
Artix 5.6.3

Locator Guide:
C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2015-02-10

Contents
Preface..v
Contacting Micro Focus ... vi

Artix Locator Introduction...1
What is the Locator Service?...1
How the Locator Works ..2
Locator WSDL Contract ..6
Locator Sample Code...8
Migrating from Previous Versions ..9

Configuring and Deploying the Locator Service13
Deploying the Locator Service...13
Registering Services with the Locator...18

Configuring a Locator-Enabled Service, C++ Runtime18
Using Load Balancing...20
Using Fault Tolerance Features ...21
Starting Services with Artix 3 Consumer Support...23
Adding SOAP 1.2 Support...26

Using the Locator from an Artix Consumer29
Configuring Artix Consumers to Use the Locator Service29

Configuring C++ Consumers ..29
Obtaining Service References from the Locator Service30

Implementing a C++ Consumer..30
Querying a Locator Service...34
Migrating Consumer Code ..40

Using the Locator from a Non-Artix Client45
Implementing a .NET Client ..45
Implementing an Axis Client ...47

Index ..49
 Artix Locator Guide C++ ii i

iv Artix Locator Guide C++

Preface

What is Covered in This Book
This book describes the theory and operation of the Artix locator
service.

Who Should Read This Book
This book is intended for administrators and developers who want
to configure and deploy an Artix locator service.
The information in this book is at an intermediate to advanced
level, and presumes the reader has a working knowledge of WSDL
contracts, C++, Artix configuration concepts, and the deployment
of Artix plug-ins into an Artix container.

How to Use This Book
This book is organized into the following chapters:
• “Artix Locator Introduction” provides an overview of the Artix

locator and its uses.
• “Configuring and Deploying the Locator Service” describes

how to edit your Artix configuration files to deploy one or
more Artix locator services. This chapter also describes how
an Artix post-3.x locator can be used by Artix 3.x consumers.

• “Using the Locator from an Artix Consumer” describes how to
code C++ service consumers that take advantage of and that
query a deployed Artix locator. This chapter also describes
how to migrate consumers-of-locators from Artix 3 to
post-Artix 3.

• “Using the Locator from a Non-Artix Client” describes how an
Artix locator service can be used by consumers generated by
other SOA systems—for example, .NET and Axis.

Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and finding additional resources, see
Using the Artix Library, available with the Artix documentation
at https://supportline.microfocus.com/productdoc.aspx.
 Artix Locator Guide C++ v

https://supportline.microfocus.com/productdoc.aspx

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.
 vi Artix Locator Guide C++

http://www.microfocus.com
http://www.microfocus.com

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
Artix Locator Guide C++ vii

http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Artix Locator Guide C++

Artix Locator
Introduction
The Artix locator service enables consumers to connect to services in a
way that is independent of the service location. This chapter provides an
overview of the Artix locator service, including its expected use cases, its
operation, and its WSDL contract. This chapter also discusses migrating
from earlier versions of the Artix locator service.

What is the Locator Service?
The Artix locator is a Web service that provides Web service
consumers with a mechanism to discover service endpoints at
runtime. The locator isolates consumers from knowledge of a
service endpoint’s physical location. The locator allows service
endpoints to advertise their availability to consumers.

Use cases
The Artix locator service supports the following use cases:

Service endpoint repository
You can use the Artix locator to isolate the consumers of Artix
services from having to know the exact network location of each
service. Consumers can query the locator for the current location
of a service. This allows you to redeploy popular services onto
different hardware or different transports without needing to
recompile or reconfigure consumers in any way.

Service endpoint grouping and organizing
You can query the locator for its list of currently registered
services, and you can filter and organize the results list by service
name, port name, portType, binding, or port extensor name. In
addition, you can assign services to named groups either in the
service WSDL contract or in the Artix configuration file, and can
filter the queried service list by group name. This allows you to
add structure to the way consumers view the locator service data.

Service load balancing
If you register multiple instances of a service with an Artix locator
using the same service name, the locator automatically employs a
round-robin or random algorithm to select the service instance
whose reference is returned to requesting consumers. This
provides you with a lightweight mechanism to distribute the load
on popular services without the overhead of setting up a highly
available system.
 Artix Locator Guide C++ 1

Service fault tolerance
The Artix locator has fault tolerance features between the service
endpoints and the locator. The service-side locator plug-in is
tolerant of restarts of the locator service, and automatically
re-registers its endpoints when the locator restarts.The locator
service is tolerant of badly behaved services that do not register
their endpoints on shutdown: the locator automatically
de-registers the service from the locator in the event of a failure
on the service side.

High availability locator
The Artix locator can be configured in a high availability
configuration with two or more slave locators coordinating with
one master locator.This allows you to distribute many instances of
the locator across your service network, all of which share the
same reliable repository.

How the Locator Works
The Artix locator service is a standalone service that holds a
repository of active service endpoints on your service network.
The Artix locator service functionality is implemented as a number
of Artix plug-ins. In order to use this functionality, you need
participation from consumers, service endpoints, and the central
locator service. Therefore, to implement locator functionality on
your network, you must enable Artix plug-ins for each of these
points on your network, and configure them accordingly. You do
not have to write any code to use this functionality. Since the
locator service is described by a WSDL contract, you can also
choose to use the locator functionality directly in your
applications.

How the locator works
You can make your applications locator-aware simply by running
an instance of the locator service and changing the configuration
of your applications.
Services are made locator-aware by means of configuration
statements in the Artix configuration files associated with those
services. A locator-aware service automatically registers itself with
the locator during service startup. The locator and its registered
services periodically confirm that their communication pathways
are operational by pinging each other. This monitoring is
performed by the peer manager plug-in, which is automatically
loaded by the Artix runtime when the locator functionality is
enabled.
Consumers are also made locator-aware by means of
configuration statements in their associated configuration files.
Consumers are required to initialize their proxies in a certain way
to take advantage of this functionality. A locator-aware consumer
automatically contacts the locator service when it is setting up its
proxies. The consumer-side locator plug-in contacts the locator
service and provides the QName for the desired service endpoint.
 2 Artix Locator Guide C++

The locator returns a reference, which contains the addressing
details needed to invoke the target service. This is passed to the
consumer, which then instantiates a proxy to the target service.
The consumer-side locator plug-in performs a simple lookup of
service endpoints based on the target service’s QName. If a
consumer needs to use the more advanced querying operations of
the locator service, then such queries needs to be coded directly
into the consumer.

The locator and references
Starting with Artix 4.0, the Artix locator returns references using
the WS-Addressing standard for Web service references. Previous
Artix releases used the proprietary Artix Reference format.
WS-Addressing references are represented by an instance of a
class that represents the addressing of the target service
endpoint. All proxies in Artix have constructors that take a
WS-Addressing reference as a parameter. The reference contains
sufficient information to allow the consumer to create a functional
proxy to a service endpoint.

Registering endpoints
An Artix service registers its endpoints with the locator in order to
make them accessible to Artix consumers. When a service
registers an endpoint in the locator, it creates an entry in the
locator’s list of services. The entry associates a service QName
with a reference for that endpoint.

Looking up references
An Artix consumer looks up a reference in the locator in order to
find an endpoint associated with a particular service. After
retrieving the reference from the locator, the consumer can then
establish a remote connection to the target service by
instantiating a consumer proxy object. This procedure is
independent of the type of binding or transport protocol.
Looking up references can be performed on behalf of the
consumer by configuring it to use the locator consumer plug-in. As
an alternative, you can write lookup code directly using the WSDL
interface that the locator service exposes.
Artix Locator Guide C++ 3

Automatic load balancing
If multiple endpoints are registered against the same service
QName in the locator, the locator employs a random or
round-robin algorithm to pick one of the endpoints. The locator
thereby effectively load balances a service over all of its
associated endpoints.
For example, an AddNewCustomer service might be listed in an
Artix locator with two endpoints registered against it:
• Service: AddNewCustomer

WSDL location: http://mainhost:2900/service/newcustomer
• Service: AddNewCustomer

WSDL location: http://backuphost:2900/service/newcustomer
When an Artix consumer looks up a reference for
AddNewCustomer, it obtains a reference to whichever endpoint is
next in the sequence.

Locator-related plug-ins
Most of the communication details between the locator, registered
services, and consumers are handled by Artix plug-ins. The
locator-related plug-ins are:

Locator service plug-in
(service_locator)

This is the main locator service plug-in.
It accepts and tracks service
registrations, and hands out service
references to requesting consumers.
This plug-in is normally deployed as a
standalone service typically using the
Artix container. All consumer and
service endpoints need to be aware of
this shared service on startup.
This plug-in is also responsible for
making sure its data is reliable. It
removes service endpoints from its
repository if it believes they are
inactive.

Locator endpoint
manager plug-in
(locator_endpoint)

This is the portion of the locator that
resides with the service endpoints you
want registered in the locator service. It
registers its service endpoint with the
locator service when they become
active, and it de-registers them when
they are shut down.
This plug-in is also responsible for
registering its endpoints with the
locator if the locator service is
restarted.

Locator consumer
plug-in (locator_client)

This plug-in queries the locator service
and returns a reference to the target
service.
 4 Artix Locator Guide C++

When you load an instance of the service_locator or
locator_endpoint plug-in into an Artix container, the container
automatically loads the peer_manager plug-in. The peer_manager
plug-in is responsible for the fault tolerant behavior of the locator
service.
The service_locator and locator_endpoint plug-ins are optionally
used alongside the wsdl_publish plug-in. The wsdl_publish plug-in
is strongly recommended when working with the locator.

