User Guide
Version 4.1.2

IONA Technologies PLC

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.

“Orbacus” and “JThreads/C++" are trademarks or registered trademarks of IONA Tech-
nologies, Inc.

IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA e-Busi-
ness Platform, and Total Business Integration are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 01-Oct-2003

Contents

List of Figures
Preface

Chapter 1 Getting Started

The ‘Hello World’ Example Application

Defining the Example in IDL

Implementing the Example in C++
Implementing the Server
Writing the Server Program
Implementing the Client
Compiling and Linking
Running the Application

Implementing the Example in Java
Implementing the Server
Implementing the Client
Compiling
Running the Application

Summary

Where To Go From Here

Chapter 2 Generating Code with Orbacus
Orbacus Translators
Translating IDL to C++
Translating IDL to Java
Translating IDL to HTML
Translating IDL to RTF
Generating C++ from an Interface Repository
The IDL-to-C++ Translator and the Interface Repository
Include Statements
Documenting IDL Files
Using javadoc

Xiii

27
28
29
33
35
36
38
39
40
41
43

CONTENTS

Chapter 3 ORB and Object Adapter Initialization

Initializing the C++ ORB
Initializing the Java ORB
Object Adapter Initialization
Configuring the ORB and Object Adapter
ORB Properties
OA Properties
Command-line Options
Using a Configuration File
Using the Windows NT Registry
Defining Properties
Precedence of Properties
Advanced Property Usage
Using POA Managers
The Root POA Manager
Anonymous POA Managers
The POA Manager Factory
Endpoints
Command-line Options and Endpoints
Dispatching Requests
Callbacks
ORB Destruction
Server Event Loop

Chapter 4 CORBA Objects

Overview
Implementing Servants
Implementing Servants using Inheritance
Implementing Servants using Delegation
Creating Servants
Creating Servants using C++
Creating Servants using Java
Activating Servants
Implicit Activation of Servants using C++
Implicit Activation of Servants using Java
Explicit Activation of Servants using C++
Explicit Activation of Servants using Java
Deactivating Servants

47
48
49
50
51
52
59
61
63
64
65
67
68
70
71
72
73
75
76
77
78
79
80

83
84
86
87
90
95
96
97
99

100
101
102
103
104

CONTENTS

Factory Objects 106
Factory Objects using C++ 108
Factory Objects using Java 110
Caveats 111
Obtaining the POA for a Servant 112
Getting the POA for a Currently Executing Request 114

Chapter 5 Locating Objects 117

Obtaining Object References 118

Lifetime of Object References 122
Hostname 123
Port Number 124
Object Key 125

Stringified Object References 126
Using a File 127
Using a URL 129

Object Reference URLs 130
corbaloc: URLs 131
corbaname: URLs 133
file: URLs 134
relfile: URLs 135

The BootManager 136
BootManager Interface 137
How the BootManager Works 138
Using the BootManager 139

Initial Services 140
Resolving an Initial Service 141
Configuring the Initial Services 143
The Initial Service Locator 145

The IORDump utility 146

Chapter 6 The Implementation Repository 149

Background 151

Information Managed by the IMR 152

IMR Security 155

Usage 156

Windows NT Native Service 158

Configuration Properties 160

CONTENTS

Connecting to the Service 161
Utilities 162
Getting Started with the Implementation Repository 165
Programming Example 168
Chapter 7 The Implementation Repository Console 173
Usage 174

The Menus 175
Chapter 8 Orbacus Names 179
Usage 181
Windows NT Native Service 183
Configuration Properties 185
Persistence 186
Connecting to the Service 187

Using the Naming Service with the IMR 188
Bindings 189
Name Resolution 191
Programming Example 192
Initialization 193

Binding 195

Exceptions 198

The Event Loop 200

Releasing Resources 201

Chapter 9 Orbacus Names Console 203
Usage 204
Naming Service Lookup 205

The Menus 206

The Edit Menu 208

The View Menu 210

The Tools Menu 212

The Toolbar 214

The Popup Menu 215
Chapter 10 Orbacus Properties 217
Usage 218

Connecting to the Service 219

Vi

CONTENTS

Using the Property Service with the IMR 220
Creating Properties 221
Querying for Properties 222
Deleting Properties 224
Programming Example 225
Chapter 11 Orbacus Events 229
Usage 230
Windows NT Native Service 231
Configuration Properties 233
Connecting to the Service 235
Using the Event Service with the IMR 236
Event Service Concepts 237
The Event Channel 238

Event Suppliers and Consumers 239

Event Channel Policies 241

Event Channel Factories 242
Programming Example 245
Chapter 12 The Interface Repository 249
Usage 250
Windows NT Native Service 251
Configuration Properties 253
Connecting to the Interface Repository 254
Configuration Issues 255
Interface Repository Utilities 256
Programming Example 257
Chapter 13 Orbacus Balancer 259
Basic Concepts 260
Load Balancing Strategies 261
Service Security 264
Usage 265
Windows NT Native Service 266
Configuration Properties 268
Built-in Load Balancing Strategies 270
Connecting to the Service 273

Load Balanced IMR-enabled Servers 274

vii

CONTENTS

Utilities

Service Administration

Making References

Utility Objects

Utility Object Configuration Properties
Programming Example

Non-adaptive Load Balancing

Adaptive Load Balancing

Running the Load Balanced Servers

Chapter 14 Orbacus Watson
Tracing Levels
Installing Watson in C++
Installing Watson in Java
Configuration Properties
Sample Configuration File

Chapter 15 Using Policies

Overview

Supported Policies

Programming Examples
Connection Reuse Policy
Retry Policy
Timeout Policy
Interceptor Call Policy

Chapter 16 Concurrency Models
Concurrency Models
Single-Threaded Concurrency Model
Multi-Threaded Concurrency Models
Threaded Clients and Servers
Thread-per-Client Server
Thread-per-Request Server
Thread Pool Server

The Reactor
The X11 Reactor
The Windows Reactor

viii

275
276
277
278
279
280
281
286
290

293
294
295
296
297
298

299
300
301
304
305
308
310
311

313
314
316
319
320
322
323
324
325
326
327

CONTENTS

Chapter 17 The Open Communications Interface 329
Interface Summary 330
Class Diagram 332

OCI Reference 333
A ‘Converter’ Class for Java 334
Getting Hostnames and Port Numbers 335
Determining a Client’s IP Address 337
Determining a Server’s IP Address 339

The IHOP OCI Plug-in 341
Endpoint Configuration 342
Command-line Options 344

Static Linking 345

The UDP OCI Plug-in 346
Client Installation 347
Server Installation 348
Endpoint Configuration 349

Static Linking 352

URL Support 353
Narrowing UDP Object References 354

The Bi-directional OCI Plug-in 355
How Does it Work? 356

Peers 357

Client Installation 358
Server Installation 359
Endpoint Configuration 360
Command-line Options 361
Configuration Properties 362

Static Linking 363

URL Support 364
Chapter 18 Exceptions and Error Messages 365
CORBA System Exceptions 366
INITIALIZE Minor Exception Code 369
UNKNOWN Minor Exception Code 370
BAD_PARAM Minor Exception Code 371
NO_MEMORY Minor Exception Code 373
IMP_LIMIT Minor Exception Code 374

COMM_FAILURE Minor Exception Code 375

CONTENTS

MARSHAL Minor Exception Code 376
NO_IMPLEMENT Minor Exception Code 378
NO_RESOURCES Minor Exception Code 379
BAD_INV_ORDER Minor Exception Code 380

TRANSIENT Minor Exception Code 381
INTF_REPOS Minor Exception Code 382
OBJECT_NOT_EXIST Minor Exception Code 383

INV_POLICY Minor Exception Code 384
Non-Compliant Application Asserts 385
Appendix A Boot Manager Reference 389
Interface OB::BootManager 390
Interface OB::BootLocator 392
Appendix B Orbacus Policy Reference 393
Module OB 394
Interface OB::ConnectTimeoutPolicy 396

Interface OB::ConnectionReusePolicy 397

Interface OB::InterceptorPolicy 398

Interface OB::LocateRequestPolicy 399

Interface OB::LocationTransparencyPolicy 400

Interface OB::ProtocolPolicy 401

Interface OB::RequestTimeoutPolicy 402

Interface OB::RetryPolicy 403

Interface OB::TimeoutPolicy 404

Module OBPortableServer 405
Interface OBPortableServer::InterceptorCallPolicy 406

Appendix C Reactor Reference 407
Module OB 408
Interface OB::Reactor 409

Appendix D Logger Reference 411
Interface OB::Logger 412

Interface OB::WLogger 413

Appendix E Open Communications Interface Reference

Module OCI

Interface OCI::
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:

Interface OCI

Interface OCI:
Interface OCI:

Interface OCI

Interface OCI:

Module OCI::1IOP

Interface OCI:
Interface OCI::
Interface OCI::
Interface OCI:
Interface OCI::

Buffer

:Plugin

:Transport
:Transportinfo
:CloseCB
:Connector
:Connectorinfo
:ConnectCB
:ConFactory
:ConFactorylnfo
:ConFactoryRegistry
:Acceptor
:Acceptorinfo
::AcceptCB
:AccFactory
:AccFactorylnfo
::AccFactoryRegistry
:Current

:lIOP::Transportinfo

IIOP::Connectorinfo
I10P::ConFactorylnfo

:1IOP::Acceptorinfo

I10P::AccFactorylnfo

Appendix F Orbacus Balancer Reference

Module LoadBalancing

Interface LoadBalancing:
Interface LoadBalancing:
Interface LoadBalancing:
Interface LoadBalancing:
Interface LoadBalancing:

Module LoadBalancing::Util

Interface LoadBalancing:
Interface LoadBalancing:
Interface LoadBalancing:

:LoadAlert
:Strategy
:StrategyProxy
:Group
:GroupFactory

:Util::LoadAlert
:Util::LoadCalculator
:Util::LoadUpdater

CONTENTS

415
416
420
422
423
428
430
431
433
435
436
438
439
440
443
445
446
448
449
450
451
452
453
454
455
456

457
458
463
464
465
466
468
469
470
471
472

Xi

CONTENTS

References 473

Index 475

Xil

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Documentation generated with the IDL-to-HTML translator
Servants, Proxies and the Object Adapter

Class Hierarchy for Delegation Implementation in C++
Class Hierarchy for Inheritance and Delegation Implementation in Java
Entering an IOR

The Ping Window

A closer look at the toolbar

A popup menu offers important operations

Reactive Server

Reactive Client/Server

Threaded Server

Thread-per-Client Server

Thread-per-Request Server

Thread Pool Server

OCI Class Diagram

Connection Requirements

41

84

91

93
207
212
214
215
316
317
320
322
323
324
332
356

Xiii

LIST OF FIGURES

Xiv

What is Orbacus?

Ease of Use

Qualities of Service

Preface

Orbacus is an Object Request Broker (ORB) that is compliant with the
Common Object Request Broker Architecture (CORBA) specification as
defined in “The Common Object Request Broker: Architecture and
Specification” [4], “C++ Language Mapping” [5], “IDL/Java Language
Mapping” [6], and “Portable Interceptors” [7].

The following sections highlight some of the features of Orbacus.

® Configuration and bootstrapping is simple:
+ Daemon-less servers
¢ Servers started automatically by the Implementation Repository
¢ URL-style object references
Watson diagnostics and analysis - method tracing within the ORB
® Extensible Logging facility - output to multiple devices
® Documentation Tools - Translators (see “Orbacus Translators” on
page 28)
¢ IDL to Hypertext Markup Language (HTML)
¢ IDL to Rich Text Format (RTF)

® JThreads/C++ - Java like threading for C++. (See the Orbacus
JThreads User Guide.)

® Load Balancing - balance client requests across a set of replicated
objects and stateless servers.

XV

PREFACE

CORBA features

XVi

Fault Tolerance - transparent failover by implementing multiple profile
Interoperable Object References.

Active Connection Management - reclaim idle connections
automatically, conserving threads, sockets, memory and other
important system resources.

Security - FreeSSL plug-in provides secure authentication and
encryption facilities. (See the Orbacus FreeSSL User Guide.)
Concurrency - Single and Multithreaded models to exploit power of
multiprocessor hardware.

Dynamic Loading Of Modules - transparently install extensions and
services such as transactions, interceptors, and protocol plug-ins.
Flexibility through pluggable transport protocols. (See “The Open
Communications Interface” on page 329.)

CORBA 2.5 support

CORBA Services

¢ Naming, Events and Property services are part of the Orbacus
product.

+ Orbacus interoperates with the Orbix Notification, Orbix Trader
and Orbix Telecom Logging services.

Portable Interceptors - provide a "hook" for adding code that is called

upon for each operation invocation.

Portable Object Adapter - provides high scalability for servers that

contain very large numbers of objects.

Objects by Value - reduce network traffic by turning a remote

interaction into a local invocation.

Dynamic Invocation and Dynamic Skeleton Interface - send and receive

requests without compile-time knowledge of interface types and

operation signatures.

Implementation Repository - start servers on demand and migrate

servers to different hosts without adversely affecting clients.

Interface Repository - build IDL-to-anything translators easily

Support for Local Interfaces - standard way to implement

locality-constrained objects

Platform support

About this Document

Getting Help

Additional resources

PREFACE

For platform availability, please refer to the Orbacus home page at http://
www.orbacus.com/platforms.html.

This manual is—except for the “Getting Started” chapter—no replacement
for a good CORBA book. This manual also does not contain the precise
specifications of the CORBA standard, which are freely available on-line. A
good grasp of the CORBA specifications in [4], [5], and [6] is absolutely
necessary to effectively use this manual. In particular, the chapters in [4],
covering CORBA IDL and the IDL-to-C++ mapping, should be studied
thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far
the best treatment of CORBA programming with C++ to date.

What this manual does contain, however, is information on how Orbacus
implements the CORBA standard. A shortcoming of the current CORBA
specification is that it leaves a high degree of freedom to the CORBA
implementation. For example, the precise semantics of a oneway call are
not specified by the standard.

To make it easier to get started with Orbacus, this manual contains a

“Getting Started” chapter, explaining some Orbacus basics with a very
simple example.

The latest updates to this guide can be found at http://www.orbacus.com/
support/manual/index.html.

Should you need any assistance with Orbacus, please visit our Support
Frequently Asked Questions (FAQ) list at http://www.orbacus.com/support/
fags.html.

The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Orbacus
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.orbacus.com/iona.com/support/
updates/index.xml) contains the latest releases and patches for IONA
products:

XVii

http://www.orbacus.com/support/manual/index.html
http://www.orbacus.com/support/manual/index.html
http://www.orbacus.com/platforms.html
http://www.orbacus.com/platforms.html
http://www.orbacus.com/support/faqs.html
http://www.orbacus.com/support/faqs.html
http://www.iona.com/support/knowledge_base/index.xml
http://www.orbacus.com/iona.com/support/updates/index.xml

PREFACE

Typographical conventions

Xviii

If you need help with this or any other IONA products, contact IONA at
support@orbacus.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

This guide uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (bj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@orbacus.com
mailto:docs-support@iona.com

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

[]

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

XiX

PREFACE

XX

In this chapter

CHAPTER 1

Getting Started

This chapter introduces you to Orbacus using a well-known
application: the ‘Hello World!" application is presented here
in a special client-server version.

This chapter contains the following sections:

The ‘Hello World’ Example Application page 2
Defining the Example in IDL page 3
Implementing the Example in C++ page 4
Implementing the Example in Java page 15
Summary page 24
Where To Go From Here page 25

CHAPTER 1 | Getting Started

The ‘Hello World’ Example Application

C++ and Java applications Many books on programming start with this tiny demo program. In
introductory C++ books you'll probably find the following piece of code in
the very first chapter:

/] C++
#i ncl ude <i ostream h>

int main(int, char*[])

{

cout << "Hello Wirld!'" << endl;
return 0O;

}

Or in introductory Java books:

/1 Java
public class Qeeter
{
public static void main(String args[])
{
Systemout.printin(“Hello Wrld!'");
}

}

These applications simply print “Hello World!” to standard output and that
is exactly what this chapter is about: Printing “Hello World!” with a
CORBA-based client-server application. In other words, we will develop a
client program that invokes a say_hel | o operation on an object in a server
program. The server responds by printing “Hello World!” on its standard
output.

Defining the Example in IDL

Defining the Example in IDL

CORBA-based program

How do we write a CORBA-based “Hello World!” program? The first step is
to create a file containing our IDL definitions. Since our example application
isn't a complicated one, the IDL code needed for this example is simple.

Save the IDL code shown below to a file called Hel | 0. i dI .

/1 1DL
interface Hello

{
b

voi d say_hello();

a b wN P

An interface with the name Hel | o is defined. An IDL interface is
conceptually equivalent to a pure abstract class in C++, or to an interface
in Java.

The only operation defined is say_hel | o, which neither takes any
parameters nor returns any result.

CHAPTER 1 | Getting Started

Implementing the Example in C++

Generating C++ from IDL The next step is to translate the IDL code to C++ using the IDL-to-C++
translator.

Translate the code in Hel 1 0. i dl to C++ using the following command:

id Hello.idl
This command will create the files:
hd Hello.h

® Hello.cpp
® Hello_skel.h
® Hello_skel.cpp

Now we will implement the server and client.

In this section This section discusses the following topics:
Implementing the Server page 5
Writing the Server Program page 7
Implementing the Client page 11
Compiling and Linking page 13
Running the Application page 14

Implementing the Example in C++

Implementing the Server

Overview

Hello_impl definition

To implement the server, we need to define an implementation class for the
Hel | o interface. To do this, we create a class Hel | o_i npl that is derived
from the “skeleton” class POA Hel | o, defined in the file Hel | o_skel . h.

Create a file Hel I o_i npl . h and enter the class definition of Hel | o_i npl
shown below:

1 // C++

2 #include <Hell o_skel . h>

3

4 class Hello_inpl : public POA Hello, public
5 Por t abl eSer ver : : Ref Count Ser vant Base
6 {

7 public:

8

9 virtual void say_hello()

10 t hr om{ CORBA: : Syst emExcepti on) ;

11 };

Since our implementation class derives from the skeleton class POA Hel | o,
we must include the file Hel | o_skel . h.

Here we define Hel | o_i npl as a class derived from PQA Hel | o and
Ref Count Ser vant Base. Ref Count Ser vant Base is part of the Port abl eSer ver
namespace and provides reference counting.

Our implementation class must implement all operations from the IDL
interface. In this case, this is just the operation say_hel | o.

CHAPTER 1 | Getting Started

Hello_impl implementation

6-9

Create a file Hel 1 o_i npl . cpp and enter the class implementation of
Hel | o_i npl shown below:

[l C++

#i ncl ude <i ostream h>
#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hel |l o_i npl . h>

void Hello_inpl::say_hello()
hr ow(CORBA: : Syst emExcept i on)
{

}

cout << "Hello World!" << endl;

©O©OoO~N—"TOUDhWNEPR

We must include a8/ QORBA. h, which contains definitions for the standard
CORBA classes, as well as for other useful things.

We must also include the Hel | o_i npl class definition, contained in the
header file Hel I o_i npl . h.

The say_hel | o function simply prints “Hello World!” on standard output.

Implementing the Example in C++

Writing the Server Program

Overview

main() function

Now we will write the server program. To simplify exception handling and
ORB destruction, we will split the server into two functions: mai n() and
run(), where mai n() only creates the ORB, and calls run()

Create a file with the name Server. cpp and enter the code for the nai n()
function shown below:

oO~NO O~ WNBRE

©

10 {
11
12
13
14
15
16
17
18
19
20
21
22
23

i nt

/] Ct+
#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hell o_i npl . h>

#i ncl ude <fstream h>

run(CORBA: : ORB_ptr);

int main(int argc, char* argv[])

int status = EXI T_SUCCESS;
CORBA: : ORB_var orb;

try

{
orb = CORBA:: ORB_init(argc, argv);
status = run(orb);

}
cat ch(const CORBA: : Excepti on&)
{
status = EXI T_FAI LURE;
}

CHAPTER 1 | Getting Started

2-5

16

17
19-22

24-34

36

24 i f(!CORBA: :is_nil(orb))

25 {

26 try

27 {

28 orb -> destroy();

29 }

30 cat ch(const CORBA:: Excepti on&)
31 {

32 status = EXI T_FAI LURE;
33 }

34 }

35

36 return status,;

37 }

Several header files are included. Of these, CB GCRBA. h provides the
standard CORBA definitions, and Hel | o_i npl . h contains the definition of
the Hel | o_i npl class.

A forward declaration for the run() function.

The first thing a CORBA program must do is initialize the ORB. This
operation expects the parameters with which the program was started.
These parameters may or may not be used by the ORB, depending on the
CORBA implementation. Orbacus recognizes certain options that will be
explained later.

The run() helper function is called.
This code catches and prints all CORBA exceptions raised by CRB i nit () or
run().

If the ORB was successfully created, it is destroyed. This releases the
resources used by the ORB. If dest roy() raises a CORBA exception, this
exception is caught and printed.

The exit status is returned. If there was no error, EXI T_SUCCESS is returned,
or EXI T_FAl LURE otherwise.

run() function

4-7

9-10
12-14

16-20

Implementing the Example in C++

Add the code for the run() function to Server. cpp:

1 /] C++

2 int run(CORBA: : ORB ptr orb)

3 {

4 CORBA: : Onj ect _var poaChj =

5 orb -> resolve_initial _references("Root POA");
6 Por t abl eServer:: POA var rootPoa =

7 Por t abl eServer:: POA: : _narrow poaQbj);

8

9 Por t abl eSer ver : : POAMVanager _var nanager =

10 root Poa -> t he_POAManager () ;

11

12 Hel I o_i npl * hel I ol npl = new Hel I o_i npl ();

13 Por t abl eServer: : Servant Base_var servant = hell ol npl ;
14 Hell o_var hello = hellolnpl -> _this();

15

16 CORBA: : String_var s = orb -> object_to_string(hello);
17 const char* refFile = "Hello.ref";

18 of stream out (refFil e);

19 out << s << endl;

20 out.close();

21

22 manager -> activate();

23 orb -> run();

24

25 return EX T_SUCCESS;

26 }

Using the ORB reference, resol ve_i ni ti al _ref erences() is invoked to
obtain a reference to the Root POA.

The Root POA is used to obtain a reference to its POA Manager.

A servant of type Hel | o_i npl is created and assigned to a Ser vant Base_var
variable. The servant is then used to incarnate a CORBA object, using the
_this() operation. Servant Base_var and Hel | o_var, like all _var types, are
“smart” pointer, i.e., servant and hel | o will release their assigned object
automatically when they go out of scope.

The client must be able to access the implementation object. This can be
done by saving a “stringified” object reference to a file, which can then be
read by the client and converted back to the actual object reference.! The
operation obj ect _to_string() converts a CORBA object reference into its
string representation.

CHAPTER 1 | Getting Started

22-23 The server must activate the POA Manager to allow the Root POA to start
processing requests, and then inform the ORB that it is ready to accept
requests.

1. |If your application contains more than one object, you do not need to save object
references for all objects. Usually you save the reference of one object which
provides operations that can subsequently return references to other objects.

10

Implementing the Example in C++

Implementing the Client

Overview

Client code

7-12
16-20

In several respects, the client program is similar to the server program. The
code to initialize and destroy the ORB is the same.

Save the following code in a file A i ent. cpp:

o~NOoO s WNBRE

9 int main(int argc,

10 {

12 }

14 int

15 {
16
17
18
19
20
21
22
23
24
25
26
27 }

i nt

/] C++
#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hell o. h>

#i ncl ude <fstream h>

run(CORBA: : ORB_ptr);
char* argv[])

// Same as for the server

run(CORBA: : ORB_ptr orb)

const char* refFile = "Hello.ref";
ifstreamin(refFile);

char s[2048];

in >> s;

CORBA: : Obj ect _var obj = orb -> string_to_object(s);

Hell o_var hello = Hello::_narrowobj);

hello -> say_hello();

return O;

In contrast to the server, the client does not need to include Hel | o_i npl . h.
Only the generated file Hel | o. h is needed.

This code is the same as for the server.

The “stringified” object reference written by the server is read and converted
to a OORBA: : hj ect object reference. It's not necessary to obtain a reference
to the Root POA or its POA Manager, because they are only needed by
server applications.

11

CHAPTER 1 | Getting Started

12

22

24

The _narr owoperation generates a Hel | o object reference from the

COCRBA: : (j ect object reference. Although _nar r owfor CORBA objects
works similar to dynani c_cast <> for plain C++ objects, dynani c_cast <>
must not be used for CORBA object references. That’s because in contrast to
dynam c_cast <>, _nar r owmight have to query the server for type
information.

The say_hel | o operation on the hel | o object reference is invoked, causing
the server to print “Hello World!”.

Implementing the Example in C++

Compiling and Linking

Overview

Dependencies

For more details

Compiling Hel | o. cpp results in an object file with the following name:

® UNIX: Hello.o

® Windows: Hell o. obj

You must link both the client and the server with the file for your platform.

The compiled Hel | o_skel . cpp and Hel | o_i npl . cpp are only needed by the
server.

Compiling and linking is to a large degree compiler- and
platform-dependent. Many compilers require unique options to generate
correct code.

To build Orbacus programs, you must at least link with the Orbacus library
for your platform:

® UNIX: libOB. a
® Windows: ob.lib

Additional libraries are required on some systems, such as | i bsocket . a and
I'i bnsl . a for Solaris or wsock32. | i b for Windows.

The Orbacus distribution includes various READVE files for different platforms
which give hints on the options needed for compiling and the libraries
necessary for linking. Please consult these README files for details.

13

CHAPTER 1 | Getting Started

Running the Application

Overview Our “Hello World!” application consists of two parts:
® The client program
® The server program
Start the server first, since it must create the file Hel | 0. ref that the client
needs in order to connect to the server. As soon as the server is running, you

can start the client. If all goes well, the “Hello World!” message will appear
on the screen.

14

Implementing the Example in Java

Implementing the Example in Java

Generating Java from IDL

In this section

In order to implement this application in Java, the interface specified in IDL

is

translated to Java classes similar to the way the C++ code was created.

Translate the code in Hel [0. i dl to Java using the following command:

jidl --package hello Hello.idl

This command generates several Java source files on which the actual
implementation will be based:

Hell o.java

Hel | oHel per . j ava

Hel | oHol der . j ava

Hel | oQper ati ons. j ava
Hel | oPQA. j ava

_Hell oSt ub. j ava

All these files are generated into a directory with the name hel | o.

This section discusses the following topics:

Implementing the Server page 16
Implementing the Client page 20
Compiling page 22
Running the Application page 23

15

CHAPTER 1 | Getting Started

Implementing the Server

Implementation class Create a file Hel | o_i npl . j ava in the directory hel | o and enter the following
code for the server's Hel | o implementation class:

/1l Java
package hel | o;

public class Hello_inpl extends Hell oPOA

{
public void say_hello()

{
}

Systemout.println("Hello World!")

P Oo0Oo~NO O WNPR

01}

4 The implementation class Hel | o_i npl must inherit from the generated class
Hel | oPQA.

6-8 As with the C++ implementation, the say_hel | o method simply prints
“Hello World!” on standard output.

16

Implementing the Example in Java

Server class main() method Create a file Server. j ava in the directory hel | o and enter the following
Server class code which holds the server's mai n() and run() methods:

O~NO O WNBRE

/] Java
package hell o;

public class Server
public static void main(String args[])

java.util.Properties props = System get Properties();

props. put (" org. ong. CORBA. ORBC ass",
"com ooc. OBSer ver. ORB") ;

props. put (" org. ong. CORBA. ORBSi ngl et onCl ass",
"com ooc. CORBA. ORBSi ngl et on") ;

int status = 0;
org.ong. CORBA. ORB orb = nul | ;

try

{
orb = org. ong. CORBA. ORB. i ni t (args, props);
status = run(orb);

}
cat ch(Excepti on ex)
{
ex. print StackTrace();
status = 1;
}
if(orb !'= null)
{
try
{
orb. destroy();
}
cat ch(Excepti on ex)
{
ex. print StackTrace();
status = 1;
}
}

System exi t (status);

17

CHAPTER 1 | Getting Started

18

8-12

19

20
22-26

28-39

41

These properties are necessary to use the Orbacus ORB instead of the JDK’s
ORB.

The ORB must be initialized using ORB. i ni t . The ORB class resides in the
package or g. ong. CORBA. You must either import this package, or, as shown
in this example, you must use or g. ong. CORBA explicitly.

The run() helper function is called.

This code catches and prints all CORBA exceptions raised by GRB.i nit () or
run().

If the ORB was successfully created, it is destroyed. This releases the
resources used by the ORB. If dest roy() raises a CORBA exception, this
exception is caught and printed.

The exit status is returned. If there was no error, 0 is returned, or 1
otherwise.

Server class run() method

5-10

12-23

15-28
30-31

Implementing the Example in Java

Add the run() method to Server. j ava:

1 // Java

2 static int run(org. ong. CORBA ORB orb)

3 throws org. ong. CORBA. User Except i on

4 {

5 org. ong. Port abl eServer. POA root POA =

6 or g. ong. Port abl eSer ver. POAHel per. narr ow
7 orb.resol ve_initial_references("Root POA"));
8

9 org. ong. Port abl eServer. POAManager manager =
10 r oot POA. t he_POAManager () ;

11

12 Hel I o_i npl hel I ol npl = new Hel I o_i npl ();

13 Hello hello = hellolnpl._this(orb);

14

15 try

16 {

17 String ref = orb.object_to_string(hello);
18 String refFile = "Hello.ref";

19 java.io.PrintWiter out = newjava.io.PrintWiter(
20 new java.io. FileQutputStreamrefFile));
21 out.println(ref);

22 out . close();

23 }

24 catch(java.io.| OException ex)

25 {

26 ex. print StackTrace();

27 return 1;

28 }

29

30 manager . acti vate();

31 orb.run();

32 return O;

33 }

34}

A reference to the Root POA is obtained using the ORB reference, and the
Root POA is used to obtain a reference to its POA Manager.

