
Micro Focus
®

Modernization Workbench™

Preparing Projects

Micro Focus (IP) Ltd.
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

␊
Copyright Micro Focus (IP) Limited. All Rights Reserved.

␊
MICRO FOCUS, the Micro Focus logo and are trademarks or registered trademarks of Micro
Focus (IP) Limited or its subsidiaries or affiliated companies in the United States, United
Kingdom and other countries.

␊
All other marks are the property of their respective owners.

␊
␊

ii

Contents

Registering Source Files ...6
Setting Registration Options: Extensions Tab ...6

Setting Registration Options: Source Files Tab ..7

Creating New Source Files ...8

Refreshing Source Files ..8

Exporting Source Files from a Workspace ..9

Deleting Objects from a Workspace ..9

Deleting a Workspace ...9

Japanese Language Support ..9

Setting Up Projects ..11
Creating Projects ...11

Sharing Projects ..11

Protecting Projects ..11

Moving or Copying Files into Projects ...12

Including Referenced and Referencing Objects in a Project ...12

Removing Unused Support Objects from a Project ..13

Emptying a Project ..13

Deleting a Project ..13

Verifying Source Files ...14
Enabling Parallel Verification ..14

How the System Refreshes the Repository ..15

Invalidating Objects Before Reverification ..15

Setting Workspace Verification Options: Legacy Dialects Tab ...15

Setting Workspace Verification Options: Settings Tab ..17

Enabling Staged Parsing ..21

Enabling Relaxed Parsing ..22

Enabling Advanced Data Flow Analysis for Control Language Files22

Enabling Sort Card Analysis ...23

Truncating Names of Absolute Elements ...23

Setting Workspace Verification Options: Parallel Verification Tab23

Setting Project Verification Options ...24

Specifying the Processing Environment ...27

Specifying Conditional Compiler Constants ...28

Optimizing Verification for Advanced Program Analysis ..28

Identifying System Programs ..28

Contents | 3

Specifying Boundary Decisions ...29

Generating Copybooks ...30

Setting Generate Copybooks Options ..30

Copybook Generation Order ..31

Performing Post-Verification Program Analysis ..31

Restrictions on Cobol Post-Verification Program Analysis31

Restrictions on PL/I Post-Verification Program Analysis ...32

Using Post-Verification Reports ...33
Viewing Verification Reports ...33

Errors Pane ..34

Files Affected Pane ..35

Source Pane ...35

Marking Items ...35

Including Files into Projects ..35

Generating HTML Reports ...36

Viewing Executive Reports ...36

Setting Executive Report Options ..37

Defining Potential Code Anomalies ..38

Cobol Range Overlaps and Range Jumps Detected in the Executive Report39

Viewing CRUD Reports ...44

Setting CRUD Report Options ..45

Inventorying Applications ...46
Using Reference Reports ..46

Understanding the Reference Reports Window ...46

Setting Reference Reports Options ..48

Using Orphan Analysis Reports ..48

Understanding the Orphan Analysis Window ...49

Setting Orphan Analysis Options ...50

Deleting Orphans from a Project ..50

Deleting Orphans from a Workspace ...50

Resolving Decisions ..51

Understanding Decisions ...51

Understanding the Decision Resolution Tool Window ...51

Resolving Decisions Manually ..53

Restoring Manually Resolved Decisions ..54

Resolving Decisions Automatically ...54

Setting Decision Resolution Tool User Preferences ..54

Identifying Interfaces for Generic API Analysis ..55
Identifying Unsupported API Calls to the Parser ...55

4 | Contents

Using the API Entry Tag ...56

Using the match Tag ..56

Using the flow Tag ..56

Using the vars Tag ...57

Using the rep and hc Tags ...58

Using Expressions ..60

Basic Usage ...61

Using a Function Call ...63

Understanding Enumeration Order ..63

Understanding Decisions ..64

Understanding Conditions ...65

Usage Example ...66

Support for IMS Aliases ..67

Skip Type Usage ..67

Contents | 5

Registering Source Files

Before you can analyze application source files in Modernization Workbench, you need to load, or register,
the source files in a workspace.

Note: In a multiuser environment, only a master user can register source files.

The workbench creates copies of the registered files on the server machine (or locally in a single-user
environment) in the Sources folder for the workspace. These are the files you view and edit in the
workbench tools. You can restore a file to its original state, update it to its current state, or export it as
necessary.

Source files must have recognized DOS file extensions before they can be registered. You can view and
add to the recognized extensions in the Workspace Registration options window. Files without extensions
are checked for content, and if the content is recognized, the files are registered with appropriate extensions
appended.

The workbench assumes that input source files are ASCII files in DOS format. Occasionally, files may be
converted incorrectly from other formats to DOS-based ASCII with an extra special character (like “M”) at
the end of each line. While Modernization Workbench accepts these files as input, some workbench tools
may not work correctly with them. Make sure all source files are in valid ASCII format.

You can register source files in compressed formats (ZIP or RAR), as well as uncompressed formats.
Modernization Workbench automatically unpacks the compressed file and registers its contents.

Note: The workbench extracts compressed source files using the command line syntax for archiver
versions most widely in use. If you use newer archiver versions, specify the command line syntax in
the Archivers tab of the User Preferences window.

Workspace Registration options determine registration behavior. The default values for these options are
preset based on your configuration and should be appropriate for most installations.

1. In the Repository Browser, create a project for the source files you want to register, or use the default
project. To create a project, choose Project > New Project. The Create Project dialog opens. Enter the
name of the new project and click OK. The new project is displayed in the Repository Browser.

2. Select the project in the Repository Browser, then drag-and-drop the file or folder for the source files you
want to register onto the Repository Browser.
You are notified that you have registered the files successfully and are prompted to verify the files. Click
Close. The Repository Browser displays the contents of the new workspace, organized by file type.

Note: In the notification dialog, select Never ask again if you do not want to be prompted to verify
files. On the Environment tab of the User Preferences window, select Ask user about verification
if you want to be prompted again.

Setting Registration Options: Extensions Tab

Source files must have recognized DOS file extensions before they can be registered. Files without
extensions are checked for content, and if the content is recognized, the files are registered with appropriate
extensions appended.

6 | Registering Source Files

Files with unknown extensions are flagged, provided that you uncheck Ignore Unknown and Overloaded
Extensions on the Extensions tab of the Workspace Registration options window. If a file fails to register
because its extension is unknown, simply add the extension to the list of recognized extensions on the
Extensions tab and register the file again.

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the Registration
tab, then the Extensions tab.

2. In the Source Type pane, select the source file type whose extensions you want to view. The extensions
for the file type are listed in the Extensions pane. Select each extension you want the system to
recognize. Add extensions as necessary.

Note: If a source file does not specify an extension when it references an included file, the
verification process assumes that the included file has one of the recognized extensions. If multiple
included files have the same name but different extensions, the system registers the file with the
first extension in the list.

3. Select Ignore Unknown and Overloaded Extensions if you do not want the registration process to
issue warnings about unrecognized and overloaded extensions. An overloaded extension is one
assigned to more than one file type.

4. For Cobol programs and copybooks, select Remove Sequence Numbers if you want the system to
replace preceding enumeration characters, or sequence numbers, with blanks. Sequence numbers are
removed only from the source file versions maintained by the workbench.

5. For Copybook, C, C++, PowerBuilder, or Java files, select Preserve Folder Structure if you want to
register files with names derived from their locations in the folder structure rather than simple base
names or, in the case of Java files, names based on the package declaration. As long as you drag-and-
drop the folders (or a parent folder) onto the Repository Browser when you register the files, the folder
structure is reflected in the name. Choose this option when:

• Copybook, C, C++, or PowerBuilder files with identical names reside in different folders. Your
application might use the same copybook in different Partitioned Data Sets on the mainframe, for
example, in which case the copybook will reside in different folders on your PC.

• Java files with the same name and package declaration are used in different applications. So Id.java
in the app1 folder is registered as "app1\com\company\Id.java", for example, while Id.java in the app2
folder is registered as "app2\com\company\Id.java".

Note: For all but Java files, the folder structure for the application is preserved in the display names
of the files in the Repository Browser. For Java files, check Properties > General for the full
repository name.

Setting Registration Options: Source Files Tab

If your legacy application executes on a mainframe, it’s usually best to convert the application source to
workstation encoding. If that’s not practical, you can have Modernization Workbench convert it for you, using
the options on the Registration > Source Files tab of the Workspace Options window.

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the Registration
tab, then the Source Files tab.

2. In the Legacy Source Encoding group box, choose:

Registering Source Files | 7

• Workstation if the source is workstation-encoded. For DBCS configurations, if Japanese-language
source files were downloaded in workstation (text) mode, specify how DBCS escape control
characters were handled.

• Mainframe if the source is mainframe-encoded. When this option is selected, the registration process
automatically converts source files to workstation-encoding. Only the source files maintained by the
workbench are converted.

3. In the Object System Encoding group box, choose:

• English - US (ANSI MS-1252) if the original source was U.S. English ANSI-encoded (Unisys 2200
and HP3000 Cobol).

• English - US (EBCDIC-CCSID-37) if the original source was U.S. English EBCDIC-encoded (IBM
Cobol).

• Japanese (EBCDIC-CCSID-930, 5026) if the original source was Japanese EBCDIC-encoded,
CCSID-930, 5026 (DBCS configurations only).

• Japanese (EBCDIC-CCSID-939, 5035) if the original source was Japanese EBCDIC-encoded,
CCSID-939, 5035 (DBCS configurations only).

During analysis and transformation, hexadecimal literals in Cobol programs and BMS files are translated
into character literals according to this setting.

Note: Do not change these settings after source files are registered in a workspace.

4. Select Strip trailing numeration if you want the system to strip trailing numeration characters (columns
73 through 80) from source lines. Trailing numeration characters are removed only from the source files
maintained by the workbench.

5. Select Expand tabulation symbols if you want the system to replace tabulation symbols with a
corresponding number of spaces. Tabulation symbols are replaced only in the source files maintained by
the workbench. You must select this option if you want to view HyperView information for C or C++
programs.

6. In the Default Source Directory field, enter the root folder on your PC from which the system should
refresh unresolved files. You can type over the path in the text box or click the button to the right of the
text box to browse for a new location.

Creating New Source Files

To create a new source file, select the project for the source file in the Repository Browser and choose File
> New. A dialog box opens, where you can specify the file name (with extension) and source file type. To
create a new source file with the same content as an existing file, select the file and choose File > Save As.
The system automatically registers the created files and stores them in the appropriate folder.

Refreshing Source Files

Use the Modernization Workbench refresh feature to update registered source files to their current state.
You can refresh all of the objects in a project or folder, or only selected objects.

The refresh looks for updated legacy source in the original location of the file or, for unresolved source, the
location you specified in the Registration > Source Files tab of the Workspace Options window. Once it finds
the source, it overwrites the version of the source file maintained by the system. Reverify the file after the
refresh.

8 | Registering Source Files

Note: If the refreshed file is unresolved, the referring source is not invalidated. To resolve the
refreshed file, reverify both the unresolved file and the referring source.

1. In the Repository Browser, select the project, folder, or file you want to refresh and choose File >
Refresh Sources from Disk.

Note: If you are licensed to use the Batch Refresh feature, you can perform the refresh in batch
mode. Contact support services for more information. The behavior you will see when refreshing
source from disk on an unresolved object, the file that refers to that object is not invalidated. If the
referring file is reverified, then the missing object that was refreshed will be resolved.

2. You are prompted to confirm that you want to refresh the selected files. Click Yes.

The system overwrites the workspace source files.

Exporting Source Files from a Workspace

To export the workspace source for a project or file to a new location, select the project or file in the
Repository Browser and click File > Export Sources. A dialog box opens, where you can specify the
location.

Deleting Objects from a Workspace

To delete an object from a workspace, select it and choose File > Delete from Workspace. To delete a
folder and all its contents from a workspace, select it and choose File > Delete Contents from Workspace.

Deleting a Workspace

To delete a workspace, choose File > Delete Workspace in the Modernization Workbench Administration
tool. A Delete workspace dialog opens, where you can select the workspace you want to delete.

Note: Only a master user can delete a workspace in a multiuser environment.

Japanese Language Support

Modernization Workbench provides full support for mainframe-based Cobol or PL/I Japanese-language
applications. Make sure to set Windows system and user locales to Japanese before registering source
files.

You can register Japanese source files downloaded in text or binary mode:

• Source files downloaded in text (workstation) mode must be in Shift-JIS encoding. If Shift-Out and Shift-
In delimiters were replaced with spaces or removed during downloading, Modernization Workbench
restores them at registration.

• Source files downloaded in binary (mainframe) mode are recoded by Modernization Workbench from
EBCDIC to Shift-JIS encoding at registration.

Registering Source Files | 9

Use the options on the Registration > Source Files tab of the Workspace Options window to specify how
DBCS escape control characters were handled in source file downloaded in text mode:

• Replaced with spaces if DBCS escape control characters were replaced with spaces.
• Removed if DBCS escape control characters were removed.
• Retained or not used if DBCS escape control characters were left as is or were not used.

Preserving delimiters during download is recommended. Replacing delimiters with spaces during download
generally yields better restoration results than removing them.

In all workbench tools that offer search and replace facilities, you can insert Shift-Out and Shift-In delimiters
into patterns using Ctrl-Shift-O and Ctrl-Shift-I, respectively. You need only insert the delimiters if you are
entering mixed strings.

10 | Registering Source Files

Setting Up Projects
Workspace projects typically represent different portions of the application modeled in the workspace. You
might have a project for the batch portion of the application and another project for the online portion. You
can also use a project to collect items for discrete tasks: all the source files affected by a change request,
for example.

Creating Projects

When you set up a workspace in Modernization Workbench, the system creates a default project with the
same name as the workspace. Create projects in addition to the default project when you need to analyze
subsystems separately or organize source files in more manageable groupings.

1. Choose Project > New project. The Create Project dialog opens.

2. Enter the name of the new project and click OK.
The new project is displayed in the Repository Browser. The project is selected by default.

Sharing Projects

In a multiuser environment, the user who creates a project is referred to as its owner. Only the owner can
share the project with other users.

A shared, or public, project is visible to other members of your team. A private project is not. If the project is
not protected, these team members can delete the project, add source files, or remove source files.

Projects are private by default. Turn on sharing by choosing Project > Toggle Sharing. Choose Project >

Toggle Sharing again to turn it off. A symbol indicates that the project is shared.