How do the plug-ins interact?
In the examples in this book and in locator demonstration code,
the locator service plug-in is deployed in an Artix container.
Although it can be deployed in any Artix process, the
recommended approach is to use the container. The Artix
container and plug-in architecture is described in “Deploying
Services in an Artix Container” in Configuring and Deploying
Artix Solutions, C++ Runtime.
The locator service plug-in automatically loads the peer_manager
service, and if specified, the wsdl_publish service, into the same
Artix container. The container’s URL is published in some way so
that other processes can locate the container.
The container process selects a TCP port on which to place the
locator service1 (unless you specify an exact port in
configuration). Consumer processes can use the published URL of
the container to ask the container to send the locator service’s
URL, its WSDL contract, or a reference to the locator.
An Artix service process can be deployed in a standalone server or
in another Artix container. For clarity, the examples in this book
and in the locator demonstration code show the service deployed
in a standalone server. The recommended approach is to use a
container when developing your services.
The service process is configured to load the locator_endpoint
plug-in. The service’s server executable is started with a
command-line directive that identifies the URL, WSDL, or
reference of the locator service (as previously obtained from the
container housing the locator). Thus, when the service process
starts up, its associated locator_endpoint plug-in automatically
contacts the locator and registers the service.
Thereafter, the peer_manager plug-ins associated with both the
locator_service and locator_endpoint plug-ins periodically ping
each other to make sure both parties are still active. If either
party detects that the other is inactive, action is taken to remedy
the situation. For the locator_service side, the inactive endpoints
are removed; for the locator_endpoint side, the plug-in attempts
to re-establish communication in case the locator service is
restarted.
The locator_client plug-in is loaded into a consumer by means of
configuration. This plug-in handles the details of getting a
reference to the target service. The consumer uses this reference
to create a proxy to the target service.
1. This locator service is usually run on the same port as the container itself. Thus, for example, if

you query the container at localhost:9300, chances are good the locator service will be found at
localhost:9300 as well.
Artix Locator Guide C++ 5

Locator service groups
Starting with Artix 4.0, you can assign services to named groups
so that a group of related services can be identified by group
name when you query the locator. Group assignments can be
made in the service’s WSDL contract or in an Artix configuration
file.
The use of locator service groups is described in “Service groups”
on page 37.

Setting up a locator service
Configuring and running an Artix locator service does not require
writing any code. You set up a locator service by means of
configuration settings in your Artix configuration file. You start the
locator by starting an instance of the Artix container executable
that is directed to a locator-specific configuration scope in that
configuration file.
The configuration and setup of the Artix locator service is
described in “Configuring and Deploying the Locator Service” on
page 13.

Using the locator from consumers
You can configure consumers to make use of the Artix locator with
two different approaches:
1. Add the consumer-side locator plug-in to the configuration of

consumers, by editing your Artix configuration file. Your
consumer-side code will take advantage of this plug-in as long
as it uses the standard Artix methods of resolving the initial
reference to its target service.

2. Write code that queries the locator directly using the WSDL
contract that defines the locator service. Using this method,
you can perform simple endpoint lookups as well as advanced
querying.

The configuration and coding of locator-enabled consumers is
described in “Using the Locator from an Artix Consumer” on
page 29.

Locator WSDL Contract
The Artix locator service is described in the locator.wsdl contract,
which defines the public interface through which the service can
be accessed either locally or remotely. The locator WSDL contract
is installed by default to the following location in your Artix
installation:

ArtixInstallDir/wsdl/locator.wsdl
 6 Artix Locator Guide C++

LocatorService portType
The locator WSDL contract defines a single portType,
LocatorService. This portType includes public operations for use
by Artix developers, as well as internal operations used to
communicate with services as they register and deregister with
the locator service.

Binding and protocol
The locator is accessed through the SOAP binding over the HTTP
protocol.

Public operations
The public operations defined for the LocatorService portType are
the following:
• lookupEndpoint A request-response operation used by a

consumer process to look up an endpoint from the locator
based on the target service’s QName.

• listEndpoints A request-response operation used by a
consumer process to list all endpoints registered with the
locator.

• queryEndpoints A request-response operation used by a
consumer process to list all endpoints registered with the
locator based on selection filters.

Internal operations
The following operations defined in locator.wsdl are used
internally by the locator_endpoint plug-in when communicating
with the locator_service plug-in:
• registerPeerManager Register a peer endpoint manager

with the locator service. Once registered, the locator
associates a peer ID with the peer endpoint manager.

• deregisterPeerManager De-register a peer endpoint
manager with the locator service. De-registering a peer
manager also de-registers all endpoints that were registered
by it.

• registerEndpoint Register an endpoint to become available
in the locator. Once registered, an endpoint is returned in the
response to the listEndpoints and queryEndpoints operations.

• deregisterEndpoint De-register an endpoint from the
locator. Once deregistered, an endpoint is no longer returned
in the response to the listEndpoints and queryEndpoints
operations.
Artix Locator Guide C++ 7

Locator Sample Code
Artix includes code samples that illustrate various Artix features.
Read the Readme.txt file in each sample’s directory for instructions
on building and running that sample.
Five demos illustrate different aspects of the locator as used with
the C++ runtime. The locator-related demos for this runtime are
installed in subdirectories of:

ArtixInstallDir/samples/advanced/

locator sample
The primary locator sample illustrates how the locator can isolate
consumers from knowledge about changes in a service's physical
location. Most examples in this manual are simplified versions of
this locator sample. This sample shows how you can
locator-enable an application simply using configuration. The
consumer and server code are not aware that the locator is being
used for discovery of endpoints.

locator_query sample
The locator_query sample illustrates more advanced uses of the
locator lookup that the consumer-side plug-in does not
implement. It illustrates how to use the listEndpoints operation to
obtain a list of the services registered with a locator. The sample
goes on to illustrate how you can filter the returned list of services
with various query selection elements, using the query_endpoints
operation.

located_router sample
The located_router sample illustrates how endpoints that are
wrapped by an Artix router can still use the locator service for
dynamic discovery of endpoint information. In this sample, the
endpoints that the router creates are automatically registered with
the locator when the router starts up.

locator_load_balancing sample
The locator_load_balancing sample demonstrates how the locator
can be used to provide load balancing across several server
processes hosting the same Web service, without the overhead of
setting up a highly available infrastructure.

high_availability_locator sample
The high_availability_locator sample illustrates how to run the
Artix locator in a replicated and highly-available mode.
 8 Artix Locator Guide C++

Migrating from Previous Versions
The Artix post-3.x locator service supports queries from
unmodified Artix 3.x consumer code. This allows you to migrate at
your own pace from an Artix 3.x-based installation to an Artix
post-3.x-based installation. You can replace Artix 3.x locators and
services with Artix post-3.x locators and services without having
to rewrite or change your consumers.

Backward compatibility
Although the Artix 3.x locator returns references in the proprietary
Artix Reference format, the Artix post-3.x locator returns
references in WS-Addressing format. To maintain backward
compatibility, the Artix post-3.x locator service combines two
distinct functionalities—3.x and post-3.x—in a single plug-in. The
plug-in enables an Artix 3.x service that supports the locator
WSDL from Artix 3.x. It also enables a more advanced Artix
post-3.x locator service. As shipped, both services are active, but
you can disable the Artix 3.x service if your network does not have
Artix 3.x service endpoints or consumers.
As illustrated in Figure 1, Artix 3.x consumers can query an Artix
post-3.x locator and get the expected results.

Locator service QNames
The QName for the Artix post-3.x locator service is:

{http://ws.iona.com/2005/11/locator}LocatorService

The QName for the Artix 3.x-compatible locator service that runs
alongside the Artix post-3.x locator service is the same as it was
for Artix 3.x, which is:

{http://ws.iona.com/locator}LocatorService

You can verify that both locator services are running in the Artix
post-3.x locator by querying the container with the
it_container_admin command. For example:
1. Go to the Artix 5.x locator demonstration in

ArtixInstallDir/samples/advanced/locator.
2. Load the Artix C++ environment by invoking the

artix_env[.bat] command.
3. Build the C++ demo as described in the demo’s Readme.txt

file.

Figure 1: Artix locator backward compatibility

Artix 3
Locator Service

Artix Post-3
Locator Service

Artix Locator Service

Artix 3
Client

Artix Post-3
Client

(Resolved by
QName)
Artix Locator Guide C++ 9

4. From the demo’s bin directory, start the locator with the
start_locator command.

5. From the bin directory, run the following command:

6. The following list of service QNames is returned:

Supported configurations
The following combinations of Artix services and consumers are
supported by the locator service shipped with Artix post-3.x and
the locator shipped with the C++/Java JNI runtime of Artix
post-3.x:
• Post-3.x services and post-3.x consumers
• Post-3.x services and 3.x consumers
• 3.x services and post-3.x consumers
• 3.x services and 3.x consumers
The terms used here have the following meanings:

Unsupported configurations
Neither Artix post-3.x services nor Artix post-3.x consumers (as
defined above) work in any combination with a locator service that
uses the locator_service plug-in shipped with Artix 3.x.

Migration strategies
The Artix post-3.x locator service is backward compatible by
default. There are no configuration steps required to enable
backward compatibility in the locator service itself.

it_containter_admin -container ../etc/ContainerService.url
-listservices

{http://ws.iona.com/peer_manager}PeerManagerService
ACTIVATED

{http://ws.iona.com/2005/11/locator}LocatorService
ACTIVATED

{http://ws.iona.com/locator}LocatorService ACTIVATED

Artix post-3.x
service

Uses the Artix 4.x or 5.x C++ locator_endpoint
plug-in.

