
Artix
Version 5.6.4

 Getting Started with Artix: C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-02-20

Contents
Preface..v
Contacting Micro Focus ..v

About Artix ESB...1
What is Artix ESB? ..1
C++ Runtime Features ..3
Key Concepts in Depth...4

Artix ESB Runtime Components ..4
Artix Bus ...5
Artix Endpoints...6
Artix Contracts ...6
Artix Services...7

Solving Problems with Artix ESB..9

Understanding WSDL...11
WSDL Basics ..11
Abstract Data Type Definitions ..12
Abstract Message Definitions ..14
Abstract Interface Definitions..16
Mapping to the Concrete Details..18

Index ..21
 Getting Started with Artix: C++ ii i

iv Getting Started with Artix: C++

Preface

What is Covered in This Book
Getting Started with Artix introduces the Artix ESB technology
and Web Services Description Language (WSDL).

Who Should Read This Book
Getting Started with Artix is for anyone who needs to
understand the concepts and terms used in the Artix product.

Organization of This Book
This book contains conceptual information about Artix and WSDL:
• “About Artix ESB” introduces the Artix ESB product, discussing

key concepts in depth and describing the types of problems it
is designed to solve.

• “Understanding WSDL” explains the basics of WSDL.

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and finding additional resources, see
Using the Artix Library.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
 Getting Started with Artix: C++ v

http://www.microfocus.com

Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:
 vi Getting Started with Artix: C++

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
Getting Started with Artix: C++ vii

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Getting Started with Artix: C++

About Artix ESB
This chapter introduces the main features of Artix ESB.

What is Artix ESB?
Artix ESB is an extensible enterprise service bus. It provides the
tools for rapid application integration that exploits the middleware
technologies and products already present within your
organization.
The approach taken by Artix ESB relies on existing Web service
standards and extends these standards to provide rapid
integration solutions that increase operational efficiencies,
capitalize on existing infrastructure, and enable the adoption or
extension of a service-oriented architecture (SOA).

Web services and SOAs
The information services community generally regards Web
services as application-to-application interactions that use SOAP
over HTTP.
Web services have the following advantages:
• The data encoding scheme and transport semantics are based

on standardized specifications.
• The XML message content is human readable.
• The contract defining the service is XML-based and can be

edited by any text editor.
• They promote loosely coupled architectures.
SOAs take the Web services concept and extend it to the entire
enterprise. Using a SOA, your infastructure becomes a collection
of loosely coupled services. Each service becomes an endpoint
defined by a contract written in Web Services Description
Language (WSDL). Clients, or service consumers, can then access
the services by reading a service’s contract.

Artix and services
Artix extends the Web service standards to include more than just
SOAP over HTTP. Thus, Artix allows organizations to define their
existing applications as services without worrying about the
underlying middleware. It also provides the ability to expose those
applications across a number of middleware technologies without
writing any new code.
Artix also provides developers with the tools to write new
applications in C++ that can be exposed as middleware-neutral
services. These tools aid in the definition of the new service in
WSDL and in the generation of stub and skeleton code.
Just like the WSDL contracts used to define a service, the code
that Artix generates adheres to industry standards.
 Getting Started with Artix: C++ 1

Benefits of Artix
Artix ESB’s extensible nature provides a number of benefits over
other ESBs and older enterprise application integration (EAI)
products. Chief among these is its speed and flexibility. In
addition, Artix ESB provides enterprise levels of service such as
session management, service discovery, security, and
cross-middleware transaction propagation.
EAI products typically use a proprietary, canonical message
format in a centralized EAI hub. When the hub receives a
message, it transforms the message to this canonical format and
then transforms the message to the format of the target
application before sending it to its destination. Each application
requires two adapters that are typically proprietary and that
translate to and from the canonical format.
By contrast, Artix ESB does not require a hub architecture, nor
does it use any intermediate message format. When a message is
received by the bus, it is transformed directly into the target
application’s message format.
Artix ESB is highly configurable and easily extendable. You can
configure it to load only the pieces you need for the functionality
you require. If Artix ESB does not provide a transport or message
format you need, you can easily develop your own service, extend
the contract definitions, and configure Artix to load it.

