
User’s Guide

AcuBench®

Version 8.1

Micro Focus
9920 Pacific Heights Blvd

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus (IP) Ltd. 1988-2008. All rights reserved.

© Copyright CASEMaker, Inc., 1997-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. Other brand and product names are trademarks or registered trademarks of
their respective holders.

E-01-UG-080501-AcuBench-8.1

Contents
Chapter 1: Introduction

1.1 Product Overview .. 1-2
1.2 Companion Products.. 1-5
1.3 Technical Services ... 1-6

Chapter 2: Getting Started
2.1 Introduction.. 2-2
2.2 About AcuBench Documentation .. 2-2
2.3 Related Documents .. 2-4
2.4 Notation ... 2-5
2.5 Sample Programs ... 2-5
2.6 System Requirements .. 2-6
2.7 Installing and Uninstalling AcuBench... 2-6
2.8 Navigating the User Interface .. 2-7

2.8.1 The Toolbars.. 2-9
2.8.2 The Workspace Window ... 2-11
2.8.3 The Development Window.. 2-12
2.8.4 The Screen and Report Component Toolboxes ... 2-12
2.8.5 The Output Window .. 2-13
2.8.6 The Status Bar.. 2-13

2.9 Printing in the Workbench ... 2-14

Chapter 3: Workbench Concepts
3.1 AcuBench Concepts... 3-2
3.2 Project Management, Organization, and Structure .. 3-2

3.2.1 The Workspace .. 3-3
3.2.2 Projects .. 3-5
3.2.3 Programs .. 3-6

3.3 Automatic Code Generation .. 3-7
3.3.1 Generated COPY Files .. 3-8
3.3.2 Controlling code generation .. 3-9

3.4 AcuBench File Types... 3-10
3.5 Development Approaches.. 3-12

3.5.1 General Considerations.. 3-13
3.5.1.1 Project prefix settings .. 3-14
3.5.1.2 Project directories.. 3-14

Contents-ii
3.5.1.3 Placing files in the project directory3-15
3.5.1.4 Keyboard shortcut settings3-15
3.5.1.5 Setting options and testing3-16

3.5.2 Developing New Applications3-17
3.5.3 Developing Programs That Do Not Use Code Generating Tools3-19
3.5.4 Working with Large Applications3-20

3.5.4.1 Factors that affect performance3-20
3.5.4.2 Organizing your workspace3-21
3.5.4.3 The command-line interface to AcuBench3-22

3.6 Using Thin Client Technology with AcuConnect3-24

Chapter 4: Customize Your Working Environment
4.1 Introduction4-2
4.2 The Tools/Options Dialog4-2
4.3 Setting Environment Options4-5

4.3.1 General Environment Options4-5
4.3.2 Template Options4-7
4.3.3 Version Control Options4-9
4.3.4 Build Options4-9
4.3.5 Debug Options4-10
4.3.6 Keyboard Options4-11
4.3.7 Prefix Options4-13
4.3.8 Miscellaneous Environment Options4-14

4.4 Setting Code Editor Options4-15
4.4.1 Code Editor General, Format, Tabs, and Keyword Options4-15
4.4.2 Code Insight Options4-16
4.4.3 Paragraph List, Variable List, Constant List, and COPY File List Options4-17

4.5 Setting Screen Designer Options4-19
4.6 Setting Code Generator Options4-20

4.6.1 Generate Document Options4-20
4.6.2 Program Tag Options4-22

4.7 Setting Data Designer Options4-28
4.8 Setting Report Writer Options4-29
4.9 The Customize Dialog4-30

4.9.1 Customizing AcuBench Toolbars4-31
4.9.2 Accessing External Applications4-33

 Contents-iii
Chapter 5: Version Control
5.1 Version Control Overview5-2

5.1.1 Working with version control in AcuBench5-3
5.1.2 Preliminary considerations5-3

5.2 The Version Control Interface5-5
5.2.1 Displaying the Version Control Window5-5
5.2.2 The Version Control Interface Fields5-6

5.3 Adding Commands to the Menu Command List5-8
5.4 Modifying the Command List5-9
5.5 Saving the Command List5-9
5.6 Command Variables5-10
5.7 Issuing Version Control Commands5-11

Chapter 6: Working with Projects
6.1 AcuBench Project Management6-2
6.2 Working at the Workspace Level6-3

6.2.1 Creating a Workspace6-3
6.2.2 Opening a Workspace6-4
6.2.3 Saving a Workspace6-4
6.2.4 Building a Workspace6-4
6.2.5 Rebuilding a Workspace6-5
6.2.6 Regenerating a Workspace6-6
6.2.7 Stopping a Build6-6
6.2.8 Closing a Workspace6-6

6.3 Working with Projects6-7
6.3.1 Creating a Project6-7
6.3.2 Project Properties6-10
6.3.3 Adding Folders to a Project6-12
6.3.4 Adding Files to a Project6-13
6.3.5 Removing Files From a Project6-15
6.3.6 Moving Components Among Projects and Folders6-16

Moving a Program, Screen, Report, or Data Layout to Another Project6-16
Moving a File to Another Folder or Project6-16

6.3.7 Deleting a Project6-16

Contents-iv
Chapter 7: Project Settings
7.1 Introduction7-2
7.2 Modes7-3

7.2.1 Working with Modes7-4
7.2.2 Adding a Mode7-4
7.2.3 Removing a Mode7-6
7.2.4 Saving a Mode as a POF7-6
7.2.5 Reusing a POF7-7
7.2.6 Switching Between Modes7-7

7.3 Compiler and Runtime Settings7-8
7.4 Working with Runtime Configuration Files7-9

7.4.1 Editing Configuration Files7-10
7.4.2 User-defined Variables7-12

7.5 Environment Settings7-13
7.5.1 Working with Environment Variables7-14
7.5.2 The COPYPATH Environment Variable7-15

7.6 Library Settings7-17

Chapter 8: Working with Data at the Project Level
8.1 Introduction8-2
8.2 Defining Data Files for Use in Projects and Programs8-2
8.3 Creating Data Layout Files8-4

8.3.1 Creating a DLT from Scratch8-5
8.3.2 Creating a DLT from a Single FD/SL Pair8-6
8.3.3 Creating DLTs from Multiple FD/SL Pairs8-8

8.4 Working in the File Designer8-10
8.4.1 Adding File Control Information8-10
8.4.2 Adding a File Description8-13

8.4.2.1 Linking and importing COPY files8-17
8.4.2.2 Occurs Syntax dialog8-18
8.4.2.3 The Field dialog8-19

8.4.3 Defining Key Information8-21
8.4.4 Defining File Handling Behavior8-23
8.4.5 Designing a Custom XFD8-25

8.5 Copying DLT Files Between Projects8-29
8.6 Tips for Working in the Data View8-30

8.6.1 Useful Data View Functions8-31

 Contents-v
8.6.2 Data Layout Properties8-32

Chapter 9: Working with Programs
9.1 Introduction9-2
9.2 Creating an AcuBench Program9-2

9.2.1 Adding an AcuBench Program to a Project9-4
9.2.2 AcuBench Program Properties9-5

9.3 Adding and Creating Basic Source Files9-12
9.3.1 Creating a File9-12
9.3.2 Adding an Existing Source File9-14
9.3.3 Adding COPY Files9-16
9.3.4 Working with Files in the File View9-18
9.3.5 File Properties9-19
9.3.6 Reparsing Source Files9-20

9.4 Generating a Program9-21
9.5 Compiling a Program9-22

9.5.1 Compiling Programs to a Server9-22
9.5.2 Compiling Multiple Programs9-24
9.5.3 Remote Precompiling with Boomerang9-25

9.6 Executing a Local Program9-26
9.7 Executing a Remote Program9-27
9.8 Debugging a Program9-28

9.8.1 Debugging with the Thin Client9-28
9.8.2 Debugging a Transaction Processing (TP) Application9-29

Chapter 10: Working with Data at the Program Level
10.1 Introduction10-2
10.2 Using the Data Set Designer10-2

10.2.1 Creating a Data Set10-3
10.2.2 Opening an Existing Data Set10-7
10.2.3 Creating a BEFORE or AFTER Procedure10-7
10.2.4 The Data Set’s Property Window10-9
10.2.5 Generating File Handling Code10-9

10.3 Using the Working-Storage and Linkage Editors10-11
10.3.1 The Working-Storage Editor10-11
10.3.2 The Linkage Editor10-12
10.3.3 The Working-Storage and Linkage Editor Interface10-12

Contents-vi
Chapter 11: Configuring the Code Editor
11.1 Introduction11-2
11.2 Establishing Keyboard Shortcuts11-2
11.3 Customizing the Code Editor Interface11-4

11.3.1 Configuring Basic Editor Functions11-4
11.3.2 Modifying Editor Appearance11-5
11.3.3 Customizing Tab Stops11-7
11.3.4 Configuring Keyword Behaviors11-8

11.4 Setting Print Layout Options11-10
11.4.1 Setting Headers and Footers11-11
11.4.2 Setting Page Appearance11-11

Chapter 12: Working with Source Code
12.1 Introduction12-2
12.2 Working with Files12-2

12.2.1 Creating a New File12-3
12.2.2 File Formats12-4

12.3 The Code Editor Window12-4
12.4 Basic Editor Functions12-5

12.4.1 Using Bookmarks12-7
12.4.2 Changing Case and Indenting Lines12-8
12.4.3 Viewing Multiple Sections of Your File12-8
12.4.4 Merging Data From Another File12-9

12.5 COBOL-Friendly Editing Functions12-9
12.5.1 Adding and Removing Line Numbers12-9
12.5.2 Working with Tabs12-10
12.5.3 Working with Blocks of Code12-11
12.5.4 Using Code Insight Functions12-13
12.5.5 Using Paragraph, Variable, and Constant Lists12-14
12.5.6 Working with COPY Files12-16
12.5.7 Using Source Code Templates12-17
12.5.8 Navigating between error lines12-18

Chapter 13: Configuring the Screen Designer
13.1 Introduction13-2
13.2 Customizing the Screen Designer Interface13-2

 Contents-vii
13.3 Establishing Screen and Control Defaults13-4
13.4 Adding Screen Templates13-6
13.5 Configuring Keyboard Shortcuts13-7

Chapter 14: Working with Screens
14.1 Introduction14-2
14.2 Creating a New Screen14-3
14.3 Getting Started with Screen Design14-5

14.3.1 Setting Basic Screen Form Properties14-6
14.3.2 Creating a Resizable Screen14-8

14.4 Adding Controls to a Screen14-9
14.4.1 Drawing Controls with the Component Toolbox14-10
14.4.2 Drawing Controls with Drag-and-Drop14-11
14.4.3 Creating Autoload Controls14-14

14.4.3.1 Creating an unpaged autoload control14-15
14.4.3.2 Creating a paged autoload control14-18
14.4.3.3 Modifying autoload controls14-19
14.4.3.4 Understanding the generated code (unpaged controls)14-20
14.4.3.5 Understanding the generated code (paged controls)14-22

14.5 Configuring Control Properties14-25
14.5.1 Associating Data with a Control14-26
14.5.2 Layout Data Control Property14-28
14.5.3 Controls: Related References14-29

14.6 Positioning and Aligning Controls14-30
14.7 Refining Your Screen14-32

14.7.1 Basic Editing Commands14-33
14.7.2 Determining Control Tab Order14-34

14.8 Associating Code with Screen Elements14-36
14.8.1 Entering the Event Editor14-36
14.8.2 Event Procedures, Embedded Procedures, and Code Insertion Points14-37

14.9 Working with Screen Templates14-39
14.10 Generating a Screen14-40
14.11 Testing Screens14-41
14.12 Creating Portable Screens with AcuXUI14-42
14.13 Creating a Logo Screen14-43
14.14 Creating Dual User Interfaces14-44

Contents-viii
Chapter 15: Controls, Menus, and Toolbars
15.1 Introduction15-2

15.1.1 Properties of Screen Elements15-2
15.1.2 Events Overview15-3

15.2 Standard Controls15-3
15.2.1 Selector15-4
15.2.2 Bar15-5
15.2.3 Bitmap15-5
15.2.4 Check Box15-6
15.2.5 Combo Box15-6
15.2.6 Date Entry15-7
15.2.7 Entry Field15-8
15.2.8 Frame15-8
15.2.9 Grid15-9
15.2.10 Label15-12
15.2.11 List Box15-13
15.2.12 Push Button15-14
15.2.13 Radio Button15-14
15.2.14 Scroll Bar15-15
15.2.15 Status Bar15-15
15.2.16 Tab15-15
15.2.17 Tree View15-17
15.2.18 Web Browser15-20

15.3 ActiveX Controls15-21
15.3.1 Adding ActiveX Controls to the Component Toolbox15-21
15.3.2 Using ActiveX Controls in Your Screen15-22
15.3.3 Removing an ActiveX Control from the Component Toolbox15-23

15.4 Using the Menu Designer15-24
15.4.1 Creating a Menu15-24
15.4.2 Building the Menu15-25
15.4.3 Adding Menu Functionality15-26
15.4.4 Enabling the Menu15-28

15.5 Using the Toolbar Designer15-29
15.5.1 Creating a Toolbar15-30
15.5.2 Using More Than One Toolbar15-30

 Contents-ix
Chapter 16: Configuring the Report Composer
16.1 Introduction16-2
16.2 Customizing the Report Composer Interface16-2
16.3 Establishing Report and Control Defaults16-4
16.4 Adding Report Templates16-7
16.5 Report Keyboard Shortcuts16-8

Chapter 17: Working with Reports
17.1 Introduction17-2

17.1.1 Report Concepts: The Big Picture17-2
17.1.2 Report Types17-3

17.2 Adding a Report17-4
17.3 Formatting the Report17-5

17.3.1 Adding and Removing Report Sections17-5
17.3.2 Configuring Report and Section Properties17-9

17.4 Adding Report Controls17-13
17.4.1 Using the Report Component Toolbox17-14
17.4.2 Using Drag-and-Drop17-14
17.4.3 Positioning and Alignment17-15

17.5 Configuring Control Properties17-16
17.6 Setting Print Conditions17-17
17.7 Using Events to Populate a Report with Data17-18

17.7.1 Adding Report and Report Element Events17-19
17.7.2 Before and After Event Paragraphs17-20
17.7.3 BeforeDoPrint and AfterDoPrint Event Paragraphs17-21
17.7.4 LoadGridInit and LoadGridNext Event Paragraphs17-22
17.7.5 Generating Report Files and Code17-23

17.7.5.1 Reports Generated using BeforeDoPrint and AfterDoPrint events17-24
17.7.5.2 Reports Generated Without BeforeDoPrint and AfterDoPrint Events
17-25
17.7.5.3 Grids Generated With LoadGridInit and LoadGridNext17-25
17.7.5.4 Grids Generated Without LoadGridInit and LoadGridNext Events17-26
17.7.5.5 Existing Reports Imported from Earlier Versions of AcuBench17-26

17.7.6 Working with data from multiple sources17-27
17.7.7 Printing the Report17-29

17.8 Creating Report Template Files17-30
17.9 Sample Reports17-31
17.10 Deploying in a Thin Client Environment17-32

Contents-x
17.10.1 Using a Web Browser Control to Display and Print Reports17-33
17.10.2 Using AcuBenchPrint.dll to Display and Print Reports17-34

Chapter 18: The Report Controls and Property Reference
18.1 Introduction18-2
18.2 Common Report Control Properties18-2
18.3 The Report Box18-6
18.4 The Report Check Box18-7
18.5 The Report Date Time18-8
18.6 The Report Entry Field18-10
18.7 The Report Grid18-12
18.8 The Report Image18-14
18.9 The Report Label18-16
18.10 The Report Line18-16
18.11 The Report Occurs18-17
18.12 The Report Radio Button18-19
18.13 The Report Table18-20

Chapter 19: Working with ACUCOBOL-GT Utilities
19.1 ACUCOBOL-GT Utilities19-2
19.2 The Object File Utility19-3

19.2.1 Object Libraries19-3
19.2.2 Creating an Object Library19-4
19.2.3 Retrieving Information About Objects19-6
19.2.4 Generating Native Code19-7

19.3 Using vio19-9
19.3.1 Output Mode19-10
19.3.2 Input Mode19-12

19.4 Using logutil19-13
19.5 Using vutil19-15

19.5.1 Increasing the Maximum File Record Size19-16
19.5.2 Examining File Information19-17
19.5.3 Testing File Integrity19-17
19.5.4 Rebuilding Files19-17
19.5.5 Resetting User Counts19-17
19.5.6 Creating Empty Files19-18
19.5.7 File Size Summary19-19

 Contents-xi
19.5.8 Extracting Records19-19
19.5.9 Unloading to Other File Types19-19
19.5.10 Loading a File19-19
19.5.11 Converting Indexed Files19-20
19.5.12 B-Tree Listing19-21

19.6 Using acu4glfd19-21
19.7 XML Support in AcuBench19-22

Chapter 20: The AcuBench Integrated Debugger
20.1 The Debugger Interface20-2

20.1.1 Debug Menu and Toolbar20-3
20.1.2 Debugger Output20-4
20.1.3 Watch Window20-4
20.1.4 Stack Info Window20-6
20.1.5 Memory Window20-7

20.2 Debug Mode Compile Options20-7
20.3 Entering the Debugger20-8
20.4 Debug Menu Commands20-9

20.4.1 Tracing Functions20-10
20.4.2 Starting, Stopping, and Navigating the Debugger20-11
20.4.3 Debugger Scripts20-14
20.4.4 Breakpoints20-14

20.4.4.1 Setting a breakpoint using the Breakpoints dialog box20-16
20.4.4.2 Modifying a breakpoint using the Breakpoints dialog box20-17
20.4.4.3 Deleting breakpoints using the Breakpoints dialog box20-17
20.4.4.4 Viewing a breakpoint with the Breakpoints dialog box20-17
20.4.4.5 Monitoring variables using the Breakpoints dialog box20-18

20.4.5 Debugging Threaded Applications20-19
20.4.6 Quick Watch20-20

Chapter 21: Looking for Something?: Search and Replace
21.1 Introduction21-2
21.2 Find21-2

21.2.1 Locate a single instance of the search string21-3
21.2.2 Mark all instances of the search string21-3
21.2.3 List all occurrences of the search string21-4

21.3 Find in Files21-4

Contents-xii
21.3.1 Special Operators and Regular Expressions21-5
21.3.2 Performing the Search21-7

21.4 Find in Objects21-7
21.5 Replace21-9
21.6 Replace in Files21-10

Chapter 22: Toolbar Reference
22.1 The Standard Toolbar22-2
22.2 The Project Toolbar22-4
22.3 The Editor Toolbar22-6
22.4 The Debug Toolbar22-6
22.5 The Align Toolbar22-7
22.6 The Launch Toolbar22-8

Chapter 23: Keyboard Shortcut Reference
23.1 Introduction23-2
23.2 Main: Default Keyboard Shortcuts23-3
23.3 Code Editor: Default Keyboard Shortcuts23-24
23.4 Screen Designer: Default Keyboard Shortcuts23-30

Appendix A: Bringing Existing Code Into AcuBench
A.1 IntroductionA-2
A.2 Importing Data DefinitionsA-3
A.3 Creating a PSF for an Existing ProgramA-4

A.3.1 Prepare to Create the PSFA-4
A.3.2 Create the PSFA-5
A.3.3 Key-StatusA-6
A.3.4 Import Program Elements into the PSFA-7

A.4 Adding Existing Code to an AcuBench ProgramA-8
A.5 Updating a Character-based ScreenA-11

A.5.1 Benefits and RestrictionsA-12
A.5.2 Using the Character-to-GUI WizardA-14
A.5.3 Running under WindowsA-15
A.5.4 Setting Compiler OptionsA-15
A.5.5 Setting the “--char2gui” Runtime OptionA-16

 Contents-xiii
A.5.6 Screen ConversionA-17
A.5.7 Editing Screen PropertiesA-18
A.5.8 Manipulating the Screen in the Screen DesignerA-21
A.5.9 Generating New Screen Section CodeA-23
A.5.10 Integrating Code Back into Your ProgramA-23
A.5.11 Tips and TechniquesA-28

A.6 Importing a Graphical ScreenA-30
A.6.1 Setting Compiler OptionsA-31
A.6.2 Setting the “-import” Runtime OptionA-32
A.6.3 Graphical Screen ImportingA-33
A.6.4 Graphical Screen Importing Notes and RestrictionsA-34

Index

Contents-xiv

1
 Introduction
Key Topics

Product Overview... 1-2

Companion Products.. 1-4

Technical Services... 1-6

1-2 Introduction
1.1 Product Overview

Welcome to the AcuBench® integrated development environment for
COBOL from Micro Focus. AcuBench is a member of the extend® family of
interoperability solutions. AcuBench extends and enhances the
ACUCOBOL-GT® development system with a powerful suite of graphical
tools for data, program, interface, and report design. With AcuBench you can
develop and maintain your COBOL applications in a developer friendly
Microsoft Windows environment and deploy your applications on any of the
more than 600 platforms supported by Micro Focus.

Some of AcuBench’s major features include:

• a single, integrated user interface

• a powerful and flexible workspace, project, program development model

• extensive automated code generation capabilities that simplify the
development of screens, reports, Working-Storage and Linkage section
items, FDs and SELECTs, and other key program areas

• specialized designers and editors for creating and maintaining:

• data layout definitions (file descriptors)

• data set associations

• event procedures

• Working-Storage items

• Linkage section items

• ACUCOBOL-GT configuration files

• support for the ACUCOBOL-GT Thin Client technology, which lets you
display your server-based application on graphical display hosts

• an integrated source level debugger

• graphical interfaces to ACUCOBOL-GT utilities

• support for many third-party version control systems

• a graphical interface that lets you design HTML and plain-text reports

Product Overview 1-3
AcuBench includes key project management supports for:

• concurrent development of multiple projects

• multiple project configuration management

• multiple project and file level compilation settings (modes)

• project level runtime and environment settings

• automated inclusion of COBOL COPY files

• access to external programs and utilities

Key code development features include:

• user configurable, COBOL-sensitive source code editor

• automated code completion capabilities (prompts for completing some
phrases and easy insertion of template code)

• paragraph, variable, COPY file, and constant lists

• quick access to COPY files

• ability to bookmark code for ease of navigation

• search functions to find strings either in a specified directory structure or
within a set of AcuBench objects

Key screen development capabilities include:

• support for ActiveX controls

• graphical and character-based screen designers

• templates for graphical and character-based screens, plus the ability to
create additional user-defined templates

• graphical and character screen import capabilities

• customizable control defaults and Property windows

• in-line editing of event and embedded procedures

1-4 Introduction
Integrated user interface

The workbench presents all of its primary capabilities in an integrated main
application window. This user-configurable window contains several interior
windows for viewing projects; working with data; working with programs
and their components, including screens and reports; and for monitoring
several types of system output (compilation messages, version control
actions, search results, and more). There are also special windows for coding
embedded procedures and working with the integrated debugger. You can
control the visibility, size, and placement of all interior windows and
toolbars.

Project-centred application development

A project model is used to support AcuBench application development. Each
element of a COBOL application, large or small, is identified, added to, and
tracked by AcuBench as a project. As a result, applications enjoy a standard
structure that makes them easier to manage and maintain. This architecture
allows AcuBench to handle many aspects of application development for
you. For example, when you direct AcuBench to build (compile) a project,
AcuBench automatically determines which elements of the project must be
recompiled to make the project current.

Note: Unless otherwise indicated, the references to “Windows” in this
manual denote the following 32-bit versions of the Windows operating
systems: Windows Vista, Windows XP, Windows NT 4.0 or later, Windows
2000, Windows 2003, and the following 64-bit versions of the Windows
operating system: Windows Server 2003 and 2008 x64, Vista x64. In those
instances where it is necessary to make a distinction among the individual
versions of those operating systems, we refer to them by their specific version
numbers (“Windows 2000,” “Windows NT 4.0,” etc.).

1.2 Companion Products

AcuBench is interlinked with other members of the extend family of
solutions. The following sections briefly describe the technologies most
closely related to AcuBench.

Companion Products 1-5
ACUCOBOL-GT

ACUCOBOL-GT is an ANSI 1985 COBOL compiler designed to provide a
powerful development environment for a wide range of computers. Fast
compile speed, clear error messages, and a multi-window source level
debugger work together to provide a high performance, easy to use COBOL
development platform. Portable object code, a generic interface to a variety
of file systems, and a device-independent terminal interface help to simplify
the distribution of applications developed with ACUCOBOL-GT.

In addition to portable object code, ACUCOBOL-GT can generate and
execute object files that contain native instructions for specific types of
processors. This enables you to optimize the use of CPU resources on the
host machine while maintaining full portability within the same family of
processors.

Complete access to the ACUCOBOL-GT development system, including all
of its utilities, is available from within the AcuBench integrated development
environment.

AcuConnect®

AcuConnect is a client/server technology that is an integral part of extend’s
distributed computing solution. AcuConnect lets you implement a
client/server system in which the client piece can be as “thin” or as “thick” as
you need.

Developers using AcuBench can take advantage of Micro Focus’s Thin
Client technology, allowing them to work in a user-friendly Windows
environment and compile to and run from a UNIX, Linux, or Windows
server. The thin client implementation of AcuConnect lets you run the user
interface (UI) portion of your application on a graphical display host while
the rest of the application and data reside on the server.

1-6 Introduction
1.3 Technical Services

If you have a question about AcuBench, or if you encounter unexpected
behavior during its use, extend’s Technical Services specialists are ready to
assist you. Before contacting Technical Services, please be prepared to
provide the following information:

• the version of the Windows operating environment that you are using

• the version of AcuBench that you are using

• the version of the ACUCOBOL-GT compiler and runtime that you are
using

You can display the AcuBench and ACUCOBOL-GT version information in
AcuBench. From the Help menu select About AcuBench. In the
information box, click the “Runtime version” and “Compiler version”
buttons to display runtime and compiler version information.

You can reach extend Technical Services in the United States Monday
through Friday from 6:00 a.m. to 5:00 p.m. Pacific time, excluding holidays.
You can also raise and manage product issues online and follow the progress
of the issue or post additional information directly through the website.
Following is our contact information:

For worldwide technical support information, please visit
http://supportline.microfocus.com.

Phone: +1 858.795.1902

Phone: 800.399.7220 (in the USA and Canada)

Fax: +1 858.795.1965

E-mail: support@microfocus.com

Online: http://supportline.microfocus.com

mailto:support@microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com

2
 Getting Started
Key Topics

Introduction ... 2-2

About AcuBench Documentation .. 2-2

Related Documents.. 2-4

Notation .. 2-5

Sample Programs .. 2-5

System Requirements.. 2-6

Installing and Uninstalling AcuBench... 2-6

Navigating the User Interface .. 2-7

Printing in the Workbench .. 2-12

2-2 Getting Started
2.1 Introduction

The following sections include several topics that can help you get started
using AcuBench. A general description of the contents of the AcuBench
User’s Guide and some related documentation is provided, along with tips on
the notation used in these documents. System requirements and installation
procedures are defined, and the locations of some helpful sample programs
are also given.

2.2 About AcuBench Documentation

All AcuBench functions and capabilities and directions for their use are
documented in this AcuBench User’s Guide. The topics in this guide are
organized into the following general areas:

The content of the on-line and print versions of this guide is virtually the
same. In some cases, screen captures have been added to the printed book.

Introducing AcuBench Chapters 1 through 5

Working with Projects Chapters 6 and 7

Working with Data Files Chapter 8

Working with Programs Chapter 9

Program File Handling Chapter 10

Editing Source Code Chapters 11 and 12

Working with Screens Chapters 13 through 15

Working with Reports Chapters 16 through 18

Helpful Tools Chapters 19 through 21

Reference Chapters 22 and 23

Bringing Existing Code into AcuBench Appendix A

About AcuBench Documentation 2-3
Accessing on-line documentation

AcuBench provides extended support for context-sensitive help. Click on or
highlight the text, control, property, or other item about which you wish to
learn more, then press F1 in any part of the IDE. AcuBench opens the most
appropriate page of the associated reference or user’s guide that it can locate.

For example, if you are designing a screen and click on a push button control,
then press F1, the ACUCOBOL-GT documentation opens in your default
Web browser, showing the page from the ACUCOBOL-GT User Interface
Programming manual that contains information about the attributes and
properties of push button controls.

This context-sensitive help provides especially detailed information in the
following interfaces:

• Code Editor

• Event Editor

• Screen Designer Property Window

• Project/Settings dialog

Note: Windows XP users who use Internet Explorer as their default
browser and have Service Pack 2 installed should be aware that the
operating system’s default firewall protection may block operation of our
online Help files. When a security alert appears, select Unblock or Allow
Blocked Content to permit Help file operation.

If you are using Microsoft Internet Explorer, you can permanently disable
the warning message on the Advanced tab of the Tools/Internet Options
interface. Scroll to the “Security” options, then select Allow active content
to run in files on My Computer.

Any time that a manual is open in your Web browser, you can use the full-text
search facility to navigate to the information you need. If you have reached
the manual through the context-sensitive help facility, you can bring up the
table of contents by clicking the Show In Contents button at the top,
right-hand corner of the documentation frame. To access information in
other books in the extend8 documentation set, click the Books button at the
top, right hand corner of the page.

2-4 Getting Started
2.3 Related Documents

ACUCOBOL-GT and COBOL are documented in four manuals that together
are called the ACUCOBOL-GT documentation set. The four-volume set is
shipped on the product CD-ROM and also available under the support section
of www.microfocus.com. The books in this set include:

Book 1, ACUCOBOL-GT User’s Guide

This guide describes how to compile and run programs with
ACUCOBOL-GT. Some chapters offer programming suggestions for both
new and experienced programmers. The ACUCOBOL-GT User’s Guide also
describes the ACUCOBOL-GT runtime debugger and file utilities.

Book 2, ACUCOBOL-GT User Interface Programming

This book details ACUCOBOL-GT controls and discusses user interface
development issues.

Book 3, ACUCOBOL-GT Reference Manual

This manual describes COBOL program structure and details every verb
included in the language.

Book 4, ACUCOBOL-GT Appendices

This book includes host-specific information and descriptions of all library
routines and configuration variables.

If you are using the print documentation, a fifth book, the ACUCOBOL-GT
Combined Indices, contains a combined index for the entire four-book
documentation set.

Notation 2-5
2.4 Notation

In this AcuBench User’s Guide, menu selections are frequently shown as a
series of strings separated by slashes. For example, you might see:

• To create a new file select File/New.

In the case of cascading menus, you would see:

• To turn on debugger file tracing, select Debug/Trace Options/Trace
File.

Program names are shown in bold, such as vutil.

When citing a label or option that appears in a dialog box, the text is
surrounded by double-quotes (“”). For example: “Name of object file (-o)”
is an option on the Project/Settings/Compiler dialog.

2.5 Sample Programs

The AcuBench product materials include two sample workspaces called
“samples” and “reports”. The “samples” workspace contains sample
programs, COPY files, screens, resource files, and other program elements
intended to demonstrate many of AcuBench’s and ACUCOBOL-GT’s
capabilities. The “reports” workspace contains a number of graphical and
text-only reports created using the AcuBench Report Composer. The sample
workspaces are located in subdirectories of the installation directory under
“Acucbl8xx\AcuGT\sample\acubench”. We recommend that you familiarize
yourself with the sample projects, programs, source code, and related files.

Other helpful sample programs are available for download in the Support
area of the Micro Focus Web site.

2-6 Getting Started
2.6 System Requirements

To install and run AcuBench on your Microsoft Windows platform, your
system must meet the following minimum requirements:

Hardware

• Intel Pentium III CPU, 300 megahertz; Intel Pentium IV, 2 gigahertz
recommended

• 64 megabytes of RAM; 128 megabytes recommended

• 40 megabytes of available hard disk space; 120 megabytes
recommended

• mouse

• 800 x 600 VGA display or better; 1024 x 768 DGA display
recommended

Software

• Windows XP Professional Edition; Windows NT 4.0; Windows 2000 or
2003

• ACUCOBOL-GT Version 8.0 or later (compiler and runtime)

2.7 Installing and Uninstalling AcuBench

Before you install AcuBench, be sure that the host machine meets the
minimum requirements specified in the previous section. Note that
AcuBench Version 8.x requires the ACUCOBOL-GT Version 8.x compiler
and runtime.

AcuBench is delivered on CD-ROM. In addition to the CD-ROM, you must
have two license codes (the product code and product key) to successfully
install the product. You should find the license codes in your product
materials. If they are not included, please contact your Micro Focus extend
Sales Professional.

Navigating the User Interface 2-7
The setup program starts automatically when you insert the CD-ROM into
your drive. If the setup program does not start, go to the Windows Start
menu, select Run, and enter the device name of your CD-ROM followed by
“setup.exe”. For example:

D:\setup.exe

Follow the instructions on the screen and enter the license codes when
prompted.

Caution: To avoid the unintentional overwriting and loss of existing
AcuBench projects, files, and executables, install this version into a new
folder.

AcuBench can be installed on systems that also have an earlier version of the
workbench installed. You do not need to move or uninstall the earlier version
in order to use that version and the new version. Note that the new version
does not automatically find and use the “.ini” file options used by the earlier
version. If you want the current version of AcuBench to use the options
specified in a “.ini” file from a previous version, use the Tools/Options Load
command to load the previous version’s “.ini” file into the current version’s
Application Data folder.

If you reinstall the same version of AcuBench for any reason, note that the
existing “.ini” file in the Application Data folder is not overwritten at
installation. For example, if you want to revert to the installation defaults in
the “AcuBench8xx.ini” file, you would need to delete the existing “.ini” file
before reinstalling AcuBench.

To uninstall AcuBench, use the Add/Remove Program applet in the Windows
Control Panel.

2.8 Navigating the User Interface

Access to most AcuBench functions is provided directly in the main
application window. The size and layout of most screen elements is
customizable. User interface elements, such as toolbars and sub-windows,
can be moved, docked, undocked, made visible, or hidden at your discretion.

Position and visibility attributes are retained from session to session so that
the main application window has the same configuration and appearance as
when you ended your last session.

The title bar displays the name of the application (AcuBench), followed by
the name of the workspace, the name of the current file, and the name of the
current project. It also indicates whether your current project is using thin
client functions.

The drop-down menus on the menu bar provide access to all workbench
functions, configuration options, and on-line documentation. Access to
ACUCOBOL-GT utilities, such as AXDEFGEN, cblutil, and vutil, is
available on the Tools pull-down menu.

The AcuBench toolbars provide push button access to the most frequently
used workbench functions. You can display or hide each toolbar via the View
drop-down menu, or by right-clicking on a toolbar. You determine which
toolbars display and which buttons appear on each toolbar using the
Tools/Customize dialog, discussed in Chapter 4, section 4.9, “The
Customize Dialog.” This interface also allows you to create new, custom
toolbars.

By default, each of these features appears at the top of the AcuBench
interface when you open the application.

2.8.1 The Toolbars

By default, AcuBench displays the Standard, Project, Editor, and Align
toolbars at startup. When you use the AcuBench integrated debugger, the
Debug toolbar is displayed, as well.

You can display, hide, resize, and move the toolbars. Toolbars that are not
docked under the menu bar or to the edge of the window are called floating
toolbars.

When you place the mouse pointer over a toolbar button for more than a
second, a tool tip is displayed, showing the button’s descriptive title. At the
same time, a short description of the button’s function is also displayed in the
status bar.

Navigating the User Interface 2-9
Manipulating toolbars

To move a toolbar to a new position:

1. Place the mouse pointer within the toolbar, but not over a button.

2. Click with the left mouse button and drag the toolbar to the desired
location.

To display or hide a toolbar, you can do any of the following:

• Click the toolbar’s name in the View/Toolbars menu. If a toolbar is
visible, a marked check box appears next to its name in the menu listing.

• Right-click on any toolbar, then select the name of the toolbar that you
want to hide or display.

• Open the Tools/Customize interface and click the toolbar’s name. If a
toolbar is visible, a marked check box appears next to its name on the
Toolbars tab.

To reshape a toolbar:

1. Position the pointer on the edge of the floating toolbar so that the pointer
changes to a double-headed arrow.

2. Down click with the left mouse button and drag to alter the shape.

2.8.2 The Workspace Window

The Workspace window provides three different views of project
components: the Structure view, the File view, and the Data view. Each of
these views is represented by a tab at the bottom of the window; click a tab to
switch from view to view.

These three views make up the primary interface for working with project
elements in AcuBench, as follows:

2-10 Getting Started
• The Structure view shows AcuBench program structure files, with
interfaces to the graphical designers used to generate program code.
Program structure files and the Structure view are discussed in Chapter
9, “Working with Programs.”

• The File view shows all physical files associated with an AcuBench
project. Interacting with files and folders in the File view is discussed in
Chapter 6, section 6.3.3 through section 6.3.6.

• The Data view lists AcuBench data layout files, used to generate FD
and SELECT statements and define file handling code at the project
level. Data layout files and the Data view are discussed in Chapter 8,
“Working with Data at the Project Level.”

2.8.3 The Development Window
All open project files, screens, and active editors (such as the Event Editor or
File Designer) are displayed in the Development window. When you have
more than one file or editor open in the Development window, each one is
assigned to a tab, displayed at the top or bottom of the window.

Navigating the User Interface 2-11
To shift the focus from one file or editor to another in the Development
window, click the appropriate tab. You can also use the Ctrl+F6 keyboard
shortcut to scroll through open editors, or use the Window drop-down menu.

2.8.4 The Screen and Report Component Toolboxes

The AcuBench interface includes two toolboxes, one for the Screen Designer
and one for the Report Composer. The Screen Component Toolbox contains
the palette of ACUCOBOL-GT screen controls. If you have defined ActiveX
controls for use with your project, these also appear in the toolbox. The
Screen Component Toolbox is discussed in detail in Chapter 14, section
14.4.1, “Drawing Controls with the Component Toolbox.”

The Report Component Toolbox contains the “controls,” or elements, that
you can use to design different sections of a report. Some report controls are
similar to screen controls. The Report Component Toolbox is covered in
Chapter 17, section 17.4, “Adding Report Controls.”

2.8.5 The Output Window

All workbench standard output is displayed in the Output window, which has
five tabbed panes: Build, Debug, Find in Files, Launch Tools, and Version
Control. Each pane captures the output messages related to its label. For
example, the Build pane displays messages generated by parsing, building,
and compiling. The Debug pane captures output generated from the
debugger (but not program output).

To print the contents of the current tab of the Output window, right-click
inside the pane and select Print.

2.8.6 The Status Bar

The status bar displays various information pertaining to the current state and
activities of the workbench.

2-12 Getting Started
2.9 Printing in the Workbench

In addition to source code files and other text documents, AcuBench’s print
function allows you to print hard copies of screen forms, report forms, and
the contents of the Output window. Select File/Print or click the Print icon
on the Standard toolbar. This opens a standard Windows print dialog that
allows you to select a printer, specify a page range, and so on.

Use the AcuBench File/Print Setup command to change printers, select an
output tray, change paper orientation, and so on. Like the Print dialog, the
Print Setup dialog is a standard Windows interface.

When you print a text file, rather than a screen or report form, you can use the
File/Page Setup command to customize the appearance of the printed page,
including the header and footer, if any. This command opens a Page Setup
dialog that also allows you to specify a page style, margin sizes, and other
options.

The Header and Footer fields of the of the Page Setup dialog can take a text
string or any of the special options described in the following table. You can
either manually enter the code for any of the special options, or click the
arrow button to the right of the field and select an option from the pop-up list.

Printing in the Workbench 2-13
You can also set the following additional options to determine the appearance
of your print output:

Option Description

Full Path Filename
&U

Prints the full path and file name in the header or footer

Filename
&F

Prints the file name in the header or footer

Page Number
&P

Prints the page number in the header or footer

Current Time
&T

Prints the time the document was printed in the header
or footer

Current Date
&D

Prints the date the document was printed in the header
or footer

Left Align
&L

Prints the header in a left alignment or footer

Center
&C

Prints the header in a center alignment or footer

Right Align
&R

Prints the header in a right alignment or footer

Option Description

Style Select any of the following styles from the drop-down
list:

Black and White prints your document in black and
white.

Color prints your document in color.

Zebra prints your document using alternating gray and
white stripes.

Print line number Check this check box if you want the line numbers of
your file to print on your document.

Frame Select None if you do not want to print a frame around
your document, or Inner to print a simple, single-line
box around each page of text.

Margins Allows you to specify margin settings for your printed
document. Set the left, right, top, and bottom margins
in measurements of inches.

2-14 Getting Started

3
 Workbench Concepts
Key Topics

AcuBench Concepts... 3-2

Project Management, Organization, and Structure............................. 3-2

Automatic Code Generation... 3-7

AcuBench File Types ... 3-10

Development Approaches ... 3-12

Using Thin Client Technology with AcuConnect 3-24

3-2 Workbench Concepts
3.1 AcuBench Concepts

Several fundamental concepts shape AcuBench’s organization, structure, and
approach. These ideas include:

• an organizational model that groups programs within projects and
projects within workspaces

• an emphasis on automated code generation

These concepts, as well as a discussion of development approaches, are
described in the sections that follow.

3.2 Project Management, Organization, and
Structure

In AcuBench, application development is organized into three levels of
structure: workspace, project, and program.

The central unit is the project. An AcuBench project includes all of the files
and resources needed to build, test, and deploy an application. Every project
has its own compile, runtime, and environment settings (in fact, projects can
have many sets of settings, called modes). Every project is autonomous,
although it can coexist and share resources with other projects.

To provide greater development flexibility, projects inhabit a larger working
environment called the workspace. The workspace hosts one or more
projects and provides a common work area that supports the concurrent
development of multiple projects. The workspace layer also makes it
possible to standardize AcuBench default settings (for code generation,
graphical user interface and report design, and general environment behavior,
among other options) across projects.

A Workspace window displays components of each project in the workspace,
providing easy and organized access to project components, options, and
settings. Through this window, you can instantly switch between projects
and quickly copy components from one project to another. Each project’s
state information is preserved and each project’s unique settings (compiler,

Project Management, Organization, and Structure 3-3
runtime, and environment options) are maintained. Projects can, but do not
have to, share files. Projects are not formally related in any way, other than
belonging to the same workspace.

Every project has at least one program and can have many programs. A
program may be a single COBOL source file, a source file and its COPY files
and resources, or a source file augmented by a program structure file. When
you work in AcuBench, the program structure file is what makes it possible
to use the many graphical design tools and editors (excluding the Code
Editor) designed to streamline code development. Only programs that
include a program structure file appear in the Workspace window’s Structure
tab.

We recommend that all AcuBench users read section 3.5, “Development
Approaches.” If you intend to use AcuBench’s design tools and code
generation facilities, it is also important that you read section 3.3,
“Automatic Code Generation.”

The workspace, project, and program concepts are discussed in more detail in
the sections that follow.

3.2.1 The Workspace

In AcuBench, each project and all of its associated files and resources belong
to a workspace. Put another way, a workspace is a container for projects.
The workspace is used to keep track of member projects and their files,
options, and settings. It is also an interface that organizes, displays, and
allows for interaction with project elements. The workspace is implemented
in the form of a workspace file and a Workspace window.

The workspace file is created and maintained by AcuBench. In it is a list of
member projects, project files, and project compile, runtime, and
environment settings. Workspace files have the suffix “.pjt”. You should
never directly edit a workspace file.

The Workspace window is a sub-window of the AcuBench main application
window. It presents each project’s components in several views. You can
interact with the project elements displayed in the Workspace window in
many ways. Each node in the window has a context-sensitive right-click
pop-up menu that offers a selection of actions appropriate for the associated
object.

3-4 Workbench Concepts
The Workspace window has three tabs at the bottom that allow you to select
from among three workspace views. Each view uses a Windows
Explorer-style tree view to display its contents.

The Workspace window

Only COBOL programs that have a program structure file appear in the
workspace Structure view. The Structure view displays access points to
program areas that have a corresponding workbench development tool, such
as screens (Screen Designer), reports (Report Composer), Working-Storage
(Working Storage Editor), Linkage section (Linkage Section Editor), Event
paragraphs (Event Editor), and data sets (Data Set Designer).

If you are importing an existing program, you do not have to create a program
structure file. However, if you do not, your program is not displayed in the
Structure view, and you cannot use the workbench tools that generate code.

The workspace File view displays each project’s member files. Project files
are grouped into related types, such as Source, Screen, Report, Copy, Object,
Remote Object, List, Resource, and FD files. Files can be opened or
executed by double-clicking on their name or icon. You can also define
additional file groupings (see section 6.3.3).

Project Management, Organization, and Structure 3-5
The workspace Data view shows each project’s file descriptors (also called
data layouts). File descriptors are created with the workbench File Designer.
For information about the File Designer, see Chapter 8, “Working with
Data at the Project Level.”

The workspace concept and Workspace window simplify many aspects of
working with project components. By double-clicking on nodes in the
various views, or by selecting options from the right-click pop-up menus, you
can initiate most common workbench activities.

A workspace information file (“.wif”) is used to record workspace
configuration and state information. The workspace information file is a
binary file that is maintained by AcuBench in the same directory as the
workspace project file (“.pjt”).

3.2.2 Projects

A project is the fundamental component that you create when you start to
develop a program under AcuBench. Once created, you populate the project
with all of the files and resources needed to build, debug, and deploy one or
more programs.

You can create multiple projects in the same workspace. When a workspace
is open, all of its member projects are displayed in the Workspace window.

You can have multiple programs in the same project. However, compiler,
runtime, and environment settings are generally made at the project level.
While it is possible to set compiler settings for each individual program in a
project, two programs that have different runtime or environment settings
should probably be placed in separate projects.

You can use the File/Save Project function to export information about an
existing project into a project file (“.pjf”). This file retains all project-related
information that is stored in a workspace file and replaces all relative path
names with full path names. A project saved as a “.pjf” can be physically
separated from the workspace where it resides, facilitating the sharing of
projects among development team members. Note, however, that once a
“.pjf” is created, it is static. In other words, you have to manually select the
Save Project option to update the contents of a “.pjf” file.

3-6 Workbench Concepts
If you are going to transfer projects between workspaces, you can use the
Tools/Options/Environment/General interface to set an option that directs the
workbench to automatically copy project files to a new project directory
when you add a project to a workspace. This option is also available in the
Open Project dialog.

3.2.3 Programs

Because of the sophisticated code generation capabilities of AcuBench, the
definition of what constitutes a program has grown. Without AcuBench, a
program is, at its simplest, a COBOL source file and its COPY files (if any).
In AcuBench, a program can still be just a COBOL source file and its COPY
files, but it can also be something more.

If you plan to use any of AcuBench’s automated code generation facilities,
your program must have a program structure file. Programs created in
AcuBench using the File/New/Program command are automatically give a
program structure file. For information about using AcuBench’s code
generation with source code created outside the workbench, please see
Appendix A.

All of the development work that is done with workbench tools that generate
code, such as the Screen Designer or File Designer, is stored in the program
structure file. When you generate code for the program, based on the
information in the program structure file, several COPY files are created and
some code may be generated directly into the program file (you have control
over what files are created and what code is generated). It is important to
understand that vital program information is stored in the program structure
file (in a non-COBOL representation), and that a program that uses
automated code generation facilities cannot be constituted without it. In a
very real sense, the program structure file is as much a part of the program as
the COBOL program source file (“.cbl”).

For a discussion of program development approaches, see section 3.5.

Automatic Code Generation 3-7
3.3 Automatic Code Generation

The Workspace Structure view provides a visual interface to most of
AcuBench’s automatic code generation facilities. Each icon in the program
tree that appears in the Structure view—Screen, Report, Working Storage,
Linkage Section, Event Paragraph, Data Set—can be used to open a graphical
designer, which stores its code in a program structure file. When you select
a program in the Structure view and select the Generate command,
AcuBench opens the program structure file and uses that file to create screen,
report, Working-Storage, Linkage, event, and file-handling COBOL code.

The COBOL code that AcuBench generates from the program structure file
is, by default, placed into a “.cbl” source file and several COPY files. Tags
in the source file tell AcuBench where to place generated code. The area
outside of these tags is reserved for manual editing. This means that, by
default, all code between the AcuBench tags is deleted and recreated every
time you generate code, but code that you have added outside of the tags is
preserved. The various AcuBench tags and their purposes are discussed in
Chapter 4, section 4.6.2, “Program Tag Options.”

Changes made to a single AcuBench designer may cause code to be
generated in several COPY files. When you use the Screen Designer to add
a status bar control to a graphical screen, for example, AcuBench’s default
code generation produces a combination of Screen Section,
Working-Storage, and Procedure Division code in “.scr”, “.wks”, and “.prd”
COPY files. Ways to customize code generation behavior and affect the
naming and use of COPY files are discussed in section 3.3.2, “Controlling
code generation,” and Chapter 4, section 4.6.1, “Generate Document
Options.”

The program structure file also makes it possible for AcuBench to handle
sometimes subtle interactions between the different graphical designers.
When you create an entry field control in the Screen Designer, for example,
AcuBench creates a Working-Storage variable to hold the contents of that
field. The variable appears in the Screen Designer Property sheet for the
control and in the Working-Storage Designer’s graphical interface. When
code is generated, Screen Section code associates the variable with the
control’s VALUE property and the variable definition appears in the
Working-Storage Section.

3-8 Workbench Concepts
If you want AcuBench to generate file-handling code, you need to create one
or more data layout files, in addition to the program structure file. A data
layout file is an AcuBench-specific file from which file descriptions,
SELECT statements, custom extended file descriptors, and sort descriptions
are created. For each data file that you plan to use with a project, you create
one data layout file. Data layout files are discussed in more detail in Chapter
8, section 8.2, “Defining Data Files for Use in Projects and Programs.”

Once you have created a data layout file at the project level, you can define
data sets for each program in the project. A data set is a program-level
definition specifying how an individual program will use a given data file.
Based on your specifications, AcuBench uses the data set definition to
determine what kind of file-handling code (OPEN, READ, and WRITE
paragraphs, for example) to generate in the Procedure Division. Data sets are
discussed in more detail in Chapter 10, section 10.2, “Using the Data Set
Designer.”

3.3.1 Generated COPY Files

Depending on the workbench tools used to develop the program, AcuBench
may generate the following files:

1. program.scr (screen COPY file), containing:

• Screen section description entries

• If needed, CHARACTER or GRAPHICAL syntax to distinguish
between graphical and character-based screens with the same name

• Syntax to support event procedures, exception procedures, and/or
embedded (before/after) procedures, when defined

2. program.mnu (menu COPY file), containing menu bar descriptions and
calls to W$MENU.

3. program.evt (event and embedded procedure COPY file). This file
contains code that you add in the Event Editor and code that AcuBench
generates for event and exception handling. The portion of the code
that is created by AcuBench does not appear in the Event Editor and is
not intended for modification.

Automatic Code Generation 3-9
4. program.prd (Procedure Division COPY file), containing:

• Program initialization and exit routines

• If one or more screens has been created in the Screen Designer,
screen-handling routines

• If a screen uses exception or termination values, an
exception-processing routine.

5. program.wrk (Working-Storage COPY file), containing:

• Variables defined for control properties

• Variables defined in the Working Storage Editor

• When a data set is defined for the program, the file status data item

6. program.lks (Linkage Section COPY file), containing variables
defined in the Linkage Editor

7. program.cbl, a source code file in which most code is generated
between tag sets. This source file includes:

• Attributes and comments from the Program Properties dialog

• COPY statements for generated files

3.3.2 Controlling code generation

To refine your control over automated code generation, you can:

1. Set code generation options in the Tools/Options/Code Generator dialog.

2. Add or remove tag pairs from the program. The workbench cannot
insert code into areas that are not tagged. If you remove a tag pair,
AcuBench does not insert code in that area. Code generation is
restored to an area if the tags are reinserted.

You can control whether specific tag pairs are automatically generated or
suppressed via the Tools/Options/Code Generator/Program Tag
interface. For more information about this dialog, refer to section 4.6.2,
“Program Tag Options.”

3-10 Workbench Concepts
For information on the following facilities, see:

Note that to use these facilities, your program must have a program structure
file. If you want AcuBench to generate COPY statements into the program
file, you must upgrade your program to include AcuBench tags.

3.4 AcuBench File Types

A number of different file types are created and used by AcuBench. Some of
these files are COBOL COPY files, produced by AcuBench’s code
generation facility, as discussed in the previous section. Others, however, are
non-COBOL files used to define AcuBench workspaces and projects, store
workspace state information, determine basic workspace settings, define
template information, transfer compiler and runtime settings between
projects, generate programs and data handling code, and so on.

Especially when you are using a version (source) control system, as discussed
in Chapter 5, it can be vital to know what each file contains and how it is
used by AcuBench. Because this information is particularly useful in a
version control context, the reference includes two tables: one listing files
generally tracked by version control, and one listing files that do not need to
be tracked (either because the information they contain is relevant only to a
single user, or because the files are completely recreated on generation from
another file). Note that projects developed in the workbench may contain
additional file types that are not AcuBench-specific (such as
ACUCOBOL-GT “.def” or “.acu” files, user-defined COPY files, and
resource files).

File Designer Chapter 8

Data Set Designer,
Working-Storage Editor,
Linkage Editor

Chapter 10

Screen Designer Chapters 13 and 14

Event Editor Chapter 14

AcuBench File Types 3-11
Commonly tracked files:

Files that are not usually tracked:

Extension Description

.pjt The workspace project file includes information about the
projects within a workspace and the location of programs within
each project.

.pjf The individual project file contains the location of all programs
within a single project. By default, project information is stored
in and read from the workspace project file (“.pjt”).

.psf The program structure file contains the information AcuBench
needs to generate a program.

.cbl Default extension for COBOL source code. Note that source
generated by AcuBench is recreated from the “.psf” file when
you generate.

.dlt Data layout files contain the definitions that AcuBench uses to
create FD, SL, and SD COPY files, as well as user-defined file
handling code.

.ini AcuBench “.ini” files contain information about default program
and control properties and code templates, as well as information
about the overall appearance of the workspace and its editors.

.pof Project option files contain project settings, including compiler
and runtime flags, AcuBench environment settings, and library
options.

.stf Screen template files can be used to create a consistent look and
feel for a user interface.

.prf Program option files store the default properties assigned to new
AcuBench programs, including key status values and code
generation options (shown in the Program Properties interface).

.wtf Report template files can be used to create a consistent look and
feel for reports across an application or set of programs.

Extension Description

.wif The workspace information file contains the current state of the
AcuBench workspace (which windows are open, which
breakpoints are set, and so on).

3-12 Workbench Concepts
3.5 Development Approaches

AcuBench supports a wide variety of approaches to developing and
maintaining COBOL applications. The approach that you use is determined
by the set of workbench tools you employ, the needs of your application, and
your approach to software development. If you plan to use workbench tools
that automatically generate code, such as the Screen Designer and File
Designer, some elements of your program’s content and structure are
determined by the methods used by those tools. For a description of the
workbench’s approach to automated code generation, see section 3.3,
“Automatic Code Generation.”

.evt Event paragraph COPY file, generated from the “.psf” file and
accessed through the Event Editor.

.lks Linkage section COPY file, generated from the “.psf” file and
accessed through the Linkage Editor.

.mnu Menu COPY file, generated from the “.psf” file and accessed
through the Menu Designer dialog in the Screen Designer.

.prd Procedure Division COPY file, generated from the “.psf” file.
The code that is generated into this file comes from a number of
the AcuBench editors and designers, including the Screen
Designer and File Designer.

.rpt Report COPY file, generated from the “.psf” file and accessed
through the Report Composer

.scr Screen Section COPY file, generated from the “.psf” file and
accessed through the Screen Designer.

.wrk Working-Storage COPY file, generated from the “.psf” file and
accessed through the Working-Storage Designer.

.fd File description COPY file, generated from the “.dlt” file and
accessed through the File Designer.

.sl SELECT statement COPY file, generated from the “.dlt” file and
accessed through the File Designer.

.sd Sort COPY file, generated from the “.dlt” and accessed through
the File Designer.

Extension Description

Development Approaches 3-13
The following sections discuss general development approaches. Included in
each discussion are specific instructions on how to establish a workbench
project that best supports that development approach.

The first section focuses on applications that are new or migrating to
AcuBench, and that intend to make use of the workbench’s automated code
generation tools.

The second section focuses on the “traditional” development approach,
which foregoes the use of any of the workbench’s automated code generation
facilities (no use of the Screen Designer, File Designer, Data Set Designer,
Working Storage Editor, Linkage Editor, or Event Editor). The developer
must write every line of application code. This approach does not restrict the
use of non-code generating workbench facilities in any way.

The third section provides additional tips for developers working with large
applications, made up of a great many programs and COPY files. It focuses
on maximizing performance while taking advantage of AcuBench’s code
generation tools.

3.5.1 General Considerations

Regardless of the approach you use, there are several details of project setup
that you should attend to every time you create a new project. Each item
below is discussed in detail in the sections that follow.

• You should check and adjust, if desired, the project prefix settings.

• If you change the default name of a project subdirectory, you may need
to check and adjust certain project settings.

• Consider placing your project files directly in the project directories.

• You may want to customize the default keyboard shortcut settings.

• You should review all compile, runtime, and environment settings and, if
possible, test your project setup by compiling and running the
application before you begin making significant changes to your
application code.

3-14 Workbench Concepts
3.5.1.1 Project prefix settings

Before you create a new project, open the Options dialog (select
Tools/Options) and examine the default prefix values in Environment/Prefix.
The prefix values are the various strings used to determine the base name for
new files created by the workbench. For example, the default program prefix
is “Program.” When you create a new AcuBench program, the workbench
takes that prefix and appends a number to create a unique program name. As
a result, if you accept all of the default names suggested by AcuBench, your
first program is called “Program1,” the second is called “Program2,” and so
on. Note that we do recommend renaming your programs as you create them
to assign more descriptive names.

The prefix values are workbench-level settings (as opposed to workspace or
project level settings) and are applied to all new projects and files.

3.5.1.2 Project directories

When you create a project, you can change the name of any project
subdirectory. You can choose to omit a subdirectory altogether (by making
that entry field blank). To modify or eliminate a subdirectory for an
individual project during project creation, select the More Info button on the
File/New/Project dialog box.

You can also change the base directory structure used for all new AcuBench
projects in the Tools/Options interface under Environment/Prefix. Changes
to the “Working directories” area affect the names of the directories used to
hold the different sorts of files associated with a project by default. For more
information, see Chapter 4, section 4.3.7, “Prefix Options.”

Note that renaming or eliminating a subdirectory does not change the name
of the corresponding folder in the Workspace window. However, the logical
link between the Workspace folder and the corresponding directory is
updated so that the correct related files are displayed.

If you change a name or eliminate a directory, you may need to adjust some
of your project settings. To view and set these options, right-click the project
node in the File view and select Settings from the pop-up menu. This opens
the Project Settings dialog, discussed in detail in Chapter 7.

Development Approaches 3-15
• If you change the name of the “object” directory, or eliminate it, you may
need to change the argument for “Name of object file (-o)” in the
Standard Options catalog of the Compiler tab.

In most instances, this should be set to: %objectdir%\@.acu.

• If you change the name of the “list” directory, or eliminate it, you may
need to change the argument for “Name of list file (-Lo)” in the Listing
Options catalog of the Compiler tab.

In most instances, this should be set to: %listdir%\@.lst.

Note: For more information about %objectdir%, %listdir%, and similar
macros, see Chapter 4, section 4.3.7, “Prefix Options.”

3.5.1.3 Placing files in the project directory

When you use the Add/Remove Files function to add files to your project,
you can specify files that are located on your hard drive or on any network
drive that your Windows operating system recognizes. AcuBench creates a
logical link to the file so that it can be accessed through the File view of the
Workspace window while remaining in its original location on disk. To
facilitate use of a source control system, or to make it easier to move a project
from machine to machine, you may instead want to copy or move files into
your AcuBench project directory structure before adding them to the project.

3.5.1.4 Keyboard shortcut settings

The workbench offers a great deal of flexibility in the definition of keystroke
shortcuts. You can even define the same keystroke combination to perform
different tasks depending on whether you’re working in the Screen Designer
or the Code Editor. Keystroke shortcut definitions are defined for AcuBench
as a whole, rather than for individual workspaces. It is possible, however, to
create multiple settings files (specifically, “.ini” files) and then load the
appropriate file according to the task you wish to perform or the workspace
or project with which you plan to work (see section 4.2). For step-by-step
instructions on how to change keystroke definitions, see section 4.3.6. For a
complete list of workbench commands and default keystroke shortcut
definitions, see Chapter 23, “Keyboard Shortcut Reference.”

3-16 Workbench Concepts
3.5.1.5 Setting options and testing

Soon after the new project is created, it is a good idea to open the Project
Settings dialog to review the settings of all compiler and runtime options.
You should also review the definitions of the environment variables.

After you have populated the project with the application files, and after you
have reviewed the compiler and runtime switches, but before you start
making changes to your program, it is a good idea to attempt to compile and
run the application or a sub-component of the application.

Caution: If you are going to use workbench tools that automatically
generate code, there are some circumstances in which you should be careful
to protect existing files from being overwritten. Please read the following
information carefully to understand the risks.

When the workbench generates code, except when working with the “.cbl”
file (discussed below), it completely rewrites the target file. All files that the
workbench creates are given names based on the program name, as discussed
in section 3.3.1. If you have a file in your project with the same name as one
that might by generated by the workbench, you should rename the file.

You can determine which files are generated by changing the settings in the
Tools/Options/Code Generator/Generate Documents interface.

The “.cbl” file is a special case. Whenever you have a program with a
program structure file, AcuBench tags are added to the “.cbl” file for code
generation purposes. By default, in the Tools/Options/Code Generator
interface, under Generate Documents, the first and second check boxes on the
page are marked. Marking the first check box, “Program file,” determines
that AcuBench will use the tags in the “.cbl” source file to generate code into
the source code document. If you de-select this option, the currently existing
“.cbl” file is not changed in any way going forward. The second check box,

Development Approaches 3-17
“Regenerate tagged area only,” indicates that only the tagged areas of the
“.cbl” file are changed. Any code that you have manually added to the “.cbl”
source file is preserved during code generation as long as this box is marked.

If you choose to generate the program file but do not choose the “Regenerate
tagged area only” option, your “.cbl” file will be completely overwritten
when you generate code. It is therefore very important that you pay careful
attention to your Generate Document settings.

3.5.2 Developing New Applications

If you are developing a new application and intend to use AcuBench tools
that generate code, such as the Screen Designer or File Designer, there are
several issues that you should consider before you create your project. Of
tantamount importance is that you read and become thoroughly acquainted
with section 3.3, “Automatic Code Generation.” Section 3.3 provides
essential information about the AcuBench code generation model, and it
outlines the associated program organization and structure.

3-18 Workbench Concepts
When creating a new project:

1. Use the Tools/Options interface to set up code generation behavior,
establish guidelines for building new project directory structures, and
create the “.ini” file that will be used to standardize the development
environment for the members of your development team. See section
4.2, “The Tools/Options Dialog,” for more information about the
Tools/Options interface. For information about the importance of the
“.ini” file, see Chapter 5, “Version Control.”

2. Use the File/New/Project command to create, name, and assign
directories for a new project. Detailed, step-by-step instructions for
creating a new project in either a brand new workspace or an existing
workspace can be found in section 6.3.1.

3. Establish the runtime, compiler, and environment settings that will be
used by programs in this project. Multiple sets of settings, called
modes, can be created for each project. In addition, modes created in
one project can be imported by other projects. For more information,
see Chapter 7, “Project Settings.”

4. Determine which data files will be used by programs in the project and
create data layout files to define those data files for use with AcuBench
code generation. When you create data layout files, AcuBench code
insight features as well as the Drag-and-Drop interface for quick screen
and report design, among other features, are made significantly more
useful. The process of creating data layout files is discussed in
Chapter 8, section 8.2, “Defining Data Files for Use in Projects and
Programs.”

5. Create new programs for your project with the File/New/Program
command. This command creates a program structure file. When you
generate the program for the first time, a “.cbl” source file is created.

You can also add existing program structure files, COBOL source files,
COPY files, resources, and so on to your project. All of these options are
discussed in Chapter 6, “Working with Projects,” and Chapter 9,
“Working with Programs.”

Development Approaches 3-19
3.5.3 Developing Programs That Do Not Use Code
Generating Tools

This is the approach that is most like traditional COBOL program
development, except that you’re working in a sophisticated integrated
development environment. This approach foregoes the use of the Screen
Designer and other AcuBench tools that generate code. Therefore, these
projects do not need or make use of program structure files, nor do they make
use of the Structure view of the Workspace window (project files are
accessed in the File view). You, and other members of the development
team, are responsible for writing all COBOL code. This approach in no way
restricts your use of the ACUCOBOL-GT language, or the non-code
generating workbench tools, such as the Code Editor’s code completion
facilities (see section 12.5.4) or the Configuration File Editor, to name only
two.

There is nothing unusual about creating a project for the traditional
development approach. For step-by-step instructions, see section 6.3.1.
There are, however, a couple of important details to remember.

1. When you create the project, use the “Blank” project template. The
“Blank” template does not create a program structure file (which you do
not need).

2. When you use the Add/Remove Files interface to select the COBOL
source files that you will be adding to your project, make sure that you
have not marked the option to create a program structure file for each
program. In other words, look at the “Files in project” frame and
verify that the check box in the “Create .PSF” column for each
program that you intend to add to your project is not marked.

If you don’t intend to create a program structure file for any of your
existing programs, you can disable the “Create PSF” option at the
workspace level. In the Tools/Options/Environment/Miscellaneous
interface, locate the “Automatically create a program structure file” area
and deselect the “When adding a source file” check box. When you do
this, all “Create PSF” check boxes in the Add/Remove Files dialog are
unmarked by default.

3-20 Workbench Concepts
3.5.4 Working with Large Applications

Although there is no hard limit on the number of programs that can reside
within an AcuBench workspace, when you are developing a large
application, it is generally more efficient to use multiple small workspaces.

In AcuBench terms, a “large” application is defined by the combination of:

• The number of lines of generated code

• The number of controls on screens and in reports

• The number of Working-Storage variables maintained by AcuBench

• The number of external COPY files parsed at generation time

This means that if you are using AcuBench without code generation, you can
have a great many programs without affecting the performance of the
workbench. (Note that you may still want to divide your application between
multiple workspaces for ease of maintenance.) But as you design graphical
interfaces in AcuBench and make use of the workbench’s code generation
and automation features, it is increasingly important to keep your workspaces
small and efficient.

Regardless of the composition of your large application, any time you have
multiple developers working in AcuBench, it is important to use version
(source) control software. See Chapter 5, “Version Control,” for more
information.

3.5.4.1 Factors that affect performance

When you expand a program in the Structure view of the AcuBench
workspace, the program is loaded into memory. Programs are also loaded
into memory at generation time (if they are not already resident in memory).
This means that when you generate a workspace, every program in the
workspace that has a “.psf” is loaded into memory. Once loaded, programs
remain in memory until you exit AcuBench. This is done to speed up code
generation and other automation features of the IDE.

Development Approaches 3-21
Some of the automation features include the following:

• Automatic generation of Working-Storage variables for screens

• Automatic check for variable definitions within external COPY files
before adding new variables to Working-Storage

When a program is loaded, AcuBench searches the program’s screens and
reports for properties that should be defined in Working-Storage. If
AcuBench cannot find those definitions in any COPY file or FD, those
properties are automatically added to Working-Storage. This feature:

• Makes it easy to recover when a variable is accidentally deleted

• Helps to avoid compiler errors

• Extends AcuBench's screen and report management capabilities

The feature is also CPU-intensive and memory-intensive. As a result, the
feature can be disabled using the “Force variable check on load” option in the
Tools/Options interface (see Chapter 4, section 4.3.1, “General
Environment Options,”). However, we recommend creating smaller
projects and taking advantage of AcuBench’s automation tools.

3.5.4.2 Organizing your workspace

As you work in AcuBench, remember that workspace organization is entirely
virtual, and that an AcuBench project is a virtual grouping of related
programs. This means that although AcuBench creates a default directory
structure for a project, only AcuBench-generated code needs to reside within
that structure. Remember that:

• Your project directory structure can be as simple as a single folder

• Multiple projects can share a single project directory

• Programs and COPY files can reside outside of the project folder

All of this makes it possible for you to manage your entire large application
within a single version control project, while maintaining multiple
AcuBench projects.

3-22 Workbench Concepts
The AcuBench “.ini” file provides a means of standardizing screens, reports,
code generation options, and other properties of the workbench environment
across multiple workspaces. For more information, see Chapter 4, section
4.2, “The Tools/Options Dialog.”

At the project level, project options files (“.pof”) allow you to create
compiler, runtime, and environment settings once, then import them into
other new or existing projects. See Chapter 7, “Project Settings,” for more
information.

3.5.4.3 The command-line interface to AcuBench

To make it easier to manage multiple small projects, AcuBench has a
command-line interface that allows you to generate and build workspaces
from the Windows cmd shell.

Note: The Windows “Command Prompt” shortcut launches the 16-bit
command.com shell. The AcuBench command-line interface does not
function in this environment. Instead, open the Start menu and select Run.
In the Run dialog, type cmd and press Enter to launch the 32-bit shell.

The AcuBench command-line interface allows you to generate and build an
entire workspace, or any program within a workspace. By default, whichever
project mode is currently active for the project (as recorded in the “.pjt” file)
is used to determine the compiler settings used for the build.

Tip: To ensure that you know which project mode you are using, you can
create multiple copies of the PJT file. To do this, set a project mode (i.e.,
Release) in AcuBench, then save and close the workspace. Make a copy of
the PJT file and give it a new name (“Prj1-Release.pjt”). Repeat the
process for each of the project modes that you want to invoke from the
command line. When you want to build a project in a particular mode, refer
to the appropriate PJT file.

It is important to remember that only a single instance of each AcuBench
version can run on a given machine. This means that you must close the IDE
before using the command-line interface.

Development Approaches 3-23
Building a workspace

The syntax for building a workspace using the command-line interface is as
follows:

[acupath]\acubench80.exe /build [projectdir]\[workspace.pjt]

For example, if you have AcuBench installed in the default directory, and you
would like to generate and build a workspace called “Project1”, use the
following command:

c:\Acucorp\Acucbl8xx\acubench\acubench80.exe /build c:\project1\project1.pjt

From the command-line interface, the “/build” and “/rebuild” flags are
interchangeable. With either parameter, AcuBench checks whether code has
changed since the last build. If any part of the program has changed, the code
is regenerated and compiled. This is the same behavior that you get when
you execute a Build Workspace command from the AcuBench Build menu.

The log file

All output messages generated during the build are recorded in a file called
“build.log”, placed in the project directory for the workspace being built. If
this log file does not exist, it is created. If the log file already exists, messages
generated by the new build are appended to the existing log. The log file also
includes the start and end times for the build.

Building a single program

To generate and build a single program in a project, the syntax is as follows:

[acupath]\acubench80.exe /build [projectdir]wkspc.pjt prg.psf

Using a build script

To generate and build multiple workspaces at the same time, you can create
Windows script (batch) files. In the following example, the script builds
three programs residing in two workspaces and prints compiler success or
failure messages to the screen:

3-24 Workbench Concepts
@echo off
rem

set bench_80="C:\acucorp\acucbl8xx\acubench\acubench8x"
echo

echo ... now building program1
%bench_80% /build c:\project1\sample1.pjt program1.psf
IF %errorlevel%==0 ECHO Success.
IF NOT %errorlevel%==0 ECHO Fail.
echo.
echo ... now building program5
%bench_80% /build c:\project1\sample1.pjt program5.psf
IF %errorlevel%==0 ECHO Success.
IF NOT %errorlevel%==0 ECHO Fail.
echo.
echo ... now building sample25
%bench_80% /build c:\demos\demos.pjt sample25.psf
IF %errorlevel%==0 ECHO Success.
IF NOT %errorlevel%==0 ECHO Fail.
echo.

Likewise, a script file could be used to build several complete workspaces
and create a log file, or send a message to the system administrator when the
builds are complete.

3.6 Using Thin Client Technology with AcuConnect

If you want to enjoy the benefits of centralized application maintenance and
the performance characteristics of a “thin” architecture, then you can use
Micro Focus’s Thin Client technology with AcuConnect®. In a thin client
environment, ACUCOBOL-GT programs running on a UNIX, Linux, or
Windows NT/2000/2003 server can present a graphical interface on a
Windows display host that is running AcuBench. UNIX and Linux users can
enjoy the stability and security of their multi-user environments and the
graphical nature of Microsoft Windows.

Using Thin Client Technology with AcuConnect 3-25
Micro Focus’s thin client technology supports the following server platforms:
UNIX, Linux, VMS v7.2 or later, HP e3000, Windows NT Server, Windows
2000 Server, and Windows 2003 Server. The following client platforms are
supported: Windows XP, Windows NT 4.0 Workstation, Windows 2000
Professional, and Windows Vista.

Thin client operations allow great flexibility in your development
environment. For example, assume your source code is stored on a UNIX or
Linux application host and protected by a version control system. You check
needed files out to a Windows display host running the workbench and edit
your source using Code Editor functions. Source is compiled in the
workbench and object code is directed to the remote server. Remote
debugging capabilities let you test your application, which is displayed on the
Windows client while it is running on the UNIX or Linux server. When you
finish your work, you check your source files back in to the server.

You use the Build/Use Thin Client menu command to signal the workbench
that you want to use thin client functions. Before you compile for thin client,
you need to set additional project properties, project settings, and runtime
options, and create an alias that contains your thin client command line. You
can create object files or libraries in a remote server directory and maintain a
UNIX runtime configuration file. Debug your application with the
AcuBench integrated debugger or the ACUCOBOL-GT runtime debugger.
The commands you now use to develop your project locally (including
Compile, Build, Execute, and Debug) help you develop your project in a thin
client environment. For information about setting up a remote project, see
Chapter 6 in this manual.

If your program is already a graphical application, then you have a little
conversion work to perform for thin client operations. If your application is
character-based, then you have some development options:

1. Maintain your character-based application on a UNIX or Linux host.

2. Migrate your character-based application to graphical.

3. Develop a new graphical user interface for your UNIX or Linux
server-based application.

If you want to maintain your character-based application, you can work with
it as is in the workbench with thin client. Note that some display limitations
may apply when you choose to maintain your character interface. Certain

3-26 Workbench Concepts
functions may not appear as expected, and other unsupported functions may
not display at all. You may decide to alter your code to work around any
unacceptable behavior. Limitations are described in section 5.1.1 in the
AcuConnect User’s Guide.

If you decide to migrate your character-based program to graphical, Micro
Focus’s thin client solution can play an important role. Start with the
ACUCOBOL-GT Character-to-GUI Wizard, which can convert your
character screens to graphical whether or not your program uses a Screen
section. Add other screens to your application using the Screen Designer.
Include ActiveX controls in your interface as well as ACUCOBOL-GT’s
standard controls. For information about the Character-to-GUI Wizard, see
Appendix A, “Bringing Existing Code Into AcuBench,” in this manual.
For more information about Micro Focus’s thin client technology, refer to the
AcuConnect User’s Guide.

If you choose to change the look of your interface completely, you can
develop a new graphical interface for your application from scratch. The
AcuBench graphical Screen Designer provides access to a wide range of
graphical technology, including standard and ActiveX controls. The Screen
Designer’s interface and functions are described in Chapters 13-15 in this
manual.

4
 Customize Your Working
Environment
Key Topics

Introduction ... 4-2

The Tools/Options Dialog ... 4-2

Setting Environment Options... 4-5

Setting Code Editor Options .. 4-15

Setting Screen Designer Options.. 4-19

Setting Code Generator Options.. 4-19

Setting Data Designer Options ... 4-27

Setting Report Writer Options... 4-28

The Customize Dialog .. 4-29

4-2 Customize Your Working Environment
4.1 Introduction

Many elements and attributes of the AcuBench interface can be customized
to suit your preferences. Workbench windows and toolbars can be positioned
directly with the mouse, or hidden and displayed via the View menu or the
element’s right-click menu. Toolbars can be created or changed and links can
be added to external applications (such as a calculator, for example, or a Web
browser). Keyboard shortcuts used to invoke workbench commands can be
added, modified, and removed. And that’s only the beginning.

Many aspects of AcuBench’s basic functionality can also be customized to
adapt the working environment to your preferences. Code generation
behaviors, default directory structures, default properties for screens, reports,
and controls, and other important workbench features can be adapted to your
standards, to suit your needs.

Toolbar creation and editing, and the creation of links to external
applications, is handled through the Tools/Customize interface. This
interface is discussed in section 4.9.

Other customizable aspects of AcuBench can be viewed and modified in the
Tools/Options dialog, introduced in section 4.2 and discussed throughout the
greater part of this chapter.

4.2 The Tools/Options Dialog

The Options dialog organizes customizable workbench options into six main
categories: Environment, Code Editor, Screen Designer, Code Generator,
Data Designer, and Report Writer. Each of these categories is represented as
an item in a tree view along the left side of the interface. Each tree can be
expanded to reveal sub-categories of information that can be customized for
each major category. When you select an item in the tree, options related to
that item appear on the right side of the interface.

The Tools/Options Dialog 4-3

Some options displayed here pertain to user interface customization. Others
allow you to configure support for such functions as workspace build
behavior, Version Control system support, and Code Insight (code
completion), as well as to create template code and set screen and report
defaults, and more.

It is important that you take the time to get acquainted with all of the options
available in the Options dialog.

Using the Tools/Options dialog

To change your workspace options, open the Tools menu and select Options.
The tree view on the left side of the screen lists each of the major categories
that you can customize. Click the plus sign to the left of a category to expand
the tree and see all of the available subcategories for that option. Select an
item in the tree, then make your changes to the options listed on the right side
of the window, according to the information provided in this chapter.

4-4 Customize Your Working Environment
When you are finished making changes, click OK to save your changes.
More information about different ways to save and reuse your Tools/Options
settings appear later in this section.

Saving option settings

Option settings are automatically saved when you click OK to close the
dialog. They are saved to a file called “AcuBench80.ini”, located in your
Application Data directory. When AcuBench is launched, the settings are
read and applied to the current workspace.

You can save the current settings to a specified file by clicking the Save
button at the bottom of the dialog. You determine the file name and path;
AcuBench automatically assigns the file an extension of “.ini”. Because the
file contains important default settings for screens and reports, as well as
code templates and build options, it can be useful to create a customized
“.ini” file to be shared by all members of the development team.

Caution: Do not remove the “AcuBench80.ini” file that resides in the
AcuBench installation directory.

Loading option settings

When you change workstations, upgrade to a new version of AcuBench, or
make changes to the AcuBench “.ini” file that your team uses for consistency
management, you can load your customized “.ini” file at any time. You do
not need to have a workspace open to load a new AcuBench “.ini” file.

To load the file:

1. Open the Tools/Options interface and click the Load button at the
bottom of the screen.

2. Navigate to the directory containing the file, select the file, and click
Open.

3. Click OK to close the Tools/Options interface.

Some changes, like automatic save times and color settings, go into effect
immediately. Others, like control property defaults, are applied to new
elements added to a workspace, but are not retroactively applied to existing
program elements.

Setting Environment Options 4-5
4.3 Setting Environment Options

The Environment configuration options are organized into the following
subcategories:

4.3.1 General Environment Options

The options in the General category allow you to control:

• the timing of the automatic save function

• the Recently Used Files list

• what the workbench loads when it is first started or opens a workspace

• how AcuBench handles adding existing projects to new workspaces

• whether AcuBench validates screen- and report-related variables when a
program is loaded into memory

• the default source file format

• the translation of ASCII extended characters to Windows ANSI
extended characters

General Workbench startup options

Template Options for configuring the File/New dialog and an
interface for adding file templates

Version Control An interface for defining version control system
commands

Build Used to determine what actions AcuBench performs
before parsing, building/compiling, and executing

Debug Defines some AcuBench integrated debugger behavior

Keyboard An interface for assigning keyboard shortcuts to
workbench commands and changing existing shortcuts

Prefix Defines the default folder names and file locations
associated with new projects

Miscellaneous Options that control how the COPYPATH variable is
defined and whether an imported source file is
automatically converted to an AcuBench program

4-6 Customize Your Working Environment
Use the following procedures to set General Environment options, as needed:

1. Select the General category of the Environment options.

2. “Automatic save” option: To disable the default automatic save
setting, clear the Automatic save check box. You can change the
default time setting by entering a new value (from 1 to 120) in the text
box. The automatic save function applies to source files (“.cbl”),
workspace files (“.pjt”), program structure files (“.psf”), and data
layout files (“.dlt”). The automatic save function updates disk files and
saves information to the registry, allowing AcuBench to restore your
project to a consistent state after an unexpected program interruption.

3. “Recently used” lists: To change the size of the “Recently used file
list” or the “Recently used workspace list,” enter an integer value
between 1 and 8 in the corresponding entry field.

4. “On start-up” options: In the “On start-up” section, select a radio
button to specify what the workbench displays or loads when it is first
started.

5. “On add project” option: Normally, if you add an existing project to
a new workspace (using the “Open Project” command), AcuBench
does not move or copy the project’s files from their existing location.
To change this behavior, and have AcuBench make a copy of the
existing project’s files within the new workspace’s directory structure,
select the “Copy project files to new project directories” check box.

6. “On open workspace” option: This option determines how
AcuBench behaves when a workspace is opened. Enable the check
box to direct the workbench to reopen the documents that were open
the last time the workspace was open.

7. “Force variable check on load” option: If this option is selected,
when AcuBench loads a program into memory, it automatically verifies
that all variables associated with screen or report controls exist,
whether in an AcuBench-generated COPY file or FD, or in an external
COPY file. If a variable does not exist, AcuBench creates it in
Working-Storage. To bypass the variable check, de-select this option.

8. “Default source format”: Specify the default source format type by
selecting a radio button in the “Default source format” group.

Setting Environment Options 4-7
9. Extended ASCII characters: Enable Translate to ANSI/OEM to
cause the workbench to translate extended ASCII characters that
originate in the OEM environment to Windows ANSI extended
characters. Characters are retranslated back to OEM when the
document is saved.

4.3.2 Template Options

When you work in AcuBench, you are provided with a series of default
templates, used as the basis for creating new programs, data layout files,
screens, reports, and files. In addition to these defaults, you have the option
to create your own custom screen, report, and file templates. Using custom
templates can help you to maintain a consistent code structure and program
appearance across an application or application suite.

The Template portion of the Tools/Options interface lets you determine how
both the AcuBench default templates and your own custom templates are
made available for your use. You can even entirely disable the File/New
dialog that allows you to choose the base template for programs, data layout
files, screens, reports, and files, such that basic, default characteristics are
always used when you create a new program item.

The process of creating templates is discussed elsewhere in this manual.
Source file templates are discussed in section 12.5.7, screen templates are
discussed in section 13.4, and report templates are described in section 16.4.
All files added using this dialog are displayed in the New File, New Screen,
or New Report template group, depending on the template type.

Follow these steps to set Template options:

1. Select the Template category of the Environment options.

2. “Use File/New” options: Toggle the check boxes in the “Use
New/File dialog when creating” group to control when the File/New
dialog is displayed. By default, these are all selected, indicating that a
File/New interface containing the available AcuBench templates is
displayed whenever you create a new program element.