Protecting Projects

By default, projects are unprotected: any user to whom the project is visible can delete the project, add
source files, or remove source files.

The project owner or master user can designate a project as protected, in which case no user can delete or
modify the project, including the project owner or master user: the project is read-only, until the project
owner or master user turns protection off.

Turn on protection by selecting the project in the Repository pane and choosing Project > Toggle
Protection. Choose Project > Toggle Protection again to turn it off. Look for a symbol like this one to
indicate that a project is protected.

Setting Up Projects | 11

Moving or Copying Files into Projects

Copy the contents of a project, folder, or file to a different project by selecting it and dragging and dropping
the selection onto the project, or by using the Edit menu choices to copy and paste the selection. Use the
Project menu choices described below to move selections, or to include referenced or referencing objects
in a move or copy.

Note: In other workbench tools, use the right-click menu or the File menu to include files into projects.

1. In the Repository Browser, select the project, folder, or file you want to move or copy, then choose
Project > Copy Project Contents (if you selected a project) or Project > Include into Project (if you
selected a folder or file). The Select Project window opens.

2. In the Select Project window, select the target project. Click New to create a new project.

3. Select:

• Include All Referenced Objects if you want to include objects referenced by the selected object (the
Cobol copybooks included in a Cobol program file, for example).

• Select Include All Referencing Objects if you want to include objects that reference the selected
object.

Note: This feature is available only for verified files.

4. Select:

• Copy to copy the selection to the target project.
• Move From Current Project to move the selection to the target project.
• Move From All Projects to move the selection from all projects to the target project.

5. Click OK to move or copy the selection.

Including Referenced and Referencing Objects in a Project

After verification, you can include referenced or referencing objects in a project to ensure a closed system.
You can include all referencing objects or only “directly referencing” objects: If program A calls program B,
and program B calls program C, A is said to directly reference B and indirectly reference C. You can also
remove unused support objects.

To include in a project:

• Every object referenced by the objects in the project (including indirectly referenced objects), select the
project in the Repository Browser and choose Project > Include All Referenced Objects.

• Every object that references the objects in the project (including indirectly referencing objects), select the
project in the Repository Browser and choose Project > Include All Referencing Objects.

• Every object that directly references the objects in the project, select the project in the Repository
Browser and choose Project > Include Directly Referencing Objects.

12 | Setting Up Projects

Removing Unused Support Objects from a Project

To move unused support objects (Cobol copybooks, JCL procedures, PL/I include files, and so forth) from a
project to the workspace, select the project in the Repository Browser and choose Project > Compact
Project.

Emptying a Project

To empty a project (without deleting the project or its contents from the workspace), select the project and
choose Project > Empty Project Contents.

Deleting a Project

To delete a project from a workspace (without deleting its source files from the workspace), select it and
choose either File > Delete from Workspace or Project > Delete Project.

Note: Only the owner of a project can delete it.

Setting Up Projects | 13

Verifying Source Files

Parsing, or verifying, an application source file generates the object model for the file. Only a master user
can verify source files.

You can verify a single file, a group of files, all the files in a folder, or all the files in a project. It’s usually best
to verify an entire project. Modernization Workbench parses the files in appropriate order, taking account of
likely dependencies between file types.

Note: You need not verify copybooks. Copybooks are parsed when the including source file is verified.

If your RPG or AS/400 Cobol application uses copy statements that reference Database Description or
Device Description files, or if your MCP Cobol application uses copy statements that reference DMSII
DASDL files, you need to generate copybooks for the application before you verify program files.

Workspace and Project Verification options determine verification behavior. The default values for these
options are preset based on your configuration and should be appropriate for most installations.

1. In the Repository Browser, select the project, folder, or files you want to verify and choose Prepare >
Verify.

2. You are prompted to drop repository indexes to improve verification performance. Click Yes. You will be
prompted to restore the indexes when you analyze the files.

The parser builds an object model for each successfully verified file. For an unsuccessfully verified file, the
parser builds an object model for as much of the file as it understands.

Enabling Parallel Verification

Parallel verification typically improves verification performance for very large workspaces by using multiple
execution agents, called HyperCode Converters, to process source files concurrently. You can start any
number of converters on the local machine, remote machines, or some combination of local and remote
machines. You can run parallel verification online in the Modernization Workbench or in batch mode with the
Batch Refresh Process (BRP).

Important: When you run parallel verification on more than one machine, you need to make sure that
workspace and project verification options are set identically on each machine. The easiest way to do
this is to log in as the same Windows user on each machine. Alternatively, you can define a default
option set that is automatically assigned to every user in the environment who has not explicitly defined
a custom option set. See the related topics for more information on option sets.

You enable parallel verification in three steps:

• Select the parallel verification method and the minimum number of concurrent converters on the
Verification > Parallel Verification tab of the Workspace Options.

• Start the converters on the local and/or remote machines. If you start fewer than the minimum number of
converters specified on the Parallel Verification tab, the verification process starts the needed converters
automatically on the local machine.

• Verify the workspace online in the Modernization Workbench or in batch mode using the Batch Refresh
Process (BRP).

14 | Verifying Source Files

Note: Verification results are reported in the Activity Log History window. They are not reported in the
Activity Log itself (for online verification) or BRP log files (for batch verification). You can also use a
Verification Report to view the results.

Follow the instructions below to launch HyperCode Converters and to specify the type of work the
converters perform. You can launch multiple converters on the same machine. Once the minimum number
of converters has been started, you can launch the converters at any point in the verification process.

1. In the Modernization Workbench Administration window, choose Administer > Launch HyperCode
Converter. The Launch HyperCode Converter window opens.

2. In the Serve workspace combo box, specify the workspace to be processed.

3. In the Processing Mode pane, select any combination of:

• Conversion to perform operations used to generate a HyperView construct model.
• Verification to perform verification operations.

4. Select Produce Log File to generate a log file for parallel verification. The log file has a name of the
form <workspace_name>HCC.<random_number>.log and is stored at the same level as the workspace
(.rwp) file.

5. Click OK.

The workbench launches the HyperCode Converter. Click the button on the Windows toolbar to view
the HyperCode Converter window.

Note: Once verification has started, you can change the processing mode for a converter by
selecting the appropriate choice in the Processing menu in the HyperCode Converter window.

How the System Refreshes the Repository

When you edit a source file in the Modernization Workbench, the system recursively checks every
repository object that may be affected by the edit: refreshes the repository. If the edit invalidates the object,
you need to reverify the source file that contains it. The file with the invalidated object is displayed in bold
type in the Repository Browser.

Invalidating Objects Before Reverification

You can save time reverifying very large applications by invalidating some or all of the source files in them
before you reverify. You can invalidate a single file, a group of files, all the files in a folder, or all the files in a
project.

In the Repository Browser, select the project, folder, or files you want to invalidate and choose File >
Invalidate Selected Objects. Invalidated files are displayed in bold type in the Repository Browser.

Setting Workspace Verification Options: Legacy Dialects
Tab

Use the Verification > Legacy Dialects tab of the Workspace Options window to identify the dialect of the
source files in your application.

Verifying Source Files | 15

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the Verification tab,
then the Legacy Dialects tab.

2. In the Source Type pane, select the source file type whose dialect you want to specify, then select the
dialect in the dialect pane.

3. Set verification options for the dialect. The table below shows the available options.

Option Dialect Description

48-character set All PL/I Specifies that the parser handle the 48-character
set used with older hardware for logical operators.

Allow long copybook names Cobol/390, Enterprise
Cobol

Specifies that the parser allow references to
copybooks with names longer than 8 characters.
The reference is flagged as unresolved.

Note: By default, names longer than 8
characters are truncated in the parse tree.

Allow long program names Cobol/390, Enterprise
Cobol

Specifies that the parser allow references to
programs with names longer than 8 characters.
The reference is flagged as unresolved.

Note: By default, names longer than 8
characters are truncated in the parse tree.

ASCII Compatibility Unisys 2200 UCS Cobol Specifies that the parser ensure consistency with
the ASCII version of Unisys Cobol. Emulates
behavior of compiler COMPAT option.

Binary Storage Mode ACUCOBOL-GT®, Micro
Focus Cobol

Specifies the binary storage mode: Word (2, 4, or
8 bytes) or Byte (1 to 8 bytes).

COPY REPLACING Substitutes
Partial Words

All Cobol Specifies that the application was compiled with
partial-word substitution enabled for COPY
REPLACE operations.

COPY statements as in
COBOL-68

All Cobol Specifies that the application was compiled with
the OLDCOPY option set.

Currency Sign All Cobol, all PL/I Specifies the national language currency symbol.

Data File Assignment Micro Focus Cobol Specifies the setting of the compiler ASSIGN
option: Dynamic or External.

Enable MF comments Micro Focus Cobol Specifies that the application contains comments
in the first position.

Extralingual Characters All PL/I Add the specified lower-case national language
characters to the supported character set. Do not
separate characters with a space.

Extralingual Upper Characters All PL/I Add the specified upper-case national language
characters to the supported character set. Do not
separate characters with a space.

Graphical System ACUCOBOL-GT® Specifies that the application was executed on a
graphical rather than character-based system.

In Margins All Specifies the current margins for source files.

Line Number Step All Natural Specifies the line-numbering increment to use in
restoring stripped line numbers in Natural source
files: Autodetect, to use a line-numbering

␊

16 | Verifying Source Files

Option Dialect Description

increment based on line number references in the
source code, or User defined, to use the line-
numbering increment you specify. If you select
User defined, enter the increment in the Value
field.

Logical Operators All PL/I Specifies handling of logical operator characters
used in source files: Autodetect, to autodetect
logical operator characters, or Characters, to use
the logical operator characters you specify. If you
select Characters, specify the characters used for
NOT and OR operations.

Out Margins All PL/I Specifies the margins for components to be
created with the Modernization Workbench
Component Maker tool.

PERFORM behavior ACUCOBOL-GT®, Micro
Focus Cobol

Specifies the setting of the compiler PERFORM-
type option: Stack, to allow recursive PERFORMS,
or All exits active, to disallow them.

Picture clause N-symbol Cobol/390, Enterprise
Cobol

Specifies the national language behavior of picture
symbol N and N-literals: DBCS or National.
Emulates behavior of compiler NSYMBOL option.

Preserve dialect for verified
objects

All Cobol Specifies that the parser reverify Cobol files with
the same dialect it used when the files were
verified first.

RM/Cobol compatibility ACUCOBOL-GT® Specifies that the parser ensure proper memory
allocation for applications written for Liant RM/
COBOL. Emulates behavior of -Ds compatibility
option.

Support Hogan Framework Cobol/390, Enterprise
Cobol

Specifies that the parser create relationships for
Hogan Cobol programs. Enter the location of
Hogan Cobol configuration files in the Hogan
Files Location field.

Treat COMP-1/COMP-2 as
FLOAT/DOUBLE

ACUCOBOL-GT® Specifies that the parser treat picture data types
with COMP-1 or COMP-2 attributes as FLOAT or
DOUBLE, respectively.

Unisys MCP Control Options Unisys MCP Cobol-74,
Unisys MCP Cobol-85

Specifies that the application was compiled with
control options set or reset as specified. Add
control options as necessary.

␊

Setting Workspace Verification Options: Settings Tab

Use the Verification > Settings tab of the Workspace Options window to specify verification behavior for the
workspace. Among other tasks, you can:

• Enable staged parsing, which may improve verification performance by letting you control which
verification stages the parser performs.

• Enable relaxed parsing, which lets you verify source despite errors.

Verifying Source Files | 17

• Enable advanced data flow analysis for control language files.
• Enable sort card analysis.

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the Verification tab,
then the Settings tab.

2. In the Source Type pane, select the source file type whose verification options you want to specify.

3. Set verification options for the source file type. The table below shows the available options.

Note: Click the More or Details button if an option listed below does not appear on the Settings
tab.

Option Source File Description

Allow Implicit Instream Data JCL Specifies that a DD * statement be inserted before
implicit instream data if the statement was omitted
from JCL.

Allow Keywords to Be Used as
Identifiers

Cobol, Copybook Enables the parser to recognize Cobol keywords
used as identifiers.

At Sign System Definition File Specifies the national language character for the
at symbol.

C/C++ Parser Parameters C, C++ Specifies the parameters used to compile the
application. You can also specify these
parameters in the Project Verification options, in
which case the project parameters are used for
verification.

Create Alternative Entry Point Cobol Specifies that an additional entry point be created
with a name based on the conversion pattern you
enter in the Conversion Pattern field. Supports
systems in which load module names differ from
program IDs. For assistance, contact support
services.

Cross-reference Report TWS Schedule Specifies the full path of the TWS cross-reference
report (.xrf).

Currency Sign System Definition File Specifies the national language character for the
currency symbol.

Debugging Lines Cobol Specifies parsing of debugging lines: Off, to parse
lines as comments, On, to parse lines as normal
statements, Auto, to parse lines based on the
program debugging mode.

Detect Potential Code Anomalies Cobol Enables generation of HyperView information on
potential code anomalies.

Enable extended ASCII
characters in SQL identifiers

Cobol, PL/I Enables the parser to recognize extended ASCII
characters in SQL identifiers. The extended ASCII
characters set includes national language
characters not included in the basic ASCII
character set and special symbols used for
drawing pictures.

Enable HyperView Cobol, Natural, PL/I, RPG Enables generation of HyperView information.

␊

18 | Verifying Source Files

Option Source File Description

Enable Quoted SQL Identifiers Assembler File, Cobol,
DDL

Enables the parser to recognize quoted SQL
identifiers. Strings delimited by double quotation
marks are interpreted as object identifiers.

Enable Reference Reports Cobol, Control Language,
ECL, JCL, Natural, PL/I,
RPG, W.L.

Enables generation of complete repository
information for logical objects.

Enter classpath to JAR Files
and/or path to external Java file
root directories

Java Specifies any combination of:

• JAR files containing class libraries referenced
in the Java application, or Zip files containing
external Java files referenced in the
application. Alternatively, specify the path of
the folder for the JAR or Zip files, then select
Include Jar/Zip Files From Directories.

• Paths of the root folders for external Java files
referenced in the application.

Note: This option is checked after the
identical option in the project verification
options. Setting the project verification
option effectively overrides the setting
here.

Extralingual Characters System Definition File Adds the specified lower-case national language
characters to the supported character set. Do not
separate characters with a space.