Artix ESB features
Artix ESB includes the following features:
• Support for multiple transports and message data formats
• C++ development
• Message routing
• Cross-middleware transaction support
• Asynchronous Web services
• Deployment of services as plug-ins via a number of different

containers
• Role-based security, single sign-on, and security integration
• Session management and stateful Web services
• Look-up services
• Load-balancing
• High-availability service clustering
• Integration with EJBs
• Easy-to-use development tools
• Integration with enterprise management tools such as IBM

Tivoli and BMC Patrol
• Support for XSLT-based message transformation
• No need to hard-code WSDL references into applications
 2 Getting Started with Artix: C++

Runtimes and programming models
Artix ESB ships with a C++ Runtime that supports development
using the Artix C++ API.

Using Artix ESB
There are two ways to use Artix ESB in your enterprise:
• You can use Artix ESB to develop new applications using one

of the supported APIs. In this situation, developers generate
stub and skeleton code from WSDL, and Artix becomes a part
of your development environment.

• You can use the Artix bus to integrate two existing
applications, built on different middleware technologies, into a
single application. In this situation, developers simply create
an Artix contract defining the integration of the systems. In
most cases, no new code is needed.

Becoming proficient with Artix ESB
To become an effective Artix ESB developer you need an
understanding of the following:
1. The C++ runtime and the programming model available in

Artix ESB.
2. The syntax for WSDL and the Artix ESB extensions to the

WSDL specification.
3. The configuration mechanisms available in the Artix runtime.
4. The Artix APIs that you can use in your application.
This book introduces these concepts. The other books in the Artix
documentation library covers the same technologies in greater
detail.

C++ Runtime Features
Artix ESB C++ Runtime provides developers with a C++ API to
implement services. It is built on top of Progress Software’s
patented Adaptive Runtime Technology (ART).
Artix ESB C++ Runtime has a C++ core that provides a fast and
stable platform for building applications.
Getting Started with Artix: C++ 3

Features supported
The following bindings, transports, and quality of service features
are supported by the C++ runtime:
• Supported APIs

 WSDL 1.1
• Bindings

 SOAP (1.1 and 1.2)
 MTOM/XOP
 CORBA
 Pure XML
 Fixed length records
 Tagged data
 FML

• Transports
 HTTP
 JMS
 FTP
 WebSphere MQ
 IIOP
 Tuxedo

• Quality of Service
 Message routing
 Security
 Reliable messaging
 High availability
 Load balancing
 Location resolution
 Statefulness

Key Concepts in Depth
This section discusses key Artix ESB concepts in depth.

Artix ESB Runtime Components

How it fits together
The Artix ESB runtime consists of the following components:
• Artix Bus is at the core of Artix, and provides the support for

various transports and payload formats.
• Artix Contracts describe your applications in such a way that

they become services that can be deployed as Artix Endpoints.
• Artix Services include a number of advanced services, such as

the locator and session manager. Each Artix service is defined
with an Artix contract and can be deployed as an Artix
endpoint.
 4 Getting Started with Artix: C++

Figure 1 illustrates how the Artix ESB elements fit together.

Artix Bus
The Artix bus is at the heart of the Artix ESB architecture. It is the
component that hosts the services that you create and connects
your applications to those services. The bus is also responsible for
translating data from one format into another.
In this way, Artix ESB enables all of the services in your company
to communicate, without needing to communicate in the same
way. It also means that clients can contact services without
understanding the native language of the server handling
requests.