4-8 Customize Your Working Environment
When you de-select an option, the File/New dialog does not appear when
you opt to create a new element of the specified type. Instead, a default
element type is automatically created. The defaults are:

3. “Customize Template” interface: To add templates that you have
created to the File/New dialog, first select the type of template from the
“Template for” drop-down box.

a. Click Add and provide a descriptive title for the template that you
want to use.

b. Click the browse button to navigate to the location of the template
file, then select the file and click Open.

c. Add a detailed description of the template in the large entry field
at the bottom of the Add New Template File interface.

d. Click OK. When you exit the Tools/Options interface, you can
use the File/New command to verify that your template has been
added to the appropriate interface.

To remove a template that you have previously added to the interface,
select the template icon and click Delete. To modify the title, file path,
or description of a template, select its icon and click Modify.

You cannot change the set of default templates using this interface.

4.3.3 Version Control Options

The Version Control options allow you to define commands to work with
your version control system. A complete description of the Version Control
interface is contained in Chapter 5, “Version Control.”

Program Standard Program (a program structure file with an empty
screen)

Screen Blank Graphical (an empty graphical screen)

Report Blank Graphical (an empty graphical report)

File Source Template (a very basic file with COBOL divisions
and AcuBench tags)

FD/SL Blank (launches the File Designer, bypassing the Import
option)

Setting Environment Options 4-9
4.3.4 Build Options

The Build options allow you to control some aspects of how the workbench
behaves when you run tools, compile programs, execute object files, or
build/rebuild the workspace.

Use the following procedures to set Build options:

1. Select the Build category of the Environment options.

2. “When running tools” option: Enable Always save all documents
to automatically save all open documents before performing such
actions as reparsing, generating code, or compiling, among others.

3. For the three options under “When compiling programs that include
generated source code”:

• Enable Always generate code if program structure file is
modified to generate code before compiling any time that the
program structure file has been modified since the last generate
action.

• Enable Prompt before generating source code to direct the
workbench to always display a confirmation dialog before starting
code generation.

• Enable Jump to Event Editor when browsing to direct AcuBench
to open the Event Editor when you click on a compilation error
message caused by code in the program’s “.evt” COPY file.

4. For the two options under “When executing source (.cbl) or object
files”:

• Enable Always re-compile if the original source file is modified
to direct the workbench to recompile a modified source file before
executing the associated program.

• Enable Prompt before re-compiling source file if you want the
workbench to display a prompt that asks if you want to recompile a
modified source file.

5. For the two options under “When building or reparsing the
workspace”:

4-10 Customize Your Working Environment
• Enable Always generate modified program (.psf) files to direct
AcuBench to first generate code for all programs (“.psf” files) in the
workspace that have been modified since the last build/rebuild or
reparse, before starting the new build/rebuild or reparse.

• Enable Always generate modified FD/SL (.dlt) file to direct the
workbench to generate new FD and SL files and update any
user-modified file-handling code for all data layout files (“.dlt”) that
have been modified since the last build/rebuild or reparse, before
starting the new build/rebuild or reparse.

4.3.5 Debug Options

The Debug options allow you to specify whether AcuBench should perform
the same save and code generation actions, prior to starting a program in the
debugger, that are performed prior to a build/rebuild. Because you have the
option to modify code in the debugger, this option can provide a handy way
to speed up the testing of new changes. Consider the following case:

• In the Tools/Options/Build interface, you have specified that AcuBench
should generate code before compiling or recompiling source code.

• In the Tools/Options/Debug interface, you have specified that the
integrated debugger should follow build options.

• As you are debugging a program in the integrated debugger, you make
some changes to your event code.

• When you exit and re-enter the debugger, AcuBench checks for changes,
regenerates your program, compiles, and restarts the debug process. You
can immediately test your changes to the code.

There is an important caveat for those considering this option. If you have
selected “Always save all documents” in the Tools/Options/Build interface,
having the debugger use the build options may have a significant impact on
performance. Because saving a file changes its timestamp, this combination
of options causes AcuBench to perform a detailed check for code changes in
every file every time you enter the debugger.

Setting Environment Options 4-11
This interface also lets you determine whether the current line of execution in
the debugger is highlighted and what the highlight color is.

To set Debug options, perform the following steps, as needed:

1. Select the Debug category of the Environment options.

2. Enable the Follow the options specified in ‘Build’ page check box to
direct the workbench to apply the settings in the Build category to the
set of actions taken prior to starting a program in the debugger.

3. Enable the Colorize line of execution check box if you want the
current line of execution in your code to be highlighted. Choose a
highlight color in the drop-down box to the right of the check box.

4.3.6 Keyboard Options

The Keyboard options allow you to view, define, redefine, or remove the
keyboard shortcut keys associated with workbench commands. A complete
list of workbench commands and their default keyboard shortcut settings is
provided in Chapter 23.

At the top of the Keyboard options screen, next to the Categories label, is a
drop-down list of three command categories: Main, Code Editor, and Screen
Designer. Main is a superset of Code Editor and Screen Designer.

You can set Keyboard options as follows:

1. Select the Keyboard category of the Environment options.

2. Select the category of commands that you want to view or modify.

To view a shortcut key definition, locate the command of interest in the list.
The shortcut key definition, if any, is displayed in the column to the right of
the command.

Use the following procedures to assign a shortcut key:

1. Locate the command of interest in the list and click on it. Note that a
short description of the command is displayed to the right of the
“Currently assigned to” label near the bottom of the screen.

4-12 Customize Your Working Environment
2. Click in the Shortcut key entry field.

3. Enter the desired key or key combination by pressing keys on the
keyboard. As you press each key, the keystroke appears in the entry
field.

Look under the “Currently assigned to” label to see if that key (or key
combination) is already defined for another command. It is possible to
assign the same key to more than one command. However, doing so is
only desirable when the commands can only be activated in mutually
exclusive states. For example, the key combination “Ctrl+G” might be
defined in the Code Editor to perform a GotoLine command and in the
Screen Designer to toggle the grid (ToggleGrid). Because you can’t be
actively working in both the Code Editor and Screen Designer at the
same time, typing “Ctrl+G” is never ambiguous, and the correct action is
always performed. In the case where the commands do not belong to
mutually exclusive states, the results are undefined.

4. Click Assign.

To remove a shortcut key, locate the desired command and click on it. Note
that a short description of the command is displayed to the right of the
“Currently assigned to” label. Click Remove.

To restore the default shortcut definitions, click Reset All.

4.3.7 Prefix Options

The Prefix options allow you to determine the naming convention used to
provide default names for new projects and files and the default directory
paths established for those elements. These default directory paths are used
to create a directory structure for each new project that you create. You can
change this structure only when you are creating a new project, when you
click the More Info button. Once a project has been created, the directory
structure can no longer be changed.

Use the following procedures to set your default Prefix options:

1. Select the Prefix category of the Environment options.

2. File prefix fields: For each file type, enter the string to be used as the
default base name for creating new files of that type.

Setting Environment Options 4-13
3. Working directory fields: For each working directory, enter the
desired folder name in the entry field.

Each of the working directory entries in this interface has a corresponding
macro, which you can use as a shorthand method of referring to the directory
path in other AcuBench interfaces, such as the Project Settings interface.
These macros include the following:

If you are using the default project directory structure, the following syntax:

.\object\@.acu

is functionally equivalent to:

%objectdir%\@.acu

Note that, by default, these working directory macros, rather than full
directory paths, are used in COPYPATH definition that appears on the
Environment tab of the Project Settings window.

4.3.8 Miscellaneous Environment Options

Although somewhat obscured by their placement in this category, the
Miscellaneous options include three very important options that affect:

• how the COPYPATH environment variable is defined

• whether when a source file is added to a project, tags are inserted in the
file and a program structure file is created

Macro Definition

%sourcedir% The path assigned in the Source directory field

%screendir% The path assigned in the Screen directory field

%reportdir% The path assigned in the Report directory field

%copylib% The path assigned in the Copylib directory field

%objectdir% The path assigned in the Object directory field

%listdir% The path assigned in the List directory field

%resdir% The path assigned in the Resource directory field

%layoutdir% The path assigned in the FD directory field

4-14 Customize Your Working Environment
The definition of the COPYPATH environment variable determines where
AcuBench looks for COPY files and whether and which files are found. Its
correct definition is essential to a successful build. For a detailed discussion
of the COPYPATH environment variable, see section 7.5.2.

Use the following steps to set Miscellaneous options, as needed:

1. Select the Miscellaneous category of the Environment options.

2. For the two options under COPYPATH:

• Enable When adding a COPY file to automatically modify the
definition of COPYPATH to include the path to the new COPY file.
COPYPATH is defined on the Environment tab of the Project
Settings window.

• Enable When modifying COPY path in Add/Remove files dialog
to modify the definition of COPYPATH when it is changed via the
Add/Remove Files dialog.

3. Under the “Automatically create a program structure file” option,
enable When adding a source file to the project’s source folder to
direct AcuBench to create a program structure file for any source file
that is added to a project. As a part of this process, the source file is
modified to include a set of AcuBench tags (see section 3.3). Note that
only programs that have a program structure file are able to use the
Screen Designer and other tools that generate code.

Keep in mind that in the Add Program dialog, you can specify, on an
individual basis, whether a program structure file should be created for
any given program being added. For an introduction to AcuBench
programs, see Chapter 3, section 3.2.3, “Programs.” More detail is
available in Chapter 9, “Working with Programs.” For a discussion
of adding source files to a project, see section 9.3.2.

Setting Code Editor Options 4-15
4.4 Setting Code Editor Options

The Code Editor portion of the Tools/Options dialog provides interfaces for
customizing both the appearance and the functionality of the Code Editor.
This includes options that determine the behavior of Code Editor tools,
including the Code Completion pop-up window and the AcuBench
paragraph, variable, constant, and COPY file lists.

4.4.1 Code Editor General, Format, Tabs, and Keyword
Options

General options for the Code Editor let you determine Line Number pane
width, Code Editor line length, ASCII code settings, and behavior of the
editor’s vertical block select function.

Format options can be used to change the colors that identify each ANSI
display field (Sequence Number area, Indicator area, area A, area B, and
Identification area). You can also customize the appearance of code text
types (Comment, Keyword, String, Number, and Text) and designate the text
string that is inserted in ANSI format columns 73-80 when you modify
source code.

Format options also allow you to change the default column settings of your
file. The default settings are the ANSI-specified standard settings. If you are
working with terminal source format, you may want to change these default
settings. An explanation of terminal source format is found in Book 1 of the
ACUCOBOL-GT documentation set.

Tabs options allow you to direct that the editor support the tabs in your source
code or automatically convert the tabs in your code to spaces. You can also
set up to 32 custom tab stops.

Finally, Keyword options give you the ability to add, delete, and modify
keyword sets. You can also determine how far the next line after the keyword
will be indented, if at all.

4-16 Customize Your Working Environment
Note that these keyword settings affect only the workbench’s colorization
and auto-indent functions. Adding or deleting a keyword in a default list
does not affect the behavior of the ACUCOBOL-GT compiler. To change the
list of reserved words recognized by the compiler, use the “-R” flag,
described in Book 1 of the ACUCOBOL-GT documentation set.

The Code Editor General, Format, Tabs, and Keyword options are described
in Chapter 11, “Configuring the Code Editor.”

4.4.2 Code Insight Options

The Code Insight functions are intended to facilitate source code creation,
especially when working with graphical screens and reports. The code
parameter feature displays hints (similar to the tool tips that appear when the
mouse hovers over a button on a toolbar) for using certain COBOL verbs.
Code completion provides pop-up lists of options to help complete some
code statements and internal library routine calls. Code parameters and code
completion are available for the following verbs: CALL, PERFORM, READ,
WRITE, START, DELETE, REWRITE, OPEN, CLOSE, CHAIN, MODIFY,
INQUIRE, DESTROY, and GO. For more information about using these
functions, see Chapter 12, section 12.5.4, “Using Code Insight
Functions.”

With code templates, you can create a library of commonly used code
paragraphs or sections. This list of templates can be accessed from within the
Code Editor using the hotkey Ctrl+J.

You can set Code Insight options using the following procedures:

1. Select the Code Insight category of the Code Editor options.

2. Select the Code Completion feature if you want the workbench to
display a list of possibilities for completing your code statement.

3. Select Code Parameters if you want AcuBench to display a pop-up
hint that generally describes the function of the verb you have entered.

Setting Code Editor Options 4-17
4. Use the “Code Template” text box to define frequently used code as a
template that can be inserted into your source code with a mouse click.
Approximately 20 default templates are available in the workbench.
These templates may be modified directly in the dialog’s “Code”
window.

• Click New to add a new template to the list, then enter the code for
the new template in the “Code” window. You can either paste code
from the Code Editor or another source, or type directly into the
window.

• Add a pipe sign (“|”) in your code to position the cursor when the
template is used. If you include multiple pipe signs, the cursor
appears at the first pipe sign in the last line of the code template text.
Use a double pipe sign to indicate that the following text should be
inserted as a comment.

• You can display the current list of code templates when working in
the Code Editor by pressing Ctrl+J or selecting the
Edit/Advanced/Code Template command.

4.4.3 Paragraph List, Variable List, Constant List, and
COPY File List Options

The Paragraph List, Variable List, Constant List, and COPY File List options
allow you to specify how each of these pop-up lists is sorted, and to
determine which columns of information are displayed in the box. Because
each of these lists functions in a similar manner, the configuration options for
each list are likewise similar.

You can set the options Paragraph, Variable, Constant, and COPY File lists as
follows:

1. Select the appropriate category from the Code Editor options.

2. In the “Sort By” area, select one of the available radio buttons to
determine how the pop-up list will be sorted.

To sort items in order of their occurrence in the program, mark the
Occurrence in the program radio button.

4-18 Customize Your Working Environment
To list items in alphabetical order, choose the Alphabetically radio
button.

The Paragraph List has the following unique options:

• To sort COPY file names alphabetically and have paragraph names
sorted by occurrence within each COPY file, choose Occurrence
within alphabetic sort of copybooks.

• To sort COPY file names alphabetically and have paragraph names
sorted alphabetically within them, select Alphabetically within
alphabetical sort of copybooks.

The Variable List has the following unique options:

• To sort variable names by level number, choose the Level number
radio button.

• To sort variables by picture clause, select Picture description.

The Constant List has the following unique option:

• To sort constants by value, select Value.

Setting Screen Designer Options 4-19
The COPY Files List has the following unique options:

• To sort COPY files alphabetically by directory, select the Directory
radio button.

• To sort COPY files based on the names of the files in which they are
declared, choose Declared file.

3. In the “Show” option area, mark one or more of the available check
boxes to determine what information will appear in the pop-up list.

The Paragraph, Variable, and Constant lists all have the option to display
the name of the COPY file in which the program element is declared. To
select this option, mark The name of the copybook.

The Variable List has the following additional options:

• To display level numbers, select Level number.

• To display picture clauses, select Picture description.

• If you want to see FILLER data items in the Variable List, mark
Include FILLER data item, as well.

The Constant List has the following additional option:

• Select Value to see each constant’s value in the Constant list.

Finally, the COPY File List has the following options:

• To display each COPY file’s directory, select the Directory check
box.

• To see the file in which each COPY file is declared, select Declared
file.

4.5 Setting Screen Designer Options

You can set Screen Designer features, including grid behavior, control
property default values, and control property visibility options in the Screen
Designer portion of the Options dialog box.

4-20 Customize Your Working Environment
These options are discussed in detail in Chapter 13, “Configuring the
Screen Designer.”

4.6 Setting Code Generator Options

The Code Generator options allow you to control which files are generated
and, in some cases, what parts of a file are generated when you initiate a
Generate action. You can also determine the default program tags you want
AcuBench to generate, including “extern” tags, which allow the automatic
generation of “.def” and COPY file statements for external files. For a
detailed discussion of workbench code generation facilities, see section 3.3.

4.6.1 Generate Document Options

The “Generate Document” options let you determine the automatic code
generation behavior you want AcuBench to perform. You can also change
the default file extensions for generated files in this interface. When you
change a default file extension, that change is also reflected in the Program
Properties dialog. Note that changes to these settings made on the Code
Generation tab of the Program Properties dialog override the default settings
made in this Options/Generate Document interface. Refer to section 9.2.2,
“AcuBench Program Properties,” for information about this dialog.

Set any desired Generate Document options as follows:

1. Select the Generate Document category of the Code Generator options.

2. The list of options under “Generated documents” are selected by
default. These options have the following functions:

• When Program file is selected, and Regenerate tagged area only
is not selected, AcuBench generates code for the program source
file, replacing the existing program_name.cbl file. You can change
the default file extension (“.cbl”) in the associated entry field.

• When both Program file and Regenerate tagged area only are
selected, AcuBench generates code in the tagged portions of the
program file (“.cbl”) only. This preserves any code that you may
have added outside of the AcuBench tags.

Setting Code Generator Options 4-21
• When Working storage is selected, AcuBench generates the
Working-Storage COPY file (“.wrk”). You can change the default
file extension in the associated entry field.

• When both Working storage and Exclude variables in program
file are selected, AcuBench does not generate Working-Storage
items in the “.wrk” file for variables that are already declared in the
program file (“.cbl”).

• When Event paragraph is selected, AcuBench generates the event
paragraph COPY file (“.evt”). You can change the default file
extension in the associated entry field.

• When both Event paragraph and Exclude paragraphs in
program file are selected, AcuBench does not generate paragraphs
that are already included in the program file. The workbench
assumes that a paragraph in the program file with the same name as
a paragraph that could be generated in the “.evt” file suppresses the
paragraph that could be generated.

• When Screen section is selected, the workbench generates a Screen
Section COPY file (“.scr”). You can change the default file
extension in the associated entry field.

• When Report section is selected, the workbench generates a report
COPY file (“.rpt”). You can change the default file extension in the
associated entry field.

• When Procedure division is selected, AcuBench generates a
Procedure Division COPY file (“.prd”). You can change the default
file extension in the associated entry field.

• When Menu paragraph is selected, AcuBench generates a menu
paragraph COPY file (“.mnu”). You can change the default file
extension in the associated entry field.

• When Linkage section is selected, AcuBench generates a Linkage
section COPY file (“.lks”). You can change the default file
extension in the associated entry field.

3. For the two “Attributes of generated files” options:

• Select Program file as read-only to cause the source program file
(“.cbl”) to be created as a read-only file.

4-22 Customize Your Working Environment
• Select Copy book as read-only to cause all generated COPY files
to be created as read-only files. This is the recommended behavior.

4. “Screen Control Focus” option: Set a value for the
ACCEPT-CONTROL variable (from 0-4) in the
ACCEPT-CONTROL value entry field. The default value is “1”. If
you do not want an ACCEPT-CONTROL statement generated at all,
select (none). For information about the purpose of
ACCEPT-CONTROL, see General Rule 4 of section 4.2.3,
“Special-Names Paragraph,” in ACUCOBOL-GT Reference Manual.

5. “Generated document format” options: Set the Merge to one
program file radio button if you want all your AcuBench-generated
code, including COPY files, written to a single program file. Note that
AcuBench can handle approximately 200,000 total lines. If your files
total more than this amount, the merged file may fail to produce.

Set the Split to multiple copy files radio button if you want AcuBench
to maintain your COPY files in separate files.

6. “Attributes of Data Set code generation” option: Select Link file
close to open if you want AcuBench to automatically generate a Close
I/O paragraph for a data set when the Open option is already set. This
code generation option is especially helpful if you are upgrading your
Version 5.x AcuBench project to Version 6.x or later.

4.6.2 Program Tag Options

To support automated code generation, if you choose, AcuBench places
special comment tags in your COBOL source file. These tags reserve areas
of your program for code generated by AcuBench. For example, if you use
the Screen Designer to create a screen for your program, every time you
generate code for the program, the workbench creates a COPY file that
describes the screen, and a COPY statement is inserted between the
copy-screen tags in your program’s Screen section. You can control whether
specific tag pairs are automatically generated or suppressed via the
Tools/Options/Code Generator/Program Tag interface.

AcuBench tags always have the format:

*{Bench}tag-name
*{Bench}end

Setting Code Generator Options 4-23
When working with programs that include AcuBench-generated code,
always be sure to add any user-defined code outside of the “{Bench}” tags.
Everything between the tags is deleted and re-created every time you
generate the program, but code outside the tags is preserved (unless you have
specifically elected otherwise in your Code Generator options).

If you were to use all of AcuBench’s facilities for automatically generating
code, your program could have the following set of tags in your source file
(“.cbl”):

*{Bench}prg-comment
* Demo.cbl
* Demo.cbl is generated from C:\Sample\Demo.Psf
*{Bench}end
 IDENTIFICATION DIVISION.
*{Bench}prgid
 PROGRAM-ID. Demo.
 AUTHOR. ljones.
 DATE-WRITTEN. Wednesday, January 04, 2006 9:54:03 AM.
 REMARKS.
*{Bench}end

Program description comments and program ID information is pulled from
settings in the Project/Properties dialog.

A Special Names definition COPY file is included whenever ActiveX
controls are used in a screen created in the Screen Designer:

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL NAMES.
*{Bench}activex-def
 COPY "MSChart.def".
 COPY "Acuclass.Def".
 .
*{Bench}end

In the example above, the program uses the MSChart ActiveX control, so
AcuBench has added references to two required definition files between the
“activex-def” {Bench} tags.

4-24 Customize Your Working Environment
If in your Windows environment you have “,” (comma) defined as the
decimal symbol, a DECIMAL POINT IS COMMA statement is inserted
between the “decimal-point” tags, which the code generator places directly
after any ActiveX tags in the Special Names section.

*{Bench}decimal-point
*{Bench}end

COPY statements to include SELECT statement (“.sl”) COPY files
generated by the File Designer are inserted between the “file-control” tags:

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
*{Bench}file-control
 COPY Demo.SL
*{Bench}end

COPY statements to include file descriptor (“.fd”) COPY files generated by
the File Designer are inserted between the “file” tags:

 DATA DIVISION.
 FILE SECTION.
*{Bench}file
 COPY Demo.FD
*{Bench}end

COPY statements to include standard ACUCOBOL-GT definition (“.def”)
COPY files are inserted between the “acu-def” tags:

 WORKING-STORAGE SECTION.
 *{Bench}acu-def
 COPY "acugui.def".
 COPY "acucobol.def".
 COPY "crtvars.def".
 COPY "activex.def".
 COPY "showmsg.def".
 *{Bench}end

COPY statements to include Working-Storage (“.wrk”) COPY files
containing items defined by the graphical design tools are inserted between
the “copy-working” tags:

 *{Bench}copy-working
 COPY Demo.wrk
 *{Bench}end

Setting Code Generator Options 4-25
COPY statements to include external “.def” files are inserted between the
“extern-def” tags:

 *{Bench}extern-def
 COPY externalfile.def
 *{Bench}end

COPY statements to include Linkage section (“.lks”) COPY files containing
items defined in the Linkage Editor are inserted between the “linkage” tags:

 LINKAGE SECTION.
 *{Bench}linkage
 COPY Demo.lks
 *{Bench}end

COPY statements to include screen (“.scr”) COPY files created by the Screen
Designer are inserted between the “copy-screen” tags:

 SCREEN SECTION.
 *{Bench}copy-screen
 COPY MainMenu.scr
 COPY Orders.scr
 COPY Invoices.scr
 *{Bench}end

A Procedure Division header with a USING phrase is generated between the
“linkpara” tags when linkage items are defined in the Linkage Editor:

 *{Bench}linkpara
 PROCEDURE DIVISION USING order-id.
 *{Bench}end

A declarative section with code to handle standard file error conditions is
inserted between the “declarative” tags when data sets are defined with the
Data Set Designer. You can also control what is generated inside the
“declarative” tags via the Event Editor. Refer to Chapter 14, section 14.8,
“Associating Code with Screen Elements.” for more information:

 *{Bench}declarative
 DECLARATIVES.
 INPUT-ERROR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
 ...
 END DECLARATIVES.
 *{Bench}end

4-26 Customize Your Working Environment
An insertion point for user-defined code to be executed before the program’s
initial routine is added at the start of the “Acu-Main-Logic” paragraph.
When “Before Program” code is defined in the Event Editor, AcuBench
generates the necessary PERFORM statement between the tags.

 *{Bench}entry-befprg
 PERFORM Before-Orders-Program
 *{Bench}end

Code to call the program’s main screen (a paragraph included in the “.prd”
file generated by the Screen Designer) is inserted between the “run-mainscr”
tags:

 *{Bench}run-mainscr
 PERFORM Acu-MainMenu-Routine
 *{Bench}end

COPY statements that include procedure, event, and menu (“.prd”, “.evt”,
“.mnu”) COPY files are inserted between the “copy-procedure” tags:

 *{Bench}copy-procedure
 COPY Demo.prd
 COPY Demo.mnu
 COPY Demo.evt
 *{Bench}end

COPY statements to include corporate external Procedure Division COPY
files are inserted between the “extern-cpy” tags:

 *{Bench}extern-cpy
 COPY externalcopyfile.cpy
 *{Bench}end

If you want to view or print a report, a call to the master print paragraph is
inserted between these tags:

 *{Bench}reportname-masterprintpara
 *{Bench}end

Including and excluding tags

Tags are included in a new program when you generate the program the first
time. If you use the Code Generator/Program Tag section of the
Tools/Options interface to indicate that you do not want certain tags created,

Setting Code Generator Options 4-27
then later change your mind, the missing tags will not be added to programs
that you have previously generated. You can add the tags manually, after
which AcuBench will generate any corresponding code between the tags.

Tags are inserted into an existing program if you specify that AcuBench
should create a program structure file when you add the program to the
project. For more information about creating a program structure file when
adding a program, see section A.3, “Creating a PSF for an Existing
Program.” As a general rule, the workbench inserts tags at the end of each
relevant section (such as the Screen section). If the workbench cannot
determine where the end of a section is, it does not insert any tags.

In addition to the typical range of tags, you can also direct the workbench to
generate “extern” tags, which contain COPY statements for external “.def”
and COPY files. Note that standard “.def” and COPY file statements are
generated inside “acu-def” and “copy-procedure” tags.

You can set Program Tag options as follows:

1. Select the Program Tag category of the Code Generator options.

2. Set the Default Tag Name check boxes for the tag pairs that you want
AcuBench to generate automatically. Clear check boxes for the tag
pairs you don’t want generated.

Note that the selected tags are added to new AcuBench programs, or to
programs for which a new program structure file is being created. If tags
are added or removed from the list in the Tools/Options interface, no
change occurs in existing AcuBench programs. If you manually add an
appropriate set of tags to an existing program, the code generation
facility will generate any corresponding code between those tags.

3. Select Use External Working Storage Copy File Tag if you want the
workbench to generate tags for an external COPY file. These tags are
generated into the “.cbl” file, in the Working-Storage section, just after
the “{Bench}acu-def” tags.

Enter the file name in the associated Copy File List box, using the
Browse button to navigate to the desired COPY file. Use the Delete and
Delete All buttons to remove files from the list.

4-28 Customize Your Working Environment
4. Select Use External Procedure Division Copy File Tag if you want
AcuBench to generate tags for a COPY file. These tags are generated
in the “.cbl” file, in the Procedure Division, just after the
“{Bench}copy-procedure” tags.

Enter the COPY file name in the associated Copy File List box, using
the Browse button to navigate to the desired COPY file. Use the Delete
and Delete All buttons to remove files from the list.

4.7 Setting Data Designer Options

The Data Designer configuration options allow you to specify the inclusion
or exclusion of comments in files created by the data design tools (File
Designer, Working Storage Editor, and Linkage Editor). In addition, you can
select the colors used to display “linked” items (items brought in via a COPY
statement) included with the data designers. This interface also lets you
determine level-number interval settings for the graphical file designers.

To set General Data Designer options, use the following steps:

1. Select the General category of the Data Designer options.

2. “Comment” options: Select a radio button to specify the inclusion or
exclusion of comments in files created by the data design tools.

3. Enter a default prefix to be applied to any new I/O paragraphs in the
Function prefix entry field.

4. “Copy file color” options: Specify the colors used to show “linked”
data items in a data structure (included via the “Link to file” option of
the Add Item list). Linked items may themselves include items via
COPY statements. Items included as the result of nested COPY
statements are also shown in a contrasting color. You can set the color
used at each level by double-clicking in the Text Color field of the
desired level and selecting a color.

You can set Graphical FD, WS, and Linkage Data Designer options with the
following procedures:

Setting Report Writer Options 4-29
1. Select the Graphical FD, Graphical WS, or Graphical Linkage
category of the Data Designer options.

2. If desired, change the default element prefix in the Element Prefix
entry field.

3. Set the level-number intervals for the second, third, and fourth
sub-item levels for code generated by the File Designer. You cannot
change the first level setting.

4. Enter an interval for any levels past the fourth level. Your level-number
sequence, along with a preview of element names using the prefix
convention you have chosen, is shown in the display box.

4.8 Setting Report Writer Options

You can set Report Composer features, including grid behavior, report
control property default values, and report control property visibility options
in the Report Writer portion of the Options dialog box.

These options are discussed in Chapter 16, “Configuring the Report
Composer.”

4-30 Customize Your Working Environment
4.9 The Customize Dialog

The Tools/Customize dialog can be used to modify any of the default
AcuBench toolbars, create custom toolbars for AcuBench, or establish links
to external applications. This dialog contains three tabs.

The Toolbars tab allows you to create, delete, or reset a toolbar. It also
provides an alternate mechanism for controlling which toolbars are hidden or
displayed.

The Commands tab lists all of the commands in AcuBench that can be placed
on a toolbar, including the links you’ve established to external applications
(listed in the Launch Tools category).

The Tools tab hosts the interface that allows you to establish and configure
links to external applications.

The Customize Dialog 4-31
4.9.1 Customizing AcuBench Toolbars

One method through which the AcuBench workspace can be adapted to your
individual patterns of use is through the ability to customize existing toolbars
and create new ones.

If you have modified a toolbar and want to return to the default settings, you
can select a toolbar on the Toolbars tab of the Customize window and select
Reset. To return all toolbars to their default settings, select Reset All.

Selecting a toolbar name in the “Toolbars” list makes it visible on the screen;
de-selecting a toolbar name hides that toolbar.

You can delete any toolbar that you have created by selecting the toolbar
name in the “Toolbars” list and clicking Delete. You cannot delete any of the
default, AcuBench toolbars.

To create a new toolbar

1. Select Customize from the Tools menu. The dialog opens with the
Toolbars tab selected.

2. Click New. A “New Toolbar” dialog opens.

3. Enter a descriptive name for your new toolbar, then click OK.

The name of your new toolbar is added to the list of toolbars in the
dialog, and a small, floating toolbar appears just below the toolbar area
of the workspace.

4. Follow the instructions below to build your toolbar. As with any other
toolbar, you can dock your custom toolbar(s) at the top of the screen, or
in a variety of other locations in the workspace.

4-32 Customize Your Working Environment
To add buttons to a toolbar

1. Select the Commands tab of the Customize dialog.

2. Select a type of command from the “Categories” list box on the left
side of the screen. A list of icons associated with the category that you
have selected appears in the “Buttons” frame on the right of the screen.

3. Select a button from the list to see a description of the associated
functionality in the “Description” frame.

4. Drag the button from the “Buttons” frame to a toolbar to add that
command to the toolbar.

5. When you are finished using the Customize dialog, click Close.

To remove buttons from a toolbar

1. Make sure that you are in the Commands tab of the Customize dialog.

2. Drag the button from the toolbar to any part of the Customize dialog.

To add or remove spacers from a toolbar

1. Make sure that you are in the Commands tab of the Customize dialog.

The Customize Dialog 4-33
2. To add a spacer character to the left of an existing button, click the
button and drag it slightly to the right, then release the mouse button.

3. To remove a spacer character from a toolbar, click button to the right of
the character and drag it slightly to the left (overlapping the spacer
character), then release the mouse button.

4.9.2 Accessing External Applications

When you are working in AcuBench, it may be useful to have easy access to
external applications, like Windows Explorer, or a calculator. The Tools tab
of the Customize interface allows you to create a link to such external
applications. Once the link has been made, you can launch the associated
application from a menu within the workbench, or by adding a launch button
to any toolbar.

Add a link to an external application as described below:

1. Click on the New button in the upper right of the “Menu contents” list
box.

4-34 Customize Your Working Environment
2. In the empty field created for the new list item, enter the name that you
want to associate with the application. This is the name that is added
to the Tools/Launch Tools menu and the text of the “tool tip” that is
displayed when the mouse pointer is held over the command icon on
the toolbar.

3. Enter the full path of the external executable that you want to access
from within AcuBench in the “Commands” field, or use the browse
button to the right of the field to navigate to the executable.

4. The “Arguments” field is used to specify switches or parameters to
apply to the executable each time the application is started. You have
the choice to leave this blank or enter any options that you want to
pass.

The arrow button to the right of the field expands to provide the
following set of default arguments:

The %directory_code% AcuBench macros can also be used in this
interface.

5. If applicable, enter the full path to the directory that the application
will use as its working directory in the “Working Directory” field.

Argument Description

File Path {FilePath} The full path name of the files that are
contained in the current project or
folder.

File Directory {FileDir} The directory for the files contained in
the current project or folder.

File Name {FileName} The name of the selected file or files.

Current Directory {CurDir} The current directory containing the
AcuBench application.

Workspace Path {WkspPath} The full path name for the current
workspace.

Project Directory {ProjectDir} The directory containing the current
project.

Project Name {ProjectName} The name of the current project.

The Customize Dialog 4-35
By default, the working directory is the same as the location of the
application. Three of the tokens used in the Arguments field can also
appear in the working directory field. These are {FileDir}, {CurDir},
and {ProjectDir}.

6. Click Close to save your changes and exit the Customize interface.

Note that text in the “Context menu” field is not used at this time.

4-36 Customize Your Working Environment

5
 Version Control
Key Topics

Version Control Overview .. 5-2

The Version Control Interface ... 5-5

Adding Commands to the Menu Command List 5-8

Modifying the Command List .. 5-8

Saving the Command List .. 5-9

Command Variables.. 5-10

Issuing Version Control Commands ... 5-11

5-2 Version Control
5.1 Version Control Overview

AcuBench provides support for third party version control systems that
include a Windows command-line interface.

Version (source) control systems help developers manage and maintain
projects by creating a database of project files and resources, which the
version control system monitors and protects. In a team environment, this is
essential to allow multiple developers to work in the same project without
overwriting or otherwise interfering with one another’s work. Developers
view and modify project files and resources locally, then return their changes
to the version control system. The system logs changes so that prior versions
of an item are easily retrieved or restored, and integrates each developer’s
changes with changes made by the rest of the team.

Most version control systems support the following basic actions:

• Create project

• Create subproject

• Add files to a project

• Check files out of a project

• Update local files with other developers’ logged changes

• Check revised files into a project

• Retrieve version history for a project and its files

Version control systems perform a number of useful functions. Their
automatic logging facilities can be useful in creating a complete and detailed
project history. Version control can also be used to help with consistency
management (maintaining a consistent look and feel between modules in an
application), and make it easy to branch and merge code (allowing testing of
an upcoming release, for example, without affecting the code base for the
current release). Version control systems do not take the place of good
planning and communication, but they can make managing team
contributions to an application significantly easier.

Version Control Overview 5-3
5.1.1 Working with version control in AcuBench

The AcuBench interface to version control software allows you to define
commands that call your version control system directly or that execute your
version control batch files. These commands are placed on the Version
Control menu item that is accessed when you right-click on a project or file
node in the Workspace window.

When you select and run a version control command, AcuBench passes the
defined command string and arguments to the Windows command shell for
execution. By default, the command is echoed to the AcuBench Output
window, which is also used to display console messages from the version
control system.

Note: If your version control system does not have a Windows command
line interface, it cannot be accessed through AcuBench.

When adding version control commands to the AcuBench interface, please
keep in mind that there are some commands that are better issued from
outside AcuBench, or after AcuBench has been shut down. For example,
changes to a particular program or file can easily be committed to the version
control repository from within AcuBench. But a project commit (writing all
changes made to a project to the version control repository) is better issued
from the command line, after AcuBench has been closed, to ensure that all
changes to the workspace project file (“.pjt”) have been written to disk.

5.1.2 Preliminary considerations

As you define your projects, instead of trying to group all of your programs
into a single, large workspace, create logical groupings of related programs.
Because the AcuBench project and workspace concepts are entirely virtual,
these groupings do not affect the creation of object files or the execution of
the final application. Placing extremely large numbers of programs into a
single workspace, however, can have a negative impact on AcuBench’s
performance, and can make managing the version control repository more
complicated.

5-4 Version Control
Before importing a project into the version control repository, consider the
following:

• Will each developer have a custom set of project modes (“.pof” files)
and one or more unique Tools/Options INI files, or will these files be
created for and tracked with each project?

Creating and tracking customized project modes can help to create
consistency in the building and testing process. Since “.ini” files created
in the Tools/Options interface contain the defaults for screens, reports,
and controls, maintaining a centralized “.ini” can help with consistency
management. For more information about creating project modes, see
Chapter 7. For more information about the “.ini” file, and the
Tools/Options interface used to modify the file, see Chapter 4, section
4.2, “The Tools/Options Dialog.”

• Will each program be generated into a single “.cbl” file or several
different COPY files (the AcuBench default)?

Because all of the information generated into AcuBench COPY files is
stored in the program structure file (“.psf”), which must be tracked if you
are using AcuBench code generation, it is more efficient to generate
separate COPY files with version control. If all code is generated into
the source (“.cbl”) file, then the same information is being tracked twice.

• How will the project directory be structured?

Do you plan to use the default directories created by AcuBench, or are
you using an existing directory structure? Keep in mind that some
version control systems require all project files to reside a single
directory structure (a main project directory plus subdirectories).

The Version Control Interface 5-5
5.2 The Version Control Interface

You define, view, and maintain version control commands in the
Tools/Options/Environment/Version Control window.

The Options/Environment/Version Control Interface

Note: The Tools/Options/Environment/Version Control interface has
substantially changed from Version 5.0. However, all Version Control
commands defined in Version 5.0 projects are fully retained and can be
modified and maintained in the revised interface.

5.2.1 Displaying the Version Control Window

You can display the version control window using the following steps:

1. On the AcuBench menu bar, select Tools/Options to open the Options
dialog.

5-6 Version Control
2. Click the plus sign (“+”) next to the Environment menu item to view
its subitems.

3. Click Version Control to display the Version Control configuration
window.

5.2.2 The Version Control Interface Fields

The following fields appear in the Version Control window:

Menu command list

Displays the names of the commands that you have defined for your
version control system in the “Menu contents” field. These are the
menu items that will appear in the Version Control right-click menu.
You can add, delete, and reorder commands using the four buttons at
the top-right of the “Menu command” list. To modify a name,
double-click the name and make your changes.

Fundamental source control commands

Displays the command line(s) defined for the name selected in the
“Menu command” list. Commands are defined in the “Command,”
“Argument,” and “Working directory” fields and cannot be directly
altered in this area. You can add or delete commands using the buttons

The Version Control Interface 5-7
at the top of the “Fundamental source control commands” list. To
modify the definition of a command, select the command, then modify
the values in the “Command,” “Argument,” and “Working directory”
fields.

Command

In this field, enter the full path to and executable file name of your
version control system software, or your batch file. You can search for
the executable file by clicking the button next to the “Command” field.

Arguments

In this field, enter the appropriate arguments for the version control
command. These arguments are sent to the version control system
executable identified in the “Command” field. Arguments consist of
commands recognized by your version control system. You may
include any of a variety of variables defined by AcuBench. The values
of these variables depend on the directory and file structure of your
workspace. See the description included in section 5.6.

Working directory

In this field, enter the path for the working directory from which the
version control command must be executed. This directory must
match the directory information set in your version control system. For
example, if you have the working directory in your version control
system set to C:\Checkout, then Working directory in AcuBench must
also be set to C:\Checkout.

Use Output Window

When this option is enabled (checked), standard output from version
control commands is redirected to the Version Control tab of the
Output window.

Ask Argument

When this option is enabled (checked), a Command Arguments dialog
box is displayed before AcuBench executes the version control
command. The Command Arguments dialog allows the user to add
arguments to the version control command.

5-8 Version Control

This option can be uniquely set for every command listed in the
“Fundamental source control commands” list. In addition, you can use
any of the variables described in section 5.6 to build your
command-line argument.

5.3 Adding Commands to the Menu Command List

You can define a version control command as follows:

1. Click the New button at the top-right of the “Menu command” list and
enter the name of the new command in the “Menu contents” field. This
is the name that will appear on the Version Control pop-up menu.

2. With the new command still selected, click in the Fundamental source
control commands area and click the New button. Define the
command in the “Command,” “Argument,” and “Working directory”
fields. Note that any command listed on the “Menu command” list can
have multiple version control actions (commands) defined for it. To
define another command, again click the New button in the
“Fundamental source control commands” list and define the command
in the “Command,” “Argument,” and “Working directory” fields.
Commands are executed in the order they appear in the list. How to
change the order is described in section 5.4.

5.4 Modifying the Command List

To delete or reorder your version control commands, first open the
Tools/Options/Environment/Version Control dialog.

Saving the Command List 5-9
To delete a command from the “Menu command” list, select the command
that you want to remove from the list and click the Delete button at the
top-right. Note that all of the associated commands in the “Fundamental
source control commands” list are also deleted.

Delete a command from the “Fundamental source control commands” list as
follows:

1. Select the menu command with which the fundamental command is
associated.

2. In the “Fundamental source control commands” list, select the
command that you want to delete and click the Delete button at the
top-right of the list. Note that the “Menu command” item is not
removed.

To reorder the command names on the Version Control menu, in the “Menu
command” list, select the command that you want to move up or down in the
list and use the Move Up or Move Down arrow buttons to change the order.
You can move only one command at a time.

5.5 Saving the Command List

To save your work in the current workspace, click OK.

To save your work in a separate “.ini” file, click Save at the bottom of the
Options (Version Control) window and specify a name.

Caution: If you overwrite the “AcuBench80.ini” file, you are changing the
default options that will be loaded by any new AcuBench workspaces that
you create.

5-10 Version Control
5.6 Command Variables

The following list describes the AcuBench-defined variables that you can
include in the “Arguments” and “Working directory” fields. To insert a
variable, click on the right-arrow button to the right of the entry field and
select the desired variable from the list. AcuBench assigns values to these
variables based on the state of your current workspace.

Variable Description

File Path
{FilePath}

The full path and name of the currently selected file or
folder

File Directory
{FileDir}

The full path to the directory of the currently selected
file

File Name
{FileName}

The name of the currently selected file

Current Directory
{CurDir}

The path and name of the directory in which the
AcuBench executable is located

Target Directory
{TargetDir}

The path to the target project or folder. When source
files are checked out, they are stored in the target
directory until you check the files back in.

Workspace Path
{WkspPath}

The full pathname and file name of the current
workspace

Workspace Name
{WkspName}

The name of the current workspace

Project Directory
{ProjectDir}

The full path to the current project, excluding the name
of the project file

Project Name
{ProjectName}

The name of the current project

Folder Name
{FolderName}

The name of the current folder.

Comment
{Comment}

Include a comment defined by your version control
system.

Issuing Version Control Commands 5-11
5.7 Issuing Version Control Commands

Once you have added commands to the Version Control interface, a new
menu option, Version Control, is added to the pop-up menu that appears
when you right-click a project node in any Workspace Window view, a
program node in the Structure view, a file in the File view, or a data layout in
the Data view.

The context for each command that you issue depends partially on which file
is selected when you right-click and partially on the arguments that you have
specified for the command. If, for example, you have specified that a
“commit” command has {ProjectDir} specified, the entire project will be
committed to the version control repository, regardless of which file you have
selected. If, however, a “commit” command has {FileName} or {FileDir}
specified, only the currently selected file is committed.

This means that you may define multiple menu options for a single version
control command, each specifying a different context. As an alternative, you
can specify the “Ask Arguments” option and manually specify a context each
time you issue the command.

When you issue a version control command, AcuBench’s default behavior is
to echo the command to the Output window, followed by the message
“Command sent, waiting for completion.” Any messages sent back by the
version control software are also displayed in the Output window. When the
command is completed, AcuBench adds the message “Command
completed—DONE” at the end of output listing.

5-12 Version Control
The following example provides an idea of what appears in the Output
window when you issue a version control command. Here, the cvs “log”
command was used to return information about the AcuVet project. (Cvs is a
free, open-source, third-party version control system.) The example includes
only a portion of what was returned by the version control software.

=== cvs.exe -d :pserver:jramos@midas:/home/cvsroot log C:\AcuVet ... ===
Command sent, waiting for completion...
===
cvs server: Logging C:/AcuVet
RCS file: /home/cvsroot/acuvet/AcuVet.pjt,v
Working file: C:/AcuVet/AcuVet.pjt
...

revision 1.2
date: 2006/07/27 21:56:42; author: jramos; state: Exp; lines: +1 -1
Fixed the problems with the individual pet treatment history report.
Both the complete report and the individual report are part of the
"graph-rpt" program. Both are accessed from the "Treatment History"
interface. Use the button with the printer icon to print the
complete report and the button with the "T" icon to print the
individual report.

revision 1.1
date: 2006/07/20 19:38:52; author: bsmith; state: Exp;
branches: 1.1.1;
Initial revision

revision 1.1.1.1
date: 2006/07/20 19:38:52; author: bsmith; state: Exp; lines: +0 -0
Creating a new testing project for AcuVet.
===
...Command completed - DONE.

If the Output window displays an error message, rather than the expected
result, it’s a good idea to double-check the context in which you are issuing
the command. Some commands, for example, might work only when issued
from the project directory or the root directory.

6
 Working with Projects
Key Topics

AcuBench Project Management... 6-2

Working at the Workspace Level... 6-3

Working with Projects ... 6-7

6-2 Working with Projects
6.1 AcuBench Project Management

Project development with AcuBench is organized into workspace, project,
and program units.

An AcuBench workspace is a container for one or more projects. Physically,
it consists of a dedicated file (workspace_name.pjt) that is created when the
first project is created in or added to a new workspace. The workspace file
records and maintains each member project’s configuration and build options
(the values of items set in Project/Settings), as well as other project-specific
information and workspace configuration settings. The workspace concept is
discussed in more detail in section 3.2.1.

An AcuBench project is a collection of all the files needed to build, run, and
debug one or more programs, including all source files, COPY files, screen
definition files, resource files (such as bitmaps and audio files), listing files,
and object files. Each project has a set of dedicated folders for organizing
project files. Each project’s configuration and build options are recorded in
the workspace file.

When a new project is established, AcuBench creates a home directory and a
set of sub-directories for the project. You can specify which sub-directories
are created, as well as sub-directory names, in the Tools/Options interface,
under Environment/Prefix. Files can be added to the project with the
Add/Remove Files function. Project files can reside directly in the project
sub-directories or elsewhere on the file system, including on a network drive.
AcuBench maintains logical links to project files.

Keep in mind that you control what’s included in the project, which may be
expanded to include ancillary items, or restricted to only those elements that
are essential to the construction of the final product.

Support for the concurrent development of two or more projects is provided
via the workspace structure. Projects that you want to work on concurrently
must be members of the same workspace. To create multiple projects in the
same workspace, see section 6.3.1.

Working at the Workspace Level 6-3
6.2 Working at the Workspace Level

Having the workspace layer in AcuBench provides a means by which you can
work with multiple projects simultaneously. This includes the capability to
generate code for every program in a workspace, regardless of how many
projects are in the workspace. It also provides a means for building all of the
programs in a workspace.

It is worth noting that although there are no set limits on the number of
programs that can reside in a single workspace, the code generation process
is both memory-intensive and CPU-intensive. Also, a number of the handy
automation features that AcuBench provides are likewise resource-intensive,
so it’s best to keep your workspace down to a reasonable size.

6.2.1 Creating a Workspace

Workspaces are created indirectly. To create a workspace you must create a
project. The following conditions determine when a new workspace is
created:

1. When you create a new project, if no workspace is open, AcuBench
automatically creates a new workspace, giving it the same name as the
new project.

2. If when you create a new project, a workspace is already open, you
have the option of adding the new project to the current workspace or
creating the project in a new workspace.

When a new workspace is created, it is automatically assigned the same name
as the project that creates it. To avoid confusion, you may want to rename the
project from which the workspace takes its name by right-clicking the project
icon in any view of the Workspace window and selecting Properties. In the
Project Properties interface, use the “Project name” entry-field to specify a
new name for the project, then click OK.

To create a new project, see section 6.3.1.

6-4 Working with Projects
6.2.2 Opening a Workspace

To open an existing workspace, select Open Workspace from the File menu.
If you recently opened the workspace, you may also be able to open the
workspace by clicking the workspace name in the File menu’s Recent
Workspaces list.

Note: You do not open individual projects. Every project is a member of a
workspace, and it is the workspace that is opened, closed, and saved.

6.2.3 Saving a Workspace

To save all changes made to the current workspace, select Save Workspace
from the File menu.

Note: When you select Save from the File menu, rather than Save
Workspace, only the document that has focus is saved.

6.2.4 Building a Workspace

Rather than compiling your source programs one at a time, you can instruct
AcuBench to compile all source files in a workspace (including their
dependent COPY files) that have been modified since the last build. To do
this, you can select Build Workspace from the Build menu or click the
Build button on the Project toolbar.

The Build Button

To recompile all programs in the project, regardless of whether they have
modified since the last build, use the Rebuild Workspace command,
discussed in section 6.2.5.

Working at the Workspace Level 6-5
By default, each program in the project is compiled according to the compile
option settings of the selected project mode. To override the project-level
compile settings, right-click the source file in the File view and select
Program Compile Options.

During the build, the Output window displays the file name, compiler
command line, and either a success (“completed”) message or list of errors
for each file as it is compiled.

If your workspace contains both local and remote objects, you must execute
the Build or Rebuild Workspace command twice, once for local projects and
once for the remote projects (after selecting the Build/Use Thin Client
command). Note that for remote objects, the Build command causes the
workbench to check the timestamp that the compiler places in the object file,
not the UNIX file creation timestamp.

You can specify some attributes of the build and rebuild process through
settings in the Tools/Options/Environment/Build dialog. In that dialog, you
can specify such actions as whether the workbench always saves all files or
generates code prior to starting compilation.

6.2.5 Rebuilding a Workspace

To instruct AcuBench to unconditionally compile all source files in the
workspace, regardless of modification date, use the Rebuild Workspace
command. Either select Rebuild Workspace from the Build menu or click
the Rebuild button on the Project toolbar.

The Rebuild Button

In all other behaviors, the Rebuild command operates exactly like the Build
command. See section 6.2.4 for more details.

Note that when you use the command-line interface to build a workspace, the
behavior described here is always used, regardless of whether you use the
“build” or “rebuild” command.

6-6 Working with Projects
6.2.6 Regenerating a Workspace

Use the Build/Regenerate Workspace command to cause all the
code-generating elements of a workspace to be regenerated, including every
program and screen, Working-Storage and Linkage Section items, all Event
Editor code, and all code derived from each data set.

To streamline the process of regenerating and rebuilding a workspace, you
can have AcuBench automatically regenerate the workspace each time that
you issue a Build Workspace or Rebuild Workspace command. To do this,
open the Tools/Options interface, expand the Environment tree, and select
Build. Under “When building or reparsing the workspace,” mark the box
next to Always generate modified program (.psf) files before compiling
source files.

If you use the AcuBench command-line interface to build a workspace, the
workspace is automatically regenerated before source programs are
compiled.

You can stop code generation by pressing Enter or Esc.

6.2.7 Stopping a Build

You can stop a build or rebuild in progress. To stop a build, click the Stop
Build button on the Project toolbar. The Output window displays the names
of all files compiled, as well as any error messages generated during the build
up to the stopping point.

6.2.8 Closing a Workspace

To close a workspace, select Close Workspace from the File menu. If you
made changes to components of the workspace that have not yet been saved,
a dialog is displayed that asks whether you want to save the changes.

Working with Projects 6-7
6.3 Working with Projects

Although you can create an empty project, projects are generally made up of
programs and their COPY files and resources. Projects also contain data
definitions and data handling code that can be used by any or all of the
programs in that project. In addition, each project includes at least one set of
compiler and runtime options.

By default, AcuBench creates a project directory and a series of
subdirectories for each project. New programs created within the project are
placed in the project directory, and generated COPY files are added to the
appropriate subdirectories. The project grouping, however, is a virtual
construct. Programs and files that appear in AcuBench’s Workspace window
do not need to reside within the default directory structure. In other words, it
is possible to add existing programs to a project without moving those
programs and their COPY files to the default project directory.

6.3.1 Creating a Project

When you create a project, AcuBench creates the infrastructure for the
project, including a set of folders (working directories). Optionally, you can
create a project that includes a templated source file, a templated screen, and
a program structure file (“.psf”). You can also create a project with object
files directed to a remote server. For more about projects, see section 3.2.2.

Once a project is created, you can change the name of the project, but you
cannot change the name of the project’s working directory or the names of
any of the sub-directories.

Before you create a project, you need to decide whether to add the new
project to the current workspace (if a workspace is open) or to create it in a
new workspace. If you want to work on the new project concurrently with
another project, open the workspace that contains that project before creating
the new project.

Create a new project using the following procedures:

1. Select New from the File menu and click on the Project tab.

6-8 Working with Projects
This opens the New dialog window with the Project tab selected.

2. Select a project template.

The Standard template creates a project and a program. The program, in
addition to the program structure file, gets a standard graphical screen.

The Blank template creates only an empty project structure, to which
you can add programs and files.

3. Enter the name of the project in the Project name field. By default,
the project directory is given the same name as the project, as shown in
the Location field.

Note that you can change the default path, and that multiple projects can
reside in the same directory. Also note that the only files that must reside
in this project directory are the workspace project file (“.pjt”) and the
workspace information file (“.wif”).

4. Select one of the two radio buttons near the bottom of the Project tab to
either include the project in the current workspace (this option is
disabled if no workspace is open), or to create the project in a new
workspace.

Working with Projects 6-9
5. If you want to change the name of any of the standard project
directories, click the More Info button and make the desired changes
in the Project Information dialog.

This dialog is populated with information based on the project name that
you have entered and the default project directory structure defined in
the Tools/Options/Environment/Prefix interface. Information that you
change in the Project Information dialog applies only to the individual
project. To make changes to the default directory structure established
for any new project that you create, use the Tools/Options interface, as
described in section 4.3.7.

In the top portion of the Project Information dialog, you can change the
name of the project and the project directory. In the middle portion of the
dialog, you can change the default location for each of the file types
(source, screen, report, and so on) associated with an AcuBench project.

6. If you want your project’s object files to reside on a remote server, use
the remote settings area of the Project Information dialog to enter the
server name, port number, and remote object directory for your project.

6-10 Working with Projects
You can use the Validate button (located at the upper, right corner of the
remote settings area) to determine whether AcuBench can make the
remote connection. If the remote server is up and AcuConnect is
running, the validation should succeed. If it does not succeed, you will
receive one of the following error messages:

• “ACUCOBOL-GT cannot connect to servername.” This may
indicate, among other things, that the server name that you entered
is invalid, that you do not have a network connection, or that the
server is not listening on the specified port.

• “remotedirectoryname is invalid, or does not exist.” This may
indicate that the specified directory does not exist, that you are using
incorrect directory syntax, or that you do not have permissions to
access the directory.

7. Click OK to create the project.

To add files and resources to your project, click the Add/Remove Files
button on the Project toolbar (see section 6.3.4).

Note: By default, you do not open, close, and save individual projects.
Every project is a member of a workspace, and it is the workspace that is
opened, closed, and saved.

It is possible, however, to save information about a single project in a
project file (“.pjf”). Just right-click the project icon and select Save Project
- projectname. You can then move or copy the project to a new workspace
using the File/Open Project command).

6.3.2 Project Properties

A project’s properties include its name, its location, and the names of its local
and remote working directories. These properties are established when the
project is created, and some of them, including the project’s location, cannot
be changed.

You can view the project’s properties and change the project’s name in the
Project Properties dialog. You can also establish settings to use with the
AcuConnect thin client at the bottom of the dialog’s General tab. In addition
to specifying a server, port, and remote object directory, you can also
determine whether the thin client settings will apply at compile time, run
time, or both.

Working with Projects 6-11
The Project Properties dialog also includes a Library tab that is used to
specify the primary module and module type when you create an object
library. For information about creating object libraries, see Chapter 7,
section 7.6, “Library Settings,” and Chapter 19, section 19.2, “The
Object File Utility.”

Note: For information about setting project compile, runtime, and
environment options, see Chapter 7, “Project Settings.”

To display project properties, right-click the desired project node in the
Workspace window and select Properties from the pop-up menu.

You can rename a project as follows:

1. Open the Project Properties dialog by right-clicking the desired project
node and selecting Properties from the pop-up menu.

2. Enter the new project name in the Project Name field and click OK.

6-12 Working with Projects
Although the new project name appears in the Workspace window’s views,
the name of the workspace project file (“workspace_name.pjt”) is not
changed. If you have created an individual project file (“project_name.pjf”)
for the project, the existing file is not affected by the change. The next time
that you issue a Save Project command, you are given the option to change
the name of the “.pjf” file.

6.3.3 Adding Folders to a Project

You can add folders to the set of default project folders. Such folders can be
used for any purpose that you choose.

Add a new folder using the following steps:

1. In the workspace File view, right-click on the project node that you want
to add a folder to and select New Folder from the pop-up menu.

2. Specify a name for the new folder in the “Folder name” field.

3. Enter the file extensions that you want to associate with the folder in
the “File extensions” field. For example, if you want a folder specifically
for bitmap graphics and icons, enter “*.bmp; *.ico” in this field. You must
enter a value. You can use “*.*” to indicate all file extensions.

4. Specify a location where files associated with the folder will reside.
Click the Browse button (“...”) to the right of the field to navigate the
file system to select a location. If the specified location does not exist,
it is created automatically. For example, to create a new physical
folder for documentation files in the same location as your default
project folders, your location specification might look like:

c:\development\project1\documentation

Working with Projects 6-13
A new physical folder named “documentation” is created when you click
OK to complete the dialog.

Note: Note that only new files created in the workbench or files that
you physically move to the folder are actually located there. When you
add an existing file to the folder with the Add/Remove File function,
AcuBench simply creates a logical link to the file.

5. Enable the Show full path name check box to cause the full path name
of files in this folder to display in the File view.

6. Click OK to create the folder.

6.3.4 Adding Files to a Project

Although you open, close, and save the workspace, you add files to and
remove files from individual projects. The Add/Remove Files function is the
vehicle for adding files to and removing files from a project.

Caution: Because you can have multiple projects in the same workspace,
there is the potential for inadvertently adding files to or removing files from
the wrong project. Select the target project in the Workspace window
before initiating the Add/Remove Files function. To select a project in the
Workspace window, click on the desired project node, or one of its
subnodes, in any workspace view. Alternatively, you can select the target
project in the “Insert into” combo box at the bottom of the Add/Remove
Files dialog.

The Add/Remove Files dialog has several tabs, one for each category of file
type (by default: Source, Screen, Report, Copylib, Object, List, Resource,
and FD).

This section gives an overview of the steps involved in adding any file to a
project. Specific information about adding source files to a project is
provided in Chapter 9, section 9.3.2, “Adding an Existing Source File.”

6-14 Working with Projects
Note: To move a file from one project or folder to another project or folder,
simply select it in the File view and drag it to the target folder. A similar
cut-copy-and-paste function is not supported.

You can add a file to a project as follows:

1. Right-click a folder in the File view and select Add/Remove Files. This
opens the Add/Remove Files dialog with the tab appropriate to the
selected folder in the foreground.

You can also select the desired project in the Workspace window and
click on the Add/Remove Files icon on the Project toolbar, or select the
Add/Remove Files option on the Project menu.

2. Navigate to the folder containing the file to be added. A list of files
that match the suffixes in the “Files of type” field is displayed in the
“Files list” (top left).

If the wrong file types are listed, use the “Files of type” drop-down box
to select a different set of file extensions. The available file extensions
reflect the file types associated with the project in the properties for each
File view folder.

3. Select (click on) the file to be added in the “Files list”. The file must
be highlighted.

To select multiple consecutive files, hold down the Shift key and click
the files. To select multiple non-consecutive files, hold down the Ctrl
key as you click.

4. To add the selected file(s), click Add. To add all of the files in the
specified directory, click Add all. The added files now appear in the
“Files in project” list box.

5. When you have finished adding files, click OK to close the
Add/Remove Files dialog.

Working with Projects 6-15
6.3.5 Removing Files From a Project

You can remove files from a project with the Add/Remove Files dialog. Note
that although the files are removed from the project, they are not deleted from
the disk.

Caution: Because you can have multiple projects in the same workspace,
there is the potential for inadvertently removing files from the wrong
project. Always select the target project in the Workspace window before
initiating the Add/Remove Files function. To select the desired project,
click on the desired project node, or one of its subnodes, in any workspace
view.

The Add/Remove Files dialog has several tabs, one for each category of file
type (by default: Source, Screen, Report, Copylib, Object, List, Resource,
and FD).

You can remove files from a project as follows:

1. Select the desired project in the Workspace window and click on the
Add/Remove Files icon on the Project toolbar, or select the
Add/Remove Files option on the Project menu. The Add/Remove Files
dialog is displayed.

2. Click on the tab that corresponds to the type of file to be removed.

3. In the “Files in project” list, select the files to be removed and click the
Remove button.

4. When you are done, click OK to accept the changes and close the
dialog. If you press Cancel, your changes are not recorded.

Note: You can quickly remove all of the files of a selected type by clicking
the Remove All button.

To empty a folder, right-click on the folder that you want to remove all files
from in the File tab of the Workspace window. Select Empty from the
pop-up menu.

6-16 Working with Projects
6.3.6 Moving Components Among Projects and Folders

From within the Workspace window, you can easily move a program, screen,
file, or data layout from one project or folder to another in the same
workspace.

Moving a Program, Screen, Report, or Data Layout to Another Project

In the Workspace window, locate the project component to be moved and
drag-and-drop it on the target project node. The component is placed in the
appropriate area. If a component of the same name is already present in the
target project, the item is not moved and a message is displayed.

Moving a File to Another Folder or Project

In the File view, locate the file to be moved and drag-and-drop it on the
destination folder. The file is removed from the initial folder and placed in
the target folder.

Note: The file is not physically moved; rather the logical link is simply
changed. Also note that the workbench does not restrict the type of file that
can be moved into another folder, nor does it generate a warning when the
file type differs from the type that the target folder is designed to host. As
a result, it is easy to move, intentionally or unintentionally, a file of one
type into a folder meant for another type (for example, a source file into the
Object folder).

6.3.7 Deleting a Project

To delete a project from a workspace, right-click on the project node in the
Workspace window and select Delete from the pop-up menu. You can also
select the project node and press the Delete key.

7
 Project Settings
Key Topics

Introduction ... 7-2

Modes.. 7-3

Compiler and Runtime Settings... 7-7

Working with Runtime Configuration Files ... 7-9

Environment Settings.. 7-12

Library Settings.. 7-16

7-2 Project Settings
7.1 Introduction

AcuBench provides an interface for specifying compiler, runtime, library,
and environment settings at the project level. You can create multiple sets of
settings and switch between them quickly and easily to change how programs
in your projects are built and executed.

• You can define distinct project option settings for each AcuBench
project.

• You can have individual compile options for any COBOL source file.

• You can define sets of settings (modes) that enable you to quickly shift to
settings that meet special needs, such as settings that support debugging
work, or settings that build the program for 64-bit systems.

• You can save modes that you create and load the saved modes into other
projects.

You specify these settings in the Project Settings interface, which can be
accessed in any of the following ways. First select a project icon in any
Workspace window view, then:

• Select Settings from the Project menu.

• Click the Settings button on the Project toolbar.

• Right-click the project icon and select Settings from the pop-up menu.

The Project Settings interface opens with the Compiler tab selected and the
three other tabs—Runtime, Environment, and Library—in the background.
All projects residing in the current workspace are listed in a tree view on the
left side of the screen, and a field above the tabs indicates which project is
currently selected. It is important to note which project you are working in,
because settings created for one project in a workspace are not automatically
transferred to other projects in the same workspace. All programs in a
project, however, use the settings established at the project level unless you
specifically define special settings for an individual program.

Modes 7-3
The Project Settings interface looks like this:

7.2 Modes
In AcuBench, the term mode is used to refer to a set of project settings. Each
project must have at least one mode and may have many modes. The ability
to have multiple modes makes it easy to quickly switch from one set of
compiler switches, for example, to another. This can provide a
straightforward way for you to compare the effects of different compiler,
runtime, and environment settings on program performance.

By default, AcuBench provides a Release mode, containing very simple
compiler and runtime command lines and basic environment settings, and a
Debug mode, which adds the “-Ga” compiler flag to include all available
debugging information in the compiled object.

When you make changes to an existing mode or add a new mode in the
Project Settings interface, the changes are saved in the workspace project file
(“.pjt”) for the affected project. If you create an individual project file
(“.pjf”), these settings are carried over to that file.

You can also store each mode in a project options file (“.pof”). Project
options files and methods for creating them are discussed in section 7.2.4.

7-4 Project Settings
7.2.1 Working with Modes

In the Project Settings dialog, above the tree view listing all of the projects in
the current workspace, a “Settings For” drop-list displays the current mode.
If you have more than one mode defined for a project, or more than one
project defined in a workspace, it is essential to make sure that you are
working in the correct mode for the correct project.

Settings made to a mode in one project do not affect any other project, even
if both projects have a mode with the same name. Likewise, changes made
to one mode in a project do not affect any other mode in the same project.

Consider the following. You have a workspace containing two projects:
MainPrj and Alternate. You have defined a custom Production mode for
MainPrj and want to change the FILE_PREFIX setting for that mode. If you
enter the Project Settings dialog and select Production mode, but fail to notice
that Alternate is selected as a project, when it comes time to execute a
program in MainPrj, you will either receive a file error or access the wrong
set of data files, because the FILE_PREFIX setting will be incorrect.

7.2.2 Adding a Mode

To add a mode to your project, do the following:

1. In the Project Settings window, select a project in the tree view, then
click the Add/Remove Mode button (to the right of the “Settings For”
drop-list, above the tree view list).

This opens the Add/Remove Project Mode dialog.

Modes 7-5
2. Click Add. This opens the Add Project Mode dialog.

3. Enter a name for the new mode, then select one of the radio buttons in
the “Copy settings from” area to determine which existing mode, if
any, to use as the basis for the new mode.

• To create a new mode based on the default settings established in the
“default.pof” file, select Default settings.

• To create a new mode based on another mode defined in this project,
select Existing mode, then select a mode from the drop-down list.

• To create a new mode based on an existing “.pof” file, select
Existing .pof file, then click the browse (...) button to navigate to
the location of the file on disk.

POF files are discussed in section 7.2.4.

4. Click OK, then click Close. This returns you to the Project Settings
interface to begin entering settings for your new mode.

7.2.3 Removing a Mode

To remove a mode from a project:

1. In the Project Settings window, select a project in the tree view, then
click the Add/Remove Mode button (to the right of the “Settings For”
drop-list, above the tree view list).

2. Select a mode in the Add/Remove Project Mode list, then click
Remove.

7-6 Project Settings
3. An AcuBench message asks you to confirm the removal of the mode.
Click Yes.

4. Click Close to return to the Project Settings interface.

7.2.4 Saving a Mode as a POF

A project options file (“.pof”) is a text file used to store project modes.
Project modes currently in use in a project are stored in the workspace project
file (“.pjt”) and updated every time you click OK to save your settings and
exit the Project Settings interface.

Note that project options files are static. In other words, once you write
options to a POF, those options are not automatically updated when you
change the corresponding mode in the project from which the POF was
created. To update the settings in a POF, you must explicitly save the changes
to a file.

There are two ways to save a mode as a POF:

• Click Save As to specify a file name and location for the new settings
file. This file can later be used to add a new mode to any AcuBench
project.

• Click Save as default at the bottom of the Project Settings window to
write your changes to a file called “default.pof” in the AcuBench
installation directory. Every new project that you create will take its
settings from this file.

The mode saved in “default.pof” is always called Release, and it is
always used to create a second default mode, called Debug, by adding
the “-Ga” compiler flag to the existing compiler command line.

7.2.5 Reusing a POF

As discussed in section 7.2.2, when you add a new mode to a project, you
have the option to base that mode on an existing POF file, specified through
the Add New Project Mode interface. This is one of two ways to make use of
an existing POF.

Compiler and Runtime Settings 7-7
When you are working in the Project Settings interface, you can click
Reference to replace settings used in the current mode with settings from a
POF. Although this changes the compiler, runtime, environment, and library
settings for the mode that you have selected, the name of the mode stays the
same.

7.2.6 Switching Between Modes

Once you have defined modes for your project, you can easily switch
between them as you work in AcuBench. The Project toolbar lists all of the
modes defined for projects in your workspace in a drop-down list.

To change the current mode, first select a project in any Workspace window
view, then select a mode from the drop-down box. The next time that you
compile or execute programs in the project, the new settings are used.

7.3 Compiler and Runtime Settings

Settings established on the Compiler tab of the Project Settings dialog are, by
default, applied to each program in the specified project at compile time. You
can override these project-level settings at the individual program level by
selecting a program in the Project Settings tree view, rather than a project,
and de-selecting the Follow project default options check box.

Settings defined on the Runtime tab of the Project Settings dialog are applied
to each program in the specified project when the program is executed.

Both of these two tabs are constructed in a similar manner. A “Catalog”
drop-down list at the top of the tab lists categories of options that you can
modify. Each compiler catalog corresponds to a section in Chapter 2 of the
ACUCOBOL-GT User’s Guide. Each of the options in the four runtime

7-8 Project Settings
catalogs is also documented in that chapter, but because there are many fewer
runtime options than compiler options, the documentation does not separate
them into individual sections.

When you select a catalog, the compiler and runtime command-line options
(also called switches or flags) that correspond to that catalog are displayed on
the tab. For example, the “--javaclass”, “--javamain”, “--netdll”, and
“--netexe” compiler options can be found on the Interoperability catalog of
the Compiler tab, and the “--wait” and “--restart” runtime options can be
found on the Thin Client catalog of the Runtime tab. In most cases, you can
mark a check box or select a radio button to add a flag. Occasionally, an entry
field or dialog may also be associated with an option.

As you make changes to your settings, the corresponding runtime or compiler
command line appears in the Project Options field at the bottom of the screen.
This field is disabled, preventing you from making changes to this command
line directly.

An “Additional options” field in the top, right corner of the runtime and
compiler tabs allows you the option of entering command-line flags directly.
While it is preferable, in most instances, to use the various catalog options to
change your settings, it is sometimes necessary to use the Additional options
field to invoke a switch has not been added to the AcuBench interface.

Text that you enter in the Additional options field is added to the command
line in the Project Options field at the bottom of the screen as you type. This
makes it possible for you to verify that the command line you are entering is
correct.

Note: The “-Po” precompiler option was discontinued with the Version 8.0
AcuSQL. The Version 8.0 AcuBench strips the “-Po” if it is found in the
project when it is being opened. If you are using Version 8.0 AcuBench
with a pre-Version 8.0 compiler, you will need to add “-Po” back manually
in the “Additional options” field.

Working with Runtime Configuration Files 7-9
7.4 Working with Runtime Configuration Files

AcuBench includes an integrated Configuration File Editor (CFE) that allows
you to open and edit any ACUCOBOL-GT runtime configuration file. With
the CFE, you no longer need to access the host system’s text editor to create
new configuration files or modify a configuration variable.

The CFE provides a list of most of the available ACUCOBOL-GT
configuration variables, along with an interface that allows you to add your
own user-defined variables. Both types of variables can be listed and
modified within the CFE in the same manner.

The CFE is accessed through the Runtime tab of the Project Settings
interface. When the Common Options catalog is selected, the “Alternate
configuration file name (-c)” option allows you to specify a configuration file
that will be used when you execute programs in your project. Enter a path
and file name here, then click the Edit button to launch the CFE.

When you enter a path to a configuration file that already exists, the CFE
opens and parses the selected file, even if the file was not created in
AcuBench.

7-10 Project Settings
Currently the CFE has one notable limitation. Although it can be used to add
or remove a configuration variable, it cannot be used to “comment out” or
“uncomment” a variable (place or remove a “#” in front of a variable).

7.4.1 Editing Configuration Files

When you edit a configuration file, the “Configuration file entries” list on the
right side of the screen shows ACUCOBOL-GT configuration variables,
organized by category. These categories include:

• FileSystem, which includes operating system environment variables
such as those relating to the default host, file names, or to the Vision file
system.

• GT, which lists ACUCOBOL-GT compiler-related configuration
variables.

• Licensing, which holds license management configuration variables.

• Runtime, which includes runtime configuration variables.

• User Defined, which lists other variables defined in the configuration
file.

Variables to which a value has been assigned appear in the “Editing entry”
drop-down list in the top, left portion of the screen. When you select an
option from this list, the CFE highlights the variable name in the tree view
along the left side of the interface and shows the value assigned to the
variable in the Value list in the top, right portion of the screen.

To add or change the value of a configuration variable, do the following:

1. Locate the variable in the interface using one of the following methods:

• If a value has already been assigned to the variable, select the
variable from the Editing entry drop-down list.

• Navigate the tree view on the left side of the screen to locate the
variable you want to edit.

Working with Runtime Configuration Files 7-11
• Enter the configuration variable name or some portion of it in the
Find entry field, then click Find or press Enter.

Note that this find function searches from the beginning of the word
only. This means that the string “key” can be used to search for the
KEYBOARD and KEYSTROKE variables, but not for the
HOT_KEY variable.

2. Double-click in the Value area to change the variable’s value. The
behavior of the Value field varies depending on the value that you have
selected.

• If the variable takes a directory path (or multiple paths) as its value,
a browse (...) button will appear in the field. When you click this
button, a dialog opens, allowing you to navigate to the path. This
can help to prevent typing and syntax errors.

• With variables like KEYSTROKE, which can appear multiple times
in a file, assigning unrelated values, multiple lines of entry are
enabled in the Value column.

3. If you want to associated a comment with the selected variable in your
configuration file, click in the Comment field.

Remember that while the editor allows you to add comments about
existing variables, it does not provide a method for commenting or
uncommenting the variables themselves.

4. To remove a configuration variable from the configuration file,
highlight the entry in the Value column, then press Delete. If you have
previously assigned a comment to the variable, use the Delete or
Backspace key to remove that, as well.

Configuration variables that are not assigned a value are removed from
the configuration file.

5. To save your changes, click OK.

Your changes are written to the specified text file.

7-12 Project Settings
7.4.2 User-defined Variables

In addition to the standard set of ACUCOBOL-GT configuration variables,
the CFE allows you to add your own variables. If you are using multiple file
systems, for example, to access data, you may need to add filename_HOST
entries for various data files that your programs access. You might also want
to define your own variables to help set user access privileges or otherwise
adapt the behavior of your programs in different environments.

To add a new configuration variable to the CFE:

1. In the “Configuration file entries” tree view, right-click on the User
Defined category and select New from the menu.

2. Type the variable name, then press Enter.

3. Click in the Value column, then enter a value for your variable.

If you have accidentally entered the name of a variable that has already
been defined in this file, the existing variable value will appear in the
Value list.

4. To add a comment to the variable definition in the configuration file,
click in the Comment box and add text.

5. To delete a user-defined variable both from the configuration file and
from the “Configuration file entries” tree, right-click the variable name
and select Delete.

6. When you finish editing the file, click OK to save the entry and close
the CFE.

Once user-defined variables have been added, they are stored in the
“User Defined” category in the “Configuration file entries” tree view.
You can locate and edit them as you would pre-defined variables.

7.5 Environment Settings

The Environment tab of the Project Settings window is used to set the
environment variables that apply to the selected project. You can view, add,
modify, or delete environment variables in this interface.

Environment Settings 7-13
Five environment variables are predefined by default. They are:

Other variables are added when AcuBench verifies that it can connect to a
specified remote server and port:

As with the RUNNAME executable, the executable defined by THINNAME
and the directory defined by CLASSPATHDIR must be located in
ACUPATH.

If you want to pass Java parameters as part of an AcuXUI Java command
line, you can add a variable called XUIPARAMS to the project’s
environment. For the value of XUIPARAMS, enter the Java parameters that
you want to pass.

Caution: The value of variables defined in the Environment tab take
precedence over the values of corresponding variables defined in the
runtime configuration file. This is especially important to note if you have
set CODE_PREFIX in your configuration file. For more information, see
Chapters 1 and 2 in the ACUCOBOL-GT User’s Guide and Appendix H in
ACUCOBOL-GT Appendices.

ACUPATH defines the path to the ACUCOBOL-GT executable files
(e.g., c:\Acucorp\Acucbl8xx\AcuGT\bin)

CODE_PREFIX defines directories to search when a program name is
specified without a full path. See Book 1, Chapter 2 of
the ACUCOBOL-GT documentation set.

COMPILERNAME defines the name of the compiler executable file (by
default, “ccbl32.exe”)

COPYPATH defines one or more paths that AcuBench searches to
locate COBOL COPY files (see section 7.5.2)

RUNNAME defines the name of the runtime executable file (by
default, “wrun32.exe”)

THINNAME defines the name of the thin client executable (by
default, “acuthin.exe”)

CLASSPATHDIR defines the name of the path containing the
AcuXUI Java classes

XUIJAR defines the name of the AcuXUI JAR file

7-14 Project Settings
7.5.1 Working with Environment Variables

You can use the Environment tab of the Project Settings dialog to add,
modify, and delete environment variables.

To add an environment variable for the current project:

1. Click the New button in the top, right corner of the Environment tab.
This is the first of the three available buttons.

The “Variable” and “Value” fields below the “Environment variables”
list are cleared.

2. Enter a variable name in the “Variable” field.

3. Enter a value in the “Value” field.

4. Click the Set button. (Set is the third of the buttons in the top, right
portion of the Environment tab.) The new environment variable is
added to the list and the Variable and Value fields are cleared.

To change the value of an existing environment variable, select the variable
in the “Environment variables” list, then make the necessary changes in the
Value field. When you are finished, click Set to save your changes.

To remove an environment variable, select the variable from the
“Environment Variables” list and click Delete (the second of the three
buttons in the top, right portion of the Environment tab).

7.5.2 The COPYPATH Environment Variable

The value of the environment variable COPYPATH is used by AcuBench
(and the ACUCOBOL-GT compiler) to search for COBOL COPY files.
When AcuBench (or the compiler) needs to access a COPY file, it searches,
from first to last, the directories specified in COPYPATH.

You can define COPYPATH to specify one or more relative or absolute
directory paths. By default, COPYPATH is set to the relative paths of the
project’s screen, COPY, resource, report, and FD folders (%screendir%,
%copydir%, %resdir%, %reportdir%, and %layoutdir%). It also includes the
absolute path to the sample directory that contains ACUCOBOL-GT “.def”
COPY files (“C:\Acucorp\Acucbl8xx\AcuGT\sample\def”).

Environment Settings 7-15
You can change the value of COPYPATH in one of two ways:

1. Use the Environment tab of the Project Settings dialog.

2. Add new paths as you add new source files to your project.

The exact method by which new paths are added when you add source
files to your project is determined by the settings that you have chosen in
the Environment/Miscellaneous category of the Tools/Options dialog
(discussed in Chapter 4, section 4.3.8). If both “Automatically modify
COPYPATH” options are selected:

• When you add a new source file and select the Automatically parse
program for COPY files option, COPYPATH is updated each time
a new COPY file directory is identified.

• When you use the Copy Path button in the Add/Remove Files
dialog to indicate a new COPY file location, that path is added to the
COPYPATH definition.

Special Notes on Changing COPYPATH

• Use caution when changing the value of COPYPATH. Changing the
value of COPYPATH can potentially affect every source file in the
project. For example, if you change the definition of COPYPATH to
remove a path that holds a COPY file needed by the project, some files
may no longer compile.

• If you add a path that holds a COPY file that has the same name as a
COPY file in another directory that is also defined in COPYPATH, the
COPY file used is the first COPY file found (the paths are searched from
first to last).

• If you have a file or set of files that need a special COPY directory
setting that you do not want to add to the definition of COPYPATH, you
can specify that path on a file-by-file basis using the “Directories to be
searched for COPY (-Sp)” option in the Source Options catalog of the
Project Settings dialog. To specify a path in this way, right-click the
target file and select Program Compile Options from the pop-up menu.
The Project Settings dialog is displayed. Select the Source Options
item from the Catalog drop-down list and check the Directories to be
searched for COPY option. Specify a path (or paths) in the adjacent
entry box. Follow this procedure for each file that requires a special

7-16 Project Settings
path. Setting this option overrides the COPYPATH environment
variable for that file. The specified value is used every time that file is
compiled and whenever the workbench needs to locate a COPY file for
that file.

7.6 Library Settings

An object library is a file that contains a group of one or more compiled
ACUCOBOL-GT programs and its associated resource files (bitmaps, WAV
files, and so on). Ordinarily, if you wanted to create an object library, you
would invoke cblutil, the object file utility (discussed in Chapter 19 of this
manual and Chapter 3 of the ACUCOBOL-GT User’s Guide). If, however,
you want to automatically create an object library every time you build a
project, you can use the Library tab of the Project Settings window to define
the modules of that library file.

To specify that you intend to build an object library at compile time, mark the
Build as library check box. When you do this, all of the object files in your
project are marked for addition to the library. You can add additional object
files or libraries (residing in other projects or directories) in the “Additional
modules” list. When you build the project, AcuBench invokes cblutil using
the command line shown in the “Library options” field at the bottom of the
Library tab.

Library Settings 7-17
Although the Library tab provides a method for changing the order of
additional modules added to the object library from outside the project, it
does not provide a means for ordering the modules within the project, nor for
declaring a primary module. The process of declaring a primary module for
the object library is performed in the Project Properties interface:

To specify a primary module:

1. Right-click the project icon in the Workspace window and select
Properties.

2. In the Project Properties interface, select the Library tab.

The Library tab lists all of the object files associated with the current
project.

3. In the Program File list, double-click an item to select it as the primary
module. The item that you select is indicated by a check mark and
added to the “Primary library module derived from” field.

To change the item selected as the primary module, double-click another
item in the Program File list.

4. When you are finished, click OK to save your changes.

7-18 Project Settings
The changes that you make in this Project Properties interface are used to
update the cblutil command line in the Project Settings interface. You can
see this change in the “Library options” field at the bottom of the Library tab
of the Project Settings window.

To retrieve information about an object file or object library in an AcuBench
project, right-click the object in the File view and select Properties. The
information shown here includes the file size and compile date, whether or
not the object includes debugging symbols, and the names of any resources
(like image files) included in the object. You can also view this information
using cblutil, as described in Chapter 19 of this manual.

8
 Working with Data at the
Project Level
Key Topics

Introduction ... 8-2

Defining Data Files for Use in Projects and Programs 8-2

Creating Data Layout Files .. 8-4

Working in the File Designer.. 8-10

Copying DLT Files Between Projects .. 8-28

Tips for Working in the Data View ... 8-29

8-2 Working with Data at the Project Level
8.1 Introduction

AcuBench includes a set of specialized tools for working with data files and
user-defined items. These tools are designed to simplify the creation and
maintenance of data-related program elements. Graphical user interfaces,
many of which support drag-and-drop editing and syntax checking, make it
easy to create, edit, and review data descriptions. At your direction, the
information added to these interfaces is used to generate the related code. For
an overview of code generation concepts, see section 3.3.

