

Artix 5.6.4

Building Service Oriented Architectures
Using Artix

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2017-02-23

iii

Contents

Preface ... v
What is covered in this book .. v
Who Should Read This Book ... v
How to Use This Book ... v
The Artix ESB Documentation Library .. v
Further Information and Product Support vi

Information We Need .. vi
Contact information ... vii

Service Oriented Architecture 1
What is Service Oriented Architecture?1

Service design ...2
Reuse and integration ..3

Standards ...4
What is an ESB? ...5

From service to endpoint ..5
Not EAI ..6

What is a Smart Endpoint? ...7
Distributing the ESB ...7
ESB functionality ...8
Benefits ...9
Legacy endpoints ...9

Artix ESB Enables SOA ... 11
Overview of Artix ESB ... 11
ESB Architecture .. 11

The Artix ESB bus .. 12
Artix ESB C++ Runtime ... 13

Bindings ... 13
Transports .. 13
QoS features ... 14

Artix ESB Java runtime ... 14
Bindings ... 14
Transports ... 14
QoS features ... 15

Artix ESB in Endpoints ... 15
Artix ESB in a Service Provider .. 15
Artix ESB in a consumer ... 18
Artix ESB in an Intermediary .. 21

Artix ESB for C++ Services .. 23
The Router ... 25

iv

Security ... 26
The Locator .. 27
The Session Manager .. 29

Extending Artix ESB .. 33
Artix ESB Management Integration .. 33

Actional .. 33
AmberPoint ... 34
BMC Patrol ... 34
JMX ... 35

v

Preface
What is covered in this book

This book discusses the advantages of SOA to integration, what
makes a service oriented architecture (SOA), and how Artix ESB
facilitates the deployment of an enterprise quality SOA. It
illuminates the value of a SOA. It shows how an ESB such as
Artix plays a key role in developing a SOA and how Artix, in
particular, provides the features required to build a distributed,
robust collection of services.

The book then goes on to provide a detailed look at the
distributed, extensible architecture of Artix. It discusses how
Artix endpoints implement services. This discussion includes a
discussion of how the plug-in architecture makes it easy to add
functionality to an endpoint. It also provides a detailed
discussion of many of the internal components of the Artix ESB
runtime.

Who Should Read This Book
While this book does contain some highly technical discussions,
much of the book is geared toward a novice reader. A basic
knowledge of distributed computing concepts is assumed.

How to Use This Book
This book is organized into the following chapters:

Service Oriented Architecture provides a general description of
service-oriented architectures and how enterprise service buses
make them possible.

Artix ESB Enables SOA provides a high-level description of Artix
ESB's architecture and how it implements its ESB features. It
looks at how Artix ESB connects endpoints to a network using
its pluggable messaging stack.

Extending Artix ESB describes ways of extending Artix ESB's
functionality through the use of other products in the Artix suite

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the
document conventions used, and where to find additional
resources, see Using the Artix ESB Library.

vi

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

 The WebSync service, where you can download fixes and
documentation updates.

 The Knowledge Base, a large collection of product tips and
workarounds.

 Examples and Utilities, including demos and additional
product documentation.

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

 The name and version number of all products that you
think might be causing a problem.

 Your computer make and model.

 Your operating system version number and details of any
networking software you are using.

 The amount of memory in your computer.

 The relevant page reference or section in the
documentation.

 Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

vii

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be
available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

 http://www.microfocus.com/products/corba/artix.aspx
(trial software download and Micro Focus Community files)

 https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

1

Service Oriented
Architecture
Service oriented architecture is an architectural style focused on
reusing existing applications and designing reusability into new
applications. This is accomplished by designing your systems
based on loosely-coupled, coarse grained atomic units of
functionality called services. The key technology used in building a
service oriented architecture is an enterprise service bus that is
built using smart endpoints.

What is Service Oriented Architecture?
Service oriented architecture (SOA) is an architectural paradigm
emphasizing the reusability of applications in a distributed
environment and the alignment of software functionality with
business processes. In technical terms SOA means designing
applications around a collection of loosely coupled units of
functionality with coarse-grained interfaces that are wired
together using a common messaging protocol. The units of
functionality are exposed by implementation agnostic interfaces
that describe the operations exposed by a unit and what
messages the unit accepts.

SOA principles can be applied to integrating existing
applications as well as to building new applications. First you
design a coarse-grained, implementation agnostic facade for the
application you wish to integrate. Then you expose the legacy
application to the network through the new facade using a
common data format/wire protocol combination. The legacy
application is now accessible to applications that do not use a
proprietary messaging system.

The central concept in SOA is the service. A service is the basic
unit of functionality in SOA. Like an object in object-oriented
programming, a service is an atomic unit of functionality that
performs a well-defined and closely related set of operations.
They also do not rely on other services to perform the
operations they perform. Unlike objects, services are defined by
an implementation and language agnostic interface.

A service’s interface should be as coarse-grained as possible and
provide only the information needed to invoke its operations.
The interface is defined as a group of operations. In order to
make the interface as coarse-grained as possible, the number
of operations should be kept to a minimum. This will help
ensure that the amount of detail needed to invoke on a service
implementing the interface is kept to a minimum.