Benefits
While other products provide some ability to expose applications
as services, they frequently require a good deal of coding. The
Artix bus eliminates the need to modify your applications or write
code by directly translating the application’s native communication
protocol into any of the other supported protocols.
For example, by deploying an Artix instance with a
SOAP-over-WebSphere MQ endpoint and a SOAP-over-HTTP
endpoint, you can expose a WebSphere MQ application directly as
a Web service. The WebSphere MQ application does not need to
be altered or made aware that it is being exposed using SOAP
over HTTP.
The Artix bus translation facility also makes it a powerful
integration tool. Unlike traditional EAI products, Artix translates
directly between different middlewares without first translating
into a canonical format. This saves processing overhead and
increases the speed at which messages are transmitted.

Figure 1: Artix ESB Runtime Components

Artix Bus

Client Server

Endpt
contract

Endpt
contract
Getting Started with Artix: C++ 5

Artix Endpoints
An Artix endpoint is the connection point at which a service or a
service consumer connects to the Artix bus. Endpoints are
described by a contract describing the services offered and the
physical representation of the data on the network.

Reconfigurable connection
An Artix endpoint provides an abstract connection point between
applications, as shown in Figure 1. The benefit of this abstract
connection is that it allows you to change the underlying
communication mechanism without recoding any of your
applications. You only need to modify the contract describing the
endpoint.
For example, if one of your back-end service providers is a Tuxedo
application and you want to swap it for a CORBA implementation,
you simply change the endpoint’s contract to contain a CORBA
connection to the Artix bus. The clients accessing the back-end
service provider do not need to be aware of the change.

Artix Contracts
Artix contracts are written in WSDL. In this way, a standard
language is used to describe the characteristics of services and
their associated Artix endpoints. By defining characteristics such
as service operations and messages in an abstract way—
independent of the transport or protocol used to implement the
endpoint—these characteristics can be bound to a variety of
protocols and formats.
Artix ESB allows an abstract definition to be bound to multiple
specific protocols and formats. This means that the same
definitions can be reused in multiple implementations of a service.
Artix contracts define the services exposed by a set of systems,
the payload formats and transports available to each system, and
the rules governing how the systems interact with each other. The
simplest Artix contract defines a single pair of systems with a
shared interface, payload format, and transport. Artix contracts
can also define very complex integration scenarios.

WSDL elements
Understanding Artix contracts requires some familiarity with
WSDL. The key WSDL elements are as follows:

WSDL types provide data type definitions used to describe
messages.

A WSDL message is an abstract definition of the data being
communicated. Each part of a message is associated with a
defined type.
 6 Getting Started with Artix: C++

A WSDL operation is an abstract definition of the capabilities
supported by a service, and is defined in terms of input and output
messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific data format for operations
defined in a portType.

A WSDL port specifies the transport details for a binding, and
defines a single communication endpoint.

A WSDL service specifies a set of related ports.

The Artix Contract
An Artix contract is specified in WSDL and is conceptually divided
into logical and physical components.

The logical contract
The logical contract specifies components that are independent of
the underlying transport and wire format. It fully specifies the
data structure and the possible operations or interactions with the
interface. It enables Artix to generate skeletons and stubs without
having to define the physical characteristics of the connection
(transport and wire format).
The logical contract includes the types, message, operation, and
portType elements of the WSDL file.

The physical contract
The physical component of an Artix contract defines the format
and transport-specific details. For example:
• The wire format, middleware transport, and service groupings
• The connection between the portType operations and wire

formats
• Buffer layout for fixed formats
• Artix extensions to WSDL
The physical contract includes the binding, port, and service
elements of the WSDL file.

Artix Services
In addition to the core Artix components, Artix also provides the
following services:
• Container
• Locator
• Session manager
• Transformer
• Accessing contracts and references
These services provide advanced functionality that Artix
deployments can use to gain even more flexibility.
Getting Started with Artix: C++ 7

Container
The Artix container provides a consistent mechanism for deploying
and managing Artix services. It allows you to write Web service
implementations as Artix plug-ins and then deploy your services
into the Artix Container.
Using the container eliminates the need to write your own C++
server mainline. Instead, you can deploy your service by simply
passing the location of a generated deployment descriptor to the
Artix container's administration client.

