
ChangeMan ZMF

HLLX Getting Started Guide

8.3

© Copyright 2023 Micro Focus or one of its affiliates

ChangeMan ZMF

toc

4About this Guide

4Navigating this book

4Guide to ChangeMan ZMF Documentation

7Typographical Conventions

8Introduction

8Introduction

9Getting Started

13High Level Language Exit Details

13Exit Details Overview

13HLL Exit Processing Address Space

15Initialization, Termination, Modify Commands

18Exit Administration

21Caller to Exit Cross Reference

33Sample LE-Language Exit Modules

44ZMF/HLL Exit Interface

44Introduction

45Build

58Package Create

70Package Update

84File Tailoring

89Checkout

98Promote/Demote

106Audit

116Freeze, Unfreeze, and Refreeze

123Package Approve and Reject

128Revert/Backout

133Specific Exits

161Scratch/Rename

165Miscellaneous

toc

toc 2

166Modify

169Legal Notice

169Third-Party Notices

169Specific notices

toc

toc 3

1. About this Guide

This guide provides information that is necessary to create and use exits that you can write in high-

level languages such as COBOL, PL/I, and REXX.

It is intended for ChangeMan ZMF installers, global administrators, and application developers.

Navigating this book

This manual is organized as follows:

Chapter 1 - Contains information about this guide.

Chapter 2 - Provides an introduction to functional exits that are written in high-level languages.

Chapter 3 - Describes how to set up and implement the high-level language functional exit

capability.

Chapter 4 - Describes the high-level language interface to ChangeMan ZMF functions such as

package create, package update, and build.

Guide to ChangeMan ZMF Documentation

The following sections provide basic information about ChangeMan ZMF documentation.

ChangeMan ZMF Documentation Suite
The ChangeMan ZMF documentation set includes the following manuals in PDF format.

• •

• •

• •

• •

Manual Description

Administrator's Guide Describes ChangeMan ZMF features and functions with instructions for

choosing options and configuring global and application administration

parameters

ChangeMan ZMF Quick

Reference

Provides a summary of the commands you use to perform the major

functions in the ChangeMan ZMF package life cycle.

REST Services Getting

Started Guide

Getting Started Guide for ZMF REST Services (this manual).

Customization Guide Provides information about ChangeMan ZMF skeletons, exits, and utility

programs that will help you to customize the base product to fit your needs.

1. About this Guide

1. About this Guide 4

Manual Description

Db2 Option Getting

Started Guide

Describes how to install and use the Db2 Option of ChangeMan ZMF to

manage changes to Db2 components.

ERO Concepts Discusses the concepts of the ERO Option of ChangeMan ZMF for

managing releases containing change packages.

ERO Getting Started

Guide

Explains how to install and use the ERO Option of ChangeMan ZMF to

manage releases containing change packages.

IMS Option Getting

Started Guide

Provides instructions for implementing and using the IMS Option of

ChangeMan ZMF to manage changes to IMS components.

INFO Option Getting

Started Guide

Describes two methods by which ChangeMan ZMF can communicate with

other applications: through a VSAM interface file, through the Tivoli

Information Management for z/OS product from IBM.

Installation Guide Provides step-by-step instructions for initial installation of ChangeMan ZMF.

Assumes that no prior version is installed or that the installation will overlay

the existing version.

Java zFS Getting Started

Guide

Provides information about using ZMF to manage application components

stored in USS file systems, especially Java application components.

Load Balancing Option

Getting Started Guide

Explains how to install and use the Load Balancing Option of ChangeMan

ZMF to connect to a ZMF instance from another CPU or MVS image.

M+R Getting Started

Guide

Explains how to install and use the M+R Option of ChangeMan ZMF to

consolidate multiple versions of source code and other text components.

M+R Quick Reference Provides a summary of M+R Option commands in a handy pamphlet

format.

Messages Explains messages issued by ChangeMan ZMF, SERNET, and System

Software Manager (SSM) used for the Staging Versions feature of ZMF.

Migration Guide Provides guidance for upgrading ChangeMan ZMF OFM Getting Started

Guide Explains how to install and use the Online Forms Manager (OFM)

option of ChangeMan ZMF.

SER10TY User's Guide Gives instructions for applying licenses to enable ChangeMan ZMF and its

selectable options.

User's Guide Describes how to use ChangeMan ZMF features and functions to manage

changes to application components.

XML Services User's

Guide

Documents the most commonly used features of the XML Services

application programming interface to ChangeMan ZMF.

ChangeMan ZMF Documentation Suite

ChangeMan ZMF Documentation Suite 5

Using the Manuals
Use Adobe® Reader® to view ChangeMan ZMF PDF files. Download the Reader for free at

get.adobe.com/reader/.

This section highlights some of the main Reader features. For more detailed information, see the

Adobe Reader online help system.

The PDF manuals include the following features:

Bookmarks. All of the manuals contain predefined bookmarks that make it easy for you to

quickly jump to a specific topic. By default, the bookmarks appear to the left of each online

manual.

Links. Cross-reference links within a manual enable you to jump to other sections within the

manual with a single mouse click. These links appear in blue.

Comments. All PDF documentation files that Serena delivers with ChangeMan ZMF have

enabled commenting with Adobe Reader. Adobe Reader version 7 and higher has commenting

features that enable you to post comments to and modify the contents of PDF documents.

You access these features through the Comments item on the menu bar of the Adobe Reader.

Printing. While viewing a manual, you can print the current page, a range of pages, or the entire

manual.

Advanced search. Starting with version 6, Adobe Reader includes an advanced search feature

that enables you to search across multiple PDF files in a specified directory.

Searching the ChangeMan ZMF Documentation Suite
There is no cross-book index for the ChangeMan ZMF documentation suite. You can use the

Advanced Search facility in Adobe Acrobat Reader to search the entire ZMF book set for

information that you want. The following steps require Adobe Reader 6 or higher.

Download the ZMF All Documents Bundle ZIP file and the ZMF Readme to your workstation

from the My Downloads tab on the Serena Support website.

Unzip the PDF files in the ZMF All Documents Bundle into an empty folder. Add the ZMF

Readme to the folder.

In Adobe Reader, select Edit | Advanced Search (or press Shift+Ctrl+F).

Manual Description

ZMF Web Services

User's Guide

Documents the Web Services application programming interface to

ChangeMan ZMF.

• •

• •

• •

• •

• •

1. 1.

2. 2.

3. 3.

Using the Manuals

Using the Manuals 6

Select the All PDF Documents in option and use Browse for Location in the drop down menu

to select the folder containing the ZMF documentation suite.

In the text box, enter the word or phrase that you want to find.

Optionally, select one or more of the additional search options, such as Whole words only and

Case-Sensitive.

Click Search.

In the Results, expand a listed document to see all occurrences of the search argument in that

PDF.

Click on any listed occurrence to open the PDF document to the found word or phrase.

Typographical Conventions

The following typographical conventions are used in the online manuals and online help. These

typographical conventions are used to assist you when using the documentation; they are not

meant to contradict or change any standard use of typographical conventions in the various

product components or the host operating system.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

Convention Explanation

italics Introduces new terms that you may not be familiar with and occasionally indicates

emphasis.

bold Indicates panel titles, field names, and emphasizes important information.

UPPERCASE Indicates keys or key combinations that you can use. For example, press ENTER.

monospace Indicates syntax examples, values that you specify, or results that you receive.

monospace italics Indicates names that are placeholders for values you specify; for example, filename .

monospace bold Indicates the results of an executed command.

vertical rule Separates menus and their associated commands. For example, select File

Typographical Conventions

Typographical Conventions 7

2. Introduction

In order to enforce local business rules, many Serena customers are forced to implement calls to

ISPF panel exits from customized versions of the ISPF panel definitions supplied as part of the

ZMF product. There are two problems with this:

Every time Serena changes a panel definition, or even the underlying code driving the panel

display, customers must recustomize and/or retest their local functionality. This consumes a

lot of time during a ZMF upgrade.

This method of implementing ZMF functionality is only available to the ISPF client. No method

is available to ZDD and ZMF for Eclipse clients to achieve the same customization.

ZMF 8.1 and later versions provide central high-level language exit services that can be called by

any client that can connect to ZMF. You can code the exits in any Language Environment (LE)-

compliant language as well as REXX. The same customer-supplied exit code will be executed

regardless of which client is being used.

If an appropriate exit point is in place, there will be no need to code an ISPF panel exit.

This release addresses requirements in the following ZMF functions:

Build (including Component Checkin, Stage, Recompile, and Relink)

Package Create

Package Update

File Tailoring

Component Checkout

Promote/Demote

Audit

Freeze (Unfreeze, Refreeze)

Approve/Reject

Revert/Backout

Package Syslib

Introduction

1. 1.

2. 2.

These HLL exit points have no relation to, and do not replace, any existing ZMF assembler exit

points (that is, the CMNEXnnn exits).

Note

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

2. Introduction

2. Introduction 8

Scratch/Rename

Issue Reload, Detach, or Attach modify commands

Selected HLL Exits Can Be Coded To Suppress the Display of User

Option Panels
The relevant ISPF client programs have been changed to take notice of a proceed=NO setting from

the AUDT00UV, BULD00US, BULD00UV, CKOT00UV, FREZ00UV, and PRDM00UV pre-exits. If this

setting is found in these exits, the process of displaying the relevant user variable or user options

panel or panels is skipped. This change only applies to the only to the ISPF client (and not to

ChangeMan ZDD or ChangeMan ZMF for Eclipse client processing).

Getting Started

Detailed descriptions of exit point locations, exit data formats, and task modify commands are

provided in the sections which follow. This brief section should be seen as a checklist of how to get

started with this feature.

HLLX started task procedure - Define the JCL procedure for the HLLX address space in a

system procedure library from which it may be started. You should also set up security for this

started task to be the same as that for the ZMF/Sernet started task. That is, use the same

userid. (See sample JCL member HLLXJCL in the CMNZMF CNTL distribution library. See The

HLL Exit Processing Address Space for an example.)

Take a look at the samples provided in the CMNZMF SAMPLES distribution library for the

kinds of things that can be done in the HLL exits. The samples should have enough comments

for you to be able to understand what they do.

Familiarize yourself with the data formats for the different functions. These data formats are

described in a later section. Note that there is a standard data structure for each function,

regardless of exit point, but that not every exit point has all the information indicated by the full

structure.

Set up and start your test ZMF 8.1 (or later) subsystem. ZMF will come up without starting the

HLLX address space if no active HLL exit points have been defined yet.

Connect to the ZMF 8.1 (or later) started task through the ISPF client and use admin option

A.G.8 to set your exit values. To begin with you must set the correct name for the HLLX started

task procedure. On your first HLLX admin session that’s all you need to do. Save this definition

away and you will be ready for what comes next.

Decide which exit point you are going to investigate first and prepare the exit code. Note that

compiled/linked exits are loaded from the HLLX started task STEPLIB. This means you will

need access to an APF-authorized library in which to put these exits. This library is

• •

• •

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Selected HLL Exits Can Be Coded To Suppress the Display of User Option Panels

Selected HLL Exits Can Be Coded To Suppress the Display of User Option Panels 9

concatenated to the standard ZMF/Sernet started task STEPLIB. (This requirement is the

same as for the standard ZMF assembler exits.) REXX execs need only be placed in the library

referenced by the HLLXREXX ddname in the HLLX started task procedure JCL.

Using admin function A.G.8, update the HLLX admin definitions to correctly describe and

activate your exit points. When you save (PF3) from the table display the changed contents

will be saved to the Package Master.

Inform the HLLX address space that the exit definitions have changed. You can use the

Administration menu options described in Modify for all these modify commands. In this case

you can issue the following modify command:

/F zmfstcname,CMN,ATTACH,HLLX

to start the HLLX address space. Note that all modify commands are directed to the ZMF

started task, not the HLLX started task.

The HLLX address space must be notified of any further in-flight changes to exit admin (that

is, any changes after the HLLX address space is active) with the following modify command:

/F zmfstcname,CMN,RELOAD,HLLX

Note that all in-flight HLLX conversations are invalidated when you enter this command. All in-

flight HLLX conversations are also invalidated if you stop the HLLX address space with the

following command:

/F zmfstcname,CMN,DETACH,HLLX

and restart it again with an ATTACH command (another way of reloading the admin definitions

to the HLLX address space). The most intrusive way to reload these definitions is to shut

down ZMF (which will automatically shut down HLLX) and restart it.

Any displays put in the exits will output in the HLLX address space.

Drive the exit(s) by using the relevant ZMF function.

7. 7.

8. 8.

The HLLX started task should never be started or stopped directly. It only exists to service

requests from ZMF. ZMF starts it up and ZMF shuts it down. It will also respond to an MVS

stop command by shutting down, but that should never be necessary in normal operations.

Note

9. 9.

Getting Started

Getting Started 10

Samples Provided
The CMNZMF SAMPLES distribution library contains a number of members that relate to HLL

sample exit code. None of this code is warranted (the exit code belongs to you), but these samples

have all been used successfully in testing this feature.

Use IEBCOPY or ISPF 3.3 to copy these members to your HLL exit source or REXX exec libraries.

Note that compiled/linked exits must be re-entrant.

Copybooks for the exit data areas can be found in the CMNZMF ASMCPY distribution library. They

are:

CMNCX* - COBOL copybooks

CMNPX* - PL/I copybooks

HLLX Activity Logging
Certain key activities related to HLLX are logged to the standard ZMF log file. There are two activity

logging facilities reachable from the ChangeMan ZMF Primary Option Menu (=L).

There are two classes of activity, administrative changes (log indicator 38) and state changes via

MVS modify commands (log indicator 39). Any activity which results in an update to the exit

definitions in the pmast will result in a log entry which looks like this (when browsing the log file).

The modify-from-ISPF facility results in two log entries for each modify command. The ISPF admin

function writes a log record as soon as it requests the modify action. Then the modify action itself

writes a record. For example, if =A.G.8.Z.1 was used to reload the HLLX exit table it would generate

two log records, and then selecting 38 might give a result like this output:

CMNZMF SAMPLES Member Name Contents

HXC* Sample HLL exit code written in COBOL.

HXP* Sample HLL exit code written in PL/I.

HXR* Sample HLL exit code written in REXX.

• •

• •

CMNLOGE2 Select Activity Log Codes Row 35 to 72 of 81
Command ===> ___ Scroll ===> CSR

 Code Description
 _38 HLLX administration
 _39 HLLX commands

Samples Provided

Samples Provided 11

The general format is the usual log timestamp, followed by the userid making the update, an

indication of whether we are updating, modifying or deleting, a procedure or an exit definition. For a

procedure definition the only other data in the record is the value of the procedure name after the

change has been made. For an exit definition there are a number of values all comma delimited as

follows:

Exit: Internal exit name,

Standard exit active Y/N

Standard exit LE or REXX L/R

Debug exit active Y/N

Debug exit LE or REXX L/R

First 8 bytes of standard exit external name

First 8 bytes of debug exit external name

The 10 debug userids

Similarly, selecting 39 might give a result like this output:

Note that the userid for all modify commands will be that of the main ZMF started task, in this case

CMNSTAR, as the process is actioned by the ZMF main started task.

CMNLOGDS Activity Log Entries Row 1 to 8 of 8
Command ===>__ Scroll ===> CSR

Date Time User Package Description +
20170403 010145 WSER58 HLLX Modfy Action: RELOAD
20170403 010145 CMNSTAR HLLX cmd: RELOAD HLLX
******************************* Bottom of data ********************************

• •

• •

• •

• •

• •

• •

• •

• •

CMNLOGDS Activity Log Entries Row 1 to 8 of 8
Command ===>__ Scroll ===> CSR

Date Time User Package Description +
20170322 193834 CMNSTAR HLLX cmd: RELOAD HLLX
20170322 200835 CMNSTAR HLLX cmd: RELOAD HLLX
20170322 201120 CMNSTAR HLLX cmd: RELOAD HLLX
20170322 202529 CMNSTAR HLLX cmd: RELOAD HLLX
20170322 202843 CMNSTAR HLLX cmd: RELOAD HLLX
20170323 214011 CMNSTAR HLLX cmd: RELOAD HLLX
20170323 214851 CMNSTAR HLLX cmd: DETACH HLLX
20170323 214912 CMNSTAR HLLX cmd: ATTACH HLLX
******************************* Bottom of data ********************************

HLLX Activity Logging

HLLX Activity Logging 12

3. High Level Language Exit Details

HLL Exit Processing Address Space

Initialization, Termination, Modify Commands

Exit Administration

Caller to Exit Cross Reference

Samples

HLL Exit Processing Address Space

This address space is started up and shut down by the ZMF/Sernet address space. It can also be

restarted, which re-establishes the connection with the ZMF/Sernet address space on an ad-hoc

basis.

See Exit Administration for details on how to specify the name of the HLLX started task.

ZMF will only start an HLLX address space if active HLLX exit points have been defined in global

administration. (See Exit Administration for an example of defining HLLX exit points with global

administration.) Member HLLXJCL in the CMNZMF CNTL distribution library provides the JCL to

create the HLLX address space. It looks like this:

Exit Details Overview

• •

• •

• •

• •

• •

The HLLX address space only exists to service requests from a specific instance of the ZMF

started task. It must be started by that ZMF started task and never manually. If you start it

manually you will see the following messages in the joblog, and the started task will end with

RC=20.

Note

 06.53.45 S0069065 $HASP373 SERDHLL8 STARTED
 06.53.46 S0069065 CMNX001E Unable to locate CSA name token.
 06.53.46 S0069065 CMNX002E The HLLX a/s must be started only by ZMF.
 06.53.46 S0069065 $HASP395 SERDHLL8 ENDED

3. High Level Language Exit Details

3. High Level Language Exit Details 13

Notes:

The TIME=NOLIMIT parameter on the EXEC statement is used to avoid S522 abends due to

the fact that the HLL exit processing address space may spend a fair amount of time waiting

for work.

The HLLXREXX ddname identifies the exec library for REXX execs.

 //HLLXPROC PROC PARMS= *parms supplied by ZMF
 //*
 //* Execute HLL exits in isolation
 //* Started during ZMF initialisation
 //*
 //* Note: This STC starts and stops under the control of ZMF *only*
 //* In normal circumstances this stc must not be started or
 //* stopped via MVS operator commands.
 //*
 // EXEC PGM=CMNHLLMP, *HLL exit monitor pgm
 // PARM='&PARMS', *parms
 // REGION=0M, *MAXIMUM REGION
 // TIME=NOLIMIT
 //*
 //STEPLIB DD DISP=SHR,DSN=somnode.CMNZMF.CUSTOM.LOAD * Custom Load
 // DD DISP=SHR,DSN=somnode.SERCOMC.CUSTOM.LOAD * Custom Load
 // DD DISP=SHR,DSN=somnode.CMNZMF.LOAD * Vendor Load
 // DD DISP=SHR,DSN=somnode.SERCOMC.LOAD * Vendor Load
 //*
 //HLLXREXX DD DISP=SHR,DSN=your.rexx.exec.library
 //*
 //SER#PARM DD DISP=SHR,DSN=somnode.SERCOMC.TCPIPORT
 //SYSTSPRT DD SYSOUT=X
 //SYSPRINT DD SYSOUT=X
 //SYSABEND DD SYSOUT=X
 //SERPRINT DD SYSOUT=X
 //ABNLIGNR DD DUMMY
 //SYSTSIN DD DUMMY
 //SYSIN DD DUMMY
 //*
 //* The VPOOL vsam KSDS is optional.
 //* See the HLLX Getting Started Guide for further information.
 //*
 //* Access to the VPOOL vsam dataset may be optimised by making
 //* use of a VSAM buffer caching mechanism such as BLSR or SMB.
 //* Note that this is unlikely to be critical unless you make
 //* heavy use of the VPOOL mechanism.
 //*
 //* Uncomment the relevant DD statement
 //*
 //*BLSR:
 //*CMNVPALT DD DISP=SHR,DSN=somnode.CMNZMF.CMNVPOOL
 //*CMNVPOOL DD SUBSYS=(BLSR,'DDNAME=CMNVPALT','STRNO=255')
 //*
 //*Non-BLSR (to use SMB or no buffering):
 //*CMNVPOOL DD DISP=SHR,DSN=somnode.CMNZMF.CMNVPOOL

• •

• •

HLL Exit Processing Address Space

HLL Exit Processing Address Space 14

The CMNVPOOL ddname is optional. It refers to the VSAM data set that stores the variables

that the exits use. See Variable Pool Function - CMNVPOOL for more information about

CMNVPOOL.

The SER#PARM ddname is only needed if the exits will be invoking ZMF XML services (and

then it is only really needed to avoid the ddname missing warning message).

You should also add any libraries/files that your exit code requires.

Here are some typical messages seen in ZMF SERPRINT when active HLL exits exist at the time

ZMF starts up:

Initialization, Termination, Modify Commands

During startup ZMF needs to decide whether the HLLX address space is needed at all. CMNSTART

will read the Package Master for the HLL exit admin records. If no HLL exit points are active, you

need to do nothing to activate the HLLX support. The following message is issued:

Other messages you may see:

• •

• •

• •

2014/03/26 06:51:11.98 CMN8401I CMNSTART Waiting for HLL exit address space to initialize.
2014/03/26 06:51:12.55 CMN8460I CMNDELAY - START of processing
2014/03/26 06:51:12.55 CMN8468I CMNDELAY - Waiting for resource => qname:rname
2014/03/26 06:51:12.55 CMN8468I CMNDELAY - CHGMAN:CMNDEV.CMNSYS.U810STEV.CMNDELAY
2014/03/26 06:51:12.55 CMN8469I CMNDELAY - Resource obtained successfully.
2014/03/26 06:51:12.68 CMN8800I SERD Opened VSAM file CMNDEV.CMNSYS.U810STEV.CMNDELAY
Exclusiv
2014/03/26 06:51:12.80 CMN8800I SERD Closed VSAM file CMNDEV.CMNSYS.U810STEV.CMNDELAY
2014/03/26 06:51:12.80 CMN8461I CMNDELAY - END of processing 00000
2014/03/26 06:51:20.99 CMN8402I CMNSTART Successfully connected to HLL exit address space.
2014/03/26 06:51:20.99 CMN8413I Start of HLLX active exits list:
2014/03/26 06:51:20.99 CMN8415I IntName Typ Env External Name Debug Ids
2014/03/26 06:51:20.99 CMN8416I PCRE0007 STD REXX GENPCRE
2014/03/26 06:51:20.99 CMN8416I PCRE0107 STD REXX DEFLTSIT
2014/03/26 06:51:21.00 CMN8414I End of HLLX active exits list.
2014/03/26 06:52:00.10 SER0868I EPvt used=19,964K avail=1,714,692K Pvt used= 220K
avail=8,972K
2014/03/26 06:52:00.10 CMN8305I CMNSTART Detach:
U=CMNSTART,F1=DETACH,F2=SERVDLAY,@TCA=17574000,@TCB=8B2298
2014/03/26 06:52:00.11 CMN8303I CMNSTART Initialization Complete

CMN_418I CMNSTART No active HLL exits are defined, the HLLX address
 space will not be started.

Initialization, Termination, Modify Commands

Initialization, Termination, Modify Commands 15

The following message is issued each time the active exits table is refreshed. This occurs once at

start up of the HLLX stc, and then each time an exit RELOAD is requested. You can ignore this

message if everything is running as expected. Its contents may be requested by support when

diagnosing problems.

CMNX023I HLLX Active exits table is at: 14328B98

You will also see the response to an internally issued DISPLAY HLLX command (see below) which

shows all active HLL exit points.

During ZMF shutdown you may see:

The following ZMF/Sernet modify commands are available:

F zmfstcname ,CMN,DETACH,HLLX

F zmfstcname ,CMN,ATTACH,HLLX

Detaching HLLX will ensure that the existing (known) HLLX started task is either gone or request it

to go away. We will then follow what is left of the ZMF termination process for HLLX listed above

so that we are in a state as if we were initializing the HLLX address space during ZMF startup. You

may need to do this if something has gone awry with the HLLX process and you are locked out of

ZMF.

In response to the attach request we will go through the startup process for HLLX. If HLLX is found

to be already active, we will issue the general message 315 (this message is already coded in

CMNSTART and takes different text depending on which subtask is being attached):

CMN_315I CMNSTART HLLX address space is already active, no action taken.

If no active HLL exits are defined, the HLLX started task is not started and the following message is

issued (similar to startup):

CMN_418I CMNSTART No active HLL exits are defined, the HLLX address space will not be started.

A further operator command:

F zmfstcname,CMN,RELOAD,HLLX

CMN_401I CMNSTART Waiting for HLL exit address space to initialize.
CMN_402I CMNSTART Successfully connected to HLL exit address space.
CMN_409I CMNSTART Prior instance of HLLX still active, please try later.
CMN_410I CMNSTART HLL exit address space creation failed.
CMN_411I CMNSTART HLL exit address space failed to initialize, reattempt
 via ATTACH command.

CMN_403I CMNSTART Termination of HLL exit address space requested.
CMN_404I CMNSTART Termination of HLL exit address space complete.
CMN_405I CMNSTART Nothing heard from HLLX, unilateral termination.

• •

• •

Initialization, Termination, Modify Commands

Initialization, Termination, Modify Commands 16

will result in the active HLLX exits table being refreshed from the definitions saved in the Package

Master:

CMN_406I CMNSTART HLLX active exit table has been reloaded.

This is followed by a list of all active HLL exits, as per the DISPLAY command documented below.

If the reloaded table contains no active exits, there is no need for further HLLX support and the

process will request shutdown of HLLX support. This can be reactivated by updating the exits

admin and then issuing an ATTACH command or restarting ZMF.

There is also a command to display which exits are currently active in the ZMF/HLLX set up: F

zmfstcname,CMN,DISPLAY,HLLX

If no exits are active you will see this message:

CMN_412I There are currently no active HLL exits.

Otherwise, this set of messages will be produced, a line for each active exit:

The 416 message is issued for each active standard exit definition and shows:

The internal exit name.

The fact that it is a standard exit definition.

Whether it is REXX or Language Environment (LE).

The external module name that implements the functionality.

CMN_407I CMNSTART No active HLLX exits are defined, HLLX will shut down.
CMN_408I CMNSTART Please issue ATTACH HLLX command or restart ZMF if you wish to re-
activate one or more exits.

 CMN_413I Start of HLLX active exits list:
 CMN_415I IntName Typ Env External Name Debug Ids
 CMN_416I PCRE0001 STD REXX PNL01PRE
 CMN_417I PCRE0001 DBG REXX TST01PRE WSER58 ,SDOWNES
 CMN_416I PCRE0101 STD REXX PNL01PST
 CMN_417I PCRE0101 DBG REXX TST01PST WSER58 ,SDOWNES
 CMN_416I PCRE0007 STD LE PLI7PRE
 CMN_416I PCRE0107 STD REXX PNL07PST
 CMN_416I PUPD0002 STD REXX GENPUPD
 CMN_416I PUPD0102 STD REXX GENPUPD
 CMN_416I PUPD0003 STD LE PUPDGNL
 CMN_416I PUPD0103 STD LE PUPDGNL
 CMN_416I PUPD0004 STD REXX GENPUPD
 CMN_416I PUPD0104 STD REXX GENPUPD
 CMN_416I PUPD0005 STD LE PUPDGNL
 CMN_416I PUPD0105 STD LE PUPDGNL
 CMN_416I PUPD0006 STD REXX GENPUPD
 CMN_416I PUPD0106 STD REXX GENPUPD
 CMN_414I End of HLLX active exits list.

• •

• •

• •

• •

Initialization, Termination, Modify Commands

Initialization, Termination, Modify Commands 17

The 417 message is issued for each active debug exit definition and shows, in addition to the 416

information, the list of up to 10 userids that will take the debug exit ahead of the standard exit.

Exit Administration

The HLLX process needs to know certain information about the various HLL exit points. This

information includes:

The program/exec name that you wish to use for each exit point.

Whether the defined exit point is active or not.

Whether the exit is an LE-language program or a REXX exec.

In addition, a debug mechanism has been implemented whereby certain users will be able to take

an alternatively named exit module to allow isolated testing of exit changes. Thus, we also have an

alternative program/exec name which will be taken by a list of userids that will take this debug

version of the exit.

