
 
 
 
 
 

Artix 5.6.4 
 
 
 

Artix for J2EE (JAX-WS) 
 

 

 

 



 

 

Micro Focus 
The Lawn 
22-30 Old Bath Road 
Newbury, Berkshire RG14 1QN 
UK 
 
 
http://www.microfocus.com 
 
Copyright © Micro Focus 2017. All rights reserved.  
 
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or 
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or 
affiliated companies in the United States, United Kingdom and other countries. 
All other marks are the property of their respective owners. 
 
 
2017-02-23 



 

Artix for J2EE (JAX-WS)  iii 

Contents 

Preface ................................................................... v 
What is Covered in This Book ..................................................... v 
Who Should Read This Book ...................................................... v 
How to Use This Book .............................................................. v 
The Artix ESB Documentation Library ....................................... vi 
Further Information and Product Support .................................. vi 

Information We Need .......................................................... vi 
Contact information ........................................................... vii 

Introduction ........................................................... 1 
J2EE Connector Architecture Overview ...................................... 1 
Artix JCA Connector Overview .................................................. 1 

Exposing a J2EE application as a Web Service ........ 3 
Introduction .......................................................................... 3 
Service Implemented as a Message Driven Bean ......................... 4 
Service Implemented as a Stateless Session Bean ...................... 8 
WSDL First—Service Implemented as a SLSB ........................... 12 

Exposing a Web Service to a J2EE Application ...... 21 
Introduction ........................................................................ 21 
Implementation Steps ........................................................... 21 
Writing Your Application ........................................................ 22 
Packaging Your Application .................................................... 25 

Deploying Artix JCA Connector ............................. 27 
Introduction ........................................................................ 27 
Setting your Environment ...................................................... 27 
Deploying to WebSphere 7.0 .................................................. 27 

Configuring Artix JCA Connector .......................... 31 
Inbound Activation Configuration ............................................ 31 

 

 





 

Artix for J2EE (JAX-WS)  v 

Preface 
What is Covered in This Book 

This book describes how to use Artix in a J2EE application server 
environment. It applies to applications developed using the 
Artix JAX-WS API. 

Who Should Read This Book 
This book is aimed at J2EE application programmers who want 
to use the Artix JAX-WS API to develop and deploy distributed 
J2EE applications that are Web service enabled. 

To use this guide, although you do not need an in depth 
knowledge of Artix concepts, WSDL and Web services, you do 
need to be familiar with these topics. Take a look at Using the 
Artix Library for pointers to books that might be of interest to 
you. 

How to Use This Book 
This book is organized into the following chapters: 

 Introduction gives a brief overview of the J2EE Connector 
Architecture and the Artix JCA Connector. 

 Exposing a J2EE application as a Web Service describes how 
to use the Artix JCA Connector to expose your J2EE 
application as a Web service; that is, for inbound 
connections. 

 Exposing a Web Service to a J2EE Application describes how 
to use the Artix JCA Connector to connect your J2EE 
application to a Web service; that is, for outbound 
connections. 

 Deploying Artix JCA Connector describes how to deploy Artix 
JCA Connector and your application to your application 
server. 

 Configuring Artix JCA Connector provides details of the 
activation specification properties supported by the Artix JCA 
Connector. 

  



 

vi  Artix for J2EE (JAX-WS) 

The Artix ESB Documentation Library 
For information on the organization of the Artix ESB library, 
the document conventions used, and where to find additional 
resources, see Using the Artix ESB Library. 

Further Information and Product Support 
Additional technical information or advice is available from 
several sources.  

The product support pages contain a considerable amount of 
additional information, such as:  

 The WebSync service, where you can download fixes and 
documentation updates.  

 The Knowledge Base, a large collection of product tips and 
workarounds.  

 Examples and Utilities, including demos and additional 
product documentation.  

Note:  
Some information may be available only to customers who 
have maintenance agreements.  

If you obtained this product directly from Micro Focus, contact 
us as described on the Micro Focus Web site, 
http://www.microfocus.com. If you obtained the product from 
another source, such as an authorized distributor, contact 
them for help first. If they are unable to help, contact us.  

Information We Need 

However you contact us, please try to include the information 
below, if you have it. The more information you can give, the 
better Micro Focus SupportLine can help you. But if you don't 
know all the answers, or you think some are irrelevant to 
your problem, please give whatever information you have.  

 The name and version number of all products that you 
think might be causing a problem.  

 Your computer make and model.  

 Your operating system version number and details of any 
networking software you are using.  

 The amount of memory in your computer.  

 The relevant page reference or section in the 
documentation.  



 

Artix for J2EE (JAX-WS)  vii 

 Your serial number. To find out these numbers, look in the 
subject line and body of your Electronic Product Delivery 
Notice email that you received from Micro Focus.  

Contact information 

Our Web site gives up-to-date details of contact numbers and 
addresses.  

Additional technical information or advice is available from 
several sources.  

The product support pages contain considerable additional 
information, including the WebSync service, where you can 
download fixes and documentation updates. To connect, enter 
http://www.microfocus.com in your browser to go to the Micro 
Focus home page.  

If you are a Micro Focus SupportLine customer, please see 
your SupportLine Handbook for contact information. You can 
download it from our Web site or order it in printed form from 
your sales representative. Support from Micro Focus may be 
available only to customers who have maintenance 
agreements. 

You may want to check these URLs in particular: 

 http://www.microfocus.com/products/corba/artix.aspx 
(trial software download and Micro Focus Community files) 

 https://supportline.microfocus.com/productdoc.aspx 
(documentation updates and PDFs) 

To subscribe to Micro Focus electronic newsletters, use the 
online form at: 

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp 

 





 

Artix for J2EE (JAX-WS)  1 

Introduction 
Using the Artix JCA Connector, developers can easily connect their 
J2EE applications to Artix Web services and expose their J2EE 
applications as Artix Web services from within their chosen J2EE 
application server. 

J2EE Connector Architecture Overview 
The J2EE Connector Architecture (JCA) outlines a standard 
architecture for enabling J2EE applications to access resources 
in diverse Enterprise Information Systems (EISs). The goal is to 
standardize access to non-relational resources in the same way 
the JDBC API standardizes access to relational data. 

The J2EE Connector Architecture is implemented in a J2EE 
application server and an EIS-specific resource adapter. The 
resource adapter plugs into the J2EE application server and 
provides a system library specific to, and connectivity to, that 
EIS. 

The Artix JCA Connector is a JCA 1.5 resource adapter. 

For more information on the J2EE Connector Architecture, see 
the JCA 1.5 Specification 
(http://www.oracle.com/technetwork/java/javasebusiness/dow
nloads/java-archive-downloads-eeplat-

419426.html#J2EE_CONNECTOR-1.5-FR-SPEC-G-F). 

Artix JCA Connector Overview 
The Artix JCA Connector is a J2EE Connector Architecture 1.5 
resource adapter. It enables you to expose Artix Web services to 
your J2EE applications and allows you to expose your J2EE 
applications as Artix Web services. 

The term Web services is used here to include SOAP over HTTP 
based services and any service that has been exposed as a Web 
service by Artix. The Artix JCA Connector transparently 
connects your J2EE applications over multiple transports to any 
Artix-enabled back-end service. This includes HTTP, CORBA, IIOP, 
IBM WebSphere MQ, and Java Messaging Service (JMS). 