Locator
The Artix locator provides service look-up and load balancing
functionality to an Artix deployment. It isolates service consumers
from changes in a service's contact information.
The Artix WSDL contract defines how the client contacts the
server, and contains the address of the Artix locator. The locator
provides the client with a reference to the server.
Servers are automatically registered with the locator when they
start, and service endpoints are automatically made available to
clients without the need for additional coding.

Session manager
The Artix session manager is a group of plug-ins that work
together to manage the number of concurrent clients that access a
group of services. This allows you to control how long each client
can use the services in the group before having to check back with
the session manager.
In addition, the session manager has a pluggable policy callback
mechanism that enables you to implement your own session
management policies.

Transformer
The Artix transformer provides Artix ESB with a way to transform
operation parameters on the wire using rules written in Extensible
Style Sheet Transformation (XSLT) scripts. The transformer can
be used to provide a simple means of transforming data. For
example, it can be used to develop an application that accepts
names as a single string and returns them as separate first and
last name strings.
The transformer can also be placed between two applications
where it can transform messages as they pass between the
applications. This functionality allows you to connect applications
that do not use exactly the same interfaces and still realize the
benefits of not using a canonical format without rewriting the
underlying applications.
 8 Getting Started with Artix: C++

Accessing contracts and references
Accessing contracts and references in Artix ESB refers to enabling
client and server applications to find WSDL service contracts and
references. Using the techniques and conventions of Artix avoids
the need to hard code WSDL into your client and server
applications.

For more information
For more information on Artix services, see Configuring and
Deploying Artix.

Solving Problems with Artix ESB
Artix ESB allows you to solve problems arising from the
integration of existing back-end systems using a service-oriented
approach. It allows you to develop new services using C++ or
Java, and to retain all of the enterprise levels of service that you
require.
There are three phases to an Artix ESB project:
1. The design phase, where you define your services and define

how they are integrated using Artix contracts.
2. The development phase, where you write the application code

required to implement new services.
3. The deployment phase, where you configure and deploy your

Artix solution.

Design phase
In the design phase, you define the logical layout of your system
in an Artix contract. The logical or abstract definition of a system
includes:
• the services that it contains
• the operations each service offers
• the data the services will use to exchange information
Once you have defined the logical aspects of your system, you
then add the physical network details to the contracts.
The physical details of your system include the transports and
payload formats used by your services, as well as any routing
schemes needed to connect services that use different transports
or payload formats.
The Artix command-line tools automate the mapping of your
service descriptions into WSDL-based Artix contracts. These tools
allow you to:
• Generate Artix contracts from:

 CORBA IDL
 A description of tagged data
 A description of fixed record length data
 A COBOL copybook
Getting Started with Artix: C++ 9

• Add the following bindings to an Artix contract:
 CORBA
 Fixed record length
 SOAP
 Tagged data
 XML

Development phase
You must write Artix application code if your solution involves
creating new applications or a custom router, or involves using the
Artix session management feature. The first step in writing Artix
code is to generate client stub code and server skeleton code from
the Artix contracts that you created in the design phase. You can
generate this code using the Artix command-line tools.
After you have generated the client stub code and server skeleton
code, you can develop the code that implements the business
logic you require. For most applications, Artix-generated code
allows you to stick to using standard C++ or Java code for writing
business logic.
Artix ESB also provides advanced APIs for directly manipulating
messages, for writing message handlers, and for other advanced
features your application might require. These can be plugged into
the Artix runtime for customized processing of messages.

Deployment phase
In the deployment phase, you configure the Artix runtime to
fine-tune the Artix bus for your new Artix system. This involves
modifying the Artix configuration files and editing the Artix
contracts that describe your solution to fit the exact circumstances
of your deployment environment.
This phase also includes the managing of the deployed system.
This might involve, for example, using an enterprise management
tool along with the Artix command interface. These tools allow you
to further fine-tune your system.
 10 Getting Started with Artix: C++

Understanding WSDL
Artix contracts use WSDL documents to describe services and the data
they use.

