@name='cost']">
<jaxb:property>
<jaxb:baseType>
<jaxb:javaType name="com.widgetVendor.widgetTypes.costType"

parseMethod="parseCost"
printMethod="printCost" >

</jaxb:baseType>
</jaxb:property>

</jaxb:bindings>
</jaxb:bindings>

</jaxb:bindings>
<jaxb:bindings>

213

Specifying the Java Class of an XML Schema Primitive

For more information on using the baseType element see Specifying the

Base Type of an Element or an Attribute on page 229.

Specifying the converters
The Artix ESB does not know of how to convert XML Schema primitive types
into random Java classes. When you use the javaType element to customize

the mapping of an XML Schema primitive type, the code generator creates
an adapter class that is used to marshal and unmarshal the customized XML
Schema primitive type. A sample adapter class is shown in
Example 131 on page 214.

Example 131. JAXB Adapter Class

public class Adapter1 extends XmlAdapter<String, javaType>
{
public javaType unmarshal(String value)
{
return(parseMethod(value));

}

public String marshal(javaType value)
{
return(printMethod(value));

}
}

parseMethod and printMethod are replaced by the value of the

corresponding parseMethod attribute and printMethod attribute. The values

must identify valid Java methods. You can specify the method's name in one
of two ways:

• a fully qualified Java method name in the form
packagename.ClassName.methodName

• a simple method name in the form methodName

When you only provide a simple method name, the code generator assumes
that the method exists in the class specified by the javaType element's

name attribute.

214

Customizing How Types are Generated

Important
The code generators do not generate parse or print methods. You
are responsible for supplying them. For information on developing
parse and print methods see Implementing converters on page 217.

If you do not provide a value for the parseMethod attribute the code generator

assumes that the Java class specified by the name attribute has a constructor

whose first parameter is a Java String object. The generated adpater's

unmarshal() method uses the assumed constructor to populate the Java

object with the XML data.

If you do not provide a value for the printMethod attribute the code generator

assumes that the Java class specified by the name attribute has a toString()

method. The generated adpater's marshal() method uses the assumed

toString() method to convert the Java object into XML data.

If the javaType element's name attribute specifies a Java primitive type, or

one of the Java primitive's wrapper types, the code generators use the default
converters. For more information on default converters see Default
converters on page 218.

What is generated
As mentioned in Specifying the converters on page 214, using the javaType

customization element triggers the generation of one adapter class for each
customization of an XML Schema primitive type. The adapters are named in
sequence using the pattern AdapterN. So if you specify two primitive type

customizations, the code generators will create two adapter classes:Adapter1

and Adapter2.

The code generated for an XML schema construct depends on if the effected
XML Schema construct is a global defined element or defined as part of a
complex type.

When the XML Schema construct is a globally defined element, the object
factory method generated for the type is modified from the default method
as follows:

• The method is decorated with an @XmlJavaTypeAdapter annotation.

215

Specifying the Java Class of an XML Schema Primitive

The annotation instructs the runtime which adapter class to use when
processing instances of this element. The adapter class is specified as a
class object.

• The default type is replaced by the class specified by the javaType

element's name attribute.

Example 132 on page 216 shows the object factory method for an element
effected by the customization shown in Example 128 on page 212.

Example 132. Customized Object Factory Method for a Global Element

@XmlElementDecl(namespace = "http://widgetVendor.com/types/wid
getTypes", name = "shorty")

@XmlJavaTypeAdapter(org.w3._2001.xmlschema.Adapter1 .class)

public JAXBElement<Integer> createShorty(Integer value)
{

return new JAXBElement<Integer>(_Shorty_QNAME, In
teger.class, null, value);

}

When the XML Schema construct is defined as part of a complex type, the
generated Java property is modified as follows:

• The property is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when
processing instances of this element. The adapter class is specified as a
class object.

• The property's @XmlElement will include a type property.

The value of the type property is the class object representing the generated
object's default base type. In the case of XML Schema primitive types, the
class will be String.

• The property is decorated with an @XmlSchemaType annotation.

The annotation identifies the XML Schema primitive type of the construct.

• The default type is replaced by the class specified by the javaType

element's name attribute.

216

Customizing How Types are Generated

Example 133 on page 217 shows the object factory method for an element
effected by the customization shown in Example 128 on page 212.

Example 133. Customized Complex Type

public class NumInventory {

@XmlElement(required = true, type = String.class)
@XmlJavaTypeAdapter(Adapter1 .class)
@XmlSchemaType(name = "short")
protected Integer numLeft;
@XmlElement(required = true)
protected String size;

public Integer getNumLeft() {
return numLeft;

}

public void setNumLeft(Integer value) {
this.numLeft = value;

}

public String getSize() {
return size;

}

public void setSize(String value) {
this.size = value;

}

}

Implementing converters
The Artix ESB runtime has no way of knowing how to convert XML primitive
types to and from the Java class specified by the javaType element beyond

that it should call the methods specified by the parseMethod attribute and

the printMethod attribute. You are responsible for providing implementations

of the methods for the runtime to call. The implemented methods must be
capable of working with the lexical structures of the XML primitive type.

To simplify the implementation of the data conversion methods, Artix ESB
provides the javax.xml.bind.DatatypeConverter class. This class provides

methods for parsing and printing all of the XML Schema primitive types. The
parse methods take string representations of the XML data and return an
instance of the default type defined in Table 12 on page 122. The print

217

Specifying the Java Class of an XML Schema Primitive

methods take an instance of the default type and return a string representation
of the XML data.

The Java documentation for the DatatypeConverter class can be found at

http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/DatatypeConverter.html.

Default converters
When you specify a Java primitive type, or one of the Java primitive type
Wrapper classes, in the javaType element's name attribute, you do not have

to specify values for the parseMethod attribute or the printMethod attribute.

The Artix ESB runtime will substitute default converters.

The default data converters use the JAXB DatatypeConverter class to parse

the XML data. The default converters will also provide any type casting needed
to make the conversion work.

218

Customizing How Types are Generated

http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/DatatypeConverter.html

Generating Java Classes for Simple Types
Overview

By default, named simple types do not result in generated types unless they
are enumerations. Elements defined using a simple type are mapped into
properties of a Java primitive type. This default mapping works for most cases.

There are instances when you need to have simple types generated into Java
classes. One case in particular is when you want to use type substitution.

To instruct the code generators to generate classes to for all globally defined
simple types, you set the globalBindings customization element's

mapSimpleTypeDef to true.

Adding the customization
You can instruct the code generators to create Java classes for named simple
types by adding the globalBinding element's mapSimpleTypeDef attribute

and setting its value to true.

Example 134 on page 219 shows an in-line customization to force the code
generator to generate Java classes for named simple types.

Example 134. in-Line Customization to Force Generation of Java Classes for SimpleTypes

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings mapSimpleTypeDef="true" />

</appinfo>
</annotation>
...

</schema>

Example 135 on page 219 shows en external binding file to customize
generation of simple types.

Example 135. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="types.xsd">

219

Generating Java Classes for Simple Types

<jaxb:globalBindings mapSimpleTypeDef="true" />
<jaxb:bindings>

<jaxb:bindings>

Important
This customization only effects named simple types that are defined
in the global scope.

Generated classes
The class generated for a simple type will have one property called value.
The value property will be of the Java type defined by the mappings in
Primitive Types on page 122. The generated class will have a getter and a
setter for the value property.

Example 137 on page 220 shows the Java class generated for the simple type
defined in Example 136 on page 220.

Example 136. Simple Type for Customized Mapping

<simpleType name="simpleton">
<restriction base="xsd:string">
<maxLength value="10"/>

</restriction>
</simpleType>

Example 137. Customized Mapping of a Simple Type

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "simpleton", propOrder = {"value"})
public class Simpleton {

@XmlValue
protected String value;

public String getValue() {
return value;

}

public void setValue(String value) {
this.value = value;

}

}

220

Customizing How Types are Generated

Customizing Enumeration Mapping
Overview

If you want enumerated types that are based on a schema type other than
xsd:string, you need to instruct the code generator to map it. You can also
control the name of the generated enumeration constants.

The customization is done using the jaxb:typesafeEnumClass element

and one or more jaxb:typesafeEnumMember elements.

There you may also run into instances where the default settings for the code
generator cannot create valid Java identifiers for all of the members of an
enumeration. You can customize how the code generators handle this using
an attribute of the globalBindings customization.

Member name customizer
If the code generator encounters a naming collision when generating the
members of an enumeration or it cannot create a valid Java identifier for a
member of the enumeration, the code generator will, by default, generate a
warning and not generate a Java enum type for the enumeration.

You can alter this behavior by adding the globalBinding element's

typesafeEnumMemberName attribute. The typesafeEnumMemberName

attribute's values are described in Table 20 on page 221.

Table 20. Values for Customizing Enumeration Member Name Generation

DescriptionValue

Specifies that the Java enum type is not
generated and a warning is given to the user.

skipGeneration(default)

Specifies that member names will be generated
following the pattern VALUE_N. N starts off at one

generateName

is incremented for each member of the
enumeration.

Specifies that the code generator will generate
an error if it cannot map an enumeration to a
Java enum type.

generateError

Example 138 on page 222 shows an in-line customization to force the code
generator to generate type safe member names.

221

Customizing Enumeration Mapping

Example 138. Customization to Force Type Safe Member Names

<schema targetNamespace="http://widget.com/types/widgetTypes"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings typesafeEnumMemberName="generate

Name" />
</appinfo>

</annotation>
...

</schema>

Class customizer
The jaxb:typesafeEnumClass element specifies that an XML Schema

enumeration should be mapped to a Java enum type. It has two attributes
that are described in Table 21 on page 222. When the
jaxb:typesafeEnumClass element is specified in-line, it must be placed

inside the xsd:annotation element of the simple type it is modifying.

Table 21. Attributes for Customizing a Generated Enumeration Class

DescriptionAttribute

Specifies the name of the generated Java enum type. This value
must be a valid Java identifier.

name

Specifies if the enumeration should be mapped to a Java enum
type. The default value is true.

map

Member customizer
The jaxb:typesafeEnumMember element specifies the mapping between

an XML Schema enumeration facet and a Java enum type constant. You

must use one for each enumeration facet in the enumeration whose mapping

is being customized.

When using in-line customization, this element can be used in one of two
ways:

222

Customizing How Types are Generated

• You can place it inside the xsd:annotation element of the enumeration

facet it is modifying.

• You can place all of them as children of the jaxb:typesafeEnumClass

element used to customize the enumeration.

The jaxb:typesafeEnumMember element has a name attribute that is

required. The name attribute specifies the name of the generated Java enum

type constant. It's value must be a valid Java identifier.

This element also has a value attribute. The value is used to associate the

enumeration facet with the proper jaxb:typesafeEnumMember element.

The value of the value attribute must match one of the values of an

enumeration facets' value attribute. This attribute is required when you use

an external binding specification for customizing the type generation or when
you group the jaxb:typesafeEnumMember elements as children of the

jaxb:typesafeEnumClass element.

Examples
Example 139 on page 223 shows an enumerated type that used in-line
customization and has the enumeration's members customized separately.

Example 139. In-line Customization of an Enumerated Type

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<simpleType name="widgetInteger">
<annotation>
<appinfo>
<jaxb:typesafeEnumClass />

</appinfo>
</annotation>
<restriction base="xsd:int">
<enumeration value="1">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="one" />

</appinfo>
</annotation>

</enumeration>
<enumeration value="2">

223

Customizing Enumeration Mapping

<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="two" />

</appinfo>
</annotation>

</enumeration>
<enumeration value="3">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="three" />

</appinfo>
</annotation>

</enumeration>
<enumeration value="4">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="four" />

</appinfo>
</annotation>

</enumeration>
</restriction>

</simpleType>
<schema>

Example 140 on page 224 shows an enumerated type that used in-line
customization and combines the member's customization in the class
customization.

