
IDOL

Yammer Connector
Software Version 12.11

Administration Guide

Document Release Date: February 2022
Software Release Date: February 2022

Legal notices
© Copyright 2022 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support
Visit the MySupport portal to access contact information and details about the products, services, and support
that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l View information about all services that Support offers
l Submit and track service requests
l Contact customer support
l Search for knowledge documents of interest
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
sign in.

About this PDF version of online Help
This document is a PDF version of the online help, and is provided so you can easily print multiple topics or read
the online help. Because this content was originally created to be viewed as online help in a web browser, some
topics may not be formatted properly. Some interactive topics may not be present in this PDF version. Those
topics can be successfully printed from within the online help.

Administration Guide

IDOL Yammer Connector (12.11) Page 2 of 88

https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/

Contents

Chapter 1: Introduction 7
Yammer Connector 7

Supported Actions 7
Mapped Security 8

Connector Framework Server 8
The IDOL Platform 10
System Architecture 11

Chapter 2: Install Yammer Connector 13
System Requirements 13
Permissions 13
Install Yammer Connector on Windows 13
Install Yammer Connector on Linux 16
Configure the License Server Host and Port 17
Configure OAuth Authentication 17

Chapter 3: Configure Yammer Connector 20
Yammer Connector Configuration File 20
Modify Configuration Parameter Values 22
Include an External Configuration File 23

Include the Whole External Configuration File 24
Include Sections of an External Configuration File 24
Include Parameters from an External Configuration File 25
Merge a Section from an External Configuration File 25

Encrypt Passwords 26
Create a Key File 26
Encrypt a Password 27
Decrypt a Password 28

Configure Client Authorization 29
Register with a Distributed Connector 30
Set Up Secure Communication 31

Configure Outgoing SSL Connections 32
Configure Incoming SSL Connections 33

Backup and Restore the Connector’s State 33
Backup a Connector’s State 34

Administration Guide

IDOL Yammer Connector (12.11) Page 3 of 88

Restore a Connector’s State 34
Validate the Configuration File 35

Chapter 4: Start and Stop the Connector 36
Start the Connector 36
Verify that Yammer Connector is Running 37

GetStatus 37
GetLicenseInfo 37

Stop the Connector 38

Chapter 5: Send Actions to Yammer Connector 39
Send Actions to Yammer Connector 39
Asynchronous Actions 39

Check the Status of an Asynchronous Action 40
Cancel an Asynchronous Action that is Queued 40
Stop an Asynchronous Action that is Running 40

Store Action Queues in an External Database 41
Prerequisites 41
Configure Yammer Connector 42

Store Action Queues in Memory 43
Use XSL Templates to Transform Action Responses 45

Example XSL Templates 46

Chapter 6: Use the Connector 47
Retrieve Information from Yammer 47
Schedule Fetch Tasks 48

Chapter 7: Ingestion 51
Introduction 51
Send Data to Connector Framework Server 52
Send Data to Another Repository 53
Index Documents Directly into IDOL Server 54
Index Documents into Vertica 55

Prepare the Vertica Database 56
Send Data to Vertica 57

Send Data to a MetaStore 58
Run a Lua Script after Ingestion 59

Chapter 8: Manipulate Documents 61

Administration Guide

IDOL Yammer Connector (12.11) Page 4 of 88

Introduction 61
Add a Field to Documents using an Ingest Action 61
Customize Document Processing 62
Standardize Field Names 63

Configure Field Standardization 63
Customize Field Standardization 64

Run Lua Scripts 68
Write a Lua Script 69
Run a Lua Script using an Ingest Action 70

Example Lua Scripts 71
Add a Field to a Document 71
Merge Document Fields 71

Chapter 9: Monitor the Connector 73
IDOL Admin 73

Prerequisites 73
Install IDOL Admin 73
Access IDOL Admin 74

View Connector Statistics 75
Use the Connector Logs 76

Customize Logging 77
Monitor Asynchronous Actions using Event Handlers 78

Configure an Event Handler 79
Write a Lua Script to Handle Events 80

Set Up Performance Monitoring 80
Configure the Connector to Pause 81
Determine if an Action is Paused 82

Set Up Document Tracking 83

Glossary 85

Send documentation feedback 88

Administration Guide

IDOL Yammer Connector (12.11) Page 5 of 88

Page 6 of 88IDOL Yammer Connector (12.11)

Administration Guide

Chapter 1: Introduction
This section provides an overview of the Micro Focus Yammer Connector.

• Yammer Connector 7
• Connector Framework Server 8
• The IDOL Platform 10
• System Architecture 11

Yammer Connector
Yammer Connector is an IDOL Connector that retrieves information from Yammer.

The connector can send the information it retrieves to a Connector Framework Server, for indexing
into an IDOL Server.

Supported Actions
The Yammer Connector supports the following actions:

Action Supported Further Information

Synchronize ✓ Retrieve Information from Yammer, on page 47

Synchronize (identifiers) ✗
Synchronize Groups ✗
Collect ✗
Identifiers ✗
Insert ✗
Delete/Remove ✗
Hold/ReleaseHold ✗
Update ✗

IDOL Yammer Connector (12.11) Page 7 of 88

Stub ✗
GetURI ✗
View ✗

Mapped Security
The Yammer Connector does not support mapped security.

Connector Framework Server
Connector Framework Server (CFS) processes the information that is retrieved by connectors, and
then indexes the information into IDOL.

A single CFS can process information from any number of connectors. For example, a CFS might
process files retrieved by a File System Connector, web pages retrieved by a Web Connector, and e-
mail messages retrieved by an Exchange Connector.

To use the Yammer Connector to index documents into IDOL Server, you must have a CFS. When
you install the Yammer Connector, you can choose to install a CFS or point the connector to an
existing CFS.

For information about how to configure and use Connector Framework Server, refer to the Connector
Framework Server Administration Guide.

Filter Documents and Extract Subfiles
The documents that are sent by connectors to CFS contain only metadata extracted from the
repository, such as the location of a file or record that the connector has retrieved. CFS uses
KeyView to extract the file content and file specific metadata from over 1000 different file types, and
adds this information to the documents. This allows IDOL to extract meaning from the information
contained in the repository, without needing to process the information in its native format.

CFS also uses KeyView to extract and process sub-files. Sub-files are files that are contained within
other files. For example, an e-mail message might contain attachments that you want to index, or a
Microsoft Word document might contain embedded objects.

Administration Guide
Chapter 1: Introduction

IDOL Yammer Connector (12.11) Page 8 of 88

Manipulate and Enrich Documents
CFS provides features to manipulate and enrich documents before they are indexed into IDOL. For
example, you can:

l add additional fields to a document.

l divide long documents into multiple sections.

l run tasks including Eduction, Optical Character Recognition, or Face Recognition, and add the
information that is obtained to the document.

l run a custom Lua script to modify a document.

Index Documents
After CFS finishes processing documents, it automatically indexes them into one or more indexes.
CFS can index documents into:

l IDOL Server (or send them to a Distributed Index Handler, so that they can be distributed
across multiple IDOL servers).

l Vertica.

Import Process
This section describes the import process for new files that are added to IDOL through CFS.

Administration Guide
Chapter 1: Introduction

IDOL Yammer Connector (12.11) Page 9 of 88

1. Connectors aggregate documents from repositories and send the files to CFS. A single CFS
can process documents from multiple connectors. For example, CFS might receive HTML files
from HTTP Connectors, e-mail messages from Exchange Connector, and database records
from ODBC Connector.

2. CFS runs pre-import tasks. Pre-Import tasks occur before document content and file-specific
metadata is extracted by KeyView.

3. KeyView filters the document content, and extracts sub-files.

4. CFS runs post-import tasks. Post-Import tasks occur after KeyView has extracted document
content and file-specific metadata.

5. The data is indexed into IDOL.

The IDOL Platform
At the core of Yammer Connector is the Intelligent Data Operating Layer (IDOL).

IDOL gathers and processes unstructured, semi-structured, and structured information in any format
from multiple repositories using IDOL connectors and a global relational index. It can automatically
form a contextual understanding of the information in real time, linking disparate data sources
together based on the concepts contained within them. For example, IDOL can automatically link
concepts contained in an email message to a recorded phone conversation, that can be associated
with a stock trade. This information is then imported into a format that is easily searchable, adding

Administration Guide
Chapter 1: Introduction

IDOL Yammer Connector (12.11) Page 10 of 88

advanced retrieval, collaboration, and personalization to an application that integrates the
technology.

For more information on IDOL, see the IDOL Getting Started Guide.

System Architecture
An IDOL infrastructure can include the following components:

l Connectors. Connectors aggregate data from repositories and send the data to CFS.

l Connector Framework Server (CFS). Connector Framework Server (CFS) processes and
enriches the information that is retrieved by connectors.

l IDOL Server. IDOL stores and processes the information that is indexed into it by CFS.

l Distributed Index Handler (DIH). The Distributed Index Handler distributes data across
multiple IDOL servers. Using multiple IDOL servers can increase the availability and scalability
of the system.

l License Server. The License server licenses multiple products.

These components can be installed in many different configurations. The simplest installation
consists of a single connector, a single CFS, and a single IDOL Server.

Administration Guide
Chapter 1: Introduction

IDOL Yammer Connector (12.11) Page 11 of 88

Amore complex configuration might include more than one connector, or use a Distributed Index
Handler (DIH) to index content across multiple IDOL Servers.

Administration Guide
Chapter 1: Introduction

IDOL Yammer Connector (12.11) Page 12 of 88

Chapter 2: Install Yammer Connector
This section describes how to install the Yammer Connector.

• System Requirements 13
• Permissions 13
• Install Yammer Connector on Windows 13
• Install Yammer Connector on Linux 16
• Configure the License Server Host and Port 17
• Configure OAuth Authentication 17

System Requirements
Yammer Connector can be installed as part of a larger system that includes an IDOL Server and an
interface for the information stored in IDOL Server. To maximize performance, Micro Focus
recommends that you install IDOL Server and the connector on different machines.

For information about the minimum system requirements required to run IDOL components,
including Yammer Connector, refer to the IDOL Getting Started Guide.

Permissions
The user account that you use to retrieve information from Yammer (the account specified by the
Username parameter in the connector configuration file) must be a Yammer Verified Admin. The
user must be an administrator because this is a requirement of the API used by the connector.

Be aware that the Yammer Connector will ingest all messages and all uploaded files from all groups
that this user has permission to see. If your Yammer configuration permits this user to see messages
in private groups, the connector will ingest those messages.

Install Yammer Connector on Windows
To install the Yammer Connector on Windows, use the following procedure.

To install the Yammer Connector

1. Run the Yammer Connector installation program.

The installation wizard opens.

IDOL Yammer Connector (12.11) Page 13 of 88

2. Read the installation instructions and click Next.

The License Agreement dialog box opens.

3. Read the license agreement. If you agree to its terms, click I accept the agreement and click
Next.

The Installation Directory dialog box opens.

4. Choose an installation folder for Yammer Connector and click Next.

The Service Name dialog box opens.

5. In the Service name box, type a name to use for the connector’s Windows service and click
Next.

The Service Port and ACI Port dialog box opens.

6. Type the following information, and click Next.

Service port The port used by the connector to listen for service actions.

ACI port The port used by the connector to listen for actions.

The License Server Configuration dialog box opens.

7. Type the following information, and click Next.

License server host The host name or IP address of your License server.

License server port The ACI port of your License server.

The IDOL database dialog box opens.

8. In the IDOL database box, type the name of the IDOL database that you want to index
documents into. Then, click Next.

The Proxy Server dialog box opens.

9. If a proxy server is required to access Yammer, type the following information and click Next.
Otherwise, just click Next.

Proxy host The host name or IP address of the proxy server to use to access
the repository.

Proxy port The port of the proxy server to use to access the repository.

Proxy username The user name to use to authenticate with the proxy server.

Proxy password The password to use to authenticate with the proxy server.

The Yammer Configuration dialog box opens.

10. Type the following information and then click Next.

Administration Guide
Chapter 2: Install Yammer Connector

IDOL Yammer Connector (12.11) Page 14 of 88

User name The user name for the connector to use to retrieve data from Yammer.
The user that you specify must be a Yammer verified admin. Be aware
that if your Yammer configuration permits this user to see messages in
private groups, the connector will ingest those messages.

Date The date that your Yammer network was created. The connector does
not retrieve information from before this date.

Date format The date format for the date you specified in the Date box.

The OAuth Authentication Parameters dialog box opens.

11. Type the following information, and click Next.

AppKey The application key that was provided when you set up an application to
represent the connector.

AppSecret The application secret that was provided when you set up an application to
represent the connector.

Redirect
URL

The URL at which the OAuth tool will run. For example,
http://localhost:7878/oauth.

12. Choose whether to install a new CFS.

l To install a new CFS, select the Install a new CFS check box and click Next.

The Installation directory dialog box opens. Go to the next step.

l To use an existing CFS, clear the Install a new CFS check box and click Next.

The CFS dialog box opens. Type the Hostname and Port of your existing CFS. Then, click
Next and go to Step 17.

13. Choose an installation folder for the Connector Framework Server and then click Next.

The Installation name dialog box opens.

14. In the Service name box, type a unique name for the Connector Framework service and click
Next. The name must not contain any spaces.

The CFS dialog box opens.

15. Type the following information, and click Next.

Service port The port used by CFS to listen for service actions.

ACI port The port used by CFS to listen for actions.