NOTE: To use the Artix JCA Connector your application server must 
support JCA 1.5 and EJB 2.1 or higher.  

 

Graphical representation 
Figure 1 illustrates, at a high-level, how the Artix JCA Connector 
exposes a Web service to a J2EE application. It acts as a bridge 
between J2EE and SOAP over HTTP Web services. This is the 



 

2  Artix for J2EE (JAX-WS) 

simplest example. It also illustrates that the Artix JCA 
Connector can be used as a bridge between J2EE and a CORBA 
server that has been exposed as a Web service by Artix. 

Figure  1.  Connecting J2EE Applications to Web services 

 

The Artix JCA Connector also enables inbound connections, 
allowing you to expose your J2EE application as a Web 
service. 

Artix JCA Connector RAR file 
The Artix JCA Connector resource adapter is packaged as a 
standard J2EE Connector Architecture resource adapter archive 
(RAR) file and is called cxf.rar. The cxf.rar file contains all of 
the classes that the Artix JCA Connector needs to manage both 
inbound and outbound connections. 

Artix JCA Connector deployment descriptor 
The Artix JCA Connector deployment descriptor file, ra.xml, 
contains information about Artix JCA Connector's resource 
implementation, configuration properties, transaction and 
security support. It describes the capabilities of the resource 
adapter and provides a deployer with enough information to 
properly configure the resource adapter in an application server 
environment. 

An application server relies on the information in the 
deployment descriptor to know how to interact properly with the 
resource adapter. The deployment descriptor is packaged in the 
Artix JCA Connector RAR file. 

Connection management  
]For information on how to use the Artix JCA Connector to 
manage inbound connections, see Exposing a J2EE application as 
a Web Service. 

For information on how to use the Artix JCA Connector to 
manage outbound connections, see Exposing a Web Service to a 
J2EE Application. 

 



 

Artix for J2EE (JAX-WS)  3 

Exposing a J2EE 
application as a Web 
Service 
This chapter describes how to use the Artix JCA Connector for inbound 
connections. 

Introduction 
The Artix JCA Connector's inbound support makes use of the 
JCA 1.5 specification's message inflow contract and EJB 2.1 or 
higher message-driven beans (MDBs). The JCA 1.5 
specification defines a framework that allows the Artix JCA 
Connector to be notified when a MDB starts. The Artix JCA 
Connector then activates the CXF service endpoint facade, 
which receives client requests and invokes on the MDB's 
listener interface. 

The instructions in this chapter assume that you are familiar 
with writing EJBs, including Message Driven Beans and 
Stateless Session Beans. 

NOTE: To use the Artix JCA Connector your application server must 
support JCA 1.5 and EJB 2.1 or higher; for example, WebSphere 7.0..  

 

More information 
For more information about the JCA 1.5 message inflow contract, 
see Chapter 12, Message Inflow of the JCA 1.5 Specification 
(http://www.oracle.com/technetwork/java/javasebusiness/dow
nloads/java-archive-downloads-eeplat-

419426.html#J2EE_CONNECTOR-1.5-FR-SPEC-G-F). 

In addition, if you are interested in knowing more about what 
goes on behind the scenes when a resource adapter, such as the 
Artix JCA Connector, invokes an application asynchronously 
through a MDB, see JCA 1.5, Part 3: Message Inflow 
(http://www.ibm.com/developerworks/java/library/j-jca3/). 

Usage scenarios 
You can use the Artix JCA Connector to expose your J2EE 
application as a Web service using any of the following 
scenarios: 

 Java first, where you implement your service as one of the 
following: 



 

4  Artix for J2EE (JAX-WS) 

 Message Driven Bean (MDB). In this case, incoming 
requests do not need to be dispatched to another EJB; 
the MDB includes the service implementation. 

See Service Implemented as a Message Driven Beanfor 
more details. 

 Stateless Session Bean (SLSB). In this case, you use an 
Artix-provided generic MDB to dispatch incoming 
requests to your SLSB. 

See Service Implemented as a Stateless Session Bean 
for more details. 

 WSDL first, where your starting point is the service WSDL 
file. You use Artix to generate JAX-WS compliant Java from 
the WSDL file and implement your service as a SLSB. Here, 
again, you use the Artix-provided generic MDB to dispatch 
incoming requests to your SLSB. 

See WSDL First—Service Implemented as a SLSB for more 
details. 

The rest of this chapter describes these scenarios in more detail. 

Service Implemented as a Message Driven Bean 
In this scenario you implement your service as a MDB. When it 
starts, the MDB notifies the Artix JCA Connector. The Artix JCA 
Connector activates the CXF service endpoint facade, which 
receives client requests and invokes directly on the MDB. 
Incoming invocations do not have to be dispatched to another 
EJB. 

In addition, there is no need for a service WSDL file. Artix uses 
the service endpoint interface to build a service model as it is 
defined in the activation specification serviceInterfaceClass 
property in your application's deployment descriptor file, ejb-
jar.xml. 

Advantages  
The advantages of using this approach is that it preforms faster 
than either of the SLSB scenarios because the MDB does not 
need to dispatch incoming requests to another EJB. 

In addition, you do not need to implement EJB Home, Local or 
Remote interfaces. 

Disadvantages 
The disadvantage of this approach is that the service endpoint 
interface has to be exposed as the messagelistener-type element 
in the Artix JCA Connector's deployment descriptor. This means 
that you have to edit the Artix JCA Connector's deployment 
descriptor file. 



 

Artix for J2EE (JAX-WS)  5 

Sample application 
Artix includes a working example of this scenario. You can find 
it in the following directory of your Artix installation: 

InstallDir/samples/cxf/integration/jca/inbound-mdb 

If you want to build and run this sample, please follow the 
instructions outlined in the README.txt file located in this 
directory. The example code shown in this section is taken from 
this sample application. 

High-level Implementation Steps 
Complete the following steps if you want to use the Artix JCA 
Connector to expose your J2EE application, implemented as a 
MDB, as a Web service: 

1. Write a MDB that implements the service that you want to 
expose. See, for instance, GreeterBean.java located in 
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb/src/demo/ejb and 
shown in Example 1. 

Example  1.  Message Driven Bean—GreeterBean.java 

 

  

 
package demo.ejb; 
 
import javax.ejb.MessageDrivenBean;  
import javax.ejb.MessageDrivenContext; 
 
import org.apache.hello_world_soap_http.Greeter; 
 
publicclass GreeterBean implements MessageDrivenBean, Greeter {  
 
    public String sayHi() { 

System.out.println("sayHi called "); return "Hi there!"; 
} 

 
public String greetMe(String user) {  
     System.out.println("greetMe called user = " + user);  
     return "Hello " + user; 
} 

 
//---------------- EJB Methods 
public void ejbCreate() { 
} 

 
public void ejbRemove() { 
} 

 
public void setMessageDrivenContext(MessageDrivenContext mdc) { 
} 

} 



 

6  Artix for J2EE (JAX-WS) 

2. Write a deployment descriptor for your MDB. See, for 
instance, the ejb-jar.xml file located in 
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb/etc 

and shown in Example 2. 