Artix post-3.x
consumer

Uses the Artix 4.x or 5.x C++ locator_client
plug-in, or is coded to create a proxy to the
locator using the new locator QName.

Artix 3.x
service

Uses the Artix 3 locator_endpoint plug-in.

Artix 3.x
consumer

Uses no plug-in; is coded to create a proxy to the
locator using the old locator QName.
 10 Artix Locator Guide C++

Locator services for Artix 4.1, 4.2, and the C++/Java JNI runtime
of Artix 5.x require a one-line addition to their Artix configuration
files, as described in “Artix post-3.x locator setup for backward
compatibility”.
You can start your Artix post-3.x services in a way that supports
both Artix 3.x and post-3.x consumers. See “Starting Services
with Artix 3 Consumer Support” on page 23.
You can migrate your consumers one at a time to Artix post-3.x
locator compatibility, using the steps described in “Migrating
Consumer Code” on page 40.

Artix post-3.x locator setup for backward
compatibility
The artix.cfg file shipped with Artix 4.1, Artix 4.2, and the
C++/JAX-RPC runtime of Artix 5.x, all have a configuration entry,
bus:non_compliant_epr_format. The shipped artix.cfg sets this
entry by default to "false". This setting allows for greater
interoperability between Artix and Web services software from
other vendors.
If your site uses a locator service, locator-enabled services, and
locator-enabled consumers all built with Artix 4.1, 4.2, or the
C++/JAX-RPC runtime of Artix 5.x, then no further configuration
is necessary.
If your site uses a locator service built with one of the following:
• Artix 4.1
• Artix 4.2
• Artix 5.x/C++
and your site uses services and consumers built with both of the
following:
• Artix post-3.x
• Artix 3.x,
then you must add one configuration entry in your Artix
configuration. Add the line to the locator.servce scope of the
configuration file that controls your instance of the locator service.
The line to add is:

bus:non_compliant_epr_format = "true";

Note: The locator-related demos that ship with Artix 4.1, Artix
4.2, and Artix 5.0/C++ do not have this line added to their
locator.cfg files.
Artix Locator Guide C++ 11

For example, the following example shows an edited locator.cfg
file for the primary locator demo that allows Artix 3.x and post-3.x
consumers to connect to and use the Artix 4.1/4.2/5.0-C++
locator service:

Disabling locator support for Artix 3.x
When you have migrated all Artix consumers to Artix 4.x or
5.x/C++, the backward compatibility feature of the Artix
4.x/5.x-C++ locator is no longer necessary for your site.
However, there is no need to disable the backward compatibility
feature, and the Artix 4.x/5.x-C++ locator performance is not
improved by disabling backward compatibility.
If you prefer to disable this feature anyway, you can use a local
configuration scope to override the Artix root configuration. In
your local scope, set the WSDL path equal to an empty string for
the Artix 3.x-compatible version of the locator service, using a line
like the following:

demo
{
 locator
 {
 client
 {
 orb_plugins = ["xmlfile_log_stream", "locator_client"];
 };

 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"locator_endpoint"];
 };

 service
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"service_locator"];
 bus:non_compliant_epr_format = "true";
 };
 };
};

bus:qname_alias:locator_oldversion = "";
 12 Artix Locator Guide C++

Configuring and
Deploying the Locator
Service
This chapter discusses how to configure and deploy an Artix locator
service by editing configuration files.

Deploying the Locator Service
The Artix locator service for C++ applications is implemented
using Artix plug-ins. This means that any Artix application can
host the locator service by loading the service_locator plug-in.
However, it is recommended that you deploy the locator using the
Artix container. This section describes deploying into the Artix
container in detail.

Artix C++ runtime configuration
concepts
The information in this section presumes an understanding of Artix
C++ runtime configuration concepts and practices, as described in
Configuring and Deploying Artix Solutions, C++ Runtime.
See the chapters “Artix Configuration” and “Accessing Contracts
and References.”
 Artix Locator Guide C++ 13

Configuring the locator to run in a
container
To configure the locator to run in an Artix container, make sure
the service_locator plug-in is included in the locator’s
configuration scope. For example, Example 1 shows the
locator.cfg file used by the demo in
ArtixInstallDir/samples/advanced/locator/etc/:

The portion of Example 1 in bold shows a service in the scope
demo.locator.service configured to load the wsdl_publish and
service_locator plug-ins (as well as a logging plug-in). The
service_locator plug-in implements the locator service
functionality.
The locator service uses SOAP over HTTP, so the soap and at_http
plug-ins are loaded automatically when the process parses the
locator’s WSDL contract.

Example 1: Locator demo’s locator.cfg file

include "../../../../etc/domains/artix.cfg";
demo

{

 locator

 {

 client
 {
 orb_plugins = ["local_log_stream", "locator_client"];
 };
 server
 {
 orb_plugins = ["local_log_stream", "wsdl_publish",

"locator_endpoint"];
 };
 service
 {0

 orb_plugins = ["local_log_stream", "wsdl_publish", "service_locator"];

 };

 };

};
 14 Artix Locator Guide C++

Dynamic port used by default
By default, the locator is configured to deploy on a dynamic port.
In the default locator WSDL contract (installed by default in
ArtixInstallDir/wsdl/locator.wsdl), the addressing information is
as shown in Example 2:

The localhost:0 port means that when you activate the locator
service, the operating system assigns a port dynamically on
startup.
The locator service must itself be easily locatable by consumers.
Starting the locator on a dynamic port means it would start up on
a different TCP port with every restart. This is not useful in a
production environment because you need to make sure that all
consumers and services on your network can access your locator
service. Contacting the locator may be difficult if it starts on a
different port every time.

Configuring a fixed port
There are several ways to deploy the locator on a well-known
fixed port:
• You can edit the default locator.wsdl contract (this is not

recommended).
• You can create a copy of locator.wsdl contract for your

application and deploy it in a separate configuration scope.
• You can use features of the Artix container to determine the

port on which the container deploys the locator.

Editing the default locator contract
To edit the default locator.wsdl contract, perform the following
steps:
1. Open the locator.wsdl contract in any text editor. By default,

this contract is in the following directory:

Example 2: Locator Service on Dynamic Port in default locator.cfg

<service name="LocatorService">
 <port binding="ls:LocatorServiceBinding"
 name="LocatorServicePort">
 <soap:address

location="http://localhost:0/services/LocatorService"/>
 </port>
</service>

ArtixInstallDir\wsdl\locator.wsdl
Artix Locator Guide C++ 15

2. Edit the soap:address attribute at the bottom of the contract to
specify the desired port in the address. Example 3 shows a
modified locator service contract entry. The portion shown in
boldface has been modified to point to port 9000 on the local
computer.

Creating a new locator contract
To create a new locator.wsdl contract, perform the following
steps:
1. Copy the default locator.wsdl contract to another location,

and open it in any text editor.
2. Edit the soap:address attribute at the bottom of the contract to

specify the correct address, as shown in Example 3.
3. In your Artix configuration file, in the application’s scope, add

a new bus:initial_contract:url:locator variable that points to
your edited WSDL contract. For example:

The default bus:initial_contract:url:locator variable is in the
global scope, which ensures that every application has access
to the contract. Specifying a new contract in your application
scope overrides the global locator contract for your
application.

Configuring a range of ports
You can also limit the range of ports that the locator is deployed
on (that is, the range of ports for the locator’s SOAP or HTTP
address). To do this, specify the range of ports in the artix.cfg
file, as shown in Example 4.

In Example 4, the desired range of ports is highlighted.
When the locator has been correctly configured, it can be started
like any other application. The only difference is that the locator
service must be started before any applications that need to use
it.

Example 3: Locator Service on Fixed Port

<service name="LocatorService">
 <port name="LocatorServicePort" binding="ls:LocatorServiceBinding">
 <soap:address location="http://localhost:9000/services/locator/LocatorService"/>
 </port>
</service>

bus:initial_contract:url:locator =
"/myartix/etc/wsdl/locator.wsdl";

Example 4: Locator Port Range

policies:http:server_address_mode_policy:port_range="12345:12349";
 16 Artix Locator Guide C++

Deploying the locator in the container
The recommended deployment for the locator is in an instance of
the Artix container. To deploy the default locator in the container,
perform the following steps:
1. Run the locator in the Artix container, for example:

2. Query the container with the it_container_admin command (or
with your own code). Ask the container to publish the live
version of the locator WSDL after the container has assigned a
port for the locator. For example:

This retrieves the locator's activated WSDL contract. This is
the contract in which the default WSDL’s port 0 has been
dynamically updated with the actual port that the service is
using. In this example, it_container_admin writes the contract
to the locator-activated.wsdl file in the /myartix/etc
subdirectory.

3. Finally, you must make sure your consumers use the
activated WSDL file, now resident in the specified directory,
when each consumer starts up at runtime.