16. Type the following information and click Next.

IDOL Server
hostname

The host name or IP address of the IDOL server that you want to index
documents into.

Administration Guide
Chapter 2: Install Yammer Connector

IDOL Yammer Connector (12.11) Page 15 of 88

ACI port The ACI port of the IDOL server.

The Pre-Installation Summary dialog box opens.

17. Review the installation settings. If necessary, click Back to go back and change any settings. If
you are satisfied with the settings, click Next.

The connector is installed.

18. Complete the installation procedure. You can run the OAuth tool, which obtains the access
token necessary to retrieve information from Yammer.

l To run the OAuth tool, select the Run OAuth tool check box, and click Next.

Your default web browser opens to the Yammer web site, so that you can authorize the
connector to access Yammer.

After you authorize the connector, the OAuth tool obtains the access token from Yammer
and creates a file named oauth.cfg, in the connector's installation folder. This file contains
the parameters required by the connector to authenticate with Yammer. The default
connector configuration automatically imports these parameters (for information about how
to include configuration parameters from other files, see Include an External Configuration
File, on page 23).

You can now configure fetch tasks. For information about how to do this, see Use the
Connector, on page 47.

l To finish installing the connector without running the OAuth tool, clear the Run OAuth tool
check box and click Next followed by Finish. For information about how to run the OAuth
tool at a later time, see Configure OAuth Authentication, on the next page.

Install Yammer Connector on Linux
To install the Yammer Connector, use the following procedure.

To install Yammer Connector on Linux

1. Open a terminal in the directory in which you have placed the installer, and run the following
command:

./ConnectorName_VersionNumber_Platform.exe --mode text

2. Follow the on-screen instructions. For information about the options that are specified during
installation, see Install Yammer Connector on Windows. For more information about installing
IDOL components, refer to the IDOL Getting Started Guide.

Administration Guide
Chapter 2: Install Yammer Connector

IDOL Yammer Connector (12.11) Page 16 of 88

Configure the License Server Host and Port
Yammer Connector is licensed through License Server. In the Yammer Connector configuration file,
specify the information required to connect to the License Server.

To specify the license server host and port

1. Open your configuration file in a text editor.

2. In the [License] section, modify the following parameters to point to your License Server.

LicenseServerHost The host name or IP address of your License Server.

LicenseServerACIPort The ACI port of your License Server.

For example:

[License]
LicenseServerHost=licenses
LicenseServerACIPort=20000

3. Save and close the configuration file.

Configure OAuth Authentication
To retrieve information from Yammer you must go to the Azure portal and register an application to
represent the connector. You must then configure the connector to authenticate using OAuth.

For more information about creating applications and using OAuth, refer to the Microsoft
documentation.

To configure OAuth for Yammer Connector

1. Go to the Microsoft Azure Portal.

2. Click New registration.

a. Type a name for the new application.

b. Specify a redirect URL. The "type" of the redirect URL should be "Web".

l To use the NiFi Ingest connector, the redirect URL must match the URL shown in the
advanced configuration dialog of the NiFi processor.

l To use the standard connector, the redirect URL must match the value of the
RedirectUrl parameter in the OAuth tool configuration file, oauth_tool.cfg. The
default value is http://localhost:7878/oauth.

3. Click Certificates and Secrets and create a new client secret.

Administration Guide
Chapter 2: Install Yammer Connector

IDOL Yammer Connector (12.11) Page 17 of 88

https://docs.microsoft.com/en-us/graph/auth-register-app-v2
https://docs.microsoft.com/en-us/graph/auth-register-app-v2
https://portal.azure.com/#blade/Microsoft_AAD_RegisteredApps/ApplicationsListBlade

4. Click API Permissions > Add a permission.

The Request API permissions dialog box opens.

5. Click Yammer and select the following permissions.

Permission Required For

user_impersonation Retrieving data from Yammer

6. Run the OAuth configuration tool that is supplied with the connector.

l To configure the NiFi Ingest connector

a. In the NiFi web interface, right-click the processor and click Configure.

b. Click ADVANCED, and complete the guided setup wizard. Then configure OAuth using
theOAUTH SETUP tab.

l To configure the standard connector

a. Open the folder where you installed the connector.

b. Open the OAuth tool configuration file, oauth_tool.cfg, in a text editor.

c. In the [Default] section, set any SSL or proxy settings that are required to access the
repository:

SSLMethod The version of SSL/TLS to use.

ProxyHost The host name or IP address of the proxy server to use.

ProxyPort The port of the proxy server to use.

For example:

SSLMethod=NEGOTIATE
ProxyHost=10.0.0.1
ProxyPort=8080

d. In the [OAuthTool] section, set the following parameters:

AuthorizeUrl Replace the placeholder {TenantId} with your Microsoft 365
Tenant, for example mydomain.onmicrosoft.com.

TokenUrl Replace the placeholder {TenantId} with your Microsoft 365
Tenant, for example mydomain.onmicrosoft.com.

RefreshUrl Replace the placeholder {TenantId} with your Microsoft 365
Tenant, for example mydomain.onmicrosoft.com.

AppKey The application key of the application you created to represent the
connector.

AppSecret The client secret you obtained in step 3.

Administration Guide
Chapter 2: Install Yammer Connector

IDOL Yammer Connector (12.11) Page 18 of 88

e. Open a command-line window and run the following command:

oauth_tool.exe oauth_tool.cfg OAuthTool

A web browser opens, asking you to log in and grant consent.

f. Log in and grant consent.

The web page displays a message stating that the OAuth details have been
successfully stored, and the OAuth tool creates the files oauth.cfg and oauth2_
sites.bin. When you configure the connector, import the parameters from oauth.cfg
into your task configuration. For more information about including parameters from
another file, see Include an External Configuration File, on page 23.

Administration Guide
Chapter 2: Install Yammer Connector

IDOL Yammer Connector (12.11) Page 19 of 88

Chapter 3: Configure Yammer
Connector
This section describes how to configure the Yammer Connector.

• Yammer Connector Configuration File 20
• Modify Configuration Parameter Values 22
• Include an External Configuration File 23
• Encrypt Passwords 26
• Configure Client Authorization 29
• Register with a Distributed Connector 30
• Set Up Secure Communication 31
• Backup and Restore the Connector’s State 33
• Validate the Configuration File 35

Yammer Connector Configuration File
You can configure the Yammer Connector by editing the configuration file. The configuration file is
located in the connector’s installation folder. You can modify the file with a text editor.

The parameters in the configuration file are divided into sections that represent connector
functionality.

Some parameters can be set in more than one section of the configuration file. If a parameter is set in
more than one section, the value of the parameter located in the most specific section overrides the
value of the parameter defined in the other sections. For example, if a parameter can be set in
"TaskName or FetchTasks or Default", the value in the TaskName section overrides the value in the
FetchTasks section, which in turn overrides the value in the Default section. This means that you
can set a default value for a parameter, and then override that value for specific tasks.

For information about the parameters that you can use to configure the Yammer Connector, refer to
the Yammer Connector Reference.

Server Section
The [Server] section specifies the ACI port of the connector. It can also contain parameters that
control the way the connector handles ACI requests.

Service Section
The [Service] section specifies the service port of the connector.

IDOL Yammer Connector (12.11) Page 20 of 88

Actions Section
The [Actions] section contains configuration parameters that specify how the connector processes
actions that are sent to the ACI port. For example, you can configure event handlers that run when an
action starts, finishes, or encounters an error.

Logging Section
The [Logging] section contains configuration parameters that determine how messages are logged.
You can use log streams to send different types of message to separate log files. The configuration
file also contains a section to configure each of the log streams.

Connector Section
The [Connector] section contains parameters that control general connector behavior. For example,
you can specify a schedule for the fetch tasks that you configure.

Default Section
The [Default] section is used to define default settings for configuration parameters. For example,
you can specify default settings for the tasks in the [FetchTasks] section.

FetchTasks Section
The [FetchTasks] section lists the fetch tasks that you want to run. A fetch task is a task that
retrieves data from a repository. Fetch tasks are usually run automatically by the connector, but you
can also run a fetch task by sending an action to the connector’s ACI port.

In this section, enter the total number of fetch tasks in the Number parameter and then list the tasks in
consecutive order starting from 0 (zero). For example:

[FetchTasks]
Number=2
0=MyTask0
1=MyTask1

[TaskName] Section
The [TaskName] section contains configuration parameters that apply to a specific task. There must
be a [TaskName] section for every task listed in the [FetchTasks] section.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 21 of 88

Ingestion Section
The [Ingestion] section specifies where to send the data that is extracted by the connector.

You can send data to a Connector Framework Server, IDOL NiFi Ingest, or another connector. For
more information about ingestion, see Ingestion, on page 51.

DistributedConnector Section
The [DistributedConnector] section configures the connector to operate with the Distributed
Connector. The Distributed Connector is an ACI server that distributes actions (synchronize,
collect and so on) between multiple connectors.

For more information about the Distributed Connector, refer to the Distributed Connector
Administration Guide.

License Section
The [License] section contains details about the License server (the server on which your license
file is located).

Document Tracking Section
The [DocumentTracking] section contains parameters that enable the tracking of documents
through import and indexing processes.

Related Topics
l Modify Configuration Parameter Values, below

l Customize Logging, on page 77

Modify Configuration Parameter Values
You modify Yammer Connector configuration parameters by directly editing the parameters in the
configuration file. When you set configuration parameter values, you must use UTF-8.

CAUTION: You must stop and restart Yammer Connector for new configuration settings to take
effect.

This section describes how to enter parameter values in the configuration file.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 22 of 88

Enter Boolean Values
The following settings for Boolean parameters are interchangeable:

TRUE = true = ON = on = Y = y = 1

FALSE = false = OFF = off = N = n = 0

Enter String Values
To enter a comma-separated list of strings when one of the strings contains a comma, you can
indicate the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird,"wing,beak",turtle

Alternatively, you can escape the comma with a backslash:

ParameterName=cat,dog,bird,wing\,beak,turtle

If any string in a comma-separated list contains quotation marks, you must put this string into
quotation marks and escape each quotation mark in the string by inserting a backslash before it. For
example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Include an External Configuration File
You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

When you include content from an external configuration file, the GetConfig and ValidateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

../sharedconfig.cfg
K:\sharedconfig\sharedsettings.cfg
\\example.com\shared\idol.cfg
file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 23 of 88

NOTE: You can use nested inclusions, for example, you can refer to a shared configuration file
that references a third file. However, the external configuration files must not refer back to your
original configuration file. These circular references result in an error, and Yammer Connector
does not start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Include the Whole External Configuration File
This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file

1. Open your configuration file in a text editor.

2. Find the place in the configuration file where you want to add the external configuration file.

3. On a new line, type a left angle bracket (<), followed by the path to and name of the external
configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

4. Save and close the configuration file.

Include Sections of an External Configuration File
This method allows you to import one or more configuration sections (including the section headings)
from an external configuration file at a specified point in your configuration file. You can include a
whole configuration section in this way, but the configuration section name in the external file must
exactly match what you want to use in your file. If you want to use a configuration section from the
external file with a different name, see Merge a Section from an External Configuration File, on the
next page.

To include sections of an external configuration file

1. Open your configuration file in a text editor.

2. Find the place in the configuration file where you want to add the external configuration file
section.

3. On a new line, type a left angle bracket (<), followed by the path of the external configuration
file, in quotation marks (""). You can use relative paths and network locations. After the
configuration file path, add the configuration section name that you want to include. For
example:

< "K:\sharedconfig\extrasettings.cfg" [License]

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 24 of 88

NOTE: You cannot include a section that already exists in your configuration file.

4. Save and close the configuration file.

Include Parameters from an External Configuration File
This method allows you to import one or more parameters from an external configuration file at a
specified point in your configuration file. You can import a single parameter or use wildcards to
specify multiple parameters. The parameter values in the external file must match what you want to
use in your file. This method does not import the section heading, such as [License] in the following
examples.

To include parameters from an external configuration file

1. Open your configuration file in a text editor.

2. Find the place in the configuration file where you want to add the parameters from the external
configuration file.

3. On a new line, type a left angle bracket (<), followed by the path of the external configuration
file, in quotation marks (""). You can use relative paths and network locations. After the
configuration file path, add the name of the section that contains the parameter, followed by the
parameter name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external
configuration file, specify the configuration section, parameter name, and then an equals sign
(=) followed by the default value. For example:

< "license.cfg" [License] LicenseServerHost=localhost

You can use wildcards to import multiple parameters, but this method does not support default
values. The * wildcard matches zero or more characters. The ? wildcard matches any single
character. Use the pipe character | as a separator between wildcard strings. For example:

< "license.cfg" [License] LicenseServer*

4. Save and close the configuration file.

Merge a Section from an External Configuration File
This method allows you to include a configuration section from an external configuration file as part of
your Yammer Connector configuration file. For example, you might want to specify a standard
SSL configuration section in an external file and share it between several servers. You can use this
method if the configuration section that you want to import has a different name to the one you want
to use.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 25 of 88

To merge a configuration section from an external configuration file

1. Open your configuration file in a text editor.

2. Find or create the configuration section that you want to include from an external file. For
example:

[SSLOptions1]

3. After the configuration section name, type a left angle bracket (<), followed by the path to and
name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, Yammer Connector uses the values in the [SharedSSLOptions] section of the
external configuration file as the values in the [SSLOptions1] section of the Yammer Connector
configuration file.