Example   2.   Message Driven Bean Deployment Descriptor—
ejb-jar.xml 
<?xml version="1.0"?> 
... 
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"  
version="3.0" metadata-complete="true"> 

 
<enterprise-beans> 

<message-driven> 
<ejb-name>Greeter MDB</ejb-name> 
<ejb-class>demo.ejb.GreeterBean</ejb-class> 
<messaging-type>  

org.apache.hello_world_soap_http.Greeter 
</messaging-type> 
<transaction-type>Bean</transaction-type> 

 
<activation-config> 

<!-- displayName --> 
<activation-config-property> 

<activation-config-property-name>  
displayName 

</activation-config-property-name> 
<activation-config-property-value>  

MyCxfEndpoint 
</activation-config-property-value> 

</activation-config-property> 
 

<!-- service endpoint interface --> 
<activation-config-property> 

<activation-config-property-name>  
serviceInterfaceClass 

</activation-config-property-name> 
<activation-config-property-value> 

org.apache.hello_world_soap_http.Greeter 
</activation-config-property-value> 

</activation-config-property> 
 

<!-- address --> 
<activation-config-property> 

<activation-config-property-name> address 
</activation-config-property-name> 
<activation-config-property-value>  

http://localhost:9999/GreeterBean 
</activation-config-property-value> 

</activation-config-property> 
</activation-config> 

</message-driven> 
</enterprise-beans> 

 
<assembly-descriptor> 
<method-permission> 

<unchecked/> 
<method> 

<ejb-name>GreeterBean</ejb-name> 
<method-name>*</method-name> 

</method> 
</method-permission> 

<container-transaction> 
<description/> 



 

Artix for J2EE (JAX-WS)  7 

<method> 
<description/> 
<ejb-name>GreeterBean</ejb-name> 
<method-name>*</method-name> 

</method> 
<trans-attribute>Supports</trans-attribute> 

</container-transaction> 
</assembly-descriptor> 

</ejb-jar> 
 

For more information about the supported activation 
configuration properties, see Inbound Activation 
Configuration. 

If you are using EJB 3.0, the only change you need to make 
to the deployment descriptor is in the opening <ejb-jar> 
element. For EJB 3.0 it should read as shown in Example 3. 

Example 3. EJB 3.0 Deployment Descriptor 

 

3. Package your application in an EJB JAR file. 

4. Make a copy of the Artix JCA Connector's deployment 
descriptor file, ra.xml, which is located in the following 
directory of your Artix installation: 

InstallDir/samples/cxf/integration/jca/inbound-mdb/etc 

5. Edit the ra.xml file so that the messagelistener-type element 
defines the same interface as the messaging-type element 
defined in your MDB deployment descriptor. This ensures that 
the Artix JCA Connector is notified when the MDB starts. 

6. Build the Artix JCA Connector RAR file. It must have the 
following structure and contents: 

Table   1.   RAR File Structure & Contents: Service 
Implemented as MDB 

Directory Contents 

META-INF The ra.xml file that you modified. 

Root The cxf-integration-jca-*.jars from the 
ArtixInstallDir/lib/cxf/integration directory and all 
of the JARs in the ArtixInstallDir/lib/cxf directory, 
except the: 

cxf-manifest.jar 

The sample application build.xml file includes a generate.rar 
target that you can use to build the RAR file (see Example 
4). 

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 

 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd" version="3.0">



 

8  Artix for J2EE (JAX-WS) 

Example  4.  generate.rar Target 
<target name="generate.rar" depends="init"> 

<copy file="${basedir}/etc/ra.xml" todir="${build.classes.dir}/cxf-rar/META-INF"/> 
 

<copy todir="${build.classes.dir}/cxf-rar"> 
<fileset dir="${cxf.home}/lib/cxf"> 

<include name="*.jar"/> 
<exclude name="*manifest*.jar"/> 

</fileset> 
<fileset dir="${cxf.home}/lib/cxf/integration"> 

<include name="*.jar"/> 
</fileset> 

</copy> 
<jar destfile="${build.classes.dir}/lib/cxf.rar" basedir="${build.classes.dir}/cxf-
rar"/> 

</target> 
 

The cxf.home variable must be set to the ArtixInstallDir 
directory. This is done for you when you set your Artix 
environment (see the Getting Started chapter in the 
Configuring and Deploying Artix Solutions, Java 
Runtime guide). 

7. Deploy the Artix JCA Connector RAR file and your EJB JAR 
file to your J2EE application server. For details, see Deploying 
Artix JCA Connector. 

Service Implemented as a Stateless Session 
Bean 

In this scenario you implement your service as a Stateless 
Session Bean (SLSB). Artix provides a generic MDB 
implementation that notifies the Artix JCA Connector when it 
starts. The Artix JCA Connector then activates the CXF service 
endpoint facade, which dispatches client requests to the generic 
MDB. The MDB dispatches incoming requests to your SLSB, 
using the SLSB's EJB local reference (as implemented in its 
Local Home interface). 

Advantages 
The advantage of this approach is that you do not have to edit 
the Artix JCA Connector deployment descriptor. 

In addition, there is no need for a service WSDL file. Artix uses 
the service endpoint interface to build a service model as it is 
defined in the activation specification serviceInterfaceClass 
property in your application's deployment descriptor file, ejb-
jar.xml. 

Disadvantages 
The disadvantage of this approach is that it may not perform as 
fast as the approach described in Service Implemented as a 
Message Driven Bean. 



 

Artix for J2EE (JAX-WS)  9 

Sample application 
Artix includes a working example of this scenario. You can find 
it in the following directory of your Artix installation: 

InstallDir/samples/integration/jca/inbound-mdb-dispatch 

If you want to build and run this sample, please follow the 
instructions outlined in the README.txt file located in this 
directory. The example code shown in this section is taken from 
this sample application. 

High-level Implementation Steps 
Complete the following steps if you want to use the Artix JCA 
Connector to expose your J2EE application, implemented as a 
SLSB, as a Web service: 

1. Write a SLSB that implements the service that you want to 
expose. See, for instance, GreeterBean.java located in 
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/src/demo/ejb and 
shown in Example 5. 

Example   5.   Stateless Session Bean—GreeterBean.java 

 

2. Write an EJB Local Home interface for your SLSB. See, for 
instance, GreeterLocalHome.java located in ArtixInstallDir 
/samples/integration/jca/inbound-mdb-dispatch/src/demo/ejb and 
shown in Example 6. 

 
package demo.ejb; 
 
import javax.ejb.CreateException;  
import javax.ejb.SessionBean;  
import javax.ejb.SessionContext; 
 
public class GreeterBean implements SessionBean { 
 

//------------- Business Methods public String sayHi() { 
System.out.println("sayHi invoked"); return "Hi from an EJB"; 

} 
 

publicString greetMe(String user) {  
System.out.println("greetMe invoked user:" + user);  
return "Hi " + user + " from an EJB"; 

} 
 

//------------- EJB Methods public void ejbActivate() { 
} 

 
public void ejbRemove() { 
} 

 
public void ejbPassivate() { 
} 

 
public void ejbCreate() throws CreateException { 
} 

 
public void setSessionContext(SessionContext con) { 
} 

} 



 

10  Artix for J2EE (JAX-WS) 

Example  6.  GreeterLocalHome.java 

 

3. Write a deployment descriptor for your SLSB and ensure 
that it includes: 

 A message-driven element under enterprise-beans that 
references to the generic MDB as follows: 

 ejb-class is org.apache.cxf.jca.inbound. 
DispatchMDBMessageListenerImpl 

 messaging-type is org.apache.cxf.jca.inbound. 
DispatchMDBMessageListener 

 An ejb-local-ref element, which is required by the MDB 
so it can look up the local EJB object reference for your 
SLSB. 