A servant of type Hel | o_i npl is created and is used to incarnate a CORBA
object. The CORBA object is released automatically when it is not used
anymore.

The object reference is “stringified” and written to a file.
The server enters its event loop to receive incoming requests.

19

CHAPTER 1 | Getting Started

Implementing the Client

Client.java Save this to a file with the name Qi ent . j ava in the directory hel | o:
1 // Java
2 package hell o;
3
4 public class dient
5 {
6 public static void main(String args[])
7 {
8 // Same as for the server
9 }
10
11 static int run(org. ong. CORBA. ORB orb)
12 {
13 org. ong. CORBA. Obj ect obj = null;
14 try
15 {
16 String refFile = "Hello.ref";
17 java.io. BufferedReader in = new
java. i o. Buf f er edReader (
18 new j ava.io. Fil eReader(refFile));
19 String ref = in.readLine();
20 obj = orb.string_to_object(ref);
21 }
22 catch(java.io. | CException ex)
23 {
24 ex. print StackTrace();
25 return 1;
26 }
27
28 Hell o hell o = Hel | oHel per. narrow(obj);
29
30 hel | 0. say_hel 1 o();
31
32 return O;
33 }
34}

6-9 This code is the same as for the server.
14-26 The stringified object reference is read and converted to an object.

20

28

30

Implementing the Example in Java

The object reference is “narrowed” to a reference to a Hel | o object. A simple
Java cast is not allowed here, because it is possible that the client will need
to ask the server whether the object is really of type Hel | o.

The say_hel | o operation is invoked, causing the server to print “Hello
World!” on standard output.

21

CHAPTER 1 | Getting Started

Compiling

Steps

To compile the application:

Ensure that your CLASSPATH environment variable includes the current
working directory as well as the Orbacus for Java classes (i.e the
B.j ar file) as shown below:

Platform

Command

UNIX

CLASSPATH=. : your _orbacus_directory/ | ib/ (B.jar: $OASSPATH
export CLASSPATH

Windows

set CLASSPATH=. ; your _orbacus_directory\li b\ CBE j ar; YCLASSPATHY

22

Replace your _or bacus_di rect ory with the name of the directory
where Orbacus is installed.

To compile the implementation classes and the classes generated by
the Orbacus IDL-to-Java translator, use j avac (or the Java compiler of
your choice):

javac hello/*.java

Implementing the Example in Java

Running the Application

Steps

To run the application, complete the following steps:

1. Start the ‘Hello World’ Java server by entering the following command
in a command prompt:
java hell o. Server

2. Start the ‘Hello World’ Java client by entering the following command:
java hello.dient
Again, make sure that your CLASSPATH environment variable includes
the CBE. j ar file.

You might also want to use a C++ server together with a Java client (or vice
versa). This is one of the primary advantages of using CORBA: if something
is defined in CORBA IDL, the programming language used for the
implementation is irrelevant. CORBA applications can talk to each other,
regardless of the language they are written in.

23

CHAPTER 1 | Getting Started

Summary

What have we learnt?

24

At this point, you might be inclined to think that this is the most
complicated method of printing a string that you have ever encountered in
your career as a programmer. At first glance, a CORBA-based approach may
indeed seem complicated. On the other hand, think of the benefits this kind
of approach has to offer. You can start the server and client applications on
different machines with exactly the same results.

Regarding the communication between the client and the server, you don't
have to worry about platform-specific methods or protocols at all, provided
there is a CORBA ORB available for the platform and programming language
of your choice. If possible, get some hands-on experience and start the
server on one machine, the client on another?. As you will see,
CORBA-based applications run interchangeably in both local and network
environments.

One last point to note: you likely won't be using CORBA to develop systems
as simple as our “Hello, World!” example. The more complex your
applications become (and today’s applications are complex), the more you
will learn to appreciate having a high-level abstraction of your applications'
key interfaces captured in CORBA IDL.

1. Note that after the startup of the server program, you have to copy the stringified
object reference, i.e., the file Hel | o. ref , to the machine where the client
program is to be run.

Where To Go From Here

Where To Go From Here

Further Reading

To understand the remaining chapters of this manual, you must have read
the CORBA specifications in [4], [5], and [6]. You will not be able to
understand the chapters that follow without a good understanding of
CORBA in general, CORBA IDL and the IDL-to-C++ or IDL-to-Java
mappings.

25

CHAPTER 1 | Getting Started

26

In this chapter

CHAPTER 2

Generating Code

with Orbacus

This chapter describes the Orbacus translators.

This chapter contains the following sections:

Orbacus Translators page 28
Translating IDL to C++ page 29
Translating IDL to Java page 33
Translating IDL to HTML page 35
Translating IDL to RTF page 36
The IDL-to-C++ Translator and the Interface Repository page 39
Include Statements page 40
Documenting IDL Files page 41
Using javadoc page 43

27

CHAPTER 2 | Generating Code with Orbacus

Orbacus Translators

Overview Orbacus includes the following code generators, or translators:
id Translates IDL to C++
jid Translates IDL to Java
hi di Translates IDL to HTML
ridl Translates IDL to RTF
irgen Generates C++ from an Interface Repository

28

Translating IDL to C++

Translating IDL to C++

Synopsis i dl [options] idl-files...

Description Translates IDL files into C++ files.
For each IDL file four C++ files are generated. For example,
idl MFile.idl
produces the following files:

M/File. h Header file containing M/Fi | e. i dI ’s translated data types
and interface stubs

M/Fi | e. cpp Source file containing MyFi I e. i dI ’s translated data types
and interface stubs

M/Fi |l e_skel . h Header file containing skeletons for MyFi | e. i dlI ’s interfaces

M/Fi | e_skel .cpp | Source file containing skeletons for MyFi | e. i dlI 's interfaces

Options -h, --help
Show a short help message.
-V, --version
Show the Orbacus version number.
-d, --debug

Print diagnostic messages. This option is for Orbacus internal
debugging purposes only.
- DNAVE
Defines NAME as 1. This option is directly passed to the preprocessor.
- DNAME=DEF
Defines NAME as DEF. This option is directly passed to the preprocessor.
- UNAVE
Removes any definition for NAMVE. This option is directly passed to the
preprocessor.
-IDR

29

CHAPTER 2 | Generating Code with Orbacus

Adds the directory DI Rto the include file search path. This option is
directly passed to the preprocessor.

Runs the source files through the preprocessor without generating
code.

- -no- skel et ons
Don’t generate skeleton classes.

- -no-type- codes
Don’t generate type codes and insertion and extraction functions for the
Any type. Use of this option will cause the translator to generate more
compact code.

--no-virtual -inheritance
Don't use virtual C++ inheritance. If you use this option, you cannot
use multiple interface inheritance in your IDL code, and you also
cannot use multiple C++ inheritance to implement your servant
classes.

--tie
Generate tie classes for delegate-based interface implementations. Tie
classes depend on the corresponding skeleton classes, i.e., you must
not use - - no- skel et ons in combination with - -ti e.

--fwd
Generate separate header files for forward declarations.

--inpl
Generate example servant implementation classes. An input file
Foo. i dI will generate the files Foo_i npl . h and Foo_i npl . cpp. These
files will not be overwritten, therefore you must first remove the
existing files before new ones can be generated. You must not use
--no- skel et ons in combination with this option.

--inpl-all
Similar to - -i npl , but function signatures are generated for all
inherited operations and attributes. You must not use - - no- skel et ons
in combination with this option.

--c-suffix SUFFI X
Use SUFFI X as the suffix for source files. The default value is . cpp.

--h-suf fi x SUFFI X
Use SUFFI X as the suffix for header files. The default value is . h.

30

Translating IDL to C++

- -stub-suffix SUFFI X
Use SUFFI X as the suffix for stub files. The default value is an empty
suffix.

--skel -suffix SUFFI X
Use SUFFI X as the suffix for skeleton files. The default value is _skel .

--all
Generate code for included files instead of inserting #i ncl ude
statements. See “Include Statements” on page 40.

--no-relative
When generating code, i dl assumes that the same -1 options that are
used with i dI are also going to be used with the C++ compiler.
Therefore i dI will try to make all #i ncl ude statements relative to the
directories specified with -1. The option - - no-rel ati ve suppresses
this behavior, in which case i dI will not make #i ncl ude statements for
included files relative to the paths specified with the -1 option.

--header-dir DR
This option can be used to make #i ncl ude statements for header files
relative to the specified directory.

--this-header-dir DR
Like the - - header - di r option, this option can be used to make
#i ncl ude statements for header files relative to the specified directory.
However, this option only applies to #i ncl ude statements for the
header files of this IDL file.

--other-header-dir DR
Like the - - header - di r option, this option can be used to make
#i ncl ude statements for header files relative to the specified directory.
However, this option only applies to #i ncl ude statements for the
header files corresponding to IDL files that were included in this IDL
file.

--output-dir DR
Write generated files to directory DIR.

--file-list FILE
Write a list of all generated files to file FILE.

--dl'l-inport DEF
Put DEF in front of every symbol that needs an explicit DLL import
statement.

31

CHAPTER 2 | Generating Code with Orbacus

--W th-interceptor-args
Generate code with support for arguments, result and exception list
values for interceptors.

--no-1| ocal - copy
To ensure strict compliance with CORBA’s location transparency
semantics, the default behavior of the translator is to generate code
that copies valuetype argument and result values for collocated
invocations. Specify this option to disable strict compliance and
generate more efficient code.

--case-sensitive
The semantics of OMG IDL forbid identifiers in the same scope to differ
only in case. This option relaxes these semantics, but is only provided
for backward compatibility with non-compliant IDL.

32

Translating IDL to Java

Translating IDL to Java

Synopsis

Description

Options for jidl

jid [options] idl-files...

Translates IDL files into Java files.

For every construct in the IDL file that maps to a Java class or interface, a
separate class file is generated. Directories are automatically created for
those IDL constructs that map to a Java package (e.g., a nodul e).

jidl can also add comments from the IDL file starting with /** to the
generated Java files. This allows you to use the j avadoc tool to produce
documentation from the generated Java files. See “Using javadoc” on
page 43 for additional information.

-h, --help

-V, --version

-d, --debug

- DNAME

- DNAME=DEF

- UNAME

-IDR

-E

- - no- skel et ons

--locality-constrai ned

--al

--tie

--file-list FILE

--no- | ocal - copy

--case-sensitive
These options are the same as for the i dl command.

--no-comrent s
The default behavior of ji dl is to add any comments from the IDL file
starting with / ** to the generated Java files. Specify this option if you
don’t want these comments added to your Java files.

- - package PKG
Specifies a package name for the generated Java classes. Each class
will be generated relative to this package.

- -prefix-package PRE PKG

33

CHAPTER 2 | Generating Code with Orbacus

Specifies a package name for a particular prefixl. Each class with this
prefix will be generated relative to the specified package.

- - aut o- package
Derives the package names for generated Java classes from the IDL
prefixes. The prefix ooc. com for example, results in the package
com oocC.

--output-dir DR
Specifies a directory where j i di will place the generated Java files.
Without this option the current directory is used.

--clone
Generates a cl one method for struct, union, enum, exception,
valuetype and abstract interface types. For valuetypes, only an abstract
method is generated. The valuetype implementer must supply an
implementation for cl one.

--inpl
Generates example servant implementation classes. For IDL interface
types, a class is generated in the same package as the interface
classes, having the same name as the interface with the suffix _i npl .
The generated class extends the POA class of the interface. For IDL
valuetypes, a class is generated in the same package as the valuetype
with the suffix Val ueFact ory_i npl . You must not use - - no- skel et ons
in combination with this option.

--inpl-tie
Similar to - -i npl , but implementation classes for interfaces implement
the Qper at i ons interface to facilitate the use of TIE classes. You must
not use - - no- skel et ons in combination with this option.

--with-interceptor-args
Generate code with support for arguments, result and exception list
values for interceptors. Note that use of this option will generate
proprietary stubs and skeletons which are not compatible with ORBs
from other vendors.

1. Prefix refers to the value of the #pragna prefi x statement in an IDL file. For
example, the statement #pr agma prefi x “*“ooc. conf defines ooc. comas the
prefix. The prefix is included in the Interface Repository identifiers for all types
defined in the IDL file.

34

Translating IDL to HTML

Translating IDL to HTML

Synopsis

Description

Options for hidl

hidl [options] idl -files..

Creates HTML files from IDL files.

An HTML file is generated for each module and interface defined in an IDL
file. Comments in the IDL file are preserved and j avadoc style keywords are
supported. The section “Documenting IDL Files” on page 41 provides more
information.

-h, --help

-V, --version
-d, --debug

- DNAMVE

- DNAMVE=DEF

- UNAMVE

-IDR

--al
--case-sensitive

These options are the same as for the i dl command.
--no-sort
Don’t sort symbols alphabetically.
--ignore-case
Sort case-insensitive.
--use-tabl es
Use tables for indices.
--al t-indent
Use alternative indentation for argument lists. The alternative format
requires less horizontal space, which is in particular useful if the
names of the operation or arguments are long.
--output-dir DR
Write HTML files to the directory DIR.

35

CHAPTER 2 | Generating Code with Orbacus

Translating IDL to RTF

Description ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is
generated for each module and interface defined in an IDL file. Comments in
the IDL file are preserved and j avadoc style keywords are supported. The
section “Documenting IDL Files” on page 41 provides more information.

Options for ridl -h, --help
-V, --version
-d, --debug
- DNAME
- DNAME=DEF
- UNAME
-IDR
--all
--case-sensitive

These options are the same as for the i dl command.
--no-sort
--ignore-case

--use-tabl es
--alt-indent

These options are the same as for the hi dl command.
--output-dir DR

Write RTF files to the directory DIR.
--single-file FILE

Create a single file called FILE.rtf.
--Wi t h-i ndex

Create index entries.

--font PARA NAME
--font-size PARA SI ZE

Specify the font name or size for a particular paragraph type. The paragraph
types and their default values are shown below.

Type Font Size

body roman Times New Roman 12pt

36

Translating IDL to RTF

Type Font Size
entry swiss Tahoma 12pt
extra same as body 12pt
heading swiss Arial 18pt
index same as heading 15pt
literal roman Courier New 10pt
symbol roman Symbol 12pt

37

CHAPTER 2 | Generating Code with Orbacus

Generating C++ from an Interface Repository

Synopsis i rgen name-base

Description i rgen generates C++ code directly from the contents of an Interface
Repository. See “The IDL-to-C++ Translator and the Interface Repository”
on page 39 for an example.

Options for irgen -h, --help
-V, --version
- -no-skel et ons
- -no-type- codes
--locality-contrained
--no-virtual -inheritance
--tie
--inpl
--inpl-all
--c-suffix SUFFI X
--h-suf fi x SUFFI X
- -skel -suf fi x SUFFI X
--header-dir DR
--other-header-dir DR
--output-dir DR
--file-list FILE
--dll-inport DEF
--with-interceptors-args
--no-1| ocal - copy

These options are the same as for the i dl command.

The argument to i r gen is the pathname to use as the base name of the
output filenames. For example, if the pathname you supply is
output/file, thenirgen will produce out put/file. cpp,
output/file.h, output/file_skel.cppand output/file_skel.h.
Note that i r gen will generate code for all of the type definitions
contained in the Interface Repository server.

See Chapter 12 for more information on the Interface Repository.

38

The IDL-to-C++ Translator and the Interface Repository

The IDL-to-C++ Translator and the Interface

Repository

Private Versus Global Interface
Repositories

Steps

Example

The Orbacus IDL-to-C++ and IDL-to-Java translators internally use the
Interface Repository for generating code. That is, these programs have their
own private Interface Repository that is fed with the specified IDL files. All
code is generated from that private Interface Repository.

However it is also possible to generate C++ code from a global Interface
Repository.

To generate C++ code from a global Interface Repository:
1. Start the Interface Repository using the command i rserv.

2. Feed the Interface Repository the IDL code, using the command
irfeed.

3. Finally, use the i rgen command to generate the C++ code.

For example:

irserv --ior > IntRep.ref &
irfeed -CRBrepository ‘cat IntRep.ref* file.idl
irgen -CRBrepository ‘cat IntRep.ref’ file

By comparison, the IDL-to-C++ translator i dI performs all these steps at
once, in a single process using a private Interface Repository. Thus, you only
have to run a single command:

idl file.idl
See Chapter 12 for more information on the Interface Repository.

39

CHAPTER 2 | Generating Code with Orbacus

Include Statements

Using #include statements

Restrictions

40

If you use the #i ncl ude statement in your IDL code, the Orbacus
IDL-to-C++ translator i di does not create code for included IDL files.
Instead, the translator inserts the appropriate #i ncl ude statements in the
generated header files.

There are several restrictions on where to place the #i ncl ude statements in
your IDL files for this feature to work properly:

® #incl ude may only appear at the beginning of your IDL files. All

#i ncl ude statements must be placed before the rest of your IDL code.t

® Type definitions, such as i nt erf ace or struct definitions, may not be
split among several IDL files. In other words, no #i ncl ude statement
may appear within such definitions.

If you do not want these restrictions to be applied, you can use the
translator option --al I with i dI . With this option, the IDL-to-C++
translator treats code from included files as if the code appeared in your IDL
file at the position where it is included. This means that the compiler will
not place #i ncl ude statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files
included by your IDL file.

Note that when generating code from an Interface Repository using i r gen,
the translator behaves identically to i dI with the --al | option. In other
words, the i rgen command does not place #i ncl ude statements in the
generated files, but rather generates code for all IDL definitions in the
Interface Repository.

1. Preprocessor statements like #def i ne or #i f def may be placed before your
#i ncl ude statements.

Documenting IDL Files

Documenting IDL Files

Overview

Example

Syntax

With the Orbacus IDL-to-HTML and IDL-to-RTF translators, hidl and ridl,
you can easily generate HTML and RTF files containing IDL interface

descriptions. The translators generate a nicely-formatted file for each IDL

module and interface.

Figure 1 shows an HTML example:

L Documentation for “0CI" - Hetscape

File Edit “iew Go Communicator Help

(43D baall

w§ " Bookmarks A Lacation: [fle:///Cl/rl/cpp/ob/idlOC] kil

Module OCI

The Cpen Comunurications Interface (OCT). The defintions i this module provide a uniform mterface to network
protocols. This allows for easy plug-in of new protocols or other comumunication mechanisms mto ORBs that implement
the OCL Furthermore, protocol implementations need only to be written once and can then be reuzed with all OCI
compliant ORBs. For more mformation, please see the OCT documentation.

Module Index

IoP

Thiz module contains mnterfaces to gather mformation on the IIOP OCT plug-in.

Interface Index

AccRegstry
A regstry for Acceptors.
AcceptCB
An nterface for an accept callback object.

Acceptor
An mterface for an Acceptor object, which 15 used by CORBA servers to accept clhient connection requests.

Figure 1: Documentation generated with the IDL-to-HTML translator

The formatting syntax supported by hi dI and ri dl is similar to that used by

j avadoc. The following keywords are recognized:

41

CHAPTER 2 | Generating Code with Orbacus

42

@ut hor aut hor
Denotes the author of the interface.
@xception exception-nanme description
Adds an exception description to the exception list of an operation.
@renber nenber-nane description
Adds a member description to the member list of a struct, union, enum
or exception type.
@ar am par anet er - nane description
Adds a parameter description to the parameter list of an operation.
@eturn description
Adds descriptive text for the return value of an operation.
@ee reference
Adds a “See also” note.
@i nce since-text
Comment related to the availability of new features.
@er si on version
The interface’s version number.

Like j avadoc, hidl and ridl use the first sentence in the documentation
comment as the summary sentence. This sentence ends at the first period
that is followed by a blank, tab or line terminator, or at the first @

ridl understands most basic HTML tags and produces an equivalent format
in the generated RTF files. The following HTML tags are supported:

 <OQCDE> <DD>> <DL> <DI> <HR> <| > <L| > <Q.> <P> <TABLE>
<TD> <TR> <U>

Using javadoc

Using javadoc

Adding IDL Comments

Example

If not explicitly suppressed with the - - no- conment s option, the Orbacus
IDL-to-Java translator j i dl adds IDL comments starting with / ** to the
generated Java files, so that j avadoc can be used to generate
documentation (as long as the comments are in a format compatible with
j avadoc).

Here is an example that shows how to include documentation in an IDL
interface description file. Let's assume we have an interface | in a module M

/1 1DL

nodul e M

{

/

*

This is a cooment related to interface |.
@ut hor Une Sei et

@ersion 1.0

EE T U

**/
interface |

{

/**

*

* This comment describes exception E
*

*k [

exception E { };

43

CHAPTER 2 | Generating Code with Orbacus

*

~

£k kR Ok ok ok ok k% %

The description for operation S
@aram arg A durmy ar gurrent .
@eturn A dummy string.

@xception E Rai sed under certain circunstances.

*
~

string S(in long arg)
rai ses(E);
IE
b

When running j i dl on this file, the comments are automatically added to
the generated Java files M | . j ava and M | Package/ E. j ava. For |.j ava, the
generated code looks as follows:

/'l Java
package M

/1

/] 1DL:M1:1.0

/1

/**

* This is a conment related to interface I.

*

* @ut hor Une Sei net

*

* @ersion 1.0

*

**/

44

Using javadoc

public interface | extends org. omy. CORBA (hj ect
{

11

// 1DL:M1/S:1.0

/1l

/**

*

* The description for operation S.

*

* @aramarg A dummy ar gurrent .

*

* @eturn A dumy string.
*
* @xception M| Package. E Rai sed under certain

ci r cunst ances.
*

**/
public String

S(int arg)
throws M | Package. E;

}

Note that ji dl automatically inserts the fully-qualified Java name for the
exception E (M | Package. E in this case).

These are the contents of | Package/ E. j ava:
/1 Java
package M | Package;

/]
// 1DL:MI/E 1.0
/1l
/**
* This comment descri bes exception E
*
**/
final public class E extends org. ong. CORBA User Excepti on
{
public
E()
{
}

45

CHAPTER 2 | Generating Code with Orbacus

Now you can use j avadoc to extract the comments from the generated Java
files and produce nicely-formatted HTML documentation.

For additional information please refer to the j avadoc documentation.

46

In this chapter

CHAPTER 3

ORB and Object
Adapter
Initialization

This chapter describes the initialization of client and server
ORBs in various languages.

This chapter contains the following sections:

Initializing the C++ ORB page 48
Initializing the Java ORB page 49
Object Adapter Initialization page 50
Configuring the ORB and Object Adapter page 51
Using POA Managers page 70
ORB Destruction page 79
Server Event Loop page 80

47

CHAPTER 3 | ORB and Object Adapter Initialization

Initializing the C++ ORB

48

In C++, the ORB is initialized with CORBA: : CRB i ni t () . For example:

[l Ct+

int min(int argc, char* argv[])

{
QCORBA: : CRB var orb = CORBA': GRB_init(argc, argv);
1. ..

}

The CCRBA : GRB i ni t () call interprets arguments starting with - CRB and
- QA All of these arguments, passed through the ar gc and ar gv parameters,
are automatically removed from the argument list.

Initializing the Java ORB

Initializing the Java ORB

The ORB implementation included in JDK 1.3 and newer can be considered
a “minimal” ORB, suitable primarily for use in basic client-oriented tasks. In
order to use the Orbacus ORB instead of the JDK’s default ORB, you must
start your application with the following properties:
java -Dorg. ong. CCRBA. CRBA ass=com ooc. CORBA. CRB \
- Dor g. ong. CORBA. CRBSI ngl et ond ass=com ooc. CCRBA. CRBSI ngl et on \
M App
An alternative is to set these properties in your program before initializing
the ORB. For example:

/] Java
i nport org. ong. CCRBA *;
public static void main(String args[])

{
java.util.Properties props = System get Properties();
props. put (" org. ong. CORBA. CRBd ass", "com ooc. CCRBA CRB") ;
props. put (" org. ong. CORBA. CRBSi ngl et ond ass",
"com ooc. CCRBA. ORBSI ngl eton") ;
CRB orb = GRB.init(args, props);
...
}

The GRB.init () call interprets arguments starting with - CRB and - QA. Unlike
the C++ version, these arguments are not removed (see “Advanced
Property Usage” on page 68 for more information).

49

CHAPTER 3 | ORB and Object Adapter Initialization

Object Adapter Initialization

In Orbacus, the object adapter is not initialized until the Root POA is first
resolved. For example:

/] C++
CORBA: : (hj ect _var poaCh] =
orb -> resol ve_initial _references("Root PQA");

/] Java
or g. ong. CORBA. (hj ect poaChj =
orb.resol ve_initial _references("Root PQA");

Upon completion, the ORB will have created the Root POA and its POA
Manager, and will have initialized the ORB's server-side functionality.

50

Configuring the ORB and Object Adapter

Configuring the ORB and Object Adapter

Orbacus applications can tailor the behavior of the ORB and object adapters
using a collection of propertiesl. These properties can be defined in a
number ways:

® using the Windows Registry (Windows NT/C++)

® using a configuration file

® using system properties (Java)

® using command-line options

® programmatically at run-time

The Orbacus configuration properties are described in the following sections.

Unless otherwise noted, every property can be used in both C++ and Java
applications.

1. Note that these properties have nothing to do with the Property Service as
described in Appendix B.

51

CHAPTER 3 | ORB and Object Adapter Initialization

ORB Properties

ooc.config

ooc.oci.client

00c.oci.server

ooc.oci.plugin.name

ooc.orb.client_shutdown_timeout

52

Value: filename

Selects the default configuration file. This property is only available in Java
applications and is equivalent to the CRRACUS_CONFI G environment variable
in C++. See “Using a Configuration File” on page 63 for more information
on configuration files.

Value: string

Specifies a comma-separated list of client-side transport plug-ins to be
installed. The plug-ins are installed in the order they appear in the list. The
default value is i i op.

Value: string

Specifies a comma-separated list of server-side transport plug-ins to be
installed. The plug-ins are installed in the order they appear in the list. The
default value is i i op.

Value: string

Specifies a plug-in’s shared library (C++) or initialization class (Java). In
most cases this property is not necessary because the ORB attempts to
locate the library or class using a well-known name. In C++, the
well-known name is | i bOQ _name. so (UNIX), i baCl _name. sl (HP-UX) or
oa _name. dl 1 (Windows), where name is the plug-in name (e.g., i i op).
The ORB searches for this shared library in the library search path.
Similarly, in Java the ORB searches the class path for a class hamed

com ooc. CC . name.

Value: timeout >= 0

If the client is not able to gracefully disconnect from the server in timeout
seconds, a connection shutdown is forced. If this property is set to zero,
then the client will not force a connection shutdown. If the property is not
set, a default timeout value of two seconds is used.

ooc.orb.client_timeout

ooc.orb.conc_model

ooc.orb.default_init_ref

ooc.orb.default_wcs

ooc.orb.extended_wchar

ooc.orb.giop.max_message_size

Configuring the ORB and Object Adapter

Value: timeout >= 0

The client actively closes a connection that has been idle for timeout
seconds once that connection has no more outstanding replies. Note that
the application must use the threaded client-side concurrency model if
connection timeouts are desired. If this property is set to zero, or not set at
all, then the client does not close idle connections. Note that a policy can
also be set on the ORB or on individual object references. See
“OB::ACMTimeoutPolicy” on page 301 for more information.

Value: reacti ve, t hr eaded

Selects the client-side concurrency model. The reactive concurrency model
is not currently available in Orbacus for Java. The default value is t hr eaded
for both C++ and Java applications. See Chapter 16 for more information
on concurrency models.

Value: URL

Specifies a partial URL. If an application calls the ORB operation

resol ve_ini tial _references and no match is found, the ORB appends a
slash (‘/") character and the service identifier to the specified URL and
invokes string_to_obj ect to obtain the initial reference.

Value: string

Specifies the default wide character code set for the ORB. Note that the
CORBA specification states that a default wide character code set does not
exist. Therefore, this option should only be used when communicating with
a broken ORB that expects a particular wide character code set and does
not correctly support the negotiation of wide character code sets.

Value: true, fal se

Enables transfers of wide characters (IDL types wchar and wst ri ng) with
IIOP 1.0, using Unicode as the code set. This proprietary extension is
required in order to exchange wide characters with Orbix/E, which only
supports [IOP 1.0. The default is f al se.

Value: max >= 0

53

CHAPTER 3 | ORB and Object Adapter Initialization

ooc.orb.id

ooc.orb.modules

ooc.orb.module.name

ooc.orb.native_cs

ooc.orb.native_wcs

54

Specifies the maximum GIOP message size in bytes. If set to O, no
maximum message size will be used. If a message is sent or received that
exceeds the maximum size, the ORB will raise the IMP_LIMIT system
exception.

Value: id
Specifies the identifier of the ORB to be used by the application.

Value: string

Specifies a comma-separated list of modules to be loaded dynamically by
the ORB. The ORB locates the shared library for a module using a
well-known name: | i bname. so (UNIX), I'i bname. sl (HP-UX) or name. dl |
(Windows), where name is the module name. The ORB then invokes the
initialization function i ni t _nodul e_name in that shared library. The
initialization function takes no arguments and returns voi d. A module
initialization function will typically register an ORBlInitializer, which allows
interceptors and initial references to be installed. This property is only
supported in C++. In Java, the standard mechanism for installing an
ORBilnitializer should be used. See [7] for more information on
ORBInitializers.