NOTE: You can include additional configuration parameters in the section in your file. If
these parameters also exist in the imported external configuration file, Yammer Connector
uses the values in the local configuration file. For example:

[SSLOptions1] < "ssloptions.cfg" [SharedSSLOptions]
SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

4. Save and close the configuration file.

Encrypt Passwords
Micro Focus recommends that you encrypt all passwords that you enter into a configuration file.

NOTE: The AES encryption method has been hardened in version 12.9.0 and later. Micro Focus
strongly recommends that you reencrypt all passwords in configuration files by using the updated
tool.

The older AES encryption format and basic encryption methods are now deprecated. Passwords
that you have encrypted with older versions continue to work, but Yammer Connector logs a
warning. Support for these older encryption methods will be removed in future.

Create a Key File
A key file is required to use AES encryption.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 26 of 88

To create a new key file

1. Open a command-line window and change directory to the Yammer Connector installation
folder.

2. At the command line, type:

autpassword -x -tAES -oKeyFile=./MyKeyFile.ky

A new key file is created with the name MyKeyFile.ky

CAUTION: To keep your passwords secure, you must protect the key file. Set the permissions on
the key file so that only authorized users and processes can read it. Yammer Connector must be
able to read the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password
The following procedure describes how to encrypt a password.

To encrypt a password

1. Open a command-line window and change directory to the Yammer Connector installation
folder.

2. At the command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]
PasswordString

where:

Option Description

-
tEncryptionType

The type of encryption to use:

l AES - AES256

l Basic

DEPRECATED: The basic encryption type is deprecated in
version 12.9.0 and later. Use the more secure AES encryption
instead.

Passwords that you have encrypted with older versions
continue to work, but Yammer Connector logs a warning.
Support for this older encryption method will be removed in
future.

For example: -tAES

-oKeyFile AES encryption requires a key file. This option specifies the path and
file name of a key file. The key file must contain 64 hexadecimal
characters.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 27 of 88

Option Description

For example: -oKeyFile=./key.ky

NOTE: The full (absolute) path of the key file is included in the
encrypted value, because Yammer Connector requires the key to
decrypt the password. If you move or rename the key file, this path
becomes invalid and you must update the encrypted value.

-cFILE -
sSECTION -
pPARAMETER

(Optional) You can use these options to write the password directly
into a configuration file. You must specify all three options.

l -c. The configuration file in which to write the encrypted
password.

l -s. The name of the section in the configuration file in which to
write the password.

l -p. The name of the parameter in which to write the encrypted
password.

For example:

-c./Config.cfg -sMyTask -pPassword

PasswordString The password to encrypt.

For example:

autpassword -e -tBASIC MyPassword

autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword
MyPassword

The password is returned, or written to the configuration file.

Decrypt a Password
The following procedure describes how to decrypt a password.

To decrypt a password

1. Open a command-line window and change directory to the Yammer Connector installation
folder.

2. At the command line, type:

autpassword -d -tEncryptionType PasswordString

where:

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 28 of 88

Option Description

-tEncryptionType The type of encryption:

l Basic

l AES - AES256

For example: -tAES

PasswordString The password to decrypt.

For example:

autpassword -d -tBASIC 9t3M3t7awt/J8A

autpassword -d -tAES PasswordString

The password is returned in plain text.

Configure Client Authorization
You can configure Yammer Connector to authorize different operations for different connections.

Authorization roles define a set of operations for a set of users. You define the operations by using
the StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

For more information about the available parameters, see the Yammer Connector Reference.

IMPORTANT: To ensure that Yammer Connector allows only the options that you configure in
[AuthorizationRoles], make sure that you delete any deprecated RoleClients parameters
from your configuration (where Role corresponds to a standard role name, for example
AdminClients).

To configure authorization roles

1. Open your configuration file in a text editor.

2. Find the [AuthorizationRoles] section, or create one if it does not exist.

3. In the [AuthorizationRoles] section, list the user authorization roles that you want to create.
For example:

[AuthorizationRoles]
0=AdminRole
1=UserRole

4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 29 of 88

[AdminRole]

5. In the section for each role, define the operations that you want the role to be able to perform.
You can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed
actions by using Actions, and ServiceActions. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus

[UserRole]
Actions=GetVersion
ServiceActions=GetStatus

NOTE: The standard roles do not overlap. If you want a particular role to be able to perform
all actions, you must include all the standard roles, or ensure that the clients, SSL identities,
and so on, are assigned to all relevant roles.

6. In the section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the
operations allowed by the role. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus
Clients=localhost
SSLIdentities=admin.example.com

7. Save and close the configuration file.

8. Restart Yammer Connector for your changes to take effect.

IMPORTANT: If you do not provide any authorization roles for a standard role, Yammer
Connector uses the default client authorization for the role (localhost for Admin and
ServiceControl, all clients for Query and ServiceStatus). If you define authorization only by
actions, Micro Focus recommends that you configure an authorization role that disallows all users
for all roles by default. For example:

[ForbidAllRoles]
StandardRoles=*
Clients=""

This configuration ensures that Yammer Connector uses only your action-based authorizations.

Register with a Distributed Connector
To receive actions from a Distributed Connector, a connector must register with the Distributed
Connector and join a connector group. A connector group is a group of similar connectors. The
connectors in a group must be of the same type (for example, all HTTP Connectors), and must be
able to access the same repository.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 30 of 88

To configure a connector to register with a Distributed Connector, follow these steps. For more
information about the Distributed Connector, refer to the Distributed Connector Administration Guide.

To register with a Distributed Connector

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. In the [DistributedConnector] section, set the following parameters:

RegisterConnector (Required) To register with a Distributed Connector, set this
parameter to true.

HostN (Required) The host name or IP address of the Distributed
Connector.

PortN (Required) The ACI port of the Distributed Connector.

DataPortN (Optional) The data port of the Distributed Connector.

ConnectorGroup (Required) The name of the connector group to join. The value of this
parameter is passed to the Distributed Connector.

ConnectorPriority (Optional) The Distributed Connector can distribute actions to
connectors based on a priority value. The lower the value assigned
to ConnectorPriority, the higher the probability that an action is
assigned to this connector, rather than other connectors in the same
connector group.

SharedPath (Optional) The location of a shared folder that is accessible to all of
the connectors in the ConnectorGroup. This folder is used to store
the connectors’ datastore files, so that whichever connector in the
group receives an action, it can access the information required to
complete it. If you set the DataPortN parameter, the datastore file is
streamed directly to the Distributed Connector, and this parameter is
ignored.

4. Save and close the configuration file.

5. Start the connector.

The connector registers with the Distributed Connector. When actions are sent to the
Distributed Connector for the connector group that you configured, they are forwarded to this
connector or to another connector in the group.

Set Up Secure Communication
You can configure Secure Socket Layer (SSL) connections between the connector and other ACI
servers.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 31 of 88

Configure Outgoing SSL Connections
To configure the connector to send data to other components (for example Connector Framework
Server) over SSL, follow these steps.

To configure outgoing SSL connections

1. Open the Yammer Connector configuration file in a text editor.

2. Specify the name of a section in the configuration file where the SSL settings are provided:

l To send data to an ingestion server over SSL, set the IngestSSLConfig parameter in the
[Ingestion] section. To send data from a single fetch task to an ingestion server over SSL,
set IngestSSLConfig in a [TaskName] section.

l To send data to a Distributed Connector over SSL, set the SSLConfig parameter in the
[DistributedConnector] section.

l To send data to a View Server over SSL, set the SSLConfig parameter in the [ViewServer]
section.

You can use the same settings for each connection. For example:

[Ingestion]
IngestSSLConfig=SSLOptions

[DistributedConnector]
SSLConfig=SSLOptions

3. Create a new section in the configuration file. The name of the section must match the name
you specified in the IngestSSLConfig or SSLConfig parameter. Then specify the SSL settings
to use.

SSLMethod The SSL protocol to use.

SSLCertificate (Optional) The SSL certificate to use (in PEM format).

SSLPrivateKey (Optional) The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
SSLMethod=TLSV1.3
SSLCertificate=host1.crt
SSLPrivateKey=host1.key

4. Save and close the configuration file.

5. Restart the connector.

Related Topics
l Start and Stop the Connector, on page 36

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 32 of 88

Configure Incoming SSL Connections
To configure a connector to accept data sent to its ACI port over SSL, follow these steps.

To configure an incoming SSL Connection

1. Stop the connector.

2. Open the configuration file in a text editor.

3. In the [Server] section set the SSLConfig parameter to specify the name of a section in the
configuration file for the SSL settings. For example:

[Server]
SSLConfig=SSLOptions

4. Create a new section in the configuration file (the name must match the name you used in the
SSLConfig parameter). Then, use the SSL configuration parameters to specify the details for
the connection. You must set the following parameters:

SSLMethod The SSL protocol to use.

SSLCertificate The SSL certificate to use (in PEM format).

SSLPrivateKey The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
SSLMethod=TLSV1.3
SSLCertificate=host1.crt
SSLPrivateKey=host1.key

5. Save and close the configuration file.

6. Restart the connector.

Related Topics
l Start and Stop the Connector, on page 36

Backup and Restore the Connector’s State
After configuring a connector, and while the connector is running, you can create a backup of the
connector’s state. In the event of a failure, you can restore the connector’s state from the backup.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 33 of 88

To create a backup, use the backupServer action. The backupServer action saves a ZIP file to a
path that you specify. The backup includes:

l a copy of the actions folder, which stores information about actions that have been queued,
are running, and have finished.

l a copy of the configuration file.

l a copy of the connector’s datastore files, which contain information about the files, records, or
other data that the connector has retrieved from a repository.

Backup a Connector’s State

To create a backup of the connectors state

l In the address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=backupServer&path=path

where,

host The host name or IP address of the machine where the connector is running.

port The connector’s ACI port.

path The folder where you want to save the backup.

For example:

http://localhost:1234/action=backupServer&path=./backups

Restore a Connector’s State

To restore a connector’s state

l In the address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=restoreServer&filename=filename

where,

host The host name or IP address of the machine where the connector is running.

port The connector’s ACI port.

filename The path of the backup that you created.

For example:

http://localhost:1234/action=restoreServer&filename=./backups/filename.zip

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 34 of 88

Validate the Configuration File
You can use the ValidateConfig service action to check for errors in the configuration file.

NOTE: For the ValidateConfig action to validate a configuration section, Yammer Connector
must have previously read that configuration. In some cases, the configuration might be read
when a task is run, rather than when the component starts up. In these cases, ValidateConfig
reports any unread sections of the configuration file as unused.

To validate the configuration file

l Send the following action to Yammer Connector:

http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where Yammer Connector is
installed.

ServicePort is the service port, as specified in the [Service] section of the configuration
file.

Administration Guide
Chapter 3: Configure Yammer Connector

IDOL Yammer Connector (12.11) Page 35 of 88

Chapter 4: Start and Stop the
Connector
This section describes how to start and stop the Yammer Connector.

• Start the Connector 36
• Verify that Yammer Connector is Running 37
• Stop the Connector 38

NOTE: You must start and stop the Connector Framework Server separately from the Yammer
Connector.

Start the Connector
After you have installed and configured a connector, you are ready to run it. Start the connector using
one of the following methods.

Start the Connector on Windows

To start the connector using Windows Services

1. Open the Windows Services dialog box.

2. Select the connector service, and click Start.

3. Close the Windows Services dialog box.

To start the connector by running the executable

l In the connector installation directory, double-click the connector executable file.

Start the Connector on UNIX
To start the connector on a UNIX operating system, follow these steps.

To start the connector using the UNIX start script

1. Change to the installation directory.

2. Enter the following command:

./startconnector.sh

IDOL Yammer Connector (12.11) Page 36 of 88

3. If you want to check the Yammer Connector service is running, enter the following command:

ps -aef | grep ConnectorInstallName

This command returns the Yammer Connector service process ID number if the service is
running.

Verify that Yammer Connector is Running
After starting Yammer Connector, you can run the following actions to verify that Yammer Connector
is running.

l GetStatus

l GetLicenseInfo

GetStatus
You can use the GetStatus service action to verify the Yammer Connector is running. For example:

http://Host:ServicePort/action=GetStatus

NOTE: You can send the GetStatus action to the ACI port instead of the service port. The
GetStatus ACI action returns information about the Yammer Connector setup.

GetLicenseInfo
You can send a GetLicenseInfo action to Yammer Connector to return information about your
license. This action checks whether your license is valid and returns the operations that your license
includes.

Send the GetLicenseInfo action to the Yammer Connector ACI port. For example:

http://Host:ACIport/action=GetLicenseInfo

The following result indicates that your license is valid.

<autn:license>
<autn:validlicense>true</autn:validlicense>

</autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

Administration Guide
Chapter 4: Start and Stop the Connector

IDOL Yammer Connector (12.11) Page 37 of 88

Stop the Connector
You must stop the connector before making any changes to the configuration file.

To stop the connector using Windows Services

1. Open the Windows Services dialog box.

2. Select the ConnectorInstallName service, and click Stop.

3. Close the Windows Services dialog box.

To stop the connector by sending an action to the service port

l Type the following command in the address bar of your Web browser, and press ENTER:

http://host:ServicePort/action=stop

host The IP address or host name of the machine where the connector is
running.

ServicePort The connector’s service port (specified in the [Service] section of the
connector’s configuration file).

Administration Guide
Chapter 4: Start and Stop the Connector

IDOL Yammer Connector (12.11) Page 38 of 88

Chapter 5: Send Actions to Yammer
Connector
This section describes how to send actions to Yammer Connector.