The data-related development tools are collectively referred to as the data
design tools. The first tool, the File Designer, is accessed through the Data
tab of the Workspace window and used at the project level to describe the
structure of data files used in a project (and to generate FD, SL, SD, and XFD
files, as well as file-handling code). The remaining three tools—the Data Set
Designer, the Working Storage Editor, and the Linkage Editor—are accessed
through the Structure view and used at the program level to define how an
individual AcuBench program uses data.

This chapter discusses the process of using the File Designer to define data
files for use by any program (or all programs) in an AcuBench project. The
program-level data design tools are discussed in Chapter 10.

8.2 Defining Data Files for Use in Projects and
Programs

As described in Chapter 3, programs in AcuBench are organized into
projects. A project is a group of interrelated programs, some or all of which
may make use of a shared set of COPY files, resources, and data files. For
this reason, when you set out to define data files for use by AcuBench
programs, the first step is to create a definition at the project level.

Defining Data Files for Use in Projects and Programs 8-3
The project level definition for a data file is created in the File Designer,
which is accessed through the Data view of the workspace.

This definition is stored in a data layout file, or DLT. The DLT contains
information that AcuBench uses to generate SELECT, File Description, and
Sort COPY files, as well as extended file descriptions (XFDs). These files
can be used by any program within the project for which the DLT has been
defined.

The DLT also contains information about whether and how to generate file
handling code in those programs that make use of the data file. You can
choose to use no generated file handling code, to use default generated code,
or to use code paragraphs that you write and store in the DLT.

If you are working with multiple projects that share one or more data files,
you only need to define the data layout for each file one time. Once the DLT
has been created in one project, you can easily add it to other projects.

The process of defining data files for use at the project level is as follows:

1. In the Workspace window’s Data view, use the File Designer to do one
of the following:

• Create a new data layout file from scratch (section 8.3.1)

• Create a new data layout file from existing File Description (FD)
and SELECT COPY files (section 8.3.2 and section 8.3.3)

• Open an existing data layout file, described in a different project

8-4 Working with Data at the Project Level
2. Use the File Control, Definition, and Key tabs of the File Designer to
create or update the FD, SELECT, and SORT definitions for the file
(section 8.4.1, section 8.4.2, and section 8.4.3).

3. Use the IO Handling tab of the File Designer to specify whether
AcuBench should generate file handling code for the file (section
8.4.4).

This is also where you enter any custom file handling code that you
would like AcuBench to associate with the data file and make available
to any program that uses the file.

4. Use the XFD tab of the File Designer to establish any XFD directives
that you would like to include in an extended file descriptor (section
8.4.5).

5. Close the File Designer, then generate new FD and SELECT COPY
files from the new or revised data layout file. To do this, right-click
the icon for your new DLT in the Data view and select Generate
FD/SL from the pop-up menu.

The COPY files are assigned a “.fd” and “.sl” extension and, by default,
placed in the project’s FD folder.

Once you have generated your FD and SELECT COPY files, you are ready
to define how individual programs in your project will access your data files.
This is accomplished using the Data Set Designer, described in Chapter 10,
section 10.2, “Using the Data Set Designer.”

8.3 Creating Data Layout Files

There are two basic methods for creating a new data layout file:

• You can start from scratch, defining your FD, SELECT, and other file
information in a blank data layout.

• You can create COPY files from you existing FD and SELECT
statements and use these as the basis for creating a new data layout file.
There are two tools that you can use to accomplish this: one for creating
a single DLT, one for automating the process of creating multiple DLTs.

Creating Data Layout Files 8-5
If you are starting from existing code but do not already have “.fd” and “.sl”
COPY files, they are easily created by extracting the code from your program
and placing the file description and SELECT statement code in separate files.
The primary advantages of doing this are:

• You can use the File Designer to maintain the file description and
SELECT statement.

• You can designate the “.fd” and “.sl” files as a data set for the program
(via the Data Set Designer), which enhances the functionality of the
Screen Designer and Report Composer interfaces and causes standard
file handling code to be generated (see section 10.2)

8.3.1 Creating a DLT from Scratch

To create a brand new data layout file, do the following:

1. Select New from the File menu and click on the FD/SL tab or right-click
the Project node in the Data view and select New FD/SL from the
pop-up menu.

8-6 Working with Data at the Project Level
The default FD/SL name, unique prefix, and location settings shown in
the New interface are based on settings specified in the Tools/Options
interface, under Environment/Prefix.

2. Select the Blank icon to create a new data layout that will be used to
create a new file description and new SELECT statement.

3. In the “FD/SL name” field, enter a descriptive name for your data
layout. This will be used as the base name for the new “.fd” and “.sl”
COPY files generated by AcuBench.

4. Specify a location for the new DLT. By default, the data layout and the
FD and SL COPY files are all placed in the FD folder for the current
project. If you specify a different location for the DLT, the FD and SL
COPY files are still placed in the FD folder.

5. If you do not want to add the new data layout to the current project, use
the “Add to existing project” drop-down box to select another project.

6. When you are finished, click OK to create the data layout and open it
in the File Designer.

You are now ready to define your data layout, as described in section 8.4,
“Working in the File Designer.”

8.3.2 Creating a DLT from a Single FD/SL Pair

If you have COPY files containing FD and SELECT information, you can
use the files to create a data layout file, regardless of whether or not the
COPY files were created by AcuBench. The COPY file containing FD
information must have a “.fd” extension and the COPY file containing the
SELECT statement must have a “.sl” extension.

The “.fd” and “.sl” COPY files that you use can reside on any local or
mapped drive. If you use COPY files that do not reside in the current project
directory, when you generate your project (or the DLT), the newly
regenerated COPY files are placed in their original location and will
overwrite any files of the same name located in that directory. The DLT,
however, is created in the directory specified in the New FD/SL interface (by
default, the project’s FD directory).

Creating Data Layout Files 8-7
Use the following steps to create a data layout file from an existing “.fd” and
“.sl” pair:

1. Select New from the File menu and click on the FD/SL tab or right-click
the Project node in the Data view and select New FD/SL from the
pop-up menu.

2. Select the Import from Files icon to specify that you have already
defined an FD and SELECT statement that will be used to create a new
data layout file.

3. Enter a name and location for the data layout file, as described in the
previous procedure.

4. Click OK.

The Import FD/SL Files dialog box opens, asking you to specify the
location of the “.fd” and “.sl” COPY files that you want to use to create
the new data layout.

5. Enter the path to the COPY files, or use the browse button to the right
of the entry fields to navigate to the directory containing each COPY
file.

6. Click OK to create the data layout and open it in the File Designer.

You can now make changes to the data layout file, if needed, as
described in section 8.4, “Working in the File Designer.”

Tip: To change the name of an existing DLT, right-click the icon for the
DLT in the Data view and select Properties. This can be especially useful
for the import function, since you enter a name for the DLT before
specifying your FD and SL COPY files. Note that changing the name of the
DLT does not affect the name of the generated FD and SL files.

8-8 Working with Data at the Project Level
8.3.3 Creating DLTs from Multiple FD/SL Pairs

If you have several FD and SELECT COPY files that you would like to bring
into AcuBench at the same time, there is an interface to help streamline this
process. In order to use this process, your COPY files must have “.fd” and
“.sl” extensions, and the COPY files must be added to the project before they
are used to create a DLT. The process of adding the files to the project is
included in the procedure that follows.

Note that although the COPY files must be added to the project, this can be
done without changing their physical location on disk. You have the option
to copy your “.fd” and “.sl” files into the AcuBench project directory
structure, but this is not required.

It is important to remember that when you generate an AcuBench project or
DLT, the new FD and SL COPY files created by the generate process are
placed in whatever directory or directories held the original “.fd” and “.sl”
files. If you do not want your original COPY files overwritten, it is a good
idea to move a master copy to another location, or make a copy of the files
within the AcuBench project directory.

The DLT file is placed in the directory specified in the Tools/Options
interface, under Environment/Prefix. By default, this is the project’s FD
directory.

To add multiple “.fd” and “.sl” pairs to an AcuBench project, do the
following:

1. Place your “.fd” and “.sl” COPY files in a directory recognized by the
Windows operating system. This may be the FD directory of the
AcuBench project, another directory on your local hard drive, or a
remote directory serving as a Windows mapped drive.

Remember that when you generate a DLT, newly generated FD and SL
COPY files will be placed in the directory or directories that you select
in this step. If multiple developers will be using these COPY files, you
may want to make the directory or directories read-only, to avoid having
one person’s changes to a DLT affect everyone’s COPY files.

2. In the Workspace window’s File view, right-click the FD folder and
select Add/Remove Files.

Creating Data Layout Files 8-9
3. Navigate to the directory containing your COPY files, select the files
you want to use, and click Add. Repeat this process for any additional
directories containing “.fd” and “.sl” COPY files.

When you are finished adding files, click OK.

4. In the Data view, right-click the project icon and select Associate
FD/SL Files.

5. In the Associate FD/SL Files interface, click an FD file and its
corresponding SL file, then click Associate.

The pair is added to the “Associated FD/SL Files” list in the middle of
the interface.

6. Repeat this process until all of the COPY files have been associated,
then click OK.

All of the new DLT files appear listed in the Data View. AcuBench uses
the base name of the “.fd” and “.sl” COPY files to create the DLT name.
Section 8.4, “Working in the File Designer,” describes how to make
changes to a DLT, if needed.

8-10 Working with Data at the Project Level
8.4 Working in the File Designer

The File Designer, accessed through the workspace’s Data view, is used to
create, view, and modify data layout files. The designer interface consists of
five tabbed screens:

• The File Control tab contains most of the information used to generate a
SELECT statement.

• The Definition tab contains the information used to generate a file
description (FD).

• The Key tab contains key information for the file (if applicable).

• The IO Handling tab is used to determine which types of file handling
code, including declaratives, are associated with a data file at the project
level.

• The XFD tab is used to add XFD directives and otherwise customize the
XFD generated for a file (when needed).

To open the File Designer, you must either create a new data layout file (as
described in sections 8.3.1 through 8.3.3) or open an existing data layout file.
To open an existing DLT, go to the Data view and double-click the DLT
name. You can also right-click on the project node and select Open
data_layout_name from the pop-up menu.

8.4.1 Adding File Control Information

When the File Designer opens, the File Control tab is selected by default.
This tab is used to construct most of the SELECT statement that will be
generated into the associated “.sl” COPY file. (Key information is entered in
a different File Designer tab). Selections made and information entered in
this interface must conform to the ACUCOBOL-GT rules for a File-Control
paragraph SELECT statement (see Chapter 4 of the ACUCOBOL-GT
Reference Manual).

Working in the File Designer 8-11
Use the File Control tab to view or edit the following information:

1. The File name field displays the name of the current data layout file. The
file name is established when you create a new data layout and cannot be
changed here.

To change the name, right-click the DLT in the Data view and select
Properties.

2. The Optional check box is used to indicate whether the SELECT
statement should contain an OPTIONAL phrase. If this box is marked
and a program invoking the data file cannot locate the file, a new,
empty data file is created with the characteristics defined in the FD and
SELECT.

3. The Device and Name fields are used to create the ASSIGN TO phrase
of the SELECT statement. First select a device from the drop-down
list, then enter a file name or variable. If name is a literal, such as
“clientfile.dat”, the file name must appear between quotation marks.

8-12 Working with Data at the Project Level
4. Select a file format from the Format drop-down list. Other options in
the “File format” area vary depending on the file format that you
choose (NONE, Binary Sequential, Line Sequential, Relative, Indexed,
or Sort).

• If you have selected Relative format, the Key name field is enabled.
Enter a name for the data item that will hold the value of the relative
key.

• Choose a value from the Access mode drop-down list to determine
how the file will be accessed.

• Select a value from the Lock mode drop-down list to determine
what type of file locking is used with this file.

• Enter a file status variable in the File status field. The value that you
enter here is added to Working-Storage automatically.

5. Add a comment in the Comment field, if desired.

6. Click the Advanced button to add additional file control information,
if needed. The options available in the Advanced dialog depend on the
file format that you have specified, and the Advanced button is
disabled when you specify a SORT file.

The Advanced Options for Indexed File screen contains all of the
possible options available on the Advanced interface. The interfaces for
relative and sequential files contain a subset of these options:

Working in the File Designer 8-13
• If you want to enable encryption or compression, mark the With
check box, then mark the Encryption and/or Compression check
boxes. If you enable compression, you must also specify a
compression factor.

• To include the RESERVE phrase in your SELECT statement, mark
the Reserve check box. You can then either select the No radio
button or select the Number radio button and enter a number. Mark
the Alternate check box to add an ALTERNATE AREA phrase.

• To include a COLLATING phrase, mark the Collating check box,
then enter the name of an alphabet declared in SPECIAL-NAMES
in the Alphabet entry field.

To continue creating or editing your DLT, continue with section 8.4.2,
“Adding a File Description.”

8.4.2 Adding a File Description

The Definition screen is used to define the file’s record structure. Items
entered here are used to create the FD generated into the “.fd” COPY file.
Information entered in this interface must conform to the ACUCOBOL-GT
rules for a file description entry (see Chapter 5 of the ACUCOBOL-GT
Reference Manual).

8-14 Working with Data at the Project Level
Data items are added, removed, or modified in the “Data item definition” list.
Note that you can copy and paste fields from another DLT or from a text file
to build a file description in this interface.

 To create or modify a file description, select the Definition tab and do the
following:

1. To add a field, click either the Add Item button or the graphical Add
button (the only graphical button enabled when the Data item definition
list is empty).

The graphical Add icon looks like this:

If you use the graphical Add button, a 01 level item is automatically
created. If you use the Add Item button, you can select the level number
of your first field, or use items from a COPY file. Linking and importing
items from a COPY file is discussed in section 8.4.2.1.

2. Double-click in the Field Name column to edit the default field name,
as needed.

Working in the File Designer 8-15
3. Click or tab through the remaining columns of the field definition to
add PIC, USAGE, VALUE, and other phrases, as needed.

If you are adding an Occurs phrase, see section 8.4.2.2 for help
navigating the Occurs interface.

In addition to the basic field information defined in the first seven
columns of the “Data item definition” list, you can click in the More
column to further refine your field definition. These additional options
are discussed in section 8.4.2.3.

4. When you are ready to create the next field, you can use the Add Item
button, the graphical Add, Add Sub-Item, or Add Item Before buttons.

In most instances, if you create a field, then want to change its level
number, you can double-click in the Level column and type a new value.
If the value is not permitted, AcuBench displays an error message. In
some instances, the field is read-only, and the level number cannot be
changed.

The default level number assigned to a new item or sub-item can be
changed in the Data Designer section of the Tools/Options interface,
under Graphical FD.

Note that you can cut, copy, and paste or drag-and-drop items to make
changes to a record.

5. To delete an item, click the graphical Delete button. You can also
delete all of your field definitions with the Delete All button.

6. To specify additional definition information for the file, click the
Advanced button.

Option Description

Declared This area lets you select file declaration options.

External Enable this check box to include the IS
EXTERNAL phrase.

Global Enable this check box to include the IS
GLOBAL phrase.

Detailed attribute This area lets you select file description entry
phrases.

8-16 Working with Data at the Project Level
Block Enable this check box to include the BLOCK
CONTAINS phrase. Available only for
sequential files.

Enter the minimum and maximum block size in
the entry fields to the right. Enable the
appropriate radio button to specify physical
record size in terms of either logical records or
characters.

Code-Set Enable this check box to include the CODE-SET
phrase. Available only for sequential files.

Enter the name of the desired
SPECIAL-NAMES character set in the “Name”
entry field.

Label Enable this check box to include the
LABEL-RECORDS phrase. This phrase is
ignored by the compiler.

Linage Enable this check box to include the LINAGE
phrase. Available only for sequential files.

In the entry fields to the right, specify the number
of lines on a page, the line number where the
footing area begins on the page, and the numbers
of lines in the top and bottom margins.

Record Enable this check box to include the RECORD
phrase.

Specify the record size in the Record area to the
right. Enable the Contain radio button to specify
the size of a fixed- or variable-length record.
Enable Varying in Size to specify the size of a
variable-length record.

Value of File-ID Enable this check box to include the
VALUE-OF-FILE ID phrase.

Enter the file’s external name in the “Name”
entry field to the right.

Value of label Enable this check box to include the VALUE OF
LABEL phrase. This phrase is ignored by the
compiler.

Option Description

Working in the File Designer 8-17
When you are finished entering File Definition information, you can do one
of the following:

• If this DLT describes an indexed file, continue to section 8.4.3 to define
key information.

• To determine what file handling code AcuBench can generate for this
data layout, continue to section 8.4.4.

• If you want to create a custom XFD for the data file, continue to section
8.4.5.

• If you are finished creating your data layout file, close the File Designer,
then right-click the icon for your new DLT in the Data view and select
Generate FD/SL from the pop-up menu. The information in your data
layout file is now available to the programs in your project.

8.4.2.1 Linking and importing COPY files

When you use the Add Item button to add fields to your FD, you have the
option to link to or import an existing COPY file containing all or some of
your field definitions.

The Link COPY File option creates a logical link to an existing COPY file.
When you generate your FD and SELECT, a COPY statement is added to the
FD to bring in the linked items. Information from the COPY file appears in
colored text in the “Data item definition” area. If you link to multiple COPY
files, the contents of each file appears in a different color. Linked items
cannot be modified in the File Designer.

Alternatively, the Import COPY File option makes a copy of the items in the
specified “.fd” file. There is no link or dependency on the imported file.
Imported items appear in the default text color (usually black) and can be
edited in the File Designer.

If part of your record definition includes a link to a COPY file and you want
to instead import those fields, you can easily make the switch. To perform the
conversion, select a field in the linked portion of the record and double-click
in the More field. Click on the button that is displayed. In the Field dialog
that appears, enable the Convert Link to Import check box and click OK.

8-18 Working with Data at the Project Level
8.4.2.2 Occurs Syntax dialog

If you want to specify an OCCURS clause for a field, you can either enter a
number in the Occurs field or press the browse (...) button to open the Occurs
Syntax dialog. This dialog contains graphical interfaces for constructing
more complex OCCURS phrases.

The options available in this interface include:

Option Description

Field name Displays the field name of the selected item.

Occurs clause Enable this check box to include an OCCURS clause in
the data definition.

Occurs Lets you specify the type of OCCURS phrase.

Fixed Select this radio button to use a fixed-size OCCURS
phrase. Specify a positive integer value in the Size entry
field.

Variable Select this radio button to include a variable-sized
OCCURS phrase. Specify a minimum size, maximum
size, and DEPENDING ON variable in the adjacent fields.

Working in the File Designer 8-19
8.4.2.3 The Field dialog

To further refine your field definition, double-click the More column for the
field. This opens a Field dialog, which includes the following options:

Key Enable this check box to include the KEY IS phrase.

Available fields Lists all of the items that can be specified in the Key list.
Use the right arrow button to add an item to the Key list.

Key list Lists all of the selected keys. Remove a selected item with
the left arrow. Remove all items with the double-left
arrow.

Order Double-click on an item’s Order field to set ASCENDING
or DESCENDING.

Order button Opens the Modify Key Item Order dialog that allows you
to change the order of the items in the Key list.

Indexed by Enable this check box to include the INDEXED BY
phrase.

Index
name

Enter the name of the index and click the right arrow to
place it on the Index list.

Index list The list of index items. Remove a selected item with the
left arrow. Remove all items with the double-left arrow.

Option Description

Option Description

Global Enable this check box to include the IS GLOBAL
phrase.

Special Names Select a special name type from the drop-down list
to include the IS SPECIAL-NAMES phrase.

Sign Select a sign position from the drop-down list to
include the SIGN IS phrase.

Synchronize Enable this check box and select a position from
the adjacent drop-down list to include the
SYNCHRONIZED phrase.

Justified right Enable this check box to include the JUSTIFY
RIGHT phrase.

8-20 Working with Data at the Project Level
8.4.3 Defining Key Information

If you are creating a data layout for an indexed file, you can use the File
Designer’s Key tab to specify one or more keys. Rules for primary and
alternate keys can be found in Chapter 4 of the ACUCOBOL-GT Reference
Manual.

All of the fields that you define in the Description tab appear in the “Fields
description” list in the bottom, left portion of the interface. Use this list to
build your key(s) as follows:

Blank when zero Enable this check box to include the BLANK
WHEN ZERO phrase.

Copy file This section is enabled only if the selected item is
part of a linked COPY file.

Convert Link to
Import

Select this check box to convert from a linked
COPY file to an import.

Name Displays the name of the linked COPY file.

Comment Enter a comment in this field.

Option Description

Working in the File Designer 8-21
1. In the “Fields description” list, double-click an item to add it to the
“Selected Fields” list. You can also click an item (or Shift-click or
Ctrl-click to select multiple items), then click the right arrow (“>”) to
add them to the Selected Fields list. To add all fields to the list, click the
“>>” button.

All fields in the “Selected Fields” list when you create a new key are
added to the key. If you have mistakenly added a field to the list, use the
left arrow (“<”) button to remove it. To clear the “Selected Fields” list,
use the “<<” button.

2. To add the fields in the “Selected Fields” list as a key, click the Add
button (first in the set of four to the right of the “Key list” label). You
can also right-click in the Key list area and select Add. The selected
fields appear in the “Key list.”

This two-step process for creating keys makes it easier to add split keys,
constructed from multiple non-contiguous fields.

3. To add or change a key name, double-click in the Key Name field and
enter the name.

4. To change key type (unique primary, primary allowing duplicates,
unique alternate key, alternate key allowing duplicates), double-click in
the Type field and select an option from the drop-down list.

5. To insert a comment, click in the Comment field and then click on the
button that appears.

To change a key for an indexed file:

1. In the “Key list” select the key that you want to change. Note that the
key fields of the selected key are listed in the “Selected Fields” list.

2. Add or subtract items from the “Selected Fields” list until you have the
fields that you want.

3. Change the key by clicking the Modify button (second in the set of
four to the right of the “Key list” label).

To remove a key, select the key in the “Key list,” then click the Delete button
(third in the set of four buttons to the right of the “Key List” label). To clear
all of the key definitions and start again, use the Delete All button (the fourth
button in the set).

8-22 Working with Data at the Project Level
When you are finished defining and editing key information, you can do any
of the following:

• To determine what file handling code AcuBench can generate for this
data layout, continue to section 8.4.4.

• To create a custom XFD for the data file, continue to section 8.4.5.

• If you are finished creating your data layout file, close the File Designer,
then right-click the icon for your new DLT in the Data view and select
Generate FD/SL from the pop-up menu. The information in your data
layout file is now available to the programs in your project.

8.4.4 Defining File Handling Behavior

The File Designer IO Handling tab allows you to assign I/O code and
declaratives to a data layout file. This interface also lets you determine
whether and how I/O paragraphs are generated by AcuBench.

To determine what file handling code, if any, AcuBench will generate, do the
following:

Working in the File Designer 8-23
1. In the IO Paragraphs area of the screen, select one of the three radio
buttons.

• By default, Use Default Code Generation is selected. This causes
AcuBench to generate default paragraphs for basic file operations,
like OPEN, READ, WRITE, and so on.

• If you want AcuBench to generate your own, custom file handling
paragraphs for one or more file operations, select Use User-defined
IO Paragraphs.

• If you want to handle all file operations manually within your code,
and do not want AcuBench to generate any I/O paragraphs, select
Do Not Generate Any IO Paragraphs.

2. If you have selected the first or third radio button, skip to the end of
this section.

If you have chosen to use user-defined I/O paragraphs, continue to step
3.

3. In the User-defined IO Paragraphs list on the bottom portion of the
screen, the File Designer displays a list of file operations for which
AcuBench normally generates code. Double-click in the Value column
next to any of these paragraph descriptions to add a new paragraph.

You can also define your own new paragraph types. To do this, click the
Add button (the third of the three buttons to the right of the
“User-defined IO Paragraphs” label). Double-click in the Item column
to enter a description of the paragraph type, then double-click in the
Value column and continue with the next step.

4. Enter a paragraph name. If you have already defined custom
paragraphs in this DLT, they will appear listed when you expand the
Value drop-down list.

5. Click the browse (...) button to enter the Event Editor.

6. Add code to your paragraph.

7. When you are finished, you can either close the Event Editor to return
to the IO Handling tab or select another paragraph type from the
Message list at the top of the Event Editor window and create
additional paragraphs.

8-24 Working with Data at the Project Level
To remove a paragraph that you have added for one of the default file
operations, click the paragraph name, then click the Clear Paragraph button
(the second of the three buttons to the right of the “User-defined IO
Paragraphs” label).

If you have added your own paragraph type and want to remove both the new
description and its associated paragraph, select the item and select Delete (the
first of the three buttons to the right of the “User-defined IO Paragraphs”
label).

When you are finished defining file handling behavior in this DLT, you can
do either of the following:

• To create a custom XFD for the data file, continue to section 8.4.5.

• If you are finished creating your data layout file, close the File Designer,
then right-click the icon for your new DLT in the Data view and select
Generate FD/SL from the pop-up menu. The information in your data
layout file is now available to the programs in your project.

8.4.5 Designing a Custom XFD

The File Designer XFD tab lets you add XFD directives to your FD to design
an extended file descriptor (XFD) for your data files. XFD files are
commonly used to map fields in a record to columns in a table. If you are
using AcuXDBC, for example, or reading or writing XML data with
AcuXML, XFD files help map the data for translation between file formats.
AcuBench can also make use of one XFD directive—the NAME
directive—to make some of its Screen Designer and Report Composer
interfaces more readable.

Working in the File Designer 8-25

Regardless of whether or not you have made changes to this tab, you can
create an XFD file for any data file described in an AcuBench data layout
file: right-click the DLT in the Data view and select Make XFD File.

General information about XFDs can be found in Chapter 5 of the
ACUCOBOL-GT User’s Guide.

To add XFD directives to your FD, do the following:

1. Select an item in the Field Name list on the left side of the interface.

The options available on the right side of the interface are enabled or
disabled depending on your selection.

2. If you have selected the FD statement, the File Directive field is
enabled. Enter a base name from which the XFD name will be formed.
The default name is based on the ASSIGN TO clause of the SELECT
statement.

3. If you have selected a field in your FD, several fields are enabled.
Which fields are enabled depends on whether or not the selected field
is a group item. Use the information immediately following this
procedure to assign directives to data items.

8-26 Working with Data at the Project Level
4. When you finish adding XFD directives, close the File Designer, then
right-click the icon for your new DLT in the Data view and select
Generate FD/SL from the pop-up menu. The information in your data
layout file is now available to the programs in your project.

To view the FD (including the XFD directives that you have specified),
you can right-click the icon for your DLT in the Data view and select
View dlt-name.fd.

5. To generate an XFD, right-click the data layout icon and select Make
XFD File. The XFD is generated into the directory containing your
FD, SL, and DLT files.

Name Directive

XFD NAME directives can be used to assign a name to a field in a file. This
is often used to add a descriptive, formatted, or shortened name to a field, in
order to create a more readable table. You can also elect to have alternate
names specified with the NAME directive appear in the AcuBench Drag and
Drop, Make Radio Button, and Autoload interfaces used to create screen and
report controls. These names are then also used as the default title or label
associated with the control.

To define a new name for a field, enter the name in the Name Directive field.

If you want the name specified by the NAME directive to appear in
AcuBench interfaces:

1. Open the Tools/Options interface and select the Screen Designer
category.

Working in the File Designer 8-27
2. Mark the Apply XFD Names to Drag & Drop check box.

3. Select the Report Writer category and mark the Apply XFD Names to
Drag & Drop check box.

4. Click OK to save your changes.

By default, data items in the Drag and Drop interface are listed using the field
names defined in the file description. For more information about the Drag
and Drop interface, see Chapter 14, section 14.4.2, “Drawing Controls
with Drag-and-Drop,” which pertains to screen design, and Chapter 17,
section 17.4.2, “Using Drag-and-Drop,” which discusses report design.

Use Group Directive

The USE GROUP directive allows you to enter a group item into the XFD as
a single field, instead of using the elements contained in the group. This field
is only enabled if you have selected a group item.

You can use the USE GROUP directive in conjunction with the NAME
directive to assign a single name for the entire group.

Data Type Directive

When you mark the Data Type Directive check box, you can specify a
format for the data item other than that established by the PICTURE clause.
This means that you can have a database treat a numeric data item as
alphanumeric, for example, or have a date item stored as numeric appear in a
formatted date format. Select one of the following formats:

• Alpha indicates that the selected fields should be treated as
alphanumeric.

• Binary specifies that the data in the field could be alphanumeric data of
any classification. Absolutely any data is allowed.

• Data marks the selected data field or group as a date. Enter the data
format in the entry field to the right of the Date radio button.

• Numeric treats the selected data item as an unsigned integer.

• Var-Length designates the data item as having a variable length.

8-28 Working with Data at the Project Level
When Directive

The WHEN directive is used when you want to include multiple record
definitions or REDEFINES in the XFD file. When you mark the
corresponding check box, a field is enabled, allowing you to enter WHEN
directive syntax. Click the ellipsis button to display the Expression Builder
dialog, where you can also construct WHEN directive syntax.

You can use the Table Name field to add an optional tablename clause to the
WHEN directive. If you assign a table name, the data that immediately
follows the WHEN directive and meets the specified condition will be
considered as a separate table.

Comment Directive

You can use COMMENT directives to include comments in your XFD field.
Mark the Comment Directive check box, then enter a comment in the
associated entry field.

8.5 Copying DLT Files Between Projects

Once you have created a data layout file in one project, you can quickly and
easily add that DLT to any other AcuBench project, whether or not the other
project resides in the same workspace as the original project. It is important,
however, to understand the distinction between sharing a DLT between
projects and copying a DLT into multiple projects.

When you add a data layout file to a project, you generate new FD and SL
files from that DLT. These are generated into the FD folder for the current
project, so that if your projects reside in different directories, each has its own
set of FD and SL COPY files. The original DLT file, however, is not moved
from its original location. This means that if you create a DLT in one project,
then add it from another project without making a copy of the original DLT,
both projects point to the same file on disk. In this case, if you make a change
to the DLT in either project, that change is reflected in both projects.

Tips for Working in the Data View 8-29
To open a data layout file defined in a different project:

1. In the Data view, right-click the project node and select Add FD/SL
from the pop-up menu.

2. In the Add Data Layout to Project window, navigate to the location of
the existing DLT. Select the file and click Open.

3. Expand the project node (if necessary) and right-click the DLT name to
generate new FD and SL COPY files for the project. This makes the
information in your data layout available to programs in your project.

8.6 Tips for Working in the Data View

When you add an existing AcuBench program to a new project, or copy a
program from one project to another, it is a good idea to verify that any DLT
files referenced by the program exist within the project before you attempt to
generate the program. Any time a program contains data set definitions, you
will need the data layout file and its associated FD and SL COPY files in
order to successfully generate and compile that program.

If you generate a program before all of the DLT files that it needs have been
added to the project, AcuBench identifies missing, required data fields and
adds them to Working-Storage. Later, when you add the missing DLT to the
project, you will receive errors caused by the duplicate field names. This can
be solved by deleting the duplicate names from Working-Storage, but it’s
preferable to avoid the problem altogether.

8-30 Working with Data at the Project Level
8.6.1 Useful Data View Functions

When you right-click a DLT icon in the Data view, the pop-up menu that
appears provides shortcuts to a number of useful functions.

Viewing FD and SL COPY files

You can open and view the FD and SL COPY files generated from the DLT
with the View base-name.fd and View base-name.sl options, or open the File
Designer to view the selected DLT using the Open dlt-name option.

File handling code and the Event Editor

When you use the IO Handling tab to define file handling code associated
with a DLT, that code is edited in the Event Editor. If you are working in the
Structure view, however, your file handling code does not appear when you
open the Event Paragraph. To edit or add to your file handling code,
right-click a DLT in the Data view and select Event Editor.

When you launch the interface in this way, the name of the DLT that you have
selected appears in the “Control” field at the top of the Event Editor window,
and the IO handling paragraphs associated with the DLT appear in the
“Message” field. In addition, any file handling paragraphs that you have
already created appear in the editor window.

Note that when you use this method to open the Event Editor, code that you
have added to the Event Paragraph through the Structure view is hidden.

Tips for Working in the Data View 8-31
Creating a new XFD

You can create an extended file descriptor (XFD) from a DLT at any time.
Just right-click the DLT and select Make XFD File. AcuBench invokes the
ACUCOBOL-GT compiler in the background to create an XFD for the
specified file. The XFD is placed in the project’s FD directory.

Refreshing the DLT

If you have made a change to an FD or SL COPY file and want that change
to be added to the DLT, select Refresh dlt-name. This option is especially
useful if you have created the DLT from your own “.fd” and “.sl” COPY files
and are accustomed to maintaining these files outside of AcuBench.

8.6.2 Data Layout Properties

To change the name or unique prefix associated with a DLT, right-click the
DLT name and select Properties.

The Data Layout Properties window also lists the name of the data file
associated with the file definition, as well as the path and filename for the
DLT file and its FD and SL COPY files. This can be especially useful when
you are working with shared DLT or FD/SL COPY files to verify that you are
working with the correct version of the correct file. Once the DLT has been
created, these paths cannot be changed.

8-32 Working with Data at the Project Level

9
 Working with Programs
Key Topics

Introduction ... 9-2

Creating an AcuBench Program.. 9-2

Adding and Creating Basic Source Files ... 9-12

Generating a Program .. 9-21

Compiling a Program.. 9-21

Executing a Local Program .. 9-26

Executing a Remote Program .. 9-26

Debugging a Program .. 9-27

9-2 Working with Programs
9.1 Introduction

AcuBench projects can contain two kinds of programs. AcuBench programs
have a program structure file and appear in the Structure view of the
Workspace window. This type of program contains AcuBench-generated
code. Non-AcuBench programs appear as source files, COPY files, and
object code only in the File view of the Workspace window. The AcuBench
code generator does not generate any code for these programs.

9.2 Creating an AcuBench Program

In AcuBench, creating a program means creating a program structure file (see
section 3.2.3). After the program structure file is created, you generate to
create a program source file (“.cbl”). The source file can then be modified to
include those parts of the program that are not generated by AcuBench.

This section describes the process of creating a new AcuBench program.

To add an existing program to a project and in the process create a program
structure file, see Appendix A, section A.3, “Creating a PSF for an
Existing Program.”

To add an existing source file without creating a program structure file, see
section 9.3.2.

To create a new source file without creating a program structure file, see
section 9.3.1.

Creating an AcuBench Program 9-3
Create a new program as follows:

1. Select New from the File menu and click on the Program tab. You can
also right-click the project node in the Structure view and select New
Program.

2. Select a program template.

The Standard template includes code for a standard graphical screen.

The Blank template does not include a screen.

3. Enter the name of the new program in the Program name field.

The read-only File name field is updated to show the name of the
program structure file that will be created for your new program.

4. Enter a location for the program structure file (PSF) in the Location
field. To browse for a directory path, click the button to the right of the
field.

By default, the new program structure file is placed in the base directory
for the current project.

9-4 Working with Programs
5. If you want an existing source file to be associated with a new
program, enter the file name in the Base Source File entry field or click
the browse button to navigate to the file you want to use. The selected
source file is renamed to that shown in the Program Name entry field
and copied into the source directory of the current project. AcuBench
program tags are generated when the program is added to the project.
Although program tags are added to the source file, a run-mainscr tag
is not generated. You need to create a main screen and the code to call
that screen.

6. Select the project to which the new program will be added (this field is
set to the current project, by default).

7. Click OK.

You should note that when an existing source file is selected in the New/
Program dialog, the Code Generation options in its Program/Properties area
are selected, and the “Regenerate tagged area only” selection in the Tools/
Options/Code Generator/Generate Document dialog should be cleared.
Ensure that any automatic code generation capabilities that you don’t want
are disabled.

If CRT STATUS is declared in your existing source file template, you should
ensure that the “Do Not Generate CRT STATUS variable in .wrk” check box
in the Program Properties dialog is set.

9.2.1 Adding an AcuBench Program to a Project

When you add an existing AcuBench program to a project, you are actually
adding only the existing program structure file (PSF) to the project. The
COBOL source file (“.cbl”) and associated COPY files are not added. In
addition, adding a PSF to a project creates a pointer, or logical association,
between the project and the PSF. It does not move or copy the PSF from its
current location into the project directory.

Creating an AcuBench Program 9-5
As a result, when you add an existing PSF to a project, consider the
following:

• If you have one PSF file in a central location, and that PSF is added to
multiple projects, changes made to the program in one project will
overwrite changes made to the PSF in another project. In most cases,
you should copy a PSF into your project directory before adding it to a
project.

• If you have manually added code to the COBOL source file associated
with a PSF and want to preserve this code in the new project, you must
copy the existing “.cbl” file into the Source folder (or equivalent) for the
new project.

• If you have manually added code to the “.cbl” file associated with a PSF
and do not want that code to appear in your new project, do not copy the
“.cbl” file. In this instance, the PSF acts as a sort of program template
from which you can build a new program.

To add a program structure file to a project, use these steps:

1. In the Structure view of the Workspace window, right-click on the
project to which you want to add the program and select Add Program
from the pop-up menu. The Add Program to Project dialog is displayed.

2. In the dialog, locate and specify the name of the program structure file
that you want to add and click OK.

3. To add the associated program file (“.cbl”), use the Add/Remove
function.

To add a plain source file, use the Add/Remove Files function described in
section 9.3.2.

9.2.2 AcuBench Program Properties

Programs have a variety of properties, including several that specify how
code is generated for the program. These properties are set in the Program
Properties dialog, which opens when you right-click the program node in the
Workspace window Structure view and select Properties from the pop-up
menu.

The Program Properties dialog has four tabs: General, Output Files, Key
Status, and Code Generation. The General tab includes options for changing
the program name, specifying a logo (splash) screen, and assigning an icon to
the program, among other properties. The Output Files tab displays the
names of the files that are automatically generated for the program and their
last modification date (you can control the set of files that are generated for
all projects in the workspace in the Tools/Options/Code Generation dialog).
The Key Status tab is used to define the program’s CRT STATUS variables.
The Code Generation tab lets you define the code generation characteristics
of a program. These settings override the workspace level settings when that
program code is generated, unless the “Follow project default options” check
box is set. Detailed descriptions of each tab and their options are given in the
next section.

A program options file (“.prf”) stores default settings for a standard program,
shown on the Program Properties Key Status and Code Generation tabs.
These settings can be saved as default, saved as another file, or loaded from
an existing options file with the “Reference” function.

To set program properties:

1. Right-click the program node in the Structure view of the Workspace
window and select Properties from the pop-up menu.

2. Review and set values in each tab of the Program Properties dialog.

3. When you are finished, click OK to accept the settings and close the
dialog.

Creating an AcuBench Program 9-7
General Properties

Option Description

Program name Specifies the program name. Use this field to
change the program name whenever necessary.

On program startup, set logo
screen to

Specifies the name of the screen to display as a
“splash” screen when the program first starts. If a
screen is specified in this field, when you generate
the program, AcuBench includes a DISPLAY
statement in the ACU-INITIAL-ROUTINE of the
“.prd” COPY file.

Display Time Specifies the amount of time, in seconds, that the
logo screen appears on the screen before the main
application window is displayed. Takes a value
between 1 and 300.

On program startup, set
main screen to

Specifies the name of the program’s main screen.
All screens that appear in the Structure view for
the program are listed; the first screen created in
or added to the program is selected by default.
AcuBench adds a DISPLAY statement for the
selected screen to the ACU-INITIAL-ROUTINE
of the “.prd” COPY file.

9-8 Working with Programs
Icon file Specifies the name of the icon file to be displayed
in the upper-left corner of the main window. If a
bitmap file is specified in this field, AcuBench
includes code to load and display the bitmap in the
ACU-INITIAL-ROUTINE of the “.prd” COPY
file.

Description Text entered in this field is placed in the
REMARKS section of the program source file
(“.cbl”) between the *{Bench} prgid tags.

Prompt when program exits Enable this check box to cause the program to
prompt for confirmation when the program is
closed with the window’s close button (in the
window’s upper right corner). AcuBench
generates support code in the program’s “.prd”
COPY file.

Set as initial program Enable this check box to designate the program as
the main (initial) program.

Option Description

Creating an AcuBench Program 9-9
Output Files Properties

Option Description

File name Displays the name of the program file.

Generated output files Lists the names of all files generated by
AcuBench for the program. Click on an entry to
display the last modification date (the last time
the file was generated).

9-10 Working with Programs
Key Status Properties

The Key Status tab is used to define or import CRT STATUS variables. CRT
STATUS items are generated into the program’s “.wrk” COPY file when the
program is generated. Variables defined here are visible to the Screen
Designer and other workbench facilities.

Option Description

Field Name (entry field) Enter the name of the CRT STATUS variable.
This name is used in the “name IS
SPECIAL-NAMES CRT STATUS ...”
statement that is generated in the “.wrk” COPY
file. It is also used in the EVALUATE
statements (“WHEN name =
exception_value”) generated in the “.prd”
COPY file. This field must contain a value,
even if you set the “Do not generate...” check
box. The name is set to “Key-Status” by
default.

Pic (entry field) Lets you enter the PICTURE description of the
Key-Status variable. Pic9(4) is the default
value.

Creating an AcuBench Program 9-11
Code Generation Properties

The Code Generation tab has the same options as the Tools/Options/Code
Generator/Generate Document dialog, and it prefills with the defaults that are
set in the Tools/Options interface. Refer to section 4.6.1, “Generate
Document Options,” for more information about these default settings. If
you change any setting in the Code Generation tab after clearing the “Follow
project default options” check box, that setting overrides the corresponding
Tools/Options setting for that individual program. Setting the “Follow
project default options” check box directs AcuBench to use the settings in the
Tools/Options/Generate Document dialog. In the latter case, the remaining
options on the Code Generation tab are disabled.

Usage (entry field) Lets you select a USAGE format from a
drop-down list.

Import (button) Imports level-88 CRT STATUS variables from
an existing program. Pressing this button
opens a dialog box that lets you locate and
select the file containing the variables that you
want to import. Note that when you import
existing variables from the program’s source
so that they can be generated into the “.wrk”
COPY file, you should later comment out or
remove the CRT STATUS variable
declarations in the program source so as to
eliminate duplicates.

Insert (button) Displays a dialog for defining a new CRT
STATUS item.

Delete (button) Deletes the selected CRT STATUS item.

Select all (button) Causes all items on the CRT STATUS list to be
selected.

CRT STATUS variable list Lists all of the currently defined CRT STATUS
items. Double-click on any item in the list to
edit that item.

Do not generate CRT STATUS
variable in .wrk file

Activate the associated check box to disable
the generation of CRT STATUS variables in
the program’s Working Storage (“.wrk”)
COPY file.

Option Description

9-12 Working with Programs
Code generation properties also include the following options not included in
the Tools/Options interface:

9.3 Adding and Creating Basic Source Files

AcuBench provides an interface through which you can add existing source
or COPY files to a project or create text-based files of any type. This makes
it easy to include new or existing source files that do not include a program
structure file in your project. It also provides a way for you to associate notes
or code skeletons to a project for reference or documentation purposes.

9.3.1 Creating a File

You can create a source file or plain text file from the File menu as follows:

1. Select New from the File menu and click on the File tab, or right-click
any folder in the File view of the Workspace window and select the New
File option. In the latter case, the default file name that appears in the
New dialog is automatically given the file extension associated with the
selected folder (“.scr” for a screen file, for example).

No matter how you access the New dialog, you are provided with the
option of using either of two default templates. If you have added
custom templates in the Tools/Options/Environment/Template interface,
discussed in section 4.3.2, these are also listed here.

Option Description

Generate source format This section lets you determine the format for
your source file.

ANSI source format Enable this radio button to have your source file
generated in ANSI source format.

Terminal source format Enable this radio button to have your source file
generated in terminal source format.

Adding and Creating Basic Source Files 9-13

2. Select a file template.

The Source Template includes standard COBOL divisions and sections.

The Blank Text template is completely empty.

3. Specify a name for the new file. If you used the File/New command to
open the New dialog, the default extension is “.cbl”.

4. Specify a location for the new file. If you used the File/New command
to open the New dialog, the default location is the Source directory for
the current project. If you used a File view right-click menu to open
the dialog, the default location is the folder on which you right-clicked.

5. Determine whether the file should be added to the current project,
another project in the current workspace, or a new project. By default,
“Add to existing project” is selected.

6. To add AcuBench tags to the new file and create a program structure
file, mark the box next to “Create Program Structure File (.PSF)”.

7. When you are finished making changes to the dialog, click OK to
create the new file.

9-14 Working with Programs
9.3.2 Adding an Existing Source File

When you add COBOL source files to the project, you have the option of
directing AcuBench to automatically search for and add all COPY files
named in the source code. To do this, enable the Automatically parse
program for COPY files check box for each source file being added that you
want parsed. After you click OK, AcuBench parses the program, identifying
COPY files and searching the directories specified in the COPYPATH
environment variable to locate them on disk. AcuBench then adds these
COPY files to the project, listing the file names in the project’s File view
Copylib folder. The physical files remain in their original location on disk.

Note: To move a file from one project or folder to another project or folder,
simply select it in the File view and drag it to the target folder. A similar
cut-copy-and-paste function is not supported.

You can add a source file to a project as follows:

1. Select the desired project and click the Add/Remove Files button on the
Project toolbar, or select the Add/Remove Files option on the Project
menu. You can also right-click the project’s Source folder in the File
view and select Add/Remove Files.

Adding and Creating Basic Source Files 9-15
This opens the Add/Remove Files dialog with the Source tab selected.

2. Verify that the “Files of type” field, at the bottom of the uppermost
frame in the dialog, shows the correct type of file to be added.
Because you are adding a source file, the default extensions are “.cbl”
and “.cob” (unless you have established custom settings for the
project).

3. From the Drives drop-down list, select the drive on which the file is
located.

You can also use the Network button to map a network drive on which
your source files are located.

4. In the tree view (above the Drives list, top right), navigate the file
system until you open the folder that contains the file to be added.

5. Select (click on) the file to be added in the “Files list”. The file must
be highlighted.

9-16 Working with Programs
To select multiple, non-consecutive files, hold down the Ctrl key and
click each of the files that you want to select.

6. To add the selected file or files, click Add. To add all of the files in
the specified directory, click Add all. The added files now appear in
the “Files in project” list box.

7. To have AcuBench parse the file to automatically add all referenced
COPY files to the project, mark the Automatically parse program for
COPY files check box and modify the COPYPATH environment
variable, if necessary (see section 9.3.3).

Parsing is performed after you finish adding files and click OK to close
the dialog.

8. When you have finished adding files, click OK to close the Add/
Remove Files dialog.

The new source file(s) and their associated COPY files (if applicable) are
now visible in the File view, and you can use the compiler and runtime
settings that you have established for the project to compile and execute
the programs. You can also use the Code Editor to view and make
changes to your code.

9.3.3 Adding COPY Files

Typically, COPY library files are automatically added to your project when
you add source files to the project. To ensure that this happens, make sure
that the “Automatically parse program for COPY files” check box is enabled
when you add a source file, as described in the previous section.

When AcuBench performs its parsing, it searches for COPY files in the
directories defined in the COPYPATH environment variable. Any change to
the definition of COPYPATH can affect whether a COPY file is found. A
procedure for changing the COPYPATH definition is found in the following
subsection.

After AcuBench has finished a successful parse, any COPY files that it finds
are added to the project’s File view Copylib folder. You can reparse a source
file at any time by right-clicking the source file icon (in the File view) and
selecting Reparse from the pop-up menu.

Adding and Creating Basic Source Files 9-17
Adding or removing COPYPATH directories

By default, COPYPATH is set to the relative paths of the project’s screen,
COPY, resource, and layout (FD) folders, as well as the absolute path to the
ACUCOBOL-GT sample directory and its “.def” (COPY files) folder
(“C:\Acucorp\Acucbl8xx\AcuGT\sample\def”, for example).

To redefine COPYPATH to include other directories, do one of the following:

• If you are working in the Add/Remove Files dialog, click the Copy Path
button.

a. Using the mouse, navigate to the desired directory in the Directory
list box and then click Add. The new path is added to the list of
currently defined directories in the “Default copy path(s)” list.

b. Repeat this procedure for every directory that you want to add to
COPYPATH.

c. When you are done, click OK. The Add Copy Path dialog is
closed, returning you to the Add/Remove Files dialog.

d. You can remove a path from COPYPATH by selecting the path
from the Default copy path(s) list and clicking Remove.

• If you are not currently working in the Add/Remove Files dialog, you
can change the COPYPATH settings for the project in the Project
Settings interface. Select the Environment tab, then follow the steps
outlined in Chapter 7, section 7.5.1, “Working with Environment
Variables.”.

9-18 Working with Programs
Caution: Any change to the COPYPATH definition affects every file in
the project. If a directory is removed from the COPYPATH definition
and a program in the project has a COPY file located in that directory,
that program will fail to compile.

9.3.4 Working with Files in the File View

When you work with files in the File view of the Workspace window, you do
not have the option of using AcuBench’s code-generating tools, but you can
perform typical File menu functions like opening, closing, saving, and
deleting files. In addition, you can compile source files (in the project’s File
view Source folder) and execute object files (in the project’s File view Object
folder)

Opening a file

To open any file associated with an AcuBench project, go to the File tab of
the Workspace window and right-click on the file you want to open, then
select Open.

Saving a file

To save the contents of the file that has focus, select Save filename from the
File drop-down menu. Filename is the name of the file that has current focus.
To give another open file focus, either click on the window containing the file
or select the file from the Window drop-down menu.

To save the file to another name, select Save As from the File drop-down
menu and specify a name. If no file extension is specified, the first extension
listed in the “Save as type” field is appended automatically.

Closing a file

To close the file that has current focus, select Close from the File drop-down
menu or click the Close icon button located at the far right of the main menu
bar.

Adding and Creating Basic Source Files 9-19
Deleting a file

To remove a file from a project, right-click on the file and select Delete
filename from the pop-up menu (filename is the name of the selected file).
Although the file no longer appears in any Workspace Window view, it is not
removed from its location on disk.

To remove a file from the project and delete it from disk, right-click the file
and select Delete From Disk from the pop-up menu. The file is moved to the
Windows Recycle Bin.

9.3.5 File Properties

Files that belong to an AcuBench project have three basic properties: file
name, file type, and last modification timestamp. If the file is a program
source file, it has a list of output files and a COPY file list. If the file is a
remote object file, the dialog contains information about the remote file.

To view file properties, in the Workspace window’s File view, right-click on
the file of interest and select Properties from the pop-up menu.

9-20 Working with Programs
Additional fields for source files (not displayed for remote files):

9.3.6 Reparsing Source Files

When a source file is added to a project, you can direct AcuBench to parse the
source file to identify and add all COPY files referenced by the program to
the current project. In the course of development, you may make changes to
the source file that introduce new COPY files. When this is true, you should
reparse your source file so that the new COPY files are added to the project
and found during compilation.

To reparse a file, right-click on the desired source file in the Workspace
window’s File view, and select Reparse from the pop-up menu. When
reparsing is complete, a confirmation message is displayed in the Output
window.

To reparse all source files in the workspace, select Reparse All from the
Build drop-down menu. As the reparsing process proceeds, status messages
are displayed in the Output window.

Note: AcuBench uses the directories named in the COPYPATH
environment variable to look for COPY files. Directories are searched in
the order defined (first to last). If the “-Sp” compile option is set on the file,
the directories associated with the option are searched to locate COPY files.

Option Description

File name Displays the full path and name of the file.

File type Displays the file type.

Last modified Displays the file’s most recent modification
timestamp.

Option Description

Output Files tab Lists the name of the compiled object file.

Copy Files tab Lists all of the COPY files referenced in the file.

Generating a Program 9-21
The value of COPYPATH is ignored. To check or set the “-Sp” option,
right-click the file and select Program Compile Options from the pop-up
menu. Select Source Options from the catalog drop-down list and locate
the option labeled “Directories to search for COPY.”

9.4 Generating a Program

If a program is displayed in the Structure view of the Workspace window
(meaning that it has a program structure file) and you are using workbench
tools or options that directly or indirectly specify code (such as the Screen
Designer or options in the Program Properties dialog), you need to generate
code for the program before you compile the program. Several settings affect
what files are created and what code is generated. See section 3.3,
“Automatic Code Generation,” for a complete discussion of code
generation and programming.

To generate code for a program, right-click on the program in the Structure
view of the Workspace window and select Generate Source from the pop-up
menu. Status and error messages are displayed in the Output window.

9.5 Compiling a Program

To compile a single, local program, select a program node in the Structure
view of the Workspace window, or select a source file from the Source folder
in the File view, then right-click and select Compile. You can also use the
Compile button on the Project toolbar, the Ctrl+F7 keyboard shortcut, or the
Build menu’s Compile option.

The compile action applies the file-level or project-level settings established
in the Project Settings dialog. The compiler command line and any error
messages or warnings are displayed in the AcuBench output window.

--------- Compiling Program1.cbl ----------
--------- Compile options = -o .\object\@.acu -x -Ga
Program1.acu - Completed: 0 Error(s), 0 Warning(s).

9-22 Working with Programs
After compiling, the compiled object is added to the Object folder in the File
view of the Workspace window. You can right-click the File view icon
associated with an object file and select Properties to retrieve information
about the object. This information includes the compiler version, the file size
and compile date, whether or not the object includes debugging symbols, and
the names of any resources (like image files) included in the object. You can
also view this information using cblutil, as described in Chapter 19 of this
manual.

9.5.1 Compiling Programs to a Server

If you are using AcuConnect or AcuServer, you can have AcuBench copy an
object file to the server after compiling. There are two ways to do this:

• With the thin client implementation of AcuConnect and the Use Thin
Client toggle button.

• With AcuServer or the distributed processing implementation of
AcuConnect and the Use Remote Compile toggle button.

Just as there are two methods for placing the object file on the server, there
are two ways to specify a remote destination for a compiled object: the
Project Properties interface and the Project Settings interface. Settings that
you specify in the Project Properties interface are automatically picked up by
the Project Settings interface, but the reverse is not true. This means that if
you use certain remote settings for testing and a different set of remote
settings for production, you can specify the most commonly used set of
options in the Project Properties interface, then create a special mode in the
Project Settings interface for the less frequently used case.

Compiling a Program 9-23
To use the Project Properties interface to specify remote compiler settings:

1. Right-click the project node in any Workspace window view and select
Properties.

2. Provide the server name and port on which your AcuConnect or
AcuServer listener resides.

3. Specify the directory in which the compiled object(s) should be placed.

4. Mark the appropriate check box next to “Apply to” to indicate whether
the settings you have provided should be used at compile time,
execution time, or both. Note that execution options only apply if you
are using the AcuConnect Thin Client.

5. Click Test to verify the connection, then click OK to save your
changes.

The next time you compile a program in the project for which you have
specified remote compiler settings, the object will be placed on the
remote server.

To use the Project Settings interface to specify compiler settings for a specific
project mode (or for an individual source file):

1. Expand the Build menu and mark either the Use Thin Client or the Use
Remote Compile toggle button.

2. Right-click the project node in any Workspace window view and select
Settings.

3. Select the project mode that you want to modify, then select the project
or program to which you want to apply the remote settings.

4. In the Standard Options catalog of the Compiler tab in the Project
Settings window, enter server, port, and remote directory information.

5. When you are finished, click OK to save your settings.

The next time you compile a program using this mode, the compiled
object is placed in the specified server location.

9-24 Working with Programs
When you use any remote compile option, the object file is listed in the
Remote Object folder in the File view. Just as with local object files, you can
right-click the object file icon in the File view and select Properties to
retrieve information about the compiled object.

9.5.2 Compiling Multiple Programs

To compile all of the programs in a workspace, expand the Build menu and
select either Build Workspace (F7) or Rebuild Workspace. The Build
Workspace option compiles only those programs that have changed since the
last compile operation. Rebuild Workspace compiles every program in the
workspace, regardless of whether or not it has changed since the last compile.

If you are using AcuBench code generation, you can use the Tools/Options
interface to specify that the Build and Rebuild operations also generate (or
regenerate) the programs in the workspace before compiling. To change your
Build/Rebuild options, expand the Environment tree and select Build.

Note that if you are using remote compile options, you may want to use the
Build or Rebuild command twice, once to create local object files and once to
create remote object files.

9.5.3 Remote Precompiling with Boomerang

If you have set up and configured Boomerang on a remote server, you can
take advantage of an AcuBench interface to the Boomerang client utility.
The Boomerang utility sends source files to a remote server for
preprocessing, then returns the precompiled source to the local machine for
compiling.

For detailed information about the Boomerang utility, including server setup
and configuration, see Chapter 3 of the ACUCOBOL-GT User’s Guide.

To access the Boomerang utility from within AcuBench:

1. Open the Project Settings interface, select the Compiler tab, and open the
Pre-compiler Options catalog.

Compiling a Program 9-25
2. Mark the check box next to Generic or Boomerang Precompiler
(-Pg), then click Browse to open the Add Precompile Commands
interface.

3. Select the Boomerang tab, then click the Add (“+”) button.

4. Use the fields on the tab to enter server, port, and alias information.

Note that you can specify multiple local and remote precompiler
command lines, as needed. The updated precompiler command line
appears in the “Precompile Commands-Arguments” field near the top of
the Add Precompile Commands window.

5. If you have added multiple precompiler command lines, you can use
the arrow keys to determine the order that the commands will be
passed through the compiler.

6. When you are finished, click OK to save your changes. The Project
Options field at the bottom of the Compiler tab lists the updated
compiler command line. Note that you must click OK to close the
Project Settings window and save your changes. If you click Cancel,
any changes to your precompiler settings are lost.

Note that status and any error messages are returned to the output window.

9-26 Working with Programs
9.6 Executing a Local Program

In the Workspace window, right-click on the program name, program source
file, or program object file and select Execute. If you have enabled the
Allow Parameters option in the Build menu or Project toolbar, this opens the
Execute with Parameters dialog box to allow you to specify program
parameters.

You can use the Parameters combo box to enter your command line
parameters or expand the box to see and select from a list of previously used
parameters. The combo box holds up to twenty previous command lines.

9.7 Executing a Remote Program

If you have established remote settings for your project in order to compile to
and run from a remote server using the AcuConnect Thin Client, you can
execute your remote programs as follows.

1. Verify that the Use Thin Client option is selected. To do this, expand the
Build menu or look at the Project toolbar to see that the Use Thin Client
button is in “pressed” position.

2. Select the program that you want to execute and select Execute from
the Build menu. You can also right-click the program and select the
Execute command from the pop-up menu, or use the Ctrl + F5
keyboard shortcut.

Debugging a Program 9-27
3. If this is the first time that you have executed the program since your
last build, the Create Alias Entry dialog will appear.

AcuBench pre-fills the dialog with a default alias name and working
directory.

The dialog box also displays server and port information, taken from the
Project Properties dialog, and an execution command line, taken from
the Thin Client Options set on the Runtime tab of the Project Settings
window. This information cannot be changed in this interface.

When you are finished making changes, click Create to update the
server alias file and execute the program.

9.8 Debugging a Program

To start a program in the workbench integrated debugger, select the program
in the Workspace window and select Go from the Debug drop-down window.
For a complete description of the integrated debugger, see Chapter 20, “The
AcuBench Integrated Debugger.”

To use the ACUCOBOL-GT runtime debugger, select the Build/Debug
(Runtime) command or right-click on the program node in the Workspace
window File view and select Debug (Runtime). The runtime debugger is
described in detail in Chapter 3 of the ACUCOBOL-GT User’s Guide.

9-28 Working with Programs
9.8.1 Debugging with the Thin Client

If you are using the AcuConnect Thin Client, you can use the AcuBench
integrated debugger or the runtime debugger to debug a program running on
the server.

To debug a remote program using the thin client:

1. Verify your thin client settings on the Runtime tab of the Project Settings
window (in the Thin Client Options catalog), then click OK to close the
Project Settings interface.

2. Expand the Build menu and select the Use Thin Client command.

3. Start the integrated debugger (Debug/Go) or the runtime debugger
(Build/Debug Runtime).

If you have not yet created an alias file entry for the program to be
debugged, you are prompted to do so via the Create Alias Entry dialog
described in Chapter 20, “The AcuBench Integrated Debugger.”

4. Step through the program as usual.

9.8.2 Debugging a Transaction Processing (TP)
Application

You can use AcuBench to prepare for debugging in a transaction processing
environment, as long as this capability is supported by the vendor of that
environment. (Please see your vendor’s documentation for details.) You must
have Micro Focus’s thin client technology installed on the local Windows
client and AcuConnect running on the server.

You use a special acuthin parameter, “--wait”, to start an acuthin process on
your local machine and have it wait for instructions to open a debugging
window. The program executes as initiated through the transaction
management environment, not AcuBench. AcuBench provides an interface
for enabling this acuthin behavior, but does not otherwise interact with the
debugging process.

Debugging a Program 9-29
To debug a transaction processing application:

1. Expand the Tools menu and select Thin Client (--wait). This opens the
Thin Client (--wait) window.

2. In the Port field under “Add new AcuThin (--wait)”, specify the port
where AcuConnect is listening. AcuConnect needs to have been
configured to communicate with clients over this port.

3. Select the (--restart) checkbox if you want the thin client to restart
itself after each debug session. If a transaction requires multiple
COBOL programs to run, this allows you to debug them all. You
might want to do this if you have pseudo-conversational transactions,
for example, where COBOL programs repeatedly complete and then
restart. In this case, you would want acuthin to continually restart as
well.

4. Click Start to start an acuthin process on the client. The thin client
waits for the transaction server to start the runtime.

Note: On UNIX servers, you must set the environment variable
A_DEBUG_USING_THIN to a non-zero numeric value before the
transaction server can start the runtime with debugging via the thin
client. No additional environment settings are required for Windows
servers.

9-30 Working with Programs
5. A runtime debugger screen automatically appears. Debug your
application with all the usual runtime debugger options.

6. When you are finished with your debugging session, stop the currently
running acuthin process (the one in the “wait” state) by selecting the
process and clicking Stop.

For more information about using the “acuthin --wait” option for debugging,
see Chapter 4 of the AcuConnect User’s Guide and Chapter 9 of A Guide to
Interoperating with ACUCOBOL-GT.

10
 Working with Data at the
Program Level
Key Topics

Introduction ... 10-2

Using the Data Set Designer ... 10-2

Using the Working-Storage and Linkage Editors 10-11

10-2 Working with Data at the Program Level
10.1 Introduction

Chapter 8 introduced the concept of the data layout file, used to describe
data files at the project level for the purpose of generating, among other
things, file descriptions, SELECT statements, and file handling code. This
chapter discusses ways to define data for use at the program level, using the
three graphical interfaces: the Data Set Designer, the Working Storage
Editor, and the Linkage Editor.

The Data Set Designer is a tool that determines how a data file will be
accessed by a given program, and what information from the corresponding
data layout file (DLT) will be used by the program. Data sets created with
this designer contain a variety of information, including the file open mode,
what form of locking to use, and whether AcuBench should generate the code
for file operations (such as READ and WRITE).

The Working Storage and Linkage Editors provide graphical tools that you
can use to add Working-Storage and Linkage data items to your program. In
addition, when you create certain screen and report items in the graphical
designers, AcuBench automatically adds needed data items (such as handles)
to Working-Storage and displays these in the Working Storage Editor.

10.2 Using the Data Set Designer

The Data Set Designer allows you to identify a set of data files to be used by
a program (data sets are associated with programs). Before a data set can be
defined, the data files themselves must be defined using the File Designer.
When you create a data set, you select from the set of data layout files that are
associated with the project.

There are four benefits to creating data sets for your program:

1. The components of each data set are made visible to the Screen and
Report Designers. This means that when you want to specify a data item
in a control variable, you can select a data file field name from the list of
program variables (under the name of the data set).

Using the Data Set Designer 10-3
2. When you generate code, AcuBench generates a set of standard file
handling paragraphs for each data set. These paragraphs include
OPEN, READ, WRITE, and REWRITE.

3. Via the Event tab of the Data Set Designer’s Property window, you can
launch the Event Editor to develop BEFORE and AFTER procedures
for the data set’s associated OPEN, READ, WRITE, and REWRITE
routines.

4. You can create associations between fields in data sets such that the
field of one data set is marked as related to a field in a second data set.
When you do this and generate code for the program, a standard
reference routine is generated that performs a MOVE of the value of
the first data item into the referenced (second) data item.

The following sections describe some basic Data Set Designer operations.

10.2.1 Creating a Data Set

Define data for use with an individual program in a project as follows:

1. In the Structure view of the Workspace window, open the desired
Program node and right-click on the Data Set node (note that data sets
are defined for programs, not projects). Select New Data Set from the
menu.

A Data Set Designer window is opened with a new data set icon.

2. Display the Property window by selecting Property Window from the
View menu.

10-4 Working with Data at the Program Level
3. In the Property window, specify a descriptive name for the data set in
the Name field, then use the Data Layout drop-down list to select the
DLT associated with this data set.

It is best to assign a data set name that is different from your data layout
name. If your data layout name is “clients”, for example, you might call
your data set “clients-ds”. Both the data layout name and the data set
name appear in the Event Editor’s “Message” drop-down list, so
assigning different names helps to prevent confusion.

4. If a primary key has been defined in the selected DLT, this value
appears in the Key drop-down list. If multiple keys have been defined
in the DLT, you can expand the list and select a different key.

Because each data set represents a specific manner in which a data file
will be used by your program, a DLT with multiple keys may be
associated with multiple data sets. In other words, if you have defined
more than one key for a file in your DLT, you can define one data set for
each key that the program will use to perform file operations.

5. To create an association between a field in the current data set and a
field in a different data set, click in the Value column of the Referenced
Data Set field and then click the browse (...) button that appears. The
Set Reference-Field dialog is displayed.

Using the Data Set Designer 10-5

Select a data set from the list on the left, then click the right-arrow icon
to move the data set name to the list on the right. If the default reference
field is not correct, click in the Reference Field column and select the
correct field from the drop-down list.

This generates a paragraph similar to the following that you can perform
as needed:

Acu-cl-ds-Ref-pet-ds.
 INITIALIZE pet-record OF pets
 MOVE cl-client-id OF clients TO pet-owner-id OF pets
 PERFORM Acu-pet-ds-Read.

When you are finished, click OK.

6. Right-click in the Data Set Designer window and select Referenced
FD/SL Files to open the Data Set Member Files interface, discussed in
section 10.2.5

:

Here, you can determine whether or not AcuBench will generate OPEN
code for each data file associated with a data set in your program. You
can also determine an open mode (Input, I/O, Extend, or Output), specify
a locking mode, and determine what data handling code will be
generated within this program.

By default, the type of file handling code that AcuBench generates is
based on the open mode that you select. If you select Output mode, for
example, AcuBench’s default behavior is to generate WRITE code but
not READ code. Expand the IO Operation drop-down list for each file
to select or de-select code paragraphs to be generated.

When you are finished, click OK.

7. Use the Property window’s Event tab to specify or create (via the Event
Editor) BEFORE and AFTER procedures as needed for each file
handling operation (DELETE, READ, REWRITE, or WRITE)
associated with the data set.

8. When you are finished, generate the program. The file handling code
that you have specified is generated, and the data items described in the
data layout file are made available to the other AcuBench design
interfaces (for use, for example, with tools like the Screen Designer
and Report Composer Drag-and-Drop interface).

Using the Data Set Designer 10-7
10.2.2 Opening an Existing Data Set

You can open an existing data set in the Data Set Designer as follows:

1. In the Structure view of the Workspace window, open the desired
Program node, then expand its Data Set node to see a list of available
data sets.

2. Double-click either the Data Set node or any of the listed data sets.
The Data Set Designer opens, showing an icon for each data set.

3. Select the desired data set icon.

4. Display the Property window by selecting Property Window from the
View menu.

5. View or modify the data set’s properties as desired.

10.2.3 Creating a BEFORE or AFTER Procedure

You can use the AcuBench Event Editor to code BEFORE and AFTER
procedures for file operations. By default, this code is generated in the
program’s “.evt” COPY file.

10-8 Working with Data at the Program Level
To add code to be executed before or after file operations on a particular file,
do the following:

1. In the Structure view of the Workspace window, open the desired
Program node and double-click the Data Set node. The Data Set
Designer window opens, showing an icon for each data set.

2. Select the desired data set, then click the Event tab of the Property
window.

If the Property window is not visible, select Property Window from the
View menu, or click the Property Window button on the Standard
toolbar.

3. In the Event tab, locate the type of procedure that you want to add in
the Item list and click in the adjacent Value field. If you have already
written the paragraph that you would like invoked before or after the
selected file operation, select that paragraph from the Value drop-down
list. Otherwise, click the browse (...) button, accept or modify the
name in the Add Paragraph dialog, and click OK.

The program’s “.evt” file is opened in the Event Editor and a new
paragraph is inserted. Code the rest of the procedure.

Procedures that you enter here are performed immediately before or after
the associated AcuBench file handling paragraph is executed. A Before
Read paragraph, for example, is performed immediately before the
“Acu-datasetname-Read” (or “Read-Next” or “Read-Prev”) paragraph,
each time the latter paragraph is invoked.

4. When you are finished coding a BEFORE or AFTER paragraph, you
can close the Event Editor to return to the Data Set Designer. If you
are planning to add more BEFORE and AFTER code, you can select
another paragraph type from the Message drop-down list at the top of
the design window and continue adding code.

Using the Data Set Designer 10-9
10.2.4 The Data Set’s Property Window

The Data Set’s Property window is used to define the essential values for the
data set. This Property window has the following options:

10.2.5 Generating File Handling Code

When you create a data set in the Data Set Designer, you determine what sort
of file handling code AcuBench will generate in a given program. As you
work with your program, you can change what code will be generated in the

The drop-down
list

Select a data set name from the drop-down list at the
top of the window to set that data set’s values.

Alphabetic tab This tab lists the data set’s properties in alphabetical
order.

(Name) Enter or modify the name for the data set in
this field.

Data Layout Select a data layout from the drop-down
list. Only those data layouts that are defined in the
associated project appear on the list.

Key Select a key for the data layout from the
drop-down list.

Referenced Data Set Click in the Value field and then
on the ellipsis button to open the Set Reference-Field
dialog (described in step 5 of section 10.2.1).

Categorized
tab

This tab presents the same options as the Alphabetic
tab, but they are grouped into categories.

Event tab This tab is the access path to the Event Editor.

Item list The list of BEFORE and AFTER procedures
that are typical for a data set

Value The name of the actual BEFORE or AFTER
procedure for this item. To launch the Event Editor,
select a procedure from the list, click in the Value field,
and click on the ellipsis button that appears.

10-10 Working with Data at the Program Level
Data Set Member Files dialog. The Data Set Member Files dialog lists all
of the data sets defined for a program, as well as information about the file
handling code currently specified for each data set.

To open this dialog, go to the workspace Structure view, open the desired
Program node, right-click on the Data Set node, and select the Referenced
FD/SL Files command.

To change the OPEN code generated for the file, do any of the following:

• In the “Open Option” portion of the dialog, mark the check box next to
the data file name in the Open column to have AcuBench generate
OPEN code for the file. If this check box is marked, an “Acu-Open-file”
paragraph is generated, by default, into the “.prd” COPY file.

Remove the check mark to stop generating this code paragraph. If the
box is not marked, changing other open option details for the data set has
no effect.

• In the Exclusive column, mark the check box to indicate that a file can
only be opened by one program at a time.

• In the Mode column, select an open mode (INPUT, OUTPUT,
EXTEND, I/O). The default mode is I/O.

• In the Locking column, select a lock mode from the drop-down list. The
default locking mode is “None”.

To change the I/O handling code generated for a file, do the following:

• In the IO Option portion of the dialog, click a file’s I/O Operation field,
then expand the drop-down list.

The list shows all of the file operations that can be performed on the file,
based on the open mode selected in the top portion of the screen.

Note that this list is populated based on the file handling operations
defined in the file’s DLT. This means that if you selected the “Do not
generate any IO Paragraphs” radio button on the I/O Handling tab of the
File Designer, nothing will appear in the I/O Operation field.

Using the Working-Storage and Linkage Editors 10-11
• Mark the check box next to an I/O function to have AcuBench generates
a paragraph to perform the selected function. Remove the check mark to
cause AcuBench to stop generating code for performing the selected
operation.

10.3 Using the Working-Storage and Linkage Editors

The Working-Storage Editor and Linkage Editor each provide a specialized
interface for defining and maintaining Working-Storage and Linkage section
data items. Though these are separate editors, they have identical user
interfaces (similar to the File Designer’s Definition tab). Therefore, they are
documented together here.

10.3.1 The Working-Storage Editor

The Working-Storage Editor is an interactive, graphical editor for defining
and maintaining data items that are local to the program and not components
of a data file (that is, Working-Storage items). Use the Working-Storage
Editor to add, remove, or modify Working-Storage items. Items defined in
this editor are generated into the program’s “.wrk” COPY file
(program.wrk), as are Working-Storage items needed by screen controls and
other screen elements. Note that the entire contents of the program’s
Working-Storage COPY file are recreated by AcuBench every time the
program is generated. You should never modify the “.wrk” file directly.

When you add screens, reports, screen controls, and report controls in the
Screen Designer and Report Composer interfaces, and when you add a data
set to a program, AcuBench generates supporting data items and structures,
as needed, into the Working-Storage Section. These items may include
handles, value variables, file status variables, and so on.

Each Working-Storage item that AcuBench generates is added to the
graphical editor. This means that you can modify or delete the generated
variables items. Please be aware, however, that changing an
AcuBench-generated data item in the Working Storage Editor does not
automatically update the corresponding Screen Designer or Report
Composer property, so you should exercise caution when making such
changes.

10-12 Working with Data at the Program Level
10.3.2 The Linkage Editor

The Linkage Editor is an interactive, graphical editor for defining data items
that are passed from a calling program (that is, Linkage items). Use the
Linkage Editor to add, modify, or remove Linkage section data items. Items
defined in this editor are generated into the program’s “.lnk” COPY file
(program.lnk). The entire contents of the “.lnk” file are recreated by
AcuBench every time the program is generated. Never directly modify the
file.

10.3.3 The Working-Storage and Linkage Editor Interface

To open the Working Storage or Linkage editor, go to the workspace
Structure view, open the desired Program node, right-click on the
Working-Storage or Linkage node, and select Open from the pop-up menu.

The “Data Description Entry” buttons—from right to left, Delete, Delete All,
Add Item Before, Add, Add Sub-item, and Add Item—have the exact same
function as the corresponding buttons on the Definition tab of the File
Designer. In fact, each of the columns in the Working Storage and Linkage
Editor interfaces exactly corresponds to a column in the “Data item
definition” list on the Definition tab. Moreover, the Link COPY File and
Import COPY File options function the same in both interfaces, and the
Occurs Syntax and More dialog boxes are the same. For information, then,
about adding data items to the Working Storage and Linkage Editors, please
refer to Chapter 8, section 8.4.2, “Adding a File Description.”

11
 Configuring the Code Editor
Key Topics

Introduction ... 11-2

Establishing Keyboard Shortcuts .. 11-2

Customizing the Code Editor Interface .. 11-4

Setting Print Layout Options .. 11-10

11-2 Configuring the Code Editor
11.1 Introduction

The Code Editor is a highly configurable tool, intended to make working with
code as straightforward and comfortable as possible for the COBOL
developer. In order to make the tool work for you, you can establish your
own keyboard shortcuts for any Code Editor function, change the appearance
of the editor, and configure the behavior of various editor functions. For the
most part, this configuration is accomplished through the Tools/Options
interface, although some settings are configured in other parts of the
workbench.

11.2 Establishing Keyboard Shortcuts

In the Tools/Options interface, under Environment/Keyboard, you can set up
keyboard shortcuts that affect all aspects of the AcuBench interface. You can
also set up specific keyboard shortcuts for the Code Editor interface.

To add, remove, or change a keyboard shortcut associated with a Code Editor
function:

1. Expand the Tools menu and select Options.

2. Expand the Environment tree and select Keyboard.

3. Open the Category drop-down list and select Code Editor.

The list of commands shows only those functions specific to the Code
Editor, as well as the keyboard shortcut (if any) currently assigned to
each function.

Note that in some cases, a common function (like Copy or Paste) will
appear to have no associated keyboard shortcut. In these cases, the
command is associated with a shortcut at the “Main” level. Shortcuts
defined at the “Main” level apply across the workbench, unless
overridden by a shortcut assigned in a specific context.

4. Select a function in the list, then click in the Shortcut key entry field.

Establishing Keyboard Shortcuts 11-3
If a keyboard shortcut is currently assigned to the selected function, this
shortcut appears in the field. In most cases, a description of the function
appears under the “Assign” and “Remove” push buttons.

5. On the keyboard, type the combination of keys that you want to assign
to the selected function. The key combination appears in the entry
field.

Note the “Currently assigned to” field under the entry field. If you enter
a keystroke that has already been assigned to another function, this field
displays the name of that function.

6. To assign the keystroke that you have specified to the function that you
have selected, click Assign. The new keyboard shortcut appears next
to the function name.

7. To remove a keyboard shortcut that has already been assigned to a
function, select the function in the Command list, then click Remove.

11-4 Configuring the Code Editor
11.3 Customizing the Code Editor Interface

The first four sub-items under Code Editor in the Tools/Options interface
provide a way for you to customize the general appearance and behavior of
the Code Editor.

11.3.1 Configuring Basic Editor Functions

Configure basic Code Editor functionality in the General interface: the width
of the line number pane, the line length associated with text in the Code
Editor, the end of line character, and the behavior of the editor’s vertical
block select function.

You can choose to display a line number pane to the right of the Code Editor
window. The number of digits that can be displayed in this pane depend on
the pane width. To modify the width of the line number pane from the default
(4), enter a new value (from 1 to 6) in the “Line number pane width” text box.

By default, the Code Editor sets the basic line length for editor text at 318
columns. In most cases, if Code Editor text is pasted into another text editor,
any trailing spaces are stripped from each line. Some editors, however,
preserve the extra spaces, which can lead to line wrapping issues or other
undesirable behavior.

To change the default Code Editor line length, enter a value up to 2048 in the
“Line Length” entry field. Note that if you open an existing file that contains
lines longer than the new limit that you have specified, AcuBench shows a
warning message, then wraps any long lines to the new length.

As a Windows editor, the Code Editor’s default behavior is to set the
end-of-line marker in your files to an ASCII carriage return/linefeed (CR/LF)
character. If you plan to save your file in a UNIX environment, you may
want to set your end-of-line marker to an ASCII linefeed (LF) character. To
toggle between these two end-of-line markers, mark either the Save Record
Delimiter as CR/LF or the Save Record Delimiter as LF option.

The final Code Editor/General option affects two different aspects of the
editor. When the “Virtual Space” check box is not marked and you use the
vertical block select function (described in section 12.5.3), the column is

Customizing the Code Editor Interface 11-5
always precisely the width of the last line in the text block. In addition, lines
of text created in the editor are not padded with spaces to the line length
indicated in the “Line length” field.

When “Virtual Space” is selected (the default), you have more flexibility in
determining the width of a column selected with the vertical block select
function. In addition, all lines in your file are padded with spaces, as needed,
to reach the line length indicated in the “Line length” field.

11.3.2 Modifying Editor Appearance

The appearance of the Code Editor window, including the appearance of the
text in the window, is configured in the Code Editor/Format section of the
Tools/Options interface. This interface allows you to specify two sets of
appearance options: one for files opened in terminal format and one for files
opened in ANSI format. Note that this interface determines only display
characteristics for the different file formats; it doesn’t affect the format of any
file.

As you make changes, a small window near the bottom of the Tools/Options
interface shows your changes. Use the scroll bar at the bottom of the window
to see changes to the Identification Area.

To begin editing Code Editor appearance settings, open the “Source format”
drop-down list at the top of the screen and select either ANSI Format or
Terminal Format. Note that the remaining options on the page change
depending on which format you have selected.

Modify Code

If you are configuring the ANSI format settings, you can elect to have the
Code Editor insert a specified character string in columns 73-80 when a line
of code is added or modified. To enable this option, mark the Modify Code
check box, then enter a string in the adjacent entry field.

11-6 Configuring the Code Editor
Note that inserting the specified string is the only task performed by the
Modify Code function. Once the string has been placed in columns 73-80,
the Code Editor does not maintain the string. This means that if the length of
the source line changes, for example, the original modification marker may
slip out of the identification area.

Color Options

By default, when an ANSI format file is opened in the Code Editor, the
Indicator Area, Area A, and the Identification Area are each assigned a
different background color. In addition, comments are shown in green text,
reserved words are shown in blue, literal strings are shown in red, and all
other text is shown in black.

To disable all color functions, clear the Enable foreground and
background color settings check box.

To change the default color settings, do the following:

1. Select an ANSI code area (Sequence Number Area, Indicator Area, Area
A, Area B, or Identification Area) or text type (Comment, Keyword,
String, Number, or Text) from the list box.

2. The “Background” field displays the current background color
associated with the selected item. To change this color, expand the
drop-down list and select a color from the list.

To select a color not on the list, select User-defined. This opens a color
palette dialog window. You can either select a color in the default palette
or click Define Custom Colors. When you have made your selection,
click OK.

3. If it is possible to associate a foreground color with the selected item,
the “Foreground” list is enabled. Repeat the process used in the
previous step to select a foreground color.

4. If you have selected an ANSI code area, you can change the column
width of any area in the “Column” fields. Note that if you change a
column setting, you are simply redefining the size of the background
color display. You are not redefining any particular area (for example,
area A) for the compiler. Columns may not overlap.

Customizing the Code Editor Interface 11-7
Font options

By default, text displayed in the Code Editor appears in the Courier New
typeface, with a size of 10 points. To change the display font, click the Font
button. The Font dialog box appears.

Select the font, style, and size that you want, then click OK. Once you have
clicked OK again to close the Options dialog, your text appears in the Code
Editor in the new font.

11.3.3 Customizing Tab Stops

By default, when you are working in ANSI format, the Code Editor has tab
stops set at columns 7, 8, 12, 73, and 80. When you are working in terminal
format, no default tab stops are set. You have the option to add, remove, or
change the existing tab stops for each ANSI and terminal format file in the
Code Editor/Tabs section of the Tools/Options interface. You can also
determine whether pressing the Tab key inserts a tab character or inserts the
number of spaces needed to move to the next tab stop.

To customize your tab settings:

1. Open the Tools/Options interface, expand the Code Editor tree, and
select the Tabs tree item.

11-8 Configuring the Code Editor
2. To determine basic tab behavior, first select one of the two radio
buttons near the middle of the screen.

To preserve the tab character in your source code, select Keep Tabs.
You can then elect to display a special character to indicate the location
of a tab. This can be any non-blank character entered in the “Display tab
character with” entry field. The default character is “^”.

To replace tab characters with spaces, select Insert spaces.

3. By default, if no tab stops are set, pressing the tab key advances the
cursor eight (8) columns. To change this default, enter a number
between 1 and 64 in the “Tab size” entry field.

Note that any tab stops that you have set override the “Tab size” setting.
In other words, when you press Tab, the cursor moves to the next tab
stop, if any. If there is no tab stop, the cursor moves forward the number
of columns indicated in the “Tab size” field. Likewise, when you press
Shift+Tab, the cursor moves back to the previous tab stop, or, if there is
no tab stop, moves back the number of places indicated in this field.

4. To add, change, or remove tab stops, first select either ANSI Format
or Terminal Format in the “Source format” entry field. You can
establish different sets of tab stops for each source format.

5. To add tab stops, enter each desired setting in the “Tabs” entry field
and click Add. Your new settings appear in the list box. You can set
up to 32 tab stops.

