
Revised 2/17/15

GitCentric™

User’s Help
Version 2015.1

Copyright © Micro Focus 2015. All rights reserved.

This product incorporates technology that may be covered by one or more of the following patents:
U.S. Patent Numbers: 7,437,722; 7,614,038; 8,341,590; 8,473,893; 8,548,967.

AccuRev, AgileCycle, and TimeSafe are registered trademarks of AccuRev, Inc.

AccuBridge, AccuReplica, AccuSync, AccuWork, AccuWorkflow, Kando, and StreamBrowser are
trademarks of AccuRev, Inc.

All other trade names, trademarks, and service marks used in this document are the property of their
respective owners.

GitCentric User’s Help iii

Table of Contents

Preface.. vii
Audience ...vii

Using This Book ...vii

Typographical Conventions .. viii

Contacting Technical Support... viii

1. Concepts and Overview.. 1
What is AccuRev GitCentric?...1

Where to go for More Information ...1

A Note About Terminology ...2

Basic Architecture...3

GitCentric Users ...4

GitCentric Administrators and Mapping Branches to Streams...4

Basic Rules ..4

Mapped Behavior...5

Best Practices When Planning Your Installation ...5

Keeping Git Merges and AccuRev Promotes in Sync...5

Best Practice for Keeping Merges and Promotes in Sync ...7

Scenarios for Mapping Multiple Repositories to a Single Stream ..7

Multiple Repos and Multiple Servers ..8

AccuRev Replica Server Restriction ...9

Configuring for Security ...10

Configuring Multiple Git Repos with AccuRev and EACLs ..11

Getting Started ..11

2. How to... 13
Procedures for All Users...13

Get Started ..13

Define and Display a Site Header or Footer for Gerrit Code Review...18

Configure the Clone for Code Review (Optional)...20

Configure the Clone for Direct Push ...20

Troubleshoot Git Clone Issues...20

Information Displayed on the Commits Page..22

Starting from the Commits Page..23

Starting from the Source Tree Page ...24

Information Displayed on the Source Tree Page ...24

Configure GitCentric ...29

Remove a Branch...31

Remove a Repository...31

A Note About AccuRev Depots ..31

Import a Snapshot of the Latest Heads into AccuRev...32

GitCentric User’s Help iv

General Procedure for Setting ACLs...34

Configuring ACLs for Code Review...36

Configuring GitCentric ACLs for Direct Push..38

Avoid Git Reserved Name for AccuRev Elements..39

Specifying the AccuRev Server Connection ...39

Mapping the Branch to the Stream ..40

Specifying the Commit Message Format ..43

Troubleshooting Change Package Errors ..45

Registering an AccuRev Server...46

Configuring the AccuRev Server...47

Configure Multiple AccuRev Servers ...48

To View and Access Groups..49

Add a Group ..49

Add a Member to a Group ...50

AccuRev Groups..51

Allowing Self-Reviews..52

Disabling Code Review ...53

Overview..53

Registering the GitCentric Bridge SSH Key with Gerrit...53

Modifying the replication.config File..54

AccuRev to Git ..54

Git to AccuRev ..55

Gerrit gc Syntax...55

cron job Examples ...56

3. My Account .. 57
Opening the My Account Page ...57

Menu Options ...57

Profile ..57

Watched Repositories (Projects)..58

Contact Information...59

Public Keys..59

AccuRev Servers ...59

HTTP Password ...60

People ..60

4. Code Review .. 61
Opening the Code Review Page ...61

Overview of Gerrit Code Review ...61

Differences from Standalone Gerrit Code Review ...61

Code Review for Users of Differing Backgrounds...62

Gerrit Code Review and AccuRev Mappings...63

Troubleshooting ..63

5. Administration ... 65
Opening the Administration Page...65

GitCentric User’s Help v

Repositories ..66

To Create a New Repository..66

To Configure an Existing Repository ..66

Support for Hooks..73

People..73

AccuRev Servers...74

A Note about the CLI Path Setting ..74

A. The kandoMaintain Utility ... 75
Using kandoMaintain..75

Backup and Restore ..75

kandoMaintain Command Reference ...75

Commands ...75

Options...78

GitCentric Bridge Configuration Settings ...80

Examples..80

B. Backup and Restore.. 83
Commands for Backup and Restore ...83

Best Practices...83

Backing Up GitCentric ...84

What Gets Backed Up?..84

How to Back Up GitCentric ..84

Restoring GitCentric ...85

Caution: Restore Overwrites Existing GitCentric Installations...85

Prerequisites...85

What Gets Restored? ...85

How to Restore GitCentric ..85

Next Steps ..86

Restore Scenarios...87

C. Command-Line Reference .. 89
Basic Syntax ...89

Spaces and Quoting ..89

CLI Example...97

D. GitCentric Glossary... 99

GitCentric User’s Help vi

GitCentric User’s Help vii

Preface
This document serves as both the on-line help and the User’s Guide for AccuRev GitCentric. This
documentation covers both GitCentric end user and administrator audiences. GitCentric provides most
functionality through a Web UI, but also provides three administrative CLI commands.

Audience
This document is intended for GitCentric end users and administrators. End users are assumed to be
familiar with Git source control, and possibly Gerrit Code Review. Administrators are assumed to be
familiar with these topics and also with Linux operating systems, as well as AccuRev and AccuWork
concepts.

Using This Book
This book assumes you are familiar with your operating system(s) and their commands, as well as with
AccuRev, AccuWork, and Git.
The following table summarizes the chapters and appendixes in this book.

Chapter Description Audience

Chapter 1 Concepts and
Overview

Introduces basic GitCentric concepts and
architecture.

End users and administrators

Chapter 2 How to... Provides a series of common tasks that you
perform to configure and use GitCentric.

End users and administrators

Chapter 3 My Account Provides the ability to register yourself with
GitCentric, and to set your preferences and
contact information.

End users and administrators

Chapter 4 Code Review Gives you access to optional third-party
Gerrit Code Review functionality.

End users and administrators

Chapter 5 Administration Summarizes the features for configuring and
maintaining repositories, groups, and
AccuRev servers, including security
configuration. Provides links to conceptual
and task-based sections of this document.

Administrators

Appendix A The
kandoMaintain Utility

Describes the command line kandoMaintain
utility for upgrading and administering the
GitCentric database.

Administrators

Appendix B Backup and
Restore

Summarizes procedures and best practices for
backing up your GitCentric-related
repositories and database files.

Administrators

viii GitCentric User’s Help

Typographical Conventions
This book uses the following typographical conventions:

Contacting Technical Support
Micro Focus offers a variety of options to meet your technical support needs as summarized in the
following table.

When you contact Micro Focus technical support, please include the following information:
• The version of AccuRev and any other AccuRev products you are using (AccuSync or GitCentric, for

example).

• Your operating system.

• The version of relevant third-party software (if you are using AccuSync, for example the version of
your ITS).

Appendix C Command-Line
Reference

Summarizes the syntax and usage of the
GitCentric administration commands,
typically used for scripting administrative
functions. Note: Although these commands
are generally considered administrator
commands, any registered user may use the
ls-repo command to view the repos to
which they have access.

Administrators

Appendix D GitCentric
Glossary

A list of GitCentric-related terms and their
definitions.

End users and administrators

Convention Description

blue sans-serif Used for sample code or output.

bold Used for command names, and button names in the
GitCentric user interface

light italic Used for emphasis, book titles, and for first use of important terms

blue italic Identifies a hyperlink (to a page or Web URL, for example)

For Visit

Information about technical support services http://supportline.microfocus.com/

Information about platforms support http://supportline.microfocus.com/prodavail.aspx

Product downloads and installations http://supportline.microfocus.com/websync/
productupdatessearch.aspx

Product documentation http://supportline.microfocus.com/productdoc.aspx

SupportLine phone numbers, listed by
country

http://www.microfocus.com/about/contact/support/
assistance.aspx

Chapter Description Audience

GitCentric User’s Help ix

• A brief description of the problem you are experiencing. Be sure to include which AccuRev interface
you were using (Web user interface, Java GUI, or CLI), any error messages you received, what you
were doing when the error occurred, whether the problem is reproducible, and so on.

• A description of any attempts you have made to resolve the issue.

• A simple assessment of how the issue affects your organization.

x GitCentric User’s Help

GitCentric User’s Help 1

1. Concepts and Overview
This chapter provides an introduction to the concepts behind AccuRev GitCentric.

What is AccuRev GitCentric?
AccuRev GitCentric is a bridge between two worlds:

• the open source Git revision control system

• the Enterprise-capable AccuRev source control management (SCM) system

Git is popular with many developers for its simplicity and speed. However, professional enterprises need
more control and scalability for their large investment in intellectual property. Many developers prefer
AccuRev’s interface; release engineers require AccuRev’s stream architecture for capturing the exact
revisions needed for a build environment, and managers require AccuRev’s TimeSafe auditablility and its
ACL-based security.
How does an organization meet these differing requirements and preferences?
AccuRev GitCentric provides enterprises with the solution: developers who embrace Git can continue
using Git the same way they do today, while other development groups, release and test engineers, and
managers who require AccuRev’s power, functionality, and security can work together via the AccuRev
GitCentric interface. GitCentric also incorporates the open source Gerrit Code Review package for
optional code review functionality.
In the most basic terms, Git repository branches are mapped to AccuRev streams, so that the two stay in
sync. Changes to the Git repository get transmitted to the AccuRev depot, and changes in the AccuRev
depot get transmitted to the Git repository. Updates happen automatically. Git users do not need change
their work practices for the AccuRev environment, since GitCentric is transparent to them.
GitCentric functionality applies to two audiences:
• Regular users can register themselves, maintain their preferences, and (if implemented at their site)

access the optional code review functionality.

• Administrators can configure and maintain repositories, their security, and their branch mappings to
AccuRev streams.

Where to go for More Information
When using GitCentric, the documentation you need depends on what component you are using.

• For GitCentric installation, see the AccuRev GitCentric Installation and Release Notes.

2 GitCentric User’s Help

• For GitCentric administration and use, you’re already here: the AccuRev GitCentric User’s Help
(available in both PDF and HTML) from the GitCentric web interface:

• For help with Gerrit Code Review, see the Gerrit Code Review documentation here:

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html
• For Git documentation, you can use git help from the command line. You can also use a search

engine to locate several good tutorials and discussions available on the web.

• For AccuRev documentation, access the complete documentation set in HTML and PDF from the
Help Contents & Manuals menu in the AccuRev GUI:

The AccuRev Installation and Release Notes are available from the Micro Focus Product
Documentation page here: http://supportline.microfocus.com/productdoc.aspx

A Note About Terminology
Because GitCentric spans the environments of AccuRev, Git, and Gerrit Code Review, you may encounter
some conflicts or overlaps in terminology. For example, Gerrit Code Review often uses the term “project”
to refer to a repository. AccuRev uses the terms “repository” or “repo” when referring to a repository, and
reserves the term “project” for referring to specific Gerrit functionality, or when referring to some kind of
planned or defined undertaking. See Appendix D GitCentric Glossary for definitions of terms used in
GitCentric.

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html

GitCentric User’s Help 3

Basic Architecture
The following diagram shows the basic configuration of a very simple GitCentric environment where the
Git repository, Tomcat web server, and AccuRev server with databases for both GitCentric and AccuRev
reside on the same server:

 Figure 1. Basic Architecture

In this simple configuration, the GitCentric server hosts:
• a Tomcat web server configured with two GitCentric apps (a bridge and an administrative GUI)

• an AccuRev server which includes a PostgreSQL database, and which functions as both the
GitCentric AccuRev server and a production SCM AccuRev server with a trigger
(server_master_trigger) to notify GitCentric of changes in AccuRev

• a GitCentric installation directory, which generally (but not necessarily) contains a storage area for
one more Git repositories which include triggers (pre-receive and update) and configuration files.
(The triggers are Git hooks that get copied to your GitCentric repos and which help keep AccuRev
synchronized with your repo. Search the web for more information about Git hooks.)

In this simple environment, the AccuRev server hosts both the AccuRev depot containing the streams that
are mapped to branches in the Git repo, along with the database server for both GitCentric and AccuRev,
and another trigger that keeps your repo synchronized with AccuRev. In fact the Tomcat server is also a
part of the AccuRev installation, under the <ac_home>/WebUI directory.
For the sake of this discussion, we will assume the simple configuration in which the Git repo and the
AccuRev server (which includes the Tomcat server, the GitCentric database, and the production SCM
database) all reside on the same machine.
Regardless of the complexity of the installation, the basic GitCentric process remains the same: Git users
push and pull files between their local Git repos and the GitCentric Git repo. AccuRev users promote and

4 GitCentric User’s Help

update files between their workspaces and the AccuRev Server. And GitCentric keeps the branches in the
Git repos synchronized with streams in the AccuRev servers.

GitCentric Users
All GitCentric users -- whether they are Git developers or GitCentric administrators -- use GitCentric to
self-register their accounts and their SSH public keys, and to maintain their account preferences. If code
review is configured, then Git developers will also access Gerrit Code Review through GitCentric.
However, many GitCentric features are geared toward administrators so that they configure AccuRev
servers and their mappings to Git repository branches.

GitCentric Administrators and Mapping Branches to
Streams
A GitCentric administrator uses the GitCentric GUI (and optionally the GitCentric CLI commands) to
configure the mapping between Git branches and AccuRev streams. A Git repository (“repo”) is associated
with a single AccuRev server, and with an AccuRev username (the “service account”) for performing
GitCentric administrative tasks. Once this association is defined, a GitCentric administrator can proceed to
map Git repo branches to AccuRev streams on that server. The directory within a stream that is mapped to
a Git branch is called the “mount point”.
After the mapping has been done, the GitCentric bridge webapp uses triggers to automatically keep the Git
repo and the AccuRev depot in sync, while the GitCentric GUI gives you the ability to create repos, map
branches to streams, set ACLs, etc.
Note that you can have multiple GitCentric AccuRev user accounts:

• administrative users who interactively log into the GitCentric GUI (and any related AccuRev
servers), for manual administrative tasks

• “service account” users, accessed internally by the GitCentric bridge, for automatically syncing
the Git repos and their mapped AccuRev streams

Service account users must be defined (either as an individual user, or as a group) in the AccuRev server
acserver.cnf file(s), using the ASSIGN_USER_PRIVILEGE setting in AccuRev 5.4 or later. Note: Best
practice is to assign this to a group, so different members of the group can have different access rights. For
example, one member of the group might be from an off-shore organization, with different access rights
than another member of the group.

• The syntax for the entry in acserver.cnf is
ASSIGN_USER_PRIVILEGE = <user_or_group_name>

• If you specify multiple ASSIGN_USER_PRIVILEGE settings, only the first one is honored.

Basic Rules
Regardless of how many Git repositories or AccuRev servers you configure, when you associate a repo
with a server, you map them at the branch and stream level: a Git branch is mapped to an AccuRev stream.

• You can map multiple Git branches (and multiple Git repositories) to a single AccuRev stream.

• You can map a Git branch to any directory within an AccuRev stream

GitCentric User’s Help 5

• You cannot map a Git branch to multiple AccuRev streams.

• You cannot map a Git branch to the root stream in an AccuRev depot. (If you need to do this,
simply create a new stream off the root, and then map to that.)

Mapped Behavior
If you push a file to the repository and it would require merging with the version of the file on the mapped
AccuRev stream, GitCentric cancels the push and informs the user that he or she must pull the latest
changes, merge and retry the push, the same way Git always handles these situations.
When you first map a Git branch to an AccuRev stream, you can specify whether the files in Git or on
AccuRev take precedence.
Since AccuRev streams inherit versions from their backing streams, it is important to remember that if any
element is promoted to a backing stream above a stream that is mapped to a repo, that element will
automatically be pushed to the repo from AccuRev.

Best Practices When Planning Your Installation
GitCentric reflects the flexibility of both the Git and AccuRev environments, and it is possible to configure
your repositories and streams in countless ways. However, Borland recommends keeping the following
thoughts in mind:

• Git repositories are smaller, coherent groups of functionality. You do not merge files, you merge
the whole repository.

• AccuRev depots tend to be large sets of files related to entire products, or multiple products.

Therefore, you probably do not want to create a repository that maps to an entire depot. You want your Git
branches to map to directories within AccuRev streams that contain smaller, independent sections of
functionality.
As with any new tool, it is important that you first understand what your current process is. If you are an
existing Git shop, make sure that you have a clear picture of how your repositories and branches are
configured, and what your workflow is. In evaluating this, you may find that you need to better define your
current environment. If you have never gone through this exercise, consider searching for the following
terms on the web: “git”, “workflow”, and “model”. This will point you to some good discussions about
successful Git implementations. Once this is done, then you will be in a better position to decide how to
map your branches to AccuRev streams.
Also, remember that both Git and AccuRev bring different strengths to your organization. Git provides a
convenient, distributed version control system to your development end users. AccuRev provides
powerful, centralized version control for users such as build administrators, release engineers, product
managers, etc. Git branches can be somewhat transient -- if you start to develop something on a branch and
then change your mind, you can delete the branch. AccuRev is TimeSafe™ -- all versions and transactions
are captured permanently in the AccuRev database. When carefully planned, mapping between these
environments means that GitCentric provides the best of both worlds to your organization.

Keeping Git Merges and AccuRev Promotes in Sync
When you configure a Git repository to work with AccuRev through GitCentric, you map a Git branch to
an AccuRev stream. If you wish to take advantage of AccuRev promote operations, you map the parent
AccuRev Stream to one branch, and the child AccuRev stream to another branch.

6 GitCentric User’s Help

 Figure 2. Git Merges and AccuRev Promotes

If you configure things correctly and follow a few basic rules, then:
• Merges between the mapped branches in Git will result in an AccuRev “promote” between the

corresponding streams.

• Promotes from the child stream to the parent stream in AccuRev will result in a merge between the
corresponding branches in the Git repository if the content under the mount point is empty in the
child stream. (That is, the merge will happen if the child stream is completely inherited so that it is
the same as the parent at the mount point).

Note that the desired condition when these operations are completed is for the “default group” in AccuRev
stream “C” to be empty. (The “default group” is the set of elements or files in a stream that are under
current development. A file is removed from a stream’s default group when that file is either promoted or
“revert to back”ed (or purged). See the AccuRev documentation for more details.)
To ensure that this happens reliably and predictably, configure your system so that:
1. One stream is the parent of another stream, and each of these streams are mapped to branches in the Git

repository. In this example, the parent stream is called “P” and the child stream is called “C”

2. There is no timestamp on AccuRev stream “C”. (A timestamp will prevent a stream default group from
being cleared.)

3. The mount point must be the same in each AccuRev stream for the branches that are mapped to them.
(If one branch is mapped to one mount point in one stream, and the other branch is mapped to a
different mount point in the other stream, the files will never line up.)

4. Any AccuRev rules that are applied to the C stream are also applied to the P stream. (For example,
avoid include/exclude rules one stream that cause that cause its contents to differ relative to the other
stream. And do not use cross-links on writable elements.)

From a Git viewpoint, this ensures that the branches point to the same commit graphs when their contents
are identical. From an AccuRev viewpoint, this ensures that the default groups in the streams get cleared
out when appropriate, and do not keep growing to include (potentially) all files in the system.

GitCentric User’s Help 7

Best Practice for Keeping Merges and Promotes in Sync
Borland recommends that you merge into the child branch first, and then fast forward merge the parent
branch. If you merge into the child branch first, AccuRev will reflect this by performing a promote from
the child stream to the parent stream. However, if you merge into the parent branch first, AccuRev will
achieve the desired “zero default group” state by performing an AccuRev purge on the child stream.
The Git commands for merging into the child branch are:
1. git checkout C

2. git merge P

3. git checkout P

4. git merge C (This will be a fast-forward merge. Existing merge commit will be reused.)

5. git push

Scenarios for Mapping Multiple Repositories to a Single Stream
There are two common reasons for mapping two different Git repositories to the same AccuRev stream:
• Project-based

• Security-based

Project-based
 Figure 3. Project-based (same stream, different mount points)

In this case, you might have two different parts of a product in two different directory structures in the
same stream, such as a GUI development tree and a database development tree. In the Git environment,
you could have the GUI work being done in one repository and the database work being done in another.
By mapping the branches in these repositories to the correct mount points in the same stream, you can keep
the work separate. (Keeping the branch names consistent across repos will be helpful if you need to make
branch-mapping changes en masse using the children-of option in the SSH config-branch CLI
command.)

8 GitCentric User’s Help

Security-based
 Figure 4. Security-based (same stream, same mount point, different service account)

In this case, you could have two different sets of users with different access privileges accessing the same
files. Privileged Git developers in corporate headquarters could have one repo mapped to the mount point
with one service account having “lenient” AccuRev ACLs (see below). Less privileged off-shore contract
developers could have a different repo mapped to the same mount point with a different service account
having much more restrictive AccuRev ACLs. See Configuring for Security on page 10 for more
information about ACLs and security.
Also, by mapping branches from different repos to a single AccuRev stream, you can automate the process
of updating repos with changes: when a change gets pushed to a repo that is mapped to an AccuRev
stream, that change gets propagated to all other branches that are mapped to that stream (assuming that the
AccuRev ACLs allow a repo to “see” the changed file).