Example 140. In-line Customization of an Enumerated Type Using a Combined Mapping

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<simpleType name="widgetInteger">
<annotation>
<appinfo>
<jaxb:typesafeEnumClass>

<jaxb:typesafeEnumMember value="1" name="one" />
<jaxb:typesafeEnumMember value="2" name="two" />
<jaxb:typesafeEnumMember value="3" name="three" />
<jaxb:typesafeEnumMember value="4" name="four" />

</jaxb:typesafeEnumClass>
</appinfo>

</annotation>
<restriction base="xsd:int">
<enumeration value="1" />
<enumeration value="2" />

224

Customizing How Types are Generated

<enumeration value="3" />
<enumeration value="4" >

</restriction>
</simpleType>

<schema>

Example 141 on page 225 shows en external binding file to customize an
enumerated type.

Example 141. Binding File for Customizing an Enumeration

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="enumMap.xsd">
<jaxb:bindings node="xsd:simpleType[@name='widgetInteger']">

<jaxb:typesafeEnumClass>
<jaxb:typesafeEnumMember value="1" name="one" />
<jaxb:typesafeEnumMember value="2" name="two" />
<jaxb:typesafeEnumMember value="3" name="three" />
<jaxb:typesafeEnumMember value="4" name="four" />

</jaxb:typesafeEnumClass>
</jaxb:bindings>

</jaxb:bindings>
<jaxb:bindings>

225

Customizing Enumeration Mapping

Customizing Fixed Value Attribute Mapping
Overview

By default the code generators map attributes defined as having a fixed value
to normal properties. When using schema validation, Artix ESB can enforce
the schema definition, however that results in a performance impact.

Another way to map attributes that have fixed values to Java is to map them
to Java constants. You can instruct the code generator to map fixed value
attributes to Java constants using the globalBindings customization

element. You can also customize the mapping of fixed value attributes to Java
constants at a more localized level using the property element.

Global customization
You can alter this behavior by adding the globalBinding element's

fixedAttributeAsConstantProperty attribute. Setting this attribute to

true instructs the code generator to map any attribute defined using fixed

attribute to a Java constant.

Example 142 on page 226 shows an in-line customization to force the code
generator to generate constants for attributes with fixed values.

Example 142. In-Line Customization to Force Generation of Constants

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<annotation>
<appinfo>
<jaxb:globalBindings fixedAttributeAsConstantProperty="true" />

</appinfo>
</annotation>
...

</schema>

Example 143 on page 226 shows en external binding file to customize
generation of fixed attributes.

Example 143. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

226

Customizing How Types are Generated

<jaxb:bindings schemaLocation="types.xsd">
<jaxb:globalBindings fixedAttributeAsConstantProperty="true" />

<jaxb:bindings>
<jaxb:bindings>

Local mapping
You can customize attribute mapping on a per-attribute basis using the
property element's fixedAttributeAsConstantProperty attribute. Setting

this attribute to true instructs the code generator to map any attribute defined

using fixed attribute to a Java constant.

Example 144 on page 227 shows an in-line customization to force the code
generator to generate constants for a single attribute with a fixed value.

Example 144. In-Line Customization to Force Generation of Constants

<schema targetNamespace="http://widget.com/types/widgetTypes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

<complexType name="widgetAttr">
<sequence>
...

</sequence>
<attribute name="fixer" type="xsd:int" fixed="7">
<annotation>
<appinfo>
<jaxb:property fixedAttributeAsConstantProperty="true" />

</appinfo>
</annotation>
</attribute>

</complexType>
...

</schema>

Example 145 on page 227 shows en external binding file to customize
generation of a fixed attribute.

Example 145. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="types.xsd">
<jaxb:bindings node="xsd:complexType[@name='widgetAttr']">
<jaxb:bindings node="xsd:attribute[@name='fixer']">

227

Customizing Fixed Value Attribute Mapping

<jaxb:property fixedAttributeAsConstantProperty="true" />
</jaxb:bindings>

</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings>

Java mapping
In the defalt mapping all attributes are mapped to standard Java properties
with getter and setter methods. When you apply this customization to an
attribute defined using the fixed attribute, the attribute is mapped to a Java

constant as shown in Example 146 on page 228.

Example 146. Mapping of a Fixed Value Attribute to a Java Constant

@XmlAttribute
public final static type NAME = value;

type is determined using by mapping the base type of the attribute to a Java

type using the mappings described in Primitive Types on page 122.

NAME is determined by converting the value of the attribute element's name

attribute to all capital letters.

value is determined by the value of the attribute element's fixed attribute.

For example, the attribute defined in Example 144 on page 227 would be
mapped as shown in Example 147 on page 228.

Example 147. Fixed Value Attribute Mapped to a Java Constant

@XmlRootElement(name = "widgetAttr")
public class WidgetAttr {

...

@XmlAttribute
public final static int FIXER = 7;

...

}

228

Customizing How Types are Generated

Specifying the Base Type of an Element or an Attribute
Overview

You occasionally need to customize the class of the object generated for an
element or an attribute defined as part of an XML Schema complex type. For
example, you may want to use a more generalized class of object to allow for
simple type substitution.

One way of doing this is to use the JAXB base type customization. It allows
you to, on a case by case basis, specify the class of object generated for an
element or an attribute. The base type customization allows you to specify
an alternate mapping between the XML Schema construct and the generated
Java object. This alternate mapping can be a simple specialization or
generalization of the default base class. It can also be a mapping of an XML
Schema primitive type to a Java class.

Customization usage
You apply the JAXB base type property to an XML Schema construct using
the JAXB baseType customization element. The baseType customization

element is a child of the JAXB property element, so it must be properly

nested.

Depending on how you want to customize the mapping of the XML Schema
construct to Java object, you would add either the baseType customization

element's name attribute or a javaType child element. The name attribute is

used to map the default class of the generated object to another class within
the same class hierarchy. The javaType element is used when you want to

map XML Schema primitive types to a Java class.

Important
You cannot use both the name attribute and a javaType child

element in the same baseType customization element.

Specializing or generalizing the
default mapping The baseType customization element's name attribute is used to redefine the

class of the generated object to a class within the same Java class hierarchy.
The attribute specifies the fully qualified name of the Java class to which the
XML Schema construct will be mapped. The specified Java class must be
either a super-class or a sub-class of the java class that the code generator
would normally generate for the XML Schema construct. For XML Schema

229

Specifying the Base Type of an Element or an Attribute

primitive types that map to Java primitive types, the wrapper class is used
as the default base class for the purposes of customization.

For example, an element defined as being of xsd:int would use
java.lang.Integer as its default base class. The value of the name attribute

could specify any super-class of Integer such as Number or Object.

Tip
For simple type substitution, the most common customization is to
map the primitive types to an Object object.

Example 148 on page 230 shows an in-line customization that maps one
element in a complex type to a Java Object object.

Example 148. In-Line Customization of a Base Type

<complexType name="widgetOrderInfo">
<all>
<element name="amount" type="xsd:int" />
<element name="shippingAdress" type="Address>
<annotation>
<appinfo>

<jaxb:property>
<jaxb:baseType name="java.lang.Object" />

</jaxb:property>
</appinfo>

</annotation>
</element>
<element name="type" type="xsd:string"/>

</all>
</complexType>

Example 149 on page 230 shows an external binding file for the customization
shown in Example 148 on page 230.

Example 149. External Binding File to Customize a Base Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
jaxb:version="2.0">

<jaxb:bindings schemaLocation="enumMap.xsd">
<jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
<jaxb:bindings node="xsd:element[@name='shippingAddress']">
<jaxb:property>
<jaxb:baseType name="java.lang.Object" />

230

Customizing How Types are Generated

</jaxb:property>
</jaxb:bindings>

</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings>

The resulting Java object's @XmlElement annotation will include a type

property. The value of the type property is the class object representing the
generated object's default base type. In the case of XML Schema primitive
types, the class will be the wrapper class of the corresponding Java primitive
type.

Example 150 on page 231 shows the class generated based on the schema
definition in Example 149 on page 230.

Example 150. Java Class with a Modified Base Class

public class WidgetOrderInfo {

protected int amount;
@XmlElement(required = true)
protected String type;
@XmlElement(required = true, type = Address.class)
protected Object shippingAddress;

...
public Object getShippingAddress() {

return shippingAddress;
}

public void setShippingAddress(Object value) {
this.shippingAddress = value;

}

}

Usage with javaType
The javaType element can be used to customize how elements and attributes

of XML Schema primitive types are mapped to Java objects. Using the
javaType element provides you with a lot more flexibility than simply using

the baseType element's name attribute. The javaType element allows you

to map a primitive type to any class of object.

231

Specifying the Base Type of an Element or an Attribute

For a detailed description of using the javaType element see Specifying the

Java Class of an XML Schema Primitive on page 211.

232

Customizing How Types are Generated

Part III. Advanced Programming Tasks
The JAX-WS programming model offers a number of advanced features.

Developing Asynchronous Applications ... 237
WSDL for Asynchronous Examples ... 238
Generating the Stub Code .. 240
Implementing an Asynchronous Client with the Polling Approach ... 243
Implementing an Asynchronous Client with the Callback Approach ... 246

Using Raw XML Messages ... 251
Using XML in a Consumer with the Dispatch Interface .. 252

Usage Modes .. 253
Data Types ... 255
Working with Dispatch Objects .. 258

Using XML in a Service Provider with the Provider Interface .. 265
Messaging Modes .. 266
Data Types ... 268
Implementing a Provider Object ... 270

Working with Contexts .. 275
Understanding Contexts ... 276
Working with Contexts in a Service Implementation .. 280
Working with Contexts in a Consumer Implementation .. 287
Working with JMS Message Properties .. 291

Inspecting JMS Message Headers .. 292
Inspecting the Message Header Properties .. 294
Setting JMS Properties .. 296

235

236

Developing Asynchronous Applications
JAX-WS provides an easy mechanism for accessing services asynchronously. The SEI can specify additional
methods that a can use to access a service asynchronously. The Artix ESB code generators will generate the extra
methods for you. You simply need to add the business logic.

WSDL for Asynchronous Examples ... 238
Generating the Stub Code .. 240
Implementing an Asynchronous Client with the Polling Approach ... 243
Implementing an Asynchronous Client with the Callback Approach ... 246

In addition to the usual synchronous mode of invocation, Artix ESB also
supports two forms of asynchronous invocation:

• Polling approach

In this case, to invoke the remote operation, you call a special method that
has no output parameters, but returns a javax.xml.ws.Response object.

The Response object (which inherits from the

javax.util.concurrency.Future interface) can be polled to check

whether or not a response message has arrived.

• Callback approach

In this case, to invoke the remote operation, you call another special method
that takes a reference to a callback object (of
javax.xml.ws.AsyncHandler type) as one of its parameters. Whenever

the response message arrives at the client, the runtime calls back on the
AsyncHandler object to give it the contents of the response message.

237

WSDL for Asynchronous Examples
Example 151 on page 238 shows the WSDL contract that is used for the
asynchronous examples. The contract defines a single interface,
GreeterAsync, which contains a single operation, greetMeSometime.