Value: string

Specifies the name of a module’s shared library or DLL. In most cases this
property is not necessary because the ORB attempts to locate the library
using a well-known name, as described above for the ooc. or b. nodul es
property. The value of this property can be a simple filename, in which case
the ORB will attempt to load the library using the search path, or it can be
an absolute pathname.

Value: string

Specifies the native character code set for the ORB. The default is ISO
8859-1.

Value: string

Specifies the native wide character code set for the ORB. The default is
UTF-16.

ooc.orb.policy.connect_timeout

ooc.orb.policy.connection_reuse

ooc.orb.policy.interceptor

ooc.orb.policy.locate_request

ooc.orb.policy.location_transpare
ncy

ooc.orb.policy.protocol

ooc.orb.policy.rebind

ooc.orb.policy.request_timeout

Configuring the ORB and Object Adapter

Value: timeout >= -1

Sets the CB: : Connect Ti meout Pol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is - 1.

Value: true, fal se

Sets the CB: : Connect i onReusePol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is tr ue.

Value: true, fal se

Sets the @B: : I nt er cept or Pol i cy at the ORB level. See Appendix B for more
information on this policy. The default value is t r ue.

Value: true, fal se

Sets the GB: : Locat eRequest Pol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is f al se.

Value: strict, rel axed

Sets the CB: : Locat i onTr anspar encyPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is
rel axed.

Value: string

Sets the CB: : Prot ocol Pol i cy at the ORB level. See Appendix B for more
information on this policy.

Value: transpar ent, no_r ebi nd, no_r econnect

Sets the Messagi ng: : Rebi ndPol i cy at the ORB level. The default value is
t ranspar ent.

Value: timeout >= -1

Sets the GB: : Request Ti neout Pol i cy at the ORB level. See Appendix B for
more information on this policy. The default value is - 1.

55

CHAPTER 3 | ORB and Object Adapter Initialization

ooc.orb.policy.retry

ooc.orb.policy.retry.interval

ooc.orb.policy.retry.max

ooc.orb.policy.retry.remote

ooc.orb.policy.sync_scope

ooc.orb.policy.timeout

ooc.orb.raise_dii_exceptions

ooc.orb.server_name

56

Value: never, strict, al ways

Sets the node attribute of the 0B: : Ret ryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is stri ct.

Value: timeout >= 0

Sets the i nterval attribute of the CB: : RetryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is 0.

Value: timeout >= 0

Sets the max attribute of the CB:: Ret ryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is 1.

Value: true, fal se

Sets the renot e attribute of the GB: : Ret ryPol i cy at the ORB level. See
Appendix B for more information on this policy. The default value is f al se.

Value: none, transport, server, t ar get

Sets the Messagi ng: : SyncScopePol i cy at the ORB level. The default value
istransport.

Value: timeout >= -1

Sets the CB: : Ti meout Pol i cy at the ORB level. See Appendix B for more
information on this policy. The default value is - 1.

Value: true, fal se

Determines whether system exceptions that occur during Dynamic
Invocation Interface (DII) operations are raised immediately or are stored
only in the OORBA: : Envi ronment object. This property is only available for
Java applications. The default value is t rue. Note that specifying a value of
fal se may result in unexpected behavior.

Value: string

ooc.orb.server_shutdown_timeou
t

ooc.orb.server_timeout

ooc.orb.use_type_code_cache

ooc.orb.service.name

Configuring the ORB and Object Adapter

Specifies the name of the server, as registered with the Implementation
Repository (IMR). Note that you should not put this property in a
configuration file that is shared by several IMR-enabled servers.
Furthermore, this property should not be specified for servers that are not
registered with the IMR.

Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout
seconds, a connection shutdown is forced. If this property is set to zero,
then the server will not force a connection shutdown. If the property is not
set, a default timeout value of two seconds is used.

Value: timeout >= 0

The server actively closes a connection that has been idle for timeout
seconds once that connection has no more outstanding replies. Note that
the application must use one of the threaded server-side concurrency model
if connection timeouts are desired. If this property is set to zero, or not set at
all, then the server does not close idle connections.

Value: true, fal se

Determines whether the ORB caches TypeCodes. When the TypeCode
cache is disabled, the ORB creates a hew TypeCode object for each
TypeCode received over the wire, including those associated with Any
values. When the TypeCode cache is enabled, only one TypeCode object is
instantiated for each TypeCode with a unique, non-empty repository id. The
default value is true.

Note that there is one rare case where the cache may not work as expected:
if an application requires the received TypeCode to be equal to the one that
was transmitted, where “equal” implies a successful result from the
TypeCode: : equal () operation. Although TypeCodes with the same
repository id are always equivalent, they are not always equal because of
TypeCode compaction. However, if the cache is enabled, two TypeCode
objects received over the wire with the same repository id will always be
equal. For more information on the semantics of the equal() and
equivalent() TypeCode operations, see [3].

Value: ior

57

CHAPTER 3 | ORB and Object Adapter Initialization

ooc.orb.trace.connections

ooc.orb.trace.retry

58

Adds an initial service to the ORB’s internal list. This list is consulted when
the application invokes the ORB operation r esol ve_i ni ti al _ref er ences.
name is the key that is associated with an IOR or URL. For example, the
property ooc. or b. servi ce. NaneSer vi ce adds “NameService” to the list of
initial services. See “The BootManager” on page 136 for more information.

Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to connection establishment and closure. A level of 1 or higher
produces information about connection events, and a level of 2 or higher
produces code set exchange information. The default level is 0, which
produces no output.

Value: level >= 0

Defines the output level for diagnostic messages printed by Orbacus that are
related to transparent re-sending of failed messages. A level of 1 or higher
produces information about re-sending of messages, and a level of 2 or
higher also produces information about use of individual IOR profiles. The
default level is O, which produces no output.

Configuring the ORB and Object Adapter

OA Properties

Overview

ooc.orb.oa.conc_model

ooc.orb.oa.endpoint

Configuring an object adapter is achieved by setting properties on POA
Managers. These properties are grouped into two categories: global
properties, and properties specific to a particular POA Manager. Global
properties have the prefix ooc. or b. oa, while properties specific to a
particular POA Manager have the prefix ooc. or b. poamanager . name, where
name is the name of the POA Manager (see “Using POA Managers” on
page 70).

Unless otherwise noted, a POA Manager will search for configuration
properties using the following algorithm:

® First, use properties defined specifically for that POA Manager
® Next, use global properties
® Finally, use default settings.

See “Using POA Managers” on page 70 for more information on POA
Managers.

Value: reacti ve, t hreaded, t hread_per _client, t hread_per _request,
t hread_pool

Selects the server-side concurrency model. The react i ve concurrency
model is not available in Orbacus for Java. The default value is
thread_per _client. See Chapter 16 for more information on concurrency
models. If this property is set to t hread_pool , then the property

ooc. orb. oa. t hread_pool determines how many threads are in the pool.

This property is also used to determine the default value of the
communications concurrency model for POA Managers (see

ooc. or b. poamanager . manager. conc_nodel below). If the value of
ooc. orb. oa. conc_nodel is reacti ve, the default value for the
communications concurrency model is r eact i ve, otherwise the default
value is t hr eaded.

Value: string

Specifies a comma-separated list of endpoints for the Root POA Manager.
The default value is i i op. See “Endpoints” on page 75 for more information.

59

CHAPTER 3 | ORB and Object Adapter Initialization

ooc.orb.oa.thread_pool

ooc.orb.oa.version

ooc.orb.poamanager.manager.co
nc_model

ooc.orb.poamanager.manager.en
dpoint

ooc.orb.poamanager.manager.ver
sion

60

Value:n=>0

Determines the number of threads to reserve for servicing incoming
requests. The default value is 10. This property is only effective when the
ooc. or b. oa. conc_nodel property has the value t hr ead_pool .

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references. The default value
is 1. 2. This option is useful for backward compatibility with older ORBs that
reject object references using a newer version of the protocol.

Value: reacti ve, t hr eaded

Specifies the communications concurrency model used by the POA Manager
with name manager. The default value is determined by

ooc. or b. oa. conc_nodel . See Chapter 16 for more information on
concurrency models.

Value: string

Specifies a comma-separated list of endpoints for the POA Manager with
name manager. The default value is i i op. See “Endpoints” on page 75 for
more information.

Value: 1.0, 1.1 or 1.2

Specifies the GIOP version to be used in object references generated by a
particular POA Manager. This option is useful for backward compatibility
with older ORBs that reject object references using a newer version of the
protocol. The default value is determined by the value of

ooc. or b. oa. versi on.

Configuring the ORB and Object Adapter

Command-line Options

There are equivalent command-line options for many of the Orbacus
properties. The options and their equivalent property settings are shown in
the following table. Refer to “ORB Properties” on page 52 for a description
of the properties.

Option Property
-QAreactive 0oc. orb. oa. conc_nodel =react i ve
- QA hr eaded ooc. or b. oa. conc_nodel =t hr eaded
- At hread_per _cl i ent ooc. or b. oa. conc_nodel =t hr ead_per _cl i ent
- QAt hread_per _r equest ooc. or b. oa. conc_nodel =t hr ead_per _r equest
- QAt hread_pool n ooc. or b. oa. conc_nodel =t hr ead_pool

ooc. orb. oa. t hr ead_pool =n

- Qdver si on version ooc. or b. oa. ver si on=version
- ORBDef aul t I ni t Ref URL ooc.orb. default _init_ref=URL
-ORBid id ooc. orb. i d=id
- ORBI ni t Ref name=ior ooc. or b. servi ce. name=ior
- ORBnat i ve_cs hame ooc. orb. nati ve_cs=name
- ORBnat i ve_wcs hame ooc. orb. nati ve_wcs=name
- ORBnam ng ior ooc. or b. servi ce. NaneSer vi ce=ior
- ORBpr oper t y name=value name=value
- CRBreacti ve ooc. orb. conc_nodel =reacti ve
- ORBreposi tory ior ooc. or b. servi ce. | nt er f aceReposi t or y=ior
- ORBSer ver | d string ooc. or b. server _nane=string
- CRBser vi ce hame ior ooc. or b. servi ce. name=ior
- ORBt hr eaded ooc. or b. conc_nodel =t hr eaded

61

CHAPTER 3 | ORB and Object Adapter Initialization

62

Option

Property

- CRBt race_connecti ons level

ooc. orb. trace. connect i ons=level

-CRBtrace_retry level

ooc. orb. trace. retry=level

A few additional command-line options are supported that do not have
equivalent properties. These options are described in the following table.

Option

Description

- CRBconf i g filename

Causes the ORB to load the configuration file
specified by filename.

- CRBver si on

Causes the ORB to print its version to standard
output.

Configuring the ORB and Object Adapter

Using a Configuration File

A convenient way to define a group of properties is to use a configuration
file. A sample configuration file is shown below:

Concurrency nodel s

ooc. or b. conc_nodel =t hr eaded

ooc. or b. oa. conc_nodel =t hr ead_pool
ooc. orb. oa. t hread_pool =5

Initial services

ooc. or b. servi ce. N\ameSer vi ce=cor bal oc: : nyhost : 7000/ NaneSer vi ce

ooc. or b. servi ce. Event Ser vi ce=cor bal oc: : nyhost : 7001/ Def aul t Event Ch
annel

ooc. orb. servi ce. Tradi ngSer vi ce=cor bal oc: : nyhost : 7002/ Tr adi ngSer vi
ce

Note that trailing blanks are not ignored but are a part of the property.
You can define the name of the configuration filel using a command-line
option, an environment variable (C++), or a system property (Java):
® Command-line option:
® - CRBeonfi g filename
® Environment variable:

CRBACUS_CONFI G=filename
® Java system property:
® ooc. confi g=filename
When an ORB is initialized, it first checks for the presence of the
environment variable or system property. If present, the ORB loads the
configuration file. Next, the ORB loads the configuration file specified by the
- CRBeonf i g option. Therefore, the properties loaded from the file specified
by - ORBconf i g will override any existing properties, including those loaded

by a configuration file specified in the environment variable or system
property. See “Precedence of Properties” on page 67 for more information.

Configuration files are only loaded during ORB initialization. Changes made
to a configuration file after an ORB has been initialized have no effect on
that ORB.

1. Orbacus for Java also accepts a URL specification as the filename.

63

CHAPTER 3 | ORB and Object Adapter Initialization

Using the Windows NT Registry

RegUpdate

Synopsis

Example:

64

Another convenient mechanism for use with C++ applications under
Windows NT is to use the system registry®. Properties can be stored in the
registry under the following registry keys:

HKEY_LOCAL_NMACH NEB\ Sof t war e\ OOC\ Properti es

HKEY_CURRENT_USER Sof t war e\ OOC\ Properti es
Individual properties are defined as sub-keys of the base. For example, the
property ooc. or b. t r ace. connect i ons=5 is stored in the registry as the
following key containing a value hamed connect i ons with a REG_SZ data
member equal to “5”:

Sof t war e\ OOC\ Proper ti es\ ooc\orb\trace

The Orbacus distribution includes a utility called RegUpdat e. The tool first
removes all sub-keys defined under the specified registry key. Next, all
values defined in an Orbacus configuration file are transferred to the registry.

RegUpdat e HKEY_LOCAL_MACH NE| HKEY_CURRENT _USER confi g-fil e

RegUpdat e HKEY_LOCAL_NMACH NE ob. conf
This command reads the properties defined in the file ob. conf and writes
the values under the following registry key:

HKEY_LOCAL_NMACH NE\ Sof t war e\ OOC\ Properti es

1. Use caution when defining Orbacus properties in the registry, as they become
global properties that will be used in every Orbacus for C++ application. For
example, subtle errors can occur if the ooc. i i op. port property is defined on a
global basis.

Configuring the ORB and Object Adapter

Defining Properties

Properties in Java

3-4

Java applications can use the standard Java mechanism for defining system
properties because Orbacus will also search the system properties during
ORB initialization.

For example:

1 // Java

2 java.util.Properties props = System getProperties();

3 props. put ("ooc. orb. oa. conc_nodel ", "thread_pool ");

4 props. put ("ooc. orb. oa. thread_pool ", "20");

5 org.ong. GCORBA. CRB orb = org. ong. CCRBA. CRB.init(args, null);

Obtain the system properties.
Define Orbacus properties.
Initialize the ORB.

Java virtual machines typically allow you to define system properties on the
command line. For example, using Sun’s JVM you can do the following:
java -Dooc. orb. oa. t hr ead_pool =20 M/Ser ver

You can also use the java. util . Properties object that is passed to the
CRB. i nit () method to provide Orbacus property definitions:

1 // Java

2 java.util.Properties props = new java.util.Properties();

3 props. put ("ooc.orb. oa. conc_nmodel ", "thread_pool ");

4 props. put ("ooc. orb. oa.thread_pool *, "20");

5 org.ong. CORBA CRB orb = orb. ong. CCRBA. CRB.init(args, props);

Create a java. util . Properties object to hold our properties.
Define Orbacus properties.
Initialize the ORB using the j ava. util . Properti es object.

65

CHAPTER 3 | ORB and Object Adapter Initialization

Properties in C++ In C++, the Orbacus-specific class CB: : Properti es can be used to define
properties:

[l C+
class Properties

{
11

publ i c:
Properties();
Properties(Properties_ptr p);
~Properties();

static Properties_ptr _duplicate(Properties_ptr p);
static Properties_ptr _nil();

static Properties_ptr getDefaul tProperties();

voi d set Property(const char* key, const char* val ue);
const char* getProperty(const char* key) const;
/1l

}s

For example, to add the threaded concurrency model to a property set that
is used to initialize the ORB:

1 // G+

2 OB::Properties_var dflt =

OB:: Properties: : getDefaul t Properties();

3 OB::Properties_var props = new OB:: Properties(dfit);

4 props -> setProperty("ooc. orb.conc_nodel ", "threaded");

5 COORBA :(RB var orb = GBOORBA : CRB_init(argc, argv, props);

2-3 Create an CB: : Properti es object that is based on the default properties.
This is important because, unlike or g. omg. CORBA. CRB. i ni t ,
CBOCRBA: : CRB_i ni t does not read the default properties if the property
parameter is not null.
4 Define Orbacus property.
Initialize the ORB using the Orbacus-specific CBOCRBA: : CRB_i ni t operation.

66

Configuring the ORB and Object Adapter

Precedence of Properties

Given that properties can be defined in several ways, it's important to
establish the order of precedence used by Orbacus when collecting and
processing the property definitions. The order of precedence is listed below,
from highest to lowest. Properties defined at a higher precedence override
the same properties defined at a lower precedence.

1.

2
3.
4

Command-line options

Configuration file specified at the command-line

User-supplied properties

Configuration file specified by the CRBACUS_CONFI G environment
variable (C++) or the ooc. confi g system property (Java)

System properties (Java only)

HKEY_CURRENT_USER Sof t war e\ 000\ Properti es (Windows NT/C++
only)

HKEY_LOCAL_NMACH NBE\ Sof t war e\ OOC\ Properti es (Windows NT/C++
only)

For example, a property defined using a command-line option overrides the
same property defined in a configuration file.

67

CHAPTER 3 | ORB and Object Adapter Initialization

Advanced Property Usage

Examples

68

With the methods for ORB initialization discussed in the previous sections,
the command-line arguments are not processed until a call to

OCRBA: : CRB i nit (C++), CBOCRBA : CRB i nit (C++), or

org. ong. OORBA. CRB. i ni t (Java). Hence, the set of properties that will be
used by the ORB is not available until after the ORB is initialized. This poses
a problem if the properties need to be validated prior to ORB initialization.
If you need access to an ORB’s property set before it is initialized, then you

may elect to use the Orbacus-specific operations CB: : Par seArgs (C++) or
com ooc. OORBA. CRB. Par seAr gs (Java).

The following examples check the value of the ooc. or b. conc_nodel
property to ensure that it is set to t hr eaded. If not, the code chooses the
t hr eaded concurrency model.

[l Ct+
#i ncl ude <CB/ Logger. h>
#i ncl ude <CB/ Properties. h>

a b wnN ek

CB:: Properties_var dflt =

CB:: Properties::getDefaul t Properties();

6 OB::Properties_var props = new OB:: Properties(dfit);

7 OB :ParseArgs(argc, argv, props, CB::Logger::_nil());

8 const char* orbMdel = props ->

get Property(“ooc. orb. conc_nodel ") ;

9 if(strcnp(orbMdel, “threaded”) != 0)

10 {

11 props -> setProperty(“ooc. orb.conc_nodel ", “threaded”);
12 }

13 OORBA : CRB var orb = CBOCRBA : CRB init(argc, argv, props);

Create an CB: : Properti es object that is based on the default properties.

Initialize the properties for the ORB. After invoking CB: : Par seAr gs, pr ops
contains the ORB properties and ar gv no longer contains any - CRB or - QA
command-line arguments. The CB: : Par seAr gs operation takes an optional
Logger object, which Par seAr gs will use to display any warning or error
messages. In this example, a custom Logger object is not used, so the code
passes a nil value.

Configuring the ORB and Object Adapter

8-12 Retrieve the ooc. or b. conc_nodel property and set it to t hr eaded if its value
is not valid.

13 Initialize the ORB.

/1 Java

java.util.Properties props = System get Properties();
args = com ooc. CORBA. CRB. Par seArgs(args, props, null);
String orbMdel = props. get(“ooc. orb. conc_nodel ") ;

i f(!orbMdel .equal s(“threaded”))

{

props. put (“ooc. orb. conc_nodel *, “threaded”);

© 0O ~NOOU A~ WNPR

org.ong. CORBA. CRB orb = org. ong. CORBA. CRB.init(arg, props);

2 Create a java. util . Properties object.

3 Initialize the properties for the ORB. After invoking
com ooc. OCRBA. CRB. Par seAr gs, props contains the ORB properties. The
return value of ParseAr gs is a string array with all - ORB and - QA arguments
removed. As in the C++ example, a Logger object is not used.
4-8 Retrieve the ooc. or b. conc_nodel property and set it to t hr eaded if its value
is not valid.

9 Initialize the ORB.

69

CHAPTER 3 | ORB and Object Adapter Initialization

Using POA Managers

70

The CORBA specification states that a POA Manager is used to control the
flow of requests to one or more POAs. In Orbacus, each POA Manager also
encapsulates a set of network endpoints on which a server listens for new
connections. This design provides applications with a great deal of
flexibility:

® endpoints can be activated and deactivated on demand

® agroup of endpoints can be controlled using a single POA Manager
and serviced by one or more POAs

Using POA Managers

The Root POA Manager

As its name suggests, the Root POA Manager is the POA Manager of the
Root POA. When the Root POA is first resolved using

resol ve_i ni tial _references, the Root POA Manager is automatically
created to manage the Root POA. For administrative purposes, the name of
the Root POA Manager is “RootPOAManager”.

71

CHAPTER 3 | ORB and Object Adapter Initialization

Anonymous POA Managers

72

An application can implicitly create POA Managers by supplying a ni | value
for the POA Manager argument to the cr eat e_PQOA operation. In fact, this is
the only portable means of creating POA Managers. In this text, we’ll refer
to POA Managers created in this way as “anonymous” POA Managers.

One limitation of anonymous POA Managers in Orbacus is that their
endpoints cannot be configured externally via properties, therefore
anonymous POA Managers always use the default endpoint configuration.
Specifically, each anonymous POA Manager will create a single 110P
endpoint on a port chosen by the operating system. Consequently, object
references created by POAs managed by an anonymous POA Manager are
inherently transient.?

Applications which require configurable POA Managers (in addition to the
Root POA Manager) can use the proprietary POA Manager factory, described
in the next section.

1. IONA has proposed adding support for POA Manager identity. For details, see
http://cgi.ong. org/issues/orb_revision. ht m #l ssue4297.

2. Unless of course an indirect persistence mechanism such as the Implementation

Repository is in use.

Using POA Managers

The POA Manager Factory

To allow an application to easily configure POA Managers, Orbacus provides
a proprietary factory interface for creating named POA Managers:

/1 1D

nodul e CBPort abl eSer ver

{

i nterface PQAManager Fact ory

{
excepti on PQAVanager Al r eadyExi st's
{
IE

PQAManager create_poa_nanager (i n string nane)
rai ses(PQAVanager Al r eadyExi st s,
Q4 ::InvalidParan;

}
}

The example below illustrates how to create a new POA Manager using the
Orbacus POA Manager Factory.

Here is an example in C++:

Il Cr+
QOORBA: : Ooj ect _var obj =
orb -> resol ve_initial_references(“POAVanager Factory”);
CBPor t abl eSer ver : : POAManager Factory_var factory =
CBPor t abl eSer ver : : POAVanager Factory: : _narrow obj);
Port abl eSer ver : : POAManager _var nyPQOAManager =
factory -> create_poa_nanager (“ M/PQAVanager”) ;

~NOoO b WN PR

2-5 Resolve the POA Manager Factory.
6-7 Create a new POA Manager with the name “MyPOAManager”.

73

CHAPTER 3 | ORB and Object Adapter Initialization

And in Java:

/1 Java
or g. ong. CORBA. (hj ect obj =

orb.resol ve_initial _references("PQAVanager Fact ory”);
com ooc. CBPor t abl eSer ver . PQAManager Factory factory =

a b wN P

com ooc. CBPor t abl eSer ver . PQAManager Fact or yHel per . narrow(obj) ;
6 org.ony. Port abl eSer ver. PQAVanager nyPQAVanager =
7 factory. creat e_poa_nanager (“ M/PQAVanager ”) ;

2-5 Resolve the POA Manager Factory.

6-7 Create a new POA Manager with the name “MyPOAManager”.

The ORB processes any configuration properties that were defined for the
POA Manager, and may raise the OO : : I nval i dPar amexception if an error
was found in the POA Manager’s endpoint configuration.

74

Using POA Managers

Endpoints

Orbacus supports a flexible mechanism for configuring a POA Manager’s
endpoints via properties. A single property is used to configure the endpoints
for a particular POA Manager. The property value consists of a
comma-separated list of endpoints, with the following syntax:
plugin-id [options] [, plugin-id [options] ...]
For example:

ooc. orb. oa. endpoi nt=iiop --port 9998, iiop --port 9999

ooc. or b. poamanager . MyManager . endpoi nt =i i op
This configuration creates two IIOP endpoints for the Root POA Manager on
specific ports, and one 110OP endpoint for the POA Manager hamed
‘MyManager’ on an arbitrary port. Technically, the second property isn't
necessary, because this is the default configuration if no endpoints are
specified for a POA Manager.

It is important to note that only those transport plug-ins which were
installed via the ooc. oci . server property can be used in endpoint
configuration.

When experimenting with various endpoint configurations, it can be very
useful to enable connection tracing diagnostics. With diagnostics enabled,
the ORB will display its endpoint information, allowing you to confirm that
the application’s endpoints are configured correctly. Diagnostics can be
enabled using the - CRBt r ace_connect i ons command-line option, or using
the equivalent property ooc. orb. t r ace. connect i ons.

See “Configuring the ORB and Object Adapter” on page 51 for more
information on configuration properties.

For a complete description of the available transport plug-ins and their
options, see Chapter 17.

75

CHAPTER 3 | ORB and Object Adapter Initialization

Command-line Options and Endpoints

76

Transport plug-ins may support command-line options, and it is important
to understand the effects of using those options. They can be summarized
as follows:
® Using a plug-in’s command-line options will always add a new
endpoint configuration, i.e., command-line options do not override an
existing endpoint configuration.
® Command-line options only configure endpoints for the Root POA
Manager.
The first item is the most significant. Let’s consider some examples which
will serve to explain this issue. First, assume that there is no endpoint
configuration property for the Root POA Manager, and that we use the
following command-line options:
-1 1 CPhost host . abc. com-11CPport 1234
The 11OP plug-in will convert these command-line options into the following
configuration property:
ooc. orb. oa. endpoi nt =i i op --host host.abc.com--port 1234
Now let’s consider a more complicated example. Suppose that we have an
existing endpoint configuration property defined, and we also use
command-line options. The existing endpoint configuration is
ooc. orb. oa. endpoi nt=iiop --port 5555
And the command-line options are
-11CPport 5556
After the command-line options are processed by the 11OP plug-in, the
endpoint configuration property will be
ooc. orb. oa. endpoi nt=iiop --port 5555, iiop --port 5556

Note that there are now two endpoints; the command-line options resulted
in an additional endpoint being appended to the existing property value.

Using POA Managers

Dispatching Requests

As explained in [4], a POA Manager is initially in the “holding” state, where
incoming requests on the POA Manager’s endpoints are queued. To
dispatch requests, the POA Manager must be activated using the

acti vat e() operation.

7

CHAPTER 3 | ORB and Object Adapter Initialization

Callbacks

In mixed client/server applications in which callbacks occur, it is important
to remember that callbacks will not be dispatched until the POA Manager
has been activated. If the POA Manager has not been activated, the
application will likely hang. In general, applications should activate the POA
Manager prior to making any request that might result in a callback.

78

ORB Destruction

ORB Destruction

Applications must destroy the ORB before returning from mai n so that
resources used by the ORB are properly released.

To destroy the ORB in C++, invoke dest r oy on the ORB:

[l Ct+

CORBA: : ORB var orb =// Initialize the orb
...

orb -> destroy();

And in Java:

/1 Java

org.ong. CORBA. CRB orb = // Initialize the orb
/...

orb. destroy();

79

CHAPTER 3 | ORB and Object Adapter Initialization

Server Event Loop

A server’s event loop is entered by calling POAVanager : : acti vat e on each
POA Manager, and then calling GRB: : run.

For example, in Java:

/1 Java
org.omg. CORBACRB orb = ... // Initialize the orb

or g. ong. Port abl eServer. POAManager nanager = ... // Get Root PQA
manager

nmanager . acti vate();
orb. run();

And in C++:

[l C+
CORBA :CRB var orb = ... // Initialize the orb

Port abl eServer: : POAManager _var manager = ... // Get the Root POA
manager

nanager -> activate();
orb -> run();

You can deactivate a server by calling CRB: : shut down, which causes

CRB: : run to return. For example, consider a server that can be shut down by
a client by calling a deact i vat e operation on one of the server’s objects.
First the IDL code:

/] 1DL
i nterface Shutdownbj ect

{
}

voi d deacti vate();

2-3

9-12
14-17

Server Event Loop

On the server side, Shut downhj ect can be implemented like this:

Il Cr+

cl ass Shut downhj ect _i npl

publ i ¢ PQA_Shut downhj ect ,

publ i ¢ Portabl eSer ver : : Ref Count Ser vant Base

CCRBA: : CRB var orb_;

©oo~NOoOOhswWNPRE
-~

publ i c:
10 Shut downhj ect _i npl (OCCRBA: : CRB ptr orb)
11 : orb_(CORBA : CRB:: _duplicate(orb))
12 {
13 }
14
15 virtual void deactivate() throw CORBA: : Syst enExcepti on)
16 {
17 orb_ -> shutdown(fal se);
18 }
}

A servant class for Shut downQj ect is defined. For more information on how
to implement servant classes, see Chapter 4.

An ORB is needed to call shut down.
The constructor initializes the ORB member.

deact i vat e calls shut down on the ORB. Note that shut down is called with
the argument f al se to avoid a deadlock. A f al se argument instructs

shut down to terminate request processing without waiting for executing
operations to complete. A t rue argument instructs shut down to return only
once all operations have completed. If shut down were called with a t r ue
argument in this example, it would deadlock. That is because

shut down(true) would be invoked from within an operation and, therefore,
could not ever return.