2

The operations that make up the interface are defined by the
messages exchanged when the operation is invoked. Messages
are typically defined using XML Schema and do not necessarily
match the argument list of any implementation of the
operation. Ideally, the messages should be coarse-grained. One
way of ensuring this is to design messages so that all of the data
needed is represented as a single XML document.

Instantiated services are endpoints. When instantiated,
endpoints add information to the service’s interface. The added
information includes all of the details needed to access the
service. This includes details about what kind of messages
(SOAP, fixed, tagged, etc.) the endpoint accepts and the
transport over which the endpoint can be accessed.

Service design

Interoperability and reusability are two of the reasons for using
SOA. The following guidelines help ensure that services are as
interoperable and reusable as possible:

 A service should perform a specific task.

Services, like objects, are the building blocks of an
application. Each block should perform a discreet task so
that it can be reused by many applications.

Because one of the other goals of using SOA is to make it
easier to align IT assets with business processes, the task
performed by a service should be a business task. For
example a service could process a credit card payment.

 A service should not depend on other services.

A service should, like a toaster, be able to perform its work
without any needing to invoke on other services. This does
not mean that you cannot design a service that is a
composite of other services. A composite service looks and
acts like an atomic service to its consumers.

 A service should be stateless.

When state is shared between two applications there is
usually an implicit requirement that each application has
some knowledge of the other’s implementation. A service
that requires its consumers to have an understanding of
how it is implemented is not loosely coupled and more
difficult to reuse.

 A service uses document style messages.

Document style messages, as opposed to RPC style
messages, promote the use of coarse-grained interfaces.

3

Service interfaces should be designed to take generic
documents as opposed to a specific set of inputs. For
example, a loan approval service should be designed to
accept a document containing all of the possible pieces of
information that could be needed to process a loan request
as opposed to the subset that the current implementation
requires. Doing so insulates the applications accessing the
service from changes in its implementation. Adding a
required piece of information to the list of required
parameters does not require you to upgrade all of the
applications access the service because they will already be
sending a properly formed request.

 A service cannot assume that its consumers are operating in
the same environment.

To ensure maximum reusability and maximum
interoperability, a service should not require its consumers to
be operating in a particular environment. For example, a
consumer running on a Windows system in Europe should
be able to make requests on a service endpoint running on a
z/OS system running in the United States. The service
should be completely implementation agnostic.

Reuse and integration

Companies have millions of dollars invested in their existing
IT systems and one of the main drivers for adopting a new
development model is to get the most out of those existing
systems. Another main driver is the desire to break out of the
vendor lock-in. They are looking for a solution that allows
them to reuse what they already have in new ways and
ensure that future systems will have the same, if not more
flexibility to be reused.

Reusability is one of the central goals of using SOA This goes
beyond simply creating new services so that they are
reusable and flexible enough to be recombined into new
applications when needed. SOA embraces the idea that legacy
systems also need to be reused and integrated with other
systems to create new applications.

To achieve this reusability, you need to model your existing
systems as services using the tooling provided with a SOA
development platform. You may find that it is hard to model
your legacy systems using coarse-grained interfaces that
strictly adhere to SOA principles. This can be overcome using
other features of your SOA infrastructure that can allow you
further abstract the interface from your legacy system’s fine-
grained interfaces.

Once a legacy system is wrapped in a service interface, it will
be accessible just like any other service deployed in the SOA

4

infrastructure. Because consumers will only see the legacy
system through the service interface, they will not need to be
aware of how the functionality is provided. All the consumer
knows is that it sends request messages to an endpoint and
reply messages are returned from the endpoint.

Standards
One of the ways that SOA achieves its goals is through the use of
standardized technologies. Chief among these standards is XML.
It provides the underlying grammars that SOA uses as building
blocks.

One of the fundamental building blocks used in SOA is Web
Service Definition Language (WSDL). WSDL is an XML based
grammar that is used to define service interfaces. It breaks the
definition of a service into its logical interface and the physical
details used to instantiate endpoints. For more information on
WSDL see Writing Artix Contracts.

Another fundamental building block used in SOA is XML Schema.
XML Schema provides the type system used in defining service
interfaces. It is used to define the abstract representation of the
messages that define a service’s operations. These abstract
representations can then be mapped into concrete messages
using WSDL.

In addition to WSDL and XML Schema, SOA takes advantage of
a number of other standards that are grouped together into
what is known as the WS* family of specifications. These
specifications include:

 WS-Addressing

 WS-Policy

 WS-AtomicTransactions

These standards are all maintained by OASIS.

 WS-ReliableMessaging

 WS-Security

These standards are maintained by the W3C.

The standards provide a common framework on which SOA
builds QoS. They were all designed around the idea that
information would be passed using SOAP/HTTP, but they can be
leveraged by a number of different messaging protocols. They
were also designed so that services could be easily shared and
accessed over the Web. Therefore, they are built to be
maximally interoperable.

5

What is an ESB?
An enterprise service bus (ESB) is the layer of technology that
makes SOA possible. It creates the necessary abstractions by
translating the messages which define services into data that
can be manipulated by a physical process implementing a
service. An ESB also provides some QoS to the services and
provides a messaging layer for services to use.

From service to endpoint

An ESB takes the concrete details defined in the WSDL contract
and uses it to create an endpoint that implements a service.
This information includes details on how the abstract messages
are mapped into data that can be manipulated and transmitted
by the service’s implementation. It also includes information
about the how the service’s implementation is to be exposed to
the physical world. The endpoint is the physical representation of
the abstract service defined in a WSDL contract.