Multiple Repos and Multiple Servers
Figure 1 above illustrates a simple case of a single Git repository being associated with a single AccuRev
server through GitCentric. Figure 3 and Figure 4 above illustrate multiple repositories being mapped to a
single AccuRev server.
However, GitCentric can also configure multiple Git repositories with multiple AccuRev servers. For
example, you could have one repo associated with one AccuRev server, and two other repos associated
with a different AccuRev server. (However, a single repo cannot be associated with multiple AccuRev
servers. And having multiple GitCentric servers configured with the same AccuRev server is not
supported.)
If you choose to configure multiple AccuRev servers, AccuRev strongly recommends that you use the
same GitCentric administrator user and password for all AccuRev servers to avoid the need to constantly
log in and out as you move between servers.

GitCentric User’s Help 9

 Figure 5. Multiple AccuRev Servers

Note that if you choose, you can administer your Git repos with GitCentric and not have their branches
mapped to any AccuRev streams at all. You do need to associate a Git repository with an AccuRev server
for security purposes, but you do not need to have its branches mapped to use GitCentric.

AccuRev Replica Server Restriction
If your AccuRev installation has one or more replica servers, you should always try to associate GitCentric
with the AccuRev master (if possible), and NOT a replica. Even if your GitCentric installation is
physically located in close proximity to a replica server, you should try to configure GitCentric to work
with the remote master AccuRev server, not the geographically closer replica server. (This may not be
possible if your installation has implemented firewalls and VPN or some other kind of security that
prevents you from communicating directly with a remote master server.)

10 GitCentric User’s Help

Configuring for Security
As touched upon in Figure 4 on page 8, one of the advantages of using AccuRev GitCentric in a Git
environment is that you can use both GitCentric and AccuRev security features to control access to files, a
feature not natively provided by Git.
GitCentric makes use of two kinds of Access Control Lists (“ACLs”):

• GitCentric “group-based” ACLs, which define access to Git repositories.

• AccuRev Element ACLs, which define permissions on the AccuRev server down to the individual
element level.

Using these two types of ACLs, you can approach GitCentric security in two ways:
• Using GitCentric group-based ACLs to specify allow and deny privileges on a repository

(“project”) basis.

• Mapping multiple repos as different “views” on AccuRev-controlled elements. The AccuRev-
controlled elements may optionally be secured with AccuRev Element ACLs (EACLs).

GitCentric Group-Based ACLs
On the Git side, you define group-based ACLs and apply them to repositories, to control what kind of
access group members have to GitCentric-controlled Git repos and branches. (GitCentric group-based
ACLs are different than -- and should not be confused with -- AccuRev Element ACLs or “EACLs”, which
control access to files on the AccuRev server.)
GitCentric provides five system or pre-defined internal or groups:

• Administrators (internal)

• Anonymous Users (system)

• Non-interactive Users (internal)

• Repository (“Project”) Owners (system)

• Registered users (system)

You can define more groups as necessary.
GitCentric is installed with a basic set of ACLs on a special, system-defined project named “All-Projects”,
from which all repos inherit their base set of ACLs. These basic ACLs are set to be highly secure, so you
will need to customize them for your site before your users can use GitCentric.
The general topic of group-based ACLs is beyond the scope of this document, so you will need to learn
about them from the Gerrit Code Review documentation referenced below, but at a very high level:
Every user account is a member of one or more groups, and access and privileges are granted to those
groups. You cannot grant access rights to individual users.
Access rights are then assigned to these groups per repo (or “project”). Access rights granted to parent
repos are inherited by child repos. Access rights defined for the All-Projects project are inherited by all
other projects.
For information about creating and configuring GitCentric group ACLs from the GitCentric UI, see
Configure Access Rights (ACLs) for a Repo on page 34.

GitCentric User’s Help 11

Because GitCentric group ACLs are derived from Gerrit Code Review, they are documented in detail in
the Gerrit Code Review documentation. See the Access Controls topic in the Gerrit Code Review
documentation for more information.

Configuring Multiple Git Repos with AccuRev and EACLs
In AccuRev, it is a fairly common practice to configure depots and files with ACLs so that only certain
users can access them. For example, assume that you hire an off-shore contract company to develop code
for an optional feature to your main product line. You might want to give staff in corporate headquarters
access to all files and directories, while restricting access of the off-shore team to just those files and
directories that they need to get the job done.
By setting up ACLs in the AccuRev environment, and then mapping Git repositories and branches to these
AccuRev depots and streams, you can give the off-shore team access to just the repo containing their files,
while giving your domestic teams access to the repo that contains all your files (see Figure 4 on page 8).
For information about setting up ACLs in the AccuRev environment, see the following AccuRev
documentation:

• On-Line Help Guide: Chapter 8, “Security”

• Administrator’s Guide: Chapter 9, “AccuRev Security Overview”

• CLI User’s Guide: eacl, setacl, lsacl, and mkuser command descriptions in Chapter 2, “AccuRev
Command Line Reference”

Getting Started
Once you have completed this chapter, and after you have installed GitCentric as described in the AccuRev
GitCentric Installation and Release Notes, you should proceed to Get Started on page 13 in Chapter 2
How to... to learn how to configure your GitCentric environment and use it for the first time.

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/access-control.html

12 GitCentric User’s Help

GitCentric User’s Help 13

2. How to...
This chapter describes how to perform basic tasks with the AccuRev GitCentric GUI. (For an example of
performing some of these tasks with CLI commands, see CLI Example on page 97.)

For procedures that apply to all users, proceed to the next section.

For procedures that apply only to Administrator users, see Procedures for Administrators Only on page 28.

Procedures for All Users
The procedures within this section apply to both regular users and administrators.

Get Started
This section assumes that you have completed the basic installation steps described in the AccuRev
GitCentric Installation and Release Notes.

Now you will perform some configuration steps and actually use the GitCentric GUI for the first time.

Note: Administrators -- Before you begin to associate Git repositories and branches with AccuRev
depots and streams, you must have a solid understanding of your current Git and AccuRev processes.
Please be sure to read through Chapter 1 Concepts and Overview, particularly GitCentric
Administrators and Mapping Branches to Streams on page 4, Mapped Behavior on page 5, and Best
Practices When Planning Your Installation on page 5.

 Table 1. Summary of Common GitCentric Procedures for ALL Users

To: Go to page:

Get Started 13

Create an SSH key 14

Log In to GitCentric 14

Register with GitCentric 16

Set Preferences 18

Generate an HTTP Password 19

Create a Clone From a GitCentric Repository 19

View Commit History 21

Review a Commit’s Files 23

Compare Branches 25

Switch Between Gerrit Code Review and
GitCentric

 26

14 GitCentric User’s Help

Create an SSH key
This section applies to all GitCentric users, whether you are an administrator or an end user.

Note: General SSH documentation is beyond the scope of this document. We recommend that you use
your favorite search engine to find information about the topic. However, GitCentric administrators
should know that the GitCentric installer now includes an SSHD daemon, and the product now
includes a self-registration feature. This means that you no longer need to manually install and
configure an SSH server, and you no longer need to create and register SSH keys for your users.

1. If you know what an SSH public key is, and you know that you have one, and you know where your
public key file is, you are all set! You can skip ahead to the next section.

2. If you need to generate a key, use the following syntax:

ssh-keygen -t rsa -C <your_email>@<your_domain>

Note: If you are an end-user on a Windows machine, you should install a Git Windows client such as
msysGit, which includes ssh-keygen. See http://msysgit.github.com for more information.

Make note of where your public key is stored. Typically it is in ~/.ssh/id_rsa.pub (or
C:\users\<youraccount>\.ssh\id_rsa.pub on Windows). You will need it when you first log in to
GitCentric.

Log In to GitCentric
The first step in using the GitCentric web GUI is logging in with your web browser.

1. Point your browser to the GitCentric web server. For example:

http://<servername:port>

You will see the following log-in screen and the GitCentric menus will be displayed, although some
will be disabled until you log in.

Note: The very first user to log in to GitCentric, who should be the administrator who installed it, will
see a slightly different log-in screen, which includes a field for specifying a “CLI Path”. This initial
login screen and procedure is described in the GitCentric Installation and Release Notes.

http://msysgit.github.com

GitCentric User’s Help 15

2. Here are the fields that you may encounter with either of these dialogs. Most are relatively self-
explanatory so long as you know that the Username and Password are your credentials on the
AccuRev server.

AccuRev Server: From the pull-down menu, select the host name of the AccuRev server that you
wish to associate with a Git branch, and where you have a login account. For example:
acserver2:5050, or <ip_address>:5050 or localhost:5050. This may or may not be the same
AccuRev server where the GitCentric database resides. In a simple configuration, this is may be
the same host that you just connected to with your web browser, or it may be a remote server. Note
that if localhost appears as an option, it refers to an AccuRev server on the host you are
connecting to, not your local machine where you started your browser.

• Username: -- The AccuRev user account on this server that you use. If you are an administrator,
this would be the account that you use for GitCentric configuration, and might be an account such
as “acserver” if you have legacy AccuRev systems. See the GitCentric Installation and Release
Notes for a discussion about user accounts.

• Password: -- The password for the specified AccuRev user.

3. Click Login when done.

If this is your first time logging into GitCentric, you will be taken through the self-registration process
described in the next section. Otherwise, you will be taken to the GitCentric UI.

16 GitCentric User’s Help

Register with GitCentric
When you log in to GitCentric for the first time, you are prompted through a self-registration process. This
is provided so that users with valid AccuRev accounts will not need to involve an administrator in getting
set up on GitCentric:

Enter your information as follows:

1. Full Name: Your real name (unless this is an account for a role such as “Guest User”.

2. Register New Email...: You should enter the same email address here that you specified when you
specified your user.email configuration for your Git clone(s). You can specify multiple email
addresses and switch between them as necessary with the Preferred email setting. Note: If your
AccuRev user account is associated with an email address, that address will be automatically inserted
in this field.

3. Preferred Email: Enter the same email address here that you specify for the Git user.email
configuration for your clones. If these do not match, pushes from your clone will fail. If you need to
maintain multiple email addresses, you can add them later at My Account -> Contact Information.
(See Contact Information on page 59.)

4. SSH key: Click the Add button and copy the contents of your SSH public key file here (see Create an
SSH key on page 14) and Save it. (Note: If your AccuRev user account is associated with an SSH
public key, that key will be automatically inserted in this field.) Your public SSH key file is typically
~/.ssh/id_rsa.pub. You can choose to do this later through My Account -> Public Keys (see Public

GitCentric User’s Help 17

Keys on page 59), but until this is set, you will be able to use only the code review features of
GitCentric.

5. Click Continue when done.

18 GitCentric User’s Help

Set Preferences
GitCentric provides a dialog for controlling various aspects of your display.

1. In the upper right corner of the GitCentric window, click My Account from the username drop-down.

2. On the My Account page, click Preferences.

3. Most of these settings are self-explanatory, and are summarized in Preferences on page 58. However,
the Show Site Header setting is non-obvious and requires some set-up to make it work. Use the
following procedure to set up a site header (and footer) within Gerrit Code Review.

Define and Display a Site Header or Footer for Gerrit Code Review
Gerrit Code Review provides the option of displaying a header and/or a footer in its web UI:

1. Create an image file or files that you want displayed for the header and/or footer. Place the file or files
in <gc_home>/site/static

2. Create an XML-compliant file named GerritSiteHeader.html in <gc_home>/site/etc. Include a
pointer to the image file or files in <gc_home>/site/static that you want to use for the header. Note
that this file must be valid XHTML. It is not sufficient for it to be valid HTML. For example, the
following example would not work if you left out the superfluous “” closing tags. This example
creates a site header from two image files displayed horizontally as a table row, with a link to the
AccuRev web site from the splash image.

Example:

<div id="gerrit_header">
<table border="0" cellpadding="0" cellspacing="0" id="masthead" width="100%">
<tbody><tr><td valign="center">

GitCentric User’s Help 19

</td>
<td width="100%"></td>
<td align="right" valign="bottom">

</td>
</tr>
</tbody>
</table>
</div>

3. If you also want a site footer, repeat the previous step for a file named GerritSiteFooter.html.

4. To enable the display of the header and footer, in the Web UI click Settings -> Preferences -> Show
Site Header.

Generate an HTTP Password
You can execute Git commands using SSH or HTTP. If you choose to use HTTP, you will need to provide
a generated password. To generate an HTTP password:

1. In the upper right corner of the GitCentric window, click My Account from the username drop-down.

2. On the My Account page, click HTTP Password.

3. On the HTTP Password page, click the Generate Password button.

The generated password appears in the Password field.

Tip: You can use the clipboard icon () to copy the password.

See HTTP Password on page 60 to learn about ways to manage and secure the password when executing
Git commands using HTTP.

Create a Clone From a GitCentric Repository
The procedure for creating a local clone from a GitCentric repository is a basic Git operation:

1. git clone ssh://<gitCentricLogin>@<gitCentricServer>:<port>/<repoName> <cloneName>

where:

<gitCentricLogin> is the AccuRev username you specified in Log In to GitCentric on page 14.

<gitCentricServer> is the host where GitCentric is installed (the same you specify in the URL in
Log In to GitCentric on page 14.

<port> is the SSHD listener port (typically 29418).

<repoName> is the name of the GitCentric repo.

<cloneName> is the name of the clone you are making of GitCentric repo.

Notes about repo and clone names:

• Typically <repoName> and <cloneName> will be the same, but they do not need to be.

• If the repo has a ".git" extension, you do NOT need to specify it in this command.

• By convention, only bare repos have a .git extension. Working repos do not. In general, you
should NOT specify ".git" extensions when working with GitCentric.

20 GitCentric User’s Help

2. Prepare to configure the clone:

cd <cloneTopDirectory>

3. Configure your username:

git config user.name "<yourRealName>"

4. Configure your email address:

git config user.email "<yourEmailAddress>"

Note: This must be the same as your "Preferred Email" as registered with GitCentric in Register with
GitCentric on page 16, or else git push operations will fail.

Configure the Clone for Code Review (Optional)
If you will be using GitCentric’s optional Gerrit Code Review functionality as part your development, you
MUST configure your clone as follows:

git config remote.origin.push 'refs/heads/*:refs/for/*'

This causes files to be pushed to a special branch for code review.

Next, copy the commit-msg hook to the .git/hooks/ directory of each clone. For example:

scp -p -P <port><server>:hooks/commit-msg .git/hooks/

where:

<port> is the SSHD listener port (typically 29418)

<server> the host where GitCentric is installed

If you will not be using Gerrit Code Review, and you are pushing directly to the repository, then leave this
step out. In either case, ensure that your GitCentric administrator has set "push" and other ACL
permissions correctly for either the Gerrit Code Review or direct push environment. (See Configure Access
Rights (ACLs) for a Repo on page 34.)

Configure the Clone for Direct Push
If your site does not use the GitCentric’s optional Gerrit Code Review functionality, you must ensure that
the line push = refs/heads/*:refs/for/* (added by the git config command described in the
previous section) does NOT appear in the [remote "origin"] section of your clones’ config file.

Troubleshoot Git Clone Issues
If you have a problem cloning a repository, or using it once it has been created, check the following:

• Ensure that the user has gone through initial GitCentric login and has the correct username, email,
and ssh.

• Test the ssh configuration with this command:

ssh -p 29418 <gc_user>@<gitCentricServer> gitcentric --help

This should return a usage message that refers to the config-branch, config-repo, and ls-repo
commands. If the command returns an error message, ssh has not been set up correctly. In this
case, try the command again using a -v switch to obtain additional messages that might be useful
for debugging.

• Make sure that the path in the git clone call is correct.

GitCentric User’s Help 21

• If you have an authorization error, have an administrator check the ACLs in Administration ->
Repositories -> <repoName> -> Access.

• Have an administrator check the bare repo in the GitCentric storage directory. Use commands such
as git log, git branch, and git cat-file –p master. If it is empty, check the log files for
initial import/export failure.

Note: Git does not track empty directories although AccuRev does. Therefore, if you have empty
directories in your AccuRev stream, these will NOT appear in a Git clone of a repository that is
mapped to that AccuRev stream.

View Commit History
Use the Commits page to view the commit history of a specific branch or tag. You can locate a branch or
tag using its name.

To review a branch’s or tag’s commit history:

1. Click the Commits tab to display the Commits page.

The Repo and Branch fields retain their last values, even if they were set on the Source Tree or
Branches pages.

2. Select the repository from the Repo drop-down menu.

If available, the master branch for the repository you choose is selected by default in the Branch field.
Otherwise, GitCentric displays the first branch in the repository based on an alphanumeric sort.

3. Optionally, use the Branch drop-down menu to choose a branch other than master or a tag.

Tip: The list in the drop-down menu includes only branches by default. You can also include (or
restrict the list to) tags, which are often used to mark important milestones like release points (v2.0, for

example). If you choose a tag, GitCentric changes the Branch icon and label to Tag: .

GitCentric refreshes the Commits page to update the starting point of the history. Each row represents
a single commit, starting with the most recent. Scroll the page to reach the origin of the commit graph.

22 GitCentric User’s Help

Information Displayed on the Commits Page
As shown in this example, the Commits page provides several features that make it easy to view and
explore commit history:

Item Feature Description

A Source Tree tab Jumps to the Source Tree page for the most recent commit in the branch. See
View Commit History for more information.
Note that you can change the repository and branch using the Repo and Branch
drop-down.

B Clipboard Copies the commit’s sha to the clipboard -- this allows for easy use of the sha in
a Git command, for example.

C Source Tree link Jumps to the Source Tree page for any commit you choose. See Review a
Commit’s Files for more information.

D Commit summary Shows the total number of files that were added to, deleted from, or modified in
the commit. Together, this information provides you with a general feel for the
size of the commit.

E More button Expands the commit row to display the entire message if the commit message
consists of multiple lines, or is too long to be displayed in the available space.
Click again to return to the default display.

F Gravatar Displays the names of the commit author and committer when the pointer is
placed over the gravatar (Globally Recognized Avatar). If the author has
registered with gravatar.com, his or her gravatar appears here; otherwise, a
generic image is used.

GitCentric User’s Help 23

Review a Commit’s Files
Use the Source Tree page to review the files -- new, deleted, or modified -- associated with a specific
commit. Clicking a text file displays its contents in a file viewer. The contents of binary files (graphics and
executables, for example) cannot be displayed.

The ability to view file contents can help developers troubleshoot problems. For example, imagine that a
customer using version 6.2.1 of your software reports an error, referencing the following log message:

2014-07-07 17:27:47,858 ERROR LoginForm:83 gerrit.canonicalWebUrl must be set in
gerrit.config

You could locate the v6.2.1 tag in the Source Tree page, navigate the directory path, and open
LoginForm.java to view line 83.

The Source Tree page represents a snapshot of the repository at the time of the selected commit. Each row
on the Source Tree page represents a directory or file in the source code. You can start from either the
Commits or Source Tree page as described in the following sections.

Starting from the Commits Page
To review the files in a commit from the Commits page:

1. Click the Commits tab to display the Commits page.

The Repo and Branch fields retain their last values, even if they were set on the Source Tree or
Branches pages.

2. Select the repository from the Repo drop-down menu.

If available, the master branch for the repository you choose is selected by default in the Branch field.
Otherwise, GitCentric displays the first branch in the repository based on an alphanumeric sort.

3. Optionally, use the Branch drop-down menu to choose a branch other than Master or a tag.

Tip: The list in the drop-down menu includes only branches by default. You can also include (or
restrict the list to) tags, which are often used to mark important milestones like release points (v2.0, for

example). If you choose a tag, GitCentric changes the Branch icon and label to Tag: .

GitCentric refreshes the Commits page to update the starting point of the history. Each row represents
a single commit, starting with the most recent. Scroll the page to reach the origin of the commit graph.

4. Locate the commit whose files you want to review and click the Source Tree link.

Tip: If you want to review the files for the first commit in the current branch or tag, click the Source
Tree tab.

24 GitCentric User’s Help

The Source Tree page appears. See Information Displayed on the Source Tree Page for more
information.

5. Click the folders associated with the gravatar of the user whose commit you are reviewing. GitCentric
updates the path displayed in Current Directory field as you navigate the source tree.

Tip: The name of this field changes to Current File when you select a file for viewing.

Starting from the Source Tree Page
To review the files in a commit from the Source Tree page:

1. Click the Source Tree tab to display the Source Tree page.

The Repo and Branch fields retain their last values, even if they were set on the Commits or Branches
pages.

2. Select the repository from the Repo drop-down menu.

If available, the master branch for the repository you choose is selected by default in the Branch field.
Otherwise, GitCentric displays the first branch in the repository based on an alphanumeric sort.

3. Optionally, use the Branch drop-down menu to choose a branch other than Master or a tag.

Tip: The list includes only branches by default. You can also include (or restrict the list to) tags, which
are often used to mark important milestones like release points (v2.0, for example).

4. Click the folders associated with the gravatar of the user whose commit you are reviewing. GitCentric
updates the path displayed in Current Directory field as you navigate the source tree.

Tip: The name of this field changes to Current File when you select a file for viewing.

Information Displayed on the Source Tree Page
As shown in this example, the Source Tree page provides several features that make it easy to locate new,
deleted, and modified files in a commit:

GitCentric User’s Help 25

Compare Branches
During development, branches diverge from other branches in your repository -- you might have
committed changes in one branch that have not been merged into another, and vice versa. This type of
change is normal and to be expected, but over time it can lead to the creation of "dead" or "stale" branches
that can bloat your repository and make development difficult. You can use the Branches page to determine
how divergent the branches in the repository are and then take steps to address it (by merging or pruning,
for example).

