
Artix ESB
Implementing Enterprise Integration Patterns

Version 5.5
December 2008

Implementing Enterprise Integration Patterns
Progress Software

Version 5.5

Published 10 Dec 2008
Copyright © 2008 IONA Technologies PLC , a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Acknowledgments

IONA Technologies PLC gratefully acknowledges permission to reproduce images taken from the book Enterprise Integration
Patterns by Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2004).

Table of Contents
Preface ... 9

Open Source Project Resources ... 10
Document Conventions ... 11

Introducing Enterprise Integration Patterns ... 13
Overview of the Patterns .. 14

Messaging Systems ... 19
Message .. 20
Message Channel ... 22
Message Endpoint .. 25
Pipes and Filters .. 27
Message Router ... 30
Message Translator ... 32

Messaging Channels .. 35
Point-to-Point Channel .. 36
Publish Subscribe Channel ... 38
Dead Letter Channel ... 40
Guaranteed Delivery ... 44
Message Bus .. 48

Message Construction .. 49
Correlation Identifier ... 50

Message Routing ... 51
Content-Based Router ... 52
Message Filter ... 54
Recipient List .. 56
Splitter .. 59
Aggregator ... 61
Resequencer ... 66
Routing Slip ... 70
Throttler .. 72
Delayer ... 73
Load Balancer ... 75
Multicast ... 79

Message Transformation ... 83
Content Enricher .. 84
Content Filter .. 86
Normalizer ... 87

Messaging Endpoints ... 89
Messaging Mapper ... 90
Event Driven Consumer ... 92
Polling Consumer ... 93
Competing Consumers .. 94

3

Message Dispatcher ... 97
Selective Consumer .. 100
Durable Subscriber ... 103
Idempotent Consumer ... 105
Transactional Client .. 108
Messaging Gateway .. 112
Service Activator .. 113

System Management .. 117
Wire Tap .. 118

A. Migrating from ServiceMix EIP .. 119
Migrating Endpoints .. 120
Common Elements ... 123
ServiceMix EIP Patterns ... 125
Content-Based Router ... 127
Content Enricher .. 129
Message Filter ... 131
Pipeline ... 133
Resequencer ... 135
Static Recipient List .. 137
Static Routing Slip ... 139
Wire Tap .. 140
XPath Splitter .. 142

4

List of Figures
1. Message Pattern .. 20
2. Message Channel Pattern ... 22
3. Message Endpoint Pattern .. 25
4. Pipes and Filters Pattern .. 27
5. Pipeline for InOut Exchanges .. 27
6. Pipeline for InOnly Exchanges ... 28
7. Message Router Pattern ... 30
8. Message Translator Pattern ... 32
9. Point to Point Channel Pattern ... 36
10. Publish Subscribe Channel Pattern ... 38
11. Dead Letter Channel Pattern ... 40
12. Guaranteed Delivery Pattern ... 44
13. Message Bus Pattern .. 48
14. Correlation Identifier Pattern ... 50
15. Content-Based Router Pattern ... 52
16. Message Filter Pattern ... 54
17. Recipient List Pattern .. 56
18. Splitter Pattern .. 59
19. Aggregator Pattern .. 62
20. Resequencer Pattern ... 66
21. Routing Slip Pattern .. 70
22. Multicast Pattern ... 79
23. Content Enricher Pattern .. 84
24. Content Filter Pattern .. 86
25. Normalizer Pattern ... 87
26. Event Driven Consumer Pattern ... 92
27. Polling Consumer Pattern ... 93
28. Competing Consumers Pattern ... 94
29. Message Dispatcher Pattern .. 97
30. Selective Consumer Pattern ... 100
31. Durable Subscriber Pattern ... 103
32. Transactional Client Pattern .. 108
33. Messaging Gateway Pattern .. 112
34. Service Activator Pattern .. 113
35. Wire Tap Pattern .. 118
A.1. Content-Based Router Pattern ... 127
A.2. Content Enricher Pattern ... 129
A.3. Message Filter Pattern .. 131
A.4. Pipes and Filters Pattern ... 133
A.5. Resequencer Pattern .. 135
A.6. Static Recipient List Pattern ... 137

5

A.7. Wire Tap Pattern ... 140
A.8. XPath Splitter Pattern ... 142

6

List of Tables
1. Messaging Systems .. 14
2. Messaging Channels ... 15
3. Message Construction ... 15
4. Message Routing ... 15
5. Message Transformation .. 17
6. Messaging Endpoints .. 17
7. System Management .. 18
8. Redelivery Policy Settings .. 41
A.1. Mapping the Exchange Target Element 123
A.2. ServiceMix EIP Patterns .. 125

7

8

Preface
Open Source Project Resources ... 10
Document Conventions ... 11

9

Open Source Project Resources
Apache Incubator CXF

Web site: http://cxf.apache.org/

User's list: <user@cxf.apache.org>

Apache Tomcat
Web site: http://tomcat.apache.org/

User's list: <users@tomcat.apache.org>

Web site: http://activemq.apache.org/

User's list: <users@activemq.apache.org>

Apache Camel
Web site:
http://activemq.apache.org/camel/enterprise-integration-patterns.html

User's list: <camel-user@activemq.apache.org>

Web site: http://servicemix.apache.org

User's list: <users@servicemix.apache.org>

10

http://cxf.apache.org/
http://tomcat.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/camel/enterprise-integration-patterns.html
http://servicemix.apache.org

Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width (Courier font) in normal text represents portions of code and literal names of items
such as classes, functions, variables, and data structures. For example, text might refer to the
javax.xml.ws.Endpoint class.

fixed width

Constant width paragraphs represent code examples or information a system displays on the
screen. For example:

import java.util.logging.Logger;

Fixed width italic words or characters in code and commands represent variable values you
must supply, such as arguments to commands or path names for your particular system. For
example:

Fixed width

italic

% cd /users/YourUserName

Italic words in normal text represent emphasis and introduce new terms.Italic

Bold words in normal text represent graphical user interface components such as menu
commands and dialog boxes. For example: the User Preferences dialog.

Bold

Keying conventions
This book uses the following keying conventions:

When a command’s format is the same for multiple platforms, the command prompt is not
shown.

No prompt

A percent sign represents the UNIX command shell prompt for a command that does not require
root privileges.

%

A number sign represents the UNIX command shell prompt for a command that requires root
privileges.

#

The notation > represents the MS-DOS or Windows command prompt.>

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

...

Brackets enclose optional items in format and syntax descriptions.[]

Braces enclose a list from which you must choose an item in format and syntax descriptions.{ }

11

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed
in {} (braces).

|

Admonition conventions
This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may also provide information about
workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered. These errors are unlikely to cause
damage to your data or your systems.

Warnings display information about errors that may cause damage to your systems. Possible damage from
these errors include system failures and loss of data.

12

Introducing Enterprise Integration
Patterns
The Java Router's Enterprise Integration Patterns are inspired by a book of the same name written by Gregor
Hohpe and Bobby Woolf. The patterns described by these authors provide an excellent toolbox for developing
enterprise integration projects. In addition to providing a common language for discussing integration architectures,
many of the patterns can be implemented directly using Java Router's programming interfaces and XML
configuration.

Overview of the Patterns .. 14

13

Overview of the Patterns
Enterprise Integration Patterns
book Java Router supports most of the patterns from the book, Enterprise Integration

Patterns [http://www.enterpriseintegrationpatterns.com/toc.html] by Gregor
Hohpe and Bobby Woolf.

Messaging systems
The messaging systems patterns introduce the fundamental concepts and
components that make up a messaging system.

Table 1. Messaging Systems

How can two applications connected by a
message channel exchange a piece of
information?

Message

How does one application communicate
with another using messaging?

Message Channel

How does an application connect to a
messaging channel to send and receive
messages?

Message
Endpoint

How can we perform complex processing
on a message while maintaining
independence and flexibility?

Pipes and Filters

How can you decouple individual processing
steps so that messages can be passed to

Message Router

different filters depending on a set of
conditions?

How can systems using different data
formats communicate with each other using
messaging?

Message
Translator

Messaging channels
A messaging channel is the basic component used for plumbing together the
participants in a messaging system. The following patterns describe the
different kinds of messaging channels you can have.

14

Introducing Enterprise Integration Patterns

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html

Table 2. Messaging Channels

How can the caller be sure that exactly
one receiver will receive the document or
perform the call?

Point to Point
Channel

How can the sender broadcast an event to
all interested receivers?

Publish Subscribe
Channel

What will the messaging system do with
a message it cannot deliver?

Dead Letter
Channel

How can the sender make sure that a
message will be delivered, even if the
messaging system fails?

Guaranteed
Delivery

What is an architecture that enables
separate applications to work together, but

Message Bus

in a de-coupled fashion such that
applications can be easily added or
removed without affecting the others?

Message construction
The message construction patterns describe the various forms and functions
of the messages that pass through the system.

Table 3. Message Construction

How does a requestor that has received a
reply know which request this is the reply
for?

Correlation
Identifier

Message routing
The message routing patterns describe various ways of linking message
channels together, including various algorithms that can be applied to the
message stream (without modifying the body of the message).

Table 4. Message Routing

How do we handle a situation where the
implementation of a single logical function

Content
Based
Router (e.g., inventory check) is spread across

multiple physical systems?

15

Overview of the Patterns

How can a component avoid receiving
uninteresting messages?

Message
Filter

How do we route a message to a list of
dynamically specified recipients?

Recipient
List

How can we process a message if it contains
multiple elements, each of which may have
to be processed in a different way?

Splitter

How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Aggregator

How can we get a stream of related but
out-of-sequence messages back into the
correct order?

Resequencer

How do we route a message consecutively
through a series of processing steps when the

Routing Slip

sequence of steps is not known at design-time
and may vary for each message?

How can I throttle messages to ensure that a
specific endpoint does not get overloaded, or

Throttler

we don't exceed an agreed SLA with some
external service?

How can I delay the sending of a message?Delayer

How can I balance load across a number of
endpoints?

Load
Balancer

How can I route a message to a number of
endpoints at the same time?

Multicast

Message transformation
The message transformation patterns describe how to modify the contents of
messages for various purposes.

16

Introducing Enterprise Integration Patterns

Table 5. Message Transformation

How do we communicate with another system
if the message originator does not have all the
required data items available?

Content
Enricher

How do you simplify dealing with a large
message, when you are interested only in a
few data items?

Content Filter

How do you process messages that are
semantically equivalent, but arrive in a
different format?

Normalizer

Messaging endpoints
A messaging endpoint denotes the point of contact between a messaging
channel and an application. The messaging endpoint patterns describe various
features and qualities of service that can be configured on an endpoint.

Table 6. Messaging Endpoints

How do you move data between domain
objects and the messaging infrastructure

Messaging Mapper

while keeping the two independent of each
other?

How can an application automatically
consume messages as they become
available?

Event Driven
Consumer

How can an application consume a
message when the application is ready?

Polling Consumer

How can a messaging client process
multiple messages concurrently?

Competing
Consumers

How can multiple consumers on a single
channel coordinate their message
processing?

Message
Dispatcher

How can a message consumer select
which messages it wishes to receive?

Selective Consumer

17

Overview of the Patterns

How can a subscriber avoid missing
messages while it's not listening for them?

Durable Subscriber

How can a message receiver deal with
duplicate messages?

Idempotent
Consumer

How can a client control its transactions
with the messaging system?

Transactional Client

How do you encapsulate access to the
messaging system from the rest of the
application?

Messaging Gateway

How can an application design a service
to be invoked both via various messaging

Service Activator

technologies and via non-messaging
techniques?

System management
The system management patterns describe how to monitor, test, and
administer a messaging system.

Table 7. System Management

How do you inspect messages that travel on a
point-to-point channel?

Wire Tap

18

Introducing Enterprise Integration Patterns

Messaging Systems
This chapter introduces the fundamental building blocks of a messaging system, such as endpoints, messaging
channels, and message routers.

Message .. 20
Message Channel ... 22
Message Endpoint .. 25
Pipes and Filters .. 27
Message Router ... 30
Message Translator ... 32

19

Message
Overview

A message is the smallest unit for transmitting data in a messaging system
(represented by the grey dot in the figure below). The message itself might
have some internal structure—for example, a message containing multiple
parts—which is represented by geometrical figures attached to the grey dot
in the figure below.

Figure 1. Message Pattern

Types of message
Java Router defines the following distinct message types:

• In message—a message that travels through a route from a consumer
endpoint to a producer endpoint (typically, initiating a message exchange).

• Out message—a message that travels through a route from a producer
endpoint back to a consumer endpoint (usually, in response to an In
message).

• Fault message (deprecated)—a message that travels through a route from
a producer endpoint back to a consumer endpoint for the purpose of
indicating an exception or error condition (usually in response to an In
message).

Note
The fault message type is deprecated and will be replaced by a
different mechanism in a future release of Java Router.

All of these message types are represented internally by the
org.apache.camel.Message interface.

Message structure
By default, Java Router applies the following structure to all message types:

20

Messaging Systems

• Headers—containing metadata or header data extracted from the message.

• Body—usually containing the entire message in its original form.

• Attachments—message attachments (required for integrating with certain
messaging systems, such as JBI [http://java.sun.com/integration/]).

It is important to bear in mind that this division into headers, body, and
attachments is an abstract model of the message. Java Router supports many
different compoments, which generate a wide variety of message formats.
Ultimately, it is the underlying component implementation that decides what
gets placed into the headers and body of a message.

Correlating messages
Internally, Java Router keeps track of a message ID, which could be used to
correlate individual messages. In practice, however, the most important way
that Java Router correlates messages is through exchange objects.

Exchange objects
An exchange object is an entity that encapsulates related messages, where
the collection of related messages is referrred to as a message exchange and
the rules governing the sequence of messages are referred to as an exchange
pattern. For example, some common exchange patterns would be: one-way
event messages (consisting of an In message); request-reply exchanges
(consisting of an In message, followed by an Out message).

Accessing messages
When defining a routing rule in the Java DSL, you can access the headers
and body of a message using the following DSL builder methods:

• header(String name), body()—return named header and body of the

current In message.

• outBody()—return body of the current Out message.

For example, to populate the In message's username header, you could use

the following Java DSL route:

from(SourceURL).setHeader("username", "John.Doe").to(TargetURL);

21

Message

http://java.sun.com/integration/
http://java.sun.com/integration/

Message Channel
Overview

A message channel is a logical channel in a messaging system. That is,
sending messages to different message channels provides an elementary way
of sorting messages into different message types. For example, message
queues and message topics are examples of message channels. You should
bear in mind that a logical channel is not the same as a physical channel.
There may be several different ways of physically realizing a logical channel.

In Java Router, a message channel is represented by an endpoint URI of a
message -oriented component.

Figure 2. Message Channel Pattern

Message-oriented components
The following message-oriented components in Java Router support the notion
of a message channel:

• ActiveMQ on page 22

• JMS on page 23

• MSMQ on page 23

• AMQP on page 23

ActiveMQ
In ActiveMQ, message channels are represented by queues or topics. The
endpoint URI for a specific queue, QueueName, has the following format:

activemq:QueueName

The endpoint URI for a specific topic, TopicName, has the following format:

22

Messaging Systems

activemq:topic:TopicName

For example, to send messages to the queue, Foo.Bar, you would use the

following endpoint URI:

activemq:Foo.Bar

See ???? for more details and instructions on how to set up the ActiveMQ
component.