Example 151. WSDL Contract for Asynchronous Example

<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions xmlns="http://schem
as.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://apache.org/hello_world_async_soap_http"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://apache.org/hello_world_async_soap_http"
name="HelloWorld">

<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_async_soap_http/types"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
elementFormDefault="qualified">

<element name="greetMeSometime">
<complexType>
<sequence>
<element name="requestType" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="greetMeSometimeResponse">
<complexType>
<sequence>
<element name="responseType"

type="xsd:string"/>
</sequence>

</complexType>
</element>

</schema>
</wsdl:types>

<wsdl:message name="greetMeSometimeRequest">
<wsdl:part name="in" element="x1:greetMeSometime"/>

</wsdl:message>
<wsdl:message name="greetMeSometimeResponse">
<wsdl:part name="out"

element="x1:greetMeSometimeResponse"/>
</wsdl:message>

238

Developing Asynchronous Applications

<wsdl:portType name="GreeterAsync">
<wsdl:operation name="greetMeSometime">
<wsdl:input name="greetMeSometimeRequest"

message="tns:greetMeSometimeRequest"/>
<wsdl:output name="greetMeSometimeResponse"

message="tns:greetMeSometimeResponse"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="GreeterAsync_SOAPBinding"
type="tns:GreeterAsync">

...
</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port name="SoapPort"

binding="tns:GreeterAsync_SOAPBinding">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

239

WSDL for Asynchronous Examples

Generating the Stub Code
The asynchronous style of invocation requires extra stub code for the dedicated
asynchronous methods defined on the SEI. This special stub code is not
generated by default, however. To switch on the asynchronous feature and
generate the requisite stub code, you must use the mapping customization
feature from the WSDL 2.0 specification.

Defining the customization
Customization enables you to modify the way the artix wsdl2java generates
stub code. In particular, it enables you to modify the WSDL-to-Java mapping
and to switch on certain features. Here, customization is used to switch on
the asynchronous invocation feature. Customizations are specified using a
binding declaration, which you define using a jaxws:bindings tag (where

the jaxws prefix is tied to the http://java.sun.com/xml/ns/jaxws

namespace). There are two alternative ways of specifying a binding declaration:

• External binding declaration — the jaxws:bindings element is defined

in a file separately from the WSDL contract. You specify the location of the
binding declaration file to artix wsdl2java when you generate the stub code.

• Embedded binding declaration — you can also embed the jaxws:bindings

element directly in a WSDL contract, treating it as a WSDL extension. In
this case, the settings in jaxws:bindings apply only to the immediate

parent element.

This section considers only the external binding declaration. The template for
a binding declaration file that switches on asynchronous invocations is shown
in Example 152 on page 240.

Example 152. Template for an Asynchronous Binding Declaration

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="AffectedWSDL"
xmlns="http://java.sun.com/xml/ns/jaxws">

<bindings node="AffectedNode">
<enableAsyncMapping>true</enableAsyncMapping>

</bindings>
</bindings>

Where AffectedWSDL specifies the URL of the WSDL contract that is affected

by this binding declaration. The AffectedNode is an XPath value that specifies

240

Developing Asynchronous Applications

which node (or nodes) from the WSDL contract are affected by this binding
declaration. You can set AffectedNode to wsdl:definitions, if you want

the entire WSDL contract to be affected. The jaxws:enableAsyncMapping

element is set to true to enable the asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the
GreeterAsync interface, you could specify <bindings

node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the
preceding binding declaration.

Running the code generator
Assuming that the binding declaration is stored in a file, async_binding.xml,

you can generate the requisite stub files with asynchronous support by entering
the following command:

artix wsdl2java -ant -client -d ClientDir -b async_binding.xml
hello_world.wsdl

When you run artix wsdl2java, you specify the location of the binding
declaration file using the -b option.

Generated code
After generating the stub code in this way, the GreeterAsync SEI (in the file

GreeterAsync.java) is defined as shown in Example 153 on page 241.

Example 153. Service Endpoint Interface with Methods for Asynchronous Invocations

/* Generated by WSDLToJava Compiler. */
package org.apache.hello_world_async_soap_http;

import org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
...

public interface GreeterAsync
{
public Future<?> greetMeSometimeAsync(

java.lang.String requestType,
AsyncHandler<GreetMeSometimeResponse> asyncHandler

);

public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
java.lang.String requestType

);

public java.lang.String greetMeSometime(
java.lang.String requestType

241

Generating the Stub Code

);
}

In addition to the usual synchronous method, greetMeSometime(), two

asynchronous methods are also generated for the greetMeSometime operation:

• public Future<?> greetMeSomtimeAsync(java.lang.String requestType,
AsyncHandler<GreetMeSomtimeResponse> asyncHandler);

Call this method for the callback approach to asynchronous invocation.

• public Response<GreetMeSomeTimeResponse> greetMeSometimeAsync(java.lang.String requestType);

Call this method for the polling approach to asynchronous invocation.

242

Developing Asynchronous Applications

Implementing an Asynchronous Client with the Polling
Approach

The polling approach is the more straightforward of the two approaches to
developing an asynchronous application. The client invokes the asynchronous
method called OperationNameAsync() and is returned a Response<T> object

that it can poll for a response. What the client does while it is waiting for a
response is up to the requirements of the application. There are two basic
patterns for how to handle the polling:

• Non-blocking polling

You periodically check to see if the result is ready by calling the non-blocking
Response<T>.isDone() method. If the result is ready, the client can

process it. If it not, the client can continue doing other things.

• Blocking polling

You call Response<T>.get() right away and block until the response

arrives (optionally specifying a timeout).

Using the non-blocking pattern
Example 154 on page 243 illustrates using non-blocking polling to make an
asynchronous invocation on the greetMeSometime operation defined in
Example 151 on page 238. The client invokes the asynchronous operation
and periodically checks to see if the result has returned.

Example 154. Non-Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

"SOAPService");

243

Implementing an Asynchronous Client with the Polling
Approach

private Client() {}

public static void main(String args[]) throws Exception {

// set up the proxy for the client

❶ Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

❷ while (!greetMeSomeTimeResp.isDone()) {
// client does some work
}

❸ GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response

System.exit(0);
}

}

The code in Example 154 on page 243 does the following:

❶ Invokes the greetMeSometimeAsync() on the proxy.

The method call returns the Response<GreetMeSometimeResponse>

object to the client immediately. The Artix ESB runtime handles the
details of receiving the reply from the remote endpoint and populating
the Response<GreetMeSometimeResponse> object.

Note
The runtime transmits the request to the remote endpoint's
greetMeSometime() method and handles the details of the

asynchronous nature of the call under the covers. The endpoint,
and therefore the service implementation, never needs to worry
about the details of how the client intends to wait for a
response.

❷ Checks to see if a response has arrived by checking the isDone() of

the returned Response object.

If the response has not arrived, the client does some work before
checking again.

244

Developing Asynchronous Applications

❸ If the response has arrived, the client retrieves it from the Response

object using the get().

Using the blocking pattern
Using blocking polling to make asynchronous invocations on a remote
operation follows the same steps as non-blocking polling. However, instead
of using the Response object's isDone() to check if a response has been

returned before calling the get() to retrieve the response, you immediately

call the get(). The get() blocks until the response is available.

Tip
You can also pass a timeout limit to the get() method.

Example 155 on page 245 shows a client that uses blocking polling.

Example 155. Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",

"SOAPService");

private Client() {}

public static void main(String args[]) throws Exception {

// set up the proxy for the client

Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response
System.exit(0);

}
}

245

Implementing an Asynchronous Client with the Polling
Approach

Implementing an Asynchronous Client with the
Callback Approach

An alternative approach to making an asynchronous operation invocation is
to implement a callback class. You then call the asynchronous remote method
that takes the callback object as a parameter. The runtime returns the response
to the callback object.

To implement an application that uses callbacks you need to do the following:

1. Create a callback class that implements the AsyncHandler interface.

Note
Your callback object can perform any amount of response
processing required by your application.

2. Make remote invocations using the operationNameAsync() that takes

the callback object as a parameter and returns a Future<?> object.

3. If your client needs to access the response data, you can periodically use
the returned Future<?> object's isDone() method to see if the remote

endpoint has sent the response.

Tip
If the callback object does all of the response processing, you
do not need to check if the response has arrived.

Implementing the callback
Your callback class must implement the javax.xml.ws.AsyncHandler

interface. The interface defines a single method:

void handleResponse(Response<T> res);

The Artix ESB runtime calls the handleResponse() to notify the client that

the response has arrived. Example 156 on page 247 shows an outline of the
AsyncHandler interface that you need to implement.

246

Developing Asynchronous Applications

Example 156. The javax.xml.ws.AsyncHandler Interface

public interface javax.xml.ws.AsyncHandler
{
void handleResponse(Response<T> res)

}

Example 157 on page 247 shows a callback class for the greetMeSometime
operation defined in Example 151 on page 238.

Example 157. Callback Implementation Class

package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements AsyncHandler<GreetMeSometimeResponse>
{
❶ private GreetMeSometimeResponse reply;

❷ public void handleResponse(Response<GreetMeSometimeResponse>
response)

{
try
{
reply = response.get();

}
catch (Exception ex)
{
ex.printStackTrace();

}
}

❸ public String getResponse()
{
return reply.getResponseType();

}
}

The callback implementation shown in Example 157 on page 247 does the
following:

❶ Defines a member variable, response, to hold the response returned

from the remote endpoint.

247

Implementing an Asynchronous Client with the Callback
Approach

❷ Implements handleResponse().

This implementation simply extracts the response and assigns it to the
member variable reply.

❸ Implements an added method called getResponse().

This method is a convenience method that extracts the data from reply

and returns it.

Implementing the consumer
Example 158 on page 248 illustrates a client that uses the callback approach
to make an asynchronous call to the GreetMeSometime operation defined in
Example 151 on page 238.

Example 158. Callback Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
...

public static void main(String args[]) throws Exception
{
...
// Callback approach

❶ GreeterAsyncHandler callback = new GreeterAsyncHandler();

❷ Future<?> response =
port.greetMeSometimeAsync(System.getProperty("user.name"),

callback);
❸ while (!response.isDone())

{
// Do some work

}
❹ resp = callback.getResponse();

...
System.exit(0);

}
}

248

Developing Asynchronous Applications

The code in Example 158 on page 248 does the following:

❶ Instantiates a callback object.

❷ Invokes the greetMeSometimeAsync() that takes the callback object

on the proxy.

The method call returns the Future<?> object to the client immediately.

The Artix ESB runtime handles the details of receiving the reply from
the remote endpoint, invoking the callback object's handleResponse()

method, and populating the Response<GreetMeSometimeResponse>

object.

Note
The runtime transmits the request to the remote endpoint's
greetMeSometime() method and handles the details of the

asynchronous nature of the call without the remote endpoint's
knowledge. The endpoint, and therefore the service
implementation, never needs to worry about the details of how
the client intends to wait for a response.

❸ Uses the returned Future<?> object's isDone() method to check if the

response has arrived from the remote endpoint.
❹ Invokes the callback object's getResponse() method to get the response

data.

249

Implementing an Asynchronous Client with the Callback
Approach

250

Using Raw XML Messages
The high-level JAX-WS APIs shield the developer from using native XML messages by marshelling the data into
JAXB objects. However, there are cases when it is better to have direct access to the raw XML message data that
is passing on the wire. The JAX-WS APIs provide two interfaces that provide access to the raw XML: Dispatch

is the client-side interface. Provider is the server-side interface.

Using XML in a Consumer with the Dispatch Interface .. 252
Usage Modes .. 253
Data Types ... 255
Working with Dispatch Objects .. 258

Using XML in a Service Provider with the Provider Interface .. 265
Messaging Modes .. 266
Data Types ... 268
Implementing a Provider Object ... 270

251

Using XML in a Consumer with the Dispatch Interface

Usage Modes .. 253
Data Types ... 255
Working with Dispatch Objects .. 258

The Dispatch interface is a low-level JAX-WS API that allows you work

directly with raw messages. It accepts and returns messages, or payloads, of
a number of types including DOM objects, SOAP messages, and JAXB objects.
Because it is a low-level API, Dispatch does not perform any of the message

preparation that the higher-level JAX-WS APIs perform. You must ensure that
the messages, or payloads, that you pass to the Dispatch object are properly

constructed and make sense for the remote operation being invoked.

252

Using Raw XML Messages

Usage Modes
Overview

Dispatch objects have two usage modes:

• Message mode

• Message Payload mode (Payload mode)

The usage mode you specify for a Dispatch object determines the amount

of detail is passed to the user level code.