Administration of the exit points is also where you let ZMF know the name of the procedure you

wish to be started to service the HLLX requests. Here’s a sample Update Global Administration

Options (CMNGAMN1) panel:

If you are on a P-Site, the CMNGAMN2 panel appears instead:

• •

• •

• •

CMNGAMN1 Update Global Administration Options
Option ===>

1 Parms Global parameters
2 Library Library types
3 Language Language names
4 Procedures Compiling procedures
5 Reason Codes Reason codes for unplanned packages
6 Sites Site information
7 Lock Application parameter locks
8 HLL Exits High level language exits
9 Field Names User field name substitution
C Component Component information
D Dates Installation calendar
E REST REST api server
H Housekeeping Housekeeping tasks
I Impact Impact Analysis
N Notify Global notification file
O Options Selectable options
R Reports ChangeMan ZMF batch reports
S Skeletons Skeleton procedures

Exit Administration

Exit Administration 18

HLL Exit Definition - Function Selection
The HLL Exit Definition - Function Selection (CMNHLLMM) panel allows administrators to choose

to work with all the definitions or just those for a specific function. (More functions will be added

as Serena expands this facility.):

On a P-Site, the panel CMNHLLPS appears:

Option M allows you to define the HLLX procedure name:

CMNGAMN2 Update Global Administration Options
Option ===>

1 Parms Global parameters
7 Lock Application parameter locks
8 HLL Exits High level language exits
9 Field Names User field name substitution
D Dates Installation calendar
H Housekeeping Housekeeping tasks
N Notify Global notification file
O Options Selectable options
R Reports ChangeMan ZMF batch reports

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

CMNHLLPS HLL Exit Definition (P-Site)- Function Selection
Option ===>__

R Revert/Backout Package revert and backout
M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

HLL Exit Definition - Function Selection

HLL Exit Definition - Function Selection 19

Note that the variable on this panel is the name of the HLLX started task procedure. This name

must be specified correctly before you attempt to activate any exits. If you run into problems with

this (for example, the procedure name is wrong, or the procedure fails) with exits being active, you

may find you are locked out of ZMF. If this happens, you will need to detach the HLLX subtask with

the following command (or use the Modify menu option):

/F zmfstcname,CMN,DETACH,HLLX

The following example shows the selection of option 3 to display the package-create exit points:

You can use a Locate command with the full internal exit name on the table displays.

Each defined exit point has a fixed internal name (for example, PCRE0001 for package create pre-

panel 01, PCRE0101 for package create post-panel 01). We relate these fixed names to the

customer-preferred program/exec names.

There are two lines per exit, one for the standard definition and one for the debug definition. When

the HLLX subtask decides which to load it checks the incoming userid against the list of debug

userids from these records as stored in the active exits table.

The defaults for exits not defined in the Package Master will be to make them inactive with no

debug module or userid list.

CMNHLLMP HLL Exit Miscellaneous Parameters
Command ===>___ Scroll ===> CSR

HLLX procedure name . . SERDHLLR

CMNHLLMN HLL Exit Definition Row 5 to 10 of 10
Command ===>__ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

PCRE0001 PNL01PRE YES 2 Pre 1st panel for pkg create
 Debug: TST01PRE NO 2 WSER58

PCRE0101 PNL01PST YES 2 Post 1st panel for pkg create
 Debug: PNL01PST NO 2 WSER58

PCRE0006 PNL07PRE YES 1 Pre final panel for ALL site PCRT
 Debug: ________ NO 2 _________________________________

PCRE0106 PNL07PST YES 2 Post final panel for ALL site PCRT
 Debug: ________ NO 2 __________________________________

PCRE0007 PNL07PRE YES 1 Pre final panel for DP site PCRT
 Debug: ________ NO 2 __________________________________

PCRE0107 PNL07PST YES 2 Post final panel for DP site PCRT
 Debug: ________ NO 2 ___________________________________

HLL Exit Definition - Function Selection

HLL Exit Definition - Function Selection 20

Caller to Exit Cross Reference

HLL exits are called either by client code or by service code.

The service exits all have X in the seventh position of the exit point name, for example, BULD00XC,

and are called regardless of where the original request for the service came from.

There are four categories of "caller" which are identified to each exit in the callOrigin field:

SPF - the exit has been called by an ISPF client function. That function can take all client exits

defined for its functional path and the service exits for whichever service the function

eventually drives. The list of exits driven will differ from one function to the next.

ZDD - the exit has been called by a ZDD client function. Note that there is no one-toone

correlation between ISPF client processing and any other client processing. There could be

(and usually is) a completely different way of presenting the function to the user in each client.

In some areas the correlation is close, in others it is not. Please refer to the table that follows

for a list of which client exits are called by ZDD. Note that any services driven by the ZDD client

will also take the relevant service defined HLL exit points.

ECL - the exit has been called by a ZMF4ECL (ZMF for Eclipse) client function. The same

comments as made for ZDD apply to ZMF4ECL.

XML - anything else that drives a ZMF XML service (so, for example, direct service invocation

from custom REXX execs or REST API calls). ChangeMan ZMF has no control over client code

in these cases and so only the service-oriented exits will be taken.| |Y| | |ou may implement

whatever business logic| |Y| | |ou want in the service exits and know that it will be driven

regardless of which client invoked the service.

The client exits allow| |Y| | |ou to modify the information gathered from, and actions precipitated by,

the normal flow of the three clients. To re-emphasize, there is no one-to-one correlation between

the three clients function flows.

To apply business logic across the board (regardless of which client is being used) then the

relevant service exit can be used.

However, the service is usually only invoked at the end of a functional process and if custom

validation throws out the service request it may be frustrating for a client user to be told this only

after progressing through many panels/windows of data gathering.

Thus, the client exits are there to allow "real time" validation (etc.) to be performed.

The service exits are informed which of the recognized categories have invoked this service (i.e.

callOrigin will be one of "SPF", "ZDD", "ECL", "XML") so that, if| |Y| | |ou have implemented client exits

to do certain validation (etc.) then| |Y| | |ou needn't repeat this processing again in the service exit.| |

Y| | |ou can implement logic so that the same validation is only performed if the origin of the

service request is identified as "XML" (for example).

• •

• •

• •

• •

Caller to Exit Cross Reference

Caller to Exit Cross Reference 21

The following table lists all the currently available HLL exits along with check columns to show who

takes them.

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

APRV00XM pre service call for approve Y n/a n/a n/a

APRV01XM post service call for

approve

Y n/a n/a n/a

APRV0101 list of packages to be

approved

Y

APRV0102 approve/reject option menu Y

APRV0103 approver entity list Y Y Y

APRV0004 pre checkoff comments Y Y Y

APRV0104 post checkoff comments Y Y Y

APRV0105 reject reasons entity

selection

Y

APRV0006 pre reject reasons text Y Y Y

APRV0106 post reject reasons text Y Y Y

AUDT00AR pre autoresolve job

submission

Y

AUDT01JB post all audit job

processing

Y

AUDT00RC pre audit job setting of

package RC

Y

AUDT00UV pre user variables Y Y Y

AUDT01UV post user variables Y Y Y

AUDT00XM pre audit job submission

service

Y n/a n/a n/a

AUDT01XM post audit job submission

service

Y n/a n/a n/a

AUDT0001 pre audit submission panel Y Y Y

AUDT0101 post audit submission

panel

Y Y Y

AUDT0002 pre application in scope

panel

Y Y Y

AUDT0102 post application in scope

panel

Y Y Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 22

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

BULD01DL post cmpnt delete selection Y Y

BULD01LO post relink output library

selection

Y Y

BULD01LR post relink library selection Y Y

BULD01LT post relink member list Y

BULD00L0 pre initial relink (rebind)

panel

Y Y

BULD01L0 post initial relink (rebind)

panel

Y Y

BULD00L1 pre relink job submission Y Y Y

BULD01L1 post relink job submission Y Y Y

BULD01RC post recompile

confirmation

Y

BULD01RL post recompile library

selection

Y

BULD01RP post promotion library

selection

Y

BULD01RR post release library

selection

Y

BULD00R0 pre initial recompile panel Y

BULD01R0 post initial recompile panel Y

BULD00R1 pre standard recompile

submission

Y Y Y

BULD01R1 post standard recompile

submission

Y Y Y

BULD01R2 post recompile component

list

Y

BULD00R3 pre mass/batch recompile

submission

Y Y Y

BULD01R3 post mass/batch recompile

submission

Y Y Y

BULD00US pre component user

variables

Y Y Y

BULD01US post component user

variables

Y Y Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 23

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

BULD00UV pre user variables Y Y Y

BULD01UV post user variables Y Y Y

BULD00XB pre BUILD xml service Y n/a n/a n/a

BULD01XB post BUILD xml service Y n/a n/a n/a

BULD00XC pre CHECKIN xml service Y n/a n/a n/a

BULD01XC post CHECKIN xml service Y n/a n/a n/a

BULD00XD pre DELETE xml service Y n/a n/a n/a

BULD01XD post DELETE xml service Y n/a n/a n/a

BULD00XL pre RELINK xml service Y n/a n/a n/a

BULD01XL post RELINK xml service Y n/a n/a n/a

BULD00XR pre RECOMPILE xml

service

Y n/a n/a n/a

BULD01XR post RECOMPILE xml

service

Y n/a n/a n/a

BULD0101 post package component

list

Y Y

BULD0002 pre stage from dev initial

panel

Y Y Y

BULD0102 post stage from dev initial

panel

Y Y Y

BULD0103 post stage from dev

member selection

Y Y Y

BULD0004 pre standard stage job

submission

Y Y Y

BULD0104 post standard stage job

submission

Y Y Y

BULD0005 pre mass stage job

submission

Y Y Y

BULD0105 post mass stage job

submission

Y Y Y

BULD0106 post procedure selection Y

BULD0107 post language selection Y

BULD0108 post library type selection Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 24

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

BULD0009 pre Like-O std stage job

submission

Y Y Y

BULD0109 post Like-O std stage job

submission

Y Y Y

BULD0010 pre Like-O mass stg job

submission

Y Y

BULD0110 post Like-O mass stg job

submission

Y Y

BULD0111 post recfm=U dev stage

mbr selection

Y

BULD0012 pre component selection

parameters

Y

BULD0112 post component selection

parameters

Y

BULD0015 pre component general

description

Y

BULD0115 post component general

description

Y

BULD0117 post valid staging line

commands

Y

BULD0118 post DB2 subsystem

selection

Y

BULD0019 pre batch stage jobcard

definition

Y

BULD0119 post batch stage jobcard

definition

Y

BULD0123 post dev stg hfs file

selection

Y Y

BULD0025 pre extract SP from DB2

panel

Y Y

BULD0125 post extract SP from DB2

panel

Y Y

BULD0026 pre mass rebuild job

submission

Y

BULD0126 post mass rebuild job

submission

Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 25

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

CKOT01CK post checkout entry panel Y

CKOT01CL post component list for pkg

ckot

Y

CKOT01DL post component delete Y

CKOT01LB post library list Y

CKOT01LT post libtype display Y

CKOT01MS post member selection list Y Y Y

CKOT01PL post promotion library list Y

CKOT00UV pre user variables Y Y Y

CKOT01UV post user variables Y Y Y

CKOT00XM pre service call Y n/a n/a n/a

CKOT01XM post service call Y n/a n/a n/a

CKOT0001 pre checkout selection

criteria

Y Y Y

CKOT0101 post checkout selection

criteria

Y Y Y

CKOT0002 pre batch checkout panel Y Y

CKOT0102 post batch checkout panel Y Y

CKOT0003 pre checkout from package

entry

Y

CKOT0103 post checkout from

package entry

Y

FREZ00UF pre package freeze/

unfreeze panel

Y

FREZ01UF post package freeze/

unfreeze panel

Y Y

FREZ00UV pre user variables Y Y

FREZ01UV post user variables Y Y Y

FREZ01U1 selective component

freeze/unfreeze

Y Y Y

FREZ01U2 selective utility freeze/

unfreeze

Y

FREZ00XM pre package freeze service Y n/a n/a n/a

Caller to Exit Cross Reference

Caller to Exit Cross Reference 26

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

FREZ01XM post package freeze

service

Y n/a n/a n/a

FREZ00XR pre selective refreeze

service

Y n/a n/a n/a

FREZ01XR post selective refreeze

service

Y n/a n/a n/a

FREZ00XU pre selective unfreeze

service

Y n/a n/a n/a

FREZ01XU post selective unfreeze

service

Y n/a n/a n/a

FREZ0101 package freeze submenu Y Y Y

FREZ0002 pre batch freeze submit

panel

Y Y Y

FREZ0102 post batch freeze submit

panel

Y Y Y

FTLR00BA install/baseline file tailoring Y

FTLR00BL build job file tailoring Y

FTLR00BP base ZMF promotion file

tailoring

Y

FTLR00EB ERO autoresolve file

tailoring

Y

FTLR00EP ERO promotion file tailoring Y

PCRE00PU pre package user options Y Y Y

PCRE01PU post package user options Y Y Y

PCRE00XM pre package create xml

service

Y n/a n/a n/a

PCRE01XM post package create xml

service

Y n/a n/a n/a

PCRE0001 pre initial pkg create panel Y Y Y

PCRE0101 post initial pkg create panel Y Y Y

PCRE0002 pre package description Y Y Y

PCRE0102 post package description Y Y Y

PCRE0003 pre installation instructions Y Y Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 27

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

PCRE0103 post installation

instructions

Y Y Y

PCRE0004 pre scheduling

dependencies

Y Y Y

PCRE0104 post scheduling

dependencies

Y Y Y

PCRE0005 pre affected applications Y Y Y

PCRE0105 post affected applications Y Y Y

PCRE0006 pre install information (ALL

site)

Y Y Y

PCRE0106 post install information

(ALL site)

Y Y Y

PCRE0007 pre install site list (DP site) Y Y Y

PCRE0107 post install site list (DP

site)

Y Y Y

PCRE0008 pre complex/super

information

Y Y Y

PCRE0108 post complex/super

information

Y Y Y

PRDM00UV pre user variables Y Y Y

PRDM01UV post user variables Y Y Y

PRDM00XD pre demotion service Y n/a n/a n/a

PRDM01XD post demotion service Y n/a n/a n/a

PRDM00XP pre promotion service Y n/a n/a n/a

PRDM01XP post promotion service Y n/a n/a n/a

PRDM0100 post promote/demote main

menu

Y Y

PRDM0101 post site selection Y

PRDM0003 pre promote options Y Y Y

PRDM0103 post promote options Y Y Y

PRDM0004 pre demote options Y Y Y

PRDM0104 post demote options Y Y Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 28

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

PRDM0105 post selective promote/

demote

Y Y Y

PRDM0107 post promotion level

selection

Y

PUPD00D2 pre DB2 option special

libtypes

Y

PUPD01D2 post DB2 option special

libtypes

Y

PUPD00ER pre ERO information Y

PUPD01ER post ERO information Y

PUPD00IA pre IMS option ACB

definitions

Y

PUPD01IA post IMS option ACB

definitions

Y

PUPD00ID pre IMS option DBD

definitions

Y

PUPD01ID post IMS option DBD

definitions

Y

PUPD00IP pre IMS option PSB

definitions

Y

PUPD01IP post IMS option PSB

definitions

Y

PUPD00IS pre IMS option physical

systems

Y

PUPD01IS post IMS option physical

systems

Y

PUPD01M6 post monitor pkg change

insdate(ALL)

Y

PUPD01M7 post monitor pkg change

insdate (DP)

Y

PUPD00PU pre package user options Y Y Y

PUPD01PU post package user options Y Y Y

PUPD0001 pre control information Y Y Y

PUPD0101 post control information Y Y Y

PUPD0002 pre package description Y Y Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 29

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

PUPD0102 post package description Y Y Y

PUPD0003 pre installation instructions Y Y Y

PUPD0103 post installation

instructions

Y Y Y

PUPD0004 pre scheduling

dependencies

Y Y Y

PUPD0104 post scheduling

dependencies

Y Y Y

PUPD0005 pre affected applications Y Y Y

PUPD0105 post affected applications Y Y Y

PUPD0006 pre install information (ALL

site)

Y Y Y

PUPD0106 post install information

(ALL site)

Y Y Y

PUPD0007 pre install site list (DP site) Y Y Y

PUPD0107 post install site list (DP

site)

Y Y Y

PUPD0008 pre complex/super

information

Y Y Y

PUPD0108 post complex/super

information

Y Y Y

RCKI01AR post-CI line cmd for area

checkin

Y

RCKI01CI post-action call for ERO

checkin

Y

RCKI01PK post-CI line cmd for pkg

checkin

Y

RCKI00XM pre-service call for ERO

checkin

Y n/a n/a n/a

RCKI01XM post-service call for ERO

checkin

Y n/a n/a n/a

RCKI0000 pre-pkg checkin options Y Y

RCKI0100 post-pkg checkin options Y Y

RCKI0001 pre-pkg checkin selection

parms

Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 30

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

RCKI0101 post-pkg checkin selection

parms

Y

RCKI0102 post-pkg eligible

components list

Y Y

RCKI0103 post-pkg duplicate

components list

Y Y

RCKI0107 post-summary of pkg

checkin

Y Y

RCKI0020 pre-component description

checkin

Y

RCKI0120 post-component

description checkin

Y

RCKI0050 pre-area checkin options Y Y

RCKI0150 post-area checkin options Y Y

RCKI0051 pre-area checkin selection

parms

Y

RCKI0151 post-area checkin selection

parms

Y

RCKI0152 post-area eligible

components list

Y Y

RCKI0153 post-area duplicate

components list

Y Y

RCKI0157 post-summary of area

checkin

Y Y

RCKI0070 pre-batch checkin job

submission

Y

RCKI0170 post-batch checkin job

submission

Y

RVRT01B1 package backout selection

panel

Y Y

RVRT00B2 pre backout reason entry

panel

Y Y

RVRT01B2 post backout reason entry

panel

Y Y

RVRT01B3 backout site selection Y Y

Caller to Exit Cross Reference

Caller to Exit Cross Reference 31

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

RVRT00B4 pre backout remote

submission

Y Y

RVRT01B4 post backout remote

submission

Y Y

RVRT00XB pre service call for backout Y n/a n/a n/a

RVRT01XB post service call for

backout

Y n/a n/a n/a

RVRT00XM pre service call for revert Y n/a n/a n/a

RVRT01XM post service call for revert Y n/a n/a n/a

RVRT0101 package revert selection

panel

Y Y Y

RVRT0002 pre revert reason entry

panel

Y Y Y

RVRT0102 post revert reason entry

panel

Y Y Y

RVRT0103 revert site selection Y Y Y

RVRT0004 pre revert remote

submission

Y Y Y

RVRT0104 post revert remote

submission

Y Y Y

SCRN00XM pre service call for pkg_util Y n/a n/a n/a

SCRN01XM post service call for

pkg_util

Y n/a n/a n/a

SCRN0101 post package selection Y Y

SCRN0002 pre baseline selection Y Y

SCRN0102 post baseline selection Y Y Y

SCRN0103 post baseline member list Y

SCRN0104 post package member list Y Y

SCRN0105 post libtype selection list Y Y

SYSL00XL pre srvc

cmponent.listlang.history

Y n/a n/a n/a

SYSL01XL post srvc

cmponent.listlang.history

Y n/a n/a n/a

Caller to Exit Cross Reference

Caller to Exit Cross Reference 32

ISPF or TSO in HLL Exits is Unsupported
The starting of an ISPF environment or the use of ISPF services from within an HLL exit is not

supported. If you try to do this you will run into unpredictable results. Similarly a TSO environment

is not supported. An example of when you might want to use TSO is to submit a batch job (one

way is to use BPXWDYN for dynamic allocations, and use the internal reader - you could use REXX

to build up a stem variable, and EXECIO).

Sample LE-Language Exit Modules

A limited number of sample exit programs are provided based on those used for testing. These

samples show basic operations such as field preparation and validation along with more involved

processes such as executing ZMF XML requests, making Db2 requests, file allocation and reading,

and use of the CMNVPOOL facility.

The samples are available in the CMNZMF SAMPLES distribution library with names HXC (COBOL)

and HXP (PL/I).

The majority of the LE exits are called in their own enclave where the exit is the first program to

gain control in the enclave. This is to allow the exit to call other facilities which require this kind of

isolated environment within an overall, multi-processing environment like the HLLX started task.

The exceptions to this rule are those exits in the SYSL and STDL functional areas, which are called

as subroutines from within an already established enclave (i.e. they are called by a MAIN program).

For PL/1 exits this means that all bar SYSL and STDL exits must be coded as MAIN programs, and

SYSL and STDL exits must have the FETCHABLE option in this case.

Internal Exit

Name

Short Description Service

Exit

ISPF ZDD ZMF4ECL

SYSL00XM service call for

package.list.syslib

Y n/a n/a n/a

SYSL00XR service call-

>package.refresh.syslib

Y n/a n/a n/a

All LE exits and all called subroutines must be reentrant. It is also required that you use

ALL31(ON) to ensure that LE HLL exit processing is able to support a high level of concurrency.

Error messages are sent to the HLLXMSG ddname. Trace output is sent to TRCnnnnn ddnames.

Caution

ISPF or TSO in HLL Exits is Unsupported

ISPF or TSO in HLL Exits is Unsupported 33

Once you’ve seen how one exit point works, that knowledge can be applied to any of them. In

general, these samples are neither guaranteed nor supported. The specific items that Serena

supports are:

The format of the data passed to the exit.

If any of the data is changed, the function in progress will pick up those changes and act on

them.

Use of LE GETMAIN services to extend the length of passed variable lists.

Use of ZMF XML services from within the exits.

Use of the CMNVPOOL facility.

The following code snippets explain how LE languages process the variable blocks in the package-

create function. The data interface for the high-level language exits is given for each functional

area in the ZMF/HLL Exit Interface section. For COBOL:

For PL/I, using the same data structure:

• •

• •

• •

• •

• •

Compiled REXX routines are supported in exactly the same manner as standard REXX routines.

However, REXX routines built as standard load modules using MVS stub functionality are

neither REXX nor LE-compliant. Hence they are not supported in HLLX.

Note

...

 S500-VARIABLE-BLOCK.

* * NOW PROCESS EACH VARIABLE *
* * BLOCK THAT MAY HAVE BEEN *
* * PASSED TO US *
* ******************************
* * CALLED FROM: *
* * S500-VARIABLE-BLOCK *
* ******************************
 PERFORM S510-PROCESSVB1 UNTIL VB1DONE.

 S510-PROCESSVB1.

* * DISPLAY VARIABLES FROM THE *
* * FIRST PARM BLOCK *
* * THEN USE THE NEXT POINTER *
* * TO GET ADDRESSABILITY TILL *
* * THAT POINTER IS NULL TO *
* * DENOTE END OF LINKED LIST *
* ******************************
* * CALLED FROM: *
* * S500-VARIABLE-BLOCK *
* ******************************
 DISPLAY 'PACKAGE DESCRIPTION : ' PCRTPDSC.
 IF PTR-NEXT-PCRTVB1 NOT = NULLS
 SET ADDRESS OF PCRTVB1 TO PTR-NEXT-PCRTVB1
 ELSE
 MOVE "Y" TO WS-VB1DONE
 END-IF

...

Sample LE-Language Exit Modules

Sample LE-Language Exit Modules 34

Sample REXX Execs
Similar comments apply to sample REXX execs. Sample REXX execs are in the CMNZMF

SAMPLES distribution library with names HXR*.

*PROCESS NAME('PLI7PRE') INCLUDE MARGINS(2,72,1) OPTIMIZE(TIME);
1PLI7PRE:PROC(PARM) OPTIONS (MAIN,ASM);

 DCL SYSNULL BUILTIN;
 DCL DESC_DONE CHAR(1);
 DCL PARM CHAR(100) VARYING;
 DCL PARM_ADDR PTR;

 /* API data fields layout */
 %INCLUDE CMNPXPCR;

PARM_ADDR = ADDR(PARM);
...

IF PCRTVB1P ¬= SYSNULL() THEN DO;
 DESC_DONE = 'N';
 WORKVB1P = PCRTVB1P;

DO WHILE (DESC_DONE = 'N');
 PUT SKIP LIST('DESC LINE: '||PCRTPDSC);
 IF PTR_NEXT_PCRTVB1 = SYSNULL() THEN
 DESC_DONE = 'Y';
 ELSE
 WORKVB1P = PTR_NEXT_PCRTVB1;
 END;
END;

...

To avoid clashes in variable names when you call SERXMLRC for ZMF services, ensure that your

stem variable name prepends something prior to the tagname. For example:

Note

...

 stem = 'HLL7.ZMF_'
 drop HLL7.
 HLL7. = ""
HLL7.ZMF_Subsys = zmfSubs
HLL7.ZMF_Userid = userid
HLL7.ZMF_Test = " "
HLL7.ZMF_Product = "CMN"
HLL7.ZMF_lproduct = "ZMF"
HLL7.ZMF_Service = "PARMS"
HLL7.ZMF_Message = "LIST"
HLL7.ZMF_Scope = "APL"
HLL7.ZMF_applName = applName

HLL7.ZMF_includeInResult.1 = "applDesc"

address LINKMVS "SERXMLRC stem"

...

Sample REXX Execs

Sample REXX Execs 35

Variable Pool Function - CMNVPOOL
The purpose of this (optional) function is to provide a simple method of saving and accessing

variable data across HLL exit execution. The function can be called from either LE programs (using

the CMNLPOOL front end) or from REXX execs (using CMNRPOOL). Examples are given below.

Sample JCL to allocate the CMNVPOOL data set is provided in the HLLXVPL member of the

CMNZMF.V8R1M4.CNTL distribution library.

The repository for customer-defined variable data is a VSAM KSDS, which is defined in a similar

manner to the following:

The key to the variable value is an 8-byte pool name concatenated with a 16-byte variable name.

The length of the variable data is up to 4070 bytes.

You can choose any name for the pool name but it will usually be the userid so that any single user

can own his or her own copy of a set of common variables (much like a set of ISPF profile

variables). However, obviously, global or application (or any other) groupings of variables can be

implemented, completely at the customer’s discretion.

The actual variable name is limited to 16 bytes in length and is fixed in length (but can be padded

with blanks as necessary). We then have the variable value which is stored in a VARCHAR format.

An example of one such variable residing in our test data set looks like this:

...

//*
//IDCAMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DUMMY DD *
DUMMY RECORD
//SYSIN DD *
 DELETE CMNDEV.CMNSYS.U810ALL.CMNVPOOL
 SET MAXCC = 0
/*
/* Delete, Define, and Initialize the ZMF variable pool dataset.
/*
DEFINE CLUSTER (NAME(CMNDEV.CMNSYS.U810ALL.CMNVPOOL) +
 RECORDSIZE(40,4096) UNIQUE INDEXED KEYS(24,0) +
 FREESPACE(20 20) +
 SHAREOPTIONS(2,3)) +
DATA(NAME(CMNDEV.CMNSYS.U810ALL.CMNVPOOL.DATA) +
 CYLINDERS(1, 1) +
 CISZ(32768)) +
INDEX(NAME(CMNDEV.CMNSYS.U810ALL.CMNVPOOL.INDEX) +
 CYLINDERS(1,1) +
 CISZ(2048))

REPRO IFILE(DUMMY) ODS(CMNDEV.CMNSYS.U810ALL.CMNVPOOL)

//*
//* Delete DUMMY record from VSAM file
//*
//VPOOL EXEC PGM=CMNVINIT
//CMNVSAM DD DISP=SHR,DSN=CMNDEV.CMNSYS.U810ALL.CMNVPOOL

...

Variable Pool Function - CMNVPOOL

Variable Pool Function - CMNVPOOL 36

We have a pool name of WSER58 (padded to 8 bytes) and a variable name of TrialVariable (padded

to 16 bytes). This is followed by the length of the value, x’0010’ = 16, in this case. The value of the

variable follows.

In the HLLX procedure JCL this KSDS is defined thus:

The functions provided to allow access to these variables are primarily intended for use within the

HLLX address space. However, they have also been coded so that they can be used anywhere that

the VSAM KSDS has been allocated to ddname CMNVPOOL. However, note that functions

executing outside of the HLLX environment are only allowed read access to the CMNVPOOL VSAM

file, thereby limiting the available functions to INIT, GET, and TERM.

The HLLX address space will open the CMNVPOOL ACB (if the ddname is present) as part of its

initialization process, and will close it on termination. If there is a problem opening the CMNVPOOL

file, the following message will be issued:

07.11.16 S0069082 CMNX100E Failed to open CMNVPOOL KSDS, fdbk: 000000BC

The fdbk code is a standard VSAM open macro feedback code, which, in this case, is indicating

that the data set we are attempting to open is not a VSAM file.

If any of the vpool functions are running under HLLX (the code detects this) they assume the ACB

is already available in HLLX common storage. Each user subtask works with its own RPL storage. If

the functions are invoked outside of the HLLX address space, the ACB is opened as part of the

process. (That is, the functions will work inside or outside the HLLX address space but will be far

more efficient within.)

The calls supported are:

 +....1....+....2....+....3....+....4..
 WSER58 TrialVariable ..CheckThisOut
 EECDFF44E9889E898889844401C8889E88ADAA4444
 625958003991351991235000003853238926430000

...

 //*
 //CMNVPALT DD DISP=SHR,DSN=CMNDEV.CMNSYS.U810ALL.CMNVPOOL
 //CMNVPOOL DD SUBSYS=(BLSR,'DDNAME=CMNVPALT','STRNO=255')
 //*

Call Description

INIT: Establishes a conversation within which the other functions may be executed without

incurring repeated initialization overhead.This is not so important within the HLLX address

space as the biggest overhead is in setting up and opening the ACB (which is already done by

the HLLX main task). Any conversation begun with an INIT call must be ended with a TERM

call. If INIT/TERM are not used then each individual call is wrapped with an internal INIT/

TERM pair.

TERM: Terminates a conversation previously started via an INIT call.

Variable Pool Function - CMNVPOOL

Variable Pool Function - CMNVPOOL 37

CMNLPOOL is intended to be called from LE programs using a standard call parameter list:

A sample call sequence is shown below. Note that the INIT/TERM calls are not strictly necessary

within HLLX but are recommended for use outside of HLLX:

Call Description

DEF: Defines a variable (similar to an ISPF VDEFINE call). It is used, in particular, to establish a

length for the variable value so that subsequent processes have a solid reference when

moving data around (thereby avoiding S0C4s). The call writes a record to the VSAM file of the

appropriate length and filled with blanks. If the record already exists then we return the length

already defined for it and RC=4. Only available from within HLLX.