Extralingual Upper Characters System Definition File Adds the specified upper-case national language
characters to the supported character set. Do not
separate characters with a space.

Generate program entry points
for functions with same name as
file

C Specifies that a program entry point be created for
the function that has the same name as the file.
Typically used to trace calls to C programs from
Cobol, PL/I, Natural, RPG, or Assembler
programs.

Ignore Duplicate Entry Points All Enables the parser to recognize duplicate entry
points defined by the Cobol statement ENTRY
‘PROG-ID’ USING A, or its equivalent in other
languages. The parser creates an entry point
object for the first program in which the entry point
was encountered and issues a warning for the
second program. To use this option, you must
select Enable Reference Reports. You cannot use
this option to verify multiple programs with the
same program ID.

Ignore Text After Column 72 DDL Allows the parser to ignore trailing enumeration
characters (columns 73 through 80) in source
lines.

Libraries PowerBuilder Specifies the PowerBuilder libraries used by the
application. Libraries must be listed in the order
they appear in the PBL File folder in the
Repository Browser. Add libraries as necessary.

␊

Verifying Source Files | 19

Option Source File Description

Libraries support Natural Enables Natural library support. For more
information, see "Natural Support" in the online
help.

List of Include Directories C, C++ Specifies the full path of the folders for include
files (either original folders or Repository Browser
folders if the include files were registered).
Choose a recognized folder in the List of Include
Directories pane. Add folders as necessary. You
can also specify these folders in the Project
Verification options, in which case the parser
looks only for the folders for the project.

Number Sign System Definition File Specifies the national language character for the
number symbol.

Perform Dead Code Analysis Cobol, PL/I, RPG Enables collection of dead code statistics.

Perform DSN Calling Chains
Analysis

Control Language, ECL,
JCL, WFL

Enables analysis of dataset calling chains.

Perform System Calls Analysis JCL Enables analysis of system program input data to
determine the application program started in a job
step.

Relaxed Parsing AS400 Screen, BMS,
Cobol, Copybook, CSD,
DDL, Device Description,
DPS, ECL, MFS, Natural,
Netron Specification
Frame, PL/I

Enables relaxed parsing.

Relaxed Parsing for Embedded
Statements

Assembler File, Cobol, PL/I Enables relaxed parsing for embedded SQL,
CICS, or DLI statements.

Resolve Decisions Automatically Control Language, WFL Enables automatic decision resolution.

Show Macro Generation C, C++ Specifies whether to display statements that
derive from macro processing in HyperView.

Sort Program Aliases JCL Enables batch sort card analysis. Choose a
recognized sort utility in the Sort Program Aliases
pane. Add sort utilities as necessary.

SQL Statements Processor Cobol Specifies whether the SQL Preprocessor or
Coprocessor was used to process embedded
SQL statements.

System Procedures JCL Specifies the system procedures referenced by
JCL files. Add system procedures as necessary.

Timeout in seconds to stop
verification execution

All The number of seconds to wait before stopping a
stalled verification process

Treat every file with main
procedure as a program

C, C++ Specifies whether to treat only files with main
functions as programs.

Trim Date from Active Schedule
Names

TWS Schedule Specifies whether to append the effective date
range to a TWS jobstream object.

␊

20 | Verifying Source Files

Option Source File Description

Truncate Names of Absolute
Elements

ECL Allows the parser to truncate suffixes in the
names of Cobol programs called by ECL. Specify
a suffix in the adjoining text box.

Use Database Schema Assembler File, Cobol, PL/I Specifies whether to associate a program with a
database schema. When this option is selected,
the parser collects detailed information about SQL
ports that cannot be determined from program text
(SELECT *). If the schema does not contain the
items the SQL statement refers to, an error is
generated.

Workstation Report TWS Schedule Specifies the full path of the TWS workstation
report (.wdr).

␊

Enabling Staged Parsing

File verification generates repository information in four stages, as described in this section. You can control
which stage the workbench parser performs by setting the staged parsing options on the Settings tab for
Workspace Verification options. That may save you time verifying very large applications.

Rather than verify the application completely, you can verify it one or two stages at a time, generating only
as much information as you need at each point. When you are ready to work with a full repository, you can
perform the entire verification at once, repeating the stages you’ve already performed and adding the stages
you haven’t.

Basic Repository Information

To generate basic repository information only, deselect Enable HyperView, Enable Reference Reports,
and Perform Dead Code Analysis on the Workspace Verification options Settings tab. The parser:

• Generates relationships between source files (Cobol program files and copybooks, for example).
• Generates basic logical objects (programs and jobs, for example, but not entry points or screens).
• Generates Defines relationships between source files and logical objects.
• Calculates program complexity.
• Identifies missing support files (Cobol copybooks, JCL procedures, PL/I include files, and so forth).

Note: If you generate only basic repository information when you verify an application, advanced
program analysis information is not collected, regardless of your settings in the Project Options
Verification tab.

Full Logical Objects Information

To generate complete repository information for logical objects, select Enable Reference Reports on the
Workspace Verification options Settings tab. Set this option to generate all relationships between logical
objects, and to enable non-HyperView analysis tools, including Reference Reports and Orphan Analysis.

Note: If you select this staged parsing option only, verify all legacy objects in the workspace
synchronously to ensure complete repository information.

Verifying Source Files | 21

HyperView Information

To generate a HyperView construct model, select Enable HyperView on the Workspace Verification options
Settings tab. A HyperView construct model defines the relationships between the constructs that comprise
the file being verified: its sections, paragraphs, statements, conditions, variables, and so forth.

To generate HyperView information on potential code anomalies, select Detect Potential Code Anomalies
ion the Workspace Verification options Settings tab.

Note: If you do not generate HyperView information when you verify an application, impact analysis,
data flow, and execution flow information is not collected, regardless of your settings on the Project
Verification options tab.

Dead Code Statistics

To generate dead code statistics, and to set the Dead attribute to True for dead constructs in HyperView,
select Perform Dead Code Analysis on the Workspace Verification options Settings tab. The statistics
comprise:

• Number of dead statements in the source file and referenced copybooks. A dead statement is a
procedural statement that can never be reached during program execution.

• Number of dead data elements in the source file and referenced copybooks. Dead data elements are
unused structures at any data level, all of whose parents and children are unused.

• Number of dead lines in the source file and referenced copybooks. Dead lines are source lines
containing dead statements or dead data elements.

You can view the statistics in the Statistic tab of the Properties window for an object or in the Complexity
Metrics tool.

Enabling Relaxed Parsing

The relaxed parsing option lets you verify a source file despite errors. Ordinarily, the parser stops at a
statement when it encounters an error. Relaxed parsing tells the parser to continue to the next statement.

Use relaxed parsing when you are performing less rigorous analyses that do not need every statement to be
modeled (estimating the complexity of an application written in an unsupported dialect, for example). Select
Relaxed Parsing or Relaxed Parsing for Embedded Statements as appropriate on the Workspace
Verification options Settings tab.

Note: Relaxed parsing may affect the behavior of other tools. You cannot generate component code,
for example, from source files verified with the relaxed parsing option.

Enabling Advanced Data Flow Analysis for Control
Language Files

Ordinarily, Modernization Workbench data flow analysis tools let you trace the flow of data into or out of a
dataset only up to the program actually referenced in the control language file, whether or not that program
writes to or reads from the dataset. If you need to trace the flow of data through the entire “calling chain,”
that is, not only the referenced program, but also any programs that program calls, and any programs they
call in turn:

22 | Verifying Source Files

• Select Perform DSN Calling Chains Analysis on the Workspace Verification options Settings tab for
the control language file.

• Verify control language files after you verify the source files for the programs they use. If you reverify the
source file for a program, you must also reverify the control language file that uses it.

If you verify an entire project, the workbench parses the files in appropriate order, taking account of the
dependencies between control language and program files.

Enabling Sort Card Analysis

If you use sort utilities in JCL files, you can enable sort card analysis by specifying the names of the sort
utilities to the parser in the Sort Program Aliases pane on the Workspace Verification options Settings tab.
The parser creates an artificial program entity that defines the inputs and outputs for each sort utility
invocation. The program has a name of the form JCLFileName.JobName.StepName.SequenceNumber,
where SequenceNumber identifies the order of the step in the job.

Truncating Names of Absolute Elements

If you are verifying ECL files for an application in which absolute element names differ from program IDs,
you can tell the parser to truncate suffixes in the names of Cobol programs called by ECL. Select Truncate
Names of Absolute Elements on the Workspace Verification options Settings tab for the ECL file.

If a Cobol program named CAP13MS.cob, for example, defines the entry point CAP13M, and an ECL
program named CAP13M.ecl executes an absolute element called CAP13MA, then setting this option
causes the parser to create a reference to the entry point CAP13M rather than CAP13MA.

Setting Workspace Verification Options: Parallel
Verification Tab

Use the Verification > Parallel Verification tab of the Workspace Options window to enable online or batch
parallel verification and to specify the minimum number of HyperCode Converters the workbench should
expect.

Important: When you run parallel verification on more than one machine, you need to make sure that
workspace and project verification options are set identically on each machine. The easiest way to do
this is to log in as the same Windows user on each machine. Alternatively, you can define a default
option set that is automatically assigned to every user in the environment who has not explicitly defined
a custom option set. See the related topics for more information on option sets.

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the Verification tab,
then the Parallel Verification tab.

2. Select:

• Run Parallel Verification in the Online Tool to enable parallel verification online. In the Minimum
HyperCode Converters combo box, specify the minimum number of concurrent HyperCode
Converters the workbench should expect.

• Run Parallel Verification in BRP to enable parallel verification in the Batch Refresh Process (BRP)
tool. In the Minimum HyperCode Converters combo box, specify the minimum number of
concurrent HyperCode Converters the workbench should expect.

Verifying Source Files | 23

Note: Before running verification, start the necessary HyperCode Converters on the local and/or
remote machines. If you start fewer than the minimum number of converters, the verification
process starts the needed converters automatically on the local machine.

Setting Project Verification Options

Use the Verification tab of the Project Options window to specify verification behavior for the selected
project. Among other tasks, you can:

• Specify how the parser treats environment-related code.
• Specify the conditional constants the parser uses to compile programs in the project.
• Specify schedule IDs for CA-7 jobs triggered by datasets.
• Optimize verification for advanced program analysis.

1. Choose Tools > Project Options. The Project Options window opens. Click the Verification tab.

2. In the Source Type pane, select the source file type whose verification options you want to specify.

3. Set verification options for the source file type. The table below shows the available options.

Note: Click the Environments, CopyLibs, Advanced, or Cobol Dialect button if an option listed
below does not appear on the Verification tab.

Option Source File Description

AIM/DB Environment Cobol Specifies how the parser treats AIM/DB-
environment-related code or its absence.

C/C++ Parser Parameters C, C++ Specifies the parameters used to compile the
application.

CAP Processor predefined
variables

Netron Specification
Frame

Specifies the values of predefined environment
variables the parser uses to compile Netron
Specification Frames. Select each predefined
variable you want the parser to recognize, then
enter its value. Add variables as necessary.

CICS Environment Assembler, Cobol, PL/I Specifies how the parser treats CICS-environment-
related code or its absence.

Context-Sensitive Value Analysis Cobol Specifies that the parser perform context-sensitive
automatic decision resolution for Unisys MCP
COMS analysis. Choosing this option may degrade
verification performance.

Dialect Specific Options Cobol Specifies dialect-specific options, including the
conditional constants the parser uses to compile
programs in the project. Select the Cobol dialect,
then choose the constant in the Macro Settings
pane. Add constants as necessary.

DMS Environment Cobol Specifies how the parser treats DMS-environment-
related code or its absence.

DMSII Environment Cobol Specifies how the parser treats DMSII-
environment-related code or its absence.

␊

24 | Verifying Source Files

Option Source File Description

DPS routines may end with error Cobol Specifies that the parser perform call analysis of
Unisys 2200 DPS routines that end in an error.
Error-handling code for these routines is either
analyzed or treated as dead code.

Enable Data Element Flow Cobol, Natural, PL/I, RPG Enables the Global Data Flow, Change Analyzer,
and impact trace tools.

Enable Execution Flow Cobol, PL/I Enables the Execution Path tool.

Enable Extraction of
Computation-Based
Components

Cobol Enables computation-based componentization with
Application Architect.

Enable Impact Report Cobol, Natural, PL/I, RPG Enables the impact trace tools. You must also set
Enable Data Element Flow to perform impact
analysis.

Enable Parameterization of
Components

Cobol Enables parameterized structure- and computation-
based componentization with Application Architect.

Enter classpath to JAR Files
and/or path to external Java file
root directories

Java Specifies any combination of:

• JAR files containing class libraries referenced in
the Java application, or Zip files containing
external Java files referenced in the application.
Alternatively, specify the path of the folder for
the JAR or Zip files, then select Include Jar/Zip
Files From Directories.

• Paths of the root folders for external Java files
referenced in the application.

Note: This option is checked before the
identical option in the workspace verification
options. Setting it here effectively overrides
the setting in the workspace verification
options.

Helproutines Natural Map Specifies how you want the parser to treat
helproutines, as programs or helpmaps.

IDMS Environment Cobol Specifies how the parser treats IDMS-environment-
related code or its absence.

IMS Environment Cobol Specifies how the parser treats IMS-environment-
related code or its absence.

Java Classpath JSP For JSP files that reference Java types or packages
defined in JAR files, external Java files, or Java
files registered with the Preserve Folder Structure
option, specifies a list of patterns used to resolve
the location of the files. For more information, see
"Resolving the Location of Java Types and
Packages Referenced in JSP Files" in the "JSP
Support" section of the help.

Java Source Level Java Specifies the Java version. Set this option if your
application uses constructs that are incompatible
with the latest Java version. You would set this
option to 1.4, for example, if your application used

␊

Verifying Source Files | 25

Option Source File Description

"enum" as an identifier, since "enum" is a reserved
word in Java 5.

Job to Schedule Ids File CA-7 Schedule Specifies the full path of a file that supplies
schedule IDs for CA-7 jobs triggered by the
creation of a dataset.

Libraries Natural When Libraries support is selected in the
Verification > Settings tab of the Workspace
Options window for Natural files, specifies the order
in which the parser searches for library names
when it resolves program calls. Place a check mark
next to a library to include it in the search. The
parser always searches for the current library first.
For more information, see "Natural Support" in the
online help.