See, for instance, the ejb-jar.xml located in 
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc and 
shown in Example 7. 

Example  7.  Stateless Session Bean Deployment Descriptor—
ejb-jar.xml 

<?xml version="1.0"?> 
 
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd" version="3.0" metadata-complete="true"> 

 
<enterprise-beans> 

<session> 
<ejb-name>DispatchedGreeterBean</ejb-name> 
<home>demo.ejb.GreeterHome</home> 
<remote>demo.ejb.GreeterRemote</remote> 
<local-home>demo.ejb.GreeterLocalHome</local-home> 
<local>demo.ejb.GreeterLocal</local> 
<ejb-class>demo.ejb.GreeterBean</ejb-class> 
<session-type>Stateless</session-type> 
<transaction-type>Container</transaction-type> 

</session> 
 

<message-driven> 
<ejb-name>GreeterEndpointActivator</ejb-name> 
<ejb-class>org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl</ejb-class> 
<messaging-type>org.apache.cxf.jca.inbound.DispatchMDBMessageListener</messaging-type> 

 
<transaction-type>Bean</transaction-type> 

 
<activation-config> 

<!-- display name--> 
<activation-config-property> 
<activation-config-property-name>  

 
package demo.ejb; 
 
import javax.ejb.CreateException;  
import javax.ejb.EJBLocalHome; 
 
public interface GreeterLocalHome extends EJBLocalHome { 

GreeterLocal create() throws CreateException; 
} 



 

Artix for J2EE (JAX-WS)  11 

DisplayName 
</activation-config-property-name> 
<activation-config-property-value>  

DispatchedGreeterEndpoint 
</activation-config-property-value> 

</activation-config-property> 
<!-- service endpoint interface --> 
<activation-config-property> 
<activation-config-property-name>  

serviceInterfaceClass 
</activation-config-property-name> 
<activation-config-property-value>  

org.apache.hello_world_soap_http.Greeter 
</activation-config-property-value> 

</activation-config-property> 
<!-- address --> 
<activation-config-property> 
<activation-config-property-name>  

address 
</activation-config-property-name> 
<activation-config-property-value>  

http://localhost:9999/GreeterBean 
</activation-config-property-value> 

</activation-config-property> 
<!-- targetBeanJndiName --> 
<activation-config-property> 
<activation-config-property-name>  

targetBeanJndiName 
</activation-config-property-name> 
<activation-config-property-value>  

java:comp/env/DispatchedGreeterLocalHome 
</activation-config-property-value> 

</activation-config-property> 
</activation-config> 

 
<ejb-local-ref> 

<ejb-ref-name>DispatchedGreeterLocalHome</ejb-ref-name> 
<ejb-ref-type>Session</ejb-ref-type> 
<local-home>demo.ejb.GreeterLocalHome</local-home> 
<local>demo.ejb.GreeterLocal</local> 
<ejb-link>DispatchedGreeterBean</ejb-link> 

</ejb-local-ref> 
</message-driven> 
 
</enterprise-beans> 
</ejb-jar> 

 
For more information about the supported activation 
configuration properties, see Inbound Activation 
Configuration. 

If you are using EJB 3.0, the only change you need to make 
to the deployment descriptor is in the opening <ejb-jar> 
element. For EJB 3.0 it should read as shown in Example 3. 

4. Package your application in an EJB JAR file. 

5. Build the Artix JCA Connector RAR file. It must have the 
following structure and contents: 

 META-INF directory: Must contain the ra.xml, located in: 

ArtixInstallDir/samples/cxf/integration/jca/inbound
-mdb-dispatch/etc 



 

12  Artix for J2EE (JAX-WS) 

 Root directory: Must contain the JAR files listed under 
Root in Table 1. 

6. The sample application build.xml file includes a generate.rar 
target that you can use to build the RAR file (see Example 
4). 

Note that the ra.xml file activation spec is set to 
org.apache.cxf.jca.inbound.DispatchMDBActivationSpec, which 
includes a targetBeanJndiName configuration property that 
enables you to specify your SLSB's JNDI name. 

7. Deploy the Artix JCA Connector RAR file and your EJB JAR 
file to your J2EE application server. For details, see Deploying 
Artix JCA Connector. 

WSDL First—Service Implemented as a SLSB 
In this scenario your service is defined in a WSDL file. You use the 
wsdl2java utility to generate starting point JAX-WS compliant 
Java code from which you implement your service as a Stateless 
Session Bean (SLSB). 

It is similar to the scenario described in Service Implemented 
as a Stateless Session Bean. Again you make use of the 
generic MDB implementation provided by Artix. It notifies the 
Artix JCA Connector when it starts and the Artix JCA Connector 
then activates the CXF service endpoint facade. The service 
endpoint facade dispatches client requests to the generic MDB. 
The MDB performs a JNDI lookup to obtain a reference to your 
SLSB and dispatches incoming requests to it. 

Differences between the WSDL-first SSLB and Java-first 
SLSB 
The primary differences between this approach and the 
approach described in Service Implemented as a Stateless 
Session Bean are that: 

 You can configure the Artix bus directly by including a 
cxf.xml Artix Java configuration file in your EJB JAR file. 

 Artix creates a service bean based on the service WSDL file 
and you must include the WSDL file in the EJB JAR file. 

 Your EJB deployment descriptor must contain additional 
activation configuration properties, including: 

 busConfigLocation, which points to the location of the 
Artix Java configuration file. 

 wsdlLocation, which points to the location of the service 
WSDL file. 



 

Artix for J2EE (JAX-WS)  13 

 endpointName, which points to the PortType QName in the 
WSDL file. 

 serviceName, which points to the Service Name QName in 
the WSDL file. 

For more information on activation configuration properties, 
see Inbound Activation Configuration. 

Advantages 
One advantage of using this approach is the ability to configure 
directly the Artix bus. 

Sample application 
Artix includes a working example of this scenario. You can find 
it in the following directory of your Artix installation: 

InstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch-wsdl. 

If you want to build and run this sample, please follow the 
instructions outlined in the README.txt file located in this 
directory. The example code shown in this section is taken from 
this sample application. 

Implementation steps 
Complete the following steps if you want to use the Artix JCA 
Connector to expose your J2EE application, defined in a WSDL 
file and implemented as a SLSB, as a Web service: 

1. Set your Artix environment using the artix_java_env script, 
which is located in the ArtixInstallDir/bin directory. 

For more information on the artix_java_env script, see the 
Getting Started chapter in the Configuring and 
Deploying Artix Solutions, Java Runtime guide. 

2. Obtain a copy of, or details of the location of, the WSDL file 
that defines the Web service that your application will 
implement. 

This step assumes that the Web service WSDL file already 
exists. If, however, you need to develop a WSDL file, please 
refer to the Writing Artix ESB Contracts: Java guide. 

3. Map the WSDL file to Java to obtain starting point JAX-WS 
compliant Java code. Artix provides an wsdl2java command-
line utility that does this for you. To generate JAX-WS 
compliant Java code from your WSDL file, run the following 
command: 

wsdl2java -d [output-directory] -p [wsdl-namespace=] 
PackageName wsdlfile 

The wsdl2javaparameters are defined as follows: 



 

14  Artix for J2EE (JAX-WS) 

Table  2.  wsdl2java Parameters 

-d [output-directory] Specifies the directory to which the generated code is 
written. The default is the current working directory. 