As shown in Figure 1 the ESB sits between the service’s
implementation and any consumers that want to access the
service. The ESB handles functions such as:

 publishing the endpoint’s WSDL contract.

 translating the received messages into data the service’s
implementation can use.

 assuring that consumers have the required credentials to
make requests on the service.

 directing the request to the appropriate implementation of
the service.

 returning the response to the consumer.

6

Figure 1. Billing System SOA with an ESB

Not EAI

A brief description of an ESB may trigger nightmares about
EAIs. While the concern is warranted, ESBs have several key
differences from past integration layers including EAIs:

 ESBs use industry standard WSDL contracts to define the
endpoints they connect.

 ESBs use XML as a native type system.

 ESBs are deployed in a distributed manner.

 ESBs do not require the use of proprietary infrastructure.

 ESBs do not require the use of proprietary adapters.

 ESBs implement QoS based on industry standard interfaces.

7

The use of standardized WSDL for the interface definition
language and the use of XML as a native type system make an
ESB future-proof and flexible. As discussed in the previous
section, both are platform and implementation neutral which
avoids vendor lock-in.

What is a Smart Endpoint?
The most significant differentiator between ESBs and legacy EAI
systems is an ESB’s distributed nature. EAI systems were
designed as a hub-and-spoke system. ESBs, on the other hand,
are intended to be as distributed as the components they are
integrating. In Artix this is accomplished by implementing the ESB
as a series of smart endpoints.

A smart endpoint is an endpoint that is capable of performing a
number of the features of an ESB. Smart endpoints make an
ESB distributed by moving its functionality out of a centralized
server and putting that functionality where it is needed.

Distributing the ESB

As shown in Figure 2, an ESB distributes the work of data
translation, routing, and other QoS tasks to the endpoints
themselves. Because the endpoints are only responsible for
translating messages that are directed to them, they can be
more efficient. It also means that they can adapt to new
connectivity requirements without affecting other endpoints. The
fact that routing, security, and other QoS are also distributed
means that you can choose not to deploy them if they are not
needed.

8

Figure 2. Distributed Nature of an ESB

The distributed nature of an ESB also means that you are not
forced to drop all your existing infrastructure in one big bang.
You can start with a very targeted project such as service
enabling a single system so that it can interact with a new AJAX
based interface. As you become more comfortable with the
technology, or as requirements demand, you can add services
without disrupting the services already deployed. As you do so,
you may not even need to change any of your existing
implementations because the ESB’s translation capabilities
allow you to plug in legacy implementations.

ESB functionality

The major responsibilities of the ESB that are assumed by smart
endpoints include:

 translation of requests and responses into usable data

 publication of a service’s WSDL

 interactions with the transports

 message reliability

 transactions

9

The rest of the ESB’s responsibilities are distributed across
several discreet services that are also exposed as individual
smart endpoints.

Benefits

Smart endpoints provide several benefits. These include:

 the flexibility to rapidly change your messaging
infrastructure without reimplementing functionality.

 the ability to scale the number of endpoints implementing a
service to meet demand.

 the ability to incrementally deploy services into your
infrastructure without disrupting your existing systems.

 the flexibility to spread the load across your existing
hardware as you need.

Legacy endpoints

It may seem impossible to expose a legacy application as a
smart endpoint without re-implementing it. While it is true that
legacy systems tend to be tied to a fixed messaging system, you
can use a smart endpoint to expose the legacy system’s
functionality. This is done by using a smart endpoint to
intercept requests directed at the legacy system. The endpoint
will then translate the request into the appropriate format for
the legacy application and pass the request over the appropriate
transport.

Your legacy application will appear to be a smart endpoint to the
rest of your infrastructure. This makes it easier to reuse the
functionality of the legacy application. It also makes it easier to
replace the legacy application with new technology when the
time comes.

11

Artix ESB Enables SOA
Artix ESB is a fully distributed ESB. It is built around the concept
that all of the endpoints in your SOA are smart. Artix ESB
accomplishes this by building the ESB functionality into the
runtime libraries that are loaded by deployed endpoints. Artix
ESB also provides a number of services that provide features
such as location independence, security, and routing.

Overview of Artix ESB
The Artix ESB products, Artix ESB for Java, and Artix ESB for
C++, provide the following functionality:

 data and transport abstraction

 C++ runtime

 Java runtime

 message routing

 security

 transactions

 reliable messaging

 location resolution

 high availability

 design time tooling

In addition, Artix ESB can be supplemented to include robust
orchestration tools and mainframe connectivity.

ESB Architecture
Because Artix ESB is an enterprise service bus, it is easy to
picture it as a pipe, or wire, that transports data between
endpoints. While there are a number of ESB implementations
that are designed like a data pipe, Artix ESB is designed as a
set of caps that allow the endpoints to connect to a number of
different pipes. In essence, it turns whatever messaging
infrastructure you have deployed into a virtual ESB.

As shown in Figure 3, the Artix ESB runtime components are
embedded into the endpoints deployed as part of your SOA. Artix
ESB enabled endpoints are smart and are capable of handling all
of the data and transport abstraction needed to connect to the
network, regardless of the messaging infrastructure in use.