JMS
The Java Messaging Service (JMS) is a generic wrapper layer that can be
used to access many different kinds of message systems (for example, you
could use it to wrap ActiveMQ, MQSeries, Tibco, BEA, Sonic, and so on). In
JMS, message channels are represented by queues or topics. The endpoint
URI for a specific queue, QueueName, has the following format:

jms:QueueName

The endpoint URI for a specific topic, TopicName, has the following format:

jms:topic:TopicName

See ???? for more details and instructions on how to set up the JMS
component.

MSMQ
The Microsoft Message Queuing (MSMQ) technology is a queuing system that
runs on Windows Server machines (see Microsoft Message Queuing
[http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx#ECC]).
In MSMQ, you can access queues using an endpoint URI with the following
format:

msmq:MSMQueueName

Where the MSMQueueName is a queue reference, defined according to the rules

of MSMQ. You can reference a queue using any of the approaches described
in Referencing a Queue
[http://msdn2.microsoft.com/en-us/library/ms704998%28VS.85%29.aspx].

See ???? for more details.

AMQP
In AMQP, message channels are represented by queues or topics. The endpoint
URI for a specific queue, QueueName, has the following format:

amqp:QueueName

23

Message Channel

http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx#ECC
http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx#ECC
http://msdn2.microsoft.com/en-us/library/ms704998%28VS.85%29.aspx
http://msdn2.microsoft.com/en-us/library/ms704998%28VS.85%29.aspx

The endpoint URI for a specific topic, TopicName, has the following format:

amqp:topic:TopicName

See ???? for more details and instructions on how to set up the AMQP
component.

24

Messaging Systems

Message Endpoint
Overview

Amessage endpoint is the interface between an application and a messaging
system. You can have a sender endpoint (sometimes called a proxy or a service
consumer), which is responsible for sending In messages, and a receiver
endpoint (sometimes called an endpoint or a service), which is responsible
for receiving In messages.

Figure 3. Message Endpoint Pattern

Types of endpoint
Java Router defines two basic types of endpoint:

• Consumer endpoint—appears at the start of a Java Router route and reads
Inmessages from an incoming channel (equivalent to a receiver endpoint).

• Producer endpoint—appears at the end of a Java Router route and writes
In messages to an outgoing channel (equivalent to a sender endpoint). It
is possible to define a route with multiple producer endpoints.

Endpoint URIs
In Java Router, an endpoint is represented by an endpoint URI, which typically
encapsulates the following kinds of data:

• Endpoint URI for a consumer endpoint—can advertise a specific location
(for example, to expose a service to which senders can connect).
Alternatively, the URI could specify a message source, such as a message
queue. The endpoint URI can include settings to configure the endpoint.

• Endpoint URI for a producer endpoint—contains details of where to send
messages and includes settings to configure the endpoint. In some cases,
the URI would specify the location of a remote receiver endpoint; in other
cases, the destination could have an abstract form, such as a queue name.

An endpoint URI in Java Router has the following general form:

25

Message Endpoint

ComponentPrefix:ComponentSpecificURI

Where ComponentPrefix is a URI prefix that identifies a particular Java

Router component (see ???? for details of all the supported components). The
remaining part of the URI, ComponentSpecificURI, has a syntax defined

by the particular component. For example, to connect to the JMS queue,
Foo.Bar, you could define an endpoint URI like the following:

jms:Foo.Bar

To define a route that connects the consumer endpoint,
file://local/router/messages/foo, directly to the producer endpoint,

jms:Foo.Bar, you could use the following Java DSL fragment:

from("file://local/router/messages/foo").to("jms:Foo.Bar");

Alternatively, you could define the same route in XML, as follows:

<camelContext id="CamelContextID" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="file://local/router/messages/foo"/>
<to uri="jms:Foo.Bar"/>

</route>
</camelContext>

26

Messaging Systems

Pipes and Filters
Overview

The pipes and filters pattern describes a way of constructiing a route by
creating a chain of filters, where the output of one filter is fed into the input
of the next filter in the pipeline (analogous to the UNIX pipe command). The

advantage of the pipeline approach is that it enables you to compose services
(some of which can be external to the Java Router application) in order to
create more complex forms of message processing.

Figure 4. Pipes and Filters Pattern

Pipeline for the InOut exchange
pattern Normally, all of the endpoints in a pipeline would have an input (In message)

and an output (Out message), which implies that they are compatible with
the InOut message exchange pattern. A typical message flow through an
InOut pipeline is shown in Figure 5 on page 27.

Figure 5. Pipeline for InOut Exchanges

Where the pipeline connects the output of each endpoint to the input of the
next one. The Out message from the final endpoint gets sent back to the
original caller. You can define a route for this pipeline, as follows:

from("jms:RawOrders").pipeline("cxf:bean:decrypt",
"cxf:bean:authenticate", "cxf:bean:dedup", "jms:CleanOrders");

The same route can be configured in XML, as follows:

27

Pipes and Filters

<camelContext id="buildPipeline" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="jms:RawOrders"/>
<to uri="cxf:bean:decrypt"/>
<to uri="cxf:bean:authenticate"/>
<to uri="cxf:bean:dedup"/>
<to uri="jms:CleanOrders"/>

</route>
</camelContext>

There is no dedicated pipeline element in XML: the preceding combination
of from and to elements is semantically equivalent to a pipeline. See

Comparison of pipeline() and to() DSL commands on page 28.

Pipeline for the InOnly and
RobustInOnly exchange patterns When there are no Outmessages available from the endpoints in the pipeline

(as is the case for the InOnly and RobustInOnly exchange patterns), a

pipeline cannot be plumbed together in the normal way. In this special case,
the pipeline is constructed by passing a copy of the original In message to
each of the endpoints in the pipeline, as shown in Figure 6 on page 28. This
type of pipeline is equivalent to a recipient list with fixed destinations—see
Recipient List on page 56.

Figure 6. Pipeline for InOnly Exchanges

The route for this pipeline is defined using the same syntax as an InOut
pipeline (either in Java DSL or in XML).

Comparison of pipeline() and to()
DSL commands In the Java DSL, you can define a pipeline route using either of the following

syntaxes:

• Using the pipeline() processor command—use the pipeline processor to
construct a pipeline route as follows:

from(SourceURI).pipeline(FilterA, FilterB, TargetURI);

28

Messaging Systems

• Using the to() command—use the to() command to construct a pipeline

route as follows:

from(SourceURI).to(FilterA, FilterB, TargetURI);

Alternatively, you could use the exactly equivalent syntax:

from(SourceURI).to(FilterA).to(FilterB).to(TargetURI);

You should excercise caution when using the to() command syntax, however,

because it is not always equivalent to a pipeline processor. In the Java DSL,
the meaning of to() can be modified by the preceding command in the route.

For example, when the multicast() command precedes the to() command,

it binds the listed endpoints into a multicast pattern, instead of a pipeline
pattern—see Multicast on page 79.

29

Pipes and Filters

Message Router
Overview

A message router is a type of filter that consumes messages from a single
consumer endpoint and then redirects them to the appropriate target endpoint,
based on a particular decision criterion. A message router is concerned only
with redirecting messages; it does not modify the message content.

Figure 7. Message Router Pattern

A message router can easily be implemented in Java Router using the
choice() processor, where each of the alternative target endpoints can be

selected using a when() subclause (for details of the choice processor, see

Processors in the Java Router, Defining Routes and Processors in the Java
Router, Defining Routes)

Java DSL example
The following Java DSL example shows how to route messages to three
alternative destinations (either seda:a, seda:b, or seda:c) depending on

the contents of the foo header:

from("seda:a").choice()
.when(header("foo").isEqualTo("bar")).to("seda:b")
.when(header("foo").isEqualTo("cheese")).to("seda:c")
.otherwise().to("seda:d");

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>

30

Messaging Systems

../defining_routes/defining_routes.pdf
../defining_routes/defining_routes.pdf

<to uri="seda:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>

</when>
<otherwise>
<to uri="seda:d"/>

</otherwise>
</choice>

</route>
</camelContext>

31

Message Router

Message Translator
Overview

The message translator pattern describes a component that modifies the
contents of a message, translating it to a different format. You can use Java
Router's bean integration feature to perform the message translation.

Figure 8. Message Translator Pattern

Bean integration
You can transform a message using bean Integration, which enables you to
call a method on any registered bean. For example, to call the method,
myMethodName(), on the bean with ID, myTransformerBean:

from("activemq:SomeQueue")
.beanRef("myTransformerBean", "myMethodName")
.to("mqseries:AnotherQueue");

Where the myTransformerBean bean is defined in a Spring XML file or

defined in JNDI. You can omit the method name parameter from beanRef()

and the bean integration will try to deduce the method name to invoke by
examining the message exchange.

You can also add your own explicit Processor instance to do the

transformation, as follows:

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Or you can use the DSL to explicitly configure the transformation, as follows:

from("direct:start").setBody(body().append("
World!")).to("mock:result");

32

Messaging Systems

You can also use templating to consume a message from one destination,
transform it with something like Velocity or XQuery and then send it on to
another destination. For example, using the InOnly exchange pattern (one-way
messaging) :

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue on ActiveMQ with a template generated response, then

sending responses back to the JMSReplyTo destination you could use a route

like the following:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

33

Message Translator

34

Messaging Channels
Messaging channels provide the plumbing for a messaging application. This chapter describes the different kinds
of messaging channels that you can have in a messaging system and the roles that they play in the system.

Point-to-Point Channel .. 36
Publish Subscribe Channel ... 38
Dead Letter Channel ... 40
Guaranteed Delivery ... 44
Message Bus .. 48

35

Point-to-Point Channel
Overview

A point-to-point channel is a message channel on page 22 that guarantees
that only one receiver consumes any given message (contrast this with a
publish-subscribe channel on page 38, which allows multiple receivers to
consume the same message). In particular, with a point-to-point channel, it
is possible for multiple receivers to subscribe to the same channel. If more
than one receiver competes to consume a message, it is up to the message
channel to ensure that only one receiver actually consumes the message.

Figure 9. Point to Point Channel Pattern

Components that support
point-to-point channel The following Java Router components support the point-to-point channel

pattern:

• JMS on page 36

• ActiveMQ on page 37

• SEDA on page 37

• JPA on page 37

• XMPP on page 37

JMS
In JMS, a point-to-point channel is represented by a queue. For example, you
could specify the endpoint URI for a JMS queue called Foo.Bar as follows:

jms:queue:Foo.Bar

The qualifier, queue:, is optional, because the JMS component creates a

queue endpoint by default. Hence, you could also specify the following
equivalent endpoint URI:

jms:Foo.Bar

36

Messaging Channels

See ???? for more details.

ActiveMQ
In ActiveMQ, a point-to-point channel is represented by a queue. For example,
you could specify the endpoint URI for an ActiveMQ queue called Foo.Bar

as follows:

activemq:queue:Foo.Bar

See ???? for more details.

SEDA
The Java Router Staged Event-Driven Architecture (SEDA) component is
implemented using a blocking queue. Use the SEDA component, if you want
to create a lightweight point-to-point channel that is internal to the Java
Router application. For example, you could specify an endpoint URI for a
SEDA queue called SedaQueue as follows:

seda:SedaQueue

JPA
The JPA component is an EJB 3 persistence standard that is used to write
Entity beans out to a database. See ???? for more details.

XMPP
The XMPP (Jabber) component supports the point-to-point channel pattern
when it is used in the person-to-person mode of communication. See ???? for
more details.

37

Point-to-Point Channel

Publish Subscribe Channel
Overview

A publish-subscribe channel is a message channel on page 22 that enables
multiple subscribers to consume any given message (contrast this with a
point-to-point channel on page 36). Publish-subscribe channels are frequently
used as a means of broadcasting events or notifications to multiple subscribers.

Figure 10. Publish Subscribe Channel Pattern

Components that support
publish-subscribe channel The following Java Router components support the publish-subscribe channel

pattern:

• JMS on page 38

• ActiveMQ on page 39

• XMPP on page 39

JMS
In JMS, a publish-subscribe channel is represented by a topic. For example,
you could specify the endpoint URI for a JMS topic called StockQuotes as

follows:

38

Messaging Channels

jms:topic:StockQuotes

See ???? for more details.

ActiveMQ
In ActiveMQ, a publish-subscribe channel is represented by a topic. For
example, you could specify the endpoint URI for an ActiveMQ topic called
StockQuotes as follows:

activemq:topic:StockQuotes

See ???? for more details.

XMPP
The XMPP (Jabber) component supports the publish-subscribe channel pattern
when it is used in the group communication mode. See ???? for more details.

Static subscription lists
If you prefer, you can also implement publish-subscribe logic within the Java
Router application itself. A simple approach is to define a static subscription
list, where the target endpoints are all explicitly listed at the end of the route
(this approach is not as flexible as a JMS or ActiveMQ topic, however).

Java DSL example
The following Java DSL example shows how to simulate a publish-subscribe
channel with a single publisher, seda:a, and three subscribers, seda:b,

seda:c, and seda:d (works only for the InOnly message exchange pattern):

from("seda:a").to("seda:b", "seda:c", "seda:d");

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext id="buildStaticRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>

</route>
</camelContext>

39

Publish Subscribe Channel

Dead Letter Channel
Overview

The dead letter channel pattern describes what actions to take when the
messaging system fails to deliver a message to its intended recipient. This
includes such features as retrying delivery and, if delivery ultimately fails,
sending the message to a special channel, the dead letter channel, which
archives the undelivered messages.

Figure 11. Dead Letter Channel Pattern

Creating a dead letter channel in
Java DSL The following example shows how to create a dead letter channel using the

Java DSL:

errorHandler(deadLetterChannel("seda:errors"));
from("seda:a").to("seda:b");

Where the errorHandler()method is a Java DSL interceptor, which implies

that all of the routes defined in the current route builder are affected by this
setting. The deadLetterChannel() method is a Java DSL command that

creates a new dead letter channel with the specified destination endpoint,
seda:errors.

The errorHandler() interceptor provides a catch-all mechanism for handling

all error types. If you want to apply a more fine-grained approach to exception

40

Messaging Channels

handling, you can use the onException clauses instead—see onException

clause on page 42.

Redelivery policy
Normally, you would not send a message straight to the dead letter channel,
if a delivery attempt fails. Instead, it makes sense to re-attempt delivery (up
to some maximum limit), and only after all redelivery attempts have failed
would you send the message to the dead letter channel. To customize message
redelivery, you can configure the dead letter channel to have a redelivery
policy. For example, to specify a maximum of two redelivery attempts and to
apply an exponential backoff algorithm to the time delay between delivery
attempts, you could configure the dead letter channel as follows:

errorHandler(deadLetterChannel("seda:errors").maximumRedeliv
eries(2).useExponentialBackOff());
from("seda:a").to("seda:b");

Where you set the redelivery options on the dead letter channel by invoking
the relevant methods in a chain, as shown above (each method in the chain
returns a reference to the current RedeliveryPolicy object).

Table 8 on page 41 summarizes the methods that you can use to set
redelivery policies.

Table 8. Redelivery Policy Settings

DescriptionDefaultMethod Signature

If exponential backoff is
enabled, let m be the

2backOffMultiplier(double

multiplier)
backoff multiplier and let
d be the initial delay. The

sequence of redelivery
attempts are then timed
as follows:

d, m*d, m*m*d,
m*m*m*d, ...

If collision avoidance is
enabled, let p be the

15collisionAvoidancePercent(double

collisionAvoidancePercent)
collision avoidance
percent. The collision
avoidance policy then
tweaks the next delay by
a random amount up to

41

Dead Letter Channel

DescriptionDefaultMethod Signature

plus/minus p% of its

current value.