Message mode
In message mode, a Dispatch object works with complete messages. A

complete message includes any binding specific headers and wrappers. For
example, a consumer interacting with a service that requires SOAP messages
would need to provide the Dispatch object's invoke() method a fully

specified SOAP message. The invoke() method will also return a fully

specified SOAP message. The consumer code is responsible for completing
and reading the SOAP message's headers and the SOAP message's envelope
information.

Tip
Message mode is not ideal when you wish to work with JAXB objects.

You specify that a Dispatch object uses message mode by providing the

value java.xml.ws.Service.Mode.MESSAGE when creating the Dispatch

object. For more information about creating a Dispatch object see Creating

a Dispatch object on page 258.

Payload mode
In payload mode, also called message payload mode, a Dispatch object

works with only the payload of a message. For example, a Dispatch object

working in payload mode works only with the body of a SOAP message. The
binding layer processes any binding level wrappers and headers. When a
result is returned from invoke() the binding level wrappers and headers are

already striped away and only the body of the message is left.

253

Usage Modes

Tip
When working with a binding that does not use special wrappers,
such as the Artix ESB XML binding, payload mode and message
mode provide the same results.

You specify that a Dispatch object uses payload mode by providing the value

java.xml.ws.Service.Mode.PAYLOAD when creating the Dispatch object.

For more information about creating a Dispatch object see Creating a

Dispatch object on page 258.

254

Using Raw XML Messages

Data Types
Overview

Dispatch objects, because they are low-level objects, are not optimized for

using the same JAXB generated types as the higher level consumer APIs.
Dispatch objects work with the following types of objects:

• javax.xml.transform.Source

• javax.xml.soap.SOAPMessage

• javax.activation.DataSource

• JAXB on page 256

Using Source objects
A Dispatch object can accept and return objects that are derived from the

javax.xml.transform.Source interface. Source objects can be used with

any binding and in either message or payload mode.

Source objects are low level objects that hold XML documents. Each Source

implementation provides methods that access the stored XML documents
and manipulate its contents. The following objects implement the Source

interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML
message is stored as a set of Node objects that can be accessed using

the getNode() method. Nodes can be updated or added to the DOM

tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects
contain an InputSource object that contains the raw data and an

XMLReader object that parses the raw data.

255

Data Types

StreamSource

Holds XML messages as a data stream. The data stream can be
manipulated as would any other data stream.

Using SOAPMessage objects
Dispatch objects can use javax.xml.soap.SOAPMessage objects when

the following conditions are true:

• the Dispatch object is using the SOAP binding.

• the Dispatch object is using message mode.

A SOAPMessage object, as the name implies, holds a SOAP message. They

contain one SOAPPart object and zero or more AttachmentPart objects.

The SOAPPart object contains the SOAP specific portions of the SOAP

message including the SOAP envelope, any SOAP headers, and the SOAP
message body. The AttachmentPart objects contain binary data that was

passed as an attachment.

Using DataSource objects
Dispatch objects can use objects that implement the

javax.activation.DataSource interface when the following conditions

are true:

• the Dispatch object is using the HTTP binding.

• the Dispatch object is using message mode.

DataSource objects provide a mechanism for working with MIME typed data

from a variety of sources including URLs, files, and byte arrays.

Using JAXB objects
While Dispatch objects are intended to be low level API that allows you to

work with raw messages, they also allow you to work with JAXB objects. To
work with JAXB objects a Dispatch object must be passed a JAXBContext

that knows how to marshal and unmarshal the JAXB objects in use. The
JAXBContext is passed when the Dispatch object is created.

256

Using Raw XML Messages

You can pass any JAXB object understood by the JAXBContext object as the

parameter to the invoke() method. You can also cast the returned message

into any JAXB object understood by the JAXBContext object.

257

Data Types

Working with Dispatch Objects

Procedure
To use a Dispatch object to invoke a remote service you do the following:

1. Create a Dispatch object.

2. Construct a request message.

3. Call the proper invoke() method.

4. Parse the response message.

Creating a Dispatch object
To create a Dispatch object do the following:

1. Create a Service object to represent the wsdl:service element defining

the service on which the Dispatch object will make invocations. See

Creating a Service Object on page 47.

2. Create the Dispatch object using the Service object's

createDispatch() method shown in Example 159 on page 258.

Example 159. The createDispatch() Method

public Dispatch<T> createDispatch(QName portName,
java.lang.Class<T> type,
Service.Mode mode)

throws WebServiceException;

Note
If you are using JAXB objects the method signature for
createDispatch() is:

public Dispatch<T> createDispatch(QName portName,
javax.xml.bind.JAXBContext context,
Service.Mode mode)

throws WebServiceException;

Table 22 on page 259 describes the parameters for createDispatch().

258

Using Raw XML Messages

Table 22. Parameters for createDispatch()

DescriptionParameter

Specifies the QName of the wsdl:port element that represent the service provider on which the

Dispatch object will make invocations.

portName

Specifies the data type of the objects used by the Dispatch object. See Data Types on page 255.type

Note
If you are working with JAXB objects, this parameter is where you would specify the
JAXBContext object used to marshal and unmarshal the JAXB objects.

Specifies the usage mode for the Dispatch object. See Usage Modes on page 253.mode

Example 160 on page 259 shows code for creating a Dispatch object that

works with DOMSource objects in payload mode.

Example 160. Creating a Dispatch Object

package com.iona.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
{
QName serviceName = new QName("http://org.apache.cxf", "stockQuoteReporter");
Service s = Service.create(serviceName);

QName portName = new QName("http://org.apache.cxf", "stockQuoteReporterPort");
Dispatch<DOMSource> dispatch = s.createDispatch(portName,

DOMSource.class,
Service.Mode.PAYLOAD);

...

Constructing request messages
When working with Dispatch objects requests must be built from scratch.

The developer is responsible for ensuring that the messages passed to a

259

Working with Dispatch Objects

Dispatch object match a request that the targeted service provider can

process. This requires precise knowledge about the messages used by the
service provider and what, if any, header information it requires.

This information can be provided by a WSDL document or an XMLSchema
document that defines the messages. While service providers vary greatly
there are a few guidelines that can be followed:

• The root element of the request is based in the value of the name attribute

of the wsdl:operation element that corresponds to the operation being

invoked.

Warning
If the service being invoked uses doc/literal bare messages, the
root element of the request will be based on the value of name

attribute of the wsdl:part element refered to by the

wsdl:operation element.

• The root element of the request will be namespace qualified.

• If the service being invoked uses rpc/literal messages, the top-level elements
in the request will not be namespace qualified.

Important
The children of top-level elements may be namespace qualified.
To be certain you will need to check their schema definitions.

• If the service being invoked uses rpc/literal messages, none of the top-level
elements can be null.

• If the service being invoked uses doc/literal messages, the schema definition
of the message determines if any of the elements are namespace qualified.

260

Using Raw XML Messages

For more information about how services use XML messages see the WS-I
Basic Profile [http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html].

Synchronous invocation
For consumers that make synchronous invocations that generate a response,
you use the Dispatch object's invoke() method shown in

Example 161 on page 261.

Example 161. The Dispatch.invoke() Method

T invoke(T msg)
throws WebServiceException;

The type of both the response and the request passed to the invoke() method

are determined when the Dispatch object is created. For example if you

created a Dispatch object using createDispatch(portName,

SOAPMessage.class, Service.Mode.MESSAGE) the response and the

request would both be SOAPMessage objects.

Note
When using JAXB objects, the response and the request can be of
any type the provided JAXBContext object can marshal and

unmarshal. Also, the response and the request can be different JAXB
objects.

Example 162 on page 261 shows code for making a synchronous invocation
on a remote service using a DOMSource object.

Example 162. Making a Synchronous Invocation Using a Dispatch Object

// Creating a DOMSource Object for the request
DocumentBuilder db = DocumentBuilderFactory.newDocumentBuilder();
Document requestDoc = db.newDocument();
Element root = requestDoc.createElementNS("http://org.apache.cxf/stockExample",

"getStockPrice");
root.setNodeValue("DOW");
DOMSource request = new DOMSource(requestDoc);

261

Working with Dispatch Objects

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

// Dispatch disp created previously
DOMSource response = disp.invoke(request);

Asynchronous invocation
Dispatch objects also support asynchronous invocations. As with the higher

level asynchronous APIs discussed in Developing Asynchronous
Applications on page 237, Dispatch objects can use both the polling approach

and the callback approach.

When using the polling approach the invokeAsync() method returns a

Response<t> object that can be periodically polled to see if the response

has arrived. Example 163 on page 262 shows the signature of the method
used to make an asynchronous invocation using the polling approach.

Example 163. The Dispatch.invokeAsync() Method for Polling

Response <T> invokeAsync(T msg)
throws WebServiceException;

For detailed information on using the polling approach for asynchronous
invocations see Implementing an Asynchronous Client with the Polling
Approach on page 243.

When using the callback approach the invokeAsync() method takes an

AsyncHandler implementation that processes the response when it is

returned. Example 164 on page 262 shows the signature of the method used
to make an asynchronous invocation using the callback approach.

Example 164. The Dispatch.invokeAsync() Method Using a Callback

Future<?> invokeAsync(T msg,
AsyncHandler<T> handler)

throws WebServiceException;

For detailed information on using the callback approach for asynchronous
invocations see Implementing an Asynchronous Client with the Callback
Approach on page 246.

262

Using Raw XML Messages

Note
As with the synchronous invoke() method, the type of the response

and the type of the request are determined when you create the
Dispatch object.

Oneway invocation
When a request does not generate a response, you make remote invocations
using the Dispatch object's invokeOneWay(). Example 165 on page 263

shows the signature for this method.

Example 165. The Dispatch.invokeOneWay() Method

void invokeOneWay(T msg)
throws WebServiceException;

The type of object used to package the request is determined when the
Dispatch object is created. For example if the Dispatch object is created

using createDispatch(portName, DOMSource.class,

Service.Mode.PAYLOAD) the request would be packaged into a DOMSource

object.

Note
When using JAXB objects, the response and the request can be of
any type the provided JAXBContext object can marshal and

unmarshal. Also, the response and the request can be different JAXB
objects.

Example 166 on page 263 shows code for making a oneway invocation on a
remote service using a JAXB object.

Example 166. Making a One Way Invocation Using a Dispatch Object

// Creating a JAXBContext and an Unmarshaller for the request
JAXBContext jbc = JAXBContext.newInstance("org.apache.cxf.StockExample");
Unmarshaller u = jbc.createUnmarshaller();

// Read the request from disk
File rf = new File("request.xml");
GetStockPrice request = (GetStockPrice)u.unmarshal(rf);

263

Working with Dispatch Objects

// Dispatch disp created previously
disp.invokeOneWay(request);

264

Using Raw XML Messages

Using XML in a Service Provider with the Provider

Interface
Messaging Modes .. 266
Data Types ... 268
Implementing a Provider Object ... 270

The Provider interface is a low-level JAX-WS API that allows you to

implement a service provider that works directly with messages as raw XML.
The messages are not packaged into JAXB objects before being passed to an
object that implements the Provider interface as they are with the higher

level SEI based objects.

265

Using XML in a Service Provider with the Provider
Interface

Messaging Modes
Overview

Objects that implement the Provider interface have two messaging modes:

• Message mode

• Payload mode

The messaging mode you specify determines the level of messaging detail
that is passed to your implementation.

Message mode
When using message mode, a Provider implementation works with complete

messages. A complete message includes any binding specific headers and
wrappers. For example, a Provider implementation that uses a SOAP binding

would receive requests as fully specified SOAP message. Any response returned
from the implementation would also need to be a fully specified SOAP
message.

You specify that a Provider implementation uses message mode by providing

the value java.xml.ws.Service.Mode.MESSAGE as the value to the

javax.xml.ws.ServiceMode annotation as shown in

Example 167 on page 266.