-p [wsdl-namespace=] PackageName Specifies the name of the Java package to use for the 
generated code. You can optionally map a WSDL 
namespace to a particular package name if your 
contract has more than one namespace. 

wsdlfile Specifies the WSDL file from which the Java 
code is being generated. 

 

For more information on the wsdl2java command-line utility, 
see the Generating Code from WSDL chapter in the Artix 
Command Line Reference. 

4. Write a stateless session bean (SLSB) that implements the 
service that you want to expose. See, for instance, 
GreeterBean.java located in: 

 

and shown in Example 8. 

Example  8.  WSDL First SLSB—GreeterBean.java 
package demo.ejb; 
 
import java.util.logging.Logger;  
import javax.ejb.CreateException;  
import javax.ejb.SessionBean;  
import javax.ejb.SessionContext; 
 
import org.apache.hello_world_soap_http.Greeter;  
import org.apache.hello_world_soap_http.PingMeFault; 
import org.apache.hello_world_soap_http.types.FaultDetail; 
 
publicclass GreeterBean implements SessionBean, Greeter { 
 

private static final Logger LOG = 
Logger.getLogger(GreeterBean.class.getPackage().getName()); 

 
//------------- Business Methods 
// (copied from wsdl_first sample) 

 
publicString greetMe(String me) {  

LOG.info("Executing operation greetMe"); 
System.out.println("Executing operation greetMe"); 
System.out.println("Message received: " + me + "\n");  
return "Hello " + me; 

} 
 

publicvoid greetMeOneWay(String me) {  
LOG.info("Executing operation greetMeOneWay"); 
System.out.println("Executing operation greetMeOneWay\n"); 
System.out.println("Hello there " + me); 

} 
 

public String sayHi() { 
LOG.info("Executing operation sayHi"); 
System.out.println("Executing operation sayHi\n");  

ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch-
wsdl/src/demo/ejb 



 

Artix for J2EE (JAX-WS)  15 

return "Bonjour"; 
} 

 
publicvoid pingMe() throws PingMeFault {  

FaultDetail faultDetail = new FaultDetail(); 
faultDetail.setMajor((short)2); faultDetail.setMinor((short)1); 
LOG.info("Executing operation pingMe, throwing PingMeFault 
exception"); System.out.println("Executing operation pingMe, 
throwing PingMeFault exception\n"); 
throw new PingMeFault("PingMeFault raised by server", 
faultDetail); 

} 
 

//------------- EJB Methods public void ejbActivate() { 
} 

 
public void ejbRemove() { 
} 

 
public void ejbPassivate() { 
} 

 
public void ejbCreate() throws CreateException { 
} 

 
public void setSessionContext(SessionContext con) { 
} 

 
} 
 

5. Write an EJB Local Home interface for your SLSB. See, for 
instance, GreeterLocalHome.java located in 

 

and shown in Example 9. 

Example  9.  WSDL First—GreeterLocalHome.java 

 

6. Write an Artix Java configuration file if you want to configure 
the Artix bus directly. See, for instance, the cxf.xml Artix Java 
configuration file located in 

 

and shown in Example 10. It shows how you configure 
logging. 

For more information on how to configure the Artix bus, see 
Configuring and Deploying Artix Solutions, Java 
Runtime. 

ArtixInstallDir/samples/cxf/integration/jca/ 
inbound-mdb-dispatch-wsdl/src/demo/ejb 

 
package demo.ejb; 
 
import javax.ejb.CreateException;  
import javax.ejb.EJBLocalHome; 
 
public interface GreeterLocalHome extends EJBLocalHome { 
GreeterLocal create() throws CreateException; 
} 

 
ArtixInstallDir/samples/cxf/integration/jca/ inbound-mdb-
dispatch-wsdl/etc 



 

16  Artix for J2EE (JAX-WS) 

For information on how to configure Artix security, see the 
Artix Security Guide, Java Runtime. 

Example 10. cxf.xml—Configuring Logging 

 

7. Write a deployment descriptor for your SLSB and ensure 
that it includes: 

 A message-driven element under enterprise-beans that 
references to the generic MDB as follows: 

• ejb-class is 
org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl 

• messaging-type is 
org.apache.cxf.jca.inbound.DispatchMDBMessageListener 

 An ejb-local-ref element, which is required by the MDB 
so it can look up the local EJB object reference for your 
SLSB. 

See, for instance, the ejb-jar.xml file in  

 

and shown in Example 11. 

  

 
<beans xmlns="http://www.springframework.org/schema/beans" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:cxf="http://cxf.apache.org/core"  
xsi:schemaLocation=" 
http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd 
http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd"> 

... 
<cxf:bus> 

<cxf:features> 
<cxf:logging/> 

</cxf:features> 
</cxf:bus> 

</beans> 

 
ArtixInstallDir/samples/cxf/integration/jca/ inbound-mdb-
dispatch-wsdl/etc 



 

Artix for J2EE (JAX-WS)  17 

Example 11. WSDL First SLSB Deployment Descriptor—
ejb-jar.xml 

<?xml version="1.0"?> 
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"  
version="3.0" metadata-complete="true"> 

 
<enterprise-beans> 

<session> 
<ejb-name>GreeterWithWsdlBean</ejb-name> 
<local-home>demo.ejb.GreeterLocalHome</local-home> 
<local>demo.ejb.GreeterLocal</local> 
<ejb-class>demo.ejb.GreeterBean</ejb-class> 
<session-type>Stateless</session-type> 
<transaction-type>Container</transaction-type> 

</session> 
 

<message-driven> 
<ejb-name>GreeterEndpointActivator</ejb-name> 
<ejb-class>org.apache.cxf.jca.inbound.DispatchMDBMessageListenerImpl 
</ejb-class> 
<messaging-type>org.apache.cxf.jca.inbound.DispatchMDBMessageListener 
</messaging-type> 

 
<transaction-type>Bean</transaction-type> 

 
<activation-config> 
<!-- bus configuration location --> 
<activation-config-property> 

<activation-config-property-name> busConfigLocation 
</activation-config-property-name> 
<activation-config-property-value> etc/cxf.xml 
</activation-config-property-value> 

</activation-config-property> 
<!-- wsdl location --> 
<activation-config-property> 

<activation-config-property-name> wsdlLocation 
</activation-config-property-name> 
<activation-config-property-value> wsdl/hello_world.wsdl 
</activation-config-property-value> 

</activation-config-property> 
<!-- service name --> 
<activation-config-property> 

<activation-config-property-name> serviceName 
</activation-config-property-name> 
<activation-config-property-value> 

{http://apache.org/hello_world_soap_http}SOAPService 
</activation-config-property-value> 

</activation-config-property> 
<!-- endpoint name --> 
<activation-config-property> 

<activation-config-property-name> endpointName 
</activation-config-property-name> 
<activation-config-property-value> 

{http://apache.org/hello_world_soap_http}SoapPort 
</activation-config-property-value> 

</activation-config-property> 
<!-- service interface class --> 
<activation-config-property> 