Specifies the delay (in
milliseconds) before

1000initialRedeliveryDelay(long

initialRedeliveryDelay)
attempting the first
redelivery.

Maximum number of
delivery attempts.

6maximumRedeliveries(int

maximumRedeliveries)

Enables collision
avoidence, which adds

falseuseCollisionAvoidance()

some randomization to
the backoff timings to
reduce contention
probability.

Enables exponential
backoff.

falseuseExponentialBackOff()

Redelivery headers
If Java Router attempts to redeliver a message, it automatically sets the
following headers on the In message:

DescriptionTypeHeader Name

Counts the number
of unsuccessful
delivery attempts.

Integerorg.apache.camel.RedeliveryCounter

True, if one or more
redelivery attempts
have been made.

Booleanorg.apache.camel.Redelivered

onException clause
Instead of using the errorHandler() interceptor in your route builder, you

can define a series of onException() clauses that define different redelivery

policies and different dead letter channels for various exception types. For
example, to define distinct behavior for each of the NullPointerException,

IOException, and Exception types, you could define the following rules in

your route builder using the Java DSL:

42

Messaging Channels

onException(NullPointerException.class)
.maximumRedeliveries(1)
.setHeader("messageInfo", "Oh dear! An NPE.")
.to("mock:npe_error");

onException(IOException.class)
.initialRedeliveryDelay(5000L)
.maximumRedeliveries(3)
.backOffMultiplier(1.0)
.useExponentialBackOff()
.setHeader("messageInfo", "Oh dear! Some kind of I/O ex

ception.")
.to("mock:io_error");

onException(Exception.class)
.initialRedeliveryDelay(1000L)
.maximumRedeliveries(2)
.setHeader("messageInfo", "Oh dear! An exception.")
.to("mock:error");

from("seda:a").to("seda:b");

Where the redelivery options are specified by chaining the redelivery policy
methods (as listed in Table 8 on page 41) and you specify the dead letter
channel's endpoint using the to() DSL command. You can also call other

Java DSL commands in the onException() clauses. For example, the

preceding example calls setHeader() to record some error details in a

message header named, messageInfo.

In this example, the NullPointerException and IOException exception

types are configured specially. All other exception types are handled by the
generic Exception exception interceptor. By default, Java Router applies the

exception interceptor that matches the thrown exception most closely. If it
fails to find an exact match, it tries to match the closest base type, and so
on. FInally, if no other interceptor matches, the interceptor for the Exception

type matches all remaining exceptions.

43

Dead Letter Channel

Guaranteed Delivery
Overview

Guaranteed delivery means that once a message has been pushed into a
message channel, the messaging system guarantees that the message will
reach its destination, even if parts of the application should fail. In general,
messaging systems implement the guaranteed delivery pattern by writing
messages to persistent storage before attempting to deliver them to their
destination.

Figure 12. Guaranteed Delivery Pattern

Components that support
guaranteed delivery The following Java Router components support the guaranteed delivery pattern:

• JMS on page 44

• ActiveMQ on page 45

• ActiveMQ Journal on page 47

JMS
In JMS, the deliveryPersistent query option indicates whether persistent

storage of messages is enabled or not. But it is normally unnecessary to set
this option, because the default behavior is to enable persistent delivery. To
configure all the details of guaranteed delivery, it is necessary to set
configuration options on the JMS provider. These details vary, depending on
what JMS provider you are using. For example, MQSeries, TibCo, BEA, Sonic,
and so on, all provide various qualities of service to support guaranteed
delivery.

44

Messaging Channels

See ???? for more details.

ActiveMQ
In ActiveMQ, message persistence is enabled by default. From version 5
onwards, ActiveMQ uses the AMQ message store as the default persistence
mechanism. There are several different approaches you can take to enabling
message persistence in ActiveMQ.

The simplest option (different from the figure shown above) is to enable
persistence in a central broker and then connect to the broker using a reliable
protocol. After the message has been sent to the central broker, delivery to
consumers is guaranteed. For example, in the Java Router configuration file,
META-INF/spring/camel-context.xml, you could configure the ActiveMQ

component to connect to the central broker using the OpenWire/TCP protocol
as follows:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>

</bean>
...

</beans>

If you prefer to implement an architecture where messages are stored locally
before being sent to a remote endpoint (similar to the figure shown above),
you can do this by instantiating an embedded broker in your Java Router
application. A simple way to achieve this is to use the ActiveMQ Peer-to-Peer
protocol, which implicitly creates an embedded broker in order to communicate
with other peer endpoints. For example, in the camel-context.xml

configuration file, you could configure the ActiveMQ component to connect
to all of the peers in group, GroupA, as follows:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="peer://GroupA/broker1"/>

</bean>
...

</beans>

45

Guaranteed Delivery

Where broker1 is the broker name of the embedded broker (other peers in

the group should use different broker names). One limiting feature of the
Peer-to-Peer protocol is that it relies on IP multicast to locate the other peers
in its group. This makes it unsuitable for use in wide area networks (and even
some local area networks do not have IP multicast enabled).

A more flexible way to create an embedded broker in the ActiveMQ component
is to exploit ActiveMQ's VM protocol, which connects to an embedded broker
instance. If a broker of the required name does not already exist, the VM
protocol automatically creates one. You can use this mechanism to create an
embedded broker with custom configuration. For example:

<beans ... >
...
<bean id="activemq" class="org.apache.activemq.camel.compon

ent.ActiveMQComponent">
<property name="brokerURL" value="vm://broker1?brokerCon

fig=xbean:activemq.xml"/>
</bean>
...

</beans>

Where activemq.xml is an ActiveMQ file, which configures the embedded

broker instance. Within the ActiveMQ configuration file, you can choose to
enable one of the following persistence mechanisms:

• AMQ persistence—(the default) a fast and reliable message store that is
native to ActiveMQ. For details, see amqPersistenceAdapter
[http://tinyurl.com/activemq-amqPersistenceAdapter] and AMQ Message
Store [http://activemq.apache.org/amq-message-store.html].

• JDBC persistence—uses JDBC to store messages in any JDBC-compatible
database. For details, see jdbcPersistenceAdapter
[http://tinyurl.com/activemq-jdbPersistenceAdapter] and ActiveMQ
Persistence [http://activemq.apache.org/persistence.html].

• Journal persistence—a fast persistence mechanism that stores messages
in a rolling log file. For details, see journalPersistenceAdapter
[http://tinyurl.com/activemq-journalPA] and ActiveMQ Persistence
[http://activemq.apache.org/persistence.html].

• Kaha persistence—a persistence mechanism developed specially for
ActiveMQ. For details, see kahaPersistenceAdapter
[http://tinyurl.com/activemq-kahaPA] and ActiveMQ Persistence
[http://activemq.apache.org/persistence.html].

46

Messaging Channels

http://tinyurl.com/activemq-amqPersistenceAdapter
http://tinyurl.com/activemq-amqPersistenceAdapter
http://activemq.apache.org/amq-message-store.html
http://activemq.apache.org/amq-message-store.html
http://activemq.apache.org/amq-message-store.html
http://tinyurl.com/activemq-jdbPersistenceAdapter
http://tinyurl.com/activemq-jdbPersistenceAdapter
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-journalPA
http://tinyurl.com/activemq-journalPA
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-kahaPA
http://tinyurl.com/activemq-kahaPA
http://activemq.apache.org/persistence.html
http://activemq.apache.org/persistence.html

See ???? for more details.

ActiveMQ Journal
The ActiveMQ Journal component is optimized for the special use case where
multiple, concurrent producers write messages to queues, but there is only
one active consumer. Messages are stored in rolling log files and concurrent
writes are aggregated in order to boost efficiency.

See ???? for more details.

47

Guaranteed Delivery

Message Bus
Overview

Message bus refers to a messaging architecture that enables you to link
together diverse applications running on diverse computing platforms. In
effect, the Java Router and its components, taken together, constitute a
message bus.

Figure 13. Message Bus Pattern

The following features of the message bus pattern are reflected in Java Router:

• Common communication infrastructure—the router itself provides the core
of the common communication infrastructure in Java Router. In contrast
to some message bus architectures, however, Java Router provides a
heterogeneous infrastructure: messages can be sent into the bus using a
wide variety of different transports and using a wide variety of different
message formats.

• Adapters—where necessary, the Java Router can translate message formats
and propagate messages using different transports. In effect, the Java Router
is capable of behaving like an adapter, so that external applications can
hook into the message bus without refactoring the their messaging protocols.

In some cases, it is also possible to integrate an adapter directly into an
external application. For example, if you develop an application using FUSE
Services Framework, where the service is implemented using JAX-WS and
JAX-B mappings, it is possible to bind a variety of different transports to
the service. These transport bindings function as adapters.

48

Messaging Channels

Message Construction
The message construction patterns describe the various forms and functions of the messages that pass through
the system.

Correlation Identifier ... 50

49

Correlation Identifier
Overview

The correlation identifier pattern describes how to match reply messages
with request messages, given that an asynchronous messaging system is used
to implement a request-reply protocol. The essence of this idea is that request
messages should be generated with a unique token, the request ID, that
identifies the request message and reply messages should include a token,
the correlation ID, that contains the matching request ID.

Java Router supports the Correlation Identifier from the EIP patterns by getting
or setting a header on a Message.

When working with the ActiveMQ or JMS components, the correlation identifier
header is called JMSCorrelationID. You can add your own correlation

identifier to any message exchange to help correlate messages together in a
single conversation (or business process). You would normally store a
correlation identifier in a Java Router message header.

Figure 14. Correlation Identifier Pattern

50

Message Construction

Message Routing
The message routing patterns describe various ways of linking message channels together, including various
algorithms that can be applied to the message stream (without modifying the body of the message).

Content-Based Router ... 52
Message Filter ... 54
Recipient List .. 56
Splitter .. 59
Aggregator ... 61
Resequencer ... 66
Routing Slip ... 70
Throttler .. 72
Delayer ... 73
Load Balancer ... 75
Multicast ... 79

51

Content-Based Router
Overview

A content-based router enables you to route messages to the appropriate
destination, where the routing decision is based on the message contents.

Figure 15. Content-Based Router Pattern

Java DSL example
The following example shows how to route a request from an input seda:a

endpoint to either seda:b, queue:c or seda:d depending on the evaluation

of various predicate expressions:

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").choice()
.when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c")

.otherwise().to("seda:d");
}

};

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>

52

Message Routing

</when>
<otherwise>
<to uri="seda:d"/>

</otherwise>
</choice>

</route>
</camelContext>

53

Content-Based Router

Message Filter
Overview

A message filter is a processor that eliminates undesired messages based on
specific criteria. In Java Router, the message filter pattern is implemented by
the filter() Java DSL command. The filter() command takes a single

predicate argument, which controls the filter as follows: when the predicate
is true, the incoming message is allowed to proceed, and when the predicate

is false, the incoming message is blocked.

Figure 16. Message Filter Pattern

Java DSL example
The following example shows how to create a route from endpoint, seda:a,

to endpoint, seda:b, that blocks all messages except for those messages

whose foo header have the value, bar,

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(head
er("foo").isEqualTo("bar")).to("seda:b");

}
};

To evaluate more complex filter predicates, you can invoke one of the
supported scripting languages, such as XPath, XQuery, or SQL (see Languages
for Expressions and Predicates in the Java Router, Defining Routes). For
example, to define a route that blocks all messages except for those containing
a person element whose name attribute is equal to James:

54

Message Routing

../defining_routes/defining_routes.pdf
../defining_routes/defining_routes.pdf

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

XML configuration example
The following example shows how to configure the route with an XPath
predicate in XML (see Languages for Expressions and Predicates in the Java
Router, Defining Routes):

<camelContext id="simpleFilterRoute" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>

</filter>
</route>

</camelContext>

55

Message Filter

../defining_routes/defining_routes.pdf

Recipient List
Overview

A recipient list is a type of router that sends each incoming message to
multiple different destinations. In addition, a recipient list typically requires
that the list of recipients be calculated at run time.

Figure 17. Recipient List Pattern

Recipient list with fixed
destinations The simplest kind of recipient list is where the list of destinations is fixed and

known in advance and the exchange pattern is InOnly. In this case, you can
hardwire the list of destinations into the to() Java DSL command.

Note
The examples given here, for the recipient list with fixed destinations,
work only for the InOnly exchange pattern (similar to a
pipeline on page 27). If you want to create a recipient list for
exchange patterns with Out messages, use the multicast pattern
instead.

Java DSL example
The following example shows how to route an InOnly exchange from a
consumer endpoint, queue:a, to a fixed list of destinations:

from("seda:a").to("seda:b", "seda:c", "seda:d");

XML configuration example
The following example shows how to configure the same route in XML:

56

Message Routing

<camelContext id="buildStaticRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>

</route>
</camelContext>

Recipient list calculated at run
time In most cases, when you use the recipient list pattern, you want the list of

recipients to be calculated at runtime. For this, you can use the
recipientList() processor, which takes a list of destinations as its sole

argument. Because Java Router applies a type converter to the list argument,
it should be possible to use most standard Java list types here (for example,
a collection, a list or an array). For more details about type converters, see
Built-In Type Converters in the Java Router, Programmer's Guide.

Java DSL example
The following example shows how to extract the list of destinations from a
message header called recipientListHeader, where the header value is

a comma-separated list of endpoint URIs:

from("direct:a").recipientList(header("recipientListHead
er").tokenize(","));

In some cases, if the header value is a list type, you might be able to use it
directly as the argument to recipientList(). For example:

from("seda:a").recipientList(header("recipientListHeader"));

However, this example is entirely dependent on the manner in which the
underlying component parses this particular header. If the component parses
the header as a simple string, this example would not work. You have to know
how the underlying component parses its header data—see ????.

XML configuration example
The following example shows how to configure the preceding route in XML,
where it is assumed that the underlying component parses the foo header

as a list type:

<camelContext id="buildDynamicRecipientList" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<recipientList>

57

Recipient List

../prog_guide/prog_guide.pdf

<header>recipientListHeader</header>
</recipientList>

</route>
</camelContext>

58

Message Routing

Splitter
Overview

A splitter is a type of router that splits an incoming message into a series of
outgoing messages, where each of the messages contains a piece of the
original message. In Java Router, the splitter pattern is implemented by the
splitter() Java DSL command, which takes a list of message pieces as

its sole argument.

Figure 18. Splitter Pattern

Header data
Each outgoing message includes a copy of all of the original headers from
the incoming message. In addition, the splitter processor adds the following
headers to each outgoing message:

DescriptionTypeHeader Name

The total number of parts
into which the original
message was split.

Integerorg.apache.camel.splitSize

Index of the current
message part (starting at
0).