Example 167. Specifying that a Provider Implementation Uses Message

Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class stockQuoteProvider implements Provider<SOAPMes
sage>
{
...

}

Payload mode
In payload mode a Provider implementation works with only the payload

of a message. For example, a Provider implementation working in payload

mode works only with the body of a SOAP message. The binding layer
processes any binding level wrappers and headers.

266

Using Raw XML Messages

Tip
When working with a binding that does not use special wrappers,
such as the Artix ESB XML binding, payload mode and message
mode provide the same results.

You specify that a Provider implementation uses payload mode by providing

the value java.xml.ws.Service.Mode.PAYLOAD as the value to the

javax.xml.ws.ServiceMode annotation as shown in

Example 168 on page 267.

Example 168. Specifying that a Provider Implementation Uses Payload

Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class stockQuoteProvider implements Provider<DOMSource>
{
...

}

Tip
If you do not provide the @ServiceMode annotation, the Provider

implementation will default to using payload mode.

267

Messaging Modes

Data Types
Overview

Provider implementations, because they are low-level objects, cannot use

the same JAXB generated types as the higher level consumer APIs. Provider

implementations work with the following types of objects:

• javax.xml.transform.Source

• javax.xml.soap.SOAPMessage

• javax.activation.DataSource

Using Source objects
A Provider implementation can accept and return objects that are derived

from the javax.xml.transform.Source interface. Source objects are low

level objects that hold XML documents. Each Source implementation provides

methods that access the stored XML documents and manipulate its contents.
The following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML
message is stored as a set of Node objects that can be accessed using

the getNode() method. Nodes can be updated or added to the DOM

tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects
contain an InputSource object that contains the raw data and an

XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be
manipulated as would any other data stream.

268

Using Raw XML Messages

Important
When using Source objects the developer is responsible for ensuring

that all required binding specific wrappers are added to the message.
For example, when interacting with a service expecting SOAP
messages, the developer must ensure that the required SOAP
envelope is added to the outgoing request and that the SOAP
envelope's contents are correct.

Using SOAPMessage objects
Provider implementations can use javax.xml.soap.SOAPMessage objects

when the following conditions are true:

• the Provider implementation is using the SOAP binding.

• the Provider implementation is using message mode.

A SOAPMessage object, as the name implies, holds a SOAP message. They

contain one SOAPPart object and zero or more AttachmentPart objects.

The SOAPPart object contains the SOAP specific portions of the SOAP

message including the SOAP envelope, any SOAP headers, and the SOAP
message body. The AttachmentPart objects contain binary data that was

passed as an attachment.

Using DataSource objects
Provider implementations can use objects that implement the

javax.activation.DataSource interface when the following conditions

are true:

• the implementation is using the HTTP binding.

• the implementation is using message mode.

DataSource objects provide a mechanism for working with MIME typed data

from a variety of sources including URLs, files, and byte arrays.

269

Data Types

Implementing a Provider Object

Overview
The Provider interface is relatively easy to implement. It only has one

method, invoke(), that needs to be implemented. In addition it has three

simple requirements:

• An implementation must have the @WebServiceProvider annotation.

• An implementation must have a default public constructor.

• An implementation must implement a typed version of the Provider

interface.

In other words, you cannot implement a Provider<T> interface. You must

implement a version of the interface that uses a concrete data type as listed
in Data Types on page 268. For example, you can implement an instance
of a Provider<SAXSource>.

The complexity of implementing the Provider interface surrounds handling

the request messages and building the proper responses.

Working with messages
Unlike the higher-level SEI based service implementations, Provider

implementations receive requests as raw XML data and must send responses
as raw XML data. This requires that the developer has intimate knowledge
of the messages used by the service being implemented. These details can
typically be found in the WSDL document describing the service.

WS-I Basic Profile
[http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html] provides
guidelines about the messages used by services including:

• The root element of a request is based in the value of the name attribute

of the wsdl:operation element that corresponds to the operation being

invoked.

270

Using Raw XML Messages

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Warning
If the service uses doc/literal bare messages, the root element of
the request will be based on the value of name attribute of the

wsdl:part element referred to by the wsdl:operation element.

• The root element of all messages will be namespace qualified.

• If the service uses rpc/literal messages, the top-level elements in the
messages will not be namespace qualified.

Important
The children of top-level elements may be namespace qualified.
To be certain you will need to check their schema definitions.

• If the service uses rpc/literal messages, none of the top-level elements can
be null.

• If the service uses doc/literal messages, the schema definition of the
message determines if any of the elements are namespace qualified.

The @WebServiceProvider
annotation To be recognized by JAX-WS as a service implementation, a Provider

implementation must be decorated with the @WebServiceProvider

annotation.

Table 23 on page 271 describes the properties you can set for the
@WebServiceProvider annotation.

Table 23. @WebServiceProvider Properties

DescriptionProperty

Specifies the value of name attribute of the wsdl:port element that defines the service's

endpoint.

portName

Specifies the value of name attribute of the wsdl:service element that contains the service's

endpoint.

serviceName

Specifies the targetname space fop the service's WSDL definition.targetNamespace

271

Implementing a Provider Object

DescriptionProperty

Specifies the URI for the WSDL document definig the service.wsdlLocation

All of these properties are optional and are empty by default. If you leave
them empty, Artix ESB will create values using information from the
implementation class.

Implementing the invoke()
method The Provider interface has only one method, invoke(), that needs to be

implemented. invoke() receives the incoming request packaged into the

type of object declared by the type of Provider interface being implemented

and returns the response message packaged into the same type of object. For
example, an implementation of a Provider<SOAPMessage> interface would

receive the request as a SOAPMessage object and return the response as a

SOAPMessage object.

The messaging mode used by the Provider implementation determines the

amount of binding specific information the request and response messages
contain. Implementation using message mode receive all of the binding specific
wrappers and headers along with the request. They must also add all of the
binding specific wrappers and headers to the response message.
Implementations using payload mode only receive the body of the request.
The XML document returned by an implementation using payload mode will
be placed into the body of the request message.

Examples
Example 169 on page 272 shows a Provider implementation that works

with SOAPMessage objects in message mode.

Example 169. Provider<SOAPMessage> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

❶@WebServiceProvider(portName="stockQuoteReporterPort"
serviceName="stockQuoteReporter")

❷@ServiceMode(value="Service.Mode.MESSAGE")
public class stockQuoteReporterProvider implements Provider<SOAPMessage>
{
❸public stockQuoteReporterProvider()
{

272

Using Raw XML Messages

}

❹public SOAPMessage invoke(SOAPMessage request)
{

❺ SOAPBody requestBody = request.getSOAPBody();
❻ if(requestBody.getElementName.getLocalName.equals("getStockPrice"))

{
❼ MessageFactory mf = MessageFactory.newInstance();

SOAPFactory sf = SOAPFactory.newInstance();

❽ SOAPMessage response = mf.createMessage();
SOAPBody respBody = response.getSOAPBody();
Name bodyName = sf.createName("getStockPriceResponse");
respBody.addBodyElement(bodyName);
SOAPElement respContent = respBody.addChildElement("price");
respContent.setValue("123.00");
response.saveChanges();

❾ return response;
}
...

}
}

The code in Example 169 on page 272 does the following:

❶ Specifies that the following class implements a Provider object that

implements the service whose wsdl:service element is named

stockQuoteReporter and whose wsdl:port element is named

stockQuoteReporterPort.
❷ Specifies that this Provider implementation uses message mode.

❸ Provides the required default public constructor.

❹ Provides an implementation of the invoke() method that takes a

SOAPMessage object and returns a SOAPMessage object.

❺ Extracts the request message from the body of the incoming SOAP
message.

❻ Checks the root element of the request message to determine how to
process the request.

❼ Creates the factories needed for building the response.

❽ Builds the SOAP message for the response.

❾ Returns the response as a SOAPMessage object.

273

Implementing a Provider Object

Example 170 on page 274 shows an example of a Provider implementation

using DOMSource objects in payload mode.

Example 170. Provider<DOMSource> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

❶@WebServiceProvider(portName="stockQuoteReporterPort" servi
ceName="stockQuoteReporter")
❷@ServiceMode(value="Service.Mode.PAYLOAD")
public class stockQuoteReporterProvider implements Pro
vider<DOMSource>
❸public stockQuoteReporterProvider()
{
}

❹public DOMSource invoke(DOMSource request)
{
DOMSource response = new DOMSource();
...
return response;

}
}

The code in Example 170 on page 274 does the following:

❶ Specifies that the class implements a Provider object that implements

the service whose wsdl:service element is named stockQuoteReporter

and whose wsdl:port element is named stockQuoteReporterPort.

❷ Specifies that this Provider implementation uses payload mode.

❸ Provides the required default public constructor.

❹ Provides an implementation of the invoke() method that takes a

DOMSource object and returns a DOMSource object.

274

Using Raw XML Messages

Working with Contexts
JAX-WS uses contexts to pass metadata along the messaging chain. This metadata, depending on its scope, is
accessible to implementation level code. It is also accessible to JAX-WS handlers that operate on the message
below the implementation level.

Understanding Contexts ... 276
Working with Contexts in a Service Implementation .. 280
Working with Contexts in a Consumer Implementation .. 287
Working with JMS Message Properties .. 291

Inspecting JMS Message Headers .. 292
Inspecting the Message Header Properties .. 294
Setting JMS Properties .. 296

275

Understanding Contexts
In many instances it is necessary to pass information about a message to
other parts of an application. Artix ESB does this using a context mechanism.
Contexts are maps that hold properties relating to an outgoing or incoming
message. The properties stored in the context are typically metadata about
the message and the underlying transport used to communicate the message.
For example, the transport specific headers used in transmitting the message,
such as the HTTP response code or the JMS correlation ID, are stored in the
JAX-WS contexts.

The contexts are available at all levels of a JAX-WS application. However,
they differ in subtle ways depending upon where in the message processing
stack you are accessing the context. JAX-WS Handler implementations have

direct access to the contexts and can access all properties that are set in
them. Service implementations access contexts by having them injected and
can only access properties that are set in the APPLICATION scope. Consumer

implementations can only access properties that are set in the APPLICATION

scope.

Figure 1 on page 277 shows how the context properties pass through Artix
ESB. As a message passes through the messaging chain, its associated
message context passes along with it.

276

Working with Contexts

Figure 1. Message Contexts and Message Processing Path

How properties are stored in a
context The message contexts are all implementations of the

javax.xml.ws.handler.MessageContext interface. The MessageContext

interface extends the java.util.Map<String key, Object value>

interface. Map objects store information as key value pairs.

In a message context, properties are stored as name value pairs. A property's
key is a String that identifies the property. The value of a property can be

any stored in any Java object. When the value is returned from a message
context, the application must know the type to expect and cast accordingly.
For example if a property's value is stored in a UserInfo object it will still

be returned from a message context as a plain Object object that must be

cast back into a UserInfo object.

277

Understanding Contexts

Properties in a message context also have a scope. The scope determines
where in the message processing chain a property can be accessed.

Property scopes
Properties in a message context are scoped. A property can have one of two
scopes:

APPLICATION

Properties scoped as APPLICATION are available to JAX-WS Handler

implementations, consumer implementation code, and service provider
implementation code. If a handler needed to pass a property to the service
provider implementation, it would set the property's scope to
APPLICATION. All properties set from either the consumer implementation

or the service provider implementation contexts are automatically scoped
as APPLICATION.

HANDLER

Properties scoped as HANDLER are only available to JAX-WS Handler

implementations. Properties stored in a message context from a Handler

implementation are scoped as HANDLER by default.

You can change a property's scope using the message context's setScope()

method. Example 171 on page 278 shows the method's signature.

Example 171. The MessageContext.setScope() Method

void setScope(String key,
MessageContext.Scope scope)

throws java.lang.IllegalArgumentException;

The first parameter specifies the property's key. The second specifies the new
scope for the property. The scope can be either
MessageContext.Scope.APPLICATION or

MessageContext.Scope.HANDLER.