The client can use the deact i vat e call as shown below:
/] C++

Shut down(hj ect _var shutdownCbj = ... // Get a reference sonehow
shut downQoj -> deactivate();

81

CHAPTER 3 | ORB and Object Adapter Initialization

82

In this chapter

CHAPTER 4

CORBA Objects

This chapter describes how to create and use CORBA servant
objects.

This chapter contains the following sections:

Overview page 84
Implementing Servants page 86
Creating Servants page 95
Activating Servants page 99
Deactivating Servants page 104
Factory Objects page 106

83

CHAPTER 4 | CORBA Objects

Overview

84

A CORBA object is an object with an interface defined in CORBA IDL.

CORBA objects have different representations in clients and servers.

® A server implements a CORBA object in a concrete programming
language, for example in C++ or Java. This is done by writing an
implementation class for the CORBA object and by instantiating this
class. The resulting implementation object is called a servant.

® Aclient that wants to make use of an object implemented by a server
creates an object that delegates all operation calls to the servant via
the ORB. Such an object is called a proxy.

When a client invokes a method on the local proxy object, the ORB packs
the input parameters and sends them to the server, which in turn unpacks
these parameters and invokes the actual method on the servant. Output
parameters and return values, if any, follow the reverse path back to the
client. From the client’s perspective, the proxy acts just like the remote
object since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can
invoke a method on the servant when a request is received from a client.
This connection is handled by the Portable Object Adapter (POA), as shown
in Figure 2.

Client Server
Servant
Proxy POA

SRRV

Figure 2: Servants, Proxies and the Object Adapter

Overview

The Portable Object Adapter in Orbacus replaces the deprecated “Basic
Object Adapter” (BOA). (The BOA was deprecated by the OMG because it
had a number of serious deficiencies and was under-specified.) The POA is
a far more flexible and powerful object adapter than the BOA. The POA not
only allows you to write code that is portable among ORBs from different
vendors, it also provides a number of features that are essential for building
high-performance and scalable servers.

85

CHAPTER 4 | CORBA Objects

Implementing Servants

In this section, we will implement servant classes (or “implementation
classes”) for the IDL interfaces defined below:

/1 1DL
interface A

void op_a();

}

interface B

{

9 voi d op_b();
10 };

W~NO U WN PP

12 interface | : A B

14 void op_i();
15 };
2-5 An interface Ais defined with the operation op_a.
7-10 An interface B is defined with the operation op_b.

12-15 Interface | is defined, which is derived from A and B. It also defines a new
operation op_ij .

86

Implementing Servants

Implementing Servants using Inheritance

Overview

Inheritance using C++

2-6

8-13

Orbacus for C++ and Orbacus for Java both support the use of inheritance
for interface implementation. To implement an interface using inheritance,
you write a servant class that inherits from a skeleton class generated by the
IDL translator. By convention, the name of the servant class should be the
name of the interface with the suffix _i npl , e.g., for an interface I, the
implementation class is named | _i npl .1

In C+++, 1 _i npl must inherit from the skeleton class PQA | that was
generated by the IDL-to-C++ translator. If I inherits from other interfaces,
for example from the interfaces A and B, then I _i npl must also inherit from
the corresponding implementation classes A i npl and B_i npl .

1 // G+

2 class Ainpl : virtual public POA A

3 {

4 public:

5 virtual void op_a() throw CORBA : SystenException);
6 1}

7

8 class Binpl : virtual public POA B

9 {

10 public:

11 virtual void op_b() throw CORBA : SystenException);
12 };

13

14 class | _inpl : virtual public PQA I,

15 virtual public Ainpl,

16 virtual public B_inpl

17 {

18 public:

19 virtual void op_i() throw CORBA: : SystenException);
20 };

The servant class A i npl is defined, inheriting from the skeleton class
PQA A If op_a had any parameters, these parameters would be mapped
according to the standard IDL-to-C++ mapping rules [4].

This is the servant class for B i npl .

1. These naming rules are not mandatory, they are just a recommendation.

87

CHAPTER 4 | CORBA Objects

14-20 The servant class for I _i npl is not only derived from PQA |, but also from
the servant classes A i npl and B_i npl .

Note that vi rtual publ i ¢ inheritance must be used. The only situation in
which the keyword vi rt ual is not necessary is for an interface I which does
not inherit from any other interface and from which no other interface
inherits. This means that the implementation class | _i npl only inherits from
the skeleton class POA | and no implementation class inherits from | _i npl .

It is not strictly necessary to have an implementation class for every
interface. For example, it is sufficient to only have the class I _i npl as long
as | _i npl implements all interface operations, including the operations of
the base interfaces:

[l C+

class | _inpl : virtual public PQA I

{

publ i c:
virtual void op_a() throw CORBA : SystenException);
virtual void op_b() throw CORBA : SystenException);
virtual void op_i() throw CORBA: : SystenException);

O~NO O WNBRE

IE
2 Now I _i npl is only derived from PQA I, but not from the other servant
classes.

5-7 I _i npl must implement all operations from the interface | as well as the
operations of all interfaces from which 1 is derived.

Inheritance using Java Several files are generated by the Orbacus IDL-to-Java translator for an
interface 1, including:
® |.java, which defines a Java interface I containing public methods for
the operations and attributes of 1, and
® | PQA java, Which is an abstract skeleton class that serves as the base
class for servant classes.
In contrast to C++, Java’s lack of multiple inheritance currently makes it

impossible for a servant class to inherit operation implementations from
other servant classes, except when using delegation-based implementation.

88

Implementing Servants

For our interface I it is therefore necessary to implement all operations in a
single servant class |1 _i npl , regardless of whether those operations are
defined in | or in an interface from which | is derived.

1 // Java

2 public class |_inpl extends |PQA
3 {

4 public void op_a()
5 {

6 }

7

8 public void op_b()
9 {

10 }

11

12 public void op_i()
13 {

14 }

15 }

2-15 The servant class | _i npl is defined, which implements op_i , as well as the
inherited operations op_a and op_b.

89

CHAPTER 4 | CORBA Objects

Implementing Servants using Delegation

Sometimes it is not desirable to use an inheritance-based approach for
implementing an interface. This is especially true if the use of inheritance
would result in overly complex inheritance hierarchies (for example, because
of use of an existing class library that requires extensive use of inheritance).
Therefore, another alternative is available for implementing servants which
does not use inheritance. A special class, known as a tie class, can be used
to delegate the implementation of an interface to another class.®

Delegation using C++ The Orbacus IDL-to-C++ translator can automatically generate a tie class
for an interface in the form of a template class. A tie template class is
derived from the corresponding skeleton class and has the same name as
the skeleton, with the suffix _ti e appended.

For the interface I from the C++ example above, the template POA | _tieis
generated and must be instantiated with a class that implements all
operations of I . By convention, the name of this class should be the name of
the interface with _i npl _tie appended.2

1. Note that tie classes are rarely necessary. Not only is the inheritance
implementation less complex, but it also avoids a number of problems that arise
with the life cycle of objects, particularly in threaded servers. We suggest that you
use the tie approach only if you have no other option.

2. Again, you are free to choose whatever name you like. This is just a
recommendation.

90

Implementing Servants

In contrast to the inheritance-based approach, it is not necessary for the
class implementing 1’s operations, i.e., | _i npl _ti e, to be derived from a
skeleton class. Instead, an instance of PQA | _ti e delegates all operation
callsto I _i npl _tie, as shown in Figure 3.

POA |

[——
L I _l
POA_I_tie

Tdelegates to

I_impl_tie

Figure 3: Class Hierarchy for Delegation Implementation in C++
Here is our definition of | _i npl _tie:

Il G+

class | _inpl tie

{

publ i c:
virtual void op_a() throw CORBA : SystenException);
virtual void op_b() throw CORBA: : SystenException);
virtual void op_i() throw CORBA : SystenException);

oO~NOoO O WNBRE

};

I _i npl _tie is defined and not derived from any other class.

I _i npl _ti e must implement all of 1 ’s operations, including inherited
operations.

A servant class for I can then be defined using the I _skel _ti e template:

1 // C++
2 typedef POA | _tie< |_inpl_tie > 1I_inpl;

The servant class | _i npl is defined as a template instance of POA | _ti e,
parameterized with | _i npl _tie.

91

CHAPTER 4 | CORBA Objects

The tie template generated by the IDL compiler contains functions that
permit you change the instance denoted by the tie:

1 // C++

2 tenpl ate<class T>

3 class POA | _tie : public PQA |
4 {

5 public:

6 /...

7 T* _tied_object();

8 void _tied_object(T& obj);
9 void _tied_object(T* obj, OORBA :Boolean rel ease = true);
10 ...

11 }

7-9 The _ti ed_obj ect function permits you to retrieve and change the
implementation instance that is currently associated with the tie. The first
maodifier function calls del et e on the current tied instance before accepting
the new tied instance if the rel ease flag is currently true; the rel ease flag
for the new tied instance is set to false. The second modifier function also
calls del et e on the current tied instance before accepting the new instance
but sets the rel ease flag to the passed value.

Delegation using Java For every IDL interface, the IDL-to-Java mapping generates an “operations”
interface containing methods for the IDL attributes and operations. This
operations interface is also used to support delegation-based servant
implementation. For an interface I , the following additional class is
generated:

® | PQATi e. j ava, the tie class that inherits from 1 POA and delegates all
requests to an instance of | Qper ati ons.

92

Implementing Servants

To implement our servant class using delegation, we need to write a class
that implements the I Qper at i ons interface:

1 // Java

2 public class | _inpl_tie inplenments | Qperations
3 {

4 public void op_a()
5 {

6 }

7

8 public void op_b()
9 {

10 }

11

12 public void op_i()
13 {

14 }

15 }

2 The servant class | _i npl _ti e is defined to implement the | Qper ati ons
interface.

4-14 I _i npl _ti e must implement all of 1 ’s operations, including inherited
operations.

Figure 4 illustrates the relationship between the classes generated by the
IDL-to-Java translator and the servant implementation classes.

IPOA

I_impl IPOATiIe O—delegates td 10perations

I_impl_tie

Figure 4: Class Hierarchy for Inheritance and Delegation Implementation
in Java

93

CHAPTER 4 | CORBA Objects

As noted earlier, Java’s lack of multiple inheritance makes it impossible to
inherit an implementation from another servant class. Using tie classes,
however, does allow implementation inheritance, but only in certain
situations.

For example, let’'s implement each of our sample interfaces using

delegation.

1 // Java

2 public class A inpl inplements AQperations
3 {

4 public void op_a()

5 {

6 }

7}

8

9 public class B inpl inplenments BQperations
10 {

11 public void op_b()

12 {

13 }

14 }

15

16 public class | _inpl extends B_inpl inplenents | Qperations
17 {

18 public void op_a()

19 {

20 }

21

22 public void op_i()

23 {

24 }

25 }

2-7 Class A i npl is defined as implementing AQper at i ons.
9-14 Class B_i npl is defined as implementing BQper at i ons.

16-21 Class 1 _i npl inherits the implementation of op_b from B_i npl , and provides
an implementation of op_a and op_i . Since a Java class can only extend one
class, it’s not possible for 1 _i npl to inherit the implementations of both
op_a and op_b.

94

Creating Servants

Creating Servants

Servants are created the same way in both C++ and Java: once your
servant class is written, you simply instantiate a servant with new!

1. You can also instantiate servants on the stack. However, this only works only for
some POA policies, so servants are usually instantiated on the heap.

95

CHAPTER 4 | CORBA Objects

Creating Servants using C++

96

2,3

Here is how to create servants using C++:

1 /] C++
2 |_inpl* servant_pointer = new |_inpl;
3 |_inpl* another_servant_pointer = new |_inpl;

Two servants are created with new. Note that this merely instantiates the
servants but does not inform the ORB that these servants exist yet. The ORB
server-side run time only learns of the existence of the servants once you
activate them.

In case the servant class was written using the delegation approach, an
object of the class implementing 1 's operations must be passed to the
servant’s constructor:

1 // C++

2 |_inpl_tie* inpl = new | _inpl _tie;

3 PQA I _tie<|_inpl_tie >* tie pointer =
4 new PQA | tie< | _inpl_tie >(inpl);

A new | _inpl _ti e is created with new.

An instance of POA | _ti e parameterized with | _i npl _ti e is created, taking
i npl as a parameter. All operation calls to ti e will then be delegated to
inpl .

In this example, the lifetime of i npl is coupled to the lifetime of the servant
tie. That is, when the tie is destroyed, del ete inpl is called by the tie’s
destructor. In case you don’t want the lifetime of i npl to be coupled to the
lifetime of the tie, for example, because you want to create a servant on the
stack and not on the heap (making it illegal to call del et e on the tie), use
the following code:

1 /] C++

2 |_inpl_tie inpl;

3 PAAI _tie<|_inpl_tie > tie =

4 new PQA | tie< |_inpl_tie >(& npl, false);

A new | _inpl _ti e is created, this time on the stack, not on the heap.

An instance of POA | _ti e is created. The f al se parameter tells ti e not to
call del ete oninpl .

Creating Servants

Creating Servants using Java

2,3

Every tie class generated by the IDL-to-Java translator has two constructors:

/'l Java
public class | POATi e extends | PQA
{
publ i c | POATi e(| Operations delegate) { ... }
publ i c | POATi e(| Operati ons del egate, PQA poa) { ... }
}

The second constructor allows a POA instance to be supplied, which will be
used as the return value for the tie’s _def aul t _PQA method. If the POA
instance is not supplied, the _def aul t _POA method will return the root POA
of the ORB with which the tie has been associated.

This example demonstrates how to create servants using Java:

1 // Java
2 1_inpl inpl = new | _inpl();
3 I_inpl anotherlnpl = new | _inpl();

Two servants, i npl and anot her | npl , are created with new.

In case the servant class was written using the delegation approach, an
object implementing the | Qper at i ons interface must be passed to the tie’s
constructor:

1 // Java

2 I_inpl_tieinpl = new |l _inpl_tie();
3 |IPQATie tie = new | POATi e(i npl);

Anew | _inpl _tieis created.

An instance of | PQATi e is created, taking i npl as a parameter. All operation
calls to ti e will then be delegated to i npl .

97

CHAPTER 4 | CORBA Objects

The tie class also provides methods for accessing and changing the
implementation object:

public void _del egate(l Cperations del egate) { ... }

1 // Java

2 public class | POATi e extends | POA

3 {

4

5 public | Qperations _delegate() { ... }
6

7

}

5 This method returns the current delegate (i.e., implementation) object.
6 This method changes the delegate object.

98

Activating Servants

Activating Servants

Servants must be activated in order to receive requests from clients. Servant
activation informs the ORB run time which particular servant represents (or
incarnates) a particular CORBA object. Activation of a servant assigns an
object identifier to the servant. That object identifier is also embedded in
every object reference that is created for an object and serves to link the
object reference with its servant.

The POA’s | dAssi gnnent Pol i cy value controls whether object IDs are
assigned by the POA or the server application code. The SYSTEM | D policy
value directs the ORB to assign a unique object identifier to the CORBA
object represented by the servant; the USER I D policy value requires the
server application code to supply an ID that must be unique within the
servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes
place when you create the first object reference for a servant. Explicit
activation requires a separate API call. Typically, you will use implicit
activation for transient objects and explicit activation for persistent objects.
The I nplicitActivationPol i cy controls whether explicit or implicit is in
effect. Explicit activation requires the NO_| MPLI O T_ACTI VATI ON policy value
on the servant’s POA, whereas implicit activation requires the

I MPLI O T_ACTI VATI ON policy value.

99

CHAPTER 4 | CORBA Objects

Implicit Activation of Servants using C++

The following code shows how to implicitly activate a servant:

1 /] C++

2 |_inpl inpl;
3 | _var iv=inpl -> _this();

A new servant i npl is created.
The new servant is activated implicitly by calling _t hi s.

Note that implicit activation as shown requires the RETAI N,

| MPLI O T_ACTI VATI ON, and SYSTEM | D policies on the servant’s POA. The
servant is activated with the POA that is returned by the servant’s

_def aul t _POA member function. (The default implementation of

_def aul t _PQA returns the Root POA; if you want servants activated on a
different POA, you must override _def aul t _PQAin the implementation class
to return the POA you want to use.)

100

Activating Servants

Implicit Activation of Servants using Java
This is how Java servants are implicitly activated:

1 // Java

2 org.onmg. CORBACRB orb = ... // Get a reference to the CRB
sonehow

3 I_inpl inpl = new I _inpl();

4 | lref =inpl._this(orb);

To activate a servant, we need the ORB.

A new servant i npl is created.

4 The new servant is activated (using the POA returned by the servant’s
_def aul t _PQA operation).

As shown above, a servant in Java must be associated with an ORB, and
cannot be associated with multiple ORBs. The first call to _t hi s() must
supply the ORB reference; subsequent calls to _t hi s() for the same servant
can omit the ORB reference.

An alternative way to associate a servant with an ORB is to call the
set _del egat e method defined in or g. ong. GCORBA 2_3. CRB.

/1 Java
org.ong. CORBA CRB orb = ... // Get a reference to the ORB sonehow
((org.ong. CCRBA 2 3. CRB)orb) . set _del egate(inpl);

101

CHAPTER 4 | CORBA Objects

Explicit Activation of Servants using C++

If NO_I MPLI O T_ACTI VATI ONand SYSTEM | Dare in effect for a servant’s POA,
you activate the servant by calling acti vat e_obj ect :

1 |_inpl inpl;
2 Portabl eServer:: POA var poa = inpl._default _PQOA();
3 poa -> activate_object(& npl);

The code instantiates a servant.
To activate a servant, we need the servant’s POA.
3 acti vat e_obj ect creates a unique ID for the servant.

Once a servant is activated, calls to _t hi s on the servant return an object
reference that contains the ORB-assigned ID for the object.

If NO_I MPLI O T_ACTI VATI ONand USER | Dare in effect for servant’s POA, you
activate the servant by supplying the ID value as an octet sequence to
activate_object_with_id:

1 |_inpl inpl;

2 Portabl eServer:: POA var poa = inpl._default _PQOA();

3 Portabl eServer:: (hjectld_var oid =

4 Port abl eServer: :string_to_Cbj ect|d("MChj ect Narre") ;
5 poa -> activate_object_with_id(oid, & npl);

3,4 The string_to_Cbj ect|d helper function converts a string into an octet
sequence.

5 acti vat e_obj ect _wi th_i d uses the octet sequence as the object ID for the
servant.

You can use any suitable key value as an object ID. Typically, the key will
be part of the object’s state, such as a social security number. However, you
can also use keys that are not directly related to object state, such as
database record identifiers. Once the servant is activated, calls to _t hi s on
the servant return an object reference that contains the ID you assigned to
the object.

102

Activating Servants

Explicit Activation of Servants using Java

Servant activation in Java also uses act i vat e_obj ect (for SYSTEM | D) and
acti vat e_obj ect _wi t h_i d (for USER | D). With SYSTEM | D, the code looks as
follows:

1 1_inpl inpl = new | _inpl();
2 orb.ony. Portabl eServer. PQA poa = inpl._defaul t_PQOA();
3 poa.activate_object(inpl);

For USER | D, you must provide the Object ID:

| _inpl inpl = new | _inpl();

or g. ong. Port abl eServer. POA poa = inpl._defaul t_PQOA();
byte[] id = "MQj ect Narre" . get Byt es() ;

poa. activate_object_wth_id(id, inpl);

A WN PR

103

CHAPTER 4 | CORBA Objects

Deactivating Servants

Deactivation of Servants using
C++

Deactivation of Servants using
Java

Transient and Persistent Objects

104

A servant can be deactivated. Deactivating a servant breaks the association
between the CORBA object and the servant; requests that arrive from clients
thereafter result in an CBJECT_NOT_EX ST exception (or a TRANSI ENT
exception, if the server is down at the time a request is made).

To deactivate a servant, call the deact i vat e_obj ect member function on
the servant’s POA:

[l Ct+

Port abl eServer: : POA var poa = inpl._defaul t _PQOA();

Port abl eServer: : Cbj ectld_var id = poa -> servant_to_i d(& npl);
poa -> deactivate_object(id);

A WN PR

The code obtains a reference to the servant’s POA by calling _def aul t _PQOA.
(This assumes that _def aul t _PQA is correctly overridden to return the
appropriate POA if the servant is not activated with the Root POA.)

The call to servant _t o_i d on the servant’s POA returns the object ID with
which the servant is activated.

The call to deact i vat e_obj ect breaks the association between the CORBA
object and the servant.

Note that deact i vat e_obj ect returns immediately, even though the servant
may still be executing requests, possibly in a number of different threads.

Deactivation of a servant in Java is analogous to C++:

/'l Java

or g. omg. Port abl eServer. PQA poa = inpl._defaul t _PQOA();
byte[] id = poa.servant_to_id(inpl);

poa. deact i vat e_obj ect (i d);

A WN PR

A POA has either the TRANSI ENT or the PERSI STENT policy value. A transient
POA generates transient object references. A transient object reference
remains functional only for as long as its POA remains in existence. Once
the POA for a transient reference is destroyed, the reference becomes

Deactivating Servants

permanently non-functional and client requests on such a reference raise
either CBJECT_NOT_EXI ST or TRANSI ENT (depending on whether or not the
server is running at the time the request is sent). Transient references
remain non-functional even if you restart the server and re-create a transient
POA with the same name as was used previously. Transient POAs almost
always use the SYSTEM | D policy as a matter of convenience (although the
combination of TRANSI ENT and USER | Dis legal).

Object references created on a persistent POA continue to be valid beyond
the POA’s life time. That is, if you create a persistent reference on a POA,
destroy the POA, and then recreate that POA again (with the same POA
name), the original reference continues to denote the same CORBA object
(even if the server was shut down and restarted). Persistent references
require the same POA name and object ID to be used to denote the same
object. This means that persistent references rely on the combination of
PERSI STENT and USER | D. USER | D must be used in conjunction with

NO | MPLI O T_ACTI VATI CN, so servants for persistent references are always
activated explicitly.

105

CHAPTER 4 | CORBA Objects

Factory Objects

106

It is quite common to use the Factory [2] design pattern in CORBA
applications. In short, a factory object provides access to one or more
additional objects. In CORBA applications, a factory object can represent a
focal point for clients. In other words, the object reference of the factory
object can be published in a well-known location, and clients know that
they only need to obtain this object reference in order to gain access to other
objects in the system, thereby minimizing the number of object references
that need to be published.

The Factory pattern can be applied in a wide variety of situations, including

the following:

® Security - A client is required to provide security information before the
factory object will allow the client to have access to another object.

® | oad-balancing - The factory object manages a pool of objects, often
representing some limited resource, and assigns them to clients based
on some utilization algorithm.

® Polymorphism - A factory object enables the use of polymorphism by
returning object references to different implementations depending on
the criteria specified by a client.

These are only a few examples of the potential applications of the Factory

pattern. The examples listed above can also be used in any combination,

depending on the requirements of the system being designed. Note that the

factory pattern applies equally to persistent and transient objects.

A simple application of the Factory pattern, in which a new object is created

for each client, is illustrated below. The implementation uses the following

interface definitions:

// 1DL
i nterface Product

{
}

voi d destroy();

interface Factory

{
Product creat eProduct ();

Yoo ~No s WN R

2-5

7-10

Factory Objects

The Product interface is defined. The dest r oy operation allows a client to
destroy the object when it is no longer needed.

The Fact ory interface is defined. The cr eat ePr oduct operation returns the
object reference of a new Product .

107

CHAPTER 4 | CORBA Objects

Factory Objects using C++

First, we'll implement the Product interface:

1 /] C++

2 class Product _inpl

3 public virtual PQA Product,

4 public virtual Portabl eServer:: Ref Count Servant Base
5 {

6 public:

7

8 virtual void destroy() throw CORBA : SystenExcepti on)
9 {

10 Port abl eServer:: POA var poa = _defaul t _PQA();
11 Port abl eServer:: Cbjectld_var id = poa ->
servant _to_id(this);

12 poa -> deactivate_object(id);

13 }

b

2-4 The servant class Product _i npl is defined as an implementation of the
Product interface. In addition, Product _i npl inherits from
Ref Count Ser vant Base, which makes the servant reference counted.

8-13 The destroy() operation deactivates the servant with the POA. As a result,
the POA will release all references it maintains to the servant. Since there
are no other references to the servant left, the servant’s reference count will
drop to zero, and thus the servant is destroyed.

108

9-10

11-14

Factory Objects

Next, we’ll implement the factory:

1 // G+

2 class Factory_inpl : public virtual PQA Factory

3 {

4 public:

5

6 virtual Product_ptr

7 creat eProduct () throw CORBA: : Syst enExcepti on)

8 {

9 Product _i npl * i npl = new Product _i npl (orb_);

10 Por t abl eSer ver : : Servant Base_var servant = inpl;

11 Portabl eServer:: POA var poa = ... // Get servant’s PQA
12 Portabl eServer::Chjectld var id = ... // Assign an ID
13 poa -> activate_object_with_id(id, inpl);

14 return inpl -> _this();

15 }

b

The servant class Fact ory_i npl is defined as an implementation of the
Fact ory interface.

A new reference counted Product servant is instantiated. The servant is
assigned to a Servant Base_var , which decrements the servant’s reference
count when it goes out of scope.

Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The
Ref Count Ser vant Base class from which the servant inherits implements a
reference count. When the servant is instantiated, the Ref Count Ser vant Base
constructor sets this reference count to 1. When the servant is activated
with the POA, the POA increases the reference count by at least 1. When
the Servant Base_var we assigned the servant to goes out of scope, the
reference count is decremented by 1. This means that when

creat eProduct () returns, only the POA is “holding” a reference to the
servant. Later, when the servant is deactivated in destroy(), the POA
decrements the reference count by exactly the same number it used to
increment the reference count upon activation. This causes the reference
count to drop to zero, in which case the servant will be implicitly deleted.

Note that whenever the ORB starts to dispatch a request on the servant, the
reference count is incremented. After request dispatching is finished, the
count is decremented by the same amount. This ensures that a reference
counted servant cannot be deleted while a request is executing.

109

CHAPTER 4 | CORBA Objects

Factory Objects using Java
Here is our Java implementation of the Product interface:

1 // Java
2 public class Product_inpl extends Product POA

3 {

4 public voi d destroy()

5 {

6 byte[] id = _default_PQA().servant_to_id(this);
7 _defaul t_PQA() . deacti vat e_obj ect (i d);

8 }

}

2 Servant class Product _i npl is defined as an implementation of the Pr oduct
interface.

6,7 The dest r oy operation deactivates the servant with the POA. As long as no
other references to the servant are held in the server, the object will be
eligible for garbage collection.

Here’s our implementation of the factory:

1 // Java

2 public class Factory_ inpl extends FactoryPQA

3 {

4 publ i ¢ Product createProduct ()

5 {

6 Product _inpl result = new Product _i npl (orb_);
7 org. ony. Portabl eServer. PQA poa = ... // Get servant’s
PQA

8 byte[] id =... // Assign an ID

9 poa. activate_object_with_id(id, result);

10 return result._this(orb_);

11 }

}

2 Servant class Fact ory_i npl is defined as an implementation of the Factory
interface.

4-11 The creat eProduct operation instantiates a new Product servant, activates
it with the POA, and returns an object reference to the client.

110

Factory Objects

Caveats

In these simple examples, the factory objects do not maintain any references
to the Product servants they create; it is the responsibility of the client to
ensure that it destroys a Product object when it is no longer needed. This
design has a significant potential for resource leaks in the server, as it is
quite possible that a client will not destroy its Product objects, either
because the programmer who wrote the client forgot to invoke dest r oy, or
because the client program crashed before it had a chance to clean up. You
should keep these issues in mind when designing your own factory objects.’

1. Two possible strategies for handling this issue include: time-outs, in which a
servant that has not been used for some length of time is automatically released;
and expiration, in which an object reference is only valid for a certain length of
time, after which a client must obtain a new reference. The implementation of
these solutions is beyond the scope of this manual.

111

CHAPTER 4 | CORBA Objects

Obtaining the POA for a Servant

112

9-12

14-17

As mentioned in the previous sections, every servant inherits a

_def aul t _PQA function from its skeleton class. The default implementation
of this function returns the Root POA. If you instantiate servants on anything
but the Root POA, you must override the function in the servant; otherwise,
calls to _t hi s will create incorrect object references. Usually, this involves

remembering the POA reference for a servant in a private member variable

and returning that reference from a call to _def aul t _PQa. (If all servants for
objects of a particular interface type use the same POA, you can use a static
member variable.)

In C++, you can use an approach similar to the following:
[l Ct+
cl ass Product _i npl

public virtual PQA Product,
public virtual Portabl eServer: : Ref Count Servant Base

Port abl eServer: : POA var poa_;

publ i c:
voi d Product _i npl (Portabl eServer: : POA ptr poa)

©OoOoO~NOOO~WNERE
-~

10 poa_(Port abl eServer: : POA : _dupl i cat e(poa))
11 {

12 }

13

14 virtual Portabl eServer::PQA ptr _default POA()
15 {

16 return Portabl eServer::POA : _duplicate(poa_)
17 }

18 };

The constructor accepts a POA reference and remembers that reference in a
private member variable.