DEL: Deletes the variable record. (To change the length of a previously defined variable you would

first delete it and then define it again with the new length.) Only available from within HLLX.

PUT: Updates the variable record with a value. Only available from within HLLX.

GET: Extracts the current variable value.

...

**
*DEFINE THE PARAMETER LIST USED BY THE
*VARIABLE POOL ROUTINE - CMNPOOL
*Function may be one of:
* INIT - INITALISE THE VARIABLE POOL
* DEF - DEFINE A VARIABLE
* DEL - DELETE A VARIABLE
* PUT - DEFEINE THE VALUE OF THE VARIABLE
* GET - RETRIEVE THE VALUE OF A VARIABLE
* TERM - TERMINATE THE VARIABLE POOL
**
*
 03 WS-VP-FUNCTION PIC X(4) VALUE SPACES.
 03 WS-VP-MSGAREA PIC X(128) VALUE ' '.
 03 WS-VP-CONTEXT PIC S9(8) COMP VALUE +0.
 03 WS-VP-POOL PIC X(8) VALUE SPACES.
 03 WS-VP-VARNAME PIC X(16) VALUE SPACES.
 03 WS-VP-VARLEN PIC S9(4) VALUE +256.
 03 WS-VP-VARVALUE PIC X(256) VALUE SPACES.
*

...

* *1)Start a VPOOL conversation*
* *2)Define a variable *
* *3)Modify that variable *
* *4)Get its updated value *
* *4)End the VPOOL conversation*
* ******************************
*
* ******************************
* * Initialise the variable *
* * pool access conversation *
* ******************************
 MOVE 'INIT' TO WS-VP-FUNCTION.
 CALL CMNLPOOL USING WS-VP-FUNCTION
 WS-VP-MSGAREA
 WS-VP-CONTEXT.
 DISPLAY 'INIT RETURN-CODE: ' RETURN-CODE.
 DISPLAY 'INIT CONTEXT : ' WS-VP-CONTEXT.
*
* ******************************
* * Define a variable - TestVar*
* * data length - 256 *
* * assigned to pool - WSER58 *
* ******************************

...

...

Variable Pool Function - CMNVPOOL

Variable Pool Function - CMNVPOOL 38

REXX execs need to call CMNRPOOL using the LINKMVS command. (CMNRPOOL relies on the

parameter structure generated by LINKMVS.) Again, INIT/TERM are not strictly necessary within

HLLX but are shown here for completeness. There are a number of special REXX variables returned

by CMNRPOOL:

 MOVE 'DEF ' TO WS-VP-FUNCTION.
 MOVE 'TestVar' TO WS-VP-VARNAME
 MOVE 256 TO WS-VP-VARLEN.
 MOVE 'WSER58' TO WS-VP-POOL.
*
 CALL CMNLPOOL USING WS-VP-FUNCTION
 WS-VP-MSGAREA
 WS-VP-CONTEXT
 WS-VP-POOL
 WS-VP-VARNAME
 WS-VP-VARLEN.
 DISPLAY 'DEF RETURN-CODE: ' RETURN-CODE.
 DISPLAY 'DEF VARLEN : ' WS-VP-VARLEN.
*
* **************************
* * Assign a value for the *
* * variable just defined *
* **************************
 MOVE 'PUT ' TO WS-VP-FUNCTION.
 MOVE 'BLAH' TO WS-VP-VARVALUE.
*
 CALL CMNLPOOL USING WS-VP-FUNCTION
 WS-VP-MSGAREA
 WS-VP-CONTEXT
 WS-VP-POOL
 WS-VP-VARNAME
 WS-VP-VARVALUE.
 DISPLAY 'PUT RETURN-CODE: ' RETURN-CODE.
*
* ************************************
* * Retrieve the value of a variable *
* ************************************
 MOVE 'GET ' TO WS-VP-FUNCTION.
 MOVE SPACES TO WS-VP-VARVALUE.
*
 CALL CMNLPOOL USING WS-VP-FUNCTION
 WS-VP-MSGAREA
 WS-VP-CONTEXT
 WS-VP-POOL
 WS-VP-VARNAME
 WS-VP-VARVALUE.
 DISPLAY 'GET RETURN-CODE: ' RETURN-CODE.
 DISPLAY 'GET VARVALUE : ' WS-VP-VARVALUE.
*
* ******************************
* * Terminate variable pool *
* * access conversation *
* ******************************
 MOVE 'TERM' TO WS-VP-FUNCTION.
*
 CALL CMNLPOOL USING WS-VP-FUNCTION
 WS-VP-MSGAREA
 WS-VP-CONTEXT.
 DISPLAY 'TERM RETURN-CODE: ' RETURN-CODE.
*

Variable Description

VPOOLMSG Contains any messages returned by the process. (Note: The standard REXX variable RC

contains the return code.)

VPOOLVLN The length of the variable just defined.

Variable Pool Function - CMNVPOOL

Variable Pool Function - CMNVPOOL 39

Variable Description

VPOOLCTX Hexadecimal value representing the conversation context, generated by an INIT call. It is

passed from one execution of CMNRPOOL to the next until the TERM call is made. It is

purely for internal use and no good will come from tampering with it.

......

/* Demonstration of the use of the HLLX vpool facility */
/* REXX execs call the CMNRPOOL front end program */
/* LE programs use the CMNLPOOL front end program */
/* However, after differing parameter parsing, both pass */
/* control to the same CMNVPOOL subroutine. */
/* */
/* Any messages are returned in REXX variable VPOOLMSG. */
/* The length of a defined variable is returned in */
/* VPOOLVLN. */
/* If conversational mode is setup then the context is */
/* held in VPOOLCTX, but this is for internal use only. */

Say " "
Say "Demonstration of HLLX variable pool services"
Say " "

function = "INIT"
address LINKMVS "CMNRPOOL function"
Say "Return Code from INIT call is: "RC
Say "Returned message is : "VPOOLMSG
Say " "

function = "DEF"
userid = "WSER58"
varname = "TrialVariable"
varlen = "16"
address LINKMVS "CMNRPOOL function userid varname varlen"
Say "Return Code from DEF call is: "RC
Say "Returned message is : "VPOOLMSG
Say "Variable length is : "VPOOLVLN
Say " "

TrialVariable = "CheckThisOut"

function = "PUT"
address LINKMVS "CMNRPOOL function userid varname"
Say "Return Code from PUT call is: "RC
Say "Returned message is : "VPOOLMSG
Say "TrialVariable after PUT : "TrialVariable
Say " "

TrialVariable = "ChangeIt"

Say "TrialVariable before GET : "TrialVariable
function = "GET"
userid = "WSER58"
varname = "TrialVariable"

address LINKMVS "CMNRPOOL function userid varname"
Say "Return Code from GET call is: "RC
Say "Returned message is : "VPOOLMSG
Say "TrialVariable after GET : "TrialVariable
Say " "

function = "TERM"
address LINKMVS "CMNRPOOL function"
Say "Return Code from TERM call is: "RC
Say "Returned message is : "VPOOLMSG
Say " "

...

Variable Pool Function - CMNVPOOL

Variable Pool Function - CMNVPOOL 40

Batch Maintenance Utility - CMNHLLVP
Program CMNHLLVP is provided to help with offline maintenance of the CMNVPOOL KSDS (see

sample JCL member CMNHLLVP).

It provides the following four actions:

The execution parameter supplies the security class used to control access to this function (more

about this below).

The SYSIN parameters are:

This utility has the following rules and limitations:

An asterisk in column 1 denotes a comment and is ignored by the utility.

For long variable values, you can continue the value onto more than one line by putting a non-

blank character in column 72. The continued line starts in column 1 on the next sysin record.

You may have as many ACTIONs as you wish in the same SYSIN input stream.

Each action must be followed by a POOL= and a VARNAME= parameter. The INSERT and

UPDATE actions also require a VARVALUE= parameter.

Action Description

LIST Report on one or more records in the VPOOL KSDS—the key selection criteria can be

specific or generic (using a trailing asterisk to indicate the end of significant key value).

INSERT Insert a new record using a specific key.

DELETE Delete one or more records from the VPOOL KSDS—the key selection criteria can be

specific or generic.

UPDATE Update one or more records in the VPOOL KSDS—the key selection criteria can be specific

or generic.

Only the LIST action can be performed while the VPOOL KSDS is in use by the HLLX stc.

Note

Parameter Description

ACTION= One of LIST, INSERT, DELETE, UPDATE

POOL= The variable pool name

VARNAME= The variable name

VARVALUE= The variable value to be used

• •

• •

• •

• •

Batch Maintenance Utility - CMNHLLVP

Batch Maintenance Utility - CMNHLLVP 41

Apart from INSERT, the actions may be processed against multiple records by ending either (or

both) POOL= and VARNAME= values with an asterisk. The SYSPRINT output gives an

indication of what was read from SYSIN and the results of each action.

Sample JCL:

This facility is secured and the userid running the job will need access to the relevant security

profile, namely HLLX.VPOOL, within the class supplied on the execution parameter. (It is

recommended to use the same class as other ZMF functional security.)

To perform the LIST action, the userid requires READ access to this profile. All other actions require

UPDATE.

• •

...

//*
//RUNVP EXEC PGM=CMNHLLVP,
// PARM=$CHGMAN,
// REGION=0M
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CMNVPOOL DD DISP=SHR,DSN=your.target.vpool.ksds
//SYSIN DD *
*
* The LIST action reports all records in the VPOOL ksds which satisfy
* the selection criteria (on POOL name and VARiable NAME).
* These names can be specific or generic (by use of the trailing
* asterisk)
*
ACTION=LIST
POOL=WSER5*
VARNAME=*
*
* The INSERT action requires a specific pool and variable name.
* The variable value will be inserted into the VPOOL ksds as long
* as the key fields are unique.
*
ACTION=INSERT
POOL=WSER58
VARNAME=TestIt001
VARVALUE=This is an overlong value for a vpool variable but it's here t+
o show how continuation is used (any non-blank in column 72)
*
* The DELETE action will delete all records which match the selection
* criteria (be careful).
*

ACTION=DELETE
POOL=WSER5*
VARNAME=TestIt6*
*
* The UPDATE action replaces the variable value of all records which
* match the selection criteria.
*
ACTION=UPDATE
POOL=WSER5*
VARNAME=Test*
VARVALUE=Updated value for this group of records
/*

Batch Maintenance Utility - CMNHLLVP

Batch Maintenance Utility - CMNHLLVP 42

Tracing
The HLLEXIT service requests are just like any other service request and, as such, can be traced

using the standard CMN/Sernet tracing facilities. This trace will show you what the client is

sending to the ZMF started task.

At the other end of the HLLX path, each exit can also use display/put/say facilities to show what it

is being passed.

The data is reformatted by the code executing in the HLLX started task. There is a new trace facility

available to show exactly what has been passed to the HLLX started task prior to this reformatting.

(Note: Displays in the exit can show what the reformatted data areas look like as they are passed

directly to the exit after reformatting). The trace will also show what has been passed back to the

HLLX started task from the user exit after any reformatting.

Although this tracing is happening in the HLLX address space, it is controlled with modify

commands to the ZMF/Sernet started task (to avoid having to work with more than one started

task). The trace command is modeled after the NETTRACE Sernet command, for example: /F

zmfstcname,HLXTRACE,ON,EXIT=exitmask,USER=usermask

OFF turns off all traces.

There is no sophistication to this trace command. OFF turns off the prior defined trace request.

Each new ON command replaces the prior trace definition. As with NETTRACE there are shortcut

synonyms for HLXTRACE (HT) and ON/OFF (Y/N). The mask fields work with an asterisk at the end

of the value only.

For example: /F stcname,HT,Y,EXIT=PCRE*,USER=WSER5*

will put out trace information for all PCRExxxx user exit points and for all userids beginning with

WSER5. As usual with trace commands, the more specific you can be the less trace output that you

will have to examine.

The length of the data displayed is taken from the length field at the beginning of each data area. If

this is found to be non-numeric then a default of 256 bytes is employed. Here is some sample trace

output:

Tracing

Tracing 43

4. ZMF/HLL Exit Interface

Information is passed from the client to the HLL exit address space for processing and sending on

to the user exit itself. If the exit is designated as a REXX exit, REXX variables are defined and

populated with values from the incoming request.

If the exit is an LE-program, the incoming data is formatted in such a way that a (supplied) COBOL

and/or PL/I copybook can be used to map the data.

On entry to an exit, a field (xxxxORGN for LE code and callOrigin as a REXX variable) will be set to

an identifier that identifies the client process that resulted in this call. These identifiers are:

The exit has the opportunity to update that data in place. If it does so, it must set the dataChanged

variable (or LE equivalent) to YES; otherwise ZMF will ignore it.

If an exit wishes to stop a process, it can set the proceed variable to NO. It can also populate the

shortMsg and longMsg variables to whatever is required to be displayed for the condition leading

to the stopping of the current function. Furthermore, it can set the cursorField variable to position

the cursor at a specific field.

All normal execution of HLL exit routines must end with RC=0 (note that EXIT with no expression is

treated as EXIT 0 by HLLX). If the routine ends with RC>0, the infrastructure will take this as a major

failure and abandon the current function altogether. In this case, the client will produce a general

message indicating an HLL exit failure and will direct the user to the HLLX started task output for

further details. (A developer should contact his or her administrator at this point.)

For an LE program we see something like this in sysout:

LE program for exit function PCRE0007 finished with RC=00000007

And for a REXX exec we have something like:

Introduction

Identifier Description

ECL The call is as a result of a ZMF4ECL client process.

ZDD The call is as a result of a ZDD client process.

SPF The call is as a result of an ISPF client process.

XML The call is due to a direct invocation of an XML service (for example, Through

XMLSERV or equivalent).

4. ZMF/HLL Exit Interface

4. ZMF/HLL Exit Interface 44

These messages will mean something to the exit developer as they will have set the non-zero return
code. Note that the return code from a REXX exec (for example, EXIT nn) is returned in the evalblock
(as shown above for EXIT 9). The actual return code from the invocation of IRXEXEC in this case is
zero (that is, successful execution of the exec). The return code will be non-zero only for
situations such as REXX syntax errors which cause the execution to fail.

On return, the HLL exit address space extracts and populates the data in the response section of

the XML service request, which gets passed back to the client to deal with as it wishes.

Build

This section describes the build functional area of the high-level language exits. The build function

includes component checkin, stage, build, recompile, and relink.

The 4-character exit name identifier is BULD.

Select option 2 Build from the HLL Exit Definition - Function Selection (CMNHLLMM) panel to

define customized ISPF variables for the build function:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed.

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed.

The panels around which exit points will be placed are listed below. The internal exit name (also

known as function code) is BULD0pnn, where:

REXX RC for exit function PCRE0101 is 00000000
REXX evaldata (expression coded on EXIT statement) is 9

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>__

1 All Full list
2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Build

Build 45

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

An internal exit name of BULD0p01, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is BULD0001 and the name of the post-exit is BULD0101. The pre-exit is

taken before the panel is displayed and the post-exit is taken after the panel has been displayed.

Many panels in these dialogs are either menu driven or consist of selection lists from which

actions are performed against selected entries. Owing to the potentially huge lists that would have

to be built and passed to pre-exits for these panels, and also the potential to adversely affect ZMF

processing if the user exit is coded incorrectly, these panels will only have post-exits taken once for

each selected entry. The post-exits can be used to validate selected entries as required. Such

panels are indicated in the following lists by means of an asterisk.

Stage:

•

•

•

Panel ID Description Exit Name

CMNSTG00* Main stage function menu BULD0100

CMNSTG01/14/24* Package component list (short/long/xlong BULD0101

CMNSTG02 Stage from development initial BULD0002/BULD0102

CMNSTG03* Stage from development member selection BULD0103

CMNSTG04 Standard stage job submission BULD0004/BULD0104

CMNSTG05 Mass stage job submission BULD0005/BULD0105

CMNSTG06* Procedure selection BULD0106

CMNSTG07* Language selection BULD0107

CMNSTG08* Libtype selection BULD0108

CMNSTG09 Like-Other standard stage job submission BULD0009/BULD0109

CMNSTG10 Like-Other mass stage job submission BULD0010/BULD0110

CMNSTG11* RECFM=U stage from dev member selection BULD0111

CMNSTG12 Component selection parameters BULD0012/BULD0112

CMNSTG15 Component general description BULD0015/BULD0115

CMNSTG17* Valid staging line commands BULD0117

CMNSTG18* Db2 subsystem selection BULD0118

CMNSTG19 Batch staging job card definition BULD0019/BULD0119

CMNSTG20 Confirm delete request BULD01DL

Build

Build 46

Recompile:

Relink:

Panel ID Description Exit Name

CMNSTG23* Stage from development (zFS) file selection BULD0123

CMNUSR01-04 Like-SRC component user variables BULD00US/BULD01US

CMNUSR11-13 Non-SRC component user variables BULD00US/BULD01US

Panel ID Description Exit Name

CMNRCMP0/CMNRCMPR Main recompile entry BULD00R0/BULD01R0

CMNRCMP1 Standard recompile submission BULD00R1/BULD01R1

CMNRCMP2/4/5/6/7 Component list (various formats) BULD01R2

CMNRCMP3 Mass/batch recompile submission BULD00R3/BULD01R3

CMNUSR01-04 Like-SRC component user variables BULD00US/BULD01US

CMNRCMPC Recompile confirmation BULD01RC

CMNSTG06 Procedure selection BULD0106

CMNSTG07 Language selection BULD0107

CMNSTG08 Libtype selection BULD0108

CMNSTG18 Db2 subsystem selection BULD0118

CMNLBLST/CMNLBLSR Recompile from library selection BULD01RL

CMNLBLS2* Promotion library selection BULD01RP

CMNLBLS3* Release library selection BULD01RR

Panel ID Description Exit Name

CMNRLNK0/CMNRLNKR Main relink entry BULD00L0/BULD01L0

CMNRLNK1 Relink job submission BULD00L1/BULD01L1

CMNRLRLS* Relink from library list vis release search BULD01LR

CMNRMLST/T2/OD/D2 Member list (various formats) BULD01LT

CMNSTG06* Procedure selection BULD0106

CMNSTG07* Language selection BULD0107

CMNSTG18 Db2 subsystem selection BULD0118

Build

Build 47

XML build services:

If BULDLOKD is set to YES, data fields on the related panel will be set to output only. The list of

panels for which this applies is:

Stage:

Recompile:

Panel ID Description Exit Name

CMNRLTYP Output library type selection BULD01LO

XML Service Name Description Exit Name

cmponent.checkin.service Check in BULD00XC/BULD01XC

cmponent.build.service Build BULD00XB/BULD01XB

cmponent.recomp.service Recompile BULD00XR/BULD01XR

cmponent.relink.service Relink BULD00XL/BULD01XL

No data values are taken from exits BULD01XC/B/R/L (that is, after the XML request has

completed) as no further processing takes place in the function to which changes in data

values can be passed. These exits are purely to allow customers to initiate whatever post-build

function external processes they desire.

Note

Panel ID Description Exit Name

CMNSTG04 Standard stage job submission BULD0004

CMNSTG05 Mass stage job submission BULD0005

CMNSTG09 Like-Other standard stage job submission BULD0009

CMNSTG10 Like-Other mass stage job submission BULD0010

CMNSTG15 Component general description BULD0015

CMNSTG19 Batch staging job card definition BULD0019

CMNUSR01-04 Like-SRC component user variables BULD00US

CMNUSR11-13 Non-SRC component user variables BULD00US

Panel ID Description Exit Name

CMNRCMP1 Standard recompile submission BULD00R1

Build

Build 48

Relink:

BULDSHRT and BULDLONG are used to set a message on the next panel/window to be displayed.

If BULDGO is set to NO, the fields BULDSHRT, BULDLONG, and BULDCURS will be used to set an

error message, and the client will (re)display the associated panel.

If the user exit wishes to change any of the data fields, it does that in place and sets BULDCHNG to

YES. If BULDCHNG is not set to YES, the client ignores any data changes.

The various build actions (e.g. stage, recompile, relink etc.) take different exits which may have

different sets of input and/or modifiable fields (with most in common). Which exits/fields are

available should be obvious from the context. Some of the query functions take only exits

BULD0xUS and the fields modifiable by these exits are indicated by notes 4,5 & 6.

A single data structure is passed to all of these exits. The data interface for the build exits looks

like this:

Panel ID Description Exit Name

CMNRCMP3 Mass/batch recompile submission BULD00R3

Panel ID Description Exit Name

CMNRLNK1 Relink job submission BULD00L1

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDFUNC function 8 Function code No

BULDDBUG debugCall 1 Debug exit call

(Y/N)?

No

BULDORGN callOrigin 3 ISPF=SPF

XML

Service=XML

ZDD=ZDD

ZMF4ECL=ECL

No

BULDZMFS zmfSubs 1 ZMF

subsystem Id

No

BULDPDB2 db2Subs 4 Primary Db2

subsystem

No

BULDUSER userid 8 Userid No

Build

Build 49

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDEXTN externalName 256 External name

for exit

No

BULDLOKD dataLocked 3 Fields locked

(YES/NO)?

Yes

BULDGO proceed 3 Proceed (YES/

NO)?

Yes

BULDSHRT shortMsg 24 Short

message

Yes

BULDLONG longMsg 128 Long message Yes

BULDCURS cursorField 3 Cursor tag Yes

BULDCHNG dataChanged 3 Data changed

(YES/NO)?

Yes

BULDPKGN packageId 10 Package name No

BULDPSTA packageStatus 3 Package

status (for

example, DEV)

No

BULDPINS packageInsDate 8 Package

install date

No

BULDCOMP componen 256 Component

name

No 001

BULDLTYP componentType 3 Component

libtype

Yes (note

#4,5,6)

002

BULDCSTA componentStatus 8 Component

status

No 003

BULDSDTE stageDate 8 Component

stage date

No 004

BULDSTME stageTime 6 Component

stage time

No 005

BULDFTYP stageFunction 6 Function type No

BULDLCMD lineCommand 4 Line command

entered

No 006

BULDPROC buildProc 8 Compile

procedure

Yes (note

#4)

007

Build

Build 50

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDLANG language 8 Language Yes (note

#4)

008v

BULDCOPT compileOptions 34 Compile

options

Yes (note

#4)

009

BULDLOPT linkOptions 34 Program

binder options

Yes (note

#4)

010

BULDMODE buildMode 1 Stage mode Yes 011

BULDCUSR componentUserOptions 1 Component

user variables

Yes 012

BULDEUSR extUserOptions 1 Extended user

variables

Yes (note

#4)

013

BULDLOCK lockComponent 1 Lock

component

Yes 014

BULDCNFM confirmAction 1 Confirm

actions

Yes 015

BULDHFSX expandHfsDirs 1 Expand HFS

directories

Yes 016

BULDPCVR showDb2Panels 1 Db2

precompile

information

Yes 017

BULDSUPN suppressNotify 1 Suppress

notify

messages

Yes 018

BULDPSIT recompileSite 8 Recompile site Yes 019

BULDBLVL recompileLevel 3 Recompile

level

Yes 020

BULDSRLS searchOrSelectRelease 1 Search/

specify

release

Yes 021

BULDSARE recompileSelectArea 1 Recompile

select area

Yes 022

BULDRLSE recompileRelease 8 Recompile

release

Yes 023

BULDAREA recompileArea 8 Recompile

area

Yes 024

Build

Build 51

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDLLVL relinkFromSBR 1 Relink from S/

B/R

Yes 025

BULDFLCT relinkUsingLCT 1 Relink using

LCT

Yes 026

BULDUHST useHistory 1 Use history for

prms

Yes 027

BULDIJNI incrementJobname 1 Job name

increment

Yes 028

BULDDB2P useDb2PreCompileOption 1 Db2

precompile (Y/

N)?

Yes

(note#4)

029

BULDDB2R db2RemoteSite 8 Db2 remote

site

Yes 141

BULDDB2S db2SubSystemId 4 Db2

subsystem id

Yes 030

BULDSPLC db2SpLocation 16 Db2 SP

location

Yes 140

BULDDB2L db2PreCompileLinkLib 44 Db2 library

name

Yes 031

BULDDPCV db2PreCompileVersion 64 Db2

precompiler

version

Yes 032

BULDJOB1 jobCard01 72 Job card line 1 Yes 033

BULDJOB2 jobCard02 72 Job card line 2 Yes 034

BULDJOB3 jobCard03 72 Job card line 3 Yes 035

BULDJOB4 jobCard04 72 Job card line 4 Yes 036

BULDODSN inputDataset 44 Like other

input data set

name

No 138

BULDSLOC sourceLocation 1 Input source

location

Yes

BULDPRJ0 prj0 8 Input ISPF

library high-

level qualifier

Yes(note#1) 037

Build

Build 52

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDLIB0 lib0 32 Input ISPF

library mid-

level qualifier

Yes(note#1) 038

BULDTYP0 typ0 8 Input ISPF

library low-

level qualifier

Yes

(note#1)

039

BULDIMBR inputMember 8 Input ISPF

library

member

Yes

(note#1)

040

BULDIORG inputDSorg 3 Input library

DSORG

No 041

BULDVVMM inputMemberVvMm 5 Input member

vv.mm

No 042

BULDCRTD inputMemberCreateDate 10 Input member

create date

No 043

BULDCHGD inputMemberChangedDate 10 Input member

change date

No 044

BULDCHGT recompileChangeTime 5 Recompile

change time

No 045

BULDCSZE inputMemberCurrentSize 5 Input member

current size

No 046

BULDISZE inputMemberInitialSize 5 Input member

initial size

No 047

BULDCUID inputMemberChangeUserid 8 Input member

change userid

No 048

BULDLSZE loadMemberSize 6 Load member

size

No 049

BULDTTR loadMemberTTR 6 Load member

TTR

No 050

BULDALIS loadMemberAliasOf 8 Load member

alias of

No 051

BULDAUTH loadMemberAuthCode 2 Load member

authorization

code

No 052

BULDRMOD loadMemberRmode 3 Load member

Rmode

No 053

Build

Build 53

Component User Variables

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDAMOD loadMemberAmode 3 Load member

Amode

No 054

BULDSSSI loadMemberSetSSI 8 Load member

SETSSI

No 055

BULDATTR loadMemberAttributes 15 Load member

attributes

No 056

BULDDMOD componentListMode 1 Component

list display

Yes

(note#2)

057

BULDCNFD confirmDelete 1 Confirm delete

(Y/N)?

Yes

(note#2)

058

BULDCMPR comparisonReport 1 Comparison

report (Y/N)?

Yes

(note#2)

059

BULDCMPT comparisonText 8 Comparison

text

Yes

(note#2)

060

BULDTLTP targetLibtype 3 Target libtype Yes 061

BULDUPAN userPanel 8 User variable

panel

Yes

(note#4,5,6)

BULDUVAR userVariables 1 Display User

variable panel

(Y/N)

Yes

BULDOPRF optsProfile 8 Used to select

the ZDDOPTS

profile for the

display of user

options for the

ZMF Client

Pack

Yes

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULDUO1 userOptionsPart1 1 * 10 ten 1-byte user

options (user

options 01-10)

Yes(note#4) 062-071

Build

Build 54

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

userOption01-10 1 REXX variables

which map each

individual byte of

userOptionsPart1

Yes(note#4) 062-071

BULDUO2 userOptionsPart2 1 * 10 ten 1-byte user

options (user

options 11-20)

Yes

(note#4)

072-081

userOption011-20 1 User variable

panel name

Yes

(note#4)

072-081

BULDUVPN userVarPanel 8 Set of five 8-byte

user variables

(user variables

1-5)

Yes

BULDUV1 userVariable01-05 8 * 5 Set of five 8-byte

user variables

(user variables

1-5)

Yes 082-086

BULDUV6 userVariable06-10 72 * 5 Set of five 72-

byte user

variables (user

variables 6-10)

Yes 087-091

BULD01 userOption0101-0105 1 * 5 Set of five 1-byte

user variables

(user variables

0101-0105)

Yes(note#4) 092-096

BULD02 userOption0201-0203 2 * 3 Set of three 2-

byte user

variables (user

variables

0201-0203)

Yes(note#4) 097-099

BULD03 userOption0301-0303 3 * 3 Set of three 3-

byte user

variables (user

variables

0301-0303)

Yes(note#4) 100-102

BULD04 userOption0401-0403 4 * 3 Set of three 4-

byte user

variables (user

variables

0401-0403)

Yes(note#4) 103-105

Build

Build 55

Db2 Information

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

BULD08 userOption0801-0805 8 * 5 Set of five 8-byte

user variables

(user variables

0801-0805)

Yes(note#4) 106-110

BULD10 userOption1001-1002 10 * 2 Set of two 10-

byte user

variables (user

variables

1001-1002)

Yes(note#4) 111-112

BULD16 userOption1601-1602 16 * 2 Set of two 16-

byte user

variables (user

variables

1601-1602)

Yes(note#4) 113-114

BULD34 userOption3401-3402 34 * 2 Set of two 34-

byte user

variables (user

variables

3401-3402)

Yes(note#4) 115-116

BULD44 userOption4401-4402 44 * 2 Set of two 44-

byte user

variables (user

variables

4401-4402)

Yes(note#4) 117-118

BULD64 userOption6401-6405 64 * 5 Set of five 64-

byte user

variables (user

variables

6401-6405)

Yes(note#4) 119-123

BULD72 userOption7201-7205 72 * 5 Set of five 72-

byte user

variables (user

variables

7201-7205)

Yes(note#4) 124-128

Build

Build 56

VARCHAR Area for Data Set Name

Component Description

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

BULDXDB2 extractFromDb2 1 Extract from

Db2

Yes 129

BULDXD2I extractFromDb2Id 4 Extract from

Db2 id

Yes 130

BULDSPSC db2SpSchema 128 Db2 stored

procedure

schema

Yes 131

BULDSPNM db2SpName 8 Db2 stored

procedure

name

Yes 132

BULDSPVR db2SpVersion 122 Db2 stored

procedure

version

Yes 133

BULDSPVI db2SpVersionInd 1 Db2 stored

procedure

version ind

Yes 134

BULDSPZI db2SpZmfInfo 1 Db2 stored

procedure

add ZMF

information

Yes 135

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field No.