Overview contexts in Handler
implementations Classes that implement the JAX-WS Handler interface have direct access to

a message's context information. The message's context information is passed
into the Handler implementation's handleMessage(), handleFault(),

and close() methods.

278

Working with Contexts

Handler implementations have access to all of the properties stored in the

message context. In addition, logical handlers can access the contents of the
message body through the message context.

Overview of contexts in service
implementations Service implementations can access properties scoped as APPLICATION from

the message context. The service provider's implementation object accesses
the message context through the WebServiceContext object.

For more information see Working with Contexts in a Service
Implementation on page 280.

Overview of contexts in consumer
implementations Consumer implementations have indirect access to the contents of the message

context. The consumer implementation has two separate message contexts.
One, the request context, holds a copy of the properties used for outgoing
requests. The other, the response context, holds a copy of the properties from
an incoming response. The dispatch layer transfers the properties between
the consumer implementation's message contexts and the message context
used by the Handler implementations.

When a request is passed to the dispatch layer from the consumer
implementation, the contents of the request context are copied into the
message context used by the dispatch layer. When the response is returned
from the service, the dispatch layer processes the message and sets the
appropriate properties into its message context. After the dispatch layer
processes a response, it copies all of the properties scoped as APPLICATION

in its message context to the consumer implementation's response context.

For more information see Working with Contexts in a Consumer
Implementation on page 287.

279

Understanding Contexts

Working with Contexts in a Service Implementation
Overview

Context information is made available to service implementations using the
WebServiceContext interface. From the WebServiceContext object you

can obtain a MessageContext object that is populated with the current

request's context properties that are in the application scope. You can
manipulate the values of the properties and they are propagated back through
the response chain.

Note
The MessageContext interface inherits from the java.util.Map

interface. Its contents can be manipulated using the Map interface's

methods.

Obtaining a context
To obtain the message context in a service implementation you need to do
the following:

1. Declare a variable of type WebServiceContext.

2. Decorate the variable with the javax.annotation.Resource annotation

to indicate that the context information is to be injected into the variable.

3. Obtain the MessageContext object from the WebServiceContext object

using the getMessageContext() method.

Important
getMessageContext() can only be used in methods that are

decorated with the @WebMethod annotation.

Example 172 on page 280 shows code for obtaining a context object.

Example 172. Obtaining a Context Object in a Service Implementation

import javax.xml.ws.*;
import javax.xml.ws.handler.*;
import javax.annotation.*;

280

Working with Contexts

@WebServiceProvider
public class WidgetServiceImpl
{
@Resource
WebServiceContext wsc;

@WebMethod
public String getColor(String itemNum)
{
MessageContext context = wsc.getMessageContext();

}

...
}

Reading a property from a context
Once you have obtained the MessageContext object for your implementation,

you can access the properties stored in it using the get() method shown in

Example 173 on page 281.

Example 173. The MessageContext.get() Method

V get(Object key);

Note
This get() is inherited from the Map interface.

The key parameter is the string representing the property you wish to retrieve

from the context. The get() returns an object that must be cast to the proper

type for the property. Table 24 on page 283 lists a number of the properties
that are available in a service implementation's context.

Important
Changing the values of the object returned from the context will also
change the value of the property in the context.

Example 174 on page 282 shows code for getting the name of the WSDL
operation element that represents the invoked operation.

281

Working with Contexts in a Service Implementation

Example 174. Getting a Property from a Service's Message Context

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

...
// MessageContext context retrieved in a previous example
QName wsdl_operation = (QName)context.get(Message.WSDL_OPER

ATION);

Setting properties in a context
Once you have obtained the MessageContext object for your implementation,

you can set properties, and change existing properties, using the put()

method shown in Example 175 on page 282.

Example 175. The MessageContext.put() Method

V put(K key,
V value)

throws ClassCastException, IllegalArgumentException, NullPointerException;

If the property being set already exists in the message context, the put()

method will replace the existing value with the new value and return the old
value. If the property does not already exist in the message context, the put()

method will set the property and return null.

Example 176 on page 282 shows code for setting the response code for an
HTTP request.

Example 176. Setting a Property in a Service's Message Context

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

...
// MessageContext context retrieved in a previous example
context.put(Message.RESPONSE_CODE, new Integer(404));

Supported contexts
Table 24 on page 283 lists the properties accessible through the context in a
service implementation object.

282

Working with Contexts

Table 24. Properties Available in the Service Implementation Context

Base Class

DescriptionProperty Name

org.apache.cxf.message.Message

Specifies the transport specific header information. The value is stored as a
java.util.Map<String, List<String>>.

PROTOCOL_HEADERS
a

Specifies the response code returned to the consumer. The value is stored
as a Integer.

RESPONSE_CODE
a

Specifies the address of the service provider. The value is stored as a String.ENDPOINT_ADDRESS

Specifies the HTTP verb sent with a request. The value is stored as a String.HTTP_REQUEST_METHOD
a

Specifies the path of the resource being requested. The value is stored as a
String.

PATH_INFO
a

The path is the portion of the URI after the hostname and before any query
string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the path would be

/demo/widgets.

Specifies the query, if any, attached to the URI used to invoke the request.
The value is strored as a String.

QUERY_STRING
a

Queries appear at the end of the URI after a ?. For example, if a request was

made to http://cxf.apache.org/demo/widgets?color the query would

be color.

Specifies whether or not the service provider can use MTOM for SOAP
attachments. The value is stored as a Boolean.

MTOM_ENABLED

Specifies whether or not the service provider validates messages against a
schema. The value is stored as a Boolean.

SCHEMA_VALIDATION_ENABLED

Specifies if the runtime will provide a stack trace along with a fault message.
The value is stored as a Boolean.

FAULT_STACKTRACE_ENABLED

Specifies the MIME type of the message. The value is stored as a String.CONTENT_TYPE

Specifies the path of the resource being requested. The value is stored as a
java.net.URL.

BASE_PATH

283

Working with Contexts in a Service Implementation

Base Class

DescriptionProperty Name

The path is the portion of the URI after the hostname and before any query
string. For example, if an endpoint's URL is
http://cxf.apache.org/demo/widgets the path would be

/demo/widgets.

Specifies the encoding of the message. The value is stored as a String.ENCODING

Specifies whether the parameters must appear in the message in a particular
order. The value is stored as a Boolean.

FIXED_PARAMETER_ORDER

Specifies if the consumer wants to maintain the current session for future
requests. The value is stored as a Boolean.

MAINTAIN_SESSION

Specifies the WSDL document defining the service being implemented. The
value is stored as a org.xml.sax.InputSource.

WSDL_DESCRIPTION
a

Specifies the qualified name of the wsdl:service element defining the

service being implemented. The value is stored as a QName.

WSDL_SERVICE
a

Specifies the qualified name of the wsdl:port element defining the endpoint

used to access the service. The value is stored as a QName.

WSDL_PORT
a

Specifies the qualified name of the wsdl:portType element defining the

service being implemented. The value is stored as a QName.

WSDL_INTERFACE
a

Specifies the qualified name of the wsdl:operation element corresponding

to the operation invoked by the consumer. The value is stored as a QName.

WSDL_OPERATION
a

javax.xml.ws.handler.MessageContext

Specifies if a message is outbound. The value is stored as a Boolean. true

specifies that a message is outbound.

MESSAGE_OUTBOUND_PROPERTY

Contains any attachments included in the request message. The value is
stored as a java.util.Map<String, DataHandler>.

INBOUND_MESSAGE_ATTACHMENTS

The key value for the map is the MIME Content-ID for the header.

Contains any attachments for the response message. The value is stored as
a java.util.Map<String, DataHandler>.

OUTBOUND_MESSAGE_ATTACHMENTS

The key value for the map is the MIME Content-ID for the header.

284

Working with Contexts

Base Class

DescriptionProperty Name

Specifies the WSDL document defining the service being implemented. The
value is stored as a org.xml.sax.InputSource.

WSDL_DESCRIPTION

Specifies the qualified name of the wsdl:service element defining the

service being implemented. The value is stored as a QName.

WSDL_SERVICE

Specifies the qualified name of the wsdl:port element defining the endpoint

used to access the service. The value is stored as a QName.

WSDL_PORT

Specifies the qualified name of the wsdl:portType element defining the

service being implemented. The value is stored as a QName.

WSDL_INTERFACE

Specifies the qualified name of the wsdl:operation element corresponding

to the operation invoked by the consumer. The value is stored as a QName.

WSDL_OPERATION

Specifies the response code returned to the consumer. The value is stored
as a Integer.

HTTP_RESPONSE_CODE

Specifies the HTTP headers on a request. The value is stored as a
java.util.Map<String, List<String>>.

HTTP_REQUEST_HEADERS

Specifies the HTTP headers for the response.The value is stored as a
java.util.Map<String, List<String>>.

HTTP_RESPONSE_HEADERS

Specifies the HTTP verb sent with a request. The value is stored as a String.HTTP_REQUEST_METHOD

Contains the servlet's request object. The value is stored as a
javax.servlet.http.HttpServletRequest.

SERVLET_REQUEST

Contains the servlet's response object. The value is stored as a
javax.servlet.http.HttpResponse.

SERVLET_RESPONSE

Contains the servlet's context object. The value is stored as a
javax.servlet.ServletContext.

SERVLET_CONTEXT

Specifies the path of the resource being requested. The value is stored as a
String.

PATH_INFO

The path is the portion of the URI after the hostname and before any query
string. For example, if an endpoint's URL is

285

Working with Contexts in a Service Implementation

Base Class

DescriptionProperty Name

http://cxf.apache.org/demo/widgets the path would be

/demo/widgets.

Specifies the query, if any, attached to the URI used to invoke the request.
The value is stored as a String.

QUERY_STRING

Queries appear at the end of the URI after a ?. For example, if a request was

made to http://cxf.apache.org/demo/widgets?color the query would

be color.

Specifies the WS-Addressing reference parameters. This includes all of the
SOAP headers whose wsa:IsReferenceParameter attribute is set to true.

The value is stored as a java.util.List.

REFERENCE_PARAMETERS

org.apache.cxf.transport.jms.JMSConstants

Contains the JMS message headers. For more information see Working with
JMS Message Properties on page 291.

JMS_SERVER_HEADERS

aWhen using HTTP this property is the same as the standard JAX-WS defined property.

286

Working with Contexts

Working with Contexts in a Consumer Implementation
Overview

Consumer implementations have access to context information through the
BindingProvider interface. The BindingProvider instance holds context

information in two separate contexts:

request context

The request context enables you to set properties that affect outbound
messages. Request context properties are applied to a specific port
instance and, once set, the properties affect every subsequent operation
invocation made on the port, until such time as a property is explicitly
cleared. For example, you might use a request context property to set a
connection timeout or to initialize data for sending in a header.

response context

The response context enables you to read the property values set by the
inbound message from the last operation invocation from the current
thread. Response context properties are reset after every operation
invocation. For example, you might access a response context property
to read header information received from the last inbound message.

Important
Only information that is placed in the application scope of a message
context can be accessed by the consumer implementation.

Obtaining a context
Contexts are obtained using the javax.xml.ws.BindingProvider interface.

The BindingProvider interface has two methods for obtaining a context:

getRequestContext()

The getRequestContext() method, shown in

Example 177 on page 288, returns the request context as a Map object.

The returned Map object can be used to directly manipulate the contents

of the context.

287

Working with Contexts in a Consumer Implementation

Example 177. The getRequestContext() Method

Map<String, Object> getRequestContext();

getResponseContext()

The getResponseContext(), shown in Example 178 on page 288,

returns the response context as a Map object. The returned Map object's

contents reflect the state of the response context's contents from the
most recent successful remote invocation in the current thread.