• Send Actions to Yammer Connector 39
• Asynchronous Actions 39
• Store Action Queues in an External Database 41
• Store Action Queues in Memory 43
• Use XSL Templates to Transform Action Responses 45

Send Actions to Yammer Connector
Yammer Connector actions are HTTP requests, which you can send, for example, from your web
browser. The general syntax of these actions is:

http://host:port/action=action¶meters

where:

host is the IP address or name of the machine where Yammer Connector is installed.

port is the Yammer Connector ACI port. The ACI port is specified by the Port
parameter in the [Server] section of the Yammer Connector configuration file. For
more information about the Port parameter, see the Yammer Connector
Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

NOTE: Separate individual parameters with an ampersand (&). Separate parameter names from
values with an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the Yammer Connector Reference.

Asynchronous Actions
When you send an asynchronous action to Yammer Connector, the connector adds the task to a
queue and returns a token. Yammer Connector performs the task when a thread becomes available.

IDOL Yammer Connector (12.11) Page 39 of 88

You can use the token with the QueueInfo action to check the status of the action and retrieve the
results of the action.

Most of the features provided by the connector are available through action=fetch, so when you
use the QueueInfo action, query the fetch action queue, for example:

/action=QueueInfo&QueueName=Fetch&QueueAction=GetStatus

Check the Status of an Asynchronous Action
To check the status of an asynchronous action, use the token that was returned by Yammer
Connector with the QueueInfo action. For more information about the QueueInfo action, refer to the
Yammer Connector Reference.

To check the status of an asynchronous action

l Send the QueueInfo action to Yammer Connector with the following parameters.

QueueName The name of the action queue that you want to check.

QueueAction The action to perform. Set this parameter to GetStatus.

Token (Optional) The token that the asynchronous action returned. If you do
not specify a token, Yammer Connector returns the status of every
action in the queue.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued
To cancel an asynchronous action that is waiting in a queue, use the following procedure.

To cancel an asynchronous action that is queued

l Send the QueueInfo action to Yammer Connector with the following parameters.

QueueName The name of the action queue that contains the action to cancel.

QueueAction The action to perform . Set this parameter to Cancel.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Cancel&Token=...

Stop an Asynchronous Action that is Running
You can stop an asynchronous action at any point.

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 40 of 88

To stop an asynchronous action that is running

l Send the QueueInfo action to Yammer Connector with the following parameters.

QueueName The name of the action queue that contains the action to stop.

QueueAction The action to perform. Set this parameter to Stop.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Stop&Token=...

Store Action Queues in an External Database
Yammer Connector provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. You can configure Yammer Connector to
store these queues either in an internal database file, or in an external database hosted on a
database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to
the shared queue. Whenever a server is ready to start processing a new request, it takes the next
request from the shared queue, runs the action, and adds the results of the action back to the shared
database so that they can be retrieved by any of the servers. You can therefore distribute requests
between components without configuring a Distributed Action Handler (DAH).

NOTE: You cannot use multiple servers to process a single request. Each request is processed
by one server.

NOTE: Although you can configure several connectors to share the same action queues, the
connectors do not share fetch task data. If you share action queues between several connectors
and distribute synchronize actions, the connector that processes a synchronize action cannot
determine which items the other connectors have retrieved. This might result in some documents
being ingested several times.

Prerequisites
l Supported databases:

o PostgreSQL 9.0 or later.
o MySQL 5.0 or later.

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 41 of 88

l On each machine that hosts Yammer Connector, you must install an ODBC driver for your
chosen database. On Linux you must also install the unixODBC driver manager and configure
the name and path of the ODBC driver in the unixODBC odbcinst.ini configuration file.

l If you use PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxVarChar to 0
(zero). If you use a DSN, you can configure this parameter when you create the DSN.
Otherwise, you can set the MaxVarcharSize parameter in the connection string.

Configure Yammer Connector
To configure Yammer Connector to use a shared action queue, follow these steps.

To store action queues in an external database

1. Stop Yammer Connector, if it is running.

2. Open the Yammer Connector configuration file.

3. Find the relevant section in the configuration file:

l To store queues for all asynchronous actions in the external database, find the [Actions]
section.

l To store the queue for a single asynchronous action in the external database, find the
section that configures that action.

4. Set the following configuration parameters.

AsyncStoreLibraryDirectory The path of the directory that contains the library to use to
connect to the database. Specify either an absolute path,
or a path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database.
You can omit the file extension. The following libraries are
available:

l postgresAsyncStoreLibrary - for connecting to a
PostgreSQL database.

l mysqlAsyncStoreLibrary - for connecting to a
MySQL database.

ConnectionString The connection string to use to connect to the database.
The user that you specify must have permission to create
tables in the database. For example:

ConnectionString=DSN=ActionStore

or

ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;
Database=SharedActions; Uid=user; Pwd=password;

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 42 of 88

MaxVarcharSize=0;

If your connection string includes a password, Micro
Focus recommends encrypting the value of the parameter
before entering it into the configuration file. Encrypt the
entire connection string. For information about how to
encrypt parameter values, see Encrypt Passwords, on
page 26.

For example:

[Actions]
AsyncStoreLibraryDirectory=acidlls
AsyncStoreLibraryName=postgresAsyncStoreLibrary
ConnectionString=DSN=ActionStore

5. You can use the same database to store action queues for more than one type of IDOL
component (for example, a group of File System Connectors and a group of Media Servers). To
use a database for more than one type of component, set the following parameter in the
[Actions] section of the configuration file.

DatastoreSharingGroupName The group of components to share actions with. You can
set this parameter to any string, but the value must be the
same for each server in the group. For example, to
configure several Yammer Connectors to share their action
queues, set this parameter to the same value in every
Yammer Connector configuration. Micro Focus
recommends setting this parameter to the name of the
component.

CAUTION: Do not configure different components (for
example, two different types of connector) to share the
same action queues. This will result in unexpected
behavior.

For example:

[Actions]
...
DatastoreSharingGroupName=MediaServer

6. Save and close the configuration file.

When you start Yammer Connector it connects to the shared database.

Store Action Queues in Memory
Yammer Connector provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. These queues are usually stored in a

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 43 of 88

datastore file or in a database hosted on a database server, but in some cases you can increase
performance by storing these queues in memory.

NOTE: Storing action queues in memory improves performance only when the server receives
large numbers of actions that complete quickly. Before storing queues in memory, you should
also consider the following:

l The queues (including queued actions and the results of finished actions) are lost if Yammer
Connector stops unexpectedly, for example due to a power failure or the component being
forcibly stopped. This could result in some requests being lost, and if the queues are
restored to a previous state some actions could run more than once.

l Storing action queues in memory prevents multiple instances of a component being able to
share the same queues.

l Storing action queues in memory increases memory use, so please ensure that the server
has sufficient memory to complete actions and store the action queues.

If you stop Yammer Connector cleanly, Yammer Connector writes the action queues from memory to
disk so that it can resume processing when it is next started.

To configure Yammer Connector to store asynchronous action queues in memory, follow these
steps.

To store action queues in memory

1. Stop Yammer Connector, if it is running.

2. Open the Yammer Connector configuration file and find the [Actions] section.

3. If you have set any of the following parameters, remove them:

l AsyncStoreLibraryDirectory

l AsyncStoreLibraryName

l ConnectionString

l UseStringentDatastore

4. Set the following configuration parameters.

UseInMemoryDatastore A Boolean value that specifies whether to keep
the queues for asynchronous actions in
memory. Set this parameter to TRUE.

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at
which the action queues are written to disk.
Writing the queues to disk can reduce the
number of queued actions that would be lost if
Yammer Connector stops unexpectedly, but
configuring a frequent backup will increase the
load on the datastore and might reduce
performance.

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 44 of 88

For example:

[Actions]
UseInMemoryDatastore=TRUE
InMemoryDatastoreBackupIntervalMins=30

5. Save and close the configuration file.

When you start Yammer Connector, it stores action queues in memory.

Use XSL Templates to Transform Action
Responses
You can transform the action responses returned by Yammer Connector using XSL templates. You
must write your own XSL templates and save them with either an .xsl or .tmpl file extension.

After creating the templates, you must configure Yammer Connector to use them, and then apply
them to the relevant actions.

To enable XSL transformations

1. Ensure that the autnxslt library is located in the same directory as your configuration file. If the
library is not included in your installation, you can obtain it from Micro Focus Support.

2. Open the Yammer Connector configuration file in a text editor.

3. In the [Server] section, ensure that the XSLTemplates parameter is set to true.

CAUTION: If XSLTemplates is set to true and the autnxslt library is not present in the
same directory as the configuration file, the server will not start.

4. (Optional) In the [Paths] section, set the TemplateDirectory parameter to the path to the
directory that contains your XSL templates. The default directory is acitemplates.

5. Save and close the configuration file.

6. Restart Yammer Connector for your changes to take effect.

To apply a template to action output

l Add the following parameters to the action:

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started,
set this parameter to true to force the ACI server to reload the
template from disk rather than from the cache.

For example:

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 45 of 88

action=QueueInfo&QueueName=Fetch
&QueueAction=GetStatus
&Token=...
&Template=myTemplate

In this example, Yammer Connector applies the XSL template myTemplate to the response from
a QueueInfo action.

NOTE: If the action returns an error response, Yammer Connector does not apply the XSL
template.

Example XSL Templates
Yammer Connector includes the following sample XSL templates, in the acitemplates folder:

XSL
Template

Description

LuaDebug Transforms the output from the LuaDebug action, to assist with debugging Lua
scripts.

Administration Guide
Chapter 5: Send Actions to Yammer Connector

IDOL Yammer Connector (12.11) Page 46 of 88

Chapter 6: Use the Connector
This section describes how to use the connector.

• Retrieve Information from Yammer 47
• Schedule Fetch Tasks 48

Retrieve Information from Yammer
To automatically retrieve content from Yammer, create a new fetch task by following these steps. The
connector runs each fetch task automatically, based on the schedule that is defined in the
configuration file.

NOTE: Before attempting to retrieve information from Yammer, configure OAuth authentication
by running the OAuth configuration tool that is supplied with the connector. For information about
configuring authentication, see Configure OAuth Authentication, on page 17.

To create a new Fetch Task

1. Stop the connector.

2. Open the configuration file in a text editor.

3. In the [FetchTasks] section of the configuration file, specify the number of fetch tasks using the
Number parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch
tasks have already been configured, increase the value of the Number parameter by one (1).
Below the Number parameter, specify the names of the fetch tasks, starting from zero (0). For
example:

[FetchTasks]
Number=1
0=MyTask

4. Below the [FetchTasks] section, create a new TaskName section. The name of the section
must match the name of the new fetch task. For example:

[FetchTasks]
Number=1
0=MyTask

[MyTask]

5. Ensure that the relevant OAuth parameters are included in the task. For example, the following
imports the relevant parameters from a file named oauth.cfg. This file is generated by the
OAuth configuration tool that is supplied with the connector.

[MyTask] < "oauth.cfg" [OAUTH]

IDOL Yammer Connector (12.11) Page 47 of 88

For information about using the OAuth Configuration tool, see Configure OAuth Authentication,
on page 17. For information about importing parameters into a configuration file, see Include an
External Configuration File, on page 23

6. In the task section, set the following parameters:

Username The user name for the connector to use to retrieve data
from Yammer. The user that you specify must be a
Yammer verified admin.

NetworkCreationDate The date that your Yammer network was created. The
connector does not retrieve information from before this
date. Specify the date in one of the following formats:

l YYYY-MM-DD

l YYYY/MM/DD

l YYYY/MM/DD HH:NN:SS

l ISO-8601 (YYYY-MM-DDTHH:NN:SSZ)

NetworkCreationDateFormat The date format for the date specified by
NetworkCreationDate, if you want to use a custom format
other than those described above.

7. Save and close the configuration file.

Schedule Fetch Tasks
The connector automatically runs the fetch tasks that you have configured, based on the schedule in
the configuration file. To modify the schedule, follow these steps.

To schedule fetch tasks

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. Find the [Connector] section.

4. The EnableScheduleTasks parameter specifies whether the connector should automatically
run the fetch tasks that have been configured in the [FetchTasks] section. To run the tasks, set
this parameter to true. For example:

[Connector]
EnableScheduledTasks=True

5. In the [Connector] section, set the following parameters:

Administration Guide
Chapter 6: Use the Connector

IDOL Yammer Connector (12.11) Page 48 of 88

ScheduleStartTime The start time for the fetch task, the first time it runs after you start
the connector. The connector runs subsequent synchronize cycles
after the interval specified by ScheduleRepeatSecs.

Specify the start time in the format H[H][:MM][:SS]. To start running
tasks as soon as the connector starts, do not set this parameter or
use the value now.

Tasks scheduled to start at the same time run in the order that they
are enumerated by the N parameter (in the [FetchTasks] section of
the configuration file).

ScheduleRepeatSecs The interval (in seconds) from the start of one scheduled
synchronize cycle to the start of the next. If a previous synchronize
cycle is still running when the interval elapses, the connector
queues a maximum of one action.

ScheduleCycles The number of times that each fetch task is run. To run the tasks
continuously until the connector is stopped, set this parameter to -
1. To run each task only one time, set this parameter to 1.