12

Because of the pluggable nature of the Artix ESB runtime
components, the endpoints only load the pieces of the runtime
needed to connect to the specified messaging infrastructure.

Figure 3. Artix ESB and the Virtual Bus

Because the endpoints do the work of negotiating the transport
and message format details independent of each other, the ESB
functionality is distributed across your entire deployment. The
endpoints also have some of the logic needed for transaction
management, security, and location resolution embedded into
them.

Features like routing, transaction management, security,
location resolution, and high-availability use components that
are also deployed as smart endpoints. They can be spread
across resources as needed.

The Artix ESB bus

Artix ESB does have a bus, but it is internal. The bus coordinates
the passage of data from the user implemented business logic to
the networking system. Internally, Artix ESB consists of the bus
and a number of objects that take the data that the business
logic manipulates and transforms it into a message that is sent
on the network. There are also a number of objects that Artix
ESB uses to provide other features such as security and session
management.

The bus is capable of coordinating and managing the messages
for multiple services or service consumers. It is also responsible
for loading and unloading the plug-ins used by Artix ESB. The
details of how the bus coordinates messages for each type of

13

endpoint and what components are loaded are discussed in the
remaining sections of this chapter.

Capitalizing on the existing infrastructure

Artix ESB ensures that the addressing information and formats
are compatible with the network infrastructure onto which the
messages are placed. The network then ensures that the
messages are delivered to the proper endpoints. Because Artix
ESB uses the existing network infrastructure to deliver messages,
it can capitalize on any QoS offered by the network. For
example, Artix ESB can use the reliable messaging mechanisms
offered by a JMS queue to ensure that messages are delivered.

Artix ESB C++ Runtime
Artix ESB C++ Runtime provides developers with a C++ API
with which to implement services. It is built on top of the ART
runtime. Artix ESB C++ Runtime has a C++ core that provides
a fast and stable platform for building applications.

Bindings

Artix ESB C++ Runtime supports the following message format
bindings:

 • SOAP (1.1 and 1.2)

 CORBA

 Pure XML

 Fixed length records

 Tagged data

 FML buffers

Transports

Artix ESB C++ Runtime supports the following transports:

 HTTP

 JMS

 IIOP

 FTP

 WebSphere MQ

 Tuxedo

14

QoS features

Artix ESB C++ Runtime supports the following QoS features:

 message routing

 security

 transactions

 reliable messaging

 high-availability

 load balancing

 location resolution

 statefulness

Artix ESB Java runtime
Artix ESB Java Runtime provides the developer with both a
JAX-WS 2.0 API and a JavaScript API with which to implement
services. It is based on Apache CXF and provides a fast,
modular, and extensible platform for implementing services
that is built purely in Java.

Bindings

Artix ESB Java Runtime supports the following message format
bindings:

 SOAP (1.1 and 1.2)

 MTOM/XOP

 RESTful

 CORBA

 Pure XML

Transports

Artix ESB Java Runtime supports the following transports:

 HTTP

 JMS

 FTP

15

 WebSphere MQ

QoS features

Artix ESB Java Runtime supports the following QoS features:

 message routing

 security

 reliable messaging

 high-availability

 load balancing

 location resolution

Artix ESB in Endpoints
Artix ESB can be used to implement three types of endpoints in
a SOA:

 Service providers are endpoints that implement the
operations defined in a service contract. They are similar
to servers.

 Consumers are endpoints that make requests on services.
They are similar to clients.

 Intermediaries are endpoints that process messages in a
value-added way, such as converting them from one data
format to another, or routing them to another service. An
intermediary has characteristics of both a service provider
and a consumer.

Artix ESB in a Service Provider

A service provider is an endpoint that implements the business
logic defined in a WSDL document. Using skeleton code
produced by running a WSDL document through the Artix ESB
code generators, you can create a service endpoint that uses
Artix to connect to the network. Artix ESB can load any
components needed to provide the desired features.

What makes up a service endpoint
As shown in Figure 4, a service provider built with Artix ESB has
the following pieces:

 a service implementation

 a binding layer

16

 a transport layer

In addition, a service provider can have any number of
request-level and message-level interceptors that provide
added functionality. These interceptors, which are
independent of the service provider’s contract, have access to
requests before the service implementation. They also have
access to the response after the service implementation
generates it. They can be used to perform functions such as
encryption, validation, or header processing.

Figure 4. High-level View of a Service Provider

Service Implementation
The service implementation in Artix ESB for C++ can be created
using C++. The service implementation in Artix ESB for Java
can be created using Java and is based on code generated
from the logical portion of the service endpoint’s contract.
Artix ESB loads the object that contains the logic for the
service and creates a servant that wraps the implementation
so that it can be managed by the runtime.

The implementation does not have direct access to the request
messages. It receives messages from the Artix ESB runtime as
parameters to the operations specified in the contract from

17

which it was generated. Similarly, it returns any responses to
the bus as a return value. The marshaling of the data is handled
by the binding plug-in. The service implementation has no
knowledge of how the messages are packaged.

Exceptions thrown in the implementation object are also passed
to the messaging chain. The lower layers of the messaging
chain will handle the exception as a fault message. How the
exception is returned to the consumer depends on how the
service is defined in the contract. For example, services that use
CORBA will use the CORBA exception mechanism for reporting
remote exceptions and services the use SOAP/HTTP will respond
with a SOAP fault containing information about the exception.