The _def aul t_PQA function returns the servant’s POA.
In Java, the approach is very similar:

Factory Objects

/'l Java
public class Product_i npl extends Product PQA
{

private org. onmy. Portabl eServer. POA poa_;

publ i ¢ Product _i npl (org. ong. Port abl eServer . PQA poa)
{

}

publ i ¢ org. ong. Port abl eSer ver . POA

_defaul t _POA()
{

}

poa_ = poa;

return poa_;

113

CHAPTER 4 | CORBA Objects

Getting the POA for a Currently Executing Request

The ORB provides access to an object of type Port abl eServer:: Qurrent:

/1 1DL
nodul e Port abl eSer ver
{
interface Qurrent : COCRBA: : CQurrent
{
exception NoContext { };
PQA get _PQA() rai ses(NoContext);
(bj ect1d get_object_id() rai ses(NoContext);
IE

}s

This interface provides access to the POA and the object ID for an executing
request. Note that these operations must be invoked only from within the
context of an executing operation inside a servant; otherwise, they raise
NoCont ext . The Qurrent object provides a useful way to obtain access to a
servant’s POA and object ID without having to store the POA reference in a
member variable, at the cost of being accessible only from within an
operation implementation. You can obtain a reference to the Qurrent object
from resol ve_ini ti al _ref erences. In C+++, the code looks something like
this:// G+

[l Ct+
CCRBA : CRB var orb = ... // Get the ORB somehow
OCRBA: : (hj ect _var obj =

orb ->resolve_initial_references("PQAurrent");
Port abl eServer:: Qurrent _var current =

Portabl eServer:: Qurrent:: _narrow(obj);
i f(!OORBA :is_nil(current))

. /] Got Qurrent object K

You can keep the reference to the Current object in a variable and use it
from within any executing operation in a servant. There is no need to
“refresh” the Qurrent reference for the current operation, not even for
threaded servers. The ORB takes care of ensuring that operation invocations
on the Qurrent object return the correct data.

114

Factory Objects

In Java, the code to obtain the Qurrent reference looks like this:

/1 Java
org.ong. CORBA CRB orb = ... // Get the CRB sonehow
or g. ong. CORBA. (bj ect obj =

orb.resol ve_initial_references("PQAQurrent");
org. ong. Portabl eServer. Qurrent current =

org. ong. Port abl eServer. Qurrent Hel per. narrowobj);
if(current !'= null)

/l Got Qurrent object CK

115

CHAPTER 4 | CORBA Objects

116

CHAPTER 5

Locating Objects

This chapter describes how to locate CORBA servant objects.

In this chapter This chapter contains the following sections:
Obtaining Object References page 118
Lifetime of Object References page 122
Stringified Object References page 126
Object Reference URLs page 130
The BootManager page 136
Initial Services page 140
The IORDump utility page 146

117

CHAPTER 5 | Locating Objects

Obtaining Object References

Using CORBA, an object can obtain a reference to another object in a
multitude of ways. One of the most common ways is by receiving an object
reference as the result of an operation, as demonstrated by the following
example:

/1 1DL
interface A

{
}s

interface B

A getA();

© 00N O WN PP

}s

2-4 An interface Ais defined.

6-9 An interface B is defined with an operation returning an object reference to
an A

118

7-28

14-17

19-22

24-27

Obtaining Object References

On the server side, Aand B can be implemented in C++ as follows:

1 /] G+

2 class Ainpl : public POA A

3 publ i ¢ Port abl eServer: : Ref Count Ser vant Base
4 {

5 1

6

7 class Binpl : public PQA B,

8 publ i ¢ Port abl eServer: : Ref Count Ser vant Base
9 {

10 Ainpl* a_;

11

12 public:

13

14 B inpl ()

15 {

16 a_ =new Ainpl();

17 }

18

19 ~B inpl ()

20 {

21 a_ -> renove_ref();

22 }

23

24 virtual A ptr getA() throw CCRBA: : SystenExcepti on)
25 {

26 return a_ -> _this();

27 }

28 };

The servant class A i npl is defined, which inherits from the skeleton class
POA A and the class Ref Count Ser vant Base which provides a reference
counting implementation.

The servant class B i npl inherits from the skeleton class POA_B and the
reference counting class Ref Count Ser vant Base.

An instance of the servant class A i npl is created in the constructor for
B inpl.

In the destructor for B_i npl , the reference count for the servant A i npl is
decremented, which leads to the destruction of the servant.

get Areturns an object reference to the A i npl servant (implicitly creating
and activating the CORBA object if necessary).

119

CHAPTER 5 | Locating Objects

In Java, the interfaces can be implemented like this:

1 // Java
2 public class Ainpl extends APQA
3 {
4 1}
5
6 public class B inpl extends BPQA
7
8 org. ong. CORBA CRB orb_;
9 Ainmpl a_;
10
11 public B_inpl (org. ong. CORBA. CRB or b)
12 {
13 orb_ = orb;
14 a_ =newAinpl();
15 }
16
17 A get A()
18 {
19 return a_._this(orb_);
20 }
}
2-4 The servant class A i npl is defined, which inherits from the skeleton class
APQA.
6-21 The servant class B_i npl is defined, which inherits from the skeleton class
BPQA.
11-15 B_i npl 's constructor stores a reference to the orb and creates a new A _i npl
servant.

17-20 get Areturns an object reference to the A i npl servant (implicitly creating
and activating the CORBA object if necessary).

A client written in C++ could use code like the following to get references to
A

[l Ct+
B var b . Il Get a B object reference somehow
Avar a=b -> getA);

And in Java:

/1 Java
Bb=... // Gt a B object reference sonehow
Aa =bh.getA);

120

Obtaining Object References

In this example, once your application has a reference to a B object, it can
obtain a reference to an A object using get A. The question that arises,
however, is How do | obtain a reference to a B object? This chapter answers
that question by describing a number of ways an application can bootstrap
its first object reference.

121

CHAPTER 5 | Locating Objects

Lifetime of Object References

All of the strategies described in this chapter involve the publication of an
object reference in some form. A common source of problems for
newcomers to CORBA is the lifetime and validity of object references. Using
IIOP, an object reference can be thought of as encapsulating several pieces
of information:

® hostname

® port number

® object key

If any of these items were to change, any published object references
containing the old information would likely become invalid and its use might
result in a TRANSI ENT or CBJECT_NOT_EXI ST exception. The sections that

follow discuss each of these components and describe the steps you can
take to ensure that a published object reference remains valid.

122

Lifetime of Object References

Hostname

By default, the hostname in an object reference is the canonical hostname

of the host on which the server is running. Therefore, running the server on
a new host invalidates any previously published object references for the old
host.

Orbacus provides the - 11 CPhost option to allow you to override the
hostname in any object references published by the server. This option can
be especially helpful when used in conjunction with the Domain Name
System (DNS), in which the -11 CPhost option specifies a hostname alias
that is mapped by DNS to the canonical hostname.

See “Command-line Options and Endpoints” on page 76 for more
information on the -1 | CPhost option.

123

CHAPTER 5 | Locating Objects

Port Number

124

Each time a server is executed, the Root POA manager selects a new port
number on which to listen for incoming requests. Since the port number is
included in published object references, subsequent executions of the server
could invalidate existing object references.

To overcome this problem, Orbacus provides the - 11 CPport option that
causes the Root POA manager to use the specified port number. You will
need to select an unused port number on your host, and use that port
number every time the server is started.

See “Command-line Options and Endpoints” on page 76 for more
information on the -1 | CPport option.

Lifetime of Object References

Object Key

Each object created by a server is assigned a unique key that is included in
object references published for the object. Furthermore, the order in which
your server creates its objects may affect the keys assigned to those objects.
To ensure that your objects always have the same keys, activate your
objects using POAs with the PERSI STENT life span policy and the USER | D
object identification policy.

125

CHAPTER 5 | Locating Objects

Stringified Object References

The CORBA specification defines two operations on the ORB interface for
converting object references to and from strings.

/1 1DL
nodul e CORBA
{
interface CRB
{
string object_to_string(in Cbject obj);
(bj ect string_to_object(in string ref);
IE
IE

Using “stringified” object references is the simplest way of bootstrapping
your first object reference. In short, the server must create a stringified
object reference for an object and make the string available to clients. A
client obtains the string and converts it back into an object reference, and
can then invoke on the object.

The examples discussed in the sections below are based on the IDL
definitions presented at the beginning of this chapter.

126

Stringified Object References

Using a File

3-5

One way to publish a stringified object reference is for the server to create
the string using obj ect _t o_stri ng and then write it to a well-known file.
Subsequently, the client can read the string from the file and use it as the
argument to string_t o_obj ect . This method is shown in the following
C++ and Java examples.

First, we'll look at the relevant server code:

Il Ct+

QCRBA: : CRB var orb = ... // Get areference to the CRB somehow
Binpl* blmp = new B inpl ();

Port abl eSer ver:: Servant Base_var servant = bl npl;

Bvar b = blnpl -> this();

OORBA: : String_var s = orb -> object_to_string(b);

of stream out (" obj ect.ref")

out << s << endl;

out. cl ose();

©oOoO~NOOO~WNPR

A servant for the interface B is created and is used to incarnate a CORBA
object.

The object reference of the servant is “stringified”.
The stringified object reference is written to a file.
In Java, the server code looks like this:

1 // Java
2 org.onmg. CORBACRB orb = ... // Get a reference to the CRB
sormehow

3 B.inpl binpl = new B_inpl();
B b = blnpl._this(orb);

String ref = orb.object_to_string(b);
java.io.PrintWiter out = new java.io.PrintWiter(
new j ava. i o. Fi | eQut put Strean("object.ref"));
out.println(ref);

out.cl ose();

© 00 ~NOo obh

A servant for the interface B is created and is used to incarnate a CORBA
object.

The object reference of the servant is “stringified”.
The stringified object reference is written to a file.

127

CHAPTER 5 | Locating Objects

Now that the stringified object reference resides in a file, our clients can
read the file and convert the string to an object reference:

1 // C++

2 OCRBA :CRBvar orb =... // Get areference to the CRB sonehow
3 ifstreamin("object.ref");

4 string s;

5 in > s;

6 CORBA :(bject_var obj = orb -> string_to_object(s.c_str());

7 Bwvar b =B :_narrowobj);

3-5 The stringified object reference is read.
string_to_object creates an object reference from the string.

7 Since the return value of string_t o_obj ect is of type CORBA: : (bj ect _ptr,
B: : _narrow must be used to get a B_ptr (which is assigned to a
self-managed B var in this example).

1 // Java
2 org.ong. COCRBACRB orb = ... // CGet a reference to the CRB
somehow

3 java.io.BufferedReader in = new java.i o. Buf f er edReader (
new j ava. i o. Fi | eReader ("obj ect.ref"));

String ref = in.readLine();

or g. ong. CORBA (hj ect obj = orb.string_to_object(ref);

B b = BHel per. narrowobj);

~N o o b~

3-5 The stringified object reference is read.
6 string_to_object creates an object reference from the string.
7 Use BHel per . nar r owto narrow the return value of string_t o_obj ect to B.

128

Stringified Object References

Using a URL

8-13
15
16

It is sometimes inconvenient or impossible for clients to have access to the
same filesystem as the server in order to read a stringified object reference
from a file. A more flexible method is to publish the reference in a file that is
accessible by clients as a URL. Your clients can then use HTTP or FTP to
obtain the contents of the file, freeing them from any local filesystem
requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: This example is shown only in Java because of Java’s built-in support
for URLs, but the strategy can also be used in C++.

1 // Java

2 inport java.io.*;

3 inport java.net.*;

4

5 String location = "http://ww. nywebserver/ obj ect.ref";

6 org.omg. CORBACRB orb = ... // Get a reference to the CRB
sonehow

7

8 UWRL url = new URL(Il ocation);

9 UWRLGonnection conn = url.openConnection();

10 BufferedReader in = new Buf f er edReader (

11 new | nput St r eanReader (conn. get | nput Strean()));

12 String ref = in.readLine();

13 in.close();

14

15 org. ony. CORBA. (bj ect object = orb.string_to_object(ref);
16 B b = BHel per. narrowobj ect);

I ocat i on is the URL of the file containing the stringified object reference.
Read the string from the URL connection.

Convert the string to an object reference.

Narrow the reference to a B object.

129

CHAPTER 5 | Locating Objects

Object Reference URLSs

130

Prior to the adoption of the Interoperable Naming Service (INS) [10], the
only standard format for stringified object references was the cumbersome

I R format. The INS introduced two new, more readable formats for object
references that use a URL-like syntax. Object reference URLs can be passed
to string_to_obj ect, just like | OR references. The two new URL formats
are described in detail in the specification, but will be briefly discussed here.
The optional file: URL format is also discussed, as well as the proprietary
rel file: URL format.

Object Reference URLS

corbaloc: URLs

The corbal oc: URL supports any number of protocols; the format of the
URL depends on the protocol in use. The general format of a corbaloc: URL
is shown below:
cor bal oc: [prot ocol] : <pr ot ocol -speci fi c>
Orbacus supports two standard protocols, i i op and ri r, but additional
protocols may be supported via transport plug-ins.
The corbal oc: URL for the i i op protocol has the following structure:
corbal oc: [iiop]:[version@host[: port]/object-key
The components of the URL are as follows:

® jiop- Thisis the default protocol for corbal oc: URLSs, and therefore is
optional.

® version - The IIOP version number in maj or . ni nor format. The default
is 1. 0.

® host - The hostname of the server.

® port - The port on which the server is listening. The default is 2089.
® obj ect-key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the
semantics are vendor-specific. In Orbacus, each address is used in turn until

one is found that works or until the ORB has tried them all and failed to
contact the object.

The rir protocol is a shortcut for the ORB operation

resol ve_ini tial _references. The corbal oc: URL for the rir protocol has

the following structure:
corbaloc:rir:[/id]

The components of the URL are as follows:

® rir - The protocol.

® id - The identifier of the service to be resolved. The identifier
NameSer vi ce is used if i d is not supplied.

Some examples of cor bal oc: URLS are:

cor bal oc: : nshost : 10000/ NaneSer vi ce
cor bal oc: : nyhost : 10000/ M/Chj ect | d
corbal oc: rir:/NaneService

131

CHAPTER 5 | Locating Objects

See “The BootManager” on page 136 for information on how a server can
support corbaloc: URLSs.

132

Object Reference URLS

corbaname: URLS

A cor banane: URL provides additional flexibility by incorporating use of the
Naming Service in the string_t o_obj ect operation. The cor banarme: URL
extends the capabilities of the cor bal oc: URL to allow the obj ect - key to
identify a binding in a Naming Service. For example, consider this URL:
cor banane: : ns1: 5001/ NareSer vi cef#ct x/ M/(oj ect

When the ORB interprets this URL, it attempts to resolve a naming context
object located at host ns1 on port 5001 and having the object key
NanmeSer vi ce. Once the naming context has been resolved, the ORB
attempts to lookup the binding named MyQoj ect in the naming context ct x.
If successful, the result of string_to_obj ect is the object reference
associated with the binding.

133

CHAPTER 5 | Locating Objects

file: URLS

134

Afile: URL provides a convenient way to obtain object references using an
IOR or URL reference that is in a file. The format of afile: URL is:

file:/<absolute file nane>

Using the file: URL and given that the file obj ect . ref is located in the
/ t np directory, the client side example of on page 127 may be simplified as
follows:

[l Ct+
OCRBA : CRB var orb = ... // Get a reference to the CRB somehow
CORBA: : (hj ect _var obj
= orb -> string_to_object("file:/tnp/object.ref");
B var b = B::_narrow(obj);

/1 Java

org.ong. CORBA CRBorb = ... // Cet a reference to the CRB sonehow

or g. ong. CORBA. (hj ect obj =
orb.string_to_object("file:/tnp/object.ref");

B b = BHel per. narrow(obj);

Object Reference URLS

relfile: URLSs

Orbacus also provides the proprietary rel fil e: URL. This URL is the same
as the file: URL except that it takes a relative file name instead of an
absolute file name.

135

CHAPTER 5 | Locating Objects

The BootManager

136

Consider the following cor bal oc: URL:

cor bal oc: : nyhost : 10000/ My(hj ect | d
In this example, M/Quj ect | d is the complete object key. Normally, object
keys require more information than a simple name to uniquely identify a
POA and a servant within the POA. The CORBA specification does not
standardize how a server can configure these simple object keys, therefore
each ORB implementation must provide a proprietary solution. In Orbacus,
the BootManager provides the mapping from a simple object key to a
complete object reference.

The BootManager

BootManager Interface

Here is the IDL interface for the BootManager:

nodul e CB

{

| ocal interface Boot Manager
{

exception Not Found {};
exception A readyExi sts {};

voi d add_bi ndi ng(i n Portabl eServer::Chjectld oid, in
Chj ect obj)
rai ses(Al readyExi sts);

voi d renove_bi ndi ng(in Portabl eServer:: Cbjectld oid)
rai ses(Not Found) ;
b
g

For the complete IDL description, please see Appendix A.

137

CHAPTER 5 | Locating Objects

How the BootManager Works

When an Orbacus server receives a request, the ORB verifies that the key
has the ORB’s internal format. If not, the ORB will ask the BootManager if it
has a mapping for the “foreign” key. If a match is found, the ORB will return
a “location forward” reply, redirecting the client to the object reference
supplied by the BootManager.

138

The BootManager

Using the BootManager

The Boot Manager : : add_bi ndi ng operation binds an object id to an object
reference. The Boot Manager : : r enove_bi ndi ng operation removes an
existing binding. The following example illustrates how a server can add a
binding for the object id M/Quj ect | d.

Il Cr+
OORBA: : (hj ect _var obj =// ... Get a reference
QORBA: : oj ect _var brmgr Gj =

orb -> resolve_initial _references("Boot Manager");
CB: : Boot Manager _var boot Manager =

CB: : Boot Manager : : _narr ow bngr Qoj) ;
Portabl eServer:: Chjectld var objld =

Portabl eServer::string_to_(bjectld("MQbjectld");
boot Manager -> add_bi ndi ng(obj 1 d, obj);

© oOo~NOOUh WNPRE

3-6 Get a reference to the Boot Manager object by invoking
resol ve_initial _references on the ORB.

7-8 Create the object id.
Create the new binding.

And in Java:

1 // Java

2 org.ony. OORBA. (hject obj =// ... Get a reference
3 org.ong. CORBA (bj ect brmgr hj =

4 orb.resol ve_initial _references("Boot Manager") ;
5 com ooc. CB. Boot Manager _var boot Manager =

6 com ooc. CB. Boot Manager Hel per . narr ow bngr Ooj) ;
7 byte[] objld = "MQojectld".getBytes();

8 boot Manager . add_bi ndi ng(obj I d, obj);

3-6 Get a reference to the Boot Manager object by invoking
resol ve_initial _references on the ORB.

7 Create the object id.
Create the new binding.

139

CHAPTER 5 | Locating Objects

Initial Services

140

The CORBA specification provides a standard way to bootstrap an object
reference through the use of initial services, which denote a set of unique
services whose object references, if available, can be obtained using the
ORB operation resol ve_i ni ti al _ref erences, which is defined as follows:

/1 1DL
nodul e CORBA
{

interface CRB

{
typedef string Chjectld;
exception InvalidName {};

(bj ect resolve_initial_references(in (ojectld
identifier)
rai ses(lnval i d\ane) ;
IE
IE

Initial services are intended to have well-known names, and the OMG has
standardized the names for some of the CORBAservices [9]. For example,
the Naming Service has the name NaneSer vi ce, and the Trading Service has
the name Tr adi ngSer vi ce.

Initial Services

Resolving an Initial Service

An example in which the ORB is queried for a Naming Service object
reference will demonstrate how to use resol ve_initial _references. The
example assumes that the ORB has already been initialized as usual. First
the Java version:

5-12

19-26

© oOo~NOOUh WNPRE

NRPRRPRRRERRRERE R
O OWowo~NOOUlh, WN PP O

NN DN
A WN P

25
26

/1 Java
or g. ong. CORBA. (bj ect obj = nul | ;
or g. ong. CosNam ng. Nam ngCont ext ctx = nul | ;

try
{
obj = orb.resolve_initial_references("NaneService");
}
cat ch(or g. ong. CORBA. CRBPackage. | nval i dNarre ex)
{
/1l An error occured, service is not available
}
if(obj == null)
{
/1 The object reference is invalid
}
try
{
ctx = org.ong. CosNam ng. Nam ngCont ext Hel per . narr ow(obj) ;
}
cat ch(or g. ong. CORBA. BAD_PARAM ex)
{
/1 This object does not inplenent a Nam ngCont ext
}

Try to resolve the name of a particular service. If a service of the specified
name is not known to the ORB, an | nval i dNane exception is thrown.

The service type was known. Now the object reference has to be narrowed
to the particular service type. If this fails, the service is not available.

141

CHAPTER 5 | Locating Objects

And here’s the C++ equivalent to the Java version above:

1 // C++

2 COORBA : (hj ect _var obj;

3 CosNam ng: : Nam ngCont ext _var ctx;

4

5 try

6 {

7 obj = orb -> resolve_initial_references("NaneService");
8 1}

9 catch(CORBA : GRB:: | nval i dNane&)

10 {

11 ... I/ An error occured, service is not available
12 }

13

14 if (OCORBA :is_nil(obj))

15 {

16 ... [/l The object reference is invalid

17 }

18

19 ctx = CosNam ng: : Nam ngCont ext : : _narrow(obj);

20 if(CORBA :is_nil(ctx))

21 {

22 ... [/ This object does not inplenent Nam ngCont ext

142

Initial Services

Configuring the Initial Services

When an application uses initial services that are not locality-constrained,
the application must register the object references for these objects with the
ORB. Orbacus supports the standard - CRBI ni t Ref and - ORBDef aul t | ni t Ref
command-line options for registering initial service object references:

-ORBl ni t Ref name=URL

-ORBDefaul t1 nit Ref URL
For example, starting an application as shown below will enable the client to
resolve the NaneSer vi ce initial reference:

nyclient -CRBlnitRef

NameSer vi ce=cor bal oc: : nshost : 10000/ NaneSer vi ce

The - CRBconf i g option is an alternative method for defining a list of initial
services, and is often preferable when a number of services must be defined.
See “Configuring the ORB and Object Adapter” on page 51 for more
information on these command-line options. Also refer to the INS
specification [10] for detailed information on the standard options
-ORBIni t Ref and - GRBDef aul t I ni t Ref .

In addition to using command-line parameters, a program can add to the list

of initial services using the ORB operation regi ster _initial _refer encel:
/] 1DL
nodul e CCORBA
{

interface CRB

{

void register_initial _reference(in hjectld id, in
Chj ect obj)
rai ses(I nval i d\Nane) ;

s
IE
For example, in C++:
1 /] C++
2 COORBA :pject_var obj = ... // Get a name service reference
sonehow

3 orb ->register_initial_reference("NaneService", obj);

1. This will become part of the ORB interface when the Portable Interceptor
specification is adopted.

143

CHAPTER 5 | Locating Objects

144

Get a reference to the naming service, for example by reading a stringified
object reference and converting it with string_t o_obj ect, or by any other
means.

Add the reference to the ORB’s list of initial references.

Or in Java:
1 // Java
2 org.ony. CORBA (hject obj =...// Get a name service reference

somrehow
3 orb.register_initial_reference("NaneService", obj);

This is the same as the C++ version above.

Initial Services

The Initial Service Locator

In addition to providing the Orbacus Implementation Repository, the IMR
server (see Chapter 6) acts as an initial service locator. That is, assuming
that the IMR server is properly configured, the name of the host running the
IMR server is the only information needed to find a particular initial service.

To locate an initial service with name f oo, the IMR server must first be
configured with the initial reference of this service. This may be done with
the - GRBI ni t Ref command-line option or the ooc. or b. servi ce
configuration property (see Chapter 3 for details). Next, the client that
wishes to connect to f oo must be configured with the default initial
reference specifying the host running the IMR server. The

- ORBDef aul t I ni t Ref command-line option or the

ooc. orb. defaul t _i ni t _ref configuration property may be used to configure
the default initial reference. For example, given that the IMR server is
running on imr-host, then the client can be started with the option:

- ORBDef aul t | ni t Ref =cor bal oc: : i nr - host

When the client is configured with this default initial reference it may invoke
resol ve_initial _references("foo") on the ORB to obtain a reference to
f oo.

145

CHAPTER 5 | Locating Objects

The IORDump utility

Overview

Sample output for the demo/hello

example

146

Orbacus provides the iordump utility to decode stringified IORs and to print
out their components in human readable format. It is available in a C++
and a Java version.

Its usage is shown below.

iordunp [options] [-f FILE... | ICR...]
comooc. CB. | ORbunp [options] [-f FILE... | ICR...] 1
-h, --help Show available options.
-v, --version Show Orbacus version.
-f FILE ... Read IORs from file instead of command line.
IOR ... List of IORs.

The Java version is available in CB. j ar .

The following command:
iordunp -f Hello.ref

prints:

I COR #1:

byteorder: little endian

type_id: IDL:Hello:1.0
Profile #1: iiop

iiop_version: 1.2

host: 192.168.0.1

port: 17000

obj ect _key: (37)

171 172 171 49 49 48 50 48 "...11020"
55 55 53 54 56 48 0 95 "775680. "
82 111 111 116 80 79 65 0 "Root PQA. "

0 202 254 186 190 60 215 205 "..!!¥<."
0O 0 O O O R, "

Nati ve char codeset:

"1 SO 8859-1: 1987; Latin Al phabet No. 1"

Char conversi on codeset s:

"1 SO 646: 1991 | RV (International Reference Version)"
"X/ Qpen UTF-8; UCS Transformation Format 8 (UTF-8)"

Nati ve wchar codeset:

"1SQ | EC 10646- 1: 1993; UCS-2, Level 1"

Whar conversi on codesets:

The IORDump utility

"1 SO | EC 10646- 1: 1993; UTF-16, UCS Transformati on Fornmat 16-bit forn

147

CHAPTER 5 | Locating Objects

148

CHAPTER 6

The
Implementation
Repository

This chapter describes how the Orbacus Implementation
Repository (IMR) works and how to use it.

In this chapter This chapter contains the following sections:
Background page 151
Information Managed by the IMR page 152
IMR Security page 155
Usage page 156
Windows NT Native Service page 158
Configuration Properties page 160
Connecting to the Service page 161
Utilities page 162
Getting Started with the Implementation Repository page 165

149

CHAPTER 6 | The Implementation Repository

150

Programming Example

page 168

Background

Background

Overview

How It All Works

The Orbacus Implementation Repository (IMR) provides support for the
indirect binding? of persistent object references. The key advantage of
indirect binding is that it loosens the coupling between clients and servers
so that the location of the server can change without affecting the client. In
practical terms, this is accomplished by providing the client with an IOR
that actually refers to the IMR, rather than to the server itself. The IMR also
provides the ability to start servers on demand using the Object Activation
Daemon (OAD).

The CORBA specification does not standardize how servers and the IMR
interact, it only suggests functionality for vendors to implement. Hence, the
interface between servers and the IMR is strictly proprietary. Due to the
proprietary interface between servers and the IMR, servers using the IMR
must be developed using Orbacus for C++ or Java. However, the
interaction between clients and the IMR is strictly specified by the GIOP
specification, so any client that is CORBA compliant may interact with the
IMR.

When a server is using the IMR, object references created by one of its
persistent POAs refer to the IMR rather than to the server itself. When the
client makes a request using this reference, the IMR receives the request,
activates the server (if necessary) using the OAD, and returns a new object
reference to the client that identifies the server at its current host and port.
The client then establishes a connection with the server using the new
object reference and communicates directly with the server, without the
intervention of the IMR. However, should the server fail, a well-behaved
client will contact the IMR again, which may restart the server and allow the
client to resume its activities.

1. Binding refers to the process of opening a connection and associating an object
reference with its servant.

151

CHAPTER 6 | The Implementation Repository

Information Managed by the IMR

The IMR provides support for the indirect binding and automatic activation
of servers within a given domain. In order to provide this support, the IMR
manages three types of entities: OADs, servers, and POAs.

OADs An OAD is responsible for the activation of servers on a given host. Each
OAD is registered in the IMR using a host name. The IMR also maintains the
status of each OAD. If the OAD is running and in a ready state it will have a
status of up, otherwise, its status will be down.

Servers Servers are registered with a name that is unique within the domain and the
host corresponding to the OAD that is responsible for the server. Since the
name is unique within the domain, it is not currently possible to register the
same server with multiple OADs. The server name that is registered in the
IMR can be any string, but it must be the same as the name used by the
server (i.e., the name specified by the - ORBServer | d option, or equivalent
property). The attributes of a server that are stored by the IMR are
summarized below:

host The host corresponding to the OAD that is
responsible for the server.

exec The path of server executable (the . exe extension
must be included on Windows platforms). If this
attribute is not set, then the IMR will not activate the
server.

args The arguments to be supplied when starting the
server executable. Note that “- ORBSer ver I d
server-id” is automatically appended to the
arguments before the server process is started.

rundir The directory that the server process will be started
from. If this attribute is not set, then the server
process will be started from the root directory. For
Windows platforms, the full path must be specified
in the exec attribute even if this attribute is set.

152

Information Managed by the IMR

mode The activation mode. The possible values are:

shar ed, only one server process is created which is
used by all clients, and per si st ent, the server
process is started when the IMR starts and is used
by all clients.

acti vat e- poas If this attribute is set to true (default), then all
persistent POAs will be registered automatically. If
set to f al se, then persistent POAs are not registered
automatically.

updat e-t i meout The amount of time (in milliseconds) to wait for
server status updates.

failure-timeou | The amount of time (in seconds) to wait for the
t server to start.

max- spawns The maximum number of tries to start the server.

The IMR also maintains various state information for each server:

® The internal ID of the server.

® The status of the server process. The valid values are f or ked,
starting, runni ng, st oppi ng, and st opped.

® Whether or not the server was started manually.

® The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in

which the OAD was started. Hence, path, library path, and class path

environment variables can be used by the server application. This is

especially useful in the case of shared library and class path settings. (Note
that the class path may also be set in the ar gs attribute.)