List of Include Directories C, C++ Specifies the full path of folders for include files
(either original folders or Repository Browser
folders if the include files were registered). Choose
a recognized folder in the List of Include Directories
pane. Add folders as necessary.

List of Include Folders Cobol For applications using copybooks registered with
the Preserve Folder Structure option, specifies
the full path of folders for copybooks. Choose a
recognized folder in the List of Include Folders
pane. Add folders as necessary.

Note: Use this option to verify applications
with identically named copybooks in
different Partitioned Data Sets (PDS) on the
mainframe. The order of folders in the list
must correspond to the order of PDS files in
the mainframe compilation job.

Maximum Number of Variable’s
Values

Cobol Specifies the maximum number of values to be
calculated for each variable during verification for
advanced program analysis. Limit is 200.

Maximum Size of Variable to Be
Calculated

Cobol Specifies the maximum size in bytes for each
variable value to be calculated during verification
for advanced program analysis.

Override CICS Program
Terminations

Cobol, PL/I Specifies that the parser interpret CICS RETURN,
XCTL, and ABEND commands as not terminating
program execution. Error-handling code after these
statements is either analyzed or treated as dead
code.

Perform COMS Analysis Cobol Specifies that the parser define relationships for
Unisys MCP COMS SEND statements.

Perform Generic API Analysis Cobol, PL/I Specifies that the parser define relationships with
objects passed as parameters in calls to
unsupported program interfaces, in addition to
relationships with the called programs themselves.

Perform Program Analysis Cobol Enables program analysis and component
extraction features.

␊

26 | Verifying Source Files

Option Source File Description

Perform Unisys Common-
Storage Analysis

Cobol Specifies that the parser include in the analysis for
Unisys Cobol files variables that are not explicitly
declared in CALL statements, but that participate in
interprogram communications. You must set this
option to include Unisys Cobol common storage
variables in impact traces and global data flow
diagrams.

Perform Unisys TIP and DPS
Calls Analysis

Cobol Specifies that the parser perform Unisys 2200 TIP
and DPS call analysis.

Report Writer Environment Cobol Specifies how the parser treats Report Writer-
environment-related code or its absence.

Resolve Decisions Automatically Cobol, Natural, PL/I, RPG Specifies that the parser autoresolve decisions
after successfully verifying files.

SQL Environment Assembler, Cobol, RPG Specifies how the parser treats SQL-environment-
related code or its absence.

Support CICS HANDLE
statements

Cobol Specifies that the parser detect dependencies
between CICS statements and related error-
handling statements,

Use overwritten VALUEs Cobol Specifies that the parser use constants from
VALUE clauses as known values even if they are
overwritten in the program by unknown values.

Use Precompiled Header File C, C++ Specifies that the parser verify the project with the
precompiled header file you enter in the adjacent
field. Do not specify the file extension. Using a
precompiled header file may improve verification
performance significantly. The content of the
header file must appear in both a .c or .cpp file and
a .h file. The precompiled header file need not have
been used to compile the application.

Use VALUEs from Linkage
Section

Cobol Specifies that advanced analysis tools not ignore
parameter values in the Linkage Section.

␊

Specifying the Processing Environment

The Modernization Workbench parser autodetects the environment in which a file is intended to execute,
based on the environment-related code it finds in the file. To ensure correct data flow, it sets up the internal
parse tree for the file in a way that emulates the environment on the mainframe.

For Cobol CICS, for example, the parser treats an EXEC CICS statement or DFHCOMMAREA variable as
CICS-related and, if necessary:

• Adds the standard CICS copybook DFHEIB to the workspace.
• Declares DFHCOMMAREA in the internal parse tree.
• Adds the phrase Procedure Division using DFHEIBLK, DFHCOMMAREA to the internal parse tree.

Autodetection is not always appropriate, of course. You may want the parser to treat a file as a transaction-
processing program even in the absence of CICS- or IMS-related code, for example. For each autodetected
environment on the Project Verification options tab, select:

Verifying Source Files | 27

• Auto, if you want the parser to autodetect the environment for the file.
• Yes, if you want to force the parser to treat the file as environment-related even in the absence of

environment-related code.
• No, if you want to force the parser to treat the file as unrelated to the environment even in the presence

of environment-related code. The parser classifies environment-related code as a syntax error.

Specifying Conditional Compiler Constants

Compiler constant directives let you compile programs conditionally. Specify the conditional constants the
parser uses to compile programs in the project in the Dialect Specific Options for your dialect on the
Project Verification options tab. For Micro Focus Cobol, two formats are supported:
• constant_name=value (where no space is allowed around the equals sign). In the following example, if

you specify WHERE=PC on the Project Verification options tab, the source that follows the $if clause is
compiled:

$if WHERE = "PC"
 evaluate test-field
 when 5 perform test-a
 end-evaluate

• constant_name. In the following example, if you specify NOMF on the Project Verification options tab, the
source that follows the $if clause is compiled:

$if NOMF set
 $display Not MF dialect
 go to test-a test-b depending on test-field
 $end

Optimizing Verification for Advanced Program Analysis

When you enable advanced program analysis options for Cobol projects, the parser calculates constant
values for variables at every node in the HyperView parse tree. That’s one reason why very large Cobol
applications may encounter performance or memory problems during verification.

You may be able to improve verification performance and avoid out-of-memory problems by manipulating
the Maximum Number of Variable’s Values and Maximum Size of Variable to Be Calculated options in the
Project Verification options tab. The lower the maximums, the better performance and memory usage you
can expect.

For each setting, you are warned during verification about variables for which the specified maximum is
exceeded. It’s usually best to increase the overflowed maximum and reverify the application.

Identifying System Programs

A system program is a generic program provided by the underlying operating system and used in
unmodified form in the legacy application: a mainframe sort utility, for example. You need to identify system
programs to the parser so that it can distinguish them from application programs and create relationships for
them with their referencing files.

The most convenient way to identify the system programs your application uses is to run an unresolved
report after verification. Once you learn from the report which system programs are referenced, you can
identify them in the System Programs tab of the Workspace Options window and reverify any one of their
referencing source files.

28 | Verifying Source Files

Note: The reference report tool lets you bring up the System Programs tab of the Workspace Options
window while you are in the tool itself. Choose View > System Programs in the reference report
window to display the tab.

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the System
Programs tab.

2. In the System Program Patterns pane, select the patterns that match the names of the system programs
your application uses. Add patterns as necessary.

Specifying Boundary Decisions

Specify a boundary decision object if your application uses a method call to interface with a database,
message queue, or other resource. Suppose the function f1f() in the following example writes to a queue
named abc:

int f1f(char*)
{
 return 0;
}
int f2f()
{
 return f1f(“abc”);
}

As far as the parser is concerned, f1f(“abc”) is a method call like any other method call. There is no
indication from the code that the called function is writing to a queue.

When you specify the boundary decisions for a workspace, you tell the parser to create a decision object of
a given resource type for each such call. Here is the decision object for the write to the queue:

int f2f().InsertsQueue.int f1f(char*)

You can resolve the decision objects to the appropriate resources in the Decision Resolution tool.

1. Choose Tools > Workspace Options. The Workspace Options window opens. Click the Boundary
Decisions tab.

2. In the Decision Types pane, select the decision types associated with called procedures in your
application. For the example, you would select the Queue decision type.

3. In the righthand pane, select each signature of a given method type you want to associate with the
selected decision type. For the example, the method type signature would be int f1f(char*). Add
signatures as necessary. Do not insert a space between the parentheses in the signature. You can use
wildcard patterns allowed in LIKE statements by Visual Basic for Applications (VBA).

Note: Keep in mind that the signatures of C or C++ functions can contain an asterisk (*) character,
as in the example. So if you specify a signature with a * character, you may receive results
containing not only the intended signatures but all signatures matching the wildcard pattern. Delete
the unwanted decision objects manually.

4. Select the project, folder, or source files for the application and choose:

• Prepare > Verify if the source files have not been verified.
• Prepare > Apply Boundary Decisions if the source files have been verified, but boundary decisions

have not been specified for the application, or the specification has changed.

A decision object is added to the tree for the source files in the Repository Browser.

Verifying Source Files | 29

Generating Copybooks

RPG programs and Cobol programs that execute in the AS/400 environment often use copy statements that
reference Database Description or Device Description files rather than copybooks. MCP Cobol programs
occasionally use copy statements that reference DMSII DASDL files. If your application uses copy
statements to reference these types of files, you need to verify the files and generate copybooks for the
application before you verify program files.

Copybook generation takes place in two steps:

• For each database and device file object generated at verification, the system creates a target copybook
object.

• For each target copybook object, the system creates one or more physical copybooks.

Settings on the Generate Copybooks tab of the Project Options window determine conversion behavior. The
default values should be appropriate for most installations.

1. Verify:

• Database Description files. For each Database Description file, the system creates a database file
object with the same name as the Database Description file.

• Device Description files. For each Device Description file, the system creates a device file object with
the same name as the Device Description file.

• DMSII DASDL files. For each DMSII DASDL file, the system creates a DMSII database file object with
the same name as the DMSII DASDL file.

2. In the Repository Browser, select the project, database file, or device file and choose:

• Prepare > Generate RPG Copybooks for Project for RPG.
• Prepare > Generate Copybooks for Project for AS/400 Cobol or MCP Cobol.

Note: Skip this step for MCP Cobol if you selected Generate After Successful Verification on the
Generate Copybooks tab of the Project options window.

The system creates a target copybook for each database or device file object, with a name of the form
database file.DBCOPYBOOK or device file.DVCOPYBOOK, in the Target Copybooks folder.

3. The system automatically converts the target copybooks to physical copybooks if you selected Convert
Target Copybooks to Legacy Objects on the Generate Copybooks tab of the Project options window.
If you chose not to convert target copybooks automatically, select the target copybooks and choose
Prepare > Convert to Legacy. The system generates physical copybooks with names of the form
DD_OF_database file.CPY or DV_OF_device file.CPY,

Note: After generating copybooks, you can generate screens for AS/400 Cobol device file objects
by selecting the objects in the Repository Browser and choosing Prepare > Generate Screens.

Setting Generate Copybooks Options

For RPG or AS/400 Cobol application that use copy statements to reference Database Description or
Device Description files, or MCP Cobol applications that use copy statement to reference DMSII DASDL
files, use the Generate Copybooks tab of the Project Options window to specify how the system converts
the files to physical copybooks.

30 | Verifying Source Files

1. Choose Tools > Project Options. The Project Options window opens. Click the Generate Copybooks
tab.

2. For Cobol MCP only, select Generate After Successful Verification if you want to generate target
copybooks automatically on verification of DMSII DASDL files.

3. Select Convert Target Copybooks to Legacy Objects if you want to convert target copybooks
automatically to physical copybooks when they are generated. then select:

• Assign Converted Files to the Current Project if you want the system to create physical copybooks
in the current project.

• Keep Old Legacy Objects if you want the system not to overwrite existing physical copybooks,
Replace Old Legacy Objects if you want the system to overwrite existing physical copybooks.

• Remove Target Copybooks After Successful Conversion if you want the system to remove target
copybooks from the current project after physical copybooks are generated.

Copybook Generation Order

It’s usually best to generate copybooks for an entire project, because the system processes objects in the
appropriate order, taking account of the dependencies between them. That is not the case when you
generate copybooks for given objects. Follow these rules to ensure correct results:

• Copybooks for database file objects must be generated before copybooks for device file objects.
• Copybooks for referenced objects must be generated before copybooks for referencing objects.

Performing Post-Verification Program Analysis
Much of the performance cost of program verification for Cobol projects is incurred by the advanced
program analysis options in the Project Verification Options window. These features enable impact analysis,
data flow analysis, and similar tasks.

You can improve verification performance by postponing some or all of advanced program analysis until
after verification. As long as you have verified source files with the Enable Reference Reports and Enable
HyperView workspace verification options, you can use the post-verification program analysis feature to
collect the remaining program analysis information without having to reverify your entire legacy program.

To perform post-verification program analysis, select the project verification options for each program
analysis feature you want to enable. In the Repository Browser, select the programs you want to analyze (or
the entire project) and choose Prepare > Analyze Program.

The system collects the required information for each analysis feature you select. And it does so
incrementally: if you verify a Cobol source file with the Enable Data Element Flow option selected, and
then perform post-verification analysis with both that option and the Enable Impact Analysis option
selected, only impact analysis information will be collected.

The same is true for information collected in a previous post-verification analysis. In fact, if all advanced
analysis information has been collected for a program, the post-verification analysis feature simply will not
start. In that case, you can only generate the analysis information again by reverifying the program.

Restrictions on Cobol Post-Verification Program
Analysis
With the exception of Enable Impact Report and Enable Execution Flow, you should select all of the
Perform Program Analysis options you are going to need for Cobol program analysis the first time you

Verifying Source Files | 31

collect analysis information, whether during verification or subsequent post-verification analysis.This is
because, with the exception of Enable Impact Report and Enable Execution Flow, selecting any of the
options dependent on the Perform Program Analysis project verification option, whether during a previous
verification or a previous program analysis, results in none of the information for those options being
collected in a subsequent post-verification program analysis.

So if you verify a program with the Resolve Decisions Automatically option selected, then perform a
subsequent program analysis with the Perform Generic API Analysis option selected, API analysis
information is not collected. Whereas if you perform the subsequent program analysis with the Enable
Impact Report option selected, impact analysis information is collected.

Similarly, if you perform program analysis with the Enable Impact Report option selected, then perform a
subsequent program analysis with the Enable Parameterization of Components option selected, no
parameterization information is collected. Whereas if you perform the subsequent program analysis with the
Enable Execution Flow option selected, execution flow information is collected.

Restrictions on PL/I Post-Verification Program Analysis
For PL/I programs, selecting Resolve Decisions Automatically causes information for Enable Data
Element Flow also to be collected, whether or not it already has been collected. Select these options
together when you perform program analysis.

32 | Verifying Source Files

Using Post-Verification Reports

Use Modernization Workbench post-verification reports to check verification results, perform detailed
executive assessments of the application, and view key data operations:

• Verification Reports offer a convenient way to analyze project verification results.
• Executive Reports offer HTML views of application inventories that a manager can use to assess the

risks and costs of supporting the application.
• CRUD Reports show the data operations each program in the project performs, and the data objects on

which the programs operate.