Deploying the locator in the container on
a fixed port
As an alternative, you can use the -port option when starting the
container to specify that the container runs a service on a fixed
port. For example:

In this example, any services that run in the container, and have
default contracts with a port of 0, will now use port 9000.
You can manually update the WSDL used by your consumer to
9000, or you can publish the WSDL from the container using
it_container_admin with the -publishwsdl option, shown in “Deploying
the locator in the container”.

it_container -ORBname demo.locator.service
-ORBdomain_name locator -ORBconfig_domains_dir
/myartix/etc -publish

it_container_admin
-container /myartix/etc/ContainerService.url
-publishwsdl
-service
{http://ws.iona.com/2005/11/locator}LocatorService
-file /myartix/etc/locator-activated.wsdl

it_container -port 9000 -ORBname demo.locator.service
-ORBdomain_name locator -ORBconfig_domains_dir /myartix/etc
-publish
Artix Locator Guide C++ 17

Shutting down the locator
To shut down a locator running in a container, use the container’s
shutdown option. For example:

or if you deploy the locator and container on a fixed port:

Further information
The Artix container and plug-in architecture is discussed in more
detail in “Deploying Services in an Artix Container” in
Configuring and Deploying Artix Solutions, C++ Runtime.

Registering Services with the Locator
A service does not need to have its implementation changed to
work with the Artix locator. The only requirements are that the
service is configured to load the correct plug-ins, and to reference
the correct locator contract.
If you require more fine-grained control, you can control the
service endpoints that are registered. You may want to do this if
you have some services that you do not want to be visible to
consumers.
Whichever Artix runtime you use, you locator-enable services by
means of configuration, not coding.

Configuring a Locator-Enabled Service, C++ Runtime
Any service that wishes to register itself with the locator must load
the locator_endpoint plug-in. The locator_endpoint plug-in enables
the service to register with the running locator. The following
example shows the configuration scope of a service that registers
with the locator service.

Another example is shown in Example 1 on page 14, where a
service in the scope demo.locator.service is configured to load the
locator_endpoint plug-in.

it_container_admin -ORBdomain_name locator
-ORBconfig_domains_dir /myartix/etc -container
/myartix/etc/ContainerService.url -shutdown

it_container_admin -ORBdomain_name locator -host artixserver
-port 9000 -shutdown

my_service
{
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"locator_endpoint"];
 };
 18 Artix Locator Guide C++

Using a copy of locator.wsdl
If you are using a copy of the default locator contract to specify a
fixed port, the service configuration must also specify the location
of the contract. For example:

This is not necessary if you are using a dynamic port, or have
overridden the default contract in a configuration scope with a
fixed port. The global bus:initial_contract:url:locator setting is
used instead.
For more information, see the Artix Configuration Reference,
C++ Runtime.

Filtering service endpoints
By default, any service activated in an Artix bus that loads the
locator_endpoint plug-in is automatically registered in the locator.
However, you may not want every service registered or exposed
to the locator. Artix allows you to filter the endpoints that are
registered by the locator endpoint manager. You can do this by
explicitly including or excluding endpoints using configuration
variables.
Configuration variables are discussed in detail in Configuring and
Deploying Artix Solutions, C++ Runtime.

Excluding endpoints to be registered
If there are a small number of endpoints that you want to be
filtered out, you can explicitly exclude those endpoints from the
locator by using the exclude_endpoints configuration variable.
For example, if you do not want to register the container service,
but want to register all the endpoints that are activated in that
container, use the following setting:

For an example of this configuration, see the located_router
demo.

Including endpoints to be registered
If you have a small number of endpoints that you want to be
added, and want to filter out all others, you can use the
include_endpoints configuration variable.

bus:initial_contract:url:locator="/opt/local/my_service/locator
.wsdl";

plugins:locator_endpoint:exclude_endpoints =
["{http://ws.iona.com/container}ContainerService"];
Artix Locator Guide C++ 19

For example, if you only want to register the session manager, but
not any of the endpoints that it manages, use the following
setting:

Filtering endpoints using wildcards
You can use wildcarded service names with endpoint-filtering
configuration variables. This enables you to filter based on a
specified namespace.
You can specify that all services defined in a particular namespace
should be included. For example:

Alternatively, you can use the following setting to exclude all
services defined in a particular namespace:

Service registration
When a properly configured service starts up, it automatically
registers with the locator specified by the contract pointed to by
bus:initial_contract:url:locator.
You can register multiple instances of the same service with a
locator. These service instances must be running in different
applications (buses). When the locator receives multiple
registrations of the same service implemented in different server
applications, the locator generates a pool of references for the
service type. When consumers make a request for a service, the
locator supplies references from this pool using a load-balancing
algorithm. For more information on load balancing see “Using
Load Balancing” on page 20.

Using Load Balancing
The Artix locator provides a lightweight mechanism for balancing
workloads among a group of services. When several services with
the same service name register with the Artix locator, it
automatically creates a list of references to each instance of this
service. The locator hands out references to consumers using a
round-robin or random algorithm. This process is automatic and
invisible to both consumers and services.

plugins:locator_endpoint:include_endpoints =
["{http://ws.iona.com/sessionmanager}SessionManagerService"];

Note: Combining the exclude_endpoints and include_endpoints
configuration variables is ambiguous and unsupported. If you do
this, the application fails to initialize.

plugins:locator_endpoint:include_endpoints =
["{http://www.example.com/finance}*"];

plugins:locator_endpoint:exclude_endpoints =
["{http://www.example.com/finance}*"];
 20 Artix Locator Guide C++

Starting to load balance
When the locator is deployed and your services are properly
configured, you must bring up a number of instances of the same
service. This can be accomplished by one of the following
methods, depending on your system topology:
• Start multiple services using the same WSDL contract but

without hard coding the addressing for that service. For
example, if the service uses HTTP, use a location such as
location=http://servicehost:0/servicename. If the service uses
CORBA, use the address location="IOR:".

• Create a number of copies of the WSDL contract defining the
service, and change the addressing information so that each
copy has a unique address. Then bring up each service
instance using a different copy of the contract.

As each service starts up, it automatically registers with the
locator. The locator recognizes that the services all have the same
service name specified in their Artix contracts and creates a list of
references for these service instances.
As consumers make requests for the service, the locator cycles
through the list of server instances to hand out references.

Using Fault Tolerance Features
Enterprise deployments demand that applications can cleanly
recover from occasional failures. The Artix locator is designed to
recover from the two most common failures faced by a look-up
service:
• Failure of a registered endpoint.
• Failure of the look-up service.

Endpoint failure
When an endpoint gracefully shuts down, the locator_endpoint
plug-in associated with that endpoint notifies the locator that it is
no longer available. The locator removes the endpoint from its list
so it cannot give a consumer a reference to a dead endpoint.
However, when an endpoint fails unexpectedly, it cannot notify
the locator, and the locator can unknowingly give a consumer an
invalid reference. This might cause the failure to cascade onto one
or more consumers if consumers try to invoke on a dead endpoint.

Note: The locator determines whether a service is part of a
group by using the name specified in the service element of the
service’s contract. If you are using the Artix locator to load
balance, each instance of your service should be associated with
the same binding and logical interface. Otherwise, consumers
might end up using a different binding, transport, or portType,
depending on the endpoint reference obtained from the locator
service.
Artix Locator Guide C++ 21

To decrease the risk of passing invalid references to consumers,
the locator service monitors the health of the endpoints that have
been registered with it. If it determines that an endpoint is no
longer available, it removes that endpoint from its database. The
locator service can determine the availability of its registered
endpoints because it expects those endpoints to send periodic
ping messages to the locator service. If these messages stop
arriving, the locator service determines that the endpoint is dead.
You can adjust the interval between locator service pings by
setting the plugins:locator:peer_timeout configuration variable.
The default and minimum setting is 10,000 milliseconds (10
seconds). For further information on this configuration variable,
see the Artix Configuration Reference, C++ Runtime.

Locator service failure
If the locator service itself fails, and it is not running in high
availability mode, all the references to the registered endpoints
are lost, and the active endpoints are no longer registered with
the locator. The endpoints detect when the locator service fails,
because they are expecting periodic messages from the locator
using the peer manager service. Once an endpoint determines
that the locator has failed, it attempts to reconnect to the locator
and reregister its endpoints. This behavior lets you stop and
restart a deployed locator service without interruption to the
consumers and services on the network.
You can adjust the interval with which the locator pings the
endpoints by setting the plugins:locator:peer_timeout
configuration variable. The default and minimum setting is 10,000
milliseconds (10 seconds). For further information on this
configuration variable, see the Artix Configuration Reference,
C++ Runtime.

Highly available locator cluster
You can configure three or more instances of the locator service in
a highly available locator cluster. This configuration is illustrated in
the high_availability_locator demo.
The setup and configuration of a high availability locator cluster is
discussed in the “Deploying High Availability” chapter of
Configuring and Deploying Artix Solutions, C++ Runtime.
See especially the “Configuring Locator High Availability” section
of this chapter.
 22 Artix Locator Guide C++

Starting Services with Artix 3 Consumer Support
This section describes how to start Artix post-3.x services in a way
that supports both Artix 3.x and post-3.x consumers.

Migrating Artix post-3.x services
There are no required changes to your application code between
Artix 3.x and Artix post-3.x for locator-aware Artix services. You
can migrate your service and application code from Artix 3.x to
Artix post-3.x with these steps:
• Regenerate stub code generated from WSDL using the Artix

post-3.x code generators.
• Recompile and link your service application.
• Make sure the Artix post-3.x version of the locator_endpoint

plug-in is loaded at runtime and is configured correctly.
• To allow Artix 3.x and post-3.x consumers to connect to an

Artix post-3.x locator service, add one configuration line to
the locator service configuration scope, as described in “Artix
post-3.x locator setup for backward compatibility” on page 11.