On Windows platforms, the exec attribute may refer to an executable or
batch file. Make sure that the first line of the batch file contains:

@cho of f

On UNIX platforms, the exec attribute may refer to an executable or a shell
script with

#! interpreter
as its first line.

153

CHAPTER 6 | The Implementation Repository

POAs

154

However, if a batch file or shell script is used, then it should accept the
- CRBSer ver I d option since it is automatically appended to the ar gs
attribute by the IMR.

In the case of Java servers, a batch file or shell script should be created to
start the server. An alternative is to set the exec attribute to the Java
interpreter and to use the ar gs attribute to specify the class implementing
the server.

The IMR allows implicit registration of POAs when the server is started. This
can be enabled or disabled for each server using the acti vat e_poas server
attribute. If implicit registration is enabled, then the user does not have to
register any of the POAs; instead, the server transparently notifies the IMR
whenever a call to creat e_PQA is made by the application code.

If the user disables implicit registration, then the user must register all
persistent POAs (i.e., POAs with the PERSI STENT life span policy). POAs are
registered using the name of its server and the name of the POA. Note that
any transient POAs (POAs with the TRANSI ENT life span policy) created by
the server are not registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state
of its POA Manager. The valid values are i nacti ve, acti ve, hol di ng, and
di scar di ng.

IMR Security

IMR Security

It is very important that only the IMR’s public endpoint (also referred to as
its forward endpoint) be accessible outside of the network firewall.
Otherwise, anyone can mimic the IMR and cause an OAD to run any
command they decide.

For additional security, the information managed by the IMR may only be
modified when the IMR is running in administrative mode. That is:
® OAD registration and removal,
® server registration and removal,

modification of server attributes, and
® POA registration and removal
are only possible when the IMR is running in administrative mode. An
attempt to modify the information managed by the IMR when it is not
running in administration mode will result in a CORBA: : NO_PERM SSI ON
exception.

155

CHAPTER 6 | The Implementation Repository

Usage

The IMR and OAD are currently implemented using Orbacus for C++, but
Orbacus for Java servers can also be launched by the IMR. Both the IMR
and OAD are contained in the IMR server, which may be started in one of
three modes:

mast er Start only the IMR.

sl ave Start only the OAD.

dual Start both the IMR and OAD.

Command-line usage is as follows:
inr
[-h,--help] [-v,--version] [-m--master] [-s,--slave]
[-a,--administrative] [-d,--database][-A, --adm n-endpoint]
[-F --forward-endpoint] [-S, --slave-endpoint]

[-L, --locator-endpoint]
-h Display the command-line options supported by the
--hel p server.
-v Display the version of the server.
--version
-m Run the server in mast er mode.?
--nmast er
-s Run the server in sl ave mode.?
--slave
-a Run the IMR in administrative mode. The IMR will
--admnistrative run in non-administrative mode by default.
-d D RECTQRY Specifies the directory in which the IMR maintains
- -dat abase D RECTCRY its database files. If not specified, the current
working directory is used.

156

Usage

-A INFO
- -adnm n-endpoi nt | NFO

Specifies the IMR's administrative endpoint settings.
This is the endpoint that the OADs and IMR-enabled
servers use to communicate with the IMR. For
security reasons, access to this endpoint can be
restricted. If not specified, iiop --port 9999 is
used.

-F INFO
--forward-endpoi nt | NFO

Specifies the IMR's public endpoint, which is used
by clients for server requests. If not specified, i i op
--port 9998 is used.

-S INFO
- -sl ave-endpoi nt | NFO

Specifies the endpoint used by the OAD. Note that
all of the OADs in a domain must use the same
endpoint. If not specified, i i op --port 9997 is used.

-L INFO
- -l ocat or-endpoi nt | NFO

Specifies the endpoint used by the Initial Service
Locator (see “The Initial Service Locator” on
page 145). If not specified, i i op --port 2809 is
used.

a. Note that only one of the - mor - s options may be specified. Also, if neither the - mor - s
option is specified, then the server is started in dual mode.

157

CHAPTER 6 | The Implementation Repository

Windows NT Native Service

158

The imr server is also available as a native Windows NT service.

ntinrservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h Display the command-line options supported by
--help the service.

- Install the service. The service must be started
—-install manually.

-s Install and start the service.
--start-install

-u Uninstall the service.
--uninstall

-d Run the service in debug mode.
- - debug

In order to use the IMR server as a native Windows NT service, first add the
desired configuration properties to the HKEY_LOCAL_MACH NE NT registry key
(see “Using the Windows NT Registry” on page 64 for more details). For
example, add the ooc. i nr. admi n_endpoi nt, ooc. i nt. f or war d_endpoi nt ,
and ooc. i nt. sl ave_endpoi nt properties so that the IMR and OAD will use
non-default endpoint settings.

Next the service should be installed with:

ntinrservice -i
This adds the O bacus | npl ement ati on Repository entry to the Servi ces
dialog in the Control Panel. To start the service, select the O bacus
I npl enent ati on Repository entry, and press Start . If the service is to be
started automatically when the machine is booted, select the O bacus
I npl enent ati on Reposi t ory entry, then click Startup. Next select St art up
Type - Automat i ¢, and press CK. Alternatively, the service could have been
installed using the -s option, which configures the service for automatic
start-up:

Windows NT Native Service

ntinrservice -s
If you want to remove the service, run:

ntinmrservice -u
Note: If the executable for the service is moved, it must be uninstalled and
re-installed.
Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title | MRSer vi ce. To enable tracing information,
add the desired trace configuration property (i.e., one of the ooc.inr.trace
properties or one of the ooc. or b. trace properties) to the
HKEY_LOCAL_MACH NE NT registry key with a REG Sz value of at least 1.

159

CHAPTER 6 | The Implementation Repository

Configuration Properties

In addition to the standard configuration properties described in Chapter 3,
the IMR also supports the following properties:

Property Value Description

ooc.imr.mode mast er, sl ave, dual | Specifies the mode in which the imr server
will be started.

ooc.imr.administrative true, fal se If set to t rue, then run the IMR in
administrative mode. For details refer to
the - a command-line option.

ooc.imr.dbdir directory Equivalent to the -d command-line option.
ooc.imr.admin_endpoint info Equivalent to the - Acommand-line option.
ooc.imr.forward_endpoint info Equivalent to the - F command-line option.
ooc.imr.slave_endpoint info Equivalent to the - S command-line option.
ooc.imr.locator_endpoint info Equivalent to the - L command-line option.
ooc.imr.trace.peer_status level >=0 Defines the output level for IMR diagnostic

messages related to communications with
the OADs. The default level is O, which
produces no output.

ooc.imr.trace.process_control level >=0 Defines the output level for IMR diagnostic
messages related to the forking and death
of server processes. The default level is O,
which produces no output.

ooc.imr.trace.server_status level >=0 Defines the output level for IMR diagnostic
messages related to the status of servers
and POAs. The default level is O, which
produces no output.

160

Connecting to the Service

Connecting to the Service

Servers that use the IMR must be configured with the IMR initial reference.
The object key of the IMR is I MR, hence, a URL-style object reference of the
IMR service running on host i nr host at port 10000 would be:

cor bal oc: : i nt host : 10000/ | MR
Using this object reference, a server can configure the IMR initial reference
with the property:

ooc. or b. servi ce. | MR=cor bal oc: : i nt host : 10000/ | MR

An alternative to using the above property is to use the - CRBI ni t Ref
command-line option. Refer to Chapter 5 for more information on URLs and
configuring initial services.

161

CHAPTER 6 | The Implementation Repository

Utilities

Implementation Repository
Administration

162

The i nradni n utility provides complete control over the IMR, OADs and

servers in a domain. Its command interface is shown below:

-h, --help

Display this information.

--add- oad [host]

Register an OAD for the specified host.

--add-server server-name [exec [host]]

Register a server under the OAD
specified by host with the given exec
attribute.

--add-poa server-name poa-name

Register a POA for the specified server.

--renove-oad [host]

Unregister an OAD.

--renove-server Server-name

Unregister a server.

--renove- poa Server-name poa-name

Unregister a POA.

- - get - oad- st at us [host]

Get the status of an OAD.

--get-server-info server-name

Get the attributes and state information
for a server.

--get - poa-stat us server-name poa-name

Get the status of a POA.

--list-oads

List all OADs.

--list-servers

List all servers.

--list-poas server-name

List all POAs.

--tree

Display all OADs, servers and POAs in
a tree like format.

--tree-oad [host]

Display an OAD and its associated
servers and POAs in a tree like format.

--tree-server Server-name

Display a server and its associated
POAs in a tree like format.

Making References

Utilities

--set-server server-name {exec| host | Set an attribute of a server (e.g.,
ar gs| rundi r| node| acti vat e_poas| --set-server srv nmax_spawns 2
updat e_ti meout | fail ure_timeout | sets the max_spawns attribute for the

max_spawns} value

server srv to 2).

--start-server Sserver-name Start a server.
--stop-server Server-name Stop a server.
--reset-server server-name Reset a server.

Note that the i nradni n utility also needs to be configured with the IMR
initial reference (see “Connecting to the Service” on page 161).

The host argument is optional. If host is not specified the local host name is
used. The server-name argument refers to the name of the server. The
format of the poa- nane argument is poal/ poa2/ poa3, where poal is a child
of the Root POA, poa2 is a child of poal, and poa3 is a child of poa2. Refer
to “Information Managed by the IMR” on page 152 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to
manually reset the state of the server using the - -reset - server command.
It is also necessary to use this command if the server continually crashes on
startup and has reached the maximum number of retries specified by its
max_spawns attribute. This prevents the OAD from continually starting the
same broken server.

The nkref utility creates IMR-based object references for use by clients.
Since the Object ID is required to create a reference, this utility can only be
used to create references for objects created by POAs using the USER | D
object identification policy. Its usage is shown below.

nkref [-H host] [-P port] server-nane object-id
poal/ poa2/. ../ poan

host

The host that the i nt server is running on. The default
value is the canonical hostname of the machine in
which nkref is executed.

163

CHAPTER 6 | The Implementation Repository

port The forward port of the i mr server. If not set, then
nkr ef will use 9998.

server-name The name of the server as registered in the IMR.

object-id The Object ID used by the object.

poal/poa2/.../poan The POA which creates the object, where poal is a
child of the Root POA, poa2 is a child of poal, and so
on.

Upgrading the IMR Database

164

The i nr dbupgr ade utility is used to upgrade an earlier version of the IMR
database. Command-line usage is as follows:
i nrdbupgr ade dat abase-di rectory

The database-directory parameter is used to specify the IMR database
directory.

Getting Started with the Implementation Repository

Getting Started with the Implementation

Repository

To use the IMR, several steps must be taken. These steps are presented
below and are explained by way of example. In this example we assume
that Orbacus has been installed in the directory / usr/ 1 ocal / O bacus and
the executablesi nr, i nradm n and nkr ef all exist in a directory that is in the
search path.

1.

Determine the physical architecture.

In this example, we have a network with three hosts: naster, sl avel
and sl ave2. The host nast er is used to run only the IMR. The hosts
sl avel and sl ave2 are used to run individual CORBA servers.

Create a configuration file for the IMR and OADs.
First, create a configuration file for the IMR containing the following:

i . conf

ooc. i nt. adm n_endpoi nt=iiop --port 10000
ooc. i nr. forward_endpoi nt=iiop --port 10001
ooc. i nt. sl ave_endpoi nt=iiop --port 10002
ooc. i nt. node=nast er

ooc. i nr.dbdi r=/usr/| ocal / O bacus/ db

This file is placed in the / usr/1 ocal / Orbacus/ et c directory on host
naster.

Second, create a configuration file for the OADs containing the
following:

oad. conf

ooc. or b. servi ce. | MR=cor bal oc: : mast er : 10000/ | MR
ooc. i nt. sl ave_endpoi nt=iiop --port 10002

ooc. i nr. node=sl ave

ooc. i nr. dbdi r=/usr/| ocal / O bacus/ db

This files is placed in the /usr/1 ocal / O bacus/ et ¢ directory on hosts
sl avel and sl ave2.

Start the IMR in administrative mode.
On host nast er, run:

165

CHAPTER 6 | The Implementation Repository

166

im -CRBconfig /usr/local/Q bacus/etc/inr.conf
--admnistrative

Start the OADs.

On host sl avel, run:

inmr -CRBconfig /usr/local/Q bacus/ etc/oad. conf

On host sl ave2, run:

imr -CRBconfig /usr/local/Q bacus/ etc/oad. conf

Each OAD automatically registers itself with the IMR. Note that an
OAD can also be registered manually using the i nr adm n utility. For
example, to register the OAD on host sl avel, run:

inmmadnin - ORBI nit Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--add- oad sl avel

Add each server to the IMR.

In our example, we will run one server on each OAD. The server names
are Server1 and Server 2 and are located in / usr/ | ocal / bi n on their
respective hosts.

First, we register the servers using the i nradm n utility:

imadnm n -CRBI nit Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--add-server Serverl "/usr/local/bin/serverl" slavel

inmmadnn - CRBI nit Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments:

inmmadn n - CORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--set-server Serverl args \
"-CRBI ni t Ref | MR=cor bal oc: : mast er : 10000/ | MR'
inmmadn n - CRBI nit Ref | MR=cor bal oc: : mast er: 10000/ | MR \
--set-server Server2 args \
"-CRBI ni t Ref | MR=cor bal oc: : mast er : 10000/ | MR'

A C+++ server can automatically register itself with the IMR using the
- CRBr egi st er command-line option. For example, to registered
Server 1, run the following on sl avel:

lusr/local/bin/serverl -CRBregi ster Serverl \
-CRBI nit Ref | MR=corbal oc: : mast er: 10000/ | MR

If the server requires command-line options, then these options must
be added using the i nr adni n utility.
Add each POA to the IMR.

In this example, the servers are registered without setting the
acti vat e_poas attribute, so the attribute defaults to t r ue. Hence, all

Getting Started with the Implementation Repository

persistent POAs will be registered automatically. If this were not the
case, the POAs would have to be registered manually.

7. Configure your servers to use the IMR.
There are three ways to configure a server to use the IMR:
i. Use the - CRBregi ster command-line option (only available for
C++ servers). This option is used for server registration and can
only be used when starting the server for the first time.

ii. Use the - ORBSer ver | d command-line option.

iii. Use the ooc. or b. server _nane configuration property. This
configuration property is equivalent to the - GRBSer ver | d
command-line option and may be set in a configuration file or
programmatically prior to initializing the ORB in a server.

In this example, the IMR is responsible for starting the servers. Hence,
when the server is started, the - CRBSer ver | d option is automatically
added to the argument list.

8. Create object references for use by the clients.

A server can always be used to create references for its objects.
However, if an object is created by a POA that uses the USER | D object
identification policy, then the nkref utility can also be used to create a
reference for the object. Using the nkref utility is discussed below.

Assume each server has a single primary object. Server 1 uses (vj ect 1
for its Object ID and Ser ver 2 uses bj ect 2. Also, each server creates a
persistent POA called Mai n to hold its objects. To create object
references for these objects, run the following on master:
nkref -P 10001 Serverl Cbhjectl Main > ojectl.ref
nkref -P 10001 Server2 Cbject2 Main > oject2.ref
After all OADs, servers and POAs are registered, it is recommended to
restart the IMR in non-administrative mode. This will prevent any accidental
(or unauthorized) modifications.

167

CHAPTER 6 | The Implementation Repository

Programming Example

168

12

16

In this section, we will show how to modify the C++ version of the “Hello
World” server (see Chapter 1) to use a persistent object reference. This will
allow the server to use the IMR for indirect binding. Modifications to the
Java version of the server are similar. The code for both the C++ and Java
persistent “Hello World” servers may be found in the deno/ hel | o_i nr
directories of the Orbacus for C++ and Java distributions.

The “Hello World” server presented in Chapter uses the Root POA to
activate its Hello servant. Since the Root POA uses the TRANSI ENT life span
policy, the object reference it creates will not be persistent. Hence, the
“Hello World” server must be modified so that the Hello servant is activated
using a child POA with the PERSI STENT life span policy. The new child POA
will also use the USER | D object identification policy so that the mkref utility
may be used. Further, the Hello servant is no longer activated under the
Root POA, so it becomes necessary for it to override the _def aul t _PQA
method. The modified servant’s class declaration is shown below:

/] Ct+
#i ncl ude <Hel | o_skel . h>
class Hello_inpl : public PQA Hello,

publ i ¢ Port abl eServer: : Ref Count Ser vant Base

{
Port abl eServer: : POA var poa_;

© 0O ~NO O~ WNR

10 public:

11

12 Hel | o_i npl (Port abl eServer:: POA ptr);

13

14 virtual void say_hello() throw CORBA: : SystenException);
15

16 virtual Portabl eServer::PQOA ptr _default POA();

17 };

Private member to store the servant’s default POA.

A constructor must be defined to allow the assignment of the servant’s
default POA.

Declaration of the _def aul t _PQA method.

Programming Example

The remainder of the class declaration is unchanged. The definition of the
constructor and _def aul t _POA method follow:

Il G+

Hel l o_inpl :: Hell o_i npl (Port abl eServer:: POA ptr poa)
poa_(Port abl eServer: : POA : _dupl i cat e(poa)

{

}

Portabl eServer:: POA ptr Hello_inpl:: _default_ POA()

{
0 return Portabl eServer:: POA : _duplicate(poa);

YR OO NOO U WN R

169

CHAPTER 6 | The Implementation Repository

170

14-22

24-25

The modified portion of the server program is shown below:

1 // C++

2

3 int

4 run(CORBA : CRB ptr orb, int argc)

5 {

6 CCRBA: : vj ect _var poathj =

7 orb -> resolve_initial_references("Root PQA");
8 Port abl eServer: : POA var root Poa =

9 Port abl eSer ver: : POA: : _narrow poaQhj) ;
10

11 Port abl eServer: : POAManager _var nanager =
12 root Poa -> the_PQAVanager () ;

13

14 QORBA: : Pol i cyLi st pl (2);
15 pl .l ength(2);
16 pl[0] = root PQA -> create_|ifespan_policy(

17 Port abl eSer ver : : PERSI STENT) ;

18 pl[1] = root PQA -> create_i d_assi gnment _pol i cy(

19 Port abl eServer:: USER | D) ;

20

21 Port abl eServer: : POA var hel | oPQA =

22 root POA -> create_PQOA("hel | 0", nanager, pl);

23

24 Hel l o_i mpl * hell ol mpl = new Hel | o_i npl (hel | oPQA) ;
25 Port abl eServer: : Servant Base_var servant = hel | ol npl ;
26 Port abl eServer:: (hjectld var oid =

27 Port abl eServer::string_to_(bjectld("hello");

28 hel | oPQA -> activate_object_w th_id(oid, servant);
29 Hello_var hello = hellolmpl -> _this();

30

31 CCRBA: : String_var s = orb -> object_to_string(hello);
32 of streamout ("Hel l o.ref");

33 out << s << endl;

34 out. cl ose();

35

36 nmanager -> activate();

37 orb -> run();

38

39, return O;

}

Create a new POA using PERSI STENT life span policy and the USER | D object
identification policy.
Create the Hello servant.

Programming Example

26-27 Using the string "hel | 0", create an object id.
28 Activate the servant with the new POA.
The remainder of the code is unchanged.

171

CHAPTER 6 | The Implementation Repository

172

In this chapter

CHAPTER 7

The
Implementation
Repository
Console

The Orbacus Implementation Repository (IMR) includes a
graphical client for administering the service called the
Orbacus IMR Console. The Orbacus IMR Console provides
complete control over the IMR, OADs and servers in a domain.

This chapter contains the following sections:

Usage page 174

The Menus page 175

173

CHAPTER 7 | The Implementation Repository Console

Usage

com ooc. | MRConsol e. Mai n

[--1ook CQLASS] [--wi ndows] [--motif] [--nmac] [-h,--help]
--1 ook QLASS Use the specified Look & Feel class.
- - wi ndows Use the Windows Look & Feel (if available).
--moti f Use the Motif Look & Feel (if available).
--nac Use the Macintosh Look & Feel (if available).
-h Display the command-line options supported by the
--hel p program.
CLASSPATH Requirements The Orbacus IMR Console requires the classes in GB.j ar, GBI MR jar and
BUil.jar.
Implementation Repository In order to locate an IMR Service, the application uses the initial IMR
Service Lookup Service, as provided to the ORB with options such as - CRBser vi ce or

- CRBeonfi g. If the service is not found, an error is displayed and the IMR

Console exits.

174

The Menus

The Menus

The File Menu

The Edit Menu

The menus provide access to all of the features of the application. In
addition, the most common actions are also available in the toolbar, as well
as in a popup menu that is displayed when pressing the right mouse button
over an item in the binding table or context tree.

The File menu contains the Exit menu item, which is used to exit the
Orbacus IMR Console.

The operations in the Edit menu provide the means for manipulating OADs,
servers and POAs.

Create Create a new OAD, server, or POA.

Modify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the

selected OAD.

Start Start the selected server.
Stop Stop the selected server.
Reset Reset the state of the selected server.

The Create menu item creates a child object under the selected object.
OADs are created under the “IMR Domain” root object, servers are created
under OADs, and POAs are created under servers.

The Modify menu item applies to all objects. However, servers are currently
the only objects that have attributes that can be modified.

To delete an object, the Delete menu item is used. This operation
recursively deletes all children under the selected item.

175

CHAPTER 7 | The Implementation Repository Console

The View Menu

The Toolbar and the Popup Menu

176

The Cut and Paste menu items only apply to servers and are used to move
servers to different hosts. Note that OAD for the desired host must be
selected when using Paste.

In very rare circumstances, it's possible for the IMR and OAD to become
confused as to the state of a server. In this case it might be necessary to
manually reset the state of the server using the Reset menu item. It also
necessary to use this item if the server continually crashes on startup and
has reached the maximum number of retries specified by its max_spawns
attribute. This prevents the OAD from continually starting the same broken
server.

The View menu contains the Refresh menu item. The Refresh menu item is
used to update the console when the contents of the IMR have been
changed from outside the console. Note that clicking or expanding an item
will refresh the item.

In addition to the operations offered by the menu bar, some frequently
needed functions are available by icons located in the toolbar. The toolbar
contains all of the items of the Edit menu and the Refresh item of the View
menu. The toolbar is shown below.

Dffelx] (&[] [»[=]e] |o]

The Menus

When selecting an OAD, server or POA with the right mouse button, a
popup menu with a choice of operations will be displayed as shown below.

Create..,
Modify...
Delete...
Cut

Start...

Reset..,

Refresh

This popup menu provides the same operations as the toolbar.

177

CHAPTER 7 | The Implementation Repository Console

178

In this chapter

CHAPTER 8

Orbacus Names

A CORBA obiject is often represented by an object reference
in the form of a “stringified” IOR, a lengthy string that is
difficult to read and cumbersome to use. It is much more
natural to think of an object in terms of its name, which is a
core feature of the CORBA Naming Service. In the Naming
Service, objects are registered with a unique name, which can
later be used to resolve their associated object references.

Orbacus Names is compliant with [10]. This chapter does not
provide a complete description of the service. It only provides
an overview, suitable to get you started. For more information,

please refer to the specification.

This chapter contains the following sections:

Usage page 181
Windows NT Native Service page 183
Configuration Properties page 185
Persistence page 186
Connecting to the Service page 187
Using the Naming Service with the IMR page 188
Bindings page 189

179

CHAPTER 8 | Orbacus Names

Name Resolution page 191

Programming Example page 192

180

Usage

Usage

C++

Java

Options

Orbacus includes functionally equivalent implementations of the Naming
Service in C++ and Java.

naneserv
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-], --limt QGOUNT]

[-t,--timeout MNS] [-c, --callback-tinmeout SECS]

com ooc. CosNam ng. Server

[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-], --limt QGOUNT]
[-t,--timeout MNS] [-c, --callback-timeout SECS]

-h Display the command-line options supported by the

--help server.

-v Display the version of the server.

--version

-i Prints the stringified I0R of the server to standard

--ior output.

-n Disables automatic updates, i.e., callbacks that

- - no- updat es notify interested clients of changes to the naming
service.

-s Use this option only when starting a persistent server

--start using a new database.

-d FILE Enables persistence for the server. All of the bindings

--dat abase FILE

created by the server will be saved to the specified
file. If you are starting the server for the first time
using this database, you must also use the -s
command-line option.

181

CHAPTER 8 | Orbacus Names

-1 COUNT Limits the number of bindings returned in the

~.limt COUNT binding list by a call to list() to COUNT bindings.
Using this option can reduce the memory
requirements of the server.

-t MNS Specifies the timeout in minutes after which a

—_timeout MNS persistent server automatically compacts its
database. The default timeout is five minutes.

-c SECS Specifies the timeout in seconds to be used for the

--cal | back-timeout SECS

Orbacus timeout policy (CB: : Ti meout Pol i cy). The
default timeout is five seconds. See Chapter 15 for
more information.

CLASSPATH Requirements

182

Orbacus Names for Java requires the classes in CB.j ar and CBNami ng. j ar .

Windows NT Native Service

Windows NT Native Service

The C++ version of Orbacus Names is also available as a native Windows

NT service.
nt naneser vi ce
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstal] [-d,--debug]
-h Display the command-line options supported by
--help the server.

- Install the service. The service must be started

—-install manually.

-s Install the service. The service will be started

--start-install automatically.

-u Uninstall the service.

--uninstall

-d Run the service in debug mode.
--debug

In order to use the Naming Service as a native Windows NT service, it is first
necessary to add the ooc. nani ng. endpoi nt configuration property to the
HKEY_LOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
on page 64 for more details). If the service is to be persistent, the path to
the database file must be stored in the following property:1

HKEY_LOCAL_NMACH NE\ Sof t war e\ OOC\ Pr oper ti es\ ooc\ nam ng\ dat abase
Next the service should be installed with:
nt nameser vi ce -i

This adds the O bacus Nami ng Servi ce entry to the Servi ces dialog in the
Control Panel. To start the naming service, select the O bacus Nani ng
Servi ce entry, and press Start . If the service is to be started automatically
when the machine is booted, select the Orbacus Nam ng Ser vi ce entry,

1. Please note that services do not have access to network drives, so the path to the
database must be on a local hard drive.

183

CHAPTER 8 | Orbacus Names

184

then click Startup. Next select Startup Type - Automati ¢, and press K.
Alternatively, the service could have been installed using the - s option,
which configures the service for automatic start-up:

nt nanmeservi ce -s
If you want to remove the service, run:
nt naneservice -u

Note: If the executable for the Naming Service is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service will be placed in the Windows
NT Event Viewer with the title Nani ngSer vi ce. To enable tracing
information, add the desired trace configuration property (i.e., the

ooc. nami ng. trace_| evel property or one of the ooc. orb. t race properties)
to the HKEY_LQCAL_NMACH NE NT registry key with a REG Sz value of at least
1.

Configuration Properties

Configuration Properties

In addition to the standard configuration properties described in Chapter 3,
Orbacus Names also supports the following properties:

ooc. nam ng. cal | back_ti meout =SECS | Equivalent to the - c command-line option.

ooc. nam ng. dat abase=FI LE Equivalent to the -d command-line option.
00c. nam ng. no_updat es Equivalent to the - n command-line option.
ooc. nam ng. endpoi nt =ENDPQ NT Specifies the endpoint configuration for the

service. Note that this property is only used if
the ooc. or b. oa. endpoi nt property is not set.

ooc. nami ng. ti meout =M NS Equivalent to the -t command-line option.

ooc. nam ng. trace_| evel =LEVEL Defines the output level for diagnostic messages
printed by Orbacus Names. The default level

is 0, which produces no output. A level of 1 or
higher produces messages related to database
operations, a level of 2 or higher produces
messages related to adding and removing
listeners, and a level of 3 or higher produces
messages related to binding operations.

185

CHAPTER 8 | Orbacus Names

Persistence

186

Orbacus Names can optionally be used in a persistent mode, in which all
data managed by the service is saved in a file. If you do not run the service
in its persistent mode, all of the data will be lost when the service
terminates.

It is also important to note that when using the service in its persistent

mode, you should always start the service on the same port (see Chapter 3
for more information).

Connecting to the Service

Connecting to the Service

The object key of the Naming Service is NaneSer vi ce, which identifies an
object of type CosNam ng: : GBNam ngCont ext . The GBNani ngCont ext
interface is derived from the standard interface

CosNani ng: : Nami ngCont ext Ext and provides additional Orbacus-specific
functionality. For a description of the GBNani ngCont ext interface, please
refer to the documented IDL file nami ng/i di / CBNami ng. i dI .

The object key can be used when composing URL-style object references.
For example, the following URL identifies the naming service running on
host nshost at port 10000:

cor bal oc: : nshost : 10000/ NaneSer vi ce

Refer to Chapter 5 for more information on URLs and configuring initial
services.

187

CHAPTER 8 | Orbacus Names

Using the Naming Service with the IMR

The Naming Service may be used with the Implementation Repository
(IMR). However, if used with the IMR, it is important to note that the

cor bal oc URL-style object reference described in the previous section
cannot be used. If the IMR is used, then the object reference for the Naming
Service must be created using one of the following methods (where

Nam ngSer ver refers to the server name configured with the IMR):

@ Start the Naming Service with the options:
--ior -CRBServerld Nam ngServer

causing the Naming Service to print its reference to standard output.

® Use the nkref utility:
nkref Nam ngServer NameService Root Cont ext POA

When using the Naming Service with the IMR, the service must be started
with the option - ORBSer ver | d Nami ngSer ver , where Nam ngSer ver refers to
the server name configured with the IMR. When the IMR is configured to
start the Naming Service, this option is automatically added to the service’s
arguments. However, when the Naming Service is started manually, the
option must be present. For further information on configuring a service with
the IMR, refer to “Getting Started with the Implementation Repository” on
page 165.