Example 178. The getResponseContext() Method

Map<String, Object> getResponseContext();

Since proxy objects implement the BindingProvider interface, a

BindingProvider object can be obtained by casting the a proxy object. The

contexts obtained from the BindingProvider object are only valid for

operations invoked on the proxy object used to create it.

Example 179 on page 288 shows code for obtaining the request context for
a proxy.

Example 179. Getting a Consumer's Request Context

// Proxy widgetProxy obtained previously
BindingProvider bp = (BindingProvider)widgetProxy
Map<String, Object> responseContext = bp.getResponseContext();

Reading a property from a context
Consumer contexts are stored in java.util.Map<String, Object> object.

The maps have keys String and values of arbitrary type. Use
java.util.Map.get() to access an entry in the hash map of response

context properties.

To retrieve a particular context property, ContextPropertyName, use the

code shown in Example 180 on page 289.

288

Working with Contexts

Example 180. Reading a Response Context Property

// Invoke an operation.
port.SomeOperation();

// Read response context property.
java.util.Map<String, Object> responseContext =
((javax.xml.ws.BindingProvider)port).getResponseContext();

PropertyType propValue = (PropertyType) responseContext.get(ContextPropertyName);

Setting properties in a context
Consumer contexts are hash maps stored in java.util.Map<String,

Object> object. The map has keys of String and values of arbitrary type. To

set a property in the context you use the java.util.Map.put() method.

Tip
While you can set properties in both the request and the response
context, only the changes made to the request context have any
impact on message processing. The properties in the response context
are reset when each remote invocation is completed on the current
thread.

The code shown in Example 181 on page 289 changes the address of the
target service provider by setting the value of the
BindingProvider.ENDPOINT_ADDRESS_PROPERTY.

Example 181. Setting a Request Context Property

// Set request context property.
java.util.Map<String, Object> requestContext =

((javax.xml.ws.BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/wid
gets");

// Invoke an operation.
port.SomeOperation();

289

Working with Contexts in a Consumer Implementation

Important
Once a property is set in the request context its value is used for all
subsequent remote invocations. You can change the value and the
changed value will then be used.

Supported contexts
Artix ESB supports the following context properties in consumer
implementations:

Table 25. Consumer Context Properties

Base Class

DescriptionProperty Name

javax.xml.ws.BindingProvider

Specifies the address of the target service. The value is stored as a String.ENDPOINT_ADDRESS_PROPERTY

Specifies the username used for HTTP basic authentication. The value is
stored as a String.

USERNAME_PROPERTY
a

Specifies the password used for HTTP basic authentication. The value is
stored as a String.

PASSWORD_PROPERTY
b

Specifies if the client wishes to maintain session information. The value is
stored as a Boolean.

SESSION_MAINTAIN_PROPERTY
c

org.apache.cxf.ws.addressing.JAXWSAConstants

Specifies the WS-Addressing information used by the consumer to contact
the desired service provider. The value is stored as a
org.apache.cxf.ws.addressing.AddressingProperties.

CLIENT_ADDRESSING_PROPERTIES

org.apache.cxf.transports.jms.context.JMSConstants

Contains the JMS headers for the message. For more information see Working
with JMS Message Properties on page 291.

JMS_CLIENT_REQUEST_HEADERS

aThis property is overridden by the username defined in the HTTP security settings.
bThis property is overridden by the password defined in the HTTP security settings.
cThe Artix ESB ignores this property.

290

Working with Contexts

Working with JMS Message Properties
Inspecting JMS Message Headers .. 292
Inspecting the Message Header Properties .. 294
Setting JMS Properties .. 296

The Artix ESB JMS transport has a context mechanism that can be used to
inspect a JMS message's properties. The context mechanism can also be used
to set a JMS message's properties.

291

Working with JMS Message Properties

Inspecting JMS Message Headers
Consumers and services use different context mechanisms to access the JMS
message header properties. However, both mechanisms return the header
properties as a
org.apache.cxf.transports.jms.context.JMSMessageHeadersType

object.

Getting the JMSMessage Headers
in a Service To get the JMS message header properties from the WebServiceContext

do the following:

1. Obtain the context as described in Obtaining a context on page 280.

2. Get the message headers from the message context using the message
context's get() method with the parameter

org.apache.cxf.transports.jms.JMSConstants.JMS_SERVER_HEADERS.

Example 182 on page 292 shows code for getting the JMS message headers
from a service's message context:

Example 182. Getting JMS Message Headers in a Service Implementation

import org.apache.cxf.transport.jms.JMSConstants;
import org.apache.cxf.transports.jms.context.JMSMessageHeadersType;

@WebService(serviceName = "HelloWorldService",
portName = "HelloWorldPort",
endpointInterface = "org.apache.cxf.hello_world_jms.HelloWorld

PortType",
targetNamespace = "http://cxf.apache.org/hello_world_jms")

public class GreeterImplTwoWayJMS implements HelloWorldPortType
{
@Resource
protected WebServiceContext wsContext;
...

@WebMethod
public String greetMe(String me)
{
MessageContext mc = wsContext.getMessageContext();
JMSMessageHeadersType headers = (JMSMessageHeadersType) mc.get(JMSConstants.JMS_SERV

ER_HEADERS);
...

}

292

Working with Contexts

...
}

Getting JMS Message Header
Properties in a Consumer Once a message has been successfully retrieved from the JMS transport you

can inspect the JMS header properties using the consumer's response context.
In addition, you can see how long the client will wait for a response before
timing out.

You can To get the JMS message headers from a consumer's response context
do the following:

1. Get the response context as described in Obtaining a context on page 287.

2. Get the JMS message header properties from the response context using
the context's get() method with

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RESPONSE_HEADERS

as the parameter.

Example 183 on page 293 shows code for getting the JMS message header
properties from a consumer's response context.

Example 183. Getting the JMS Headers from a Consumer Response Header

import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
❶BindingProvider bp = (BindingProvider)greeter;
❷Map<String, Object> responseContext = bp.getResponseContext();
❸JMSMessageHeadersType responseHdr = (JMSMessageHeadersType)

responseContext.get(JMSConstants.JMS_CLIENT_REQUEST_HEADERS);
...
}

The code in Example 183 on page 293 does the following:

❶ Casts the proxy to a BindingProvider.

❷ Gets the response context.

❸ Retrieves the JMS message headers from the response context.

293

Inspecting JMS Message Headers

Inspecting the Message Header Properties
Standard JMS Header Properties

Table 26 on page 294 lists the standard properties in the JMS header that
you can inspect.

Table 26. JMS Header Properties

Getter MethodProperty TypeProperty Name

getJMSCorralationID()stringCorrelation ID

getJMSDeliveryMode()intDelivery Mode

getJMSExpiration()longMessage Expiration

getJMSMessageID()stringMessage ID

getJMSPriority()intPriority

getJMSRedlivered()booleanRedelivered

getJMSTimeStamp()longTime Stamp

getJMSType()stringType

getTimeToLive()longTime To Live

Optional Header Properties
In addition, you can inspect any optional properties stored in the JMS header
using JMSMessageHeadersType.getProperty(). The optional properties

are returned as a List of

org.apache.cxf.transports.jms.context.JMSPropertyType. Optional

properties are stored as name/value pairs.

Example
Example 184 on page 294 shows code for inspecting some of the JMS
properties using the response context.

Example 184. Reading the JMS Header Properties

// JMSMessageHeadersType messageHdr retrieved previously
❶System.out.println("Correlation ID: "+messageHdr.getJMSCorrelationID());
❷System.out.println("Message Priority: "+messageHdr.getJMSPriority());
❸System.out.println("Redelivered: "+messageHdr.getRedelivered());

JMSPropertyType prop = null;

294

Working with Contexts

❹List<JMSPropertyType> optProps = messageHdr.getProperty();
❺Iterator<JMSPropertyType> iter = optProps.iterator();
❻while (iter.hasNext())
{
prop = iter.next();
System.out.println("Property name: "+prop.getName());
System.out.println("Property value: "+prop.getValue());

}

The code in Example 184 on page 294 does the following:

❶ Prints the value of the message's correlation ID.

❷ Prints the value of the message's priority property.

❸ Prints the value of the message's redelivered property.

❹ Gets the list of the message's optional header properties.

❺ Gets an Iterator to traverse the list of properties.

❻ Iterates through the list of optional properties and prints their name and
value.

295

Inspecting the Message Header Properties

Setting JMS Properties
Using the request context in a consumer endpoint, you can set a number of
the JMS message header properties and the consumer endpoint's timeout
value. These properties are valid for a single invocation. You will need to reset
them each time you invoke an operation on the service proxy.

Note
You cannot set header properties in a service.

JMS Header Properties
Table 27 on page 296 lists the properties in the JMS header that you can set
using the consumer endpoint's request context.

Table 27. Settable JMS Header Properties

Setter MethodProperty TypeProperty Name

setJMSCorralationID()stringCorrelation ID

setJMSDeliveryMode()intDelivery Mode

setJMSPriority()intPriority

setTimeToLive()longTime To Live

To set these properties do the following:

1. Create an
org.apache.cxf.transports.jms.context.JMSMessageHeadersType

object.

2. Populate the values you wish to set using the appropriate setter methods
from Table 27 on page 296.

3. Set the values into the request context by calling the request context's
put() method using

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_REQUEST_HEADERS

296

Working with Contexts

as the first argument and the new JMSMessageHeadersType object as

the second argument.

Optional JMS Header Properties
You can also set optional properties into the JMS header. Optional JMS header
properties are stored in the JMSMessageHeadersType object that is used to

set the other JMS header properties. They are stored as a List of

org.apache.cxf.transports.jms.context.JMSPropertyType. To add

optional properties to the JMS header do the following:

1. Create a JMSPropertyType object.

2. Set the property's name field using setName().

3. Set the property's value field using setValue().

4. Add the property to the JMS message header to the JMS message header
using
JMSMessageHeadersType.getProperty().add(JMSPropertyType).

5. Repeat the procedure until all of the properties have been added to the
message header.

Client Receive Timeout
In addition to the JMS header properties, you can set the amount of time a
consumer endpoint will wait for a response before timing out. You set the
value by calling the request context's put() method with

org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RECEIVE_TIMEOUT

as the first argument and a long representing the amount of time in
milliseconds that you want to consumer to wait as the second argument.

Example
Example 185 on page 297 shows code for setting some of the JMS properties
using the request context.

Example 185. Setting JMS Properties using the Request Context

import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
❶InvocationHandler handler = Proxy.getInvocationHandler(greeter);

BindingProvider bp= null;

297

Setting JMS Properties

❷if (handler instanceof BindingProvider)
{
❸ bp = (BindingProvider)handler;
❹ Map<String, Object> requestContext = bp.getRequestContext();

❺ JMSMessageHeadersType requestHdr = new JMSMessageHeadersType();
❻ requestHdr.setJMSCorrelationID("WithBob");
❼ requestHdr.setJMSExpiration(3600000L);

❽ JMSPropertyType prop = new JMSPropertyType;
❾ prop.setName("MyProperty");
prop.setValue("Bluebird");

❿ requestHdr.getProperty().add(prop);

11 requestContext.put(JMSConstants.CLIENT_REQUEST_HEADERS, requestHdr);

12 requestContext.put(JMSConstants.CLIENT_RECEIVE_TIMEOUT, new Long(1000));
}

The code in Example 185 on page 297 does the following:

❶ Gets the InvocationHandler for the proxy whose JMS properties you

want to change.
❷ Checks to see if the InvocationHandler is a BindingProvider.

❸ Casts the returned InvocationHandler object into a BindingProvider

object to retrieve the request context.
❹ Gets the request context.

❺ Creates a JMSMessageHeadersType object to hold the new message

header values.
❻ Sets the Correlation ID.

❼ Sets the Expiration property to 60 minutes.

❽ Creates a new JMSPropertyType object.

❾ Sets the values for the optional property.

❿ Adds the optional property to the message header.