Specify the right QName
As described in “Locator service QNames” on page 9, the Artix
post-3.x locator implements both Artix 3.x and
post-3.x-compatible locator services. If you access an Artix
post-3.x locator using the QName of the Artix 3.x locator, then the
Artix post-3.x locator responds as an Artix 3 locator.

Supporting Artix 3 consumers
To support Artix 3 consumers from your Artix post-3.x services,
you must:
• Run your locator service using the Artix post-3.x version of

the locator_service plug-in.
• Make sure the Artix 3-compatible WSDL published from the

Artix post-3.x locator is accessible to your Artix 3 consumers
resides in the location they expect.

Supporting the last bullet point depends on how you implemented
the port on which the locator runs:
• By assigning a fixed port number
• By retrieving the activated WSDL from the locator and storing

it in a location accessible to consumers
Artix Locator Guide C++ 23

Artix 3 interoperability if the locator is on
a fixed port
The locator demos located_router and locator_load_balancing use
the fixed port method. Both demos use a copy of locator.wsdl that
assigns port 9000. This was true in both Artix 3.x and Artix
post-3.x versions of the demo code.
Consumers of the Artix 3 demo should be able to locate and use
the services of the Artix post-3.x demo without any changes. This
is because the Artix post-3.x locator will run on port 9000, and the
Artix 3 consumers will look for the locator on port 9000. The Artix
3 consumers will make requests using the Artix 3 QName of the
locator service. This invokes the Artix 3 compatibility of the Artix
post-3.x locator running at port 9000.
If your own consumers use a fixed port for the locator service,
then Artix 3 consumers should run without any changes against
the Artix post-3.x locator service running on the same port.

Artix 3 interoperability if you used
activated WSDL
The locator demo named locator has a script that starts a service.
This script queries the locator’s container for the locator’s WSDL
contract, and then writes that activated WSDL to a file. The
consumer startup script then reads the activated WSDL from the
same file.
You do not need to write the activated locator WSDL to a file at
the same time the service starts up, as is done in the locator
demo. This could occur in a separate script, and only needs to
done once.
If your applications uses the technique of writing activated WSL to
a file, then you must modify the script that writes the WSDL. In
your modified script, have the WSDL for both Artix 3 and Artix
post-3.x locator services written to different network-accessible
locations. Remember to write the Artix 3-compatible WSDL to the
location your Artix 3 consumers expect to find it.
For example, consumers of the Artix 3 locator demo can be made
to interoperate with the locator and services of the same-named
Artix post-3.x demo by following these steps. This example uses
the Windows version of Artix.
1. This example presumes two Artix installations on the same

machine. For example purposes only, let’s say that:
♦ Artix post-3.x is installed in C:\MICROFOCUS
♦ Artix 3 is installed in C:\MICROFOCUS3

2. In the bin directory of the Artix post-3.x version of the demo,
copy run_cxx_server.bat to a new file. Let’s call it
4-3_interop.bat.

3. Add one extra line to 4-3_interop.bat, as described and shown
below.

4. Create a new 4-3_servers.bat that calls 4-3_interop.bat five
times with five arguments, in the same way that
run_cxx_servers.bat does.
 24 Artix Locator Guide C++

5. Open a command prompt window and run the test batch files
in the following sequence:
Run start_locator.bat
Run 4-3_servers.bat
Run run_cxx_client.bat
Run run_dotnet_client.bat

6. Open a second command prompt window and change to the
Artix 3 locator demo’s bin directory.

7. In command prompt window 2:
Run run_cxx_client.bat
Run run_dotnet_client.bat

The line you must add to 4-3_interop.bat runs it_container_admin
a second time, requesting WSDL using the old locator's QName:

-service {http://ws.iona.com/locator}LocatorService

Another argument writes the resulting WSDL to the location that
the Artix 3 locator demo expects to find and use it:

-file /microfocus3/artix/3.0/demos/advanced/locator/etc/locator-activated.wsdl
Artix Locator Guide C++ 25

The 4-3_interop.bat file now looks like the following example. The
newly added line is highlighted in boldface.

Adding SOAP 1.2 Support
The default locator.wsdl file shipped with Artix contains a SOAP
1.1 binding and a SOAP 1.1 service. Starting with release 4.1,
Artix supports SOAP 1.2 bindings as well.
If your site requires the use of SOAP 1.2 bindings for
communication with the locator service, follow these steps:
• Make a copy of the default locator.wsdl file.

Example 5: Example 4-3_interop.bat file

@echo off
@setlocal
call "../../../../bin/artix_env.bat";

IF "%1"=="blocking" (
SET DEMO_START=
SHIFT /1
) ELSE (
SET DEMO_START=start
)

IF "%1"=="corba" (GOTO runserver)
IF "%1"=="soaphttp" (GOTO runserver)
IF "%1"=="soaptunnel" (GOTO runserver)
IF "%1"=="fixedhttp" (GOTO runserver)
IF "%1"=="fixedtunnel" (GOTO runserver)

echo valid transports are corba soaphttp soaptunnel fixedhttp
fixedtunnel

GOTO :end

:runserver
cd ..\cxx\server
it_container_admin -container ../../etc/ContainerService.url

-publishwsdl -service
{http://ws.iona.com/2005/11/locator}LocatorService -file
..\..\etc\locator-activated.wsdl

it_container_admin -container ../../etc/ContainerService.url
-publishwsdl -service {http://ws.iona.com/locator}LocatorService
-file
/microfocus3/artix/3.0/demos/advanced/locator/etc/locator-activated
.wsdl

%DEMO_START% server.exe %1 -ORBname demo.locator.server
-ORBdomain_name locator -ORBconfig_domains_dir ../../etc
-BUSservice_contract ../../etc/locator-activated.wsdl

GOTO end

:end
@endlocal
 26 Artix Locator Guide C++

• Edit your copy to include a SOAP 1.2 binding. See the SOAP
1.2 chapter of Writing Artix Contracts for guidelines on
adding a SOAP 1.2 binding.

• Use the bus:initial_contract:url configuration variable to
point to the location of your edited locator.wsdl file, or use
one of several WSDL publishing methods described in
“Accessing WSDL Contracts” in Configuring and Deploying
Artix Solutions, C++ Runtime.

SOAP 1.2 considerations
The SOAP 1.2 binding in Artix 4.1, 4.2, and 5.0-C++ supports
endpoint references (EPRs) only in the format defined by the
WS-Addressing standard, and no longer supports the deprecated
proprietary Artix references. Artix’s SOAP 1.1 binding supports
both EPRs and the Artix references used by Artix 3.0 and earlier.
This means that an Artix 4.1/4.2/5.0-C++ locator that uses the
SOAP 1.2 binding cannot support connections from Artix post-3.x
and 3.x consumers, because those Artix versions did not support
SOAP 1.2. Thus, when defining your Artix 4.1/4.2/5.0-C++ locator
service, if your site intends to maintain backward compatibility
with Artix post-3.x and Artix 3.0 consumers, do not also use a
SOAP 1.2 binding. The configuration step described in “Artix
post-3.x locator setup for backward compatibility” on page 11 is
not compatible with a SOAP 1.2 binding.
Artix Locator Guide C++ 27

 28 Artix Locator Guide C++

Using the Locator from
an Artix Consumer
This chapter describes the configuration and programming steps to
enable an Artix consumer to make use of a deployed Artix locator service.

Configuring Artix Consumers to Use the Locator
Service

Before a consumer can use the Artix locator service, it must be
configured to load the required plug-ins. The plug-ins provide
native access to the locator service and eliminates the need for
creating a proxy to obtain service references.

Configuring C++ Consumers
This section describes how to configure consumers to use the
locator_client plug-in, and describes the features of this plug-in.

Artix configuration concepts
The information in this section presumes an understanding of Artix
configuration concepts and practices, as described in Configuring
and Deploying Artix Solutions, C++ Runtime. See the
chapters “Artix Configuration” and “Accessing Contracts and
References.”

Configuring a consumer
To use a deployed locator service, configure consumers to load the
locator_client plug-in.
An example is shown in Example 1 on page 14, where consumers
in the scope demo.locator.client are configured to load the
locator_client plug-in. The relevant portion of that example is
shown here:

demo

{

 locator

 {

 client
 {
 orb_plugins = ["xmlfile_log_stream", "locator_client"];
 };
 };

};
 Artix Locator Guide C++ 29

Artix releases prior to 4.0 did not use the locator_client plug-in,
or any plug-in, for consumers of the locator.

Consumer plug-in features
The locator_client plug-in is responsible for helping consumers to
resolve their target service endpoints using the locator service,
without having any code that explicitly does so. With the plug-in
configured to be used, when the consumer’s code attempts to
resolve its target service’s endpoint, the plug-in connects to the
locator service to obtain a reference to the target service. This
interaction is triggered by the call to resolve the initial reference to
the target service. However, it is the plug-in that implements the
actions initiated by that call.
In order to function, the locator_client plug-in requires
addressing information for the locator service. This can be
specified using various techniques outlined in the “Accessing
Contracts and References” chapter of Configuring and Deploying
Artix Solutions, C++ Runtime. For example, you can pass in the
location of the WSDL through the command line, or you can
configure the location in the consumer's configuration domain.
There are no configuration variables for the locator_client
plug-in.

Obtaining Service References from the Locator
Service

Once a consumer is configured to load the locator service plug-ins,
it requires some additional coding to use the locator service to
obtain references to the services in which it is interested. Each of
the programming models supported by Artix has a slightly
different way of enabling a consumer’s use of the locator service.
However, all of the models make it extremely simple.