WSDL Basics
Web Services Description Language (WSDL) is an XML document
format used to describe services offered over the Web. WSDL is
standardized by the World Wide Web Consortium (W3C). Artix
currently supports revision 1.1. You can find the standard on the
W3C website at http://www.w3.org/TR/wsdl.

Elements of a WSDL document
A WSDL document is made up of the following elements:
• import allows you to import another WSDL or XSD file.
• Logical contract elements:

 types

 message

 operation

 portType

• Physical contract elements:
 binding

 port

 service

These elements are described in “WSDL elements” on page 6.

Abstract operations
The abstract definition of operations and messages is separated
from the concrete data formatting definitions and network
protocol details. As a result, the abstract definitions can be reused
and recombined to define several endpoints. For example, a
service can expose identical operations with slightly different
concrete data formats and two different network addresses.
Alternatively, one WSDL document could be used to define several
services that use the same abstract messages.

The portType
A portType is a collection of abstract operations that define the
actions provided by an endpoint.
 Getting Started with Artix: C++ 11

http://www.w3.org/TR/wsdl

Concrete details
When a portType is mapped to a concrete data format, the result
is a concrete representation of the abstract definition.A port is
defined by associating a network address with a reusable binding,
in the form of an endpoint. A collection of ports (or endpoints)
define a service.
Because WSDL was intended to describe services offered over the
Web, the concrete message format is typically SOAP and the
network protocol is typically HTTP. However, WSDL documents
can use any concrete message format and network protocol. In
fact, Artix contracts bind operations to several data formats and
describe the details for a number of network protocols.

Namespaces and imported descriptions
WSDL supports the use of XML namespaces defined in the
definition element as a way of specifying predefined extensions
and type systems in a WSDL document. WSDL also supports
importing WSDL documents and fragments for building modular
WSDL collections.

Abstract Data Type Definitions
Applications typically use data types that are more complex than
the primitive types, like int, defined by most programming
languages. WSDL documents represent these complex data types
using a combination of schema types defined in referenced
external XML schema documents and complex types described in
types elements.

Complex type definitions
Complex data types are described in a types element. The W3C
specification states that XSD is the preferred canonical type
system for a WSDL document. Therefore, XSD is treated as the
intrinsic type system. Because these data types are abstract
descriptions of the data passed over the wire, and are not
concrete descriptions, there are a few guidelines on using XSD
schemas to represent them:
• Use elements, not attributes.
• Do not use protocol-specific types as base types.
• Define arrays using the SOAP 1.1 array encoding format.
WSDL does allow for the specification and use of alternative type
systems within a document.
 12 Getting Started with Artix: C++

Example
The structure, personalInfo, defined in Example 1, contains a
string, an int, and an enum. The string and the int both have
equivalent XSD types and do not require special type mapping.
The enumerated type hairColorType, however, does need to be
described in XSD.

Example 2 shows one mapping of personalInfo into XSD. This
mapping is a direct representation of the data types defined in
Example 1. hairColorType is described using a named simpleType
because it does not have any child elements. personalInfo is
defined as an element so that it can be used in messages later in
the contract.

Example 1: personalInfo structure

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

Example 2: XSD type definition for personalInfo

<types>
 <xsd:schema

targetNamespace="http://microfocus.com/personal/schema"
 xmlns:xsd1="http://microfocus.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor"

type="xsd1:hairColorType"/>
 </sequence>
 </complexType>
 </element>
</types>
Getting Started with Artix: C++ 13

Another way to map personalInfo is to describe hairColorType
in-line as shown in Example 3. With this mapping, however, you
cannot reuse the description of hairColorType.

Abstract Message Definitions
WSDL is designed to describe how data is passed over a network.
It describes data that is exchanged between two endpoints in
terms of abstract messages described in message elements.
Each abstract message consists of one or more parts, defined in
part elements.
These abstract messages represent the parameters passed by the
operations defined by the WSDL document and are mapped to
concrete data formats in the WSDL document’s binding elements.