Request level interceptors
Request-level interceptors sit between the binding and the
service implementation. They have access to the message data
when it is in between the bits received off of the wire and the
objects manipulated by the service implementation, so they
can access the header values of the message. For example,
the WS-Security specification requires that a SOAP header
holding the security token be included with all requests. A
request-level handler could remove this header and authorize
the consumer before the request is passed to the
implementation.

Request-level interceptors can also inspect and change the
parameters of the operation that fulfils the request. For
example, if a payment being passed to a make_payment()
operation is specified in Euros and the service endpoint
process values in US dollars, a request-level handler can do
the conversion before the data is passed to the
implementation. Return values can also be inspected and
changed.

Exceptions thrown in request-level handlers cause the message
to be immediately dispatched to the binding. They are labeled
as fault messages. Requests will not be passed onto the service
implementation.

The binding is responsible for converting messages between the
binary types used by the service implementation and the data
format used on the wire. The mapping is determined by the
WSDL binding element. Artix will load the appropriate binding
based on the binding elements in the contract defining the
endpoint.

Exceptions thrown in the binding are sent back down the
messaging chain as a fault message. Requests will not be
passed to the request-level interceptors.

Message level interceptors
Message-level interceptors sit between the binding and the
transport. When a request comes in, message-level interceptors
have access to the binary stream holding the message pulled off

18

the wire. At this point, they can perform actions such as
decompression or decryption. When a response is being
returned, interceptors have access to the binary stream holding
the newly packaged message. At this point they can perform
actions such as compression or encryption.

Transport
The transport is responsible for pulling requests off of the network
and placing responses back on the network. The transport to be
loaded and their configuration are determined by the WSDL
port elements included in the contract defining the endpoint.

Artix ESB in a consumer

A consumer is an endpoint that makes requests on a service
provider. Using stub code produced by running a contract
through the Artix ESB code generators, you can create a
consumer that uses Artix ESB to load a service proxy for the
service defined by the contract and connect to one of the service
providers implementing that service. The bus can also load any
components needed to provide the features you desire.

What makes up a consumer
As shown in Figure 5, a consumer built with Artix ESB has the
following pieces:

 the consumer implementation

 a service proxy

 a binding

 a transport

In addition, a consumer endpoint can have any number of
request-level and message-level interceptors that provide
added functionality to the endpoint. These interceptors, which
are independent of the WSDL document defining the service’s
interface, have access to requests after the service proxy. They
also have access to the response before the service proxy. They
can be used to perform functions such as encryption, validation,
or header processing.

19

Figure 5. High-level View of a Consumer

Consumer implementation
The consumer implementation provides the business logic for
the consumer. As part of the consumer implementation you
need to instantiate and register service proxies for any service
endpoint upon which the consumer will make requests.

Service proxy
The service proxy is a stub generated from the logical portion of
a contract defining the service upon which the consumer will
make requests. It allows a consumer to invoke the operations
offered by a service provider.

When instantiated, a service proxy provides a connection to a
service provider that implements the service defined in the

20

contract from which it was generated. As part of their
instantiation, service proxies are registered with the runtime so
that the invocations made on the service proxy can be properly
delivered to the desired service provider.

Request-level interceptors
Request-level interceptors sit between the service proxy and the
binding. They have access to the parameters of the invoked
operation. They can inspect the parameters and take action
based on their values. They can also alter the value of any of the
parameters.

While they can change the values of the operation’s parameters,
request-level handlers cannot add or remove parameters to the
operation. For example, you could not use a request-level
interceptor to split a single parameter that contains the user’s
full name into two parameters: one for the first name and one
for the last name.

Request-level handlers also have access to the message headers
that are included with the message. When requests are made,
they can add a SOAP header to the message. For example, you
could write a request-level handler to add a WS-Security header
to all out-going requests. When a response is received, request-
level handlers can inspect the message headers before the
message is passed back into the consumer implementation.

Exceptions generated in a request-level interceptor are
immediately returned to the consumer implementation. If the
exception is thrown while processing a request, the request is
not sent. The consumer implementation is responsible for
properly handling the exception.

Binding
The binding is responsible for converting messages between the
binary types used by the consumer implementation and the
data format used on the wire. The mapping is determined by the
WSDL binding element. Artix loads the appropriate bindings
based on the binding elements in the contract defining the service
to which the client is making requests.

Exceptions in the binding are sent back up the messaging chain
as a fault message. Requests will not be passed to the message-
level interceptors.

Message-level interceptors
Message-level interceptors sit between the binding and the
transport. When a request is made, they have access to the
binary data stream that contains the newly packaged message

21

before it is placed onto the wire. At this point they can perform
actions such as compression or encryption of the outgoing
request. When a response is received, the interceptors have
access to the binary stream that represents the message pulled
off of the wire. At this point, they can perform operations such as
decompress the data or decrypt it.

Message level interceptors return exceptions directly to the
consumer implementation. If the exception is thrown wile
processing a request, the request is not sent. If the exception is
thrown when processing a response, the message is not passed
to the rest of the messaging chain.