Implementing a C++ Consumer
This section shows how to write consumer code in C++ that uses
an Artix locator service to locate and connect to a target service of
interest.

Note: The locator_client plug-in is only supported for
interacting with a locator service that uses the Artix post-3.x
version of the locator_service plug-in. It does not query a locator
service that uses the Artix 3.x version of the locator_service
plug-in.
 30 Artix Locator Guide C++

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

C++ consumer code
The steps each locator consumer must take are:
1. Invoke IT_Bus::Bus::resolve_initial_reference() on the

target service’s QName.
2. Using the returned reference, invoke

IT_Bus::ClientProxyBase() to set up a proxy to the target
service.

The locator_client plug-in does all the work behind the scenes of
connecting to the locator service to obtain a reference to the
target service.

C++ Example
The locator consumer in Example 6 is a small, complete
application designed to work in the context of the locator
demonstration in ArtixInstallDir/samples/advanced/locator.
See “Explanation of Example 6” on page 33 for notes on this
example.

Note: Locator code in Artix 3 consumers must interact with the
locator service using the WSDL contract defining the locator.
Locator code in Artix post-3.x consumers no longer has to do
this.

Example 6: Locator consumer example in C++

//
// C++ locator example client code
//
#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>
#include "SimpleServiceConsumer.h"

IT_USING_NAMESPACE_STD
using namespace SimpleServiceNS;
using namespace IT_Bus;
using namespace WS_Addressing;

int main(int argc, char* argv[])
{
 cout << endl << "SimpleService C++ Client";

 // Initialize the Artix bus.
 IT_Bus::Bus_var bus;
 try
 {
 cout << endl << "Initializing the bus.";

1 bus = IT_Bus::init(argc, (char **)argv,
 "demo.locator.client");
 }
Artix Locator Guide C++ 31

 catch (IT_Bus::Exception& err)
 {
 cout << endl << "Caught unexpected exception while "
 << "initializing the bus: "
 << endl << err.message() << endl;
 return -1;
 }

2 QName service_qname("", "SOAPHTTPService",
 "http://www.iona.com/FixedBinding");

 try
 { // Get a WS-A reference to the target service.

3 EndpointReferenceType ep_ref;
 cout << endl << "Resolving "
 << service_qname.get_local_part()
 << " service in the locator.";

4 if (!bus->resolve_initial_reference(
 service_qname, ep_ref))
 {
 cout << endl
 << "Unable to resolve a reference using "
 << "the locator resolver." << endl;
 return -1;
 }
 // Construct a new proxy to the target service
 // with the result from the locator.
 cout << endl << "Initializing a proxy with the "
 << "results from the locator.";

5 SimpleServiceClient simple_client(ep_ref);

 // Use the new proxy to invoke the say_hello operation
on

 // the target service.
 cout << endl << "Invoking say_hello on the service "
 << service_qname.get_local_part() << ".";
 String my_greeting = String("Greetings from ") +
 service_qname.get_local_part();

6
 String result;
 simple_client.say_hello(my_greeting, result);

 cout << endl << "The say_hello operation returned: "
 << endl << " " << result << "!";
 }

 catch (IT_Bus::Exception& err)
 {
 cout << endl
 << "Caught unexpected exception while invoking "
 << "on the endpoint: "
 << endl << err.message() << endl;
 return -1;
 }
 cout << endl << endl;
 return 0;
}

Example 6: Locator consumer example in C++ (Continued)
 32 Artix Locator Guide C++

Explanation of Example 6
The following points refer to the number labels in Example 6.
1. This example hard codes an association with the

demo.locator.client configuration scope by means of an
argument to the IT_Bus::init() call. In a production
application, you are more likely to specify the scope in an
-ORBname parameter when invoking the consumer executable.
The association with the configuration scope is what ensures
that the locator_client plug-in is loaded at runtime. This
example presumes a configuration file like the one shown in
Example 1 on page 14.

2. This line constructs a QName for the target service to which
this consumer will connect at runtime. The components of the
QName are defined in the target service’s WSDL contract. In
this case, the target service’s contract is in
ArtixInstallDir/samples/advanced/locator/etc/simple_service.w
sdl.

3. The reference is declared as an instance of the WS-Addressing
standard’s EndpointReferenceType.

4. This line invokes resolve_initial_reference(), passing the
QName of the target service and an instance of the endpoint
reference class.

5. The SimpleServiceClient class is defined in the locator demo in
ArtixInstallDir/samples/advanced/locator/cxx/client. This class
is derived from IT_Bus::ClientProxyBase(), which is the base
class for all Artix C++ proxies. In this case, the proxy is set up
for the target service defined in the QName set up as
described in paragraph 2 above.

6. Now that the client proxy to the target service is established,
the code can invoke operations of the target service. The
say_hello operation is defined in the target service’s WSDL
contract, simple_service.wsdl.

Compiling and running Example 6
The code in Example 6 can be saved to a file, then compiled and
run in the context of the locator demo, as follows:
• Save the code to a file in

ArtixInstallDir//samples/advanced/locator/cxx/client.
• Create a separate make file based on the Makefile in that

directory. Name the output executable something other than
client[.exe].

• Invoke nmake -f yourmakefile. (Windows) or make -f yourmakefile
(UNIX).

• Create a batch file or shell script to run your executable,
based on the run_cxx_client[.bat] in the demo’s bin directory.

• Start the locator demo with start_locator[.bat].
• Start the example services with run_cxx_servers[.bat].
• Run the example’s batch file or shell script.
Artix Locator Guide C++ 33

When invoked as above, the example code produces output like
the following:

Querying a Locator Service
Starting with Artix post-3.x, the locator has extended query
functionality, compared to the basic listEndpoints operation
offered in prior releases. The locator query capabilities are
implemented as the queryEndpoints operation, which uses as its
input parameter a select element defined in an extensible XML
schema, locator-query.xsd.

Demonstration code
The querying functionality of the Artix post-3.x locator is
illustrated in the locator_query demonstration example. See
ArtixInstallDir/samples/advanced/locator_query.

Filtered and unfiltered lists of services
To use the query functionality, follow these overall steps in your
consumer code:
1. Obtain a reference to the locator service and create a client

proxy to the locator.
2. To obtain an unfiltered list of the services registered with that

locator, invoke the locator’s listEndpoints operation.
3. To obtain a filtered list of registered services, invoke the

locator’s queryEndpoints operation, passing it one or more
query filters.

Extensible query language
The query language used by the queryEndpoints operation is
governed by an XML Schema, which is installed by default in
ArtixInstallDir/schemas/locator-query.xsd.
The C++ data types used in the examples in this section are from
code generated from this schema (or from locator.wsdl, which
includes this schema). Artix does not ship with code generated
from this schema or WSDL, so it is the Artix developer’s
responsibility to generate code from the schema or WSDL and
make use of it.
Because the query language is in a schema, you can extend the
schema to add new query functionality.

SimpleService C++ Client
Initializing the bus.
Resolving SOAPHTTPService service in the locator.
Initializing a proxy with the results from the locator.
Invoking say_hello on the service SOAPHTTPService.
The say_hello operation returned:
 Greetings from SOAPHTTPService!
 34 Artix Locator Guide C++

The contents of the locator_query.xsd schema are shown in
Example 7.

Example 7: Contents of locator-query.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="http://ws.iona.com/2005/11/locator/query"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://ws.iona.com/2005/11/locator/query">
 <xs:simpleType name="FieldEnumeratedType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="GROUP"/>
 <xs:enumeration value="SERVICE"/>
 <xs:enumeration value="PORTNAME"/>
 <xs:enumeration value="INTERFACE"/>
 <xs:enumeration value="BINDING"/>
 <xs:enumeration value="EXTENSOR"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="FilterFieldType">
 <xs:union memberTypes="tns:FieldEnumeratedType xs:string"/>
 </xs:simpleType>
 <xs:complexType name="FilterType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="field" type="tns:FilterFieldType"
 use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="QuerySelectType">
 <xs:sequence>
 <xs:element name="filter" type="tns:FilterType"

minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" minOccurs="0"

processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="select" type="tns:QuerySelectType"/>
</xs:schema>
Artix Locator Guide C++ 35

Query functionality
The target namespace of the locator-query.xsd schema is
http://ws.iona.com/2005/11/locator/query. The query:select
element of type query:QuerySelectType is a sequence of filters. It is
extensible insofar as it can support future xs:any elements without
breaking compatibility. In the current implementation, the locator
service ignores all xs:any elements that may be present within a
select element.
A filter is a pair of type and value. The value is a string; some
filters use QName values represented as strings in canonical form:

[{<namespace>}]<local-part>

The logic to convert QNames to and from canonical string
representation is available from the IT_Bus::QName type (as shown
in the example in this section).
The type of a filter is one of the query:FieldEnumeratedType values.
The filter type is extensible by allowing any other field type.
Extensibility was achieved by making the Filter type a union of the
supported enumerated type and a string. Any value different from
the ones present in the enumerated type is ignored by the current
locator implementation.
The value of a filter could be either a string or a QName,
depending on the filter type. When the value is a QName, you still
needs to pass it as a string using its canonical value.
The matching rules for the supported filter types are shown in the
following table. There is no wildcard support in these filter types,
so the search text must be exact.

Filter type Format Filter the returned list of services by:
GROUP xs:string The case sensitive name of a group of

services you are seeking. (Service group
membership is defined in each service’s
WSDL contract or in an Artix configuration
file as described in “Service groups” on
page 37.)