188

Bindings

Bindings

Object references registered with the Naming Service are maintained in a
hierarchical structure similar to a filesystem. A file in a filesystem is
analogous to an object binding in the Naming Service. The equivalent for a
folder in a filesystem is a naming context in Naming Service terms. The
pieces of information stored in a Naming Service are called bindings. A
binding consists of an object’s name and its type, as defined in the
CosNani ng module:

/] 1DL
typedef string Istring;

struct NameConponent

{
Istring id;
Istring kind;
e

typedef sequence<NaneConponent > Name;

enum Bi ndi ngType

{
nobj ect,
ncont ext
b
struct Binding
{
Nane bi ndi ng_nane;
Bi ndi ngType bi ndi ng_t ype;
b

As you can see, each name consists of one or more components, like a file is
fully specified by its path in a filesystem. Each name component consists of
two strings, i d and ki nd, which could be likened to a file’s name and its
extension. Generally, the filesystem analogy works very well when
describing the Naming Service structures.

189

CHAPTER 8 | Orbacus Names

A new Naming Service entry, i.e., a binding, is created with the following
operations:

/1 1DL
voi d bind(in Nanme n, in (bject obj)
rai ses(Not Found, Cannot Proceed, | nvali dName, A readyBound);

voi d bi nd_context(in Nane n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, | nvalidName, A readyBound);

Nam ngCont ext new_cont ext () ;

Nam ngCont ext bi nd_new cont ext (i n Nane n)
rai ses(Not Found, Cannot Proceed, |nvalidName, A readyBound);

bi nd registers a new object with the Naming Service, whereas a new context
is registered with bi nd_cont ext . For each operation, an object reference and
a Nane are expected as parameters. New naming context objects are created
with new _cont ext or bi nd_new cont ext . bi nd_context and

bi nd_new cont ext throw an Al r eadyBound exception if the name is already
in use in the target context.

To create a new binding without being concerned if the specified binding
already exists, use the following operations:

/] 1DL
voi d rebind(in Nare n, in Cbject obj)
rai ses(Not Found, Cannot Proceed, | nvali dNane);

voi d rebi nd_context(in Namre n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, | nvalidNane);

Use the unbi nd operation to delete a particular binding:
/1 1DL

voi d unbi nd(i n Narre n)
rai ses(Not Found, Cannot Proceed, | nvalidNane);

190

Name Resolution

Name Resolution

Besides registering objects, an equally important task of the Naming Service
is name resolution. A name is passed to the resol ve or resol ve_str
operation and an object reference is returned if the name exists.

/] 1DL
(hj ect resol ve(in Nane n)
rai ses(Not Found, Cannot Proceed, | nvali dNane);
Chj ect resol ve_str(in StringName n)
rai ses(Not Found, Cannot Proceed, |nvali dNane);

The resol ve and resol ve_str operations are only useful when a particular
name is known in advance. Sometimes it is necessary to ask for a list of all
bindings registered with a particular naming context. The | i st operation
returns a list of bindings.

/] 1DL
typedef sequence<Bi ndi ng> Bi ndi nglLi st ;

void list(in unsigned | ong how nmany,
out BindingList bl, out Bindinglterator bi);

If the number of bindings is especially large, the Bi ndi ngl ter at or interface
is provided so that you don’t have to query for all available bindings at once.
Simply get a certain number of bindings specified with how many, and get
the rest, if any, using the Bi ndi ngl terat or .

/1 1DL
interface Bindinglterator

{

bool ean next _one(out Bi ndi ng b);
bool ean next_n(in unsigned | ong how nany, out Bi ndi ngLi st
bl)
voi d destroy();
b

Make sure that you destroy the iterator object when it is no longer needed.

191

CHAPTER 8 | Orbacus Names

Programming Example

192

Orbacus includes simple C++ and Java examples that demonstrate how to
use the CORBA Naming Service. These examples are located in the folder
nani ng/ demo. We will concentrate on the Java example, but the C++
example works similarly. The example expects a Naming Service server to
be already running and that the server’s initial reference can be resolved by
the ORB. Because of its volume we have split the code into several parts for
the discussion below.

Programming Example

Initialization
The first code fragment deals with initializing the ORB.

/'l Java
java.util.Properties props = System get Properties();
props. put (" org. ong. CORBA. ORBd ass", "com ooc. QORBA. CRB') ;
props. put (" org. ong. CORBA. CRBSI ngl et ond ass",

"com ooc. CCRBA. CRBSI ngl eton") ;

org.onmg. CORBA CRB orb = nul | ;
try
{

© oo ~NOO U WNPRE

orb = CRB.init(args, props);

or g. ong. CORBA. (bj ect poaChj = nul | ;

10

11

12

13 try

14 {

15 poaChj = orb.resolve_initial _references("Root POA");
16 }

17 cat ch(or g. ong. CORBA. CRBPackage. | nval i dNane ex)
18 {

19 t hr ow new Runti neException();

20 }

21 PQA r oot POA = PQAHel per . nar r ow(poaQhj) ;

22 PQAManager nanager = root POA t he PQAManager () ;
23

24 or g. ong. CORBA. (hj ect obj = nul | ;

25 try

26 {

27 obj = orb.resolve_initial_references("NaneService");
28 }

29 cat ch(or g. ong. CORBA. CRBPackage. | nval i dNane ex)
30 {

31 t hr ow new Runti neException();

32 }

33

34 if(obj == null)

35 {

36 t hr ow new Runt i neException();

}

193

CHAPTER 8 | Orbacus Names

194

10-22

24-32

34-47

37

38

39 Nam ngCont ext Ext nc = nul | ;

40 try

41 {

42 nc = Nam ngQont ext Ext Hel per. narrow(obj) ;
43 }

44 cat ch(or g. onmg. CORBA. BAD PARAM ex)
45 {

46 t hrow new Runt i meException();
47 }

Usually the application is initialized in the mai n method. For more
information on ORB initialization see Chapter 3.

In the next step we try to connect to the Naming Service by supplying
“NameService” to resol ve_initial _references. If I nval i d\Name is thrown,
there is no Naming Service available because the ORB doesn’t know
anything about this service.

If calling resol ve_i ni ti al _ref er ences was successful, the object reference
is checked and narrowed in order to verify that it supports the interface
CosNani ng: : Nami ngCont ext Ext . If the nar r ow operation raises

CCRBA: : BAD PARAM the object does not support the interface. This is
considered to be an error because we explicitly asked for a Naming Service
instance.

Programming Example

Binding

In the next step some sample bindings are created and bound to the Naming

Service.

Nared_i npl i mpl A = new Naned_i npl ();
Naned_i npl i mpl AL = new Nared_i npl () ;
Naned_i npl i mpl A2 = new Nared_i npl () ;
Naned_i npl i mpl A3 = new Nared_i npl () ;
Naned_i npl i mpl R = new Naned_i npl ();
Naned_i npl i mpl C = new Naned_i npl ();
Nanmed a = inpl A _this(orb);
Naned al = inpl Al. _this(orb);
Naned a2 = i npl A2. _this(orb);
Nanmed a3 = i npl A3. _this(orb);
Naned b = inpl B. _this(orb);
Naned ¢ = inpl C _this(orb);
try
{
NanmeConponent [] nclName = new NameConponent[1] ;
nciNane[0] = new NaneConponent () ;
nciNane[0].id = "ncl";
nciName[0] . kind = "";
Nam ngCont ext ncl = nc. bi nd_new_cont ext (nc1Name) ;
NanmeConponent [] nc2Nanme = new NameConponent [2] ;
nc2Nane[0] = new NaneConponent () ;
nc2Nane[0].id = "ncl";
nc2Nane[0] . kind = "";
nc2Nane[1] = new NaneConponent () ;
nc2Nane[1] .id = "nc2";
nc2Nane[1] . kind = "";
Nam ngCont ext nc2 = nc. bi nd_new_cont ext (nc2Nare) ;
NanmeConponent [] aNane = new NaneConponent [1] ;
aNane[0] = new NaneConponent () ;
aNane[0].id = "a";
aNanme[0] . kind = "";
nc. bi nd(aNane, a);

195

CHAPTER 8 | Orbacus Names

37

38 NarmeConponent [] alNane = new NaneComponent [1] ;
39 alNane[0] = new NanmeConponent () ;

40 alNane[0].id = "al";

41 alNane[0] .kind = "";

42 nc. bi nd(alNarme, al);

43

44 NarmeConponent [] a2Nane = new NaneConponent [1] ;
45 a2Nane[0] = new NanmeConponent () ;

46 a2Nane[0] .id = "a2";

47 a2Nane[0] . kind = "";

48 nc. bi nd(a2Nane, a2);

49

50 NarmreConponent [] a3Nane = new NaneConponent [1] ;
51 a3Nane[0] = new NanmeConponent () ;

52 a3Nane[0].id = "a3";

58 a3Nane[0] . kind = "";

54 nc. bi nd(a3Nane, a3);

55

56 NarmeConponent [] bNane = new NaneConponent [2] ;
57 bNane[0] = new NaneConponent () ;

58 bNane[0].id = "ncl";

59 bNarme[0] . kind = "";

60 bNane[1] = new NaneConponent () ;

61 bNare[1].id = "b";

62 bNane[1] .kind = "";

63 nc. bi nd(bNane, b);

64

65 NarmeConponent [] cNane = new NaneConponent [3] ;
66 cNane[0] = new NaneConponent () ;

67 cNane[0].id = "ncl";

68 cNanme[0] . kind = "";

69 cNane[1] = new NaneConponent () ;

70 cNane[1].id = "nc2";

71 cNane[1] . kind = "";

72 cNane[2] = new NaneConponent () ;

73 cNane[2].id = "c";

74 cNanme[2] . kind = "";

75 nc. bi nd(cNane, c);

76 }

2-13 Several sample objects are created that will later be bound to our Naming
Service. These objects implement an interface called Naned. In this example,
the details of this interface are not important. Naned might even be an
interface without any operations defined in it.

196

17-75

Programming Example

Create and bind some new contexts and bind the sample objects to these
contexts. Each binding name consists of several NameConponent s that are
similar to the path components of a file located somewhere in a filesystem.
Objects are bound with the Naming Service’s bi nd operation; for contexts,
the corresponding operation bi nd_cont ext is used. In addition to the
object’s IOR, both operations expect a unique binding name. If a name
already exists, an Al r eadyBound exception is thrown. There are also other
exceptions you might encounter at this stage, e.g., | 1 | egal Nare if an empty
string was provided as part of a NaneConponent .

197

CHAPTER 8 | Orbacus Names

Exceptions

This code fragment deals with exceptions that may be thrown by the
Naming Service operations.

1 // Java

2 cat ch(Not Found ex)

3 {

4 Systemerr.print("Got a ‘ Not Found exception (");
5 swi t ch(ex. why. val ue())

6 {

7 case Not FoundReason. _mi ssi ng_node:
8 Systemerr. print("m ssing node");
9 br eak;

10

11 case Not FoundReason. not _context:
12 Systemerr. print("not context");
13 br eak;

14

15 case Not FoundReason. _not _obj ect :
16 Systemerr. print("not object");

17 br eak;

18 }

19

20 Systemerr.println(")");

21 ex. print StackTrace();

22 t hrow new Syst enException();

23

24 cat ch(Cannot Proceed ex)

25 {

26 Systemerr.println("Got a ‘ Cannot Proceed’ exception");
27 ex. print StackTrace();

28 t hrow new Syst enException();

29

30 catch(l nval i dNane ex)

31 {

32 Systemerr.println("Got an ‘InvalidNane’ exception");
33 ex. print StackTrace();

34 t hrow new Syst enException();

}

198

Programming Example

35

36 cat ch(Al readyBound ex)

37 {

38 Systemerr.println("Got an ‘ Al readyBound’ exception");
39 ex. print StackTrace();

40 t hr ow new Syst enExcepti on();

41 }

2-41 Catch exceptions. Don't ever forget to do this. It can be useful to call
print StackTrace on the exception object in order to get detailed information
about the program flow causing the exception.

199

CHAPTER 8 | Orbacus Names

The Event Loop

Next we start listening for requests.

1 // Java

2 try

3 {

4 nmanager . activate();

5 }

6 catch(org. ong. Port abl eServer. POAVanager Package. Adapt er | nacti ve
ex)

7 {

8 t hrow new Runt i neException();

9 }

10 orb.run();

2-10 Everything is ready now, so we can listen for requests by calling acti avat e
on the POA Manager and run on the ORB.

200

Programming Example

Releasing Resources

2-9
16-26

Some cleanup work should be done before exiting the program. Every
binding must be properly unbound and the ORB must be destroyed.

unbi nd(cNarre) ;
unbi nd(bNane) ;
unbi nd(aNarre) ;
unbi nd(alNane) ;
unbi nd(a2Nane) ;
unbi nd(a3Nane) ;
unbi nd(nc2Narre) ;
unbi nd(nc1Nare) ;

11 catch(Runti meException ex)

status = 1;

if (orb !=null)

orb. destroy();

cat ch(const RuntineException ex)

status = 1;

1 // Java
2 nc
3 nc
4 nc
5 nc.
6 nc
7 nc
8 nc.
9 nc
10 }

12 {

13

14 }

15

16

17 {

18 try
19 {
20

21 }
22

23 {
24

25 }
26 }

27

28 Systemexit(status);

All bindings are unbound.
destroy is called on the ORB. This releases the resources used by the ORB.

The complete example can be found in the folder nami ng/ deno included with
the Orbacus distribution.

201

CHAPTER 8 | Orbacus Names

202

In this chapter

CHAPTER 9

Orbacus Names
Console

Orbacus Names includes a graphical client for administering
the service called the Orbacus Names Console. The application
can manage any CORBA-compliant Naming Service, but
additional features are provided when used with Orbacus
Names.

This chapter contains the following sections:

Usage page 204
Naming Service Lookup page 205
The Menus page 206
The Toolbar page 214
The Popup Menu page 215

203

CHAPTER 9 | Orbacus Names Console

Usage

com ooc. CosNani ngConsol e. Mai n

[-f,--file FILE] [-i,--ior] [-n,--no-updates] [--look CLASS
[--windows] [--motif] [--mac] [-h,--help] [-v, --version]
-f FILE Read the Naming Service IOR from FI LE.
--file FILE
-i Print the stringified IOR of the Naming Service to
--hor standard output.
-n Disables automatic updates, i.e., callbacks that
--no-updat es notify interested clients of changes to the naming
service.
--1 o0k CLASS Use the specified Look & Feel class.
- -wi ndows Use the Windows Look & Feel (if available).
--notif Use the Motif Look & Feel (if available).
--nac Use the Macintosh Look & Feel (if available).
-h Display the command-line options supported by
--help the program.

CLASSPATH Requirements

204

The Orbacus Names Console requires the classes in 0B. j ar, CBNani ng. j ar
and GBUil.jar.

Naming Service Lookup

Naming Service Lookup

In order to locate a Naming Service, the application takes the following

steps on start-up:

® First it checks whether a Naming Service reference was given with the
-f option.

® If this is not the case, then the initial Naming Service is used, as
provided to the ORB with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names
console exits.

205

CHAPTER 9 | Orbacus Names Console

The Menus

The menus provide access to all of the features of the application. In
addition, the most common actions are also available in the toolbar, as well
as in a popup menu that is displayed when pressing the right mouse button
over an item in the binding table or context tree.

The File Menu This menu contains operations that create bindings and define the current
root context.

New Window Opens an additional control window.

Switch Root Context Selects a new root naming context.

Load Context Recursively loads a naming context from a file.

Save Context As Recursively saves the selected naming context
to a file.

Save IOR to File Saves the stringified IOR of the currently
selected item to a file.

Close Window Closes the current window.

Exit Quits the Orbacus Names Console.

After starting the application, the current root context is the naming context
corresponding to the IOR specified on the command line or the initial
Naming Service, as provided to the ORB with options like -ORBservice or
-ORBconfigby. You can make another naming context the root context using
Switch Root Context. The new root context’s IOR is specified in the Enter

206

The Menus

IOR dialog window, as shown in Figure 5. The IOR can be entered directly

| L] Cancil

Figure 5: Entering an IOR

or can be read from a file. If an IOR is entered manually you usually either
use the URL-style notation as described in Chapter , or you copy a
stringified object reference into the dialog box using “Cut & Paste”. After
selecting Browse a file containing an IOR can be selected.

Sometimes it is not desirable to completely replace the currently visible root
context by another root context. For example, you may need to copy
bindings from one context to another. If this is the case, simply open an
additional window for the new root context using New Window. You can
then switch the root context in only one window without affecting the
information displayed in the other one. Using two windows, you can easily
transfer bindings from one context to another using “Cut & Paste”.

Complete naming contexts can be loaded from a special file with naming
context information. Such a file, which was previously created with Save
Context As, is loaded with Load Context. The bindings saved to this file are
added to the current naming context.

When saving a naming context, the console checks each context for
accessibility. If a context cannot be accessed, i.e., if its contents cannot be
saved, a message is displayed in the error window. You also get an error
message if the console detects a recursion. The bindings contained in the
naming context leading to the recursion is not saved.

Use Save IOR to File in order to create a file that contains the stringified
IOR of the currently selected binding or context.

With Close Window the current window is closed. Closing the last window
causes the application to terminate. Exit can be used to terminate the
application regardless of how many windows are open.

207

CHAPTER 9 | Orbacus Names Console

The Edit Menu

The operations in this menu provide the means for creating and deleting
objects and for changing the Naming Service structure.

New Context Creates a new naming context.

New Binding Creates a new binding for an object.
Delete Deletes the selected items.

Link Creates a new binding for an existing naming context.
Unlink Unbinds the selected items.

Cut Moves the selected items to the clipboard.
Copy Copies the selected items to the clipboard.
Paste Inserts the clipboard contents.

Change ID Edits the ID field of the selected item.
Change Kind Edits the Kind field of the selected item.
Change IOR Edits the IOR of the selected item.

Select all Selects all items in the object table.

Invert Selection Inverts the current selection.

New contexts and bindings are created with the operations New Context
and New Binding, respectively. If one of these functions is selected, a new
context or object binding with a unique name is added to the current
context. For new object bindings an IOR can be specified.

Use Delete to remove the selected items from a naming context. Deleting
Naming Service entries removes all selected bindings from their parent
context. The objects belonging to these bindings are not affected. Destroying
Naming Service information only affects the actual Naming Service data, not
the objects themselves.

Use Link to create a new binding for an existing naming context, where the
naming context is specified by an IOR. The operation Unlink unbinds the
selected items. For objects, Unlink is equivalent to Delete, but for contexts,
Unlink differs in that the context is not destroyed. Since a context is not
destroyed using Unlink, it should only be used when there are multiple
bindings to a context in order to avoid orphaned contexts.

208

The Menus

The console supports a clipboard that you can use to move bindings
between different contexts. Data is transferred to the clipboard using the Cut
or Copy commands. Cut moves the currently selected items to the clipboard
and deletes the original entries, whereas Copy simply creates a copy in the
clipboard but keeps the source entry unchanged. When new data is
transferred to the clipboard, the old clipboard contents are replaced. Using
Paste, you can add the clipboard data into a naming context. The clipboard
contents are not changed by this operation, i.e., you can Paste the same
items several times. Note that if naming contexts are transferred to the
clipboard, their contents are not evaluated before they are pasted. It is
during the Paste operation that the bindings of a context are duplicated.
This means that if new bindings are added to a context after a Cut or Copy
operation, these bindings will be present after pasting this context.

An item registered with the Naming Service has three modifiable attributes:
its ID, its Kind and its IOR. The ID and Kind attributes can be edited by
simply double-clicking the ID or Kind field in the table. You can also change
binding attributes with the corresponding menu operations Change ID,
Change Kind and Change IOR. Entering a new IOR for an existing name
effectively replaces an object registered with the Naming Service by another
object with the same name.

Use Select all to select all of the entries in the binding table. The current
table selection can be inverted using Invert Selection.

209

CHAPTER 9 | Orbacus Names Console

The View Menu

The operations in this menu control the appearance of the console window
as well as the presentation of the Naming Service data.

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.
Simple List Displays minimum object information.
Details Displays additional object information.

Sort Sets sorting mode for object list.

Refresh Updates the complete window contents

A toolbar that gives access to frequently needed operations is normally
present below the menu. If you don’t have a need for this toolbar or if you
just want to save space on the screen, you can switch it off with the Toolbar
toggle button. The same applies to the status bar where information about
the currently selected item is displayed. The status bar displays an object’s
repository ID, the host where this object is located and the port it is bound
to. If an item with a nil object reference is selected or if multiple items are
selected, the status bar is empty.

If an error occurs while editing bindings, the console automatically displays
a new window with information about what went wrong. Usually this
information consists of exception data. The visibility of this window can be
explicitly controlled with the Error Window toggle button.

If the console is connected to Orbacus Names, as described in Chapter 8,
the console can display timestamp information for each binding by making
use of proprietary features of Orbacus Names. This information is shown in
the binding table if the Details display mode instead of the Simple List
mode is active.

Usually the console sorts the items in the binding table in ascending
alphabetical order, with naming contexts being listed at the top. You can
change this order with the options available in the Sort menu. Bindings can
be sorted by their ID or Kind fields. If the extended attributes are displayed,
items can also be sorted by date and time. You can reverse the sort order by

210

The Menus

selecting the current sorting mode a second time in the View menu or by
clicking on the table header cells. In this case, the display switches from
ascending to descending order and vice versa.

If the contents of a naming context have been changed by a third party and
you want to update the information displayed in the console window,
selecting Refresh updates the display. If the console is connected to
Orbacus Names, a refresh is done automatically each time a change occurs.

211

CHAPTER 9 | Orbacus Names Console

The Tools Menu

212

The operations available in this menu are meant as tools for your everyday
work.

Ping Checks the accessibility of the selected items.

Clean up Unbinds inaccessible objects from the current context.

Sometimes it is useful to check if an object bound to a name still exists or if
the object reference associated with it has become invalid, for example,
because of a server crash. To perform such a check, select all the objects
you want to check and start the Ping operation. The console tries to contact
each of the selected objects and displays the time it took to get a connection
to them in a separate window.

Firgimg "Sophed k. acfbwace. bouker.dei" ... Il == =

Firginy “Jopisd [desmcraphs_ssc. bouker.de)® ... IO =3

Firsyirey ‘Jepksd jluoks.scfrmsre, T

Pireyufey ‘Hopkad demssopheE.sor, KR

FLIQLIF) HopES] jLluls. SEIrEaLe, BEUNEL.IE1" ovu JU B

Firging “Jopied [jdesszaphe.sac.bouksc.del" ... L0 ==

Firggirsy “Sopisd [loks.scftesce.Eouksc.de)’ ... 20 =@

Firsgure] Jophed [dessmophs.sic. bouksr.dei® ... iD=

Firsgurey ‘dophed | luks.apfoware, ESLdei ¢ i w2

FLIFJLMY) HOpES] [AeRSSipls. 30, BEUNELAE]" ns

Firmgirsy "Sophed [luke.sefbware.Pouker.del’ ... 10 =2

Firggirsy “Scpkad [damszraphs_ssc RPoukwe.dse])' ... OO ==

Firsgire] ‘Jopked jloks.scdcwsres. boulsr.dei® ... 10 ==

Firegurey Hopbed jdemssophes.sr, FUEEL.dei o,] o]

FLIFjiir) HipEo] jLulEs. SELUEALE, BEUNELLAE]" LIRS |

Firgirg "Sophed [dessrophs.sic.bouksr.del” ... 10 =

Firfgirny “Jcphksd [loks.scfowsce.boukec.de])® ... § mx

Firsgare] Jophed [desssgphs.sic, bauksr.dei® ... ID = |

Firegurey ‘dopked | loks. apfreare, poUEsL.deit o, [T |§
-

e | [oo | [] | cmm

Figure 6: The Ping Window

This is very similar to the Windows or Unix pi ng command for an IP address
or a host name. If there is a time-out while trying to contact an object, this
information is displayed in the Ping Window and the console continues with
the next object.

The Menus

If you want objects that cannot be contacted, for example because of a
server breakdown, to be unbound from the current context, Clean up does
the job. Clean up non-recursively tries to connect to the selected objects. If
there is a communication failure or the _non_exi st ent () operation returns
true for a particular object, the corresponding binding is automatically
removed. Clean up should be used with care.

213

CHAPTER 9 | Orbacus Names Console

The Toolbar

In addition to the operations offered by the menu bar, some frequently
needed functions are available by icons located in the toolbar, as shown in
Figure 7 .

[=IRIRES

Figure 7: A closer look at the toolbar

The icon on the toolbar’s left is the Upwards icon which changes the
naming context to the parent of the context currently being displayed. The
next five icons correspond to the New Context, New Binding, Cut, Copy,
Paste and Delete items as described in “The Edit Menu” on page 208.

The Simple List and Details items from the View menu are the next two
icons in the toolbar. They determine whether the binding table displays only
the ID and Kind fields, or, if Orbacus Names is available, also the date and
time the binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the
View menu.

214

The Popup Menu

The Popup Menu

When selecting an item in the binding table or a tree node with the right
mouse button, a popup menu with a choice of operations is displayed as
shown in Figure 8.

Cug

Cliasge il
g Hisl

Chimggi WAL

[RETE

Lok

| Shiwssa ML 10 Pl .
Figure 8: A popup menu offers important operations

This is another convenient alternative for executing frequently used
operations.

215

CHAPTER 9 | Orbacus Names Console

216

CHAPTER 10

Orbacus Properties

The CORBA Property Servicel permits you to annotate an
object with extra attributes (called properties) that were not
defined by the object’s IDL interface. Properties can represent
any value because they make use of the CORBA any data type.

Orbacus Properties is compliant with [10]. This chapter does
not provide a complete description of the service. It only
provides an overview, suitable to get you started. For more
information, please refer to the specification.

In this chapter This chapter contains the following sections:
Usage page 218
Connecting to the Service page 219
Using the Property Service with the IMR page 220
Creating Properties page 221
Querying for Properties page 222
Deleting Properties page 224
Programming Example page 225

1. Note that the Property Service has nothing to do with the properties used for
configuration purposes. Configuration properties are described in “ORB
Properties” on page 52.

217

CHAPTER 10 | Orbacus Properties

Usage

Orbacus includes functionally equivalent implementations of the Property
Service in C++ and Java.

C++ pr opser v
[-h,--help] [-v,--version] [-i,--ior]
Java com ooc. CosPropertyServi ce. Server
[-h,--help] [-v,--version] [-i,--ior]
Options
-h Display the command-line options supported by the
--help server.
-v Display the version of the server.
--version
-i Prints the stringified IOR of the server to standard
--ior output.
Configuration Properties In addition to the standard configuration properties described in Chapter 3,

Orbacus Properties also supports the following properties:

ooc. property. endpoi nt =ENDPOl NT Specifies the endpoint configuration for the
service. Note that this property is only used if
the ooc. or b. oa. endpoi nt property is not set.

CLASSPATH Requirements Orbacus Properties for Java requires the classes in B.j ar and
CBProperty.jar.

218

Connecting to the Service

Connecting to the Service

The object key of the Property Service is PropertySer vi ce, which identifies
an object of type CosPropertySer vi ce: : PropertySet Def Factory.

The object key can be used when composing URL-style object references.
For example, the following URL identifies the Property Service running on
host pr ophost at port 10000:

cor bal oc: : prophost : 10000/ Pr oper t yServi ce

Refer to Chapter 5 for more information on URLs and configuring initial
services.

219

CHAPTER 10 | Orbacus Properties

Using the Property Service with the IMR

The Property Service may be used with the Implementation Repository
(IMR). However, if used with the IMR, it is important to note that the
corbaloc URL-style object reference described in the previous section cannot
be used. If the IMR is used, then the object reference for the Property
Service must be created using one of the following methods (where
PropertyServer refers to the server name configured with the IMR):
® Start the Property Service with the options:

--ior -CORBServerld PropertyServer

causing the Property Service to print its reference to standard output.
® Use the nkref utility:

nkref PropertyServer PropertyService PropertyServi cePQA
When using the Property Service with the IMR, the service must be started
with the option - ORBSer ver | d PropertyServer, where PropertyServer
refers to the server name configured with the IMR. When the IMR is
configured to start the Property Service, this option is automatically added
to the service’s arguments. However, when the Property Service is started
manually, the option must be present. For further information on configuring
a service with the IMR, refer to “Getting Started with the Implementation
Repository” on page 165.

220

Creating Properties

Creating Properties

A property handled by the CORBA Property Service consists of two
components: the property’s name and its value. The name is a CORBA
string and the associated value is represented by a CORBA Any:

/1 1DL
typedef string PropertyNane;

struct Property

{
Propert yNane property_nane;
any property_val ue;

}s

New properties are created using a factory object implementing the
PropertySet interface. A new property is created using the
defi ne_property operation:

/] 1DL

voi d define_property(in PropertyName, in any property_val ue)
rai ses(I nval i dPropertyName, ConflictingProperty,
Unsuppor t edTypeCode, UnsupportedProperty, ReadOnl yProperty);

As a property consists of a name-value pair, both the name and the value
are the parameters to this operation.

221

CHAPTER 10 | Orbacus Properties

Querying for Properties

222

As soon as a property is defined, the PropertySet can be queried for the
property’s value with the get _property_val ue operation:

/] 1DL
any get _property_val ue(i n PropertyNane property nane)
rai ses(PropertyNot Found, |nvalidPropertyNane);

For a particular property name, this call either returns the Any associated
with that name or throws an exception if a property with the name does not
exist.