For example:

[Connector]
EnableScheduledTasks=True
ScheduleStartTime=15:00:00
ScheduleRepeatSecs=3600
ScheduleCycles=-1

6. (Optional) To run a specific fetch task on a different schedule, you can override these
parameters in a TaskName section of the configuration file. For example:

[Connector]
EnableScheduledTasks=TRUE
ScheduleStartTime=15:00:00
ScheduleRepeatSecs=3600
ScheduleCycles=-1

...

[FetchTasks]
Number=2
0=MyTask0
1=MyTask1
...

[MyTask1]
ScheduleStartTime=16:00:00
ScheduleRepeatSecs=60
ScheduleCycles=-1

Administration Guide
Chapter 6: Use the Connector

IDOL Yammer Connector (12.11) Page 49 of 88

In this example, MyTask0 follows the schedule defined in the [Connector] section, and MyTask1
follows the scheduled defined in the [MyTask1] TaskName section.

7. Save and close the configuration file. You can now start the connector.

Related Topics
l Start and Stop the Connector, on page 36

Administration Guide
Chapter 6: Use the Connector

IDOL Yammer Connector (12.11) Page 50 of 88

Chapter 7: Ingestion
After a connector finds new documents in a repository, or documents that have been updated or
deleted, it sends this information to another component called the ingestion target. This section
describes where you can send the information retrieved by the Yammer Connector, and how to
configure the ingestion target.

• Introduction 51
• Send Data to Connector Framework Server 52
• Send Data to Another Repository 53
• Index Documents Directly into IDOL Server 54
• Index Documents into Vertica 55
• Send Data to a MetaStore 58
• Run a Lua Script after Ingestion 59

Introduction
A connector can send information to a single ingestion target, which could be:

l Connector Framework Server. To process information and then index it into IDOL or Vertica,
send the information to a Connector Framework Server (CFS). Any files retrieved by the
connector are imported using KeyView, which means the information contained in the files is
converted into a form that can be indexed. If the files are containers that contain subfiles, these
are extracted. You can manipulate and enrich documents using Lua scripts and automated
tasks such as field standardization, image analysis, and speech-to-text processing. CFS can
index your documents into one or more indexes. For more information about CFS, refer to the
Connector Framework Server Administration Guide.

l Another Connector. Use another connector to keep another repository up-to-date. When a
connector receives documents, it inserts, updates, or deletes the information in the repository.
For example, you could use an Exchange Connector to extract information from Microsoft
Exchange, and send the documents to a Notes Connector so that the information is inserted,
updated, or deleted in the Notes repository.

NOTE: The destination connector can only insert, update, and delete documents if it
supports the insert, update, and delete fetch actions.

IDOL Yammer Connector (12.11) Page 51 of 88

In most cases Micro Focus recommends ingesting documents through CFS, so that KeyView can
extract content from any files retrieved by the connector and add this information to your documents.
You can also use CFS to manipulate and enrich documents before they are indexed. However, if
required you can configure the connector to index documents directly into:

l IDOL Server. You might index documents directly into IDOL Server when your connector
produces metadata-only documents (documents that do not have associated files). In this case
there is no need for the documents to be imported. Connectors that can produce metadata-only
documents include ODBC Connector and Oracle Connector.

l Vertica. The metadata extracted by connectors is structured information held in structured
fields, so you might use Vertica to analyze this information.

l MetaStore. You can index document metadata into a MetaStore for records management.

Send Data to Connector Framework Server
This section describes how to configure ingestion into Connector Framework Server (CFS).

To send data to a CFS

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to CFS, set this parameter to CFS.

IngestHost The host name or IP address of the CFS.

IngestPort The ACI port of the CFS.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=CFS
IngestHost=localhost
IngestPort=7000

4. (Optional) If you are sending documents to CFS for indexing into IDOL Server, set the
IndexDatabase parameter. When documents are indexed, IDOL adds each document to the
database specified in the document's DREDBNAME field. The connector sets this field for each
document, using the value of IndexDatabase.

IndexDatabase The name of the IDOL database into which documents are indexed.
Ensure that this database exists in the IDOL Server configuration file.

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 52 of 88

l To index all documents retrieved by the connector into the same IDOL database, set this
parameter in the [Ingestion] section.

l To use a different database for documents retrieved by each task, set this parameter in the
TaskName section.

5. Save and close the configuration file.

Send Data to Another Repository
You can configure a connector to send the information it retrieves to another connector. When the
destination connector receives the documents, it inserts them into another repository. When
documents are updated or deleted in the source repository, the source connector sends this
information to the destination connector so that the documents can be updated or deleted in the other
repository.

NOTE: The destination connector can only insert, update, and delete documents if it supports the
insert, update, and delete fetch actions.

To send data to another connector for ingestion into another repository

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to another repository, set this parameter to Connector.

IngestHost The host name or IP address of the machine hosting the destination
connector.

IngestPort The ACI port of the destination connector.

IngestActions Set this parameter so that the source connector runs a Lua script to
convert documents into form that can be used with the destination
connector's insert action. For information about the required format,
refer to the Administration Guide for the destination connector.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Connector
IngestHost=AnotherConnector
IngestPort=7010
IngestActions=Lua:transformation.lua

4. Save and close the configuration file.

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 53 of 88

Index Documents Directly into IDOL Server
This section describes how to index documents from a connector directly into IDOL Server.

TIP: In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has retrieved,
and can manipulate and enrich documents before they are indexed. CFS also has the capability
to insert documents into more than one index, for example IDOL Server and a Vertica database.
For information about sending documents to CFS, see Send Data to Connector Framework
Server, on page 52

To index documents directly into IDOL Server

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to IDOL Server, set this parameter to Indexer.

IndexDatabase The name of the IDOL database to index documents into.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Indexer
IndexDatabase=News

4. In the [Indexing] section of the configuration file, set the following parameters:

IndexerType To send data to IDOL Server, set this parameter to IDOL.

Host The host name or IP address of the IDOL Server.

Port The IDOL Server ACI port.

SSLConfig (Optional) The name of a section in the connector's configuration file that
contains SSL settings for connecting to IDOL.

For example:

[Indexing]
IndexerType=IDOL
Host=10.1.20.3
Port=9000

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 54 of 88

SSLConfig=SSLOptions

[SSLOptions]
SSLMethod=SSLV23

5. Save and close the configuration file.

Index Documents into Vertica
Yammer Connector can index documents into Vertica, so that you can run queries on structured
fields (document metadata).

Depending on the metadata contained in your documents, you could investigate the average age of
documents in a repository. You might want to answer questions such as: How much time has passed
since the documents were last updated? Howmany files are regularly updated? Does this represent
a small proportion of the total number of documents? Who are the most active users?

TIP: In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has retrieved,
and can manipulate and enrich documents before they are indexed. CFS also has the capability
to insert documents into more than one index, for example IDOL Server and a Vertica database.
For information about sending documents to CFS, see Send Data to Connector Framework
Server, on page 52

Prerequisites
l Yammer Connector supports indexing into Vertica 7.1 and later.

l You must install the appropriate Vertica ODBC drivers (version 7.1 or later) on the machine that
hosts Yammer Connector. If you want to use an ODBC Data Source Name (DSN) in your
connection string, you will also need to create the DSN. For more information about installing
Vertica ODBC drivers and creating the DSN, refer to the Vertica documentation.

New, Updated and Deleted Documents
When documents are indexed into Vertica, Yammer Connector adds a timestamp that contains the
time when the document was indexed. The field is named VERTICA_INDEXER_TIMESTAMP and the
timestamp is in the format YYYY-MM-DD HH:NN:SS.

When a document in a data repository is modified, Yammer Connector adds a new record to the
database with a new timestamp. All of the fields are populated with the latest data. The record
describing the older version of the document is not deleted. You can create a projection to make sure
your queries only return the latest record for a document.

When Yammer Connector detects that a document has been deleted from a repository, the
connector inserts a new record into the database. The record contains only the DREREFERENCE and
the field VERTICA_INDEXER_DELETED set to TRUE.

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 55 of 88

http://www.vertica.com/documentation

Fields, Sub-Fields, and Field Attributes
Documents that are created by connectors can have multiple levels of fields, and field attributes. A
database table has a flat structure, so this information is indexed into Vertica as follows:

l Document fields become columns in the flex table. An IDOL document field and the
corresponding database column have the same name.

l Sub-fields become columns in the flex table. A document field named my_field with a sub-field
named subfield results in two columns, my_field and my_field.subfield.

l Field attributes become columns in the flex table. A document field named my_field, with an
attribute named my_attribute results in two columns, my_field holding the field value and my_
field.my_attribute holding the attribute value.

Prepare the Vertica Database
Indexing documents into a standard database is problematic, because documents do not have a
fixed schema. A document that represents an image has different metadata fields to a document that
represents an e-mail message. Vertica databases solve this problem with flex tables. You can create
a flex table without any column definitions, and you can insert a record regardless of whether a
referenced column exists.

You must create a flex table before you index data into Vertica.

When creating the table, consider the following:

l Flex tables store entire records in a single column named __raw__. The default maximum size
of the __raw__ column is 128K. You might need to increase the maximum size if you are
indexing documents with large amounts of metadata.

l Documents are identified by their DREREFERENCE. Micro Focus recommends that you do not
restrict the size of any column that holds this value, because this could result in values being
truncated. As a result, rows that represent different documents might appear to represent the
same document. If you do restrict the size of the DREREFERENCE column, ensure that the length
is sufficient to hold the longest DREREFERENCE that might be indexed.

To create a flex table without any column definitions, run the following query:

create flex table my_table();

To improve query performance, create real columns for the fields that you query frequently. For
documents indexed by a connector, this is likely to include the DREREFERENCE:

create flex table my_table(DREREFERENCE varchar NOT NULL);

You can add new column definitions to a flex table at any time. Vertica automatically populates new
columns with values for existing records. The values for existing records are extracted from the __
raw__ column.

For more information about creating and using flex tables, refer to the Vertica Documentation or
contact Vertica technical support.

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 56 of 88

http://www.vertica.com/documentation

Send Data to Vertica
To send documents to a Vertica database, follow these steps.

To send data to Vertica

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a Vertica database, set this parameter to Indexer.

For example:

[Ingestion]
EnableIngestion=TRUE
IngesterType=Indexer

4. In the [Indexing] section, set the following parameters:

IndexerType To send data to a Vertica database, set this parameter to Library.

LibraryDirectory The directory that contains the library to use to index data.

LibraryName The name of the library to use to index data. You can omit the .dll or
.so file extension. Set this parameter to verticaIndexer.

ConnectionString The connection string to use to connect to the Vertica database.

TableName The name of the table in the Vertica database to index the documents
into. The table must be a flex table and must exist before you start
indexing documents. For more information, see Prepare the Vertica
Database, on the previous page.

For example:

[Indexing]
IndexerType=Library
LibraryDirectory=indexerdlls
LibraryName=verticaIndexer
ConnectionString=DSN=VERTICA
TableName=my_flex_table

5. Save and close the configuration file.

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 57 of 88

Send Data to a MetaStore
You can configure a connector to send documents to a MetaStore. When you send data to a
Metastore, any files associated with documents are ignored.

TIP: In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has retrieved,
and can manipulate and enrich documents before they are indexed. CFS also has the capability
to insert documents into more than one index, for example IDOL Server and a MetaStore. For
information about sending documents to CFS, see Send Data to Connector Framework Server,
on page 52

To send data to a MetaStore

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a MetaStore, set this parameter to Indexer.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Indexer

4. In the [Indexing] section, set the following parameters:

IndexerType To send data to a MetaStore, set this parameter to MetaStore.

Host The host name of the machine hosting the MetaStore.

Port The port of the MetaStore.

For example:

[Indexing]
IndexerType=Metastore
Host=MyMetaStore
Port=8000

5. Save and close the configuration file.

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 58 of 88

Run a Lua Script after Ingestion
You can configure the connector to run a Lua script after batches of documents are successfully sent
to the ingestion server. This can be useful if you need to log information about documents that were
processed, for monitoring and reporting purposes.

To configure the file name of the Lua script to run, set the IngestBatchActions configuration
parameter in the connector's configuration file.

l To run the script for all batches of documents that are ingested, set the parameter in the
[Ingestion] section.

l To run the script for batches of documents retrieved by a specific task, set the parameter in the
[TaskName] section.

NOTE: If you set the parameter in a [TaskName] section, the connector does not run any
scripts specified in the [Ingestion] section for that task.

For example:

[Ingestion]
IngestBatchActions0=LUA:./scripts/myScript.lua

For more information about this parameter, refer to the Yammer Connector Reference.

The Lua script must have the following structure:

function batchhandler(documents, ingesttype)
...

end

The batchhandler function is called after each batch of documents is sent to the ingestion server.
The function is passed the following arguments:

Argument Description

documents A table of document objects, where each object represents a document that was
sent to the ingestion server.

A document object is an internal representation of a document. You can modify
the document object and this changes the document. However, as the script runs
after the documents are sent to the ingestion server, any changes you make are
not sent to CFS or IDOL.

ingesttype A string that contains the ingest type for the documents. The batchhandler
function is called multiple times if different document types are sent.

For example, the following script prints the ingest type (ADD, DELETE, or UPDATE) and the reference for
all successfully processed documents to stdout:

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 59 of 88

function batchhandler(documents, ingesttype)
for i,document in ipairs(documents) do

local ref = document:getReference()
print(ingesttype..": "..ref)

end
end

Administration Guide
Chapter 7: Ingestion

IDOL Yammer Connector (12.11) Page 60 of 88

Chapter 8: Manipulate Documents
This section describes how to manipulate documents that are created by the connector and sent for
ingestion.