BULDDSNM-LE

N

2 Data set

name

length

Yes

BULDDSNM-VA

LUE

fileOrDsname 1280 Data set

name

value

Yes

(note#1)

Build

Build 57

Note #1: Only modified from exit BULD0x02

Note #2: Only modified from exit BULD0x12

Note #3: Only modified from exit BULD0x15

Note#4: Additionally modifiable in the component admin functions where BULD0xUS exits are

taken.

Note#5: Additionally modifiable in the component display functions where BULD0xUS exits are

taken.

Note#6: Additionally modifiable in the general pmast/cmast query functions where BULD0xUS

exits are taken.

Package Create

This section describes the package-create functional area of the high-level language exits. The 4-

character exit name identifier is PCRT.

The Package create function allows you to skip certain create panels based on the create method

(for example, short or long). You can set HLLX variables early in the create process and allow the

later panels to have access to those HLLX variables.

Select option 3 Package Create from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to define customized ISPF variables for the package-create function:

will be added as Serena expands this facility.): In response, the HLL Exit Definition (CMNHLLMN)

panel is displayed.

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

BULDCDSC componentDesc.n 72 * 48 Up to forty-

eight 72-

byte lines

Yes

(note#3)

• •

• •

• •

• •

• •

• •

Package Create

Package Create 58

Panels around which exit points will be placed are listed below. The internal exit name (also known

as function code) is PCRE0pnn, where:

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

The pre-exit is taken before the panel is displayed (usually to provide model parameters displayed

on the panel); the post-exit is taken after the panel has been displayed (for example, for input

validation or enforcement).

For the package-create function, we are building the complete set of information as we progress

through the dialog. The exit data format is constant throughout the process but fields may not be

filled in depending on where the exit is in the process.

Package Create

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

•

•

•

Panel ID Panel Description Exit Name

CMNCRT01 Initial package-create panel (non-ERO) PCRE0p01

CMNCRT0R Initial package-create panel (ERO) PCRE0p01

CMNCRT02 Package description (long form create only) PCRE0p02

CMNCRT03 Installation instructions (long form create only) PCRE0p03

CMNCRT04 Scheduling dependencies PCRE0p04

Package Create

Package Create 59

XML Package-Create Service

Service: package.create.service

Exit name: PCRE0pXM

The basic framework for the data structure passed to all exits is the set of fields accepted by the

package create service. In addition, we will pass fields that allow you to make further decisions and

pass back information such as error messages and so on.

The XML package-create service pre-exit will have the exit call data formatted from the input

service tags and will be taken before any of the service processing. The post-exit is taken after the

package has been created and is the only exit to which the created package name is passed (all

other exits being taken before the package has been created). You cannot change anything or

affect processing from the XML service post-exit: It is intended to be used as a mechanism of

notifying external processes that the package has been created.

In order to allow the cursor to be positioned at specific panel fields, a number relating to the panel

field in question will be passed back in the XPCROCURS field. These numbers are documented in

the supplied copybook for the function (and, eventually, in the lists of REXX field names). It is your

responsibility to make sure that your exit returns a field number that is valid for the panel about to

be (re)displayed. If the field number is not valid, a dialog error results.

The package-create format shown below (in COBOL v5.1 format for compactness) is for illustration

purposes. Copybooks will be created for COBOL (compatible with earlier versions of COBOL) and

PL/I. The equivalent REXX variable list will also be published.

Panel ID Panel Description Exit Name

CMNCRT05 Affected applications PCRE0p05

CMNDPUP1/CMNDPUP2 Package user options PCRE0pPU

CMNCRT06 Install time/date, etc. (ALL site) PCRE0p06

CMNCRT07 Site list with install date/time, etc. (DP site) PCRE0p07

CMNCRT08 Complex/Super information PCRE0p08

•

•

No data values are taken from exit PCRE01XM (that is, after the XML request has completed)

as no further processing takes place in the function to which changes in data values can be

passed. The PCRE01XM exit is purely to allow you to initiate whatever post-package-create

external processes you desire.

Note

XML Package-Create Service

XML Package-Create Service 60

The request block of each HLL exit service request starts off with a few general fields followed by

package-create function-specific fields.

COBOL Example

The user exit should follow the pointer chains for each repeating group until the pointer is null. For

example:

...
01 PCRT. *>REQUEST ELEMENT LAYOUT

* PACKAGE CREATE PROCESS HLL EXITS - PASSED VARIABLES

 03 PCRTFUNC PIC X(8). *>FUNCTION CODE
 03 PCRTDBUG PIC X(1). *>DEBUG EXIT CALL? Y/N
 03 PCRTORGN PIC X(3). *>CALL ORIGIN
 03 PCRTZMFS PIC X(1). *>ZMF SUBSYSTEM ID
 03 PCRTPDB2 PIC X(4). *>PRIMARY Db2 SUBSYSTEM
 03 PCRTUSER PIC X(8). *>USER ID
 03 PCRTEXTN PIC X(156). *>EXTERNAL EXIT NAME
 03 PCRTAPPL PIC X(4). *>APPLICATION
 03 PCRTMETH PIC X(1). *>PKG CREATE METHOD
 03 PCRTLOKD PIC X(3). *>FLDS LOCKED? YES/NO
 03 PCRTGO PIC X(3). *>PROCEED? YES/NO
 03 PCRTSHRT PIC X(24). *>SHORT MESSAGE
 03 PCRTLONG PIC X(128). *>LONG MESSAGE
 03 PCTRCURS PIC X(24). *>CURSOR TAG
 03 PCRTCHNG PIC X(3). *>DATA CHANGED? YES/NO
 03 PCRTCFPK PIC X(10). *>NAME OF PKG TO CARRY FWD
 (More fields here. (See "Package Create" for a for full listing.)
 03 PCRTRARE PIC X(8). *>RELEASE AREA

* VARIABLE BLOCK POINTERS

 03 PCRTVB1L-PTR USAGE IS POINTER.
 03 PCRTVB2L-PTR USAGE IS POINTER.
 03 PCRTVB3L-PTR USAGE IS POINTER.
 03 PCRTVB6L-PTR USAGE IS POINTER.
 03 PCRTVB7L-PTR USAGE IS POINTER.
 03 PCRTVBSL-PTR USAGE IS POINTER.

* PACKAGE DESCRIPTION - UP TO 46 LINES OF 72 BYTES

01 PCRTVB1.
 03 PCRTPDSC PIC X(72). *>LINE OF DESCRIPTION
 03 PTR-NEXT-PCRTVB1 POINTER. *>POINTER TO NEXT LINE

* IMPLEMENTATION INSTRUCTIONS - UP TO 46 LINES OF 72 BYTES

01 PCRTVB2.
 03 PCRTPIMI PIC X(72). *>LINE OF INSTRUCTION
 03 PTR-NEXT-PCRTVB2 POINTER. *>POINTER TO NEXT LINE

* SCHEDULING INFORMATION - LIMITED ONLY BY STORAGE CONSTRAINTS

01 PCRTVB3.
 03 PCRTSCHI.
 05 PCRTSSSJ PIC X(8). *>SUCCESSOR JOBNAME
 05 PCRTSSPJ PIC X(8). *>PREDECESSOR JOBNAME
 03 PTR-NEXT-PCRTVB3 POINTER. *>POINTER TO NEXT SET

...

COBOL Example

COBOL Example 61

If the user exit wants to add groups to the list, it is responsible for allocating new storage (using LE

facilities, for example, CEECRHP and CEEGTST) and adding to the chain. See member HXCSCHD in

the CMNZMF SAMPLES distribution library for an example of how to do this.

If PCRTLOKD is set to YES, data fields on the related panel will be set to output only. The list of

panels for which this applies is:

PCRTSHRT and PCRTLONG are used to set a message on the next panel/window to be displayed.

If PCRTGO is set to NO, the fields PCRTSHRT, PCRTLONG, and PCRTCURS will be used to set an

error message, and the client will (re)display the associated panel.

If you wish to change any of the data fields, do that in place and set PCRTCHNG to YES. If

PCRTCHNG is not set to YES, the client ignores any data changes. Note that while the full exit data

structure is passed to the exits driven around the package user variable panels (CMNDPUP1/2),

only package user variables may be updated by these exits.

From the REXX point of view, the variables making up the data structure have the same names as

the equivalent tags in the package-create service. The following extra variables will also be created:

IF PCRTVB1L-PTR NOT = NULLS
 SET ADDRESS OF PCRTVB1 TO PCRTVB1L-PTR
 MOVE 'N' TO WS-VB1DONE
END-IF.

PERFORM S510-PROCESSVB1 UNTIL VB1DONE.

S510-PROCESSVB1.
 DISPLAY 'PACKAGE DESCRIPTION : ' PCRTPDSC.
 IF PTR-NEXT-PCRTVB1 NOT = NULLS
 SET ADDRESS OF PCRTVB1 TO PTR-NEXT-PCRTVB1
 ELSE
 MOVE "Y" TO WS-VB1DONE
END-IF.

Panel ID Panel Description Exit Name

CMNCRT01 Initial package-create panel (non-ERO) PCRE0001

CMNCRT0R Initial package-create panel (ERO) PCRE0001

CMNCRT02 Package description (long form create only) PCRE0002

CMNCRT03 Installation instructions (long form create only) PCRE0003

CMNCRT04 Scheduling dependencies PCRE0004

CMNCRT05 Affected applications PCRE0005

CMNDPUP1/CMNDPUP2 Package user options PCRE00PU

CMNCRT06 Install time/date, etc. (ALL site) PCRE0006

CMNCRT07 Site list with install date/time, etc. (DP site) PCRE0007

CMNCRT08 Complex/Super information PCRE0008

...

COBOL Example

COBOL Example 62

The discussion above identifies the purpose of these variables.

The variable numbers of blocks will be handled by means of indexed stem variables. For example:

The 0 version of the variable (each variable) will contain the number of instances defined (these
will all be the same value). Each level n field relates to the same site group for equal n.

An example of how to reference them successfully is:

For REXX variable updates the exit can simply set the contents of the variable and then set the
dataChanged variable to a value of YES. This indicates to the mainstream client code that it needs
to copy the contents of the variables passed back from the exit into whatever local storage it is
using for those variables.

A single data structure is passed to all of these exits. The data interface for the package-create

exits looks like this:

Data Interface for the Package-Create Exits

dataLocked
proceed
shortMsg
longMsg
cursorField
dataChanged

...

siteInfo.siteName.
siteInfo.installDate.
siteInfo.fromInstallTime.
siteInfo.toInstallTime.
siteInfo.contactName.
siteInfo.contactPhone.
siteInfo.alternateContactName.
siteInfo.alternateContactPhone.

...

Do i = 1 to siteInfo.siteName.0
 say "siteInfo.siteName."||i||" : "siteInfo.siteName.i
end

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTFUNC function 8 Function code No

PCRTDBUG debugCall 1 Debug exit call

(Y/N)

No

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 63

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTORGN callOrigin 3 ISPF=SPF

XML

Service=XML

ZDD=ZDD

ZMF4ECL=ECL

No

PCRTZMFS zmfSubs 1 ZMF

subsystem Id

No

PCRTPDB2 db2Subs 4 Primary Db2

subsystem

No

PCRTUSER userid 8 User Id No

PCRTEXTN externalName 256 External name

for exit

No

PCRTAPPL applName 4 Application No

PCRTMETH createMethod 1 Create method Yes

PCRTLOKD dataLocked 3 Fields locked?

(YES/NO)

Yes

PCRTGO proceed 3 Proceed?

(YES/NO)

Yes

PCRTSHRT shortMsg 24 Short

message

Yes

PCRTLONG longMsg 128 Long message Yes

PCRTCURS cursorField 3 Cursor tag Yes

PCRTCHNG dataChanged 3 Data changed?

(YES/NO)

Yes

PCRTCRPK packageName 10 Created

package (post

service)

No

PCRTCFPK packageModel 10 Name of

model

package

Yes 001

PCRTPLVL packageLevel 1 Package level Yes 002

PCRTPTYP packageType 1 Package type Yes 003

PCRTRSCD reasonCode 3 Reason code Yes 004

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 64

Package User Variables

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTCSPK complexSuperPackage 10 Complex

package

Yes 005

PCRTDEPT packageDepartment 4 Package

department

Yes 006

PCRTNAME requestorName 25 Requester

name

Yes 007

PCRTPHON requestorPhone 15 Requester

phone

Yes 008

PCRTPCAC problemActionCode 1 Contingency

action code

Yes 009

PCRTOPCA otherProblemAction 44 Other

contingency

action

Yes 010

PCRTSCHD schedulerType 1 Scheduler Yes 011

PCRTTCDU tempChangeDuration 3 Temporary

change

duration

Yes 012

PCRTWRQN packageWorkRequest 12 Work request

number

Yes 013

PCRTTITL packageTitle 255 Package title Yes 014

PCRTNTUS notifyUser 8 Notify user Yes 122

PCRTUPAN userPanel 8 Package user

variable panel

Yes

PCRTOPRF optsProfile 8 Used to select

the ZDDOPTS

profile for the

display of user

options for the

ZMF Client

Pack

Yes

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 65

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRT01 userVarLen101-

userVarLen115

1 * 15 Set of

fifteen 1-

byte

package

user

variables

Yes 015-029

PCRT0199 userVarLen199 1 (Reserved) Yes

PCRT02 userVarLen201 -

userVarLen211

2 * 11 Set of

eleven 2-

byte

package

user

variables

Yes 030-040

PCRT03 userVarLen301-310 3 * 10 Set of ten

3-byte

package

user

variables

Yes 041-050

PCRT04 userVarLen401-410 4 * 10 Set of ten

4-byte

package

user

variables

Yes 051-060

PCRT08 userVarLen801-810 8 * 10 Set of ten

8-byte

package

user

variables

Yes 061-070

PCRT16 userVarLen1601-1605 16 * 5 Set of five

16-byte

package

user

variables

Yes 071-075

PCRT44 userVarLen4401-4405 44 * 5 Set of five

44-byte

package

user

variables

Yes 076-080

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 66

Release and Release Area

Package Description

Implementation Instructions

Scheduling Information

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRT72 userVarLen7201-7205 72 * 5 Set of five

72-byte

package

user

variables

Yes 081-085

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field No.

PCRTRLSM release 8 Release Yes 086

PCRTRARE releaseArea 8 Release

area

Yes 087

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PCRTPDSC packageDesc.n 72 * 46 Up to forty-six

72-byte lines of

description

Yes 088

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PCRTPIMI packageImplInst.n 72 * 46 Up to forty-six

72-byte lines of

implementation

instructions

Yes 089

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 67

Participating Packages

Affected Applications

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTSSSJ schedulingInfo.successorJobName.n 8 Successor

job name

Yes 090

PCRTSSPJ schedulingInfo.predecessorJobName.n 8 Predecessor

job name

Yes 091

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTPPAP partPackageName.n(10) 4 n 4 byte

participating

package

appl/

numbers, n

10 byte

participating

(REXX)

Yes 092

PCRTPPNM partPackageName.n(10) 6 n 6-byte

participating

package

appl/

numbers, n

10 byte

participating

(REXX)

Yes 092

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 68

Install Site Information (Set of n sets of installation site information (n is limited only by storage

constraints)

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PCRTAAPP affectedApplName.n 4 Set of n 4-

byte

application

names (n is

limited only

by storage

constraints)

Yes 093

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTSITE siteInfo.siteName.n 8 Site name Yes 094

PCRTINDT siteInfo.installDate.n 8 Install

date

Yes 095

PCRTFINT siteInfo.fromInstallTime.n 6 Install

from time

Yes 096

PCRTTINT siteInfo.toInstallTime.n 6 Install to

time

Yes 097

PCRTOANM siteInfo.contactName.n 25 Originating

analyst

Yes 098

PCRTOAPH siteInfo.contactPhone.n 15 Analyst

phone

number

Yes 099

PCRTAANM siteInfo.alternateContactName.n 25 Alternative

analyst

Yes 100

Data Interface for the Package-Create Exits

Data Interface for the Package-Create Exits 69

Package Update

This section describes the package-update functional area of the high-level language exits. The 4-

character exit name identifier is PUPD.

Select option 3 Package Update from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to define customized ISPF variables for the package-update function:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed.

The panels around which exit points will be placed are listed below. The internal exit name (also

known as function code) is PUPD0pnn, where:

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PCRTAAPH siteInfo.alternateContactPhone.n 15 Alternative

analyst

phone

number

Yes 101

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

• •

• •

• •

Package Update

Package Update 70

The pre-exit is taken before the panel is displayed (usually to provide model parameters displayed

on the panel) and the post-exit is taken after the panel has been displayed (for example, for input

validation or enforcement).

Package-update exits are only taken when panels are displayed in input mode.

For package update the package already exists and each update function is updating a specific set

of package information. The data format consists of a fixed core of fields, which is provided on

every exit call, followed by a single variable length set of information pertaining to the specific

update being applied. The map to be used will depend on the exit function code (internal exit

name).

Package Update:

Panel ID Description Associated Package-

Create Panel ID

Exit Name

CMNPGNL1 Updates control information CMNUPD01 PUPD0p01

CMNPGNL2 Updates package description CMNUPD02 PUPD0p02

CMNPGNL3 Updates installation

instructions

CMNUPD03 PUPD0p03

CMNPGNL4 Updates scheduling

dependencies

CMNUPD04 PUPD0p04

CMNPGNL5 Updates affected

applications

CMNUPD05 PUPD0p05

CMNONSTE Updates install information CMNUPD06 PUPD0p06

CMNPRSTI Updates site install

information

CMNUPD07 PUPD0p07

CMNPGNL6 Updates complex/super

package information

CMNUPD08 PUPD0p08

CMNDPUP1/

CMNDPUP2

Updates package user

options

PUPD0pPU

CMNRMBRO Updates ERO information PUPD0pER

CMNDB2UP Updates Db2 option special

libtypes

PUPD0pD2

CMNIMSYS Updates IMS option physical

system information

PUPD0pIS

CMNIMACB Updates IMS options ACB

definitions

PUPD0pIA

CMNIMDBD Updates IMS option DBD

definitions

PUPD0pID

Package Update

Package Update 71

In order to allow the cursor to be positioned at specific panel fields, a number relating to the panel

field in question will be passed back in the XPUPOCURS field. These numbers are documented in

the supplied copybook for the function (and, eventually, in the lists of REXX field names). You must

make sure that your exit returns a field number that is valid for the panel about to be (re)displayed.

If the field number is not valid, a dialog error results.

Each package-update exit call, if it requires variable blocked information, only contains a single

block as relevant to the call.

Panel ID Description Associated Package-

Create Panel ID

Exit Name

CMNIMPSB Updates IMS option PSB

definitions

PUPD0pIP

CMNQRYL2 Monitor Limbo / All PUPD01M6 /

M7

The PUPD01M6 (Monitor ALL site) and PUPD01M7 (Monitor DP site) exits cannot change any

data values. They can be used to validate the proposed change of install date and, if necessary,

reject the update with a message.

Note

This is different from package create, which contains them all if they are available, null if not).

Note

Package Update

Package Update 72

The user exit should follow the pointer chains for the single repeating group until the pointer is null.

If PUPDLOKD is set to |yes|, data fields on the related panel will be set to output only. The list of

panels for which this applies is:

* VARIABLE BLOCK POINTERS
* EACH POINTS TO A DIFFERENT VARIABLE LENGTH SECTION OF DATA.
* THEY APPLY TO EACH SPECIFIC TYPE OF PACKAGE UPDATE.
* THEY REDEFINE THE SAME AREA OF STORAGE AND ARE MUTUALLY
* EXCLUSIVE. PLEASE REFER TO THE VALUE IN PUPDFUNC FOR WHICH
* WHICH MAP TO USE.
*
* EACH ENTRY IN A VARIABLE LENGTH BLOCK CONSISTS OF THE DATA
* FOLLOWED BY A POINTER TO THE NEXT ENTRY. WHEN THAT POINTER
* IS NULL THEN THERE ARE NO FURTHER ENTRIES IN THE BLOCK.

 03 PUPDVARB-PTR USAGE IS POINTER.

* PUPDFUNC = 'PUPD0002' OR 'PUPD0102'
*
* PACKAGE DESCRIPTION - UP TO 46 LINES OF 72 BYTES

01 PUPDVB1.
 03 PUPDPDSC PIC X(72).
* LINE OF DESCRIPTION (087)
 03 PTR-NEXT-PUPDVB1 POINTER.
* POINTER TO NEXT LINE

* PUPDFUNC = 'PUPD0003' OR 'PUPD0103'
*
* PKG IMPLEMENTATION INSTRUCTIONS - UP TO 46 LINES OF 72 BYTES

01 PUPDVB2 REDEFINES PUPDVB1.
 03 PUPDPIMI PIC X(72).
* PKG IMPL INSTRUCTION(088)
03 PTR-NEXT-PUPDVB2 POINTER.
* POINTER TO NEXT LINE

Panel ID Description Associated Package-

Create Panel ID

Exit Name

CMNPGNL1 Updates control information CMNUPD01 PUPD0001

CMNPGNL2 Updates package description CMNUPD02 PUPD0002

CMNPGNL3 Updates installation instructions CMNUPD03 PUPD0003

CMNPGNL4 Updates scheduling

dependencies

CMNUPD04 PUPD0004

CMNPGNL5 Updates affected applications CMNUPD05 PUPD0005

CMNONSTE Updates install information CMNUPD06 PUPD0006

CMNPRSTI Updates site install information CMNUPD07 PUPD0007

Package Update

Package Update 73

PUPDSHRT and PUPDLONG are used to set a message on the next panel/window to be displayed.

If PUPDGO is set to NO, the fields PUPDSHRT, PUPDLONG, and PUPDCURS will be used to set an

error message and the associated panel will be (re)displayed by the client.

If the user exit wishes to change any of the data fields, it does that in place and sets PUPDCHNG to

|yes|. If PUPDCHNG is not set to |yes|, any data changes are ignored by the client. Note that while

the full exit data structure is passed to the exits driven around the package user variable panels

(CMNDPUP1/2) only package user variables may be updated by these exits.

A single data structure is passed to all of these exits.

Data Interface for the Package-Update Exits

Panel ID Description Associated Package-

Create Panel ID

Exit Name

CMNPGNL6 Updates complex/super package

information

CMNUPD08 PUPD0008

CMNDB2UP Updates Db2 option special

libtypes

PUPD00D2

CMNIMSYS Updates IMS option physical

system information

PUPD00IS

CMNIMACB Updates IMS options ACB

definitions

PUPD00IA

CMNIMDBD Updates IMS option DBD

definitions

PUPD00ID

CMNIMPSB Updates IMS option PSB

definitions

PUPD00IP

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PUPDFUNC function 8 Function code No

PUPDDBUG debugCall 1 Debug exit call

(Y/N)

No

PUPDORGN callOrigin 3 ISPF=SPF

XML

Service=XML

ZDD=ZDD

ZMF4ECL=ECL

No

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 74

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PUPDZMFS zmfSubs 1 ZMF

subsystem Id

No

PUPDPDB2 db2Subs 4 Primary Db2

subsystem

No

PUPDUSER userid 8 User Id No

PUPDEXTN externalName 256 External name

for exit

No

PUPDAPPL applName 4 Application No

PUPDLOKD dataLocked 3 Fields locked?

(yes/NO)

yes

PUPDGO proceed 3 Proceed?

(yes/NO)

yes

PUPDSHRT shortMsg 24 Short

message

yes

PUPDLONG longMsg 128 Long message yes

PUPDCURS cursorField 3 Cursor tag yes

PUPDCHNG dataChanged 3 Data changed?

(yes/NO)

yes

PUPDPKGN packageName 10 Package name No

PUPDCTSI packageCreator 8 User id of

package

creator

No

PUPDPLVL packageLevel 1 Package level yes 001

PUPDPTYP packageType 1 Package type yes 002

PUPDPSTT packageStatus 1 package

status

No

PUPDCSPK complexSuperPackageStatus 1 complex

package

status

No

PUPDRSCD reasonCode 3 Reason code yes 004

PUPDCSPK complexSuperPackage 10 Complex

package

yes 003

PUPDDEPT packageDepartment 4 department yes 005

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 75

Package User Variables

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

PUPDNAME requestorName 25 Requester

name

yes 006

PUPDPHON requestorPhone 15 Requester

phone

yes 007

PUPDPCAC problemActionCode 1 Contingency

action code

yes 008

PUPDOPCA otherProblemAction 44 Other

contingency

action

yes 009

PUPDSCHD schedulerType 1 Scheduler yes 010

PUPDTCDU tempChangeDuration 3 Temporary

change

duration

yes 011

PUPDWRQN packageWorkRequest 12 Work request

number

yes 012

PUPDTITL packageTitle 255 Package title yes 013

PUPDUPAN userPanel 8 Package user

variable panel

yes

PUPDNTUS notifyUser 8 Notify user Yes 161

PUPDOPRF optsProfile 8 Used to select

the ZDDOPTS

profile for the

display of user

options for the

ZMF Client

Pack

yes

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPD01 userVarLen101-

userVarLen115

1 * 15 Set of

fifteen 1-

byte

package

user

variables

yes 014-028

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 76

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPD0199 userVarLen199 1 (Reserved) yes

PUPD02 userVarLen201 -

userVarLen211

2 * 11 Set of

eleven 2-

byte

package

user

variables

yes 029-039

PUPD03 userVarLen301-310 3 * 10 Set of ten

3-byte

package

user

variables

yes 040-049

PUPD04 userVarLen401-410 4 * 10 Set of ten

4-byte

package

user

variables

yes 050-059

PUPD08 userVarLen801-810 8 * 10 Set of ten

8-byte

package

user

variables

yes 060-069

PUPD16 userVarLen1601-1605 16 * 5 Set of five

16-byte

package

user

variables

yes

PUPD44 userVarLen4401-4405 44 * 5 Set of five

44-byte

package

user

variables

yes 075-079

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 77

Release and Release Area

Package Description

Implementation Instructions

Scheduling Information

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPD72 userVarLen7201-7205 72 * 5 Set of five

72-byte

package

user

variables

yes 080-084

LE-Lang Var

Name

REXX Var

Name

Length Purpose Modifiable Cursor

Field No.

PUPDRLSM release 8 Release yes

PUPDRARE releaseArea 8 Release

area

yes 086

LE-Language

Var Name

REXX Var

Name

Length Purpose Modifiable Cursor

Field

No.