Viewing Verification Reports

Use Verification Reports to display the verification errors and warnings for each source file in the selected
project and to navigate to the offending code in source. To open the Verification Report window, select a
project in the Repository Browser and choose Prepare > Verification Report. The verification report is
displayed in the Verification Report window.

To show the verification report for a different project, select the project in the Projects drop-down on the
toolbar. To refresh the report after reverifying a file, choose File > Generate Report.

The figure below shows the Verification Report window. By default, the Report and Source windows are
displayed. Select the appropriate choice in the View menu to hide a window. Select the choice again to
show the window.

Using Post-Verification Reports | 33

Errors Pane

The Errors pane of the Verification Report window displays the errors and warning for the project, sorted by

the Files Affected column. Click the button to display the errors for the project. Click the

 button to display the warnings for the project. The buttons are toggles. Click the buttons again
to hide errors or warnings.

Click an error or warning to display the affected files in the Files Affected pane and to highlight each
instance of offending code in the Source pane. Mark an error or warning to mark the affected files in the
Files Affected pane. The table below describes the columns in the Errors pane.

Column Description

Severity The severity of the error or warning.

Number The error or warning number.

Count The number of occurrences of errors or warnings of
this type in the project.

Files Affected The number of files affected by the error or warning.

␊

34 | Using Post-Verification Reports

Column Description

Sample Text The text of the error or warning message. If there are
multiple occurrences of the error or warning, and the
text of the message differs among occurrences, then
the text of a sample occurrence.

␊

Files Affected Pane

The top portion of the Files Affected pane displays the files affected by the error or warning selected in the
Errors pane, the verification status of the file, and the numbers of occurrences of the error and warning in
the file. Click a file to display the occurrences in the Details portion of the Files Affected pane. Select Show
All Errors to display every error and warning for the selected file.

Errors are indicated with a symbol. Warnings are indicated with a symbol. Click an occurrence of an
error or warning to navigate to the offending code in the Source pane.

Source Pane

The Source pane displays view-only source for the file selected in the Files Affected pane. Offending code is
highlighted in red.

Usage is similar to that for the Modernization Workbench HyperView Source pane. For more information,
see Analyzing Programs in the workbench documentation set.

Marking Items

To mark an item, place a check mark next to it. To mark all the items in the selected tab, choose Edit >
Mark All. To unmark all the items in the selected tab, choose Edit > Unmark All.

Including Files into Projects

In very large workspaces, you may find it useful to move or copy files into different projects based on the
errors they contain. Follow the instructions below to move or copy files listed in a Verification Report into a
project.

1. In the Files Affected pane, mark the items you want to move and choose File > Include Into Project.
The Select Project window opens.

2. In the Select Project window, select the target project. Click New to create a new project.

3. Select:

• Include All Referenced Objects if you want to include objects referenced by the selected object (the
Cobol copybooks included in a Cobol program file, for example).

• Select Include All Referencing Objects if you want to include objects that reference the selected
object.

Note: This feature is available only for verified files.

4. Select:

Using Post-Verification Reports | 35

• Copy to copy the selection to the target project.
• Move From Current Project to move the selection to the target project.
• Move From All Projects to move the selection from all projects to the target project.

5. Click OK to move or copy the selection.

Generating HTML Reports
To generate HTML reports of Verification Report results, choose File > Report > <Report Type>. Before
generating the Details for Checked Files report, mark each file on which you want to report.

Tip: The Missing Files report is a convenient alternative to an Unresolved Report when you are
interested only in missing source files, and not in unresolved objects like system programs.

Viewing Executive Reports

Executive Reports offer HTML views of application inventories that a manager can use to assess the risks
and costs of supporting the application:

• The Application Summary view gives statistics for industry-standard metrics such as program volume,
maintainability, cyclomatic complexity, and number of defects.

• The Potential Code Anomalies view gives statistics for potential code anomalies that may mark programs
as candidates for re-engineering: GOTO non-exits, range overlaps, and the like. You can customize
potential code anomalies using the Define Anomalies feature.

Note: You must set Detect Potential Code Anomalies in the Verification > Settings tab of the
Workspace Options window to generate these statistics.

• The Repository Statistics view gives statistics for Modernization Workbench verification results and
unresolved or unreferenced application elements.

• The Standard Deviations view displays graphs that plot the deviation of the programs in the application
from the means for six key industry-standard metrics.

To generate an Executive Report, choose Prepare > Executive Report. Project options on the Report >
Executive Report tab determine the entities included in the report, and the functions the report performs.
The report is stored in \<Workspace Home>\Output\Executive Report\Project\index.htm.

The figure below shows an Executive Report. The top page in each view displays the available statistics and
graphs. Click the links to view the detail for each type of statistic or graph. In the statistic or graph detail
page, click the link for a program to view the detail for that program.

Note: After generating an Executive Report, use the Executive Report category in the HyperView
Clipper tool to view potential code anomalies in program context.

36 | Using Post-Verification Reports

Setting Executive Report Options

Use the Report > Executive Report tab of the Project Options window to specify the entities included in
executive reports, and the functions the report performs. Generally, the fewer entities and functions you
choose, the better report generation performance you can expect. You should especially consider not
reporting on:

• Detail for code anomalies. Leave Generate Details unchecked.
• Data stores. Leave data store entities unchecked.
• Relationships, if you do not need cross-reference information. Leave Relationships unchecked.

Using Post-Verification Reports | 37

1. Choose Tools > Project Options. The Project Options window opens. Click the Report tab, then the
Executive Report tab.

2. Click Functionality, then select each report function you want to enable. For the Application Summary
function, click Select Metrics. In the Application Summary (Averages) window, select Application
Summary (Averages) to enable the function, then choose each metric you want to include in the report.

3. Select each type of entity you want to include in the report. To edit the attributes included in the report for
the entity type, click Attributes. In the Attributes window, select each attribute of the selected entity type
to include in the report.

Defining Potential Code Anomalies

You can view and modify existing definitions of potential code anomalies (other than range overlaps and
range jumps) in the HyperView advanced search criteria in the Coding Standards folder.

To define a new code anomaly, you must define an advanced search criterion for the anomaly and a
matching entry in the file <Workbench Home>\Data\CodeDefects.xml. The entry has the form:

<DEFECT Id="name"
Internal="True|False"
Enabled="True|False"
Caption="display name"
ListName="list name"
Criterion="path of criterion"/>

where:

• Id is a unique name identifying the code anomaly in the workbench.
• Internal specifies whether the anomaly is implemented internally in program code (True), or externally

in an advanced search criterion (False).

Note: You must specify False. Code anomalies with an Internal value of True cannot be modified.

• Enabled specifies whether the code anomaly is displayed in the Executive Report.
• Caption is the display name for the anomaly in the Executive Report.
• ListName is the name of the list of anomalous code constructs displayed in the Executive Report

category of the HyperView Clipper tool.
• Criterion is the full path name of the criterion in the HyperView Advanced Search tool, including the

tab name (General) and any folder names. For example, General:Coding Standards\MOVE Statements
\Possible Data Padding.

You can display the anomaly caption in Japanese or Korean in the Executive Report by creating an entry for
the anomaly in the file <Workbench Home>\Language\[Jpn|Kor]\CodeDefects.xrc. The entry has the form:

<String name="name"
listname="list name"
caption="translated display name"
description="description"/>

where:

• name is the unique name of the code anomaly in the workbench (Id attribute of CodeDefects.xml entry).
• listname is the name of the list of anomalous code constructs displayed in the Executive Report

category of the HyperView Clipper tool (ListName attribute of CodeDefects.xml entry).
• caption is the translated display name for the anomaly in the Executive Report.
• description contains a description of the entry.

38 | Using Post-Verification Reports

Cobol Range Overlaps and Range Jumps Detected in
the Executive Report

This section lists Cobol range overlaps and range jumps detected in the Executive Report. S* defects
appear in the report under “Range Overlaps” as the sum of all defects S1+S2+S3+S4+S5+S6. G* defects
appear in the report under “Range Jumps” as the sum of all defects G1+G2+G3+G5+G6+G7.

S0. No defects

Perform A1 thru A2.
Perform B1 thru B2.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.
…
.--B1.
| StatementsB1.
| …
| B2.
‘--- StatementsB2.

S1. Overlapped sections

Perform A1 thru A2.
Perform B1 thru B2.
…
.--A1.
| StatementsA1.
| …
| B1. --.
| StatementsB1. |
| … |
| A2. |
‘--- StatementsA2. |
… |
B2. |
StatementsB2. –-’

S2. Overlapped sections

Perform A1 thru A2.
Perform B1 thru B2.
…
.--B1.
| StatementsB1.
| …
| A1. --.
| StatementsA1. |
| … |
| B2. |
‘--- StatementsB2. |

Using Post-Verification Reports | 39

… |
A2. |
StatementsA2. –-’

S3. Overlapped sections

Perform A1 thru A2.
Perform B1 thru B2.
…
.--A1.
| StatementsA1.
| …
| B1. --.
| StatementsB1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

S4. Overlapped sections

Perform A1 thru A2.
Perform A1 thru B2.
…
.--A1. --.
| StatementsA1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

S5. Overlapped sections

Perform A1 thru A2.
Perform B1 thru A2.
…
.--A1.
| StatementsA1.
| …
| B1. --.
| StatementsB1. |
| … |
| A2. |
‘--- StatementsA2. --’

S6. Overlapped sections

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| Perform B1 thru B2.
| …

40 | Using Post-Verification Reports

| B1. --.
| StatementsB1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

G0. No defects

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto B1.
| …
| B1.
| StatementsB1.
| …
| A2.
‘--- StatementsA2.

G0. No defects

Perform A1 thru A2.
goto B1.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.
…
B1.
StatementsB1.

G0. No defects

Perform A1 thru A2.
goto B1.
…
B1.
StatementsB1.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.

G0. No defects

Perform A1 thru A2.
.--A1.
| StatementsA1.
| …

Using Post-Verification Reports | 41

| A2.
‘--- StatementsA2.
…
goto B1.
…
B1.
StatementsB1.

G1. Break-in goto

Perform A1 thru A2.
…
goto B1.
…
.--A1.
| StatementsA1.
| …
| B1.
| StatementsB1.
| …
| A2.
‘--- StatementsA2.

G2. Break-in goto

Perform A1 thru A2.
…
goto A1.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.

G3. Break-in goto

Perform A1 thru A2.
…
goto A2.
…
.--A1.
| StatementsA1.
| …
| A2.
‘--- StatementsA2.

S3G4=G1. Overlapped sections, break-in goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| Perform B1 thru B2.
| …
| goto C1.
| B1. --.

42 | Using Post-Verification Reports

| StatementsB1. |
| … |
| C1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| A2.
‘--- StatementsA2.

G5. Break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto B1.
| …
| A2.
‘--- StatementsA2.
…
B1.
StatementsB1.

G6. Break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto A1.
| …
| A2.
‘--- StatementsA2.

G7. Break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto A2.
| …
| A2.
‘--- StatementsA2.

G8. No Defects

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| goto A2.
| …

Using Post-Verification Reports | 43

| A2.
‘--- EXIT.

S3G9=G5. Overlapped sections, break-out goto

Perform A1 thru A2.
…
.--A1.
| StatementsA1.
| …
| Perform B1 thru B2.
| …
| B1. --.
| StatementsB1. |
| … |
| goto C1. |
| … |
| B2. |
| StatementsB2. –-’
| …
| C1.
| …
| A2.
‘--- StatementsA2.

Viewing CRUD Reports

The CRUD Report for a project shows the data operations each program in the project performs, and the
data objects on which the programs operate. To generate a CRUD Report, select a project in the Repository
Browser and choose Prepare > CRUD Report. The figure below shows a CRUD Report.

Project options on the Report > CRUD Report tab determine the data operations and program-to-data object
relationships displayed in CRUD reports. To refresh the report after modifying display options, choose File >
Refresh in the CRUD Report window. To generate the report in HTML, choose File > Report.

Note: The IMS data column of the CRUD report behaves differently from the columns for other data
types. What appears in the IMS data column cells depends on what can be determined. If the segment
can be determined, the cell is populated with the PSB name and segment name. Otherwise, the
segment name is left blank. The format is xxxxxx.yyyyyyy, where xxxxxx is the PSB name and
yyyyyyy is the segment name or blank if the segment cannot be determined.

44 | Using Post-Verification Reports

Setting CRUD Report Options

Use the Report > CRUD Report tab of the Project Options window to specify the data operations and
program-to-data object relationships displayed in CRUD Reports.

1. Choose Tools > Project Options. The Project Options window opens. Click the Report tab, then the
CRUD Report tab.

2. Place a check mark next to each type of program-to-data object relationship you want to display.

3. Place a check mark next to each type of data operation you want to display.

Using Post-Verification Reports | 45

Inventorying Applications

Users often ask why the Modernization Workbench parser encounters errors in working production systems.
The reasons usually have to do with the source file delivery mechanism: incorrect versions or copybooks,
corruption of special characters because of source code ambiguities, FTP errors, and so forth.

Use Modernization Workbench inventory analysis tools to ensure that all parts of your application are
available to the parser:

• Reference Reports let you track referential dependencies in verified source.
• Orphan Analysis lets you analyze and resolve objects that do not exist in the reference tree for any top-

level program object, so-called orphans. Orphans can be removed from a system without altering its
behavior.

• Decision Resolution identifies and lets you resolve dynamic calls and other relationships that the parser
cannot resolve from static sources in Cobol, PL/I, and Natural programs.

Using Reference Reports

When you verify a legacy application, the parser generates a model of the application that describes the
objects in the application and how they interact. If a Cobol source file contains a COPY statement, for
example, the system creates a relationship between the file and the Cobol copybook referenced by the
statement. If the copybook doesn’t exist in the repository, the system flags it as missing by listing it with a

 symbol in the tree view of the Repository Browser.

Reference Reports let you track these kinds of referential dependencies in verified source:

• An Unresolved Report identifies missing application elements.
• An Unreferred Report identifies unreferenced application elements.
• A Cross-reference Report identifies all application references.
• An External Reference Report identifies references in object-oriented applications to external files that

are not registered in the workspace, such as .java, Java Archive (JAR), or C++ include files (assuming
you have identified the locations of these files in the Workspace Verification options window for the
source files). These references are not reported as unresolved in the Unresolved Report.