To delete a tab stop, select the setting you want to delete, and click
Delete. The setting disappears from the list box.

11.3.4 Configuring Keyword Behaviors

By default, the Code Editor displays ACUCOBOL-GT reserved words in
blue, while ordinary text is shown in black. In addition to changing the color
used to mark reserved words, discussed in section 11.3.2, you can add words
to a keyword list, or remove words from that list, in order to determine how
those words are displayed in the Code Editor. You can also determine how
far the next line after the keyword will be indented, if at all.

Customizing the Code Editor Interface 11-9
These keyword lists affect only the workbench’s colorization and auto-indent
functions. Adding or deleting a keyword in a default list does not affect the
behavior of the ACUCOBOL-GT compiler. To change the list of reserved
words recognized by the compiler, use the “-R” flag, described in Book 1 of
the ACUCOBOL-GT documentation set.

You can modify the set of keywords recognized by the AcuBench Code
Editor as follows:

• To add an entire keyword set, click Add.

In the Add Keyword Set dialog, enter the name of the new set in the
“Keyword set name” text box, then select one of the three radio buttons
to indicate the source of the new keyword set. Select None to create an
original keyword set, Exist set to base your new keyword set on an
existing set, or External set to import a keyword set.

If you are importing an external keyword set, click the browse button to
navigate to the location of the “.ini” file containing the keyword set you
want to use.

• To delete a keyword set, select the set that you want to delete in the
“Keyword set” drop-down box. Click Delete.

• To add or delete a keyword from an existing set, first select a set from the
“Keyword set” drop-down box.

If you are adding a keyword, use the New (Ins) push button at the top of
the “Keyword” list box to add your new keyword.

If you are deleting a keyword, select the keyword and click the Delete
button at the top of the “Keyword” list box.

To determine the automatic indenting behavior associated with Code Editor
keywords, select one of the three “Auto indent” radio buttons near the bottom
of the dialog.

• If you want the cursor to return to column 1 of the next line after each
carriage return, select None.

11-10 Configuring the Code Editor
• To have a carriage return send the cursor to the next line at the location
of the first non-blank character in the previous line, select First
non-blank token.

• To use the custom settings in the “Indent value” column of the keyword
list to determine cursor positioning after each carriage return, select
Customized. If the indent value is set to zero, when you press Enter, the
cursor indents the next line to the same position as the current line (that
is, the behavior described for “First non-blank token” is used). If the
indent value is set to a non-zero value, the next line is indented that
number of columns beyond the indenting used by the current line.

To modify keyword indent values, double-click in the “Indent value”
column and enter the number of characters to indent the next line.

11.4 Setting Print Layout Options

When you print text files that you have opened in the Code Editor, you can
use a standard Windows print dialog to select a printer and manipulate printer
settings. In addition to these standard options, AcuBench provides a Page
Setup interface that allows you to standardize the layout and formatting used
when you print Code Editor documents. You can set a standard header and
footer, choose between print styles, determine the default paper and margin
sizes, add a frame around the printed text, and specify whether or not to
include line numbers in the printout.

To access the Page Setup dialog, expand the File menu and select Page
Setup.

To see what your document will look like with the settings that you have
selected, you can either select Print Preview from the File menu, or click the
Print Preview button on the Project toolbar. The Print Preview button looks
like this:

Setting Print Layout Options 11-11
11.4.1 Setting Headers and Footers

By default, when you print a file that is open in the Code Editor, a header and
footer are added to each page. The default header prints the file name,
centered, and the default footer shows the page number, also centered.

To change the header and footer settings, open the Page Setup dialog and edit
the contents of the “Header” and “Footer” entry-fields. You can enter a literal
value and/or a combination of special characters, as indicated in the
following tables. You can also click the arrow button to the right of the field
and select values corresponding to the special characters from a list.

Header and footer values are indicated by the following characters:

Alignment positions for header and footer items are represented by the
following:

11.4.2 Setting Page Appearance

In addition to modifying the header and footer information in your printed
documents, you can use the Page Setup dialog box to format the appearance
of the printed page. You can, for example, choose to print with zebra-style
shading, for readability, or to add line numbers.

Value Character

Full Path Filename &U

Filename &F

Page number &N

Current time &T

Current date &D

Position Character

Left align &L

Center &C

Right align &R

11-12 Configuring the Code Editor
To make changes to the appearance of the printed page:

1. Open the Page Setup dialog.

2. By default, Code Editor text is printed in simple black and white
format. To change this, expand the “Style” list and select another
option.

• If you have a color printer and want your printed output to retain the
text color settings used in the Code Editor, select Color.

• To add shading to alternating lines of printed text, select Zebra. A
light gray shading is used.

3. To add line numbers to the printed text, mark the “Print line number”
check box.

4. To add a frame around the printed text, select a style from the “Frame”
list box.

• The “Inner” option, available in all circumstances, places a frame
around the text of the file.

• The “Outer” and “Both” options are available when you have
elected to print line numbers. “Outer” places a frame around all
body text, including line numbers. “Both” places one frame around
the file text and one frame around the line numbers.

5. To change the default document margins, enter the measurements you
want in the Left, Right, Top, and Bottom boxes.

6. When you are finished making changes, click OK.

To see what the output file will look like with your changes, select File/
Print Preview.

12
 Working with Source Code
Key Topics

Introduction ... 12-2

Working with Files .. 12-2

The Code Editor Window ... 12-4

Basic Editor Functions.. 12-5

COBOL-Friendly Editing Functions .. 12-9

12-2 Working with Source Code
12.1 Introduction

When you double-click a source file or COPY file in the Workspace
window’s File view, or when you create a new file, the file opens in the
AcuBench Code Editor. You can then scroll through the file, type in changes,
and use the standard Windows editing functions—search, select all, copy and
paste, and so on—to manipulate the text.

In addition to these basic functions, the Code Editor offers a wealth of tools
to help streamline code development and maintenance processes.
Color-coded text and columns, line markers, and custom tab settings
provide visual cues to reduce typing errors. Pop-up lists of program
elements, such as variables and paragraph names, help with recall. Editor
commands make it possible to select a vertical column of text, change the
indentation of multiple lines of selected code, or instantly comment or
uncomment an entire block of code. And that’s only the beginning.

This chapter begins with a general discussion of working with files in
AcuBench, then focuses on the specifics of working with source code in the
Code Editor.

12.2 Working with Files

Most of the files associated with your project (listed in the File view of the
Workspace window) can be opened in the Code Editor. The obvious
exceptions are binary files, like ACUCOBOL-GT object files and bitmaps.

Note that if you are using AcuBench code generation, many of the files in
your File view Copylib folder, as well as the files in your Screen and Report
folders, are likely to be read-only files. You can open these files in the Code
Editor, but are encouraged to make changes in the graphical designers
associated with the Structure view.

To open a file listed in the File view, double-click the file name or right-click
the file name and select Open filename. The file opens in the Code Editor
window, whose title bar shows both the name of the file and the name of the
project with which the file is associated.

Working with Files 12-3
To save changes to a file, select Save from the File menu, click the Save icon
on the Standard toolbar, or use the default keyboard shortcut: Ctrl+S. If you
want to save your changes in a new file (or find that you have been working
in a read-only file), select the Save As option from the File menu, then
specify a name and path for the new file.

If you are working with a source file, you can save your changes and compile
with the Ctrl+F7 keyboard shortcut (or right-click the filename in the File
view and select Compile filename.

Note that while you can open and save any text file in the Code Editor, you
can only compile source files associated with a project in the current
workspace. If you try to compile a file not associated with a project, an
AcuBench prompt appears asking you whether to add the file to the current
project or cancel the compile request.

12.2.1 Creating a New File

When you want to add a new file to a project, the most straightforward
method is to right-click a folder in the File view and select New File. The file
is, by default, given a file extension that corresponds to the file type
associated with the folder you select and added to that folder in the project.
For example, if you right-click the Source folder and select New File, the file
is given a “.cbl” extension and placed in the Source folder. If you select the
same command while clicking on the Copylib folder, the default extension is
“.cpy” and the file is added to the Copylib folder. You do not have to use the
default settings.

At the same time that the new file is added to the project, it is opened in the
Code Editor.

By default, two file templates appear in the New File interface: Blank Text
and Source Template. The Blank Text template creates an entirely empty file.
The Source Template file contains the very basic skeleton of a COBOL
program with some error-handling information.

You are not limited to the default templates. In fact, any text file that you
create can be used as a template file. Use the Environment/Template section
of the Tools/Options interface to add your template file to the New File
interface.

12-4 Working with Source Code
12.2.2 File Formats

The Code Editor can work with text in either terminal or ANSI format. By
default, the Code Editor makes a clear, visual distinction between files
opened in terminal format and files opened in ANSI format. In addition to
having code starting in column 1, files opened in terminal format are shown
in black and white. In files opened in ANSI format, code starts in column 8,
background colors mark the Indicator Area, Area A, and Identification Area,
and code text is color coded.

When you have a file open in the Code Editor, you can switch between ANSI
and terminal formats. To do this, select ANSI to Terminal Format or
Terminal to ANSI Format from the Format menu. Note that while this
changes the appearance of the text in the Code Editor, it does not change the
existing spacing or position of text in the file.

12.3 The Code Editor Window

When you open a file in the Code Editor, the text of the file is displayed
according to the settings established in the Tools/Options interface under
Code Editor/Format. In addition, the editor’s title bar lists, by default, the
full path and file name of the open file, and a ruler bar indicates each column
and tab stop. You also have the option of displaying two additional
information areas: one that lists line numbers and one that shows where
you’ve placed bookmarks in your code.

All of these options are configured through the View menu:

• To determine whether the Code Editor title bar displays only the name of
the open file or the full path and file name, unmark or mark the Full Path
Filename menu option.

• To show or hide the ruler bar at the top of the Code Editor window, mark
or unmark the Ruler Bar option.

Basic Editor Functions 12-5
• To show or hide a vertical pane listing line numbers for the open file,
mark or unmark Line Number Pane. The number of digits shown in
this pane can be configured through the Tools/Options interface, as
described in Chapter 11, section 11.3.1, “Configuring Basic Editor
Functions.”

• To show or hide a vertical pane on which you can place markers to
highlight lines of code, mark or unmark Bookmark Pane. Use of
bookmarks is discussed in section 12.4.1.

12.4 Basic Editor Functions

When you are working in the Code Editor, you can access all of the standard
Windows editing functions through the Edit menu, the Standard toolbar, the
Editor toolbar, a right-click pop-up menu, and keyboard shortcuts.

The first group of Standard toolbar buttons let you create a new file, open an
existing file, save a single file, or save all files. Other buttons (highlighted in
the illustration), allow you to print a file; preview print output; cut, copy, and
paste selected text; and undo or redo previous editor actions.

The Editor toolbar provides access to a combination of basic and advanced
Code Editor functions.

The first group of Editor toolbar controls lets you enter a search string, find
the next instance of a search string, search multiple files for a string, replace
a string, or replace a string in multiple files (see Chapter 21). Other buttons
let you place and navigate between bookmarks (section 12.4.1), change the
indentation of lines of text (section 12.4.2), view lists of paragraphs,
variables, and constants declared in the program (section 12.5.5), open a
COPY file (section 12.5.6), and determine the scope of a selected code
statement (section 12.5.4).

12-6 Working with Source Code
Edit menu commands let you undo or redo previous actions; cut, copy, paste,
and delete text; select all text in a file; search for a text string and replace that
string, if desired; jump to the a specific point in the file (Edit/Go To); add,
remove, and navigate between bookmarks (Edit/Bookmarks); and access a
sub-menu of advanced Code Editor functions (Edit/Advanced).

By default, the editor uses the standard Windows keyboard shortcuts for
basic functions, such as cut (Ctrl+X), copy (Ctrl+C), paste (Ctrl+V), and
select all (Ctrl+A). You can modify these shortcuts, if desired, in the
Tools/Options interface, as described in Chapter 11, section 11.2,
“Establishing Keyboard Shortcuts.”

The Code Editor also uses the same navigation keystrokes as many other
Windows editors. The arrow keys, for example, can be used to move left or
right one character at a time, or up or down one line at a time. The End key
moves the cursor to the end of the current line, while the Home key moves
you to the beginning of the current line.

Useful navigation keystrokes include:

Keyboard shortcuts also make it easy to select text without using the mouse.
These shortcuts include the following:

To move (to): Default keyboard command

Forward one word Ctrl+Right arrow

Back one word Ctrl+Left arrow

Top of the file Ctrl+Home

Bottom of the file Ctrl+End

Desired Selection Keyboard Command

Next character Shift+Right arrow

Previous character Shift+Left arrow

Entire preceding line Shift+Up arrow

Entire following line Shift+Down arrow

Preceding multi-line entry Shift+Up arrow until the desired
multi-line entry is selected

Following multi-line entry Shift+Down arrow until the desired
multi-line entry is selected

Basic Editor Functions 12-7
12.4.1 Using Bookmarks

Bookmarks provide another useful method for navigating through your code.
The Code Editor allows you to insert these markers in your source code for
reference purposes, then jump forward and backward from maker to marker.
These markers do not alter your code. They simply allow you to move
around in your file more easily. The Code Editor displays an icon in the
Bookmark pane to indicate that a line is bookmarked.

Bookmarks also function as AcuBench debugger breakpoints in your code.
More detailed information about breakpoint behavior can be found in
Chapter 20, “The AcuBench Integrated Debugger.”

Bookmarks are only visible in the Bookmark pane, so that Code Editor
window component should be open if you want to see the marks. However,
you can still move easily among your bookmarked lines of code, even if you
cannot see the marks. Navigation between bookmarks is not affected by icon
visibility.

When you work with source files and COPY files in the Code Editor,
bookmarks are automatically saved in the workspace file when you close the
editor. Note that while you can also use bookmarks in the Event Editor, those
bookmarks are ephemeral, lasting only as long as the editor window is open.
If your bookmarks vanish unexpectedly, verify which editor you are using.
The Event Editor is discussed in Chapter 14, “Working with Screens.”

To insert a bookmark in your text, go to the line you wish to mark and click
the Toggle Bookmark button in the Editor toolbar. You can also expand the
Edit menu and select Bookmark/Toggle Bookmark or use the Ctrl+T
keyboard shortcut. Use the same command to remove a bookmark.

When you add a bookmark, if the bookmark pane is visible, a bookmark icon
appears next to the selected line. You can show or hide the bookmark pane
by marking or unmarking the Bookmark Pane check box in the View menu.

To move the cursor to the previous bookmarked line in your code, use the
Previous Bookmark button on the Editor toolbar. To move the cursor to the
next bookmarked line of code, use the Next Bookmark button. To clear all
the bookmarks from the active document, use the Clear All Bookmarks
button.

12-8 Working with Source Code
12.4.2 Changing Case and Indenting Lines

The Code Editor allows you to change the case of one or more words or to
indent one or more lines without retyping any code.

To capitalize an uncapitalized selection, choose the Format/Capitalize
command. To change an uppercase selection to lowercase, choose the
Format/Lowercase command, and to change a lowercase selection to
uppercase, choose the Format/Uppercase command.

To move the current line to match the indenting of another line of text, do one
of the following:

• To change the indent of the selected line to match that of the next line,
choose the Format/Indent to Next command.

• To change the indent of the selected line to that of the previous line,
choose the Format/Indent to Previous command.

12.4.3 Viewing Multiple Sections of Your File

A splitter bar makes it possible for you to see (and edit) different parts of your
file simultaneously. Each half of the split window has its own scroll bars
(horizontal and vertical) for easy movement through your code in either view.

The splitter appears as a small bar above the upper scroll bar arrow on the
right side of a Code Editor window. When you drag the bar downward, you
open an additional view of the active document, initially at the beginning of
the active document. Use the scroll bars or any relocating command in the
Edit menu (such as the bookmark commands or the Edit/Go To command) to
move to another location in either display.

You can also split your source file window by using the Window/Split
command. When you use this command, the cursor changes to a
double-arrow that is located at the top of a Code Editor window. Drag the
cursor down to open another view of your file.

COBOL-Friendly Editing Functions 12-9
12.4.4 Merging Data From Another File

While you are working in the Code Editor, you can easily insert the contents
of another file into the current document that you are editing. To do this:

1. Position your cursor in the location where you want to insert the file.

2. Choose the Edit/Advanced/Insert File command. The Insert File
dialog box appears.

3. Locate and select the file you want to insert.

4. Click Open. The data appears at the cursor’s location.

12.5 COBOL-Friendly Editing Functions

When you work with ANSI format files in the Code Editor, by default, the
editing area is divided into five segments: the sequence area, indicator area,
Area A, Area B, and identification area. As discussed in Chapter 11, section
11.3.2, “Modifying Editor Appearance,” you can determine whether and
how these columns are given visual markers in the editor.

12.5.1 Adding and Removing Line Numbers

An additional Code Editor tool can be used to have AcuBench automatically
add or modify line numbers in the sequence area. This function is only
available when you are working with ANSI format files.

To add line numbers to the sequence area:

1. Open the Format menu and select Sequence Number. The Sequence
Number dialog opens.

12-10 Working with Source Code
2. To add numbering to your file (or re-number the file), select the Make
radio button and continue with step 3.

To clear all existing numbering from your file, select the Clear radio
button, then click OK to return to the editor window.

3. To determine how lines in your file will be numbered, enter a starting
number and interval in the appropriate entry fields. By default, the file
is numbered from one by one, meaning that the first line in the file is
assigned number 00001, the second line is assigned number 00002, and
so on.

4. In the “Line range” area, select a radio button to determine whether all
lines in the file, a highlighted selection of lines, or a specific line range
will be given numbers.

5. When you are finished, click OK to number or re-number the file.

12.5.2 Working with Tabs

When you are working in ANSI-format files, the Code Editor, by default,
places tab stops at columns 7, 8, 12, 73, and 80. Use the Tab key to move the
cursor to the next tab stop, or the Shift+Tab shortcut to move to the previous
tab stop.

As described in Chapter 11, section 11.3.3, “Customizing Tab Stops,” you
can set up to 32 custom tab stops. You can also set a default tab interval that
determines how far the cursor moves when you press the Tab key and no tab
stop is set. If you specify a tab size of 3, for example, each press of the Tab
key moves the cursor forward 3 spaces. This can be useful for maintaining
consistent indenting when working with IF or EVALUATE statements, for
example.

Tabs may also be used to move blocks of text in your code. Highlight the
lines of code you want to move and press the Tab key. The entire block of
text shifts to the next tab stop (or to the tab size interval that you have
specified).

COBOL-Friendly Editing Functions 12-11
12.5.3 Working with Blocks of Code

The Code Editor offers several useful tools for manipulating blocks of code.
For example, as described in section 12.5.2, you can move multiple lines of
text with a single press of the Tab key (or the Shift+Tab shortcut). You can
also use a single command to add or remove comment markers from an entire
block of text, or use a simple key/mouse combination to select, move, copy,
and paste a vertical block (or column) of text.

Comment and uncomment block

To comment out a block of code, perform the following steps:

1. Select the text.

2. Expand the Format menu and select Comment Block.

This adds an asterisk character (*) in column 7 and moves each line right
one column.

To uncomment a block of code, perform the following steps:

1. Select the text.

2. Expand the Format menu and select Uncomment Block.

 This removes an asterisk character and moves each line left one column.

Vertical block select

To select a vertical column of text, position the cursor at the start of the first
item in the column, then hold down the Alt key while clicking and dragging
with the mouse. You can then copy the column of text to the clipboard and
paste it to another file, either within AcuBench or in another editor. Note that
when you paste a vertical block of text into a third-party editor, AcuBench
adds a comment, “**AcuBench Column Block**,” at the head of the column.

When you paste a vertical block into AcuBench, note that the column does
not overwrite any existing text. Instead, existing text is moved over the
number of columns necessary to make room for the pasted block.

12-12 Working with Source Code
Consider the following example. Suppose you have a list of error codes and
the corresponding error messages. You might set up several lines of code like
the following:

WHEN "" MOVE "" TO text-message

You could then select the error codes in a vertical block, position the cursor
between the first set of quotation marks, and paste the block. Each line would
be moved to get a result like:

WHEN "01" MOVE "" TO text-message
WHEN "02" MOVE "" TO text-message
WHEN "03" MOVE "" TO text-message

You could next perform the same operation with the string representing the
message to get a result like:

WHEN "01" MOVE "File not found " TO text-message
WHEN "02" MOVE "Incorrect file type" TO text-message
WHEN "03" MOVE "File locked " TO text-message

Note the spaces in the first and third lines. With a vertical block of text, the
exact width of the vertical block is preserved, regardless of the length of
individual lines in the block.

12.5.4 Using Code Insight Functions

The workbench provides various features to help you keep track of your
COBOL code. The first of these, called code parameters, provides pop-up
tips explaining the syntax and basic usage rules for some COBOL verbs.
This feature may be helpful for novice COBOL programmers.

The second code insight function is called code completion. When this
feature is enabled, you can pause briefly after typing various COBOL verbs
to see an alphabetical list of possibilities for completing your statement. For
example, if you type:

CALL "

AcuBench provides a list of programs and library routines that you might
want to call. Likewise, if you type “MODIFY” and a space, code completion
provides a list of screen controls and handles on which you might want to
perform a modify operation. In the latter case, after you choose an item to
modify, a second pop-up box provides a list of applicable properties to be
modified.

COBOL-Friendly Editing Functions 12-13
Code and parameter completion are available for the following verbs: CALL,
CHAIN, CLOSE, DELETE, DESTROY, GO, INQUIRE, MODIFY, OPEN,
PERFORM, READ, REWRITE, START, and WRITE.

By default, code completion is enabled, while code parameters are disabled.
You can change these settings in the Tools/Options window. Expand the
Code Editor tree and select Code Insight. To enable an option, mark the
appropriate check box at the top of the interface. To disable and option,
remove the check mark. More information about the Tools/Options dialog
can be found in section 4.4.2, “Code Insight Options.”

Two other features can provide additional insight into existing code. If you
have code with a good deal of nesting, or code that doesn’t use indentation,
or if you are having trouble parsing a statement, you can use the Find Scope
and Verb Block Match commands to determine the scope, or range, of a
particular statement.

To highlight the block of code corresponding to a specific statement (for
example, all lines of code pertaining to a single PERFORM statement):

1. Position the cursor anywhere within the statement or phrase.

2. Select Find Scope from the Edit/Advanced menu (or the Editor
toolbar).

AcuBench highlights all lines of code affected by, or included in, that
statement.

Similarly, you can use the Verb Block Match command to move the cursor
from one end of a match verb block to the other. If you position the cursor at
the start of a READ statement, for example, and select this command from
the Edit/Advanced menu (or Editor toolbar), the cursor jumps to the end of
the line containing the corresponding END-READ.

The workbench recognizes the following list of matched verbs as pairs:

Initial Final

Add End-Add

Call End-Call

Evaluate End-Evaluate

12-14 Working with Source Code
12.5.5 Using Paragraph, Variable, and Constant Lists

AcuBench maintains lists of the paragraphs, variables, and constants defined
in your program. These lists make it easy to jump to the line of code where
the paragraph, variable, or constant is defined, or to insert the paragraph,
variable, or constant name into your code. When you open a list, it appears
in a modeless window that allows you to work in the editor window while the
list is displayed.

You can easily access any of these lists while working in the Code Editor or
Event Editor using any of the following methods:

• Right-click anywhere in the editor window and select the appropriate
command: List Paragraphs, List Variables, or List Constants.

• Open the Edit menu and select Advanced, then select the appropriate
command: List Paragraphs, List Variables, or List Constants.

• Select the appropriate button on the Editor toolbar:

If End-If

Perform End-Perform

Read End-Read

Return End-Return

Rewrite End-Rewrite

Search End-Search

Start End-Start

String End-String

Write End-Write

Initial Final

COBOL-Friendly Editing Functions 12-15
The lists display the following information:

• The Paragraph List contains the name of each paragraph and the COPY
file in which it appears. You can control whether the COPY file column
is visible and how the paragraphs are sorted via the Tools/Options/Code
Editor/Paragraph List interface.

• The Variable List contains the name, level number, and picture value of
each variable, as well as the COPY file in which it appears. You can
control which columns are visible, how the variables are sorted, and
whether blank FILLER data items are listed in the box via the
Tools/Options/Code Editor/Variable List interface.

• The Constant List contains the name and value of each constant, as well
as the COPY file in which it appears. You can control which columns
are visible and how the constants are sorted via the Tools/Options/Code
Editor/Constant List interface.

Each of the aforementioned Tools/Options interfaces is described in
Chapter 4, section 4.4.3, “Paragraph List, Variable List, Constant
List, and COPY File List Options.”

To change the sort order of any list while you are working, click the column
heading for the characteristic by which you would like to sort.

You can easily insert into your code any paragraph name, variable, or
constant that appears on one of these lists. Position the cursor in your code
where you want the item name to appear. In the pop-up list, select a name,
right-click, and choose Paste. Note that you can change the cursor’s position
in the code and paste an item multiple times. You can also double-click an
item name to insert it at the cursor’s location.

Each of the lists offers a variety of additional functions:

• To jump to an item in the list, start typing its name. With each letter you
type, the cursor jumps to the first matching item. For example, if you
type the letter “a”, the cursor jumps to the first item beginning with that
letter. If you next type “c” and “u”, the cursor jumps to the first (or next)
item beginning with “acu”. If you mistype, use the backspace key to
clear the search buffer.

When the last item in the list that matches your search string is reached,
the search resumes at the top of the list.

12-16 Working with Source Code
• To copy an item name to the Windows clipboard, select the item name in
the list, right-click, and select Copy to Clipboard.l

• To move the cursor to the line of code where a paragraph, variable, or
constant is defined, select the item, right-click, and select Go to
Definition.

• If you modify your code while the list box is open, you can update the
Paragraph List with the Refresh command.

12.5.6 Working with COPY Files

AcuBench also maintains a list of the COPY files currently declared in your
program. You can view the COPY File List box via the Edit/Advanced/List
COPY Files command.

The COPY File List functions much like the Paragraph, Variable, and
Constants Lists. In addition to the name of each COPY file, the list box
contains columns showing each COPY file’s directory and the name of the
file in which it is declared. You can control which columns are visible and
how the COPY files are sorted via the Tools/Options/Code Editor/COPY File
List interface, which is described in section 4.4.3, “Paragraph List,
Variable List, Constant List, and COPY File List Options.” You can also
determine the sort order by clicking on the column headings in the list box.

To insert a COPY file name into your code, position the cursor in your code
where you want the COPY file name to appear. In the COPY File List box,
select a name, right-click in the list box, and choose Paste. Note that you can
change the cursor’s position in the code and paste a COPY file name multiple
times.

If you are using the COPY File List and want to open a COPY file, just
double-click the file name. You can also easily open a COPY file without
opening the COPY File List. Just select the COPY statement in your code
and do either of the following:

• Select Open COPY File from the Edit/Advanced menu.

• Click the Open COPY File push button on the Editor toolbar.

The Copy to Clipboard, Go to Definition, and Refresh commands described
at the end of the previous section are also available when you are working in
the COPY File List.

COBOL-Friendly Editing Functions 12-17
12.5.7 Using Source Code Templates

You can add an existing source code file to your project as a template through
the Tools/Options/Environment/Template interface. The Add function
displays the Add New Template File dialog box, with which you locate the
source code file you want to use as a template. An icon for your template
appears in the “Customize Template for” box in the
Tools/Options/Environment/Template interface and in the File/New/File
dialog box. After you have added a template to your project, you can modify
or delete that file via the Tools/Options/Environment/Template interface.
More information about the Tools/Options/Environment/Template dialog can
be found in section 4.3.2, “Template Options.”

Another source code template function allows you to insert a small section of
frequently used code directly into your text. You define these small templates
in the Tools/Options/Code Editor/Code Insight interface. Information about
defining code templates in the Tools/Options dialog can be found in section
4.4.2, “Code Insight Options.”

You can insert a small source code template into your source code as follows:

1. Place the cursor where you want to insert your code template. Choose
the Edit/Advanced/Code Template command. A list box containing all
currently defined code templates appears.

2. Browse the list box for the desired template.

3. Double-click a name; the code template is inserted at the cursor’s
location.

12.5.8 Navigating between error lines

When you compile your source files, any compiler errors are listed in the
Output window. You can double-click an error in the Output window to jump
to the corresponding line in your source file. Once the source file is open in
the Code Editor, you can use the Edit/Go To menu to navigate between
compilation errors. To go to the previous error line in the Output window
error list, expand the Go To submenu and select Previous Error. To move
the cursor to the next error line, select Next Error.

12-18 Working with Source Code

13
 Configuring the Screen
Designer
Key Topics

Introduction ... 13-2

Customizing the Screen Designer Interface .. 13-2

Establishing Screen and Control Defaults .. 13-4

Adding Screen Templates ... 13-6

Configuring Keyboard Shortcuts ... 13-7

13-2 Configuring the Screen Designer
13.1 Introduction

As you prepare to design a user interface for your AcuBench program, it is
important to ensure that all of the required foundation elements have been put
in place. When you use the Standard Project template (which opens with a
blank screen in the Screen Designer), it is tempting to jump right in to
designing screens. But keep in mind that the process of creating a user
interface is significantly easier if you have defined data layout files for your
project and created data sets within your program.

With this in mind, before you begin designing and working with your
screens, you should:

1. Create an AcuBench project (discussed in Chapter 6).

2. Define one or more data layout files in the Data view (discussed in
Chapter 8).

3. Create a new AcuBench program (discussed in Chapter 9).

4. In the Structure view, define one or more data sets for use by the
program (discussed in Chapter 10).

Once you have completed those four steps, you are ready to start working in
the Screen Designer. This chapter describes how to configure the Screen
Designer environment, set screen and control defaults, and prepare to start
working with screens. Chapter 14 describes how to use the Screen Designer
to create user interfaces for your AcuBench programs.

13.2 Customizing the Screen Designer Interface

The Screen Designer interface, accessed through the workspace Structure
view, is made up of a design window and two companion tools. The central
design window displays the screen form on which you place controls to
create a character-based or graphical user interface for your program. The
tools are the Screen Component Toolbox, which displays all of the standard
ACUCOBOL-GT screen controls and available ActiveX controls that can be
added to your screen form. The Property window displays a configurable list
of properties associated with the selected screen or control.

Customizing the Screen Designer Interface 13-3
The appearance of the design window and the contents of the Property
window are configured through the Screen Designer section of the Tools/
Options interface. This section addresses the options for customizing the
appearance of the design window. Property window configuration is
discussed in section 13.3.

By default, when you create a new screen or open an existing screen in the
Screen Designer, the screen form appears covered with a grid of black dots.
This grid does not directly correspond to any generated COBOL code, but
instead acts as a visual aid to help you position and align controls on the
screen.

To configure the appearance and behavior of this grid:

1. Open the Tools/Options interface, expand the Screen Designer tree, and
select General.

2. To change the size of the cells making up the grid, enter a number
between 3 and 20 in the “Grid width” and “Grid height” fields. (You
can either select the value from the drop-down list or type the entry in
the field.)

By default, the size of each grid cell is set to a width and height of 10
pixels. This corresponds to the default value for the screen CELL SIZE
property.

3. If you would like each control that you place on the screen form to
automatically align to the grid boundaries, mark the Snap to grid
check box.

Note that even when this option is selected, you can still select a control
and move it in any direction one pixel at a time by using the keyboard’s
arrow keys.

You can also configure one additional Screen Designer behavior through this
interface. If, when you draw a new control under an existing control in the
Screen Designer, you would like the new control’s left boundary to align to
the left boundary of the existing control, mark the Auto alignment check
box. This automatic alignment occurs when the boundaries of the two
controls are within 5 pixels of each other horizontally.

13-4 Configuring the Screen Designer
13.3 Establishing Screen and Control Defaults

In the Tools/Options/Screen Designer interface, the Default and Visibility
screens let you determine not only the default properties given to any new
screen or control created in the Screen Designer window, but also which
properties appear in the Property window for each screen item. This means
that if you want all entry fields to show only uppercase text, and you don’t
want anyone to change that setting, you can set the default case in the
property sheet to “Upper”, then remove the “Case” property from the
property window entirely.

Certain properties that appear in the property sheet cannot have default
values assigned. Location properties, for example, cannot have a default
value, because they are dependent on where you position a control on the
screen form.

Some properties do not appear on the property sheet at all. For the most part,
these properties are not part of the initial state of the control, and therefore
cannot be described in the Screen Section. Such properties include the
SELECTION-TEXT property, used to determine what text the user has
selected within an entry field, and the RESET-LIST property, used to delete
the items that currently exist within a list box. Because a user selection
occurs after the creation of the control, and a list is only cleared after it has
both been created and loaded with data, it wouldn’t make sense to set either
of these properties as part of the control’s Screen Section definition.

For each control property that does appear in the Screen Designer Property
window, you can determine the default value as follows:

1. Open the Tools/Options interface, expand the Screen Designer tree, and
select the Default category.

2. Select an item from the Controls list. This list contains all of the
screen items to which properties can be assigned. This includes the
screen itself, menus, and toolbars, as well as each of the standard
ACUCOBOL-GT controls. In some instances, control sections (such
as menu items and tree view items) also have their own configurable
property defaults.

The Properties list (to the right of the Controls list) is updated to show
the properties associated with your selection.

Establishing Screen and Control Defaults 13-5
3. To change the default value assigned to a property, select the property
from the Properties list, then click in the Value column next to the
property name.

Depending on the property, clicking in the Value column may enable an
entry field, reveal a drop list, or enable a push button used to invoke a
configuration interface. A push button marked with three dots (“...”) is
used to indicate that you can launch an additional interface to help you
make your selection.

Note that changes to the default properties in the Tools/Options interface do
not affect existing screens or controls, whose properties have already been
established and generated into code. But any new screen or control that is
created will take on the default characteristics that you specify.

To determine which of the available screen and control properties appears in
the Screen Designer Property window, do the following:

1. Open the Tools/Options interface, expand the Screen Designer tree, and
select the Visibility category.

This interface lists all available control properties (rather than just
properties for a single control type) in alphabetical order.

2. By default, all properties in the list are displayed in the Property
window. To remove a property from the list, clear the check box next
to the property description, or select the property and click Clear.

To add a property to the list that had previously been removed, mark the
corresponding check box or select the property description and click Set.

3. In addition to adding or removing properties from the list one at a time,
you can add or remove an entire category of properties. The check
boxes that appear directly under the Set and Clear buttons list the
available property categories. When you clear one of these check
boxes, the check boxes corresponding to all of the properties in that
category are likewise cleared. When you mark one of these check
boxes, all of the properties in that category are likewise marked.

The changes that you make in this interface are saved in your personal
“AcuBench80.ini” file when you click OK. If you want to save your changes
to another file, you must click Save. To abort all changes, click Cancel.

13.4 Adding Screen Templates

When you create a new screen in AcuBench, you have the option to choose
between several default templates (such as the blank graphical screen and
blank character screen). In addition to these defaults, you have the option to
create your own screen templates. Using custom screen templates can help
you maintain a consistent look and feel across an application or application
suite, and is an important part of consistency management.

The process of creating a screen template, described in Chapter 14, is very
simple. Once you have the template file (“.stf”), you can use the Tools/
Options interface to add the template to the list that appears in the New
Screen dialog.

To add a template to the New Screen dialog:

1. Open the Tools/Options interface, expand the Environment tree, and
select Template.

More information about the Tools/Options/Environment/Template
dialog box can be found in section 4.3.2, “Template Options.”

2. In the “Customize template” section of the interface, select Screen
from the “Template for” drop-down box.

3. Click Add to open the Add New Template File dialog.

4. Enter a short, descriptive title in the “Template title” entry field, then
click the browse (...) button next to the “Template file” entry field.

5. Navigate to the directory containing your “.stf”, select the file, and
click Open.

6. Add a more verbose description of the template file in the Description
field.

7. Click OK to save your changes, then click OK again to close the
Tools/Options interface.

The next time you create a new screen, your template appears in the New
Screen dialog, along with your description.

Configuring Keyboard Shortcuts 13-7
Tip: When you add templates to the New Screen interface, a pointer is
placed in the INI file, used to locate the “.stf” file on disk. If you move the
STF, AcuBench will no longer be able to locate the template and you will
receive an error message. This means that if you are sharing a template
among a team of developers, the STF should reside in a shared folder or be
made part of your version control project.

13.5 Configuring Keyboard Shortcuts

As in the Code Editor, you can specify a custom set of keyboard shortcuts for
use in the Screen Designer environment. These keyboard shortcuts can be
used to perform basic editing operations (cut, copy, paste), move controls on
the screen, and shape and align controls.

To add or change a keyboard shortcut associated with a Screen Designer
function:

1. Open the Tools/Options menu, expand the Environment tree, and select
Keyboard.

2. Open the Category drop-down list and select Screen Designer.

The list of commands shows only those functions specific to the Screen
Designer, as well as the keyboard shortcut (if any) currently assigned to
each function.

As with the Code Editor shortcuts, some common functions (like Copy
or Paste) appear to have no associated keyboard shortcut. These
functions have been assigned a shortcut at the “Main” level, which
applies unless overridden by a shortcut assigned in a specific context.

3. Select a function in the list, then click in the Shortcut key entry field.

If a keyboard shortcut is currently assigned to the selected function, this
shortcut appears in the field. In most cases, a description of the function
appears under the “Assign” and “Remove” push buttons.

13-8 Configuring the Screen Designer
4. On the keyboard, type the combination of keys that you want to assign
to the selected function. The key combination appears in the entry
field.

Note the “Currently assigned to” field under the entry field. If you enter
a keystroke that has already been assigned to another function, this field
displays the name of that function.

5. To assign the keystroke that you have specified to the function that you
have selected, click Assign. The new keyboard shortcut appears next
to the function name.

To remove a keyboard shortcut that has already been assigned to a function,
select the function in the Command list, then click Remove.

14
 Working with Screens
Key Topics

Introduction ... 14-2

Creating a New Screen .. 14-3

Getting Started with Screen Design ... 14-5

Adding Controls to a Screen... 14-9

Configuring Control Properties ... 14-25

Positioning and Aligning Controls ... 14-30

Refining Your Screen .. 14-32

Associating Code with Screen Elements.. 14-35

Working with Screen Templates .. 14-39

Generating a Screen .. 14-40

Testing Screens... 14-41

Creating Portable Screens with AcuXUI .. 14-42

Creating a Logo Screen... 14-43

Creating Dual User Interfaces... 14-44

14-2 Working with Screens
14.1 Introduction

Once you have created your data layout files and data sets and configured the
Screen Designer environment, you are ready to start building a graphical user
interface. To facilitate this process, the Screen Designer offers a WYSIWYG,
drag-and-drop environment for creating character-based and graphical
screens. In the designer, you can:

• Draw, position, and manipulate screen elements

• Configure screen and control properties and styles

• Associate code with screens and screen items

When you add a new screen to your program, AcuBench generates the
Procedure Division code necessary to display and accept that screen. As you
drag and drop controls onto the screen form, AcuBench builds a Screen
Section description of the screen. Each change that you make, laying out the
screen and defining interface-handling code, is recorded in the program
structure file (PSF) and used to generate the COBOL code to drive your
program’s user interface. In other words, as you work in the Screen Designer,
you are doing more than describing the appearance of a screen. You are
building a fully functional user interface to your application.

This chapter discusses the process of creating new screens, designing screen
layout, changing screen and control properties, associating code with screen
elements, and generating screen handling code.

Note that this chapter does not discuss methods for importing existing
character-based or graphical screens into the Screen Designer. These
methods are discussed in Appendix A, “Bringing Existing Code Into
AcuBench.”

Creating a New Screen 14-3
14.2 Creating a New Screen

When you create a new project using the Standard Project template, a
program containing a blank, graphical screen is automatically created within
the project. Similarly, if you create a new AcuBench program within your
project using the Standard Program template, the program includes a single
blank, graphical screen.

If you have created an AcuBench program that does not include a screen, or
if you want to add additional screens to a program, you can use either of two
methods: select a template from the New Screen interface, or open a screen
template file that you have previously created. This section discusses the first
method. The second method is discussed in section 14.9.

To add a new screen to your AcuBench program using the New Screen
interface:

1. In the Workspace window’s Structure view, expand the node (tree)
associated with the program to which you want to add a screen.

2. Right-click the Screen folder and select New Screen.

The New Screen dialog appears, listing the available screen templates.

14-4 Working with Screens
3. Select a screen template. By default, seven templates appear on this
screen. You can also use the Tools/Options interface to add additional,
custom templates to this interface (see section 13.4).

The default templates include the following:

4. Fill in the Form Name entry field with a descriptive name for your
screen. Adding a descriptive name can help to minimize confusion and
simplify maintenance, especially in programs with multiple screens.

It is also possible to change the screen name after the screen has been
added to your program. Just enter a new value in the (Name) field of the
screen’s property sheet.

Note that when you change the name of a screen after the screen has been
created, the prefix appended to the name of any existing controls is
updated to reflect the change. The new prefix is automatically set to the
first 10 characters of the screen name. See the next step for more
information about prefixes.

5. The “Unique Prefix” entry field is filled in automatically with the first
ten characters of your screen name, but you can change the default
value. The Screen Designer uses this prefix for its default control and
variable naming scheme.

As with the screen name, you can change the screen prefix after the
screen has been created. To do this, right-click the screen form in the
Screen Designer and select Change Prefix.

Template Description

Blank Graphical A blank graphical screen

Standard Graphical A graphical screen that contains an OK button,
a Cancel button, and a main menu

Graphical Password A graphical screen with entry fields and push
buttons for collecting user login data

Blank Character A blank character-based screen

Standard Character A character-based screen with an OK button, a
Cancel button, and a main menu

Character Password A character-based screen for collecting user
login data

Getting Started with Screen Design 14-5
6. By default, the screen will be added to the current program when you
click OK. If desired, you can use the radio buttons near the bottom of
the New Screen window to add the screen to a different program.

7. When you are finished making changes, click OK.

The new screen form is opened in the Screen Designer, and an icon for
the new screen is added to the program’s Screen node in the Workspace
window’s Structure view. When needed, you can double-click the
Structure view icon to open the screen in the Screen Designer.

14.3 Getting Started with Screen Design

When you open a screen in the Screen Designer, the design interface
comprises three main windows: the design window, the Property window,
and the Screen Component Toolbox.

• The Design window displays a screen form. The screen form is a blank
slate on which you can draw controls to build a user interface.

• The Property window lists the properties, events, and code insertion
points associated with the selected screen element. Properties range
from the basic, such as size and position of the selected item, to the
advanced, dictating the style and behavior of the item.

• The Screen Component Toolbox lists all of the available controls (such
as entry fields and grids) and other screen items (including menus and
toolbars) that can be added to the selected screen form. If you are
working with a character-based or AcuXUI screen, the toolbox shows a
subset of the controls available for use with a graphical screen.

The first step in creating your user interface is to configure the screen itself.
While screen properties can be set after controls have been added to the
screen, some screen properties, such as Font, are inherited by controls added
to the screen. By setting these properties at the start, you can save time and
streamline the design process.

14-6 Working with Screens
14.3.1 Setting Basic Screen Form Properties

Screen properties are configured in the Screen Designer Property window.
The Property window comprises a drop-down box, which lists all of the
elements that make up the current screen, and three tabs. The first two tabs,
labeled Alphabetic and Categorized, list the available ACUCOBOL-GT
properties for the screen element that appears in the drop-down list. The third
tab, Event, lists all of the events, exceptions, and code insertion points
associated with the selected screen element.

If you have the Screen Designer open and do not see the Property window,
open the View menu and select Property Window.

To configure screen properties:

1. Make sure that the screen form is selected in the design window.

The screen name should appear in the drop-down box at the top of the
Property window.

2. Select the Alphabetic tab of the Property window.

As you become comfortable working in the Screen Designer, you may
find it easier to work in the Categorized tab. Both tabs list all of the same
properties; only the order is different. For ease of navigation, these
preliminary steps use the alphabetical ordering.

Getting Started with Screen Design 14-7
3. Scroll to the top of the Property list and verify that the control’s
AcuBench (Name) property is an accurate description of the screen.
The (Name) property acts as a screen handle, and is used to refer to the
screen throughout the generated COBOL code.

If you want to change the screen name, click in the Value column and
type in a new name. The screen name listed in the Structure view is
automatically updated when you tab or click out of the field.

Changing the screen name also changes the unique prefix associated
with the screen. Any existing control whose name includes the unique
prefix is updated to indicate the new unique prefix. This prefix is the
first 10 characters of the new screen name. You can change the unique
prefix at any time by right-clicking the screen form and selecting
Change Prefix.

4. By default, screen controls use the font setting defined at the screen
level. It is therefore a good idea to set the screen font setting before
adding controls. To change the screen font, scroll to the Font property
and click in the Value column. You can either select one of the default
fonts from the drop-down list or click the browse (“...”) button to open
a Font dialog that lists all available system fonts.

The default screen font is Small Fonts, which corresponds to the default
Windows XP system font.

5. The Title property is used to set the text that appears on the screen’s
title bar at run time. To set the screen title, scroll to the Title property,
click in the Value column, and enter a literal value. When you click or
tab away from the field, the title bar on the screen form is updated to
reflect your changes.

6. Continue making changes as desired. Properties that you may want to
configure include:

• System Menu, used to determine whether or not a default system
menu appears when you click the small title bar icon in the top, left
corner of the screen

• Title Bar, used to indicate whether or not a title will include a title
bar. A window without a title bar cannot be moved by the user.

14-8 Working with Screens
• Window Type, used to specify which of the four basic window
types (Standard, Initial, Independent, Floating) to use for this
window. A program can have only one Standard or Initial window.

For more information about windows, screens, and their properties, consult
Book 2 of the ACUCOBOL-GT documentation set. In addition, Book 3,
which details the syntax of the DISPLAY INITIAL WINDOW and
DISPLAY FLOATING WINDOW statements, provides a comprehensive list
of window properties.

14.3.2 Creating a Resizable Screen

If you plan to allow your users to resize screens at run time, you can simplify
the process of handling that screen with a layout manager. A layout manager
is a tool that, given a certain set of rules, determines how the size and
placement of screen controls change as the size of the screen shifts. The
exact rules vary by layout manager; you can write your own or use the one
provided as part of your ACUCOBOL-GT installation, called LM_RESIZE.

This section describes how to use built-in AcuBench support for
LM_RESIZE to create a resizable screen. For information about layout
managers in general, as well as detailed information about the
ACUCOBOL-GT resize layout manager, see section 4.8, “Layout
Managers,” in ACUCOBOL-GT User Interface Programming.

To create a resizable screen that uses LM_RESIZE as its layout manager, do
the following:

1. Select the screen form in the Screen Designer.

2. In the Alphabetic tab of the Property window, scroll to the Auto Resize
property. This property must be disabled in order to use a layout
manager, so verify that its value is FALSE.

If Auto Resize has been set to TRUE, click in the Value column and use
the drop-down list to change its value.

3. Still in the Property window, scroll to the Resizable property and set
its value to TRUE.

Adding Controls to a Screen 14-9
4. Finally, to specify a layout manager, scroll up to the Layout Manager
property and change its value to LM_RESIZE.

When you generate your program, AcuBench automatically creates a COPY
file called “lmresize.def” to support layout manager functions within your
program.

Note that AcuBench also assigns a unique Layout Manager Handle property
to the screen. You can change the name of the handle, but keep in mind that
if you have multiple resizable screens in your application, each layout
manager handle must be unique.

Later, as you add controls to your screen, you can use the Layout Data
property to determine exactly how the resize manager handles that control
when the screen size changes. The Layout Data property is discussed in
section 14.5.2, later in this chapter.

Note that in order for the layout manager to function properly, you must also
change the screen’s Auto Resize property to FALSE.

The resize layout manager facility is demonstrated in an AcuBench sample
project located in the Support area of the Micro Focus Web site.

14.4 Adding Controls to a Screen

Once you have set the basic properties for your screen, the next step is to add
functionality by placing screen controls on your screen. A control is a screen
element used to provide information to the user and/or receive input from the
user. In the Screen Designer, you add controls to a screen form by selecting
them from the Screen Component Toolbox and drawing them on the screen.

14-10 Working with Screens
Control icons may be viewed in a list with labels or as bitmap push buttons
with pop-up hints. To toggle between these views, right-click in the Screen
Component Toolbox and select List View.

In addition to the Selector, a Menu Designer, and a Toolbar Designer, the
toolbox contains the following standard controls for graphical screens:

Character-based screens cannot include the bitmap, date entry, grid, status
bar, tab, or Web browser controls. When you work in a character screen, the
Screen Component Toolbox icons for these controls are disabled.

The Screen Component Toolbox also has a section for the ActiveX controls
that you want to use in your screens. ActiveX controls are available only for
graphical screens. More information about the addition of ActiveX controls
to your Screen Component Toolbox can be found in Chapter 15, section
15.3, “ActiveX Controls.”

14.4.1 Drawing Controls with the Component Toolbox

The Screen Designer lets you draw standard and ActiveX controls directly on
a graphical or character-based screen form as follows:

1. With a screen form open in the Screen Designer, click a control icon in
the Screen Component Toolbox.

The icon is highlighted to indicate that it has been selected. You can
change the selected control type by clicking another icon in the toolbox.

Bar Frame Scroll bar

Bitmap Grid Status bar

Check box Label Tab

Combo
box

List box Tree view

Date entry Push button Web browser

Entry field Radio
button

Adding Controls to a Screen 14-11
2. Move the pointer to the screen form. The pointer changes from an
arrow to a crosshair.

3. Position your pointer on the screen form, then hold down the left
mouse button and drag the outline that appears to size your control.

If you release the mouse button before you have finished sizing your
control, click and drag any of the small, dark blue squares that appears in
the frame surrounding the control. When a control is selected, you can
also use the Shift+Arrow keyboard shortcut to resize it one pixel at a
time, or Ctrl+Shift+Arrow to resize it one cell at a time. (The default
screen cell size is 10 pixels by 10 pixels.)

14.4.2 Drawing Controls with Drag-and-Drop

If you have defined one or more data sets within your program (as discussed
in Chapter 10, “Working with Data at the Program Level”), the data
items from the corresponding FD are listed in the Screen Designer Drag and
Drop pop-up window. This window also lists Working-Storage, Linkage, and
other data items defined in your program.

By default, this interface lists the field names as they are declared in the
program. If, however, you have used the XFD tab of the File Designer to
assign a Name directive to a field, you can elect to have that name appear in
the Drag and Drop interface instead of the field name. When you choose this

14-12 Working with Screens
option, the Title property for any control that has a Name directive will show
that name, rather than the actual field name. For information about enabling
this option, see Chapter 8, section 8.4.5, “Designing a Custom XFD.”

The Drag and Drop interface allows you to select a control type and one or
more data items, then draw the control on the screen. AcuBench
automatically adds the data item to the control’s Property sheet as a Value
Variable, generated Screen Section code to assign the item as the control’s
VALUE property. In addition, if you select a combo box, grid, list box, paged
grid, or paged list box control type, additional code is generated to populate
the control with data when the screen is loaded. These controls, referred to
as autoload controls, are discussed in section 14.4.3.

To use the Drag and Drop window to add controls to your screen:

1. Right-click on the screen form and select Drag-and-Drop from the
pop-up window. You can also select the Drag-and-Drop command from
the View menu.

2. From the drop-down list in the top, left portion of the interface, select a
data source category. By default, “All Names” is selected, indicating
that all Working-Storage, Linkage, and FD items defined in the
Structure view appear in the list.

3. From the drop-down list in the top, right portion of the screen, select a
control type.

4. Select one or more fields from the list of data items. To select
non-contiguous items, hold down the Ctrl key as you click.

5. When you have selected all of the items that you want to draw on the
screen, lift up the mouse button, position the pointer over any of the
highlighted fields, then hold down the mouse button while dragging the
pointer to the screen form.

In most cases, when you release the mouse button, the control(s) is/are
drawn on the screen. If you have chosen either a radio button control or
one of the autoload control types, a second interface appears, allowing
you to configure the behavior of the selected control. In these
circumstances, when you click OK in the secondary interface, the
control is drawn on the screen.

Adding Controls to a Screen 14-13
Using Drag-and-Drop to create radio buttons

Radio button controls are used when the user must select one and only one of
a series of options. As a result, each individual radio button control is placed
within a group, and the runtime ensures that only one member of the group at
a time can be selected.

When you use Drag-and-Drop to create a radio button, the initial steps are the
same as any other control. You select a control type and a data item, then
drag the data item to the screen. When you do this, the Make Radio Button
dialog appears.

This interface represents a group of radio buttons. You add individual radio
button controls to the group corresponding to each of the available options.

To add items to the group of radio buttons:

1. By default, the name of the selected data item appears as the first and
only radio button in the group. To change the name of the first radio
button to something more descriptive, double-click the field name in the
Prompt list and add a more descriptive name.

The name listed here is assigned as the control’s title, which appears next
to the radio button on the screen.

2. Click the Add button. The Add button is the first of the three buttons
just above the Prompt list, on the right side of the interface.

3. The new radio button is assigned the default name “Radio1”. As with
the first radio button, double-click in the Prompt field to enter a more
descriptive name for the button.

14-14 Working with Screens
4. Repeat this process until you have added all necessary group items.

5. When you are finished, click OK. The group of radio buttons that you
have described is drawn on the screen. You can now size and position
the controls on the screen.

14.4.3 Creating Autoload Controls

As with radio buttons, when you use the Drag and Drop window to create a
combo box, grid, or list box, a secondary interface opens. This interface is
called the Autoload window.

The Autoload window

The Autoload window lets you add or remove data items associated with the
control and determine how data items are loaded into the control and
displayed at runtime. It is important to note that, unlike other controls created
through the Drag-and-Drop interface, autoload controls can be associated
only with data items from a data set (defined in an FD). This means that you
can not use the Autoload feature to load a control with data from a table in
Working-Storage. In addition, each Autoload control can take its data from
only a single data set (FD). Autoload controls can only be associated with
data sets that are associated with indexed files.

Adding Controls to a Screen 14-15
Once an autoload control has been generated, any additional controls created
by the autoload (like labels) cannot be changed, because that part of the code
will not be regenerated.

If you use the Drag-and-Drop function to create a combo box, grid, or list box
and select items from multiple data sets or from non-FD data items, the
Autoload interface is not displayed and the generated code associated with
autoload controls is not created. A control is drawn on the screen, but the
code to load the control is not generated. You must manually add the code
needed to load the control.

When you create an autoload control, the list in the bottom, right portion of
the Autoload window allows you to customize the code generated to load the
control. If you want to read data into a list box control from an indexed file,
for example, you can specify a key, a start value, and a read direction, as well
as a code to use when certain conditions (AT END, ADD ITEM) are
encountered.

When you have finished defining the control data in the Autoload window
and click OK, AcuBench draws the control on the screen form. You can then
position, resize, or align the control just like any other screen control.

You can create five types of controls using the Autoload function: combo
box, grid, list box, paged grid, and paged list box. Note that because the code
used to load and navigate through a paged control is quite different from that
used with a typical grid or list box, the Autoload function requires you to
distinguish between the paged and unpaged styles when the control is
created. This means that if you use the control’s property sheet to change its
STYLE property after autoload code has been created, data will no longer
automatically appear in the control, and you may receive compiler errors.

14.4.3.1 Creating an unpaged autoload control

When you create an unpaged control—a combo box, list box, or grid—using
the Autoload interface, the list in the bottom, right portion of the window
provides a number of ways for you to modify the generated code used to load
data into the control at runtime.

14-16 Working with Screens
The steps are as follows:

1. Open the Drag and Drop window and select Combo-Box, Grid, or
List-Box from the list of controls.

2. Select one or more fields from a single data set in the list of available
data items. Note that combo boxes take only a single data field (loaded
into a single column of data).

3. Click OK. This opens the Autoload interface.

4. On the left side of the screen, verify that you have chosen the intended
data set and data fields.

To change data sets, use the arrow keys next to the Source entry-field.
To add data fields to the control, select the new field, then click the right
arrow symbol. To remove data fields from the control, highlight the item
in the Selected list and click the left arrow symbol.

5. Use the list in the bottom, right portion of the screen, shown below, to
determine how the generated code will load data into the control at
runtime.

The interface is similar to that of the Screen Designer Property window:

You can enter variable names, paragraph names, or condition clauses to
be inserted into the AcuBench-generated load paragraph for the control.
The options are as follows:

Option Description

Start Key Specifies which key to use when reading data
into the control from a file.

Start Value The value used to start reading the record. The
default is low-value.

Adding Controls to a Screen 14-17
Start Value Variable If you want the start value to vary depending
on some condition, you can specify a start
value variable. AcuBench adds this variable to
Working-Storage and uses it during code
generation.

Start Value Variable Pic The picture clause for the start value variable
that you have specified.

Start Direction This determines the KEY clause of the START
phrase. By default, the value is >=:

 START filename KEY >= keyname

Invalid Key Perform Allows you to specify a paragraph to be
performed when an INVALID KEY condition
is encountered.

Read Direction Determines whether a file is read start to end or
end to start. The default value is next.

Perform Until Condition Allows you to enter the end condition for the
PERFORM statement used to load the control.
Uses the same syntax as the Expression
Builder. The default is not valid-filename.
“Valid-filename” is an AcuBench-generated
file status condition.

End Value Variable Used with “Perform Until Condition” to
specify when to stop loading information into
the control. Enter a variable to be used to
determine the end condition for the
PERFORM statement used to load the control.
AcuBench adds this variable to
Working-Storage.

End Value Variable Pic The picture clause for the end value variable.

At End Perform Allows you to specify a paragraph to be
performed when an AT END condition is
encountered.

Not At End Perform Allows you to specify a paragraph to be
performed when a NOT AT END condition is
encountered.

Option Description

14-18 Working with Screens
6. When you have finished making changes, click OK. AcuBench draws
the control on the screen form.

The code generated to load unpaged controls is generated into the “.prd”
COPY file and should not be modified directly.

14.4.3.2 Creating a paged autoload control

Much of the code for paged controls is generated into the Event Paragraph
and made available for direct editing. This code is created once, then left
untouched to preserve any modifications that you might make. Because you
can customize the code directly, rather than going through a graphical
interface, the list in the bottom, right portion of the Autoload window is very
simple for paged controls. It contains the only two options that affect the
portion of the autoload code generated into the write-protected “.prd” file.

The initial steps used to create paged autoload controls are similar to the steps
used to create unpaged controls, with the following differences:

1. In the Drag-and-Drop window, choose Paged Grid or Paged List-Box
as the control type.

2. In the Autoload window, you can modify the Start Key selection or add
an Invalid Key Perform Paragraph. The other options listed for
unpaged controls do not appear.

3. When you are finished, click OK. AcuBench draws the control on the
screen form and immediately adds code to the Event Paragraph to
control how data is loaded into the control. When you generate your
program, a very small amount of additional code is generated in the
“.prd” COPY file to manage some portions of the autoload process for
the paged control. The code in the “.prd” file should not be modified
directly.

Add Item Condition Create a condition to determine whether or not
to add a record to the control. Uses the same
syntax as the Expression Builder.

Option Description

Adding Controls to a Screen 14-19
The code added to the Event Paragraph when the control is drawn on the
screen is appended to whatever event code you have already created. To
allow you to make free use of this autoload code, AcuBench does not modify
or regenerate the code once it has been created. This means that any changes
that you make will be preserved when the program is generated. Because
AcuBench does not retain control of this code once it has been added to the
Event Paragraph, if you delete the control with which the code is associated,
you must manually delete the code.

Please note that code added to the Event Paragraph for your use is not deleted
if you delete the paged control from the screen form. Like event code that
you create, the AcuBench-created autoload code must be manually deleted
from the Event Paragraph when it is no longer being used.

As a corollary to this, Working-Storage items associated with a paged
autoload control must also be manually deleted. Because you are free to
make changes to these variables to support modifications to the code in the
Event Paragraph, AcuBench does not retain control over these variables and
will not delete them.

Caution: If you delete a paged autoload control, but do not delete the
associated code in the Event Paragraph, you will receive compiler errors.
Also, you must delete any Working-Storage items associated with the
deleted control before creating another paged autoload control with the
same name. If you do not, undefined behavior is likely to result.

14.4.3.3 Modifying autoload controls

Although you cannot change an autoload control’s style from PAGED to
UNPAGED (or vice-versa), you can customize other aspects of the control’s
appearance or behavior using the Property window, just as for other controls.
You can change the control font, background colors, column sizes, overall
height and width, layout data information, event and exception procedures,
and so on, without affecting the automatically-generated code used to load
the control at runtime.

To make it easier to modify the code generation for controls created using the
Autoload window, a special property has been added to the Property window
for combo box, grid, and list box controls. This property, Autoload, indicates
whether a control has been created using the Autoload feature. If Autoload is

14-20 Working with Screens
set to “1”, AcuBench is generating the code to load the control. If Autoload
is set to “0”, the control is being loaded manually. This special property is
used only by the Screen Designer and does not appear in the Screen Section
definition for the control. If you have created a control manually, you cannot
set its Autoload property to “1” to prompt AcuBench to start generating the
code for the control. Instead, open Drag-and-Drop and create a new control
using the Autoload feature.

To modify the data portion of a control created through the Autoload
interface:

1. Select the control in the Screen Designer.

2. In the property window, next to the Autoload property, click in the
Value column.

3. Click the Browse (...) button to open the Autoload window for the
selected control.

You can now change which fields are displayed in the control, which
direction the data file is read, or even which FD is used to read records
into the control.

Note that if you make changes to a control’s layout that are tied to the data in
the control (modifying the text of the heading cells in a grid or changing
column widths in a grid or list box), those changes will be lost if you open the
Autoload dialog and change your field selections. Other sorts of property
changes, such as selecting a new background color or adjusting the font, are
not affected by modifications made through the Autoload interface. Changes
cannot be made to additional controls created by the Autoload interface, such
as labels.

14.4.3.4 Understanding the generated code (unpaged controls)

Although the code generated for each control type is different, based on the
unique characteristics of the control, the code generated for each of the
unpaged controls is very similar. The first example shows the code generated
into the Procedure Division (“.prd”) COPY file for a grid control that takes
its data from a data file called “clients”. The second example shows the code
skeleton from which the first sample was generated.

Adding Controls to a Screen 14-21
Generated code sample: Grid
MOVE LOW-VALUE TO cl-client-id.
START clients, KEY >= cl-client-id
 INVALID KEY
 PERFORM Invalid-Key-Paragraph
END-START.
PERFORM UNTIL NOT valid-clients
 READ clients NEXT RECORD
 AT END
 PERFORM At-End-Paragraph
 NOT AT END
 IF 2>1
 PERFORM Not-At-End-Paragraph
 END-IF
 END-READ
END-PERFORM.
MODIFY clients-gd, MASS-UPDATE = 0.

Generated code skeleton: Grid
MOVE [Start Value / Variable] TO [Start Key].
START [Filename], KEY [Start Direction] [Start Key]
 INVALID KEY
 PERFORM [Invalid Key Perform]
END-START.
PERFORM UNTIL [Perform Until Condition] [End Value / Variable]
 READ [Filename] [Read Direction]
 AT END
 PERFORM [At End Perform]
 NOT AT END
 IF [At Item Condition]
 PERFORM [Not At End Perform]
 END-IF
 END-READ
END-PERFORM.
MODIFY [Control-Name], MASS-UPDATE = 0.

14.4.3.5 Understanding the generated code (paged controls)

The code used to load data into a paged control differs significantly from that
used to load data into an unpaged control. In the latter case, all data from the
specified source is loaded into the control (and into memory) when the
control is displayed on the screen. With a paged control, however, only the
data visible in the control (that is, a single page of data) is loaded into

14-22 Working with Screens
memory. This can result in a dramatic performance improvement when the
data source contains large numbers of records.

Note that the method used to load data into a paged grid is substantially
different from the method used to load data into a paged list box, because of
fundamental differences in the control type.

Generated Event Paragraph code sample: Paged Grid
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Gd-1-Ev-Msg-Paged-Next.
 PERFORM event-data-2 TIMES
 READ clients NEXT RECORD
 AT END
 MOVE event-action-fail TO event-action
 EXIT PARAGRAPH
 END-READ
 END-PERFORM.
 PERFORM ACU-Screen1-Gd-1-Autoload-Add.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Gd-1-Ev-Msg-Paged-Prev.
 PERFORM event-data-2 TIMES
 READ clients PREVIOUS RECORD
 AT END
 MOVE event-action-fail TO event-action
 EXIT PARAGRAPH
 END-READ
 END-PERFORM.
 PERFORM ACU-Screen1-Gd-1-Autoload-Load.
 MODIFY Screen1-Gd-1, INSERTION-INDEX=2,
 RECORD-TO-ADD = Screen1-Gd-1-Autoload.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Gd-1-Ev-Msg-Paged-First.
 MOVE LOW-VALUES TO cl-client-id
 START clients, KEY >= cl-client-id
 INVALID KEY
 MOVE event-action-fail TO event-action
 END-START.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Gd-1-Ev-Msg-Paged-Last.
 MOVE HIGH-VALUES TO cl-client-id
 START clients, KEY <= cl-client-id
 INVALID KEY
 MOVE event-action-fail TO event-action
 END-START.

Adding Controls to a Screen 14-23
Generated Event Paragraph code sample: Paged List-Box
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-Ev-Ntf-Pl-Next.
 PERFORM Screen1-Lb-1-get-next-item .
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-Ev-Ntf-Pl-Prev.
 PERFORM Screen1-Lb-1-get-prev-item .
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-Ev-Ntf-Pl-Nextpage.
 MODIFY Screen1-Lb-1, MASS-UPDATE = 1
 PERFORM Screen1-Lb-1-Get-Next-Item
 Screen1-Lb-1-page-size times
 MODIFY Screen1-Lb-1, MASS-UPDATE = 0.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-Ev-Ntf-Pl-Prevpage.
 MODIFY Screen1-Lb-1, MASS-UPDATE = 1
 PERFORM Screen1-Lb-1-Get-Prev-Item
 Screen1-Lb-1-page-size times
 MODIFY Screen1-Lb-1, MASS-UPDATE = 0.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-Ev-Ntf-Pl-First.
 MOVE LOW-VALUES TO cl-client-id
 START clients, KEY NOT < cl-client-id
 END-START.
 SET Screen1-Lb-1-READING-FORWARDS TO TRUE
 MODIFY Screen1-Lb-1, MASS-UPDATE = 1
 RESET-LIST = 1.
 PERFORM Screen1-Lb-1-get-next-item
 Screen1-Lb-1-page-size times
 MODIFY Screen1-Lb-1, MASS-UPDATE = 0.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-Ev-Ntf-Pl-Last.
 MOVE HIGH-VALUES TO cl-client-id
 START clients, KEY NOT > cl-client-id
 END-START.
 SET Screen1-Lb-1-READING-BACKWARDS TO TRUE
 MODIFY Screen1-Lb-1, MASS-UPDATE = 1
 RESET-LIST = 1.
 PERFORM Screen1-Lb-1-get-prev-item
 Screen1-Lb-1-page-size times
 MODIFY Screen1-Lb-1, MASS-UPDATE = 0.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-get-next-item.
 EVALUATE TRUE

14-24 Working with Screens
 WHEN Screen1-Lb-1-at-start
 MOVE low-value to cl-client-id
 START clients, key not < cl-client-id
 END-START
 ADD 1 to Screen1-Lb-1-page-size
 GIVING Screen1-Lb-1-number-reads-needed
 WHEN Screen1-Lb-1-at-end
 EXIT paragraph
 WHEN Screen1-Lb-1-reading-backwards
 MOVE Screen1-Lb-1-page-size to
 Screen1-Lb-1-number-reads-needed
 WHEN Screen1-Lb-1-reading-forwards
 MOVE 1 to Screen1-Lb-1-number-reads-needed
 END-EVALUATE.
 PERFORM Screen1-Lb-1-number-reads-needed times
 READ clients next record
 AT END
 SET Screen1-Lb-1-at-end TO TRUE
 EXIT PARAGRAPH
 END-READ
 END-PERFORM.
 INITIALIZE Screen1-Lb-1-Autoload
 PERFORM Acu-Screen1-Lb-1-Autoload-Load
 MODIFY Screen1-Lb-1, item-to-add = Screen1-Lb-1-Autoload
 SET Screen1-Lb-1-reading-forwards TO TRUE.
* Autoload paged control code generated by Drag-And-Drop
 Screen1-Lb-1-get-prev-item.
 EVALUATE TRUE
 WHEN Screen1-Lb-1-at-end
 MOVE high-value to cl-client-id
 START clients, KEY NOT > cl-client-id
 END-START
 ADD 1 TO Screen1-Lb-1-page-size
 GIVING Screen1-Lb-1-number-reads-needed
 WHEN Screen1-Lb-1-at-start
 EXIT paragraph
 WHEN Screen1-Lb-1-reading-forwards
 MOVE Screen1-Lb-1-page-size TO
 Screen1-Lb-1-number-reads-needed
 WHEN Screen1-Lb-1-reading-backwards
 MOVE 1 TO Screen1-Lb-1-number-reads-needed
 END-EVALUATE.
 PERFORM Screen1-Lb-1-number-reads-needed times
 READ clients previous record
 AT END

Configuring Control Properties 14-25
 SET Screen1-Lb-1-at-start TO TRUE
 EXIT PARAGRAPH
 END-READ
 END-PERFORM.
 INITIALIZE Screen1-Lb-1-Autoload
 PERFORM Acu-Screen1-Lb-1-Autoload-Load
 MODIFY Screen1-Lb-1, insertion-index = 1
 ITEM-TO-ADD = Screen1-Lb-1-Autoload
 SET Screen1-Lb-1-reading-backwards TO TRUE.

14.5 Configuring Control Properties

When you select a control in the Screen Designer, the Property window lists
the control’s name and all of the properties currently associated with that
control. The properties listed vary according to the control type, so the
properties listed for a bitmap control, for example, are going to be very
different from the properties listed for an entry field.

When you select multiple controls in the Screen Designer, the Property
window lists only those properties that apply to all of the selected controls. If
you change one of these properties, the change is applied to every one of the
selected controls.

The default Property settings for each control type, as well as the properties
that appear in the Property window, can be configured through the
Tools/Options interface, as discussed in Chapter 13, section 13.3,
“Establishing Screen and Control Defaults.”

Detailed information about all of the available control properties can be
found in Book 2 of the ACUCOBOL-GT documentation set.

To change control property settings in AcuBench:

1. In the Screen Designer, select the control on the screen form. The
control name appears in the drop-down list at the top of the property
window.

Note that if you have selected multiple controls, only the name of the last
control selected is shown.

14-26 Working with Screens
2. Use the Alphabetic or Categorized tab of the Property window to scroll
through the available properties and find the one you wish to change.

3. Click in the Value column next to the property description to change
the control’s property settings. In some cases, this activates an entry
field in which you can type the new value. In other cases, you may
select the value from a drop-down list, or click a browse (“...”) button
to open a secondary interface used to specify a property value.

In general, the first property changed for each control is the (Name) property
from the AcuBench default to something more descriptive. As with the
screen itself, this (Name) property is used to assign a control name used to
refer to the control programmatically. AcuBench also uses this value to
construct the default names for paragraphs and variables associated with the
control, so assigning a descriptive name plays an important role in keeping
your code readable and intuitive. If you are tempted to skip this step and use
the default names, imagine trying to code a screen full of entry fields called
Screen1-Ef-1, Screen1-Ef-2, Screen1-Ef-3, and so on. Now imagine an
entire application full of screens and fields using that same default naming
convention.

14.5.1 Associating Data with a Control

When you use the Drag and Drop interface, controls that you draw on the
screen are automatically associated with data items, usually from graphical
Working-Storage or from a data set. You can also manually associate a value
or variable with a screen control.

In the Screen Section, the VALUE property determines what data, if any, is
associated with a given control. In the AcuBench Screen Designer, two
Property window items are associated with this property. The Value property
entry is used to set a fixed, initial value shown in the control when in the
screen is displayed. The Value Variable property is used to tie the control to
a variable data item, which may or may not contain a value when the screen
is displayed. When these two properties are both set, the Value property is
used to set the initial value for the specified Value Variable.

Configuring Control Properties 14-27
If you need to change the Exception Variable and the Exception Value, please
make sure that you change the Exception Variable first and then the
Exception Value, because that might cause the Exception Variable to
disappear from Working Storage.

To associate a variable with a control without using the Drag and Drop
interface:

1. In the Screen Designer, select a control on the screen form.

2. Scroll through the Property window until all four value properties
(Value, Value Multiple, Value Picture, and Value Variable) are visible.

3. Click in the Value column of the Property window next to the Value
Variable listing and do one of the following:

• To create a new Working-Storage variable associated with the
selected control, type a variable name in the field. When you tab or
click away from the field, AcuBench automatically adds the new
variable to graphical Working-Storage.

• To select from a list of variables already assigned to other controls
on the screen, expand the drop-down list and choose a value.

• To select from a list of data items associated with your program’s
data sets, graphical Working-Storage, and so on, click the browse
(“...”) button and select an item from the interface.

4. When you make an entry for the Value Variable property, the Value
Picture property is updated to reflect the PICTURE clause associated
with that variable.

If you have entered a new variable name, a default value appears in this
field. To change the value, click in the Value column next to the Value
Picture property and enter a new value. AcuBench automatically
updates the variable definition in graphical Working-Storage.

5. If you want to set an initial value for the specified variable, click in the
Value column for the Value property and enter the appropriate literal
value.

14-28 Working with Screens
If you select an entry field, for example, and assign a Value Variable property
of “ws-name”, a Value Picture property of “X(30)”, and a Value property of
“<Enter Name Here>”, AcuBench generates the following code:

• In graphical Working-Storage (and the “.wrk” COPY file):

77 ws-name PIC X(30) VALUE IS "<Enter Name Here>".

• In the “.scr” COPY file:

03 main-scr-name-ef, Entry-Field, ...
 VALUE ws-name.

14.5.2 Layout Data Control Property

As mentioned in section 14.3.2, “Creating a Resizable Screen,” when you
want the resize layout manager to change a control’s appearance when a
screen is resized, you set that control’s Layout Data property to a non-zero
value. The different Layout Data property values and how they affect a
control’s behavior are described in section 4.8.4.1, “Resize manager
LAYOUT-DATA values,” in ACUCOBOL-GT User Interface
Programming. When Layout Data is the default value of “0”, no code is
generated.

In AcuBench, these values are set via the Layout Data Settings dialog box,
which you access by clicking in the Layout Data value box in the Property
window.

Configuring Control Properties 14-29
Note that you can set either a resize or a move value for each axis (x or y), but
you cannot set both values for any axis. Minimum and maximum dimensions
for a control (height and width) are also set in this dialog. Refer to section
4.8.3, “Minimum and Maximum Control Dimensions,” in ACUCOBOL-GT
User Interface Programming for detailed information about these settings.

14.5.3 Controls: Related References

In most instances, controls are simple to create and manage. In some cases,
however, they are complex. In addition to the information contained in this
chapter, detailed information pertaining to Property window items is located
in the following volumes and chapters in the ACUCOBOL-GT
documentation set:

1. Book 2, Chapter 3, “Graphical Controls,” provides an overview of
controls. It also describes the creation and use of bitmap buttons and the
general use of paged list boxes.

2. Book 2, Chapter 4, “Supporting Concepts and Related Issues,” contains
background material concerning issues related to the creation of
controls and screens.

3. Book 2, Chapter 5, “Control Types Reference,” describes individual
controls in detail, including styles and properties and how they can be
set. It also lists the events that can be associated with each control.

4. Book 2, Chapter 6, “Events Reference,” describes in detail the events
that can be generated when you use windows and controls in an
event-driven environment.

5. Book 3, Chapter 5, section 5.9, “Screen Description Entry,” contains
syntax rules and general rules for the components of a screen
description entry.

6. Book 3, Chapter 6, section 6.4.9, “Common Screen Options,” describes
options that are common to Screen section entries and the ACCEPT,
DISPLAY, and MODIFY verbs. It also includes the phrases used to
specify a control’s common properties.

14-30 Working with Screens
7. Book 3, Chapter 6, section 6.6, “Procedure Division Statements,”
contains the DISPLAY control-type format of the DISPLAY verb. It
also contains syntax and general rules for the use of this DISPLAY
verb format.

A general overview of ActiveX and OLE programming issues appears in
Chapter 3, section 3.4, “Using ActiveX Controls and COM Objects in Your
COBOL Program,” in A Guide to Interoperating with ACUCOBOL-GT.

14.6 Positioning and Aligning Controls

Once you have added controls to your screen, you can use arrow-key shortcut
combinations, the Align menu, or Align toolbar to fine-tune the size and
position of those controls.

You can use the following keystrokes to position and resize controls:

• Use the left, right, up, or down arrow controls to move the selected
control(s) one pixel at a time in the specified direction.

• Hold down the Ctrl key and use the arrow keys to move the selected
control one cell at a time in the specified direction.

• Hold down the Shift key and use the arrow keys to resize the control one
pixel at a time (the up and down arrows move the bottom border of the
control, making the control taller or shorter; the left and right arrows
move the right border of the control, making it wider or narrower).

• Hold down the Ctrl and Shift keys and use the arrow keys to resize the
control one cell at a time.

When you use most of the Align commands, a group of selected controls is
repositioned in relation to the last control selected, known as reference
control. The reference control is marked by the small, dark blue boxes
(handles) on the control frame. (The handles on other selected controls are
white, with a blue border.)

Positioning and Aligning Controls 14-31
The Align commands that adjust controls in relation to one another include:

• Make Same Size (Width, Height, or Both), used to resize all of the
selected controls to the width, height, or width and height of the
reference control. From left to right, these are the third, forth, and fifth
buttons on the Align toolbar.

• Align Control (Left, Right, Top, or Bottom), used to align the selected
controls to the left, right, top, or bottom border of the reference control
From left to right, these are the sixth through ninth buttons on the Align
toolbar.

• Space Evenly (Across or Down), used to adjust controls so that a
consistent amount of horizontal or vertical space appears between the
selected controls. This control is only enabled when three or more
controls are selected.

• Adjacent (Horizontal or Vertical), used to align the selected controls
so that the borders of the controls are immediately adjacent to one
another in either the horizontal or vertical direction. This is useful, for
example, in positioning buttons on a toolbar. These options appear just
to the left of the Lock button on the Align toolbar.

The Align commands that can be used to position either a single control or
multiple controls include:

• Align Control (Center Horizontal, Center Vertical, or To Grid), used
to center one or more controls on the screen, or to align the control(s) to
the closest grid point on the screen form. Center Horizontal and Center
Vertical are the first two buttons on the Align toolbar; Align To Grid
appears just to the right of the Align Bottom button.

• Lock Controls, a toggle switch used to lock controls in place on the
screen form so that they cannot be accidentally moved, or to unlock
controls to allow further positioning. A locked control cannot be
dragged, centered, or sized, nor can it be used as the dominant control
when a group of controls is selected. The selection handles on a locked
control are white instead of dark colored.

14-32 Working with Screens
• Size to Content, used to adjust the borders of the control to match the
content of the control. This is frequently used with controls like labels
and radio buttons to match the control precisely to the size of its label,
eliminating unused space. This option does not appear on the Align
toolbar, but does have a keyboard shortcut: Shift+F7.

By default, when you work in the Screen Designer, a grid of dots appears on
the screen form to help you in positioning your controls. The size of each
square in this grid corresponds to the screen’s CELL SIZE property (by
default, 10 pixels by 10 pixels). You can toggle whether or not this grid is
visible with the View Grid command, accessed through the Align menu or
toolbar. To help you place items on this grid, you can enable a set of control
positioning guides with the Toggle Guide command. These positioning
guides become visible when you click on a control on the screen form, or
click to draw a control on the screen.

14.7 Refining Your Screen

As you work with and refine your screen, a number of useful editing
functions are available to help you as you work. Most of these functions, like
Undo/Redo or Cut/Copy/Paste, can be invoked with keyboard shortcuts. You
can also use the Edit menu or the Screen Designer right-click pop-up menu to
access most editing commands.

Remember that most keyboard shortcuts can be customized through the
Tools/Options interface, as discussed in Chapter 13, section 13.5,
“Configuring Keyboard Shortcuts.”

Keep in mind that you can use the Tab key to navigate through the controls in
your screen. Press Tab to move through the controls on the screen from
lowest tab order number to highest. Press Shift+Tab to move backward
through the controls. Screen control tab order is discussed in more detail in
section 14.7.2.

Refining Your Screen 14-33
14.7.1 Basic Editing Commands

AcuBench uses the standard set of commands and keyboard shortcuts to
invoke basic editing commands. These commands include the following:

• To reverse your most recent action, choose the Edit/Undo (Ctrl+Z)
command. You can restore the action that you reversed by choosing
Redo (Ctrl+Y). The workbench supports multiple undo and redo
actions, in reverse order until the last save performed.

You can also use the Undo and Redo buttons on the Standard toolbar.

• To cut and copy controls to the clipboard, select the control(s) that you
want to cut or copy and choose the Edit/Cut (Ctrl+X) or Edit/Copy
(Ctrl+C) commands. Cut removes the control from the screen and
places it on the clipboard. Copy adds a duplicate of the selected control
to the clipboard.

• After you cut or copy a control to the clipboard, you can paste it to a
screen form (Edit/Paste or Ctrl+V). If you paste the control from one
screen form to another, the control is placed in the same location on the
new screen that it occupied on the original screen. After pasting a
control, you can move it to any location in the screen form.

A pasted control retains many of the original control’s properties.
However, it does not retain such unique properties as ID, name, and tab
order. The Screen Designer assigns default unique properties, which you
can change.

After pasting multiple, identical controls, you can quickly change an
individual property value so that it is unique for each control copy.
Select all the control copies that you want to have unique variable names
(for example, select five identical entry fields) and change the desired
variable name in the Property window. AcuBench detects the multiple
selection and asks if you want to give each selected control a unique
name for that property. With a Yes response, AcuBench automatically
increments the number in the variable name for each control so it is
unique.

14-34 Working with Screens
14.7.2 Determining Control Tab Order

Control tab order is determined by the order in which controls are drawn on
the screen. The first control that you draw is assigned a tab order of “1”, the
next is given tab order number “2”, and so on. These tab order numbers
correspond to the order in which controls appear in the Screen Section
definition for the screen.

When a user presses the Tab key to move through the screen, tab order
determines the default behavior for moving the cursor. Unless you have
defined alternate behavior for the Tab key (or otherwise added special
keystroke handling code), when the user presses Tab, the cursor moves to the
next ACCEPT field on the screen.

As you cut, paste, and move controls around a screen form in the Screen
Designer, you are likely to need to make adjustments to the controls’ tab
order. These changes can be made quickly and easily through the Reset
Controls’ Tab Order dialog.

To view and adjust controls’ tab order, do the following:

1. Select the Tab Order command from the Screen Designer right-click
menu or the Align menu to open the Reset Controls’ Tab Order dialog.
(You can also use the Ctrl+D keyboard shortcut.)

The dialog box lists all of the controls on your screen in tab order, next
to the tab order number.

The tab order numbers also display on the screen design form.

Associating Code with Screen Elements 14-35
2. Change the tab order on your screen by selecting a control and using
the up and down arrows.

Note that changing the tab order also changes the order that controls
appear in the Screen Section. In other words, the user tabs through
controls on the screen in the order that those controls appear in the
program’s Screen Section definition.