PUPDPDSC packageDesc.n 72 * 46 Up to forty-six

72-byte lines of

description

yes 087

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDPIMI packageImplInst.n 72 * 46 Up to forty-six

72-byte lines of

implementation

instructions

yes 088

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDSSSJ schedulingInfo.successorJobName.n 8 Successor

job name

yes 089

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 78

Participating Packages

Affected Applications

Install Site Information
Set of n sets of installation site information (n is limited only by storage constraints

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDSSPJ schedulingInfo.predecessorJobName.n 8 Predecessor

job name

yes 090

LE-Lang Var Name REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDPPAPPUPDPPNM partPackageName.n(10) 46 Set of n 4

byte and 6

byte

participating

package

appl/

numbers

(LE), n 10

byte

participating

package

names

(REXX)

yes 091

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDAAPP affectedApplName.n 4 Set of n 4-byte

application

names(n is

limited only by

storage

constraints)

yes 092

LE-Lang Var

Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDSITE siteInfo.siteName.n 8 Site name yes 093

PUPDINDT siteInfo.installDate.n 8 Install

date

yes 094

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 79

Db2 Libtype Information
Set of n sets of Db2 libtype information (n is limited only by storage constraints

IMS System Information
Set of n sets of IMS system information (n is limited only by storage constraints

LE-Lang Var

Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDFINT siteInfo.fromInstallTime.n 6 Install

from time

yes 095

PUPDTINT siteInfo.toInstallTime.n 6 Install to

time

yes 096

PUPDOANM siteInfo.contactName.n 25 Originating

analyst

yes 097

PUPDOAPH siteInfo.contactPhone.n 15 Analyst

phone

number

yes 098

PUPDAANM siteInfo.alternateContactName.n 25 Alternative

analyst

yes 099

PUPDAAPH.n siteInfo.alternateContactPhone.n 15 Alternative

analyst

phone

number

yes 100

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDDLTP db2Info.libType.n 3 Db2

Libtype

yes 101

PUPDDSUB db2Info.subType.n 1 Db2 Sub

type

yes 102

PUPDEOSC db2SqlTerminationChar.n 1 SQL end

of

sentence

yes 103

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDISID imsSysInfo.imsControl Region.n 4 IMS

system Id

yes 104

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 80

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDISRS imsSysInfo.imsSiteName.n 8 ZMF

remote

site

yes 105

PUPDISLN imsSysInfo.imsLogicalSite.n 8 IMS

logical

site name

yes 106

PUPDISOP imsSysInfo.isImsGlobalActivationEnabled.n 1 IMS

option

activated

yes 107

PUPDISDV imsSysInfo.imsDevCharSuffix.n 1 IMS

device

character

yes 108

PUPDISMF imsSysInfo.isMfsAlwaysGenerated.n 1 Process

MFS (Y/

N)?

yes 109

PUPDISPS imsSysInfo.isPsbAlwaysGenerated.n 1 Process

PSB (Y/

N)?

yes 110

PUPDISDB imsSysInfo.isDbdAlwaysGenerated.n 1 Process

DBD (Y/

N)?

yes 111

PUPDISAC imsSysInfo.isAcbAlwaysCreatedForPcbs.n 1 Process

ACB (Y/

N)?

yes 112

PUPDISBU imsSysInfo.imsBackupModelLib.n 25 IMS back-

up model

data set

name

yes 113

PUPDISS1 imsSysInfo.imsGenMacroComponent.n 8 Stage 1

gen

member

name

yes 114

PUPDISRL imsSysInfo.imsResLib.n 44 IMS

RESLIB

yes 115

PUPDISML imsSysInfo.imsMacLib.n 44 IMS

MACLIB

yes 116

PUPDISMS imsSysInfo.imsModStatLib.n 44 IMS

MODSTAT

yes 117

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 81

IMS ACB Information
Set of n sets of IMS system information (n is limited only by storage constraints)

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDISGM imsSysInfo.imsGenMacroStageLib.n 44 IMS

sysgen

MACLIB

yes 118

PUPDISPL imsSysInfo.imsPsbLib.n 44 IMS

PSBLIB

yes 119

PUPDISDL imsSysInfo.imsDbdLib.n 44 IMS

DBDLIB

yes 120

PUPDISAL imsSysInfo.imsAcbLib.n 44 IMS

ACBLIB

yes 121

PUPDISFL imsSysInfo.imsFormatLib.n 44 IMS

FMTLIB

yes 122

PUPDISRF imsSysInfo.imsRefLib.n 44 IMS

referal

yes 123

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDIAID imsAcbInfo.imsControlRegion.n 4 IMS

system

Id

yes 124

PUPDIARS imsAcbInfo.imsSiteName.n 8 ZMF

remote

site

yes 125

PUPDIALN imsAcbInfo.imsLogicalSite.n 8 IMS

logical

site

name

yes 126

PUPDIATY imsAcbInfo.acbStatementType.n 3 IMS

ACB

type

yes 127

PUPDIACT imsAcbInfo.acbGenStatementType.n 8 ACB

control

word

yes 128

PUPDIASR imsAcbInfo.component.n 8 ACB

source

name

yes 129

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 82

IMS PSB/DBD Information
Set of n sets of IMS system information (n is limited only by storage constraints)

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDIATG imsAcbInfo.targetComponentType.n 8 ACB

target

name

yes 130

PUPDIALT imsAcbInfo.componentType.n 3 ACB

libtype

yes 131

PUPDIATL imsAcbInfo.targetComponentType.n 3 ACB

target

libtype

yes 132

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDIPID imsDbdPsbInfo.imsControlRegion.n 4 IMS

system Id

Yes 133

PUPDIPRS imsDbdPsbInfo.imsSiteName.n 8 ZMF

remote

site

Yes 134

PUPDIPLN imsDbdPsbInfo.imsLogicalSite.n 8 IMS

logical

site name

Yes 135

PUPDIPCT imsDbdPsbInfo.controlStatement.n 8 Control

word

Yes 136

PUPDIPSR imsDbdPsbInfo.component.n 8

Source

name

Yes 137

PUPDIPLT imsDbdPsbInfo.componentType.n 3 Libtype Yes 138

PUPDIPOV imsDbdPsbInfo.overrideStatement.n 64 Override

statement

Yes 139

Data Interface for the Package-Update Exits

Data Interface for the Package-Update Exits 83

File Tailoring

The file tailoring function is somewhat different to the usual HLLX process in that there is no user

interaction to work with. The file tailoring function provides a mechanism for other HLL exits to set

variable values that the file tailoring programs can pick up and turn in to ISPF variables that are

used in file tailoring the skeletons.

The 4-character exit name identifier for file tailoring is FTLR.

Select option 5 File Tailoring from the HLL Exit Definition - Function Selection (CMNHLLMM) panel

to define customized ISPF variables for file tailoring:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed:

LE-Lang

Var Name

REXX Var Name Length Purpose Modifiable Cursor

Field

No.

PUPDIPOR imsDbdPsbInfo.originalStatement.n 64 Original

statement

Yes 14

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

File Tailoring

File Tailoring 84

There is a single exit point per file tailoring program:

The single exit point is called multiple times (hard limited to 999 to avoid loops) at the control of

the exit code (that is, the exit code is called until the exit says stop calling me). Each time the exit

can pass back a single variable name, length, and value. The file tailoring program vdefines and

assigns a value to each variable that the exit passes to it.

A REXX sample, in which variables passed to the exit are displayed and three ISPF variables are

defined, is supplied as member HXRFTLR of the CMNZMF.SAMPLES distribution library. A COBOL

sample is supplied as member HXCFTLR of the CMNZMF.SAMPLES distribution library.

A single data structure is passed to all of these exits. Many of the fields are related to component

build only (as detailed below). There is, potentially, a huge number of different fields that may be

required by the promote/demote and baseline/install exits in order to make a decision on what, if

any, extra ISPF variables need to be defined. It is expected that the exit can use ZMF XML services

to access that information.

We envisage the way to use these exits is to have other exits (for example, exits for package create

and/or package update) to set certain VPOOL variables which can then be subsequently accessed

by the file tailoring exits and turned into ISPF variables for use in the target file tailoring skeletons.

CMNHLLMN HLL Exit Definition Row 1 to 5 of 5
Command ===> __Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

FTLR00BA NO 2 install/baseline file tailoring
 Debug: NO 2

FTLR00BL NO 2 build job file tailoring
 Debug: NO 2

FTLR00BP NO 2 base ZMF promotion file tailoring
 Debug: NO 2

FTLR00EB NO 2 ERO autoresolve file tailoring
 Debug: NO 2

FTLR00EP NO 2 ERO promotion file tailoring
 Debug: NO 2

File Tailoring Program Name Description Exit Name

CMNVFTLR ZMF component build FTLR00BL

CMNVPRFT ZMF promote/demote FTLR00BP

CMNVPIJB ZMF install/baseline x.node FTLR00BA

CMNVRACR ERO autoresolve build FTLR00EB

CMNVRPFT ERO promote/demote FTLR00EP

File Tailoring

File Tailoring 85

Data Interface for File Tailoring Exits
General

Promotion/Demotion

LE-Language

Variable Name

REXX Variable

Name

Length Purpose

FTLRFUNC function 8 Internal exit name

FTLRDBUG debugCall 1 Debug exit call (Y/N)

FTLRORGN callOrigin 3 ISPF = SPF XML Service = XMLZDD =

ZDDZMF4ECL = ECL

FTLRZMFS zmfSubs 1 ZMF subsystem character

FTLRPDB2 db2Subs 4 Default Db2 subsystem for this ZMF

instance

FTLRUSER userid 8 Userid for function calling this exit

FTLREXTN externalName 256 External routine name defined for

this exit

FTLRVCNT cumulativeVarCount 3 How many times has this exit been

called

FTLRLAST lastVarName 8 The name of the last variable defined

by ZMF at the request of this exit

FTLRFROM fromEroZmf 3 Called from an ERO or base ZMF

process

FTLRPKGN packageId 10 Package name

FTLRJOB1 jobCard01 72 Job card line #1 (blank for Install/

Baseline)

FTLRJOB2 jobCard02 72 Job card line #2 (blank for Install/

Baseline)

FTLRJOB3 jobCard03 72 Job card line #3 (blank for Install/

Baseline)

FTLRJOB4 jobCard04 72 Job card line #4 (blank for Install/

Baseline)

FTLRRLSE release 8 ERO release

FTLRAREA releaseArea 8 ERO area

FTLRUV1 userVariable01-05 8*5 Set of five 8-byte user variables

FTLRUV6 userVariable06-10 72*5 Set of five 72-byte user variables

Data Interface for File Tailoring Exits

Data Interface for File Tailoring Exits 86

Build

LE-Language

Variable Name

REXX Variable

Name

Length Purpose

FTLRPSIT promoSite 8 Target site

FTLRPLVL promoLevel 2 Target level nn

FTLRPNME promoName 8 Target promotion name

FTLRPFUN promoFunction 8 'PROMOTE', 'SELPROM', 'CLEANUP',

'DEMOTE', 'SELDEMO'

LE-

Language

Variable

Name

REXX Variable Name Length Purpose

FTLRVOBJ buildProcessObject 8 'cmponent'

FTLRVMSG buildProcessMessage 8 'submit'

FTLRVSCP buildProcessScope 8 'stage','recomp','relink','checkout','build','checkin'

FTLRVPRC buildProcessName 8 Internal name for file tailoring process

(usually VCOMP000).

FTLRLTYP componentType 3 Library type

FTLRCOMP component 256 Component name

FTLRPROC buildProc 8 Build procedure

FTLRLANG language 8 Language

FTLRDB2P useDb2PreCompileOption 1 Db2 precompile requested (Y/N)

FTLRUO1 userOption01-10 1*10 First set of the original component user

options

FTLRUO2 userOption11-20 1*10 Second set of the original component user

options

FTLR01 userOption0101-105 1*5 Set of five extended 1-byte component user

options

FTLR02 userOption0201-203 2*3 Set of three extended 2-byte component user

options

FTLR03 userOption0301-303 3*3 Set of three extended 3-byte component user

options

FTLR04 userOption0401-403 4*3 Set of three extended 4-byte component user

options

Data Interface for File Tailoring Exits

Data Interface for File Tailoring Exits 87

Returned by Exit

The following example, taken from the HXRFTLR member of the CMNZMF.SAMPLES distribution

library, shows how to have this exit define three ISPF variables:

LE-

Language

Variable

Name

REXX Variable Name Length Purpose

FTLR08 userOption0801-805 8*5 Set of five extended 8-byte component user

options

FTLR10 userOption1001-1002 10*2 Set of two extended 10-byte component user

options

FTLR16 userOption1601-1602 16*2 Set of two extended 16-byte component user

options

FTLR34 userOption3401-3402 34*2 Set of two extended 34-byte component user

options

FTLR44 userOption4401-4402 44*2 Set of two extended 44-byte component user

options

FTLR64 userOption6401-6405 64*5 Set of five extended 64-byte component user

options

FTLR72 userOption7201-7205 72*5 Set of five extended 72-byte component user

options

LE-Language

Variable Name

REXX Variable

Name

Length Purpose

FTLRGO proceed 3 Set to 'NO' to stop the file tailoring process

FTLRSHRT shortMsg 24 Not used at present

FTLRLONG longMsg 128 Set to message text you wish to be reported

in the file tailoring task output when stopping

the process

FTLRMORE moreToCome 3 Set to 'YES' if you wish to define another

variable. ZMF will keep calling this exit until

this is set to something other than 'YES' (max

999 times)

FTLRVNAM ispfVarName 8 The name of the ISPF variable you wish to

have ZMF vdefine for use by the current file

tailoring process

FTLRVLEN ispfVarLen 4 The length of the variable value

FTLRVVA L ispfVarValue 1024 The variable value (character variables only)

Data Interface for File Tailoring Exits

Data Interface for File Tailoring Exits 88

The following example shows how to stop the process and provide a reason for doing so:

Checkout

This section describes the checkout functional area of the high-level language exits. The 4-

character exit name identified is CKOT.

Select option 6 Checkout from the HLL Exit Definition - Function Selection (CMNHLLMM) panel to

define exits for component checkout from baseline/promotion:

/* */
/* Here we define three variables which will be available during the */
/* skeleton file tailoring performed by the current process. */
/* This exit is able to return a single variable at a time and is */
/* called repeatedly while moreToCome is set to YES (max 999 times). */
/* */
/* The name of the last variable to be defined by this exit is */
/* presented on the next call in the lastVarName variable. */
/* */
If lastVarName = " " then
 Do
 ispfVarName = "MYVAR1"
 ispfVarLen = "12"
 ispfVarValue = "1234567890AB"
 moreToCome = "YES"
 End

If lastVarName = "MYVAR1" then
 Do
 ispfVarName = "MYVAR2"
 ispfVarLen = "8"
 ispfVarValue = "12345678"
 moreToCome = "YES"
 End
If lastVarName = "MYVAR2" then
 Do
 ispfVarName = "MYVAR3"
 ispfVarLen = "4"
 ispfVarValue = "1234"
 moreToCome = "NO"
 End

/* */
/* stopping the file tailoring process and setting an error message */
/* */
proceed = "NO"
longMsg = "Example of how to let the developer know what went wrong"

Checkout

Checkout 89

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel

might look:

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Checkout

Checkout 90

The panels around which exit points will be placed are listed below. The internal exit name (also
known as function code) is CKOT0pnn, where:

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

An internal exit name of CKOT0p01, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is CKOT0001 and the name of the post-exit is CKOT0101. If it makes no

sense to have a pre-exit, the internal exit name is given as CKOT0101 (post-exit only). If it makes no

sense to have a post-exit, the internal exit name is given as CKOT0001 (pre-exit only).

CMNHLLMN HLL Exit Definition Row 1 to 12 of 13
Command ===>__ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

CKOT01CK NO 2 post checkout entry panel
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT01CL NO 2 post component list for pkg ckot
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT01DL NO 2 post component delete
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT01LB NO 2 post library list where comp found
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT01LT NO 2 post libtype display
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT01MS NO 2 post member selection list
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT01PL NO 2 post promotion library list
 Debug: HXPCKOT YES 1 USERA1 ,USERA2

CKOT00XM NO 2 pre service call
 Debug: CKOTALL NO 2 USERA1 ,USERA2

CKOT01XM NO 2 post service call
 Debug: CKOTALL YES 2 USERA1 ,USERA2

CKOT0001 NO 2 pre checkout selection criteria
 Debug: HXCCKOT NO 1 USERA1 ,USERA2

CKOT0101 NO 2 post checkout selection criteria
 Debug: HXCCKOT YES 1 USERA1 ,USERA2

CKOT0002 NO 2 pre batch checkout panel
 Debug: CKOJOBCD YES 2 USERA1 ,USERA2

CKOT0102 NO 2 post batch checkout panel
 Debug: CKOJOBCD YES 2 USERA1 ,USERA2

•

•

•

Checkout

Checkout 91

The pre-exit is taken before the panel is displayed and the post-exit is taken after the panel has

been displayed.Most table displays have only post-exits. That is, we do not want to have a pre-exit

that manipulates the lists that ZMF generates. We may want to have a post-exit to validate the

selections that the user makes from the lists.

The panels around which the checkout exit points are placed are:

Pre- and post-XML-service calls for checkout are:

Sample Exits
Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information coming in to the exits. Not all information is available to all exits. The

exits that occur early in the dialog will not have as much information as the exits that occur later in

the dialog.

The checkout exit examples are:

HXCCKOT - COBOL example

HXPCKOT - PL/I example

HXRCKOT - REXX example

A single data structure is passed to all of these exits.

Panel ID Description Exit Name

CMNMCKOT/R Checkout entry panel from the build function CKOT01CK

CMNCKOT1 Checkout selection criteria CKOT0001/CKOT0101

CMNCKOT2 Batch checkout panel CKOT0002/CKOT0102

CMNCLTS L Libtype table display CKOT01LT

CMNCCMSL/2 Member list baseline/promotion CKOT01MS

CMNCMLSL Member locate library list CKOT01LB

CMNCPLSL Promotion library list CKOT01PL

CMNCKOTS/L/X Member list - package checkout CKOT01CL

CMNSTG20 Confirm delete request CKOT01DL

XML Service Name Description Exit Name

cmponent.service.checkout Component Checkout CKOT00XM/CKOT01XM

• •

• •

• •

Sample Exits

Sample Exits 92

Data Interface

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

CKOTORGN callOrigin 3 ISPF = SPF,

XML Service

= XML, ZDD

= ZDD,

ZMF4ECL =

ECL

No

CKOTZMFS zmfSubs 1 ZMF

subsystem

character

No

CKOTPDB2 db2Subs 4 Default Db2

subsystem

for this ZMF

No

CKOTUSER userid 8 Userid for

function

calling this

exit No

CKOTEXTN externalName 256 External

routine

name

defined for

this exit No

CKOTPKGN packageId 10 The

package

being acted

on No

CKOTPSTA packageStatus 3 Package

status (DEV,

FRZ, and so

on) No

CKOTPINS packageInsDate 8 Package

Install Date

yyyymmdd

No

CKOTCOMP componentName 256 Component

Name

Yes 001

Data Interface

Data Interface 93

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

CKOTLTYP componentType 3 Component

library type

Yes 002

CKOTBSLB chkOutSourceLocation 1 Source

Location

Yes

CKOTMODE chkOutMode 1 Online or

Batch

Yes 008

CKOTBLVL basePromoLibLevel 3 Baseline/

Promotion

level

Yes 003

CKOTPSIT promotionSiteName 8 Promotion

Site

Yes 013

CKOTPNAM promotionName 8 Promotion

Name

Yes 014

CKOTRLSN release 8 Release

Name

Yes

CKOTAREA releaseArea 8 Release

Area

Yes

CKOTCKTO chkOutTargetLocation 1 Target

Location

(dev/stage)

Yes 004

CKOTCKDS personalLibStorageMeans 1 Personal lib

dsorg

Yes 006

CKOTPDSN personalLib 1026 Personal

library name

Yes 005

CKOTLOCK lockComponent 3 Lock

Component

(Yes/No)

Yes 009

CKOTUCUO useCompUsrOpts 3 Use

component

user options

(Yes/No)

Yes 018

CKOTSPSV savePriorVersion 3 Save

staging

versions

(Yes/No)

Yes

Data Interface

Data Interface 94

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

CKOTSUPN suppressNotify 3 Suppress

batch

messages

(Yes/No)

Yes 024

CKOTMIXC mixedCase 1 Name has

mixed case?

Yes 037

CKOTJOB1 jobCard01 72 Job card

line #1

Yes 020

CKOTJOB2 jobCard02 72 Job card

line #2

Yes 021

CKOTJOB3 jobCard03 72 Job card

line #3

Yes 022

CKOTJOB4 jobCard04 72 Job card

line #4

Yes 023

CKOTUVPN userVarPanel 8 User

variable

panel name

Yes

CKOTUV01 -

05

userVariable01-05 8*5 Set of five 8-

byte

package

user

variables

027-031

CKOTUV06 -

10

userVariable06-10 72*5 Set of five

72-byte

package

user

variables

032-036

CKOTSLTP selLibraryType 3 Selected

library type

No

CKOTVVMM verModLevel 5 Version.mod

level

No

CKOTCRDT createDate 10 Member

create date

No

CKOTCHGD changeDate 10 Member

change date

No

CKOTCHGT changeTime 5 Member

change time

No

Data Interface

Data Interface 95

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

CKOTCSZE memberSize 5 Member

change size

No

CKOTUSRN username 8 User name No

CKOTLSZE loadSize 6 Load

member

size

No

CKOTLTTR loadTtr 6 Load

member

TTR

No

CKOTALAS loadAlias 8 Load

member

alias

No

CKOTSSSI loadSetssi 8 Load

member

setssi

No

CKOTATTR loadAttr 8 Load

member

attributes

No

CKOTGO proceed 3 Set to 'NO'

to stop the

process

Yes

CKOTLOKD dataLocked 3 Fields

locked?

(YES/NO)

Yes

CKOTSHRT shortMsg 24 Short error

message

text

Yes

CKOTLONG longMsg 128 Long error

message

text

Yes

Data Interface

Data Interface 96

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

CKOTOPTN optionRequested 1 Option used

in ISPF,

either from

the primary

entry panel

for checkout

or the digit

in the C1,

C2, C3, C4

checkout

line

commands

available

from the

package list

No

CKOTCURS cursorField 3 For ISPF

where you

wish the

cursor to be

placed on

return to the

panel

display. The

values

relating to

each field

are shown in

this table.

Yes

CKOTCHNG dataChanged 3 This field

must be set

to YES to

return

changed

values to

ZMF.

Yes

CKOTCOVL confirmOverlay 3 This field

must be set

to YES to

confirm

overlay.

Yes 019

CKOTUVAR userVariables 1 Display User

variable

panel (Y/N)

Yes 026

Data Interface

Data Interface 97

Promote/Demote

This section describes the promote/demote functional area of the high-level language exits. The 4-

character exit name identifier is PRDM.

Select option 7 Promote/Demote from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to define exits for component promotion and demotion:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel

might look:

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

CKOTSPKG sourcePackage 10 Checkout

from this

package

Yes 025

CKOTOPRF optsProfile 8 To select

the

ZDDOPTS

profile to

display user

options for

the ZMF

Client Pack

Yes

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Promote/Demote

Promote/Demote 98

The panels around which exit points will be placed are listed below. The internal exit name (also

known as function code) is PRDM0pnn, where:

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

The pre-exit is taken before the panel is displayed and the post-exit is taken after the panel has

been displayed.

An internal exit name of PRDM0p01, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is PRDM0001 and the name of the post-exit is PRDM0101. If it makes no

sense to have a pre-exit, the internal exit name is given as PRDM0101 (post-exit only). If it makes

no sense to have a post-exit, the internal exit name is given as PRDM0001 (pre-exit only).

Most table displays have only post-exits. That is, we do not want to have a pre-exit that

manipulates the lists that ZMF generates. We may want to have a post-exit to validate the

selections that the user makes from the lists.

The panels around which the promote/demote exit points are placed are:

CMNHLLMN HLL Exit Definition Row 1 to 6 of 12
Command ===>___ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

PRDM00XD NO 2 pre demotion service
 Debug: NO 2

PRDM01XD NO 2 post demotion service
 Debug: NO 2

PRDM00XP NO 2 pre promotion service
 Debug: NO 2

PRDM01XP NO 2 post promotion service
 Debug: NO 2

PRDM0100 NO 2 post promote/demote main menu
 Debug: NO 2

PRDM0101 NO 2 post site selection
 Debug: NO 2

• •

• •

• •

Panel ID Description Exit Name

CMNRPM00 Promote/demote main menu PRDM0100

CMNRPM01 Site selection PRDM0101

Promote/Demote

Promote/Demote 99

Pre- and post-XML-service calls for promote and demote are:

Sample Exits
Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information coming in to the exits. Not all information is available to all exits. The

exits that occur early in the dialog will not have as much information as the exits that occur later in

the dialog.

The promote/demote exit examples are:

HXCPRDM - COBOL example

HXPPRDM - PL/I example

HXRPRDM - REXX example

Most of the fields are fixed in nature. (See the data interface below.) However, there is an optional

variable length section. This section contains the names and library types of all the components

selected for promotion/demotion.

The format of this variable length data in COBOL is:

Panel ID Description Exit Name

CMNRPM03 Promote options PRDM0003/PRDM0103

CMNRPM04 Demote options PRDM0004/PRDM0104

CMNRPM05 Selective promote/demote PRDM0105

CMNRPM07 Promotion level selection PRDM0107

XML Service Name Description Exit Name

package.service.promote Component promote PRDM00XP/PRDM01XP

package.service.demote Component demote PRDM00XD/PRDM01XD

•

•

•

Sample Exits

Sample Exits 100

The format of this variable length data in PL/I is:

The method for traversing this variable length list is the same as that used in other functions. The
anchor pointer (PRDMVBP) points to the first in the chain of entries (null if no chain exists). Each
entry contains a pointer to the next entry (null at end of chain).

The difference with this list to other functions is that the data in each entry is variable in length

itself. (The component name can be any length up to 256 bytes.) The sample code shows methods

for dealing with this variable length.

REXX makes use of stem variables as usual with a variable number of similar data items.

* VARIABLE BLOCK POINTER
*
* EACH ENTRY IN A VARIABLE LENGTH BLOCK CONSISTS OF THE DATA
* FOLLOWED BY A POINTER TO THE NEXT ENTRY. WHEN THAT POINTER
* IS NULL THEN THERE ARE NO FURTHER ENTRIES IN THE BLOCK.

 03 PRDMVARB-PTR USAGE IS POINTER.
*

* SELECTED COMPONENT LIST

01 PRDMCPNT.
 03 PTR-NEXT-PRDMCPNT POINTER.
* POINTER TO NEXT ENTRY
 03 PRDMCTYP PIC X(3).
* THE CMPNT LIBTYPE
 03 PRDMCOMP.
* THE VARLEN COMPONENT NAME
 49 PRDMCOMP-LEN PIC S9(4) COMP.
* LENGTH
 49 PRDMCOMP-NAME PIC X OCCURS 0 TO 256 TIMES
 DEPENDING ON PRDMCOMP-LEN.
* NAME

/*** */
/* VARIABLE BLOCK POINTERS */
/* */
/* EACH ENTRY IN A VARIABLE LENGTH BLOCK CONSISTS OF THE DATA */
/* FOLLOWED BY A POINTER TO THE NEXT ENTRY. WHEN THAT POINTER */
/* IS NULL THEN THERE ARE NO FURTHER ENTRIES IN THE BLOCK. */
/*** */
 2 PRDMVBP PTR;
/*** */
/* SELECTED COMPONENT LIST */
/*** */
DCL 1 PRDMCPNT BASED(WORKVBP),
 2 PTR_NEXT_PRDMCPNT PTR, /*POINTER TO NXT BLOCK */
 2 PRDMCTYP CHAR(3), /*COMPONENT LIBTYPE */
 2 PRDMCOMP CHAR(256) VARYING; /* CMPNT NAME */

Sample Exits

Sample Exits 101

A single data structure is passed to all of these exits.

Data Interface

The list of components is only provided on a selective promote/demote and consists of just

those components selected. On a full promote/demote no such list is provided. (The list is

potentially huge and may never be needed.) If such information is needed, you can easily obtain

it in the exit itself by making use of ZMF XML services. The samples provided show how this is

done.

Note

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PRDMFUNC function 8 Internal exit

name

No

PRDMDBUG debugCall 1 Debug exit

call (Y/N)

No

PRDMORGN callOrigin 3 ISPF=SPF,

XML

Service=XML,

ZDD=ZDD,

ZMF4ECL=EC

L No

PRDMZMFS zmfSubs 1 ZMF

subsystem

character

No

PRDMPDB2 db2Subs 4 Default Db2

subsystem

for this ZMF

instance

No

PRDMUSER userid 8 Userid for

function

calling this

exit

No

PRDMEXTN externalName 256 External

routine name

defined for

this exit

No

Data Interface

Data Interface 102

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PRDMPKGN packageId 10 The package

being acted

on

No 001

PRDMPSTA packageStatus 3 Package

status

(DEV,FRZ,

and so on)

No 002

PRDMPINS packageInsDate 8 Package

Install Date

yyyymmdd

No

PRDMPFUN promoFunction 8 PROMOTE vs

DEMOTE

No 004

PRDMPTYP promoType 6 FULL vs

SELECT

No

PRDMPSCP promoScope 8 CHECK vs

SERVICE

(relevant to

service exits

only)

No

PRDMOPTN optionRequested 1 Option

chosen from

panel

No

PRDMSITE promoSite 8 Target site No 005

PRDMPNAM promoName 8 Target

promotion

name

No 006

PRDMPLVL promoLevel 2 Target

promotion

level

Yes 007

PRDMLPNM lastPromoName 8 Last

promotion

name

No 008

PRDMLPLV lastPromoLevel 2 Last

promotion

level

No 009

PRDMPDTE promoDate 10 Promotion

date yyyy/

mm/dd

No 010

Data Interface

Data Interface 103

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PRDMPTME promoTime 8 Promotion

time hh ss

No 011

PRDMPUSR promoUser 8 Promotion

userid

No 012

PRDMSCHD scheduleDate 8 Schedule

date

yyyymmdd

Yes 013

PRDMSCHT scheduleTime 4 Schedule

time hhmm

Yes 014

PRDMSLST shortList 1 Short

selection list

Y/N

Yes 015

PRDMBYPO bypassOverlayCheck 1 Bypass

overlay check

Y/N

Yes 016

PRDMSUPN suppressNotify 1 Suppress

batch

messages Y/

N

Yes 017

PRDMMIXC mixedCase 1 Name has

mixed case?