• Introduction 61
• Add a Field to Documents using an Ingest Action 61
• Customize Document Processing 62
• Standardize Field Names 63
• Run Lua Scripts 68
• Example Lua Scripts 71

Introduction
IDOL Connectors retrieve data from repositories and create documents that are sent to Connector
Framework Server or another connector. You might want to manipulate the documents that are
created. For example, you can:

l Add or modify document fields, to change the information that is indexed into IDOL Server.

l Add fields to a document to customize the way the document is processed by CFS.

l Convert information into another format so that it can be inserted into another repository by a
connector that supports the Insert action.

When a connector sends documents to CFS, the documents only contain metadata extracted from
the repository by the connector (for example, the location of the original files). To modify data
extracted by KeyView, you must modify the documents using CFS. For information about how to
manipulate documents with CFS, refer to the Connector Framework Server Administration Guide.

Add a Field to Documents using an Ingest
Action
To add a field to all documents retrieved by a fetch task, or all documents sent for ingestion, you can
use an Ingest Action.

NOTE: To add a field only to selected documents, use a Lua script (see Run Lua Scripts, on
page 68). For an example Lua script that demonstrates how to add a field to a document, see Add
a Field to a Document, on page 71.

IDOL Yammer Connector (12.11) Page 61 of 88

To add a field to documents using an Ingest Action

1. Open the connector’s configuration file.

2. Find one of the following sections in the configuration file:

l To add the field to all documents retrieved by a specific fetch task, find the [TaskName]
section.

l To add a field to all documents that are sent for ingestion, find the [Ingestion] section.

NOTE: If you set the IngestActions parameter in a [TaskName] section, the connector
does not run any IngestActions set in the [Ingestion] section for documents retrieved by
that task.

3. Use the IngestActions parameter to specify the name of the field to add, and the field value.
For example, to add a field named AUTN_NO_EXTRACT, with the value SET, type:

IngestActions0=META:AUTN_NO_EXTRACT=SET

4. Save and close the configuration file.

Customize Document Processing
You can add the following fields to a document to control how the document is processed by CFS.
Unless stated otherwise, you can add the fields with any value.

AUTN_FILTER_META_ONLY

Prevents KeyView extracting file content from a file. KeyView only extracts metadata and adds this
information to the document.

AUTN_NO_FILTER

Prevents KeyView extracting file content and metadata from a file. You can use this field if you do not
want to extract text from certain file types.

AUTN_NO_EXTRACT

Prevents KeyView extracting subfiles. You can use this field to prevent KeyView extracting the
contents of ZIP archives and other container files.

AUTN_NEEDS_MEDIA_SERVER_ANALYSIS

Identifies media files (images, video, and documents such as PDF files that contain embedded
images) that you want to send to Media Server for analysis, using a MediaServerAnalysis import
task. You do not need to add this field if you are using a Lua script to run media analysis. For more
information about running analysis on media, refer to the Connector Framework Server
Administration Guide.

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 62 of 88

Standardize Field Names
Field standardization modifies documents so that they have a consistent structure and consistent
field names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information.

For example, documents created by the File System Connector can have a field named FILEOWNER.
Documents created by the Documentum Connector can have a field named owner_name. Both of
these fields store the name of the person who owns a file. Field standardization renames the fields so
that they have the same name.

Field standardization only modifies fields that are specified in a dictionary, which is defined in XML
format. A standard dictionary, named dictionary.xml, is supplied in the installation folder of every
connector. If a connector does not have any entries in the dictionary, field standardization has no
effect.

Configure Field Standardization
IDOL Connectors have several configuration parameters that control field standardization. All of
these are set in the [Connector] section of the configuration file:

l EnableFieldNameStandardization specifies whether to run field standardization.

l FieldNameDictionaryPath specifies the path of the dictionary file to use.

l FieldNameDictionaryNode specifies the rules to use. The default value for this parameter
matches the name of the connector, and Micro Focus recommends that you do not change it.
This prevents one connector running field standardization rules that are intended for another.

To configure field standardization, use the following procedure.

NOTE: You can also configure CFS to run field standardization. To standardize all field names,
you must run field standardization from both the connector and CFS.

To enable field standardization

1. Stop the connector.

2. Open the connector’s configuration file.

3. In the [Connector] section, set the following parameters:

EnableFieldNameStandardization A Boolean value that specifies whether to enable
field standardization. Set this parameter to true.

FieldNameDictionaryPath The path to the dictionary file that contains the rules
to use to standardize documents. A standard

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 63 of 88

dictionary is included with the connector and is
named dictionary.xml.

For example:

[Connector]
EnableFieldNameStandardization=true
FieldNameDictionaryPath=dictionary.xml

4. Save the configuration file and restart the connector.

Customize Field Standardization
Field standardization modifies documents so that they have a consistent structure and consistent
field names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information. Field standardization only
modifies fields that are specified in a dictionary, which is defined in XML format. A standard
dictionary, named dictionary.xml, is supplied in the installation folder of every connector.

In most cases you should not need to modify the standard dictionary, but you can modify it to suit
your requirements or create dictionaries for different purposes. By modifying the dictionary, you can
configure the connector to apply rules that modify documents before they are ingested. For example,
you can move fields, delete fields, or change the format of field values.

The following examples demonstrate how to perform some operations with field standardization.

The following rule renames the field Author to DOCUMENT_METADATA_AUTHOR_STRING. This rule
applies to all components that run field standardization and applies to all documents.

<FieldStandardization>
<Field name="Author">

<Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
</Field>

</FieldStandardization>

The following rule demonstrates how to use the Delete operation. This rule instructs CFS to remove
the field KeyviewVersion from all documents (the Product element with the attribute
key="ConnectorFrameWork" ensures that this rule is run only by CFS).

<FieldStandardization>
<Product key="ConnectorFrameWork">

<Field name="KeyviewVersion">
<Delete/>

</Field>
</Product>

</FieldStandardization>

There are several ways to select fields to process using the Field element.

Field element
attribute

Description Example

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 64 of 88

name Select a field where the field name
matches a fixed value.

Select the field MyField:

<Field name="MyField">
...

</Field>

Select the field Subfield, which is a
subfield of MyField:

<Field name="MyField">
<Field name="Subfield">

...
</Field>

</Field>

path Select a field where its path matches
a fixed value.

Select the field Subfield, which is a
subfield of MyField.

<Field path="MyField/Subfield">
...

</Field>

nameRegex Select all fields at the current depth
where the field name matches a
regular expression.

In this case the field name must begin
with the word File:

<Field nameRegex="File.*">
...

</Field>

pathRegex Select all fields where the path of the
field matches a regular expression.

This operation can be inefficient
because every metadata field must
be checked. If possible, select the
fields to process another way.

This example selects all subfields of
MyField.

<Field pathRegex="MyField/[^/]*">
...

</Field>

This approach would be more efficient:

<Field name="MyField">
<Field nameRegex=".*">

...
</Field>

</Field>

You can also limit the fields that are processed based on their value, by using one of the following:

Field element
attribute

Description Example

matches Process a field if its
value matches a
fixed value.

Process a field named MyField, if its value matches
abc.

<Field name="MyField" matches="abc">

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 65 of 88

...
</Field>

matchesRegex Process a field if its
entire value matches
a regular expression.

Process a field named MyField, if its value matches
one or more digits.

<Field name="MyField" matchesRegex="\d+">
...

</Field>

containsRegex Process a field if its
value contains a
match to a regular
expression.

Process a field named MyField if its value contains
three consecutive digits.

<Field name="MyField" containsRegex="\d{3}">
...

</Field>

The following rule deletes every field or subfield where the name of the field or subfield begins with
temp.

<FieldStandardization>
<Field pathRegex="(.*/)?temp[^/]*">

<Delete/>
</Field>

</FieldStandardization>

The following rule instructs CFS to rename the field Author to DOCUMENT_METADATA_AUTHOR_STRING,
but only when the document contains a field named DocumentType with the value 230 (the KeyView
format code for a PDF file).

<FieldStandardization>
<Product key="ConnectorFrameWork">

<IfField name="DocumentType" matches="230"> <!-- PDF -->
<Field name="Author">

<Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
</Field>

</IfField>
</Product>

</FieldStandardization>

TIP: In this example, the IfField element is used to check the value of the DocumentType field.
The IfField element does not change the current position in the document. If you used the Field
element, field standardization would attempt to find an Author field that is a subfield of
DocumentType, instead of finding the Author field at the root of the document.

The following rules demonstrate how to use the ValueFormat operation to change the format of
dates. The first rule transforms the value of a field named CreatedDate. The second rule transforms
the value of an attribute named Created, on a field named Date.

<FieldStandardization>
<Field name="CreatedDate">

<ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 66 of 88

</Field>
<Field name="Date">

<Attribute name="Created">
<ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>

</Attribute>
</Field>

</FieldStandardization>

The ValueFormat element has the following attributes:

type To convert the date into the IDOL AUTNDATE format, specify autndate. To
convert the date into a custom format, specify customdate and then set the
attribute targetformat.

format The format to convert the date from. Specify the format using standard
IDOL date formats.

targetformat The format to convert the date into, when you set the type attribute to
customdate. Specify the format using standard IDOL date formats.

As demonstrated by the previous example, you can select field attributes to process in a similar way
to selecting fields.

You must select attributes using either a fixed name or a regular expression:

Select a field attribute by name <Attribute name="MyAttribute">

Select attributes that match a regular expression <Attribute nameRegex=".*">

You can then add a restriction to limit the attributes that are processed:

Process an attribute only if its
value matches a fixed value

<Attribute name="MyAttribute" matches="abc">

Process an attribute only if its
value matches a regular
expression

<Attribute name="MyAttribute" matchesRegex=".*">

Process an attribute only if its
value contains a match to a
regular expression

<Attribute name="MyAttribute" containsRegex="\w+">

The following rule moves all of the attributes of a field to sub fields, if the parent field has no value.
The id attribute on the first Field element provides a name to a matching field so that it can be
referred to by later operations. The GetName and GetValue operations save the name and value of a
selected field or attribute (in this case an attribute) into variables (in this case $'name' and $'value')
which can be used by later operations. The AddField operation uses the variables to add a new field
at the selected location (the field identified by id="parent").

<FieldStandardization>
<Field pathRegex=".*" matches="" id="parent">

<Attribute nameRegex=".*">

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 67 of 88

<GetName var="name"/>
<GetValue var="value"/>
<Field fieldId="parent">

<AddField name="$'name'" value="$'value'"/>
</Field>
<Delete/>

</Attribute>
</Field>

</FieldStandardization>

The following rule demonstrates how to move all of the subfields of UnwantedParentField to the root
of the document, and then delete the field UnwantedParentField.

<FieldStandardization id="root">
<Product key="MyConnector">

<Field name="UnwantedParentField">
<Field nameRegex=".*">

<Move destId="root"/>
</Field>
<Delete/>

</Field>
</Product>

</FieldStandardization>

Run Lua Scripts
IDOL Connectors can run custom scripts written in Lua, an embedded scripting language. You can
use Lua scripts to process documents that are created by a connector, before they are sent to CFS
and indexed into IDOL Server. For example, you can:

l Add or modify document fields.

l Manipulate the information that is indexed into IDOL.

l Call out to an external service, for example to alert a user.

There might be occasions when you do not want to send documents to a CFS. For example, you
might use the Collect action to retrieve documents from one repository and then insert them into
another. You can use a Lua script to transform the documents from the source repository so that they
can be accepted by the destination repository.

To run a Lua script from a connector, use one of the following methods:

l Set the IngestActions configuration parameter in the connector’s configuration file. For
information about how to do this, see Run a Lua Script using an Ingest Action, on page 70. The
connector runs ingest actions on documents before they are sent for ingestion.

l Set the IngestActions action parameter when using the Synchronize action.

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 68 of 88

Write a Lua Script
A Lua script that is run from a connector must have the following structure:

function handler(config, document, params)
...

end

The handler function is called for each document and is passed the following arguments:

Argument Description

config A LuaConfig object that you can use to retrieve the values of configuration
parameters from the connector’s configuration file.

document A LuaDocument object. The document object is an internal representation of the
document being processed. Modifying this object changes the document.

params The params argument is a table that contains additional information provided by the
connector:

l TYPE. The type of task being performed. The possible values are ADD,
UPDATE, DELETE, or COLLECT.

l SECTION. The name of the section in the configuration file that contains
configuration parameters for the task.

l FILENAME. The document filename. The Lua script can modify this file, but
must not delete it.

l OWNFILE. Indicates whether the connector (and CFS) has ownership of the
file. A value of truemeans that CFS deletes the file after it has been
processed.

The following script demonstrates how you can use the config and params arguments:

function handler(config, document, params)
-- Write all of the additional information to a log file
for k,v in pairs(params) do

log("logfile.txt", k..": "..tostring(v))
end

-- The following lines set variables from the params argument
type = params["TYPE"]
section = params["SECTION"]
filename = params["FILENAME"]

-- Read a configuration parameter from the configuration file
-- If the parameter is not set, "DefaultValue" is returned
val = config:getValue(section, "Parameter", "DefaultValue")

-- If the document is not being deleted, set the field FieldName

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 69 of 88

-- to the value of the configuration parameter
if type ~= "DELETE" then

document:setFieldValue("FieldName", val)
end

-- If the document has a file (that is, not just metadata),
-- copy the file to a new location and write a stub idx file
-- containing the metadata.
if filename ~= "" then

copytofilename = "./out/"..create_uuid(filename)
copy_file(filename, copytofilename)
document:writeStubIdx(copytofilename..".idx")

end

return true
end

For the connector to continue processing the document, the handler function must return true. If the
function returns false, the document is discarded.