3. You can also use the Send to Back and Send to Front commands in
the Screen Designer right-click pop-up menu. Send to Back gives the
selected control the lowest tab order number, reordering all other
controls accordingly. Send to Front gives the selected control the
highest tab order number. These controls are not enabled when more
than one control is selected.

Note that if you create a frame and place controls inside that frame, the tab
order within the frame exists exclusively of the controls outside of it. In this
instance, you cannot create a tab order outside of a frame and continue it
inside of the frame. The tab order inside of the frame starts at “1.” You can,
however, change the tab order within the frame itself. Tab order is
continuous if you draw a frame around controls that already exist.

14.8 Associating Code with Screen Elements

Once you have added controls to the screen form and made any necessary
configuration changes, the next step is to add the code to make the user
interface function. The Screen Designer interface used to associate code with
screens and screen controls is the Event Editor.

The Event Editor interface is very similar to that of the Code Editor. The
main visible difference is at the top of the Event Editor window, where three
fields indicate the screen element to which the code applies, the type of code
being associated with the screen element, and the name of the paragraph
containing that code.

14-36 Working with Screens

You can use these fields to navigate through the Event Editor, to list the code
paragraphs already associated with a given screen element, or to create a new
paragraph associated with the screen element.

14.8.1 Entering the Event Editor

When you are working in the Screen Designer, the most straightforward way
to use the Event Editor is often through the Event tab of the Property window.
The Event tab lists all of the event, exception, and embedded procedures
associated with the selected screen element type, as well as any AcuBench
code insertions points defined for the screen element. These procedures and
insertion points are discussed in the next section.

To enter the Event Editor from the Event tab of the Property window:

1. Select a screen element in the Screen Designer.

2. Expand the Event Procedure or Exception Procedure tree, if necessary,
and select a procedure type.

3. Click in the Value column next to the procedure type, then click the
browse (“...”) button.

Associating Code with Screen Elements 14-37
An Add Paragraph dialog opens in the foreground, while the Event
Editor opens in the background.

4. Enter a name for the paragraph you plan to create, then click OK. To
enter the Event Editor without creating a paragraph, click Cancel.

5. The fields at the top of the screen show the selected control, procedure
type, and paragraph name. You can now begin entering code.

You can also enter the Event Editor at any time by double-clicking the Event
Paragraph node for any program in the Structure view. If you open the Event
Editor using this method, the fields at the top of the screen remain blank.

In some cases, you can enter the Event Editor by double-clicking a control on
a screen form in the Screen Designer. In these cases, the Add Paragraph
dialog appears, indicating the default paragraph type associated with the
selected control. Edit the paragraph name as desired and click OK to enter
the Event Editor. (If you click Cancel, no paragraph is created, but you still
enter the Event Editor.)

14.8.2 Event Procedures, Embedded Procedures, and
Code Insertion Points

The procedures and code insertion points listed on the Event tab of the Screen
Designer Property window vary according to the type of control selected.
Display-only controls, such as bars, frames, and entry fields, for example, do
not have any procedures or code insertion points associated with them. In
general, the more complex the control (and therefore the more ways a user
can respond to a control), the more event and exception procedures can be
associated with a control.

14-38 Working with Screens
If you select a screen, for example, and expand the list in the Event tab of the
Property window, you see the following procedures and insertion points:

The code insertion points are unique to AcuBench screens. These procedures
(Before Create, After Create, Before Initdata, After Initdata, Before Routine,
and After Routine) can be defined and inserted around generated code
paragraphs. Before Create code that you define, for example, is performed
just before the AcuBench-generated DISPLAY code for the screen. You
might insert a paragraph here to load the data you want to see when the screen
is displayed. After Initdata code is performed just after the
AcuBench-generated “Initdata” code used to define the data structure for
complex screen controls like combo boxes, grids, and tree view controls.
You might insert a paragraph here to manually load data into any of these
controls.

Working with Screen Templates 14-39
Event, exception, and embedded procedures, on the other hand, can be
assigned to ACUCOBOL-GT screens and controls regardless of whether or
not you are working in AcuBench. These procedures follow the structure and
rules discussed in Chapter 6 of Book 2 and Chapter 5 of Book 3 in the
ACUCOBOL-GT manual set.

One special AcuBench embedded procedure type is the Link-To paragraph.
A Link-To paragraph is a way to assign a specific exception value to certain
screen elements. When a user clicks a screen element that has a Link-To
value assigned, the specified exception is sent to the program, which then
performs the procedure associated with that exception.

Both Link-To and Cmd-Clicked procedures are invoked when the user clicks
on a screen element. In the former case, a manually-assigned exception value
is generated, updating the Key-Status data structure and invoking a procedure
associated with the specified value.

 WHEN Key-Status = 211
 PERFORM Client-Scr-Pets-Pb-Link

When a Cmd-Clicked exception procedure has been assigned to a screen
element and a user clicks the control, an Event-Occurred message (exception
value 96) is sent to the program, which then determines which control
generated the exception, which event actually occurred, and whether or not a
procedure exists to respond to that event.

14.9 Working with Screen Templates

When you create a new screen in the Screen Designer, the default New
Screen interface provides you with a list of default screen templates (like
Standard Graphical and Blank Character). In addition to these defaults, you
can create and use your own screen templates. When you create screen
templates, you have the option to either add them to the New Screen dialog
(as described in Chapter 13, section 13.4, “Adding Screen Templates”), or
to access them with the Add Screen command.

14-40 Working with Screens
The process used to create a screen template file (“.stf”) is very
straightforward. First, use the Screen Designer to create a screen, as usual.
When you are finished, right-click on the screen form and select Generate
STF Document. In the Save As dialog box, navigate to the folder where you
want your template stored.

If you elect not to add your template to the New Screen dialog, you can use
the Add Screen command to create a new screen based on a template. To do
this:

1. In the Structure view, right-click the Screen icon and select Add Screen.

2. In the Add Screen to Program dialog, navigate to the directory
containing your screen template, select the “.stf”, and click Open.

The new screen opens in the Screen Designer.

When you use the New Screen interface to select a template and create a new
screen, you have the option to change the screen’s name and unique prefix at
the start. When you use the Add Screen command, however, your new screen
is assigned the same name and unique prefix that you used when you
designed the template. As a result, your first step after using the Add Screen
command should be to change the screen name in the Property window. This
will also update the screen’s unique prefix to match up to the first ten letters
of the screen name. To assign an alternative unique prefix, right-click the
screen form and select Change Prefix. When you change a screen’s unique
prefix in the Change Prefix dialog, you can choose whether or not the
changed prefix is assigned to existing controls.

14.10 Generating a Screen

As discussed in Chapter 4, section 4.6.2, “Program Tag Options,” when
you create an AcuBench program that includes a program structure file,
AcuBench adds tags to the source (“.cbl”) file to indicate the placement of
generated code. When you design a screen, then use the Build/Generate
command to generate COBOL code, AcuBench uses these tags to add the
Screen Section, Working-Storage, and Procedure Division code needed to
display the screen and make it function. If you are using the default code
generation options (generating code into multiple COPY files), you will see

Testing Screens 14-41
several COPY statements added to the source file. These refer both to
AcuBench-generated COPY files and to the ACUCOBOL-GT definition files
used for screen handling.

Depending on the elements that you have added to your screen, the generated
COPY files may include a Screen Section COPY file (“.scr”), an event
paragraph file (“.evt”), and a menu paragraph file (“.mnu”). The code
generation process will also add screen DISPLAY and ACCEPT information
to the Procedure Division file (“.prd”), and update the Working-Storage file
(“.wrk”).

AcuBench generates the Procedure Division code needed to DISPLAY and
ACCEPT each screen in your program. This code is invoked through an
“Acu-screen-Routine” paragraph. AcuBench automatically generates the
code needed to invoke this routine for the program’s main screen at startup.
You add the code needed to perform the appropriate screen routine for each
of the other screens in your program.

See Section 14.11, “Testing Screens,” for information about invoking
secondary screens in a program without the need to write code.

14.11 Testing Screens

When you want to view and interact with the screen you have designed, use
the Build/Execute command. If there are multiple screens in your program,
AcuBench generates the code to execute just one of them. Although Screen
Section entries and DISPLAY statements are added to the generated code for
every screen, only the first screen’s code is executed automatically. To test
additional screens, you have two options:

• Add code, associated with a push button or other control, to call the
remaining screens in your program:

PERFORM Acu-LookupScreen-Routine.

• Use the Program Properties interface to change the main screen for the
program. AcuBench generates the code to execute whichever screen is
currently set as the main screen.

14-42 Working with Screens
To change the default screen displayed at runtime:

1. Right-click the program node in the Structural view and select
Properties.

2. Under “On program startup, set main screen to,” select a screen from
the drop-down list.

3. Click OK to save your changes.

When you execute your program, the selected screen is displayed.

14.12 Creating Portable Screens with AcuXUI

AcuBench includes support for AcuXUI technology, which allows you to
display graphical screens in non-Windows environments. If you have
purchased AcuXUI, you can design graphical screens in the AcuBench
Screen Designer and enable AcuXUI at runtime.

To test your screens in an AcuXUI environment:

1. Expand the Build menu and select Use AcuXUI.

AcuBench’s AcuXUI support can be used both when you execute local
programs and when you execute programs remotely using the thin client.

2. Expand the Project menu and select Settings to open the Project
Settings interface, then select the Environment tab.

Two environment variables—CLASSPATHDIR and XUIJAR—are
automatically added to the Environment tab when you open a new
project. If desired, you can add an XUIPARAMS variable to define any
Java parameters that you want to pass with the Java command line.

3. Make changes to the two AcuXUI-related environment variables as
needed. Refer to the AcuXUI User’s Guide for more information.

4. Click OK to save your changes, then execute your program. The
command line used to execute with AcuXUI appears in the AcuBench
Output window.

Creating a Logo Screen 14-43
If you are executing the program locally, the command line looks
something like this:

javaw com.acucorp.acuxui.AcuXUI
 --acucobolgt "runtimepath" <options> "programpath"

If you are executing with the thin client, the command line looks
something like this:

javaw com.acucorp.acuxui.AcuXUI -s <server>
 -p <port> -r <runtime options> alias

Note that there are differences between a graphical user interface displayed in
the Microsoft Windows environment and one displayed with AcuXUI in the
Java runtime environment. Some screen and control properties that the
Windows environment supports, for example, are not supported by the
AcuXUI environment. Screen and control size and spacing measurements
also differ between the two environments.

For more information about the differences between the two graphical
environments, as well as recommendations for optimizing screens created for
use with AcuXUI, please refer to the AcuXUI User’s Guide.

14.13 Creating a Logo Screen

You have the option to define a logo screen—often called a splash
screen—for each AcuBench program that you create. A logo screen is
displayed briefly before the program’s main screen is displayed. As its name
implies, a logo screen is often used to display a company or application logo.

When you design a logo screen in the Screen Designer, AcuBench can
generate the code to automatically display the screen for a specified period of
time before showing the main screen. To select a logo screen:

1. Right-click the program node in the Structure view and select
Properties.

2. On the General tab of the Program Properties window, under “On
program startup, set logo screen to,” select a screen from the
combo-box.

3. Use the “Display Time” entry field to specify how long the logo screen
will be displayed before the main application window appears. You
can specify a value between 1 and 300, indicating a display time
between 1 and 300 seconds.

4. Click OK.

14.14 Creating Dual User Interfaces

It is possible to have both character-based and graphical screens in the same
program. Moreover, for each screen in your user interface, you can have both
a graphical and a character-based version, each with the same name. When
two versions of a screen with the same name appear in the same application,
the runtime chooses which to display based on the capabilities of the runtime
environment.

Creating Dual User Interfaces 14-45
To facilitate the process of creating a dual graphical/character interface for
your programs, the Screen Designer allows you to copy screen items between
graphical and character-based screen forms. You can lay out a screen on one
type of screen form, then copy and paste all of the controls onto the other type
of screen form.

When you copy and paste controls between screen types, however, there are
some considerations to keep in mind:

• Graphical screen elements use pixels for positioning, while character
screen elements use cells. This means that when an item is moved from
one screen type to the other, the positioning will not remain exactly the
same.

• Graphical screens can contain more types of screen elements (including
toolbars, bitmaps, and so on) than character screens. Graphical screen
elements cannot be copied onto character screens.

14-46 Working with Screens

15
 Controls, Menus, and
Toolbars
Key Topics

Introduction ... 15-2

Standard Controls ... 15-3

ActiveX Controls ... 15-20

Using the Menu Designer.. 15-23

Using the Toolbar Designer ... 15-29

15-2 Controls, Menus, and Toolbars
15.1 Introduction

This chapter provides more detail about the controls and other screen
elements that can be used to create a user interface in the AcuBench Screen
Designer. It starts with an overview of the ACUCOBOL-GT standard
controls, then discusses the basics of ActiveX controls. Next, it talks about
the process of adding menus and toolbars to your screens. (Both
character-based and graphical screens may include a menu; only graphical
screens can include a toolbar.)

The information contained in this chapter is supplemental to the information
in Books 2 and 3 of the ACUCOBOL-GT documentation set pertaining to
menus, graphical controls, and toolbars. In most cases, this chapter focuses
on the AcuBench-specific aspects of using the various screen elements,
although some more general principles are included.

15.1.1 Properties of Screen Elements

All components of a screen element are properties. When we talk about
screen controls, these properties are classified into two groups: common
properties and special properties. Common properties apply to many types of
controls, and include:

Note that some common properties have a special meaning (or no meaning)
for some control types. (A bar control, for example, wouldn’t have a title,
value, or font.)

Each control also has its own set of special properties. Special properties
give a control a special attribute or capability. For example, an entry field can
have the special properties Max-Text or Max-Lines, which determine how
many characters or lines of information users will be permitted to enter in that
field. All special properties require a value. Max-Text, for example, takes a
numeric value that specifies the maximum number of characters that can be

size title value

color/intensity font visible/invisible

enabled/disabled ID

Standard Controls 15-3
entered in the field. Some special properties are used by more than one
control type. For example, the special properties that apply to bitmap buttons
are also used by the push button, radio button, and check box controls.

Styles are a special type of property that affects the appearance or behavior of
a control. For example, some of the styles that apply to a radio button include
Bitmap, Framed, and Notify. Styles do not take a value. Most styles apply to
only a certain type of control, although a few are common to all controls.

The process of setting control properties is discussed in Chapter 14, section
14.5, “Configuring Control Properties.”

15.1.2 Events Overview

In addition to setting appearance and behavior properties of a screen item,
you can associate code with the item to determine its functionality. Just as
each screen element is associated with a certain set of properties, it is also
associated with a certain set of events. An event is a user action to which the
screen item is capable of responding. If a user enters information into an
entry field, for example, the entry field is capable of recognizing each
keystroke that the user types as a Notify-Changed event. Likewise, a push
button control can recognize a mouse click as a Command-Clicked event.
You can choose to capture these events and write code to respond
appropriately to the user action.

In AcuBench, the Event tab of the Property window provides an interface that
both lists the events to which a given control can respond and allows you to
enter code to handle that event. For more information about adding event
code in AcuBench, see Chapter 14, section 14.8, “Associating Code with
Screen Elements.” For a more general discussion of events and event
handling, see Book 2 of the ACUCOBOL-GT documentation set.

15.2 Standard Controls

When you are working in the Screen Designer, the Screen Component
Toolbox lists the standard and ActiveX controls available for use. If you are
working with a graphical screen, all of the standard controls are available for

15-4 Controls, Menus, and Toolbars
you to use. If you are working with a character-based screen, those controls
that are available only with graphical windows appear disabled in the Screen
Component Toolbox. The sections that follow provide summary descriptions
of each of the standard controls.

When you are working with ActiveX controls, the list of controls that appears
in the ActiveX portion of the Screen Component Toolbox depends on which
controls you have installed and registered. A detailed description of an
ActiveX control can usually be found in the vendor documentation that
accompanies it. More information about programming with ActiveX
controls can be found in Chapter 3 of A Guide to Interoperating with
ACUCOBOL-GT.

The size and location of most controls on a screen form can be changed. To
change the size, click the control to select it, then drag a corner of the
“handle” that appears. You can also use the keyboard shortcuts Shift+Arrow
and Ctrl+Shift+Arrow to change the size of a control or window. To change
a control’s location, click on the control and drag it to the desired position on
the screen form. You can also use the arrow keys or the Ctrl+Arrow
keyboard shortcut to move items on the screen form. Note that status bar size
and location cannot be changed. A status bar automatically grows and
shrinks horizontally to match the width of the owning window.

15.2.1 Selector

When you first open the Screen Designer, the Selector is highlighted in the
Screen Component Toolbox and the mouse pointer is a white arrow.

When you select any control in the Toolbox and move the mouse to the screen
form, the mouse pointer becomes a crosshairs. After you draw a control on
the screen, the mouse pointer returns to being an arrow, and the Selector icon
appears highlighted in the Toolbox. When the Selector is chosen, you can
select, move, and resize controls already drawn on the screen form.

Standard Controls 15-5
If you have selected a control type in the Screen Component Toolbox and
decide that you don’t want to draw that control on your screen, you can
cancel your selection by clicking the Selector icon.

15.2.2 Bar

The bar control allows you to draw a horizontal, vertical, or diagonal bar in
the screen form at design time.

15.2.3 Bitmap

Available only in graphical environments, a bitmap is a graphic (“*.bmp”,
“*.jpg”, “*.jpe”, or “*.jpeg”) that can be added to a screen in order to enhance
its appearance, for example, or to add a company logo. A bitmap can also be
added to a push button, radio button, or check box control.

A bitmap control is rectangular and non-transparent by default. To display a
bitmap so that it appears non-rectangular, or to make sure that some portion
of a bitmap matches the background color of the screen, use the Transparent
Color property. In the Property window, click the button next to the
Transparent Color property to open the Choose Transparent Color dialog
box. As you move your mouse over the bitmap, the dialog box shows the
RGB value of the current color. When you click a spot on your bitmap, the
color of that spot is set as the transparent color, and when the program
executes, that color does not appear (in other words, the background color of
the screen shows through). For more information about bitmaps and the
Transparent Color property, see Chapter 5 in ACUCOBOL-GT User
Interface Programming.

15-6 Controls, Menus, and Toolbars
15.2.4 Check Box

A check box control includes a selection box and a text label. When a user
selects the control, a check mark appears in a check box. Typically, check
boxes are used when you need to provide the end user with a limited number
of choices from which any number may be selected, or when you want to
present the end user with an option that may be turned on or off. Check boxes
are also used to give the end user a Yes/No or True/False option.

15.2.5 Combo Box

A combo box is an input control that combines a list box and an entry field.
Typically, it contains several options in the list portion of the combo box, and
the end user can select the needed option with the mouse pointer, or write the
needed option in the entry field portion of the combo box. You can create
three kinds of combo boxes: drop-down (users can type in the entry-field
portion of the control and use a button to reveal the list, which is otherwise
hidden), drop-list (users must make a selection from the drop-down list and
cannot type in the entry-field), and static list (the list is permanently
displayed on the screen).

Standard Controls 15-7
When you draw a drop-down or drop-list combo box control in the Screen
Designer, remember to include space for the data in the list. In other words,
do not draw the control exactly the size of the entry-field portion of the
control. Instead, select the control and drag the selection handle downward,
leaving an “empty” space under the control. If this extra space overlaps other
controls on the screen form, when users expand the list at runtime, it
temporarily overlaps the other control.

15.2.6 Date Entry

Available only in Microsoft Windows environments, the date entry control
provides a convenient way for users to enter date or time values. Depending
on the format that you choose, the date entry may include a graphical
calendar from which users can select a date.

Four standard date and time formats are listed for the Display Format
property in the property sheet for the control. You can also enter a custom
Display Format for the control, combining various date and time elements.

Note: Although the property sheet lists a Short-Date value format of
YYMMDD, the actual Short-Date format is dependent on Windows
operating system settings. See Chapter 5 of the ACUCOBOL-GT User
Interface Programming guide for more information.

Some restrictions apply to the use of this control. See Chapter 5 of
ACUCOBOL-GT User Interface Programming for details about the styles
and properties available for this control.

15-8 Controls, Menus, and Toolbars
15.2.7 Entry Field

An entry field control is used for accepting data from the end user, such as
multiple lines of text. Typically, it is the field where an end user enters
information, such as a name and address. You can create either single line or
multiline entry fields in the Screen Designer.

15.2.8 Frame

A frame control is a “box” used for grouping related controls together. You
can put controls into frames to visually separate them from other controls or
to group related controls together. For example, it is a common practice to
enclose radio button groups within a frame.

When you draw controls directly on a frame, you cannot drag them out again.
They are grouped inside of it. This allows you to move a frame and have the
control(s) remain inside of it.

When you create a frame first and then add controls into it, you can copy and
paste those controls within it. Note that if you select this frame and delete it,
the controls are also deleted. If you create controls first, and then put a frame
around them, you cannot select the controls within that frame to copy and
paste or move them, unless you move the frame away from the controls. You
can delete this frame without deleting the controls inside.

When users tab through controls on a screen, the order of the cursor
movement depends on the tab order established for those controls. When you
create controls inside a frame control, the tab order of the frame control itself
is part of the tab order for the entire screen, but items within the frame have

Standard Controls 15-9
their own, distinct tab order. The tab order for controls inside of each frame
starts at “1” in the Property window. To change the tab order of controls
within a frame, right-click the frame and select Tab Order.

15.2.9 Grid

Available only in graphical environments, the grid control is a
two-dimensional table of data fields. Each element of this table, called a
“cell,” can hold text or a bitmap, or both. Grids are relatively complex
controls with many properties that you can use to customize their appearance
and behavior.

Grids are organized into rows, columns, and records. In a grid, a “row” is a
grouping of cells that appear on one line in the control. A “record” is one or
more rows that are treated as a logical unit. A “column” identifies a
particular cell in a record. By default, a record occupies one row in a grid, but
you can arrange for a record to “wrap around” to the next row when it passes
the right edge of the grid. When this occurs, a record occupies more than one
row in the grid. You might want to construct a grid like this when you want
to see many fields in a data record at once. Alternatively, you can have the
grid use scroll bars to access cells past the right edge of the control. Column,
row, and record numbers all start at “1.”

Grids come in two formats: with horizontal scrolling and without. When you
opt for horizontal scrolling, each record may occupy only one row in the grid.
Grids with horizontal scrolling appear much like a spreadsheet. Without
horizontal scrolling, a record may occupy more than one row. In either case,
vertical scroll bars appear automatically when needed.

15-10 Controls, Menus, and Toolbars
The grid operates in two different modes: navigate mode and entry mode.
While the grid is in navigate mode, the arrow keys move the cursor around
the grid. This mode is the default. The grid shifts to entry mode when the
user starts to modify data. In this mode, the arrow keys are used to edit the
current cell’s data. When the user finishes a cell, the grid returns to navigate
mode.

The exact set of keys understood by the grid depends on the host system.
Under Windows, the following keys are used in navigate mode:

When the grid is in entry mode, the user types into an entry field control. All
of the editing keys usable by an entry field are usable here. The user leaves
entry mode by typing Enter or Tab/Backtab, or by clicking on another cell
with the mouse.

Up/Down
arrow

Moves the cursor
to the same
column in the
previous/next
record

Tab

(with USE-TAB)

Moves the cursor
right, wrapping to the
next record when at
the last cell in the
record

Left/Right
arrow

Moves the cursor
to the
previous/next
column in the
record

Backtab

(with USE-TAB)

Moves the cursor left,
wrapping to the
previous record when
at the first cell in the
record

Home Moves to the first
column in the
record

End Moves to the last
column in the record

Ctrl+Home Moves to the first
column of the first
record

Ctrl+End Moves to the first
column in the last
record

Page
up/down

Moves the cursor
up/down one page

Enter Shifts to entry mode
for the current cell;
highlights the
contents for editing

Shift+Enter Moves the cursor
to the first column
of the next record

Any printable
character

Shifts to entry mode
for the current cell;
overwrites the
contents with the
character

Standard Controls 15-11
Clicking a mouse on a cell moves the cursor to that cell. Clicking on the
selected cell shifts to entry mode. So double-clicking on any cell has the
effect of modifying that cell’s contents. The first click moves the cursor and
the second click shifts modes.

You should note that the Property window Value cell for the Row-Dividers
property accepts only a single digit. You cannot enter multiple values in the
workbench for Row-Dividers.

Paged grid

Sometimes you may want to use a grid control to view a large number of
records. When this is the case, a normal grid is impractical. Just loading all
the records into the grid could take an excessive amount of time. To handle
this case, the grid supports a Paged style. When you use this style, the grid
holds only as many records as can be seen on the screen. This is called a
“page” of data. Four buttons that get the next/previous record and the
next/previous page of records replace the vertical scroll bar. When the user
clicks one of these buttons, the control sends a message to the program asking
for the appropriate data. The program itself must supply the needed data.
This data typically comes from an indexed file, and the appropriate program
logic is to do one or more READ NEXT/PREVIOUS statements to retrieve
the data.

The grid control communicates requests for more data via events. More
information about grid events can be found in Chapter 6 of ACUCOBOL-GT
User Interface Programming.

Paged grids never hold more data than they can display. When adding a
record to a full page, the control deletes the top non-heading record when a
record is added to the end of the grid. This causes the grid’s contents to scroll
upwards. When adding a record to any other position, the last record in the
grid is deleted. This causes all records after the one being added to scroll
downwards.

Note that the current cell is not changed when the grid is paged. In other
words, if the grid's cursor is at row 2, column 3, it is at row 2, column 3 after
the user clicks the “next record” button. This action effectively moves the
cursor to a new record, even though its physical location has not changed.
Unlike other forms of cursor movement, this does not generate any additional
events. If you are performing special actions when the cursor enters a new

15-12 Controls, Menus, and Toolbars
cell (for example, displaying related information outside of the grid), then
you should perform these actions in response to paging events as well as
cursor-movement events.

15.2.10 Label

The label control allows you to display a simple string of text on the screen
form. This text cannot be changed by the end user, though it can be changed
by the application at runtime. The label control is typically used to display
permanent labels for entry fields, explanatory notes, or titles. It can also be
used to show changing activities, such as the time or the progress of a
file-copying activity. Labels may occupy multiple lines. When a label is
displayed on multiple lines, it uses word-wrapping, if possible, so that words
are not broken across lines.

15.2.11 List Box

A list box is a rectangular list from which an end user can select one or more
items. A list box does not allow direct data input. If the list box contains
many items, the user can navigate through it with a scroll bar.

Standard Controls 15-13
Paged List Box

The standard list box control provides a convenient way for a program to
implement a look-up facility for a group of items. It is also tempting to
extend this type of use into a method for locating records in a data file.
Unfortunately, this doesn’t work well when the file contains too many
records. The programmer runs into two main problems:

1. The standard list box has a limited capacity, usually fewer than 2000
items.

2. It takes too long to load the list box with the entire set of items.

Also, if the number of items is very large, the user may have a difficult time
locating a particular item. There are two reasons for this:

1. The resolution of the scroll bar’s slider is too coarse.

2. The search mechanism is too primitive (for example, a single-character
match on the first byte of the record).

The paged list box is a variation of the standard list box that solves all of these
problems. A paged list box works by managing only a limited number of
records at a time. When it needs more records, it requests them from the
controlling program. Paged list boxes are intended to be used in conjunction
with a large, ordered data source, typically records stored in an indexed file.

More information about how to use paged list boxes can be found in Book 2
of the ACUCOBOL-GT documentation set.

15.2.12 Push Button

A push button is used to carry out an action when clicked by the user. It
typically returns a unique value when selected, and its border changes,
indicating that it has been selected. A common use for a push button is an
“OK” or “Exit” button.

15-14 Controls, Menus, and Toolbars
15.2.13 Radio Button

A radio button is used to select an option, usually from a group of radio
buttons. Unlike a check box, only one radio button in a group may be
selected at a time. When a radio button is selected, it displays a black center
to indicate that it has been selected. Typically, a group of radio buttons would
be used to indicate a choice, such as a payment method (for example, cash,
check, or credit card).

Because radio buttons always function in sets, if you want multiple sets of
radio buttons in a screen, you should draw each set of buttons inside a frame
control. When a set of radio buttons is inside a frame, clicking one of the
buttons clears the other buttons in the set.

15.2.14 Scroll Bar

The scroll bar allows end users to change the viewing area in a list or on a
form. Scroll bars can also be used to move through a range of values by
increments. Typically, a scroll bar is either a vertical or horizontal slider bar
with arrows attached at each end.

Standard Controls 15-15
15.2.15 Status Bar

Available only in graphical environments, the status bar control allows you to
create a status bar at the bottom of your screen. You can define up to 128
panels in your status bar, depending on how many items you want to track on
your screen. Each screen may have only one status bar.

You define the panels in a status bar in the “Panel description” area of the
Panel Setting dialog box. To display this dialog, click in the Panels’ Setting
value column in the status bar control Property window.

15.2.16 Tab

Available only in graphical environments, the tab control combines a box
with a tab for a control that looks like a file folder. The user clicks on any tab
to bring it forward. The program typically places different screen elements in
the box, depending on the tab selected.

Tabs can be oriented horizontally at the top or bottom of the control, or they
can be oriented vertically at the left or right of the control, via the control’s
Tab Orientation property. Note that if the tab page is filled to its outer edges,
you may have to make slight resizing or repositioning adjustments when you
change the tab orientation.

15-16 Controls, Menus, and Toolbars
When a user clicks on a tab, the program is informed of the new selection and
the tab’s appearance is updated. The behavioral distinction between tabs and
push buttons is that a tab responds immediately when clicked, and a push
button responds with the “clicked” event only when the mouse button is
released. You may allow the user to activate the tabs with the keyboard by
accepting the tab control as any other control, but you need not do so if you
wish to provide only a mouse interface.

When you create a tab control in the Screen Designer, there are a few special
features to keep in mind. First, note that you can select either the entire tab
control (the highlight frame and handles outline the control) or a page of the
control (the highlight frame and handles define a rectangular region that does
not include the “tab” portion of the control).

Note also that when you have selected a tab control or one of its pages, the
Property window indicates the nature of the current selection. If the entire
control is selected, the Property window entry begins with “Tab Control”
(followed by the control name). If a tab control page is selected, the Property
window entry begins with “Page” (followed by the page name).

The tab control uses the following special editing commands:

• To add a new page to the tab control, make sure that the entire control is
selected, then right-click and select Insert New Page (near the bottom of
the right-click menu).

• Once your control contains multiple pages, you can select Next Page or
Previous Page from the right-click pop-up menu to navigate the control.
If the entire control is selected, you can also switch between pages of the
control by clicking the tab portion of the control.

Standard Controls 15-17
15.2.17 Tree View

The tree view control presents hierarchical data in a list. This list is indented
to show the “parent” and “child” relationships in the data. Users can
“expand” or “collapse” items in the list to view or hide subsidiary items.

In a tree view control, an ID is assigned to each element when it is added to
the control. This provides a unique way to identify each item and allows for
duplicate items at different points in the hierarchy without any confusion.
Tree view IDs are declared in Working-Storage as USAGE POINTER data
items. Tree View Designer functions are explained in detail in the following
sections.

Using the Tree View Designer

Create a tree view for a screen by dragging a tree view control from the
Screen Component Toolbox to any location in the screen form. When you
add a tree view control to the screen, the Tree View Designer dialog box
appears. This dialog box lets you add, delete, and move tree view items.

Creating a tree view for a screen

1. In the Screen Component Toolbox, click the tree view control icon.

2. Move the pointer to the screen form. The pointer changes to a
crosshair.

15-18 Controls, Menus, and Toolbars
3. In the screen form, drag the left mouse button to add a tree view
control.

4. If the Tree View Designer does not appear automatically, double-click
the tree view control box you have placed on the screen form. The text
marker is highlighted in the dialog box.

The tree view control has two Property windows. The first one you see is
available when you enter tree information in the Tree View Designer. It
governs the individual “tree” and “children” properties. The second Property
window is more extensive, and is available when you enter the tree and
children information. It governs the more global behavior of the tree view
control.

Adding a tree item to a tree view

1. In the Tree View Designer, double-click the text marker. A new text
field appears in place of the text marker at the left side of the dialog box.
If the tree view already has tree items, the new item appears below and
at the same level as the selected tree item.

2. If you want to add a tree item before a selected entry, right-click in the
designer and select the Insert Item Before command.

3. Enter a name for the new tree item from the keyboard. Press Enter.

Adding a child item to a tree view

1. Highlight the tree item that needs a submenu and click the Insert a
sub-item button. You can also right-click in the designer and select the
Insert Sub-item command. The cursor drops to a lower field, enabling
you to type in the name of a child item.

2. Once you have entered all of the child items for a particular tree item,
you can enter the next tree item and child items by selecting the text
marker below the last child item.

Standard Controls 15-19
Adding bitmaps to a tree view

The Tree View Designer makes it easy to add bitmap icons to items in a tree
view control.

1. In the Screen Designer, select the tree view control on the screen.

2. In the Property window, click the Value column next to the Bitmap
property, then click the browse button.

3. Navigate to the location of the bitmap or bitmap strip that you want to
use, then click Open.

4. In the Tree View Designer, select an item in the tree, then use the
Property window to enter a value for the Bitmap Number property. If
you are using a single bitmap image, rather than a bitmap strip, this
number is “1”. If you are using a bitmap strip, enter the number
corresponding to the position of the icon that you wish to use.

Deleting an item from a tree view

1. In the Tree View Designer, select and highlight the tree item or child that
you want to delete.

2. Click Delete.

Moving an item in a tree view

1. In the Tree View Designer, select the tree or child that you want to move.

2. Click the Move item up or Move item down button, depending on
where you want the item to move. You can also right-click in the
designer and select the Move Up or Move Down command.

15.2.18 Web Browser

Available only in graphical environments, the Web browser control uses the
runtime to browse the Web; invoke e-mail, telnet, and FTP services; and
display multimedia and other file types. It also allows users to view
Windows folders and files. It is used just like any other ACUCOBOL-GT
control.

The Web browser control is installed with Microsoft Internet Explorer. It
allows the user to view the main window of the Microsoft Internet Explorer
on a screen created by the Screen Designer. It provides the functionality for
displaying Web pages containing HTML, scripting, and ActiveX controls and
Java applet content.

15.3 ActiveX Controls

AcuBench makes it easy to include ActiveX controls in graphical programs
designed to run in Microsoft Windows. Once you have installed the control
on your system, you can add it to the Screen Component Toolbox, then place
it on your screen form just like a standard control.

Note that ActiveX controls that you include in your program must be
installed and licensed in accordance with the vendor’s requirements both on
your development system and on every system on which the program is
deployed. It is up to you to know how to program and distribute the ActiveX
controls that you use. Refer to the documentation provided by your ActiveX
control supplier.

ActiveX Controls 15-21
General information about how to use ActiveX controls in your application
can be found in Chapter 4, “Using ActiveX Controls and COM Objects in
Your COBOL Program,” in A Guide to Interoperating with
ACUCOBOL-GT.

For your convenience, several Microsoft controls have been included with
the ACUCOBOL-GT Windows runtime. You can use these controls in your
program and redistribute them to your end users as needed. These controls
are installed and licensed automatically, and are also found on your product
CD in the “ms” directory. For more information about these controls, see
section 3.4.9, “Distributing Applications Containing ActiveX Controls,” in A
Guide to Interoperating with ACUCOBOL-GT.

15.3.1 Adding ActiveX Controls to the Component
Toolbox

You can add an ActiveX control to the Screen Component Toolbox as
follows:

1. Make sure that the control that you want to use is installed and registered
on your system. If the control is installed but not registered, you can use
the Microsoft Windows regsvr32 command to add the control to the
Windows registry. The syntax is:

regsvr32 control-name.ocx

2. In the AcuBench Screen Designer, click the ActiveX bar in the Screen
Component Toolbox. This hides the list of standard controls, opening
an area that can be populated with ActiveX controls.

3. Right-click in the Screen Component Toolbox and select ActiveX
Control Components. This opens the ActiveX Control Components
window, which lists all of the ActiveX controls currently installed and
registered on your system.

This is the same list that appears when you use AXDEFGEN, the
ACUCOBOL-GT ActiveX definition generator. AcuBench uses
AXDEFGEN to perform necessary ActiveX-handling tasks behind the
scenes. This means that you don’t have to access the utility directly
when you are working in AcuBench.

15-22 Controls, Menus, and Toolbars
4. Scroll through the list of ActiveX components to find the control(s)
that you would like to use, then mark the check box next to the
control(s).

5. When you are finished selecting controls, click OK.

An icon is added to the ActiveX section of the Screen Component
Toolbox for each control that you have selected.

Note: During code generation, AcuBench automatically adds an @
symbol to the ActiveX’s control name. This avoids possible errors that
can result from ActiveX control names that are identical to AcuBench
control names, or to COBOL reserved words.

15.3.2 Using ActiveX Controls in Your Screen

The process of working with ActiveX controls in the Screen Designer is very
similar to that of working with standard controls. To add an ActiveX control
to a screen, do the following:

1. Select the control in the Component Toolbox, then draw it on the screen
form.

If you have an appropriate license, a graphical representation of the
control appears on the screen form. If the control requires a design time
license that you do not have, AcuBench shows a warning message, then
draws a gray placeholder on the screen. In this case, the control will
display normally at runtime, but you may have trouble changing control
properties or coding the control. If this happens, see the control vendor
for licensing information.

2. Once an ActiveX control is placed on a screen, its initial properties
(state) can be configured in the Property window. In addition, most
ActiveX controls include a special interface for property configuration.
If the vendor has provided such an interface, you can access it by
right-clicking the control on the screen form and selecting ActiveX
Control Properties.

Using the Menu Designer 15-23
3. If you use an ActiveX control’s special property interface to configure
the control, AcuBench saves your settings in a resource file,
“program.res”. This file must be included when the program is
deployed, or the control is displayed with its standard, default values.

15.3.3 Removing an ActiveX Control from the Component
Toolbox

Use the following steps to remove a control from the ActiveX Screen
Component Toolbox:

1. Click the ActiveX bar in the Screen Component Toolbox and then
right-click in the toolbox. Select the ActiveX Control Component
command from the pop-up menu. The ActiveX Control Components
dialog box is displayed.

2. Find the item on the list that you want to remove and click in the
adjacent check box to remove the check mark.

3. Repeat for other items that you want to remove.

4. Click OK.

All list items that do not have a check mark in the check box are removed
from the ActiveX control group in the Screen Component Toolbox, but they
are not removed from the Windows registry or uninstalled from the system.

15.4 Using the Menu Designer

The Menu Designer is a tool that allows you to create a menu bar or pop-up
menu for a screen. Menus typically consist of menu titles, menu items, and
separator bars. When you double-click the Menu Designer icon on your
screen, the Menu Designer window appears. The Menu Designer window is
the same for both graphical and character-based screens. The Screen
Designer lets you create multiple menus for a screen, but a screen can use
only one menu bar (displayed at the top of the screen) at a time.

15-24 Controls, Menus, and Toolbars
15.4.1 Creating a Menu

If you used the Standard Graphical or Standard Character template to create
your screen, the Menu Designer icon appears on the screen by default. This
default menu contains a single menu item (Exit) and is defined as the screen’s
main menu. (A main menu is displayed as a menu bar along the top of the
window at run time.)

If you have created a blank screen, or are using another template that does not
include a default menu, drag a Menu item from the Screen Component
Toolbox to any location in the screen form. The Menu control icon does not
appear when you run your screen, so its exact location in the screen form is
not important.

When you draw a Menu icon on the screen form, the Menu Designer
interface opens automatically. You can also enter this designer at any time by
double-clicking an existing Menu icon on a screen form.

The Menu Designer interface lets you add, delete, and move menu items. It
also provides an interface (through the Event tab of the Property window) for
associating code with each menu item.

15.4.2 Building the Menu

To add, remove, or change items in your menu, use the following steps:

1. In the Menu Designer, double-click the menu text marker (“<<...>>”).

A text field appears in place of the menu text marker.

Using the Menu Designer 15-25
2. Enter the name of your menu item in the text field.

To underline one character in the menu item name, indicating that the
letter is a hot key, place the ampersand (“&”) character before the letter
you want underlined. (For example, “E&xit”, indicates that the exit
shortcut is Alt+X.)

3. Press Enter or Tab to complete the menu item.

The text marker moves to the next line. You can now repeat the previous
steps to create another menu item at the same level as the first, or use the
steps that follow to add a menu subitem.

4. With a menu item selected, right-click and select Insert a sub-item.
You can also use the Insert a sub-item button at the top of the Menu
Designer window.

The cursor drops to a submenu field, enabling you to type in the name of
a submenu item.

5. Once you have entered all of the submenu items for a particular menu
item, you can enter the next menu item and submenu items by selecting
the menu text marker below the last submenu item.

The Menu Designer allows a maximum of four levels of submenu items
(five including the main menu).

6. If you want to add a menu item before an existing item, highlight the
existing item and click the Insert item before button at the top of the
Menu Designer window. You can also right-click in the dialog box and
select the Insert Item Before command. The new item appears above
and at the same level as the selected menu item.

7. To insert a separator between menu items, highlight a menu item,
right-click, and select Insert Separator command. A separator is
inserted before the selected menu item.

Note that you can also create a separator by entering a single hyphen
(“-”) character as the text of a menu item. AcuBench automatically
changes the Separator property of that item to TRUE, creating a
separator.

8. If you want to remove an item from the menu that you are creating,
highlight the menu item that you want to delete and press Delete.

15-26 Controls, Menus, and Toolbars
9. To move a menu item up or down, select the item and drag it to the
appropriate spot in the menu, or use the up and down arrow buttons at
the top of the Menu Designer window.

15.4.3 Adding Menu Functionality

The process for associating code with menu items in AcuBench is very
straightforward. As you add items to your menu in the Menu Designer,
AcuBench automatically associates an exception value with each item. You
can either use this default value or use the Property window to enter a
different exception value. To associate a menu item with code, select the
menu item, then use the Event tab of the property window to create a Link To
paragraph for that item.

When you build a menu, it is a good idea to associate keyboard shortcuts with
each menu command. There are two ways to do this:

1. Place the “&” character in front of a letter of the menu item in the Menu
Designer. Users can invoke that menu item by pressing the Alt key and
the designated letter.

2. Use a runtime configuration file to assign a keyboard shortcut to each
exception value associated with a menu item.

When you use a runtime configuration file to assign a keyboard shortcut, the
steps are as follows:

1. Add your item name in the menu designer, then enter the special
character combination “\t” and the keyboard shortcut that you want to
associate with the item. The result should look something like this:

Add\tCtrl+A

At runtime, the “\t” becomes a tab character, adding appropriate spacing
between the menu item and its keyboard shortcut.

2. Make a note of the exception value associated with your menu item. If
you prefer, you can change the Exception Value property associated
with the item in the Property window.

Using the Menu Designer 15-27
3. To add a configuration file entry to tie the menu item to the keyboard
shortcut that you have specified, open your configuration file. (In
AcuBench, this generally means opening the Project Settings window,
selecting the Runtime tab, and pressing Edit to open the Configuration
File Editor.)

4. Add an entry for the KEYSTROKE configuration file entry that
specifies the exception value and the keyboard shortcut that you want
to associate. The entry should look something like this:

KEYSTROKE Exception=1003 ^A

In the example, when the user presses Ctrl+A, an exception of 1003 is
generated. Any code associated with that exception (key-status) value is
then executed.

More information about the KEYSTROKE configuration variable can
be found in Chapter 4 of Book 1 of the ACUCOBOL-GT documentation
set.

5. Back in the menu designer, use the Event tab of the Property window
to create a Link To paragraph associated with the menu item. This
paragraph is invoked when a user selects the menu item or uses the
keyboard shortcut associated with the menu item.

15.4.4 Enabling the Menu

The Screen Designer lets you create multiple menus for a screen. You
determine whether the menu appears as a menu bar at the top of the screen or
as a right-click pop-up menu. Note that while a screen can have only one
menu bar (or main menu), you can assign pop-up menus to any control on the
screen that is not a display-only control. So your might assign one menu bar
and one pop-up menu for your screen, then have additional pop-up menus
associated with a grid control and an entry field that appear on the screen.
You can also assign the same pop-up menu to multiple screens or controls.

To add a menu bar (main menu) to your screen:

1. Select the Menu icon on the screen form.

2. In the Property window, make sure that the menu’s Style property is set
to Static Menu.

Make a note of the Handle Variable property associated with the menu.

15-28 Controls, Menus, and Toolbars
3. Select the screen form in the Screen Designer.

4. In the Property window, scroll to the Main Menu property.

5. Click in the Value field and expand the drop-down list, then select the
handle of the menu that you want to use as your screen’s main menu.

When you select a MAIN MENU handle, the generated code causes this
menu to display at the top of your window. The code is put into the “.cbl”
program generated. For example, if a screen is called form1 and the static
menu handle is FORM1-MN-1-MENU, the code in “form1.cbl” is:

 PERFORM BUILD-Form1-MN-1-MENU.

This code generates “form1.mnu”, which contains:

 CALL "w$menu" USING WMENU-SHOW, MENU-HANDLE.

Pop-up menus do not display via calls to W$MENU like this. They show up
automatically when you right-click on the control. The code that is generated
for the pop-up menu is just a single line of code in the “form1.prd” file, as
follows:

 MOVE menu-handle TO Form1-MN-2-Handle

To define a pop-up menu for use with a screen or control, do the following:

1. Select the Menu icon on the screen form.

2. In the Property window, make sure that the menu’s Style property is set
to Pop-Up Menu.

Make a note of the Handle Variable property associated with the menu.

3. Select the screen form or screen element in the Screen Designer.

4. In the Property window, scroll to the Pop-Up Menu property.

5. Click in the Value field and expand the drop-down list, then select the
handle of the menu that you want to use as a pop-up menu.

Using the Toolbar Designer 15-29
15.5 Using the Toolbar Designer

The Toolbar Designer is a utility that allows you to design and create toolbar
controls for a screen. The Toolbar Designer is available only for graphical
screens. A toolbar is a collection of controls arranged in a row below a
screen’s menu bar (if present), or at the top of the window if no menu bar
exists.

The size of a Toolbar Designer can be changed through use of the left mouse
button. To change the size, click the box surrounding the Toolbar Designer
and drag a corner of it until it becomes the size you need.

When you draw controls directly on a toolbar, you cannot drag them out
again. They are grouped inside of it. This allows you to move a toolbar and
have the control remain inside of it. You can copy a control that is in a toolbar
and paste it outside of the toolbar if you want to remove it and use it
elsewhere.

The Screen Designer lets you create multiple toolbars for a screen, and a
screen can use more than one toolbar at a time. More information about using
more than one toolbar at a time can be found later in this chapter.

15.5.1 Creating a Toolbar

You can use the following steps to create a toolbar for a screen:

1. In the Screen Component Toolbox, click the Toolbar Designer button.

2. Move the pointer to the screen form. The pointer changes to a
crosshair.

3. Click anywhere in the screen form to add a Toolbar Designer window.
By default, the window appears at the top of your screen form. Adjust
the Toolbar Designer’s properties in the Property window as desired.
The Toolbar Designer generates no events.

4. Draw controls in the Toolbar Designer window. You can put any type
of control in a toolbar except a menu or another toolbar. Controls
should be placed in a single row, and they should not overlap.

15-30 Controls, Menus, and Toolbars
15.5.2 Using More Than One Toolbar

The Screen Designer lets you create multiple toolbars for a screen and allows
a screen to use more than one toolbar at a time.

To use multiple toolbars on a screen, create the toolbars, then place them in
the order you want them to be seen on your screen, from top to bottom. When
you run your screen, the toolbar you placed at the top appears at the top of the
screen, below the menu bar. Below that toolbar appear any other toolbars you
created in the top-to-bottom order that you placed them on the screen form.

16
 Configuring the Report
Composer
Key Topics

Introduction ... 16-2

Customizing the Report Composer Interface 16-2

Establishing Report and Control Defaults.. 16-4

Adding Report Templates ... 16-7

Report Keyboard Shortcuts .. 16-8

16-2 Configuring the Report Composer
16.1 Introduction

The AcuBench Report Composer is an interface for report design and layout
that is very similar in appearance and behavior to the AcuBench Screen
Designer. The interface includes a graphical design window onto which you
can drag and drop report elements to lay out a report. As you add elements
to the report, you can use a Property window to configure the appearance and
behavior of the element and an Event Editor to tie code to the element.

Before you begin to design your report, you may want to complete the
following preparatory steps:

1. If you are using relative, sequential, or Vision indexed files for your data,
use the File Designer to create data layout files.

2. If you have created data layout files, define the corresponding data sets
for your program.

Note that these first two steps are not required. You can use the Report
Composer to design reports regardless of what data format you are using.
If, however, you are able to create data layout files and data sets to
describe your data to AcuBench, the IDE provides tools to greatly
simplify the report design process.

3. Configure the Report Composer interface, as described in this chapter.

This chapter discusses your options for customizing the tool to suit your
needs. The next chapter provides detailed instructions for using the tool.

16.2 Customizing the Report Composer Interface

The Report Composer design window displays a report form similar in
behavior and appearance to the screen form that appears in the Screen
Designer. You add elements to this form to design your report.

By default, a grid of dots is displayed over each report form. This grid can be
used to help you align elements of the report, creating precise columns and
rows of printed output. The default size of each grid cell is 10 pixels by 10
pixels.

Customizing the Report Composer Interface 16-3
You can change the default grid behavior, as well as other report measuring
behaviors, in the Tools/Options interface. To do this:

1. Open the Tools/Options interface, expand the Report Writer tree, and
select General.

2. If desired, use the Grid width and Grid height entry fields to change
the size of each grid cell. The measuring unit is pixels.

3. To force new report elements to align with grid cell boundaries, mark
the Snap to grid check box. In a graphical report, you can still adjust
the position of the control one pixel at a time using the arrow keys.

4. To simplify the process of aligning report elements in relation to one
another, mark the Auto alignment check box. When this function is
turned on,

• if you position a report control underneath another control, and

• the horizontal position of the two controls is within 5 pixels of one
another, then

• the new control’s left boundary automatically aligns with the
existing control’s left boundary.

5. To control measuring behavior in the generated code, use the radio
buttons in the Unit group. To measure sizes and distances in inches,
select the Inch radio button. To measure in centimeters, select
Centimeter.

6. In HTML reports, you have the option to choose whether embedded
spaces in control titles or values are collapsed or preserved. To
automatically collapse spaces, mark the Collapse Spaces check box.
To preserve embedded spaces, unmark the box.

Note: Entry fields have a special Display Type property, used, among
other things, to control spacing behavior. If the Collapse Spaces option
is marked in the Tools/Options interface, the Display Type property is
used. If the check box is not marked, values in the entry field are
treated as though the “Keep Spaces” option were selected, regardless
of the actual value set for the Display Type property.

16-4 Configuring the Report Composer
7. If you have used the XFD tab of the File Designer to apply a NAME
directive to any fields in your data files, you can choose to have the
contents of the NAME directive appear in the Drag and Drop interface,
rather than the actual field name. To enable this behavior, mark the
Apply XFD Names to Drag & Drop check box.

For more information about creating XFDs and the XFD NAME
directive, see Chapter 8, section 8.4.5, “Designing a Custom XFD.”

16.3 Establishing Report and Control Defaults

When you work in the AcuBench Report Composer, each element of the
report (the report itself, each report section, and each report control) is
associated with properties that appear in a Property window. You can
determine the default setting for each of these properties and specify whether
each property appears in the Property window. To enforce certain default
settings, you could, for example, set the property default, then hide those
properties in the Property window, causing the default property to always be
used.

You can set the default properties and determine whether or not the property
appears in the Property window through the Tools/Options interface.

To set default properties for report elements:

Establishing Report and Control Defaults 16-5
1. Open the Tools/Options interface, expand the Report Writer tree, and
select Default.

2. Select a report element from the Controls list along the left side of the
interface. The properties corresponding to the selected element appear
in the Properties list on the right.

3. Scroll through the Properties list to view the available properties and
their default settings. To change a setting, click in the Value column
next to the property name and enter your change.

In some cases, a drop-down list and/or push button may appear when you
click in the Value column for a report element. In this case, you can
select an item from a list or click the button to open a secondary interface
to define the property setting.

The result of any change to a report element’s defaults is reflected in the
Property window each time you create a new element of that type.

To determine which properties appear in the Property window when you
work in the Report Composer interface, do the following:

1. In the Tools/Options interface, expand the Report Writer tree and select
Visibility.

2. To remove an individual property from the Property window, remove
the check box next to the property name in the large list box. To show
the property in the Property window, mark the check box.

You can also select one or more items in the list, then use the Set and
Clear push buttons to add or remove properties from the Property
window.

3. To remove an entire category of properties from the Property window,
uncheck any of the Show check boxes (under the Set and Clear
buttons). If you have removed a category from the Property window,
you can add it back by marking the corresponding check box. Each
property belongs to only one category.

Adding Report Templates 16-7
16.4 Adding Report Templates

When you create a new report in AcuBench, you have the option to choose
between two default templates (Blank Graphical and Blank Character). You
can also create your own report templates and add them to the New Report
dialog.

Using custom templates can simplify the process of report design and help
you maintain consistency in your application output. You can, for example,
create a template that includes a header or watermark containing your
company logo, or that prints address or confidentiality information across the
top or bottom of each page.

The process of creating a report template is described in section 17.8. Once
you have the template file (“.wtf”), you can use the Tools/Options interface
to add the template to the New Report dialog.

To add a template to the New Report dialog:

1. Open the Tools/Options interface, expand the Environment tree, and
select Template.

More information about the Tools/Options/Environment/Template
dialog box can be found in section 4.3.2, “Template Options.”

2. In the “Customize template” section of the interface, select Report
from the “Template for” drop-down box.

3. Click Add to open the Add New Template File dialog.

4. Enter a short, descriptive title in the “Template title” entry field, then
click the browse (...) button next to the “Template file” entry field.

5. Navigate to the directory containing your “.wtf”, select the file, and
click Open.

6. Add a more verbose description of the template file in the Description
field.

7. Click OK to save your changes, then click OK again to close the
Tools/Options interface.

16-8 Configuring the Report Composer
The next time you create a new report, your template appears in the New
Report dialog, along with your description.

Tip: When you add templates to the New Report interface, a pointer is
placed in the INI file, used to locate the “.wtf” file on disk. If you move the
template file, AcuBench will no longer be able to locate the template and
you will receive an error message. This means that if you are sharing a
template among a team of developers, the template file should reside in a
shared folder or be made part of your version control project.

16.5 Report Keyboard Shortcuts

Report-related keyboard shortcuts are configured in the Tools/Options
interface. Expand the Environment tree and select Keyboard. The Report
Composer keyboard shortcuts appear in the Main category. See Chapter 4,
section 4.3.6, “Keyboard Options,” for more information about changing
keyboard shortcuts.

17
 Working with Reports
Key Topics

Introduction ... 17-2

Adding a Report .. 17-4

Formatting the Report .. 17-5

Adding Report Controls ... 17-13

Configuring Control Properties ... 17-16

Setting Print Conditions ... 17-17

Using Events to Populate a Report with Data 17-18

Creating Report Template Files ... 17-30

Sample Reports.. 17-31

Deploying in a Thin Client Environment ... 17-32

17-2 Working with Reports
17.1 Introduction

When you want to create a report in AcuBench, a logical starting point is the
definition of the data that you want processed and formatted into that report.
After you have determined the information that your report should contain,
you can design its appearance. The following general steps describe how to
create a report in AcuBench:

1. Create or open the project and set up your work environment.

2. If you are working with data in sequential, relative, or Vision indexed
files, create and refine your data layout (“.dlt”) in the File Designer.

3. If you have created one or more data layout files, create the
corresponding data set(s) in the Data Set Designer.

4. Create a new report, then use the Report Composer interface to refine
the report layout.

5. Make one-time modifications to the generated code.

6. Compile and run the program to generate the report.

This chapter discusses the types of reports that you can create with the Report
Composer, the interfaces used to design a report, and the process of creating
the report from start to finish.

17.1.1 Report Concepts: The Big Picture

What does it mean to design a report in the AcuBench Report Composer? At
its core, a report generated by AcuBench functions like any other report
written in COBOL:

1. A sequential read is performed on one or more data sources.

2. The program evaluates what to do next: print a footer, print a header,
print a line of output, and so on.

3. The data is extracted. User-defined conditions determine whether data
is moved to the print line and written to the print file.

4. The process repeats.

Introduction 17-3
You can add layers of complexity, with headers and footers, nested
breakpoints, multiple detail sections, and graphical report elements like grids
and images. The basic report process, however, doesn’t change.

17.1.2 Report Types

The AcuBench Report Composer can be used to create two basic types of
reports: character and graphical.

A character report is a line sequential file with carriage return breaks at the
end of each line, output to a standard print file. The print file can be stored
on disk, viewed, or directed to a physical printer. Character reports include
only text characters. They do not include graphical elements, such as
bitmaps, grids, and tables. (They can, however, include simple lines,
constructed from standard characters like hyphens, underscores, or asterisks.)

A graphical report is an HTML file, generated into the directory specified
with the FILE_PREFIX configuration variable. The HTML file can be
opened and viewed in a Web browser, or printed to a printer device directly
from the COBOL program. Graphical reports can contain elements like
bitmap and JPG files, as well as check boxes, radio buttons, grids, and tables.

In comparison with graphical reports, character reports:

• Include significantly fewer output lines, so the report can be produced
more quickly

• Have lower memory requirements

• Do not require a browser for viewing

Graphical reports, on the other hand:

• Can include more complex elements, including grids and tables

• Provide more formatting options, including shading, colors, and images

• Can include HTML features like hypertext links, for added functionality

17-4 Working with Reports
If you are printing very large reports, like a warehouse inventory report or a
bank transaction report, you might choose a character report format to reduce
overhead. If you are printing a client invoice or requisition form, on the other
hand, you might choose a graphical report in order to allow for more complex
formatting and for graphical elements like logos or bar codes.

17.2 Adding a Report

Once you have created an AcuBench program, the process of adding a new
report is very straightforward:

1. In the Structure view, expand the node for the program to which you
want to add a report.

2. Right-click the Report node for the program, then select New Report.
The New Report interface is displayed.

3. Select a report template from the list at the top of the screen. The
options you see depend on whether you have used the Tools/Options
interface to add your own templates to the dialog (as described in
section 16.4).

Formatting the Report 17-5
4. Enter a descriptive name for the new report in the Form name field,
then modify the Unique prefix field, if necessary.

5. Verify that the report is being added to the correct project and program,
then click OK.

The new report opens in the Report Composer design interface, and an
icon for the report is added to the program’s Report node in the Structure
view. You can open the report when needed by double-clicking on this
icon.

If you have report templates that do not appear in the New Report interface,
you can use those templates to create a report using the Add Report
command. This is discussed in more detail in section 17.8.

17.3 Formatting the Report

When you create a new report using either of the default templates, the report
opens with three default sections: a page header, a page footer, and a detail
section. You can add or remove sections to determine the basic structure of
your report, then configure report and section properties.

Note that you can add or remove sections at any point in the report creation
process. Remember, however, that when you remove a section, any report
controls that you have placed in that section and any properties that you have
specified for that section are lost.

17.3.1 Adding and Removing Report Sections

An AcuBench-generated report can contain the following sections:

• Report Header

• Report Footer

• Page Header

• Page Footer

17-6 Working with Reports
• Group Header (may include multiples)

• Group Footer (may include multiples)

• Detail section (may include multiples)

A report header is printed one time, at the very beginning of a report. It
might contain information like the title of the report, the name of the person
printing the report, and the date the report is being printed.

A report footer is printed at the very end of a report. It might include
information like the time the report was completed, or a “completion”
message to indicate that all necessary pages were printed.

A page header and page footer appear at the top and bottom of each page of
the report. If you expect that the report you create will be printed to a device,
having a page header and page footer can help to ensure the existence of
proper page breaks. For this reason, even if you do not include any
information in the page header or footer, it can still be useful to create the
sections.

A group is a method of dividing up the data in your report according to
breakpoints. You may want to preface a portion of your report with
information about the items that follow, and/or conclude a portion of the
report with summary or total information.

For example, if you are printing a daily report to summarize the transactions
performed by five cashiers, the cashier ID might be a breakpoint. You could
list the cashier ID first (group header), then, after listing the transactions,
tally the daily total (group footer).

The detail section is the main body of your report. In a very simple report,
you might read a record in a data file, print the record, then read the next
record and repeat the process. In AcuBench terms, each of those printed
records corresponds to a detail line.

In fact, a single detail line may include more than one physical row of output.
You might have very long records, or construct a print line with data from
multiple sources, or simply need a more readable layout that splits data items
over multiple physical rows on the page. A detail section can contain as
many physical rows as you need to print all of the data in the print line.

Formatting the Report 17-7
You also have the option to create multiple detail sections. When you have
multiple detail sections, all of them correspond to one print line (or WRITE
statement). In most cases, you can achieve the output results that you want
with a single detail section. But the option to break the detail information for
your report into different detail sections provides flexible shading options for
readability and the option to set individual print conditions and before and
after paragraphs for different segments of the same print line.

You can add or remove report sections with the Section Controller as follows:

1. Right-click on the report form in the Report Composer design window
and select Section Controller. The Section Controller interface is
displayed.

2. Use the Header & Footer area to determine which header and footer
sections, if any, will be included in your report. To add a section, mark
the check box to the left of the section name.

If you are adding a page header and page footer to help regulate page
breaks, make sure that the Count Height check box to the right of the
section name is also marked (with a red check mark). This prompts
AcuBench to generate code to keep track of page height when
positioning items on the page.

17-8 Working with Reports
3. If you want to add additional detail sections to your report, use the
Detail Section area of the Section Controller. (A report must have at
least one detail section.)

Click the New button (the third of the five buttons above the Detail
Section list) to add a new detail section. Use the arrow keys to change
the order of sections in the report. Use the Delete and Delete All buttons
to remove sections.

Remember that no matter how many detail sections you have, all of them
correspond to one print line (WRITE statement), as described previously
in this section.

4. To add breakpoints to your report, user the Group Section area of the
Section Controller. To define a group, you must specify the field or
records on which the report will break, then specify whether the report
should include a group header (marking the start of the group), a group
footer (marking the end of the group), or both. You cannot create a
group section (set a breakpoint) without displaying either a group
header or group footer.

You can specify more than one group (breakpoint) in your report. If you
have multiple groups, they are nested in the order that they appear in the
Section Controller interface. So if you have created group headers and
footers for two group items, for example, you will see the header for the
first group, followed by the header for the second group, followed by the
detail section. When all of the necessary detail lines have printed, you’ll
see the group footer for the second group, followed by the group footer
for the first group.

• Use the Type column to specify whether the report will break on a
field or on records.

• Use the Grouped By column to specify the field or records on
which the report will break.

If the report will break on a field, clicking the browse (“...”) button
in the Grouped By field opens a list of the data items defined in your
DLTs, graphical Working-Storage, and definition files. If the report
will break on records, clicking this button opens the Expression
Builder.

Formatting the Report 17-9
• Use the Show What column to specify whether you want a group
header, a group footer, or both.

• Use the Count Height column to cause AcuBench to generate
additional positioning code to control where group headers and/or
footers are printed in relation to their corresponding detail
section(s).

5. When you are finished making changes, click OK. The report form is
updated to include the sections that you have specified.

To abandon your changes without updating your report, click Cancel.

17.3.2 Configuring Report and Section Properties

Each report and report section has configurable properties that you can
modify through a Property window. By default, the Property window is
displayed any time you open the Report Composer interface. If you have
closed the Property window, you can open it again by selecting Property
Window from the View menu, or by clicking the Property Window button
on the Standard toolbar.

To configure properties of a report, expand the drop-down list at the top of the
Property window, then scroll to the first entry (Report: reportname) and
select it. The Property window lists the properties associated with the entire
report.

Properties that apply to the report as a whole include the following:

Property Description

(Name) The name used by AcuBench to refer to the report
(by default, “Report1”). This name appears in a
number of paragraph names in the generated report
code.

Num Columns
(N-Top)

If you are using an N-Top style report, this
determines the number of columns used. The
AcuBench default is “1”. This property is disabled
for a Standard-style report.

17-10 Working with Reports
When you work in the Report Composer interface, each report section is
indicated by a gray bar, which appears above the section. This bar indicates
the section type and name and may include additional information about the
section. To change the properties for a section, click on this section bar. The
name of the section appears in the drop-down box at the top of the Property
window.

Output File Name The name of the file written to disk. By default, this
is the name specified with the (Name) property with
an “.html” extension.

Output File Variable A variable used to hold the name of the file written to
disk.

Paper Size Click the browse (“...”) button to open a dialog that
allows you to select a paper size, set margins, and
specify header and footer information. The default
paper size is “Letter”.

Report Style There are two options: Standard or N-Top. If you
plan to print your report to a device, select Standard.
When you select N-Top, the report is configured to
be viewed in a browser with a horizontal scroll bar.
Because “N-Top” is a display orientation only,
reports with this property are not meant to be printed.

Target Browser Select from “Specify Internet Explorer” or “Standard
HTML” options.

Title The title entered here appears in the title bar when the
report is viewed with a Web browser. It also appears
in the first line of the print preview. Note that this
title does not appear if you display the report with a
Web browser control inside an ACUCOBOL-GT
screen.

Watermark Use this property to select a graphic as a background
image for the report. Bitmap (“.bmp” or “.dib”), JPG,
and GIF formats are supported.

Watermark Style Select from three options: None, Center, or Tile. If
you select None, the default, the Watermark property
is ignored and no image is printed.

Property Description

Formatting the Report 17-11
Section properties include the following:

Property Description

(Name) The default section name is derived from the report
name. You can change this name if desired.

Color The default value for this property is 131329,
foreground black on background white. Setting this
property at the section level colors the background of
the report and sets default colors for all report
controls in the section.

Color Variable Instead of setting a color value, you can specify a
variable that will hold the color settings for the
section.

Font Setting the Font property at the section level sets the
default font for all controls in the section.

Lines This property represents the amount of space in a
standard page that is reserved for printing a report
section. This space is measured in either inches or
centimeters, according to the Tools/Options settings
that you have specified (see section 16.2).

Print After Page
Footer

This property is available only for the report footer
section. It determines whether the report footer
prints before or after the page footer. The default
value is “FALSE”.

Print Before Page
Header

This property is available only for the report header
section. It determines whether the report header
prints before or after the page header. The default
value is “FALSE”.

17-12 Working with Reports
Print Condition A print condition can be use to determine when a
particular section is printed. AcuBench uses the
condition that you enter here to construct an IF
statement in the generated code. This means that
your entry is something like:

 user-name NOT = "chris"

You can type the print condition directly into the
drop-down list in this property’s Value cell (use
Ctrl+Enter to move the cursor to a new line), or
click the browse (“...”) button to open the Expression
Builder interface. The Expression Builder is
discussed in section 17.6.

Size Specify the width of the page in which this section is
printing. As with the Lines property, the width is
measured in either inches or centimeters, according
to the Tools/Options settings that you have specified
(see section 16.2).

Skip Page after Print Select “TRUE” or “FALSE” to determine whether a
page break is printed after the selected report section.

Skip Page before Print Select “TRUE” or “FALSE” to determine whether a
page break is printed before the selected report
section.

Visible Select “TRUE” or “FALSE” to determine whether
the specified control or section is printed. Selecting
“FALSE” for a group section prevents the controls in
the group from printing, but does not inhibit
detection of the breakpoint.

Visible Variable Specify the name of the variable that will hold the
Visible setting for the selected report section.

Zebra This property applies only to the detail section. Enter
a value between 1 and 16 to alternate different
background colors for each physical row of the detail
section. The specified background color alternates
with white. The default value is “0”.

Property Description

Adding Report Controls 17-13
17.4 Adding Report Controls

Report controls are elements that you can use to determine report layout and
to format the data that will populate the report. Some of these controls affect
the look and feel of the report, but are not directly related to report data
(report line, box, and image). Other controls are concerned primarily with
positioning and formatting data (report check box, date time, entry field, grid,
occurs, radio button, and table). You choose the combination of controls that
you need to create a useful and appropriate presentation for your data.

Report controls are listed in the Report Component Toolbox. If you are
creating a graphical report, all of the controls in the Component Toolbox are
enabled. If you are creating a character report, controls that include a
graphical element appear disabled.

The Component Toolbox includes the following types of controls:

Report Label Generally holds information describing another
report element

Report Entry Field A holder for data read into the report

Report Line Adds a horizontal or vertical line to a report. Can be
used to delineate columns or underscore totals, for
example.

Report Radio
Button

Used to indicate the value of a piece of report data
when only one of a group of options can be selected

Report Check Box Used with data that is either true or false. The box is
checked when the corresponding data item has a
value of “1” and unchecked when the item value is
“0”.

Report Box Draws a box, similar to the screen frame, around a
report section or element. Does not include the
grouping component of a frame control.

17-14 Working with Reports
17.4.1 Using the Report Component Toolbox

Add report controls to a report form in the same manner that you add a screen
control to a screen form using the Screen Component Toolbox:

1. Click a control icon in the Component Toolbox.

2. Move the pointer to the report form. The pointer icon becomes a
crosshairs.

3. Position the pointer on the form, then hold down the left mouse button
and drag the mouse to specify the dimensions of the control. When
you are finished, release the mouse button.

The control appears on the report form.

17.4.2 Using Drag-and-Drop

As in the Screen Designer, if the data used to populate your report resides in
graphical Working-Storage, data files described by a data layout file and data
set, or AcuBench-recognized COPY files, you can use the Drag-and-Drop

Report Image Used to add one or more “.bmp” or “.jpg” images to a
report

Report Grid Used to provide a standard heading/column layout to
data in your report. Can be used to add multiple
records or database table rows to a single report detail
section.

Report Occurs Uses the OCCURS clause in a data table or array to
create a line and column table layout for the data in
the report

Report Date Time Offers several formats for adding date or time
information to the report

Report Table Provides a method for structuring the output of a line
of data. The table can have a vertical or horizontal
orientation, and connects a header to a row of report
data. The data can include literals, variables, and
images.

Adding Report Controls 17-15
interface to add controls to your report. When you use this method to create
controls, the controls are automatically associated with the selected data
item(s).

To add a control to the report form using the Drag-and-Drop interface:

1. Right-click anywhere on the report form and select Drag and Drop.

2. Use the drop-down list on the left, if desired, to list the data items you
want to use, then select a control type from the drop-down list on the
right.

3. Highlight one or more data items in the “Field” list, then position the
mouse over one of the selected items, hold down the left mouse button,
and drag the selection to the report form.

The specified control or set of controls is added to the report form.

17.4.3 Positioning and Alignment

In general, the same set of align functions is available for report controls as
for screen controls. Use the Align menu and Align toolbar to size and
position controls, either individually or in relation to one another.

When laying out report controls, it is important to remember that white
(empty) space on the report for is preserved at runtime. This means that any
extra padding that you leave above and below report controls is translated

17-16 Working with Reports
into empty space on the page when you print or view the completed report.
As you finalize the layout of your report, remember to resize each report
section to its content.

For detailed information about positioning and aligning controls, please see
Chapter 14, section 14.6, “Positioning and Aligning Controls.”

17.5 Configuring Control Properties

By configuring the controls that you have added to your report, you can
determine exactly how data appears in the final report output. An entry field
holding price information, for example, can be configured to apply an edited
monetary format to a numeric field. A label containing header information
can be given a bold typeface.

Although the principle of assigning properties to a report control is similar to
that of configuring screen control properties, there are some significant
differences:

• Each screen control property corresponds to a property entry in the
Screen Section definition of the control. There is no parallel report
control definition section; instead, property entries help to define how
the procedure code used to print the control is generated.

• There tend to be fewer properties associated with a report control than
with a screen control. Because a report entry field only displays data,
rather than displaying and accepting information, it can’t be enabled or
disabled, for example, or have a minimum or maximum text setting.
Likewise, since a report is formatted for a pre-selected page size, resize
settings are unnecessary.

• Report controls can be associated with a print condition that determines
whether or not it is printed during any given execution of the print loop.
Similarly, report entry fields have a Print if Repeat property that lets you
specify a general rule for how to handle consecutive records that contain
the same data. You can either choose to always print the field (set Print
as Repeat to “TRUE”) or to not print duplicate fields (set Print as Repeat
to “FALSE”).

Setting Print Conditions 17-17
When you select a control on the report form, the Property window is updated
to list the properties specific to that control. To change a property, click in the
Value column. In some cases, you can type a new value in an entry field. In
other cases, you can either select an option from a drop-down list or click a
button (“...”) to open a secondary interface used to configure the property
value.

More information about the report controls and their properties can be found
in Chapter 18, “The Report Controls and Property Reference.”

17.6 Setting Print Conditions

Print conditions allow you to establish rules that determine when a given
report element is printed. You might want to create a sales report listing only
those sales people who have not met their quota, for example, or create an
inventory report for restocking purposes that only lists items of which there
are five or fewer remaining. Likewise, in some circumstances, you might
want to print an entry field control only if it contains a positive (or non-zero)
value, or you might print either of two labels, depending on the value of some
field in the current record.

To set a print condition for a given report section or control, do the following:

1. Select the report section or control.

2. In the property sheet, click in the Value column next to the Print
Condition property.

17-18 Working with Reports
3. Enter a simple condition (“my-counter = 1” or “zip-code NOT =
01003”) or click the browse (“...”) button to open the Expression
Builder.

The Expression Builder is a graphical interface that you can use to build
print conditions. Click data elements and expression symbols to
construct a condition statement. When AcuBench generates the code,
this expression is added to an IF statement used to determine whether or
not the given report element should be printed.

17.7 Using Events to Populate a Report with Data

Once you are satisfied with the design and layout of your report, your next
step is to populate the report with data and possibly manipulate the output in
some fashion. This is accomplished by writing code for events that perform
these types of functions. These events are associated with the report itself and
its elements, and are accessed from the Events tab. There are three types of
events:

Before and After Print events: These type of paragraphs are tied
specifically to individual elements of your report and the report itself. They
allow you to code instructions for what you want to do before and after each
report is generated.

Using Events to Populate a Report with Data 17-19
BeforeDoPrint and AfterDoPrint events: These events are only associated
with the report itself. They provide the code for performing READs and
READ NEXTs, and initializing and resetting print loops. These paragraphs
are what populates the report with data. Using these events from the Report
Writer makes them part of the .psf file, which provides several advantages.
These advantages, as well as coding samples are described in Section 17.7.3.

LoadGridInit and LoadGridNext Print events: These Grid control events
provide the code for performing READs and READ NEXTs, and initializing
and resetting print loops for grid controls. These paragraphs are what
populates the grid with data. Using these events from the Report Writer
makes them part of the .psf file, which provides several advantages. These
advantages, as well as coding samples are described in Section 17.7.4.

Note: The BeforeDOPrint, AfterDoPrint, LoadGridInit and LoadGridNext
events are new features of version 8.1 that provide a better way of coding
reports. However, reports created with older versions of AcuBench are
supported and can be regenerated without making any changes to your
code. See Section 17.7.5.5 for details.

The following sections describe the process of adding and coding these types
of events.

17.7.1 Adding Report and Report Element Events

This section describes the process of adding and coding event paragraphs that
populate a report with data and possible manipulate the data or the report in
some fashion. The event paragraphs are summarized in Section 17.7 and
detailed in subsequent sections.

To add event paragraphs to a report, or report element such as graphical
control or section, do the following:

1. Select the report element on the report form or the control on the form,
or use the drop-down list at the top of the Property window to scroll to
the desired element.

2. Select the Event tab of the Property window.

17-20 Working with Reports
3. Click next to the paragraph type that you want to create.

• If you are creating a new paragraph, click the browse (“...”) button
to specify a name for the paragraph and enter the Event Editor.

• If you are pointing to an existing paragraph, select the paragraph
name from the drop-down list.

4. If you are creating a new paragraph, the Add paragraph dialog appears,
showing a default name for the paragraph (for example,
“report-element-Before-Print”). You can either accept this name or
enter a new name, then click OK to enter the Event Editor.

To cancel without creating a paragraph, click Cancel. You still enter the
Event Editor, but no new paragraph is created.

5. Enter the code for your new paragraph. For detailed paragraph
descriptions, coding suggestions, and samples, see the sections on:
Before and After Event Paragraphs, BeforeDoPrint and
AfterDoPrint Event Paragraphs, LoadGridInit and LoadGridNext
Event Paragraphs.

When you have finished creating and coding paragraphs for the report itself
and all elements, generate the report and perform code modifications as
described in Section 17.7.5, “Generating Report Files and Code”.

17.7.2 Before and After Event Paragraphs

Every report, report section, and report control can be assigned a Before Print
and After Print paragraph. These events are used to perform initialization
tasks before report generation and next or additional tasks after report
generation.

Examples include:

• Open a relational database.

• Perform a calculation just before printing a total in an entry field.

• Move a numeric value from a COMP data type to a DISPLAY type (to
show a monetary amount, for example).

• Update the color variable associated with an entry field (to show
negative values in red, for example, in an expense tracking report).

Using Events to Populate a Report with Data 17-21
• Update the page number in a page header or footer.

• Ask the user to confirm that report generation should start.

An After Print paragraph is your last chance to intervene before leaving the
just-printed report element and moving on to the next one. You might use an
After Print paragraph to:

• Add the data that’s just been printed in a field to a running tally.

• Save a piece of data into Working-Storage before moving on to print the
next item.

• Initialize a data item that has just been printed.

17.7.3 BeforeDoPrint and AfterDoPrint Event Paragraphs

Only the report itself contains BeforeDoPrint and AfterDoPrint events. You
can provide paragraph names and code for these events using the steps
described in Section 17.7.1. The code in these paragraphs perform READs
and READ NEXTs, and initialize and reset print loops. They enable you to
code instructions for what you want to do before and after each record is
generated.

For example, you might define a BeforeDoPrint paragraph similar to this:

Myreport-BeforeDoPrint.
 move low-values to sales-key
 start sales key >= sales-key
 read sales-key next
 at end
 move 0 to Myreport-DOPRINTRTN-LOOP
 end-read
 .

And an AfterDoPrint paragraph that looked like this:

 Myreport-AfterDoPrint.
 read sales-key next
 at end
 move 0 to Myreport-DOPRINTRTN-LOOP
 end-read
 .

17-22 Working with Reports
Note: Included with AcuBench are several sample reports such as
“report1a” that utilize these event paragraphs. See Section 17.9 for details
on locating and using AcuBench sample reports.

To read data from a database with AcuSQL, the equivalent basic code might
look like this:

 PERFORM UNTIL sqlcode NOT = 0
 EXEC SQL
 FETCH my-cursor INTO :C-RECORD
 END-EXEC
 IF sqlcode = 0
 PERFORM Acu-RPT-report-DO-PRINT-RTN
 END-IF
 END-PERFORM.

These events were created so that all of your report generation code will be
part of the .psf (project structure file). This is has two major advantages:

1. All of your report generation code can be generated from your .psf file,
which means your manual code will not be lost in the regeneration
process.

2. You will only need to check in your .psf file into your version control
system, as opposed to also having to check in the .cbl file.

17.7.4 LoadGridInit and LoadGridNext Event Paragraphs

Similar to the report element itself, the Grid control contains LoadGridInit
and LoadGridNext print events. You name and code these paragraphs using
the steps described in Section 17.7.1. The code in these paragraphs is used
to initialize and READ data into your Grid control.

For example, you might define a LoadGridInit paragraph similar to this:

Myreport-LoadGridInit.
 move low-values to sales-key
 start sales key >= sales-key
 read sales-key next
 at end
 move 0 to myreport-mygrid-LOADGD-SW
 end-read
 .

Using Events to Populate a Report with Data 17-23
And a LoadGridNext paragraph similar to this:

Myreport-LoadGridNext.
 read sales-key next
 at end
 move 0 to myreport-mygrid-LOADGD-SW
 end-read
 .

Note: Included with AcuBench is a sample report called “report1h” that
utilize these event paragraphs. See Section 17.9 for details on locating and
using AcuBench sample reports.

The same advantages of using the events described in Section 17.7.3,
“BeforeDoPrint and AfterDoPrint Event Paragraphs”, apply to these
events as well.

17.7.5 Generating Report Files and Code

Once you have finished working in the Report Composer to create the code
that populates your report, the next step is to generate your program. Varying
degrees of code modification will then be necessary. The exact code changes
required will depend on whether or not you defined and coded report and
report element events, as described in Section 17.7.1.

When you generate the program, AcuBench places your event code in the .evt
copybook. The rest of the report generation code is written to the .rpt
copybook. (By default, this COPY file is placed in the Report folder in the
File view.)

The following sections detail the code that is generated under several
different circumstances including:

• Whether or not you defined BeforeDOPrint and AfterDoPrint events

• Whether or not you defined LoadGridInit and LoadGridNext events

• Existing reports imported from an earlier version of AcuBench

These sections also describes the code modifications that are necessary under
each circumstance.

17-24 Working with Reports
17.7.5.1 Reports Generated using BeforeDoPrint and AfterDoPrint
events

If you defined BeforeDoPrint and AfterDoPrint events, as described in
Section 17.7.3, the program’s .cbl source file will contain the code to
populate the data, and will look something like this:

 REPORT-COMPOSER SECTION.
 *{Bench}Myreport-masterprintpara
 Acu-RPT-Myreport-MASTER-PRINT-LOOP.

 *Before do print paragraph
 PERFORM Myreport-BeforeDoPrint
 PERFORM UNTIL Myreport-DOPRINTRTN-LOOP = 0
 PERFORM ACU-RPT-Myreport-DO-PRINT-RTN
 *After do print paragraph
 PERFORM Myreport-AfterDoPrint
 END-PERFORM
 .
 *{Bench}end

Note that the Before and After do print paragraphs are inside AcuBench tags,
which enables your code to become part of the AcuBench generated code.

With BeforeDoPrint and AfterDoPrint events, there is also a new variable
generated for each report. Its definition is:

77 Myreport-DOPRINTRTN-LOOP PIC 9 VALUE 0.

This variable is the switch that starts and stops the loop. To start the loop and
thus the printing of data, you need to add a line of code similar to this one at
the beginning of the PERFORM Myreport-BeforeDoPrint paragraph:

 MOVE 1 TO Myreport-DOPRINTRTN-LOOP

17.7.5.2 Reports Generated Without BeforeDoPrint and AfterDoPrint
Events

If you did not define and code BeforeDoPrint and AfterDoPrint events, as
described in Section 17.7.3, your .cbl source file will look something like
this:

Using Events to Populate a Report with Data 17-25
*{Bench} report-masterprintpara
 Acu-RPT-report-MASTER-PRINT-LOOP.
 .
*{Bench}end
*

To add the code to read data into your report, you will need to manually code
a DO-PRINT-RTN paragraph after the last AcuBench tag. For example:

PERFORM Acu-RPT-report-DO-PRINT-RTN.

Be aware that doing so will mean that this code will not be part of the .psf file.
If the .cbl file is lost, the Read code is also lost. Also, it becomes necessary to
perform version control on both the .cbl and .rpt files. For these reasons it is
recommended defining BeforeDoPrint and AfterDoPrint events from within
the Report Composer.