Integerorg.apache.camel.splitCounter

Java DSL example
The following example defines a route from seda:a to seda:b that splits

messages by converting each line of an incoming message into a separate
output message:

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").splitter(bodyAs(String.class).token
ize("\n")).to("seda:b");

59

Splitter

}
};

The splitter can use any expression language, so you could split messages
using any of the supported scripting languages, such as XPath, XQuery, or
SQL (see Languages for Expressions and Predicates in the Java Router,
Defining Routes). For example, to extract bar elements from an incoming

message and insert them into separate outgoing messages:

from("activemq:my.queue").split
ter(xpath("//foo/bar")).to("file://some/directory")

XML configuration example
The following example shows how to configure a splitter route in XML, using
the XPath scripting language:

<camelContext id="buildSplitter" xmlns="http://act
ivemq.apache.org/camel/schema/spring">

<route>
<from uri="seda:a"/>
<splitter>
<xpath>//foo/bar</xpath>
<to uri="seda:b"/>

</splitter>
</route>

</camelContext>

60

Message Routing

../defining_routes/defining_routes.pdf

Aggregator
Overview

The aggregator pattern enables you to combine a batch of related messages
into a single message. To control the aggregator's behavior, Java Router allows
you to specify the properties described in Enterprise Integration Patterns, as
follows:

• Correlation expression—determines which messages should be aggregated
together. The correlation expression is evaluated on each incoming message
to produce a correlation key. Incoming messages with the same correlation
key are then grouped into the same batch. For example, if you want to
aggregate all incoming messages into a single message, you could use a
constant expression.

• Completeness condition—determines when a batch of messages is
complete. You can specify this either as a simple size limit or, more
generally, you can specify a predicate condition that flags when the batch
is complete.

• Aggregation algorithm—combines the message exchanges for a single
correlation key into a single message exchange. The default strategy simply
chooses the latest message, which makes it ideal for throttling message
flows.

For example, consider a stock market data system that receives 30,000
messages per second. You might want to throttle down the message flow if,
say, your GUI tool cannot cope with such a massive update rate. The incoming
stock quotes could be aggregated together simply by choosing the latest quote
and discarding the older prices. (You could apply a delta processing algorithm,
if you prefer to capture some of the history.)

61

Aggregator

Figure 19. Aggregator Pattern

Simple aggregator
You can define a simple aggregator by calling the aggregator() DSL

command with a correlation expression as its sole argument (default limits
are applied to the batch size—see Specifying the batch size on page 62). The
following example shows how to aggregate stock quotes, so that only the
latest quote is propagated for the symbol contained in the StockSymbol

header:

from("direct:start").aggregator(header("StockSym
bol")).to("mock:result");

The following example shows how to configure the same route using XML
configuration:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator>
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

Specifying the batch size
Normally, you would also specify how many messages should be collected
(the batch size) before the aggregate message gets propagated to the target
endpoint. Java Router provides several different settings for controlling the
batch size, as follows:

• Batch size—specifies an upper limit to the number of messages in a batch
(default is 100). For example, the following Java DSL route sets an upper
limit of 10 message in a batch:

62

Message Routing

from("direct:start").aggregator(header("StockSymbol")).batch
Size(10).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator batchSize="10">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

• Batch timeout—specifies a time interval, in units of milliseconds, during
which messages are collected (default is 1000 ms). If no messages are
received during a given time interval, no aggregate message will be
propagated. For example, the following Java DSL route aggregates the
messages that arrive during each ten second window:

from("direct:start").aggregator(header("StockSymbol")).batch
Timeout(10000).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator batchTimeout="10000">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

• Completed predicate—specifies an arbitrary predicate expression that
determines when the current batch is complete. If the predicate resolves
to true, the current message becomes the last message of the batch. For

example, if you want to terminate a batch of stock quotes every time you
receive an ALERTmessage (as indicated by the value of a MsgType header),

you could define a route like the following:

63

Aggregator

from("direct:start").aggregator(header("StockSymbol")).
completedPredicate(header("Ms

gType").isEqualTo("ALERT")).to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator>
<simple>header.StockSymbol</simple>
<completedPredicate>

<xpath>$MsgType = 'ALERT'</xpath>
</completedPredicate>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

You can also combine batch limiting mechanisms, in which case a batch is
completed whenever the first of the limits is reached. For example, to specify
all three limits simultaneously:

from("direct:start").aggregator(header("StockSymbol")).
batchSize(10).
batchTimeout(10000).
completedPredicate(header("MsgType").isEqualTo("ALERT")).

to("mock:result");

Custom aggregation strategy
The default aggregation strategy is to select the most recent message in a
batch, discarding all others. If you want to apply a different aggregation
strategy, you can implement a custom version of the
org.apache.camel.processor.aggregate.AggregationStrategy

interface and pass it as the second argument to the aggregator() DSL

command. For example, to aggregate messages using the custom strategy
class, MyAggregationStrategy, you could define a route like the following:

from("direct:start").aggregator(header("StockSymbol"), new
MyAggregationStrategy()).to("mock:result");

64

Message Routing

The following code implements a custom aggregation strategy,
MyAggregationStrategy, that concatenates all of the batch messages into

a single, large message:

// Java
package com.my_package_name

import org.apache.camel.processor.aggregate.Aggregation
Strategy;
import org.apache.camel.Exchange;

public class MyAggregationStrategy implements Aggregation
Strategy {

public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {

String oldBody = oldExchange.getIn().get
Body(String.class);

String newBody = newExchange.getIn().get
Body(String.class);

String concatBody = oldBody.concat(newBody);
// Set the body equal to a concatenation of old and

new.
oldExchange.getIn().setBody(concatBody);
// Ignore the message headers!
// (in a real application, you would probably want to

do
// something more sophisticated with the header data).

return oldExchange;
}

}

You can also configure a route with a custom aggregation strategy in XML,
as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<aggregator strategyRef="aggregatorStrategy">
<simple>header.StockSymbol</simple>
<to uri="mock:result"/>

</aggregator>
</route>

</camelContext>

<bean id="aggregatorStrategy" class="com.my_package_name.MyAg
gregationStrategy"/>

65

Aggregator

Resequencer
Overview

The resequencer pattern enables you to resequence messages according to
a sequencing expression. Messages that generate a low value for the
sequencing expression are moved to the front of the batch and messages that
generate a high value are moved to the back.

Figure 20. Resequencer Pattern

Camel supports two resequencing algorithms:

• Batch resequencing collects messages into a batch, sorts the messages
and sends them to their output.

• Stream resequencing re-orders (continuous) message streams based on
the detection of gaps between messages.

Batch resequencing
The batch resequencing algorithm is enabled by default. For example, to
resequence a batch of incoming messages based on the value of a timestamp
contained in the TimeStamp header, you could define the following route in

Java DSL:

from("direct:start").resequencer(head
er("TimeStamp")).to("mock:result");

By default, the batch is obtained by collecting all of the incoming messages
that arrive in a time interval of 1000 milliseconds (default batch timeout),
up to a maximum of 100 messages (default batch size). You can customize
the values of the batch timeout and the batch size by appending a batch()

DSL command, which takes a BatchResequencerConfig instance as its

sole argument. For example, to modify the preceding route so that the batch
consists of messages collected in a 4000 millisecond time window, up to a
maximum of 300 messages, you could define the Java DSL route as follows:

66

Message Routing

import org.apache.camel.model.config.BatchResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").resequencer(head
er("TimeStamp")).batch(new BatchResequencerCon
fig(300,4000L)).to("mock:result");

}
};

You can also use multiple expressions to sort messages in a batch. For
example, if you want to sort incoming messages, first of all according to their
JMS priority (as recorded in the JMSPriority header) and second, according

to the value of their time stamp (as recorded in the TimeStamp header), you

could define a route like the following:

from("direct:start").resequencer(header("JMSPriority"), head
er("TimeStamp")).to("mock:result");

In this case, messages with the highest priority (that is, low JMS priority
number) would be moved to the front of the batch. If more than one message
has the highest priority, the highest priority messages would be ordered
amongst themselves according to the value of the TimeStamp header.

You can also specify a batch resequencer pattern using XML configuration.
For example, to define a batch resequencer with a batch size of 300 and a
batch timeout of 4000 milliseconds:

<camelContext id="resequencerBatch" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start" />
<resequencer>
<simple>header.TimeStamp</simple>
<to uri="mock:result" />
<!--
batch-config can be omitted for default (batch)

resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>

67

Resequencer

</route>
</camelContext>

Stream resequencing
To enable the stream resequencing algorithm, you need to append stream()

to the resequencer() DSL command. For example, to resequence incoming

messages based on the value of a sequence number in the seqnum header,

you could define a DSL route as follows:

from("direct:start").resequencer(header("se
qnum")).stream().to("mock:result");

The stream-processing resequencer algorithm is based on the detection of
gaps in a message stream, rather than on a fixed batch size. Gap detection
in combination with timeouts removes the constraint of having to know the
number of messages of a sequence (that is, the batch size) in advance.
Messages must contain a unique sequence number for which a predecessor
and a successor is known. For example a message with the sequence number
3 has a predecessor message with the sequence number 2 and a successor

message with the sequence number 4. The message sequence 2,3,5 has a

gap because the successor of 3 is missing. The resequencer therefore has to

retain message 5 until message 4 arrives (or a timeout occurs).

By default, the stream resequencer is configured with a timeout 1000
milliseconds and a maximum message capacity of 100. To customize the
stream's timeout and capacity, you can pass a StreamResequencerConfig

object as an argument to stream(). For example, to configure a stream

resequencer with a capacity of 5000 and a timeout of 4000 milliseconds,
you could define a route as follows:

// Java
import org.apache.camel.model.config.StreamResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").resequencer(header("seqnum")).
stream(new StreamResequencerConfig(5000, 4000L)).

to("mock:result");
}

};

68

Message Routing

If the maximum time delay between successive messages (that is, messages
with adjacent sequence numbers) in a message stream is known, the
resequencer's timeout parameter should be set to this value. In this case, you
can guarantee that all messages in the stream are delivered in the correct
order to the next processor. The lower the timeout value is compared to the
out-of-sequence time difference, the more likely it is that the resequencer will
deliver messages out of sequence. Large timeout values should be supported
by sufficiently high capacity values, where the capacity parameter is used to
prevent the resequencer from running out of memory.

If you want to use sequence numbers of some type other than long, you

would need to define a custom comparator, as follows:

// Java
ExpressionResultComparator<Exchange> comparator = new MyCompar
ator();
StreamResequencerConfig config = new StreamResequencerCon
fig(5000, 4000L, comparator);
from("direct:start").resequencer(header("seqnum")).stream(con
fig).to("mock:result");

You can also specify a stream resequencer pattern using XML configuration.
For example, to define a stream resequencer with a capacity of 5000 and a
timeout of 4000 milliseconds:

<camelContext id="resequencerStream" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<resequencer>
<simple>header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequencer>
</route>

</camelContext>

69

Resequencer

Routing Slip
Overview

The routing slip pattern enables you to route a message consecutively through
a series of processing steps, where the sequence of steps is not known at
design time and can vary for each message. The list of endpoints through
which the message should pass is stored in a header field (the slip), which
Java Router reads at run time in order to construct a pipeline on the fly.

Figure 21. Routing Slip Pattern

The slip header
By default the routing slip appears in a header named, routingSlipHeader,

where the header value is a comma-separated list of endpoint URIs. For
example, a routing slip that specifies a sequence of security tasks—decrypting,
authenticating, and de-duplicating a message—might look like the following:

cxf:bean:decrypt,cxf:bean:authenticate,cxf:bean:dedup

Java DSL example
The following route takes messages from the direct:a endpoint and passes

them into the routing slip pattern:

from("direct:a").routingSlip();

You can customize the name of the routing slip header by passing a string
argument to the routingSlip() command, as follows:

from("direct:b").routingSlip("aRoutingSlipHeader");

70

Message Routing

You can also customize the URI delimiter using the two-argument form of
routingSlip(). For example, to customize the routing slip header to be

aRoutingSlipHeader and to specify # as the URI delimiter, define the route

as follows:

from("direct:c").routingSlip("aRoutingSlipHeader", "#");

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext id="buildRoutingSlip" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:c"/>
<routingSlip headerName="aRoutingSlipHeader" uriDelim

iter="#"/>
</route>

</camelContext>

71

Routing Slip

Throttler
Overview

A throttler is a processor that limits the flow rate of incoming messages. You
can use this pattern to protect a target endpoint from getting overloaded. In
Java Router, you can implement the throttler pattern using the throttler()

Java DSL command.

Java DSL example
To limit the flow rate to 100 messages per second, define a route as follows:

from("seda:a").throttler(100).to("seda:b");

If necessary, you can customize the time period that governs the flow rate
using the timePeriodMillis() DSL command. For example, to limit the

flow rate to 3 messages per 30000 milliseconds, define a route as follows:

from("seda:a").throttler(3).timePeriodMil
lis(30000).to("mock:result");

XML configuration example
The following example shows how to configure the preceding route in XML:

<camelContext id="throttlerRoute" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<throttler maximumRequestsPerPeriod="3" timePeriodMil

lis="30000">
<to uri="mock:result"/>

</throttler>
</route>

</camelContext>

72

Message Routing

Delayer
Overview

A delayer is a processor that enables you to apply either a relative time delay
or an absolute time delay to incoming messages.

Java DSL example
You can use the delayer() command to add a relative time delay, in units

of milliseconds, to incoming messages. For example, the following route delays
all incoming messages by 2 seconds:

from("seda:a").delayer(2000).to("mock:result");

Alternatively, you could specify the absolute time when a message should be
dispatched. The absolute time value must be expressed in coordinated
universal time (UTC), which is defined as the number of milliseconds that
have elapsed since midnight, January 1, 1970. For example, to dispatch a
message at the absolute time specified by the contents of the JMSTimestamp

header, you could define a route like the following:

from("seda:a").delayer(header("JMSTimestamp")).to("mock:res
ult");

You can also combine an absolute time with a relative time delay. For example,
to delay an incoming message until the time specified in the JMSTimestamp

header plus an additional 3 seconds, you could define a route like the
following:

from("seda:a").delayer(header("JMSTimestamp"),
3000).to("mock:result");

The preceding examples assume that delivery order is maintained. This could
result in messages being delivered later than their specified time stamp,
however. To avoid this, you could reorder the messages based on their delivery
time, by combining the delayer pattern with the resequencer pattern. For
example:

from("activemq:someQueue").
resequencer(header("JMSTimestamp")).

73

Delayer

delayer(header("JMSTimestamp")).to("activemq:aD
elayedQueue");

XML configuration example
To delay an incoming message until the time specified in the JMSTimestamp

header plus an additional 3 seconds, you could define a route using the
following XML configuration:

<camelContext id="delayerRoute" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<delayer>
<simple>header.JMSTimestamp</simple>
<delay>3000</delay>

</delayer>
<to uri="mock:result"/>

</route>
</camelContext>

If you want to specify a relative time delay only, you must insert a dummy
expression, <expression/>, in place of the absolute time expression. For

example, to delay incoming messages by a relative time delay of 2 seconds,
you could define a route as follows:

<camelContext id="delayerRoute2" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<delayer>
<expression/>
<delay>2000</delay>

</delayer>
<to uri="mock:result"/>

</route>
</camelContext>

74

Message Routing

Load Balancer
Overview

The load balancer pattern allows you to delegate to one of a number of
endpoints using a variety of different load-balancing policies.

Java DSL example
The following route distributes incoming messages amongst the target
endpoints, mock:x, mock:y, mock:z, using a round robin load-balancing

policy:

from("direct:start").loadBalance().roundRobin().to("mock:x",
"mock:y", "mock:z");

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Note
In versions of Java Router earlier than 1.4.2.0, the <roundRobin/>

tag must appear as the last tag inside the loadBalance element.