SERVICE xs:QName The QName of the service you are
seeking.

PORTNAME xs:string The case sensitive name of at least one of
the ports in the service you are seeking.

INTERFACE xs:QName The QName of the portType associated
with a binding, which is itself associated
with at least one of the ports in the service
you are seeking.

BINDING xs:string The QName of the binding associated with
at least one of the ports in the service you
are seeking.

EXTENSOR xs:string The QName of an extensor contained in at
least one of the ports in the service you
are seeking.
 36 Artix Locator Guide C++

Service groups
Starting with Artix post-3.x, you can assign arbitrary group
membership to services. This feature is used in combination with
the locator’s query functionality. For example, you could query the
locator to ascertain which services belong to which groups.
There is no restriction on assigning services to groups in different
processes. It is valid to have services in the same process belong
to different groups, or to no group at all. It is valid for services in
different processes to belong to the same group. By default, a
service belongs to no group.
A service can be assigned to a group by means of a WSDL
extension or by means of configuration.

Assigning group membership with a
configuration variable
The preferred method of assigning services to groups is performed
in an Artix configuration file, using the service_group configuration
variable.
Using the QName alias for a service in the configuration file,
specify the service_group variable and assign an arbitrary string as
the group name.
In the following example, the first line defines the QName alias
corba_svc. The second line assigns the corba_svc service to the
group named CORBAGroup.

You can define a global group for all services associated with the
current bus. All services that do not have a group definition in
their WSDL or configuration then belong to the global group by
default.

bus:qname_alias:corba_svc =
"{http://demo.iona.com/advanced/LocatorQuery}CORBAService";

...
plugins:locator:service_group:corba_svc = "CORBAGroup";

Note: Configuration-assigned group membership takes
precedence over WSDL-assigned group membership.

plugins:locator:service_group = "<default-group-name>";
Artix Locator Guide C++ 37

Assigning group membership in WSDL
You can use an Artix WSDL extension to assign a service to a
group in the service’s WSDL contract.
The WSDL extension is defined in a new schema under the types
section in locator.wsdl:

This allows service WSDL contracts to use the name= attribute, as
shown in this example taken from the locator_query demo.

Locator query example with single query
The following C++ code fragment demonstrates the locator’s
query functionality. This example uses a single query filter:

<xs:schema
targetNamespace="http://ws.iona.com/2005/11/locator/extensions"
>

 <xs:element name="group" type="xs:string"/>
</xs:schema>

xmlns:locx="http://ws.iona.com/2005/11/locator/extensions"
...
<service name="CORBAService">
 <locx:group>QUERY-DEMO</locx:group>
 <port binding="tns:SimpleServicePortType_CORBABinding"

name="CORBAPort">
 <corba:address location="file:../../corba_server.ior"/>
 <corba:policy poaname="corbaport"/>
 </port>
</service>

// Create a query
 QuerySelectType select;
 FilterType filter;
 FilterFieldType fld;

 fld.setFieldEnumeratedType(
 FieldEnumeratedType(FieldEnumeratedType::GROUP));
 filter.setfield(fld);
 filter.setvalue("SAMPLE-VALUE");
 select.getfilter().push_back(filter);

 // Create a proxy for the locator.
 // (This assumes that the bus already been initialized)
 Reference locator_ref;
 bus->resolve_initial_reference(LOCATOR_SERVICE_NAME,
 locator_ref);
 LocatorServiceClient locator_client(locator_ref);

 // Invoke
 ElementListT<endpoint> result;
 locator_client->queryEndpoints(select, result);

 // Use the result in some way ...
 38 Artix Locator Guide C++

Locator query example with multiple
queries
The locator supports queries based on multiple filters. The filters
restrict the endpoints in the result set to those endpoints that
match the value in each filter. They act as a composite filter with
an implicit AND operator.
Filters have a type and a value. There are no restrictions on
mixing different filters based on their type. It is valid to add filters
of the same type.
The following C++ code fragment illustrates the use of the
locator’s query functionality with multiple query filters.

Migrating Consumer Code
The following differences between Artix 4.x/5.x-C++ and Artix 3.0
might affect any existing Artix consumers:
• Locator WSDL operation names were changed in compliance

with the wrapped doc-literal convention.
• Artix switched from using a proprietary reference format to

using the standard WS_Addressing endpoint reference format.
• Locator consumers are now configured to load the

locator_client plug-in. This plug-in takes over the tasks of
creating a proxy to the target service. These tasks were
formerly the responsibility of consumer code.

For WS-Addressing migration information, see the chapters
“Endpoint References” in Developing Artix Applications in
C++.

QName sample_portType("", "MyPortType",
"http://www.example.com/demo");

QuerySelectType select;
FilterType filter;
FilterFieldType fld;

fld.setFieldEnumeratedType(
 FieldEnumeratedType(FieldEnumeratedType::GROUP));
filter.setfield(fld);
filter.setvalue("SAMPLE-VALUE");
select.getfilter().push_back(filter);

fld.setFieldEnumeratedType(
 FieldEnumeratedType(FieldEnumeratedType::INTERFACE));
filter.setfield(fld);
filter.setvalue(sample_portType.get_as_canonical_string());
select.getfilter().push_back(filter);
Artix Locator Guide C++ 39

Old and new locator WSDL contracts
supported
As described in “Backward compatibility” on page 9, the Artix
post-3.x locator service incorporates both Artix 3.x and
post-3.x-compatible locator services.
Artix post-3.x includes a newer version of locator.wsdl. The new
locator.wsdl file is located by default in the following directory of
your Artix installation:

Artix 4.x

Artix 5.x

In a production environment, the locator.wsdl can be in any
location.
Artix post-3.x also includes a copy of the Artix 3.x locator.wsdl
file. By default, this file is installed in:

Artix 4.x

Artix 5.x

The Artix 4/5-C++ configuration file, artix.cfg, resolves which
locator.wsdl contract to use by distinguishing the QName with
which the locator service is called. The default artix.cfg file
contains the following lines:

Thus, if consumer code requests a reference using the QName
{http://ws.iona.com/locator}LocatorService, then any request for the
locator’s initial contract is directed to the 3.x version of
locator.wsdl in the wsdl/oldversion directory.
By using the Artix 4/5-C++ version of the locator QName,
{http://ws.iona.com/2005/11/locator}LocatorService, any request for the
locator’s initial contract is directed to the 4.x/5.x-C++ version of
locator.wsdl.

ArtixInstallDir/artix/version/wsdl

ArtixInstallDir/wsdl

ArtixInstallDir/artix/version/wsdl/oldversion

ArtixInstallDir/wsdl/oldversion

bus:qname_alias:locator_oldversion = "{http://ws.iona.com/locator}LocatorService";
bus:qname_alias:locator = "{http://ws.iona.com/2005/11/locator}LocatorService";
...
bus:initial_contract:url:locator_oldversion =

"ArtixInstallDir/artix/version/wsdl/oldversion/locator.wsdl";
bus:initial_contract:url:locator = "ArtixInstallDir/artix/version/wsdl/locator.wsdl";
 40 Artix Locator Guide C++

Configuration for Artix post-3.x locator
service
To allow Artix 3.x and post-3.x consumers to connect to an Artix
4.1, 4.2, or 5.x/C++ locator service, add one new configuration
entry to the locator service configuration scope, as described in
“Artix post-3.x locator setup for backward compatibility” on
page 11.

Locator WSDL operation names
The names of public operations in the Artix 4 and 5 C++ version of
locator.wsdl have been changed, as described in Table 1.

Migrating consumer code to Artix
post-3.x
As described in “Migrating from Previous Versions” on page 9, the
Artix 4/5-C++ locator supports the use of unmodified Artix 3
consumers. This allows you to put your first migration efforts into
upgrading your locators and services to Artix 4 or 5-C++. Once
those tasks are complete, you can migrate your consumers as
follows:
1. Edit your configuration files to make sure the locator_client

plug-in is loaded in the configuration scope(s) used by your
locator consumers. See “Configuring C++ Consumers” on
page 29.

2. If your code directly invokes any operations of the
locator.wsdl contract, update the operation names as
described in “Locator WSDL operation names” on page 41.

3. For consumers in C++, simplify your consumer code as
described below.

Table 1: Operation names in Artix 3 and Artix 4/5 locator.wsdl

Artix 3
locator.wsdl

Artix 4/5 C++
locator.wsdl

Notes

lookup_endpoint lookupEndpoint The Artix 3 version returns
an Artix Reference. The
Artix 4/5-C++ version
returns a WS-Addressing
type reference.

list_endpoints listEndpoints

queryEndpoints There is no Artix 3
equivalent operation.
Artix Locator Guide C++ 41

In Artix 3, the coding steps that every locator consumer had
to take were the following:
i. Invoke IT_Bus::Bus::resolve_initial_reference() on the

locator’s QName.
ii. Using the returned reference, invoke

IT_Bus::ClientProxyBase() to set up a proxy to the locator.
iii. Using the proxy, invoke the locator’s lookup_endpoint

operation to get a reference to the target service.
iv. Using the reference returned by the locator, invoke

ClientProxyBase() to set up a proxy to the target service.
In Artix post-3-x, because the locator_client plug-in is doing
most of the work, the coding steps are shortened to the
following:
i. Invoke IT_Bus::Bus::resolve_initial_reference() on the

target service’s QName.
ii. Using the returned reference, invoke

IT_Bus::ClientProxyBase() to set up a proxy to the target
service.