Transport
The transport is responsible for placing requests on the network
and pulling responses back off of the network. The transports
and their configuration are determined by the WSDL port
elements in the contract defining the service endpoint on which
the consumer endpoint is invoking.

Artix ESB in an Intermediary

An intermediary is a special case of a service provider. It is a
service provider whose primary function is intercept messages,
perform some value-added processing, and possibly pass the
message on to its intended destination. Intermediaries have
some of the characteristics of a service provider and some of the
characteristics of a consumer. They are typically defined by a
contract defining all of the interfaces required by the
intermediary and that has been extended to contain the rules for
how the intermediary is to process messages. Using the
extended contract, you can generate skeleton code and stub
code for the endpoints with which the intermediary will interact.
Alternatively, intermediaries can use generic interfaces that are
created at runtime based on the information provided in the
contract. Artix ESB will use the information in the contract to
load the components needed to connect the intermediary to the
network.

Artix ESB uses an intermediary to service-enable legacy systems
by performing transport and binding switching. Other uses of
intermediaries are message routing and message
transformation. For more information about the intermediaries
provided with Artix see The Router.

What makes up an intermediary
As shown in Figure 6, an intermediary built using Artix ESB has
the following pieces:

 a service-side transport

22

 a service-side binding

 a service implementation

 a service proxy

 a consumer-side binding

 a consumer-side transport

In addition, an intermediary can have any number of request-
level and message-level interceptors that provide added
functionality to the endpoint. These interceptors can be used to
perform functions such as encryption, validation, or header
processing.

Figure 6. High-level View of an Intermediary

Service-side messaging chain
An intermediary's service-side messaging chain functions
identically to the messaging chain of a service provider. It is
made up of a transport, message-level handlers, a binding, and
request-level handlers. The binding and transport are specified
by the part of the intermediary's contract that defines the
service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see Artix ESB in a Service Provider.

23

Service implementation
An intermediary's service implementation determines the
functionality of the intermediary. For example, it may inspect the
account number of a payee and use it to route the request to a
regional payment center.

The only requirement for an intermediary's service
implementation is that it continues the invocation chain for the
messages it receives. For example, if the intermediary is placed
in front of a teller service, the intermediary must pass along all
incoming requests to an instance of the teller service for which
the request was intended.

Service proxies
An intermediary has a service proxy for any service to which it
must pass messages. In some cases this may be a single
service, but an intermediary can also pass messages along to a
number of services. For example, the Artix ESB router can
redirect a message to any number of services.

Consumer-side messaging chain
An intermediary's consumer-side messaging chain functions
identically to the messaging chain of a consumer. It is made up
of request-level handlers, a binding, message-level handlers,
and a transport. The binding and transport are specified by the
part of the intermediary's contract that defines the service(s)
that the intermediary can interact with. The handlers in the
chain are specified in the intermediary's configuration.

For more information see Artix ESB in a Consumer.

Artix ESB for C++ Services
Features such as location independence, message routing, and
security require functionality that cannot be built into a smart
endpoint. To address this Artix ESB provides a number of
service providers that you deploy into your SOA.

The Artix ESB C++ Runtime Container
One of the key features of SOA is that its endpoints are highly
dynamic. The Artix ESB C++ Runtime container provides a
number of features that make endpoints more dynamic
including:

 remote deployment

 suspension of an endpoint

 automatic reloading of an endpoint

24

 dynamic endpoint configuration

 monitoring of endpoint performance metrics

The container does this by hosting a light-weight administrative
service alongside the endpoints hosted in the container.

Container server
The container server is a light weight process that can host a
number of Artix enabled endpoints. It instantiates service
implementation objects, loads the bindings and transports
specified in the contracts of the endpoints the container is
hosting, and exposes the endpoints to the network. The container
coordinates the flow of messages so that messages are
delivered to the appropriate service implementations.

In addition to the endpoints you deploy into a container, Artix
ESB C++ Runtime containers always load an instance of the
container administrative service.

Administrative service
The container’s administrative service allows you to manage the
endpoints deployed in a container. Like all services in SOA, the
administrative service is defined by a contract. By default the
administrative service is exposed as a SOAP/HTTP endpoint and
can be accessed by any consumer endpoint that instantiates an
administrative service proxy. You can alter the networking
properties of an administrative service endpoint such that it
uses any of the binding/transport combinations supported by
Artix ESB C++ Runtime.

The administrative service provides the following operations:

 List all endpoints deployed in the container

 Stop a running endpoint

 Start a dormant endpoint

 Remove an endpoint

 Deploy a new endpoint

 Get a reference to an endpoint

 Get the contract for an endpoint

 Get the URL to an endpoint's contract document

 Retrieve performance metrics for an endpoint

 Shut down the container

25

The Router

The router is an intermediary whose primary role is to redirect
messages based on rules defined in its contract. As shown in
Figure 7, a router has a service-side interface that receives
requests from consumer endpoints. It also has one or more
consumer-side service proxies that forward the request to
service implementations on the backend of the router.

Figure 7. Overview of the Artix Router

The service-side messaging chain and consumer-side
messaging chain are defined by separate parts of the router’s
contract. They do not necessarily share a common binding or
transport.

Features
A router provides a number of features:

 message routing

 payload format translation

 transport switching

 load balancing

 message broadcasting

Service-side
The service-side of a router looks like a service provider to the
other endpoints on your network. It is responsible for receiving
requests from consumers that make requests on the service
provider, or service providers, behind the router. Its interface
and messaging chain is determined by a service definition in the
router’s contract.