Load-balancing policies
The Java Router load balancer supports the following load-balancing policies:

• Round robin on page 76

• Random on page 76

• Sticky on page 77

75

Load Balancer

• Topic on page 77

Round robin
The round robin load-balancing policy cycles through all of the target
endpoints, sending each incoming message to the next endpoint in the cycle.
For example, if the list of target endpoints is, mock:x, mock:y, mock:z, the

round robin, incoming messages would be sent to the following sequence of
endpoints: mock:x, mock:y, mock:z, mock:x, mock:y, mock:z, and so on.

You can specify the round robin load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().roundRobin().to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Random
The random load-balancing policy chooses the target endpoint at random
from the specified list.

You can specify the random load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().random().to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<random/>
<to uri="mock:x"/>

76

Message Routing

<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Sticky
The sticky load-balancing policy directs the In message to an endpoint that
is chosen by calculating a hash value from a specified expression. The
advantage of this load-balancing policy is that expressions of the same value
always get sent to the same server. For example, by calculating the hash
value from a header that contains a username, you can ensure that messages
from a particular user always get sent to the same target endpoint. Another
useful approach is to specify an expression that extracts the session ID from
an incoming message. In that way, you can ensure that all messages belonging
to the same session get sent to the same target endpoint.

You can specify the sticky load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().sticky(header("user
name")).to("mock:x", "mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<sticky>
<expression>
<simple>header.username</simple>

</expression>
</sticky>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Topic
The topic load-balancing policy sends a copy of each In message to all of the
listed destination endpoints (effectively broadcasting the message to all of
the destinations, rather like a JMS topic).

You can use the Java DSL to specify the topic load-balancing policy, as follows:

77

Load Balancer

from("direct:start").loadBalance().topic().to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>

<topic/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

78

Message Routing

Multicast
Overview

Themulticast pattern is a variation of the recipient list with fixed destinations
pattern, which is compatible with the InOut message exchange pattern (in
contrast to recipient list, which is only compatible with the InOnly exchange
pattern).

Figure 22. Multicast Pattern

Multicast with a custom
aggregation strategy Whereas the multicast processor receives multiple Out messages in response

to the original request (one from each of the recipients), the original caller is
only expecting to receive a single reply. There is thus an inherent mismatch
on the reply leg of the message exchange. In order to overcome this mismatch,
you must provide a custom aggregation strategy to the multicast processor.
The aggregation strategy class is responsible for aggregating all of the Out
messages into a single reply message.

Consider the example of an electronic auction service, where a seller offers
an item for sale to a list of buyers. The buyers each put in a bid for the item
and the seller automatically selects the bid with the highest price. You can
implement the logic for distributing an offer to a fixed list of buyers using the
multicast() DSL command, as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregation
Strategy()).

to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy
er3");

79

Multicast

Where the seller is represented by the endpoint, cxf:bean:offer, and the

buyers are represented by the endpoints, cxf:bean:Buyer1,

cxf:bean:Buyer2, cxf:bean:Buyer3. In order to consolidate the bids

received from the various buyers, the multicast processor uses the aggregation
strategy, HighestBidAggregationStrategy. You can implement the

HighestBidAggregationStrategy in Java, as follows:

// Java
import org.apache.camel.processor.aggregate.Aggregation
Strategy;
import org.apache.camel.Exchange;

public class HighestBidAggregationStrategy implements Aggreg
ationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {

float oldBid = oldExchange.getOut().getHeader("Bid",
Float.class);

float newBid = newExchange.getOut().getHeader("Bid",
Float.class);

return (newBid > oldBid) ? newExchange : oldExchange;

}
}

Where it is assumed here that the buyers insert the bid price into a header
named, Bid. For more details about custom aggregation strategies, see

Aggregator on page 61.

Parallel processing
By default, the multicast processor invokes each of the recipient endpoints
one after the other (in the order listed in the to() command). In some cases,

this might give rise to unacceptably long latency. To avoid such long latency
times, you have the option of enabling parallel processing in the multicast
processor by passing the value true as the second argument. For example,

to enable parallel processing in the electronic auction example, you could
define the route as follows:

from("cxf:bean:offer")
.multicast(new HighestBidAggregationStrategy(), true)
.to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy

er3");

Where the multicast processor now invokes the buyer endpoints, using a
thread pool whose size is equal to the number of endpoints.

80

Message Routing

If you want to customize the size of the thread pool that invokes the buyer
endpoints, you can invoke the setThreadPoolExecutor()method to specify

your own custom thread pool executor. For example:

from("cxf:bean:offer")
.multicast(new HighestBidAggregationStrategy(), true)
.setThreadPoolExecutor(MyExecutor)
.to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buy

er3");

Where MyExecutor is an instance of java.util.concurrent.ThreadPoolExecutor

[http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html]
type.

XML configuration example
The following example shows how to configure a similar route in XML, where
the route uses a custom aggregation strategy and a custom thread executor:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring ht
tp://activemq.apache.org/camel/schema/spring/camel-spring.xsd

">

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">

<route>
<from uri="cxf:bean:offer"/>
<multicast strategyRef="highestBidAggregationStrategy"

parallelProcessing="true"
threadPoolRef="myThreadExcutor">

<to uri="cxf:bean:Buyer1"/>
<to uri="cxf:bean:Buyer2"/>
<to uri="cxf:bean:Buyer3"/>

</multicast>
</route>

</camelContext>

<bean id="highestBidAggregationStrategy"
class="com.acme.example.HighestBidAggregationStrategy"/>
<bean id="myThreadExcutor" class="com.acme.example.MyThreadEx

cutor"/>

81

Multicast

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

</beans>

Where both the parallelProcessing attribute and the threadPoolRef

attribute are optional. You only need to set them, if you want to customize
the threading behavior of the multicast processor.

82

Message Routing

Message Transformation
The message transformation patterns describe how to modify the contents of messages for various purposes.

Content Enricher .. 84
Content Filter .. 86
Normalizer ... 87

83

Content Enricher
Overview

The content enricher pattern describes a scenario where the message
destination requires more data than is present in the original message. In this
case, you would use a content enricher to pull in the extra data from an
external resource.

Figure 23. Content Enricher Pattern

Implementing a content enricher
You can use one of the following approaches to implement a content enricher:

• Templating—is a scripting technique that involves extracting portions of a
message and inserting them into a given template. Java Router supports
templating with several different scripting languages and components. See
Templating [http://activemq.apache.org/camel/templating.html] for details.

• Bean integration—enables you to call any method on a registered bean.
The bean method can modify the message to enrich the content. See Bean
integration [http://activemq.apache.org/camel/bean-integration.html] for
details.

Java DSL example
You can use templating to consume a message from one destination, transform
it with a scripting language, like Velocity or XQuery, and then send it on to
another destination. For example, using the InOnly exchange pattern (one
way messaging):

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

84

Message Transformation

http://activemq.apache.org/camel/templating.html
http://activemq.apache.org/camel/templating.html
http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue in ActiveMQ with a template-generated response and then

send responses back to the JMSReplyTo destination, you could define a route

like the following:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

For more details about the Velocity component, see ????.

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="activemq:My.Queue"/>
<to uri="velocity:com/acme/MyResponse.vm"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

85

Content Enricher

Content Filter
Overview

The content filter pattern describes a scenario where you need to filter out
extraneous content from a message before delivering it to its intended recipient.
For example, you might employ a content filter to strip out confidential
information from a message.

Figure 24. Content Filter Pattern

A common way to filter messages is to use an expression in the DSL, written
in one of the supported scripting languages (for example, XSLT, XQuery or
JoSQL).

Implementing a content filter
A content filter is essentially an application of a message processing technique
for a particular purpose. To implement a content filter, you can employ any
of the following message processing techniques:

• Message translator—see message translators on page 32.

• Processors—see Implementing a Processor in the Java Router,
Programmer's Guide.

• Bean integration [http://activemq.apache.org/camel/bean-integration.html].

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="activemq:My.Queue"/>
<to uri="xslt:classpath:com/acme/content_filter.xsl"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

86

Message Transformation

../prog_guide/prog_guide.pdf
http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html

Normalizer
Overview

The normalizer pattern is used to process messages that are semantically
equivalent, but arrive in different formats. The normalizer transforms the
incoming messages into a common format.

In Java Router, you can implement the normalizer pattern by combining a
content-based router on page 52, which detects the incoming message's
format, with a collection of different message translators on page 32, which
transform the different incoming formats into a common format.

Figure 25. Normalizer Pattern

87

Normalizer

88

Messaging Endpoints
The messaging endpoint patterns describe various features and qualities of service that can be configured on an
endpoint.

Messaging Mapper ... 90
Event Driven Consumer ... 92
Polling Consumer ... 93
Competing Consumers .. 94
Message Dispatcher ... 97
Selective Consumer .. 100
Durable Subscriber ... 103
Idempotent Consumer ... 105
Transactional Client .. 108
Messaging Gateway .. 112
Service Activator .. 113

89

Messaging Mapper
Overview

Themessaging mapper pattern describes how to map domain objects cleanly
to and from a canonical message format.

The purpose of the messaging mapper pattern is to create a clean mapping
from domain objects to a canonical message format, where the message
format is chosen to be as platform neutral as possible. In other words, the
chosen message format should be suitable for transmission through a message
bus on page 48, where the message bus is the backbone for integrating a
variety of different systems, some of which might not be object-oriented.

Many different approaches are possible, but not all of them are clean enough
to fulfill the requirements of a messaging mapper. For example, an obvious
way to transmit an object would be to use object serialization, which enables
you to write an object to a data stream using an unambiguous encoding
(supported natively in Java). This would not be a suitable approach to use
for the messaging mapper pattern, however, because the serialization format
is understood only by Java applications. Java object serialization would create
an impedance mismatch between the original application and the other
applications in the messaging system.

The requirements on a messaging mapper can be summarized as follows:

• The canonical message format used to transmit domain objects should be
suitable for consumption by non-object oriented applications.

• The mapper code should be implemented separately from the domain object
code and separately from the messaging infrastructure. Java Router helps
you to fulfill this requirement by providing hooks that can be used to insert
mapper code into a route.

• The mapper might need to find an effective way of dealing with certain
object-oriented concepts such as inheritance, object references, and object
trees. The complexity of these issues will vary from application to
application, but the aim of the mapper implementation must always be to
create messages that can be processed effectively by non-object-oriented
applications.

Finding objects to map
You could use one of the following mechanisms to find the objects to map:

90

Messaging Endpoints

• Find a registered bean—for singleton objects and small numbers of objects,
you could use the CamelContext registry to store references to beans. For

example, if a bean instance is instantiated using Spring XML, it is
automatically entered into the registry, where the bean is identified by the
value of its id attribute.

• Select objects using the JoSQL language—if all of the objects you want
to access are already instantiated at runtime, you could use the JoSQL
language to locate a specific object (or objects). For example, if you have
a class, org.apache.camel.builder.sql.Person, with a name bean

property and the incoming message has a UserName header, you could

select the object whose name property equals the value of the UserName

header using the following code:

// Java
import static org.apache.camel.builder.sql.SqlBuilder.sql;
import org.apache.camel.Expression;
...
Expression expression = sql("SELECT * FROM
org.apache.camel.builder.sql.Person where name = :UserName");
Object value = expression.evaluate(exchange);

Where the syntax, :HeaderName, is used to substitute the value of a header

in a JoSQL expression.

• Dynamic—for a more scalable solution, it might be necessary to read object
data from a database. In some cases, the existing object-oriented application
might already provide a finder object that can load objects from the
database. In other cases, you might have to write some custom code to
extract objects from a database: the JDBC component and the SQL
component might be useful in these cases.

91

Messaging Mapper

Event Driven Consumer
Overview

The event-driven consumer pattern is a pattern for implementing the consumer
endpoint in a Java Router component and is thus only relevant to programmers
who need to develop a custom component in Java Router. Existing components
already have a consumer implementation pattern hard-wired into them.

Consumers that conform to this pattern provide an event method that is
automatically called by the messaging channel or transport layer whenever
an incoming message is received. One of the characteristics of the event-driven
consumer pattern is that the consumer endpoint itself does not provide any
threads to process the incoming messages. Instead, the underlying transport
or messaging channel implicitly provides a processor thread when it invokes
the exposed event method (which blocks for the duration of the message
processing).

For more details about this implementation pattern, see Consumer Patterns
in the Java Router, Programmer's Guide and Consumer Interface in the
Java Router, Programmer's Guide.

Figure 26. Event Driven Consumer Pattern

92

Messaging Endpoints

../prog_guide/prog_guide.pdf
../prog_guide/prog_guide.pdf

Polling Consumer
Overview

The polling consumer pattern is a pattern for implementing the consumer
endpoint in a Java Router component and is thus only relevant to programmers
who need to develop a custom component in Java Router. Existing components
already have a consumer implementation pattern hard-wired into them.

Consumers that conform to this pattern expose polling methods, receive(),

receive(long timeout), and receiveNoWait() that return a new

exchange object, if one is available from the monitored resource. A polling
consumer implementation must provide its own thread pool to perform the
polling.

For more details about this implementation pattern, see Consumer Patterns
in the Java Router, Programmer's Guide and Consumer Interface in the
Java Router, Programmer's Guide.

Figure 27. Polling Consumer Pattern

Scheduled poll consumer
Many of the Java Router consumer endpoints employ a scheduled poll pattern
to receive messages at the start of a route. That is, the endpoint appears to
implement an event-driven consumer interface, but internally a scheduled
poll is used to monitor a resource that provides the incoming messages for
the endpoint.

See Implementing the Consumer Interface in the Java Router, Programmer's
Guide for details of how to implement this pattern.

Quartz component
You can use the quartz component to provide scheduled delivery of messages
using the Quartz enterprise scheduler. See ???? and Quartz Component
[http://activemq.apache.org/camel/quartz.html] for details.

93

Polling Consumer

../prog_guide/prog_guide.pdf
../prog_guide/prog_guide.pdf
../prog_guide/prog_guide.pdf
http://activemq.apache.org/camel/quartz.html
http://activemq.apache.org/camel/quartz.html

Competing Consumers
Overview

The competing consumers pattern enables multiple consumers to pull
messages off the same queue, with the guarantee that each message is
consumed once only. This pattern can therefore be used to replace serial
message processing with concurrent message processing (bringing a
corresponding reduction in response latency).

Figure 28. Competing Consumers Pattern

The following components demonstrate the competing consumers pattern:

• JMS based competing consumers on page 94

• SEDA based competing consumers on page 95

JMS based competing consumers
A regular JMS queue implicitly guarantees that each message can be
consumed at most once. Hence, a JMS queue automatically supports the
competing consumers pattern. For example, you could define three competing
consumers that pull messages from the JMS queue, HighVolumeQ, as follows:

94

Messaging Endpoints

from("jms:HighVolumeQ").to("cxf:bean:replica01");
from("jms:HighVolumeQ").to("cxf:bean:replica02");
from("jms:HighVolumeQ").to("cxf:bean:replica03");

Where the CXF (Web services) endpoints, replica01, replica02, and

replica03, process messages from the HighVolumeQ queue in parallel.

Alternatively, you can set the JMS query option, concurrentConsumers, in

order to create a thread pool of competing consumers. For example, the
following route creates a pool of three competing threads that pick messages
off the specified queue:

from("jms:HighVolumeQ?concurrentConsumers=3").to("cxf:bean:rep
lica01");

Note
JMS topics cannot support the competing consumers pattern. By
definition, a JMS topic is intended to send multiple copies of the
same message to different consumers. It is, therefore, incompatible
with the competing consumers pattern.