Note: If your application invokes the listEndpoints or
queryEndpoints operations of the locator service, then you must
still create a proxy to the locator service. This is described in
“Querying a Locator Service” on page 34.
 42 Artix Locator Guide C++

Using the Locator from
a Non-Artix Client
The Artix locator service can be used by consumers generated by other
SOA systems.

Implementing a .NET Client
.NET clients can use the locator to discover services, using the
Bus.Services.dll library. The locator provides a number of
methods for looking up services and managing service
registration. The Artix .NET plug-in is Web Services Enhancements
2.0 (WSE 2.0) compliant. The helper classes included in the
Bus.Services library simplify working with the locator by providing
native .NET calls to access the locator and the endpoint references
it produces.

What you need before starting
Before starting to develop a client that uses the Artix locator you
need:
• A means for contacting a deployed Artix locator. This can be

one of the following:
♦ An endpoint reference
♦ An HTTP address
♦ A local copy of the locator’s contract

• A locally accessible copy of the WSDL contract that defines the
service that you want the client to invoke upon.

• To install WSE 2.0 SP3 before starting an Artix .NET locator
client.

Demonstration code
The code examples in this section are taken from the locator
demo’s .NET client code. The .NET client makes a request on a
service instance for which it does not have a current endpoint
reference. The .NET client accesses the locator to get a reference
to an active instance of the service on which it wants to make
requests. The complete client code can be found in the following
directory of your Artix installation:

InstallDir\samples\advanced\locator\dotnet\client
 Artix Locator Guide C++ 45

Procedure
To develop a .NET client that uses the Artix locator, do the
following:
1. Create a new project in Visual Studio.
2. Right-click the folder for your new project and select Add

Reference from the pop-up menu.
3. Click Browse on Add Reference window.
4. In the file selection window, browse to your Artix installation

and select the Bus.Services.dll from the InstallDir\utils\.NET
directory.

5. Click OK to return to the Visual Studio editing area.
6. Right-click the folder for your new project and select Add

Web Reference from the pop-up menu.
7. In the Address: field of the browser, enter the full path name

of the contract for the service on which you are going to make
requests.

8. Click Add Reference to return to the Visual Studio editing
area.

9. Open the .cs file generated for the contract you imported.
10. Locate the class declaration for the service on which you

intend to make requests. The class declaration looks similar to
that shown in Example 8.

11. Add a new C# class to your project.
12. Add the statement using Bus.Services; after the statement

using System;.
13. Create a service proxy for the Artix locator by instantiating an

instance of the Bus.Services.Locator class as shown in
Example 9.

The constructor’s parameter is the HTTP address of a
deployed locator. The Locator class also has two constructors
that take an Artix reference or a WSDL contract for use with
the Artix locator.

14. Create a QName representing the name of the service you
wish to locate using an instance of the
System.Xml.XmlQualifiedName class as shown in Example 10.

Example 8: .NET Service Proxy Class Declaration

public class SOAPService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

Example 9: Instantiating a Locator Proxy in .NET

Locator l = new Locator("http://localhost:8080");

Example 10: Creating a .NET QName

XmlQualifiedName service = new XmlQualifiedName(
 "HelloWorldService",
 "http://www.iona.com/hello_world_soap_http"
);
 46 Artix Locator Guide C++

15. Invoke the lookup_endpoint() method on the locator proxy as
shown in Example 11.

lookupEndpoint() takes the QName of the desired service as a
parameter and returns an endpoint reference if an instance of
the specified service is registered with the locator instance.
Endpoint references are implemented in the .NET
Bus.Services.EndpointReferenceType class.

16. Create a .NET proxy for the service on which you are going to
make requests as you normally would.

17. Change the value of the proxy’s .Url member to the SOAP
address of the endpoint reference returned from the locator as
shown in Example 12.

18. Make requests on the service as you would normally.

Implementing an Axis Client
Because the Artix locator is a SOAP over HTTP service whose
interface is defined by a WSDL contract, an Axis client can use it
to locate deployed instances of a service. Using the Artix locator
from an Axis client involves generating a proxy for the locator
service and interpreting the returned endpoint reference.

Axis version
The examples in this chapter were developed using Axis 1.3. They
should work with Axis 1.4 as well.

Procedure
To develop an Axis client that uses Artix locator, do the following:
1. Generate a WSDL file from a running locator instance.
2. Generate Axis stub code from the generated locator WSDL file

as shown in Example 13:

3. Generate Axis stub code from the WSDL document for the
service on which you want your client to invoke, as shown in
Example 14:

Example 11: Looking-up an Endpoint Reference.

Reference ref = l.lookupEndpoint(service);

Example 12: Changing the URL of a .NET Service Proxy to Use an Endpoint Reference

simpleService.Url = endpoint.Address.Value;

Example 13: Generating Axis Stub Code for Locator

Java org.apache.axis.wsdl.WSDL2Java locator.wsdl

Example 14: Generating Axis Stub Code for the Target Web Service

Java org.apache.axis.wsdl.WSDL2Java simple_service.wsdl
Artix Locator Guide C++ 47

4. Retrieve a locator service endpoint as shown in Example 15:

5. Instantiate a locator proxy as shown in Example 16:

6. Get a reference to a service using the locator proxy as shown
in Example 17.

7. Get the address of the service from the returned endpoint
reference as shown in Example 18.

8. Create a proxy for the service and invoke on it as you
normally would.

Note: Axis only understands services that use SOAP over
HTTP. If you are starting from the WSDL for an Artix service
that supports other bindings and transports, you must make
a copy of its WSDL document and remove references to any
namespaces, bindings, and transports other than SOAP over
HTTP. Then run the Axis WSDL2Java generator on your
simplified copy of the WSDL document.

Example 15: Retrieving a Locator Service Endpoint

String tns = "http://ws.iona.com/2005/11/locator";
QName service = new QName(tns, "LocatorService");
String port = "LocatorServicePort";
java.lang.String url = get_soap_address("locator.wsdl",

service, port);
java.net.URL endpoint = new java.net.URL(url);

Example 16: Instantiating a Locator Proxy

LocatorService_Service lssl = new
LocatorService_ServiceLocator();

LocatorServiceBindingStub locProxy =
(LocatorServiceBindingStub)lssl.getLocatorServiceP
ort(endpoint);

Example 17: Getting an Endpoint Reference

QName servName = new
QName("http://www.iona.com/FixedBinding",
"SOAPHTTPService");

EndpointReferenceType serviceEpr =
locProxy.lookupEndpoint(servName);

Example 18: Getting the Service Address

String servURL =
serviceEpr.getAddress().get_value().toString();

serv_endpoint = new java.net.URL(servURL);
 48 Artix Locator Guide C++

Index
Symbols
.NET client 45

A
application

making locator-aware 2
Artix 4.1/4.2

special configuration for Artix 4.0 and
3.x clients 11, 23, 41

Artix plug-ins
locator-related 4

Artix Reference format 3
Artix runtime 2

C
C++ 9, 30, 31, 33, 34, 39, 40, 42

example 31
client applications

configuring 6
migrating 42

client plug-in 4
client-side 2, 3, 6, 8
combinations

of service and clients 10
configuration

for Artix 4.1/4.2 locator service 11, 23,
41

D
documentation

.pdf format vii
updates on the web vii

E
endpoint grouping 1
endpoint manager plug-in 4
endpoint repository 1

F
fault tolerance 2

G
groups

service 37

H
high availability configuration 2

L
load balancing 1, 4
locator

service groups 6
use cases 1
locator.wsdl 6, 7, 15, 16, 19, 24, 34, 38, 40, 41,

42
Artix 3.0 version 41
Artix 4.x version 40

locator-aware
clients 2

locator-aware, making applications 2
locator endpoint plug-in 5
locator service 2

configuring 6
locator service plug-in 4, 5

M
migrating client applications 42

O
operations

in locator.wsdl 42

P
peer manager plug-in 2, 5
plug-in

client 4
endpoint manager 4
interactions 5
locator endpoint 5
locator service 4, 5
peer manager 5

plug-ins
locator-related 4

public operations 42

Q
QName 2, 3, 4, 7, 9, 10, 23, 24, 25, 31, 33, 36,

37, 38, 41, 42, 43
new locator 10
of locator service 9
old locator 10

R
reference 3

returned by locator 3
register endpoints 3

S
service and client combinations 10
service groups 37

locator 6
service-side 2
Artix Locator Guide C++ 49

U
use case

endpoint grouping 1
endpoint repository 1
fault tolerance 2
high availability 2
load balancing 1

use cases 1

W
WS-Addressing 3
 50 Artix Locator Guide C++

	Preface
	Contacting Micro Focus

	Artix Locator Introduction
	What is the Locator Service?
	How the Locator Works
	Locator WSDL Contract
	Locator Sample Code
	Migrating from Previous Versions

	Configuring and Deploying the Locator Service
	Deploying the Locator Service
	Registering Services with the Locator
	Configuring a Locator-Enabled Service, C++ Runtime

	Using Load Balancing
	Using Fault Tolerance Features
	Starting Services with Artix 3 Consumer Support
	Adding SOAP 1.2 Support

	Using the Locator from an Artix Consumer
	Configuring Artix Consumers to Use the Locator Service
	Configuring C++ Consumers

	Obtaining Service References from the Locator Service
	Implementing a C++ Consumer

	Querying a Locator Service
	Migrating Consumer Code

	Using the Locator from a Non-Artix Client
	Implementing a .NET Client
	Implementing an Axis Client

	Index