<activation-config-property-name> serviceInterfaceClass 
</activation-config-property-name> 
<activation-config-property-value> 

org.apache.hello_world_soap_http.Greeter 
</activation-config-property-value> 

</activation-config-property> 



 

18  Artix for J2EE (JAX-WS) 

<!-- address --> 
<activation-config-property> 

<activation-config-property-name> address 
</activation-config-property-name> 
<activation-config-property-value> 

http://localhost:9000/SoapContext/SoapPort 
</activation-config-property-value> 

</activation-config-property> 
<!-- display name--> 
<activation-config-property> 

<activation-config-property-name> displayName 
</activation-config-property-name> 
<activation-config-property-value> GreeterWithWsdlEndpoint 
</activation-config-property-value> 

</activation-config-property> 
<!-- targetBeanJndiName --> 
<activation-config-property> 

<activation-config-property-name> targetBeanJndiName 
</activation-config-property-name> 
<activation-config-property-value> 

java:comp/env/GreeterWithWsdlLocalHome 
</activation-config-property-value> 

</activation-config-property> 
</activation-config> 

 
<ejb-local-ref> 
<ejb-ref-name>GreeterWithWsdlLocalHome</ejb-ref-name> 
<ejb-ref-type>Session</ejb-ref-type> 
<local-home>demo.ejb.GreeterLocalHome</local-home> 
<local>demo.ejb.GreeterLocal</local> 
<ejb-link>GreeterWithWsdlBean</ejb-link> 

</ejb-local-ref> 
</message-driven> 
 
</enterprise-beans> 
</ejb-jar> 
 

The ejb-jar.xml file in this scenario includes additional 
activation configuration properties. These properties are used 
during endpoint activation and point to: 

 The Artix Java configuration file: busConfigLocation 

 The service WSDL file: wsdlLocation 

 The service name QName as defined in the WSDL file: 
serviceName 

 The PortType QName as defined in the WSDL file: 
endpointName 

For more information on activation configuration properties, see 
Configuring Artix JCA Connector. 

8. Build your EJB JAR file and remember to include the service 
WSDL file in a wsdl directory and the Artix Java 
configuration file, if you have one, in an etc directory. 



 

Artix for J2EE (JAX-WS)  19 

9. Build the Artix JCA Connector RAR file. It must have the 
following structure and contents: 

 META-INF directory: Must contain the ra.xml, located in: 

ArtixInstallDir/samples/integration/jca/inbound-
mdb-dispatch-wsdl\etc 

 Root directory: Must contain the JAR files listed under 
Root in Table 1. 

The sample application build.xml file includes a generate.rar 
target that you can use to build the RAR file (see Example 
4). 

10. Deploy the Artix JCA Connector RAR file and your EJB JAR 
file to your J2EE application server. For details, see Deploying 
Artix JCA Connector. 

 





 

Artix for J2EE (JAX-WS)  21 

Exposing a Web 
Service to a J2EE 
Application 
You can use the Artix JCA Connector to connect your J2EE applications 
to Web services, otherwise known as outbound connections. This 
chapter walks you through the steps involved. 

Introduction 
The Artix JCA Connector includes a connection management API 
that allows you to get a connection from your J2EE application 
to an Artix Web service. The Artix JCA Connector API usage 
pattern is consistent with general connection management in 
J2EE. 

Sample applications 
Artix includes a working sample that demonstrates how outbound 
connections work. You can find it in the following directory of 
your Artix installation: 

• ArtixInstallDir/samples/cxf/integration/jca/outbound 

If you want to build and run this sample, follow the 
instructions outlined in the README.txt file located in this 
directory. The example code shown in this chapter is taken 
from this sample application. 

Implementation Steps 
Steps 
The following is a list of the steps that you need to complete to 
expose your J2EE application to a Web service using the Artix 
JCA Connector. It assumes that the Web service WSDL file 
already exists. If, however, you need to develop a WSDL file, 
please refer to the Writing Artix Contracts guide. 

1. Set your Artix environment (see the Getting Started chapter 
in the Configuring and Deploying Artix Solutions, 
Java Runtime guide). 

2. Obtain a copy of, or details of the location of, the WSDL file 
that defines the Web service to which your application 
needs to connect. 

3. Map the WSDL file to Java to obtain the Java interfaces that 
you will use when writing your application. Artix provides a 
wsdl2java command-line utility that does this for you. The 
WSDL-to-Java mapping is based on the JAX-WS standard. 



 

22  Artix for J2EE (JAX-WS) 

To generate JAX-WS compliant Java from your WSDL file, run 
the following command: 

wsdl2java -d [output-directory] -p [wsdl-namespace=] 
PackageName wsdlfile 

The wsdl2java parameters are defined as shown in Table 2. 

4. Write your application. For details, see Writing Your 
Application. 

5. Package your application. For details, see Packaging Your  
Application. 

6. Build the Artix JCA Connector RAR file. It must have the 
following structure and contents: 

Table  3.  Outbound Connections: RAR File Structure & 
Contents 

Directory Contents 

META-INF The ra.xml file located in 
ArtixInstallDir/samples/cxf/integration/jca/outbound/etc 

Root The cxf-integration-jca-*.jars from the 
ArtixInstallDir/lib/cxf/integration directory and all of the JARs in the 
ArtixInstallDir/lib/cxf directory, except the: 

• cxf-manifest.jar

The sample application build.xml file includes a generate.rar 
target that you can use to build the RAR file (see Example 
4). 

7. Deploy the Artix JCA Connector RAR file and your application 
to your J2EE application server. For details, see Deploying 
Artix JCA Connector. 

Writing Your Application 
Connection Management API Definition 
The Artix JCA Connector connection management API is 
packaged in org.apache.cxf.jca.outbound and consists of two 
interfaces—CXFConnectionFactory and CXFConnection. It is 
packaged in the following .jar file: 

ArtixInstallDir/lib/cxf/integration/cxf-integration-jca-Version-fuse.jar 

The CXFConnectionFactory interface provides the methods to 
create a CXFConnection that represents a Web service defined by 
the supplied parameters. It is the type returned from an 
environment naming context lookup of the Artix JCA Connector 
by a J2EE component and is the entry point to gaining access to 
a Web service. 



 

Artix for J2EE (JAX-WS)  23 

The CXFConnection interface provides a handle to a connection 
managed by the J2EE application server. It is the super 
interface of the Web service proxy returned by 
CXFConnectionFactory. 

Usage pattern 
To use CXFConnectionFactory your application needs to: 

1. Look up a CXFConnectionFactory in the application server's JNDI 
registry. 

2. Use the CXFConnectionFactory.getConnection method to get a 
CXFConnection. 

The CXFConnectionFactory.getConnection method takes one 
parameter, CXFConnectionSpec, which the takes following 
fields: 

 serviceName: the QName of the service. This is required. 

 endpointName: the QName of the endpoint; i.e. the port 
name. This is required. 

 wsdlURL: the URL of the WSDL file. Note that the URL can 
point to a WSDL file located in the application WAR file 
or to a location outside the application WAR file, such as 
a file location on a file system. For more information, 
see the Finding WSDL at Runtime chapter in the 
Developing Artix Applications with JAX-WS guide. 

 serviceClass: the service interface class. This is required. 

 busConfigURL: the URL of Artix Java bus configuration, if 
such configuration exists. It allows you to configure 
directly the Artix bus. This is optional. 