SEDA based competing
consumers The purpose of the SEDA component to simplify concurrent processing by

breaking the computation up into stages. A SEDA endpoint essentially
encapsulates an in-memory blocking queue (implemented by
java.util.concurrent.BlockingQueue). You can, therefore, use a SEDA

endpoint to break a route up into stages, where each stage might use multiple
threads. For example, you can define a SEDA route consisting of two stages,
as follows:

// Stage 1: Read messages from file system.
from("file://var/messages").to("seda:fanout");

// Stage 2: Perform concurrent processing (3 threads).
from("seda:fanout").to("cxf:bean:replica01");
from("seda:fanout").to("cxf:bean:replica02");
from("seda:fanout").to("cxf:bean:replica03");

Where the first stage contains a single thread that consumes message from
a file endpoint, file://var/messages, and routes them to a SEDA endpoint,

seda:fanout. The second stage contains three threads: a thread that routes

exchanges to cxf:bean:replica01, a thread that routes exchanges to

95

Competing Consumers

cxf:bean:replica02, and a thread that routes exchanges to

cxf:bean:replica03. These three threads compete to take exchange

instances from the SEDA endpoint, which is implemented using a blocking
queue. Because the blocking queue uses locking to prevent more than one
thread accessing the queue at a time, you are guaranteed that each exchange
instance is consumed at most once.

For a discussion of the differences between a SEDA endpoint and a thread
pool created by thread(), see ????.

96

Messaging Endpoints

Message Dispatcher
Overview

Themessage dispatcher pattern is used to consume messages from a channel
and distribute them locally to performers, which are responsible for processing
the messages. In a Java Router application, performers are usually represented
by in-process endpoints, which are used to transfer messages to another
section of the route.

Figure 29. Message Dispatcher Pattern

You can implement the message dispatcher pattern in Java Router using one
of the following approaches:

• JMS selectors on page 97.

• JMS selectors in ActiveMQ on page 99.

• Content-based router on page 99.

JMS selectors
If your application consumes messages from a JMS queue, you can implement
the message dispatcher pattern using JMS selectors. A JMS selector is a
predicate expression involving JMS headers and JMS properties: if the selector

97

Message Dispatcher

evaluates to true, the JMS message is allowed to reach the consumer; if the

selector evaluates to false, the JMS message is blocked. In many respects,

a JMS selector is like a filter processor on page 54, but it has the added
advantage that the filtering is implemented inside the JMS provider. This
means that a JMS selector can block messages before they are transmitted
to the Java Router application, giving a significant efficiency advantage.

In Java Router, you can define a JMS selector on a consumer endpoint by
setting the selector query option on a JMS endpoint URI. For example:

from("jms:dispatcher?selector=Country
Code='US'").to("cxf:bean:replica01");
from("jms:dispatcher?selector=Country
Code='IE'").to("cxf:bean:replica02");
from("jms:dispatcher?selector=Country
Code='DE'").to("cxf:bean:replica03");

Where the predicates that appear in a selector string are based on a subset
of the SQL92 conditional expression syntax (for full details, see the JMS
specification [http://java.sun.com/products/jms/docs.html]). The identifiers
appearing in a selector string can refer either to JMS headers or to JMS
properties. For example, in the preceding routes, we presume that the sender
has set a JMS property called CountryCode.

If you want to add a JMS property to a message from within your Java Router
application, you can do so by setting a message header (either on Inmessage
or on Outmessages). When reading or writing to JMS endpoints, Java Router
maps JMS headers and JMS properties to and from its native message
headers.

Technically, the selector strings must be URL encoded according to the
application/x-www-form-urlencoded MIME format (see the HTML

specification [http://www.w3.org/TR/html4/]). In practice, however, the only
character that might cause difficulties is & (ampersand), because this character

is used to delimit each query option in the URI. For more complex selector
strings that might need to embed the & character, you can encode the strings

using the java.net.URLEncoder utility class. For example:

from("jms:dispatcher?selector=" + java.net.URLEncoder.en
code("CountryCode='US'","UTF-8")).

to("cxf:bean:replica01");

98

Messaging Endpoints

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/

Where the UTF-8 encoding must be used.

JMS selectors in ActiveMQ
You can also define JMS selectors on ActiveMQ endpoints. For example:

from("activemq:dispatcher?selector=Country
Code='US'").to("cxf:bean:replica01");
from("activemq:dispatcher?selector=Country
Code='IE'").to("cxf:bean:replica02");
from("activemq:dispatcher?selector=Country
Code='DE'").to("cxf:bean:replica03");

For more details, see ActiveMQ: JMS Selectors
[http://activemq.apache.org/selectors.html] and ActiveMQ Message Properties
[http://activemq.apache.org/activemq-message-properties.html].

Content-based router
The essential difference between the content-based router pattern and the
message dispatcher pattern is that a content-based router dispatches messages
to physically separate destinations (remote endpoints), whereas a message
dispatcher dispatches messages locally, within the same process space. In
Java Router, the distinction between these two patterns is not very great,
because the same router logic can be used to implement both of them. The
only distinction is whether the target endpoints are remote (content-based
router) or in-process (message dispatcher).

For details and examples of how to use the content-based router pattern see
Content-Based Router on page 52.

99

Message Dispatcher

http://activemq.apache.org/selectors.html
http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html
http://activemq.apache.org/activemq-message-properties.html

Selective Consumer
Overview

The selective consumer pattern describes a consumer that applies a filter to
incoming messages, so that only messages meeting a specific selection
criterion are processed.

Figure 30. Selective Consumer Pattern

You can implement the selective consumer pattern in Java Router using one
of the following approaches:

• JMS selector on page 100.

• JMS selector in ActiveMQ on page 101

• Message filter on page 101.

JMS selector
A JMS selector is a predicate expression involving JMS headers and JMS
properties: if the selector evaluates to true, the JMS message is allowed to

reach the consumer; if the selector evaluates to false, the JMS message is

blocked. For example, to consume messages from the queue, selective,

and select only those messages whose country code property is equal to US,

you could use the following Java DSL route:

from("jms:selective?selector=" + java.net.URLEncoder.en
code("CountryCode='US'","UTF-8")).

to("cxf:bean:replica01");

Where the selector string, CountryCode='US', must be URL encoded (using

UTF-8 characters) in order to avoid trouble with parsing the query options.
This example presumes that the JMS property, CountryCode, was set by the

sender. For more details about JMS selectors, see JMS selectors on page 97.

100

Messaging Endpoints

Note
If a selector is applied to a JMS queue, messages that are not selected
remain on the queue (and are thus potentially available to other
consumers attached to the same queue).

JMS selector in ActiveMQ
You can also define JMS selectors on ActiveMQ endpoints. For example:

from("acivemq:selective?selector=" + java.net.URLEncoder.en
code("CountryCode='US'","UTF-8")).

to("cxf:bean:replica01");

For more details, see ActiveMQ: JMS Selectors
[http://activemq.apache.org/selectors.html] and ActiveMQ Message Properties
[http://activemq.apache.org/activemq-message-properties.html].

Message filter
If it is not possible to set a selector on the consumer endpoint, you can insert
a filter processor into your route instead. For example, you could define a
selective consumer that processes only messages with a US country code
using Java DSL, as follows:

from("seda:a").filter(header("Country
Code").isEqualTo("US")).process(myProcessor);

The same route can be defined using XML configuration, as follows:

<camelContext id="buildCustomProcessorWithFilter" xmlns="ht
tp://activemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<filter>
<xpath>$CountryCode = 'US'</xpath>
<process ref="#myProcessor"/>

</filter>
</route>

</camelContext>

For more information about the Java Router filter processor, see Message
Filter on page 54.

Warning
Be careful about using a message filter to select messages from a
JMS queue. When using a filter processor, blocked messages are
simply discarded. Hence, if the messages are consumed from a queue

101

Selective Consumer

http://activemq.apache.org/selectors.html
http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html
http://activemq.apache.org/activemq-message-properties.html

(which allows each message to be consumed only once—see
Competing Consumers on page 94), blocked messages would not
be processed at all. This might not be the behavior you want.

102

Messaging Endpoints

Durable Subscriber
Overview

A durable subscriber is a consumer that wants to receive all of the messages
sent over a particular publish-subscribe on page 38 channel, including
messages sent while the consumer is disconnected from the messaging system.
This requires the messaging system to store messages for later replay to the
disconnected consumer. There also has to be a mechanism for a consumer
to indicate that it wants to establish a durable subscription. Generally, a
publish-subscribe channel (or topic) can have both durable and non-durable
subscribers, which behave as follows:

• A non-durable subscriber can have two states: connected and
disconnected. While a non-durable subscriber is connected to a topic, it
receives all of the topic's messages in real time. While a non-durable
subscriber is disconnected from a topic, however, it misses all of the
message sent during the period of disconnection.

• A durable subscriber can have the following states: connected and inactive.
The inactive state means that the durable subscriber is disconnected from
the topic, but wants to receive the messages that arrive in the interim.
When the durable subscriber reconnects to the topic, it receives a replay
of all the messages sent while it was inactive.

Figure 31. Durable Subscriber Pattern

JMS durable subscriber
The JMS component implements the durable subscriber pattern. In order to
set up a durable subscription on a JMS endpoint, you need to specify a client

103

Durable Subscriber

ID, which identifies this particular connection, and a durable subscription
name, which identifies the durable subscriber. For example, the following
route sets up a durable subscription to the JMS topic, news, with a client ID

of conn01 and a durable subscription name of John.Doe:

from("jms:topic:news?clientId=conn01&durableSubscription
Name=John.Doe").

to("cxf:bean:newsprocessor");

You can also set up a durable subscription using the ActiveMQ endpoint:

from("activemq:topic:news?clientId=conn01&durableSubscription
Name=John.Doe").

to("cxf:bean:newsprocessor");

If you want to process the incoming messages concurrently, you could use a
SEDA endpoint to fan out the route into multiple, parallel segments, as follows:

from("jms:topic:news?clientId=conn01&durableSubscription
Name=John.Doe").

to("seda:fanout");

from("seda:fanout").to("cxf:bean:newsproc01");
from("seda:fanout").to("cxf:bean:newsproc02");
from("seda:fanout").to("cxf:bean:newsproc03");

Where each message is processed only once, because the SEDA component
supports the competing consumers pattern.

104

Messaging Endpoints

Idempotent Consumer
Overview

The idempotent consumer pattern is used to filter out duplicate messages.
For example, consider a scenario where the connection between a messaging
system and a consumer endpoint is abruptly lost due to some fault in the
system. If the messaging system was in the middle of transmitting a message,
it might be unclear whether or not the consumer received the last message.
To improve delivery reliability, the messaging system might decide to redeliver
such messages as soon as the connection is re-established. Unfortunately,
this entails the risk that the consumer might receive duplicate messages and,
in some cases, the effect of duplicating a message may have undesirable
consequences (such as debiting a sum of money twice from your account).
In this scenario, an idempotent consumer could be used to weed out undesired
duplicates from the message stream.

Idempotent consumer with
in-memory cache In Java Router, the idempotent consumer pattern is implemented by the

idempotentConsumer() processor, which takes two arguments:

• messageIdExpression—an expression that returns a message ID string

for the current message; and

• messageIdRepository—a reference to a message ID repository, which

stores the IDs of the messages received so far.

As each message comes in, the idempotent consumer processor looks up the
current message ID in the repository to see if this message has been seen
before. If yes, the message is discarded; if no, the message is allowed to pass
and its ID is added to the repository.

For example, the following example uses the TransactionID header to filter

out duplicates:

import static org.apache.camel.processor.idempotent.MemoryMes
sageIdRepository.memoryMessageIdRepository;
...
RouteBuilder builder = new RouteBuilder() {

public void configure() {
from("seda:a")
.idempotentConsumer(

header("TransactionID"),
memoryMessageIdRepository(200)

).to("seda:b");

105

Idempotent Consumer

}
};

Where the call to memoryMessageIdRepository(200) creates an in-memory

cache that can hold up to 200 message IDs.

You can also define an idempotent consumer using XML configuration. For
example, you can define the preceding route in XML, as follows:

<camelContext id="buildIdempotentConsumer" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<idempotentConsumer messageIdRepositoryRef="MsgIDRepos">
<simple>header.TransactionID</simple>
<to uri="seda:b"/>

</idempotentConsumer>
</route>

</camelContext>

<bean id="MsgIDRepos" class="org.apache.camel.processor.idem
potent.MemoryMessageIdRepository">

<!-- Specify the in-memory cache size. -->
<constructor-arg type="int" value="200"/>

</bean>

Idempotent consumer with JPA
repository The in-memory cache suffers from the disadvantage that it can easily run out

of memory and it does not work in a clustered environment. To avoid these
shortcomings, you could use a Java Persistent API (JPA) based repository
instead. The JPA message ID repository uses an object-oriented database to
store the message IDs. For example, you can define a route that uses a JPA
repository for the idempotent consumer, as follows:

import org.springframework.orm.jpa.JpaTemplate;

import org.apache.camel.spring.SpringRouteBuilder;
import static org.apache.camel.processor.idempotent.jpa.JpaMes
sageIdRepository.jpaMessageIdRepository;
...
RouteBuilder builder = new SpringRouteBuilder() {

public void configure() {
from("seda:a").idempotentConsumer(
header("TransactionID"),
jpaMessageIdRepository(bean(JpaTemplate.class),

"myProcessorName")
).to("seda:b");

106

Messaging Endpoints

}
};

Where the JPA message ID repository is initialized with two arguments: a
JpaTemplate instance, which provides the handle for the JPA database, and

a processor name, which uniquely identifies the current idempotent consumer
processor. The SpringRouteBuilder.bean() method is a shortcut that

references a bean defined in the Spring XML file. The JpaTemplate bean

provides a handle to the underlying JPA database. See the JPA documentation
for details of how to configure this bean.

For more details about setting up a JPA repository, see JPA Component
[http://activemq.apache.org/camel/jpa.html] documentation, the Spring JPA
[http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa]
documentation, and the sample code in the Camel JPA unit test
[https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test].

107

Idempotent Consumer

http://activemq.apache.org/camel/jpa.html
http://activemq.apache.org/camel/jpa.html
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test

Transactional Client
Overview

The transactional client pattern refers to messaging endpoints that can
participate in a transaction. Java Router supports transactions using Spring
transaction management
[http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html].

Figure 32. Transactional Client Pattern

Transaction oriented endpoints
Not all Java Router endpoints support transactions. Those that do are called
transaction oriented endpoints (or TOEs). For example, both the JMS
component and the ActiveMQ component support transactions.

In order to enable transactions on a component, you need to perform the
appropriate initialization before adding the component to the CamelContext.

For this reason, you need to write some code to initialize your transactional
components explicitly.