TIP: You can write a library of useful functions to share between multiple scripts. To include a
library of functions in a script, add the code dofile("library.lua") to the top of the lua script,
outside of the handler function.

Run a Lua Script using an Ingest Action
To run a Lua script on documents that are sent for ingestion, use an Ingest Action.

To run a Lua script using an Ingest Action

1. Open the connector’s configuration file.

2. Find one of the following sections in the configuration file:

l To run a Lua script on all documents retrieved by a specific task, find the [TaskName]
section.

l To run a Lua script on all documents that are sent for ingestion, find the [Ingestion]
section.

NOTE: If you set the IngestActions parameter in a [TaskName] section, the connector
does not run any IngestActions set in the [Ingestion] section for that task.

3. Use the IngestActions parameter to specify the path to your Lua script. For example:

IngestActions=LUA:C:\Autonomy\myScript.lua

4. Save and close the configuration file.

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 70 of 88

Related Topics
l Write a Lua Script, on page 69

Example Lua Scripts
This section contains example Lua scripts.

l Add a Field to a Document, below

l Merge Document Fields, below

Add a Field to a Document
The following script demonstrates how to add a field named “MyField” to a document, with a value of
“MyValue”.

function handler(config, document, params)
document:addField("MyField", "MyValue");
return true;

end

The following script demonstrates how to add the field AUTN_NEEDS_MEDIA_SERVER_ANALYSIS to all
JPEG, TIFF and BMP documents. This field indicates to CFS that the file should be sent to a Media
Server for analysis (you must also define the MediaServerAnalysis task in the CFS configuration
file).

The script finds the file type using the DREREFERENCE document field, so this field must contain the file
extension for the script to work correctly.

function handler(config, document, params)
local extensions_for_ocr = { jpg = 1 , tif = 1, bmp = 1 };
local filename = document:getFieldValue("DREREFERENCE");
local extension, extension_found = filename:gsub("^.*%.(%w+)$", "%1", 1);

if extension_found > 0 then
if extensions_for_ocr[extension:lower()] ~= nil then
 document:addField("AUTN_NEEDS_MEDIA_SERVER_ANALYSIS", "");
end

end

return true;
end

Merge Document Fields
This script demonstrates how to merge the values of document fields.

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 71 of 88

When you extract data from a repository, the connector can produce documents that have multiple
values for a single field, for example:

#DREFIELD ATTACHMENT="attachment.txt"
#DREFIELD ATTACHMENT="image.jpg"
#DREFIELD ATTACHMENT="document.pdf"

This script shows how to merge the values of these fields, so that the values are contained in a single
field, for example:

#DREFIELD ATTACHMENTS="attachment.txt, image.jpg, document.pdf"

Example Script

function handler(config, document, params)
onefield(document,"ATTACHMENT","ATTACHMENTS")
return true;

end

function onefield(document,existingfield,newfield)
if document:hasField(existingfield) then

local values = { document:getFieldValues(existingfield) }

local newfieldvalue=""
for i,v in ipairs(values) do
 if i>1 then
 newfieldvalue = newfieldvalue ..", "
 end

 newfieldvalue = newfieldvalue..v
end

document:addField(newfield,newfieldvalue)
end

return true;
end

Administration Guide
Chapter 8: Manipulate Documents

IDOL Yammer Connector (12.11) Page 72 of 88

Chapter 9: Monitor the Connector
This section describes how to monitor the connector.

• IDOL Admin 73
• View Connector Statistics 75
• Use the Connector Logs 76
• Monitor Asynchronous Actions using Event Handlers 78
• Set Up Performance Monitoring 80
• Set Up Document Tracking 83

IDOL Admin
IDOL Admin is an administration interface for performing ACI server administration tasks, such as
gathering status information, monitoring performance, and controlling the service. IDOL Admin
provides an alternative to constructing actions and sending them from your web browser.

Prerequisites
Yammer Connector includes the admin.dat file that is required to run IDOL Admin.

IDOL Admin supports the following browsers:

l Edge

l Chrome (latest version)

l Firefox (latest version)

Install IDOL Admin
You must install IDOL Admin on the same host that the ACI server or component is installed on. To
set up a component to use IDOL Admin, you must configure the location of the admin.dat file and
enable Cross Origin Resource Sharing.

To install IDOL Admin

1. Stop the ACI server.

2. Save the admin.dat file to any directory on the host.

3. Using a text editor, open the ACI server or component configuration file. For the location of the
configuration file, see the ACI server documentation.

IDOL Yammer Connector (12.11) Page 73 of 88

4. In the [Paths] section of the configuration file, set the AdminFile parameter to the location of
the admin.dat file. If you do not set this parameter, the ACI server attempts to find the
admin.dat file in its working directory when you call the IDOL Admin interface.

5. Enable Cross Origin Resource Sharing.

6. In the [Service] section, add the Access-Control-Allow-Origin parameter and set its value
to the URLs that you want to use to access the interface.

Each URL must include:

l the http:// or https:// prefix

NOTE: URLs can contain the https:// prefix if the ACI server or component has SSL
enabled.

l The host that IDOL Admin is installed on

l The ACI port of the component that you are using IDOL Admin for

Separate multiple URLs with spaces.

For example, you could specify different URLs for the local host and remote hosts:

Access-Control-Allow-Origin=http://localhost:9010
http://Computer1.Company.com:9010

Alternatively, you can set Access-Control-Allow-Origin=*, which allows you to access IDOL
Admin using any valid URL (for example, localhost, direct IP address, or the host name). The
wildcard character (*) is supported only if no other entries are specified.

If you do not set the Access-Control-Allow-Origin parameter, IDOL Admin can communicate
only with the server’s ACI port, and not the index or service ports.

7. Start the ACI server.

You can now access IDOL Admin (see Access IDOL Admin, below).

Access IDOL Admin
You access IDOL Admin from a web browser. You can access the interface only through URLs that
are set in the Access-Control-Allow-Origin parameter in the ACI server or component
configuration file. For more information about configuring URL access, see Install IDOL Admin, on
the previous page.

To access IDOL Admin

l Type the following URL into the address bar of your web browser:

http://host:port/action=admin

where:

host is the host name or IP address of the machine where the IDOL component is

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 74 of 88

installed.

port is the ACI port of the IDOL component you want to administer.

View Connector Statistics
Yammer Connector collects statistics about the work it has completed. The statistics that are
available depend on the connector you are using, but all connectors provide information about the
number and frequency of ingest-adds, ingest-updates, and ingest-deletes.

To view connector statistics

l Use the GetStatistics service action, for example:

http://host:serviceport/action=GetStatistics

where host is the host name or IP address of the machine where the connector is installed, and
serviceport is the connector’s service port.

For information about the statistics that are returned, refer to the documentation for the
GetStatistics service action.

The connector includes an XSL template (ConnectorStatistics.tmpl) that you can use to visualize
the statistics. You can use the template by adding the template parameter to the request:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics

When you are using the ConnectorStatistics template, you can also add the filter parameter to
the request to return specific statistics. The filter parameter accepts a regular expression that
matches against the string autnid::name, where autnid and name are the values of the
corresponding attributes in the XML returned by the GetStatistics action. For example, the
following request returns statistics only for synchronize actions:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics
&filter=^synchronize:

The following request returns statistics only for the task mytask:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics
&filter=:mytask:

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 75 of 88

The following image shows some example statistics returned by a connector:

Above each chart is a title, for example SYNCHRONIZE:MYTASK, that specifies the action and task to
which the statistics belong.

You can see from the example that in the last 60 seconds, the connector has generated an average
of approximately 0.4 ingest-adds per second. In the charts, partially transparent bars indicate that the
connector has not completed collecting information for those time intervals. The information used to
generate statistics is stored in memory, so is lost if you stop the connector.

The following information is presented above the chart for each statistic:

l Total is a running total since the connector started. In the example above, there have been 70
ingest-adds in total.

l Current Total is the total for the actions that are currently running. In the example above, the
synchronize action that is running has resulted in 30 ingest-adds being sent to CFS.

l Previous Total provides the totals for previous actions. In the example above, the previous
synchronize cycle resulted in 40 ingest-adds. To see the totals for the 24 most recent actions,
hover the mouse pointer over the value.

Use the Connector Logs
As the Yammer Connector runs, it outputs messages to its logs. Most log messages occur due to
normal operation, for example when the connector starts, receives actions, or sends documents for
ingestion. If the connector encounters an error, the logs are the first place to look for information to
help troubleshoot the problem.

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 76 of 88

The connector separates messages into the following message types, each of which relates to
specific features:

Log Message Type Description

Action Logs actions that are received by the connector, and related messages.

Application Logs application-related occurrences, such as when the connector starts.

Synchronize Messages related to the Synchronize fetch action.

Customize Logging
You can customize logging by setting up your own log streams. Each log stream creates a separate
log file in which specific log message types (for example, action, index, application, or import) are
logged.

To set up log streams

1. Open the Yammer Connector configuration file in a text editor.

2. Find the [Logging] section. If the configuration file does not contain a [Logging] section, add
one.

3. In the [Logging] section, create a list of the log streams that you want to set up, in the format
N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For
example:

[Logging]
LogLevel=FULL
LogDirectory=logs
0=ApplicationLogStream
1=ActionLogStream

You can also use the [Logging] section to configure any default values for logging
configuration parameters, such as LogLevel. For more information, see the Yammer Connector
Reference.

4. Create a new section for each of the log streams. Each section must have the same name as
the log stream. For example:

[ApplicationLogStream]
[ActionLogStream]

5. Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), whether to display log messages on the console,
the maximum size of log files, and so on. For example:

[ApplicationLogStream]
LogTypeCSVs=application
LogFile=application.log
LogHistorySize=50

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 77 of 88

LogTime=True
LogEcho=False
LogMaxSizeKBs=1024

[ActionLogStream]
LogTypeCSVs=action
LogFile=logs/action.log
LogHistorySize=50
LogTime=True
LogEcho=False
LogMaxSizeKBs=1024

6. Save and close the configuration file. Restart the service for your changes to take effect.

Monitor Asynchronous Actions using Event
Handlers
The fetch actions sent to a connector are asynchronous. Asynchronous actions do not run
immediately, but are added to a queue. This means that the person or application that sends the
action does not receive an immediate response. However, you can configure the connector to call an
event handler when an asynchronous action starts, finishes, or encounters an error.

You can use an event handler to:

l return data about an event back to the application that sent the action.

l write event data to a text file, to log any errors that occur.

You can also use event handlers to monitor the size of asynchronous action queues. If a queue
becomes full this might indicate a problem, or that applications are making requests to Yammer
Connector faster than they can be processed.

Yammer Connector can call an event handler for the following events.

OnStart The OnStart event handler is called when Yammer Connector starts
processing an asynchronous action.

OnFinish The OnFinish event handler is called when Yammer Connector successfully
finishes processing an asynchronous action.

OnError The OnError event handler is called when an asynchronous action fails and
cannot continue.

OnQueueEvent The OnQueueEvent handler is called when an asynchronous action queue
becomes full, becomes empty, or the queue size passes certain thresholds.

l A QueueFull event occurs when the action queue becomes full.

l A QueueFilling event occurs when the queue size exceeds a
configurable threshold (QueueFillingThreshold) and the last event was

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 78 of 88

a QueueEmpty or QueueEmptying event.

l A QueueEmptying event occurs when the queue size falls below a
configurable threshold (QueueEmptyingThreshold) and the last event
was a QueueFull or QueueFilling event.

l A QueueEmpty event occurs when the action queue becomes empty.

Yammer Connector supports the following types of event handler:

l The TextFileHandler writes event data to a text file.

l The HttpHandler sends event data to a URL.

l The LuaHandler runs a Lua script. The event data is passed into the script.

Configure an Event Handler
To configure an event handler, follow these steps.

To configure an event handler

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. Set the OnStart, OnFinish, OnError, or OnQueueEvent parameter to specify the name of a
section in the configuration file that contains the event handler settings.

l To run an event handler for all asynchronous actions, set these parameters in the
[Actions] section. For example:

[Actions]
OnStart=NormalEvents
OnFinish=NormalEvents
OnError=ErrorEvents

l To run an event handler for specific actions, use the action name as a section in the
configuration file. The following example calls an event handler when the Fetch action starts
and finishes successfully:

[Fetch]
OnStart=NormalEvents
OnFinish=NormalEvents

4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnStart, OnFinish, OnError, or
OnQueueEvent parameter.

5. In the new section, set the LibraryName parameter.

LibraryName The type of event handler to use to handle the event:

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 79 of 88

l To write event data to a text file, set this parameter to TextFileHandler,
and then set the FilePath parameter to specify the path of the file.

l To send event data to a URL, set this parameter to HttpHandler, and
then use the HTTP event handler parameters to specify the URL, proxy
server settings, credentials and so on.

l To run a Lua script, set this parameter to LuaHandler, and then set the
LuaScript parameter to specify the script to run. For information about
writing the script, see Write a Lua Script to Handle Events, below.