17.7.5.3 Grids Generated With LoadGridInit and LoadGridNext

If you defined LoadGrid events, the code to populate the grid is automatically
added to the .cbl source file and looks something like this:

*{Bench}myreport:mygrid:-dogridrtn
 Acu-mygrid-TABBODY.
 PERFORM Acu-Initialize-mygrid
 *(Bench}initial grid load para
 PERFORM mygrid-LoadGridInit
 PERFORM UNTIL myreport-mygrid-LOADGD-SW = 0
 PERFORM Acu-mygrid-TabbodyPrintLoop
 *(Bench}next grid load para
 PERFORM mygrid-LoadGridNext
 END-PERFORM.

 PERFORM Acu-CLOSE-mygrid
 .
 *{Bench}end
 *

With LoadGrid events, there is also a new variable generated for each report.
It’s definition is as follows:

77 myreport-mygrid-LOADGD-SW PIC 9 VALUE 0.

17-26 Working with Reports
This variable is the switch that starts and stops the loop. To start the loop and
thus the printing of data, you need to add a line of code similar to this one at
the beginning of the PERFORM mygrid-LoadGridInit paragraph:

 MOVE 1 TO myreport-mygrid-LOADGD-SW

17.7.5.4 Grids Generated Without LoadGridInit and LoadGridNext
Events

If you did not create LoadGrid events, AcuBench still adds lines to the .cbl
source file that you can use to read multiple records into the control. The
code for this paragraph, “Acu-report-grid-TABBODY”, is generated
between {Bench} tags. One PERFORM statement is isolated in such a way
as to allow you to add code to populate the grid with data.

 *{Bench}Report1:Report-Grid:-dogridrtn
 Acu-Report-Grid-TABBODY.
 PERFORM Acu-Initialize-Report-Grid
 *(Bench}initial grid load para

 PERFORM UNTIL Report-Report-Grid-LOADGD-SW = 0
 PERFORM Acu-Report-Grid-TabbodyPrintLoop
 *(Bench}next grid load para

 END-PERFORM
 PERFORM Acu-CLOSE-Report-Grid
 .
 *{Bench}end

For the same reasons as described with the report control, it is recommended
that you define the code to populate the grid in the Report Composer via the
Grid event tab.

17.7.5.5 Existing Reports Imported from Earlier Versions of AcuBench

Before and after do print events are a new feature in version 8.1. However,
reports created with previous versions of AcuBench are still supported by
AcuBench. When you regenerate the report with version 8.1 the only change
made to your original code is the insertion of an additional line containing a
period (.) within the bench tags. This will not cause any compilation issues.
Your .cbl source file will look something like this:

Using Events to Populate a Report with Data 17-27
 *{Bench}report-masterprintpara
 Acu-RPT-report-MASTER-PRINT-LOOP.
 .
 *{Bench}end
 *
 PERFORM Acu-RPT-report-DO-PRINT-RTN.

If you want start coding using the new style you can go into the report
composer and define the BeforeDoprint & AfterDoPrint events. You then
can either manually delete the source outside the tags (starting with the
PERFORM Acu-RPT-report-DO-PRINT-RTN.) or delete the source file and
regenerate. Note however that once you remove your original code from the
.cbl source file it cannot be brought back.

LoadGridInit and LoadGridNext events are also a new feature in version 8.1.
However, reports with grids created with previous versions of AcuBench are
still supported by AcuBench. When you regenerate the report with version
8.1 no changes are made to the AcuBench grid tags in your .cbl file.

If you want to start using these new grid events you will need to define and
code them as described in Section 17.7.1 and remove the previous tags by
editing the .cbl source file or deleting the .cbl file itself. The new grid tags
will only be generated if the old grid tags have been removed. Drawing a
new grid control would insert the new tag for that control in the source, which
makes it possible to have a mix of new and old style grid tags in the same
source file.

17.7.6 Working with data from multiple sources

If you are retrieving data from several sources, the code gets more involved,
but the central concept remains the same: you supply the code to retrieve the
data needed to print one “line” of the report (regardless of whether that line is
a record from a single data file or a collection of related data), then perform a
generated routine to print that output in the format that you designed in the
graphical Report Composer interface.

The code that follows demonstrates the process of populating a report with
data from three indexed files. The report lists all of the clients of a veterinary
clinic (recorded in a file called “clients”), all of the pets belonging to each
client (recorded in a file called “pets”), and all of the treatments received by

17-28 Working with Reports
each pet (recorded in a file called “trecord”). In the interest of clarity, the file
handling code has been simplified, leaving out INVALID KEY and AT END
status checking.

The basic process retrieves data from the first file and uses that data to
retrieve information from the second file. The data from the second file, in
turn, is used to retrieve data from the third file. With all of the data in place,
the print routine is executed to print a “line” (including group headers, group
footers, and a detail section) of the report. The process then repeats until the
entire report has been printed.

 create-history-report.
 MOVE LOW-VALUES TO cl-client-id.
 START clients KEY >= cl-client-id.
 PERFORM UNTIL ws-client-status = "10"
 READ clients NEXT RECORD
 IF ws-client-status NOT = "10" AND
 ws-client-status NOT = "02"
 PERFORM get-pets-for-client
 END-IF
 END-PERFORM.
 *
 get-pets-for-client.
 MOVE cl-client-id TO pet-owner-id.
 START pets KEY = pet-owner-id.
 PERFORM UNTIL pet-owner-id NOT = cl-client-id
 READ pets NEXT RECORD
 IF pet-owner-id = cl-client-id
 PERFORM get-pet-treatment-history
 END-IF
 END-PERFORM.
 *
 get-pet-treatment-history.
 MOVE pet-id TO tr-pet-id.
 START trecord KEY = tr-pet-id.
 PERFORM UNTIL tr-pet-id NOT = pet-id
 READ trecord NEXT RECORD
 IF tr-pet-id = pet-id
 PERFORM Acu-RPT-comp-rpt-DO-PRINT-RTN
 END-IF
 END-PERFORM.

Using Events to Populate a Report with Data 17-29
17.7.7 Printing the Report

Before compiling and executing the program to create the report, you need to
decide which forms of print output you intend to use. In the generated “.rpt”
COPY file, AcuBench creates paragraphs that you can call to start the report
process. These include:

• “Acu-report-PRINT-TOFILE” starts the report process and creates an
output file on disk. If you are creating a graphical report, you can use
this routine, then display the report on a graphical screen using the Web
browser control. This can be significantly faster than using the preview
function.

• The “Acu-report-PREVIEW” paragraph executes the code to create the
report, then opens a preview window to display the report. Using this
option requires you to have Internet Explorer, version 4.0 or later,
installed on the machine running the report. Because of the overhead
involved in communicating with Internet Explorer, this option is
significantly slower than other options.

• The “Acu-report-DO-PRINT” paragraph executes the code to create the
report, then sends the report to the default printer. You can use this
paragraph as a template if you want to send the report to a different
printer device.

Note: Both the PREVIEW and the DO-PRINT paragraphs require a DLL
(“AcuBenchPrint.dll”) that is automatically added to your AcuBench
project when you create a report. If you are deploying in a thin client
environment and using either of these routines to create and either preview
or print the report, this DLL must be copied to the display host (client). For
more information, see section 17.10.

To create your report, then, you need one line of code:

 PERFORM Acu-report-PRINT-TOFILE.

Or:

 PERFORM Acu-report-Preview.

Or:

 PERFORM Acu-report-DO-PRINT.

17-30 Working with Reports
Where you add this code depends on how you are invoking the report. If your
program does nothing but create the report, add the PERFORM statement
after the “PERFORM Acu-Initial-Routine” statement in the “.cbl” source
file. If the report is created in response to a push button click or menu
selection, add the PERFORM statement to the appropriate exception or
link-to paragraph.

17.8 Creating Report Template Files

Any report that you create in the AcuBench Report Composer can be saved
as a template file and used as the foundation for future reports. To create a
report template:

1. Create and refine your report in the Report Composer.

2. Right-click anywhere on the report form and select Generate WTF
Document. A Save As dialog opens.

3. Navigate to the directory in which you want to store the template file,
enter a name for the file, and click Save.

Once you have create a report template, there are two ways that you can use
the template to create a new report:

• Add the report to the New Report interface, as described in Chapter 16,
section 16.4, “Adding Report Templates.” When you use this option,
each time that you create a new report, your template appears along with
the two default templates in the New Report dialog.

• In the Structure view, right-click the Report node for the program in
which you want to create a report, then select Add Report. In the Add
Report to Program dialog, navigate to the folder containing your report
template, select the template file, and click Open.

Sample Reports 17-31
17.9 Sample Reports

Some sample reports have been created to help you get started with the
Report Composer function. By default, these are placed in the “acugt/
sample/reports” subdirectory of your Acucorp product installation directory.
The samples include both character and graphical reports, and each report
builds on the functions learned in the previous report. Together, the reports
demonstrate the range of available report controls, from a simple report
containing only report labels and entry fields to complex reports with tables
and grids. The sample reports all use the same Vision indexed data files:
“sales.dat” and “sales.vix”. The data resides in the project’s “Data”
subdirectory.

The Reports sample project contains the following graphical report
programs:

Program Description

Report1a This is a simple report that contains only entry fields and
labels.

Report1b This report is designed in landscape orientation and is
ordered into columns. It includes labels, entry fields, and
a date time control.

Report1c This report includes group headers and a report occurs
control.

Report1d This report includes a report header and report footer, as
well as report check box and radio button controls.

Report1e This report demonstrates some uses for group footers.

Report1f This report includes a report image control and a report
table.

Report1g This is an example of an N-Top report.

Report1h This report demonstrates basic use of the grid control.

Report1i This report provides a more advanced example of the
report grid control, showing how to use the generated
TABBODY code to load data into the control.

17-32 Working with Reports
The Reports sample project also includes the following character report
programs:

17.10 Deploying in a Thin Client Environment

AcuBench users running in a thin client environment with AcuConnect can
print graphical reports from a UNIX application host. There are two different
methods for accomplishing this:

1. Include a screen with a Web browser control in the deployed application,
and use the control’s built-in functionality to display and print HTML
reports.

2. Use the AcuConnect “@[DISPLAY]:” notation in conjunction with the
CODE_MAPPING configuration variable and the C$COPY library
routine to access the preview and print functions included in the
AcuBenchPrint.dll library file.

The sections that follow discuss each of these options and provide
implementation information.

Program Description

Report2a This is a simple report that contains only entry fields and
labels.

Report2b This report is designed in landscape orientation and is
ordered into columns. It includes labels, entry fields, and
a date time control.

Report2c This report includes group headers and a report occurs
control.

Report2d This report includes both page and report headers and
footers, as well as nested group headers. It is presented
in a landscape orientation.

Report2e Building from Report2d, this report also includes nested
group footers.

Deploying in a Thin Client Environment 17-33
17.10.1 Using a Web Browser Control to Display and
Print Reports

The ACUCOBOL-GT Web browser control, described in Chapter 5 of the
User Interface Programming manual (Book 2 of the ACUCOBOL-GT
documentation set), is a useful tool when you deploy a program that includes
graphical reports. The Web browser control can parse and display both
character and graphical reports, though its advantages are most clearly seen
with graphical reports.

All you need to use this method to display and print reports are a screen
containing a Web browser control and a program containing a report. The
basic steps are as follows:

1. Design the screen and the report. Make sure that you know the output
file name and path for the report.

2. Include code to perform the generated “Acu-report-Print-ToFile”
paragraph.

3. Move the name and path of the generated report file to the value
variable associated with the Web browser control.

MOVE "c:\reporting\data\pets.html" TO ws-browser-url.

4. Add code to print the report. To allow the user to choose from various
printers on the network, the code looks like this:

MODIFY my-browser-control, PRINT=1

Information about printing to a default printer or giving the user the
option to perform page setup operations can be found in Chapter 5 of the
User Interface Programming manual.

There are significant advantages to using this method to display and print
reports:

• It’s significantly faster than the “Acu-report-Preview” process.

• The Web browser control displays the report in full color and at 100%
resolution.

17-34 Working with Reports
• Any hyperlinks or other interactive aspects of the report are fully
available to the user.

• You control the size of the Web browser control window.

17.10.2 Using AcuBenchPrint.dll to Display and Print
Reports

When you invoke the “Acu-report-Preview” and “Acu-report-DO-PRINT”
routines, AcuBench uses a library called “AcuBenchPrint.dll” to call the
Internet Explorer functions needed to preview or print the report. This means
that if you want to use AcuBench functions to preview or print a report in a
thin client environment, you need to first copy the report and DLL to the
report host, then perform a preview or print routine.

The general steps involved are as follows:

1. Place “AcuBenchPrint.dll” on the display host (either as part of your thin
client installation or using C$COPY with “@[DISPLAY]” notation).

This DLL should be placed in the same directory as the thin client
executable (“acuthin.exe”).

2. Use the CODE_MAPPING configuration variable to expose the
function calls in the DLL.

3. Use the C$COPY library routine with “@[DISPLAY:]” notation to
copy the HTML file from the application host to a location on the
display host.

4. Add a line of code to reset the PRT-FULLFILENAME variable, which
“AcuBenchPrint.dll” uses to locate the HTML file.

The following example demonstrates the code used to perform steps 3 and 4.
In the sample program, the user pushes a button to create the report, which is
then displayed with the preview function:

Deploying in a Thin Client Environment 17-35
ReportPB-Link.
 IF IS-REMOTE

 PERFORM ACU-REPORT1-THINPREVIEW
 ELSE
 PERFORM ACU-REPORT1-PREVIEW
 END-IF.
*
 ACU-REPORT1-THINPREVIEW.
 PERFORM Acu-Report1-PRINT-TOFILE
*
 CALL "C$COPY" USING
 "/home/data/Report1.html",
 "@[DISPLAY]:C:\Localdata\Report1.html".
*
 PERFORM Acu-Report1-PRINT-PARA
*
 STRING
 "C:\Localdata\Report1.html", delimited by size,
 X"00", delimited by size,
 into PRT-FULLFILENAME.
*
 SET ENVIRONMENT "DLL_CONVENTION" to "1"
 CALL "AcuBenchPrintDummy"
 ON EXCEPTION CALL "AcuBenchPrint.dll" END-CALL
 END-CALL
 CALL "AcuBenchPrintExecWBPreview" USING
 BY CONTENT PRT-FULLFILENAME,
 BY CONTENT PRINT-BROWSER-PARA,
 BY CONTENT ACU-PAPER-HEADER,
 BY CONTENT ACU-PAPER-FOOTER,
 BY CONTENT ACU-PAPER-SIZE,
 BY VALUE ACU-PAPER-ORIENTATIONINT,
 BY CONTENT ACU-PRINTER-NAME
 END-CALL
 .

The push button code uses the IS-REMOTE flag in the
TERMINAL-ABILITIES structure to test whether the program is running
locally or on a remote server. If it is running remotely, a paragraph called
Acu-Report1-ThinPreview is executed.

The code in the Acu-Report1-ThinPreview paragraph starts by executing the
AcuBench-generated PRINT-TOFILE paragraph. It then calls C$COPY to
transfer the HTML file to the local machine. Next, it uses a STRING

17-36 Working with Reports
statement to reset the PRT-FULLFILENAME parameter to the location of the
HTML file on the client machine. (Note that the PRT-FULLFILENAME
string is terminated by low-values.) Finally, with code copied from the
AcuBench-generated Acu-Report1-Preview paragraph (found in the “.rpt”
COPY file), it calls the DLL and invokes the preview function.

With CODE_MAPPING set to “on”, the configuration file can contain
instructions for mapping these calls to “AcuBenchPrint.dll”, which, in our
sample, is located in the C:\Localdata directory on the client machine, as
shown:

CODE_MAPPING ON
DLL_CONVENTION 1

ACUBENCHPRINT.DLL
@[DISPLAY]:C:\Localdata\AcubenchPrint.DLL
ACUBENCHPRINTDUMMY @[DISPLAY]:AcuBenchPrintDummy
ACUBENCHPRINTEXECWBPREVIEW
@[DISPLAY]:AcuBenchPrintExecWBPreview

The complete sample code for this example can be found in the Support
section of the Micro Focus Web site. For detailed information about the
“@[DISPLAY]:” notation and other thin client functions, refer to the
AcuConnect User’s Guide.

18
 The Report Controls and
Property Reference
Key Topics

Introduction ... 18-2

Common Report Control Properties ... 18-2

The Report Box.. 18-6

The Report Check Box.. 18-7

The Report Date Time .. 18-8

The Report Entry Field... 18-10

The Report Grid .. 18-12

The Report Image.. 18-14

The Report Label .. 18-16

The Report Line .. 18-16

The Report Occurs .. 18-17

The Report Radio Button ... 18-19

The Report Table .. 18-20

18-2 The Report Controls and Property Reference
18.1 Introduction

Whatever their other functions, both screens and reports provide a means of
presenting data to the user. In either context, a control is a tool used to
present a data item (or selection of data items), or to affect the appearance of
data being presented.

Because of this similarity of purpose, there is a high degree of
correspondence between screen controls and report controls. The bar control,
for example, draws a vertical or horizontal line on a screen. The report line
control, similarly, prints a vertical or horizontal line on a report. A screen
grid control and report grid control both organize data into lines and columns
with an optional heading row.

Report control properties, like their screen control counterpoints, can be
divided in to common and special properties. Common properties apply to
many or all control types, while special properties have meaning for one or
few control types.

This chapter begins with an overview of common report control properties,
then gives an overview of each report control type, describing the special
properties that can be assigned to each.

18.2 Common Report Control Properties

Unless indicated otherwise, the control properties in the following list are
common to all report controls. A property marked with an asterisk (*) can
have its default value set in the Tools/Options/Report Writer/Default dialog.
For a description of this interface, refer to Chapter 16, section 16.3,
“Establishing Report and Control Defaults.”.

(Name)

The default name is derived from your report name. For example, for
Report1, the default name for the first label would be Report1-RwLa-1.
You can change this name if desired.

Border Color

This property is not available for the check box, line, or radio button
report controls.

Common Report Control Properties 18-3
A drop-down box allows for the selection of non-zero values from 1 to
16 that correspond to border colors. The default value for this property
is “0”.

When the Border Style property is set to “Boxed”, the Border Color
and Border Width properties combine to determine the presentation of
the border around the report control.

Border Style

This property is not available for the check box, line, or radio button
report controls.

A drop-down box allows for the selection of “Boxed” or “No Box”.
For most controls, the default value for this property is “Boxed”.
However, for the label and table report controls, the default value is
“No Box”. Also, note that the “No Box” setting is ignored by the
report box control.

When this property is set to “Boxed”, the Border Color and Border
Width properties combine to determine the presentation of the border
around the report control.

Border Width

This property is not available for the check box, line, or radio button
report controls.

The Border Width property allows for the entry of an integer between
1 and 20, representing a width measurement in pixels. The default
value for this property is “None”.

When the Border Style property is set to “Boxed”, the Border Color
and Border Width properties combine to determine the presentation of
the border around the report control.

Color*

The default value for this property is foreground black on background
white.

The Value cell for this property has an ellipsis push button that opens
the Color Setting dialog. Foreground and background colors can be set
in this interface. The Color property setting of a report control
overrides the Color setting of its parent section.

18-4 The Report Controls and Property Reference
Color Variable*

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. If a variable is selected in this dialog,
subtle modifications to the generated code occur, such that it references
the Color Variable instead of the Color value directly. This property
has no initial default value.

Column

This property determines the location of the report control with respect
to the left margin of the page. The unit of measure (inches or
centimeters) is set in the Tools/Options/Report Writer/General
interface.

Font*

This property is not available for the box, image, line, and occurs
report controls.

A drop-down box displays several choices for font. The default value
is “Default Font”. The push button in the Value cell causes the Font
dialog to appear.

The Font property setting for a report control overrides the Font
property setting of its parent section.

Hyperlink

This property applies to report date time controls, entry fields, images,
and labels. It is used to assign a hyperlink to the control when it is
displayed in a Web browser. A hyperlink may reference either a local
HTML file or a Web site.

To reference a local HTML file, click the ellipsis push button in the
Value cell to display the Open dialog box. Navigate to the location of
the local file and select it.

To reference a Web site, enter the entire address in the Value cell (e.g.,
http://www.microfocus.com). If you omit the “http://” prefix,
AcuBench interprets the entry as a file name. In the latter case, the
result is a “File not found” error message when you attempt to access
the link.

This property has no default value.

Common Report Control Properties 18-5
Hyperlink Variable

This property applies to report date time controls, entry fields, images,
and labels. The Value cell for this property has an ellipsis push button
that opens the Select Variable interface. If a variable is selected in this
dialog, subtle modifications to the generated code occur, such that it
references the Hyperlink Variable instead of the Hyperlink value
directly. This property has no default value.

Line

The Line property determines the location of the report control with
respect to the beginning of the parent section. The unit of measure
(inches or centimeters) is set in the Tools/Options/Report
Writer/General interface.

Lines

This property is not available for the line report control.

The Lines property represents the height of the report control.

Note that the standard unit of measure used by Lines is set in the
Tools/Options/Report Writer/General dialog. In this dialog, you can
select Inch (the default) or Centimeter in the Unit frame.

 Print Condition

A print condition can be used to make the printing of a report control
conditional. Print conditions are discussed in detail in Chapter 17,
section 17.6, “Setting Print Conditions.”

Size

This property represents the width of the report control.

Note that the standard unit of measure used by Size is set in the
Tools/Options/Report Writer/General dialog. In this interface, you can
select Inch (the default) or Centimeter in the Unit frame.

Title

This property determines the text portion of the report check box, label,
or radio button.

18-6 The Report Controls and Property Reference
Title Variable

This property applies to the report check box, label, and radio button
controls. The Value cell for this property has an ellipsis push button
that opens the Select Variable interface. If a variable is selected in this
dialog, subtle modifications to the generated code occur, such that it
references the Title Variable, instead of the Title value directly. This
property has no default value.

Visible*

A drop-down box allows the selection of “TRUE” or “FALSE”.
Selecting “FALSE” inhibits the printing of the report control. The
default value is “1:TRUE”.

Visible Variable*

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. If a variable is selected in this dialog,
subtle modifications to the generated code occur, such that it references
the Visible Variable instead of the Visible value directly. This property
has no initial default value.

18.3 The Report Box

The report box is similar to the ACUCOBOL-GT standard frame control. A
report box, however, does not have a title, and does not perform any special
grouping function for controls displayed inside the box. Like the report line,
this report element is useful for highlighting some portion of the report text.
You might, for example, place a box around the report title as a way of
framing the text, or place a box around a group of entry fields or radio buttons
in the detail section to make them stand out from the rest of the page.

The report box does not have special properties. All report box properties are
described in section 18.2, “Common Report Control Properties.”

The Report Check Box 18-7
18.4 The Report Check Box

The report check box is similar to the ACUCOBOL-GT standard check box
control. It is used to display items that are either selected or unselected, true
or false. If the variable associated with the control has a value of “1”, the box
is marked (contains a check mark). If the associated variable value is “0”, the
box appears unmarked (no check mark).

The report check box Property window contains the following special
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Value

This property must be set to “0” or “1”. A value of “0” (the default)
indicates that the report check box is not selected in the report. A value
of “1” indicates that the check box is selected.

The report check box is a stylistic display device. You need to code for
the conditions that cause a particular check box to be selected. A
logical place to perform this check is in a Before-Print paragraph for a
report check box. For example, to manipulate a Sales Quota check
box, the following code can be used in the Before-Print paragraph:

ADD heavy-equipment-sales TO supplies-sales
 GIVING total-salesperson-sales.
IF total-salesperson-sales > sales-quota
 MOVE 1 to pr-quota
ELSE
 MOVE 0 TO pr-quota
END-IF.

When you display a report check box in Internet Explorer, the check
box can be toggled by clicking on it.

For an example of this report control, refer to sample Report 1d in the
sample reports area.

Value Variable

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. If a variable is selected in this dialog,
subtle modifications to the generated code occur, such that it references
the Value Variable instead of the Value value directly. This property
has no default value.

18-8 The Report Controls and Property Reference
18.5 The Report Date Time

The report date time, like the screen date entry control, is used to present
formatted date and time information. In a report, this information is likely
most useful in a header or footer.

The report date time Property window contains the following control-specific
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Date Format

This property determines how a date is displayed in the report date
time. The default value for this property is “mm/dd/yyyy”. A
drop-down box allows the selection of the following formats:

yyyy/mm/dd
mm/dd/yyyy
dd/mm/yyyy
yy/mm/dd
mm/dd/yy
dd/mm/yy
yyyy/mm
mm/yyyy
yy/mm
mm/yy
mm/dd
dd/mm
None

Date Picture Format

This property defines the format in which dates are stored in
Working-Storage. The default value for this property is
“MMDDYYYY”. A drop-down box allows the selection of the
following formats:

YYYYMMDD
YYYYDDMM
MMDDYYYY
DDMMYYYY
YYMMDD
YYDDMM

The Report Date Time 18-9
MMDDYY
DDMMYY
YYYYMM
MMYYYY
YYMM
MMYY
MMDD
DDMM
None

Justification

A drop-down box allows the selection of “Center”, “Left”, “Right”, or
“Unaligned”. The default value for this property is “Unaligned”.

Print If Repeat

A drop-down box allows the selection of “TRUE” or “FALSE”. The
condition is applied when consecutive records contain the same data
values. When this property is set to “TRUE” (the default), both data
values print. When it is set to “FALSE”, the second (and subsequent)
same data values do not print.

Time Format

This property determines how time is displayed in the report date time.
The default value for this property is “None”. A drop-down box allows
the selection of the following formats:

hh:mm:ss
hh:mm
hh
mm:ss
mm
ss
tt hh:mm:ss
tt hh:mm
tt hh
None

Note that “tt” is replaced by am or pm, “hh” by hours, “mm” by
minutes, and “ss” by seconds.

18-10 The Report Controls and Property Reference
Time Picture Format

This property defines how time is stored in Working-Storage. The
default value for this property is “None”. A drop-down box allows the
selection of the following formats:

HHMMSS
HHMM
HH
MMSS
MM
SS
None

Value Picture

If you select an existing variable for Value Variable, Value Picture
inherits the picture of the existing variable. If you create a new
variable for Value Variable, you can create a picture clause for that
variable here. If you leave Value Picture blank, a picture of X(30) is
assigned to the new variable. This property has no default value.

Value Variable

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. The Value Variable is not directly
referenced by the generated code, but may be used by the user. This
property has no default value.

18.6 The Report Entry Field

The report entry field corresponds to the ACUCOBOL-GT standard entry
field control. Whereas a report label contains only literal values, a report
entry field displays the value of a variable data item (its Value Variable
property). When an entry field is tied to a file descriptor (FD) field, a simple
READ NEXT statement can be used to update the field for printing. With
formatted data or breakpoints, there may be additional coding considerations.

The report entry field Property window contains the following
control-specific properties in addition to the properties described in section
18.2, “Common Report Control Properties.”

The Report Entry Field 18-11
Display Type

A drop-down box allows the selection of “Collapse”, “Keep Space”,
and “Preformatted”. The default value for this property is “Collapse”.

The “Collapse” value allows only one space between two strings. With
the “Keep Spaces” value, any amount of space between two strings is
kept. A value of “Preformatted” means any format settings are kept.
AcuBench generates the <PRE> and </PRE> HTML tags to maintain
the text format.

Horizontal Spacing

The Value cell allows the entry of a digit with two decimal places. The
default value for this property is “0.00”. Increasing this number
enlarges the spaces between characters printed inside the report entry
field.

Justification

A drop-down box allows the selection of “Center”, “Left”, “Right”, or
“Unaligned” justification for the report entry field. The default value
for this property is “Unaligned”.

Print If Repeat

A drop-down box allows the selection of “TRUE” or “FALSE”. The
condition is applied when consecutive records contain the same data
values. When this property is set to “TRUE”, both data values print.
When it is set to “FALSE”, the second (and subsequent) same data
values do not print. The default value is “TRUE”.

Value

This property can be a numeric or alphanumeric value. The value
prints inside the report entry field. If a Value Variable is used, this
numeric/alphanumeric is preserved as the initial Value of the Value
Variable.

Value Picture

The Value Picture default value varies, depending on whether a Value
property has been specified. If a Value has been specified, the Value
Picture is derived from the Value. If no Value is specified, a default of
X(30) is used.

18-12 The Report Controls and Property Reference
Value Variable

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. If a variable is selected in this dialog,
subtle modifications to the generated code occur, such that it references
the Value Variable instead of the Value value directly. This property
has no default value.

18.7 The Report Grid

When you create a graphical report, you have the option to include a report
grid, which is similar in appearance and function to the ACUCOBOL-GT
standard grid control.

The report grid can be used when you want to display data in a standard
column layout with a heading. Unlike the report table control, a report grid
is always oriented with a heading row above one or more rows of data. The
grid can be a single heading row with a single line of data (the grid is the
result of one READ statement) or the grid can contain several rows of data
(each grid line is the result of one READ statement).

Information about the code used to populate a grid with multiple rows of data
can be found in Chapter 17, section 17.7.5, “Generating Report Files and
Code.”

The report grid Property window contains the following control-specific
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Auto Resize

A drop-down box allows the selection of “TRUE” or “FALSE”. With
a setting of “TRUE” (the default), a report grid automatically expands
to fit the data content size. The “FALSE” setting should be used with
caution. When this property is set to “FALSE”, the report grid uses the
Lines property to determine its size, which may be inadequate to
contain all your data.

The Report Grid 18-13
Column Headings

A drop-down box allows the selection of “TRUE” or “FALSE”.

A setting of “TRUE” (the default) provides the user a place to enter a
heading row for grid column titles.

A setting of “FALSE” removes the heading row. When Column
Headings is set to “FALSE”, you can use the Page Header section of
the report to provide the titles for the grid columns.

Columns’ Setting

The Value cell for this property has an ellipsis push button that opens
the Columns' Setting dialog box. Click the Add push button in this
interface to add a row with the following default settings:

Name: RwGd-1-Col-1

Pic: X(80)

Width: 1.00

Align: Unaligned

In the Name column, use the ellipsis push button to select a variable
from graphical Working-Storage or from a data set. Set the Picture
clause accordingly. In the Head column, type the column title. Width
uses the unit of measure set in the Tools/Options/Report
Writer/General interface. Use the Align column to set justification.
Double-click in the More column to open a More dialog box, in which
you can set Color, Font, and Hyperlink properties.

Repeat this procedure as needed for all of the fields you wish to have
in your report grid.

Heading Color

The default setting for this property is foreground black on background
gray. The Value cell for this property has an ellipsis push button that
opens the Color Setting dialog. Foreground and background colors can
be set in this interface.

18-14 The Report Controls and Property Reference
Row Color Pattern

The Value cell for this property has an ellipsis push button that opens
the Row Color Pattern dialog. The Add push button in this interface
opens the Color Setting dialog, in which you can select background
and foreground colors. You can observe your chosen pattern in the
Preview area on the right of the Row Color Pattern interface.

Up and Down arrows permit you to rearrange color patterns you have
defined, and a Remove button lets you delete color patterns.

Repeat this procedure to edit existing colors or to extend the Row
Color Pattern.

Show Grid Line

A drop-down box allows the selection of “TRUE” or “FALSE”. A
setting of “TRUE” (the default) causes subsequent lines in a grid to be
separated by a line. A setting of “FALSE” removes all grid lines in the
grid.

18.8 The Report Image

Available only for graphical reports, the report image corresponds to the
ACUCOBOL-GT standard bitmap control. You use the Open dialog to
position a report image in the Report Composer window.

Note that in addition to placing one or more image controls on a report, you
can also specify a Watermark property for the report (discussed in section
17.3.2) or display images in a report table control.

The report image Property window contains the following control-specific
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Bitmap

The Value cell for this property has an ellipsis push button that displays
the Open dialog box, from which you can navigate to “*.bmp” files.
The Bitmap property records the name of the selected bitmap file. If
the selected bitmap is not in a directory contained in the COPYPATH
environment setting, then the full path to the bitmap is recorded here.

The Report Image 18-15
Bitmap Path

A drop-down box allows the selection of “Full Path”, “Dynamic Full
Path”, and “User Defined”. These property selections affect how the
bitmap file is located.

With the “Full Path” setting (the default), the browser uses the full path
of the bitmap (as recorded when it was selected in the Report
Composer) to locate the bitmap file.

When you set this property to “Dynamic Full Path” a call to the
C$FULLNAME library routine is used to derive the full path of the
bitmap file. The bitmap can be stored in any of the FILE-PREFIX
directories named. The browser uses the full path of the bitmap to
locate the bitmap file.

With the “User Defined” setting, the browser searches for the bitmap in
the same directory as the HTML file.

Bitmap Position

A drop-down box allows the selection of “Center”, “Left Top”, “Left
Bottom”, “Right Top”, and “Right Bottom”. Use these settings to
position your bitmap in the report image control (when the Bitmap
Style property is set to “Ratio”).

Bitmap Style

A drop-down box allows the selection of “Stretch” and “Ratio”. This
property has no default value.

When Bitmap Style is set to “Ratio”, the bitmap’s height-to-width ratio
is preserved inside the space allocated for the bitmap. If the bitmap
display is smaller than the space allocated for it, the positioning
function is similar to the justification of a text field, orienting to left,
right, top, bottom, and center.

When Bitmap Style is set to “Stretch”, the bitmap height-to-width ratio
is altered if necessary to fit the bitmap into the space allocated for it.
Note that when Bitmap Style is set to “Stretch”, the Bitmap Position
property setting is ignored.

18-16 The Report Controls and Property Reference
Print If Repeat

A drop-down box allows the selection of “TRUE” or “FALSE”. This
condition is applied when consecutive records contain the same data
values. When this property is set to “TRUE” (the default), both data
values print. When it is set to “FALSE”, the second (and subsequent)
same data values do not print.

Value Variable

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. The Value Variable is not directly
referenced by the generated code, but may be used by the user.

18.9 The Report Label

The report label is similar to the ACUCOBOL-GT standard label control.
The title of a report label, however, must be a literal value. You cannot
associate a variable with a report label control. If you want to use a variable
to display text in a report, use the report entry field control

The report label Property window contains the following control-specific
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Justification

A drop-down box allows the selection of “Center”, “Left”, “Right”, or
“Unaligned” justification for the report label. The default value for
this property is “Unaligned”.

18.10 The Report Line

The report line is similar to the ACUCOBOL-GT bar control. This report
element can be useful in a report’s header and footer sections, for example,
for underscoring column headings or totals. The report line Property window
contains the following control-specific properties in addition to the properties
described in section 18.2, “Common Report Control Properties.”

The Report Occurs 18-17
Kind

A drop-down box allows the selection of “HORIZONTAL” and
“VERTICAL”. The default value is “HORIZONTAL”.

Size (Lines)

This property represents the width of a horizontal report line or the
height of a vertical report line.

Note that the standard unit of measure used by Size is set in the
Tools/Options/Report Writer/General dialog. In this interface, you can
select Inch (the default) or Centimeter in the Unit frame.

Width

The value of this property is a unit of measure in pixels. The default
value is “1”. For a horizontal line, this measure is the width of the line
from top to bottom. For a vertical line, this measure is the width of the
line from left to right.

18.11 The Report Occurs

The report occurs control lets you take advantage of the OCCURS clause to
display report information in a table or array. It is available only for graphical
reports. The report occurs Property window contains the following
control-specific properties in addition to the properties described in section
18.2, “Common Report Control Properties.”

Auto Resize

A drop-down box allows the selection of “TRUE” or “FALSE”. A
setting of “TRUE” (the default) automatically expands a report occurs
to fit the data content size. The “FALSE” setting should be used with
caution. When this property is set to “FALSE”, the report occurs uses
the Lines property to determine its size, which may be inadequate to
contain all your data.

Column Headings

A drop-down box allows the selection of “TRUE” or “FALSE”.

A setting of “TRUE” (the default) provides the user a place to enter a
heading row for occurs column titles.

18-18 The Report Controls and Property Reference
A setting of “FALSE” removes the heading row. When Column
Headings is set to “FALSE”, you can use the Page Header section of
the report to provide the titles for the occurs columns.

Columns’ Setting

The Value cell for this property has an ellipsis push button that opens
the Columns' Setting dialog box.

In this interface, when you select the dominant occurs data item, the
drop-down box at the top of the screen lists all the possible candidates
in your graphical Working-Storage and data sets. To be a candidate,
the data item must contain an OCCURS clause. The occurs displays in
the top portion of the dialog box.

To transfer Note-Date, Note-Initials, and Note-Text from this table into
the Occurs Columns table below, double-click them.

In the Head column, you can replace the listed name with a column title
of your choosing. Width uses the unit of measure set in the
Tools/Options/Report Writer/General interface. Use the Alignment
column to set justification. Double-click in the More column to open
a More dialog box in which you can set Color, Font, and Hyperlink
properties.

Repeat this procedure as needed for all of the fields you wish to have
in your report occurs.

Level Field Name Picture Usage Occurs

03 Notes 8

05 Note-Date X(10)

05 Note-Initials X(3)

05 Note-Text X(60)

Name Picture Head Width Alignment More

Note-Date X(10) Note-Date 1.00 Unaligned

Note-Initials X(3) Note-Initials 1.00 Unaligned

Note-Text X(60) Note-Text 1.00 Unaligned

The Report Radio Button 18-19
Note that the Occurs Columns interface is similar to the Grid Columns
interface, and also allows you to add and remove fields.

Row Color Pattern

The Value cell for this property has an ellipsis push button that opens
the Row Color Pattern dialog. The Add push button in this interface
opens the Color Setting dialog, in which you can select background
and foreground colors. You can observe your chosen pattern in the
Preview area on the right of the Row Color Pattern interface.

The Up and Down arrows permit you to rearrange color patterns you
have defined, and a Remove button lets you delete color patterns.

Repeat this procedure to edit existing colors or to extend the Row
Color Pattern.

Show Grid Line

A drop-down box allows the selection of “TRUE” or “FALSE”. A
setting of “TRUE” (the default) causes subsequent lines in a report
occurs to be separated by a grid line. A setting of “FALSE” removes
all grid lines in the report occurs.

18.12 The Report Radio Button

The report radio button is similar to the ACUCOBOL-GT standard radio
button control. Like the ACUCOBOL-GT standard control, the report radio
button can be assigned to a group and given a value within that group. The
report radio button Property window contains the following control-specific
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Group

The Group property setting is included for user documentation
purposes. Radio buttons in the same group should be handled together,
so that the selection or deselection of report radio buttons is
coordinated.

18-20 The Report Controls and Property Reference
Value

This property must be set to “0” or “1”. A value of “0” (the default)
indicates that the report radio button is not selected in the report. A
value of “1” indicates that the report radio button is selected in the
report.

The report radio button is a stylistic display device. You need to code
for the conditions that cause a particular radio button to be selected. A
logical place to perform this check is in a Before-Print paragraph for a
report radio button. The follow example shows one way to handle a
group of radio buttons displaying credit card information:

INITIALIZE ws-credit.
EVALUATE card-type
 WHEN "M"
 MOVE 1 TO ws-mastercard
 WHEN "V"
 MOVE 1 TO ws-visa
 WHEN "A"
 MOVE 1 TO ws-amex
END-EVALUATE.

For another approach, refer to sample Report1d in the Reports sample
project.

Value Picture

This property affects the picture clause of the generated value variable.
It must be a numeric value. The default value for this property is
“X(1)”.

Value Variable

The Value cell for this property has an ellipsis push button that opens
the Select Variable interface. If a variable is selected in this dialog,
subtle modifications to the generated code occur, such that it references
the Value Variable instead of Value directly. This property has no
default value.

18.13 The Report Table

In a graphical report, the report table allows you to format your detail section
in a grid-like table. This control is not available in character reports.

The Report Table 18-21
At its simplest, a report table displays the result of a single READ statement
(or equivalent) with corresponding header information. You can control
whether the data is printed with a horizontal or vertical orientation. This can
provide a useful way to align and group header and body information.

A report table can also be used to display images. Any cell in a table can be
associated with an image file or image variable. The use of an image variable
in a table is demonstrated in the Report1f sample program. In the sample, a
group section has been established to organize the report data by state. A
table displayed in the group header shows an image of the state flag
associated with the selected state.

Additionally, a report table can be used to display multiple lines and columns
of literal values. Multiline labels are not supported in reports, but a multiline
table with no grid lines or border can be used to create the effect of a multiline
label.

The report table Property window contains the following control-specific
properties in addition to the properties described in section 18.2, “Common
Report Control Properties.”

Bitmap Path

A drop-down box allows the selection of “Full Path”, “Dynamic Full
Path”, and “User Defined”. These property selections affect how the
bitmap file is located.

With the “Full Path” setting (the default), the browser uses the full path
of the bitmap (as recorded when it was selected in the Report
Composer) to locate the bitmap file.

When you set this property to “Dynamic Full Path”, a call to the
C$FULLNAME library routine is used to derive the full path of the
bitmap file. The bitmap can be stored in any of the FILE-PREFIX
directories named. The browser uses the full path of the bitmap to
locate the bitmap file.

With the “User Defined” setting, the browser searches for the bitmap in
the same directory as the HTML file.

Note that in the Table Setting dialog, the Cell Setting tab has a Type
column, in which you can indicate that a table cell should contain an
image. The Cell Setting tab then allows you to locate the bitmap file
which should be displayed in that cell.

18-22 The Report Controls and Property Reference
The Bitmap Path property applies to all image files so designated in the
table.

Cell Padding

Cell padding adds blank space between the text in a cell and the
horizontal grid lines above and below that text. The unit of measure
for this property is pixels. Values of 1 through 5 are permitted, with a
default value of “1”.

Cell Spacing

Cell spacing adds blank space between the vertical grid lines and
horizontal grid lines in a table cell. The unit of measure for this
property is pixels. Values of 1 through 5 are permitted, with a default
value of “1”.

Merge Cell

Merge Cell lets you remove column dividers from a row.

The Value cell for this property has an ellipsis push button that opens
the Merge Cell dialog. In this interface, click the left-most column of
the adjacent columns you wish to merge, and drag your mouse across
the columns you want to merge. Click Merge Cell and OK to return to
the Report Composer window.

To restore the columns to the way they were, select the merged cell and
click the Recover Cells push button.

Note that the Merge Cell operation removes any column titles or values
from the selected columns. A Restore Cell operation restores the
individual cells that you merged, but maintains only the title or value
of the left-hand cell where you started the merge operation. Restore
Cell is not an “undo” operation.

Also note that if you perform a Merge Cell operation on a table, you
cannot subsequently perform the Table Rearrange function.

Show Grid Line

A drop-down box allows the selection of “TRUE” or “FALSE”. A
setting of “TRUE” (the default) causes table cells to be separated by a
grid line. A setting of “FALSE” removes all grid lines inside the table.

The Report Table 18-23
Table Rearrange

A table may be rearranged in any number of ways by row or by column
and still retain an identical number of cells. For example, a 4 x 2 cell
table may be rearranged as a 2 x 4, a 1 x 8, or an 8 x 1 cell table.

The Value cell for this property has an ellipsis push button that opens
the Table Rearrange dialog box.

In a column measure rearrangement, the cells are selected from left to
right, top to bottom, and reconfigured so that the same cells are
displayed top to bottom, left to right.

In a row measure rearrangement, cells are selected from top to bottom,
left to right, and reconfigured so that the same cells are displayed left
to right, top to bottom.

Note that the Table Rearrange function is disabled if a Merge Cell
operation has been performed.

Table Setting

The Value cell for this property has an ellipsis push button that opens
the Table Setting dialog, with tabs for Column Setting, Row Setting,
and Cell Setting.

The Column Setting tab lets you set column width, alignment, color,
color variable, and font. In the Row Setting tab, you can set row
height, alignment, color, color variable, and font. The Cell Setting tab
lets you set each cell’s type, data, pic, and alignment, along with
elements in the More dialog.

Table Setting dialog’s Column Setting tab

Column Width

This setting represents the width of the table column. The standard
unit of measure is set in the Tools/Options/Report Writer/General
interface.

Alignment

A drop-down box allows the selection of “Center”, “Left”, “Right”, or
“Unaligned”. This field defaults to “Unaligned”.

18-24 The Report Controls and Property Reference
Color

The default value of “0” allows the column to inherit the color of the
table. Double-click in the Color cell to activate an ellipsis push button
that opens the Color Setting dialog. Foreground and background
colors can be set in this interface.

Color Variable

Double-click the Value cell to activate an ellipsis push button that
opens the Select Variable interface. If a variable is selected in this
dialog, subtle modifications to the generated code occur, such that it
references the Color Variable instead of the Color value directly. This
field has no default value.

Font

A drop-down box displays several choices for font. The default value
for this cell is “Default Font”. You can also double-click in the Font
cell to activate an ellipsis push button that opens the Font dialog.

The column Font setting of a table overrides the Font property setting
of its parent control.

Table Setting dialog’s Row Setting tab

Row Height

This cell represents the height of the table row. The standard unit of
measure is set in the Tools/Options/Report Writer/General interface.

Alignment

A drop-down box allows the selection of “Middle”, “Top”, “Bottom”,
or “Unaligned”. This field defaults to “Unaligned”.

Color

The default value of “0” allows the row to inherit the color of the table.
Double-click the Color cell to activate an ellipsis push button that
opens the Color Setting dialog. Foreground and background colors can
be set in this interface.

The Report Table 18-25
Color Variable

Double-click the Value cell to activate an ellipsis push button that
opens the Select Variable interface. If a variable is selected in this
dialog, subtle modifications to the generated code occur, such that it
references the Color Variable instead of the Color value directly. This
field has no default value.

Font

A drop-down box displays several choices for font. The default value
for this cell is “Default Font”. You can also double-click in the Font
cell to activate an ellipsis push button that opens the Font dialog.

The row Font setting of a table overrides the Font property setting of its
parent control.

Table Setting dialog’s Cell Setting tab

Cell

This field contains the coordinates of the table cell, presented in the
format (X,Y). In this format, the cells in a table’s top row would have
the coordinates (1, 1), (1, 2), (1, 3), etc. The cells of the table’s second
row would have coordinates of (2, 1), (2, 2), (2, 3), etc.

Type

The selection of Type affects the behavior of the Data and Pic columns.
A drop-down box allows the selection of “Text”, “Variable”, “Image”,
and “Data Image”. This field defaults to “Text”.

Data

The contents of this field depend on the settings in the Type column.
When the Type setting is “Text”, Data contains a character string,
which is constant. When the Type setting is “Variable”, Data contains
a variable selected from the Select Variable interface. When the Type
setting is “Image”, Data contains a bitmap selected from the Open Files
of Type *.bmp interface. When the Type setting is “Data Image”, Data
contains a variable selected from the Select Variable interface

Pic

This field is used only when the Type setting is “Variable” or “Data
Image”. It displays the picture clause of the variable represented in the
adjacent Data cell.

18-26 The Report Controls and Property Reference
Alignment

A drop-down box allows the selection of “Top-Left”, “Top-Center”,
“Top-Right”, “Center-Left”, “Center”, Center-Right”, “Bottom-Left”,
“Bottom-Center”, “Bottom-Right”, or “Unaligned”. This field
defaults to “Unaligned”.

More

Double-click in the More cell to open the More dialog. You can set
Color, Color Variable, Font, Hyperlink, and Hyperlink Variable
properties in this interface.

19
 Working with
ACUCOBOL-GT Utilities
Key Topics

ACUCOBOL-GT Utilities... 19-2

The Object File Utility .. 19-3

Using vio ... 19-9

Using logutil ... 19-13

Using vutil .. 19-15

Using acu4glfd ... 19-21

XML Support in AcuBench... 19-22

19-2 Working with ACUCOBOL-GT Utilities
19.1 ACUCOBOL-GT Utilities

AcuBench provides access to several of the ACUCOBOL-GT® tools and
utilities through the Tools drop-down menu. Most of these utilities have a
default command-line interface, but AcuBench provides an additional,
graphical interface to each one. You access the graphical interface when you
choose a utility from the Tools menu.

The tools and utilities accessed through the Tools menu include the
following:

• cblutil, the object file utility

• vio, the file transfer utility

• logutil, the transaction log file utility

• vutil, the Vision file utility

• xml2fd, used to parse XML documents to produce FD and SELECT
COPY files

• AXDEFGEN, the ActiveX definition generator

• NETDEFGEN, the .NET definition generator

• acu4glfd, used by the Acu4GL® family of interfaces to produce FD and
SELECT COPY files for interoperating with relational database
management systems

The first four utilities listed above (cblutil, vio, logutil, and vutil) are
described in detail in Chapter 3 of the ACUCOBOL-GT User’s Guide (Book
1 of the ACUCOBOL-GT manual set). The next three utilities
(AXDEFGEN, NETDEFGEN, and xml2fd) are discussed in A Guide to
Interoperating with ACUCOBOL-GT. The final utility, acu4glfd, is
described in Chapter 6 in the Acu4GL User’s Guide.

This chapter offers an overview of the utilities available from within
AcuBench, describing any AcuBench-specific behaviors of the tool. It does
not give detailed information about the general capabilities or uses of each
utility. Please see the appropriate document (listed above) if you need more
information about the functionality provided by any utility.

The Object File Utility 19-3
19.2 The Object File Utility

AcuBench offers a graphical interface to the ACUCOBOL-GT object file
utility, cblutil. This utility can be used to assemble individual object files
into object libraries, display information about object files, and translate
portable object files (or libraries) into a native code format.

Note: This section describes only the AcuBench graphical interface to
cblutil. For a complete description of cblutil functions, see Chapter 3 of
the ACUCOBOL-GT User’s Guide.

19.2.1 Object Libraries

An object library is a file that contains a group of one or more compiled
ACUCOBOL-GT programs and its associated resource files (bitmaps, WAV
files, and so on). Object libraries can simplify the distribution of an
application by reducing the number of files involved. They can also help
improve performance by reducing the number of directory operations
performed by runcbl when it is loading object modules.

When you create an object library, the first module (compiled object) that you
specify is called the primary module. When the library is loaded via a CALL
statement or because it is the first program of the run unit, the primary
module is the program that is loaded and run. Other modules in the library
can be loaded by subsequent CALL statements.

You should keep a couple of things in mind when you work with the cblutil
object library utility:

1. A module that has the same name as a module already in the library will
automatically replace the module of the same name. Therefore, before
you build your library be careful to check that all modules have unique
names.

2. We recommend that you place related object files in the same object
library. For example, specify the main program of a run unit as the
primary module and then add some or all of its subprograms.

19-4 Working with ACUCOBOL-GT Utilities
19.2.2 Creating an Object Library

To access the object file utility from within AcuBench, open the Tools menu
and select Cblutl. The Cblutl32 window opens with the Library tab selected.

The Library tab of the Cblutl interface is used to create an object library. The
options contained in this interface correspond to the “cblutil -lib” command.

To use this interface to create a library file:

1. Use the options in the Parameters section to build a cblutil command
line.

• Check the “Name of object library (-o)” check box and provide a
name for the library you want to create in the entry field.

• Specify whether you want the utility to operate silently or in verbose
mode with the “Verbose mode (-v)” check box.

The Object File Utility 19-5
• Use the “Delete modules after they have been added to the library
(-r)” check box to indicate how modules in the library are treated
after the library is created.

• To include a comment in the compiled object, use the “Insert
comment (-c)” field. Comments that include spaces must either be
set off by quotation marks or include an escape character before
each space.

As you make changes, the command line is displayed in the “Options”
field, near the middle of the interface.

2. In the “Additional modules” area, use the New (“+”) button to add
modules to the library. When you click this button, a browse (“...”)
button appears in the field. You can use the browse button to navigate
to your object files on disk, or type the path and file name in the field.

To remove a module from the library, click the Delete button.

3. Use the Up and Down arrow buttons to re-order the modules as
needed. The first item in the list will be the primary module at run
time.

4. Click Apply to create your object library. Unless you have specified a
different path in the “Name of object library (-o)” field, the library is
created in the same directory as the primary module.

Information about the object library that you have created appears in the
box located below the “Options” entry field.

19-6 Working with ACUCOBOL-GT Utilities
19.2.3 Retrieving Information About Objects

To display information about an object file (equivalent to the
ACUCOBOL-GT “cblutil -info” command), select the Information tab of
the Cblutl32 dialog.

Here, you can specify one or more object files or object libraries and view
information about how each was created and what resources are included in
the object. As you make changes in the interface, the “Options” field
displays the command line for the information function.

To retrieve information about an object file or object library:

1. Use the New (“+”) button, then specify the name of the module(s) whose
information you would like to view. You type a path and file name in the
field or use the browse (“...”) button to navigate to the file.

Note that by default, the utility looks for files with a “.acu”, “.cbx”, or
“.obj” extension. Expand the Files of type drop-down list in the Select
Object File dialog to change the extension to “.lib” or other file
extensions.

To remove a module from the list, click Delete (“X”).

The Object File Utility 19-7
2. To see the compiler options used to create each object in a library, as
well as any comment information included in the object or library,
mark the Show extended file information (-x) check box.

3. Click Apply to activate the information function. Information from the
header of the selected object file appears in the box located below the
“Options” field.

19.2.4 Generating Native Code

To translate ACUCOBOL-GT portable object modules into native code
object modules, select the Native Code tab of the Cblutl32 window. This is
equivalent to invoking the “cblutil -native” command.

To create a native object or library:

1. Use the Parameters section of the interface to specify the type of native
code that you want to create.

• Provide a name for your object library in the entry field to the right
of the “Name of object library (-o)” check box.

19-8 Working with ACUCOBOL-GT Utilities
• Specify the processor type for which you want your object
optimized.

• Select optimization options and indicate whether or not the utility
should operate in verbose mode using the check boxes to the right of
the “Produce Native Code” area.

2. Specify the module(s) that you want translated into native code in the
“Additional Modules” entry box. As in the other Cblutl32 interface,
use the New, Delete, and arrow buttons to arrange modules.

The “Options” entry field displays the command line for the native code
function.

3. Click Apply to generate native code object modules.

Note that you can also transform portable objects to native code from the File
view of the Workspace window. Right-click an object in the Object folder
and select Native Code.

In the Translate Portable Object Code to Native Code interface, select a
processor type and a series of commands to pass to cblutil. Click Translate
to create the native object file.

Using vio 19-9
19.3 Using vio

vio is a file transfer and archive utility that allows you to create file archives
and access archive content. vio is well suited for moving files to different
operating systems because it is available on most platforms supported by
ACUCOBOL-GT and because it automatically adjusts for certain
machine-dependent aspects, such as byte-swapping. It also easily handles
multiple volumes.

vio runs in two modes: input mode and output mode. Use output mode to
create an archive. Use input mode to read and extract from an archive. Each
mode has a distinct set of options. For a complete description of vio,
including its options, see section 3.4 of the ACUCOBOL-GT User's Guide.

The vio Interface

To launch vio, select the Vio command from the Tools drop-down menu.
AcuBench displays the Vio Utility dialog.

The Vio Utility dialog includes two tabs, Input and Output. Select the mode
that you want to use by clicking on the corresponding tab. You can switch
between tabs at any time.

Note: Use caution when specifying full path names. Some operating
systems do not interpret or translate full paths properly. It is preferable, in
most cases, to use relative path names when transferring files to a different
operating system.

19-10 Working with ACUCOBOL-GT Utilities
19.3.1 Output Mode

When you want to create a file archive, click on the vio Output tab.

Create a vio archive using the following steps:

1. From the “Archive” entry field drop-down list, select the target storage
device. Selecting “File” causes the archive to be placed on the system
hard disk.

2. In the entry field to the right of the “Archive” drop-down list, enter the
path and name of the archive, or click the ellipsis button to navigate to
an existing file.

3. In the Parameters section, select the options that you want. The
“Option” field displays the command line that reflects the options
chosen. You cannot directly edit the contents of this field. For a
complete description of all vio options, see section 3.4 of the
ACUCOBOL-GT User’s Guide.

Using vio 19-11
4. Build the list of files to be archived in the Collect files area. Click the
Add files button in this area to build your list. The Add Files dialog
allows you to browse the file system to locate the file(s) you want to
add. Use the Delete button to remove a selected file. Select the
Include Subdirectories check box to include all files and
subdirectories in the current directory. Repeat this procedure until all
the files you want have been added.

5. To toggle the file type of any file on the list, select the file from the list
and click the Toggle mode button. The current designated file type for
any file on the list is indicated under the “Mode” heading.

6. To build the archive, click the Start collect button.

7. When you are finished, click Close to exit vio.

19-12 Working with ACUCOBOL-GT Utilities
19.3.2 Input Mode

When you want to read and extract from a file archive, click on the vio Input
tab.

You can read and extract a vio archive as follows:

1. Select the device that hosts the archive file from the “Archive”
drop-down list. Select File if the archive is located on a system disk.

2. In the entry field to the right of the “Archive” drop-down list, enter the
path and name of the archive file, or click the ellipsis button to
navigate to the archive file.

3. In the Parameters section, select the desired options. The “Option”
field displays the command line that reflects the options chosen. You
cannot directly edit the contents of this field. For a complete
description of all vio options, see section 3.4 of the ACUCOBOL-GT
User’s Guide.

Using logutil 19-13
4. Read the archive. Click View to read the archive file and display its
contents.

5. Extract the archive. In the “Extract to” entry field at the bottom of the
vio window, enter the path of the target directory, or click the ellipsis
button to navigate to a target directory.

To extract the contents of the archive to the target directory, click the
Start Extract button at the far right of the “Extract files” label. The
contents of the archive are placed in the target directory.

Click Close to exit vio.

19.4 Using logutil

ACUCOBOL-GT provides basic transaction management facilities,
including extended COBOL transaction syntax and transaction logging
capabilities. The utility program logutil is used to examine and edit
ACUCOBOL-GT transaction log files built specifically for the Vision file
system.

This section provides a description of the graphical interface to logutil
provided by AcuBench. For a complete description of ACUCOBOL-GT
transaction management facilities, see section 5.1 of the ACUCOBOL-GT
User’s Guide. For a complete description of the command line interface to
logutil, as well as the report format, see section 3.6 of the ACUCOBOL-GT
User’s Guide.

19-14 Working with ACUCOBOL-GT Utilities
The graphical interface to logutil

To launch logutil from within AcuBench, select the Logutil command from
the Tools drop-down menu. AcuBench displays the Log Utility dialog.

You can generate a report from a transaction log file as follows:

1. Enter the name of the log file in the “Log file” field. You can either type
the name directly into the field or use the browse (“...”) button to
navigate to and select the file.

2. In the Parameters section, select your options. The “Option” field
displays the command line that reflects the options chosen. You cannot
directly edit the contents of this field. For a complete description of all
logutil options, see section 3.6 of the ACUCOBOL-GT User’s Guide.

3. To start the report, click Start. The results are displayed in the lower
portion of the window.

To interrupt a report that is in progress, click the Stop button (the Start
button becomes a Stop button after the search begins).

4. When you are finished, click Close to exit the utility.

Using vutil 19-15
19.5 Using vutil

The ACUCOBOL-GT Vision file utility, vutil, is used with Vision indexed
files to extract file structure information, extract records, rebuild corrupted
files, retrieve deleted records, and more. When you work in AcuBench, you
can interact with this utility through a graphical interface accessed from the
Tools menu. This section describes that graphical interface to vutil.

For a complete description of the command line utility and its functions, see
section 3.3 of the ACUCOBOL-GT User’s Guide.

Note: vutil does not make use of the runtime configuration file. Settings
made in a runtime configuration file do not affect vutil in any way.

The basic steps involved in invoking any vutil function are as follows:

1. To open vutil, select the Vision File Utility command from the Tools
drop-down menu.

19-16 Working with ACUCOBOL-GT Utilities
The graphical Vision File Utility dialog includes several tabs, each of
which provides access to a different vutil function. To select a function,
simply click the corresponding tab.

2. Because vutil operates on Vision indexed files, each vutil function
requires that you specify the name of a Vision file. You can either type
the name of the file in the “Data file” (or “Source file” or “File name”)
field, or click the browse (“...”) button to navigate to the file.

As long as the vutil dialog is open, the name of each file specified is
added to a drop-down list associated with the file name field. You can
easily select a previously referenced file from this list.

3. If you have chosen a function that can take parameters, use the
Parameters section to build your vutil command line.

An “Option” field displays the command line that reflects the options
chosen. Note that you cannot directly edit the contents of this field.

4. Click Start to perform the operation that you have specified. The
results of the operation appear in the area near the bottom of the dialog.

To stop a vutil function that is in progress, click the Stop button (the
Start button becomes a Stop button when a vutil function is in progress).
If you attempt to select another vutil tab while the current action is in
progress, the message “Vision File Utility is running. Please wait.” is
displayed.

5. To close the vutil interface, stop or allow the current action to
complete and click Close.

19.5.1 Increasing the Maximum File Record Size

The vutil augment function is accessed on the Augment tab. The augment
function lets you increase the maximum record size of a Vision file. This
option is useful if you want to add fields to a record without having to rebuild
the entire data file.

Using vutil 19-17
19.5.2 Examining File Information

The vutil information function is accessed on the Information tab. The
information function extracts basic information from the specified Vision
file. All extracted information is displayed in the bottom half of the tab.

19.5.3 Testing File Integrity

The vutil test file function is accessed on the Testing File tab. The test file
function checks a Vision file for integrity. Integrity is examined on such
points as whether a file is corrupt and whether it has a non-zero user count.
Testing for file integrity should be one of the first actions taken in assessing
data file problems.

19.5.4 Rebuilding Files

The vutil rebuild file function is accessed on the Rebuild File tab. The
rebuild file function recreates or rebuilds the specified indexed file. You
should rebuild a file that has become corrupt, or one that contains a large
number of deleted or lost records that you want to remove from the file. The
vutil rebuild function has many options that allow you to control how the
rebuilt file is created.

Note that the “-m”, “-s”, and “-r” options are not available in the graphical
interface to vutil. To invoke these options, use the command-line interface to
the utility.

19.5.5 Resetting User Counts

The vutil reset function is accessed on the Resetting tab. This function
allows you to reset the user count of the specified files to zero. The reset
function eliminates the need to rebuild the file when the file has a non-zero
user count and you are certain that the file is not corrupted.

19-18 Working with ACUCOBOL-GT Utilities
19.5.6 Creating Empty Files

The vutil function that allows you to create a new, empty file is accessed on
the Create File tab. The create file function is equivalent to performing an
OPEN OUTPUT on a file in COBOL.

When you use the Create File tab of the Vision File Utility interface, there are
a few points to keep in mind:

• If you specify the name of an existing file when you invoke this
function, that file will be overwritten.

• By default, vutil creates the new file in Vision Version 5 format. If you
want another format, use the “Vision file format” check box and
drop-down list to make an alternate selection.

• You can use the Define Key Information push button to open a special
interface used to create, delete, and define keys for the new file. Use the
buttons at the top of the screen to create or delete keys. Double-click in
any key field to change its value.

For a complete description of the vutil create function, see section 3.3 of the
ACUCOBOL-GT User’s Guide. For general information about Vision files,
see section 6.1.3 of the ACUCOBOL-GT User’s Guide.

Using vutil 19-19
19.5.7 File Size Summary

Use the File Size tab to access the vutil file size function, which reports
summary disk usage information for the Vision file. Information returned
includes total file size, the number of allocated records in use, the number of
empty records, and the percentage of allocated records in use.

19.5.8 Extracting Records

The vutil extract record function is accessed on the Extract tab. The extract
function allows you to display records stored in the specified file. The target
file cannot be encrypted. If you attempt to use the extract function to view a
record in an encrypted file, the message “encrypted, extract not allowed” is
displayed.

After you enter a file name, specify extract parameters, and start the record
extraction, the records matching your parameters are displayed in the field at
the bottom of the Vision File Utility window.

19.5.9 Unloading to Other File Types

The vutil unload function is accessed on the Unload File tab. The unload
function creates a binary sequential or line sequential file from the specified
Vision indexed file.

19.5.10 Loading a File

The vutil load function is accessed on the Load File tab. The load file
function creates an indexed file from a binary sequential file, relative file, or
line sequential file.

19-20 Working with ACUCOBOL-GT Utilities
19.5.11 Converting Indexed Files

The vutil convert function is accessed on the Convert tab. The convert
function allows you to convert an indexed data file created by C-ISAM,
Micro Focus, or RM/COBOL-85 into a Vision indexed file. This is useful
when you are moving data from a C-ISAM, Micro Focus, or RM/COBOL-85
application to an ACUCOBOL-GT application.

Note: Because the Vision file replaces the original C-ISAM, Micro Focus,
or RM/COBOL-85 file, be sure that you have a backup copy of the original
file.

The convert function has a number of limitations. It does not convert files
that have:

• record or block sizes greater than 32 KB

• more than 120 keys

• individual keys larger than 250 bytes

• non-ASCII characters or collating sequence (RM/COBOL-85)

• split keys (RM/COBOL-85)

• a single key with more than 16 segments (Vision Version 4) or more than
six segments (Vision Version 2 or 3) (C-ISAM)

• a primary key that allows duplicates (C-ISAM)

Note: When converting files you must have plenty of available disk space
to accommodate the differences in file size between the original file type
and the converted file type. You must also allow vutil space to copy the file
during the conversion process.

Using acu4glfd 19-21
19.5.12 B-Tree Listing

The vutil tree function is accessed on the B-Tree Info tab. The tree function
outputs B-tree structure information for the specified file. It is used primarily
as an aid in debugging suspected Vision file problems.

19.6 Using acu4glfd

A Windows utility called acu4glfd helps you create file descriptions (“.fd”)
and SELECTS (“.sl”) for use with extend’s Acu4GL interfaces. It can also
determine a unique index, which it uses as the primary key.

Because this utility uses ODBC technology to obtain table information in
order to list table fields, you need to have Acu4GL installed for the runtime
to access the table.

You access this utility’s interface via the Tools/acu4glfd command. You need
to choose and connect to a data source. When the tables contained in the data
source are displayed, users can direct the utility to create FDs and SELECTs.

More information about this utility can be found in section 6.2 in the Acu4GL
User’s Guide.

19-22 Working with ACUCOBOL-GT Utilities
19.7 XML Support in AcuBench

The ACUCOBOL-GT runtime has a file system interface for XML files,
called AcuXML, that seamlessly converts XML data to COBOL data and
vice versa. Information about working with XML data can be found in
section 8.2, “Working with XML Data,” in A Guide to Interoperating with
ACUCOBOL-GT.

When you make use of the AcuXML interface, you can use the xml2fd utility
to derive an FD and SELECT statement from an XML file. When a file of
type XML is selected, the import process must pass through the xml2fd
utility. This utility’s interface helps to guide you through the import of the
XML file to an FD file, which is written into a project’s “.fd” folder and
imported into the AcuBench graphical File Designer.

xml2fd also returns a list of the lines where it’s guessing about the data type.
This prints to a “stderr” file and can be viewed in the Output window. The
graphical File Designer is displayed, along with Output window information.
When you click on a line in the Output window, the cursor is positioned at the
line in the File Designer where the “guessing” occurred. You can then
change the Picture clause, if desired, prior to regenerating the code.

To use xml2fd from within AcuBench, do the following:

XML Support in AcuBench 19-23
1. Select Xml2FD from the Tools menu, or right-click a project node in the
Data view and select XML2FD.

When you invoke xml2fd from the Data view, the utility understands the
context of the project and prefills the “-d” option entry field with the
name of the directory in which the FD and SL are stored.

When xml2fd is invoked from the Tools menu, it does not have this
context information, and therefore does not prefill the “-d” entry field.

2. If necessary, click the browse (“...”) button next to the “Output
directory (-d)” field to navigate to the directory into which you want
the FD and SL to be generated.

Use the “-f” and “-s” options if you prefer to generate the FD and SL into
separate directories.

Note that selecting “-d” causes “-f” and “-s” to be disabled, because they
are mutually exclusive options. Likewise, if “-f” or “-s” is selected, “-d”
is disabled.

In the absence of any instructions (“-d”, “-f”, or “-s”) about where to
write the output, output is written to the current working directory,
typically the root of the active project.

19-24 Working with ACUCOBOL-GT Utilities
3. Set the “-n” option to specify the number of records to be read by the
utility before it arrives at field descriptions in the FD. In very large
XML files, it may not be desirable to read the entire file to derive the
FD. On the other hand, it may be necessary to read more than one
record to confirm a “best guess” for intended field descriptions in a
record. The value of “-n” must be numeric and greater than “0”.

4. If you want to add a standard prefix to data items in the FD, use the
“-p” option.

5. Use the “-o” option with a numeric value greater than “0” to instruct
xml2fd to look for cases within the record where it is appropriate to
assign an OCCURS clause. The value that you specify provides a
default number to assign in the OCCURS clause. In complex cases
where an FD has more than one OCCURS clause and where the
number of OCCURS differs, users must manually change the generated
representation of the FD in the graphical designer.

6. As you make changes in the XML2FD Utility window, the Options
field displays the xml2fd command line that you are constructing.
Verify this command line, then click Start to build the FD and
SELECT.

The Output window prints the output of xml2fd. More information
about this utility can be found in section 8.2.2, “XML-to-FD Utility,” in
A Guide to Interoperating with ACUCOBOL-GT.

20
 The AcuBench Integrated
Debugger
Key Topics

The Debugger Interface .. 20-2

Debug Mode Compile Options ... 20-7

Entering the Debugger.. 20-8

Debug Menu Commands ... 20-9

20-2 The AcuBench Integrated Debugger
20.1 The Debugger Interface

The AcuBench integrated debugger is a source level debugger that runs
inside the AcuBench workspace. The integrated debugger provides most of
the functional capabilities of the ACUCOBOL-GT runtime debugger, as well
as a few AcuBench-specific features. Most notably, the integrated debugger
offers you the ability to modify your code during debug, without leaving the
debugger interface.

Note: Users of Windows XP who have installed Service Pack 2 should be
aware that the operating system’s default firewall protection may block
operation of the integrated debugger. When prompted to choose whether or
not to keep blocking “AcuBench80”, select Unblock.

This chapter describes in detail those elements of the debugger interface that
are unique to AcuBench. It also notes equivalencies between AcuBench and
runtime debugger functions. For more information about those equivalent
functions, refer to the ACUCOBOL-GT User’s Guide, section 3.1, “Runtime
Debugger,” which includes extended descriptions of debugger functions.

Note that if you prefer to use the ACUCOBOL-GT runtime debugger,
instructions on how to access it from within AcuBench are included in
Chapter 9, section 9.8, “Debugging a Program.”.

Integrated debugger functions appear in a Code Editor window in the
development area of the workspace. The debugger interface also uses the
Output window, usually displayed at the bottom of the screen, to display
various output messages generated by the debugger. These messages may
include tracing information, information about breakpoints, error messages,
and so on.

When using the integrated debugger, you may want to open the File tab of the
Workspace window. The File tab provides a tree view representation of your
project’s Source, Screen, Report, Copy, Object, List, Resource, FD, and
Remote files. (See section 6.3.1, “Creating a Project,” for more
information about project files.)

The Debugger Interface 20-3
You can toggle the Output and Workspace windows on and off from the View
menu or the Standard toolbar, or close them by clicking the Close button on
each window. You can also resize windows by dragging their borders with
the mouse.

The AcuBench integrated debugger offers several features to assist you in
debugging your code:

• The current line of execution is highlighted, and if the Line Number pane
is visible, its line number is marked. You can toggle the highlighting and
specify the highlight color in the Tools/Options/Environment/Debug
dialog box, described in this manual in Chapter 4, section 4.3.5, “Debug
Options.”

• You can make changes to your code while debugging. The changes do
not affect the current execution of the program, but you can test the
changes simply by restarting the debugger, as described in this chapter in
section 20.4.2, “Starting, Stopping, and Navigating the Debugger.”

• Three specialized windows give you information about your code as you
debug: Watch, Stack Info, and Memory. These windows can be
displayed in the Output window or as floating windows, either one at a
time or together, in any combination.

• A Quick Watch window lets you select any variable in the source code
and display its current value.

• Using AcuConnect® with Micro Focus’s Thin Client technology, you
can debug a program that resides on a remote server using the same
AcuBench debug commands that are used to debug a local program.

20.1.1 Debug Menu and Toolbar

AcuBench debug commands can be accessed from the Debug menu and the
Debug toolbar. You can also create keyboard shortcuts for many debug
commands. A complete list of user-definable shortcuts is found in Chapter
23 of this manual. Descriptions of the debug commands appear later in this
chapter.

20-4 The AcuBench Integrated Debugger
As with other workbench toolbars, the Debug toolbar can be customized by
selecting Toolbars/Customize from the View menu. To display or hide the
Debug toolbar, select Toolbars/Debug from the View menu. You can also
toggle the display by right-clicking in the toolbar area and choosing Debug
or by selecting Customize/Toolbars from the Tools menu and then setting or
clearing Debug in the Customize dialog box.

20.1.2 Debugger Output

Debugger messages appear in the Output window, which usually appears at
the bottom of the AcuBench screen. If you have created an error file and are
capturing trace information, you can also elect to display this information in
the Output window.

Note that if you choose to send trace information to the Output window but
no runtime error file exists, unusual screen behavior and additional undefined
behaviors will result.

To send tracing information to the Output window:

1. Use the Project Settings dialog to establish an error file. On the Runtime
tab, first select the I/O options catalog, then mark the File to be opened
for error message (-e) check box. Don’t forget to add an error file name
in the entry field.

2. Close the Project Settings interface.

3. Open the Debug menu, expand the Trace Option sub-menu, and select
Trace to Debug Window.

Now, when you turn on the debugger’s tracing options, all generated
trace information is sent both to the error file and to the Output window.

20.1.3 Watch Window

The Watch window displays any program variables that you have selected.
When you add a variable to the Watch window, the variable name appears in
the Variable column, to the left of the variable’s value. As the program
executes, any changes to the values of the listed variables are displayed.

The Debugger Interface 20-5
Note: Placing a watch on a variable does not cause the debugger to break
when the value of the variable changes. If you want to monitor a variable
and break when its value changes, use the Monitor tab of the Breakpoints
window. See section 20.4.4.5 for details.

After you start a program in the AcuBench integrated debugger, you can set
a watch in either of two ways:

1. Use the Watch Window toolbar button to open the Watch window, or
select Debug Window/Watch from the View menu. Double-click in a
blank area of the Watch window to open a blank entry field, then enter
the variable name.

After you enter the name, the value displays automatically in the
adjacent field.

2. Select the desired variable name in your code, then right-click and
select Add to Watch Window. You can also invoke this command
from the Variable List by selecting a variable name in the box,
right-clicking, and choosing Add to Watch Window.

Note that the Watch window must already be open in order for this
command to have an effect.

Once you have added variables to the Watch window, you can choose
whether their values are displayed in standard alphanumeric format or
hexadecimal format. To toggle between formats, right-click anywhere in the
Watch window and select or de-select the Hexadecimal Display check box
in the pop-up menu.

The Watch window can also be used to ACCEPT a variable as you debug.
With the debugger window active, simply type a new value for the variable in
the Value column of the Watch window. Note that you are able to add
variables or change values in the Watch window only after you have entered
or re-entered the debugger. When the program is in an ACCEPT loop, the
Watch window remains visible, but is not enabled for editing.

To remove a variable from the Watch window, highlight the variable and
press the Delete key.

20-6 The AcuBench Integrated Debugger
Quick Watch window

If the Watch window is not open, you can still retrieve the value of a variable
by performing a quick watch. When you perform a quick watch, the selected
variable and its value appear in a Quick Watch window. You can either close
the Quick Watch window after viewing a variable’s value, or click the Add
Watch button to add the variable to the Watch window. If you add a watch
on a variable when the Watch window is closed, AcuBench automatically
opens the Watch window.

To perform a quick watch on a variable:

• Double-click the desired variable in the Code Editor to open a Quick
Watch window.

• Highlight the desired variable in the Code Editor and click the Quick
Watch toolbar button.

• Right-click the desired variable in the Code Editor and select Quick
Watch.

You can view the values of up to seven previously selected variables by
choosing from the drop-down box at the top of the Quick Watch window.

20.1.4 Stack Info Window

The Stack Info window is equivalent to the ACUCOBOL-GT debugger’s
View Perform Stack command. The window lists all of the nested paragraphs
leading up to the current statement, from the beginning of the program or
thread. The Stack Info window displays the source file name, line number,
and paragraph.

By default, the Stack Info window displays the full path to a particular file.
To toggle the display between the full path name and just the file name,
right-click inside the Stack Info window and select Full Path Filename.

To position the cursor at a specific paragraph in your code, double-click the
file path in the Stack Info window.

Debug Mode Compile Options 20-7
When you start a program in the debugger, you can view the Stack Info
window either by choosing Debug Window/Call Stack from the View menu
or with the Call Stack toolbar button. As your program executes, stack
information (file path, line number, and paragraph name) appears in the
window.

20.1.5 Memory Window

The Memory window offers the same features as the ACUCOBOL-GT
runtime debugger’s Memory Usage command, displaying the amount of
program, file, window, overhead, and total memory used by your program,
including standard and paged memory.

After starting your program in the debugger, open the Memory window by
selecting Debug Window/Memory from the View menu or by using the
Memory Window toolbar button. Memory status information is displayed
automatically in the categories mentioned above.

20.2 Debug Mode Compile Options

In AcuBench, a mode is a set of compile options, runtime options,
environment variables, and library options for a project. Debug Mode is one
of two pre-defined modes in the workbench. In Debug Mode, the “Include
all debugging information (-Ga)” compile option is automatically set, as well
as the standard “Name of object file (-o)” and “Ignore CBLFLAGS
environmental variable (-x)” options. For remote debugging, the “Name of
remote object file (-o)” option is also set.

To select Debug Mode, use the Project/Set Active Mode command or select
Debug Mode from the list box on the Project toolbar. You can also select
Debug Mode in the Project Settings dialog box. More information about
modes and how to add and delete them in AcuBench can be found in
Chapter 7, section 7.2, “Modes.”

AcuBench allows three levels of debugging: source, symbolic, and low.
Source level debugging lets you view your source code while you are
debugging. With symbolic debugging, your source code is hidden, but the

20-8 The AcuBench Integrated Debugger
Output window displays any error messages and warnings. To access the
low-level debugging function from within AcuBench, compile with the “-d”
option. Refer to the ACUCOBOL-GT User’s Guide for further information
on these three levels of debugging.

Before you enter the AcuBench debugger, you should compile your program
with at least one of the following compile options available from the Project
Settings dialog box:

You can change debug compiler options in the Project Settings dialog box.
Simply select the Compiler tab, choose Debugger Options from the catalog
drop-down list box, clear the “-Ga” option, and select from among the other
listed options.

20.3 Entering the Debugger

To enter the AcuBench debugger, select the program in either the File view
or the Structure view of the Workspace window, then select Go from the
Debug menu. You can also click the Go button on the Debug toolbar or use
a shortcut key (F8 by default). Note that the first time you select Go, the
debugger opens the program source file and places the cursor at the first line
of execution. When you select Go a second time, the program resumes
execution from its current location. The program transfers control to the
debugger when it reaches a breakpoint.

If your source file is already open in the Code Editor, you can launch the
debugger by clicking on the editing window and selecting Go from the
Debug menu.

-Ga Turns on all debugging options

-Gd Includes the source code in the compiled object file

-Gl Includes line number information

-Gs Includes extra symbol information for symbolic debugging. This
allows AcuBench to traverse the symbol table of the COBOL
program and show group data items in a tree view control

-Gy Includes minimal symbol information for basic symbolic
debugging.

Debug Menu Commands 20-9
Note that when your program is launched, a corresponding button is added to
the Windows taskbar. When the program displays and accepts a screen, that
screen does not automatically appear in the foreground. Click the button on
the taskbar to shift focus from AcuBench to the running program.

Once a program has begun execution in the debugger, control is returned to
the debugger in one of the following ways:

• When a breakpoint is reached. User-defined breakpoints are discussed
in more detail later in this chapter.

• When a STOP statement executes that is not a STOPRUN. This
behavior is similar to a breakpoint. Execution halts and the debugger
cursor displays on a specific line. If you have not compiled with any
debugging options, symbols and source are unavailable.

• When the debugger steps through the program and reaches the step
count.

• When the Debug/Interrupt command is selected.

• When a monitored variable changes.

If the Output window is closed, it pops up over the lower portion of the screen
when you enter the debugger. You can open it at other times by selecting
Output Window from the View menu or by clicking the Output Window
toolbar button. When you quit or exit the debugger, the Output window
remains open until you close it by toggling the Output Window button or
View menu command, or by clicking the window’s Close button.

20.4 Debug Menu Commands

The AcuBench Debug drop-down menu includes all the commands needed
for debug functions. AcuBench also allows you to define keyboard
key-combination shortcuts for many debug commands. Refer to Chapter 23,
“Keyboard Shortcut Reference,” for more information. Debug commands
are described in the following sections.

20-10 The AcuBench Integrated Debugger
Note that while you are debugging, any function selected from the toolbar
affects the active debugging session. For example, if you click Go while
“Checkbox.cbl” is selected, and then select “Combo.cbl” and click Go a
second time, the debugger behaves as though you have clicked Go a second
time for “Checkbox.cbl”. Compile and Execute functions are disabled during
a debug session. Therefore, if you want to perform any build-related
functions, you must first exit the debugger.

20.4.1 Tracing Functions

The Debug menu’s Trace Option commands generate output messages that
describe operations performed in a given domain during program execution.
You can invoke the various trace functions only through the Debug menu’s
Trace Option commands. Each function is described briefly below. More
information about trace functions can be found in section 3.1 of the
ACUCOBOL-GT User’s Guide.

Trace File toggles file tracing on and off. Output trace information includes
all file-related operations performed at runtime. Trace level for this
command can be set from 1 to 10 via the Trace Level dialog box described
below.

Trace Paragraphs toggles paragraph tracing on and off. Output trace
information includes all paragraphs and sections entered at runtime.

Trace Screens toggles screen tracing on and off. Trace output includes
information about DISPLAYs of Screen section items and about CREATEs,
DISPLAYs, MODIFYs, and INQUIREs of ActiveX objects. Trace level for
this command can be set from 1 to 10 via the Trace Level dialog box
described below.

Trace Flush toggles trace flushing on and off if you are writing to an error
file. With this command, the error file is flushed to disk after each WRITE
operation.

Trace General toggles general tracing on and off. Trace output includes
information on operations not covered by either the Trace File or Trace
Screens command. Trace level for this command can be set from 1 to 10 via
the Trace Level dialog box described below.

Debug Menu Commands 20-11
Trace Levels displays the Trace Level dialog box, in which you can set the
level of detail in the output messages generated.

Trace levels can be set for the Trace File, Trace Screens, and Trace General
commands. The higher the trace level, the greater the amount of debugging
information sent to the error file. Therefore, an entry of “10” generates
maximum output and an entry of “1” generates minimum output. An entry of
“0” (the default) generates no output. The extra information is useful
primarily to the extend Technical Support department.

To designate an error file to receive trace level output, select the File to be
opened for error message (-e) option in the Project Settings/Runtime/I/O
options dialog box. Indicate the name of the error file in the adjacent entry
field. Note that if you set a trace level of 10, and see no output, this can mean
that program execution included no output triggers.

Trace to Debug Window toggles the display of trace output messages in the
Output window. The trace information displayed may be the result of any
trace command except Trace Levels. You should establish an error file
before you use this command. Refer to section 20.1.2, “Debugger Output,”
for information about directing output to an error file.

20.4.2 Starting, Stopping, and Navigating the Debugger

The Debug menu contains a number of navigation commands used to start,
stop, and control the execution of your program in the debugger. Some of
these commands are assigned default keyboard shortcuts; others have not
been assigned shortcuts. In either case, you can create your own customized
keyboard shortcuts for the navigation commands as described in section
4.3.6, “Keyboard Options.”