26

Consumer-side
The consumer-side of a router looks like a consumer to the rest
of the endpoints on your network. It consists of one or more
service proxies and their associated message chains and is
responsible for forwarding requests to the service providers on
the backend of the router. The proxies, and their messaging
chains, are defined in the router’s contract. However, they are
not instantiated until they are needed by the router. So, if one of
the destinations in the router’s contract never receives a
message, no consumer-side artifacts will be created for it.

The consumer-side proxies can all have a different combination
of bindings and transports in its messaging chains. They also
can have a different combination from the service-side of the
router.

More information
For more information about the router see the Artix Router
Guide.

Security

Artix ESB's security architecture is designed to be easily
deployable and easily connected to any existing security
infrastructure already in use. It consists of two main
components:

 the security plug-in

 the Artix security service

Security plug-in
The security plug-in is deployed into the message chain of any
service provider that uses the Artix security service. It checks
incoming requests for security credentials. Before allowing the
request to be forwarded to the service implementation, it
checks with the Artix security server to validate the user and
ensure that they are authorized to access the service. The
security plug-in uses mutually authenticated and encrypted
channel to communicate with the security service.

For optimization, the security plug-in has a token cache that
holds on to authorization tokens from the security server. Before
sending the credentials to the security server, the plug-in will
check its cache for a valid token that matches the credentials
from the request. If a valid token is stored in the plug-in’s
cache, the plug-in will use it. If not, it will request one from the
security service.

27

Security service
The Artix security service provides the authentication and
authorization functionality for Artix service providers. It is
designed to use pluggable adapters that connect to a variety of
credential datastores. For example, if you are already using
LDAP on your systems, the Artix security server can leverage
that data to perform its functions.

The Artix security server has the following enterprise features:

 high-availability through clustering

 token federation

More information
For more information about Artix security see the Artix
Security Guide.

The Locator

The locator is a lightweight registry of deployed service
endpoints. Service endpoints register with a locator instance
and consumer endpoints can use a locator instance to get
references to an endpoint that implements a given service. It
uses WS-Addressing compliant endpoint references to provide
addressing information to consumers.

As shown in Figure 8, the locator consists of three components:

 the locator service

 the locator endpoint plug-in

 the locator client plug-in

28

Figure 8. Overview of the Locator

Features
The locator has the following features:

 look up of references to deployed service endpoints

 load balancing among endpoints that implement the same
service

 high availability

Locator service
The locator service, like all services, is defined by a WSDL
document. Artix ESB contains a service implementation using
skeleton code generated from this contract. You can deploy an
instance of the locator service into an Artix container to create a
locator service provider that can respond to the following types of
requests:

 service registration

 service deregistration

 service endpoint look-up

 service endpoint query

The locator contract defines a locator service endpoint using
SOAP/HTTP. You should not modify this because the peer

29

manager that is used to interact with the locator cannot work
with other transports.

Because the locator service is defined by a standard contract
and deployed as a SOAP/HTTP endpoint, it can be used by any
endpoint in your SOA that communicates using SOAP/HTTP. For
instance if you have .NET clients that want to use the locator to
find service instances, it is not a problem. You could also
register Axis based services with an instance of the locator
service. All a non-Artix ESB client needs to do is generate a
service proxy for making requests against the locator service.

Locator endpoint plug-in
The locator endpoint plug-in is loaded into the process space of
a service provider that wants to register with an instance of the
locator. The plug-in is responsible for registering the service with
a locator instance when the service provider starts up. It is also
responsible for loading a peer manager that is responsible for
monitoring the health of the locator instance with which it is
registered. If the associated locator instance goes down, the
peer manager reregisters the service provider when it returns. If
the service provider goes down, the locator instance unregisters
it.

Locator client plug-in
The locator client plug-in is loaded into the process space of an
Artix ESB enabled consumer that wants to use the locator to get
addressing information when creating a service proxy. When it
is loaded, a consumer will automatically perform look-ups on a
locator instance without creating a service proxy for the locator.
The plug-in has its own locator service proxy that is used by the
Artix ESB initial reference resolving mechanism. The plug-in
does not, however, support service provider queries.

More information
For more information on the locator see the Artix Locator
Guide.

The Session Manager

The session manager is a versatile service that provides the
following features:

 Limiting the amount of time a consumer endpoint can
access a service endpoint

 Limiting the number of concurrent consumer connections to
a service endpoint

30

 Stateful service endpoints

Components
The session manager is implemented in a modular fashion. It
consists of the following components:

 the session manager service

 a policy plug-in that is collocated with each instance of the
service

 an endpoint manager plug-in that is collocated with all
managed service providers

 a session token interceptor that sits in the messaging chain
of all managed service providers

Session manager service
The session manager service is defined by a WSDL document
and is implemented by a library shipped with Artix ESB. You
deploy instances of the session manager service
implementation into an Artix ESB C++ Runtime container to
create session manager service providers. These service providers
can be accessed by any consumer that can instantiate a proxy for
the session manager service and communicate using
SOAP/HTTP.