For more information on how to configure the Artix bus, 
see Configuring and Deploying Artix Solutions, 
Java Runtime. 

For information on how to configure Artix security, see the 
Artix Security Guide, Java Runtime. 

The busConfigURL setting overrides any configuration that 
has been set using the Artix JCA Connector 
busConfigLocation activation configuration property ( See 
Inbound Activation Configuration for more detail). 

 address: the transport address. This is optional. 

3. Use the CXFConnection.getService method to obtain a Web 
service client. 

4. Close the CXFConnection. 



 

24  Artix for J2EE (JAX-WS) 

5. Invoke on the service. 

The Web service client can still be used after the CXFConnection 
is closed. 

Example of using the Connection Management API 
The code shown in Example 12 is taken from the 
HelloWorldServlet.java file, which is part of the outbound sample. 
It shows how to use the Artix JCA Connector connection 
management API. It has been simplified to make it easier to 
explain. 

The HelloWorldServlet.java file is located in: 

 
 

Example 12. HelloWorldServlet—Outbound Connections 

 

The code shown in Example 12 can be explained as follows: 

❶ Retrieve the connection factory from JNDI. 

❷ Create the connection and use CXFConnectionSpecto 
specifying: 

 The service class. 

 A QName that identifies which service in the WSDL file 
to use. 

 A QName that identifies which port in the WSDL file to 
use 

 The WSDL file URL. 

 
ArtixInstallDir/samples/cxf/integration/jca/ outbound/src/demo/servlet 

❶Context ctx = new InitialContext(); 
CXFConnectionFactory factory = (CXFConnectionFactory)ctx.lookup(EIS_JNDI_NAME); 

❷CXFConnectionSpec spec = new CXFConnectionSpec();  
spec.setServiceClass(Greeter.class); 
spec.setServiceName(new QName("http://apache.org/hello_world_soap_http", "SOAPService"));
 
spec.setEndpointName(new QName("http://apache.org/hello_world_soap_http", "SoapPort")) ;
 
spec.setWsdlURL(getClass().getResource("/wsdl/hello_world.wsdl")); 
CXFConnection connection = null;  
try { 

connection = getConnection(spec); 

❸Greeter greeter = connection.getService(Greeter.class); 

❹connection.close(); 

❺greeter.sayHi(); 
... 

} 



 

Artix for J2EE (JAX-WS)  25 

❸ Obtain a Web service client. 

❹ Close the connection to the service and return to the 
application server connection pool. Remember you can 
close the connection and continue using the client. 

❺ Invoke on the service. 

Accessing request/response contexts 
The outbound samples show how you can use message 
contexts. See the getResponseFromWebService() method in the 
HelloWorldServlet.java file, which is located in: 
ArtixInstallDir/samples/cxf/integration/jca/outbound/src/demo/servlet 

For more information on message contexts, see the Working with 
Contexts chapter in the Developing Artix Applications with 
JAX-WS guide. 

Javadoc 
For more detail on the Artix JCA Connector API, see the Artix 
JAX-WS API javadoc. 

Packaging Your Application 
When packaging and deploying your J2EE application you must 
declare the resource reference used in your code in your 
application deployment descriptor and map that resource 
reference to a resource. In addition, you need to package the 
Web service interface classes with your application. 

Declaring the resource reference 
You must declare the resource reference used in your code in 
your application deployment descriptor, web.xml, by adding a 
resource-ref tag. See Example 13. 

Example   13.   Declaring the resource reference 

 

Mapping the resource reference 
You must map the resource reference used in your code to the 
resource. How you do this is dependent on the application 
server that you are using. For example, if you are using 
WebSphere you can use the WebSphere Administrative Console 
to map the resource reference to the resource while deploying 
the Artix JCA Connector. See Deploying Artix JCA Connector and 
the WebSphere documentation for details. 

 

 
<resource-ref> 

<res-ref-name>eis/CXFConnectionFactory</res-ref-name> 
<res-type>org.apache.cxf.jca.outbound.CXFConnectionFactory</res-type> 
<res-auth>Container</res-auth> 

</resource-ref> 



 

26  Artix for J2EE (JAX-WS) 

Packaging details 
When packaging your application, include the Java classes that 
are generated by the wsdl2java utility and any other classes that 
are associated with your application. You can include the service 
WSDL file, however, this is not necessary (see the description of 
wsdlURL in Usage pattern). 

For example, the outbound sample application is packaged in a 
WAR file as follows: 

 WEB-INF/classes: includes the application Java class files, the 
Java classes that are generated from the WSDL file. 

 WEB-INF/classes/wsdl: WSDL file. 

 WEB-INF/lib: includes a common.jar file that contains the 
DemoServletBase.class file, which the sample application 
extends. 

Please refer to the J2EE specification and your J2EE vendor 
documentation for more information on application packaging. 



 

Artix for J2EE (JAX-WS)  27 

Deploying Artix JCA 
Connector 
How you deploy the Artix JCA Connector is dependent on the 
J2EE application server that you are using. This chapter 
provides some basic deployment steps and uses WebSphere 
7.0 as an example application server. 

Introduction 
How you deploy the Artix JCA Connector is dependent on the J2EE 
application server that you are using. This chapter describes 
how to set your Artix environment and provides some basic 
deployment steps for WebSphere 7.0. It assumes that you have 
already built the Artix JCA Connector RAR file and your 
application JAR file. If not, please refer to either: 

 Exposing a J2EE application as a Web Service 

 Exposing a Web Service to a J2EE Application 

More detailed information 
For more detailed information on how to deploy a JCA resource 
adapter, please refer to your J2EE application server 
documentation. 

Setting your Environment 
To use Artix JCA Connector with your application server, ensure 
that the JDK and the Apache ant bin directories are on your 
PATH. 

You do not need to, and should not, source the Artix 
environment before running your application server. 

Deploying to WebSphere 7.0 
This section provides basic information on deploying the Artix 
JCA Connector and your application to WebSphere 7.0. For more 
detailed information, please refer to your WebSphere 
documentation. 

Prerequisites 
The following prerequisites apply to WebSphere 7.0: 

 Make sure your environment is set correctly. See Setting 
your Environment for details. 



 

28  Artix for J2EE (JAX-WS) 

Deploying the Artix JCA Connector 
You must deploy the Artix JCA Connector to WebSphere before 
you deploy your application. In addition, please make sure that 
the Artix JCA Connector has not already been deployed to your 
application server. 

To deploy the Artix JCA Connector in WebSphere 7.0 complete 
the following steps: 

1. Logon to WebSphere Integrated Solution Console. The 
default address is: 

http://hostname:9060/ibm/console/login.do 

2. Navigate to Resources | Resource adapters | Resource 
adapters. 

3. On the Resource adapters page, click Install RAR. 

4. On the Install RAR File page, select the Local path radio 
button if the browser that you are running is on the same 
machine as the WebSphere server. Otherwise, select the 
Server path radio button. 

5. Specify or browse to where you have built the cxf.rar file and 
click Next. 

6. On the next page, click OK to install the Resource Adapter. 

7. On the next page, click the CXF JCA Connector link to edit the 
Resource Adapter. 

8. On the Configuration page, click the J2C activation specification 
link. 

9. On the next page, click New to create a new Activation 
Specification. 

10. On the next page, enter MyActivationSpec in the Name textbox 
and click OK. 

The JNDI name is optional. If it is omitted, a JNDI name is 
created for you as eis/<ActivationSpecName>, where 
<ActivationSpecName> is MyActivationSpec. 