Yes 034

PRDMJOB1 jobCard01 72 Job card line

#1

Yes 018

PRDMJOB2 jobCard02 72 Job card line

#2

Yes 019

PRDMJOB3 jobCard03 72 Job card line

#3

Yes 020

PRDMJOB4 jobCard04 72 job card line

#4

Yes 021

PRDMFORC demoteRequired 1 Prior demote

required Y/N

No 022

PRDMUVPN userVarPanel 8 User variable

panel name

Yes

PRDMUV01

- 05

userVariable01-05 8*5 Set of five 8-

byte package

user

variables

Yes 024-028

Data Interface

Data Interface 104

Repeated Group (Variable Length)

Returned by Exit

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PRDMUV06

- 10

userVariable06-10 72*5 Set of five 72-

byte package

user

variables

Yes 029-033

PRDMUVAR userVariables 1 Display User

variable

panel (Y/N)

Yes 023

PRDMOPRF optsProfile 8 To select the

ZDDOPTS

profile to

display user

options for

the ZMF

Client Pack

Yes

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PRDMCTYP componentType. 3 Selected

component

libtype (stem

variable,

componentType.

0 has number of

instances)

No

PRDMCOMP componentName. 0-256 Selected

component name

(stem variable,

componentName.

0 has number of

instances)

No

Data Interface

Data Interface 105

Audit

This section describes the audit functional area of the high-level language exits. The 4-character

exit name identifier is AUDT.

Select option 8 Audit from the HLL Exit Definition - Function Selection (CMNHLLMM) panel to

define exits for the audit job submission and audit process:

LE-Language

Variable

Name

REXX

Variable

Name

Length Purpose Modifiable Cursor

Field

No.

PRDMGO proceed 3 Set to 'NO' to stop

the file tailoring

process

Yes

PRDMLOKD dataLocked 3 Fields locked?

(YES/NO)

Yes

PRDMSHRT shortMsg 24 Short error

message text

Yes

PRDMLONG longMsg 128 Long error

message text

Yes

PRDMCURS cursorField 3 For ISPF to place

cursor on return

to the panel

display. The

values relating to

each field are

shown in this

table.

Yes

PRDMCHNG dataChanged 3 This field must be

set to YES if you

wish to return

changed values

to ZMF.

Yes

Audit

Audit 106

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel

might look:

The audit functional area is a hybrid in that there are the usual panel user-interface exit points

around the audit submission process; but, exit points can also be taken from within the audit batch

process itself. These exit points allow the administrator to execute external processes from audit

results or to alter the return code that is being set for each package. As the environment in which

these two different classes of exits execute is quite different, the data supplied to them also varies.

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

CMNHLLMN HLL Exit Definition Row 1 to 6 of 9
Command ===>___ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

AUDT00AR NO 2 pre autoresolve job submission
 Debug: NO 2

AUDT01JB NO 2 post all audit job processing
 Debug: NO 2

AUDT00RC NO 2 pre audit job setting of package RC
 Debug: NO 2

AUDT00XM NO 2 pre audit job submission service
 Debug: NO 2

AUDT01XM NO 2 post audit job submission service
 Debug: NO 2

AUDT0001 NO 2 pre audit submission panel
 Debug: NO 2

Audit

Audit 107

The panels around which the audit exit points can be placed are:

The audit job submission services exits are:

AUDT00XM - Audit job submission service pre-exit

AUDT01XM - Audit job submission service post-exit

The batch job audit exits are:

AUDT00AR - Exit that is taken prior to the submission of each autoresolve job.

AUDT00RC - Exit that is taken prior to setting the audit return code for each package.

AUDT01JB - Exit that is taken at the end of the audit job.

Sample Exits
Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information incoming to these exits. Note that not all information is available to

all exit points. The exits that occur early in the dialog will not have as much information as the

exits that occur later in the dialog.

The audit exit examples are:

HXCAUDT - COBOL example

HXPAUDT - PL/I example

HXRAUDT - REXX example

HXRASCP - REXX example of how to set extra applications-in-scope

The majority of the fields are fixed length. (See the data interface below.) However, there are a

couple of optional variable length sections. When filled in, these sections contain information about

the applications-in-scope for this audit and the participating packages included in the audit.

The format for this variable length data in COBOL is:

Panel ID Description Exit Name

CMNAUDIT Audit submission main panel AUDT0001/AUDT0101

CMNAUDAP Applications-in-scope selection panel AUDT0002/AUDT0102

• •

• •

• •

• •

• •

•

•

•

•

Sample Exits

Sample Exits 108

The format for this variable length data in PL/I is:

* VARIABLE BLOCK POINTER
*
* EACH ENTRY IN A VARIABLE LENGTH BLOCK CONSISTS OF THE DATA
* FOLLOWED BY A POINTER TO THE NEXT ENTRY. WHEN THAT POINTER
* IS NULL THEN THERE ARE NO FURTHER ENTRIES IN THE BLOCK.

 03 AUDTVB1L-PTR USAGE IS POINTER.
 03 AUDTVB2L-PTR USAGE IS POINTER.
*

* APPLICATIONS IN SCOPE

 01 AUDTVB1.
 03 AUDTASCP PIC X(4).
* APPLICATION
 03 PTR-NEXT-AUDTVB1 POINTER.
* POINTER TO NEXT ENTRY

* ELEGIBLE PARTICIPATING PACKAGES

 01 AUDTVB2.
 03 AUDTPPKG PIC X(10).
* PPKG NAME
 03 AUDTPPLV PIC X(1).
* PPKG LEVEL
 03 AUDTPPTY PIC X(1).
* PPKG TYPE
 03 AUDTPPST PIC X(3).
* PPKG STATUS
 03 AUDTPPDP PIC X(4).
* PPKG DEPARTMENT
 03 AUDTPPIN PIC X(8).
* PPKG INSTALL DATE YYYYMMDD
 03 PTR-NEXT-AUDTVB2 POINTER.
* POINTER TO NEXT ENTRY

Sample Exits

Sample Exits 109

The method for traversing this variable length list is the same as that used in other functions. The

anchor pointers (AUDTVB1P and AUDTVB2P) point to the first in the chain of entries (null if no

chain exists). Each entry contains a pointer to the next entry (null at end of chain).

REXX makes use of stem variables as usual with a variable number of similar data items.

The availability of the information in these variable sections is:

/*** */
/* VARIABLE BLOCK POINTERS */
/* EACH POINTS TO A DIFFERENT VARIABLE LENGTH SECTION OF DATA. */
/* SECTIONS MAY BE MISSING DEPENDING ON FUNCTION AND PACKAGE */
/* TYPE. IF THEY ARE MISSING THEN THE POINTER WILL BE NULL. */
/* */
/* EACH ENTRY IN A VARIABLE LENGTH BLOCK CONSISTS OF THE DATA */
/* FOLLOWED BY A POINTER TO THE NEXT ENTRY. WHEN THAT POINTER */
/* IS NULL THEN THERE ARE NO FURTHER ENTRIES IN THE BLOCK. */
/*** */
 2 AUDTVB1P PTR,
 2 AUDTVB2P PTR;
/*** */
/* APPLICATIONS IN SCOPE LIST */
/*** */
DCL 1 AUDTVB1 BASED(WORKVB1P),
 2 AUDTASCP CHAR(4), /*APPLICATION */
 2 PTR_NEXT_AUDTVB1 PTR; /*PTR TO NEXT ENTRY */
/*** */
/* ELIGIBLE PARTICIPATING PACKAGE LIST */
/*** */
DCL 1 AUDTVB2 BASED(WORKVB2P),
 2 AUDTPPKG CHAR(10), /*PPKG NAME */
 2 AUDTPPLV CHAR(1), /*PPKG LEVEL */
 2 AUDTPPTY CHAR(1), /*PPKG TYPE */
 2 AUDTPPST CHAR(3), /*PPKG STATUS */
 2 AUDTPPDP CHAR(4), /*PPKG DEPARTMENT */
 2 AUDTPPIN CHAR(8), /*PPKG INSTALL DATE */
 2 PTR_NEXT_AUDTVB2 PTR; /*PTR TO NEXT ENTRY */

Exit Name Participating Package Info Available? Applications-in Scope Info Available

AUDT0001 NO (NO) NO (NO)

AUDT0101 NO (NO) YES (YES)

AUDT0002 NO (NO) YES (YES)

AUDT0102 NO (NO) YES (YES)

AUDT00XM NO (NO) YES (YES)

AUDT01XM NO (NO) YES (NO)

AUDT00RC YES (NO) NO (NO)

AUDT01JB YES (NO) NO (NO)

Sample Exits

Sample Exits 110

Data Interface
A single data structure is passed to all of these exits.

Exit Name Participating Package Info Available? Applications-in Scope Info Available

AUDT00AR YES (NO) NO (NO)

...

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTFUNC function 8 Internal exit

name

No

AUDTDBUG debugCall 1 Debug exit call

(Y/N)

No

AUDTORGN callOrigin 3 ISPF=SPF XML

Service=XML

ZDD=ZDDZMF4

ECL=ECL

No

AUDTZMFS zmfSubs 1 ZMF

subsystem

character

No

AUDTPDB2 db2Subs 4 Default Db2

subsystem for

this ZM

FNo

AUDTUSER userid 8 Userid for

function calling

this exit

No

AUDTEXTN externalName 256 External

routine

namedefined

for this exi

tNo

AUDTPKGN packageId 10 The package

being acted on

No 001

AUDTSCOP auditScope 1 Display appls in

scope Y/N

Yes 002

AUDTMODE auditMode 1 Staging libs

only Y/N

Yes 003

AUDTINCH includeHistory 1 Include history

Y/N

Yes 004

Data Interface

Data Interface 111

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTFMTR printFormat 1 Format for

printing Y/N

Yes 005

AUDTAPSP auditAsSimple 1 Audit as simple

Y/N

Yes 006

AUDTAPPP auditAsPrimary 1 Audit as

primary Y/N

Yes 006

AUDTAPDP auditByDept 1 Audit by

department Y/

N

Yes 006

AUDTTRUT restrictRcToTarget 1 Update target

pkg RC only Y/

N

Yes 007

AUDTTRCO auditWithTrace 1 Audit trace Y/N Yes

AUDTXHDR includeXapHeaders 1 Show XAP

headers T/Y/N

Yes 008

AUDTSUPM suppressNotify 1 Suppress batch

messages Y/N

Yes 009

AUDTLOCK lockPackage 1 Lock package

for audit Y/N

Yes 010

AUDTMIXC mixedCase 1 Name has

mixed case?

Yes 029

AUDTRPLK resetPackageLock 1 Reset package

lock for audit

Y/N

Yes Note

#1

028

AUDTAUTR autoResolve 1 Autoresolve Y/

N

Yes 011

AUDTAUTP autoResolveParms 54 Autoresolve

parameter

dsn(member)

Yes 012

AUDTJOB1 jobCard01 72 Job card line

#1

Yes 013

AUDTJOB2 jobCard02 72 Job card line

#2

Yes 014

AUDTJOB3 jobCard03 72 Job card line

#3

Yes 015

Data Interface

Data Interface 112

Supplied to AUDT00AR Only

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTJOB4 jobCard04 72 Job card line

#4

Yes 016

AUDTUV01-05 userVariable01-05 8*5 Set of five 8-

byte package

user variables

Yes 018-022

AUDTUV06-10 userVariable06 72*5 Set of five 72-

byte package

user variables

Yes 023-027

AUDTUVAR userVariables 1 Display User

variable panel

(Y/N)

Yes

AUDTOPRF optsProfile 8 Used to select

the ZDDOPTS

profile for the

display of user

options for the

ZMF Client

Pack

Yes

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTARTN arsTargetName 256 Target

component

name

No

AUDTAREV arsEvent 2 Autoresolve

event

No

AUDTARSY arsSynchError 2 Caused by this

synch error

No

AUDTARSL arsSourceLibtype 3 Source

component

libtype

No

AUDTARSN arsSourceName 256 Source

component

name

No

Data Interface

Data Interface 113

Supplied to AUDT00RC Only

Supplied to AUDT01JB Only

Repeated Group #1 (Variable Length)

LE-

Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTARTP arsTargetPkg 10 Target package

for re-build

No

AUDTARTL arsTargetLibtype 3 Target libtype

(used by

relinks)

No

AUDTARCP arsCausalPkg 10 Package

containing

error causing

this

autoresolve

action

No

AUDTARCR arsReplaceCsect 16 Csect to be

replaced

(relink)

No

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTRTCD auditReturnCode 2 Package

audit return

code

Yes

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTRDSN reportDsn 44 Dataset name

allocated to

CMNAD500

ddname

AUDITRPT

No Note

#2

AUDTRMBR reportMember 8 Member name

for same, or

blank if dsname

is sequential

No Note

#2

Data Interface

Data Interface 114

Repeated Group #2 (Variable Length)

Returned by Exit

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field No.

AUDTASCP applInScope.n 4 Application Note #3

LE-Language

Variable

Name

REXX Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTPPKG ppkg.name.n 10 Participating

package

No

AUDTPPLV ppkg.level.n 1 Level No

AUDTPPTY ppkg.type.n 1 Type No

AUDTPPST ppkg.status.n 3 Status No

AUDTPPDP ppkg.dept.n 4 Department No

AUDTPPIN ppkg.installDate.n 8 Install date No

LE-Language

Variable

Name

REXX

Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTGO proceed 3 Set to 'NO' to

stop the file

tailoring process

Yes

AUDTLOKD dataLocked 3 Fields locked?

(YES/NO)

Yes

AUDTSHRT shortMsg 24 Short error

message text

Yes

AUDTLONG longMsg 128 Long error

message text

Yes

AUDTCURS cursorField 3 For ISPF to place

the cursor on

return to the

panel display.

Field values are

in this table

Yes

Data Interface

Data Interface 115

Note #1

The ISPF client forces this value to be NO each time the panel is displayed via the)INIT

section of the panel. This is done in order to avoid users accidentally unlocking packages.

Note #2

The dsname, and, if stored in a PDS/E, the member name of the file to which the AUDITRPT

ddname in the CMNAD500 step is allocated will be passed in these fields.

Note #3

A list of applications selected as being in scope are supplied on the call to the exit. Where

relevant, the exit may add to, or remove from, this list. If you change the number of entries,

ensure that the pointer chains are set up correctly (LE), or ensure the new total number of

entries is assigned to applInScope.0 (REXX). If you return an empty list, no updates are made

to the applications-in-scope list used by the audit submission function.

Freeze, Unfreeze, and Refreeze

This section describes the freeze functional area of the high-level language exits. The 4-character

exit name identifier is FREZ.

Select option 9 Freeze from the HLL Exit Definition - Function Selection (CMNHLLMM) panel to

define exits for the package freeze and selective unfreeze/refreeze processes:

LE-Language

Variable

Name

REXX

Variable

Name

Length Purpose Modifiable Cursor

Field

No.

AUDTCHNG dataChanged 3 This field must

be set to YES if

you wish to

return changed

values to ZMF.

Yes

• •

• •

• •

Freeze, Unfreeze, and Refreeze

Freeze, Unfreeze, and Refreeze 116

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel

might look:

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Freeze, Unfreeze, and Refreeze

Freeze, Unfreeze, and Refreeze 117

The panels around which exit points will be placed are listed below. The internal exit name (also

known as function code) is FREZ0pnn, where:

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

The pre-exit is taken before the panel is displayed and the post-exit is taken after the panel has

been displayed.

CMNHLLMN HLL Exit Definition Row 1 to 13 of 13
Command ===>__ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +
--
FREZ00UF NO 2 pre package freeze/unfreeze panel
 Debug: NO 2
--
FREZ01UF NO 2 post package freeze/unfreeze panel
 Debug: TST#FREZ NO 2 USER12 ,USER13
--
FREZ01U1 NO 2 selective component freeze/unfreeze
 Debug: TST#FREZ NO 2 USER12 ,USER13
--
FREZ01U2 NO 2 selective utility freeze/unfreeze
 Debug: NO 2
--
FREZ00XM NO 2 pre package freeze service
 Debug: NO 2
--
FREZ01XM NO 2 post package freeze service
 Debug: NO 2
--
FREZ00XR NO 2 pre selective refreeze service
 Debug: NO 2
--
FREZ01XR NO 2 post selective refreeze service
 Debug: NO 2
--
FREZ00XU NO 2 pre selective unfreeze service
 Debug: NO 2
--
FREZ01XU NO 2 post selective unfreeze service
 Debug: NO 2
--
FREZ0101 NO 2 package freeze submenu
 Debug: TST#FREZ NO 2 USER12 ,USER13
--
FREZ0002 NO 2 pre batch freeze submit panel
 Debug: NO 2
--
FREZ0102 NO 2 post batch freeze submit panel
 Debug: NO 2
******************************* Bottom of data *****************************

• •

• •

• •

Freeze, Unfreeze, and Refreeze

Freeze, Unfreeze, and Refreeze 118

An internal exit name of FREZ0p01, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is FREZ0002 and the name of the post-exit is FREZ0102. If it makes no

sense to have a pre-exit, the internal exit name is given as FREZ0101 (post-exit only). If it makes no

sense to have a post-exit, the internal exit name is given as FREZ0001 (pre-exit only).

Most table displays have only post-exits. That is, we do not want to have a pre-exit that

manipulates the lists that ZMF generates. We may want to have a post-exit to validate the

selections that the user makes from the lists.

The panels around which the freeze, unfreeze, or refreeze exit points are placed are:

Pre- and post-XML-service calls for freeze, unfreeze, and refreeze are:

Sample Exits
Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information incoming to these exits. Note that not all information is available to

all exit points. The exits that occur early in the dialog will not have as much information as the

exits that occur later in the dialog.

The client-driven selective unfreeze/refreeze post-exits (that is, after the components to be

actioned are selected) are driven once per component with single-valued component information

supplied on each call. The unfreeze and refreeze service-driven exits are only called once and are

supplied with a list of selected component names and library types (with no other specific

component information).

Panel ID Description Exit Name

CMNFRZ01 Package freeze submenu FREZ0101

CMNFRZ02 Batch package freeze submit panel FREZ0002/FREZ0102

CMNUNFRZ Package unfreeze/refreeze FREZ00UF/FREZ01UF

CMNUNF01 Selective component unfreeze/refreeze FREZ01U1

CMNUNF02 Selective utility request unfreeze/refreeze FREZ01U2

XML Service Name Description Exit Name

package.service.freeze Pre-service call for full package freeze FREZ00XM

package.service.freeze Post-service call for full package freeze FREZ01XM

package.src_lod.unfreeze Pre-service call for selective component unfreeze FREZ00XU

package.src_lod.unfreeze Post-service call for selective component unfreeze FREZ01XU

package.src_lod.refreeze Pre-service call for selective component refreeze FREZ00XR

package.src_lod.refreeze Post-service call for selective component refreeze FREZ01XR

Sample Exits

Sample Exits 119

The freeze exit examples are:

HXCFREZ - COBOL example

HXPFREZ - PL/I example

HXRFREZ - REXX example

Data Interface
A single data structure is passed to all of these exits.

• •

• •

• •

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

FREZFUNC function 8 Internal exit

name

No

FREZDBUG debugCall 1 Debug exit call

(Y/N)

No

FREZORGN callOrigin 3 ISPF=SPF,

XML

Service=XML,

ZDD=ZDD,

ZMF4ECL=ECL

No

FREZZMFS zmfSubs 1 ZMF

subsystem

character

No

FREZPDB2 db2Subs 4 Default Db2

subsystem for

this ZMF

No

FREZUSER userid 8 Userid for

function

calling this exit

No

FREZEXTN externalName 256 External

routine name

defined for

this exit

No

FREZACTN freezeAction 1 F/U/R/S Yes 001

FREZOPTN optionRequested 1 1/2/3/4/5 Yes 002

FREZPKGN packageId 10 The package

being acted on

No

Data Interface

Data Interface 120

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

FREZPCAT packageCategory 8 Same as

service scope

value

No

FREZCAST categoryStatus 8 Frozen/

unfrozen

No

FREZCSTD Component staged

date

8 Selective post

exits only

No

FREZCSTT Component staged

time

6 Selective post

exits only

No

FREZCUSR Component user 8 Selective post

exits only

No

FREZCSTA Component status 8 (frozen/

unfrozen)

selective only

No

FREZUREQ utilityRequest 3 Scr/ren

(scratch/

rename)

No

FREZNWNM componentNewName 256 For rename

request

No

FREZJOB1 jobCard01 72 Job card line

#1

Yes 013

FREZJOB2 jobCard02 72 Job card line

#2

Yes 014

FREZJOB3 jobCard03 72 Job card line

#3

Yes 015

FREZJOB4 jobCard04 72 Job card line

#4

Yes 016

FREZMIXC mixedCase 1 Name has

mixed case?

Yes 028

FREZVAL0 validateOnly 1 Validate the

package for

freeze only

(FREZ0xXM

only)

No

FREZUVPN userVarPanel 8 User variable

panel name

Yes

Data Interface

Data Interface 121

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

FREZTUV01

- 05

userVariable01-05 8*5 Set of five 8-

byte package

user variables

Yes 018-022

FREZUV06 -

10

userVariable06-10 72 * 5 Set of five 72-

byte package

user variables

No 023-027

FREZMCNT memberCount 5 Count of

following

member

names & types

No

FREZCTYP componentType.0 3 Selected

Component

type. Stem

variable

No

FREZCOMP componentName.0 1-256 Selected

Component

name (variable

length). Stem

variable

No

FREZNOGO proceed 3 Set to 'NO' to

stop the

process

Yes

FREZLOKD dataLocked 3 Fields locked?

(YES/NO)

Yes

FREZSHRT shortMsg 24 Short error

message text

Yes

FREZLONG longMsg 128 Long error

message text

Yes

FREZCURS cursorField 3 For ISPF

where the

cursor is

placed on

return to the

panel display.

Field values

are shown

here.

Yes

Data Interface

Data Interface 122

Package Approve and Reject

This section describes the package approve/reject functional area of the high-level language exits.

The 4-character exit name identifier is APRV.

Select option A Approve/Reject from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to define exits for the package approve and reject functions:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel might
look:

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

FREZCHNG dataChanged 3 This field must

be set to YES

if you wish to

return

changed

values to ZMF.

Yes

FREZUVAR userVariables 1 Display User

variable panel

(Y/N)

Yes 017

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Package Approve and Reject

Package Approve and Reject 123

The panels around which exit points will be placed are listed below. The internal exit name (also
known as function code) is APRV0pnn, where:

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

The pre-exit is taken before the panel is displayed. The post-exit is taken after the panel has been

displayed.

An internal exit name of APRV0p04, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is APRV0004 and the name of the post-exit is APRV0104. If it makes no

sense to have a pre-exit, the internal name will be given as APRV0101 (post-exit only). If it makes

no sense to have a post-exit, the internal exit name is given as APRV0001 (pre-exit only).

Most table displays have only post-exits. That is, we do not want to have a pre-exit that

manipulates the lists that ZMF generates. We may want to have a post-exit to validate the

selections that the user makes from the lists.

CMNHLLMN HLL Exit Definition Row 1 to 10 of 11
Command ===> Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

APRV00XM NO 2 pre service all for approve
 Debug: HXRAPRV NO 2 USER12

APRV01XM NO 2 post service call for approve
 Debug: HXRAPRV NO 2 USER12

APRV0101 NO 2 list of packages to be approved
 Debug: HXRAPRV YES 2 USER12

APRV0102 NO 2 approve/reject option menu
 Debug: HXRAPRV YES 2 USER12

APRV0103 NO 2 approver entity list
 Debug: APRV0103 YES 2 USER12

APRV0004 NO 2 pre checkoff comments
 Debug: HXRAPRV YES 2 USER12 ,USER58

APRV0104 NO 2 post checkoff comments
 Debug: HXRAPRV YES 2 USER12 ,USER58

APRV0105 NO 2 reject reasons entity selection
 Debug: HXRAPRV YES 2 USER12

APRV0006 NO 2 pre reject reasons text
 Debug: HXRAPRV YES 2 USER12 ,USER58

APRV0106 NO 2 post reject reasons text
 Debug: HXRAPRV YES 2 USER12 ,USER58

•

•

•

Package Approve and Reject

Package Approve and Reject 124

The panels around which the approve/reject exit points are placed are:

Pre- and post-XML-service calls for approve are:

Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information coming in to the exits. Not all information is available to all exits. The

exits that occur early in the dialog will not have as much information as the exits that occur later in

the dialog.

The approve exit examples are:

HXCAPRV - COBOL example

HXPAPRV - PL/I example

HXRAPRV - REXX example

HXRAPRV3 - REXX example exit to warn the approver if check has found an issue and to give

the approver two options:

Ignore warnings and proceed.

Cancel approval.

A single data structure is passed to all of these exits.

Panel ID Description Exit Name

CMNAPPL1 Resulting list of packages to be approved (short) APRV0101

CMNAPPL2 Resulting list of packages to be approved (long) APRV0101

CMNAPPOP Approve function submenu APRV0102

CMNAPPLS Approver entity list for action APRV0103

CMNCHKLS Checkoff comments APRV0004/APRV0104

CMNREJR0 Reject reason entity selection APRV0105

CMNREJR1 Reject reason text APRV0006/APRV0106

XML Service Name Description Exit Name

package.service.approve Pre-service call for approve (all actions) APRV00XM

package.service.approve Post-service call for approve APRV01XM

• •

• •

• •

• •

•

•

Package Approve and Reject

Package Approve and Reject 125

Data Interface

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

APRVFUNC function 8 Internal exit name No

APRVDBUG debugCall 1 Debug exit call (Y/N) No

APRVORGN callOrigin 3 ISPF=SPF, XML

Service=XML,

ZDD=ZDDZMF4,ECL=ECL

No

APRVZMFS zmfSubs 1 ZMF

subsystemcharacter

No

APRVPDB2 db2Subs 4 Default Db2 subsystem

for this ZMF

No

APRVUSER userid 8 Userid for function

calling this exit

No

APRVEXTN externalName 256 External routine name

defined for this exit

No

APRVACTN approverAction 1 (approve/reject/review /

checkoff)

Yes 001

APRVPKGN packageId 10 The package being acted

on

No

APRVPSTA packageStatus 1 See service values No

APRVPINS packageInstallDate 8 Package installation date No

APRVPLVL packageLevel 1 Package level No

APRVPTYP packageType 1 Package type No

APRVDEPT packageDepartment 4 Department Yes

APRVWKRQ packageWorkRequest 12 Work request number Yes

APRVCRTR packageCreator 8 User id of the package

creator

No

APRVPRST promotionSite 8 Promotion site No

APRVPRNM promotionName 8 Promotion name No

APRVPRLV promotionLevel 2 Promotion level No

APRVPRDT promotionDate 8 Promotion date No

APRVPRTM promotionTime 6 Promotion time No

Data Interface

Data Interface 126

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

APRVPRUS promotionUser 8 Promotion userid No

APRVAENT approvalEntity 8 Approval entity No

APRVADSC approvalDescription 44 Approval description No

APRVACDE approvalCode 1 Approval code No

APRVAUSR approvalUser 8 Userid of the approver No

APRVADTE approvalDate 8 Approval date No

APRVATME approvalTime 6 Approval time No

APRVAORD orderNumber 2 Order number No

APRVAFUN lastFunction 7 Last function No

APRVREJR reasons.n 72 Stem variable. 10 reject

reasons

Yes 010-019

APRVCKCM comments.n 72 Stem variable 14

checkoff comments

Yes 031-044

APRVGO proceed 3 Set to 'NO' to stop the

process

Yes

APRVLOKD dataLocked 3 Fields locked? (YES/NO) Yes

APRVSHRT shortMsg 24 Short error message text Yes

APRVLONG longMsg 128 Long error message text Yes

APRVCURS cursorField 3 For ISPF to place the

cursor on return to panel

display. Field values are

shown in this table.

Yes

Data Interface

Data Interface 127

Revert/Backout

This section describes the revert and backout functional areas of the high-level language exits. The

4-character exit name identifier is RVRT.

Select option B Revert/Backout from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to define exits for the package revert and backout functions:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how the default

unmodified panel looks:

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

APRVCHNG dataChanged 3 This field must be set to

YES to return changed

values to ZMF.

Yes

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Revert/Backout

Revert/Backout 128

The panels around which exit points will be placed are listed below. The internal exit name (also

known as function code) is RVRT0pnn, where:

CMNHLLMN HLL Exit Definition Row 1 to 16 of 16
Command ===>___ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +

RVRT01B1 NO 2 package backout selection panel
 Debug: NO 2

RVRT00B2 NO 2 pre backout reason entry panel
 Debug: NO 2

RVRT01B2 NO 2 post backout reason entry panel
 Debug: NO 2

RVRT01B3 NO 2 backout site selection
 Debug: NO 2

RVRT00B4 NO 2 pre backout remote submission
 Debug: NO 2

RVRT01B4 NO 2 post backout remote submission
 Debug: NO 2

RVRT00XB NO 2 pre service call for backout
 Debug: NO 2

RVRT01XB NO 2 post service call for backout
 Debug: NO 2

RVRT00XM NO 2 pre service call for revert
 Debug: NO 2

RVRT01XM NO 2 post service call for revert
 Debug: NO 2

RVRT0101 NO 2 package revert selection panel
 Debug: NO 2

RVRT0002 NO 2 pre revert reason entry panel
 Debug: NO 2

RVRT0102 NO 2 post revert reason entry panel
 Debug: NO 2

RVRT0103 NO 2 revert site selection
 Debug: NO 2

RVRT0004 NO 2 pre revert remote submission
 Debug: NO 2

RVRT0104 NO 2 post revert remote submission
 Debug: NO 2
******************************* Bottom of data ********************************

Revert/Backout

Revert/Backout 129

p=0 is the pre-exit.

p=1 is the post-exit.

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

The pre-exit is taken before the panel is displayed. The post-exit is taken after the panel has been

displayed.