Tip: The Missing Files report in the Verification Report tool is a convenient alternative to an Unresolved
Report when you are interested only in missing source files, and not in unresolved objects like system
programs.

Understanding the Reference Reports Window

Use Reference Reports to track referential dependencies in verified project source. To open the Reference
Reports window, select a project in the Repository Browser and choose Prepare > Reference Reports.

When the Reference Reports window opens, choose the Reference Report type in the Report type drop-
down. To limit the report to references in the current project, choose View > Restrict References to
Project. To generate the report in HTML, choose File > Report.

46 | Inventorying Applications

The figure below shows an Unreferred Report window. The windows for the other reports are similar. By
default, all Reference Report panes are displayed. Select the appropriate choice in the View menu to hide a
pane. Select the choice again to show the pane.

Main Pane

The Main pane displays the objects in the Reference Report and their relationships. The table below
describes the columns in the Main pane.

Column Report Type Description

Object Name All The name of the unresolved, unreferenced, cross-
referenced, or externally referenced object.

Object Type All The entity type of the unresolved, unreferenced,
cross-referenced, or externally referenced object.

Legacy Object Unreferred Report, Cross-
reference Report

The source file that contains the unreferenced or
cross-referenced object.

Source Unreferred Report, Cross-
reference Report

The location in the workspace folder of the source
file that contains the unreferenced or cross-
referenced object.

␊

Inventorying Applications | 47

Column Report Type Description

Referred by Unresolved Report, Cross-
reference Report, External
Reference Report

The name of the referring object.

Referring Object Type Unresolved Report, Cross-
reference Report, External
Reference Report

The entity type of the referring object.

Relationship Unresolved Report, Cross-
reference Report, External
Reference Report

The relationship between the unresolved, cross-
referenced, or externally referenced object and the
referring object.

Object Description All The description of the unresolved, unreferenced,
cross-referenced, or externally referenced object
entered by the user on the Description tab of the
Object Properties window.

␊

Preview Pane

The Preview pane lets you browse HyperView information for the object selected in the Report pane. The
information available depends on the type of object selected. You see only source code for a copybook, for
example, but full HyperView information for a program. Choose the information you want to view for the
object from the Source drop-down.

Setting Reference Reports Options

Use the Report > Reference Reports tab of the Project Options window to specify the entity types for which
reference report information is collected.

1. Choose Tools > Project Options. The Project Options window opens. Click the Report tab, then the
Reference Reports tab.

2. Place a check mark next to each type of entity you want to be included in reference reports.

Using Orphan Analysis Reports
An object that does not exist in the reference tree for any top-level object is called an orphan. Orphans can
be removed from a system without altering its behavior. Use the Orphan Analysis tool to find orphans.

What’s the difference between an orphan and an unreferenced object?

• All unreferenced objects are orphans.
• Not every orphan is unreferenced.

Suppose an unreferred report shows that the copybook GSS3.CPY is not referenced by any object in the
project. Meanwhile, a cross-reference report shows that GSS3.CPY references GSS3A.CPY and
GSS3B.CPY.

These copybooks do not appear in the unreferred report because they are referenced by GSS3.CPY. Only
orphan analysis will show that the two copybooks are not in the reference tree for the GSS program and,
therefore, can be safely removed from the project.

48 | Inventorying Applications

Understanding the Orphan Analysis Window

Use the Orphan Analysis tool to determine whether an object exists in the reference tree for a top-level
program object. To open the Orphan Analysis tool window, select a project in the Repository Browser and
choose Prepare > Orphan Analysis.

Project options on the Report > Orphan Analysis tab specify the search filter for the report. To refresh the
report after modifying the options, choose Orphans > Refresh in the Orphan Analysis window. To generate
the report in HTML, choose File > Save Report As.

Note: The Filter, Startup, and Find panes let you use hyperlinks to set up and apply the Orphan
Analysis search filter. Use these panes instead of the options window if you prefer.

The figure below shows the Orphan Analysis window. By default, all Orphan Analysis panes are displayed.
Select the appropriate choice in the View menu to hide a pane. Select the choice again to show the pane.

Inventorying Applications | 49

Found Objects Pane

The Found Objects pane shows the name, type, and source location of orphans. To show the list of orphans
only, deselect View > Report View.

Orphan Source Pane

The Orphan Source pane lets you browse HyperView information for the object selected in the Found
Objects pane. The information available depends on the type of object selected. You see only source code
for a copybook, for example, but full HyperView information for a program. Choose the information you want
to view for the object from the Source drop-down.

Setting Orphan Analysis Options

Use the Report > Orphan Analysis tab of the Project Options window to specify the search filter for an
Orphan Analysis report.

1. Choose Tools > Project Options. The Project Options window opens. Click the Report tab, then the
Orphan Analysis tab.

2. In the Startup pane, click Select Startup Types. The Startup dialog opens.

3. In the Startup dialog, set up a search filter for the startup objects in the orphan analysis. You can filter on
entity type, entity name, or both:

• To filter on entity type, place a check mark next to the entity type you want to search for in the Roots
pane.

• To filter on entity name, place a check mark next to a recognized matching pattern in the Like pane,
the Unlike pane, or both. Add patterns as necessary. You can use wildcard patterns allowed in LIKE
statements by Visual Basic for Applications (VBA).

4. When you are satisfied with your choices in the Startup dialog, click OK.

5. In the Find pane, define the terms of the search by selecting the appropriate choice in the Relationships
to Checked Startups drop-down, the Relationships to Unchecked Startups drop-down, or both.

6. In the Entities pane, click Displayed Types. The Entities dialog opens. In the Entities dialog, place a
check mark next to each type of entity to include in the report. When you are satisfied with your choices
in the Entities dialog, click OK.

Deleting Orphans from a Project

To delete an orphan from a project (but not the workspace), select the orphan in the Found Objects pane
and choose Orphans > Exclude from Project.

Deleting Orphans from a Workspace

To delete an orphan from the workspace, select the orphan in the Found Objects pane and choose
Orphans > Delete from Workspace.

50 | Inventorying Applications

Resolving Decisions

You need to have a complete picture of the control and data flows in a legacy application before you can
diagram and analyze the application. The parser models the control and data transfers it can resolve from
static sources. Some transfers, however, are not resolved until run time. Decision resolution lets you identify
and resolve dynamic calls and other relationships that the parser cannot resolve from static sources.

Understanding Decisions

A decision is a reference to another object, a program or screen, for example, that is not resolved until run
time. Consider a Cobol program that contains the following statement:

CALL ‘NEXTPROG’.

The Modernization Workbench parser models the transfer of control to program NEXTPROG by creating a
Calls relationship between the original program and NEXTPROG.

But what if the statement read this way instead:

CALL NEXT.

where NEXT is a field whose value is only determined at run time. In this case, the parser creates a Calls
relationship between the program and an abstract decision object called PROG.CALL.NEXT, and lists the

decision object with a icon in the tree view of the Repository Browser.

The Decision Resolution tool creates a list of such decisions and helps you navigate to the program source
code that indicates how the decision should be resolved. You may learn from a declaration or MOVE
statement, for example, that the NEXT field takes either the value NEXTPROG or ENDPROG at run time. In
that case, you would resolve the decision manually by telling the system to create resolves to relationships
between the decision and the programs these literals reference.

Of course, where there are hundreds or even thousands of such decisions in an application, it may not be
practical to resolve each decision manually. In these situations, you can use the autoresolve feature to
resolve decisions automatically.

The Decision Resolution tool analyzes declarations and MOVE statements, and any other means of
populating a decision point, to determine the target of the control or data transfer. The tool may not be able
to autoresolve every decision, or even every decision completely, but it should get you to a point where you
can complete decision resolution manually.

Understanding the Decision Resolution Tool Window

Use the Decision Resolution tool to view and manually resolve decisions. To open the Decision Resolution
tool window, select a project in the Repository Browser and choose Prepare > Resolve Decisions.

To save decision resolutions to the repository, choose File > Save. To generate the Decision Resolution
report in HTML, choose File > Report.

Inventorying Applications | 51

The figure below shows the Decision Resolution window. By default, all Decision Resolution panes are
displayed. Select the appropriate choice in the View menu to hide a pane. Select the choice again to show
the pane.

Decision List Pane

The Decision List pane displays the decisions in the project. To filter the list, choose the type of decision you
want to display in the Decision Type drop-down. The table below describes the columns in the Decision
List pane.

Column Description

Name The name of the object that contains the decision.

Type The type of the object that contains the decision.

Variable The program variable that requires the decision.

Completed Whether the decision has been resolved.

Unreachable Whether the decision is in dead code.

Manual Whether the decision was resolved manually.

␊

52 | Inventorying Applications

Column Description

Resolved to The target object the variable resolves to (an entry point, for example).
An unresolved decision contains the grayed-out text Some Object.

␊

Available Targets Pane

For the selected decision type, the Available Targets pane lists the objects in the workspace to which the
decision can be resolved. To resolve a decision to an available target, select the decision in the Decision
List pane and place a check mark next to the target.

To limit the targets to objects in the current project, choose View > Restrict to Current Project. To delete a
decision resolution, remove the check mark next to the target. To undo changes, choose Edit > Undo all
changes.

Source Pane

The Source pane lets you browse HyperView information for the object selected in the Decision List pane.
The information available depends on the type of object selected. You see only source code for a copybook,
for example, but full HyperView information for a program. Choose the information you want to view for the
object from the drop-down in the upper lefthand corner of the pane.

Resolving Decisions Manually

Follow the instructions below to resolve decisions manually to targets in or out of the workspace.

1. To resolve decisions to available targets, select one or more entries in the Decision List pane and place
a check mark next to one or more target objects in the Available Targets pane. If you link an entry to
multiple targets, the Decision Resolution tool creates as many entries in the Decision List pane as there
are targets.

Note: If you are linking an entry to multiple targets, you can save time by selecting the targets and
choosing Edit > Link Selected Targets. You can also choose Edit > Copy to copy selected targets
to the clipboard, then Edit > Paste to link the targets to an entry.

2. To resolve decisions to targets not in the workspace, select one or more entries in the Decision List pane
and choose Edit > Link New Target. The Link New Target window opens.

3. In the Link New Target window, enter the name of the new target in the field on the righthand side of the
window, or populate the field by clicking a literal in the list of program literals on the Literals tab. Filter the
list by using:

• The Minimum Literal Length slider to specify the minimum number of characters the literal can
contain.

• The Maximum Literal Length slider to specify the maximum number of characters the literal can
contain.

• The Names Like field to enter a matching pattern for the literal. You can use wildcard patterns
allowed in LIKE statements by Visual Basic for Applications (VBA).

4. Place a check mark next to Completed if you want the resolution to be marked as completed. When you
are satisfied with your entry, click OK.

Inventorying Applications | 53

Restoring Manually Resolved Decisions

Reverifying a file invalidates all of its objects, including its manually resolved decisions. The decision
persistence feature lets you restore manually resolved decisions when you return to the Decision Resolution
tool.

After reverifying a file for which you have manually resolved decisions, reopen the Decision Resolution tool.
A dialog box prompts you to restore manually resolved decisions. Click Yes if you want to restore the
decisions. Click No otherwise.

Note: Place a check mark next to Don’t show me again if you want the Decision Resolution tool to
open without prompting you to restore manually resolved decisions. In the Decision Resolution Tool
tab of the User Preferences window, place a check mark next to Ask before restoring previous
manual changes if you want to be prompted again.

Resolving Decisions Automatically

You can autoresolve decisions during verification by setting the Resolve decisions automatically option
on the Verification tab of the Project Options window for a source file type.

For programs only, you can autoresolve decisions after verification by selecting the project, folder, or files
for which you want to autoresolve decisions and choosing Prepare > AutoResolve Decisions. Only a
master user can autoresolve decisions in a multiuser environment.

Note: Decision Resolution cannot autoresolve every decision. The target name may be read from a
data file, for example.

Setting Decision Resolution Tool User Preferences

Use the Decision Resolution Tool tab of the User Preferences window to specify whether you want to be
prompted to restore invalidated manually resolved decisions when you reopen the Decision Resolution tool.

1. Choose Tools > User Preferences. The User Preferences window opens. Click the Decision Resolution
Tool tab.

2. Select Ask before restoring previous manual changes if you want to be prompted to restore manually
resolved decisions when you reopen the Decision Resolution tool.

54 | Inventorying Applications

Identifying Interfaces for Generic API
Analysis

Use the Generic API Analysis feature if your legacy program calls an unsupported API to interface with a
database manager, transaction manager, or similar external facility. In this call, for example:

CALL 'XREAD' using X

where X evaluates to a table name, the call to XREAD is of less interest than its parameter, the table the
called program reads from. But because the parser does not recognize XREAD, only the call is modeled in
the workbench repository.

You enable the Generic API Analysis feature by identifying unsupported APIs and their parameters in the
file \<Workbench Home>\Data\Legacy.xml. Before you verify your application, set Perform Generic API
Analysis on the Verification tab of the Project Options window. That option tells the parser to define
relationships with the objects passed as parameters in the calls, in addition to relationships with the
unsupported APIs themselves.

This section shows you how to identify the programs and parameters to the parser before verifying your
application. You can specify both object and construct model information, and create different relationships
or entities for the same parameter in a call.

The specification requires a thorough understanding of the Modernization Workbench repository models.
For background on the repository models, see the Software Development Kit manual, available from support
services.

Note: Only the predefined definitions described in this section are guaranteed to provide consistent
data to workbench databases.

Identifying Unsupported API Calls to the Parser

Follow the instructions in the steps below and the detailed specifications in the following sections to identify
unsupported API calls to the parser. For each call, you need to define an entry in \<Workbench Home>\Data
\Legacy.xml that specifies at a minimum:

• The name of the called program and the method of invocation in the <match> tag.
• The program control flow in the <flow> tag, and the direction of the data flow through the parameters of

interest in the <param> subtags.
• How to represent the call in the object model repository in the <rep> tag, and in the construct model

repository in the <hc> tag.

Use the optional <vars> tag to extract values of a specified type, size, and offset from a parameter for use in
a <rep> or <hc> definition.

Most repository entities can be represented in a <rep> or <hc> definition with the predefined patterns in
\<Workbench Home>\Data\Legacy.xml.api. These patterns do virtually all of the work of the specification for
you, supplying the relationship of the entity to the called program, its internal name, and so forth.