For example:

[NormalEvents]
LibraryName=TextFileHandler
FilePath=./events.txt

[ErrorEvents]
LibraryName=LuaHandler
LuaScript=./error.lua

6. Save and close the configuration file. You must restart Yammer Connector for your changes to
take effect.

Write a Lua Script to Handle Events
The Lua event handler runs a Lua script to handle events. The Lua script must contain a function
named handler with the arguments request and xml, as shown below:

function handler(request, xml)
...

end

l request is a table holding the request parameters. For example, if the request was
action=Example&MyParam=Value, the table will contain a key MyParam with the value Value.
Some events, for example queue size events, are not related to a specific action and so the
table might be empty.

l xml is a string of XML that contains information about the event.

Set Up Performance Monitoring
You can configure a connector to pause tasks temporarily if performance indicators on the local
machine or a remote machine breach certain limits. For example, if there is a high load on the CPU or
memory of the repository from which you are retrieving information, you might want the connector to
pause until the machine recovers.

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 80 of 88

NOTE: Performance monitoring is available on Windows platforms only. To monitor a remote
machine, both the connector machine and remote machine must be running Windows.

Configure the Connector to Pause

To configure the connector to pause

1. Open the configuration file in a text editor.

2. Find the [FetchTasks] section, or a [TaskName] section.

l To pause all tasks, use the [FetchTasks] section.

l To specify settings for a single task, find the [TaskName] section for the task.

3. Set the following configuration parameters:

PerfMonCounterNameN The names of the performance counters that you want the
connector to monitor. You can use any counter that is available
in the Windows perfmon utility.

PerfMonCounterMinN The minimum value permitted for the specified performance
counter. If the counter falls below this value, the connector
pauses until the counter meets the limits again. This parameter
is optional but you should set a minimum value, maximum
value (with PerfMonCounterMaxN), or both.

PerfMonCounterMaxN The maximum value permitted for the specified performance
counter. If the counter exceeds this value, the connector
pauses until the counter meets the limits again. This parameter
is optional but you should set a maximum value, minimum
value (with PerfMonCounterMinN), or both.

PerfMonAvgOverReadings (Optional) The number of readings that the connector
averages before checking a performance counter against the
specified limits. For example, if you set this parameter to 5, the
connector averages the last five readings and pauses only if
the average breaches the limits. Increasing this value makes
the connector less likely to pause if the limits are breached for
a short time. Decreasing this value allows the connector to
continue working faster following a pause.

PerfMonQueryFrequency (Optional) The amount of time, in seconds, that the connector
waits between taking readings from a performance counter.

For example:

[FetchTasks]
PerfMonCounterName0=\\machine-hostname\Memory\Available MBytes
PerfMonCounterMin0=1024

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 81 of 88

PerfMonCounterName1=\\machine-hostname\Processor(_Total)\% Processor Time
PerfMonCounterMax1=70

PerfMonAvgOverReadings=5
PerfMonQueryFrequency=10

4. Save and close the configuration file.

Determine if an Action is Paused
To determine whether an action has been paused for performance reasons, use the QueueInfo
action:

/action=queueInfo&queueAction=getStatus&queueName=fetch

You can also include the optional token parameter to return information about a single action:

/action=queueInfo&queueAction=getStatus&queueName=fetch&token=...

The connector returns the status, for example:

<autnresponse>
<action>QUEUEINFO</action>
<response>SUCCESS</response>
<responsedata>

<actions>
<action owner="2266112570">

<status>Processing</status>
<queued_time>2016-Jul-27 14:49:40</queued_time>
<time_in_queue>1</time_in_queue>
<process_start_time>2016-Jul-27 14:49:41</process_start_time>
<time_processing>219</time_processing>
<documentcounts>

<documentcount errors="0" task="MYTASK"/>
</documentcounts>
<fetchaction>SYNCHRONIZE</fetchaction>
<pausedforperformance>true</pausedforperformance>
<token>...</token>

</action>
</actions>

</responsedata>
</autnresponse>

When the element pausedforperformance has a value of true, the connector has paused the task
for performance reasons. If the pausedforperformance element is not present in the response, the
connector has not paused the task.

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 82 of 88

Set Up Document Tracking
Document tracking reports metadata about documents when they pass through various stages in the
indexing process. For example, when a connector finds a new document and sends it for ingestion, a
document tracking event is created that shows the document has been added. Document tracking
can help you detect problems with the indexing process.

You can write document tracking events to a database, log file, or IDOL Server. For information about
how to set up a database to store document tracking events, refer to the IDOL Server Administration
Guide.

To enable Document Tracking

1. Open the connector's configuration file.

2. Create a new section in the configuration file, named [DocumentTracking].

3. In the new section, specify where the document tracking events are sent.

l To send document tracking events to a database through ODBC, set the following
parameters:

Backend To send document tracking events to a database, set this
parameter to Library.

LibraryPath Specify the location of the ODBC document tracking library. This
is included with IDOL Server.

ConnectionString The ODBC connection string for the database.

For example:

[DocumentTracking]
Backend=Library
LibraryPath=C:\Autonomy\IDOLServer\IDOL\modules\dt_odbc.dll
ConnectionString=DSN=MyDatabase

l To send document tracking events to the connector's synchronize log, set the following
parameters:

Backend To send document tracking events to the connector's logs, set this
parameter to Log.

DatabaseName The name of the log stream to send the document tracking events to.
Set this parameter to synchronize.

For example:

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 83 of 88

[DocumentTracking]
Backend=Log
DatabaseName=synchronize

l To send document tracking events to an IDOL Server, set the following parameters:

Backend To send document tracking events to an IDOL Server, set this parameter
to IDOL.

TargetHost The host name or IP address of the IDOL Server.

TargetPort The index port of the IDOL Server.

For example:

[DocumentTracking]
Backend=IDOL
TargetHost=idol
TargetPort=9001

For more information about the parameters you can use to configure document tracking, refer
to the Yammer Connector Reference.

4. Save and close the configuration file.

Administration Guide
Chapter 9: Monitor the Connector

IDOL Yammer Connector (12.11) Page 84 of 88

Page 85 of 88IDOL Yammer Connector (12.11)

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates
operations on unstructured information for
cross-enterprise applications. ACI enables
an automated and compatible business-to-
business, peer-to-peer infrastructure. The
ACI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email,
Web pages, Microsoft Office documents,
and IBM Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

ACL (access control list)
An ACL is metadata associated with a
document that defines which users and
groups are permitted to access the
document.

action
A request sent to an ACI server.

active directory
A domain controller for the Microsoft
Windows operating system, which uses
LDAP to authenticate users and computers
on a network.

C

Category component
The IDOL Server component that manages
categorization and clustering.

Community component
The IDOL Server component that manages
users and communities.

connector
An IDOL component (for example File
System Connector) that retrieves
information from a local or remote
repository (for example, a file system,
database, or Web site).

Connector Framework Server (CFS)
Connector Framework Server processes
the information that is retrieved by
connectors. Connector Framework Server
uses KeyView to extract document content
and metadata from over 1,000 different file
types. When the information has been
processed, it is sent to an IDOL Server or
Distributed Index Handler (DIH).

Content component
The IDOL Server component that manages
the data index and performs most of the
search and retrieval operations from the
index.

D

DAH (Distributed Action Handler)
DAH distributes actions to multiple copies
of IDOL Server or a component. It allows
you to use failover, load balancing, or
distributed content.

DIH (Distributed Index Handler)
DIH allows you to efficiently split and index
extremely large quantities of data into
multiple copies of IDOL Server or the
Content component. DIH allows you to
create a scalable solution that delivers high
performance and high availability. It
provides a flexible way to batch, route, and
categorize the indexing of internal and
external content into IDOL Server.

Administration Guide
Glossary: IDOL - License Server

Page 86 of 88IDOL Yammer Connector (12.11)

I

IDOL
The Intelligent Data Operating Layer
(IDOL) Server, which integrates
unstructured, semi-structured and
structured information from multiple
repositories through an understanding of
the content. It delivers a real-time
environment in which operations across
applications and content are automated.

IDOL Proxy component
An IDOL Server component that accepts
incoming actions and distributes them to
the appropriate subcomponent. IDOL
Proxy also performs some maintenance
operations to make sure that the
subcomponents are running, and to start
and stop them when necessary.

Import
Importing is the process where CFS, using
KeyView, extracts metadata, content, and
sub-files from items retrieved by a
connector. CFS adds the information to
documents so that it is indexed into IDOL
Server. Importing allows IDOL server to
use the information in a repository, without
needing to process the information in its
native format.

Ingest
Ingestion converts information that exists
in a repository into documents that can be
indexed into IDOL Server. Ingestion starts
when a connector finds new documents in
a repository, or documents that have been
updated or deleted, and sends this
information to CFS. Ingestion includes the
import process, and processing tasks that
can modify and enrich the information in a
document.

Intellectual Asset Protection System
(IAS)
An integrated security solution to protect
your data. At the front end, authentication
checks that users are allowed to access
the system that contains the result data. At
the back end, entitlement checking and
authentication combine to ensure that
query results contain only documents that
the user is allowed to see, from
repositories that the user has permission to
access. For more information, refer to the
IDOL Document Security Administration
Guide.

K

KeyView
The IDOL component that extracts data,
including text, metadata, and subfiles from
over 1,000 different file types. KeyView can
also convert documents to HTML format
for viewing in a Web browser.

L

LDAP
Lightweight Directory Access Protocol.
Applications can use LDAP to retrieve
information from a server. LDAP is used for
directory services (such as corporate email
and telephone directories) and user
authentication. See also: active directory,
primary domain controller.

License Server
License Server enables you to license and
run multiple IDOL solutions. You must
have a License Server on a machine with a
known, static IP address.

Administration Guide
Glossary: OmniGroupServer (OGS) - XML

Page 87 of 88IDOL Yammer Connector (12.11)

O

OmniGroupServer (OGS)
A server that manages access permissions
for your users. It communicates with your
repositories and IDOL Server to apply
access permissions to documents.

P

primary domain controller
A server computer in a Microsoft Windows
domain that controls various computer
resources. See also: active directory,
LDAP.

V

View
An IDOL component that converts files in a
repository to HTML formats for viewing in a
Web browser.

W

Wildcard
A character that stands in for any character
or group of characters in a query.

X

XML
Extensible Markup Language. XML is a
language that defines the different
attributes of document content in a format
that can be read by humans and machines.
In IDOL Server, you can index documents
in XML format. IDOL Server also returns
action responses in XML format.

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Micro Focus IDOL Yammer Connector 12.11 Administration Guide

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

IDOL Yammer Connector (12.11) Page 88 of 88

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus Yammer Connector 12.11)

	Chapter 1: Introduction
	Yammer Connector
	Supported Actions
	Mapped Security

	Connector Framework Server
	The IDOL Platform
	System Architecture

	Chapter 2: Install Yammer Connector
	System Requirements
	Permissions
	Install Yammer Connector on Windows
	Install Yammer Connector on Linux
	Configure the License Server Host and Port
	Configure OAuth Authentication

	Chapter 3: Configure Yammer Connector
	Yammer Connector Configuration File
	Modify Configuration Parameter Values
	Include an External Configuration File
	Include the Whole External Configuration File
	Include Sections of an External Configuration File
	Include Parameters from an External Configuration File
	Merge a Section from an External Configuration File

	Encrypt Passwords
	Create a Key File
	Encrypt a Password
	Decrypt a Password

	Configure Client Authorization
	Register with a Distributed Connector
	Set Up Secure Communication
	Configure Outgoing SSL Connections
	Configure Incoming SSL Connections

	Backup and Restore the Connector’s State
	Backup a Connector’s State
	Restore a Connector’s State

	Validate the Configuration File

	Chapter 4: Start and Stop the Connector
	Start the Connector
	Verify that Yammer Connector is Running
	GetStatus
	GetLicenseInfo

	Stop the Connector

	Chapter 5: Send Actions to Yammer Connector
	Send Actions to Yammer Connector
	Asynchronous Actions
	Check the Status of an Asynchronous Action
	Cancel an Asynchronous Action that is Queued
	Stop an Asynchronous Action that is Running

	Store Action Queues in an External Database
	Prerequisites
	Configure Yammer Connector

	Store Action Queues in Memory
	Use XSL Templates to Transform Action Responses
	Example XSL Templates

	Chapter 6: Use the Connector
	Retrieve Information from Yammer
	Schedule Fetch Tasks

	Chapter 7: Ingestion
	Introduction
	Send Data to Connector Framework Server
	Send Data to Another Repository
	Index Documents Directly into IDOL Server
	Index Documents into Vertica
	Prepare the Vertica Database
	Send Data to Vertica

	Send Data to a MetaStore
	Run a Lua Script after Ingestion

	Chapter 8: Manipulate Documents
	Introduction
	Add a Field to Documents using an Ingest Action
	Customize Document Processing
	Standardize Field Names
	Configure Field Standardization
	Customize Field Standardization

	Run Lua Scripts
	Write a Lua Script
	Run a Lua Script using an Ingest Action

	Example Lua Scripts
	Add a Field to a Document
	Merge Document Fields

	Chapter 9: Monitor the Connector
	IDOL Admin
	Prerequisites
	Install IDOL Admin
	Access IDOL Admin

	View Connector Statistics
	Use the Connector Logs
	Customize Logging

	Monitor Asynchronous Actions using Event Handlers
	Configure an Event Handler
	Write a Lua Script to Handle Events

	Set Up Performance Monitoring
	Configure the Connector to Pause
	Determine if an Action is Paused

	Set Up Document Tracking

	Glossary
	Send documentation feedback