GitCentric presents information about a branch’s divergence in terms of how far ahead (numAhead) and
how far behind (numBehind) the commits in a given branch are from those in the branch you choose as
your baseline. Consider the following illustration of a simple commit graph, where each O represents a
commit:

---O---O---O---O---O----------O (master)
 \
 ---O---O---O (5.1)

Here, branch 5.1 is considered to be 3 commits ahead of master, and 5 commits behind master.

Item Feature Description

A Commit summary The commit summary of the commit you selected on the Commits page is
displayed at the top of the Source Tree page to provide context for the displayed
source folders and files. It retains the features from the Commits page. See
Information Displayed on the Commits Page for more information.

B Navigation Once on the Source Tree page, you navigate the tree by clicking folders you
want to explore. Folders and their files are sorted in ascending alphabetical
order. See Gravatars for navigation tips.

C Source tree path As you navigate the source tree, GitCentric displays the full path of the current
directory.

D Gravatars You can use the author’s gravatar to quickly locate all files and directories that
he or she was the last one to touch. The date next to the gravatar tells how recent
the change was. If the author has registered with gravatar.com, his or her
gravatar appears here; otherwise, a generic image is used.

E File viewer GitCentric displays text files in a viewer that replaces the main panel of the
Source Tree page when you click the file. The contents of binary files (graphics
and executables, for example) cannot be displayed.
To return to the previous view, you can use the browser’s back button, or you
can click the desired directory in the Current File field.

26 GitCentric User’s Help

To compare one branch with others in the repository:

1. Click the Branches tab to display the Branches page.

The Repo and Base Branch fields retain their last values, even if they were set on the Commits or
Source Tree pages.

2. If necessary, select the repository from the Repo drop-down menu.

If available, the master branch for the repository you choose is selected by default in the Branch field.
Otherwise, GitCentric displays the first branch in the repository based on an alphanumeric sort.

3. Use the Base Branch drop-down menu to choose the branch against which you wish to compare all
other branches in the repository. For example, if you want to see how a the site branch compares to
master, you would choose master.

Note: You cannot compare tags using the Branches page.

The branch you choose as the baseline is moved to the top of the page and highlighted. The other
branches in the repository are displayed in ascending ordered by the number of commits they are
behind the baseline branch (numBehind).

Switch Between Gerrit Code Review and GitCentric
GitCentric incorporates the open-source Gerrit Code Review tool. Your site may or may not have made
code review mandatory. If it is mandatory, then when you push your changes in Git, they must be approved
by other reviewers before they are accepted into the repository. You may be asked to be a reviewer for
other people’s changes. If code review is not mandatory at your site, then when you push your changes,
they go directly into the repository.

GitCentric User’s Help 27

To use GitCentric’s optional Gerrit Code Review feature, click Code Review at the top of the GitCentric
UI.

Doing so displays the Gerrit Code Review interface in the same browser window previously occupied by
the GitCentric UI.

There are a number of ways to return to the GitCentric UI:

Gerrit Code Review has its own documentation, which you can find here:

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html

Tip: Experienced users of Gerrit Code Review should note that all administrator and user profile functions
are accessed through the GitCentric UI.

In Code Review, Clicking Brings You To

The browser’s back button The GitCentric page you were on prior to opening Gerrit Code Review

Projects The Repositories page (in GitCentric: Administration > Repositories)

People The Groups page (in GitCentric: Administration > People)

Commits The Commits page (in GitCentric: Commits tab)

username > Settings The My Account page (in GitCentric: username > My Account)

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html

28 GitCentric User’s Help

Procedures for Administrators Only
The procedures in this section apply to only members of the Administrators group. Users that do not
belong to this group cannot access this functionality, and cannot view items to which they do not have
permissions.

Configure AccuRev
1. On the AccuRev server, make sure that “server_master_trig.pl” has been installed in the directory

<ac_home>/storage/site_slice/triggers

See the GitCentric Installation and Release Notes for details. (You will need to do this for each
AccuRev server that works with GitCentric. For now, we assume that you are configuring just your
first AccuRev server.)

2. Configure a stream to which your Git repository branch will map. Some guidelines:

• Identify the stream where you will be sharing files between AccuRev and Git. Determine
which directory in this stream will be the mount point.

• Alternatively, if you need include/exclude rules to control which elements are visible to
GitCentric, create a pass-through stream underneath the target stream, configure your include/

 Table 2. Summary of Common GitCentric Procedures for Administrators

To: Go to page:

Configure AccuRev 28

Create a Repository for GitCentric 29

Remove a Branch or a Repository 31

Remove a Repository 31

Import an Existing Git Repo 31

Set General Attributes for a Repo 33

Create Branches for a Repo 34

Configure Access Rights (ACLs) for a Repo 34

Map a Git Branch to an AccuRev Stream 38

Unmap a Git Branch from an AccuRev Stream 42

Enable and Use Change Packages 43

Add an AccuRev Server 46

Manage GitCentric Groups 49

Configure AccuRev Element ACLs (EACLs) 51

Enable/Disable Code Review 52

Enable Gerrit Code Review Replication 53

Troubleshoot Import/Export Operations 54

Set Up Gerrit Garbage Collection 55

GitCentric User’s Help 29

exclude rules on the pass-through stream, and map to that instead. (For best performance, if
the target stream contains cross-links, create a pass-through stream and exclude the cross-
links.)

• You cannot use the root stream of a depot for GitCentric, so if you are targeting the root, you
must create a sub-stream to map.

• If you will be using AccuRev element ACLs to control access to AccuRev-controlled files,
make sure that your users, groups, and EACLs are defined and applied the way you want them.
For example, you may plan to have one Git repository available to an off-shore team that will
have only limited access to your files, while another Git repo is used by your own, domestic
development team that will expect to have access to all Engineering files. In this case, you
would want to set up your EACLs in AccuRev so that the off-shore user group will see only
the files they need. See the EACL documentation in the AccuRev Administrator’s Guide for
information about configuring this aspect of security.

Configure GitCentric
Once your AccuRev server is configured, use the procedures in this chapter to create and configure your
Git repositories:

1. Log in to GitCentric (see Log In to GitCentric on page 14).

2. Add the AccuRev server to the GitCentric database (see Add an AccuRev Server on page 46).

3. Add a repository using GitCentric and map it to an AccuRev stream (see Create a Repository for
GitCentric on page 29).

4. Set the security for the repository (see Access on page 68).

Create a Repository for GitCentric
A common task you will perform as a GitCentric administrator is creating a new Git repository for use
with GitCentric, and optionally, mapping its branches to AccuRev streams. (If you have an existing repo
that you wish to register with GitCentric, proceed to Import an Existing Git Repo on page 31.)

The following procedures assume that:

• You have installed GitCentric as described in the AccuRev GitCentric Installation and Release
Notes.

• You have read through Chapter 1 Concepts and Overview, particularly GitCentric Administrators
and Mapping Branches to Streams on page 4, Mapped Behavior on page 5, and Best Practices
When Planning Your Installation on page 5.

• The AccuRev server that was added to GitCentric during the initial login process is the server that
contains a stream that you want to map to a Git branch. If you need to make another AccuRev
server known to GitCentric before mapping a Git branch, proceed to Add an AccuRev Server on
page 46, and then return here when done.

To create a new repo:

1. Log in to GitCentric as described in Log In to GitCentric on page 14.

30 GitCentric User’s Help

2. When the GitCentric GUI appears, click the Administration button, then click the Repositories menu
to display the Repositories page. (See Chapter 5 Administration for reference information.)

3. Click the Add button and populate the fields in the resulting panel.

• Repository Name: Do not specify a ".git" extension for the repository name. GitCentric adds them
on creation.

• Inherit Rights From: By default, new repos inherit their rights from the system-defined “All
Projects”.

• Only serve as parent for other projects: Creating a parent-only project means that you can set
ACLs on it and they get inherited by all its children. This also makes it easier to change the
configuration of a number of repos at one time using the --children-of option to the
gitcentric config-repo and config-branch CLI commands (see Appendix C Command-Line
Reference).

4. Click Save when done.

Once a repository is created, you can set general attributes on it, create branches, configure access rights,
and map its branches to AccuRev streams, as described in the following sections.

GitCentric User’s Help 31

Remove a Branch or a Repository
These operations require manual procedures as described below.

Remove a Branch
There is no GitCentric "Delete Branch" feature. To remove a branch that has been mapped to an AccuRev
stream, use this procedure:

1. Ensure that the Force option is applied to the Push and Push Annotated Tag permissions for the repo
(see Access on page 68).

2. Use the GitCentric config-branch CLI command (see config-branch on page 90) to clear any
GitCentric mappings:

ssh -p 29418 <username>@<server> gitcentric config-branch
 --branch <branchname> <reponame> --clear

Alternative: On the AccuRev Connector panel (Administration > Repositories > AccuRev
Connector), select the mappings associated with the branch you intend to delete and click the Delete
button.

3. Use the standard Git command to delete the branch:

git branch -d $branch

4. Push the change.

Remove a Repository
There is no "Delete Repository" feature in the GitCentric UI. You should not remove a repository from
disk. Instead, set the description to "OBSOLETE" and set the ACLs so that only the Administrator group
can see it.

If you are certain you want to remove a repository, consider using the gitcentric delete-repo. See
delete-repo on page 94 in Appendix C Command-Line Reference for more information.

Import an Existing Git Repo
If you have an existing Git repository that you would like to register with GitCentric and import into
AccuRev, you can import a snapshot of the current state of the repository into AccuRev.

A Note About AccuRev Depots
You must import a Git repository into a case-sensitive AccuRev depot, unless you are 100% certain that
repo is case-insensitive.

Your Git repo will be case-sensitive if it has been created and developed exclusively in a Linux/UNIX
environment. If it has included any development from Windows or OS X developers, there is a good
chance (but not 100% certainty) that the repo is case-insensitive, even if the repo itself is hosted on a
Linux/UNIX server. If you attempt to map a case-sensitive repo to a case-insensitive depot, you will
encounter errors, either at import time, or further down the road.

By default, AccuRev depots are case-insensitive, and the depot that is created during a new AccuRev
installation is always case-insensitive. If you need a case-sensitive AccuRev depot for use with GitCentric,
you (or an AccuRev administrator) must create one using AccuRev depot GUI features shown in the

32 GitCentric User’s Help

following illustration. See the AccuRev documentation for more information, or for the equivalent CLI
commands to perform the same operation.

Import a Snapshot of the Latest Heads into AccuRev
If you do not care about capturing the repo history, the process can be as simple as making a copy of the
repository under the GitCentric repo storage directory. The next time you restart the GitCentric server the
repo will be visible through the GitCentric UI.

To import a repository and just capture its current state:

1. Create a copy of the repo in your GitCentric repository home.

cd <gc_repo_home> (For example, /home/<gc_installer>/AccuRevGitCentric/site/git)

cp -r <orig_repo>/<new_repo_name>

2. Restart the GitCentric server. You have two options to accomplish this:

• Stopping and restarting the Tomcat web server:

cd <ac_home>/WebUI/tomcat/bin

./shutdown.sh

./startup.sh

Note: Make sure that the user starting Tomcat has write access to the logs, temp, webapps, and work
directories in <ac_home>/WebUI/tomcat. This user should have read access to all other Tomcat
directories and files.

• Flushing the cache with an SSH command (entered on a single line):

ssh -p 29418 <username>@<gc_server> gerrit flush-caches --cache projects
--cache project_list

GitCentric User’s Help 33

3. Configure the repository through GitCentric and allow users to clone it as necessary as described in the
other sections of this chapter.

Set General Attributes for a Repo
1. Click the Administration button, then click the Repositories menu to display the Repositories page.

(See Chapter 5 Administration for reference information.)

2. Click the repository whose attributes you want to set:

This brings up the General page, where you can set various attributes for the currently selected
repository.

For a description of the various options, see the reference page for this display, at General on page 66.

34 GitCentric User’s Help

Create Branches for a Repo
1. Click the Administration button, then click the Repositories menu to display the Repositories page.

(See Chapter 5 Administration for reference information.)

2. On the Repositories page, click the Branches menu.

3. Click Create Branch. The fields are pre-populated with prompts to assist you with branch creation
(see the reference page for this at Branches on page 67 for more information).

Configure Access Rights (ACLs) for a Repo
GitCentric implements a group-based ACLs security model derived from Gerrit Code Review. This is a
powerful tool for defining who can do what with Git repositories under GitCentric control. You will need
to have a solid understanding of these group-based ACLs and do some planning before implementing
them, so be sure to first read the following section: GitCentric Group-Based ACLs on page 10, and the
Gerrit Code Review documentation for details.

General Procedure for Setting ACLs
Use the following general procedure for settings ACLs on your repos.

1. Click the Administration button, then click the Repositories menu to display the Repositories page.
(See Chapter 5 Administration for reference information.)

2. Click the repository you want to configure. Selecting All-Projects will cause all other repositories to
inherit whatever ACLs you apply. (Note: Only the All-Projects system-defined repo has a "Global
Capabilities" section with an Administrate Server permission which gives Administrators broad
powers across all repos. Be extremely careful when editing this permission.)

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/access-control.html

GitCentric User’s Help 35

3. On the Repositories page, click the Access button. (Reference information is a available at Access on
page 68.)

4. Use the Rights Inherit From: link to specify the repository from which you want the new repository
to inherit its access settings. (By default, all repositories inherit access rights from the system-defined
“All-Projects”. You can create a parent-only repository to easily apply settings such as this to all child
repositories. See Create a Repository for GitCentric on page 29 for more information.)

5. Click Edit, then Add Reference. In the Reference field, you can accept the default value (refs/
heads/*) to apply the access setting to all branches in repository, or modify it to apply to a specific
branch. Specifying refs/* applies the ACL to everything in the repo.

36 GitCentric User’s Help

6. Select the permission that you want to apply to this repository from the drop-down menu.

7. After selecting the permission, complete the Group Name field for whom this permission applies in the
this repository. The field supports type-ahead, so, for instance, entering “R” will provide “Registered
Users” as a possible completion.

8. Optionally enter a commit message. An admin user can view this when performing a
git log refs/meta/config command on the repository.

9. When done, click the Save Changes button.

Configuring ACLs for Code Review
Part of enabling the GitCentric’s optional Gerrit Code Review functionality involves setting ACLs for Git
references as shown in the following table:

 Table 3. ACL Settings Required to Support Code Review

Reference Permission Setting Group

refs/* Forge Author Identity
Submit

ALLOW Registered Users

GitCentric User’s Help 37

Most of these ACLs are set automatically for the All-Projects repository when you install GitCentric.
There are slight differences based on whether you installed GitCentric 2013.3 for the first time, or you
upgraded to GitCentric 2013.3 from an existing installation. If you:

• Installed GitCentric 2013.3 for the first time, all ACLs listed in the preceding table are set as the
default for the system-defined "All-Projects" repository. Any repository that inherits rights from
"All-Projects" is also configured to support code review.

• Upgraded to GitCentric 2013.3 from a previous release and you are currently using Gerrit Code
Review, you will need to manually set the Submit permission for refs/* as shown in the
preceding table. All other permissions (Forge Author Identity, Push, and Label Code-Review)
were set as the default for All-Projects when you installed GitCentric.

If you upgraded from a previous release and are not currently using Gerrit Code Review and now
wish to, you must manually set all the ACLs listed in the preceding table.

See General Procedure for Setting ACLs on page 34 for more information.

Once the ACLs are set, all that remains to enable code review is for your users to configure their clones to
support code review. See Configure the Clone for Code Review (Optional) on page 20 for more
information.

Additional Considerations for ACLs
There is no one set of ACLs that are appropriate for every installation; you must analyze the needs of your
specific installation and adjust the default ACLs as necessary. See the Access Controls topic in the Gerrit
Code Review documentation, specifically the section labeled "Examples of typical roles in a project" for
suggestions about setting Gerrit Code Review ACLs.

The remaining topics in this section describe other considerations to evaluate when enabling code review.

Label Verified
The "Verified" category is generally intended to be used in continuous integration environments where
Gerrit Code Review is integrated with Hudson or Jenkins. Typically, the vote for this category is set to +1
by the integration tool indicating that it was able to compile and run tests on the change, allowing the
change to be submitted. If you do not have a continuous integration environment, you can either disable the
"Verified" category, or configure the "Label Verified" ACL in GitCentric to allow users to manually
specify a vote via the Gerrit Code Review GUI. The ACL to allow manual voting for the "Verified"
category is shown in the following table.

Note: Specifying the "Label Verified" ACL this way permits any Registered User to approve and
submit any code review change. This may be fine for testing, but you must tighten up ACLs for
production.

refs/for/refs/* Push ALLOW Registered Users

refs/heads/* Label Code-Review (range -2 to +2) ALLOW Registered Users

 Table 4. Setting Label Verified for Code Review

Reference Permission Setting Group

refs/heads/* Label Verified (range -1 to +1) ALLOW Registered Users

 Table 3. ACL Settings Required to Support Code Review

Reference Permission Setting Group

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/access-control.html

38 GitCentric User’s Help

Allowing users to set "Label Verified" manually could be redundant with the "Label Code-Review" ACL.
These three approaches to configuring the "Verified" category are summarized below in the order of
desirability:

1. Configure Verify with Hudson or Jenkins for automated, Continuous Integration (CI).

2. Disable Verify completely.

3. Configure the "Label Verified" ACL in GitCentric (as shown in the preceding table) to allow users
to vote manually in the Gerrit Code Review UI.

If you choose the third option for testing purposes, you should consider either reconfiguring it for
automated CI, or disabling it completely, prior to putting GitCentric into production mode.

Configuring "Verify" for Continuous Integration
With Hudson or Jenkins, you would typically set the Label Verified permission for the "Non-interactive
users" group. See the Hudson, Jenkins, and/or Gerrit Code Review documentation for details about
configuring a Continuous Integration environment.

Disabling "Verify"
If you are not using Jenkins/Hudson continuous integration, you can disable the "Verified" requirement in
Gerrit Code Review with the gerrit gsql command:

ssh -p 29418 <your_server.com> gerrit gsql

DELETE FROM approval_categories WHERE category_id = 'VRIF';

DELETE FROM approval_category_values WHERE category_id = 'VRIF';

Configuring GitCentric ACLs for Direct Push
If you do not wish to use GitCentric’s optional Gerrit Code Review functionality, you must modify the
default ACLs as follows. (These are simply minimal suggestions. You must analyze your site requirements
and customize these settings as appropriate for your specific site.)

1. Change the setting for the "Push" permission for refs/for/refs/* to BLOCK.

2. Add the "Push" permission for refs/* and set it to ALLOW.

3. Add the "Push Merge Commits" permission to refs/* and set it to ALLOW.

You must also have your users adjust the Git config file in each of their clones to remove the following
line:

push = refs/heads/*:refs/for/*

Map a Git Branch to an AccuRev Stream
You associate Git repositories and AccuRev depots at the branch and stream level, respectively: you map a
specific branch in a Git repo to a “mount point” (a directory) within a specific AccuRev stream. This
process has two main steps, each of which is performed on the AccuRev Connector panel in the GitCentric
GUI:

1. Specify the AccuRev server connection.

2. Create the branch-stream mappings.

GitCentric User’s Help 39

You also use the AccuRev Connector panel to implement AccuRev change packages, which require that
all changes be associated with a specific issue from your issue tracking system. See Enable and Use
Change Packages on page 43 for more information.

Avoid Git Reserved Name for AccuRev Elements
You should avoid using the Git reserved name ".git" for any element (a directory, file, or link, for example)
in an AccuRev stream that is mapped to a Git repository. Using Git reserved words like ".git" for AccuRev
elements creates problems when GitCentric synchronizes the stream and repository.

Specifying the AccuRev Server Connection
1. Click the Administration button, then click the Repositories menu to display the Repositories page.

(See Chapter 5 Administration for reference information.)

2. Click the repository you want to associate with AccuRev.

3. On the Repositories page, click AccuRev Connector menu. (Reference information is a available at
AccuRev Connector on page 68.)

It is important that you specify the correct account here, so read carefully. The “Service Account” is
the “robot” AccuRev user account that GitCentric uses to keep Git and AccuRev in sync. You may
have different Service Accounts defined for different AccuRev servers and Git repositories that are
under GitCentric control.

• Server name:port: Specify the host name (or IP address) of the AccuRev server that you wish to
associate with this repository. If this is a new installation, and your GitCentric AccuRev server also
functions as a regular AccuRev server, then you may have only one choice here. Other AccuRev
servers can be added via the Servers tab (see Add an AccuRev Server on page 46).

• Username: Specify the special AccuRev user that you defined during installation to perform
GitCentric automated operations. This should be an account that is a member of the group that is
assigned to the “ASSIGN_USER_PRIVILEGE” setting in the acserver.cnf file of the AccuRev
server being mapped to this GitCentric branch. By convention, this account is often “gcSyncUser”,
but it may be something different at your site. (See the notes under Basic Architecture on page 3
for more information.)

• Password: Specify the password associated with the account specified in the previous field.

4. Click the Save button to test the AccuRev server connection.

What to Do Next
Once you have created a valid AccuRev server connection, you can create your branch-stream mappings
for the repository as described in the following section, Mapping the Branch to the Stream.

You can also take this opportunity to implement AccuRev change packages. This procedure is described in
Enable and Use Change Packages on page 43.

40 GitCentric User’s Help

Mapping the Branch to the Stream
Once you have specified the AccuRev server connection, you can map Git branches to AccuRev streams.

Note: You cannot map to the root stream of a depot.

1. In the Branch-Stream Mappings section, click the Add button.

GitCentric opens a panel beneath the table, as shown in the following illustration.