Identifying Interfaces for Generic API Analysis | 55

The syntax for specifying predefined patterns in a <rep> or <hc> definition is described in the section for the
tag. Consult Legacy.xml.api for supported patterns and for required parameters and values.

1. Open the file \<Workbench Home>\Data\Legacy.xml in an editor.

2. Locate the <GenericAPI> section for the language and dialect you use.

3. Create entries for each unsupported API call, following the specifications in the sections below and the
samples of Generic API usage in Legacy.xml.

4. Set Perform Generic API Analysis on the Verification tab of the Project Options window.

5. Verify the project.

Using the API Entry Tag

The name attribute of the <API Entry> tag is the name of the entry, used for error diagnostics only.

Using the match Tag

The stmt attribute of the <match> tag identifies the method of invocation: a CALL, LINK, or XCTL statement.
The value attribute of the <name> subtag identifies the name of the program to be matched. It can also be
used to specify an alternative name for the entry.

Note: The name of the program to be matched must be unique in the <GenericAPI> section. If names
are not unique, the parser uses the last entry in which the name appears.

Example

<match stmt="CALL">
 <name value="XREAD"/>
</match>

Using the flow Tag

The <flow> tag characterizes the program control flow. The halts attribute of the <flow> tag specifies
whether the calling program terminates after the call:

• yes, if control is not received back from the API.
• no (the default), if the calling program returns normally.

The <param> subtag identifies characteristics of the call parameters. Attributes are:

• index is the index of the parameter that references the item of interest, beginning with 1. Use an asterisk
(*) to specify all parameters not specified directly.

• usage specifies the direction of the data flow through the parameter: r for input, w for output, rw for input/
output. Unspecified parameters are assumed to be input/output parameters.

Note: halts is supported only for call statements. For PL/I, input parameters are treated as input/output
parameters.

Example

<flow halts='no'>

56 | Identifying Interfaces for Generic API Analysis

 <param index='1' usage='r'/>
 <param index='2' usage='r'/>
 <param index='3' usage='rw'/>
 <param index='*' usage='rw'/>
</flow>

Using the vars Tag

Use the <vars> tag to extract values of a specified type, size, and offset from a call parameter. You can then
refer to the extracted values in the <rep> and <hc> tags using the %var_name notation.

The <arg> subtag characterizes the argument of interest. Attributes are:

• var specifies the variable name.
• param specifies the index of the parameter.
• type specifies the variable type.
• offset specifies the offset of the field in bytes.
• bitoffset specifies the offset of the field in bits.
• size specifies the size of the field in bytes.
• bitsize specifies the size of the field in bits.

Additional attributes for PL/I are:

• len specifies the size of a character or bit string field.
• mode specifies the binary or decimal mode for a numeric field.
• scale specifies the scale of a fixed-point numeric field.
• prec specifies the precision of a fixed-point or floating-point numeric field.
• varying specifies whether a bit string variable is encoded as a varying-length string in the structure (yes

or no, the default).

Supported data types are described in the language-specific sections below.

Example

Suppose a call to a database-entry API looks like this:

CALL 'DBNTRY' USING DB-USER-ID
 DB-XYZ-REQUEST-AREA
 XYZ01-RECORD
 DB-XYZ-ELEMENT-LIST.

If the second parameter contains a 3-character table name in bytes 6-8, the following definition extracts the
name for use as the right end of a relationship:

<vars>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
</vars>
<rep>
 <rel>
 <target type='TABLE'

Identifying Interfaces for Generic API Analysis | 57

 name='%TableName'/>
 .
 .
 .
 </rel>
</rep>

Cobol-Specific Usage

For Cobol, use the following data types in the <vars> tag:

• data extracts a subarea of the parameter as raw byte data. You must specify the size and offset.
• auto automatically determines the type of the variable, using the offset. If that is not possible, auto looks

for a matching variable declaration and uses its type. You must specify the offset.
• int behaves as auto, additionally checking that the resulting value is a valid integer and converting it to

the canonical form. Offset defaults to 0.

Note: bitoffset and bitsize are currently not supported. auto is not always reliable. Use data whenever
possible.

PL/I-Specific Usage
For PL/I, use the following data types in the <vars> tag:

• data extracts a subarea of the parameter as raw byte data. You must specify the size and offset.
• char specifies a character variable, with attribute varying if the string is encoded as a varying-length

string in the structure. Offset defaults to 0, and size is specified via the required len attribute, which
specifies the string length.

• bit specifies a bit string variable, with attribute varying if the string is encoded as a varying-length string in
the structure. Offset defaults to 0, and size is specified via the required len attribute, which specifies the
string length in bits.

• fixed specifies a fixed-point numeric variable, with attributes mode (binary or decimal, the default), scale
(default 0), and prec (precision, default 5). Offset defaults to 0, and size is overridden with a value
calculated from the type.

• float specifies a floating-point numeric variable, with attributes mode (binary or decimal, the default) and
prec (precision, default 5). Offset defaults to 0, and size is overridden with a value calculated from the
type.

Note: Do not use bitoffset and bitsize for types other than bit string.

Using the rep and hc Tags

Use the <rep> tag to represent the API call in the object model repository. Use the <hc> tag and the <attr>
subtag to represent the construct model (HyperCode) attributes of entities defined in the call.

You can use predefined or custom patterns to specify the relationship of interest. Expressions let you extract
parameter values and context information for use in specifications of entity or relationship characteristics.

Using Predefined Patterns

Most repository entities can be represented with the predefined patterns in \<Workbench Home>\Data
\Legacy.xml.api. These patterns do virtually all of the work of the specification for you, supplying the

58 | Identifying Interfaces for Generic API Analysis

relationship of the entity to the called program, its internal name, and so forth. They are guaranteed to
provide consistent data to workbench databases.

To specify a predefined pattern, use the pattern name as a tag (for example, <tip-file>) anywhere you might
use a <rel> tag. If the predefined pattern is specified at the top level of the entry, the parser creates a
relationship with the calling program. If the predefined pattern is nested in an entity specification, the parser
creates a relationship with the parent entity.

Each pattern has parameters that you can code as XML attributes or as subtags. So:

<transaction name='%2' params='' hc-kind='dpsSETRX'/>

Is equivalent to:

<transaction params=''>
 <name value='%2'/>
 <hc-kind value ='dpsSETRX'/
</transaction>

Use the subtag method when a parameter can have multiple values:

<file filename= '%2' data-record='%3'>
 <action switch-var='%op'>
 <case eq='1' value='Reads'/>
 <case eq='2' value='Reads'/>
 <case eq='4' value='Updates'/>
 <case eq='28' value='Inserts'/>
 </action>
 <hc-kind switch-var='%op'>
 <case eq='1' value='fcssRR'/>
 <case eq='2' value='fcssRL'/>
 <case eq='4' value='fcssWR'/>
 <case eq='28' value='fcssAW'/>
 </hc-kind>
</file>

Check Legacy.xml.api for further details of predefined pattern usage and for required parameters and
values.

Using Custom Patterns

Use custom patterns only when a predefined pattern is not available. Custom patterns are not guaranteed to
provide consistent data to workbench databases.

Using the entity Subtag

The <entity> subtag represents an entity in the object model repository. Attributes are:

• type specifies the entity type.
• name specifies the entity name.
• produced optionally indicates whether the entity is extracted, in which case it is deleted from the

repository when the source file is invalidated (yes or no, the default).

Use the <attr> subtag to specify entity attributes. Attributes of the subtag are:

• name specifies the attribute name.
• value contains an expression that defines the attribute value.
• join specifies the delimiter to use if all possible variable values are to be joined in a single value.

Identifying Interfaces for Generic API Analysis | 59

Use the <cond> subtag to specify a condition.

Using the rel Subtag

The <rel> subtag represents a relationship in the object model repository. Attributes are:
• name specifies the relationship end name, which can be unrolled into a separate tag like the name or

type of an entity.
• decision specifies a decision.
The <target> and <source> subtags represent, respectively, the right and left ends of the relationship.
These subtags are equivalent in function and syntax to the <entity> tag. Use the <cond> subtag to specify a
condition.

Note: As a practical matter, you will almost never have occasion to use the <entity> subtag.

If the <rel> subtag is specified at the top level of the entry, and no <source> tag is specified, the parser
creates the relationship with the calling program; otherwise, it creates the relationship between the <source>
and <target> entities. If the <rel> subtag is nested in an entity specification, the parser creates the
relationship with the parent entity.

Example

Assume that we know that the second parameter in the API call described earlier for the <vars> tag contains
a variable in bytes 1-3 that specifies the CRUD operation, in addition to the variable in bytes 6-8 specifying
the table name. The following definition extracts the CRUD operation and table name:

<vars>
 <arg var='OpName'
 param='2'
 type='data'
 offset='0'
 size='3'/>
 <arg var='TableName'
 param='2'
 type='auto'
 offset='5'
 size='3'/>
</vars>
<rep>
 <rel>
 <target type='TABLE'
 name='%TableName'/>
 <name switch-var='OpName'>
 <case eq='RED' value='ReadsTable'/>
 <case eq='UPD' value='UpdatesTable'/>
 <case eq='ADD' value='InsertsTable'/>
 <case eq='DEL' value='DeletesTable'/>
 </name>
 </rel>
</rep>

Using Expressions

Expressions let you extract parameter values and context information for specifications of entity or
relationship characteristics. You can use simple variable names in expressions, or apply a primitive function
call to a variable.

60 | Identifying Interfaces for Generic API Analysis

Basic Usage

Use the %var_name or %parameter_number notation to define variables for parameter values. The number
corresponds to the index of the parameter; parameters are indexed beginning with 1. Negative numbers
index from the last parameter to the first.

Variables with names beginning with an underscore are reserved for special values. They generally have
only one value. The table below describes the reserved variable names.

Name Description

_line, _col Line and column numbers of the call in source code.

_file Index of the file in the file table.

_uid UID of the node of the call in the syntax tree.

_fail A permanently undefined variable. Use it to cause explicit failure.

_yes A non-empty string for use as a true value.

_no An empty string for use as a false value.

_pgmname Name of the calling program.

_hcid HyperCode ID of the call node.

_varname nn If parameter number nn is passed using a simple variable reference
(not a constant or an expression), this substitution variable contains its
name. Otherwise, it is undefined.

␊

Simple Notation

The simplest way to use a variable is to include it in an attribute value, prefixed with the percent character
(%). (%% denotes the character itself.) If the character directly after the % is a digit or a minus sign (-), the
end of the variable name is considered to be the first non-digit character. Otherwise, the end of the name is
considered to be the first non-alphanumeric, non-underscore character. In:

'%abc.%2def'

the first variable name is abc and the second is 2. It is also possible to specify the end of the variable name
explicitly by enclosing the name in curly brackets:

'%{abc}.%{2}def'

When evaluated, a compound string like this produces a string value that concatenates variable values and
simple text fragments, or fails if any of the variables is undefined.

Switch Usage

Use a switch-var attribute instead of the value attribute when a tag expects a value with a compound string
expression. The switch-var attribute contains a single variable name (which may be prefixed by %, but

Identifying Interfaces for Generic API Analysis | 61

cannot be enclosed in curly brackets). Use <case>, <undef>, or <default> subtags to specify switch cases.
These tags also expect the value attribute, so switches can be nested:

<name switch-var='var'>
 <case eq='value1' value='...'/>
 <case eq='value2' switch-var='%var2'>
 <undef value='...'/>
 </case>
 <undef value='...'/>
 <default value='...'/>
</name>

When a switch is evaluated, the value of the variable specified using the switch-var attribute is matched
against the literal specified in the <case> tags. The literal must be the same size as the variable. (The
literals value1 and value2 in the example assume that var is defined as having six bytes.) If an
appropriate case is found, the corresponding case value is evaluated.

Set the value and type of the variable to __fail__ (two underscores) if you do not want a relationship to be
produced for the variable:

<progname switch-var="%fname">
 <case eq="LINKDATA" value="%pname" type="Calls" params="%3" />
 <case eq="LINK" value="%pname" type="Calls" params="%3" />
 <case eq="READQTS" value="__fail__" type="__fail__" />
 <default value="" />
 </progname>

If the variable is undefined, and the <undef> tag is specified, its value is used; if not, the switch fails.
Otherwise, if the <default> case is specified, it is used; if not, the switch fails.

Fallback Chain Usage

Whenever multiple tags specifying a single attribute are presented in a <name>, <type>, or <case>/
<undef>/<default> specification, those tags are joined into a fallback chain. If an entry in the chain fails,
evaluation proceeds to the next entry. Only when the last entry of the chain fails is the failure propagated
upward:

<name value='%a'/>
<name value='%b'/>
<name value='UNKNOWN'/>

If %a is defined, the name is its value. Otherwise, if %b is defined, the name is %b. Finally, if both are
undefined, the name is UNKNOWN.

Fallback Semantics for Attributes

To determine the value of an attribute, the <attr> definitions for that attribute are processed one by one in
order of appearance within the parent tag. For each definition, all combinations of variables used within it
are enumerated, and all non-fail values produced are collected into a set:

• If the set contains exactly one value, it is taken as the value of the attribute.
• If the set contains multiple values, and the <attr> tag has a join attribute specified, the values are

concatenated using the value of the join attribute as a delimiter, and the resulting string is used as the
value for the repository attribute.

• Otherwise, the definition fails, and the next definition in the sequence is processed. If there are no
definitions left, the attribute is left unspecified.

62 | Identifying Interfaces for Generic API Analysis

This behavior provides a way to determine if the variable has a specific value in its value set. The following
example sets the attribute to False if the first parameter can be undefined, to True otherwise:

<attr name='Completed' switch-var='1'>
 <undef value='False'/>
</attr>
<attr name='Completed' value='True'/>

Using a Function Call

When a variable name contains commas, it is split into a sequence of fragments at their boundaries, and
then interpreted as a sequence of function names and their parameters. In the following example:

%{substr,0,4,myvar}

the substr function extracts the first four characters from the value of %myvar. The table below describes
the available functions.

Functions can be nested by specifying additional commas in the last argument of the preceding function. In
the following example:

%{int,substr,0,4,map}
switch-var='trim,substr,4,,map'

the first line takes the first four characters of the variable and converts them to a canonical integer, the
second line takes the remainder, removes leading and trailing spaces, and uses the result in a switch, and
so forth.