An internal exit name of RVRT0p04, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is RVRT0004 and the name of the post-exit is RVRT0104. If it makes no

sense to have a pre-exit, the internal name is given as RVRT0101 (post-exit only). If it makes no

sense to have a post-exit, the internal name is given as RVRT0001 (pre-exit only).

Most table displays have only post-exits. That is, we do not want to have a pre-exit that

manipulates the lists that ZMF generates. We may want to have a post-exit to validate the

selections that the user makes from the lists.

The panels around which the revert exit points are placed are:

The panels around which the backout exit points are placed are:

Pre- and post-XML-service calls for approve are:

•

•

•

Panel ID Description Exit Name

CMNREV00 Package revert main panel RVRT0101

CMNREVRS Revert reason entry panel RVRT0002/RVRT0102

CMNRVSTI Revert site selection RVRT0103

CMNRVJCD Revert remote submission panel RVRT0004/RVRT0104

Panel ID Description Exit Name

CMNBKOUT Post main backout entry panel RVRT01B1

CMNBKRSN Pre backout reason panel RVRT00B2

CMNBKRSN Post backout reason panel RVRT01B2

CMNBKSTI Post backout site selection panel RVRT01B3

CMNBKJCD Pre backout jobcard specification panel RVRT00B4

CMNBKJCD Post backout jobcard specification panel RVRT01B4

XML Service Name Description Exit Name

package.service.revert Pre-service call for package revert RVRT00XM

Revert/Backout

Revert/Backout 130

Pre- and post-XML-service calls for backout are:

Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information coming in to the exits. Not all information is available to all exits. The

exits that occur early in the dialog will not have as much information as the exits that occur later in

the dialog.

The revert and backout exit examples are:

HXCRVRT - COBOL example

HXPRVRT - PL/I example

HXRRVRT - REXX example

Data Interface
A single data structure is passed to all of these exits.

XML Service Name Description Exit Name

package.service.revert Post-service call for package revert RVRT01XM

XML Service Name Description Exit Name

package.service.backout Pre-service call for package backout RVRT00XB

package.service.backout Post-service call for package backout RVRT01XB

• •

• •

• •

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

RVRTFUNC function 8 Internal exit

name

No

RVRTDBUG debugCall 1 Debug exit call

(Y/N)

No

RVRTORGN callOrigin 3 ISPF=SPF,XML No

Service=XML

ZDD=ZDD

ZMF4ECL=ECL

RVRTZMFS zmfSubs 1 ZMF

subsystem

character

No

Data Interface

Data Interface 131

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

RVRTPDB2 db2Subs 4 vDefault Db2

subsystem for

this ZMF

No

RVRTUSER userid 8 Userid for

function

calling this exit

No

RVRTEXTN externalName 256 External

routine name

defined for

this exit

No

RVRTPKGN packageId 10 The package

being acted on

No

RVRTPSTA packageStatus 3 Package/Site

status

No

RVRTSITE siteName 8 Install site No

RVRTINDT pacakgeInsDate 8 Yyyymmdd No

RVRTFINT fromInstallTime 6 Hhmm00 No

RVRTTINT toInstallTimev 6 Hhmm00 No

RVRTOANM contactName 25 Orig.

analyst name

No

RVRTOAPH contactPhone 15 Orig.

analyst phone

No

RVRTAANM alternateContactName

25 Alt. analyst name

No

RVRTAAPH alternateContactPhone 15 Alt. analyst

phone

No

RVRTJOB1 jobCard01 72 Job card line

#1

Yes 011

RVRTJOB2 jobCard02 72 Job card line

#2

Yes 012

RVRTJOB3 jobCard03 72 Job card line

#3

Yes 013

RVRTJOB4 jobCard04 72 Job card line

#4

Yes 014

Data Interface

Data Interface 132

Specific Exits

This grouping is used to pull together a number of 'point' or 'specific function' exits. Usually a

functional area will have many exits associated with it; here we have areas with one or two exits

only.

The group consists of 'Package Syslib', 'Standard Language', 'Query Component', and 'Package

Search' exits.

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

RVRTREVR reasons.n 72 Set of nine 72-

byte variables

Yes 021-029

RVRTGO proceed 3 Set to 'NO' to

stop the

process

Yes

RVRTLOKD dataLocked 3 Fields locked?

(YES/NO) Yes

RVRTSHRT shortMsg 24 Short error

message text

Yes

RVRTLONG longMsg 128 Long error

message text

Yes

RVRTCURS cursorField 3 For ISPF to

place cursor

on return to

panel display.

Field values

are shown in

this table.

Yes

RVRTCHNG dataChanged 3 This field must

be set to YES

if you wish to

return

changed

values to ZMF.

Yes

Specific Exits

Specific Exits

Specific Exits 133

The Package Syslib Functional Area
This section describes the Package Syslib functional area of the high-level language exits.

The 4-character exit name identifier is SYSL.

SYSLOOXM is the exit point for the package.list.syslib service.

SYSL00XR is for the refresh service.

SYSL00XL and SYSL01XL are additional exit points included in this functional area.

SYSLOOXM
The SYSL00XM exit may be used to alter the default syslib concatenation generated by ZMF, or it

may be used to prevent any result being returned to the service caller (a user specified message

can be delivered in this case).

Sample exits are provided which show how to list all the information incoming to the exit. The

majority of the fields are fixed in nature (see list later in this document). However, there are three

variable length lists which are passed to/from the exit. The first is a complete list of library types

which are physically allocated to the package for which the service has been invoked.

The second is the list of syslib names (MVS libraries or zFS directories) as generated by the default

ZMF logic (i.e. staging libraries, promotion libraries, baseline libraries).

The third list is null when the exit is called and is where the exit may place any altered list of syslib

names. Details on how to generate an altered list of syslib names are provided in the sample exits

(HXCSYSL - Cobol, HXPSYSL - PL/I, HXRSYSL - REXX). The format of this variable length data is

given here.

In COBOL:

• •

• •

• •

* VARIABLE LENGTH LISTS FOLLOW, THERE ARE FOUR.
* IF THE LIST IS EMPTY THEN THE RELEVANT POINTER WILL BE NULL.
* ELSE IT WILL POINT TO A REPEATING GROUP IN WHICH EACH ENTRY
* CONSISTS OF A POINTER TO THE NEXT ENTRY FOLLOWED BY THE DATA.
* WHEN THE POINTER IS NULL THEN THERE NO FURTHER ENTRIES IN
* THE BLOCK.
*
* THE FIRST TWO LISTS ARE PROVIDED AS INPUT TO EXIT SYSL00XM
* THE POINTERS WILL BE NULL FOR SYSL00XR
*
* 1) LIBTYPES ALLOCATED TO THE REQUESTED PACKAGE
* 2) THE DEFAULT SYSLIB LIST PROVIDED BY THE ZMF SERVICE
*

...

The Package Syslib Functional Area

The Package Syslib Functional Area 134

* THE THIRD LIST, IF REQUIRED, WILL BE CREATED BY YOU IN EXIT
* SYSL00XM (SAMPLE CODE IS PROVIDED IN HXCSYSL).
* IF YOU WISH TO CHANGE THE SET OF NAMES USED IN THIS
* SYSLIB CONCATENATION THEN YOU MUST PROVIDE THE ALTERED
* LIST AS A LINKED LIST WITH THE FORMAT EXACTLY AS REPRESENTED
* IN THIS COPYBOOK.
* THE POINTER TO THE FIRST ITEM ON THE LIST IS PLACED AT
* SYSLLST3-PTR AND THE POINTER TO THE NEXT ENTRY ON THE LIST
* MUST BE NULL TO TERMINATE THE LIST.
* STORAGE FOR THE LIST ENTRIES MUST BE TAKEN FROM LE HEAPID=0
* USING THE CEEGTST FUNCTION.
*
* ON ENTRY TO THE EXIT SYSLLST3-PTR IS NULL. IF YOU DO NOT
* INTEND TO PROVIDE A CHANGED LIST (OR IF YOU ARE EXECUTING
* SYSL00XR) THEN IT IS IMPORTANT THAT YOU LEAVE SYSLLST3-PTR
* AS NULL.
*
*
* THE FOURTH LIST, IF REQUIRED, WILL BE CREATED BY YOU IN EXIT
* SYSL00XR. IF YOU WISH TO ALTER THE SCOPE OF THE REFRESH OF
* THE SYSLIB CACHE THEN YOU MUST PROVIDE A LIST OF VALUES.
* EACH VALUE CAN BE FULLY WILDCARDED (I.E. '* '), OR
* A WILDCARDED APPLICATION (I.E. 'APPL* '), OR A SPECIFIC
* PACKAGE NAME (I.E. 'APPL123456').
*
* FULL WILDCARD: REFRESH ALL CACHED RECORDS IN THE PMAST
* APPL+WILDCARD: REFRESH ALL CACHED RECORDS FOR THIS APPL
* PKG NAME : REFRESH ALL CACHED RECORDS FOR THIS PKG
*
* THE POINTER TO THE FIRST ITEM ON THE LIST IS PLACED AT
* SYSLLST4-PTR AND THE POINTER TO THE NEXT ENTRY ON THE LIST
* MUST BE NULL TO TERMINATE THE LIST.
* STORAGE FOR THE LIST ENTRIES MUST BE TAKEN FROM LE HEAPID=0
* USING THE CEEGTST FUNCTION.
*
* ON ENTRY TO THE EXIT SYSLLST4-PTR IS NULL. IF YOU DO NOT
* INTEND TO PROVIDE A CHANGED LIST (OR IF YOU ARE EXECUTING
* SYSL00XM) THEN IT IS IMPORTANT THAT YOU LEAVE SYSLLST4-PTR
* AS NULL.
*
*
* TO HAVE ZMF TAKE NOTE OF YOUR CHANGED LIST YOU NEED TO SET
* SYSLCHNG TO "YES".

 03 SYSLLST1-PTR USAGE IS POINTER.
 03 SYSLLST2-PTR USAGE IS POINTER.
 03 SYSLLST3-PTR USAGE IS POINTER.
 03 SYSLLST4-PTR USAGE IS POINTER.
*

* VARIABLE LENGTH AREA FOR ALLOCATED STAGING LIBTYPE LIST

 01 SYSLLST1.
 03 PTR-NEXT-SYSLLST1 POINTER.
* POINTER TO NEXT ENTRY
 03 SYSLLTPN PIC X(3).
* A SINGLE LIBTYPE ENTRY

* VARIABLE LENGTH AREA FOR THE SERVICE GENERATED SYSLIB LIST

The Package Syslib Functional Area

The Package Syslib Functional Area 135

And here in PL/I …

 01 SYSLLST2.
 03 PTR-NEXT-SYSLLST2 POINTER.
* POINTER TO NEXT ENTRY
 03 SYSLFROM PIC X(1).
* S,P,B - STG,PROMO,BASELINE
 03 SYSLATTR PIC X(18).
* FROM ATTRIBUTES
 03 SYSLSTGE REDEFINES SYSLATTR.
* STAGING ATTRIBUTES:FROM=S
 09 SYSLPKG PIC X(10).
* PACKAGE
 09 FILLER PIC X(8).
*
 03 SYSLPROM REDEFINES SYSLATTR.
* PROMO ATTRIBUTES: FROM=P
 09 SYSLPRST PIC X(8).
* PROMOTION SITE
 09 SYSLPRLV PIC X(2).
* PROMOTION LEVEL
 09 SYSLPRNM PIC X(8).
* PROMOTION NAME
 03 SYSLAPPL PIC X(4).
* APPLICATION
 03 SYSLLIBT PIC X(3).
* LIBTYPE
 03 SYSLSPEC PIC X(1).
* SPECIAL PROCESS IND.
 03 SYSLSUBT PIC X(1).
* SPECIAL PROCESS SUBTYPE
 03 SYSLDSNM.
 49 SYSLDSNM-LEN PIC S9(4) COMP-5.
* DSNAME LENGTH
 49 SYSLDSNM-VALUE PIC X(1024).
* DSNAME VALUE

* VARIABLE LENGTH AREA FOR SYSLIB LIST TO BE RETURNED TO ZMF

 01 SYSLLST3.
 03 PTR-NEXT-SYSLLST3 POINTER.
* POINTER TO NEXT ENTRY
 03 SYSLIBNM.
 49 SYSLIBNM-LEN PIC S9(4) COMP-5.
* DSNAME LENGTH
 49 SYSLIBNM-VALUE PIC X(1024).
* DSNAME VALUE

* VARIABLE LENGTH AREA FOR REFRESH SCOPE TO BE RETURNED TO ZMF

 01 SYSLLST4.
 03 PTR-NEXT-SYSLLST4 POINTER.
* POINTER TO NEXT ENTRY
 03 SYSLREFP PIC X(10).
* REFRESH SCOPE

The Package Syslib Functional Area

The Package Syslib Functional Area 136

/*** */
/* VARIABLE LENGTH LISTS FOLLOW, THERE ARE FOUR. */
/* IF THE LIST IS EMPTY THEN THE RELEVANT POINTER WILL BE NULL. */
/* ELSE IT WILL POINT TO A REPEATING GROUP IN WHICH EACH ENTRY */
/* CONSISTS OF A POINTER TO THE NEXT ENTRY FOLLOWED BY THE DATA. */
/* WHEN THE POINTER IS NULL THEN THERE NO FURTHER ENTRIES IN */
/* THE BLOCK. */
/* */
/* THE FIRST TWO LISTS ARE PROVIDED AS INPUT TO EXIT SYSL00XM */
/* THE POINTERS WILL BE NULL FOR SYSL00XR */
/* */
/* 1) LIBTYPES ALLOCATED TO THE REQUESTED PACKAGE */
/* 2) THE DEFAULT SYSLIB LIST PROVIDED BY THE ZMF SERVICE */
/* */
/* THE THIRD LIST, IF REQUIRED, WILL BE CREATED BY YOU IN EXIT */
/* SYSL00XM (SAMPLE CODE IS PROVIDED IN HXCSYSL). */
/* IF YOU WISH TO CHANGE THE SET OF NAMES USED IN THIS */
/* SYSLIB CONCATENATION THEN YOU MUST PROVIDE THE ALTERED */
/* LIST AS A LINKED LIST WITH THE FORMAT EXACTLY AS REPRESENTED */
/* IN THIS COPYBOOK. */
/* THE POINTER TO THE FIRST ITEM ON THE LIST IS PLACED AT */
/* SYSLLST3-PTR AND THE POINTER TO THE NEXT ENTRY ON THE LIST */
/* MUST BE NULL TO TERMINATE THE LIST. */
/* STORAGE FOR THE LIST ENTRIES MUST BE TAKEN FROM LE HEAPID=0 */
/* USING THE CEEGTST FUNCTION. */
/* */
/* ON ENTRY TO THE EXIT SYSLLST3-PTR IS NULL. IF YOU DO NOT */
/* INTEND TO PROVIDE A CHANGED LIST (OR IF YOU ARE EXECUTING */
/* SYSL00XR) THEN IT IS IMPORTANT THAT YOU LEAVE SYSLLST3-PTR */
/* AS NULL. */
/* */
/* */
/* THE FOURTH LIST, IF REQUIRED, WILL BE CREATED BY YOU IN EXIT */
/* SYSL00XR. IF YOU WISH TO ALTER THE SCOPE OF THE REFRESH OF */
/* THE SYSLIB CACHE THEN YOU MUST PROVIDE A LIST OF VALUES. */
/* EACH VALUE CAN BE FULLY WILDCARDED (I.E. '* '), OR */
/* A WILDCARDED APPLICATION (I.E. 'APPL* '), OR A SPECIFIC */
/* PACKAGE NAME (I.E. 'APPL123456'). */
/* */
/* FULL WILDCARD: REFRESH ALL CACHED RECORDS IN THE PMAST */
/* APPL+WILDCARD: REFRESH ALL CACHED RECORDS FOR THIS APPL */
/* PKG NAME : REFRESH ALL CACHED RECORDS FOR THIS PKG */
/* */
/* THE POINTER TO THE FIRST ITEM ON THE LIST IS PLACED AT */
/* SYSLLST4-PTR AND THE POINTER TO THE NEXT ENTRY ON THE LIST */
/* MUST BE NULL TO TERMINATE THE LIST. */
/* STORAGE FOR THE LIST ENTRIES MUST BE TAKEN FROM LE HEAPID=0 */
/* USING THE CEEGTST FUNCTION. */
/* */
/* ON ENTRY TO THE EXIT SYSLLST4-PTR IS NULL. IF YOU DO NOT */
/* INTEND TO PROVIDE A CHANGED LIST (OR IF YOU ARE EXECUTING */
/* SYSL00XM) THEN IT IS IMPORTANT THAT YOU LEAVE SYSLLST4-PTR */
/* AS NULL. */
/* */
/* */
/* TO HAVE ZMF TAKE NOTE OF YOUR CHANGED LIST YOU NEED TO SET */
/* SYSLCHNG TO "YES". */
/*** */
 2 SYSLLST1_PTR PTR,
 2 SYSLLST2_PTR PTR,

The Package Syslib Functional Area

The Package Syslib Functional Area 137

 2 SYSLLST3_PTR PTR,
 2 SYSLLST4_PTR PTR;
/*** */
/* VARIABLE LENGTH AREA FOR ALLOCATED STAGING LIBTYPE LIST */
/*** */
 DCL 1 SYSLLST1 BASED(WORKPTR1),
 2 PTR_NEXT_SYSLLST1 PTR, /*POINTER TO NEXT ENTRY */
 2 SYSLLTPN CHAR(3); /*LIBTYPE */
/*** */
/* VARIABLE LENGTH AREA FOR THE SERVICE GENERATED SYSLIB LIST */
/* NOTE: 3 DIFFERENT STRUCTURES DEFINED HERE FOR THE MINOR */
/* DIFFERENCES BETWEEN STAGING, PROMOTION, AND BASELINE */
/* DERIVED ENTRIES */
/*** */
/*** */
/* LIST 2 ENTRY DERIVED FROM STAGING */
/*** */
 DCL 1 SYSLLST2_S BASED(WORKPTR2),
 2 PTR_NEXT_SYSLLST2_S PTR, /*POINTER TO NEXT ENTRY */
 2 SYSLFROM_S CHAR(1), /*=S FOR STAGING ENTRY */
 2 SYSLATTR_PKG_S CHAR(10), /*PKG FOR THIS STG LIB */
 2 SYSLATTR_FILLER_S CHAR(8),
 2 SYSLAPPL_S CHAR(4), /*APPLICATION */
 2 SYSLLIBT_S CHAR(3), /*LIBRARY TYPE */
 2 SYSLSPEC_S CHAR(1), /*SPECIAL PROCESS IND */
 2 SYSLSUBT_S CHAR(1), /*SPECIAL PROC SUBTYPE */
 2 SYSLDSNM_S CHAR(1024) VARYING;
 /*VARCHAR DSNAME */
/*** */
/* LIST 2 ENTRY DERIVED FROM PROMOTION */
/*** */
 DCL 1 SYSLLST2_P BASED(WORKPTR2),
 2 PTR_NEXT_SYSLLST2_P PTR, /*POINTER TO NEXT ENTRY */
 2 SYSLFROM_P CHAR(1), /*=P FOR PROMOTION ENTRY */
 2 SYSLATTR_SITE_P CHAR(8), /*PROMOTION SITE */
 2 SYSLATTR_LEVEL_P CHAR(2), /*PROMOTION LEVEL */
 2 SYSLATTR_NAME_P CHAR(8), /*PROMOTION NAME */
 2 SYSLAPPL_P CHAR(4), /*APPLICATION */
 2 SYSLLIBT_P CHAR(3), /*LIBRARY TYPE */
 2 SYSLSPEC_P CHAR(1), /*SPECIAL PROCESS IND */
 2 SYSLSUBT_P CHAR(1), /*SPECIAL PROC SUBTYPE */
 2 SYSLDSNM_P CHAR(1024) VARYING;
 /*VARCHAR DSNAME */
/*** */
/* LIST 2 ENTRY DERIVED FROM BASELINE */
/*** */
 DCL 1 SYSLLST2_B BASED(WORKPTR2),
 2 PTR_NEXT_SYSLLST2_B PTR, /*POINTER TO NEXT ENTRY */
 2 SYSLFROM_B CHAR(1), /*=B FOR PROMOTION ENTRY */
 2 SYSLATTR_FILLER_B CHAR(18),
 2 SYSLAPPL_B CHAR(4), /*APPLICATION */
 2 SYSLLIBT_B CHAR(3), /*LIBRARY TYPE */
 2 SYSLSPEC_B CHAR(1), /*SPECIAL PROCESS IND */
 2 SYSLSUBT_B CHAR(1), /*SPECIAL PROC SUBTYPE */
 2 SYSLDSNM_B CHAR(1024) VARYING;
 /*VARCHAR DSNAME */
/*** */
/* VARIABLE LENGTH AREA IN WHICH TO RETURN AN ALTERED LIST */
/* SEE SAMPLE EXIT HXPSYSL FOR DETAILS ON HOW TO DO THIS. */
/*** */
 DCL 1 SYSLLST3 BASED(WORKPTR3),

The Package Syslib Functional Area

The Package Syslib Functional Area 138

The method for traversing this variable length list is the same as that used in other functions. The

'anchor' pointer points to the first in the chain of entries (null if no chain exists). Each entry contains

a pointer to the next entry (null at end of chain).

To return a modified syslib list you must generate a linked list, anchored at SYSLLST3-PTR, with the

storage required for each list entry allocated from the LE heap with heaped=0. This is assumed by

the ZMF function responsible for tidying up the list after it has been passed back.

In REXX we just make use of stem variables as is usual with a variable number of similar data

items.

Sample exits are provided in the CMNZMF.SAMPLES distribution library. These examples show

how to list all the information coming in to the exit.

The package syslib exit examples are:

Select option S Specific from the HLL Exit Definition - Function Selection (CMNHLLMM) panel to

define exits for the package syslib function:

 2 PTR_NEXT_SYSLLST3 PTR, /*POINTER TO NEXT ENTRY */
 2 SYSLIBNM CHAR(1024) VARYING;
 /*VARCHAR DSNAME */
/*** */
/* VARIABLE LENGTH AREA FOR REFRESH SCOPE TO BE RETURNED TO ZMF */
/*** */
 DCL 1 SYSLLST4 BASED(WORKPTR4),
 2 PTR_NEXT_SYSLLST4 PTR, /*POINTER TO NEXT ENTRY */
 2 SYSLREFP CHAR(10);
 /*REFRESH SCOPE */

CMNZMF.SAMPLES Library Member Description

HXCSYSL COBOL example

HXPSYSL PL/I example

HXRSYSL REXX example

The Package Syslib Functional Area

The Package Syslib Functional Area 139

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel

might look:

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

CMNHLLMN HLL Exit Definition Row 1 to 1 of 1
Command ===> Scroll ===> CSR
Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +
--
SYSL00XM ______ NO 2 service call for package.list.syslib
 Debug:_______ NO 2 ______________________________________
******************************* Bottom of data *******************************

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

SYSLFUNC function 8 Internal exit

name

No

SYSLDBUG debugCall 1 Debug exit

call (Y/N)

No

SYSLORGN callOrigin 3 ISPF = SPF

XML Service

= XML

ZDD = ZDD

ZMF4ECL =

ECL

No

SYSLZMFS zmfSubs 1 ZMF

subsystem

character

No

The Package Syslib Functional Area

The Package Syslib Functional Area 140

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

SYSLPDB2 db2Subs 4 Default Db2

subsystem

for this ZMF

No

SYSLUSER userid 8 Userid for

function

calling this

exit

No

SYSLEXTN externalName 256 External

routine name

defined for

this exit

No

SYSLPKGN packageId 10 The package

being acted

on

No

SYSLLTYP componentType 3 Library type

of

component

for which the

syslib is

being

generated

No

SYSLPROC buildProc 8 Procedure to

be used to

build the

component

No

SYSLLANG language 8 Language for

the

component

No

SYSLPPSM processPpkgAsSimple 1 If the

component

package is

participating

then treat it

as simple (cf.

audit option)

No

SYSLPPID processPpkgByInstallDate 1 Process

participating

packages by

install date

(cf. audit

option)

No

The Package Syslib Functional Area

The Package Syslib Functional Area 141

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

SYSLPPDP processPpkgByDepartment 1 Process

participating

packages by

department

(cf. audit

option)

No

SYSLPLVL packageLevel 1 1 – simple

2 – complex

3 – super

4 –

participating

No

SYSLPTYP packageType 1 1 – planned

permanent

2 – planned

temporary

3 –

unplanned

permanent

4 –

unplanned

temporary

No

SYSLCXPK complexSuperPackage 10 If the

component

package is

participating

then this is its

complex

package

No

SYSLPSTA packageStatus 3 Package

status (DEV,

FRZ, etc)

No

SYSLPINS packageInsDate 8 Pkg Install

Date

yyyymmdd

No

SYSLCRDT packageCreateDate 8 Date pkg was

created

yyyymmdd

No

SYSLCRTI packageCreator 8 Userid under

which pkg

was created

No

SYSLDEPT packageDepartment 4 Pkg

department

No

The Package Syslib Functional Area

The Package Syslib Functional Area 142

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

SYSLWRQN packageWorkRequest 12 Pkg work

request

number

No

SYSLRQNM requestorName 25 Pkg

requestors

name

No

SYSLRQPH requestorPhone 15 Pkg

requestors

phone

No

SYSLLPST lastPromoSite 8 Last

promotion

site

No

SYSLLPLV lastPromoLevel 2 Last

promotion

level

No

SYSLLPNM lastPromoName 8 Last

promotion

name

No

SYSLLPDT lastPromoDate 8 Last

promotion

date

yyyymmdd

No

SYSLLPID lastPromoUserid 8 Last

promotion

userid

No

SYSLPAC lastPromoAction 2 FP – Full

Promotion

FD – Full

Demotion

SP –

Selective

Promotion

SD –

Selective

Demotion

No

Repeated Group

(Variable Length)

The Package Syslib Functional Area

The Package Syslib Functional Area 143

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

SYSLLTPN pkgAllocLibType 3 Library type

which is

physically

allocated to

the

components

package

No

Repeated Group

(Variable Length)

SYSLFROM pkgSyslib.whereFrom 1 S – staging

P –

Promotion

B - Baseline

No

SYSLPKG or

SYSLATTR_PKG_S

pkgSyslib.stagingPkg 10 If

SYSLFROM=S

then this is

the package

to which the

staging

library

belongs

No

SYSLPRST or

SYSLATTR_SITE_P

pkgSyslib.promoSite 8 If

SYSLFROM=P

then this is

the

promotion

site to which

this

promotion

library

belongs

No

SYSLPRLV or

SYSLATTR_LEVEL_P

pkgSyslib.promoLevel 2 If

SYSLFROM=P

then this is

the

promotion

level (01-99)

to which this

promotion

library

belongs

No

The Package Syslib Functional Area

The Package Syslib Functional Area 144

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

SYSLPRNM or

SYSLATTR_NAME_P

pkgSyslib.promoName 8 If

SYSLFROM=P

then this is

the

promotion

name

(nickname) to

which this

promotion

library

belongs

No

SYSLAPPL pkgSyslib.appl 4 Application

for this library

No

SYSLLIBT pkgSyslib.libType 3 Library type

for this library

No

SYSLSPEC pkgSyslib.specialProcessInd 1 Special

processing

indicator for

this libtype

(e.g. D – Db2

and I – IMS)

No

SYSLSUBT pkgSyslib.specialSubType 1 Special

processing

subtype

No

SYSLDSNM pkgSyslib.name Varchar The syslib

library or

directory

name

No

Returned by Exit

SYSLGO proceed 3 Set to ‘NO’ to

stop the file

tailoring

process

Yes

SYSLLONG longMsg 128 Long error

message text

Yes

SYSLCHNG dataChanged 3 This field

must be set

to YES if you

wish to return

changed

values to

ZMF.

Yes

The Package Syslib Functional Area

The Package Syslib Functional Area 145

SYSL00XR
The SYSL00XR exit point is for the refresh service.

The data interface is much simpler than for SYSL00XM. Apart from common fields, we only pass

the package id to SYSL00XR. This package id can contain one of the following:

The HLL exit definition panel (CMNHLLMN) for this function now has two entries:

Only the fields up to (and including) SYSLPKGN are populated for the call to SYSL00XR.

The only data passed back from the exit (apart from the usual fields i.e. SYSLGO, SYSLCHNG,

SYSLLONG) is the new repeating group.

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

Repeated Group

(Variable Length)

SYSLIBNM adjustedSyslib Varchar Changed

syslib library

or directory

name

Yes

This option Specifies to Delete

All cached records.

appl Cached records for this appl.

applpkgnum Only cached records for this package. The exit can pass back only common fields plus,

optionally, a revised list of refresh criteria.

CMNHLLMN HLL Exit Definition Row 1 to 2 of 2
Command ===> Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +
--
SYSL00XM ________ NO 2 service call for package list syslib
Debug: ________ NO 2 ____________________________________

SYSL00XR _______ NO 2 service call->package.refresh.syslib
Debug: _______ NO 2 ____________________________________
*************************** Bottom of data *****************************

The Package Syslib Functional Area

The Package Syslib Functional Area 146

Any number of entries can be passed back from the exit. This allows you to query your own

package ‘grouping’ data (i.e. if you are using a grouping paradigm outside of the usual complex/

participating structures, which are already catered for by the package.syslib.refresh code). You can

also add further packages to requests for a package syslib refresh. For example, if the PKG1 is

passed to the exit and the grouping data suggests that PKG2 and 3 should also be refreshed, the

exit can pass back the list PKG1, PKG2, PKG3.