2. In each of the fields in this panel, you can click a Browse button to navigate to the value you wish to
specify. Most fields are self-explanatory, but the Mount Point warrants additional discussion.

The Mount Point is the directory within the stream that will synchronize AccuRev and Git content.
GitCentric provides a display that allows you to navigate to the desired directory. You can select the

GitCentric User’s Help 41

root of the file system within this stream, or a subdirectory, which populates the field. The folder you
select determines which AccuRev-controlled files will populate your repository.

Note: This step assumes that you have carefully planned out your branch-to-stream-mapping, and that
you have either created a new stream or have identified an existing stream that is appropriate for
mapping. See Keeping Git Merges and AccuRev Promotes in Sync on page 5 for more information.

3. Specify in which direction the files should flow when the Git repository and the AccuRev stream are
first mapped. If you are mapping a repo with content to a new stream, select Commit AccuRev
content to Git. If you are mapping an existing stream with files to a new repository, select Commit
Git content to AccuRev.

4. Repeat these steps for each branch and stream that you want to map.

5. When you are done, click Save to save the branch-stream mapping. The next time you view the
AccuRev stream, a "G" icon will be displayed for every stream that you have mapped to a GitCentric
repo via the AccuRev Connector.

Test Your Mapping Status
When you save your mapping, GitCentric synchronizes the contents of the Git branch and the AccuRev
stream by importing (branch-to-stream) and exporting (stream-to-branch) files as necessary. The status
summary appears in the Status column of the Branch-Stream Mappings table. The status is updated every
five seconds. When it displays Idle, the synchronization has completed.

To view details of this synchronization, including information about whether the import succeeded or
failed, click the View Details button to display the Status Monitor. See Status Monitor on page 69 for more
information. If the synchronization failed, see Troubleshooting on page 42 for pointers on addressing any
errors.

Create a Clone and Test It
At this point, your Git users can create clones of the repo (within the limitations of whatever security
settings you define). See Create a Clone From a GitCentric Repository on page 19. Whenever new content

42 GitCentric User’s Help

is pushed to the repo, it will automatically be reflected in the mapped AccuRev stream. On the AccuRev
side, any content that is promoted into the mapped stream will automatically appear in the repository.

Troubleshooting
If the initial import/export operation failed after the mapping, check the following:

• Check Administration -> Repositories -> <repoName>-> AccuRev Connector/Branches for
the status and the current branch SHA.

• Check the Status Monitor for import and export failure messages.

• Use the kandoMaintain command (see Appendix A The kandoMaintain Utility) to enable
PRESERVE_TEMP_FILES and ACCUREV_COMMAND_LOG debug configuration settings,
and retry, running AccuRev commands manually to debug.

Unmap a Git Branch from an AccuRev Stream
Unmapping a Git branch simply removes the association between the Git branch and the AccuRev stream,
which prevents any future synchronization between the two. Unmapping does not remove any content
from either the branch or the stream.

1. Log in to GitCentric as described above in Log In to GitCentric on page 14, specifying the server
which has the stream to which the branch is mapped.

2. Click the Administration button, then click the Repositories menu to display the Repositories page.
(See Chapter 5 Administration for reference information.)

3. Click the repository whose branch you want to unmap.

4. On the Repositories page, click AccuRev Connector menu. (Reference information is a available at
AccuRev Connector on page 68.)

5. From the list of mapped branches, identify the one that you want to unmap, then click its checkbox and
then click Delete.

GitCentric User’s Help 43

Enable and Use Change Packages
Change packages is an AccuRev feature that associates changes made to an element with a specific issue
in an issue tracking system; users are required to specify that issue number each time they promote changes
out of a workspace. To enable change packages for your Git commits you need to do the following:

• In AccuRev, ensure that change packages are configured on the relevant AccuRev server. See the
AccuRev on-line Help, which includes all the current AccuRev documentation. Use the index and
search mechanisms in the on-line Help to learn how to configure change packages, and optionally,
third-party issue tracking systems (ITS) if you are using something other than AccuWork.

• In GitCentric, specify the ITS you are using and the format of the Git commit message you will require
users to follow when pushing commits. You specify this information on the AccuRev Connector
panel of the Repositories page as described in this section.

Once you have enable change packages, you must inform your users of the requirement to add comments
to their commits in the format you choose. The process for using a regular expression to specify the
commit message format is described in the following section.

Specifying the Commit Message Format
To specify the commit message format that users will be required to follow when pushing commits (and
from which the GitCentric bridge will obtain the issue number required to enforce AccuRev change
packages):

1. Click the Administration button, then click the Repositories menu to display the Repositories page.
(See Chapter 5 Administration for reference information.)

2. Click the repository for which you want to enable change packages.

3. On the Repositories page, click AccuRev Connector menu and locate the Associate Issues With
Commits section. (Reference information is a available at AccuRev Connector on page 68.)

4. In the Issue Tracking System field, specify whether you are using AccuWork or a third-party issue
tracking system.

Tip: If this field is disabled, specify the AccuRev server connection information and click the Save
button.

5. In the Regular Expression field, use a regular expression to specify the format of the commit message
you require -- Resolves issue 1234, for example. You can accomplish this by either:

• Entering a regular expression.

44 GitCentric User’s Help

Tip: GitCentric displays sample expressions as soon as you begin typing in the field, as shown in
the following illustration.

• Clicking the Test... button to display a dialog box that lets you experiment and verify that the
regular expression you enter satisfies your requirements.

Refer to the instructions on the dialog box for its use.

Clicking the Save button on this dialog box saves your regular expression to the Regular
Expression field in the Associate Issues With Commit section of the AccuRev Connector panel.

6. Click the Save button in the Associate Issues With Commit section to save your work.

See About GitCentric Regular Expressions for more information on regular expressions and their use
in GitCentric.

GitCentric User’s Help 45

About GitCentric Regular Expressions
One of the powers of AccuRev is to associate all of the files affected by a particular change to an issue
number tracking that change. This grouping of affected files is called a change package. (See the AccuRev
documentation for information about change packages.) If you have change packages enabled on your
AccuRev server, either through AccuWork or through a third-party issue tracking system, you may need to
enforce the practice of including the issue number in the comment related to Git commits. That is the
purpose of the Regular Expression field: to specify a commit message format that users must follow when
pushing a change in Git that will be synchronized to AccuRev. The default example provided in the UI
(Resolves\s+([\d,]+):) forces users to start their commit messages with “Resolves <issue number>:”.
If this is not found, the push will be rejected.

A discussion of Java regular expressions is beyond the scope of this document, but here are examples of
what comments would be valid for some of these predefined expressions:

(?:Resolves|Resolved|Fixes|Fixed)\s*((?:(?:US|DE)[\d,]*)*) -- This format would be useful
for the Rally issue tracking system, which makes use of user stories (“US”) and defects (“DE”): The
comments can start with “Resolves”, “Resolved”, “Fixes”, or “Fixed”, followed by white space, and then
any number of issue numbers prefixed with “US” or “DE”:

Resolves US302, DE1405, US27
Fixed DE12849

Resolved\s+([\d,]+) -- This format would be adequate for simple environments where the comment
always starts with “Resolved”, followed by white space, followed by any number of issues, separated by
commas:

Resolved 12576
Resolved 34, 149, 11057, 686

Use a search engine and search for “Java regular expressions” for more information about these formats.

Troubleshooting Change Package Errors
Your users may see change package error messages upon a push, and they must contact you as the
GitCentric administrator for assistance in rectifying them. Errors are generated when GitCentric
synchronizes the push with the AccuRev server, and the AccuRev server encounters a problem with the
elements that comprise the change package. You (the GitCentric administrator) must act as a liaison to the
AccuRev side of the world, including understanding change package errors and helping your end-users
correct them. The following table summarizes some errors you might encounter and what you can do to
address them.

 Table 5. Addressing Change Package Errors

Error Problem Action

Change Package
Required

An issue must be included in the commit
comments, in the format dictated by the
regular expression that was specified when
change packages were enabled

Use git commit --amend to
effectively rewrite the commit
message.

Issue did not meet
criteria

Typically means that the commit comment
was present and generally formatted
correctly, but the state of the AccuWork issue
was incorrect (for example, “Completed”
instead of “WIP”)

Use git commit --amend to
effectively rewrite the commit
message.

46 GitCentric User’s Help

Note that if the push command proceeds far enough to scan for issues, it outputs the issue it has detected in
the commit message (“Issue(s):” ... for example). If the push command fails, reviewing this output may
provide information that can help you troubleshoot any problems with the regular expression that was used
to specify the commit message.

For understanding and correcting change package errors that are caused beyond the GitCentric regular
expression filter, please consult the AccuRev on-line help, which includes all AccuRev documentation.
Use the search mechanism for change package discussions, particularly in the Concepts Guide and
Technical Notes.

Add an AccuRev Server
If the AccuRev server you use for SCM is the same one that the original Administrator user logged into
after installation, you may never need to perform the procedures described in this section. But if you have
multiple AccuRev SCM servers, then you need to add them to GitCentric.

Note: A client pointing to each master AccuRev server must be on the same machine as the GitCentric
server.

Adding an AccuRev server is a two-step process:

1. Register the AccuRev server with GitCentric. You need to register an AccuRev server with
GitCentric if:

• You are adding another AccuRev server to GitCentric

• Your existing AccuRev server has multiple IP addresses

See Registering an AccuRev Server on page 46.

2. Configure the server as described in Configuring the AccuRev Server on page 47.

Registering an AccuRev Server
For security reasons, the GitCentric bridge accepts commands only from IP addresses that it recognizes. If
you add an AccuRev server that has multiple IP addresses (for example, if the server has multiple Ethernet
cards), you must register each IP address. In this case, you should perform GitCentric operations only
against one of these servers entries -- typically one where you have specified a host name rather than an IP
address.

To register an AccuRev server:

1. Log in to GitCentric as described in Log In to GitCentric on page 14.

cpk merge required Results during parallel development when
two users make changes on the same file
related to the same issue and one user tries to
push his or her changes before pulling the
other’s, creating the merge requirement.

To address an existing error, you will
need to create a new issue and push
changes against it.
To avoid such problems in the future,
instead of using a simple git pull, use
git pull --rebase to provide serialized
commits, avoiding the need to
separately merge remote changes in
your branch.

 Table 5. Addressing Change Package Errors

Error Problem Action

GitCentric User’s Help 47

2. Click the Administration button, then click the AccuRev Servers menu to display the Servers page.
(See Chapter 5 Administration for reference information.)

3. Click the Add button.

A panel appears to allow you to register the AccuRev server.

4. The AccuRev Server and Port fields are relatively self-explanatory, but the AccuRev CLI Path may
need careful reading:

• AccuRev Server: -- The host name or IP address of the AccuRev server you wish to associate
with one or more repos, or the IP address for an AccuRev server with multiple IP addresses. (The
name of the server you first logged in to GitCentric with -- see Log In to GitCentric on page 14 --
is automatically added to the GitCentric database.)

Note that if you specify localhost, this indicates an AccuRev server on the GitCentric host, not
necessarily the machine where you are running your browser.

• Port: -- This is typically “5050” for most AccuRev servers, but the AccuRev administrator may
have changed it to something different.

• AccuRev CLI Path: -- This is the path to the AccuRev client executable on the GitCentric server
that should be used to communicate with a particular AccuRev server. For example:

<ac_home>/bin/accurev

For more information, see A Note about the CLI Path Setting on page 74.

5. Click the Save button.

GitCentric refreshes the Servers table with the server you just added.

Configuring the AccuRev Server
The previous procedure simply registers the AccuRev server with GitCentric. Before you can use this
server with GitCentric and Git, you must configure the server using the following procedure.

1. Check to see if a triggers directory exists under <ac_home>/storage/site_slice/.
If not, create it.

48 GitCentric User’s Help

2. Copy the server_master_trigger.pl file from <gc_home>/bin to the AccuRev server trigger
directory. For example:

> cd <gc_home>/bin

> cp server_master_trig.pl <ac_home>/storage/site_slice/triggers

> cd <ac_home>/storage/site_slice/triggers

> chmod +x server_master_trig.pl

Note: server_master_trig.pl includes several lines of documentation in comments toward the end
of the file.

3. Locate the ################ ACCUREV CLIENT PATH section in the server_master_trig.pl file
and specify the path for your AccuRev client. For example:

$::AccuRev = "/usr/accurev/bin/accurev";

4. Log in to AccuRev.

Tip: Log in using the -n option so that the user’s log in session does not expire.

5. See the GitCentric Installation and Release Notes for suggestions about testing newly-configured
servers.

Configure Multiple AccuRev Servers
You can configure additional AccuRev servers for GitCentric using the same procedures above. However,
you should observe the following guidelines:

• Use the same username and password across all servers. Otherwise, you will frequently need to re-
enter your login credentials.

If the multiple AccuRev servers are running different AccuRev versions, you must have an
AccuRev CLIENT for each version installed on the GitCentric server. When you configure a
server, you must point to the correct client in the “CLI Path” field. For more information, see A
Note about the CLI Path Setting on page 74.

• If you have a situation where IP addresses can change over time (such as dynamic IP addresses
assigned via DNS), you may need to consider setting AC_BRIDGEAPI_SECURITY_POLICY to
AllowAnyHost. Note, however, that this workaround has a security impact that you need to
carefully consider before implementing it. See GitCentric Bridge Configuration Settings on
page 79 for more information.

GitCentric User’s Help 49

Manage GitCentric Groups
GitCentric groups are derived from Gerrit Code Review groups. See the Gerrit Code Review
documentation for details about how groups are implemented. The following section describes how to
administer groups in the GitCentric context.

To View and Access Groups
Groups can be viewed, defined, and modified by clicking People from the GitCentric Administration
menu:

Add a Group
To add a group to GitCentric:

1. Click the Administration button, then click the People menu to display the Groups page. (See
Chapter 5 Administration for reference information.)

2. Enter a name in the Create New Group field on the Groups panel.

3. Click Create Group.

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html

50 GitCentric User’s Help

Add a Member to a Group
Note: Any member you wish to add to a group must exist in the AccuRev Server with which
GitCentric was configured during installation. You cannot use this procedure to create members.

To add a user to a GitCentric group:

1. Click the Administration button, then click the People menu to display the Groups page. (See
Chapter 5 Administration for reference information.)

2. Click the group to which you wish to add a member from the Group Name column.

The page is refreshed to show general content.

3. Click the Members menu.

4. Click the Add button for the members table.

A new panel appears to allow you to specify the user by name or email:

5. Start to enter a value in the Name or Email field. GitCentric provides type-ahead choice of valid
users.

6. Select the user you wish to add and click Save.

GitCentric User’s Help 51

AccuRev Groups
AccuRev groups are a special case handled by GitCentric.

If your account is a member of a group in AccuRev, that group will be created in GitCentric as soon as you
log in, and the group will be named with the format: Accurev.<accurevGroupName>

Note that AccuRev group hierarchies are not replicated in Git Centric: if you belong to “Group1” and also
to a subgroup of Group1 named “Group2:, GitCentric creates two peer-level groups: Accurev.Group1 and
AccuRev.Group2.

If you have upgraded to GitCentric from the Kando 2012.1 release, you probably have a kando_admin
administrators group on your AccuRev server. If so, when GitCentric creates the Accurev.kando_admin
group, it automatically grants this group "Administer Server" permission. You can check this using the
Global-Capabilities section on the Repositories page. (Click the Administration button, then click
Repositories. On the Repositories, page, click the All-Projects repository and the Access menu.)

Note: If you have multiple AccuRev servers, groups with the same name from all AccuRev servers are
combined in GitCentric.

AccuRev groups created in GitCentric are read-only in the UI: you can see the properties and current
members, but you cannot modify them.

Membership in an AccuRev group in GitCentric is only updated upon login. If you change a user's group
membership in AccuRev, it will not change for the GitCentric user until that user logs out (either explicitly,
or due to a session time-out) from Git Centric and then logs back in.

Configure AccuRev Element ACLs (EACLs)
You can configure Element ACLs (EACLs) on the AccuRev server for the GitCentric Service Account, to
determine which files can be edited in the GitCentric repository. Files that cannot be edited do not appear
at all in the GitCentric repository.

To set up AccuRev Element ACLs, see the following AccuRev documentation:

• The “Security” chapter in the AccuRev On-Line Help

• The eacl command description in the AccuRev CLI User’s Guide

• The “Element-Level Security (EACLs)” section in the "AccuRev Security Overview" chapter of
the AccuRev Administrator’s Guide

52 GitCentric User’s Help

Enable/Disable Code Review
To enable GitCentric’s optional Gerrit Code Review functionality:

1. The ACLs required to support code review are configured automatically for all new GitCentric
installations; users upgrading to GitCentric 2013.3 may need to configure additional ACLs. As
there is no one set of ACLs that is appropriate for every installation, you, as the administrator,
should review these settings and adjust them as needed. See Configuring ACLs for Code Review
on page 36 for more information.

2. Your users must configure their clones by adding the following line to the [remote "origin"]
section of each clone’s config file:

push = refs/heads/*:refs/for/*

This specifies the source (refs/heads/*) and target (refs/for/*) branch mapping that will be
used to push changes to a special branch for code review. Users can add this line by executing the
following command on each clone:

git config remote.origin.push 'refs/heads/*:refs/for/*'

3. Copy the commit-msg hook to the .git/hooks/ directory of each clone. For example:

scp -p -P <port><server>:hooks/commit-msg .git/hooks/

where:

<port> is the SSHD listener port (typically 29418)

<server> the host where GitCentric is installed

If you forget to copy the commit-msg hook, your push will fail. The error message you receive in this
situation instructs you to copy the commit-msg hook, as described in Step 3 above. You must then execute a

git commit --amend

before trying the push again.

Allowing Self-Reviews
By default, Gerrit Code Review does not allow self-reviews. If you want to configure Gerrit Code Review
to allow self-reviews, you must do so in the Gerrit Code Review Prolog file, rules.pl. In new installations
of GitCentric 2013.3, a copy of this file is installed to the /meta/config branch of the special "All-
Projects" repository.

Working with the rules.pl Prolog file is beyond the scope of this document. Refer to the Gerrit Code
Review documentation for more information:

https://gerrit-review.googlesource.com/Documentation/prolog-cookbook.html

GitCentric User’s Help 53

Disabling Code Review
Disabling code review is a two-step process:

1. As the administrator, clear the Enable Code Review check box on the General panel for the
repositories for which you wish to disable code review.

For new installations of GitCentric 2013.3 and later, this action automatically configures the
repository’s ACLs to enable direct push. If you have upgraded to GitCentric 2013.3 and later, this
field appears as Advanced... and you must configure the repository ACLs to enable direct push
manually. See Configuring GitCentric ACLs for Direct Push on page 38.

2. Individual users must remove or comment out the following line in the [remote "origin"]
section of each clone’s config file:

push = refs/heads/*:refs/for/*

Enable Gerrit Code Review Replication
Gerrit Code Review can be configured to push changes from Git repositories to one or more remote hosts.
This section describes how to enable Gerrit Code Review replication in GitCentric. For general concepts
related to Gerrit Code Review replication, refer to the Gerrit Code Review documentation.

Overview
The basic procedure for enabling Gerrit Code Review replication is summarized here:

1. Register the SSH public key representing the GitCentric bridge account with the Gerrit Code Review
administrator’s account.

2. Ensure that the server running Gerrit Code Review has SSH access to the server to which changes will
be replicated. If the machine running Gerrit Code Review has never connected to the replication
server, it will be listed as an unknown host and Gerrit Code Review will close the connection.

3. Modify the sample Git-style configuration file, replication.config, that is installed with GitCentric.

4. Stop and restart Gerrit Code Review.

The following sections provide additional detail.

Registering the GitCentric Bridge SSH Key with Gerrit
The SSH public key representing the GitCentric bridge account is registered automatically when you
install GitCentric the first time. If you have upgraded an existing GitCentric installation, you need to
register the SSH public key manually. See Public Keys on page 59 for more information.

54 GitCentric User’s Help

Modifying the replication.config File
Gerrit Code Review uses a replication.config file to identify the URL of the server to which changes will
be replicated. For example:

[remote "host-one"]

 url = gerrit2@host-one.example.com:/some/path/${name}.git

A sample replication.config is installed to <gc_home>site/etc. To use this file:

1. Uncomment the example.

Tip: Consider copying the example and using that copy to specify the URLs for one or more remote
hosts.

2. Change the sample values for values applicable to your environment.

3. Stop Gerrit Code Review, which you can do by stopping the Tomcat web server. For example:

cd <ac_home>/WebUI/tomcat/bin

./shutdown.sh

4. Restart Gerrit Code Review. For example:

cd <ac_home>/WebUI/tomcat/bin

./startup.sh

Note: Make sure that the user starting Tomcat has write access to the logs, temp, webapps, and work
directories in <ac_home>/WebUI/tomcat. This user should have read access to all other Tomcat
directories and files.

Troubleshoot Import/Export Operations
If you encounter an issue with syncing between a Git repository and AccuRev, check the following.

AccuRev to Git
• Check the triggers.log and ensure that the trigger has fired.

• Check the KandoBridge.log and ensure that the trigger is reaching the bridge.

• Test server_master_trig.pl as described in the GitCentric Installation and Release Notes to check
for missing dependencies.

• Check that all necessary processes are running: postgres, tomcat, accurev_server.

• Retry by “tickling” the stream: accurev chstream –E t -s <stream>.

GitCentric User’s Help 55

Git to AccuRev
• Check for any git push error messages.