In general, consumers will request lists of registered service
groups from the session manager. The consumer will then
invoke on the session manager to request a session for one of the
returned service groups. In addition, consumers can request
extensions to their sessions and request that a session be ended.
The other session manager components also have specific
operations that they invoke on the session manager service to
provide the service-side functionality.

Policy plug-in
The session policy plug-in is deployed into the same process
space as a session manager service instance. It is responsible
for defining rules about the duration of sessions, rules about the
number of concurrent sessions allowed per group, and other rules
about how sessions are granted. Before the session manager
grants a session to a consumer, it checks with the policy plug-in.

Artix ESB includes with a default policy plug-in called
sm_simple_policy. This plug-in uses information from the
session manager's configuration file to determine length of
sessions and the maximum number of concurrent sessions

31

allowed. If you need more detailed session rules, you can write
your own policy plug-in.

Endpoint manager
The endpoint manager plug-in is loaded into the process space
of an Artix service providers that wants to register with a session
manager instance. The endpoint managers are in constant
communication with the session manager instance to report on
the endpoint’s health, to receive information on new sessions
that have been granted to the managed service providers, and
to check on the health of the session manager instance.

Session token interceptor
The session token interceptor is placed in a service provider's
messaging chain when it is configured to use managed sessions.
It looks for the session token that is attached to a request. If no
session token is found, the interceptor rejects the request. If
the session token is found, the token is sent to the endpoint
manager for verification. If the session token is invalid, the
interceptor rejects the request. If the session is valid, the
request is passed up the message chain.

More information
For more information on the session manager see the Session
Manager.

33

Extending Artix ESB
In addition to Artix ESB, you can add other packages from the
Artix suite to extend your SOA infrastructure. These packages
offer features like mainframe connectivity, orchestration, .NET
integration, and repository functionality.

Artix ESB Management Integration
Artix ESB enables you to use integrate Artix ESB C++ Runtime
and Artix ESB Java Runtime services with a number of enterprise
management systems. These include:

 Actional

 AmberPoint

 BMC Patrol

 Java Management Extensions(JMX)

Actional

Integration between Artix ESB and Actional enables Artix ESB
services to be monitored by Actional SOA management
products. For example, you can use Actional SOA management
tools to perform monitoring, auditing, and reporting on Artix ESB
services. You can also correlate and track messages through
your network to perform dependency mapping and root cause
analysis.

The Artix–Actional integration is deployed on Artix ESB service
endpoints to enable reporting of management data back to the
Actional server. The data reported back to Actional includes
system administration metrics such as response time, fault
location, auditing, and alerts based on policies and rules.

The integration relies on two components to monitor your
services and report the data back to the Actional SOA
management tools:

Actional Agents
An Actional agent is run on each service endpoint that you wish
to manage. Actional agents are used to provide instrumentation
data back to the Actional server. Actional agents are provisioned
from the Actional server to establish initial contact and send
configuration to the Actional agent. There is one Actional agent
per service endpoint.

34

Artix ESB Interceptors
Interceptors are added to an endpoint's messaging chain that
send the instrumentation data to the Actional agent using an
Actional-specific API. These interceptors essentially push
events to the Actional agent. The data is analyzed and stored in
the Actional agent for retrieval later by the Actional server.
However, any alerts triggered at the Actional agent are sent
immediately to the Actional server.

AmberPoint

The Artix ESB AmberPoint Agent can be deployed with Artix ESB
endpoints that use SOAP over HTTP to enable reporting of
performance metrics back to AmberPoint.

The agent enables the use of the following AmberPoint features:

 Dynamic discovery of Artix ESB clients and services using
SOAP over HTTP.

 Monitoring of Artix ESB client and service invocations, and
reporting them back to AmberPoint.

 Mapping Qualities of Service to customer Service Level
Agreements (SLAs).

 Monitoring of Artix ESB invocation flow dependencies, which
enables AmberPoint to draw Web service dependency
diagrams.

 Centralized logging and performance statistics.

BMC Patrol

The Artix ESB BMC Patrol integration performs the following key
enterprise management tasks:

 Posting an event when a server crashes. This enables
programmed recovery actions to be taken.

 Tracking key server metrics (for example, server response
times). Alarms are triggered when these go out of bounds.

The server metrics tracked by the BMC Patrol integration include
the number of invocations received, and the average, maximum
and minimum response times. The BMC Patrol integration also
enables you to track these metrics for individual operations.
Events can be generated when any of these parameters go out of
bounds. You can also perform a number of actions on servers
including stopping, starting and restarting.

35

In the BMC Patrol integration, key server metrics are logged by
performance logging plugins. The BMC Patrol integration
provides Artix ESB Knowledge Modules, which conform to
standard BMC Knowledge Module design and operation. These
modules tell the BMC Patrol console how to interpret the logging
data.

JMX

Artix ESB endpoints are instrumented to allow runtime
components to be exposed as JMX Managed Beans (MBeans).
This enables an endpoint to be monitored and managed either
in process or remotely with the help of the JMX Remote API. In
addition to providing instrumented runtime components, Artix
ESB allows you to build and register custom MBeans so you can
monitor metrics that are specific to an application.

For Artix ESB C++ Runtime endpoints you can monitor the
following runtime components out of the box:

 Bus

 Service

 Port

For Artix ESB Java Runtime endpoints you can monitor the
following runtime components out of the box:

 bus

 Service endpoint