20-12 The AcuBench Integrated Debugger
Go, which is equivalent to the ACUCOBOL-GT debugger’s Run/Continue
command, starts the selected program in the debugger. If your files are out of
date, you may be prompted to recompile them (depending on the build
options that you have specified). If you select the Go command a second
time, it resumes execution of your program from the cursor’s current
location. The program returns to the debugger when it reaches a breakpoint.

Restart ends the current debugging session and begins a new session with
the same program. When you select Restart, the debug cursor returns to the
first statement in the code. Restart is useful when you want to repeat the
session or when you have altered lines of code and want to rebuild and begin
a session from the first statement.

To have the debugger automatically rebuild your program when you restart,
select Follow the options specified in the ‘Build’ page in the
Environment/Debug section of the Tools/Options window. To customize the
Build rules for your project, go to the Environment/Build section of the
Tools/Options window.

Exit Debugger halts the current debugging session but leaves the debugger
open. It is equivalent to the ACUCOBOL-GT File/Exit command.

Quit Debugging halts the debugging session and exits the debugger. It is
equivalent to the ACUCOBOL-GT File/Quit command.

Interrupt stops execution of the application and returns control to the
debugger, just like the Ctrl+Break shortcut. It creates a pause similar to that
caused by a breakpoint, with one caveat: if the program is in a PERFORM or
ACCEPT loop, the Interrupt command is not received until an exception
occurs or the action completes.

After receiving the Interrupt command, the debugger cursor displays on the
current line of execution. Note that you should use Go, rather than Restart,
to continue debugging after using the Interrupt command.

Auto Step lets you execute “step” commands repeatedly until the program’s
end. You can change the speed at which the command executes, from “1”
(slowest, approximately 3 seconds per step) to “9” (fastest, several steps per
second). When you select a speed level in the “Standard” area of the dialog,

Debug Menu Commands 20-13
the actual speed is displayed in milliseconds per step. You can also use the
“Customize” area to set a custom speed, specified in milliseconds per step.

Step Into allows you to step to the next statement in your program. You can
use this command to step into a new thread when it is created. If you want to
continue to track the original thread, use the debugger’s Step Over command.

Step Over allows you to step over the next statement in your program. Use
this command if you want to track a single thread rather than stepping into a
new thread each time one is created.

Step Out Paragraph runs your program until it returns to the point at which
the command was invoked. It is equivalent to the ACUCOBOL-GT
debugger’s Run/Go until Paragraph Returns command.

Step Out Program runs your program until it exits to its calling program. It
is equivalent to the ACUCOBOL-GT debugger’s Run/Go until Program
Exits command.

Skip to Line moves the current program location to the line containing the
cursor. Further execution of your program proceeds from this line. The
current program location does not change unless the cursor line contains a
verb. This command is equivalent to the ACUCOBOL-GT debugger’s
Run/Skip to Cursor Line command.

Use this command with care, because the skipped lines are not executed. You
may skip important sections of code and experience unexpected results.

20-14 The AcuBench Integrated Debugger
Run to Cursor sets a temporary breakpoint at the current cursor line (or the
closest previous line with a verb) and continues execution of your program.
It is equivalent to the ACUCOBOL-GT debugger’s Run/Go to Cursor Line
command.

20.4.3 Debugger Scripts

A debugger script file contains keyboard input and menu selection
information to automate the process of debugging a program.

To record a script, select Record Script from the Debug menu. This
command is equivalent to the ACUCOBOL-GT debugger’s File/Record
Script command, and turns on a recorder that saves all of your keyboard input
and menu selections to the file that you specify.

When the recorder is running, the Record Script menu option is replaced by
a Stop Recorder option. Use this to end your recording. If you do not end
your recording, nothing is saved in the file.

While the recorder is active, you cannot use the mouse for anything except
selecting menu items.

The recorder can save up to 4096 characters of information. Normal
keystrokes use one character. Special keys such as function keys and menu
selections can use up to four characters.

To run a debugger script file, select Run Script from the Debug menu. This
causes all input (debugger and program) to be read from the script. Control
returns to the keyboard when the script is finished. This command is
equivalent to the ACUCOBOL-GT runtime debugger’s File/Run Script
command.

20.4.4 Breakpoints

A breakpoint is a location in your program’s code that you designate. When
a breakpoint location is reached during program execution, control is
returned to the debugger before the code at the breakpoint is executed.

Debug Menu Commands 20-15
Enabled breakpoints appear as red thumbtack icons in the Line Number pane
of the debugger’s Code Editor window. Disabled breakpoints appear as
yellow thumbtack icons.

Bookmarks that you set in your source code when you are working in the
Code Editor automatically become breakpoints when you enter the debugger.
These locations are marked with a standard bookmark icon, rather than the
breakpoint thumbtack. Note that bookmarks are not included in the list of
breakpoints displayed in the Debug/Breakpoints dialog box.

Breakpoints are most easily set and managed using the Debug toolbar
buttons.

• To set or remove a breakpoint, use the Toggle Breakpoint push button.

• To temporarily disable a breakpoint, use the Disable Breakpoint push
button.

• To remove all breakpoints, use the Clear All Breakpoints push button.

You can also set, modify, and delete breakpoints using the Breakpoints
dialog box. To do this, select Breakpoints from the Debug menu.

The Breakpoints dialog displays a list of all the breakpoints set in your code,
including the file name, line number, skip count, and expression associated
with the breakpoint, as well as whether the breakpoint is currently enabled.
With the buttons in the upper right corner of the tab, you can view the code

20-16 The AcuBench Integrated Debugger
associated with a breakpoint, modify or delete a breakpoint, delete all
breakpoints, or add a new breakpoint. Selecting the New or Modify button
opens the Breakpoint Details dialog. The Breakpoint Details dialog allows
you to enter or modify the file name, line, skip count, and expression of the
breakpoint. You can also enable or disable a breakpoint and set monitors on
variables using this interface.

All of these functions are described in the following sections.

20.4.4.1 Setting a breakpoint using the Breakpoints dialog box

1. Select Breakpoints from the Debug menu to open the Breakpoints
dialog box.

2. On the Location tab, click New (the button in the top, right corner of
the tab) or double-click in the window.

The Breakpoint Details dialog box appears. By default, the “Enable”
check box is selected.

3. Fill in the file name, line number, expression, and skip count for your
breakpoint. Use the Browse push button if necessary to locate your
file name.

4. Click OK to return to the Breakpoints dialog. The location of your
new breakpoint appears in the dialog box.

5. Click OK.

Debug Menu Commands 20-17
20.4.4.2 Modifying a breakpoint using the Breakpoints dialog box

1. Select Breakpoints from the Debug menu to open the Breakpoints
dialog box.

The Location tab displays a list of the current breakpoint locations, along
with each breakpoint’s file name, line number, skip count, and
expression.

2. Click Modify (the second of the five buttons in the top, right portion of
the tab).

The Breakpoint Details dialog box appears. Here, you can enable or
disable a breakpoint; change the file name; or alter the line number,
expression, or skip count.

3. Click OK to return to the Breakpoints dialog box. The modifications
to your breakpoints are now reflected in the Breakpoints list.

4. Click OK.

20.4.4.3 Deleting breakpoints using the Breakpoints dialog box

1. Select Breakpoints from the Debug menu to open the Breakpoints
dialog box.

2. On the Location tab of the dialog box, select the breakpoint you want
to delete.

3. Click Delete (the third of the five buttons in the top, right portion of
the tab). To remove all your breakpoints, click Delete All (next to the
New button).

4. Click OK.

20.4.4.4 Viewing a breakpoint with the Breakpoints dialog box

1. Select Breakpoints from the Debug menu to open the Breakpoints
dialog box.

2. On the Location tab of the dialog box, select the breakpoint location
you want to view.

3. Click View Source (the first of the five buttons in the top, right portion
of the tab).

This command positions the cursor at the indicated breakpoint in your
source code.

20.4.4.5 Monitoring variables using the Breakpoints dialog box

The Monitor tab of the Breakpoints dialog box lets you monitor value
changes in the variables in your program. The Monitor tab lists all the
variables that you want to monitor, and allows you to add variables to the list
or delete variables from the list.

To monitor a variable while debugging:

1. Select Breakpoints from the Debug menu to open the Breakpoints
dialog box, then select the Monitor tab.

2. To add a new variable to monitor, click New or double-click in the
window.

3. Enter the name of the variable to monitor.

4. Click OK.

You can use the Delete and Delete All push buttons to remove monitors on
variables.

Debug Menu Commands 20-19
20.4.5 Debugging Threaded Applications

The Debug menu’s Threads option opens the Threads dialog box, which
displays a list of the threads in the program being debugged. This list
includes the file name and the location of each thread.

By default, the “Run all threads” check box is enabled, which means the
debugger runs all threads simultaneously.

• Use the Step Into command to step into a new thread when it is created.

• Use Step Over when you want to trace a single thread in your program.

Note that breakpoints in other threads remain active and can transfer
control to the debugger. When a thread other than the current thread
returns control to the debugger, that thread becomes the current thread.

To execute only one thread at a time, disable the Run all threads check box
and press Go. In this case, to switch between threads, select the thread you
want from the Threads dialog box and click Go.

If you enable the “Show full path name” check box in the Threads dialog box,
the list of threads includes the file’s full path. Disable this check box if you
want the dialog box to list only the file name.

While the Threads dialog provides a useful tool for controlling how the
debugger navigates between threads, the act of single-stepping through a
program, by its nature, interferes with the natural threading behavior of the
runtime. As a result, if you are trying to debug a threading issue, you may

20-20 The AcuBench Integrated Debugger
receive a more accurate picture of your program’s behavior by enabling
paragraph tracing and running the program with an error file than by stepping
through the program line-by-line.

20.4.6 Quick Watch

If you select a variable in the Code Editor and then use the Debug/Quick
Watch command, a Quick Watch window appears, displaying the variable’s
current value. For more information about the Quick Watch window, refer to
section 20.1.3, “Watch Window.”

21
 Looking for Something?:
Search and Replace
Key Topics

Introduction ... 21-2

Find ... 21-2

Find in Files.. 21-4

Find in Objects .. 21-7

Replace ... 21-9

Replace in Files ... 21-10

21-2 Looking for Something?: Search and Replace
21.1 Introduction

When you are working in AcuBench, a variety of search and replace options
are available to allow you to locate a text string within the current document,
within the AcuBench graphical designers associated with a project, or within
the files in a specified directory structure.

21.2 Find

To search for a string in the document currently open in the Code Editor or
Event Editor, do one of the following:

• Open the Edit menu and select Find.

• Right-click in the editor window and select Find.

• Use the default Ctrl + F keyboard shortcut.

This opens the Find dialog, in which you can enter a search string and set a
variety of options for the search.

The Find What combo box displays the string to be used in the search. If
text is selected in the editor when you open the Find dialog, that text will
appear selected in the combo box. If you are performing multiple searches,
you can expand the combo box to see and select from a list of up to 15
previous search terms. You can also type the search term that you would like
to use in this field.

If you want to find only those strings that exactly match the case of the search
string that you enter, mark the Match Case check box. If this box is not
marked (the default), the search is not case-sensitive.

Find 21-3
If you want to search for a regular expression, rather than a text string, mark
the Regular Expression check box. A regular expression is a formula for
matching strings that have a certain pattern. Regular expressions are
discussed in more detail in the next section, “Find in Files.”

If you are not using regular expressions, and you do not want the search
function to consider hyphens and underscores, mark the Ignore “-” and “_”
check box.

If you want AcuBench to search the entire document, regardless of where the
cursor is positioned when you start the search, mark the Wrap Around
Search check box. This means that in a “down” search, when the search
reaches the end of the active document, it continues searching from the top.
Likewise, in an “up” search, when the search reaches the beginning of the
active document, it continues searching from the end.

To determine the direction for the search, select either the Up radio button, to
search from the cursor position to the top of the file, or the Down radio
button, to search from the cursor position to the end of the file.

21.2.1 Locate a single instance of the search string

To find a single instance of the search string, click Find Next to start the
search function. The first instance of the string that AcuBench locates is
highlighted. To continue to the next instance of the string, click Find Next
again.

21.2.2 Mark all instances of the search string

If you expect that multiple instances of a string will be found, and you want
an easy way to refer to each instance, click Mark All to perform the search.
AcuBench places a bookmark at each line on which the string is found.
Navigate between bookmarks with the Previous Bookmark and Next
Bookmark Edit commands, toolbar buttons, or keyboard shortcuts.

21-4 Looking for Something?: Search and Replace
21.2.3 List all occurrences of the search string

Alternatively, to see a list of all instances of a search string in the Output
window, click Find All to begin your search. A list is generated, showing the
file path, line number, and text of each line in the active document that
contains the string. Double-click on item in the list to jump to that point in
the active document.

21.3 Find in Files

To locate all instances of a search string within a specified directory or set of
directories, do one of the following:

• Open the Edit menu and select Find in Files.

• Click the Find in Files button on the Editor toolbar.

When you choose this command, the Find in Files dialog box appears.

Like the basic Find dialog, the Find in Files dialog box starts with a Find
what combo box that displays any currently selected text and provides a list
of previous search commands.

Find in Files 21-5
In addition, because this search function searches specified directories for
files containing a text string, rather than limit itself to the active document,
you can limit the search to specific types of files. Use the File types field to
enter one or more file extensions. Only files with the specified extension(s)
will be examined during the search. The default is to search all file types
(“*.*”).

As in the basic Find dialog, you can choose whether or not the search should
be case-sensitive (the Match case) option, and whether or not regular
expressions are used.

21.3.1 Special Operators and Regular Expressions

A regular expression is a formula for matching strings that have a certain
pattern. It contains both normal alphabetic and numeric characters and
metacharacters. Metacharacters are used to create the template pattern used
in the search.

When you mark the Regular expressions check box, a button appears on the
Find in Files interface, to the right of the “Find what” field. When you click
this button, a pop-up list displays descriptions of various supported
metacharacters.

Select a description from the list and the metacharacter is added to the “Find
what” field. If you are familiar with Windows regular expression rules, you
can also type in your own patterns.

The metacharacter options available from the pop-up list include:

Any Character
.

When the search function looks for a match for the
specified string, any character is acceptable in this
character position.

Character in Range
[]

Any of the characters between the brackets counts
as a match for the search function.

Character Not in Range
[^]

Any character other than those listed between the
brackets is an acceptable match.

Beginning of Line
^

Find the preceding search string only when it
occurs at the beginning of a line.

End of Line
$

Find the preceding search string only when it
occurs at the end of a line.

Beginning of Word
\<

Find the following search string only when it
occurs at the beginning of a word.

End of Word
\>

Find the preceding search string only when it
occurs at the end of a word.

Tagged Expression
\(\)

Treat the expression between \(and \) as a group.

0 or More Matches
*

Find zero or more occurrences of the preceding
character.

1 or More Matches
+

Find one or more occurrences of the preceding
character.

Quoted String
\

This is an escape character, used before a symbol
that may be used as a metacharacter to indicate that
it is being used as a literal. For example, if you
were searching for any library routine, you could
use “\$” to indicate the dollar sign character, rather
than the end of line metacharacter.

Find in Files 21-7
Some sample expressions using regular expressions include:

One useful, supported metacharacter not included in the regular expressions
pop-up list is the pipe symbol (“|”). This is used between two separate search
strings or search patterns to indicate that either of the two expressions is
acceptable. The expression “if|else”, for example, will find any line that
contains either the word “if” or the word “else”.

21.3.2 Performing the Search

Two radio buttons let you choose whether to search through the files
associated with the current workspace or files located in a specified directory
path. When you select Search in directories, the Search directory options
frame is enabled. You can enter a directory path, or click the Browse button
to navigate to a directory. Mark the Include subdirectories box to include
any subdirectories within the specified path, or uncheck the box to search
only the specified directory.

When you have specified the location to be searched, click Find. AcuBench
searches the specified files and folders, displaying all matches in the Output
window. To see one of the specified instances of the string, double-click the
corresponding line in the Output window. AcuBench opens the selected file
in the Code Editor and places the cursor at the specified line.

^…$ Any line having three characters

[0-9] Any digit

[1-2].$ Strings where the second-to-last digit is “1” or “2”

[a-z] Any lowercase alphabetic character

^[A-C] Strings where the first character is an uppercase
“A”, “B”, or “C”

[Ww]indow The strings “Window” or “window”

21-8 Looking for Something?: Search and Replace
21.4 Find in Objects

When you are working with programs that appear in the Structure view, you
may find it useful to search for a given string within the various AcuBench
designers used by the program. For example, you may want to search for a
variable defined in the Screen Designer and referenced in the Event Editor.
In this instance, Find in Files would locate the string in the read-only COPY
file associated with the designer, rather than the actual designer. If you want
to make changes to the string, this presents some difficulties.

To help you make efficient use of the AcuBench graphical designers, the Find
in Objects function helps you to locate all instances of a given string stored in
the Property window and the graphical design interfaces.

To search the graphical designers for all instances of a string, do one of the
following:

• Open the Edit menu and select Find in Objects.

• Right-click in any of the graphical designers and select Find in Objects.

When you issue this command, the Find in Objects dialog opens.

As with the other Find dialogs, the Find What combo box is used to display
the selected search string. The most recent search term, if any, is displayed in
the entry portion of the combo box. You can expand the box to see a list of
up to 15 previous search terms.

When you open the Find in Objects dialog at the project level, rather than
from within an individual designer, you will see a Project combo box under
the Find What field. If your workspace contains only one project, the name

Replace 21-9
of that project will appear here. If your workspace contains multiple projects,
by default, “*.*” appears here, indicating that all projects in the workspace
should be searched. To search a single project in a workspace containing
multiple projects, expand the combo box and select the project from the list.

When a single project name appears in the Project combo box, the Target
Object list is enabled. This allows you to choose whether to search the
objects associated with all PSF and DLT files in the project, or to search only
the objects associated with certain PSF and DLT files.

Regardless of the context in which you launch the Find in Objects dialog, you
can choose whether or not the search is case-sensitive with the Match Case
option. You can also use the Match Whole Word Only option to determine
whether the specified string should be considered only as an entire word, or
as either an entire word or a portion of a word. If you want the search
operation to include screen and report properties, rather than only property
values, mark the Find Property Name check box.

Finally, if for any reason you want the results of your search output to the
“Find in Files” tab of the Output window, rather than the default “Find in
Objects” tab, mark the Output to pane (Find in Files) option.

When you have finished filling in the dialog options, click Find to begin your
search. Any search items found are listed in the Output window.
Double-click an item in the list to open the corresponding graphical designer
with the found item selected.

21.5 Replace

To replace instances of a string in a document currently open in the Code
Editor or Event Editor, do one of the following:

• Open the Edit menu and select Replace.

• Click the Replace button on the Editor toolbar.

• Use the default Ctrl + H keyboard shortcut.

21-10 Looking for Something?: Search and Replace
When you issue the Replace command, the Replace dialog box is displayed.

As with the Find dialogs, the Replace dialog includes a Find What combo
box, used to display the current search term. Expand the combo box to see a
list of up to 15 previous search terms.

Enter the replacement string in the Replace With combo box. A list of up to
15 previous replacement strings can be seen by expanding the combo box.

See section 21.2 for more information about the check-box and radio button
options at the bottom of the Replace interface.

When you have finished making your selections, click Find Next to locate
the next instance of the search string. Select Replace to replace only that
instance of the string or Replace All to replace all instances of the string. To
skip an instance of the string and continue, select Find Next. To stop
searching, click Cancel.

21.6 Replace in Files

Just as Find in Files allows you to search for instances of a given string within
a specified workspace or directory structure, Replace in Files provides a way
to replace all instances of a string within a workspace or directory structure.

To replace a search string in all files in the specified location do one of the
following:

• Open the Edit menu and select Replace in Files.

• Click the Replace in Files button on the Editor toolbar.

Replace in Files 21-11
When you select this option, the Replace in Files dialog appears.

Most options on this screen correspond to options on the Find in Files
interface, discussed at length in section 21.3. There is, however, one
important thing to note about this interface: there is no option to replace a
single item. When you choose Replace All, AcuBench replaces all instances
of the text string without prompting for user confirmation.

21-12 Looking for Something?: Search and Replace

22
 Toolbar Reference
Key Topics

The Standard Toolbar ... 22-2

The Project Toolbar .. 22-4

The Editor Toolbar.. 22-6

The Debug Toolbar.. 22-6

The Align Toolbar ... 22-8

The Launch Toolbar... 22-8

22-2 Toolbar Reference
22.1 The Standard Toolbar

The default Standard toolbar is shown below:

The Standard toolbar commands (looking at the toolbar illustration from left
to right) are described in the following table:

Description Menu/Command Equivalent

New. Generates the New dialog box, from
which you can open a new project,
program, screen file, and source file. It
also provides access to the File Designer
interface.

File/New

Open. Lets you open an existing file.
When you choose this command, the Open
dialog box appears.

File/Open

Save. Saves the active file using its current
file name. If the file has not yet been
saved, the Save As dialog box appears.

File/Save

Save All. Lets you save all open files. You
can save the files in new folders or in the
same folders using a new name.

File/Save All

Open Project. Lets you open an existing
project file (“.pjf”). When you choose this
command, the Open Project dialog box
appears.

File/Open Project

Save Project. Lets you save a project file
(“.pjf”). If the project has not yet been
saved, the Save Project dialog box appears.

File/Save Project

Print. Lets you send the active file to a
printer. When you choose this command,
the Print dialog box appears.

File/Print

The Standard Toolbar 22-3
Print Preview. Lets you see how the
active file looks before you print it. When
you choose this command, the Print
Preview screen appears.

File/Print Preview

Cut. Removes the selected text or screen
element and places it on the clipboard.

Edit/Cut

Copy. Places a copy of the selected text or
screen element on the clipboard.

Edit/Copy

Paste. Places a selection that has been cut
or copied to the clipboard into the active
file. When you choose this command,
selected text is pasted to the cursor
location, and a selected control is pasted to
the same location that it occupies in the old
screen.

Edit/Paste

Undo. Reverses recent editing actions.
The workbench has multiple undo support,
so previous commands can be undone.

Edit/Undo

Redo. Reverses recent undo operations if
you have performed no other actions since
the undo. The workbench has multiple
redo support, so previous commands can
be redone.

Edit/Redo

Workspace. Toggles the view of the
workspace in the workbench window.

View/Workspace

Output Window. Toggles the view of the
Output window in the workbench window.

View/Output Window

Property Window. Toggles the view of
the Property window in the workbench
window.

View/Property Window

Component Toolbox. Toggles the view of
the Screen Component Toolbox in the
workbench window.

View/Screen Component Toolbox

Report Component Toolbox. Toggles the
view of the Report Component Toolbox in
the workbench window.

View/Report Component Toolbox

Description Menu/Command Equivalent

22-4 Toolbar Reference
22.2 The Project Toolbar

The default Project toolbar is shown below:

The Project toolbar commands (looking at the toolbar illustration from left to
right) are described in the following table:

Toggle Drag-and-Drop. Toggles the view
of the Drag and Drop interface.

View/Drag-and-Drop

Find in Objects. Lets you locate all
instances of a given string stored in the
Property window and the graphical
design interfaces, such as the Working
Storage Editor or the File Designer.

Edit/Find in Objects

About. Displays application identification
and copyright information.

Help/About

Description Menu/Command Equivalent

Description Menu/Command Equivalent

Set Active Mode. Allows you to select a
mode (set of compiler, runtime, and
environment settings) from the drop-down
list.

Project/Set Active Mode

Add/Remove Files. Allows you to add
files to or remove files from a project.

Project/Add/Remove Files

Settings. Opens the Project Settings
dialog. If a source file has focus, the
dialog is adjusted to support file-level
settings (compile options only).

Project/Settings

The Project Toolbar 22-5
Create Alias. Opens the Create Alias
dialog, in which you can define the alias
that contains the information needed for a
server-based runtime to run a remote
program in ACUCOBOL-GT® Thin
Client operations.

Project/Create Alias

Generate. Generates code for the
structural component of the program that
has focus (screen, data layout, Working
Storage Editor, etc.).

Build/Generate

Regenerate Workspace. Regenerates all
code-generating elements in a workspace.

Build/Regenerate Workspace

Compile. Compiles the selected file. Build/Compile

Build. Initiates a conditional compilation
of the workspace. Only those files that
have changed since the last build, and their
dependents, are recompiled.

Build/Build Workspace

Rebuild. Initiates a full recompilation of
the workspace. All files are compiled.

Build/Rebuild Workspace

Stop Build. Terminates the active Build or
Rebuild process.

Build/Stop Build

Execute. Executes the selected program. Build/Execute

Debug (Runtime). Starts the associated
COBOL program in the ACUCOBOL-GT
runtime debugger.

Build/Debug (Runtime)

Allow Parameters. Prompts for
parameters before executing the selected
program.

Build/Allow Parameters

Use Thin Client. Signals the workbench
that you want to use ACUCOBOL-GT
Thin Client related commands and project
setting options.

Build/Use Thin Client

Description Menu/Command Equivalent

22-6 Toolbar Reference
22.3 The Editor Toolbar

The Editor toolbar is used to invoke search and replace functions, as well as
various Code Editor tools and commands. More information about using this
toolbar can be found in Chapter 12, section 12.4, “Basic Editor
Functions.”

22.4 The Debug Toolbar

The default Debug toolbar is shown below:

The Debug toolbar commands (looking at the toolbar illustration from left to
right) are described in the following table:

Description Menu/Command Equivalent

Toggle Breakpoint. At the cursor
position, sets or removes a breakpoint.

Debug/Breakpoints

Disable Breakpoint. Disables the
selected breakpoint.

Debug/Breakpoints

Clear All Breakpoints. Removes all
breakpoints from the program.

Debug/Breakpoints

Go. Starts the selected program in the
AcuBench integrated debugger.

Debug/Go

Restart. Ends the current debugging
session and begins a new session.

Debug/Restart

Exit Debugger. Terminates the current
debugger session, but leaves the debugger
open.

Debug/Exit Debugger

Quit Debugging. Terminates the
debugger session and exits the debugger.

Debug/Quit Debugging

The Debug Toolbar 22-7
Interrupt. Stops execution of the
program, returning control to the
debugger.

Debug/Interrupt

Step Into. Steps to the next statement. Debug/Step Into

Step Over. Steps over the next statement. Debug/Step Over

Step out Paragraph. Runs the program
until the current paragraph returns to the
point from which it was performed.

Debug/Step Out Paragraph

Step out Program. Runs the program
until it exits to its calling program.

Debug/Step Out Program

Auto Step. Lets you execute “step”
commands repeatedly until the program’s
end.

Debug/Auto Step

Skip to Line. Moves the current program
location to the line containing the cursor.

Debug/Skip To Line

Run to Cursor. Sets a temporary
breakpoint at the current line (or closest
line with a verb) and continues execution
of the program.

Debug/Run To Cursor

Watch Window. Causes the Watch
window to be displayed or hidden.

View/Debug Window/Watch

Call Stack Window. Causes the Stack
Info window to be displayed or hidden.

View/Debug Window/Call Stack

Memory Window. Causes the Memory
window to be displayed or hidden.

View/Debug Window/Memory

Threads Window. Generates the Threads
dialog box.

View/Debug Window/Threads

Quick Watch. Opens the Quick Watch
window, which displays the value of a
selected variable.

Debug/Quick Watch

Description Menu/Command Equivalent

22-8 Toolbar Reference
22.5 The Align Toolbar

The Align toolbar is discussed in detail in Chapter 14.

22.6 The Launch Toolbar

The Launch toolbar is a configurable toolbar for holding program icons
linked to frequently used applications (such as a browser, spreadsheet, or
word processing application). When you first install AcuBench, the Launch
toolbar is empty. For step-by-step instructions on how to add icons to the
Launch toolbar, see Chapter 4, section 4.9, “The Customize Dialog.”.

23
 Keyboard Shortcut Reference
Key Topics

Introduction ... 23-2

Main: Default Keyboard Shortcuts ... 23-3

Code Editor: Default Keyboard Shortcuts 23-24

Screen Designer: Default Keyboard Shortcuts................................ 23-30

23-2 Keyboard Shortcut Reference
23.1 Introduction

AcuBench allows you to define keyboard key-combination shortcuts for
most workbench commands. A list of all AcuBench keyboard shortcuts,
organized by category, is contained in a drop-down list located in the
Tools/Options/Environment/Keyboard dialog box. The Main, Code Editor,
and Screen Designer categories indicate the state in which a particular
command functions. The Main category, which lists the menu bar, toolbar,
and window/right-click commands, is a superset of the Code Editor and
Screen Designer categories. The Code Editor and Screen Designer
categories each list shortcuts associated with their particular state. For
example, you access the list of special keystrokes that perform commands
particular to the Code Editor state by selecting the Code Editor category.

Using the three different categories, you can assign three different keyboard
shortcuts to a common command (one for each category). When you assign
different shortcuts to the same command name, AcuBench applies these
shortcuts in context. Let’s say you assign Ctrl+P to the Main category’s
FilePrint command and assign different shortcuts for FilePrint in the Code
Editor and Screen Designer categories, Ctrl+F1 and Ctrl+F2, respectively.
If you begin working in the Screen Designer, Ctrl+F2 is the shortcut key for
FilePrint. If you change states and begin working in the Code Editor, then the
shortcut key associated with FilePrint changes to Ctrl+F1.

Following is a brief description of the Main, Code Editor, and Screen
Designer shortcuts and their default values. You can assign key
combinations for commands without shortcuts or replace default shortcut key
designations with your own definitions, using the procedures described in
section 4.3.6.

Three common keyboard shortcuts are defined by the Windows operating
system and cannot be changed. They are:

Close Document Window Ctrl+F4

Next Document Window Ctrl+F6

Previous Document Window Ctrl+Shift+F6

Main: Default Keyboard Shortcuts 23-3
23.2 Main: Default Keyboard Shortcuts

Command Shortcut Key Description

AboutAcuBench undefined Display version, copyright,
license, and Micro Focus
contact information

ActiveXControl undefined Display the ActiveX
Control Components
dialog box.

ActiveXProperty undefined Display the ActiveX
control's properties

AddFD undefined Add an existing data layout
(“.dlt”) file to the current
project.

AddIOParagraph undefined In the IO Handling tab of
the File Designer, add a
new user-defined item to
the paragraph list.

AddItem undefined Add a data item to the
record definition in the File
Designer.

AddItemBefore undefined Add a data item before the
selected item in the File
Designer’s record
definition.

AddKey undefined Add a key for an indexed
file in the File Designer.

AddProgram undefined Add an existing program
structure (“.psf”) file to the
current project.

AddScreen undefined Add an existing screen
(“.smf”, “.stf”) file to the
current program.

23-4 Keyboard Shortcut Reference
AddSubItem undefined Add a subitem to a group
data item in the File
Designer’s record
description.

AdjacentHorizontal undefined Align controls to be
adjacent horizontally.

AdjacentVertical undefined Align controls to be
adjacent vertically.

AlignToGrid undefined Align control(s) to the grid.

ApplicationExit Ctrl+E Quit the application, and
prompt to save the
documents.

AssociateFDSL undefined Associate the named
FD/SL files within the
project.

BookmarkClearAll undefined Clear all bookmarks.

BookmarkNext undefined Move the cursor to the line
containing the next
bookmark

BookmarkPrev undefined Move the cursor to the line
containing the previous
bookmark.

BookmarkToggle undefined Toggle the display of a
bookmark on the current
line.

Build F7 Build the project.

BuildCompile Ctrl+F7 Compile the source file.

BuildDebug undefined Execute the selected
program using the runtime
debugger.

BuildExecute Ctrl+F5 Execute the selected
program.

BuildAllowParameters undefined Execute the selected
program, allowing users to
define parameters.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-5
BuildProject undefined Build the project.

BuildStop Ctrl+Break Stop the build.

CenterHorizontal undefined Center the controls
horizontally within the
screen form.

CenterVertical undefined Center the controls
vertically within the screen
form.

ChangePrefix undefined Change the prefix applied
to the variables generated
by the screen.

CharBackTab Shift+Tab Move the cursor back one
tab stop.

CharLeft Left Move the cursor one
character to the left.

CharLeftExtend Shift+Left Select the text one
character to the left.

CharRight Right Move the cursor one
character to the right.

CharRightExtend Shift+Right Select the text one
character to the right.

CharacterScreenImportUtility undefined Prepare for character
screen import.

CharTab Tab Move the cursor forward
one tab stop.

ClearParagraph undefined In the IO Handling tab of
the File Designer, delete
the paragraph name for the
currently selected
user-defined paragraph.

CodeTemplate undefined Open the Code Template
list box.

CommentBlock undefined Apply comment symbols to
the selected block of text.

Command Shortcut Key Description

23-6 Keyboard Shortcut Reference
ControlHeightDecrease undefined Decrease the height of the
selected control by one
pixel.

ControlHeightDecreaseGrid undefined Decrease the height of the
selected control by one grid
cell.

ControlHeightIncrease undefined Increase the height of the
selected control by one
pixel.

ControlHeightIncreaseGrid undefined Increase the height of the
selected control by one grid
cell.

ControlMoveDown undefined Move the selected
control(s) down one pixel.

ControlMoveDownGrid undefined Move the selected
control(s) down one grid
cell.

ControlMoveLeft undefined Move the selected
control(s) left one pixel.

ControlMoveLeftGrid undefined Move the selected
control(s) left one grid cell.

ControlMoveRight undefined Move the selected
control(s) right one pixel.

ControlMoveRightGrid undefined Move the selected
control(s) right one grid
cell.

ControlMoveUp undefined Move the selected
control(s) up one pixel.

ControlMoveUpGrid undefined Move the selected
control(s) up one grid cell.

ControlWidthDecrease undefined Decrease the width of the
selected control(s) by one
pixel.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-7
ControlWidthDecreaseGrid undefined Decrease the width of the
selected control(s) by one
grid cell.

ControlWidthIncrease undefined Increase the width of the
selected control(s) by one
pixel.

ControlWidthIncreaseGrid undefined Increase the width of the
selected control(s) by one
grid cell.

Copy Ctrl+C Copy the selection to the
clipboard.

CustomColor undefined Customize the basic set of
colors.

Cut Ctrl+X Cut the selection and move
it to the clipboard.

DebugBreakExecution undefined Terminate the debugging
session and the runtime.

DebugBreakpointClearAll undefined Remove all breakpoints.

DebugBreakpointDisable undefined Disable the breakpoint on
the cursor line.

DebugBreakpointManagement undefined Generate the Breakpoints
dialog box.

DebugBreakpointToggle F9 Toggle the breakpoint on
the cursor line.

DebugGo F8 Start the debugger or, if the
debugger is already started,
execute the program in
Debug Mode.

DebugHexadecimalDisplay undefined Toggle hexadecimal
display of data item values
in the debugger.

DebugInterrupt undefined Interrupt the execution of
the application, and return
control to the debugger.

Command Shortcut Key Description

23-8 Keyboard Shortcut Reference
DebugMonitorClear undefined Clear the selected variable
from the debug Watch
window.

DebugMonitorClearAll undefined Clear all variables from the
debug Watch window.

DebugMonitorSet undefined Set a monitor on a variable
in the debug Watch
window.

DebugQuickWatch undefined Open the Quick Watch
window.

DebugRecordScript undefined Record a script of keyboard
input and menu selections
in a debugging session.

DebugRestart undefined Restart the debugging
session at the beginning.

DebugRunScript undefined Run a recorded script of
keyboard input and menu
selections in a debugging
session.

DebugRunToCursor undefined Debug the program from a
temporary breakpoint at the
cursor line.

DebugSkipToLine undefined Debug the program from
the current cursor location.

DebugStepInto F11 Debug the next statement.

DebugStepOutParagraph undefined Debug the program until
the current paragraph
returns to the point from
which it was performed.

DebugStepOutProgram undefined Debugging the program
until it exits to its calling
program.

DebugStepOver F10 Debug the program after
stepping over the next
statement.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-9
DebugStopDebugging F12 Stop the debugger, and
continue execution of the
program.

DebugStopRecordScript undefined Stop the recording of a
script of keyboard input
and menu selections in a
debugging session.

DebugThreads undefined Debug program threads.

DebugTraceFiles undefined Enable the Trace File
function.

DebugTraceFlush undefined Enable the Trace Flush
function.

DebugTraceGeneral undefined Enable the Trace General
function.

DebugTraceLevels undefined Generate the Trace Level
dialog box.

DebugTraceParagraphs undefined Enable the Trace
Paragraphs function.

DebugTraceScreens undefined Enable the Trace Screens
function.

DebugTraceShowInfo undefined Display debugger trace
information in the Output
window.

Delete Delete Delete the selection.

DeleteAllKey undefined Delete all the keys in the
File Designer’s key list.

DeleteBack Backspace Delete the selected text or,
if no selection, the
character to the left of the
cursor.

DeleteFromDisk undefined Remove the selected file
from the project and place
it in the Windows Recycle
Bin.

Command Shortcut Key Description

23-10 Keyboard Shortcut Reference
DeleteLine undefined Delete the line on which
the cursor is positioned.

DockingComponentBar undefined Dock the Screen
Component Toolbox.

DockingProjectManager undefined Dock the Workspace
window.

DocumentEnd Ctrl+End Move the cursor to the end
of the document.

DocumentEndExtend Ctrl+Shift+End Select the text from the
current cursor position to
the end of the document.

DocumentStart Ctrl+Home Move the cursor to the
beginning of the file.

DocumentStartExtend Ctrl+Shift+Home Select the text from the
current cursor position to
the start of the document.

DragAndDrop undefined Toggle the Drag-and-Drop
interface in the Screen and
Report Designers.

ExternalParagraph undefined If a program icon is
selected in the Structure
view, open the External
Paragraph list.

ExternalVariable undefined If a program icon is
selected in the Structure
view, open the External
Variable list.

FileClose Ctrl+Q Close the file, and remove
it from the development
area.

FileCloseWorkspace undefined Close the workspace, and
remove it from the
Workspace window.

FileOpen Ctrl+O Open an existing source
file in the development
area.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-11
FileOpenWorkspace undefined Open an existing
workspace in the
Workspace window.

FilePageSetup Ctrl+M Generate the Page Setup
dialog box.

FilePrint Ctrl+P Print the active file.

FilePrintPreview undefined Display full pages in print
preview.

FilePrintSetup Ctrl+K Generate the Print Setup
dialog box.

FileSave Ctrl+S Save the active file.

FileSaveAll undefined Save all open files to disk.

FileSaveAs undefined Generate the Save As
dialog box.

FileSaveWorkspace undefined Save the current
workspace.

Find undefined Find the specified text in
the active file.

FindInFiles undefined Find the specified text in
the workspace or other
designated directory.

FindInObjects undefined Find the specified text in
the Property window and
graphical designers.

FindInObjectsPopup undefined Open the Find in Objects
interface.

FindNext undefined Find the next occurrence of
the specified text.

FindPrev undefined Find the previous
occurrence of the specified
text.

FindReplace undefined Find the specified text and
replace it with another
designated string.

Command Shortcut Key Description

23-12 Keyboard Shortcut Reference
FindScope undefined Find the effective range of
a selected variable.

Generate undefined Generate code for the
program element in the
active window.

GenerateSTFDocument undefined Generate an STF (Standard
Text Format) description of
the screen.

GenerateWTFDocument undefined Generate a WTF (report
template file) for the
selected report form.

GotoLine undefined Move the cursor to the
specified line of code.

Help F1 Provide context sensitive
help. If the context is not
recognized, display the
online help directory.

HelpAcuBench undefined Display the AcuBench
documentation.

HelpGTManual undefined Display the four-book
ACUCOBOL-GT
documentation set.

HelpRuntimeManual undefined Display the HTML version
of the Runtime Manual.

HideComponentBar undefined Hide the Screen and/or
Report Component
Toolbox.

HideProjectManager undefined Hide the Workspace
window.

Home Home Move the cursor to the start
of the current line.

HomeExtend Shift+Home Select the text from the
current cursor position in a
line to the start of that line.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-13
ImportCopyFile undefined Import a COPY file into the
specified File Designer file
descriptor.

IndentToNext undefined Indent the selected line to
match the indentation of
the next line

IndentToPrevious undefined Indent the selected line to
match the indentation of
the previous line.

InsertBefore undefined Insert an item before the
selected item in the Menu
or Tree View Designer.

InsertFileContent undefined Insert an existing file at the
cursor position.

InsertMode Insert Toggle insert mode in the
Code Editor.

InsertSeparatorBefore undefined Insert a separator before the
currently selected menu
item in the Menu Designer.

InsertSubitem undefined Insert a child item below
the selected item in the
Menu or Tree View
Designer.

InsertTabCtrlPage undefined Insert a new page in the tab
control.

LayoutAlignBottom undefined Align the bottom edges of
the selected controls
relative to the dominant
control.

LayoutAlignLeft undefined Align the left edges of the
selected controls relative to
the dominant control.

LayoutAlignRight undefined Align the right edges of the
selected controls relative to
the dominant control.

Command Shortcut Key Description

23-14 Keyboard Shortcut Reference
LayoutAlignTop undefined Align the top edges of the
selected controls relative to
the dominant control.

LayoutOrderSendToFront undefined If multiple controls
overlap, bring the selected
control to the foreground.

LayoutOrderSendToBack undefined If multiple controls
overlap, send the selected
control to the back.

LayoutSizeToContent undefined Resize the selected
control(s) to fit the title
text.

LayoutSpaceEvenlyAcross undefined Evenly space the selected
controls horizontally.

LayoutSpaceEvenlyDown undefined Evenly space the selected
controls vertically.

LayoutTabOrder undefined Set the order in which your
controls appear in the
Screen Section.

LineDown Down Move the cursor down one
line.

LineDownExtend Shift+Down Select the text from the
current cursor position
down one line.

LineEnd End Move the cursor to the end
of the current line.

LineEndExtend Shift+End Select the text from the
current cursor position to
the end of the line.

LineUp Up Move the cursor up one
line.

LineUpExtend Shift+Up Select the text from the
current cursor position up
one line.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-15
LinkCopyFile undefined Link to a specified file
descriptor from the File
Designer.

ListConstants undefined Browse all level -78
constant names in the
active file.

ListParagraphs undefined Browse all paragraph
names in the active file.

ListVariables undefined Browse all variable names
in the active file.

ListCopyFiles undefined Browse all COPY file
names in the active file.

ListView undefined Display Screen Component
Toolbox controls in a list.

LockControls undefined Lock/unlock the position of
a control on a screen.

MakeSameHeight undefined Resize the selected controls
to the same height.

MakeSameSize undefined Resize the selected controls
to the same size.

MakeSameWidth undefined Resize the selected controls
to the same width.

MakeXFDFile undefined Create an XFD for the
selected Data Layout.

ModifyKey undefined Change a key in the
specified file descriptor in
the File Designer.

NativeCode undefined Open the Translate
Portable Object Code to
Native Code dialog for the
selected object file.

New Ctrl+N Create a new project,
program, screen, source
file, or file descriptor.

NewDataSet undefined Create a new data set.

Command Shortcut Key Description

23-16 Keyboard Shortcut Reference
NewFD undefined Create a new data layout
(“.dlt”) file.

NewLine undefined Insert a new line above the
current cursor line.

NewProgram undefined Create a new AcuBench
program.

NewScreen undefined Create a new screen.

NextControl undefined Select the next control in
the tab order on the screen.

NextTabCtrlPage undefined Select the next page in the
tab control.

NextTabPosition undefined Move the cursor to the next
ANSI format area.

OpenCopyFile undefined Open the designated COPY
file.

OpenFDEventEditor undefined Open the Event Editor for
the data layout file selected
in the Data view.

OpenProject undefined Add an existing project
(saved as a “.pjf”) to the
current workspace.

OutputClear undefined Clear the contents of the
Output window.

OutputCompileOptions undefined If a source file is selected in
the File view, show the
compiler options for that
file in the Output window.

OutputFindInObjects undefined

OutputHistory undefined If the Output window is
selected, toggle the History
option (to append or
overwrite existing output
information).

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-17
OutputPreviousErrorLine undefined Position the cursor in
source code at the location
of the next previous
compilation error listed in
the Output window.

OutputNextErrorLine undefined Position the cursor in
source code at the location
of the next compilation
error listed in the Output
window.

PageDown undefined Move the cursor down one
page.

PageDownExtend undefined Select the text from the
current cursor position
down one page.

PageUp undefined Move the cursor up one
page.

PageUpExtend undefined Select the text from the
current cursor position up
one page.

Paste Ctrl+V Paste the selection from the
clipboard to the active file.

PreviousControl undefined Select the previous control
on the screen form.

PreviousTabCtrlPage undefined Select the previous page in
the tab control.

PreviousTabPosition Ctrl+Shift+Tab Move the cursor to the
previous ANSI format area.

ProgramCompileOptions undefined Open the Compile tab of
the Project Settings
window for the selected
program or project.

ProjectAddRemoveFiles undefined Add or remove files from a
project.

ProjectAssociateFDSL undefined Associate the added FD/SL
files with the project.

Command Shortcut Key Description

23-18 Keyboard Shortcut Reference
ProjectCreateAlias undefined When the Create Alias
option is available, open
the Alias dialog.

ProjectEmptyFolder undefined Empty the specified project
folder.

ProjectNewFolder undefined Create a new project folder.

ProjectOpen undefined Open the selected project.

ProjectProperty undefined Generate the Project
Properties dialog box.

ProjectSetActiveMode undefined Select the appropriate
mode for your project.

ProjectSetting undefined Generate the Project
Settings dialog box.

Property undefined Generate the Properties
dialog for the selected
folder or file.

PropertyFont undefined Choose the Property
window text font.

RebuildWorkspace undefined Recompile all files in the
current workspace.

RebuildProject undefined Rebuild the project.

Redo Ctrl+Y Reverse the most recent
Undo operation.

ReferencedDataFiles undefined In the Data Set Designer,
open the Data Set Member
Files dialog.

RefreshDataFile undefined In the Data view, reload the
selected data layout file.

RefreshAllDataFiles undefined In the Data view, reload all
data layout files in the
selected project.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-19
RegenerateWorkspace undefined Regenerate all programs
that have a program
structure file, as well as all
data layout files, within the
workspace.

ReloadCopyFile undefined In the Working Storage or
Linkage Editor, reload the
selected linked COPY file.

RemoveCopyFile undefined In the Working Storage or
Linkage Editor, remove the
selected linked COPY file.

Reparse undefined Reparse the current source
file.

ReparseAll undefined Reparse all the
workspace’s source files.

ReplaceInFiles undefined Perform a search and
replace operation in the
specified directories.

ResetXFDName undefined

RptSectionController undefined Open the Section
Controller interface in the
Report Writer.

SaveProject undefined Save the selected project in
a “.pjf” file.

ScreenImportUtility undefined Import the Screen Section
as a new program.

ScrollDown undefined Scroll the Code Editor
window down one line.

ScrollUp undefined Scroll the Code Editor
window up one line.

SelectAll Ctrl+A Select all the elements in
the active file.

SelectionCapitalize undefined Capitalize the selected text.

SelectionLowercase undefined Lowercase the selected
text.

Command Shortcut Key Description

23-20 Keyboard Shortcut Reference
SelectionUppercase undefined Uppercase the selected
text.

SequenceNumber undefined Generate the Sequence
Number dialog box.

SetDefaultXFD undefined On the XFD tab of the File
Designer, return the XFD
to its default settings.

SyntaxCheck undefined Perform a syntax check in
the Working-Storage,
Linkage, or File Designer.

ToggleAlignToolbar undefined Toggle the display of the
Align toolbar.

ToggleBookmarkPane undefined Toggle the display of the
Bookmark pane.

ToggleScreenComponentBar undefined Toggle the display of the
Screen Component
Toolbox.

ToggleDebugToolbar undefined Toggle the display of the
Debug toolbar.

ToggleEditorToolbar undefined Toggle the display of the
Editor toolbar.

ToggleFullPathName undefined Toggle the display of the
full pathname in the
window title bar.

ToggleGrid undefined Toggle the display of the
grid in a Screen Designer
window.

ToggleGuide undefined Toggle the display of the
Screen Designer’s control
positioning guides.

ToggleLaunchToolbar undefined Toggle the display of the
Launch toolbar.

ToggleLineNumberPane undefined Toggle the display of the
Line Number pane.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-21
ToggleMemoryWindow undefined Toggle the display of the
Memory debugger
window.

ToggleOutputWindow undefined Toggle the display of the
Output window.

ToggleProjectManager undefined Toggle the display of the
Workspace window.

ToggleProjectToolbar undefined Toggle the display of the
Project toolbar.

TogglePropertyWindow undefined Toggle the display of the
Property window.

ToggleReportComponentBar undefined Toggle Report Component
Toolbox display.

ToggleRulerBar undefined Toggle the display of the
ruler bar.

ToggleStackInfoWindow undefined Toggle the display of the
Call Stack debugger
window.

ToggleStandardToolbar undefined Toggle the display of the
Standard toolbar.

ToggleStatusBar Ctrl+Shift+S Toggle the display of the
status bar.

ToggleThreadWindow undefined Display the debugger
Thread dialog box.

ToggleWatchWindow undefined Toggle the display of the
debugger Watch window.

ToolsCustomize undefined Customize the toolbar
settings.

ToolsOptions undefined Generate the Tools/Options
dialog box.

TransposeSourceFormat undefined Transpose the document
display format between
ANSI and terminal
formats.

Command Shortcut Key Description

23-22 Keyboard Shortcut Reference
UncommentBlock undefined Remove comment symbols
from the selected text.

Undo Ctrl+Z Reverse previous
operations.

UtilityAcu4glFD undefined Launch the acu4glfd
utility.

UtilityAxdefgen undefined Launch the
ACUCOBOL-GT utility
axdefgen.

UtilityNetdefgen undefined Launch the
ACUCOBOL-GT utility
netdefgen.

UtilityCblUtil undefined Launch the
ACUCOBOL-GT utility
cblutil.

UtilityLogUtil undefined Launch the
ACUCOBOL-GT utility
logutil.

UtilityVio undefined Launch the
ACUCOBOL-GT utility
vio.

UtilityVioProject undefined With a project icon
selected, launch vio.

UtilityVutil undefined Launch the
ACUCOBOL-GT utility
vutil.

Utility Xml2FD undefined Launch the
ACUCOBOL-GT utility
xml2fd.

VerbBlockMatch Ctrl+Shift+M Move to the opposite end
of a verb block command
statement.

ViewPreprocessed undefined View the “.asq” file created
when the selected file is
compiled with a
preprocessor (“-P”) flag.

Command Shortcut Key Description

Main: Default Keyboard Shortcuts 23-23
ViewFDFile undefined Display the selected “.fd”
file.

ViewLinkageFile undefined Display the selected
Linkage Section (“.lks”)
file.

ViewMenuFile undefined Dpslay the selected menu
(“.mnu”) COPY file.

ViewParagraphFile undefined Display the selected event
paragraph (“.evt”) file.

ViewProcedureFile undefined Display the selected
Procedure Division
(“.prd”) file.

ViewScreenFile undefined Display the selected screen
(“.scr”) file.

ViewSLFile undefined Display the selected “.sl”
file.

ViewSourceFile undefined Display the selected source
(“.cbl”) file.

ViewWorkingFile undefined Display the selected
Working-Storage (“.wrk”)
file.

WindowArrangeIcons undefined Arrange the caption bars of
minimized windows at the
bottom of the screen.

WindowCascade undefined Arrange open windows in a
cascading format.

WindowCloseAll undefined Close all open windows.

WindowNextPane F6 Activate the next pane in a
split window.

WindowPreviousPane Shift+F6 Activate the previous pane
in a split window.

WindowSplit undefined Split the open window.

WindowTileHorz undefined Tile the open windows
horizontally.

Command Shortcut Key Description

23-24 Keyboard Shortcut Reference
23.3 Code Editor: Default Keyboard Shortcuts

Remember that some commands can be assigned keystrokes at both the Main
level and the Code Editor level. This means that some common commands,
such as Cut and Paste, are shown as undefined in the list that follows, even
though a keyboard shortcut has been assigned to them at the Main level.

WindowTileVert undefined Tile the open windows
vertically.

WindowWindowsList undefined Generate the Windows list
box showing all open
windows.

WordLeft Ctrl+Left Move the cursor back one
word.

WordLeftExtend Ctrl+Shift+Left Select the text from the
current cursor position
back one word.

WordBackDelete undefined Delete the word to the left
of the current cursor
position.

WordDelete undefined Delete the word to the right
of the current cursor
position.

WordRight Ctrl+Right Move the cursor forward
one word.

WordRightExtend Ctrl+Shift+Right Select the text from the
current cursor position
forward one word.

XML2FD undefined In the Data view, with a
project icon selected,
launches the xml2fd utility.

Command Shortcut Key Description

Command Shortcut Key Description

BookmarkClearAll undefined Clear all bookmarks.

Code Editor: Default Keyboard Shortcuts 23-25
BookmarkNext Ctrl+Shift+N Move the cursor to the
line containing the next
bookmark.

BookmarkPrev Ctrl+Shift+P Move the cursor to the
line containing the
previous bookmark.

BookmarkToggle Ctrl+T Toggle the display of a
bookmark on the current
line.

CharBackTab Shift+Tab Move the cursor back one
tab stop.

CharLeft Left Arrow Move the cursor one
character to the left.

CharLeftExtend Shift+Left Arrow Select the text one
character to the left.

CharRight Right Arrow Move the cursor one
character to the right.

CharRightExtend Shift+Right Arrow Select the text one
character to the right.

CharTab Tab Move the cursor forward
one tab stop.

CodeTemplate Ctrl+J Open the code template
list box.

CommentBlock Ctrl+Shift+C Apply comment symbols
to the selected block of
text.

Copy undefined Copy the selected text to
the clipboard.

Cut undefined Cut the selected text and
move it to the clipboard.

Delete undefined Delete the selected text.

DeleteBack Backspace Delete the selected text,
or if no selection, the
character to the left of the
cursor.

Command Shortcut Key Description

23-26 Keyboard Shortcut Reference
DeleteLine Ctrl+Shift+Z Delete the line on which
the cursor is positioned.

DocumentEnd Ctrl+End Move the cursor to the
end of the document.

DocumentEndExtend Ctrl+Shift+End Select the text from the
current cursor position to
the end of the document.

DocumentStart Ctrl+Home Move the cursor to the
beginning of the file.

DocumentStartExtend Ctrl+Shift+Home Select the text from the
current cursor position to
the start of the document.

FilePrint undefined Print the document.

FilePrintPreview undefined Display full pages in print
preview.

Find Ctrl+F Find the specified text in
the active file.

FindNext F3 Find the next occurrence
of the specified text in the
active file.

FindPrev Shift+F3 Find the previous
occurrence of the
specified text in the active
file.

FindReplace Ctrl+H Find the specified text
and replace it with
another designated string.

FindScope Ctrl+Shift+V Find the effective range
of a selected variable.

GotoLine undefined Move the cursor to the
specified line of code.

Home Home Move the cursor to the
start of the current line.

Command Shortcut Key Description

Code Editor: Default Keyboard Shortcuts 23-27
HomeExtend Shift+Home Select the text from the
current cursor position in
a line to the start of that
line.

IndentToNext undefined Indent the selected cursor
line to match the
indentation of the next
line.

IndentToPrevious undefined Indent the selected cursor
line to match the
indentation of the
previous line.

InsertFileContent undefined Insert an existing
document at the cursor
position.

InsertMode Insert Toggle insert mode in the
Code Editor.

LineDown Down Arrow Move the cursor down
one line.

LineDownExtend Shift+Down Arrow Select the text from the
current cursor position
down one line.

LineEnd End Move the cursor to the
end of the current line.

LineEndExtend Shift+End Select the text from the
current cursor position to
the end of the line.

LineUp Up Arrow Move the cursor up one
line.

LineUpExtend Shift+Up Arrow Select the text from the
current cursor position up
one line.

NextTabPosition Ctrl+Tab Move the cursor to the
next ANSI format area.

NewLine Ctrl+Shift+I Insert a new line above
the current cursor line.

Command Shortcut Key Description

23-28 Keyboard Shortcut Reference
OpenCopyFile undefined Open the designated
COPY file.

PageDown Page Down Move the cursor down
one page.

PageDownExtend Shift+Page Down Select the text from the
current cursor position
down one page.

PageUp Page Up Move the cursor up one
page.

PageUpExtend Shift+Page Up Select the text from the
current cursor position up
one page.

Paste undefined Paste the selected text
from the clipboard to the
active file.

PreviousTabPosition Ctrl+Shift+Tab Move the cursor to the
previous ANSI format
area.

Redo undefined Reverse the most recent
undo operation.

ScrollDown Ctrl+Down Scroll the Code Editor
window down one line.

ScrollUp Ctrl+Up Scroll the Code Editor
window up one line.

SelectAll undefined Select all the text in the
active file.

SelectionCapitalize Ctrl+G Capitalize the selected
text.

SelectionLowercase Ctrl+U Lowercase the selected
text.

SelectionUppercase Ctrl+Shift+U Uppercase the selected
text.

SequenceNumber undefined Generate the Sequence
Number dialog box.

Command Shortcut Key Description

Code Editor: Default Keyboard Shortcuts 23-29
TransposeSourceFormat undefined Transpose the document
display format between
ANSI and terminal
formats.

UncommentBlock undefined Remove comment
symbols from the
selected text.

Undo undefined Reverse previous
operations.

VerbBlockMatch Ctrl+Shift+M Move to the opposite end
of a verb block command
statement.

WordBackDelete Ctrl+B Delete the word to the left
of the current cursor
position.

WordLeft Ctrl+Left Move the cursor back one
word.

WordLeftExtend Ctrl+Shift+Left Select the text from the
current cursor position
back one word.

WordDelete Ctrl+D Delete the work to the
right of the current cursor
position.

WordRight Ctrl+Right Move the cursor forward
one word.

WordRightExtend Ctrl+Shift+Right Select the text from the
current cursor position
forward one word.

Command Shortcut Key Description

23-30 Keyboard Shortcut Reference
23.4 Screen Designer: Default Keyboard Shortcuts

Remember that some commands can be assigned keystrokes at both the Main
level and the Screen Designer level. This means that some common
commands, such as Cut and Paste, are shown as undefined in the list that
follows, even though a keyboard shortcut has been assigned to them at the
Main level.

A C D F G I L M N P R S

Command Shortcut Key Description

ActiveXProperty undefined Display the ActiveX
control’s properties.

AdjacentHorizontal undefined Align controls to be
adjacent horizontally.

AdjacentVertical undefined Align controls to be
adjacent vertically.

AlignToGrid undefined Align control(s) to grid.

CenterHorizontal undefined Center the controls
horizontally within the
screen form.

CenterVertical undefined Center the controls
vertically within the
screen form.

ChangePrefix undefined Change the prefix applied
to variables generated by
the screen.

Copy undefined Copy the selected screen
element to the clipboard.

ControlHeightDecrease Shift+Up Arrow Decrease the height of the
selected control by one
pixel.

ControlHeightDecreaseGrid Ctrl+Shift+Up Arrow Decrease the height of the
selected control by one
grid cell.

Screen Designer: Default Keyboard Shortcuts 23-31
ControlHeightIncrease Shift+Down Arrow Increase the height of the
selected control by one
pixel.

ControlHeightIncreaseGrid Ctrl+Shift+Down
Arrow

Increase the height of the
selected control by one
grid cell.

ControlMoveDown Down Arrow Move the selected
control(s) down one pixel.

ControlMoveDownGrid Ctrl+Down Arrow Move the selected
control(s) down one grid
cell.

ControlMoveLeft Left Arrow Move the selected
control(s) left one pixel.

ControlMoveLeftGrid Ctrl+Left Arrow Move the selected
control(s) left one grid
cell.

ControlMoveRight Right Arrow Move the selected
control(s) right one pixel.

ControlMoveRightGrid Ctrl+Right Arrow Move the selected
control(s) right one grid
cell.

ControlMoveUp Up Arrow Move the selected
control(s) up one pixel.

ControlMoveUpGrid Ctrl+Up Arrow Move the selected
control(s) up one grid cell.

ControlWidthDecrease Shift+Left Arrow Decrease the width of the
selected control(s) by one
pixel.

ControlWidthDecreaseGrid Ctrl+Shift+Left
Arrow

Decrease the width of the
selected control(s) by one
grid cell.

ControlWidthIncrease Shift+Right Arrow Increase the width of the
selected control(s) by one
pixel.

Command Shortcut Key Description

23-32 Keyboard Shortcut Reference
ControlWidthIncreaseGrid Ctrl+Shift+Right
Arrow

Increase the width of the
selected control(s) by one
grid cell.

CustomColor undefined Customize the basic set of
colors.

Cut undefined Cut the selected screen
element and move it to the
clipboard.

Delete undefined Delete the selected screen
element.

FilePrint undefined Print the active screen.

FilePrintPreview undefined Display full screens in
print preview.

GenerateSTFDocument undefined Save the screen as an
“.stf” file.

InsertBefore Insert Insert an item before the
selected item in the Menu
or Tree View designer.

InsertSeparaterBefore undefined

InsertSubitem Ctrl+Insert Insert a child item below
the selected item in the
Menu or Tree View
Designer.

InsertTabCtrlPage undefined Insert a new page in the
tab control.

LayoutAlignBottom Alt+Down Align the bottom edges of
the selected controls
relative to the dominant
control.

LayoutAlignLeft Alt+Left Align the left edges of the
selected controls relative
to the dominant control.

Command Shortcut Key Description

Screen Designer: Default Keyboard Shortcuts 23-33
LayoutAlignRight Alt+Right Align the right edges of
the selected controls
relative to the dominant
control.

LayoutAlignTop Alt+Up Align the top edges of the
selected controls relative
to the dominant control.

LayoutOrderSendToFront undefined If multiple controls
overlap, bring the selected
control to the foreground.

LayoutOrderSentToBack undefined If multiple controls
overlap, send the selected
control to the back.

LayoutSizeToContent Shift+F7 Resize the selected
control(s) to fit the title
text.

LayoutSpaceEvenlyAcross undefined Evenly space the selected
controls horizontally.

LayoutSpaceEvenlyDown undefined Evenly the space selected
controls vertically.

LayoutTabOrder Ctrl+D Set the order in which
your controls appear in the
Screen Section.

LockControls Ctrl+L Lock/unlock the position
of a control on a screen.

MakeSameHeight undefined Resize the selected
controls to the same
height.

MakeSameSize undefined Resize the selected
controls to the same size.

MakeSameWidth undefined Resize the selected
controls to the same
width.

NextControl Tab Select the next control in
the tab order on the
screen.

Command Shortcut Key Description

23-34 Keyboard Shortcut Reference
NextTabCtrlPage undefined Select the next page in the
tab control.

Paste undefined Paste the selected screen
element from the
clipboard to the active
screen.

PreviousControl Shift+Tab Select the previous control
on the screen form.

PreviousTabCtrlPage undefined Select the previous page
in the tab control.

Redo undefined Reverse the most recent
undo operation.

ToggleGrid Ctrl+G Toggle the display of the
grid in a Screen Designer
window.

ToggleGuide undefined Toggle the display of the
Screen Designer’s control
positioning guides.

Undo undefined Reverse previous
operations.

SelectAll undefined Select all the elements in
the active screen.

Command Shortcut Key Description

A
 Bringing Existing Code Into
AcuBench
Key Topics

Introduction .. A-2

Importing Data Definitions ... A-3

Creating a PSF for an Existing Program ... A-4

Adding Existing Code to an AcuBench Program A-8

Updating a Character-based Screen ... A-11

Importing a Graphical Screen ... A-30

A-2 Bringing Existing Code Into AcuBench
A.1 Introduction

If you want to use AcuBench’s code generation tools with your existing
COBOL source code, there are three basic options available. You can:

• Create a new AcuBench program and use it to generate screen or report
code, then copy the generated code into your existing source file.

• Create a program structure file for your existing source file.

• Create a new AcuBench program and use the graphical designers to copy
and paste code from your existing source files into the new program.

Each option has its own advantages and considerations.

• If you choose to use an AcuBench template program to generate code
that you then place into your existing source files, you retain your
familiar code format and strict control over the contents of your source
files. You lose, however, the flexibility of using the drag-and-drop
design interfaces to make quick changes to your program.

• If you choose to create a program structure file for your existing source
file, you gain access to some of the AcuBench code generation facilities
while retaining most of the familiar code structure of your existing file.
Because AcuBench has a limited ability to parse and understand your
existing code, however, not all of the workbench’s automation tools are
available for your use.

• If you choose to bring your existing source code into a new AcuBench
program, you gain access to all of the automated code generation tools
that the workbench provides. This process may, however, be time
consuming and requires adaptation to AcuBench’s formats and
processes.

Whichever option you choose, keep in mind that to make best use of the tools
that AcuBench provides, converting the source code is only one part of the
process. By creating data layout files (“.dlt”) to define your data and data
handling code for AcuBench, you greatly increase the utility and
functionality of the AcuBench graphical designers.

Importing Data Definitions A-3
A.2 Importing Data Definitions

As discussed in Chapter 8, there are several advantages to bringing your data
file definitions—file descriptors and SELECT statements—into AcuBench.
It can help to centralize maintenance of data definition and file-handling code
and enable various automation tools, like the Drag and Drop interface used in
screen and report design and the Data Set Designer, used to define data for
use with individual programs.

The easiest way to bring existing data definitions into AcuBench is to first
create COPY files corresponding to each file descriptor and SELECT
statement. For each FD/SELECT pair:

• The two files should have the same base name.

• The FD file should have a “.fd” extension.

• The SELECT file should have a “.sl” extension.

When you have finished creating COPY files, open your AcuBench project
and do the following:

1. In the File view, right-click the FD folder and select Add/Remove Files.

2. Use the navigation tree view in the top, right corner of the Add/
Remove Files dialog to navigate to the directory containing your
COPY files.

3. Select the files from the file list, then click the Add button. To add all
of the files in the directory, navigate to the directory and click Add All.

4. When you have finished adding COPY files (which may reside in
multiple directories), click OK.

5. Switch to the Data view, right-click the project node, and select
Associate FD/SL Files.

6. In the window that opens, match the FD/SL pair and click Associate.

7. Continue this process until all FD/SL pairs have been associated and
added to the list in the middle of the dialog, then click OK.

A new data layout file (DLT) appears in the Data view for each FD/SL
pair.

A-4 Bringing Existing Code Into AcuBench
Once you have created data layout files from your existing file descriptors
and SELECT statements, you can use the AcuBench File Designer to
maintain your data descriptions and file handling code. For more information
about the File Designer and its capabilities, please refer to Chapter 8,
“Working with Data at the Project Level.”

A.3 Creating a PSF for an Existing Program

When you create a program structure file for an existing source file,
AcuBench also adds code generation tags to your “.cbl” source file. When
you generate your program, these tags are used to tell AcuBench where to
generate various types of code (Working-Storage, Screen Section, and so on).
You can determine which tags are included in your code through the Tools/
Options/Code Generator/Program Tag interface. Use of code generation tags
is discussed in Chapter 4, section 4.6.2, “Program Tag Options.”

A.3.1 Prepare to Create the PSF

Before you perform the steps described in this chapter, make sure that
AcuBench’s code generation is set to generate code only between AcuBench
program tags.

Caution: If you neglect this step, the first time you generate your program,
all of the code outside the AcuBench tags—meaning all the code that you
have written inside your source file—will be overwritten.

To ensure that only code between program tags is generated:

1. Expand the Tools menu and select Options.

2. In the Tools/Options interface, select the Code Generator tree item.

Creating a PSF for an Existing Program A-5
3. Make sure that the second check box from the top of the screen is
marked, as shown here:

By default, this box is marked, but it is always a good idea to verify this
setting before adding a new program to AcuBench.

A.3.2 Create the PSF

To create a program structure file for an existing source file and add the
updated program to a project, use the following steps:

1. In the File view of the Workspace window, expand the project node to
which you plan to add your program.

2. Right-click the project’s Source folder and select Add/Remove Files.

3. Locate and select your source file(s) in the “Files to be added” section
of the dialog.

4. Click the Add button and verify that the name of each selected source
file appears in the “Files in project” list at the bottom of the dialog.

5. Make sure that the check box in the “Create .PSF” column of the “Files
in Project” list is marked for each source file for which you want to
add a program structure file.

6. Click OK. AcuBench creates a program structure file and inserts tags
into the source file.

When you switch to the Structure view, a new program node appears in
your project. Note that the program icon is different than the icon used
for new AcuBench programs that you create. This serves as a reminder
that some of the workbench’s automation tools are not available with
programs that have been imported into AcuBench in this manner.

A.3.3 Key-Status

By default, AcuBench generates Key-Status code for any program that
contains a program structure file. If you already have Key-Status code
defined in your program, you will need to take steps to avoid duplicate
definitions.

The simplest option is to disable the AcuBench option that generates
Key-Status code. To do this:

1. Right-click the program in the Structure view and select Properties.

2. On the Key Status tab of the Program Properties window, mark the Do
not generate CRT STATUS variable in .wrk check box.

This check box appears near the bottom of the dialog.

3. Click OK to save your changes.

Note that there are five key-status definitions that are required if you are
using AcuBench-generated graphical screens. These are:

 88 Exit-Pushed VALUE 27.
 88 Message-Received VALUE 95.
 88 Event-Occurred VALUE 96.
 88 Screen-No-Input-Field VALUE 97.
 88 Screen-Time-Out VALUE 99.

Creating a PSF for an Existing Program A-7
If your Key-Status definition does not contain these items and you use the
AcuBench Screen Designer to add screens to your program, you will receive
errors at compile time.

If you prefer to use the AcuBench-generated Key-Status code, you can copy
and paste your own Key-Status variable into the generated definition. To do
this:

1. Right-click the program in the Structure view and select Properties.

2. On the Key Status tab of the Program Properties window, make sure
that the Do not generate CRT STATUS variable in .wrk check box is
not selected.

This check box appears near the bottom of the dialog.

3. Use the Import or Insert button to add conditions and values to the
Key-Status definition.

The Import option allows you to read in items from a data file; the Insert
option allows you to manually add items one at a time.

4. When you are finished, click OK to save your changes.

A.3.4 Import Program Elements into the PSF

Once you have created a program structure file for your source program, you
can chose which elements of your program to leave as they are, and which to
place into AcuBench’s graphical interfaces. A first step might be to copy
your Working-Storage code into the graphical Working Storage Designer.
After performing this step, AcuBench stores your Working-Storage data in
the program structure file, and you can view and modify Working-Storage
items through the graphical design interface.

You may also want to add your existing screens to AcuBench so that you can
maintain and update them using the graphical Screen Designer. The steps
involved in this process can be found in section A.5, “Updating a
Character-based Screen,” and section A.6, “Importing a Graphical
Screen.”

A-8 Bringing Existing Code Into AcuBench
A.4 Adding Existing Code to an AcuBench Program

To preserve the greatest amount of flexibility and ensure the greatest
long-term ease of maintenance, the best option is adding your existing source
code to a new AcuBench program. This option provides you with access to
all of the AcuBench code generation and automation tools, and after the
initial investment of time, requires the least amount of manual intervention to
maintain and add to your code going forward. If you are using AcuBench as
part of a legacy modernization process that involves increased use of
graphical user interfaces and/or graphical reports, the ease with which you
can add and update graphical features to an AcuBench program will likely
render this initial investment well worthwhile.

In preparation for this process, the first thing to understand is how AcuBench
generates code, and specifically how AcuBench uses program tags (discussed
in section 4.6.2) to determine where to generate code. These program tags
act as cues, telling AcuBench where to place different sections of a COBOL
program. They are also used to indicate insertion points, at which the code
that you define in the AcuBench graphical designers is placed. To understand
how to bring your existing code into a new AcuBench program, you must
understand where to place your code, so that it can be integrated into the
generated program.

Step 1: Define your data

As with every method of working with AcuBench, the process starts with
data. When you bring your FD and SELECT statements into the File
Designer, the IO Handling interface provides a central repository for storing
the file handling code associated with a specific data file.

Specific methods for bringing your data definitions into AcuBench are
discussed in Chapter 8, “Working with Data at the Project Level.”

Step 2: Create the program

Before creating the AcuBench program, think about how code will be
generated for the program. Do you want code to be generated into a single
source file or split into multiple COPY files (the default)? Which program

Adding Existing Code to an AcuBench Program A-9
tags will you need? Study the Code Generator section of the Tools/Options
interface (described in Chapter 4, section 4.6, “Setting Code Generator
Options”) and set the code generation rules that best apply to your practices.

Chapter 9, “Working with Programs,” provides an overview of the
program creation process, including information about the program
properties that you can customize and control.

Step 3: Define your data sets

Data sets are used to specify how the data defined in project-level data layout
files are used by an individual program. When you define a data set, you
determine what file handling code is generated (OPEN, READ, DELETE,
CLOSE), which key (if applicable) is used to start the file, and so on. In
addition, data defined in data sets is exposed to the various AcuBench
graphical designers, making it easier to create screens and reports, for
example.

The process of defining data sets is described in Chapter 10, “Working with
Data at the Program Level.”

Step 4: Add your Working-Storage data

By default, once a program contains screens and reports, AcuBench performs
an automatic check to verify that the variables used by those screens and
reports have been defined within the program. If AcuBench cannot locate
those data definitions, it adds them to the graphical Working-Storage
Designer. To correct problems with duplicate names, it is a good idea to bring
your existing Working-Storage data definitions into the graphical designer
before adding screens or other code.

You can use either of the following methods to bring your Working-Storage
code into AcuBench:

• Copy and paste the code in from your existing source.

• Place the Working-Storage code in a COPY file and use the Link COPY
File or Import COPY File commands from within the designer.

A-10 Bringing Existing Code Into AcuBench
The Working-Storage Designer interface is described in Chapter 10, section
10.3, “Using the Working-Storage and Linkage Editors.”

Note that, by default, AcuBench generates Key-Status definitions for all
generated programs. If your Working-Storage section contains Key-Status
definitions, you can either disable the automatic generation of Key-Status
code or add your definitions to the AcuBench interface used to generate this
code. These Key-Status options are discussed in section A.3.3,
“Key-Status.”

Step 5: Import or re-create your screens

The last two sections of this chapter discuss the process of importing existing
character-based and graphical screens into AcuBench. These import utilities
provide a starting point for working with existing screens in the graphical
Screen Designer.

As you begin to work in the Screen Designer, keep in mind the following
points:

• Although the Property window contains long lists of screen and control
properties, most of these settings shown here are defaults that you will
have no need to change.

• In most cases, when the Property sheet provides a way to associate a
fixed value (Value property) with an item, it also provides a way to
associate a variable (Value Variable property) with the item.

• The Event tab of the Property sheet serves two purposes. It helps you
associate codes with screen events and exceptions, and provides access
to insertion points in the generated source (Before Routine, After
Routine, Before Initdata, After Initdata) where you can add your own
code.

• The Event Editor provides additional insertion points for adding
program code (Before Program, After Program) and file handling code
(Declaratives, Before DeleteFile), accessed by selecting a program or
data set from the Control drop-down list, then selecting an insertion
point from the Message drop-down list.

Updating a Character-based Screen A-11
The Screen Designer and Event Editor discussed in Chapter 14, “Working
with Screens.”

Step 6: Add your code

As discussed in Step 5, the Event Editor is both used for event, exception, and
termination procedures, and to access insertion points in the generated code.
Each of these insertion points is associated with a program tag, making them
relatively easy to identify when stepping through the code in the debugger.

It is difficult to offer general rules for how to determine which pieces of code
go where. The better you understand AcuBench’s code generation rules, and
the program tags that the code generator uses to identify and place code
within the code skeleton, the more straightforward the process will be.

A.5 Updating a Character-based Screen

To help you transform your character-based application into a graphical one,
ACUCOBOL-GT includes a screen conversion tool known as the
Character-to-GUI Wizard. The tool works by watching a running character
application and, at a specified point, constructing an equivalent graphical
screen. This screen is automatically imported into the AcuBench Screen
Designer where you can make modifications to it as desired. You can then
use AcuBench to produce a Screen section description of the graphical screen
and integrate the new Screen section into your original program.

The Character-to-GUI Wizard is designed to work with any character screen
that you have created using ACUCOBOL-GT syntax. This allows it to work
with most existing character-based programs. Note that the wizard works
with programs using either of ACUCOBOL-GT’s two main screen handling
techniques: the Screen section and in-line ACCEPT/DISPLAY statements.

When the wizard converts a character screen to a graphical one, each field in
the original screen is created as either a label or an entry field. These controls
are placed in the same positions as the corresponding fields and have the
same size. Labels are given the same text as the fields from which they are
created. The source data item, if any, is attached to the control in such a way
that it becomes the corresponding “value” property when the control is

A-12 Bringing Existing Code Into AcuBench
viewed in the Screen Designer. Most other information, including color, is
not copied. Color is not copied because most character color schemes do not
look good under a graphical system.

The wizard uses special rules when deciding whether to make a field a label
or an entry field. If you find that these conversion rules result in undesirable
effects (for instance, screens with an overabundance of entry fields), you can
try converting the screen using alternate rules. To do so, select the Use
Alternate Rules check box on the Properties dialog that displays after the
initial conversion. This causes the wizard to re-evaluate the original
character screen using slightly different conversion heuristics. You can try
both to see which gives better results.

A.5.1 Benefits and Restrictions

The main benefits of using the Character-to-GUI Wizard are the following:

• The conversion process is faster than manual techniques.

• The resulting screens are placed in AcuBench, ready to use the powerful
facilities of the Screen Designer to modernize the screen further. This
also provides a nice starting point for bringing the entire application into
AcuBench.

• Because the graphical interface is derived from the character one, it
retains the efficiencies that have been built into the character interface,
and the application’s user base will find the interface familiar and
comfortable.

• The resulting program is an ACUCOBOL-GT program. This program
can be easier to understand and maintain than those produced via some
other conversion techniques that may involve rewriting the screens in
another programming language or using an external tool.

• By focusing the tasks to accomplish, the wizard can make the
programmer more productive. Replacing an application’s user interface
with a graphical one is a daunting task with many decisions to be made.
Using the wizard, the task is more concrete: integrating a screen into a
program.

Updating a Character-based Screen A-13
• If you need to retain the character-based interface, the wizard’s output
works well with ACUCOBOL-GT’s dual-interface features. This makes
it easy for a single application to contain both a character and a graphical
user interface.

• The wizard creates screens that refer to the original data items used to
build the character screen. This makes integration of the graphical
screen into the program easier.

The Character-to-GUI Wizard has some important limitations that you
should also consider:

• The wizard is available under Windows only.

• Because it mimics the character interface, the resulting graphical user
interface makes use of only labels and entry fields. The programmer can
add more graphical elements right away or over time as needed, but they
are not included as part of the initial conversion.

• The wizard only handles screen labels and entry fields. More advanced
elements of a character application are not recognized by the wizard.
These include menu bars, pop-up windows, and line drawing characters.

• The wizard uses some source code analysis, some runtime analysis, and
some heuristics to decide what on the character screen should be labels
and what should be entry fields. While these are usually correct, in some
cases the wizard could make the wrong choice. The wizard contains a
method for correcting this when it occurs.

• Spacing issues arise when you convert from a fixed-pitch font in the
character application to a variable-pitch font in the graphical application.
In addition, the boxes around the graphical entry fields occupy screen
space that is not present in the character application. As a result, screen
elements do not always fit correctly after the conversion. The wizard
uses a general-purpose placement algorithm that works well for most
screens, but does not ensure that screen fields always fit or look right.
You may have to occasionally move or resize a screen field after the
screen has been imported into the Screen Designer. You can choose to
minimize this effect by using a fixed-pitch screen font and/or using
unboxed entry fields. The wizard supports both of these options.

A-14 Bringing Existing Code Into AcuBench
• Screens constructed via techniques other than using ACUCOBOL-GT
syntax cannot be converted or convert poorly. This also applies to
screens constructed by embedding terminal control codes directly in the
displayed data by the application. The wizard is not aware of the effects
of the terminal control codes and treats them as data instead. The
resulting screens are generally not useful.

• The programmer is responsible for integrating the output of the wizard (a
Screen section item) back into the program. The wizard tries to simplify
this task by referring to the original data items and screen names as
appropriate. However, in some cases, the data item may not be correct
or even legal. For example, if you construct some portion of a screen out
of data contained in a table, the resulting Screen section item could
contain several identical table references for logically distinct items.
(This would happen if the screen were constructed by processing the
table in a loop.)

• Screens that are not treated by the application as a series of fields do not
convert well. For example, if you have a word processor application
where the body of the screen is managed by single-character ACCEPT/
DISPLAY statements, the wizard tries to treat each character as a distinct
field. The results are not useful.

• The wizard does not handle screens whose set of fields change based on
other actions. Essentially, when you import you get an image of the
screen as it is at that time. If the screen is dynamic, then that image
expresses only one form of the screen.

A.5.2 Using the Character-to-GUI Wizard

The following steps summarize the use of the Character-to-GUI Wizard. The
remainder of this section describes aspects of the process in more detail.

1. Get the character application running with ACUCOBOL-GT under
Windows.

2. Compile the application with “-Zw”.

3. From AcuBench, run the application with the “--char2gui” option.

Updating a Character-based Screen A-15
4. Convert the desired screens by right-clicking within them and selecting
Build Graphical Screen.

5. Edit properties as desired in the resulting Properties window.

6. Make any desired changes to the new screens in the AcuBench Screen
Designer.

7. Generate a new Screen section definition from the Screen Designer.

8. Include this Screen section definition in your program and connect it to
your program logic.

A.5.3 Running under Windows

To use the wizard, you must first get your program running using
ACUCOBOL-GT on a Windows machine. The wizard uses both the
compiler and runtime to do its job, so you must first get your program into a
state where it can be run under Windows.

A.5.4 Setting Compiler Options

For best results, the program containing the screen to be converted should
first be compiled with the ACUCOBOL-GT compiler using the “-Zw”
option. This option, which is set through the AcuBench Project Settings
dialog box or on the ACUCOBOL-GT command line, causes the compiler to
insert “comments” into the compiled object code that the wizard will use to
determine the names of relevant data items. You can use the wizard without
first compiling with “-Zw”, but the wizard is less likely to select the proper
control type for each field and the resulting Screen section will not contain
any data names.

When compiling, you can also select a mapping option to define how your
data names appear in the screen description: in uppercase, lowercase, or
mixed case. By default, uppercase data names are displayed. Note that the
case transformation occurs only for characters in the ASCII character set (the
English alphabet). For characters outside of the ASCII character set, no
transformation is performed.

A-16 Bringing Existing Code Into AcuBench
Use the following steps to set the “-Zw” compiler option:

1. Use the Project/Settings command to display the Project Settings dialog
box. Choose the Compiler tab.

2. Select Miscellaneous Options in the catalog drop-down box. Check
the “-Zw” option, “Prepare for use with the Screen Import Utility.”

3. Select OK to save the setting.

4. Select Save as Default to save the setting in the “default.pof” file.
These settings are applied to new projects when they are created.

Set mapping options as follows:

1. Use the Project/Settings command to display the Project Settings dialog
box. Select the Compiler tab.

2. Select Mapping Options in the catalog drop-down box.

3. Select the option that best fits your needs:

4. Select OK to save the setting.

5. Select Save as Default to save the setting in the “default.pof” file.
These settings are applied to new projects when they are created.