11 Sets the JMS message header values into the request context.
12 Sets the client receive timeout property to 1 second.

298

Working with Contexts

Index
Symbols
@Delete, 89
@Get, 89
@HttpResource, 89
@OneWay, 40
@Post, 89
@Put, 89
@RequestWrapper, 37

className property, 38
localName property, 38
targetNamespace property, 38

@Resource, 280
@ResponseWrapper, 38

className property, 39
localName property, 39
targetNamespace property, 39

@ServiceMode, 266
@SOAPBinding, 35

parameterStyle property, 36
style property, 36
use property, 36

@WebFault, 39
faultName property, 39
name property, 39
targetNamespace property, 39

@WebMethod, 37, 280
action property, 37
exclude property, 37
operationName property, 37

@WebParam, 40
header property, 41
mode property, 41
name property, 41
partName property, 41
targetNamespace property, 41

@WebResult, 41
header property, 42
name property, 42
partName property, 42

targetNamespace property, 42
@WebService, 32

endpointInterface property, 33
name property, 33
portName property, 33
serviceName property, 33
targetNamespace property, 33
wsdlLocation property, 33

@WebServiceProvider, 271
@XmlAnyElement, 176
@XmlAttribute, 148
@XmlElement, 141, 161, 165

required property, 164
type property, 215, 229

@XmlElementDecl
defaultValue, 120
substitutionHeadName, 190
substitutionHeadNamespace, 190

@XmlElements, 161, 165
@XmlEnum, 128
@XmlJavaTypeAdapter, 215
@XmlRootElement, 119
@XmlSchemaType, 215
@XmlType, 141, 161, 165

A
annotations

@Delete (see @Delete)
@Get (see @Get)
@HttpResource (see @HttpResource)
@OneWay (see @OneWay)
@Post (see @Post)
@Put (see @Post)
@RequestWrapper (see @RequestWrapper)
@Resource (see @Resource)
@ResponseWrapper (see @ResponseWrapper)
@ServiceMode (see @ServiceMode)
@SOAPBinding (see @SOAPBinding)
@WebFault (see @WebFault)
@WebMethod (see @WebMethod)
@WebParam (see @WebParam)
@WebResult (see @WebResult)
@WebService (see @WebService)

299

@WebServiceProvider (see @WebServiceProvider)
@XmlAttribute (see @XmlAttribute)
@XmlElement (see @XmlElement)
@XmlElementDecl (see @XmlElementDecl)
@XmlEnum (see @XmlEnum)
@XmlJavaTypeAdapter (see @XmlJavaTypeAdapter)
@XmlRootElement (see @XmlRootElement)
@XmlSchemaType (see @XmlSchemaType)
@XmlType (see @XmlType)

any element, 174
anyAttribute, 182
anyType, 179

mapping to Java, 179
artix java2wsdl, 44
artix wsdl2java, 60, 67, 76, 241
asynchronous applications

callback approach, 237
implementation

callback approach, 246, 262
polling approach, 243, 262

polling approach, 237
implementation patterns, 243

using a Dispatch object, 262
asynchronous methods, 242

callback approach, 242
pooling approach, 242

attributes
optional, 123

B
baseType, 137, 229

name attribute, 229
BindingProvider

getRequestContext() method, 287
getResponseContext() method, 288

C
code generation

asynchronous consumers, 241
consumer, 67
customization, 240
service provider, 60
service provider implementation, 64

WSDL contract, 44
constants, 226
consumer

implementing business logic, 53, 73
consumer contexts, 287
context

request
consumer, 287

WebServiceContext (see WebServiceContext)
createDispatch(), 258

D
DataSource, 256, 269
DatatypeConverter, 217
deploying

JAX-WS service endpoint, 75
RESTful service endpoint, 93

Dispatch object
creating, 258
invoke() method, 261
invokeAsync() method, 262
invokeOneWay() method, 263
message mode, 253
message payload mode, 253
payload mode, 253

DOMSource, 255, 268

E
element, 115
elements

custom mapping, 226
mapping to Java

in-line type definition, 119
named type definition, 117

XML Schema definition, 115
endpoint

adding to a Service object, 49
determining the address, 50
determining the binding type, 49
determining the port name, 49
getting, 51, 71, 77

Endpoint object
create() method, 77

300

creating, 77
publish() method, 77, 78

enumerations
custom mapping, 221
defining in schema, 128

F
facets

enforcing, 127

G
generated code

asynchronous operations, 241
consumer, 68
packages, 62, 68
server mainline, 76
service implementation, 64
service provider, 61
stub code, 68
WSDL contract, 44

getRequestContext(), 287
getResource(), 87
getResponseContext(), 288
globalBindings

fixedAttributeAsConstantProperty attribute, 226
mapSimpleTypeDef, 137
mapSimpleTypeDef attribute, 219
typesafeEnumMemberName attribute, 221

H
handleResponse(), 246
HTTP

DELETE, 88, 89
GET, 87, 89
POST, 87, 89
PUT, 87, 89

I
implementation

asynchronous callback object, 246
asynchronous client

callback approach, 246

callbacks, 248
polling approach, 243

consumer, 53, 73, 252
SEI, 30
server mainline, 77
service, 270
service operations, 30, 64

J
javaType, 211, 231

parseMethod attribute, 214
printMethod attribute, 214

javax.xml.ws.AsyncHandler, 246
javax.xml.ws.Service (see Service object)
jaxb.additionalContextClasses, 110
jaxb:bindings, 209
jaxb:property, 229
JaxWsProxyFactoryBean, 112
JaxWsServerFactoryBean, 111
JMS

getting JMS message headers in a service, 292
getting optional header properties, 294
inspecting message header properties, 292
setting message header properties, 296
setting optional message header properties, 297
setting the client's timeout, 297

L
list type

XML Schema definition, 131

M
message context

getting a property, 281
properties, 277, 278
property scopes

APPLICATION, 278
HANDLER, 278

reading values, 288
request

consumer, 296
response

301

consumer, 287, 293
setting a property, 282
setting properties, 289

MessageContext, 280
get() method, 281
put() method, 282
setScope() method, 278

N
namespace

package name mapping, 105
nillable, 123

O
object factory

creating complex type instances, 108
creating element instances, 108

ObjectFactory
complex type factory, 108
element factory, 108

P
package name mapping, 62
parameter mapping, 71
primitive types, 122
property

fixedAttributeAsConstantProperty attribute, 227
Provider

invoke() method, 272
message mode, 266
payload mode, 266

publishing
JAX-WS service endpoint, 75
RESTful service endpoint, 93

R
request context, 287, 296

accessing, 287
consumer, 287
setting properties, 289

response context, 287
accessing, 287

consumer, 287, 293
getting JMS message headers, 293
reading values, 288

REST binding
activating, 93

S
SAXSource, 255, 268
schema validation, 127
SEI, 29, 69, 71

annotating, 32
creating, 30
creation patterns, 29
generated from WSDL contract, 62
relationship to wsdl:portType, 30, 71
required annotations, 33

service
implementing the operations, 64

service enablement, 29
service endpoint interface (see SEI)
service implementation, 62, 270

operations, 30
required annotations, 34

Service object, 47
adding an endpoint, 49

determining the port name, 49
addPort() method, 49

bindingId parameter, 49
endpointAddress parameter, 50
portName parameter, 49

create() method, 47
serviceName parameter, 48

createDispatch() method, 258
creating, 47, 70
determining the service name, 48
generated from a WSDL contract, 69
generated methods, 70
getPort() method, 51

portName parameter, 51
getting a service proxy, 51
relationship to wsdl:service element, 47, 69

service provider
implementation, 270

302

publishing, 78
service provider implementation

generating, 64
service providers contexts, 280
service proxy

getting, 51, 71, 73
Service.Mode.MESSAGE, 253, 266
Service.Mode.PAYLOAD, 253, 266
setAddress(), 94
setBindingId(), 93
setServiceClass(), 93
setWrapped(), 93
simple type

define by restriction, 125
simple types

enumerations, 128
mapping to Java, 126
primitive, 122
wrapper classes, 123

SOAPMessage, 256, 269
Source, 255, 268
StreamSource, 255, 268
substitution group

in complex types, 193
in interfaces, 191
object factory, 190

T
type customization

external declaration, 209
in-line, 208
JAXB version, 208
namespace, 208

type packages
contents, 106
name generation, 105

typesafeEnumClass, 222
typesafeEnumMember, 222

U
union types

mapping to Java, 136
XML Schema definition, 135

W
WebServiceContext

getMessageContext() method, 280
getting the JMS message headers, 292

wrapped mode, 84
activating, 93

WSDL contract
generation, 44

wsdl2java, 64
wsdl:portType, 30, 69, 71
wsdl:service, 47, 69

303

304

	Developing Artix Applications with JAX-WS
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	How to Use This Book
	The Artix ESB Documentation Library

	Part I. Basic Programming Tasks
	Starting from Java Code
	Service Enabling a Java Class
	Creating the SEI
	Annotating the Code
	Required Annotations
	Optional Annotations
	Defining the Binding Properties with Annotations
	Defining Operation Properties with Annotations
	Defining Parameter Properties with Annotations

	Generating WSDL

	Developing a Consumer without a WSDL Contract
	Creating a Service Object
	Adding a Port to a Service
	Getting a Proxy for an Endpoint
	Implementing the Consumer's Business Logic

	Starting from a WSDL Contract
	A WSDL Contract
	Developing a Service Starting from a WSDL Contract
	Generating the Starting Point Code
	Implementing the Service Provider

	Developing a Consumer Starting from a WSDL Contract
	Generating the Stub Code
	Implementing a Consumer

	Publishing a Service
	Generating a Server Mainline
	Writing a Server Mainline

	Developing RESTful Services
	Introduction to RESTful Services
	Using Automatic REST Mappings
	Using Java REST Annotations
	Publishing a RESTful Service

	Part II. Working with Data Types
	Basic Data Binding Concepts
	Working with External Schema Definitions
	XML Namespace Mapping
	The Object Factory
	Adding Classes to the Runtime Marshaller

	Using XML Elements
	Using Simple Types
	Primitive Types
	Simple Types Defined by Restriction
	Enumerations
	Lists
	Unions
	Simple Type Substitution

	Using Complex Types
	Basic Complex Type Mapping
	Attributes
	Deriving Complex Types from Simple Types
	Deriving Complex Types from Complex Types
	Occurrence Constraints
	Occurrence Constraints on the All Element
	Occurrence Constraints on the Choice Element
	Occurrence Constraints on Elements
	Occurrence Constraints on Sequences

	Using Model Groups

	Using Wild Card Types
	Using Any Elements
	Using XML Schema anyType
	Using Unbound Attributes

	Using Type Substitution
	Substitution Groups in XML Schema
	Substitution Groups in Java
	Widget Vendor Example
	The checkWidgets Operation
	The placeWidgetOrder Operation

	Customizing How Types are Generated
	Basics of Customizing Type Mappings
	Specifying the Java Class of an XML Schema Primitive
	Generating Java Classes for Simple Types
	Customizing Enumeration Mapping
	Customizing Fixed Value Attribute Mapping
	Specifying the Base Type of an Element or an Attribute

	Part III. Advanced Programming Tasks
	Developing Asynchronous Applications
	WSDL for Asynchronous Examples
	Generating the Stub Code
	Implementing an Asynchronous Client with the Polling Approach
	Implementing an Asynchronous Client with the Callback Approach

	Using Raw XML Messages
	Using XML in a Consumer with the Dispatch Interface
	Usage Modes
	Data Types
	Working with Dispatch Objects

	Using XML in a Service Provider with the Provider Interface
	Messaging Modes
	Data Types
	Implementing a Provider Object

	Working with Contexts
	Understanding Contexts
	Working with Contexts in a Service Implementation
	Working with Contexts in a Consumer Implementation
	Working with JMS Message Properties
	Inspecting JMS Message Headers
	Inspecting the Message Header Properties
	Setting JMS Properties

	Index