SYSL00XL and SYSL01XL

There are two exits available for the Component Standard Language Extraction process. (Although

this is not directly related to the package syslib process, the exits have been defined here to avoid a

proliferation of functional areas.) On input, these exits take the following variables (REXX):

LE field REXX var name Length Purpose Modifiable

SYSLREFP adjustedRefresh 10 Changed refresh criterion Yes

All packages for which the pkg syslib cache needs to be refreshed (i.e. deleted) need to be

present in the list (including the original pkg).

Note

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable

(Yes/No)

STDLFUNC function 8 Internal exit name No

STDLEXTN externalName 256 External routine name

defined for this exit

No

STDLDBUG debugCall 1 Debug exit call (Y/N) No

STDLORGN callOrigin 3 ISPF = SPF

XML Service = XML

ZDD = ZDD

ZMF4ECL = ECL

No

STDLZMFS zmfSubs 1 ZMF subsystem

character

No

STDLPDB2 db2Subs 4 Default Db2 subsystem

for this ZMF

No

STDLUSER userid 8 Userid for function

calling this exit

No

STDLCOMP component 256 Component name No

STDLLTYP componentType 3 Component library type No

STDLAPPL application 4 Component application No

The Package Syslib Functional Area

The Package Syslib Functional Area 147

Note the following:

buildProc will only be populated for SYSL01XL and only for like-SRC components.

language will only be populated for SYSL00XL if CMNEX038 has already set it.

The only variable that can be passed back to the service is language.

Sample exits are provided which show how to display the data items passed to SYSL00XL and

SYSL01XL. They also show how to set a standard language based on certain selection criteria

(appl and libtype in this case). The exits are:

HXCSTDL - COBOL

HXPSTDL - PL/I

HXRSTDL - REXX

Query Component (QCMP0100)
There is only one exit for this area and it is intended to allow you to prevent overly generic

component searches from being requested (usually accidentally). This is a client-only exit as the

underlying service can be legitimately used for generic component searches (e.g. during reporting

etc.). This exit is, potentially, passed the following series of fields (REXX variable names). Note that

not all clients use all these variables as the query component implementation is different from one

client to the next. Also, the data fields have been set up with a view to future requirements so there

may be some fields that are not populated by any client. Use the sample exits to display what is

being passed from the client of interest.

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable

(Yes/No)

STDLPROC buildProc 8 Component build

procedure

No

STDLLANG language 8 Component language Yes

STDLGO proceed 3 Set to 'NO' to stop the

process

Yes

STDLSHRT shortMsg 24 Short error message text Yes

STDLLONG longMsg 128 Long error message text Yes

STDLCHNG dataChanged 3 This field must be set to

YES if you wish to return

changed values to ZMF.

Yes

• •

• •

• •

• •

• •

• •

Query Component (QCMP0100)

Query Component (QCMP0100) 148

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

QCMPFUNC function 8 Internal exit

name

No

QCMPEXTN externalName 256 External routine

name defined

for this exit

No

QCMPDBUG debugCall 1 Debug exit call

(Y/N)

No

QCMPORGN callOrigin 3 ISPF = SPF

XML Service =

XML

ZDD = ZDD

ZMF4ECL = ECL

No

QCMPZMFS zmfSubs 1 ZMF subsystem

character

No

QCMPPDB2 db2Subs 4 Default Db2

subsystem for

this ZMF

No

QCMPUSER userid 8 Userid for

function calling

this exit

No

QCMPCOMP componentName 256 Component

name

Yes

QCMPTYPE componentType 3 Component

library type

Yes

QCMPPKGN packageId 10 Component

package

Yes

QCMPUPID lastChangeUserid 8 Component last

changed by this

userid

Yes

QCMPLANG language 8 Component

language

Yes

QCMPPROC buildProcedure 8 Component

build procedure

Yes

QCMPDATF dateChangedFrom 8 Component last

changed from

this date

Yes

QCMPDATT dateChangedTo 8 Component last

changed up to

this date

Yes

Query Component (QCMP0100)

Query Component (QCMP0100) 149

The following fields are used by the ISPF client only.

LE-Language

Variable Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

QCMPBDTF dateBaselinedFrom 8 Component last

baselined from

this date

Yes

QCMPBDTT dateBaselinedTo 8 Component last

baselined up to

this date

Yes

QCMPZDTF dateTempCycledFrom 8 Component

temp cycled

from this date

Yes

QCMPZDTT dateTempCycledTo 8 Component

temp cycled up

to this date

Yes

QCMPSCKO componentCheckedOut 1 Component in

checked out

status (Y/N)

Yes

QCMPSDEL componentDeleted 1 Component in

deleted status

(Y/N)

Yes

QCMPSTCC componentTempCycled 1 Component in

temp cycled

status (Y/N)

Yes

QCMPSPRM componentPromoted 1 Component in

promoted

status (Y/N)

Yes

QCMPSDEM componentDemoted 1 Component in

demoted status

(Y/N)

Yes

QCMPSBAS componentBaselined 1 Component in

baselined

status (Y/N)

Yes

QCMPSDEA componentDeletedArchived 1 Component in

D/A status (Y/

N)

Yes

Query Component (QCMP0100)

Query Component (QCMP0100) 150

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

QCMPPSAP packageApproved 1 Associated pkg

has approved

status

Yes

QCMPPSBK packageBackedOut 1 Associated pkg

has backed out

status

Yes

QCMPPSBS packageBaselined 1 Associated pkg

has baselined

status

Yes

QCMPPSCL packageClosed 1 Associated pkg

has closed

status

Yes

QCMPPSAR packageArchived 1 Associated pkg

has archived

status

Yes

QCMPPSDL packageDeleted 1 Associated pkg

has deleted

status

Yes

QCMPPSDV packageInDevelopment 1 Associated pkg

has

development

status

Yes

QCMPPSDS packageDistributed 1 Associated pkg

has distributed

status

Yes

QCMPPSFZ packageFrozen 1 Associated pkg

has frozen

status

Yes

QCMPPSIN packageInstalled 1 Associated pkg

has installed

status

Yes

QCMPPSOP packageOpen 1 Associated pkg

has open status

Yes

QCMPPSRJ packageRejected 1 Associated pkg

has rejected

status

Yes

QCMPPSTC packageTempCycled 1 Associated pkg

has temp

cycled status

Yes

Query Component (QCMP0100)

Query Component (QCMP0100) 151

The following fields are set by the exit in general.

Sample exits are provided which show how to display the data items passed to QCMP0100. They

also show how to stop an overly generic component query request.

The exit can change any of the query criteria values but if a client doesn't actually use one of these

variables then changing it in the exit will achieve nothing.

The exits are:

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

QCMPPTPP packagePlannedPermanent 1 Associated pkg

is of type

planned/

permanent

Yes

QCMPPTPT packagePlannedTemporary 1 Associated pkg

is of type

planned/

temporary

Yes

QCMPPTUP packageUnplannedPermanent 1 Associated pkg

is of type

unplanned/

permanent

Yes

QCMPPTUT packageUnplannedTemporary 1 Associated pkg

is of type

unplanned/

temporary

Yes

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable

(Yes/No)

QCMPGO proceed 3 Set to 'NO' to stop the

process

Yes

QCMPSHRT shortMsg 24 Short error message text Yes

QCMPLONG longMsg 128 Long error message text Yes

QCMPCHNG dataChanged 3 This field must be set to

YES if you wish to return

changed values to ZMF.

Yes

Query Component (QCMP0100)

Query Component (QCMP0100) 152

HXCQCMP - COBOL

HXPQCMP - PL/I

HXRQCMP - REXX

Package Search

PSCH00LS—This exit allows you to pre-populate the fields on the CMNLIST0/8 panels (i.e. the

package list function).

PSCH01LS—This exit allows you to validate fields passed from CMNLIST0/8 before they are

acted on.

PSCH0100—This exit allows you to validate fields passed from the package search client

function before they are acted on.

The exits in this functional area are intended to allow you to prevent overly generic package

searches from being requested (usually accidentally). These are client-only exits as the underlying

service can be legitimately used for generic component searches (for example, during reporting

etc.). These exits are, potentially, passed the following series of fields (REXX variable names). Note

that not all clients use all these variables as the package search implementation is different from

one client to the next. Also, the data fields have been set up with a view to future requirements so

there may be some fieldsthat are not populated by any client. Use the sample exits to display what

is being passed from the client of interest.

• •

• •

• •

• •

• •

• •

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHFUNC function 8 Internal exit name No

PSCHEXTN externalName 256 External routine

name defined for

this exit

No

PSCHDBUG debugCall 1 Debug exit call (Y/

N)

No

PSCHORGN callOrigin 3 ISPF = SPF

XML Service =

XML

ZDD = ZDD

ZMF4ECL = ECL

No

PSCHZMFS zmfSubs 1 ZMF subsystem

character

No

Package Search

Package Search 153

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHPDB2 db2Subs 4 Default Db2

subsystem for

this ZMF

No

PSCHUSER userid 8 Userid for

function calling

this exit

No

PSCHPKGN packageMasks 255 Package name

masks separated

by a semi-colon

Yes

PSCHWREQ workRequest 12 Packages with

this work request

id

Yes

PSCHDEPT department 4 Packages with

this department

Yes

PSCHPLSM simplePackages 1 Simple packages

(Y/N)

Yes

PSCHPLCX complexPackages 1 Complex

packages (Y/N)

Yes

PSCHPLSU superPackages 1 Super packages

(Y/N)

Yes

PSCHPLPT participatingPackages 1 Participating

packages (Y/N)

Yes

PSCHPTPP plannedPermanent 1 Packages of type

planned/

permanent (Y/N)

Yes

PSCHPTPT plannedTemporary 1 Packages of type

planned/

temporary (Y/N)

Yes

PSCHPTUP unplannedPermanent 1 Packages of type

unplanned/

permanent (Y/N)

Yes

PSCHPTUT unplannedTemporary 1 Packages of type

unplanned/

temporary (Y/N)

Yes

PSCHSTAP packageApproved 1 Approved

packages (Y/N)

Yes

PSCHSTBK packageBackedOut 1 Backed out

packages (Y/N)

Yes

Package Search

Package Search 154

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHSTBS packageBaselined 1 Baselined

packages (Y/N)

Yes

PSCHSTCL packageClosed 1 Closed packages

(Y/N)

Yes

PSCHSTDL packageDeleted 1 Deleted packages

(Y/N)

Yes

PSCHSTDV packageInDevelopment 1 Development

packages (Y/N)

Yes

PSCHSTDS packageDistributed 1 Distributed

packages (Y/N)

Yes

PSCHSTFZ packageFrozen 1 Frozen packages

(Y/N)

Yes

PSCHSTIN packageInstalled 1 Installed

packages (Y/N)

Yes

PSCHSTOP packageOpen 1 Open packages

(Y/N)

Yes

PSCHSTRJ packageRejected 1 Rejected

packages (Y/N)

Yes

PSCHSTTC packageTempCycled 1 Temp cycled

packages (Y/N)

Yes

PSCHRQNM requestorName 25 Package

requestor’s name

Yes

PSCHRQPH requestorPhone 15 Package

requestor’s phone

number

Yes

PSCHSCNM owningPackage 10 Owning complex/

super package

name

Yes

PSCHCTSI creatorUserIdMasks 255 Pkg creator userid

masks separated

by semi-colon

Yes

PSCHTCDU tempChangeDuration 3 Length of

temporary cycle

Yes

PSCHAUDC auditRC 2 Package audit

return code

Yes

Package Search

Package Search 155

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHSDSD stagingLibsDeleted 1 Package staging

libraries have

been deleted (Y/

N)

Yes

PSCHSVAG ssvDeleted 1 Package staging

versions have

been deleted (Y/

N)

Yes

PSCHSCMN scheduledByCMN 1 Install scheduler

is CMN (Y/N)

Yes

PSCHSMAN scheduledByManual 1 Install scheduler

in Manual (Y/N)

Yes

PSCHSOTH scheduledByOther 1 Install scheduler

is Other (Y/N)

Yes

PSCHAUDO auditOuststanding 1 Audit is

outstanding for

this package (Y/

N)

Yes

PSCHDISO distributionOutstanding 1 Distribution is

outstanding for

this package (Y/

N)

Yes

PSCHFCDT createDateFrom 8 Package created

from this date

Yes

PSCHTCDT createDateTo 8 Package created

up to this date

Yes

PSCHFIDT installDateFrom 8 Package installed

from this date

Yes

PSCHTIDT installDateTo 8 Package installed

up to this date

Yes

PSCHFFDT freezeDateFrom 8 Package frozen

from this date

Yes

PSCHTFDT freezeDateTo 8 Package frozen

up to this date

Yes

PSCHFADT approveDateFrom 8 Package

approved from

this date

Yes

Package Search

Package Search 156

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHTADT approveDateTo 8 Package

approved up to

this date

Yes

PSCHFRDT rejectDateFrom 8 Package rejected

from this date

Yes

PSCHTRDT rejectDateTo 8 Package rejected

up to this date

Yes

PSCHFBDT baselineDateFrom 8 Package

baselined from

this date

Yes

PSCHTBDT baselineDateTo 8 Package

baselined up to

this date

Yes

PSCHFKDT backoutDateFrom 8 Package backed

out from this date

Yes

PSCHTKDT backoutDateTo 8 Package backed

out up to this date

Yes

PSCHFVDT revertDateFrom 8 Package reverted

from this date

Yes

PSCHTVDT revertDateTo 8 Package reverted

up to this date

Yes

PSCHLPTS lastPromoteUser 8 Package last

promoted by this

user

Yes

PSCHLPLV lastPromoteLevel 2 Package last

promoted to this

level

Yes

PSCHLPNM lastPromoteName 8 Package last

promoted to this

nickname

Yes

PSCHLPST lastPromoteSite 8 Package last

promoted to this

site

Yes

PSCHFRZO freezeOutstanding 1 Freeze is

outstanding for

this package(Y/N)

Yes

Package Search

Package Search 157

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHAPRO approvalOutstanding 1 Approval is

outstanding for

this package(Y/N)

Yes

PSCHFRPM xNodeBuildRequired 1 x-node build is

required for this

package(Y/N)

Yes

PSCHINSO installOutstanding 1 Install is

outstanding for

this package (Y/

N)

Yes

PSCHREVO revertOutstanding 1 Revert is

outstanding for

this package (Y/

N)

Yes

PSCHBAKO backoutOutstanding 1 Back out is

outstanding for

this package (Y/

N)

Yes

PSCHXNDO xNodeBuildOutstanding 1 x-node build is

outstanding for

this package (Y/

N)

Yes

PSCHPAOS postApprovalOutstanding 1 Post-approval is

outstanding for

this package (Y/

N)

Yes

PSCHPADD postApproversAdded 1 Post-approvers

added to this

package (Y/N)

Yes

PSCHPREJ postApprovalRejected 1 Post-approval

rejected for this

package (Y/N)

Yes

PSCHAPLT shortApprovalList 1 Short approval list

used for this

package (Y/N)

Yes

PSCHAPEN approvalEntity 8 Package approval

entity

Yes

PSCHRSIT targetSite 8 Package target

remote site

Yes

Package Search

Package Search 158

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHTITL packageTitle 72 Package title Yes

PSCHISCH searchForRecordType 1 Packages

containing this

record type

Yes

PSCHLTYP libraryType 3 Package contains

components of

thislibrary type

Yes

PSCHCMPN componentName-Masks 255 Component name

masks separated

by semi-colon

Yes

PSCHSTGR stageUseridMasks 255 Staging userid

masks separated

by semi-colon

Yes

PSCHRLSM releaseMasks 255 Attached to

release masks

separated by

semi-colon

Yes

PSCHCKIT compnentsCheckedIn 1 Packages with

components

checked in (Y/N)

Yes

PSCHSCIP sourceInPackage 1 Packages with

source

components (Y/

N)

Yes

PSCHNSIP nonSourceInPackage 1 Packages with

non-source

components (Y/

N)

Yes

PSCHRCIP renameInPackage 1 Packages with

rename utility

requests (Y/N)

Yes

PSCHACIP scratchInPackage 1 Packages with

scratch utility

requests(Y/N)

Yes

PSCHCCIP customInPackage 1 Packages with

custom forms (Y/

N)

Yes

Package Search

Package Search 159

The following fields are set by the exit in general

Sample exits are provided which show how to display the data items passed to these exits. They

also show how to stop an overly generic package search request.

The exit can change any of the query criteria values but if a client doesn't actually use one of these

variables then changing it in the exit will achieve nothing.

The exits are:

LE-Language

Variable

Name

REXX Variable Name Length Purpose Modifiable

(Yes/No)

PSCHLCIP loadInPackage 1 Packages with

load components

(Y/N)

Yes

PSCHALKU auditLockUser 8 Packages using

this userid to lock

for audit

Yes

PSCHPFID pkgWithFutureInstallDate 1 Packages with a

future install

date(Y/N)

Yes

PSCHPCIP pkgWithPromoted-

Components

1 Packages with

promoted

components (Y/

N)

Yes

PSCHNTUS notifyUser 8 Packages with

this notify userid

Yes

PSCHANID notifyUserForApproval 44 Packages with

this approval

notification user

Yes

LE-Language

Variable Name

REXX Variable

Name

Length Purpose Modifiable

(Yes/No)

PSCHGO proceed 3 Set to 'NO' to stop the

process

Yes

PSCHSHRT shortMsg 24 Short error message text Yes

PSCHLONG longMsg 128 Long error message text Yes

PSCHCHNG dataChanged 3 This field must be set to

YES if you wish to return

changed values to ZMF.

Yes

Package Search

Package Search 160

HXCPSCH - COBOL

HXPPSCH - PL/I

HXRPSCH - REXX

Scratch/Rename

This section describes the scratch/rename functional area of the high-level language exits. The 4-

character exit name identifier is SCRN.

Select option U Scratch/Rename from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to define exits for the scratch rename function:

In response, the HLL Exit Definition (CMNHLLMN) panel is displayed. Here is how a sample panel

might look:

• •

• •

• •

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Scratch/Rename

Scratch/Rename 161

The panels around which exit points will be placed are listed below. The internal exit name (also

known as function code) is SYSL0pnn, where:

p=0 is the pre-exit

p=1 is the post-exit

nn is an alphanumeric identifier relating to the panel for which the exit is taken.

The pre-exit is taken before the panel is displayed. The post-exit is taken after the panel has been

displayed.

An internal exit name of SCRN0p02, for example, means that both pre- and post-exits exist. That is,

the name of the pre-exit is SCRN0002 and the name of the post-exit is SCRN0102. If it makes no

sense to have a pre-exit, the internal name is given as SCRN0101 (post-exit only). If it makes no

sense to have a post-exit, the internal name is given as SCRN0001 (pre-exit only).

Most table displays have only post-exits. That is, we do not want to have a pre-exit that

manipulates the lists that ZMF generates. We may want to have a post-exit to validate the

selections that the user makes from the lists.

CMNHLLMN HLL Exit Definition Row 1 to 8 of 8
Command ===>__ Scroll ===> CSR

Internal External + Active 1=LE Description +
 Name Name 2=REXX Debug Userids +
--
SCRN00XM NO 2 pre service call for pkg_util
 Debug: NO 2
--
SCRN01XM NO 2 post service call for pkg_util
 Debug: NO 2
--
SCRN0101 NO 2 post package selection
 Debug: NO 2
--
SCRN0002 NO 2 pre baseline selection
 Debug: NO 2
--
SCRN0102 NO 2 post baseline selection
 Debug: NO 2
--
SCRN0103 NO 2 post baseline member list
 Debug: NO 2
--
SCRN0104 NO 2 post package member list
 Debug: NO 2
--
SCRN0105 NO 2 post libtype selection list
 Debug: NO 2
******************************* Bottom of data *******************************

•

•

•

Scratch/Rename

Scratch/Rename 162

Sample exits are provided which show how to list all the information incoming to these exits. Note

that not all information is available to all exit points. Those early in the dialog will not have as much

information as back-end exit points.

The samples provided are:

Data Interface
There is a single data structure passed to all of these exits.

CMNZMF.SAMPLES Library Member Description

HXCSCRN COBOL example

HXPSCRN PL/I example

HXRSCRN REXX example

...

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

SCRNFUNC function 8 Internal exit name No

SCRNDBUG debugCall 1 Debug exit call (Y/

N)

No

SCRNORGN callOrigin 3 ISPF=SPF XML

Service=XML

ZDD=ZDDZMF4

ECL=ECL

No

SCRNZMFS zmfSubs 1 ZMF subsystem

character

No

SCRNPDB2 db2Subs 4 Default Db2

subsystem for this

ZM

FNo

SCRNUSER userid 8 Userid for function

calling this exit

No

SCRNEXTN externalName 256 External routine

namedefined for

this exi

tNo

SCRNPKGN packageId 10 The package

being acted on

No

Data Interface

Data Interface 163

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

SCRNPSTA packageStatus 3 Package status

(DEV, FRZ,etc)

No

SCRNPINS packageInsDate 8 Pkg Install Date

yyyymmdd

No

SCRNWRQN packageWorkRequest 12 Package Work

Request

No

SCRNDEPT packageDepartment 4 Package

Department

No

SCRNOPTN optionRequested 1 1=baseline,

2=package

Yes 001

SCRNRQST requestType 1 s=scratch,

r=rename,d=delete

Yes 013

SCRNCOMP componentName 256 Component name Yes 010

SCRNLTYP componentType 3 Component library

type

Yes 011

SCRNNWNM componentNewName 256 Component New

Name(rename)

Yes 012

SCRNVVMM verModLevel 5 Version.mod level No

SCRNCRDT createDate 8 Member create

date

No

SCRNCHDT changeDate 8 Member change

date

No

SCRNCHGT changeTime 6 Member change

time

No

SCRNCSZE memberSize 5 Member change

size

No

SCRNUSRN Username 8 User name No

SCRNLSZE loadSize 6 Load member size No

SCRNLTTR loadTtr 6 Load member TTR No

CKOTALAS loadAlias 8 Load member

alias

No

SCRNAC loadAuthCode 2 Authorisation

code

No

Data Interface

Data Interface 164

Miscellaneous

Select option M Miscellaneous from the HLL Exit Definition - Function Selection (CMNHLLMM)

panel to specify or change the name of the HLLX procedure that is associated with the current ZMF

instance:

LE-

Language

Variable

Name

REXX Variable Name Length Purpose Modifiable Cursor

Field

No.

SCRNRM loadRmode 3 Load Residency

mode

No

SCRNAM loadAmode 3 Load Addressing

mode

No

SCRNATTR loadAttributes 8 Load attributes No

SCRNGO proceed 3 Set to 'NO' to stop

the process

Yes

SCRNLOKD dataLocked 3 Fields locked?

(YES/NO)

Yes

SCRNSHRT shortMsg 24 Short error

message text

Yes

SCRNLONG longMsg 128 Long error

message text

Yes

SCRNCURS cursorField 3 For ISPF where

cursor is placed

on return to panel

display.Field

values are shown

here.

Yes

SCRNCHNG dataChanged 3 This field must be

set toYES if you

wish to

returnchanged

values to ZMF.

Yes

Miscellaneous

Miscellaneous 165

The HLL Exit Miscellaneous Parameters (CMNHLLMP) panel is displayed. There is currently only

one entry on this panel: the name of the HLLX procedure that is associated with the current ZMF

instance: HLLX procedure name . . SERDHLLI

Modify

This section describes the Modify feature of the high-level language exits. This now allows

ChangeMan Administrators to modify the started task without resorting to using SDSF or operator

console commands and typing in commands that may be prone to error or restricted.

Select option Z Modify from the HLL Exit Definition - Function Selection (CMNHLLMM) panel to

Reload, Detach or Attach exit definitions:

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

Modify

Modify 166

This function allows you to request ZMF to issue MVS modify commands related to the operation

of the HLL exit facility. For example, you can reload the active HLL exit definitions from those saved

in the package master file. The valid options are:

1 - Reload active HLL exit definitions - refreshed all exits.

F stcname,CMN,RELOAD,HLLX

2 - Stop HLLX - stops the assocaiated HLLX address space.

F stcname,CMN,DETACH,HLLX

3 - Start HLLX - starts the assocaiated HLLX address space.

F stcname,CMN,ATTACH,HLLX

Each should result in the short message Service completed and a long message similar to

CMN8700I - HLLX Modify RELOAD service completed (RELOAD will be DETACH or ATTACH

according to command selected) and the normal messages in the started task log for example:

CMNHLLMM HLL Exit Definition - Function Selection
Option ===>___

1 All Full list

2 Build Component checkin, build, recompile, relink, delete
3 Package Create Initial create of a package
4 Package Update Subsequent update of package attributes
5 File Tailoring Define customized ISPF variables for file tailoring
6 Checkout Component Checkout from baseline/promotion
7 Promote/Demote Promotion and demotion of components
8 Audit Audit job submission and audit process
9 Freeze Package freeze and selective unfreeze/refreeze
A Approve/Reject Package approve and reject
R Revert/Backout Package revert and backout
S Specific Package syslib, Standard Language, Query etc.
U Scratch/Rename Utility functions

E ERO ERO functions

M Miscellaneous HLLX procedure name
Z Modify Issue Reload, Detach, or Attach modify commands

CMNHLLMC HLL Exit MODIFY commands
Option ===> ___

1 Reload Reload active HLL exit definitions
2 Detach Stop HLLX
3 Attach Attach Start HLLX

• •

• •

• •

Modify

Modify 167

The system log will show a message similar to: MODIFY SERT8813.SERT8813,CMN,RELOAD,HLLX

SER0850I Operator command: CMN,RELOAD,HLLX
CMN8485I CMNSTART HLLX active exit table has been reloaded.
CMN8492I Start of HLLX active exits list:
CMN8494I IntName Typ Env External Name Debug Ids
CMN8495I PCRE00PU STD REXX HXRSUBM3
CMN8493I End of HLLX active exits list.

Modify

Modify 168

5. Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use

restrictions, U.S. Government rights, patent policy, and FIPS compliance, see https://

www.microfocus.com/about/legal/.

© Copyright 2023 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors

("Micro Focus") are set forth in the express warranty statements accompanying such products and

services. Nothing herein should be construed as constituting an additional warranty. Micro Focus

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

Third-Party Notices

Additional third-party notices, including copyrights and software license texts, can be found in a

'thirdpartynotices' file in the root directory of the software.

Specific notices

In accordance with the GNU General Public License version 2 with Classpath Exception, you are

entitled to the complete OpenJDK source code that went into the JRE used by this product which

includes the source code for 3 subclasses of that standard OpenJDK; MultipleGradientPaint,

MultipleGradientPaintContext and TypeResolver. Please contact product support if you wish to

obtain the source code. This source code will be available for 3 years from the general availability

date for version 17.0 SP1.

5. Legal Notice

5. Legal Notice 169

	ChangeMan ZMF
	8.3
	© Copyright 2023 Micro Focus or one of its affiliates

	1. About this Guide
	Navigating this book
	Guide to ChangeMan ZMF Documentation
	ChangeMan ZMF Documentation Suite
	Using the Manuals
	Searching the ChangeMan ZMF Documentation Suite

	Typographical Conventions

	2. Introduction
	Introduction
	Selected HLL Exits Can Be Coded To Suppress the Display of User Option Panels

	Getting Started
	Samples Provided
	HLLX Activity Logging

	3. High Level Language Exit Details
	Exit Details Overview
	HLL Exit Processing Address Space
	Initialization, Termination, Modify Commands
	Exit Administration
	HLL Exit Definition - Function Selection

	Caller to Exit Cross Reference
	ISPF or TSO in HLL Exits is Unsupported

	Sample LE-Language Exit Modules
	Sample REXX Execs
	Variable Pool Function - CMNVPOOL
	Batch Maintenance Utility - CMNHLLVP
	Tracing

	4. ZMF/HLL Exit Interface
	Introduction
	Build
	Package Create
	Package Create
	XML Package-Create Service
	COBOL Example
	Data Interface for the Package-Create Exits

	Package Update
	Data Interface for the Package-Update Exits
	Package User Variables
	Release and Release Area
	Package Description
	Implementation Instructions
	Scheduling Information
	Participating Packages
	Affected Applications
	Install Site Information
	Db2 Libtype Information
	IMS System Information
	IMS ACB Information
	IMS PSB/DBD Information

	File Tailoring
	Data Interface for File Tailoring Exits

	Checkout
	Sample Exits
	Data Interface

	Promote/Demote
	Sample Exits
	Data Interface

	Audit
	Sample Exits
	Data Interface

	Freeze, Unfreeze, and Refreeze
	Sample Exits
	Data Interface

	Package Approve and Reject
	Data Interface

	Revert/Backout
	Data Interface

	Specific Exits
	Specific Exits
	The Package Syslib Functional Area
	SYSLOOXM
	SYSL00XR
	SYSL00XL and SYSL01XL

	Query Component (QCMP0100)
	Package Search

	Scratch/Rename
	Data Interface

	Miscellaneous
	Modify

	5. Legal Notice
	Third-Party Notices
	Specific notices