11. Click Save to commit the configuration. 

You can specify activation configuration values in the new 
activation specification you just created. 

For inbound connections, the activation specification is 
associated with your MDB later. The MDB's deployment 
descriptor can define activation configuration values to 
override the values specified in the associated activation 
specification. See Inbound Activation Configuration for more 
detail. 



 

Artix for J2EE (JAX-WS)  29 

Deploying Your application 
To deploy your application to WebSphere 7.0, complete the 
following steps. 

For more detail, please consult your WebSphere documentation. 

1. Logon to WebSphere Integrated Solution Console. The 
default address is:  

http://<hostname>:9060/ibm/console/login.do 

2. Navigate to Applications | Install new Applications  

3. On the Preparing for the application installation page, select the 
Local path radio button if the browser that you are running is 
on the same machine as the WebSphere server. Otherwise, 
select the Server path radio button. 

4. Specify or browse to the path where you have your 
application JAR file stored and click Next. 

5. On the Step 1: Select installation options page, click 
Next. 

6. On the Step 2: Map modules to servers page, click Next. 

7. On the Step 3: Bind listeners for message-driven beans 
page, in the far right column, click the Activation 
Specification radio button. 

8. Specify the Target Resource JNDI Name as below and click 
Next. 

eis/MyActivationSpec 

9. On the Step 4: Summary page, click Finish. 

10. Click the Save link to commit the configuration. 

11. Navigate to Applications | Enterprise Applications. 

12. Select the box next to your application JAR file and click Start 
to start the MDB. 

 





 

Artix for J2EE (JAX-WS)  31 

Configuring Artix JCA 
Connector 

Inbound Activation Configuration 
Activation specifications are part of the configuration of inbound 
messaging support provided by a JCA 1.5 resource adapter, such 
as Artix JCA Connector. Resource adapters that support inbound 
messaging define one or more types of message listener in their 
deployment descriptors. This is defined in the messagelistener 
element in the ra.xml file. The message listener is the interface 
that the resource adapter uses to communicate inbound 
messages to the message endpoint. For each type of message 
listener that a resource adapter implements, the resource 
adapter defines an associated activation specification, which 
defines configuration properties for the receiving endpoint. 

The Artix JCA Connector inbound support includes two types of 
message listener and two activation specification classes, one 
for each message listener type. 

Table 4. Message Listeners and Activation Specifications 

Message Listener Type Activation Specification Class Supported 
Properties 

Target service interface, used 
when MDB also implements 
the target service. 

See Service Implemented as a 
Message Driven Bean for an 
example use case. 

org.apache.cxf.jca.inbound. 
MDBActivationSpec 

See Table 5. 

org.apache.cxf.jca.inbound.
DispatchMDBMessageListener 

See Service Implemented as a 
Stateless Session Bean for an 
example use case. 

org.apache.cxf.jca.inbound. 
DispatchMDBActivationSpec 

See Table 5 
and Table 6. 

 
  



 

32  Artix for J2EE (JAX-WS) 

Supported Properties 
Table 5 shows the activation configuration properties that are 
supported when the target service interface is specified as the 
message listener type and 
org.apache.cxf.jca.inbound.MDBActivationSpec is specified as the 
activation specification class in the Artix JCA Connector ra.xml 
file. 

Table   5.   Service Implemented as MDB: Supported 
Activation Configuration Properties 

Property Name Required Description 

wsdlLocation No A string that specifies the location of the 
Web service WSDL file. 

schemaLocations No String that specifies the schema locations, 
each one separated by a comma. 

serviceInterfaceClass Yes String that specifies the service interface class 
name. 

busConfigLocation No String that specifies the location of any Artix 
Java bus configuration files. 

address No (if specified 
in WSDL file) 

String the specifies the transport address. 

endpointName Yes String that specifies the PortType QName in 
the WSDL file. 

serviceName Yes String that specifies the service name 
QName in the WSDL file. 

displayName Yes String that specifies the name used for 
logging and as a key in a map of endpoints. 

 
Table 5 and Table 6 show the activation configuration 
properties that are supported when 
org.apache.cxf.jca.inbound.DispatchMDBMessageListener is specified as 
the message listener type and 
org.apache.cxf.jca.inbound.DispatchMDBActivationSpec is specified as 
the activation specification class in the Artix JCA Connector 
ra.xml file. 

Table  6.  Service Implemented as a SLSB: Supported 
Activation Configuration Properties 

Property Name Required Description 

targetBeanJndiNam Yes A string that specifies the JNDI name of the 
target session bean 

 



 

Artix for J2EE (JAX-WS)  33 

Setting activation configuration properties 
Activation configuration properties can be set in any of the 
following: 

 The application deployment descriptor. 

 Activation specification, which can be set when deploying 
Artix JCA Connector. 

 The Artix JCA Connector deployment descriptor, ra.xml. 

Values specified in the ejb-jar.xml file override those set in the 
activation specification and the ra.xml file. Values specified in 
the activation specification override those set in the ra.xml file. 

Examples of setting 
For an example of how the activation configuration properties 
are set, see: 

 The ra.xml located in 
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc, the 
relevant sections of which are shown in Example 14. 

 The ejb-jar.xml file located in 
ArtixInstallDir/samples/cxf/integration/jca/inbound-mdb-dispatch/etc, the 
relevant sections of which are shown in Example 15. 

Example  14.  Activation Specification in ra.xml 

 

  

 
<messagelistener> 

<messagelistener-type>  
org.apache.cxf.jca.inbound.DispatchMDBMessageListener 

</messagelistener-type> 
<activationspec> 

<activationspec-class>  
org.apache.cxf.jca.inbound.DispatchMDBActivationSpec 

</activationspec-class> 
<required-config-property> 

<config-property-name>displayName 
</config-property-name> 

</required-config-property> 
<required-config-property> 

<config-property-name>targetBeanJndiName 
</config-property-name> 

</required-config-property> 
       </activationspec> 
</messagelistener> 



 

34  Artix for J2EE (JAX-WS) 

Example  15.  Activation Specification in ejb-jar.xml 
 
<activation-config> 

<!-- display name--> 
<activation-config-property> 

<activation-config-property-name> DisplayName 
</activation-config-property-name> 
<activation-config-property-value> DispatchedGreeterEndpoint 
</activation-config-property-value> 
</activation-config-property> 

<!-- service endpoint interface --> 
<activation-config-property> 

<activation-config-property-name>  
serviceInterfaceClass 

</activation-config-property-name> 
<activation-config-property-value> 

org.apache.hello_world_soap_http.Greeter 
</activation-config-property-value> 

</activation-config-property> 
<!-- address --> 
<activation-config-property> 

<activation-config-property-name>  
address 

</activation-config-property-name> 
<activation-config-property-value> 

http://localhost:9999/GreeterBean 
</activation-config-property-value> 

</activation-config-property> 
<!-- targetBeanJndiName --> 
<activation-config-property> 

<activation-config-property-name>  
targetBeanJndiName 

</activation-config-property-name> 
<activation-config-property-value> 

java:comp/env/DispatchedGreeterLocalHome 
</activation-config-property-value> 

</activation-config-property> 
</activation-config> 
 
 