• If you receive the following error, particularly when first mapping an existing Git repository to an
AccuRev stream, you may be trying to map a case-sensitive Git repo to a case-insensitive
AccuRev depot:

 Import: com.accurev.gemini.commonapi.AHCommonAPIException Element already exists

See the Note: under Import an Existing Git Repo on page 31 for more information.

• If you are using Gerrit Code Review, make sure that the change is submitted (marked as review
passed) after push.

• If you are using Gerrit Code Review and the change state is ‘merge failed’ then the import failed.
Import errors (which are usually push errors) appear in the Comments table at the bottom of the
Gerrit Code Review Change page.

• Check the kandoGerrit.log and ensure that the bridge is being called.

• Check the kandoBridge.log and ensure that hooks are reaching the bridge.

• Check that all processes are running: postgres, tomcat, accurev_server.

• Check the AccuRev acserver.cnf configuration file and ensure that the service account group
(typically "scm_bridge_group") is set as the value for ASSIGN_USER_PRIVILEGE, and that the
group includes the actual user account (typically "gcSyncUser") as a member, and that this user
account is the one that was specified when the branch was mapped to the AccuRev stream. (Note:
some installations may use CC_USER rather than ASSIGN_USER_PRIVILEGE.)

• Retry by redoing the push.

Set Up Gerrit Garbage Collection
Gerrit Code Review garbage collection (gerrit gc) is a command that converts loose objects to packed,
and that also removes unused objects. Micro Focus recommends that you run garbage collection on a
regular basis to avoid performance problems associated with loose objects that occur over time.

This topic provides general examples of cron jobs you can use to set up garbage collection for your site.
Note that syntax and supported features for cron jobs can vary across platforms. For more information,
refer to cron and crontab documentation for your platform.

Tip: Consider running garbage collection on all of your projects on a regular basis. Choose a "quiet" time
that will be unlikely to interfere with repository users.

Gerrit gc Syntax
The basic syntax for the Gerrit garbage collection command is:

ssh -p <port> <user>@<host> gerrit gc [--all] [<project> ...]

where:

<port> is the GitCentric port number, typically 29418.

<user> is a user with Gerrit "Administrate Server" privileges.

<host> is the name of the GitCentric host machine.

56 GitCentric User’s Help

--all runs garbage collection on all projects in the repository.

<project> is the name of one or more individual projects in which you want to run garbage collection.

cron job Examples
You use cron jobs to execute commands, like gerrit gc, on a scheduled basis. The cron job format is a
sequence of five fields used to specify day, time, and frequency; the sixth is used to specify the command:

The following examples show how you can use cron jobs to run garbage collection on your Gerrit projects.
In these examples, "comet" is the name of the GitCentric host machine.

Run garbage collection on all projects at midnight every day of the week.

0 0 * * * ssh -p 29418 admin@comet gerrit gc --all

Tip: You can use the keyword @daily to express 0 0 * * *.

Run garbage collection on all projects weekly at midnight Sunday.

0 0 * * sun -p 29418 admin@comet gerrit gc --all

Tip: You can use the keyword @weekly to express 0 0 * * 0 (which is the equivalent
of 0 0 * * sun).

Run garbage collection on "acme" and "phoenix" projects Monday through Friday at 1:30 a.m.

0 0 * * 1-5 ssh -p 29418 admin@comet gerrit gc acme phoenix

 Table 6. Cron Job Format

Field Description Allowed Values

MIN Minute of the hour 0 to 59, *

HOUR Hour of the day 0 to 23, *

DOM Day of the month 1 to 31, *

MON Month 1 to 12, *

DOW Day of the week 0 to 6; *; sun, mon, tue, wed, thu, fri, sat

CMD Command The command to be executed

GitCentric User’s Help 57

3. My Account
This chapter describes the features of the GitCentric My Account page.

Opening the My Account Page
To open the My Account page, choose My Account from the username drop-down menu:

Menu Options
The following sections summarize the features of the My Accounts menu.

Profile
Displays a non-editable summary of your user information. You can change the Full Name and Email
Address values through the Contact Information panel described below. The Username value shows
your AccuRev account name. The Account ID is assigned to you automatically when you register with
GitCentric. Note that ID 1000000 is always the first user to register with GitCentric, and is automatically
added to the Administrator users group. Note that while the information of the Registered field cannot be
modified, its display format can be controlled with the Date/Time Format option under Preferences (see
below).

58 GitCentric User’s Help

Preferences

The Preferences page provides access to display and usability options.

Watched Repositories (Projects)
Note: Gerrit Code Review often uses the term “Project” to refer to a repository. AccuRev uses the
terms “repository” or “repo” when referring to a repository, and reserves the term “project” when
referring to specific Gerrit functionality, or when referring to some kind of planned or defined
undertaking.

The Watched Repositories page allows you to identify the repositories whose changes you want to track.
Click the Add button to add a repository to the Watched Repositories page and to optionally configure
Gerrit Code Review to send an email notification whenever a change occurs in that repo. When adding a
repo, use the Browse button to navigate to the repo of interest. If you want to specify conditions under
which you want to be notified of a change (perhaps you are interested only in changes to a specific branch,
for example), see the Searching Changes topic in the Gerrit Code Review documentation to learn more
about search operations and search expression syntax.

Field: Description

Show Site Header Enables/disables the optional header and footer images in your web UI
display. See Define and Display a Site Header or Footer for Gerrit
Code Review on page 18.

Use Flash Clipboard Widget When enabled, displays a widget on various text fields throughout the web UI
that allows you to copy the contents of the field to the clipboard:

Note: Requires a Flash-enabled browser.

CC Me on Comments I Write When enabled, you will receive an email containing comments that you
submit in response to a review request. The default is to have this setting
disabled, to reduce the amount of code review email you receive. But if you
want e-mailed confirmation of comments published by your account, you
have the option of enabling this setting.

Display Patch Sets in Reverse
Order

When enabled, reverses the display order of the patch sets in the Change
Screen so that the latest patch set is always shown on top.

This is useful when there are several patch sets for a change, and the latest
patch set and the links to the diffs in the patch set end up below the fold of the
Change Screen.

Display Person Name in
Review Category

When enabled, displays the name of the last reviewer in the “R” column of the
Gerrit Code Review Dashboard.

Maximum Page Size Specifies the maximum number of rows that will be visible in Gerrit Code
Review displays.

DateTime Format Allows you to specify one of four Date formats (three American, with month
then day, using commas, hyphens, or slashes; or one European, with day then
month, separated by periods), and one of two Time formats (12 hour AM/PM,
or 24 hour).

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/user-search.html

GitCentric User’s Help 59

Contact Information
Enter the name of the currently logged-in user. You can register multiple email addresses for this user, but
only one can be specified as the “preferred” address. Gerrit uses the preferred email address when it needs
to generate an email address for you; it uses others to validate incoming email to you.

Tip: GitCentric accepts mixed-case values in the email address domain. For example, both
johndoe@AcmeCo.com and johndoe@acmeco.com are valid email addresses.

Public Keys
You must configure SSH public key authentication before you can upload changes.

If you already have an SSH key:

Click Add and paste the contents of ~/.ssh/id_rsa.pub into the resulting Paste the public SSH Public
Key below: field. Make sure that you do not introduce line-breaks when copy & pasting.

If you need to create an SSH key:

1. If necessary, install ssh-keygen (this is normally included as part of a Git or O.S. installation).

2. > ssh-keygen -t rsa -C "<yourEmailAddress>@<yourDomain.com>"

For more detailed information about SSH keys, see Create an SSH key on page 14, or follow the link on the
dialog box.

AccuRev Servers
You use the AccuRev Servers page to associate a GitCentric user account with an AccuRev user account.
You need to use this page only if you have multiple AccuRev servers in your environment. Otherwise, the
GitCentric<-->AccuRev user account association is managed automatically, as part of the self-registration
process. (See Register with GitCentric on page 16 for more information on self-registration.)

Note: Although the UI does not enforce this, you should not specify multiple user accounts on the
same AccuRev server here. If you specify more than one user ID on the same server, GitCentric may
default to one that you did not intend. It is fine to specify multiple servers here, with one user ID each.

To specify a GitCentric<-->AccuRev user account association:

1. Click the Add button.

2. On the panel that appears:

a. Select the server from the AccuRev Server drop-down list.

b. Enter your username on that server in the AccuRev Username field.

The AccuRev user on this server that you use for GitCentric functions. If you are an administrator,
this might be an account like acserver if you have legacy AccuRev systems. See the GitCentric
Installation and Release Notes for a discussion about this user account.

c. Enter the password associated with that username in the Password field.

4. Click the Save button to register the account.

60 GitCentric User’s Help

HTTP Password
Some environments do not permit you to use SSH to connect across a firewall. If you cannot use SSH, but
you can connect to the server with smart HTTP, you can generate a password here, and then access your
Git repositories with a URL constructed with “...p/<repository>”.

Note: GitCentric supports only Git “smart HTTP” not so-called “dumb HTTP”. Smart HTTP is
documented on several Git-related sites.

The syntax to clone a repository with smart HTTP is:

git clone http://<username>:<password>@<host>:<port>/p/<repository>

Example:

git clone http://testuser:PaoYhDp8BFoA@localhost:8100/p/TestProj2

Once you have cloned, you can pull / push over HTTP just like you can over SSH.

Avoiding Password Entry
Generated passwords can be difficult to memorize, and providing one each time you connect using HTTP
can be a nuisance. Fortunately, Git provides a number of mechanisms to help deal with this.

First, you can create a .netrc file in your home directory (“_netrc” if you are using msysgit on
Windows). For example:

machine localhost
login testuser
password PaoYhDp8BfoA

The .netrc file lets you keep the <username>:<password> out of the URL for enhanced security, but it is
still stored as plain text.

A more secure approach, if you are using Git 1.7.9 and later, is to use Git’s credential helper, which tells
Git to store your password in cache for 15 minutes:

git config --global credential.helper cache

You can increase the timeout by specifying the desired limit in seconds. This example shows the timeout
set to 30 minutes:

git config --global credential.helper "cache --timeout=1800"

Use --unset to revert to specifying the password manually:

git config --unset credential.helper

People
This is a read-only display of the security groups to which the logged-in user belongs. To create or modify
groups, go to Administration -> Groups in the Web GUI. For details about how groups are implemented,
see the Gerrit Code Review documentation. For “How to” information about managing groups in the
GitCentric context, see Manage GitCentric Groups on page 49.

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html

GitCentric User’s Help 61

4. Code Review
This chapter describes the purpose of the GitCentric Code Review menu, which serves as a gateway to the
third-party Gerrit Code Review tool. To learn how to use Gerrit Code Review in GitCentric, see Enable/
Disable Code Review on page 52.

Opening the Code Review Page
To open the Code Review page, click the Code Review tab:

Overview of Gerrit Code Review
GitCentric incorporates the open source Gerrit Code Review tool, which provides web-based code review
and project management for Git-based projects. GitCentric administrators can decide whether or not to
require users to include Code review in their workflow. Even if your site does not require you to perform
code reviews, GitCentric makes use of Gerrit’s group-based ACLs and administration features.

Differences from Standalone Gerrit Code Review
You access Gerrit Code Review from the Code Review tab in the GitCentric UI (shown in the illustration
at the top of the page). Log-in and registration are handled through the GitCentric UI (see Log In to
GitCentric on page 14).
If you are familiar with Gerrit Code Review, you may notice the following differences from a standalone
Gerrit Code Review installation.

62 GitCentric User’s Help

Otherwise, all other Gerrit Code Review functionality is handled through the Gerrit UI, and documentation
for Gerrit features is handled by the Gerrit on-line help. Gerrit Code Review has its own documentation,
which you can find here:

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/index.html
Tip: Administration features are accessed from the GitCentric, and not the Gerrit, UI. (In GitCentric, the
Administration menu takes you to the Administration page in the GitCentric UI; see Chapter 5
Administration.)

Code Review for Users of Differing Backgrounds
Experienced Git users: If you are a Git user who is new to both Gerrit and AccuRev, you will continue to
use Git the same way you always have. However, if code review is enforced at your site, you may now
need to configure your clones to push to a special code review branch (see Create a Clone From a
GitCentric Repository on page 19). Your changes will need to be approved by others, and you may be
requested to approve other people’s changes. In any case, once your changes are approved and pushed to
the repository, GitCentric automatically synchronizes them with the appropriate stream in AccuRev.
Likewise, when you do a pull, fetch, or clone, you may find that changes have been synchronized from the
AccuRev stream.
Experienced AccuRev users: If you are an experienced AccuRev user, your site may have you continue
to manage your changes in AccuRev SCM. If so, you may never need to log into GitCentric or use code
review. But if you start working in Git, you will use GitCentric to access the code review features, and to
manage your account.
Experienced Gerrit users: If you are an experienced Gerrit user, not much has changed: You push your
updates in Git, and they get code-reviewed in Gerrit. If you are a reviewer, you will log in through
GitCentric, and then go directly to Gerrit where you will perform Gerrit operations the same way you
always have. However, your changes will now be automatically synced between the repository and the
AccuRev stream to which it is mapped. (And if changes are made in the AccuRev stream, they will
automatically be synced with the corresponding repository, and you will see them the next time you do a
pull/fetch/clone command.) The Settings link now goes to the GitCentric UI, and administrators will find
that all administrative functions now appear through the GitCentric UI.
Regardless of your experience and your expertise, you should be aware that the four components that you
may work with (Git, Gerrit, GitCentric, and AccuRev) each have their own documentation and knowledge
base. Several excellent sites exist on the web for Git and Gerrit; and Gerrit, GitCentric, and AccuRev all

Item Description

A Top-level menu items take you to the GitCentric GUI:
• Project takes you to the Repositories page

• People takes you to the Groups page

• Commits takes you to the Commits page

B The Settings link takes you to the My Account page in the GitCentric UI (see Chapter 3 My
Account).

C The SHA of the GitCentric build you are using.

D Use this link to contact Micro Focus customer support about a GitCentric issue. Use the Report Bug
link to contact Gerrit about issues with Gerrit Code Review.

GitCentric User’s Help 63

have extensive on-line help. And you should have at least one experienced user or administrator at your
site who is knowledgeable about each of these technologies.

Gerrit Code Review and AccuRev Mappings
The mapping between Git repositories and AccuRev streams is generally transparent to Gerrit Code
Review users, but you should be aware of the added meaning of the “Merged” status when a change has
been approved: in a mapped GitCentric environment, merged not only indicates that the changes have been
merged in the repository, but they have also been successfully imported to the AccuRev stream. If you
cannot get to the “Merged” status, you should check for error messages on the Gerrit Code Review page
and troubleshoot any issues preventing the import.

Troubleshooting
If you have difficulty submitting an approved change and cannot import it to AccuRev (as indicated by a
“Merge Pending” or some other status), check the following:

• Look for error messages in the “Change comments” area

• Have an administrator check that the following group ACLs are correct for the repository: Submit,
Label Code Review, and Label Verified

• Ensure that the commit parentage is up to date, and rebase if necessary

• Examine the dependencies list for any changes that need to be submitted before the current change
will merge

• Check the kandoGerrit.log for errors

• Check the kandoBridge.log for errors

64 GitCentric User’s Help

GitCentric User’s Help 65

5. Administration
This chapter provides reference information for the features of the Administration page. The
Administration menu allows you to configure:

• repositories

• groups

• AccuRev servers

For task-oriented procedural information about using this page, see Chapter 2 How to....

Opening the Administration Page
To open the Administration page, click the Administration button in the upper right corner of the
GitCentric UI:

66 GitCentric User’s Help

Repositories
The Repositories page (shown in the preceding screenshot) lists the repositories that are currently
registered with GitCentric, and provides the ability to create a new one.

To Create a New Repository
Click the Add button to create a new repository. Procedures for using this panel are found at Create a
Repository for GitCentric on page 29.

To Configure an Existing Repository
1. Click on a repository name.

2. Select General, Branches, Access, or AccuRev Connector.

General
The General menu allows you to specify basic repo properties, primarily associated with Gerrit Code
Review features. The various fields are described in Table 2 below.

 Table 1. Create repository options

Field Description

Repository Name Enter any valid string for the new repository. Keep it URL-friendly: just letters,
digits, and dashes; no whitespace. Character length is only limited by your OS.
There is no database limit on the text field.

Inherit Rights From: By default, your repo inherits access rights from the top-level Code Review repo
(“project”) named “All-projects”. However, you can specify a different repo for
more control.

Only serve as parent for
other repos

Use this option if you wish to create a repo with specific access rights which other
repos can inherit.

 Table 2. General Repo Settings

Setting Description

Description Enter a string that will appear in the “Repository Description” column of the
repository lists.

Git Repository Options Ignore Case -- When checked, sets core.ignorecase=true in the repository’s
.git/config file.
Ignore Symbolic Links -- When checked, sets core.symlinks=false in the
repository’s .git/config file.

GitCentric User’s Help 67

Branches
The Branches menu displays the existing branches associated with this repo, and provides the ability to
delete a branch or create a new one. See Create Branches for a Repo on page 34 for a description of how to
use this section.

The labels in the table are relatively self-explanatory:

• Branch Name: See the Git documentation for git-check-ref-format for restrictions regarding Git
branch names.

• Revision: This is typically either “HEAD”, or the name of another branch, or the SHA1 hash for a
specific commit.

Gerrit Repository
Options

Submit Type -- Options that allow you to control how to merge changes:
- Fast Forward Only
- Merge if Necessary
- Always Merge
- Cherry Pick

For a discussion of these merge options, see the Project Configuration topic in the
Gerrit Code Review documentation.

State -- Determines the accessibility of the repository:
- Active -- Users can view, pull from, clone, or push to this repository

(assuming that they have the correct access rights).
- Read Only -- Users can see and pull from this repository (assuming that they

have read permission) but cannot modify or push to it.
- Hidden -- Only Owners can see the repo.

Automatically Resolves Conflicts -- By default, Code Review attempts merges
only if there is no path conflict. Enabling this option forces Code Review to attempt
the merge even if a path conflict occurs.
Require Change-Id in commit message -- For a discussion of Change-Ids, see the
Change-Ids topic in the Gerrit Code Review documentation.
(Note: Does not apply to commits pushed directly to a branch or tag.)

Contributor Agreement Require Signed-off-by in commit message -- For a discussion of Signed-off-by
lines, see the Signed-off-by Lines topic in the Gerrit Code Review documentation.
Require a valid contributor agreement to upload -- For a discussion of valid
contributor agreements, see the Contributor Agreements topic in the Gerrit Code
Review documentation.

Basic Permissions Enable Code Review -- Indicates whether or not GerritCode Review is enabled for
the current repository. By default, this field is checked. See Enable/Disable Code
Review on page 52 for more information.

Clone Command Lets you quickly copy the git clone command for the current repository
specified using either the HTTP or SSH protocol.

 Table 2. General Repo Settings

Setting Description

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/project-setup.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/user-signedoffby.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/user-changeid.html

68 GitCentric User’s Help

Access
The Access menu allows you to apply GitCentric group-based permissions (ACLs) on your repositories.

These ACLs are derived from Gerrit Code Review ACLs.

Procedural information for setting ACLs is provided at Configure Access Rights (ACLs) for a Repo on
page 34.

Overview and detailed information about group-based ACLs is provided at:

• GitCentric Group-Based ACLs on page 10.

• The Change-Ids topic in the Gerrit Code Review documentation.

1. Most ACLs take Allow, Deny, or Block. values. However, Label Verified and Label
Code-Review take numeric values which are displayed as reviewer options on the Code Review
page.

2. Each permission provides an Exclusive checkbox, which grants an exclusive ref-level access
control so that only members of a specific group can perform an operation on a repository/
reference pair. See the Access Controls topic in the Gerrit Code Review documentation for more
information.

3. The Push and Push Annotated Tag permissions also provide a Force Push option, which allows
an existing branch to be deleted. Since a force push is effectively a delete immediately followed by
a create, but performed atomically on the server and logged, this option also permits forced push
updates to branches. Enabling this option allows existing commits to be discarded from a project
history.

AccuRev Connector
Use the AccuRev Connector menu to:

• Define the mapping between branches in your Git repositories and mount points in your AccuRev
streams. This procedure is described in Map a Git Branch to an AccuRev Stream on page 38.

• Implement AccuRev change packages. This procedure is described in Enable and Use Change
Packages on page 43.

 Table 3. AccuRev Connector Settings

Section Field Description

AccuRev
Server
Connection

Server name:port The AccuRev server and port where the stream to be mapped
exists.

Username The <gc_user> account that is a member of the group that is set to
ASSIGN_USER_PRIVILEGE.

Password The password for <gc_user>.

Associate
Issues With
Commit

Issue Tracking System If you are using AccuRev change packages, use this field to specify
whether you are using AccuWork or a third-party product such as
Rally as your issue tracking system.

Regular Expression If AccuRev uses an issue tracking system (either AccuWork, or a
third-party system such as Rally), you can specify a regular
expression here to enforce comment requirements for AccuRev
change packages. Populating this field enables change package
integration; leaving it blank disables it.

http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/user-changeid.html
http://gerrit-documentation.googlecode.com/svn/Documentation/2.7/access-control.html

GitCentric User’s Help 69

The informational line between the server and branch panels shows any existing mappings. The Status
column shows Active whenever an import or export is occurring between the branch and the stream, and
Idle when the synchronization is complete. Click the View Details button to display a real-time Status
Monitor.