A.5.5 Setting the “--char2gui” Runtime Option

After the relevant programs are compiled, you need to execute them.
Perform this step as if you were running the programs normally, except add
the “--char2gui” option to the runtime command line in order to launch the
Character-to-GUI Wizard along with your program. In AcuBench, you add
the “--char2gui” option to the runtime through the Project Settings dialog box
as follows:

-Mu Names are uppercase

-Ml Names are lowercase

-Mm Names are mixed case: upper for the first letter of each
word, lower for the rest

Updating a Character-based Screen A-17
1. Select the Project/Settings command to display the Project Settings
dialog box. Choose the Runtime tab.

2. Select Common Options in the catalog drop-down box. Check the
“--char2gui” option, “Import Character Screen File.”

3. Select OK to save the setting.

4. Select Save as Default to save the setting in the “default.pof” file.
These settings are applied to new projects when they are created.

Alternatively, to select the “--char2gui” option, you can right-click the
program node in the File tab and select the Character Screen Import
command from the pop-up menu. Note that only the Windows 32-bit runtime
supports this option.

A.5.6 Screen Conversion

After you have compiled and executed the program, you are ready to convert
your text-based screens into graphical ones. See “Tips and Techniques” in
section A.5.11 for a list of things you may want to consider before beginning.

Note: Don’t bother converting message screens, because these screens
come from the Windows message handler rather than your application. The
Windows runtime automatically displays messages in a Windows message
box.

Perform the screen conversion operation as follows:

1. With the relevant program running, right-click in the screen you want to
convert.

2. To “capture” the screen for conversion, select the Build Graphical
Screen command from the resulting pop-up menu. At this point, a
graphical version of the application screen is created based on the
wizard’s internal conversion rules. The new graphical screen is
displayed along with a Properties dialog box. You can use the
Properties dialog to make global changes to the window created by the

A-18 Bringing Existing Code Into AcuBench
wizard. This is described in section A.5.7, “Editing Screen
Properties.” You can also change the size of the graphical window by
dragging its borders.

Note that the original application screen is still present, but it is disabled
until you finish with the wizard.

3. Navigate to the next screen that you want to convert and repeat the
process until you have converted each screen in the program. The
results are saved together in a single text file named “import.out”. If a
file named “import.out” already exists in the current working directory,
it is overwritten.

4. Terminate the program normally. The converted screens are
represented in your AcuBench project in the workspace Structure view
in a new program. From there, they can be moved, opened, and
modified as needed. Multiple screens are opened “cascade” style in the
Screen Designer.

A.5.7 Editing Screen Properties

When the Character-to-GUI Wizard first displays a new graphical screen, it
also displays the Properties dialog box so you can make changes if desired.

The Properties dialog allows you to change the conversion rules that the
wizard used when first creating your graphical screens. Changes to
individual screen items are made using the Screen Designer in AcuBench
after the wizard has finished.

The Properties dialog contains the following options:

Option Description

Unboxed fields Creates entry fields without boxes. The default is to use
boxes. Unboxed entry fields are useful if, for example, you
need the resulting screen to fit on a 640 x 480 display. Most
of the time, however, you would not want to use this option
as the resulting screen does not have a Windows look.

Layout Lets you choose how the “rows” of the graphical screen are
placed. The two “Separate Rows” options result in a
“Windows like” look, but use more vertical screen space.

Updating a Character-based Screen A-19
Adjacent
Rows

Makes entry fields on adjacent rows overlap and share a
common border (if boxed). This option uses the minimum
screen height.

Separate
Rows

Places a small amount of space between the adjacent rows
such that the entry field boxes are clearly separate from each
other.

Separate
Rows / 3D

Gives the same result as the “Separate Rows” option, except
that each entry field has a 3-D border drawn for it.

Font Lets you pick the font that is used for all the controls
(individual controls can be changed in the Screen Designer).
Note that many fonts designed for word processing are taller
than the built-in fonts for a particular point size. These fonts
have additional white space built into them on the top and
bottom edges and therefore use more vertical screen space
than the built-in fonts.

Small Displays your control with the runtime’s built-in
proportional small font.

Medium Displays your control with the runtime’s built-in
proportional medium-sized font.

Large Displays your control with the runtime’s built-in
proportional large font.

Fixed Displays your control with the runtime’s built-in fixed-width
font.

Traditional Displays your control with the runtime’s built-in traditional
font, which uses a different underlying character set than
Windows normally does. The traditional font mimics IBM’s
original character set.

Custom Allows you to select any font on the system for your controls.
This option is available once you click on the Pick button.

Pick Displays the Font dialog box, in which you can select the
font, its style (e.g., italic), and size for your control.

Use Alternate
Rules

Causes the wizard to re-evaluate the original character screen
using slightly different conversion heuristics. Generally
speaking, the alternate rules work well if you are getting too
many entry fields using the default rules.

Option Description

A-20 Bringing Existing Code Into AcuBench
Any changes made in the Properties dialog box are immediately reflected in
the graphical window.

Three changes can be made in the graphical window itself:

1. You can change the size of the window by grabbing one of the edges with
the mouse and dragging to the desired size. The “Size” portion of the
Properties dialog tells you the current size of the window in pixels.

2. The wizard uses a variety of heuristics to decide whether a field in the
character application should be represented as a label or an entry field.
Sometimes, these do not produce the desired result. You can change
the type of the control by right-clicking on the control. Select the
desired control type from the pop-up menu.

3. If desired, you can delete a control from the screen produced by the
wizard. You would normally remove controls that don’t make any
sense. For example, you might want to delete a menu bar that has been
turned into a set of controls. Later you can reconstruct the menu bar in
the Screen Designer. To delete a control, right-click on it and select
Delete.

Size Displays the current screen dimensions in pixels. This is
useful when you want to ensure that the resulting window fits
on a specific resolution screen. For example, you may want
to make sure that the resulting screen is not larger than 800 x
600 pixels.

OK Finishes the conversion process. The wizard imports the
graphical screen to the AcuBench Screen Designer and
returns control to the original character program.

Cancel Cancels the conversion process. The converted screen is
destroyed along with the editing window and control returns
to the original character program.

Set Default Records the current Properties dialog box settings in the
registry. These settings become the default values for future
screen conversions.

Option Description

Updating a Character-based Screen A-21
When you are finished editing screen properties, click OK, terminate your
program normally, and control returns to AcuBench. Use the AcuBench
Screen Designer to further manipulate your screens as required.

A.5.8 Manipulating the Screen in the Screen Designer

After converting your screens with the Character-to-GUI Wizard, you can
use the AcuBench Screen Designer and all of its features to modify the
screens to your liking. You can add graphical controls, define control
properties, modify grid behavior, and perform any other function that you
might if you were designing the screens from scratch in AcuBench. You can
make changes all at once, or over time, as needed. For more information
about modifying your screens, see Chapter 14, “Working with Screens.”

You may want to move your newly imported screens into their host programs
in the workspace Structure view. You can do this by clicking on the new
screen in the workspace and dragging it into the screen node in the desired
program.

Be sure to review the characteristics of each screen that you converted. As
you review, you can make minor modifications to the look and feel of the
screen and resize the screen as necessary. (Be aware that in Windows, the
size of an initial screen is different than it might be in a character-based
application.) Use the alignment functions to position and size controls, lock
controls, and verify the tab order. In addition, you may want to change the
names of your screens or rename individual controls in the Property window
to give them meaningful names. If your original screens were constructed
from a Screen section, we suggest that you name the screens with the same
name that you used previously.

In many cases, you should replace consecutive singular entry fields with
multi-line entry fields. You should also check the window type of your
screens. Remember that there can be only one “standard” window.
Subsequent windows are either floating windows or associated with
pre-existing window handles. After you’ve performed these functions, you
should verify that font, title, value, and other variables are set correctly.

Finally, if you want your menu to be associated with the screen (and have
code generated to show it), be sure to update Main Menu in your screen’s
Property window.

A-22 Bringing Existing Code Into AcuBench
Any other changes that you want to make to your screens can be made now if
you like. How far you take your screens is up to you.

The following list offers some guidelines for modifying your newly
converted screen:

1. Examine the window properties of the imported screen. Set the
following properties:

Title: If the window in question is to be displayed on another Window’s
handle, the title is just documentation. It is useful when working on a
screen to have a quick visual cue of the name of the screen when it is not
a primary screen.

Screen Name: If the original screen came from a Screen section,
preserve the screen’s name to facilitate integration of code.

Window Type: This always defaults to “Standard”. However, there can
be only one “standard” window in a program. If the window in question
is to be displayed on another window’s handle, this is not an issue. If not,
select another window type.

Size / Lines: We suggest that you conform to some basic window size/
lines measurements, and set all windows to those measurements.

2. Examine the control properties of the imported screen.

a. Set Control Name.

b. Verify that Value-Variable and Title-Variable have been correctly
preserved by the import process.

c. Verify that embedded procedures have been correctly preserved by
the import process.

d. Align the controls. Conform alignments to preserve application
“look and feel”. Conform the line number on which status
messages appear (typically, line 24 in a character-based
application).

3. Examine the screen’s ACCEPT statement. ACCEPT Screen-Name
does not require modification. ACCEPT Variable-Name does, because
variable-name is now part of a screen. Refer to section A.5.10 for
more information.

Updating a Character-based Screen A-23
4. Right-click on the screen and select the Change Prefix command.
This action is in preparation for moving the screen to the host program,
where all screen prefixes must be unique. Select Change Prefix Only.
Assign a unique prefix to the screen.

5. Drag-and-drop the screen in the host program. Delete the program
structure file when it contains no more screens.

6. Examine the screen’s window-handle. If the screen is to be displayed
on another screen, then change the window handle to the handle of that
screen. If the screen is a floating window (derived from a pop-up
window), make sure it shares the same handle as the original pop-up
window.

7. Save.

A.5.9 Generating New Screen Section Code

When you are done modifying your new screens, use the Build/Generate
command to generate a COBOL code source file (“.cbl”) for the screen. As
with all AcuBench screens, the code generation process also gives you a
Screen section file (“.scr”), an event paragraph file (“.evt”), a menu
paragraph file (“.mnu”), a Procedure Division file (“.prd”), and a
Working-Storage file (“.wrk”).

Note: Before you generate code for your screens, you should be familiar
with the code generation model used by AcuBench. See section 3.3 for
details.

A.5.10 Integrating Code Back into Your Program

The final step in the conversion process is integrating your new graphical
screens back into your program. This step typically takes the most time and
may require some program changes. In some cases, the changes can be
extensive. The amount of work you have to do depends on the original state
of your program. The process is made somewhat easier because the new
screen refers to your program’s variables and embedded procedures where
applicable.

A-24 Bringing Existing Code Into AcuBench
There is no single correct way to do this step, and no procedure that works for
every case. Instead, you have to evaluate your program to see how it can best
interact with the updated screen. In the simplest case, the integration process
consists of putting the new code in place and commenting out the old code.

When you’re integrating the new code, you should analyze your
application’s:

• data characteristics

• keyboard characteristics

• display characteristics

• initialization sequence

Data characteristics

Even though the concept of the Character-to-GUI Wizard is display oriented,
you must understand the relationship between the screen and the data. For
instance, you should verify that the fields on your new screen are matched
with the fields in the FD or working-storage. You should also verify that
embedded procedures are associated with your screens and its fields
correctly.

In addition, if you’ve done things like create data sets, then you have to be
aware of the fact that you generated code that opens files on initialization. If
you don’t need those files open, you should de-select OPEN in the definition
of the data set. To do this, right-click on the data set node for the target
program in the workspace Structure view and select Referenced FD/SL files
from the drop-down box. Clear the Open check box for the files you do not
wish to be opened.

Keyboard characteristics

When integrating your new screen code, you must also be aware of your
program’s keyboard characteristics. If your application instructs users to
press a function key and you want to implement this functionality with a push
button, you have to know what exception value that key produces and you
have to match the same exception values to your screen’s new push buttons.

Updating a Character-based Screen A-25
If you printed your “cblconfig” file or the section of code that contains
environment settings before conversion, you should be able to easily locate
the KEYSTROKE settings.

Display characteristics

The most important element of the conversion is your application’s display
characteristics. In general, the conversion process results in a set of new
DISPLAY statements that you must use in place of your old DISPLAY
statements.

To locate your old DISPLAY statements, you can select Find All in the Find
dialog box and search on the word “DISPLAY”. This generates an Output
window list of all the lines of code in your program containing the word,
“DISPLAY.” If it is not obvious to which screen the DISPLAY statements
relate, try running the ACUCOBOL-GT debugger at the same time that you
capture the screens with the Character-to-GUI Wizard. If you run your
program with both the “--char2gui” and “-d” runtime options, you can turn on
paragraph trace, capture a screen, turn off paragraph trace, and know exactly
where in the source you’ve been.

Once you know which DISPLAY statements correspond to which screen, you
can begin replacing old code with new.

Where screens are displayed initially, you should comment out the old
DISPLAY statement and replace it with a PERFORM statement that uses the
following syntax:

 PERFORM Acu-[screen-name]-Scrn

For example:

 * display myscreen
 PERFORM Acu-myscreen-Scrn

This paragraph contains code to create a window, display the screen and its
main menu on the window, and initialize any complex controls that have been
included.

Where elements of screens are displayed (e.g., with field-level DISPLAY
statements), you should comment out the old DISPLAY statement and
replace it with a MODIFY statement. For example:

A-26 Bringing Existing Code Into AcuBench
 * display id-no-field
 MODIFY ID-NO-FIELD value Techhelp-ID

This is made easier because the wizard preserves the name of the Screen
section element.

If your original program uses Screen section DISPLAYs and you have
duplicated the name of the screen in the Screen Designer, then you may have
very little work to do. However, you should replace the initial “display
window ERASE” statement with the workbench-generated DISPLAY
STANDARD WINDOW code in the “.prd” file.

Be sure to comment out non-Screen section DISPLAY statements if your
program uses a combination of Screen section and field-level DISPLAY
statements. DISPLAY LINE and DISPLAY BOX statements fall into this
category. Comment them out.

ACCEPT handling

Even though the generated code contains ACCEPT statements as well as
DISPLAY statements, we recommend that you leave your application’s
ACCEPTs intact whenever possible. Where your application ACCEPTs
screens, no conversion is necessary. (The screen name is already established
by the wizard.)

However, where your application ACCEPTs variables, you should comment
out the old syntax and replace it with an ACCEPT screen. You should then
add an entry field to the screen whose value is the variable you were
previously ACCEPTing. For example:

 * accept new-status
 ACCEPT NEW-STATUS-SCREEN

In this example, the screen, NEW-STATUS-SCREEN, contains an entry field
whose value is new-status. The old ACCEPT is commented out and the new
ACCEPT screen is added.

As a rule, you should examine your ACCEPT statements to determine
whether they are ACCEPTing screens or variables, and therefore, whether or
not you must perform any conversion. To locate the ACCEPT statements,
you can select Find All in the Find dialog box and search on the word
“ACCEPT”.

Updating a Character-based Screen A-27
Other display considerations

After you have made an initial pass through your application’s ACCEPT and
DISPLAY statements, you should consider how and whether your screens
may be used differently in a graphical world than they were in a
character-based world. For instance, it is a common practice in many
character-based applications to use DISPLAY statements to redisplay a main
screen whenever a field is updated. In the graphical world, it is impractical
and unnecessary to recreate a window and redisplay an entire screen just to
update a field. Therefore, you may want to use a MODIFY statement to
update the field rather than the PERFORM screen.

In addition, in character-based applications, DISPLAYs are often made over
existing DISPLAYs, in effect replacing the old DISPLAY with the new one.
In graphical applications, controls must be explicitly destroyed or made
invisible before other controls are put in the same space.

The way that a screen closes in a character application is also different from
the way a screen or window is closed in a graphical application. For this
reason, when you are replacing your DISPLAY statements, you should track
where the screen closes or is blanked (a less obvious display event) and
convert the close as needed. For example, you may replace a DISPLAY
statement with a MODIFY statement in the following case:

 * display grow-scrn-1.
 MODIFY GROW-SCRN-1 TITLE GROW-DESC-LABEL.

However, if you are using a pop-up window, then your close event may
specify “close window handle-1”. In this case, when you import the screen,
all you need to do is give it a handle of “handle-1” and no other conversion is
necessary.

Another important difference between character and graphical applications is
that character-based applications often dynamically build a screen one line at
a time, but it is impractical to display elements line-by-line in the graphical
world. Therefore, if your application DISPLAYs a variable in column 10,
line 10, and then again in column 10, line 11, and so on, in the graphical
world, this may be better accomplished through the use of a list box.

A-28 Bringing Existing Code Into AcuBench
Finally, with a graphical application, you have the opportunity to display
message boxes, combo boxes, and other graphical elements that you didn’t
have access to before. You can use the Screen Designer to add these elements
whenever you’re ready.

Initialization sequence

When you generate code for a screen, a statement called “perform
acu-initial-routine” is generated. The acu-initial-routine paragraph performs
several functions, some of which you may want and some of which you may
not. It performs an “ACCEPT System-Information FROM System-Info” and
an “ACCEPT Terminal-Abilities FROM Terminal-Info”. In addition, it
initializes fonts, bitmaps, and ActiveX resource files; creates menus; and
opens files described in data sets. Your character application may already be
performing some of these functions, but it isn’t likely to perform all of them,
and some, like initializing fonts, are critical in the graphical world.

As you are adjusting your original application for the new screen code, you
need to make some decisions about what you want your application to do
upon initialization. If you want all of the stated initialization routines to take
place, you can leave the new perform statement in place, but you may need to
remove old redundant code. If you want to perform some of the initialization
routines but not others, rather than performing acu-initial-routine, you may
prefer to call individual routines, like initialize fonts. In this case, delete the
new perform statement and add the desired calls to your own sequence.

A.5.11 Tips and Techniques

To simplify your conversion process, consider performing the following
steps before converting your text-based screens:

• Identify all character-based DISPLAY code in your application.

Note: Character-based DISPLAY events include DISPLAY
statements and CLOSE WINDOW statements.

Updating a Character-based Screen A-29
• If your screens are defined in a Screen section, print descriptions of your
screens. These can be used to ensure consistency, particularly regarding
screen name, control names, and variable names associated with
controls.

• Create a screen flow diagram, that is, a list of the screens you are
converting along with instructions on how to bring up those screens and
conditions that need to be present in order to bring them up. This helps
you determine whether you can capture all of the screen conditions
contained in your application, or whether you must run the application
again with another set of conditions to capture more screens. It also
helps you associate the new screen forms with their host programs when
you are ready to integrate the code back into your application.

• Print descriptions of your menu bars. Menu bars are not captured by the
wizard and must be rebuilt “manually” in the Screen Designer.

• Print SELECT statements and file descriptors (FDs).

• Print your “cblconfig” file or the section of code that contains
environment settings. KEYSTROKE settings are important if you want
to replace function key (F-key) labels with push buttons.

• Back up your original application. The copy from which you are
converting quickly becomes a “work in progress,” and you need to have
the original system to verify that functionality has remained intact, as
well as to serve as a reference point.

• Create an AcuBench project and copy the necessary source files, data
file selects and descriptions, and other COPY files into the created
folders. Add source files to the project using the Add/Remove Files
function and parsing for COPY files. This creates a program structure
file in the workspace Structure view. Note that only programs with
screens that will be converted need to have program structure files
created for them.

• If the application that you plan to convert has calls to ACUCOBOL-GT’s
“menubar.cbl” program, replace these calls with calls to “menubar2.cbl”
before capturing the screens. The “menubar.cbl” program creates a
character-based menu bar and “menubar2.cbl” creates a graphical menu
bar using the same input.

A-30 Bringing Existing Code Into AcuBench
• If you think you may have trouble creating “real” conditions for a screen
to appear, run your program with the debug option “-d”. In debug mode,
you can set breakpoints where the program evaluates the state of certain
fields and you can set them using the A (accept) function. In this
manner, you can force the display of the screen you want to capture.

In addition, be careful not to distribute the wizard to your end users when you
ship the runtime. Specifically, do not give them the file “achr2gui.dll”. This
file is normally located in the same directory as the runtime (which defaults
to the “bin” subdirectory where you installed ACUCOBOL-GT). This file is
not needed except when running the wizard.

A.6 Importing a Graphical Screen

This section describes the AcuBench graphical Screen Import Utility, which
translates graphical ACUCOBOL-GT screens into those that can be read in
the Screen Designer. The Screen Import Utility creates a text file that
“defines” a graphical screen created by an ACUCOBOL-GT program. This
utility is used to import graphical screens into AcuBench, and uses the
ACUCOBOL-GT runtime to produce a description of the screen. For
information about importing character screens, refer to section A.5 in this
manual.

The following steps summarize the use of the Screen Import Utility. The
remainder of this section describes aspects of the import function in more
detail.

1. In the Project Settings dialog box, set the compiler to use the “-Zw”
option.

2. Also in the Project Settings dialog box, set the runtime to use the
“-import” option.

3. Compile and execute the screen(s) to be imported using the above
options.

4. Right-click in the screen to be imported and select the Import Screen
command.

Importing a Graphical Screen A-31
5. Close the program that contains the screen(s) you just imported. The
imported screen(s) should be represented in your workspace in a new
program. At this point, the imported screen can be edited, the screen
can be saved as an “.stf” file, and code can be generated for the
imported screen. You can also move the imported screen(s) to the
program of your choice in the workspace.

A.6.1 Setting Compiler Options

For best results, the program containing the screen to be imported should first
be compiled with the ACUCOBOL-GT compiler using the “-Zw” option.
This option, which is set through the AcuBench Project Settings dialog box
or on the ACUCOBOL-GT command line, causes the compiler to insert
information that may be lost during compilation. Such information includes,
for example, the names of the variables used to create the screen items.
Importing screens without using the “-Zw” option yields screens that are not
as complete as they are when you use the “-Zw” option.

When compiling, you can also select a mapping option to define how your
data names appear in the screen description: in uppercase, lowercase, or
mixed case. By default, uppercase data names are displayed. Note that the
case transformation occurs only for characters in the ASCII character set (the
English alphabet). For characters outside of the ASCII character set, no
transformation is performed.

You can set the “-Zw” compiler option using the following steps:

1. Use the Project/Settings command to display the Project Settings dialog
box. Choose the Compiler tab.

2. Select Miscellaneous Options in the catalog drop-down box. Check
the “-Zw” option, “Prepare for use with the Screen Import Utility.”

3. Select OK to save the setting.

4. Select Save as Default to save the setting in the “default.pof” file.
These settings are applied to new projects when they are created.

A-32 Bringing Existing Code Into AcuBench
Set mapping options as follows:

1. Use the Project/Settings command to display the Project Settings dialog
box. Select the Compiler tab.

2. Select Mapping Options in the catalog drop-down box.

3. Select the option that best fits your needs.

4. Select OK to save the setting.

5. Select Save as Default to save the setting in the “default.pof” file.
These settings are applied to new projects when they are created.

A.6.2 Setting the “-import” Runtime Option

After the relevant programs are compiled, you need to execute them.
Perform this step as if you were running the programs normally, except that
you should add the “-import” option to the runtime command line. The
ability to add the “-import” option is managed through the Project Settings
dialog box as follows:

1. Select the Project/Settings command to display the Project Settings
dialog box. Choose the Runtime tab.

2. Select Common Options in the catalog drop-down box. Check the
“-import” option, “Import screen file.”

3. Select OK to save the setting.

4. Select Save as Default to save the setting in the “default.pof” file.
These settings are applied to new projects when they are created.

Alternatively, to select the “-import” option, you can right-click the program
node in the File tab and select the Screen Import command. Note that only
the Windows 32-bit runtime supports the “-import” option. Also, you must

-Mu Names are uppercase

-Ml Names are lowercase

-Mm Names are mixed case: upper for the first letter of each
word, lower for the rest

Importing a Graphical Screen A-33
have the file “WEXPRT32.DLL” installed in the same directory as the
runtime. This “.DLL” comes with the 32-bit Windows runtime, but is used
only for the import function.

A.6.3 Graphical Screen Importing

After you have compiled and executed the program, you are ready to import.
The compile and execute functions are available as separate commands in the
menu bar or the Project toolbar. You can also right-click on the source file in
the workspace File view and select the Screen Import command.

Perform the screen import operation as follows:

1. With the relevant program running, right-click in your screen to display
the Import Screen pop-up menu. Make sure you click the mouse in the
screen itself and not over a control on the screen.

2. To “capture” the screen for import, select the Import Screen pop-up
menu with the left mouse button.

You may import multiple screens in a single execution. The results are
all saved together in a single text file named “import.out”.

3. Close the program that contains the screen(s) you just imported.

The imported screen should now be represented in the workspace
Structure view in a new program, from which it can be opened, modified
as needed, saved, and have code generated for it. Multiple imported
screens are opened “cascade” style in the Screen Designer.

4. If you want to add the new “import.out” file to another program in the
workspace Structure view, right-click on the program node in the
workspace, and select the Add Screen command from the pop-up
menu. Select “.out” in the “Files of type” drop-down box. If
necessary, use the Browse button to navigate to the desired
“import.out” file. You can also move the imported screen to the
program of your choice by clicking on the imported screen in the
workspace and dragging it to the desired program screen node.

A-34 Bringing Existing Code Into AcuBench
A.6.4 Graphical Screen Importing Notes and Restrictions

• The grid, tree view, Web browser, status bar, and ActiveX controls, as
well as pop-up menus, are only partially imported. For these controls,
common properties and styles are imported. However, control-specific
properties and styles are ignored and must be added manually.

• Only controls are imported. Screen elements described by textual fields
(e.g., DISPLAY “CUST NO”) are not imported.

• The imported screen does not retain any of the structural information in
the original source’s Screen section. For example, if a Screen section
item contains subsidiary group items, that information is lost. The
Screen Designer cannot represent these items, so they are not imported.
The resulting screen has the same look as the original, but a different
internal structure.

• Importing a screen and then generating code may result in an illegal
COBOL program. This can happen when the original source code
contains structures that have no representation in the Screen Designer.
For example, if the original program contains two fields that have the
same name, but are distinct using qualification by intermediate group
items, the resulting program may be illegal as the intermediate group
items are lost. In another example, if the USING phrase for a control
names a qualified data item (e.g., MY-DATA OF MY-GROUP), then the
resulting program contains an illegal data declaration (e.g., “01
MY-DATA OF MY-GROUP PIC X(10)”). You can adjust for these
anomalies in the Screen Designer after importing the screen.

• If both FROM and TO are specified, the TO item becomes the control's
VALUE and the FROM item is ignored. Otherwise any specified
FROM/TO/USING item becomes the control's VALUE. The control's
actual VALUE is suppressed, but the VALUE data item name and picture
are imported.

• CLINE, CCOL, CSIZE, and CLINES are not currently imported.

• MULTIPLE VALUE items have the word “Table” in front of their data
item name. However, the number of occurrences in the table is not
imported.

Importing a Graphical Screen A-35
• For entry fields, list boxes, and combo boxes, if neither BOXED nor
NO-BOX is specified, the import utility sets BOXED to “true” (although
FIELDS-UNBOXED can affect this). While this is an accurate
reflection of the control's appearance under Windows, this could change
the look under character systems. You might want to leave both BOXED
and UNBOXED “false” and have the Screen Designer assume the
BOXED appearance. Also note that FIELDS-UNBOXED implies the
NO-BOX style (for entry fields) at the time the control is created. This
is reflected in the imported code even though NO-BOX is not specified
in the original source.

• Labels always have a LABEL-OFFSET of “0”. The label offset value is
reflected in the coordinates for the label.

• Single-line entry fields report their MAX-LINES as “0”, because
MAX-LINES is only meaningful for multi-line entry fields.

• CURSOR and ACTION properties are not imported for entry fields.
These fields are not normally used in a Screen section.

• For list boxes, the following properties are not imported:
MASS-UPDATE, ITEM-TO-ADD, RESET-LIST, ITEM-TO-DELETE,
INSERTION-INDEX, SEARCH-TEXT, SELECTION-INDEX,
QUERY-INDEX, and ITEM-VALUE. All of these are dynamic
properties that are not part of the static appearance of the list box. You
may want to reconsider ITEM-TO-ADD and possibly others.

• For combo boxes, the following properties are not imported:
MASS-UPDATE, ITEM-TO-ADD, RESET-LIST, ITEM-TO-DELETE,
and INSERTION-INDEX.

• For frames, FILL-PERCENT is not imported.

• For tab controls, RESET-TABS and TAB-TO-DELETE are not
imported.

• For bars, one dimension has a size of zero. Use the value of the WIDTH
property to determine the actual width of the line.

• For bitmaps, either SIZE or LINES may be zero. In this case, the full
size of the actual bitmap should be used for the corresponding
dimension.

A-36 Bringing Existing Code Into AcuBench

Index

A
About AcuBench command 22-2

ACCEPT-CONTROL variable, setting 4-22

ActiveX Control Components command 15-22

ActiveX Control Properties dialog 15-23

ActiveX controls 15-21

adding 15-22

licensing issues 15-23

removing 15-23

setting the initial state 15-23

ActiveX, Special Names COPY file 4-23

activex-def tags 4-23

acu4glfd utility 19-21

AcuBench file types 3-10

AcuBench toolbars

adding 4-31

adding buttons to 4-32

customizing 4-31

deleting 4-31

removing buttons from 4-32

spacers in 4-32

AcuBenchPrint.dll 17-29, 17-32

ACUCOBOL-GT

character screen import A-11

definition COPY files 4-24

documentation set 2-4

importing graphical screens into the Screen Designer A-30

utilities 19-2

AcuConnect 1-5

printing reports in thin client 17-32

Acucorp technical support 1-6

acu-def tags 4-24

Index-2
ACUPATH environment variable 7-13

acuthin --wait 9-29

AcuXML 19-22

AcuXUI 14-42

Add FD/SL command 8-30

Add Keyword Set dialog 11-9

Add New Template File dialog 12-17, 13-6, 16-7

Add Paragraph dialog 14-37

Add Screen command 14-40

Add Screen to Program dialog 14-40

Add to Watch Window command 20-5

Add/Remove Files command 6-13, 22-4

Add/Remove Project Mode dialog 7-5

adding a child item to a tree view 15-19

adding a keyword 11-9

adding a menu item 15-25

adding a project mode 7-4

adding a screen template 13-6, 16-7

adding a submenu item 15-26

adding a tree view item 15-18

adding ActiveX controls 15-22

adding configuration variables 7-9

adding controls 14-9

adding files 6-14, 9-14

adding tags 4-26

adding user-defined variables 7-12

AfterDoPrint event 17-19

code samples 17-21

described 17-21

generated files 17-24

modifying source file 17-24

Align commands 14-30

Align Control commands 14-31

Align menu 14-30

Align toolbar 22-7

 Index-3
aligning controls 14-30

ANSI to Terminal Format command 12-4

application development approaches 3-12

areas A and B 11-6

augment function, vutil 19-16

Auto Step command 20-12, 22-7

auto-alignment option 13-3, 16-3

auto-increment control variable values 14-34

auto-indent function 4-16, 11-8

Autoload controls 14-14

automated code generation 3-7

automatic save 4-6

AutoStep Properties dialog 20-12

AXDEFGEN 15-22

B
Background list box 11-6

bar control 15-5

Before and After Print event 17-18

Before and Ater events

described 17-20

BeforeDoPrint event 17-19

code samples 17-21

described 17-21

generated files 17-24

modifying source file 17-24

bitmap control 15-5

bookmarks 12-7

Boomerang 9-25

breakpoints

Breakpoints command 20-14

modifying 20-17

setting and removing 20-15

Index-4
breakpoints (continued)

using bookmarks as 12-7

viewing 20-17

Build Environment options 4-9

Build Graphical Screen command A-17

Build menu

Build Workspace 6-4, 22-4

Generate 14-40

Rebuild Workspace 6-5

Regenerate Workspace 6-6

Stop Build 6-6

build scripts 3-23

Build Workspace command 6-4, 9-24

building from the command line 3-22

C
C$COPY library routine 17-34

Call Stack command 20-7

Call Stack window 22-6

Capitalize command 12-8

cblutil 19-3

-info 19-6

-lib 19-4

-native 19-8

Cell Setting tab 18-21, 18-23, 18-25

Center Horizontal and Vertical commands 14-32

CFE (Configuration File Editor) 7-9

Change Prefix dialog 14-4

changing a screen’s unique prefix 14-4

changing column width in source 11-6

changing menu bars 15-28

changing project directories 3-14

changing toolbars 15-30

 Index-5
changing variable values of multiple, identical controls 14-34

--char2gui runtime option A-16

character screen conversion A-14

character screen import A-11

benefits and restrictions A-12

code integration A-23

implementation tips A-28

manipulating the screen A-21

Properties dialog A-17

Character Screen Import command A-17

character-based screen controls 14-10

character-based screens A-11

Character-to-GUI Wizard

benefits and restrictions A-12

--char2gui runtime option A-16

code generation A-23

code integration A-23

implementation tips A-28

importing character-based screens A-11

mapping options A-15

Properties dialog A-17

using A-14

-Zw compiler option A-15

check box control 15-6

child item, in tree view 15-19

CLASSPATHDIR environment variable 14-42

Clear All Bookmarks command 12-8

Clear All Breakpoints command 22-6

Close Workspace command 6-6

closing a workspace 6-6

code completion function 4-17, 12-13

Code Editor

keyboard shortcuts 23-24

line length 11-5

opening a file 12-2

Index-6
Code Editor (continued)

text block handling 12-11

trailing spaces in 11-5

Code Editor options

and ANSI display fields 11-6

auto-indent values 4-16, 11-8

Background list box 11-6

Code Insight options 4-16

color functions 11-6

column width 11-6

converting tabs to spaces 11-8

disabling color functions 11-6

display in Lists 4-19

display tab function 11-8

end-of-line marker 11-4

line length 11-4

line number pane width 11-4

modify code 11-5

Sequence Number area 11-6

setting tabs 11-8

sorting lists 4-18

source format 11-5, 11-8

tab size function 11-8

tabs support 11-8

text type 11-6

virtual space 11-4

Code Editor options, listed

Constant List 4-17

COPY File List 4-17

Font 11-7

Format 4-15

General 4-15, 11-4

Keyword 4-16, 11-8

Paragraph List 4-17

 Index-7
Code Editor options, listed (continued)

Tabs 4-16

Variable List 4-17

Code Editor windows, splitter 12-8

code generation 3-7

ACUCOBOL-GT definition COPY files 4-24

COPY statements 3-7

DECIMAL POINT IS COMMA 4-24

development approaches 3-12

Event COPY files 4-26

event procedure COPY file 3-8

external COPY files 4-25

file creation 3-16

file descriptor COPY files 4-24

file handling 8-23, 10-6

Linkage section COPY file 3-9, 4-25

menu COPY file 3-8

Procedure COPY files 4-26

Procedure Division COPY file 3-9

program comments 4-23

program file 3-9

program identification code 4-23

reports 17-23

screen COPY files 3-8, 4-25

Screen section A-23

SELECT statement COPY files 4-24

Special Names for ActiveX 4-23

tags 4-22

Working-Storage COPY files 3-9, 4-25

Code Generator options

Generate Document 4-20

generated file attributes 4-21

Code Insight functions 4-16, 12-13

code integration

data characteristics A-24

Index-8
code integration (continued)

display characteristics A-25

initialization sequence A-28

keyboard characteristics A-24

code parameters 4-17

code template

adding to project 12-17

function 4-17

Code Template command 12-18

CODE-PREFIX environment variable 7-13

color functions 11-6

Column Setting tab 18-23

combo box control 15-6

command-line interface 3-22

rebuilding the workspace 6-5

regenerating the workspace 6-6

comment tags 4-22

common properties 15-2

common screen options 14-30

Compile command 22-4

compile options

debugger 20-8

extra symbol debugging 20-8

mapping A-15, A-31

minimal symbol debugging 20-8

setting 7-8

source-level debugging 20-8

COMPILERNAME environment variable 7-13

compiling 9-22

from the AcuBench command line 3-23

multiple programs 9-24

to a remote server 9-22

Use Thin Client 9-23

concurrent project development 3-2, 6-7

 Index-9
Configuration File Editor (CFE) 7-9

adding a variable value 7-11

adding/editing user-defined variables 7-12

locating variables 7-11

removing a value or comment 7-12

searching 7-11

setting or changing a comment on a variable 7-12

setting or changing the value of a variable 7-11

Constant List box 12-15

Constant List Code Editor options 4-17

context-sensitive help 2-3

controls 14-30, 15-2

ActiveX 15-21

adding 14-9

copying 14-45

drawing 14-10

properties 15-2

standard 15-3

Copy command 14-33, 22-2

COPY File List box 12-16

COPY File List Code Editor options 4-17

COPY files 3-7

adding to a project 9-16

COPY statements, using in code generation 3-7

Copy to Clipboard command 12-16

copying controls 14-33

copying screens 14-45

COPYPATH environment variable 7-14, 7-15

modifying 9-16

copy-procedure tags 4-26

copy-screen tags 4-25

copy-working tags 4-25

Create Alias command 22-5

Create Alias dialog 9-27

creating a file alias, thin client 9-27

Index-10
creating a keyword set 11-9

creating a menu bar 15-24

creating a new data layout file 8-5

creating a new program 9-3

creating a pop-up menu 15-28

creating a project 6-7

creating a screen 14-2

creating a toolbar 15-30

creating a tree view 15-18

creating a workspace 6-3

creating an object library 19-4

creating reports 17-2

detail section 17-6

Drag-and-Drop command 17-14

group headers and footers 17-6

page headers and footers 17-6

report box 18-6

report check box 18-7

report control properties 17-16

report date time 18-8

report entry field 18-10

report grid 18-12

report headers and footers 17-6

report image 18-14

report label 18-16

report line 18-16

report occurs 18-17

report radio button 18-19

report table 18-20

section properties 17-11

creating screen templates 14-40

creating XFD files 8-26

customizing a template 4-8

customizing AcuBench toolbars 4-31

 Index-11
customizing the user interface 4-2

Environment options 4-5

loading options 4-4

saving options 4-4

Cut command 12-5, 14-33, 22-2

cutting a control 14-33

D
data definition, project level 8-2

data design tools 8-2

Data Designer options 4-28

file descriptor options 4-29

data File Designer 8-10

data layout file

adding to a project 8-30

creating from existing COPY files 8-7

described 8-3

properties 8-32

refreshing 8-32

reusing 8-30

Data Set Designer 10-2

Data Set Member Files dialog 10-10

data sets 10-2

upgrading from Version 5.x to Version 6.x or later 4-22

Data View 3-5

date entry control 15-7

Debug (Runtime) command 22-4

Debug Environment options 4-10

Debug menu 20-9

Go 20-8

Interrupt 20-9

Debug Mode 20-7

Debug toolbar 20-4, 22-6

Index-12
debugger 20-2

Add to Watch Window command 20-5

Auto Step command 20-12

Breakpoints command 20-14

Breakpoints dialog 20-15

Call Stack command 20-7

compile options 20-7

entering 20-8

Exit Debugger command 20-12

Go command 20-8, 20-12

highlighting 20-3

Interrupt command 20-9, 20-12

Memory command 20-7

Memory window 20-7

modes 20-7

modifying breakpoints 20-17

monitoring variables 20-18

output file 20-4

Output window 20-2

Quick Watch window 20-6

Quit Debugging command 20-12

Record Script command 20-14

Restart command 20-12

Run Script command 20-14

Run to Cursor command 20-14

runtime 20-2

setting a monitor 20-5

setting and removing breakpoints 20-15

Skip to Line command 20-13

starting a program in 9-28

Step Into command 20-13

Step Out Paragraph command 20-13

Step Out Program command 20-13

Step Over command 20-13

switching threads 20-19

 Index-13
debugger (continued)

Threads command 20-19

Trace File command 20-10

Trace Flush command 20-10

Trace General command 20-10

Trace Levels command 20-11

Trace Option command 20-10

Trace Paragraphs command 20-10

Trace Screens command 20-10

Trace to Debug Window command 20-11

using with the thin client 9-28

viewing breakpoints 20-17

Watch command 20-5

Watch window 20-4, 20-5

windows 20-3

working directories 20-2

Workspace window 20-2

debugger commands 20-10

debugger Stack Info window 20-6

debugging a program 9-28

DECIMAL POINT IS COMMA 4-24

decimal-point tags 4-24

declarative tags 4-25

declaratives, IO Handling tab 8-23

Default Report Writer options 16-5

Default Screen Designer options 13-4

defining a configuration variable 7-11

deleting a keyword 11-9

deleting a keyword set 11-9

deleting a menu item 15-26

deleting a tree view item 15-19

designing a toolbar 15-29

detail section 17-6

development approaches 3-12

general considerations 3-13

Index-14
development approaches (continued)

new applications 3-17

traditional 3-19

development window 2-12

dialog box

ActiveX Control Components 15-22, 15-23

ActiveX Control Properties 15-23

Add New Template File 13-6, 16-7

Add Paragraph 14-37

Add Screen to Program 14-40

Add/Remove Files 6-13

Add/Remove Project Mode 7-5

Breakpoint Details 20-16

Breakpoints 20-15

Change Prefix 14-4

Data Set Member Files 10-10

File/New 12-3

Find 21-2

Find in Files 21-4

Font 11-7, A-19

Layout Data Settings 14-29

Menu Designer 15-24

New FD/SL 8-5

New Folder 6-12

New Screen 14-3

Page Setup 2-15

Print 2-14

Print Setup 2-14

Project Settings A-16, A-31

Properties A-17, A-18

Replace 21-9

Replace in Files 21-11

Reset Controls Tab Order 14-34

Table Setting 18-23

 Index-15
dialog box (continued)

Threads 20-19

Trace Level 20-11

Disable Breakpoint command 22-6

display in Constant List 4-19

display in COPY File List 4-19

display in Paragraph List 4-19

display in Variable List 4-19

display property in Property window 13-5, 16-6

display tab function 11-8

displaying object file information 7-19, 9-22

displaying object library information 19-6

DLT

defined 8-3

properties 8-32

document notation 2-5

documentation overview 2-2

Drag and Drop

autoload 14-14

command, Report Composer 17-14

drawing controls 14-10

E
Edit menu

Bookmark 12-7

Clear All Bookmarks 12-8

Code Template 12-18

Find 21-2

Find in Files 21-4

Find Scope 12-13

Go To 12-6

Go to Next Error 12-18

Go to Previous Error 12-18

Index-16
Edit menu (continued)

Insert File 12-9

List Constants 12-15

List COPY Files 12-16

List Paragraphs 12-15

List Variables 12-15

Next Bookmark 12-8

Open COPY File 12-17

Previous Bookmark 12-8

Verb Block Match 12-14

editing runtime configuration files 7-9

editing user-defined variables 7-13

Editor toolbar 22-6

embedded procedure COPY file 3-8

end-of-line marker 11-4

entry field control 15-8

entry mode for a grid control 15-10

entry-befprg tags 4-26

Environment options 4-5

automatic save 4-6

automatically create a program file 4-15

Build 4-9

COPYPATH 4-14

customize template 4-8

Debug 4-10

default source format 4-7

extended ASCI characters 4-7

force variable check on load 4-7

General 4-5

Keyboard 4-11

Miscellaneous 4-14

on add project 4-6

on open workspace 4-6

on start-up 4-6

Prefix 4-13

 Index-17
Environment options (continued)

recently used list 4-6

Template 4-7

Use File/New 4-8

Version Control 4-9

when building the workspace 4-10

when compiling programs 4-9

when executing source files 4-10

when running tools 4-9

environment variables 7-13

ACUPATH 7-13

adding 7-14

changing 7-15

CLASSPATHDIR 14-42

CODE_PREFIX 7-13

COMPILERNAME 7-13

COPYPATH 7-14, 7-15

deleting 7-15

RUNNAME 7-14

XUIJAR 14-42

error file 20-4

Event COPY files 4-26

Event Editor 14-36

accessing from Data view 8-31

Add Paragraph dialog 14-37

event procedure COPY file 3-8

Event tab 15-3

screen form 14-6

events 15-3

AfterDoPrint 17-19

Before and After Print 17-18

BeforeDoPrint 17-19

descriptions of 14-30

LoadGridInit 17-19

LoadGridNext 17-19

Index-18
events (continued)

paged grid control 15-12

populating reports with data 17-18

Execute command 22-4

Execute with Parameters command 22-4

executing a program 9-26

executing a remote program 9-27

executing a screen 14-41

Exit Debugger command 20-12, 22-6

external applications, linking to 4-33

external COPY files 4-25

extern-cpy tags 4-26

extern-def tags 4-24

F
file descriptor

COPY files 4-24

Data Designer options 4-29

File Designer 8-10

changing a key 8-22

data layout files from .fd and .sl files 8-4

define a key 8-21

Definition tab 8-13

File Control tab 8-10

import COPY file 8-17

Key tab 8-21

link COPY file 8-17

removing a key 8-22

XFD tab 8-25

file handling code 10-6

in the Event Editor 8-31

File menu

Close Workspace 6-6

Open 12-2

 Index-19
File menu (continued)

Open Project 6-10

Page Setup 2-15, 11-10

Print 2-14

Print Preview 11-10

Print Setup 2-14

Save Workspace 6-4

file prefix 4-13

file record size, increasing Vision 19-16

file tags 4-24

file transfer utility 19-9

file type reference 3-10

File view 3-5

File/New dialog 12-3

file-control tags 4-24

files

adding to a project 6-13

closing 9-19

converting indexed files 19-20

creating 9-12

creating with vutil 19-18

deleting 9-19

displaying b-tree 19-21

extracting records from 19-19

information extracted by vutil 19-17

loading data 19-19

managing 5-2

moving 6-16

opening 9-18

placing in project directories 3-15

properties 9-19

rebuilding with vutil 19-17

removing from a project 6-15

reparsing 9-20

resetting user count 19-17

Index-20
files (continued)

saving 9-18

size information 19-19

testing integrity of 19-17

unloading data 19-19

filters, as print condition report property 17-12

Find

regular expressions 21-5

Find command 21-2

Find in Files command 21-4

Find in Files dialog 21-4

Find in Objects command 21-8

Find Scope command 12-13

Font

dialog 11-7, A-19

footers 11-11

Format Code Editor options 4-15

Format menu

ANSI to Terminal Format 12-4

Capitalize 12-8

Indent to Next 12-8

Indent to Previous 12-8

Lowercase 12-8

Uppercase 12-8

frame control 15-8

adding control first 15-9

adding frame first 15-9

copying and pasting controls 15-9

grouping controls in the frame 15-8

tab order 14-35, 15-9

 Index-21
G
General Code Editor options 4-15, 11-4

General Data Designer options 4-28

General Environment options 4-5

General Report Writer options 16-3

General Screen Designer options 13-3

Generate command 14-40, 22-4

Generate Document Code Generator options 4-20

generate files 14-40

generate screens 14-40

Generate STF Document command 14-40

generated file attributes 4-21

generating a program 9-21

generating native code 19-7

Go command 20-12, 22-6

Go To commands 12-6

Go to Definition command 12-16

Go to Next Error command 12-18

Go to Previous Error command 12-18

graphical controls

resize layout manager 14-8, 14-28

graphical Screen Import Utility A-30

grid control 15-9

entry mode 15-10

horizontal scrolling 15-10

keys 15-10

LoadGridInit 17-19

LoadGridNext 17-19

modes 15-10

navigate mode 15-10

paged 15-11

rows, columns, and records 15-10

grid height option 13-3, 16-3

grid width option 13-3, 16-3

group header and footer 17-6

Index-22
H
headers 11-11

help from Technical Support 1-6

I
I/O paragraph handling 4-22

icon file 9-8

Identification area 11-6

implementation tips, character screen import A-28

-import runtime option A-32

import COPY file 8-17

Import FD/SL Files dialog 8-7

Import Screen pop-up menu A-33

import.out A-33

importing a graphical screen A-30, A-33

importing character-based screens A-11

benefits and restrictions A-12

Indent to Next command 12-8

Indent to Previous command 12-8

Indicator area 11-6

initial program property 9-8

insert data from file 12-9

Insert File command 12-9

Insert File dialog 12-9

Insert New Page command 15-17

Insert Separator command 15-26

inserting a code template 12-18

inserting bookmarks 12-7

installing AcuBench 2-6

integrated debugger 20-2

tracing levels 20-11

Intel processor 19-8

Interrupt command 20-12, 22-6

 Index-23
K
keyboard commands

moving through text 12-6

selecting text 12-6

Keyboard Environment options 4-11

keyboard shortcuts 23-2

adding 4-12

adding, Report Composer 16-8

adding, Screen Designer 13-7

Code Editor category 23-24

Main category 23-3

Screen Designer category 13-7, 23-30

keys 8-21

Keyword Code Editor options 4-16, 11-8

keyword set

creating 11-9

deleting 11-9

modifying 11-9

setting indent value 11-10

keywords

adding and deleting 11-9

L
large applications

and performance 3-20

developing in AcuBench 3-20

workspace organization 3-21

Launch toolbar 22-8

Layout Data property 14-9, 14-28

Layout Data Settings dialog 14-29

layout manager 14-28

resize 14-8

Layout Manager property 14-9

Index-24
license codes 2-6

Line Number pane, width of 11-4

link COPY file 8-17

Linkage Editor 10-12

basic use of 10-12

Linkage options 4-29

Linkage section COPY file 3-9, 4-25

linkage tags 4-25

linkpara tags 4-25

list box control 15-13

List Constants command 12-15

List COPY Files command 12-16

list file directory 3-15

List Paragraphs command 12-15

List Variables command 12-15

List View command 14-10

LoadGridInit event 17-19

code samples 17-22

generated files 17-25

modifying the source file 17-25

LoadGridNext event 17-19

code samples 17-22

described 17-22

generated files 17-25

modifying source file 17-25

loading a previous version’s ".ini" file 2-7

locating variables in "Configuration file entries" categories 7-11

Lock Controls command 14-32

locking controls 14-32

logo screen 9-7

logutil 19-13

Lowercase command 12-8

 Index-25
M
macros 4-13

Main keyboard shortcuts 23-3

main screen 9-7

Make Same Size command (Width and/or Height) 14-31

Make XFD File command 8-32

mapping options

Character-to-GUI Wizard A-15

Screen Import Utility A-31

Memory command 20-7

Memory window 20-7, 22-6

menu bar 2-8

changing 15-28

creating 15-24

menu command list, version control 5-5

menu COPY file 3-8

Menu Designer 15-24

creating a menu bar 15-24

creating a pop-up menu 15-28

dialog 15-24

Insert Separator command 15-26

Property window 15-25

menu items

adding 15-25

deleting 15-26

moving 15-26

Microsoft ActiveX controls, licensing issues 15-23

minimum system requirements 2-6

Miscellaneous Environment options 4-14

mode 7-3

Add/Remove Project Mode dialog 7-5

selecting from project toolbar 22-4

modify code option 11-5

modifying breakpoints 20-17

Index-26
modifying configuration variables 7-9

monitoring variables 20-18

moving a menu item 15-26

moving a tree view item 15-20

moving files 6-16

moving through text 12-6

multiple menu bars 15-28

multiple toolbars 15-30

N
Native Code command 19-8

native code, generating 19-7

navigate mode for a grid control 15-10

New command 22-2

New FD/SL dialog 8-5

New Folder dialog 6-12

New Program dialog 9-3

New Project command 6-7

New Screen dialog 14-3

Next Bookmark command 12-8

Next Page command 15-17

notation 2-5

O
object file directory 3-15

object library 7-17, 19-3

creating 19-4

creating with project management functions 7-17

displaying information 19-6

generating native code 19-7

primary module 19-3

on-line documentation, accessing 2-3

 Index-27
Open command 12-2, 22-2

Open COPY File command 12-17

Open Project command 22-2

Open Workspace command 6-4

opening a new file 12-2

opening a screen 14-2

opening a workspace 6-4

opening an existing file 12-2

options

loading 4-4

mapping A-16, A-32

saving 4-4

Options dialog box 4-2

Options/Code Editor dialog

Keyword 4-16, 11-8

organizing the workspace 3-21

Output window 2-13, 20-2

Output Window command 22-2

P
page appearance 11-11

page header and footer properties 17-10

Page Setup command 2-15, 11-10

Page Setup dialog 2-15, 11-10

paged screen controls

grid 15-11

list box 15-13

Paragraph List box 12-15

commands 12-16

Paragraph List Code Editor options 4-17

parameter completion 12-13

parsing 9-16

Paste command 12-5, 14-33, 22-2

Index-28
pasting a control 14-33

pasting multiple controls

changing variable values 14-34

phone numbers, for technical support 1-6

pop-up menus 15-28

Prefix Environment options 4-13

Previous Bookmark command 12-8

Previous Page command 15-17

prg-comment tags 4-23

prgid tags 4-23

primary module in object libraries 19-3

Print command 2-14, 22-2

print condition report property, as a filter 17-12

Print dialog 2-14

Print Preview command 11-10, 22-2

Print Preview screen 11-10

Print Setup command 2-14

Print Setup dialog 2-14

printing 2-14

header and footer codes 2-15

reports in thin client 17-32

Procedure COPY files 4-26

Procedure Division

COPY file 3-9

statements 14-30

product code and key 2-6

program

compiling 9-22

upgrading A-4

program development approaches 3-12

program name

changing 9-7

program properties

description field 9-8

generated files 9-9

 Index-29
program properties (continued)

icon file 9-8

initial program 9-8

logo screen 9-7

logo screen display time 9-7

main screen 9-7

prompt on exit 9-8

program structure file

adding 9-4

described 3-6

programs 3-6

compiling to a remote server 9-22

creating 9-2

debugging 9-28

executing 9-26

generating 9-21

project 6-2

development 3-2

directories 3-14

management 6-2

prefix settings 3-14

sample 2-5

settings 7-2

structure 6-2

version control management 5-2

Project Settings

Compiler tab 7-8

dialog 7-2, A-16, A-31

Environment tab 7-13

Library tab 7-17

object library 7-17

Runtime tab 7-8

Project toolbar 22-4

projects

adding COPY files to 9-16

Index-30
projects (continued)

adding file to 6-13

concurrent development 3-2, 6-7

creating 6-7

deleting 6-16

described 3-5

modes 7-3

moving files between 6-16

properties 6-10

removing files from 6-15

renaming 6-10

prompt on exit 9-8

properties 15-2

common 15-2

detail section 17-9

group footer and header 17-9

page footer and header 17-10

property values 15-3

report 17-9

report check box 18-7

report entry field 18-10

report footer 17-10

report header 17-10

report image 18-14

report label 18-16

report line 18-16

report occurs 18-17

report radio button 18-19

screen form 14-6

special properties 15-2

styles 15-3

Properties command 6-10

Properties dialog A-17, A-18

property items 15-3

property values 15-3

 Index-31
Property window 15-2

Property Window command 22-2

Property window Event tab 15-3

push button control 15-14

Q
Quick Watch command 22-7

Quick Watch window 20-6

Quit Debugging command 20-12, 22-6

R
radio button control 15-14

Rebuild command 22-4

Rebuild Workspace command 6-5, 9-24

Record Script command 20-14

record size, increasing for Vision files 19-16

Redo command 14-33, 22-2

Refresh command 12-16

refresh DLT 8-32

Regenerate Workspace command 6-6, 22-5

regular expressions 21-5

reinstalling AcuBench 2-7

remote compiler settings 9-23

removing a project mode 7-6

removing a value or comment from the configuration file 7-12

removing ActiveX controls 15-23

removing files 6-15

Reparse All command 9-20

Reparse command 9-20

Replace command 21-9

Replace dialog 21-9

Replace in Files dialog 21-11

Index-32
Replace in Files function 21-10

Replace, regular expressions 21-5

report box 18-6

report check box 18-7

Report Component Toolbox

report box 18-6

report check box 18-7

report entry field 18-10

report grid 18-12

report image 18-14

report label 18-16

report line 18-16

report occurs 18-17

report radio button 18-19

report table 18-20

Report Component Toolbox command 22-3

Report Composer

AfterDoPrint event 17-19

Before and After print events 17-18

BeforeDoPrint event 17-19

creating a report 17-2

detail section 17-6

event paragraphs 17-18, 17-19

generated files 17-23

group footer and header 17-6

LoadGridInit event 17-19

LoadGridNext event 17-19

page header and footer 17-6

report box 18-6

report check box 18-7

report date time 18-8

report entry field 18-10

report grid 18-12

report header and footer 17-6

report image 18-14

 Index-33
Report Composer (continued)

report label 18-16

report line 18-16

report occurs 18-17

report Property window 17-9

report radio button 18-19

report table 18-20

report controls 17-13

embedded spaces in 16-3

report date time 18-8

report entry field 18-10

report footer 17-6

properties 17-11

report grid 18-12

report header 17-6

properties 17-11

report image 18-14

report label 18-16

report line 18-16

report occurs control 18-17

report properties 17-9

report Property window 17-9

report radio button 18-19

report table 18-20

report templates 16-7

Report Writer options

Auto alignment 16-3

Collapse Spaces 16-3

Default 16-5

displaying property in Property window 16-6

General 16-3

grid properties 16-3

setting default property values 16-4

Unit of measure 16-3

Visibility 16-6

Index-34
reports

creating 17-2

graphical 17-31

sample 2-5, 17-31

Reset Controls Tab Order dialog 14-34

resize layout manager 14-8, 14-28

Restart command 20-12, 22-6

restrictions

Character-to-GUI Wizard A-12

Screen Import Utility A-34

reusing a data layout file 8-30

Row Setting tab 18-23, 18-24

Run Script command 20-14

Run to Cursor command 20-14, 22-6

run-mainscr tags 4-26

RUNNAME environment variable 7-14

runtime configuration file 7-9

runtime debugger 20-2

runtime options, setting 7-8

S
sample project and programs 2-5

sample reports 2-5, 17-31

Save All command 22-2

Save command 22-2

Save Workspace command 6-4

saving a project 6-10

screen

unique prefix A-23

Screen Component Toolbox 2-12, 14-9

ActiveX controls 15-21, 15-22

List View command 14-10

 Index-35
screen controls 14-30, 15-2

adding 14-9

bar 15-5

bitmap 15-5

check box 15-6

combo box 15-6

date entry 15-7

drawing 14-10

entry field 15-8

events 15-3

frame 15-8

grid 15-9

list box 15-13

paged grid 15-11

paged list box 15-13

properties 15-2

push button 15-14

radio button 15-14

scroll bar 15-15

selector 15-4

standard 15-3

status bar 15-15

tab 15-15

tab orientation 15-16

tree view 15-17

unique prefix 14-4

Web browser 15-20

screen conversion, character to graphical A-11

screen COPY file 3-8, 4-25

screen description entry 14-30

Screen Designer

ActiveX controls 15-21

Character-to-GUI Wizard A-21

drawing controls 14-10

Event Editor 14-36

Index-36
Screen Designer (continued)

keyboard shortcuts 13-7, 23-30

Menu Designer 15-24

Screen Import Utility A-30

standard controls 15-3

Toolbar Designer 15-29

Screen Designer options

Auto alignment 13-3

Default 13-4

displaying property in Property window 13-5

General 13-3

grid height and width 13-3

setting default property values 13-4

snap to grid 13-3

Visibility 13-5

screen form

adding controls to 14-9

Event Tab 14-6

properties 14-6

screen import

code integration A-23

implementation tips A-28

Screen Import command A-32

Screen Import Utility A-30

-import runtime option A-32

mapping options A-31

restrictions A-34

-Zw compiler option A-31

screen template 13-6

adding to New Screen dialog 13-6

changing prefix 14-40

sharing 13-7, 16-8

screen templates

creating 14-40

 Index-37
screens

creating 14-2

unique prefix 14-4

scroll bar control 15-15

search string operators 21-5

searching a configuration file 7-11

SELECT statement COPY files 4-24

SELECT statement, defining 8-10

selecting text 12-6

selector 15-4

Send to Back command 14-35

Send to Front command 14-35

Sequence Number Area 11-6

server platforms supported 3-24

Set Active Mode command 22-4

setting a monitor 20-5

setting ACCEPT-CONTROL 4-22

setting ActiveX properties 15-23

setting and removing breakpoints 20-15

setting custom tabs 12-10

setting default property values 13-4, 16-4

setting headers and footers 11-11

setting or changing a comment on a variable 7-12

setting or changing the value of a variable 7-11

setting page appearance 11-11

setting program tags 4-27

Settings command 22-4

shortcut keys

assigning 4-12

removing 4-12

Report Composer 16-8

restoring defaults 4-13

Screen Designer 13-7

viewing definitions of 4-12

Skip to Line command 20-13, 22-6

Index-38
snap to grid option 13-3, 16-3

sorting lists (Constant, COPY File, Paragraph, and Variable) 4-18

source file

creating 9-12

reparsing 9-20

source format options 11-5, 11-8

Space Across command 14-31

Space Down command 14-31

Sparc processor 19-8

Special Names COPY file 4-23

special properties 15-2

Split command 12-9

splitter 12-8

Stack Info window 20-6

standard controls 14-10, 15-3

Standard toolbar 22-2

status bar 2-13

status bar control 15-4, 15-15

Step Into command 20-13, 22-6

Step Out Paragraph command 20-13, 22-6

Step Out Program command 20-13, 22-6

Step Over command 20-13, 22-6

Stop Build command 6-6, 22-4

stopping a build 6-6

Structure view 3-4

styles 15-3

submenu items, adding, deleting, or moving 15-26

support, technical 1-6

switching threads in the debugger 20-19

system requirements 2-6

T
tab control 15-15

Insert New Page command 15-17

 Index-39
tab control (continued)

Next Page command 15-17

orientation 15-16

Previous Page command 15-17

Send to Back command 14-35

Send to Front command 14-35

Tab Order command 14-34

tab order, with frames 14-35

Tab Orientation property 15-16

tab size function 11-8

Table Setting dialog 18-23

Cell Setting tab 18-21, 18-25

Column Setting tab 18-23

Row Setting tab 18-23, 18-24

Tabs Code Editor options 4-16

tabs function 12-10

tags

adding 4-26

described 4-22

technical support 1-6

Template Environment options 4-7

templates, source code 12-17

text block handling 12-11

text navigation 12-6

thin client

platform support 3-24

printing graphical reports 17-32

THINNAME environment variable 7-14

Threads command 20-19

Threads dialog 20-19

Threads window 22-6

title bar 2-8

Toggle Breakpoint command 22-6

Toggle Guide command 14-32

Toolbar Designer 15-29

Index-40
toolbars 2-8

Align 22-7

changing 15-30

controlling 2-9

creating 15-30

Debug 22-6

Editor 22-6

hiding and displaying 2-10

Launch 22-8

moving 2-10

multiple 15-30

Project 22-4

resizing 2-10

Standard 22-2

toolbars, AcuBench

adding buttons to 4-32

creating 4-31

customizing 4-31

deleting 4-31

removing buttons from 4-32

spacers 4-32

Tools menu

Acu4glFD 19-21

Axdefgen 15-22

Options 4-2

Xml2FD 19-22

Tools/Options Load command 2-7

Trace File command 20-10

Trace Flush command 20-10

Trace General command 20-10

Trace Level dialog 20-11

Trace Levels command 20-11

Trace Option command 20-10

Trace Paragraphs command 20-10

Trace Screens command 20-10

 Index-41
Trace to Debug Window command 20-11

tracing levels, integrated debugger 20-11

transaction logs 19-13

tree view control 15-17

Tree View Designer 15-18

tree view item

adding 15-18

deleting 15-19

moving 15-20

U
Undo command 14-33, 22-2

uninstalling AcuBench 2-7

unlocking controls 14-32

upgrading a program file A-4

Uppercase command 12-8

Use AcuXUI 14-42

Use Remote Compile 9-23

Use Thin Client command 22-5

user interface

customizing 4-2

development window 2-12

menu bar 2-8

Output window 2-13

overview 2-7

Screen Component Toolbox 2-12

status bar 2-13

title bar 2-8

toolbars 2-8

Workspace window 2-11

User’s Guide, accessing on-line 2-3

using bookmarks 12-7

using tabs 12-10

Index-42
utilities 19-2

Boomerang 9-25

V
Variable List box 12-15

commands 12-16

Variable List Code Editor options 4-17

Verb Block Match command 12-14

version control

adding commands 5-8

changing the order of commands 5-9

commands 5-5

deleting commands 5-9

fundamental source control commands 5-6

managing files and projects 5-2

menu command list 5-5

modifying commands 5-9

options window fields 5-6

overview 5-2

saving commands 5-9

third party software 5-2

version control arguments

Comment argument 5-10

Current Directory argument 5-10

File Directory argument 5-10

File Name argument 5-10

File Path argument 5-10

Folder Name argument 5-10

Project Directory argument 5-10

Project Name argument 5-10

Target Directory argument 5-10

Workspace Name argument 5-10

Workspace Path argument 5-10

 Index-43
Version Control Environment options 4-9

version control fields

Arguments field 5-7

Ask Argument option 5-8

Command field 5-7

Use Output Window 5-7

Working Directory argument 5-7

version control interface 5-5

vertical block select function 11-4, 12-5

View Grid command 14-32

viewing breakpoints 20-17

vio utility 19-9

input mode 19-12

output mode 19-10

virtual space 11-4

Visibility Report Writer options 16-6

Visibility Screen Designer options 13-5

Vision files, increasing record size of 19-16

vutil (Vision File Utility) 19-15

converting indexed file 19-20

creating a file 19-18

extracting a record 19-19

file information 19-17

file integrity 19-17

file size 19-19

listing b-tree 19-21

loading data 19-19

rebuilding 19-17

unloading data 19-19

user count 19-17

vutil augment function 19-16

Index-44
W
Watch command 20-5

Watch window 20-4, 22-6

Web browser control 15-20

Window menu, Split 12-9

working directory macros 4-13

Working Storage Editor 10-11

basic use 10-12

working with reports 17-2

Working-Storage COPY file 3-9, 4-25

Working-Storage options 4-29

workspace 3-3, 6-2

building 6-4

closing 6-6

creating 6-3

Data View 3-5

file 3-3, 3-5

File view 3-5

opening 6-4

organization 3-21

rebuilding 6-5

regenerating 6-6, 22-5

saving 6-4

Structure view 3-4

Workspace command 22-2

Workspace window 2-11, 3-5, 20-2

Structure view 3-4

X
XFD files 8-25

creating in AcuBench 8-26, 8-32

NAME directive 8-27

use in AcuBench 8-27

 Index-45
xml2fd utility 19-22

XUIJAR environment variable 14-42

Z
-Zw compiler option

Character-to-GUI Wizard A-15

Screen Import Utility A-31

Index-46

	Introduction
	1.1 Product Overview
	1.2 Companion Products
	1.3 Technical Services

	Getting Started
	2.1 Introduction
	2.2 About AcuBench Documentation
	2.3 Related Documents
	2.4 Notation
	2.5 Sample Programs
	2.6 System Requirements
	2.7 Installing and Uninstalling AcuBench
	2.8 Navigating the User Interface
	2.8.1 The Toolbars
	2.8.2 The Workspace Window
	2.8.3 The Development Window
	2.8.4 The Screen and Report Component Toolboxes
	2.8.5 The Output Window
	2.8.6 The Status Bar

	2.9 Printing in the Workbench

	Workbench Concepts
	3.1 AcuBench Concepts
	3.2 Project Management, Organization, and Structure
	3.2.1 The Workspace
	3.2.2 Projects
	3.2.3 Programs

	3.3 Automatic Code Generation
	3.3.1 Generated COPY Files
	3.3.2 Controlling code generation

	3.4 AcuBench File Types
	3.5 Development Approaches
	3.5.1 General Considerations
	3.5.1.1 Project prefix settings
	3.5.1.2 Project directories
	3.5.1.3 Placing files in the project directory
	3.5.1.4 Keyboard shortcut settings
	3.5.1.5 Setting options and testing

	3.5.2 Developing New Applications
	3.5.3 Developing Programs That Do Not Use Code Generating Tools
	3.5.4 Working with Large Applications
	3.5.4.1 Factors that affect performance
	3.5.4.2 Organizing your workspace
	3.5.4.3 The command-line interface to AcuBench

	3.6 Using Thin Client Technology with AcuConnect

	Customize Your Working Environment
	4.1 Introduction
	4.2 The Tools/Options Dialog
	4.3 Setting Environment Options
	4.3.1 General Environment Options
	4.3.2 Template Options
	4.3.3 Version Control Options
	4.3.4 Build Options
	4.3.5 Debug Options
	4.3.6 Keyboard Options
	4.3.7 Prefix Options
	4.3.8 Miscellaneous Environment Options

	4.4 Setting Code Editor Options
	4.4.1 Code Editor General, Format, Tabs, and Keyword Options
	4.4.2 Code Insight Options
	4.4.3 Paragraph List, Variable List, Constant List, and COPY File List Options

	4.5 Setting Screen Designer Options
	4.6 Setting Code Generator Options
	4.6.1 Generate Document Options
	4.6.2 Program Tag Options

	4.7 Setting Data Designer Options
	4.8 Setting Report Writer Options
	4.9 The Customize Dialog
	4.9.1 Customizing AcuBench Toolbars
	4.9.2 Accessing External Applications

	Version Control
	5.1 Version Control Overview
	5.1.1 Working with version control in AcuBench
	5.1.2 Preliminary considerations

	5.2 The Version Control Interface
	5.2.1 Displaying the Version Control Window
	5.2.2 The Version Control Interface Fields

	5.3 Adding Commands to the Menu Command List
	5.4 Modifying the Command List
	5.5 Saving the Command List
	5.6 Command Variables
	5.7 Issuing Version Control Commands

	Working with Projects
	6.1 AcuBench Project Management
	6.2 Working at the Workspace Level
	6.2.1 Creating a Workspace
	6.2.2 Opening a Workspace
	6.2.3 Saving a Workspace
	6.2.4 Building a Workspace
	6.2.5 Rebuilding a Workspace
	6.2.6 Regenerating a Workspace
	6.2.7 Stopping a Build
	6.2.8 Closing a Workspace

	6.3 Working with Projects
	6.3.1 Creating a Project
	6.3.2 Project Properties
	6.3.3 Adding Folders to a Project
	6.3.4 Adding Files to a Project
	6.3.5 Removing Files From a Project
	6.3.6 Moving Components Among Projects and Folders
	Moving a Program, Screen, Report, or Data Layout to Another Project
	Moving a File to Another Folder or Project

	6.3.7 Deleting a Project

	Project Settings
	7.1 Introduction
	7.2 Modes
	7.2.1 Working with Modes
	7.2.2 Adding a Mode
	7.2.3 Removing a Mode
	7.2.4 Saving a Mode as a POF
	7.2.5 Reusing a POF
	7.2.6 Switching Between Modes

	7.3 Compiler and Runtime Settings
	7.4 Working with Runtime Configuration Files
	7.4.1 Editing Configuration Files
	7.4.2 User-defined Variables

	7.5 Environment Settings
	7.5.1 Working with Environment Variables
	7.5.2 The COPYPATH Environment Variable

	7.6 Library Settings

	Working with Data at the Project Level
	8.1 Introduction
	8.2 Defining Data Files for Use in Projects and Programs
	8.3 Creating Data Layout Files
	8.3.1 Creating a DLT from Scratch
	8.3.2 Creating a DLT from a Single FD/SL Pair
	8.3.3 Creating DLTs from Multiple FD/SL Pairs

	8.4 Working in the File Designer
	8.4.1 Adding File Control Information
	8.4.2 Adding a File Description
	8.4.2.1 Linking and importing COPY files
	8.4.2.2 Occurs Syntax dialog
	8.4.2.3 The Field dialog

	8.4.3 Defining Key Information
	8.4.4 Defining File Handling Behavior
	8.4.5 Designing a Custom XFD

	8.5 Copying DLT Files Between Projects
	8.6 Tips for Working in the Data View
	8.6.1 Useful Data View Functions
	8.6.2 Data Layout Properties

	Working with Programs
	9.1 Introduction
	9.2 Creating an AcuBench Program
	9.2.1 Adding an AcuBench Program to a Project
	9.2.2 AcuBench Program Properties

	9.3 Adding and Creating Basic Source Files
	9.3.1 Creating a File
	9.3.2 Adding an Existing Source File
	9.3.3 Adding COPY Files
	9.3.4 Working with Files in the File View
	9.3.5 File Properties
	9.3.6 Reparsing Source Files

	9.4 Generating a Program
	9.5 Compiling a Program
	9.5.1 Compiling Programs to a Server
	9.5.2 Compiling Multiple Programs
	9.5.3 Remote Precompiling with Boomerang

	9.6 Executing a Local Program
	9.7 Executing a Remote Program
	9.8 Debugging a Program
	9.8.1 Debugging with the Thin Client
	9.8.2 Debugging a Transaction Processing (TP) Application

	Working with Data at the Program Level
	10.1 Introduction
	10.2 Using the Data Set Designer
	10.2.1 Creating a Data Set
	10.2.2 Opening an Existing Data Set
	10.2.3 Creating a BEFORE or AFTER Procedure
	10.2.4 The Data Set’s Property Window
	10.2.5 Generating File Handling Code

	10.3 Using the Working-Storage and Linkage Editors
	10.3.1 The Working-Storage Editor
	10.3.2 The Linkage Editor
	10.3.3 The Working-Storage and Linkage Editor Interface

	Configuring the Code Editor
	11.1 Introduction
	11.2 Establishing Keyboard Shortcuts
	11.3 Customizing the Code Editor Interface
	11.3.1 Configuring Basic Editor Functions
	11.3.2 Modifying Editor Appearance
	11.3.3 Customizing Tab Stops
	11.3.4 Configuring Keyword Behaviors

	11.4 Setting Print Layout Options
	11.4.1 Setting Headers and Footers
	11.4.2 Setting Page Appearance

	Working with Source Code
	12.1 Introduction
	12.2 Working with Files
	12.2.1 Creating a New File
	12.2.2 File Formats

	12.3 The Code Editor Window
	12.4 Basic Editor Functions
	12.4.1 Using Bookmarks
	12.4.2 Changing Case and Indenting Lines
	12.4.3 Viewing Multiple Sections of Your File
	12.4.4 Merging Data From Another File

	12.5 COBOL-Friendly Editing Functions
	12.5.1 Adding and Removing Line Numbers
	12.5.2 Working with Tabs
	12.5.3 Working with Blocks of Code
	12.5.4 Using Code Insight Functions
	12.5.5 Using Paragraph, Variable, and Constant Lists
	12.5.6 Working with COPY Files
	12.5.7 Using Source Code Templates
	12.5.8 Navigating between error lines

	Configuring the Screen Designer
	13.1 Introduction
	13.2 Customizing the Screen Designer Interface
	13.3 Establishing Screen and Control Defaults
	13.4 Adding Screen Templates
	13.5 Configuring Keyboard Shortcuts

	Working with Screens
	14.1 Introduction
	14.2 Creating a New Screen
	14.3 Getting Started with Screen Design
	14.3.1 Setting Basic Screen Form Properties
	14.3.2 Creating a Resizable Screen

	14.4 Adding Controls to a Screen
	14.4.1 Drawing Controls with the Component Toolbox
	14.4.2 Drawing Controls with Drag-and-Drop
	14.4.3 Creating Autoload Controls
	14.4.3.1 Creating an unpaged autoload control
	14.4.3.2 Creating a paged autoload control
	14.4.3.3 Modifying autoload controls
	14.4.3.4 Understanding the generated code (unpaged controls)
	14.4.3.5 Understanding the generated code (paged controls)

	14.5 Configuring Control Properties
	14.5.1 Associating Data with a Control
	14.5.2 Layout Data Control Property
	14.5.3 Controls: Related References

	14.6 Positioning and Aligning Controls
	14.7 Refining Your Screen
	14.7.1 Basic Editing Commands
	14.7.2 Determining Control Tab Order

	14.8 Associating Code with Screen Elements
	14.8.1 Entering the Event Editor
	14.8.2 Event Procedures, Embedded Procedures, and Code Insertion Points

	14.9 Working with Screen Templates
	14.10 Generating a Screen
	14.11 Testing Screens
	14.12 Creating Portable Screens with AcuXUI
	14.13 Creating a Logo Screen
	14.14 Creating Dual User Interfaces

	Controls, Menus, and Toolbars
	15.1 Introduction
	15.1.1 Properties of Screen Elements
	15.1.2 Events Overview

	15.2 Standard Controls
	15.2.1 Selector
	15.2.2 Bar
	15.2.3 Bitmap
	15.2.4 Check Box
	15.2.5 Combo Box
	15.2.6 Date Entry
	15.2.7 Entry Field
	15.2.8 Frame
	15.2.9 Grid
	15.2.10 Label
	15.2.11 List Box
	15.2.12 Push Button
	15.2.13 Radio Button
	15.2.14 Scroll Bar
	15.2.15 Status Bar
	15.2.16 Tab
	15.2.17 Tree View
	15.2.18 Web Browser

	15.3 ActiveX Controls
	15.3.1 Adding ActiveX Controls to the Component Toolbox
	15.3.2 Using ActiveX Controls in Your Screen
	15.3.3 Removing an ActiveX Control from the Component Toolbox

	15.4 Using the Menu Designer
	15.4.1 Creating a Menu
	15.4.2 Building the Menu
	15.4.3 Adding Menu Functionality
	15.4.4 Enabling the Menu

	15.5 Using the Toolbar Designer
	15.5.1 Creating a Toolbar
	15.5.2 Using More Than One Toolbar

	Configuring the Report Composer
	16.1 Introduction
	16.2 Customizing the Report Composer Interface
	16.3 Establishing Report and Control Defaults
	16.4 Adding Report Templates
	16.5 Report Keyboard Shortcuts

	Working with Reports
	17.1 Introduction
	17.1.1 Report Concepts: The Big Picture
	17.1.2 Report Types

	17.2 Adding a Report
	17.3 Formatting the Report
	17.3.1 Adding and Removing Report Sections
	17.3.2 Configuring Report and Section Properties

	17.4 Adding Report Controls
	17.4.1 Using the Report Component Toolbox
	17.4.2 Using Drag-and-Drop
	17.4.3 Positioning and Alignment

	17.5 Configuring Control Properties
	17.6 Setting Print Conditions
	17.7 Using Events to Populate a Report with Data
	17.7.1 Adding Report and Report Element Events
	17.7.2 Before and After Event Paragraphs
	17.7.3 BeforeDoPrint and AfterDoPrint Event Paragraphs
	17.7.4 LoadGridInit and LoadGridNext Event Paragraphs
	17.7.5 Generating Report Files and Code
	17.7.5.1 Reports Generated using BeforeDoPrint and AfterDoPrint events
	17.7.5.2 Reports Generated Without BeforeDoPrint and AfterDoPrint Events
	17.7.5.3 Grids Generated With LoadGridInit and LoadGridNext
	17.7.5.4 Grids Generated Without LoadGridInit and LoadGridNext Events
	17.7.5.5 Existing Reports Imported from Earlier Versions of AcuBench

	17.7.6 Working with data from multiple sources
	17.7.7 Printing the Report

	17.8 Creating Report Template Files
	17.9 Sample Reports
	17.10 Deploying in a Thin Client Environment
	17.10.1 Using a Web Browser Control to Display and Print Reports
	17.10.2 Using AcuBenchPrint.dll to Display and Print Reports

	The Report Controls and Property Reference
	18.1 Introduction
	18.2 Common Report Control Properties
	18.3 The Report Box
	18.4 The Report Check Box
	18.5 The Report Date Time
	18.6 The Report Entry Field
	18.7 The Report Grid
	18.8 The Report Image
	18.9 The Report Label
	18.10 The Report Line
	18.11 The Report Occurs
	18.12 The Report Radio Button
	18.13 The Report Table

	Working with ACUCOBOL-GT Utilities
	19.1 ACUCOBOL-GT Utilities
	19.2 The Object File Utility
	19.2.1 Object Libraries
	19.2.2 Creating an Object Library
	19.2.3 Retrieving Information About Objects
	19.2.4 Generating Native Code

	19.3 Using vio
	19.3.1 Output Mode
	19.3.2 Input Mode

	19.4 Using logutil
	19.5 Using vutil
	19.5.1 Increasing the Maximum File Record Size
	19.5.2 Examining File Information
	19.5.3 Testing File Integrity
	19.5.4 Rebuilding Files
	19.5.5 Resetting User Counts
	19.5.6 Creating Empty Files
	19.5.7 File Size Summary
	19.5.8 Extracting Records
	19.5.9 Unloading to Other File Types
	19.5.10 Loading a File
	19.5.11 Converting Indexed Files
	19.5.12 B-Tree Listing

	19.6 Using acu4glfd
	19.7 XML Support in AcuBench

	The AcuBench Integrated Debugger
	20.1 The Debugger Interface
	20.1.1 Debug Menu and Toolbar
	20.1.2 Debugger Output
	20.1.3 Watch Window
	20.1.4 Stack Info Window
	20.1.5 Memory Window

	20.2 Debug Mode Compile Options
	20.3 Entering the Debugger
	20.4 Debug Menu Commands
	20.4.1 Tracing Functions
	20.4.2 Starting, Stopping, and Navigating the Debugger
	20.4.3 Debugger Scripts
	20.4.4 Breakpoints
	20.4.4.1 Setting a breakpoint using the Breakpoints dialog box
	20.4.4.2 Modifying a breakpoint using the Breakpoints dialog box
	20.4.4.3 Deleting breakpoints using the Breakpoints dialog box
	20.4.4.4 Viewing a breakpoint with the Breakpoints dialog box
	20.4.4.5 Monitoring variables using the Breakpoints dialog box

	20.4.5 Debugging Threaded Applications
	20.4.6 Quick Watch

	Looking for Something?: Search and Replace
	21.1 Introduction
	21.2 Find
	21.2.1 Locate a single instance of the search string
	21.2.2 Mark all instances of the search string
	21.2.3 List all occurrences of the search string

	21.3 Find in Files
	21.3.1 Special Operators and Regular Expressions
	21.3.2 Performing the Search

	21.4 Find in Objects
	21.5 Replace
	21.6 Replace in Files

	Toolbar Reference
	22.1 The Standard Toolbar
	22.2 The Project Toolbar
	22.3 The Editor Toolbar
	22.4 The Debug Toolbar
	22.5 The Align Toolbar
	22.6 The Launch Toolbar

	Keyboard Shortcut Reference
	23.1 Introduction
	23.2 Main: Default Keyboard Shortcuts
	23.3 Code Editor: Default Keyboard Shortcuts
	23.4 Screen Designer: Default Keyboard Shortcuts

	Bringing Existing Code Into AcuBench
	A.1 Introduction
	A.2 Importing Data Definitions
	A.3 Creating a PSF for an Existing Program
	A.3.1 Prepare to Create the PSF
	A.3.2 Create the PSF
	A.3.3 Key-Status
	A.3.4 Import Program Elements into the PSF

	A.4 Adding Existing Code to an AcuBench Program
	A.5 Updating a Character-based Screen
	A.5.1 Benefits and Restrictions
	A.5.2 Using the Character-to-GUI Wizard
	A.5.3 Running under Windows
	A.5.4 Setting Compiler Options
	A.5.5 Setting the “--char2gui” Runtime Option
	A.5.6 Screen Conversion
	A.5.7 Editing Screen Properties
	A.5.8 Manipulating the Screen in the Screen Designer
	A.5.9 Generating New Screen Section Code
	A.5.10 Integrating Code Back into Your Program
	A.5.11 Tips and Techniques

	A.6 Importing a Graphical Screen
	A.6.1 Setting Compiler Options
	A.6.2 Setting the “import” Runtime Option
	A.6.3 Graphical Screen Importing
	A.6.4 Graphical Screen Importing Notes and Restrictions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