For example, consider a JMS component that is layered over ActiveMQ. To
initialize this as a transactional component, you need to define an instance
of JmsTransactionManager and an instance of

ActiveMQConnectionFactory, using the following Spring XML configuration:

<bean id="jmsTransactionManager" class="org.springframe
work.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFact
ory" />
</bean>

<bean id="jmsConnectionFactory" class="org.apache.activemq.Act
iveMQConnectionFactory">

<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

108

Messaging Endpoints

http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html
http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html

You can then initialize the JMS/ActiveMQ component using the following
code:

// Java
import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.spring.SpringRouteBuilder;
import org.apache.camel.spring.SpringCamelContext;
import org.apache.camel.component.jms.JmsComponent;

import javax.jms.ConnectionFactory;

import org.springframework.context.support.ClassPathXmlApplic
ationContext;
import org.springframework.context.ApplicationContext;
import org.springframework.transaction.PlatformTransactionMan
ager;
...
ApplicationContext spring = new ClassPathXmlApplicationCon
text("org/apache/camel/transaction/spring.xml");
CamelContext camelContext = SpringCamelContext.springCamelCon
text(spring);

PlatformTransactionManager transactionManager = (PlatformTrans
actionManager) spring.getBean("jmsTransactionManager");
ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean("jmsConnectionFactory");
JmsComponent component = JmsComponent.jmsComponentTrans
acted(connectionFactory, transactionManager);
component.getConfiguration().setConcurrentConsumers(1);
camelContext.addComponent("activemq", component);

Transaction propagation policies
Outbound endpoints will automatically enlist in the current transaction context.
But what if you do not want your outbound endpoint to enlist in the same
transaction as your inbound endpoint? The solution is to add a transaction
policy to the processing route. First, define the transaction policies in your
XML configuration. For example, you can define the transaction policies,
PROPAGATION_REQUIRED, PROPAGATION_NOT_SUPPORTED, and

PROPAGATION_REQUIRES_NEW, as follows:

<bean id="PROPAGATION_REQUIRED" class="org.springframe
work.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransaction
Manager"/>
</bean>

109

Transactional Client

<bean id="PROPAGATION_NOT_SUPPORTED" class="org.springframe
work.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransaction
Manager"/>

<property name="propagationBehaviorName" value="PROPAGA
TION_NOT_SUPPORTED"/>
</bean>

<bean id="PROPAGATION_REQUIRES_NEW" class="org.springframe
work.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransaction
Manager"/>

<property name="propagationBehaviorName" value="PROPAGA
TION_REQUIRES_NEW"/>
</bean>

In your SpringRouteBuilder class, you need to create new

SpringTransactionPolicy objects for each of the templates. For example:

// Java
public MyRouteBuilder extends SpringRouteBuilder {
public void configure() {
...
Policy required = new SpringTransactionPolicy(bean(Trans

actionTemplate.class, "PROPAGATION_REQUIRED"));
Policy notsupported = new SpringTransaction

Policy(bean(TransactionTemplate.class, "PROPAGATION_NOT_SUP
PORTED"));

Policy requirenew = new SpringTransactionPolicy(bean(Trans
actionTemplate.class, "PROPAGATION_REQUIRES_NEW"));

...
}

}

Note
The org.apache.camel.spring.SpringRouteBuilder class is

a special implementation of the RouteBuilder class provided by

the Java Router Spring component. It is required for any routes that
use Spring transactions. The SpringRouteBuilder.bean()method

provides a shortcut for looking up bean references in the Spring
configuration file.

You can then use the transaction policy objects in your route definitions, as
follows:

110

Messaging Endpoints

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("act
ivemq:queue:bar");

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("act
ivemq:queue:bar");

111

Transactional Client

Messaging Gateway
Overview

The messaging gateway pattern describes an approach to integrating with a
messaging system, where the messaging system's API remains hidden from
the programmer at the application level. In particular, the most common
example is where you want to translate synchronous method calls into
request/reply message exchanges, without the programmer being aware of
this.

Figure 33. Messaging Gateway Pattern

The following Java Router components provide this kind of integration with
the messaging system:

• ????.

• ????.

112

Messaging Endpoints

Service Activator
Overview

The service activator pattern describes the scenario where a service's
operations are invoked in response to an incoming request message. The
service activator is responsible for identifying which operation to call and for
extracting the data to use as the operation's parameters. Finally, the service
activator invokes an operation using the data extracted from the message.
The operation invocation can either be oneway (request only) or two-way
(request/reply).

Figure 34. Service Activator Pattern

In many respects, a service activator resembles a conventional remote
procedure call (RPC), where operation invocations are encoded as messages.
The main difference is that a service activator needs to be more flexible.
Whereas an RPC framework standardises the request and reply message
encodings (for example, Web service operations are encoded as SOAP
messages), a service activator typically needs to improvise the mapping
between the messaging system and the service's operations.

Bean integration
The main mechanism that Java Router provides to support the service activator
pattern is bean integration. Bean integration
[http://activemq.apache.org/camel/bean-integration.html] provides a general
framework for mapping incoming messages to method invocations on Java
objects. For example, the Java fluent DSL provides the processors, bean()

and beanRef(), that you can insert into a route in order to invoke methods

on a registered Java bean. The detailed mapping of message data to Java

113

Service Activator

http://activemq.apache.org/camel/bean-integration.html
http://activemq.apache.org/camel/bean-integration.html

method parameters is determined by the bean binding, which can be
implemented by adding annotations to the bean class.

For example, consider the following route which calls the Java method,
BankBean.getUserAccBalance(), in order to service requests incoming on

a JMS/ActiveMQ queue:

from("activemq:BalanceQueries")
.setProperty("userid", xpath("/Account/Bal

anceQuery/UserID").stringResult())
.beanRef("bankBean", "getUserAccBalance")
.to("velocity:file:src/scripts/acc_balance.vm")
.to("activemq:BalanceResults");

The messages pulled from the ActiveMQ endpoint,
activemq:BalanceQueries, have a simple XML format that provides the

user ID of a bank account—for example:

<?xml version='1.0' encoding='UTF-8'?>
<Account>
<BalanceQuery>
<UserID>James.Strachan</UserID>

</BalanceQuery>
</Account>

The first processor in the route, setProperty(), extracts the user ID from

the In message and stores it in the userid exchange property, (this is

preferable to storing it in a header, because the In headers cease to be
available after invoking the bean).

The service activation step is performed by the beanRef() processor, which

binds the incoming message to the getUserAccBalance() method on the

Java object identified by the bankBean bean ID. The following code shows

a sample implementation of the BankBean class:

// Java
package tutorial;

import org.apache.camel.language.XPath;

public class BankBean {
public int getUserAccBalance(@XPath("/Account/Bal

anceQuery/UserID") String user) {
if (user.equals("James.Strachan")) {

return 1200;

114

Messaging Endpoints

}
else {

return 0;
}

}
}

Where the binding of message data to method parameter is enabled by the
@XPath annotation, which injects the content of the UserID XML element

into the user method parameter. On completion of the call, the return value

is inserted into the body of the Out message (which is then copied into the
In message for the next step in the route). In order for the bean to be
accessible to the beanRef() processor, you must instantiate an instance in

Spring XML. For example, you can add the following lines to
META-INF/spring/camel-context.xml configuration file to instantiate the

bean:

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
...
<bean id="bankBean" class="tutorial.BankBean"/>

</beans>

Where the bean ID, bankBean, identifes this bean instance in the registry.

The output of the bean invocation is fed into a Velocity template, in order to
produce a properly formatted result message. The Velocity endpoint,
velocity:file:src/scripts/acc_balance.vm, specifies the location of

a velocity script, which has the following contents:

<?xml version='1.0' encoding='UTF-8'?>
<Account>
<BalanceResult>
<UserID>${exchange.getProperty("userid")}</UserID>
<Balance>${body}</Balance>

</BalanceResult>
</Account>

The exchange instance is available as the Velocity variable, exchange, which

enables you to retrieve the userid exchange property, using

${exchange.getProperty("userid")}. The body of the current Inmessage,

${body}, contains the result of the getUserAccBalance() method

invocation.

115

Service Activator

116

System Management
The system management patterns describe how to monitor, test, and administer a messaging system.

Wire Tap .. 118

117

Wire Tap
Overview

The wire tap pattern enables you to monitor the messages passing through
a channel by duplicating the message stream: one copy of the stream is
forwarded to the main channel and another copy of the stream is forwarded
to the tap endpoint, which monitors the stream.

Figure 35. Wire Tap Pattern

Java DSL example
The following example shows how to route a request from an input queue:a

endpoint to the wire tap location queue:tap before it is received by queue:b.

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").to("seda:tap", "seda:b");
}

};

XML configuration example
The following example shows how to configure the same route in XML:

<camelContext id="buildWireTap" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:tap"/>
<to uri="seda:b"/>

</route>
</camelContext>

118

System Management

Appendix A. Migrating from ServiceMix
EIP
If you are currently an Apache ServiceMix user, you might already have implemented some Enterprise Integration
Patterns using the ServiceMix EIP module. It is recommended that you migrate these legacy patterns to Java
Router, which has more extensive support for Enterprise Integration Patterns. After migrating, you can deploy
your patterns either into a FUSE ESB container or into a ServiceMix container.

Migrating Endpoints .. 120
Common Elements ... 123
ServiceMix EIP Patterns ... 125
Content-Based Router ... 127
Content Enricher .. 129
Message Filter ... 131
Pipeline ... 133
Resequencer ... 135
Static Recipient List .. 137
Static Routing Slip ... 139
Wire Tap .. 140
XPath Splitter .. 142

119

Migrating Endpoints
Overview

A typical ServiceMix EIP route exposes a service that consumes exchanges
from the NMR. The route also defines one or more target destinations, to
which exchanges are sent. In the Java Router environment, the exposed
ServiceMix service maps to a consumer endpoint and the ServiceMix target
destinations map to producer endpoints. The Java Router consumer endpoints
and producer endpoints are both defined using endpoint URIs (see Architecture
in the Getting Started).

When migrating endpoints from ServiceMix EIP to Java Router, you will need
to express the ServiceMix services/endpoints as Java Router endpoint URIs.
You can adopt one of the following approaches:

• Connect to an existing ServiceMix service/endpoint through the ServiceMix
Camel module (which integrates Java Router with the NMR).

• Alternatively, if the existing ServiceMix service/endpoint represents a
ServiceMix binding component, you could replace the ServiceMix binding
component with an equivalent Java Router component (thus bypassing the
NMR).

The ServiceMix Camel module
The integration between Java Router and ServiceMix is provided by the
ServiceMix Camel module. This module is provided with ServiceMix, but
actually implements a plug-in for the Java Router product. From the
perspective of Java Router, the ServiceMix Camel module provides the JBI
component (see ???? and JBI Component
[http://activemq.apache.org/camel/jbi.html]). When the ServiceMix Camel
module is included on your CLASSPATH, you can access the JBI component
by defining Java Router endpoint URIs with the jbi: component prefix.

Translating ServiceMix URIs into
Java Router endpoint URIs ServiceMix defines a flexible format for defining URIs, which is described in

detail in ServiceMix URIs [http://servicemix.apache.org/uris.html]. To translate
a ServiceMix URI into a Java Router endpoint URI, simply prefix it with jbi:.

In other words, the general format for Java Router URIs that access a
ServiceMix URI, ServiceMixURI, through the JBI component is as follows:

jbi:ServiceMixURI

120

../getting_started/getting_started.pdf
http://activemq.apache.org/camel/jbi.html
http://activemq.apache.org/camel/jbi.html
http://servicemix.apache.org/uris.html
http://servicemix.apache.org/uris.html

For example, consider the following configuration of the static recipient list
pattern in ServiceMix EIP. The eip:exchange-target elements define some

targets using the ServiceMix URI format.

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
xmlns:eip="http://servicemix.apache.org/eip/1.0"
xmlns:test="http://iona.com/demos/test" >

...
<eip:static-recipient-list service="test:recipients" end

point="endpoint">
<eip:recipients>
<eip:exchange-target uri="service:test:messageFilter"

/>
<eip:exchange-target uri="service:test:trace4" />

</eip:recipients>
</eip:static-recipient-list>
...

</beans>

When the preceding ServiceMix configuration is mapped to an equivalent
Java Router configuration, you get the following route:

<route>
<from uri="jbi:endpoint:test:recipients:endpoint"/>
<to uri="jbi:service:test:messageFilter"/>
<to uri="jbi:service:test:trace4"/>

</route>

Where the target endpoint URIs in this route are derived from the
corresponding ServiceMix URIs by adding the jbi: prefix at the start.

Representing ServiceMix targets
as Java Router endpoint URIs ServiceMix URIs are not the only format for specifying ServiceMix targets. For

example, the source of messages for a static recipient list pattern in ServiceMix
can be specified using a combination of service and endpoint attributes,

as follows:

<eip:static-recipient-list service="test:recipients" end
point="endpoint">

In order to translate this ServiceMix target into a Java Router endpoint URI,
start by reformatting it as a ServiceMix URI:

endpoint:test:recipients:endpoint

Then add the jbi: prefix to turn it into a Java Router endpoint URI, as follows:

jbi:endpoint:test:recipients:endpoint

121

For full details of how to reformat ServiceMix targets as ServiceMix URIs, see
ServiceMix URIs [http://servicemix.apache.org/uris.html].

Replacing ServiceMix bindings
with Java Router components Instead of using the Java Router JBI component to route all your messages

through the ServiceMix NMR, you could use one of the many supported Java
Router components to connect directly to a consumer or producer endpoint.
In particular, when sending messages to an external endpoint, it is frequently
more efficient to send the messages directly through a Java Router component
rather than sending them through the NMR and a ServiceMix binding.

For details of all the Java Router components that are available, see ???? and
Java Router Components [http://activemq.apache.org/camel/components.html].

122

http://servicemix.apache.org/uris.html
http://servicemix.apache.org/uris.html
http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

Common Elements
Overview

When configuring ServiceMix EIP patterns in a ServiceMix configuration file,
there are some common elements that recur in many of the pattern schemas.
This section provides a brief overview of these common elements and explains
how they can be mapped to equivalent constructs in Java Router.

Exchange target
All of the patterns supported by ServiceMix EIP use the
eip:exchange-target element to specify JBI target endpoints.

Table A.1 on page 123 shows some examples of how to map some sample
eip:exchange-target elements to Java Router endpoint URIs.

Table A.1. Mapping the Exchange Target Element

Java Router Endpoint URIServiceMix EIP Target

jbi:interface:HelloWorld<eip:exchange-target interface="HelloWorld" />

jbi:service:test:HelloWorldService<eip:exchange-target

service="test:HelloWorldService" />

jbi:service:test:HelloWorldService:secure<eip:exchange-target

service="test:HelloWorldService"

endpoint="secure" />

jbi:service:test:HelloWorldService<eip:exchange-target

uri="service:test:HelloWorldService" />

Predicates
The ServiceMix EIP component lets you define predicate expressions in the
XPath language (for example, XPath predicates can appear in
eip:xpath-predicate elements or in eip:xpath-splitter elements,

where the XPath predicate is specified using an xpath attribute).

ServiceMix XPath predicates can easily be migrated to equivalent constructs
in Java Router: that is, either the xpath element (in XML configuration) or

the xpath() command (in Java DSL). For example, the message filter pattern

in Java Router can incorporate an XPath predicate as follows:

123

<route>
<from uri="jbi:endpoint:test:messageFilter:endpoint">
<filter>
<xpath>count(/test:world) = 1</xpath>
<to uri="jbi:service:test:trace3"/>
</filter>

</route>

Where the xpath element specifies that only messages containing the

test:world element will pass through the filter.

Note
Java Router also supports a wide range of other scripting languages
(such as XQuery, PHP, Python, Ruby, and so on), which can be used
to define predicates. For details of all the supported predicate
languages, see Languages for Expressions and Predicates in the Java
Router, Defining Routes and Languages for Expressions and
Predicates in the Java Router, Defining Routes .

Namespace contexts
When using XPath predicates in the ServiceMix EIP configuration, it is
necessary to define a namespace context using the eip:namespace-context

element. The namespace can then be referenced using a namespaceContext

attribute.