Status Monitor
The Status Monitor displays information from the GitCentric bridge for current and completed
synchronizations for the selected branch-stream mapping. The Status Monitor updates every five seconds
during an import or export operation.

Branch-
Stream
Mappings

Branch The branch that you want to map to an AccuRev stream.

AccuRev Depot The AccuRev depot containing the stream that the Git branch is
mapped to.

AccuRev Stream The AccuRev stream to which the current branch is to be mapped.

Mount Point The directory in the mapped stream to which the branch is to be
synchronized. Navigate to the mount point in the graphical tree and
click it to populate the Mount Point field

Initial Synchronization This determines in which direction the first mapping will occur. If
you are importing an existing repo into AccuRev, select Commit
Git content to Accurev. If you are exporting the existing content
of an AccuRev stream to a newly mapped repo, select Commit
Accurev content to Git.

 Table 3. AccuRev Connector Settings

Section Field Description

70 GitCentric User’s Help

Current Synchronization Status

The following table summarizes the values for the Current Synchronization Status fields.

Completed Synchronizations

The following table summarizes the values for the Completed Synchronizations fields.

The Status Monitor tracks phases per commit, so if you do a multi-commit push (such as a push on an
existing repository to import commit history import into AccuRev), you will see these phases repeat over
and over for each commit import. The most recent completed synchronization always appears at the top of
the Complete Synchronizations section.

Field Description

Status The status of the current synchronization. Values are:
Idle -- the synchronization is complete
Syncing -- the synchronization has just started
Syncing | Running for x seconds -- the synchronization is active and has been
running for the time shown.

Modified By The user who pushed the commit.

Subject The first line of the commit message entered by the user.

SHA The SHA associated with the commit.

Field Description

Type The task type associated with the commit. See Synchronization Type Values
on page 71 for details.

Time The time the synchronization finished.

Status Whether the synchronization task succeeded (Pass) or failed (Fail).

Trans ID The AccuRev transaction associated with the commit.

Message A message indicating that the synchronization passed or why it failed.

Subject The first line of the commit message entered by the user.

SHA The SHA associated with the synchronization.

GitCentric User’s Help 71

Synchronization Type Values

The following table summarizes the values for the Type field.

 Table 4. Repo Status Entries

Task Type: Phase: Steps:

IncrementalImport
(16 phases total)

Initialization 1 "step"

doImport - Cleanup Workspace
doImport - Parse Commit Messages
doImport - Process Commit Diff

1 "step"
1 "step"
n "diffs"

setupPromote - processEmptyDirs
setupPromote - processMoveAside
setupPromote - checkEvilTwinForMove
setupPromote - checkUndefunctFiles
setupPromote - checkUndefunctDirs
setupPromote - checkEvilTwinFiles
setupPromote - undefunctElements
setupPromote - coFiles
setupPromote - processElinks
setupPromote - popFiles
setupPromote - moveFiles
setupPromote - deleteFiles
setupPromote - blobFiles
setupPromote - addFiles
setupPromote - keepFiles
setupPromote - linkFiles
setupPromote - mergeFiles
setupPromote - chmodFiles
setupPromote - removeOverlaps

1 "step"
1 "step"
1 "step"
1 "step"
1 "step"
1 "step"
n "elements"
1 "step"
n "elements"
1 "step"
n "elements"
1 "step"
n "blobs"
1 "step"
1 "step"
1 "step"
1 "step"
1 "step
1 "step"

doImport - Promote files 1 "step"

72 GitCentric User’s Help

FullImport
(19 phases total)

Initialization 1 "step"

streamToCommit - Init
streamToCommit - Process Elements
streamToCommit - Finalize Commit

1 "step"
n "elements"
1 "step"

doImport - Cleanup Workspace
doImport - Parse Commit Messages
doImport - Process Commit Diff

1 "step"
1 "step"
n "diffs"

setupPromote - processEmptyDirs
setupPromote - processMoveAside
setupPromote - checkEvilTwinForMove
setupPromote - checkUndefunctFiles
setupPromote - checkUndefunctDirs
setupPromote - checkEvilTwinFiles
setupPromote - undefunctElements
setupPromote - coFiles
setupPromote - processElinks
setupPromote - popFiles
setupPromote - moveFiles
setupPromote - deleteFiles
setupPromote - blobFiles
setupPromote - addFiles
setupPromote - keepFiles
setupPromote - linkFiles
setupPromote - mergeFiles
setupPromote - chmodFiles
setupPromote - removeOverlaps

1 "step"
1 "step"
1 "step"
1 "step"
1 "step"
1 "step"
n "elements"
1 "step"
n "elements"
1 "step"
n "elements"
1 "step"
n "blobs"
1 "step"
1 "step"
1 "step"
1 "step"
1 "step
1 "step"

doImport - Promote files 1 "step"

FullExport
(4 phases total)

Initialization 1 "step"

streamToCommit - Init
streamToCommit - Process Elements
streamToCommit - Finalize Commit

1 "step"
n "elements"
1 "step"

IncrementalExport
or
CatchUpExport
(6 phases total)

exportSingle - Init 1 "step"

doExport - getTransInfo
doExport - getChangeSet
doExport - generateFastImport
doExport - gitFastImport

1 "step"
1 "step"
n "changes"
1 "step"

exportSingle - Check null commit 1 "step"

Task Type: Phase: (Continued) Steps:

GitCentric User’s Help 73

Support for Hooks
GitCentric supports both Git and Gerrit Code Review hooks. Borland recommends using Gerrit hooks
when your environment requires hooks.

For more information about Gerrit Code Review hooks, see the Gerrit Code Review documentation, here:

https://gerrit-review.googlesource.com/Documentation/config-hooks.html

Migrating Existing Git Hooks
Two Gerrit hooks, ref-update and ref-updated, are installed to <gc_home>/site/hooks and are used to
migrate any Git hooks you might have created in the <gc_home>/site/git/<repoName>.git/hooks
directory.

Note that the ref-update and ref-updated hooks require Perl and expect to find it at /usr/bin/perl. If you
have Perl in a different location, you will need to update these hooks with the correct path.

People
Group membership determines access rights in GitCentric. Use the Groups page to list existing groups,
create a new group, and to access details about an existing group.

See Manage GitCentric Groups on page 49 for information about using this page.

https://gerrit-review.googlesource.com/Documentation/config-hooks.html

74 GitCentric User’s Help

AccuRev Servers
The AccuRev Servers panel displays information about configured AccuRev Servers and allows you to
add or remove them from GitCentric.

When you click the Add button, the Servers page expands to display the fields you use to add an AccuRev
server to GitCentric. These fields are summarized in the following table:

See Add an AccuRev Server on page 46 for information about using this panel to add a server.

A Note about the CLI Path Setting
When logging into GitCentric for the first time, or when configuring an AccuRev server to work with
GitCentric, you are prompted to enter a value for the “CLI Path”. This is the full path to the AccuRev client
executable on the GitCentric server that should be used to communicate with the AccuRev server. For
example:

<ac_home>/bin/accurev

where <ac_home> is the actual install directory, such as /opt/accurev.

The GitCentric server requires either a master AccuRev server or a compatible AccuRev client installed
locally. In the case where you are using AccuRev servers of different revision levels, you must have a
compatible client installed on the GitCentric server machine for each version of the AccuRev server you
are using, and each must be configured with GitCentric using its specific path. For example, if you need to
work with two AccuRev servers -- one running version 5.6 and one running version 5.7 -- you would need
two AccuRev clients installed on the GitCentric server: one 5.6 client to work with the 5.6 server, and a
separate 5.7 client to work with the 5.7 server.

Server Field: Description

AccuRev Server The host of the AccuRev server that GitCentric associates with one or more
repos. This can be an IP address or the name of the server. Note that if you are
connecting to a remote GitCentric server and you specify localhost, this
indicates an AccuRev server on the GitCentric host, not your local machine.

Port This is typically “5050” for most AccuRev servers, but the AccuRev
administrator may have changed it to something different.

AccuRev CLI Path The path to the AccuRev client executable installed on the GitCentric server
(not the remote AccuRev server). For example:
/opt/accurev/bin/accurev.
For more information, see A Note about the CLI Path Setting on page 74.

GitCentric User’s Help 75

A. The kandoMaintain Utility
The kandoMaintain utility provides the ability to perform occasional administrative operations under the
guidance of an AccuRev Support Services representative. It is similar to the AccuRev maintain
utility (see “The ‘maintain’ Utility” chapter of the AccuRev Administrator’s Guide).

Using kandoMaintain
The kandoMaintain utility is located in the bin directory where you installed GitCentric. To use
kandoMaintain, the AccuRev database server must be running, but we recommend that you stop the
GitCentric server, which you do by shutting down Tomcat, for example:

cd <ac_home>/WebUI/tomcat/bin

./shutdown.sh

All kandoMaintain commands except help require a database administrator user and password. You can
enter the user name and password on the command line with the -u and -P options, respectively. If you do
not supply these, kandoMaintain will prompt you for them. You can also provide either or both of these
values in a text file and provide a path to the file (see the -Fc <path> option).

Note: Providing the database password in a script or in a configuration file can compromise system
security. Make sure that such files are protected and not generally accessible.

The commands to make, remove, upgrade, back up, or restore a database (mkdb, rmdb, upgradedb,
backupdbs, restoredbs) prompt you to confirm the operation before proceeding. This confirmation
prompt can be overridden with the -y option.

Backup and Restore
The kandoMaintain commands to back up and restore the GitCentric database (backupdbs and
restoredbs) are described in this appendix. For complete information about the backup and restore
process, see Appendix: B Backup and Restore.

kandoMaintain Command Reference
Usage: kandoMaintain [COMMAND] [OPTIONS]

kandoMaintain [mkdb | rmdb | upgradedb | backupdbs | restoredbs | mvrepos |
testconn | lsconfig | addconfig | rmconfig | checksync | help]

[-u <dbadmin> -P <dbpass> -c <url> | -Fc <path>]

Commands
mkdb

kandoMaintain mkdb -u <db_admin> -P <dbpass>

Creates a GitCentric database with the latest schema.

76 GitCentric User’s Help

Valid options (see below): -u, -P, -c, -Fc, -y

rmdb

kandoMaintain rmdb -u <db_admin> -P <dbpass>

Removes a GitCentric database

Valid options (see below): -u, -P, -c, -Fc, -y

upgradedb

kandoMaintain upgradedb -u <db_admin> -P <dbpass>

Upgrades a GitCentric database to the latest schema.

Valid options (see below): -u, -P, -c, -Fc, -y, -I

backupdbs

kandoMaintain backupdbs -u <db_admin> -P <dbpass>

Creates a backup of the GitCentric database and writes the backup file to the directory from which the
backupdbs command was run; the backup file can be moved to any location after that. Each backup
file is given a unique file name, such as kando_<timestamp>.backup, where the timestamp is in the
format of yyy-mm-dd_hh:mm:ss:ms (2012-03-16_15:51:11.487, for example).

The backupdbs command uses PostgreSQL pg_dump, which is located in the PostgreSQL /bin
directory. Before running backupdbs, make sure that the PostgreSQL /bin directory is specified in
your system path.

Valid options (see below): -u, -P, -c, -Fc, -y

Note: Micro Focus recommends that you use full_backup.sh and full_restore.sh commands to
back up and restore GitCentric. See Appendix: B Backup and Restore for more information.

restoredbs

kandoMaintain restoredbs -u <db_admin> -P <dbpass> -Fb <path>

Restores the backup of the GitCentric database created by the backupdbs command. Use the <path>
argument to specify the location of the backup file. By default, the backup file is written to the same
directory from which the backupdbs command was run, but it can be moved anywhere.

Valid options (see below): -u, -P, -c, -Fb, -Fc, -y
mvrepos

kandoMaintain mvrepos -u <db_admin> -P <dbpass> -r <destination_path>

Move any Kando 2012.1 repositories from their old storage area to the new GitCentric storage area at
<destination_path> (typically <gc_home>/site/git) after an upgrade installation. mvrepos
identifies the old storage area by querying the database.

mvrepos checks that the target path exists and is writable. mvrepos only looks at acrepository records
that are not hidden (deleted). If there is a null or empty path in any of the acrepository records, no
moves will be attempted. Any of the above conditions will return error messages as well as a return
status of 1. During the individual moves and database updates, if a single move fails, the others will
still be attempted. There will be error messages for each move that fails and the overall return status
will be 1. Therefore, you can rerun this command after fixing a failure condition, so that eventually all
repos are moved. If all moves are successful, no message is displayed and a 0 is returned for status.

GitCentric User’s Help 77

Valid options (see below): -u, -P, -c, -Fc, -y, -r

testconn

kandoMaintain testconn

Tests the Java Database Connectivity (JDBC) connection to the postgres instance (does not test for the
existence of a GitCentric database.

Valid options (see below): -u, -P, -c, -Fc

lsconfig

kandoMaintain lsconfig

Lists the entries from the GitCentric database configuration table. Use -n to list a specific
configuration parameter. If -n is not specified, all configuration parameters are displayed.

Valid options (see below): -u, -P, -c, -Fc, -n

addconfig

kandoMaintain addconfig -n <name> -v <value>

Adds a configuration parameter to the GitCentric database configuration table. Returns an error if you
specify a name that already exists with -n <name>.

Valid options (see below): -u, -P, -c, -Fc, -n, -v, -m (-n and -v are required)

rmconfig

kandoMaintain rmconfig -n <name>

Deletes a configuration parameter from the GitCentric database configuration table. (Note: no error is
generated if the specific configuration name does not exist.)

Valid options (see below): -u, -P, -c, -Fc, -n (-n is required)

checksync

kandoMaintain checksync

Verifies that the latest branch-stream synchronization for the specified branch is correct. For the latest
shamap entry for the specified branch-stream mapping, checksync returns the sha, stream as string,
transaction, timestamp, and operation fields, and identifies any discrepancies between:

• The current branch sha and that shamap entry

• The current stream high water mark (HWM, which is based on the transaction number of the last
change made to the content of an AccuRev stream) and that sha map entry

Use the --diff option to compare the contents of each directory, file, and link on Git and AccuRev.

Valid options (see below): -Fc, -r, -b, --diff (-r and -b are required)

help

kandoMaintain help

Displays usage information.

Valid options (see below): None.

78 GitCentric User’s Help

Options

Connection Options
-u <dbadmin> -- The database administration user. This is the same user name as specified during
installation (default is “postgres”). If this is required by the command you are using but you do not
include it, kandoMaintain prompts you for it.

-P <dbpass> -- The database administration password. This is the same user password as specified
during installation. If this is required by the command you are using but you do not include it,
kandoMaintain prompts you for it. If you write scripts that incorporate this option, be sure to secure the
file against unauthorized access.

-c <dbconnectstring> -- The database connection string:
jdbc:postgresql://<host>:<port>/<dbname>. If you do not specify -c for a command that
requires it, kandoMaintain assumes the default value
"jdbc:postgresql://localhost:5075/kando". If you do specify -c, then
"jdbc:postgresql://" at a minimum is required. Partial connection strings will have default values
automatically supplied. For example, if you specify "jdbc:postgresql://", kandoMaintain assumes
a <host> of “localhost”, a <port> value of “5075” and a <dbname> of “kando”.

-Fc <path> -- The path to a text file (such as <gc_home>/dbsettings.conf) containing values for
three of the parameters used by kandoMaintain. The contents of this file should include:

DB_USER=<dbadmin> (eliminates need for "-u" on the command line)

DB_PASS=<dbpassword> (eliminates need for "-P" on the command line)

DB_CONNECT=<dbconnectstring> (eliminates need for "-c" on the command line)

For example:

DB_USER=postgres

DB_PASS=postgres

DB_CONNECT =dbc:postgresql://localhost:5075/kando

Note: The settings and the values accepted by this configuration file can change without notice
from release to release.

Other Options
-Fb <path> -- The path to the backup file of the GitCentric database created by the backupdbs
command. Used by restoredbs.

-n <name> -- Configuration name (the param_name field in the GitCentric database configuration
table). See GitCentric Bridge Configuration Settings below.

-v <value> -- Configuration value (the param_value field in the GitCentric database configuration
table). See GitCentric Bridge Configuration Settings below.

-m '<comment>' -- Configuration comments (the comments field in the GitCentric database
configuration table). (Double or single quotes are required if the comment includes spaces.)

-r <repository_path> -- The path to the GitCentric repository. For mvrepos, the path to the
repository to which the command should move existing repositories after an upgrade installation. For
checksync, the path to the repository whose synchronization status you are checking.

-b <branch> -- The name of the branch in the GitCentric repository whose synchronization status you
are checking with the checksync command.

GitCentric User’s Help 79

-y -- Suppress confirmation prompting for mkdb, rmdb, mvrepos, or upgradedb.

-I -- When executing an upgradedb command, initialize a new database if one does not exist.

--diff -- For checksync, compares each directory, file, and link between the Git branch and
AccuRev stream whose synchronization status you are checking and reports any discrepancies.

GitCentric Bridge Configuration Settings
Here are the configuration values that can be set with

kandoMaintain addconfig -n <name> -v <value>

The bridge is the webapp <tomcat_home>/webapps/kandoBridge that keeps your Git repositories and
AccuRev streams in sync.

 Table 1. GitCentric Systemwide Configuration Settings

Name Value Comments

AC_GIT_BIN Full path and name of
Git executable.

Typically set by the GitCentric installer and
should not need to be modified. If this value is
not defined, GitCentric uses the PATH to find
the Git executable.

ACCUREV_COMMAND_LOGFILE Full path and name of a
log file.

DEBUG ONLY. Use only when directed by
AccuRev Support. This log shows each
AccuRev command that gets executed by the
bridge. Note: For Code Review and UI logging,
see:
<gc_home>/site/etc/gerrit.config

PRESERVE_TEMP_FILES [Y | y] DEBUG ONLY. Use only when directed by
AccuRev Support. "Y" specifies to not delete
temporary files (from xmlpromote, fast-import,
misc. messages, etc.) that are generated in
$CATALINA_HOME/temp.

AC_BRIDGEAPI_SECURITY_POLICY AllowAnyHost DEBUG. By default GitCentric recognizes
trigger events only from trusted servers. Use
this setting to troubleshoot if a trusted server is
having difficulty communicating with
GitCentric. (Case sensitive.)

GIT_RENAME_THRESHOLD [0 - 100] Value for matching the Git rename detection
threshold, so that a file delete/replace can be
identified as a rename operation, allowing
AccuRev to track the history of a renamed file.
The default value is 50 which is the same as the
default Git setting. Only adjust this value if
renames are not identified accurately.

kando.bridgeURL URL of the GitCentric
bridge

Allows you to set the URL of the GitCentric
bridge; used when the GitCentric server and
AccuRev server are on different hosts. For
example:
http://<host name>:8080/KandoBridge
where <host name> is the name or IP address
of the GitCentric server host.

80 GitCentric User’s Help

Examples
1. Test the JDBC connection to the PostgreSQL database instance for GitCentric, specifying the DB user

account but having kandoMaintain prompt for the DB password:

kandoMaintain testconn -u postgres

kandoMaintain prompts you to enter the database admin password, and uses the default connection
string "jdbc:postgresql://localhost:5075/kando" since you did not specify the
-c option.

2. List all the entries in the GitCentric database configuration table. Specify the database username,
password, and connection string in an external file called db_vals.txt which exists in a secure directory
named "securefiles".

kandoMaintain lsconfig -Fc ./securefiles/db_vals.txt

3. Remove the configuration value that points to the instance of Git used by GitCentric, specifying the
DB user account and DB password:

kandoMaintain rmconfig -u postgres -P DBpass2901 -n AC_GIT_BIN

4. Add a new configuration value that points to the instance of Git used by GitCentric, specifying the DB
user account but having kandoMaintain prompt for the DB password:

kandoMaintain addconfig -u postgres -n AC_GIT_BIN -v '/usr/local/bin/git’

5. After upgrading GitCentric, upgrade the GitCentric database with the latest schema. Suppress the
confirmation prompt, and specify the database username, password, and connection string in an
external file called db_vals.txt which exists in a secure directory named "securefiles".

kandoMaintain upgradedb -y -Fc ./securefiles/db_vals.txt

GitCentric User’s Help 83

B. Backup and Restore
This appendix describes the commands and processes you can use to back up and restore GitCentric.

Commands for Backup and Restore
GitCentric provides two sets of commands for backing up and restoring GitCentric, summarized in the
following table:

Micro Focus recommends that you use the full_backup.sh and full_restore.sh commands to back up
and restore GitCentric as described in the remainder of this appendix.

Best Practices
Micro Focus recommends that you back up GitCentric on a daily basis -- every night, for example. You can
back up GitCentric at any time, but Micro Focus recommends that you choose a time of light system usage.

Tip: Consider creating a cron job for GitCentric backups. For examples of cron jobs, see Set Up Gerrit
Garbage Collection on page 55.

 Table 1. Summary of Backup and Restore Commands

Command Description When to Use

full_backup.sh
full_restore.sh

The full_backup.sh command backs up
the GitCentric databases, your Git
repositories, and your configuration files.
Likewise, full_restore.sh copies all
required files to the new location.

Use full_backup.sh and
full_restore.sh any time you wish to
completely back up GitCentric. You should
also use these commands when migrating
GitCentric from one server to another.

backupdbs
restoredbs

The low-level backupdbs and
restoredbs commands, as the names
imply, back up and restore only the
GitCentric databases. Other important data,
like your Git repositories and configuration
files are not backed up by the backupdbs
command.
backupdbs and restoredbs are
kandoMaintain commands. See
Appendix A: The kandoMaintain Utility
for more information.