Messages and parameter lists
For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only
one input message, the representation of the operation’s incoming
parameter list, and only one output message, the representation
of the data returned by the operation.
In the abstract message definition, you cannot directly describe a
message that represents an operation's return value. Therefore,
any return value must be included in the output message.
Messages allow for concrete methods defined in programming
languages like C++ to be mapped to abstract WSDL operations.
Each message contains a number of part elements that represent
one element in a parameter list.

Example 3: Alternate XSD Mapping for personalInfo

<types>
 <xsd:schema

targetNamespace="http://microfocus.com/personal/schema"
 xmlns:xsd1="http://microfocus.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
</types>
 14 Getting Started with Artix: C++

Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters,
including the operation’s return value, are mapped to another
message.

Example
For example, imagine a server that stores personal information as
defined in Example 1 on page 13 and provides a method that
returns an employee’s data based on an employee ID number.
The method signature for looking up the data would look similar to
Example 4.

This method signature could be mapped to the WSDL fragment
shown in Example 5.

Message naming
Each message in a WSDL document must have a unique name
within its namespace. Choose message names that show whether
they are input messages (requests) or output messages
(responses).

Message parts
Message parts are the formal data elements of the abstract
message. Each part is identified by a name attribute and by either a
type or an element attribute that specifies its data type. The data
type attributes are listed in Table 1.

Example 4: Method for Returning an Employee’s Data

personalInfo lookup(long empId)

Example 5: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
</message>

Table 1: Part Data Type Attributes

Attribute Description

type="type_name" The data type of the part is defined
by a simpleType or complexType called
type_name

element="elem_name" The data type of the part is defined
by an element called elem_name.
Getting Started with Artix: C++ 15

Messages are allowed to reuse part names. For instance, if a
method has a parameter, foo, which is passed by reference or is
an in/out, it can be a part in both the request message and the
response message. An example of parameter reuse is shown in
Example 6.

Abstract Interface Definitions
WSDL portType elements define, in an abstract way, the
operations offered by a service. The operations defined in a
portType list the input, output, and any fault messages used by
the service to complete the transaction the operation describes.

PortTypes
A portType can be thought of as an interface description. In many
Web service implementations there is a direct mapping between
portTypes and implementation objects. PortTypes are the abstract
unit of a WSDL document that is mapped into a concrete binding
to form the complete description of what is offered over a port.
PortTypes are described using the portType element in a WSDL
document. Each portType in a WSDL document must have a
unique name, specified using the name attribute, and is made up of
a collection of operations, described in operation elements. A
WSDL document can describe any number of portTypes.

Operations
Operations, described in operation elements in a WSDL document,
are an abstract description of an interaction between two
endpoints. For example, a request for a checking account balance
and an order for a gross of widgets can both be defined as
operations.
Each operation within a portType must have a unique name,
specified using the required name attribute.

Elements of an operation
Each operation is made up of a set of elements. The elements
represent the messages communicated between the endpoints to
execute the operation.

Example 6: Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
</message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
</message>
 16 Getting Started with Artix: C++

 The elements that can describe an operation are listed in Table 2.

An operation is required to have at least one input or output
element. The elements are defined by two attributes listed in
Table 3.

It is not necessary to specify the name attribute for all input and
output elements; WSDL provides a default naming scheme based
on the enclosing operation’s name.
If only one element is used in the operation, the element name
defaults to the name of the operation. If both an input and an
output element are used, the element name defaults to the name
of the operation with Request or Response, respectively, appended
to the name.

Return values
Because the portType is an abstract definition of the data passed
during an operation, WSDL does not provide for return values to
be specified for an operation. If a method returns a value, it is
mapped into the output message as the last part of that message.
The concrete details of how the message parts are mapped into a
physical representation are described in “Bindings” on page 19.