Function Description

substr,<start>,<size>,<variable> Extracts a substring from the value of the variable. The substring
begins at position <start> (counted from 0), and is <size> characters
long. If <size> is an empty string, the substring extends up to the end
of the value string.

int,<variable> Interprets the value of the variable as an integer and formats it in
canonical form, without preceding zeroes or explicit plus (+) sign. If
the value is not an integer, the function fails.

trim,<variable> Removes leading and trailing spaces from a string value of the
variable.

const,<string> or =,<string> Returns the string as the function result.

warning,<id-num>[,<variable>] Produces the warning specified by <id-num>, a numeric code that
identifies the warning in the backend.msg file, and returns the value of
the variable. If the variable is not specified, the function fails. So %
{warning,12345} is equivalent to %{warning,12345,_fail}.

␊

Understanding Enumeration Order

If the definition of the name of a relationship or the name or type of an entity contains substitution variables
that have several possible values, the parser enumerates the possible combinations. The loops are
performed at the boundary of the innermost <entity> or <rel> tag that contains the reference. (Loops for the
target or source are raised to the <rel> level.)

Identifying Interfaces for Generic API Analysis | 63

Once the value for a variable has been established at a loop insertion point, it is propagated unchanged to
the tags within the loop tag. So an entity attribute specification that refers to a variable used in the name of
the entity will always use the exact single value that was used in the name.

If the expression for a name or type fails, the specified entity or relationship is locked out from processing for
the particular combination of values that caused it to fail. This behavior can be used to completely block
whole branches of entity/relationship definition tags:

<entity ...>
 <type switch-var='a'>
 <case eq='1' value='TABLE'/>
 </type>
 <rel name='InsertsTable'/>
</entity>
<entity ...>
 <type switch-var='a'>
 <case eq='2' value='MAP'/>
 </type>
 <rel name='Sends'..../>
</entity>

If %a is 1, the first declaration tree is used, and the table relationship is generated; the second declaration is
blocked. If %a is 2, the second declaration tree is used, and the map relationship is generated; the first
declaration is blocked.

Note: These enumeration rules require that the value of a repository entity attribute not depend on
variables used in the name of an enclosing <rel> tag, unless that variable is also used in the name of
the entity itself. Otherwise, the behavior is undefined.

Understanding Decisions

A decision is a reference to another object (a program or screen, for example) that is not resolved until run
time. If there are multiple possible combinations of values of variables used in the name of the target entity,
or if some of the variables are undefined, the parser creates a decision entity, replacing the named
relationship with a relationship to the decision and a set of relationships from the decision to each instance
of the target entity.

When you use the <rel> tag at the top level of the repository definition, you can specify a decision attribute
that tells the parser to create a decision regardless of the number of possible values:

• yes means that a decision is created regardless of the number of possible values.
• no means that a decision is never created (multiple values results in multiple direct relationships).
• auto means that a decision is created if more than one possible value exists, and is not created if there is

exactly one possible value.

Both the relationship name and the type of the target entity must be specified as plain static strings, without
any variable substitutions or switches:

<rep>
 <rel name='ReadsDataport' decision='yes'>
 <target type='DATAPORT' name='%_pgmname.%x'/>
 </rel>
</rep>

64 | Identifying Interfaces for Generic API Analysis

Understanding Conditions

The <cond> subtag specifies a condition that governs the evaluation of declarations in its parent <entity> or
<relationship> tag. The evaluation semantics of the tag follow the semantics for the <attr> tag: a non-empty
string as a result indicates that the condition is true, an empty string or a failure indicates that the condition
is false. Multiple <cond> tags can be specified, creating a fallback chain with <attr>-style fallback semantics.

Notice in the example given in the section on decisions that the parser creates a decision entity even when
the name of the target resolves to a single value. Use a <cond> subtag in the relationship definition to avoid
that:

<rel name='ReadsDataportDecision'>
 <cond if-multi='%x' value='%_yes'/>
 <target type='DECISION'>
 <attr name='HCID' value='%_hcid'/>
 <attr name='DecisionType' value='DATAPORT'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.%_varname1'/>
 <attr name='AKA'
 value='%_pgmname.ReadsDataport.'/>
 <attr name='VariableName' value='%_varname1'/>
 <attr name='Completed' if-closed='%x'
 value='True'/>
 <rel name='ResolvesToDATAPORT'>
 <target type='DATAPORT'
 name='%_pgmname.%x'/>
 </rel>
 </target>
</rel>
<rel name='ReadsDataport'>
 <cond if-single='%x' value='%_yes'/>
 <target type='DATAPORT' name='%_pgmname.%x'/>
</rel>

This repository definition produces the same result as the example in the section on decisions, except that
no decision is created when the name of the target resolves to a single value.

_yes and _no are predefined variables that evaluate, respectively, to a non-empty and empty string for true
and false, respectively. The if-single attribute means that the <cond> tag should be interpreted only if the
specified variable has a single defined value. The if-multi attribute means that the <cond> tag should be
interpreted if the variable has multiple values, none, or can be undefined. The if-closed attribute blocks the
<cond> tag if the variable has an undefined value.

Note: if-single, if-multi, and if-closed can also be used with the <attr> tag.

Conditions have join set to an empty string by default, resulting in a _yes outcome if any combination of
values of the variables used in switches within causes it to evaluate to _yes. If a particular condition
definition should fail when some of the values evaluate to _no and others to _yes, use a yes-only='yes'
attribute specification. That causes join to be unset, and the condition to give a non-fail outcome only when
all values evaluate to _yes.

In a relationship definition, <cond> determines whether the relationship is generated. For a decision
relationship, it also determines whether the decision entity should be generated.

Identifying Interfaces for Generic API Analysis | 65

In an entity definition, <cond> governs all attribute and subrelationship definitions in the tag, and the
creation of the entity in case of a standalone entity. For an entity specified in a <target> or <source> tag,
instantiation of the relationship automatically spawns the corresponding entity, meaning that a false
condition on the source or target of a relationship does not prevent creation of corresponding entities.

Usage Example

The following example illustrates use of the Generic API Analysis feature:

<APIEntry name='Call another program'>
 <match stmt="CALL">
 <name value="INVOKEPGM"/>
 </match>
 <flow halts='no'>
 <param index='1' usage='r'/>
 <param index='*' usage='w'/>
 </flow>
 <vars>
 <arg var='a' param='2' type='bit' len='5'/>
 </vars>
 <rep>
 <rel name='CallsDecision'>
 <target type='DECISION'>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM(%_varname1)'/>
 <attr name='AKA'
 value='%_pgmname.
 Calls.INVOKEPGM'/>
 <attr name='DecisionType'
 value='PROGRAMENTRY'/>
 <attr name='HCID' value='%_hcid'/>
 <attr name='VariableName'
 value='%_varname1'/>
 <attr name='Completed' switch-var='1'>
 <undef value='False'/>
 </attr>
 <attr name='Completed' value='True'/>
 <rel name='ResolvesToProgramEntry'>
 target type='PROGRAMENTRY'
 name='%1'/>
 </rel>
 </target>
 </rel>
 </rep>
 <hc>
 <attr name='test' switch-var='a' join=','
 <case eq='00101' value='X'/>
 <undef value='?'/>
 <default value='%a'/>
 </attr>
 </hc>
</APIEntry>

66 | Identifying Interfaces for Generic API Analysis

Support for IMS Aliases

The <IMSC> subtag in the <Auxiliary> section of Legacy.xml contains definitions for the standard CBLTDLI
or PLITDLI programs. You can also use it to define aliases for non-standard IMS batch interfaces.

If the order of parameters in the alias program is the same as the order of parameters in the standard
program, simply enter the alias name in the <Detect> and <APIEntry> tags, as follows:

<IMSC>
 <Cobol>
 <Detect>
 <item> 'CBLTDLI' </item>
 <item> 'MYCBLTDLI' </item>
 </Detect>
 ...
 <Process>
 <APIEntry name='IMS call'>
 <match stmt="CALL">
 <name value="CBLTDLI"/>
 <name value="MYCBLTDLI"/>
 </match>
 ...
 </Process>
 </Cobol>
</IMSC>

If the order of parameters in the alias program differs from the order in the standard program, you also need
to specify a full API entry, using the:

• <match> tag to define the alias name and method of invocation.
• <flow> tag to characterize the program control flow.
• <ims-call> tag to specify the call parameters.

Use the definitions for CBLTDLI or PLITDLI as examples.

Attributes of <ims-call> are:

• count specifies the index of the parameter that contains the argument count.
• opcode specifies the index of the parameter that contains the operation code.
• pcb specifies the index of the parameter that contains the Program Control Block (PCB) pointer.
• arg-base specifies the index of the first data parameter, usually io-area.

Note: Alternative parameter order is allowed only for the params-num, function-code, and pcb
parameters. All other parameters (io-area and ssa) must appear in the same order as they do in the
standard IMS call, at the end of the parameter list.

Skip Type Usage
Use the skip-type attribute of the <param> subtag in the <halts> section to ensure that the optional first
parameter of a Cobol IMS CALL is parsed only if necessary. If the actual parameter passed by the program
in the first position has the type specified by the regular expression in skip-type, the parameter is filled with a
dummy value and the actual value is used in the next parameter.

Identifying Interfaces for Generic API Analysis | 67

Note: Skip definitions are also available for use in non-IMS generic API entries.

Example

If the first parameter in a call is a 4-character picture, the following definition inserts a dummy value in the
first position and treats the actual value as that of the second parameter:

<param index='1'
 usage='r'
 skip-type='PIC:(X\(4\)'/>

Note: Skip definitions are currently limited to declarations having picture clauses. Use regular
expression syntax to specify normalized picture strings.

68 | Identifying Interfaces for Generic API Analysis

Index
A

archivers 6
autodetecting environment 27

B

boundary decisions 29

C

Cobol range jumps 39
Cobol range overlaps 39
compiler constant directives 28
conditional compiler constants 28
Cross-reference Report 46
CRUD report 44, 45

D

Decision Resolution 46, 51–54, 61

E

encoding 7
Executive Report 36–39
External Reference Report 46

F

file extensions 6

G

generate copybook options 30
generating copybooks 30, 31
Generic API Analysis 55–67

I

invalidating objects 15

J

Japanese-language support 7, 9

L

loading source files 6

O

Orphan Analysis 46, 49, 50

P

parallel verification 14, 23
project

creating 11
deleting 13
emptying 13
including referenced or referencing objects 12
moving or copying files 12
protecting 11
removing unused support objects 13
sharing 11

R

rar files 6
Reference Reports 46–48
refreshing source files 8
registering files 6
Registration Options 6, 7
relaxed parsing 22
reports 33

S

sort card analysis 23
source files

creating 8
exporting from a workspace 9
refreshing 8
registering 6

staged parsing 21, 22
system programs 28

U

Unreferenced Report 46
Unresolved Report 46

V

verification 14, 15
verification options 15, 17, 21–24, 27, 28
Verification Report 33–35

W

workspace
deleting 9
deleting objects 9
registering files 6

Index | 69

Z
zip files 6

70 | Index

	Contents
	Registering Source Files
	Setting Registration Options: Extensions Tab
	Setting Registration Options: Source Files Tab
	Creating New Source Files
	Refreshing Source Files
	Exporting Source Files from a Workspace
	Deleting Objects from a Workspace
	Deleting a Workspace
	Japanese Language Support

	Setting Up Projects
	Creating Projects
	Sharing Projects
	Protecting Projects
	Moving or Copying Files into Projects
	Including Referenced and Referencing Objects in a Project
	Removing Unused Support Objects from a Project
	Emptying a Project
	Deleting a Project

	Verifying Source Files
	Enabling Parallel Verification
	How the System Refreshes the Repository
	Invalidating Objects Before Reverification
	Setting Workspace Verification Options: Legacy Dialects Tab
	Setting Workspace Verification Options: Settings Tab
	Enabling Staged Parsing
	Basic Repository Information
	Full Logical Objects Information
	HyperView Information
	Dead Code Statistics

	Enabling Relaxed Parsing
	Enabling Advanced Data Flow Analysis for Control Language Files
	Enabling Sort Card Analysis
	Truncating Names of Absolute Elements

	Setting Workspace Verification Options: Parallel Verification Tab
	Setting Project Verification Options
	Specifying the Processing Environment
	Specifying Conditional Compiler Constants
	Optimizing Verification for Advanced Program Analysis

	Identifying System Programs
	Specifying Boundary Decisions
	Generating Copybooks
	Setting Generate Copybooks Options
	Copybook Generation Order

	Performing Post-Verification Program Analysis
	Restrictions on Cobol Post-Verification Program Analysis
	Restrictions on PL/I Post-Verification Program Analysis

	Using Post-Verification Reports
	Viewing Verification Reports
	Errors Pane
	Files Affected Pane
	Source Pane
	Marking Items
	Including Files into Projects
	Generating HTML Reports

	Viewing Executive Reports
	Setting Executive Report Options
	Defining Potential Code Anomalies
	Cobol Range Overlaps and Range Jumps Detected in the Executive Report

	Viewing CRUD Reports
	Setting CRUD Report Options

	Inventorying Applications
	Using Reference Reports
	Understanding the Reference Reports Window
	Main Pane
	Preview Pane

	Setting Reference Reports Options

	Using Orphan Analysis Reports
	Understanding the Orphan Analysis Window
	Found Objects Pane
	Orphan Source Pane

	Setting Orphan Analysis Options
	Deleting Orphans from a Project
	Deleting Orphans from a Workspace

	Resolving Decisions
	Understanding Decisions
	Understanding the Decision Resolution Tool Window
	Decision List Pane
	Available Targets Pane
	Source Pane

	Resolving Decisions Manually
	Restoring Manually Resolved Decisions
	Resolving Decisions Automatically
	Setting Decision Resolution Tool User Preferences

	Identifying Interfaces for Generic API Analysis
	Identifying Unsupported API Calls to the Parser
	Using the API Entry Tag
	Using the match Tag
	Using the flow Tag
	Using the vars Tag
	Cobol-Specific Usage
	PL/I-Specific Usage

	Using the rep and hc Tags
	Using Predefined Patterns
	Using Custom Patterns
	Using the entity Subtag
	Using the rel Subtag

	Using Expressions
	Basic Usage
	Simple Notation
	Switch Usage
	Fallback Chain Usage
	Fallback Semantics for Attributes

	Using a Function Call
	Understanding Enumeration Order

	Understanding Decisions
	Understanding Conditions
	Usage Example
	Support for IMS Aliases
	Skip Type Usage

	Index