You might wish to use these commands if
your current backup strategy includes a
third-party tool for backing up your
repositories.

Note: If you are currently using
backupdbs and restoredbs to back up
GitCentric, you can continue to do so.

84 GitCentric User’s Help

Backing Up GitCentric
This section describes the background information and procedures you use to back up GitCentric.

What Gets Backed Up?
The full_backup.sh command backs up:

• all Git repositories

• all GitCentric databases

• all configuration settings -- database connection, Gerrit configuration (site/etc), Gerrit hooks (site/
hooks), SSH keys used for replication (site/ssh)

All files are backed up to a .tar file that is created at the location from which you run the full_backup.sh
command. The file is named kando_backup_site_etc_<yyyymmdd>.tar, where <yyyymmdd> is the year,
month, and day.

You can move the backup file to -- and restore it from -- a different location if you choose.

What are the GitCentric Databases?
The GitCentric databases, "kando" and "gcreviewdb", are PostgreSQL databases installed on the
GitCentric server. These databases contain all AccuRev stream-Git branch mappings, as well as a history
of all import and export activity. Stream-branch mappings are recorded using AccuRev transaction-Git
commit pairs. For more information on the GitCentric databases, see Basic Architecture on page 3.

Note: The GitCentric databases are entirely separate from the AccuRev database; the procedures
described in this appendix apply only to the GitCentric databases; they have no effect on the AccuRev
database.

How to Back Up GitCentric
1. Stop the GitCentric server using shutdown.sh:

<ac_home>/WebUI/tomcat/bin/shutdown.sh

2. Run full_backup.sh -l <path to gc_home>
where
<path to gc_home> is the full path to the GitCentric home directory you want to back up.

For example:

./full_backup.sh -l /home/gitcentric/AccuRevGitCentric

GitCentric displays a completion message, including the name of the .tar file, if the backup was
successful; otherwise, it displays errors.

3. Start the GitCentric server using startup.sh:

<ac_home>/WebUI/tomcat/bin/startup.sh

Note: Make sure that the user starting Tomcat has write access to the logs, temp, webapps, and work
directories in <ac_home>/WebUI/tomcat. This user should have read access to all other Tomcat
directories and files.

GitCentric User’s Help 85

Restoring GitCentric
This section describes the background information and procedure you use to restore GitCentric.

Caution: Restore Overwrites Existing GitCentric Installations
The full_restore.sh command completely overwrites an existing GitCentric installation. If you are
restoring to an existing GitCentric installation, make sure there is no data under the GitCentric home
directory that needs to be saved.

Prerequisites
In order to successfully run the full_restore.sh command:

• you must have an existing GitCentric installation to use as the target for the restore operation. This
GitCentric installation can be empty.

• <ac_home>/jre/bin must be in your system’s search path (set using the $PATH environment variable)

• <ac_home>/postgresql/bin must be in your system’s search path (set using the $PATH environment
variable)

What Gets Restored?
The full_restore.sh command restores all the files and databases in the
kando_backup_site_etc_<yyyymmdd>.tar created by the full_backup.sh command. See What Gets
Backed Up? on page 84 for more information.

How to Restore GitCentric
To restore GitCentric:

1. Stop the GitCentric server using shutdown.sh:

<ac_home>/WebUI/tomcat/bin/shutdown.sh

2. Run full_restore.sh -l <path to gc_home> <backup.tar file>
where
<path to gc_home> is the full path to the GitCentric home directory to which you want to restore
<backup.tar file> is the name of the .tar file created by full_backup.sh.

For example:

./full_restore.sh -l /home/gitcentric/AccuRevGitCentric
kando_backup_site_etc_<20150213>.tar

3. Important: Review the full_restore.sh output and perform any required actions. See Restore
Scenarios on page 87 for more information on restore situations you may encounter.

4. Restart Tomcat:

<ac_home>/WebUI/tomcat/bin/startup.sh

86 GitCentric User’s Help

Note: Make sure that the user starting Tomcat has write access to the logs, temp, webapps, and work
directories in <ac_home>/WebUI/tomcat. This user should have read access to all other Tomcat
directories and files.

Next Steps
If your GitCentric restore was successful, you might need to perform one or more of the following tasks
depending on whether or not you restored GitCentric to a new location or to a new machine. In addition,
you might need to merge Gerrit configuration files.

If You Restored to a New Location
If you restored GitCentric to a new location on the existing machine, you need to:

1. Modify docBase in <ac_home>/WebUI/tomcat/conf/Catalina/<hostname>/gitcentric.xml and
kandoBridge.xml to point to the new GitCentric location.

2. Compare Gerrit configuration files in kando_backup_site_etc_<yyyymmdd>.tar and merge any
changes required to support your GitCentric installation to the new ../site/etc.

3. Restart Tomcat:

<ac_home>/WebUI/tomcat/bin/shutdown.sh

<ac_home>/WebUI/tomcat/bin/startup.sh

If You Restored to a New Machine
If you restored GitCentric to a new machine, as you might in a migration scenario, for example, you need
to:

1. Set up Tomcat on the new machine with:

<ac_home>/WebUI/tomcat/conf/Catalina/<hostname>/gitcentric.xml

and

<ac_home>/WebUI/tomcat/conf/Catalina/<hostname>/kandoBridge.xml

2. Compare Gerrit configuration files in kando_backup_site_etc_<yyyymmdd>.tar and merge any
changes required to support your GitCentric installation to the new ../site/etc.

3. Restart Tomcat to adjust AccuRev settings:

<ac_home>/WebUI/tomcat/bin/shutdown.sh

<ac_home>/WebUI/tomcat/bin/startup.sh

4. Use PostgreSQL psql or pgadmin tools to edit the Kando database "acserver" table to correct the
server client path for each AccuRev server.

If You Restored to the Same Location
If you restored to the same location, simply unpack the kando_backup_site_etc_<yyyymmdd>.tar file by
running:

tar xvf kando_backup_site_etc_<yyyymmdd>.tar

GitCentric User’s Help 87

Restore Scenarios
In typical usage, GitCentric displays a message like the following for each Git branch that is successfully
restored:

Processing branch refs/heads/master in repository /sandbox/llowry/tmp/ws/git/
Repo2.git/

==============================

Branch is in sync with the GitCentric database.

When the restore is successful, no action is required on the part of the GitCentric administrator. The
remainder of this section describes other scenarios that require the attention of the GitCentric
administrator.

Overflow
An overflow condition occurs when the GitCentric database is backed up before the Git repositories are
copied. In this event, it is possible that the GitCentric database and the Git repository copies are out of
synch -- specifically, the GitCentric database probably does not have a complete set of AccuRev
transaction-Git commit pairs reflecting the latest commits in the Git repositories.

When this happens, the GitCentric restore:

• identifies the latest mapped Git commit of which it is aware and resets the head there.

• creates a new branch that contains the commits that are not recorded in the GitCentric database. The
new branch is named kando_backup_overflow_<name> where <name> is original branch name.

• Writes a message to output like the following:

Processing branch refs/heads/maint in repository /sandbox/llowry/tmp/ws/git/
Repo2.git/

==============================

Creating kando_backup_overflow_maint; review divergence with maint and merge as
necessary.

In the case of an overflow condition, it is up to the GitCentric administrator to determine whether or not
these changes need to be merged into the original branch and pushed to the Git repository. If the changes
represented by the unrecorded commits are already in AccuRev, GitCentric will automatically export them
to the restored repository after you start the GitCentric server. If the missing changes are not in AccuRev,
the user can clone, then fast forward-only merge from the overflow branch to the named branch, and push.

Rollback
A rollback condition can occur when there is a large interval of time between when the copy of the Git
repositories was created and the GitCentric database backup was performed. In this event, the GitCentric
database will have recorded Git commits which are not in the restored repositories.

When the GitCentric restore encounters a rollback condition, it writes a message to output like the
following:

Processing branch refs/heads/hotfix in repository /sandbox/llowry/tmp/ws/git/
Repo1.git/

==============================

Rolling back mapped transactions that are higher than 61.

In this example, the GitCentric administrator needs to be aware that any AccuRev transaction-Git commit
pair greater than transaction number 61 is not known to the Git repositories; GitCentric has rolled back

88 GitCentric User’s Help

database transactions to 61 -- the last value known to the Git repositories. Users that have any missing
changes in their clone should push them again.

Missing Branch in the Repository Copy
If GitCentric restore cannot locate a branch, it writes a message to output like the following:

Processing branch refs/heads/spec in repository /sandbox/llowry/tmp/ws/git/
Repo1.git/

==============================

Branch could not be found. Make sure the repository is at the expected location with
the appropriate branch.

In this case, the GitCentric administrator needs to ensure that the copies of all Git repositories have been
copied to their original location (that is, the location at the time the GitCentric database backup was
created) and that all expected branches are present in those repositories. You may need to delete and
recreate the branch mapping in GitCentric.

GitCentric User’s Help 89

C. Command-Line Reference
This chapter provides a detailed description of the CLI (Command Line Interface) commands available to
GitCentric users. Although they can be used interactively, these commands are intended to be used in
administrative scripts.

Basic Syntax
The GitCentric CLI commands are executed as SSH remote commands, which require that you have an
SSH client installed. The syntax for a GitCentric CLI command executed from SSH is:

ssh -p <port> <user>@<host> gitcentric [<command>] [[<arg>]...]] [--help] [--]

where:

<port> is the GitCentric port number, typically 29418.

<user>@<host> is the SSH user account used with GitCentric (for example myusername@localhost).

 <command> may be one of the following:

• config-branch

• config-repo

• delete-repo

• ls-repo

<arg> is one or more arguments to pass to <command>. These vary based on command.

--help, -h displays the on-line help for the current command. Note: Specifying --help with no other
arguments (for example, gitcentric --help) returns a list of all available sub-commands.

-- specifies that the rest of the command line is to be considered arguments, not options. For example, if
you need to pass a repo name that starts with "-" you would precede it with "--". Note that after using "--",
you cannot pass any further options on that command line.

...config-repo Repo1 Repo2 -- -Repo3 Repo4 -Repo5

Spaces and Quoting
You must use quotes to include a space in arguments for a GitCentric SSH command.

In addition, Windows requires that you nest single quotes within double-quotes. In the example below,
highlighted in bold, double-quotes are provided for the Windows shell, and single-quotes are nested within
the double-quotes for the SSH command-line parser.

C:\source\TestProject>ssh -p 29418 mylogin@localhost gitcentric
config-branch --branch refs/heads/master -p 1 -e 3 -s 2
-d "'xxxx yyyy'" --initialSync git TestProject

90 GitCentric User’s Help

config-branch configure a branch or ref

Usage
gitcentric config-branch
[--branch <ref> | -b <ref>] [--clear] [--noNotify] [--description <description>]
[--initialSync <direction>] [--mountElement <mount_elem>] [--stream <stream>]
[--help] [<reponame>...] [--children-of <reponame>] [--]

Description
The gitcentric config_branch command enables you to configure Git branches and refs for use with
GitCentric.

Specify one or more repositories to configure with arguments <repo_1> through <repo_n>, or specify
all the children of a parent repository with --children-of <reponame>.

Note: You must use the config-repo command before you can map a repo’s branches to AccuRev
streams.

Options
--branch <ref>, -b <ref>

(Required.) Specify the branch or the ref to configure. If you have specified multiple repos,
config-branch displays an error when it encounters a repo where the branch does not exist, but
proceeds for those repos where the branch does exist. This option accepts branch specifications in
either long form ("refs/heads/branch_XYZ") or short form ("branch_XYZ"), but saves the
information in long form.

--children-of <reponame>
Configure all the immediate children of the specified parent repo. (Children of children will not be
configured.) This option is not intended for initial configuration, where you are unlikely to want to
map multiple branches all to the same element in the same AccuRev stream. Rather, it is intended
for maintenance, where you want to change the same configuration setting for many repos with a
single operation. Note: If you specify repos in the argument list and with the --children-of option,
the command operates on ALL repos.

--clear
Remove the branch mapping.

--description <description>, -d <description>
A text string describing this branch mapping. (See Spaces and Quoting on page 89 for more
information.)

--help, -h
Display the help for this command.

--initialSync <direction>
Specify the direction which should be used by the first synchronization when mapping between a
Git repo and an AccuRev stream. Valid values are case-insensitive and include:

• accurev -- (Default) Use this option if you are creating a new Git repo and will be populating
it by mapping its branch to an existing AccuRev stream.

• git -- Use this option if you are you are mapping an existing Git branch to an unpopulated
directory in an AccuRev stream.

GitCentric User’s Help 91

--mountElement <mount_elem>, -e <mount_elem>
The name or numeric ID of the AccuRev directory element that the Git branch is mapped to. If the
mount element is unspecified, GitCentric uses the forward slash (/) as the default root mount point.
If you wish to specify the root mount point manually, you must use the forward slash (/); you
cannot use the backward slash (\) or period (.).

--noNotify
Do not notify the GitCentric bridge of the configuration change. This is useful if you are making a
series of configuration changes and do not want to reconfigure the bridge until they are all done.
You do this by omitting --noNotify on the last command. If you forget to omit --noNotify on
the last command, you can force the commit by either executing a config-repo or config-
branch command, or by restarting the bridge (such as through the Tomcat admin console).

--stream, -s <stream>
The name of the AccuRev stream to map the branch to. Note: stream IDs are not accepted.

--
"End-of-options" marker. See Basic Syntax on page 89 for more details.

Examples

Initial configuration example: Map a branch named "branch_XYZ" which exists in a repository named
"new_repo2" to the mount point directory "added_folder" which exists in an AccuRev stream named
"agc_domestic".

>ssh -p 29418 mylogin@myGCserver gitcentric config-branch -b branch_XYZ
-s agc_domestic -e /./agc_devel_folder1/added_folder new_repo2

Maintenance example: Change the configuration for a repository named "new_repo2" as well as all the
children of parent-only repository "test_parent", to clear ALL the existing mappings between branches and
streams.

>ssh -p 29418 mylogin@myGCserver gitcentric config-branch --clear
--children-of test_parent_1 new_repo2

Access
Any member of the Project-Owners or Administrators groups.

See Also
Basic Syntax on page 89, config-repo, ls-repo

92 GitCentric User’s Help

config-repo configure a repo

Usage
gitcentric config-repo [--server <server>:<port>] [--noNotify] [--clear]
[--useAccuworkKey | --useThirdPartyKey] [--cpkPattern <regex>]
[--user <user>] [--pw <password>][--help] [--children-of <reponame>]
[<reponame>...] [--]

Description
The gitcentric config_repo command enables you to configure Git repositories for use with
GitCentric.

Specify one or more repositories to configure with <reponame>....

You can use the --useAccuworkKey or --useThirdPartyKey options to configure a repo for an AccuRev
server that uses either AccuWork or a third-party issue tracking system. For more information, see Enable
and Use Change Packages on page 43.

If your site does use change packages, the --cpkPattern option can be used to specify a Regular
Expression setting that determines what your users need to put in their Git commit comments so that
AccuRev knows what issue the change applies to. A discussion of Java regular expressions is beyond the
scope of this document, but here is an example:

Resolved\s+([\d,]+) -- This format would be adequate for simple environments where the com-
ment always starts with “Resolved”, followed by white space, followed by any number of issues,
separated by commas:

Resolved 12576
Resolved 34, 149, 11057, 686

Note: White space in regular expressions (and any other CLI argument) needs to be quoted (see Spaces
and Quoting on page 89), and special characters may require escape characters or quoting. For
example, for the above regular expression to be passed correctly from the command line, you would
need to construct the option as follows: --cpkPattern "Resolved'\'s+['\'d,]+)"

Use a search engine and search for “Java regular expressions” for more information about these formats.

Options
--children-of <reponame>

Configure all the children of the specified parent repo.

--clear
Clear out all GitCentric configuration for this repository, including ALL branch configuration.

--cpkPattern, -c <regex>
Specify an AccuRev change package regular expression that determines what your users need to
put in their Commit comments so that AccuRev knows what issue the change applies to.

--help, -h
Display the help for this command.

--noNotify
Do not notify the GitCentric bridge of the configuration change. This is useful if you are making a
series of configuration changes and do not want commit them until they are all done, by omitting -
-noNotify on the last command. If you forget to omit --noNotify on the last command, you can

GitCentric User’s Help 93

force the commit by either executing a config-repo or config-branch command, or by
restarting the bridge (such as through the Tomcat admin console).

--pw, -p <password>
The AccuRev login password for <user>. If omitted then an empty password is used to log in to
AccuRev.

--server, -S <server>:<port>
Specify the IP address and the port to the AccuRev server that this repository is mapped to.

--useAccuworkKey, -a,
--useThirdPartyKey, -3,

Use Accuwork issue numbers for change packages, or use third party ITS keys instead of
AccuWork issue numbers for change packages. These options are mutually exclusive.

--user, -u <user>
The AccuRev login account to use for this repository.

--
"End-of-options" marker. See Basic Syntax on page 89 for more details.

Examples

Initial configuration example: Configure a repo named "proj_3000" to be associated with the AccuRev
server at "myACServer:5050", which uses ASSIGN_PRIVILEGE_USER "agc_sync" with a password of
"sync001":

> >ssh -p 29418 mylogin@myGCserver gitcentric config-repo proj_3000
 -S myACServer:5050 -u agc_sync -p sync001

Maintenance example: Change repos "proj_3000" and "proj_4000", as well as all of the immediate
children of parent-only repo "off_shore_parent" to a new server (which uses the same
ASSIGN_USER_PRIVILEGE user and password).

> >ssh -p 29418 mylogin@myGCserver gitcentric config-repo proj_3000 proj_4000
 --children-of off_shore_parent -S myACServer:5050 -u agc_sync -p sync001

Access
Any member of the Project-Owners or Administrators groups.

See Also
Basic Syntax on page 89, delete-repo, config-branch, ls-repo

94 GitCentric User’s Help

delete-repo delete repository

Usage
gitcentric delete-repo <reponame> [--force] [--noNotify] --yes-really-delete
[--help(-h)] [--]

Description
The gitcentric delete-repo command deletes the repository identified by the <reponame>. This
command completely removes the repository -- including all its changes and its Git repository -- from the
GitCentric installation. It also removes configuration information specified on the AccuRev Connector
panel -- AccuRev server connection details, branch-stream mappings, and whether or not you are
associating issues with commits.This command requires the delete-project.jar file that is installed to
<gc_home>/site/plugins. GitCentric displays an error message if it cannot locate this file when you run the
delete-repo command.

Cautions and Restrictions
Before executing the delete-repo command, be aware of the following cautions and restrictions:

• You cannot undo a delete-repo command. As such, you should use it only with extreme care, and
ensure that you have taken normal precautions like backing up any important data.

• The delete-repo command removes the repository only on the server on which the command is run.
In a master/slave environment, if you delete a repository from the GitCentric master server, you must
also delete that repository from any of the slaves.

• You cannot delete a repository that uses a submodule subscription without first removing the
submodule registration.

• You can run the delete-repo command only if you are a member of a group that has Administrate
Server permissions.

Options
<reponame>

The repository you want to delete.

[--force]
Delete the repository even if it has open changes.

--help, -h
Display the help for this command.

[--noNotify]
Do not notify the GitCentric bridge of the configuration change.

--yes-really-delete
Required in order to execute the command.

--
"End-of-options" marker. See Basic Syntax on page 89 for more details.

GitCentric User’s Help 95

Examples
Delete the "test_repo" repository regardless of whether or not it has open changes. Do not notify the
GitCentric bridge.

> ssh -p 29418 mylogin@myserver gitcentric delete-repo test_repo --force
--noNotify --yes-really-delete

Delete the "acme" repository only if it has no open changes; notify the GitCentric bridge.

> ssh -p 29418 mylogin@myserver gitcentric delete-repo acme --yes-really-delete

Access
Only users in a group with Administrate Server permissions.

See Also
Basic Syntax on page 89, config-repo, ls-repo

96 GitCentric User’s Help

ls-repo display GitCentric configuration

Usage
gitcentric ls-repo [--all] [--help] [<reponame>...] [--]

Description
The gitcentric ls-repo command lists GitCentric configuration information.

Specify one or more repositories to display with arguments <repo_1> through <repo_n>.

Note that only repos that are eligible to be mapped to AccuRev are listed, so a "parent-only" repo is not
displayed, even if its children are. Use the ssh gerrit ls-projects --type ALL command to list all
repos.

Options
--all

Display all repositories that are accessible by the calling user. (Specifying --all is the same as
specifying no options at all.)

--help, -h
Display the help for this command.

--
"End-of-options" marker. See Basic Syntax on page 89 for more details.

Examples

> ssh -p 29418 mylogin@myserver gitcentric ls-repo -all

Access
Any registered user. You will only see repositories to which you have at least Read access.

See Also
Basic Syntax on page 89, config-branch, config-repo

GitCentric User’s Help 97

CLI Example
This example walks you through the entire process of creating a repository, cloning it, populating it with
content, pushing, and finally mapping one of its branches to an AccuRev stream, all through Git, Gerrit,
and GitCentric CLI commands.