Table 2: Operation Message Elements

Element Description

input Specifies a message that is received from
another endpoint. This element can occur at
most once for each operation.

output Specifies a message that is sent to another
endpoint. This element can occur at most once
for each operation.

fault Specifies a message used to communicate an
error condition between the endpoints. This
element is not required and can occur an
unlimited number of times.

Table 3: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced
when mapping the operation to a concrete data
format. The name must be unique within the
enclosing port type.

message Specifies the abstract message that describes
the data being sent or received. The value of the
message attribute must correspond to the name
attribute of one of the abstract messages
defined in the WSDL document.
Getting Started with Artix: C++ 17

Example
For example, in implementing a server that stores personal
information in the structure defined in Example 1 on page 13, you
might use an interface similar to the one shown in Example 7.

This interface could be mapped to the portType in Example 8.

Mapping to the Concrete Details
The abstract definitions in a WSDL document are intended to be
used in defining the interaction of real applications that have
specific network addresses, use specific network protocols, and
expect data in a particular format. To fully define these real
applications, the abstract definitions discussed in the previous
section must be mapped to concrete representations of the data
passed between applications. The details describing the network
protocols in use must also be added.

Example 7: personalInfo Lookup Interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 8: personalInfo Lookup Port Type

<types>
...
 <element name="idNotFound" type="idNotFoundType">
 <complexType name="idNotFoundType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
</types>
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"

/>
 <output name="return"

message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException"

/>
 </operation>
</portType>
 18 Getting Started with Artix: C++

This is accomplished in the WSDL bindings and ports elements.
WSDL binding and port syntax is not tightly specified by the W3C.
A specification is provided that defines the mechanism for defining
these syntaxes. However, the syntaxes for bindings other than
SOAP and for network transports other than HTTP are not defined
in a W3C specification.

Bindings
Bindings describe the mapping between the abstract messages
defined for each portType and the data format used on the wire.
Bindings are described in binding elements in the WSDL file. A
binding can map to only one portType, but a portType can be
mapped to any number of bindings.
It is within the bindings that you specify details such as parameter
order, concrete data types, and return values. For example, a
binding can reorder the parts of a message to reflect the order
required by an RPC call. Depending on the binding type, you can
also identify which of the message parts, if any, represent the
return type of a method.

Services
To define an endpoint that corresponds to a running service, the
port element in the WSDL file associates a binding with the
concrete network information needed to connect to the remote
service described in the file. Each port specifies the address and
configuration information for connecting the application to a
network.
Ports are grouped within service elements. A service can contain
one or many ports. The convention is that the ports defined within
a particular service are related in some way. For example, all of
the ports might be bound to the same portType, but use different
network protocols, like HTTP and WebSphere MQ.
Getting Started with Artix: C++ 19

 20 Getting Started with Artix: C++

Index
A
Artix

bus 5
contracts 6, 7
locator 8
session manager 8
transformer 8

B
bindings 7, 19
bus 5

C
C++ Runtime 3
contracts 6, 7
CORBA IDL 9

D
deployment phase 10
design phase 9
development phase 10
documentation

.pdf format vi
updates on the web vi

E
EAI 2
enterprise application integration, see EAI
enterprise service bus, See ESB

I
IDL 9

L
locator 8

M
messages 6

O
operations 7, 16

P
ports 7
portTypes 7, 11, 16

R
runtimes

C++ 3
S
service-oriented architecture, see SOA
services 7, 19
session manager 8
SOA 1
SOAP 1

T
transformer 8
types 6

W
W3C 11
Web Services Description Language, see
WSDL

World Wide Web Consortium, see W3C
WSDL 6, 11–19

defined 11

X
XSD 12
Getting Started with Artix: C++ 21

 22 Getting Started with Artix: C++

	Preface
	Contacting Micro Focus

	About Artix ESB
	What is Artix ESB?
	C++ Runtime Features
	Key Concepts in Depth
	Artix ESB Runtime Components
	Artix Bus
	Artix Endpoints
	Artix Contracts
	Artix Services

	Solving Problems with Artix ESB

	Understanding WSDL
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	Index