When ServiceMix EIP configuration is migrated to Java Router, however, there
is no need to define namespace contexts, because Java Router allows you to
define XPath predicates without referencing a namespace context. Hence,
you can simply drop the eip:namespace-context elements when you

migrate to Java Router.

124

../defining_routes/defining_routes.pdf
../defining_routes/defining_routes.pdf
../defining_routes/defining_routes.pdf

ServiceMix EIP Patterns
Supported patterns

The patterns supported by ServiceMix EIP are shown in Table A.2 on page 125.

Table A.2. ServiceMix EIP Patterns

How do we handle a situation where the
implementation of a single logical function

Content-Based
Router

(e.g., inventory check) is spread across
multiple physical systems?

How do we communicate with another
system if the message originator does not
have all the required data items available?

Content
Enricher

How can a component avoid receiving
uninteresting messages?

Message Filter

How can we perform complex processing on
a message while maintaining independence
and flexibility?

Pipeline

How can we get a stream of related but
out-of-sequence messages back into the
correct order?

Resequencer

How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Split
Aggregator

How do we route a message to a list of
specified recipients?

Static
Recipient List

How do we route a message consecutively
through a series of processing steps?

Static Routing
Slip

How do you inspect messages that travel on
a point-to-point channel?

Wire Tap

125

How can we process a message if it contains
multiple elements, each of which may have
to be processed in a different way?

XPath Splitter

126

Content-Based Router
Overview

A content-based router enables you to route messages to the appropriate
destination, where the routing decision is based on the message contents.
This pattern maps to the corresponding content-based router on page 52
pattern in Java Router.

Figure A.1. Content-Based Router Pattern

Example ServiceMix EIP route
The following example shows how to define a content-based router using the
ServicMix EIP component. Incoming messages are routed to the
http://test/pipeline/endpoint endpoint, if a test:echo element is

present in the message body, and to the test:recipients endpoint,

otherwise:

<eip:content-based-router service="test:router" endpoint="en
dpoint">
<eip:rules>
<eip:routing-rule>
<eip:predicate>
<eip:xpath-predicate xpath="count(/test:echo) = 1"

namespaceContext="#nsContext" />
</eip:predicate>
<eip:target>
<eip:exchange-target uri="endpoint:ht

tp://test/pipeline/endpoint" />
</eip:target>

</eip:routing-rule>
<eip:routing-rule>
<!-- There is no predicate, so this is the default des

tination -->
<eip:target>
<eip:exchange-target service="test:recipients" />

</eip:target>
</eip:routing-rule>

127

</eip:rules>
</eip:content-based-router>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:router:endpoint"/>
<choice>
<when>
<xpath>count(/test:echo) = 1</xpath>
<to uri="jbi:endpoint:http://test/pipeline/endpoint"/>

</when>
<otherwise>
<!-- This is the default destination -->
<to uri="jbi:service:test:recipients"/>

</otherwise>
</choice>

</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:router:endpoint").
choice().when(xpath("count(/test:echo) = 1")).to("jbi:en

dpoint:http://test/pipeline/endpoint").
otherwise().to("jbi:service:test:recipients");

128

Content Enricher
Overview

A content enricher is a pattern for augmenting a message with missing
information. The ServiceMix EIP content enricher is more or less equivalent
to a pipeline that adds missing data as the message passes through an
enricher target. Consequently, when migrating to Java Router, you can
re-implement the ServiceMix content enricher as a Java Router pipeline.

Figure A.2. Content Enricher Pattern

Example ServiceMix EIP route
The following example shows how to define a content enricher using the
ServiceMix EIP component. Incoming messages pass through the enricher
target, test:additionalInformationExtracter, which adds somemissing

data to the message before the message is sent on to its ultimate destination,
test:myTarget.

<eip:content-enricher service="test:contentEnricher" end
point="endpoint">
<eip:enricherTarget>
<eip:exchange-target service="test:additionalInformationEx

tracter" />
</eip:enricherTarget>
<eip:target>
<eip:exchange-target service="test:myTarget" />

</eip:target>
</eip:content-enricher>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

129

<route>
<from uri="jbi:endpoint:test:contentEnricher:endpoint"/>
<to uri="jbi:service:test:additionalInformationExtracter"/>

<to uri="jbi:service:test:myTarget"/>
</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:contentEnricher:endpoint").
to("jbi:service:test:additionalInformationExtracter").
to("jbi:service:test:myTarget");

130

Message Filter
Overview

A message filter is a processor that eliminates undesired messages based on
specific criteria. Filtering is controlled by specifying a predicate in the filter:
when the predicate is true, the incoming message is allowed to pass;

otherwise, it is blocked. This pattern maps to the corresponding message
filter on page 54 pattern in Java Router.

Figure A.3. Message Filter Pattern

Example ServiceMix EIP route
The following example shows how to define a message filter using the
ServiceMix EIP component. Incoming messages are passed through a filter
mechanism that blocks messages that lack a test:world element.

<eip:message-filter service="test:messageFilter" endpoint="en
dpoint">
<eip:target>
<eip:exchange-target service="test:trace3" />

</eip:target>
<eip:filter>
<eip:xpath-predicate xpath="count(/test:world) = 1"

namespaceContext="#nsContext"/>
</eip:filter>

</eip:message-filter>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:messageFilter:endpoint">
<filter>
<xpath>count(/test:world) = 1</xpath>
<to uri="jbi:service:test:trace3"/>

131

</filter>
</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:messageFilter:endpoint").
filter(xpath("count(/test:world) = 1")).
to("jbi:service:test:trace3");

132

Pipeline
Overview

The ServiceMix EIP pipeline pattern is used to pass messages through a single
transformer endpoint, where the transformer's input is taken from the source
endpoint and the transformer's output is routed to the target endpoint. This
pattern is thus a special case of the more general Java Router pipes and
filters on page 27 pattern, which enables you to pass an In message through
multiple transformer endpoints.

Figure A.4. Pipes and Filters Pattern

Example ServiceMix EIP route
The following example shows how to define a pipeline using the ServiceMix
EIP component. Incoming messages are passed into the transformer endpoint,
test:decrypt, and the output from the transformer endpoint is then passed

into the target endpoint, test:plaintextOrder.

<eip:pipeline service="test:pipeline" endpoint="endpoint">
<eip:transformer>
<eip:exchange-target service="test:decrypt" />

</eip:transformer>
<eip:target>
<eip:exchange-target service="test:plaintextOrder" />

</eip:target>
</eip:pipeline>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:pipeline:endpoint"/>
<to uri="jbi:service:test:decrypt"/>

133

<to uri="jbi:service:test:plaintextOrder"/>
</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:pipeline:endpoint").
pipeline("jbi:service:test:decrypt", "jbi:ser

vice:test:plaintextOrder");

134

Resequencer
Overview

The resequencer pattern enables you to resequence messages according to
the sequence number stored in an NMR property. The ServiceMix EIP
resequencer pattern maps to the Java Router resequencer on page 66
configured with the stream resequencing algorithm.

Figure A.5. Resequencer Pattern

Sequence number property
The sequence of messages emitted from the resequencer is determined by
the value of the sequence number property: messages with a low sequence
number are emitted first and messages with a higher number are emitted
later. By default, the sequence number is read from the
org.apache.servicemix.eip.sequence.number property in ServiceMix.

But you can customize the name of this property using the
eip:default-comparator element in ServiceMix.

The equivalent concept in Java Router is a sequencing expression, which
can be any message-dependent expression. When migrating from ServiceMix
EIP, you would normally define an expression that extracts the sequence
number from a header (a Java Router header is equivalent to an NMRmessage
property). For example, to extract a sequence number from a seqnum header,

you could use the simple expression, header.seqnum.

Example ServiceMix EIP route
The following example shows how to define a resequencer using the ServiceMix
EIP component.

<eip:resequencer
service="sample:Resequencer"
endpoint="ResequencerEndpoint"
comparator="#comparator"
capacity="100"
timeout="2000">
<eip:target>

135

<eip:exchange-target service="sample:SampleTarget" />
</eip:target>

</eip:resequencer>

<!-- Configure default comparator with custom sequence number
property -->
<eip:default-comparator id="comparator" sequenceNumberKey="se
qnum"/>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:sample:Resequencer:ResequencerEnd

point"/>
<resequencer>
<simple>header.seqnum</simple>
<to uri="jbi:service:sample:SampleTarget" />
<stream-config capacity="100" timeout="2000"/>

</resequencer>
</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:sample:Resequencer:ResequencerEndpoint").
resequencer(header("seqnum")).
stream(new StreamResequencerConfig(100, 2000L)).
to("jbi:service:sample:SampleTarget");

136

Static Recipient List
Overview

A recipient list is a type of router that sends each incoming message to
multiple different destinations. The ServiceMix EIP recipient list is restricted
to processing InOnly and RobustInOnly exchange patterns. Moreover, the list
of recipients must be static. This pattern maps to the recipient list on page 56
with fixed destination pattern in Java Router.

Figure A.6. Static Recipient List Pattern

Example ServiceMix EIP route
The following example shows how to define a static recipient list using the
ServiceMix EIP component. Incoming messages are copied to the
test:messageFilter endpoint and to the test:trace4 endpoint.

<eip:static-recipient-list service="test:recipients" end
point="endpoint">
<eip:recipients>
<eip:exchange-target service="test:messageFilter" />
<eip:exchange-target service="test:trace4" />

</eip:recipients>
</eip:static-recipient-list>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:recipients:endpoint"/>
<to uri="jbi:service:test:messageFilter"/>
<to uri="jbi:service:test:trace4"/>

</route>

137

Note
The preceding route configuration appears to have the same syntax
as a Java Router pipeline pattern. The crucial difference is that the
preceding route is intended for processing InOnlymessage exchanges,
which are processed in a slightly different way—see Pipes and
Filters on page 27 for more details.

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:recipients:endpoint").
to("jbi:service:test:messageFilter", "jbi:ser

vice:test:trace4");

138

Static Routing Slip
Overview

The static routing slip pattern in the ServiceMix EIP component is used to
route an InOutmessage exchange through a series of endpoints. Semantically,
it is equivalent to the pipeline on page 27 pattern in Java Router.

Example ServiceMix EIP route
The following example shows how to define a static routing slip using the
ServiceMix EIP component. Incoming messages pass through each of the
endpoints, test:procA, test:procB, and test:procC, where the output

of each endpoint is connected to the input of the next endpoint in the chain.
The final endpoint, tets:procC, sends its output (Out message) back to the

caller.

<eip:static-routing-slip service="test:routingSlip" end
point="endpoint">
<eip:targets>
<eip:exchange-target service="test:procA" />
<eip:exchange-target service="test:procB" />
<eip:exchange-target service="test:procC" />

</eip:targets>
</eip:static-routing-slip>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:routingSlip:endpoint"/>
<to uri="jbi:service:test:procA"/>
<to uri="jbi:service:test:procB"/>
<to uri="jbi:service:test:procC"/>

</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:routingSlip:endpoint").
pipeline("jbi:service:test:procA", "jbi:ser

vice:test:procB", "jbi:service:test:procC");

139

Wire Tap
Overview

The wire tap pattern allows you to route messages to a separate tap location
before it is forwarded to the ultimate destination. The ServiceMix EIP wire
tap pattern maps to the wire tap on page 118 pattern in Java Router.

Figure A.7. Wire Tap Pattern

Example ServiceMix EIP route
The following example shows how to define a wire tap using the ServiceMix
EIP component. The In message from the source endpoint is copied to the
In-listener endpoint, before being forwarded on to the target endpoint. If you
want to monitor any returned Outmessages or Faultmessages from the target
endpoint, you would also need to define an Out listener (using the
eip:outListner element) and a Fault listener (using the

eip:faultListener element).

<eip:wire-tap service="test:wireTap" endpoint="endpoint">
<eip:target>
<eip:exchange-target service="test:target" />

</eip:target>
<eip:inListener>
<eip:exchange-target service="test:trace1" />

</eip:inListener>
</eip:wire-tap>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:wireTap:endpoint"/>

140

<to uri="jbi:service:test:trace1"/>
<to uri="jbi:service:test:target"/>

</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:wireTap:endpoint").to("jbi:ser
vice:test:trace1", "jbi:service:test:target");

141

XPath Splitter
Overview

A splitter is a type of router that splits an incoming message into a series of
outgoing messages, where each of the messages contains a piece of the
original message. The ServiceMix EIP XPath splitter pattern is restricted to
using the InOnly and RobustInOnly exchange patterns. The expression that
defines how to split up the original message is defined in the XPath language.
The XPath splitter pattern maps to the splitter on page 59 pattern in Java
Router.

Figure A.8. XPath Splitter Pattern

Forwarding NMR attachments
and properties The eip:xpath-splitter element supports a forwardAttachments

attribute and a forwardProperties attribute, either of which can be set to

true, if you want the splitter to copy the incoming message's attachments

or properties to the outgoing messages. The corresponding splitter pattern in
Java Router does not support any such attributes. By default, the incoming
message's headers are copied to each of the outgoing messages by the Java
Router splitter.

Example ServiceMix EIP route
The following example shows how to define a splitter using the ServiceMix
EIP component. The specified XPath expression, /*/*, would cause an

incoming message to split at every occurrence of a nested XML element (for
example, the /foo/bar and /foo/car elements would be split into distinct

messages).

<eip:xpath-splitter service="test:xpathSplitter" endpoint="en
dpoint"

xpath="/*/*" namespaceContext="#nsContext">

<eip:target>
<eip:exchange-target uri="service:http://test/router" />

142

</eip:target>
</eip:xpath-splitter>

Equivalent Java Router XML route
The following example shows how to define an equivalent route using Java
Router XML configuration:

<route>
<from uri="jbi:endpoint:test:xpathSplitter:endpoint"/>
<splitter>
<xpath>/*/*</xpath>
<to uri="jbi:service:http://test/router"/>

</splitter>
</route>

Equivalent Java Router Java DSL
route The following example shows how to define an equivalent route using the

Java Router Java DSL:

from("jbi:endpoint:test:xpathSplitter:endpoint").
splitter(xpath("/*/*")).to("jbi:service:ht

tp://test/router");

143

144

	Implementing Enterprise Integration Patterns
	Table of Contents
	Preface
	Open Source Project Resources
	Document Conventions

	Introducing Enterprise Integration Patterns
	Overview of the Patterns

	Messaging Systems
	Message
	Message Channel
	Message Endpoint
	Pipes and Filters
	Message Router
	Message Translator

	Messaging Channels
	Point-to-Point Channel
	Publish Subscribe Channel
	Dead Letter Channel
	Guaranteed Delivery
	Message Bus

	Message Construction
	Correlation Identifier

	Message Routing
	Content-Based Router
	Message Filter
	Recipient List
	Splitter
	Aggregator
	Resequencer
	Routing Slip
	Throttler
	Delayer
	Load Balancer
	Multicast

	Message Transformation
	Content Enricher
	Content Filter
	Normalizer

	Messaging Endpoints
	Messaging Mapper
	Event Driven Consumer
	Polling Consumer
	Competing Consumers
	Message Dispatcher
	Selective Consumer
	Durable Subscriber
	Idempotent Consumer
	Transactional Client
	Messaging Gateway
	Service Activator

	System Management
	Wire Tap

	Appendix A. Migrating from ServiceMix EIP
	Migrating Endpoints
	Common Elements
	ServiceMix EIP Patterns
	Content-Based Router
	Content Enricher
	Message Filter
	Pipeline
	Resequencer
	Static Recipient List
	Static Routing Slip
	Wire Tap
	XPath Splitter