1. Create a repository with an initial empty commit:

ssh -p 29418 yourUsername@yourServer gerrit create-project --empty-commit repoName

2. Register the repo with GitCentric and associate it with an AccuRev server:

ssh -p 29418 yourUsername@yourServer gitcentric config-repo repoName
 -S 10.0.0.182:5050 -u syncUser -p syncUserPassword

3. Clone the repo.

git clone ssh://yourUsername@yourServer:29418/repoName repoName

4. Change to the new clone’s directory and configure it:

cd repo_tues2

git config user.name "Firstname Lastname"

git config user.email "f.lastname@yourdomain.com"

git config remote.origin.push refs/heads/*:refs/for/*

5. Using your preferred text editor, create a file in the clone.

6. Add, commit, and push the file:

git add --all

git commit --all -m"First commit"

git push

Note: This step creates branch "master", which must exist before the next step.

7. Map the "master" branch to a stream named "agc_devel" on the AccuRev server:

ssh -p 29418 yourUsername@yourServer gitcentric config-branch repoName
 -b master -s streamName -e /

8. Display a listing showing the mapped repo:

ssh -p 29418 yourUsername@yourServer gitcentric ls-repo

98 GitCentric User’s Help

GitCentric User’s Help 99

D. GitCentric Glossary

A
access control list (ACL)

A GitCentric security feature consisting of a set of permissions that controls the access of groups to
repositories. GitCentric group ACLs and AccuRev Element ACLs (EACLs) are two totally different
mechanisms. See also element access control list (EACL).

ASSIGN_USER_PRIVILEGE

A property of the AccuRev server configuration file, acserver.cnf, that identifies the groups and/or
users allowed to perform AccuRev operations like promote, chmod, keep, and move as another user
using the -u command option (accurev -promote -u <username>, for example). In GitCentric, the
gcSyncUser is typically identified using this property.

B
backed

In AccuRev, an element in a workspace or stream has “backed” status if it is not currently active there.
This means that the workspace/stream inherits the version of the element that is currently in the
workspace/stream’s parent stream (also called the backing stream).

branch

The active line of development in a Git repository. A Git branch is roughly equivalent to an AccuRev
stream and is mapped to a stream in GitCentric.

bridge

The GitCentric server configured with the Tomcat web server that is part of the GitCentric installation
package. The bridge is responsible for keeping an AccuRev stream synchronized with its mapped Git
branch.

C
catalina.log

Apache Tomcat log in the /tomcat/logs directory where you installed the AccuRev Web User Interface
used for troubleshooting a running GitCentric system.

change package

In AccuRev, a set of entries that records the changes to one or more elements that were made to
implement the feature or address the bug described in an issue record. Each entry in the change
package describes changes to one element: the changes between the basis version and the head version.
A change package is sometimes referred to as "CPK".

100 GitCentric User’s Help

checkout

In AccuRev, an operation that makes a file active in a workspace without recording any new changes
to the file in the AccuRev repository.

CLI path

The full path to the AccuRev client executable that can communicate with the AccuRev server. For
example: /opt/accurev/bin/accurev.

clone

In Git, the operation that creates a complete copy of a Git repository on your local directory.

commit

In Git, the operation that records changes in the local repository. See pull and push.

D
depot

The portion of the AccuRev repository that stores the entire history of a particular directory tree. The
AccuRev depot is roughly analogous to a Git repository.

E
EID

See element-ID.

element-ID

The unique, immutable integer identifier by which AccuRev tracks the changes to a particular file or
directory. An element’s name or pathname can change, but its element-ID never changes.

element

A file or directory that is under AccuRev version control. See version.

element access control list (EACL)

An AccuRev security feature consisting of a set of entries ("permissions") that controls the rights
AccuRev users (including the service account) have to AccuRev elements. Examples of EACL
permissions include View Elements and Modify Elements. GitCentric access control lists (ACLs) and
AccuRev EACLs are two totally different mechanisms. See also access control list (ACL).

eventStream

An attribute of an AccuRev stream that controls whether or not a trigger fires when the stream content
changes. Any stream mapped to a Git branch must be an event stream.

eventStreamHWM

The transaction number of the last change made to the content of an AccuRev stream. The last change
made to a stream is referred to as the stream’s high water mark, or HWM.

GitCentric User’s Help 101

export

The GitCentric process used to populate a Git branch with the contents of the mapped AccuRev
stream. An initial export occurs during repository creation using the GitCentric GUI. Incremental
exports occur each time you promote changes to a mapped stream.

See also import.

F
file storage area

The portion of an AccuRev depot in which AccuRev maintains a permanent copy (“storage file”) of
each newly created file version. See metadata.

G
gcSyncUser

The name given to a special service account user, used for communication between GitCentric and
AccuRev. The gcSyncUser is typically a member of an AccuRev group such as scm_bridge_group,
which is assigned to the ASSIGN_USER_PRIVILEGE property in acserver.conf.

Gerrit Code Review

A free, web-based team software code review tool developed at Google that integrates with Git version
control software. It is incorporated into AccuRev’s GitCentric product.

Git

A distributed revision control and source code management (SCM) system initially designed and
developed by Linus Torvalds.

Git repository

A distributed data structure that contains a local copy of the central repository with complete history
and tracking facilities.

See also clone.

gitcentric.war

The .war file for the GitCentric GUI, which includes the open-source, third-party Gerrit Code Review
package. Expanded in the tomcat/webapps directory where you installed GitCentric.

GitCentric database

A database on the AccuRev server that contains the AccuRev stream-Git branch mappings as well as a
history of all import and export activity.

GitCentric stream

An AccuRev stream that is mapped to a branch in a Git repository (and is an event stream).

102 GitCentric User’s Help

H
high water mark

The last change made to a stream is referred to as the stream’s high water mark, or HWM. See
eventStreamHWM.

hook

In Git, a way to fire a custom script to perform some action. A Git hook is analogous to an AccuRev
trigger.

I
import

The GitCentric process used to populate or update an AccuRev stream with the contents of the mapped
Git branch. An initial import occurs during stream creation using the GitCentric GUI. Incremental
imports occur each time you push commits to the central repository.

See also export.

inherit

In AccuRev, the facility by which versions in higher-level streams automatically propagate to lower-
level streams. If an element is not currently active in a stream or workspace, the stream or workspace
inherits the version of the element that appears in its parent stream.

K
kando

The engine that powers GitCentric. It provides a framework for synchronizing data between the
AccuRev SCM and other products such as Git.

kandoMaintain

A command line utility used to perform occasional administrative operations

M
map ("mapping")

An association between an AccuRev stream and a Git branch. See also mount point.

merge

In AccuRev, an operation that combines the contents of two versions of the same element. To merge
the contents of text files, AccuRev uses a “3-way merge” algorithm: it compares the two files line-by-
line with a third file -- the version that is the closest common ancestor of the other two.

metadata

Information stored in the AccuRev repository other than the contents of file versions. Metadata is
stored in the repository database; file contents are stored in the file storage area.

GitCentric User’s Help 103

mount point

The directory within an AccuRev stream that is mapped to a Git branch. Access to directories and files
in the stream are restricted to the contents of the mount point and its child directories.

O
overflow

A condition identified during a restore of the GitCentric database. An overflow condition occurs when
the GitCentric database is backed up before the Git repositories are copied. In this event, it is possible
that the GitCentric database and the Git repository copies are out of synch -- specifically, the
GitCentric database probably does not have a complete set of AccuRev transaction-Git commit pairs
reflecting the latest commits in the Git repositories.

P
parent stream

In AccuRev, the stream that is just above a given workspace or stream in a depot’s stream hierarchy.
The given workspace/stream inherits versions from the parent stream. (Also “backing stream” and
“basis stream”.)

project

In Gerrit Code Review, "project" often refers to a repository, such as "Watched Projects". In AccuRev
GitCentric, project is used in its more generic sense: a planned or defined undertaking.

promote

In AccuRev, the operation that transitions a version from being active in one workspace or stream to
being active in the parent stream (or some other stream). The promote operation creates a new virtual
version in the parent stream. The virtual version provides an alias for the real version -- the version that
was originally created in some user’s workspace. The promote operation is analogous to the push
operation in Git.

pull

In Git, the process of refreshing your Git clone by copying the latest commits from the central Git
repository. The pull operation is analogous to the update operation in AccuRev.

Tip: Consider using git pull --rebase to provide serialized commits, avoiding the need to separately
merge remote changes in your branch.

push

In Git, the process of updating the central Git repository by copying commits from your Git clone to
the central Git repository. The push operation is analogous to the promote operation in AccuRev.

104 GitCentric User’s Help

R
repository

See clone and Git repository.

rollback

A condition identified during a restore of the GitCentric database. A rollback condition can occur
when there is a large interval of time between when the copy of the Git repositories was created and
the GitCentric database backup was performed. In this event, the GitCentric database will have
mapped Git commits of which the repositories are unaware.

S
service account

The AccuRev user account that is used by a specific branch-stream GitCentric mapping to synchronize
Git repositories and AccuRev streams. By convention, the service account is an AccuRev user created
for this role named "gcSyncUser" and is a member of a group such as "scm_bridge_group", which is
set to the ASSIGN_USER_PRIVILEGE property in the AccuRev acserver.conf file. Each branch-stream
mapping can have its own service account with different permissions to control access to data. See
gcSyncUser.

SHA-1

The Secure Hash Algorithm (SHA) in Git that refers to the unique identifier, or name, given to each
object in the Git object model -- blobs, trees, commits, and tags.

snapshot

In AccuRev, an immutable stream that captures the set of element versions of another stream at a
particular time. A snapshot cannot be renamed or modified in any way. This term can also be used to
describe an import of a repository without commit history into an AccuRev stream.

SSH

The Secure SHell (SSH) network protocol for secure data communication between two networked
computers. In GitCentric, SSH is used for communication between local Git repositories and the
central Git repository using public/private key pairs.

stream

In AccuRev, the data structure that implements the set of element versions in a particular depot. A
stream is roughly equivalent to a Git branch and is mapped to a Git branch in GitCentric.

T
transaction

A record in the AccuRev repository that indicates a particular change: promoting of a set of versions,
changing the name of a stream, modifying an issue record, and so on. Each transaction has an integer
transaction number, which is unique within the depot.

GitCentric User’s Help 105

U
update

In AccuRev, the operation that copies new versions of elements into a workspace from its parent
stream. The update operation is analogous to the pull operation in Git.

V
version

In AccuRev, a particular revision of an element, reflecting a content change (files only) or a namespace
change (files and directories). All versions are originally created in workspaces, and can subsequently
be promoted to dynamic streams. The original (workspace) version is termed a real version. Each
promotion to a dynamic stream creates a virtual version, which serves as an alias for (pointer to) the
original real version.

W
workspace

In AccuRev, a location in which one or more users performs his or her work on files that are under
AccuRev version control. Each workspace consists of a workspace stream in the AccuRev repository
and a workspace tree in the user’s disk storage.

106 GitCentric User’s Help

GitCentric User’s Help 107

Index

A
access rights (ACLs)

AccuRev element ACLs (EACLs) 51
group-based ACLs 34

AccuRev
configure 28
depots and case-sensitivity 31
using Git reserved names in 39

AccuRev server
adding to GitCentric 46

ACLs 4, 10, 11
EACLs (AccuRev Element ACLs) 8, 10
GitCentric group-based ACLs 10, 29, 30,

31, 34, 38
addconfig, kandoMaintain 77
Administration page 65
ASSIGN_USER_PRIVILEGE 4, 39

B
backing up GitCentric

best practices 83
commands for 83
Git repositories and 84
GitCentric databases and 84
how to 84
what gets backed up 84

backup and restore
commands for 83

backupdbs (kandoMaintain) 76
branch

create 34
remove 31

branches
choosing a mount point when mapping to a

stream 40
comparing commits across branches 25
viewing commit history 21

C
change packages (AccuRev)

enabling 43
error messages 45

using git pull --rebase 46
checksync (kandoMaintain) 77
CLI commands

basic syntax 89
config-branch 90
config-repo 92
delete-repo 94
ls-repo 96
spaces and quoting 89

CLI path 47, 74
clones

configure for direct push 20
configuring for Code Review 20
creating 19
troubleshooting 20

Code Review 61
command syntax 89
commit-msg hook

enabling Gerrit Code Review and 52
commits

reviewing changed files in a commit 23
view commit history 21

Commits page
gravatars and 22

config-branch CLI command 90
config-repo CLI command 92
configure

AccuRev 28
AccuRev server 47
GitCentric 29

contacting technical support viii
cronjobs

setting up garbage collection 55
crontab

setting up cron jobs for garbage collection
55

D
databases

backing up 84
GitCentric databases 84

delete-repo CLI command 94

E
email addresses

108 GitCentric User’s Help

entering contact information 59
preferred 59

export
troubleshooting 54

F
file viewer

about 23
files

reviewing changed files in a commit 23
full_backup.sh

backing up GitCentric with 84
full_restore.sh

restoring GitCentric with 85

G
garbage collection

benefits 55
setting up 55

Gerrit Code Review 1, 11, 26, 34, 37, 49, 58, 61
allowing self-reviews 52
commit-msg hook and 52
disabling 53
enabling 52
enabling replication 53
setting up garbage collection 55
support for Gerrit hooks 73

Git
support for Git hooks 73
using reserved names in AccuRev 39

git commands
using git pull --rebase 46

GitCentric
backing up 84
build SHA displayed on Code Review page

62
overview 1
restoring 83

gravatars
Commits page and 22
Source page and 25
used in GitCentric 22, 25

groups
administration 73
managing 49

H
help, kandoMaintain 77
hooks

support for hooks in GitCentric 73
how to

Add an AccuRev server 46
compare branches 25
Configure Access Rights (ACLs) for a

Repo 34
Crea t e a C lone f rom a G i tCen t r i c

Repository 19
Create a Repository for GitCentric 29
Create an SSH key 14
Create Branches for a Repo 34
determine how divergent a branch’s

commits are 25
disable Gerrit Code Review 53
Enable and Use Change Packages 43
enable Gerrit Code Review 52
Import a Snapshot 32
Import an Existing Git Repo 31
Log into GitCentric 14
Manage GitCentric Groups 49
Map a Git Branch to an AccuRev Stream 38
Register with GitCentric 16
Remove a Branch or a Repository 31
review a commit’s changed files 23
Set General Attributes for a Repo 33
Set Preferences 18
Unmap a Git Branch from an AccuRev

Stream 42
view commit history 21

I
import 31

snapshot 32
troubleshooting 54

K
kandoMaintain 75

addconfig 77
backupdbs 76
checksync 77
help 77
lsconfig 77

GitCentric User’s Help 109

mkdb 75
mvrepos 76
restoredbs 76
rmconfig 77
rmdb 76
testconn 77
upgradedb 76

L
logging in to GitCentric 14
lsconfig (kandoMaintain) 77
ls-repo CLI command 96

M
mapping

behavior 5
Git branch to AccuRev stream 38
keeping Git and Accurev in sync 5
rules 4
unmapping 42

mapping branches to streams
choosing a mount point 40

memory
using garbage collection to reduce waste 55

mkdb (kandoMaintain) 75
mount point 28

considerations for choosing 40
mvrepos (kandoMaintain) 76

O
overflow condition

during restore operation 87

P
performance

using garbage collection to improve 55
Port (AccuRev) 15, 47
preferences 18
preferred email addresses 59
procedures

administrators only 28
all users 13

pull
using git pull --rebase 46

R
regular expressions 45

for commit comments 43, 45, 92
replication

enabling Gerrit Code Review replication 53
repositories 66

backing up 84
deleting using the command line 94
removing 31

repository
create 29
remove 31
set general attributes 33

reserved names
Git reserved names and AccuRev 39

restoredbs (kandoMaintain) 76
restoring GitCentric

backup and restore 83
overflow condition 87
rollback condition 87
usage scenarios 87

rmconfig (kandoMaintain) 77
rmdb (kandoMaintain) 76
rollback condition

during restore operation 87

S
security

configuring 10
server

adding 46
Server Name (AccuRev) 47
Service Account 8, 39, 51
Service Sccount 104
site header (Code Review) 18
Source Tree page

gravatars and 25
SSH

CLI commands 89
creating a key 14

Status Monitor
description 41, 69
displaying 41, 69
reference information 69

streams

110 GitCentric User’s Help

choosing a mount point when mapping to a
branch 40

support
contacting technical support viii

synchronizations
Status Monitor for 41

T
technical support

contacting viii
testconn (kandoMaintain) 77
troubleshooting

clone issues 20
Code Review issues 63
GitCentric restore operation 87
import/export 42, 54
restore operation 87

typographical conventions viii

U
upgradedb (kandoMaintain) 76
username, for GitCentric automation 39

V
version

build SHA displayed in the GitCentric GUI
62

	Preface
	Audience
	Using This Book
	Typographical Conventions
	Contacting Technical Support

	1. Concepts and Overview
	What is AccuRev GitCentric?
	Where to go for More Information
	A Note About Terminology

	Basic Architecture
	GitCentric Users
	GitCentric Administrators and Mapping Branches to Streams
	Basic Rules
	Mapped Behavior
	Best Practices When Planning Your Installation
	Keeping Git Merges and AccuRev Promotes in Sync
	Best Practice for Keeping Merges and Promotes in Sync
	Scenarios for Mapping Multiple Repositories to a Single Stream
	Project-based
	Security-based

	Multiple Repos and Multiple Servers
	AccuRev Replica Server Restriction

	Configuring for Security
	GitCentric Group-Based ACLs
	Configuring Multiple Git Repos with AccuRev and EACLs

	Getting Started

	2. How to...
	Procedures for All Users
	Get Started
	Create an SSH key
	Log In to GitCentric
	Register with GitCentric
	Set Preferences
	Define and Display a Site Header or Footer for Gerrit Code Review

	Generate an HTTP Password
	Create a Clone From a GitCentric Repository
	Configure the Clone for Code Review (Optional)
	Configure the Clone for Direct Push
	Troubleshoot Git Clone Issues

	View Commit History
	Information Displayed on the Commits Page

	Review a Commit’s Files
	Starting from the Commits Page
	Starting from the Source Tree Page
	Information Displayed on the Source Tree Page

	Compare Branches
	Switch Between Gerrit Code Review and GitCentric
	Procedures for Administrators Only
	Configure AccuRev
	Configure GitCentric

	Create a Repository for GitCentric
	Remove a Branch or a Repository
	Remove a Branch
	Remove a Repository

	Import an Existing Git Repo
	A Note About AccuRev Depots
	Import a Snapshot of the Latest Heads into AccuRev

	Set General Attributes for a Repo
	Create Branches for a Repo
	Configure Access Rights (ACLs) for a Repo
	General Procedure for Setting ACLs
	Configuring ACLs for Code Review
	Additional Considerations for ACLs
	Label Verified
	Configuring "Verify" for Continuous Integration
	Disabling "Verify"

	Configuring GitCentric ACLs for Direct Push

	Map a Git Branch to an AccuRev Stream
	Avoid Git Reserved Name for AccuRev Elements
	Specifying the AccuRev Server Connection
	What to Do Next

	Mapping the Branch to the Stream
	Test Your Mapping Status
	Create a Clone and Test It
	Troubleshooting

	Unmap a Git Branch from an AccuRev Stream
	Enable and Use Change Packages
	Specifying the Commit Message Format
	About GitCentric Regular Expressions

	Troubleshooting Change Package Errors

	Add an AccuRev Server
	Registering an AccuRev Server
	Configuring the AccuRev Server
	Configure Multiple AccuRev Servers

	Manage GitCentric Groups
	To View and Access Groups
	Add a Group
	Add a Member to a Group
	AccuRev Groups

	Configure AccuRev Element ACLs (EACLs)
	Enable/Disable Code Review
	Allowing Self-Reviews
	Disabling Code Review

	Enable Gerrit Code Review Replication
	Overview
	Registering the GitCentric Bridge SSH Key with Gerrit
	Modifying the replication.config File

	Troubleshoot Import/Export Operations
	AccuRev to Git
	Git to AccuRev

	Set Up Gerrit Garbage Collection
	Gerrit gc Syntax
	cron job Examples

	3. My Account
	Opening the My Account Page
	Menu Options
	Profile
	Preferences
	Watched Repositories (Projects)
	Contact Information
	Public Keys
	AccuRev Servers
	HTTP Password
	Avoiding Password Entry

	People

	4. Code Review
	Opening the Code Review Page
	Overview of Gerrit Code Review
	Differences from Standalone Gerrit Code Review
	Code Review for Users of Differing Backgrounds
	Gerrit Code Review and AccuRev Mappings
	Troubleshooting

	5. Administration
	Opening the Administration Page
	Repositories
	To Create a New Repository
	To Configure an Existing Repository
	General
	Branches
	Access
	AccuRev Connector
	Status Monitor

	Support for Hooks
	Migrating Existing Git Hooks

	People
	AccuRev Servers
	A Note about the CLI Path Setting

	A. The kandoMaintain Utility
	Using kandoMaintain
	Backup and Restore
	kandoMaintain Command Reference
	Commands
	Options
	Connection Options
	Other Options

	GitCentric Bridge Configuration Settings
	Examples

	B. Backup and Restore
	Commands for Backup and Restore
	Best Practices

	Backing Up GitCentric
	What Gets Backed Up?
	What are the GitCentric Databases?

	How to Back Up GitCentric

	Restoring GitCentric
	Caution: Restore Overwrites Existing GitCentric Installations
	Prerequisites
	What Gets Restored?
	How to Restore GitCentric
	Next Steps
	If You Restored to a New Location
	If You Restored to a New Machine
	If You Restored to the Same Location

	Restore Scenarios
	Overflow
	Rollback
	Missing Branch in the Repository Copy

	C. Command-Line Reference
	Basic Syntax
	Spaces and Quoting
	config-branch
	config-repo
	delete-repo
	ls-repo
	CLI Example

	D. GitCentric Glossary