You can not only query for a particular property value, but also for a list of
all the properties defined within a PropertySet . The get _al | _properties
operation serves this purpose:

/] 1DL
voi d get_all _properties(in unsigned | ong how nmany,
out Properties nproperties, out Propertieslterator rest);

This operation works similar to the i st call offered by the Naming Service.
In both cases the maximum number of items to be returned at once is
specified. An iterator implementing the Properti esl terator interface gives
access to the remaining items, if any.

/1 1DL
interface Propertieslterator

{
voi d reset();

bool ean next _one(out Property aproperty);

bool ean next _n(in unsigned | ong how nany,
out Properties nproperties);

voi d destroy();
b

Querying for Properties

If you are only interested in a list of property names you can get this list by
calling get _al | _property_nanes:

/1 1D

voi d get _al | _property_nanes(in unsigned | ong how nany,
out PropertyNames property_nanes,
out PropertyNaneslterator rest);

As with get _al | _properties a list of names as well as an iterator is
returned. This iterator implements the Propert yNanesl t er at or interface:

/1 1DL
i nterface PropertyNaneslterator

{

voi d reset();
bool ean next _one(out PropertyNane property_nane);

bool ean next_n(i n unsi gned | ong how_nany,
out PropertyNanes property_nanes);

voi d destroy();
IE

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a Pr opert ySet
consists of. This information is provided by get _nunber_of _properti es:

/1 1DL
unsi gned | ong get _nunber _of _properties();

Note that you have to be careful if you intend to use the return value of

get _nunber _of _properti es as the input value for the how_many parameter
of get _al | _properties in order to get a complete property list. You always
have to check the Properti eslterator for properties that were not returned
as part of the Properties sequence returned by get _al | _properti es,
otherwise you might miss a property that was defined by another process
between your calls to get _nunber_of _properties and get _al | _properti es.

223

CHAPTER 10 | Orbacus Properties

Deleting Properties

224

If a property has become obsolete it can be deleted from the Propert ySet
with del et e_property:

/1 1DL
voi d del ete_property(in PropertyNane property nane)
rai ses(PropertyNot Found, InvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are
properties that cannot be deleted at all. This kind of property is called a

Fi xedPr operty. The Property Service defines several other special property
types, such as read-only properties. Please refer to the OMG Property
Service [9] specification for details.

Programming Example

Programming Example

The Property Service test suite, which is part of the Orbacus distribution,
provides a good example of how to create properties and query for their
values. The code below is based on excerpts of this test suite, which is
located in the directory property/test. We will concentrate on an example
in Java here. As with the previous examples, the Java code is very similar to
what is necessary in C++. The example demonstrates how to create
properties and how to get a list of all the properties defined within a

PropertySet.

1 // Java

2

3 org.ong. CORBA (hject obj = null;

4

5 try

6 {

7 obj = orb.resolve_initial_references("PropertyService");
8 1}

9 catch(org. ong. CORBA CRBPackage. | nval i dNane ex)

10 {

11 /!l An error occurred, Property Service is not avail abl e
12 }

13

14 if(obj == null)

15 {

16 /1 The object reference is invalid

17 }

18

19 PropertySet Def Factory factory = null;

20 try

21 {

22 factory = PropertySet Def Fact or yHel per. narr ow(obj) ;
23 }

24 cat ch(org. ong. CORBA. BAD PARAM ex)

25 {

26 /1 This object does not inplenent the Property Service
27 }

28

29 PropertySetDef set = factory.create_propertysetdef();
30

225

CHAPTER 10 | Orbacus Properties

31 Any anylLong = orb.create_any();

32 Any AnyString = orb.create_any();

33 Any anyShort = orb.create_any();

34 anylLong.insert_| ong(12345L);

35 anyString.insert_string(“Foo");

36 anyShort.insert_short((short)0);

37

38 try

39 {

40 set . defi ne_property(“LongProperty”, anylLong);
41 set. define_property(“StringProperty”, anyString);
42 set. define_property(“ShortProperty”, anyShort);

43 }

44 cat ch(ReadOnl yProperty ex)
45 {

46 /] An error occurred

47 }

48 catch(ConflictingProperty ex)
49 {

50 /] An error occurred

51 }

52 cat ch(Unsupport edProperty ex)
53 {

54 /1l An error occurred

55 }

56 cat ch(Unsupport edTypeCode ex)
57 {

58 /1l An error occurred

59 }

60 catch(lnvalidPropertyNane ex)
61 {

62 /] An error occurred

63 }

64

65 PropertiesHol der ph = new PropertiesHol der();

66 PropertieslteratorHolder ih = new PropertieslteratorHol der();
67 set.get_all_properties(0, ph, ih);

68

69 PropertyHol der h = new PropertyHol der();

70 whil e(i h. val ue. next _one(h))

71 {

72 /1 The next property is now stored in h.val ue
73 }

74

75 ih.val ue. destroy();

5-27 Get a Property Service reference and check for errors.

226

29

31-36
38-63

65-73

75

Programming Example

The Propert ySet Def Fact ory object is used to create a Propert ySet Def
instance. Note that Propert ySet Def is a subclass of PropertySet.

Each property consists of a name and a value in the form of a CORBA Any.
Three properties are defined. The first has the name “LongProperty” and
stores a | ong value. The second one is called “StringProperty” and stores a
string. The remaining property represents a short value. If for some reason
a property cannot be created, an exception is thrown.

Now we try to get a list of all the properties that were previously defined.
With get _al | _properti es the PropertySet Def returns its properties. As we
have set the how nany parameter to O, we have to use the
Propertieslterator for each item. An application would normally provide a
positive integer for how_nany.

The iterator has fulfilled its duty and can now be destroyed.

227

CHAPTER 10 | Orbacus Properties

228

In this chapter

CHAPTER 11

Orbacus Events

Some applications need to exchange information without
explicitly knowing about each other. Often a server isn’'t even
aware of the nature and number of clients that are interested
in the data the server has to offer. A special mechanism is
required that provides decoupled data transfer between
servers and clients. This requirement is addressed by the
CORBA Event Service.

Orbacus Events is compliant with [9]. This chapter does not
provide a complete description of the service. It only provides
an overview, suitable to get you started. For more information,
please refer to the specification.

This chapter contains the following sections:

Usage page 230
Connecting to the Service page 235
Using the Event Service with the IMR page 236
Event Service Concepts page 237
Programming Example page 245

229

CHAPTER 11 | Orbacus Events

Usage

Orbacus includes functionally equivalent implementations of the Event

Service in C++:

event serv

[-h--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u, - -unt yped- ser vi ce]

and Java:

com ooc. CosEvent . Ser ver
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u, - -unt yped- ser vi ce]

Options

-h
--help

-V
--version

-
--ior

-t
- -typed- servi ce

-u
--unt yped- servi ce

230

Display the command-line options supported by the
server.

Display the version of the server.

Print the stringified IOR of the server to standard
output.

Run a typed event service.

Run an untyped event service. This is the default
behavior.

Usage

Windows NT Native Service

-h
--help

-i

--install

-s
--start-install
-u

--uninstall

-d

--debug

The C++ version of Orbacus Events is also available as a native Windows
NT service.

nt event service
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

Display the command-line options supported by the server.

Install the service. The service must be started manually.

Install and start the service.

Uninstall the service.

Run the service in debug mode.

In order to use the Event Service as a native Windows NT service, it is first
necessary to add the ooc. event . endpoi nt property to the
HKEY_LOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
on page 64 for more details).
Next the service should be installed with:

nt event servi ce -i
This adds the O bacus Event Servi ce entry to the Servi ces dialog in the
Control Panel. To start the event service, select the O bacus Event Service
entry, and press Start . If the service is to be started automatically when the
machine is booted, select the O bacus Event Servi ce entry, then click
St art up. Next select Start up Type - Aut omat i ¢, and press CK. Alternatively,
the service could have been installed using the - s option, which configures
the service for automatic start-up:

nt event servi ce -s
If you want to remove the service, run:

231

CHAPTER 11 | Orbacus Events

nt event service -u

Note: If the executable for the Event Service is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service is be placed in the Windows
NT Event Viewer with the title Event Ser vi ce. To enable tracing information,
add the desired trace configuration property (i.e., one of the

ooc. event . trace properties or one of the ooc. orb. trace properties) to the
HKEY_LOCAL_MACH NE NT registry key with a REG Sz value of at least 1.

232

Usage

Configuration Properties

In addition to the standard configuration properties described in Chapter 3,
Orbacus Events also supports the following properties:

0ocC.

oocC.

0oocC.

oocC.

0oocC.

oocC.

0ocC.

oocC.

event

event .

event.

event .

event.

event .

event.

event .

.inactivity_tineout=SEC

max_event s=N

max_retri es=N

endpoi nt =ENDPQ NT

pul | _i nt erval =MSEC

reap_f r equency=SEC

retry_ti meout =MsEC

retry_multiplier=N

ooc.event.request_timeout=MSEC

Proxies that are inactive for the specified number of
seconds will be reaped. The default value is four
hours.

The maximum number of events in each event
queue. If this limit is reached and another event is
received, the oldest event is discarded.The default
value is 10.

The maximum number of times to retry before
giving up and disconnecting the proxy. The default
value is 10.

Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc. or b. oa. endpoi nt property is not set.

This specifies the number of milliseconds between
successive calls to pull on Pul | Suppl i er . Default
value is O.

This specifies the frequency (in seconds) in which
inactive proxies will be reaped. The default value is
thirty minutes. Setting this property to O disables
the reaping of proxies.

Specifies the initial amount of time in milliseconds
that the service waits between successive
retries.The default value is 1000.

A doubl e that defines the factor by which the
retry_timeout property should be multiplied for
each successive retry.

The amount of time permitted for a blocking request
on a client to return before a timeout. The default
value is 5 seconds.

233

CHAPTER 11 | Orbacus Events

ooc.event.trace.events=LEVEL

ooc.event.trace.lifecycle=LEVEL

ooc. event . t yped_servi ce=true| fal se

Defines the output level for event diagnostic
messages printed by Orbacus Events. The default
level is O, which produces no output. A level of 1 or
higher produces event processing information and a
level of 2 or higher produces event creation and
destruction information.

Defines the output level for lifecycle diagnostic
messages printed by Orbacus Events. The default
level is O, which produces no output. A level of 1 or
higher produces lifecycle information (e.g. creation
and destruction of Suppliers and Consumers).

Equivalent to the -t command-line option.

CLASSPATH Requirements

234

Orbacus Events for Java requires the classes in CB.j ar and CBEvent . j ar .

Connecting to the Service

Connecting to the Service

The object key of the Event Service depends on whether it is running as a
“typed” or “untyped” service. The object keys and corresponding interface
types are shown in Table 1.

Table 1: Object Keys and Interface Types

Object Key Interface Type
Event Service Def aul t Event Channel CosEvent Channel Admi n: : Event Channel
Typed Event Def aul t TypedEvent Channel CosTypedEvent Channel Adnin: :
Service TypedEvent Channel

The object key can be used when composing URL-style object references.
For example, the following URL identifies the untyped event service running
on host evhost at port 10000:

cor bal oc: : evhost : 10000/ Def aul t Event Channel

Refer to Chapter 5 for more information on URLs and configuring initial
services.

Orbacus Events also provides proprietary “factory” interfaces which allow
construction and administration of multiple event channels in a single
service. The object keys and corresponding interface types of the factories
are shown in Table 2.

Table 2: Object Keys and Interface Types for Event Channel Factories

Object Key Interface Type

Event Channel
Factory

Def aul t Event Channel Fact ory OBEvent Channel Factory: :
Event Channel Fact ory

Typed Event
Channel
Factory

Def aul t TypedEvent Channel Fact ory (BTypedEvent Channel Factory: :
TypedEvent Channel Fact ory

For a description of the factory interfaces, please refer to the documented
IDL files event /i dl / GBEvent Channel Factory.id and
event /i dl / BTypedEvent Channel Factory.idl .

235

CHAPTER 11 | Orbacus Events

Using the Event Service with the IMR

The Event Service may be used with the Implementation Repository (IMR).
However, if used with the IMR, it is important to note that the cor bal oc
URL-style object reference described in the previous section cannot be used.
If the IMR is used, then the object reference for the “untyped” Event Service
must be created using one of the following methods (where Event Ser ver
refers to the server name configured with the IMR):

® Start the Event Service with the options:

-ORBServer | d Event Server --ior

causing the Event Service to print its reference to standard output.
® Use the nkref utility:

nkref Event Server Def aul t Event Channel Event Servi cePQA
For the “typed” Event Service, the object reference must be created using
one of the following methods:
® Start the Event Service with the options:

- ORBServer | d Event Server --typed-service --ior

causing the Event Service to print its reference to standard output.
® Use the nkref utility:

nkref Event Server Def aul t TypedEvent Channel Event Servi cePQA
Object references for the Orbacus proprietary “factory” objects can be
created using the following commands:

nkref Event Server Def aul t Event Channel Fact ory Event Servi cePQA
nkref Event Server Def aul t TypedEvent Channel Fact ory
Event Ser vi cePQA

When using the Event Service with the IMR, the service must be started
with the option - CRBServer | d Event Server, where Event Server refers to
the server name configured with the IMR. When the IMR is configured to
start the Event Service, this option is automatically added to the service’s
arguments. However, when the Event Service is started manually, the option
must be present. For further information on configuring a service with the
IMR, refer to “Getting Started with the Implementation Repository” on
page 165.

236

Event Service Concepts

Event Service Concepts

In this section This section contains the following topics:
The Event Channel page 238
Event Suppliers and Consumers page 239
Event Channel Policies page 241
Event Channel Factories page 242

237

CHAPTER 11 | Orbacus Events

The Event Channel

238

The Event Service distributes data in the form of events. The term event in
this context refers to a piece of information that is contributed by an event
source. An event channel instance accepts this information and distributes it
to a list of objects that previously have connected to the channel and are
listening for events.

The Event Service specification defines two distinct kinds of event channels:
untyped and typed. Whereas an untyped event channel forwards every event
to each of the registered clients in the form of a CORBA Any, a typed event
channel works more selectively by supporting strongly-typed events which
allow for data filtering. We will only discuss the untyped event channel here.
For information on typed event channels, and more details on the Event
Service in general, please refer to the official Event Service specification [9].

Event Service Concepts

Event Suppliers and Consumers

Applications participating in generating and accepting events are called
suppliers and consumers, respectively. Suppliers and consumers each come
in two different versions, namely, push suppliers and pull suppliers, and
push consumers and pull consumers.

What's the difference between pushing events and pulling events? Let’s
have a look at the consumer side first. Some consumers must be
immediately informed when new events become available on an event
channel. Such consumers usually act as push consumers. They implement
the PushConsuner interface which ensures that the event channel actively
forwards events to them using the push() operation:.

/1 1DL
i nterface PushConsuner

{
voi d push(in any data)
rai ses(D sconnect ed) ;

voi d di sconnect _push_consurer () ;

}s

Push consumers are passive, that is, are servers. Conversely, pull
consumers are active, that is, are clients. Pull consumers poll an event
channel for new events. As events may arrive at a greater rate than they are
polled for by a pull consumer or accepted and processed by a push
consumer, some events might get lost. A buffering policy implemented by
the event channel determines whether events are buffered and what
happens in case of an event queue overflow.

Like consumers, suppliers can also use push or pull behavior. Push
suppliers are the more common type, in which the supplier directly forwards
data to the event channel and thus plays the client role in the link to the
channel. Pull suppliers, on the other hand, are polled by the event channel
and supply an event in response, if a new event is available. Polling is done
by the try_pul I () operation if it is to be non-blocking or by the blocking
pul I () call:

239

CHAPTER 11 | Orbacus Events

/1 1DL
interface Pul | Supplier

{

any pul | ()
rai ses(D sconnect ed) ;

any try_pull (out bool ean has_event)
rai ses(D sconnect ed) ;

voi d di sconnect _pul | _supplier();

}s

240

Event Service Concepts

Event Channel Policies

The untyped event channel implementation included in the Orbacus
distribution features a simple event queue policy. Events are buffered in the
form of a queue, i.e., a certain number of events are stored and, in case of a
buffer overflow, the oldest events are discarded.

241

CHAPTER 11 | Orbacus Events

Event Channel Factories

The standard CORBA Event Service provides no support for managing the
lifecycle of event channels; as a result, applications requiring multiple
channels are often forced to run a separate instance of the Event Service for
each channel. To remedy this situation, Orbacus Events provides optional,
proprietary interfaces for event channel administration.

The GBEvent Channel Fact ory: : Event Channel Fact ory interface describes the
factory for untyped event channels:

/] 1DL
nodul e CBEvent Channel Factory
{

typedef string Channell d;
typedef sequence<Channel | d> Channel | dSeq;

exception Channel Al readyExi sts {};
exception Channel Not Avai | abl e {};

i nterface Event Channel Fact ory

{

CosEvent Channel Adni n: : Event Channel
creat e_channel (in Channel I d id)
rai ses(Channel Al r eadyExi sts);
CosEvent Channel Adni n: : Event Channel
get _channel _by_id(in Channel | d id)
rai ses(Channel Not Avai | abl e) ;
Channel | dSeq get _channel s() ;

voi d shut down();

242

Event Service Concepts

The GBTypedEvent Channel Fact ory: : TypedEvent Channel Fact ory interface
describes the factory for typed event channels:

/1 1DL
nodul e CBTypedEvent Channel Fact ory

{

i nterface TypedEvent Channel Fact ory

{
CosTypedEvent Channel Adm n: : TypedEvent Channel
create_channel (i n GBEvent Channel Factory: : Channel | d i d)
rai ses(GBEvent Channel Fact ory: : Channel Al r eadyExi sts);

CosTypedEvent Channel Admi n: : TypedEvent Channel
get _channel _by i d(i n GBEvent Channel Fact ory: : Channel I d i d)
rai ses(CBEvent Channel Fact ory: : Channel Not Avai | abl e) ;

CBEvent Channel Fact ory: : Channel | dSeq get _channel s();

voi d shut down();
IE
b

At start-up, the untyped Event Service creates a single channel having the
identifier Def aul t Event Channel , and the typed Event Service creates a
single channel having the identifier Def aul t TypedEvent Channel . A channel’s
identifier also serves as its object key; therefore, a channel can be located
using a cor bal oc: URL (see “corbaloc: URLs” on page 131). For example,
a channel with the identifier Tel enet r yDat a can be located on the host
nyhost at port 2098 using the following URL:

cor bal oc: : nyhost : 2098/ Tel enet ryDat a

To obtain the object reference of a channel factory, use a cor bal oc: URL
with the object key as shown in Table 1 on page 235. For example,
assuming the untyped Event Service is running on host nyhost at port 2098,
here is how a C++ application can obtain the object reference of the
channel factory and create a channel with the identifier Tel enet r yDat a:

[l Ct+
CORBA: : hj ect_var obj = orb -> string_to_object (
"cor bal oc: : nyhost : 2098/ Def aul t Event Channel Fact ory");
OBEvent Channel Fact ory: : Event Channel Fact ory_var factory =
CBEvent Channel Fact ory: : Event Channel Fact ory: : _narrow(obj);
CosEvent Channel Adm n: : Event Channel _var channel =
factory -> create_channel ("Tel enetrybData");

243

CHAPTER 11 | Orbacus Events

Here is the same example in Java:

/1 Java
or g. ong. CORBA. Chj ect obj = orb.string_to_object (
"corbal oc: : nyhost : 2098/ Def aul t Event Channel Factory");
com ooc. CBEvent Channel Fact ory. Event Channel Factory factory =
com ooc. CBEvent Channel Fact ory. Event Channel Fact or yHel per .
narrow(obj) ;
or g. ong. CosEvent Channel Adm n. Event Channel channel =
factory. create_channel ("Tel enetryData");

244

Programming Example

Programming Example

In the Event Service example that comes with Orbacus, two supplier and
two consumer clients demonstrate how to use an untyped event channel to
propagate information. The pieces of information transferred by this example
are strings containing the current date and time. After starting the Event
Service server, you can start these clients in any order. The demo
applications obtain the initial Event Service reference as already
demonstrated, i.e., by calling resol ve_i ni ti al _r ef erences. When started,
each supplier provides information about the current date and time and
each client displays the event data in its console window.

This is the push supplier's main loop:

1 // Java

2 while(consurer_ !'= null)

3 {

4 java.util.Date date = new java. util.Date();
5 String s = "PushSupplier says: " + date.toString();
6

7 Any any = orb_.create_any();

8 any.insert_string(s);

9

10 try

11 {

12 consurrer _. push(any) ;

13 }

14 cat ch(D sconnect ed ex)

15

16 /1 Supplier was di sconnected from event channel
17 }

18

19 try

20 {

21 Thr ead. sl eep(1000) ;

22 }

23 cat ch(I nt errupt edExcepti on ex)

24 {

25 }

26 }

4-8 The current date and time is inserted into the Any.

245

CHAPTER 11 | Orbacus Events

246

10-17

19-25

4-8
13-19

The event data, in this example date and time, are pushed to the event
channel. From the push supplier’s view the event channel is just a consumer
implementing the PushConsuner interface.

After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that
the event channel explicitly polls the supplier for new events. This is done by
either pul I () ortry_pul I (). The pull supplier doesn’t see anything from the
event channel but an object implementing the Pul | Consurer interface. The
following example shows the basic layout of a pull supplier:

1 // Java

2 public Any pull ()

3 {

4 java.util.Date date = new java.util.Date();
5 String s = "Pull Supplier says: " + date.toString();
6

7 Any any = orb.create_any();

8 any.insert_string(s);

9

10 return any,;

11 }

12

13 public Any

14 try_pul | (Bool eanHol der has_event)

15 {

16 has_event. val ue = true;

17

18 return pull ();

19 }

Date and time are inserted into the Any.

In this example new event data can be provided at any time, sotry_pul I ()
always sets has_event to true in order to signal that an event is available. It
then returns the actual event data.

2-13

Programming Example

After examining the most important aspects of the event suppliers’ code, we
are now going to analyze the consumers’ code. The push consumer with its
push() operation is shown first:

1 // Java

2 public void push(Any any)

3 {

4 try

5 {

6 String s = any.extract_string();
7 Systemout. println(s);

8 }

9 cat ch(MARSHAL ex)

10 {

11 /1 1gnore unknown event data
12 }

The push consumer’s push() operation is called with the event wrapped in a
CORBA Any. In this code fragment it is assumed that the Any contains a
string with date and time information. In case the Any contains another data
type a MARSHAL exception is thrown.This exception can be ignored here
because other events aren't of interest. After extracting the string it is
displayed in the console window.

247

CHAPTER 11 | Orbacus Events

248

6-13

15-23

In contrast to the push consumer, the pull consumer has to actively query
the event channel for new events. This is how the pull consumer loop looks:

1 // Java

2 while(supplier_ !'=null)

3 {

4 Any any = nul | ;

5

6 try

7 {

8 any = supplier_.pull();

9 }

10 cat ch(Di sconnect ed ex)

11 {

12 /1 Supplier was di connected fromevent channel
13 }

14

15 try

16 {

17 String s = any.extract_string();
18 Systemout. println(s);

19 }

20 cat ch(MARSHAL ex)

21 {

22 /1 1gnore unknown event data
23 }

24 }

A CORBA Any is prepared for later use.

Using pul I (), the consumer polls the event channel for new events. The
event channel acts as a pull supplier in this case. The pul | () operation
blocks until a new event is available.

The consumer expects a string wrapped in a CORBA Any. The string value is
extracted and displayed. If an exception is raised the Any contained some
other data type which is simply ignored.

In all of these examples the event channel acts either as a consumer (if the
clients are suppliers) or a supplier (if the clients are consumers) of events.
Actually each client is not directly connected to the event channel but to a
proxy that receives or sends events on behalf of the channel. For more
information on the Event Service and for the complete definitions of the IDL
interfaces, please refer to the official Event Service specification.

In this chapter

CHAPTER 12

The Interface
Repository

A CORBA Interface Repository (IFR) is essential for
applications using the dynamic features of CORBA, such as
the Dynamic Invocation Interface and DynAny. The IFR holds
IDL type definitions and can be queried and traversed by
applications.

The Orbacus Interface Repository is compliant with [4]. This
chapter does not provide a complete description of the IFR.
For more information, please refer to the specification.

This chapter contains the following sections:

Usage page 250
Connecting to the Interface Repository page 254
Configuration Issues page 255
Interface Repository Utilities page 256
Programming Example page 257

249

CHAPTER 12 | The Interface Repository

Usage

The Orbacus Interface Repository is currently only provided with Orbacus for
C++.

irserv
[-h,--help] [-v,--version] [-d,--debug] [-i,--ior]
[- DNAVE] [-DNAVESDEF] [-UNAME] [-I1DIR

[--case-sensitive] [FILE ...]

250

-h Display the command-line options supported by the server.

--help

-v Display the version of the server.

--version

-d Print diagnostic messages. This option is for Orbacus internal

--debug debugging purposes only.

-i Print the stringified IOR of the server to standard output.

--ior

- DNAMVE Defines NAME as DEF, or 1 if DEF is not provided. This option is

- DNAVE=DEF passed directly to the preprocessor.

- UNAMVE Removes any definition for NAVE. This option is passed directly to
the preprocessor.

-IDIR Adds D Rto the include file search path. This option is passed
directly to the preprocessor.

--case-sensitive The semantics of OMG IDL forbid identifiers in the same scope to
differ only in case. This option relaxes these semantics, but is only
provided for backward compatibility with non-compliant IDL.

FILE ... IDL files to be loaded into the repository.

Usage

Windows NT Native

Service

ntirservice
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h
--help

Display the command-line options supported by the server.

--install

Install the service. The service must be started manually.

-S

--start-install

Install the service and start it.

-u

--uninstall

Uninstall the service.

-d

- - debug

Run the service in debug mode.

In order to use the IFR as a native Windows NT service, it is first necessary
to add the ooc. i fr. endpoi nt configuration property to the
HKEY_LOCAL_MACH NE NT registry key (see “Using the Windows NT Registry”
on page 64 for more details).
Next the service should be installed with:

ntirservice -
This adds the O bacus I nterface Repository Service entry to the
Servi ces dialog in the Control Panel. To start the naming service, select the
Q bacus Interface Repository Service entry, and press Start. If the
service is to be started automatically when the machine is booted, select the
Q bacus Interface Repository Service entry, then click Startup. Next
select Startup Type - Aut omati c, and press K. Alternatively, the service
could have been installed using the - s option, which configures the service
for automatic start-up:

ntirservice -s
If you want to remove the service, run:

251

CHAPTER 12 | The Interface Repository

252

ntirservice -u

Note: If the executable for the Interface Repository is moved, it must be
uninstalled and re-installed.

Any trace information provided by the service is placed in the Windows NT
Event Viewer with the title | RSer vi ce. To enable tracing information, add
the desired trace configuration property (i.e., one of the ooc. orb. trace
properties) to the HKEY_LOCAL_MACH NE NT registry key with a REG Sz value
of at least 1.

Usage

Configuration Properties

In addition to the standard configuration properties described in Chapter 3,
the Orbacus Interface Repository also supports the following properties:

ooc. i fr.opti ons=CPTS

Allows command-line options to be passed to the
Windows NT Native service at start-up. Note that
absolute pathnames should be used when specifying
include directives, IDL files, etc.

ooc. i fr. endpoi nt =ENDPQ NT

Specifies the endpoint configuration for the service.
Note that this property is only used if the
ooc. or b. oa. endpoi nt property is not set.

253

CHAPTER 12 | The Interface Repository

Connecting to the Interface Repository

The object key of the IFR is Def aul t Reposi t ory, which identifies an object
of type OORBA: : Reposi tory.

The object key can be used when composing URL-style object references.

For example, the following URL identifies the IFR running on host i f r host
at port 10000:

corbal oc: : i f rhost: 10000/ Def aul t Reposi t ory

Refer to Chapter 5 for more information on URLs and configuring initial
services.

254

Configuration Issues

Configuration Issues

Although applications can interact with the IFR as with any other CORBA
server, it does have special status within the ORB. Specifically, use of the
standard operation bj ect:: get _i nterface() requires the presence of an
IFR:

/1 PIDL
interface o ect

{

InterfaceDef get_interface();
IE

The exact semantics of get _i nt erf ace can be a source of confusion. In
Orbacus, as with most other ORBs, the get _i nter f ace operation is a
remote operation. That is, when a client invokes get _i nt er f ace on an
object reference, the request is sent to the server. The server knows the
interface type of the object reference and interacts with the IFR to locate the
appropriate OORBA: : I nter f aceDef object to return to the client. Therefore,
the server must be configured for the IFR. It is not necessary to configure
the client for the IFR if the client’s only interaction with the IFR is via
get_interface.

255

CHAPTER 12 | The Interface Repository

Interface Repository Utilities

irfeed IDL files can be loaded into the IFR at runtime using i r f eed. See the
description of the i rserv command for more information on the
command-line options.

irfeed [-h,--help] [-v,--version] [-d,--debug]
[- DNAMVE] [-DNAME=DEF] [-UNAME] [-IDIR FILE ...

irdel Type definitions can be removed from the IFR using i rdel . See the
description of the i rserv command for more information on the
command-line options.
irdel [-h,--help] [-v,--version] nane ...
The nanme argument represents the scoped name of the type to be removed.
A scoped name has the form “X::Y::Z”. For example, an interface I defined
in a module Mcan be identified by the scoped name “M::I”.

256

Programming Example

Programming Example

Below is a simple example in Java that demonstrates how to obtain an
I nterfaceDef object and display its contents:

1 // Java

2 inport org.ong. CCRBA *;

3 ...

4

5 org.ong. CORBACRB = ... // initialize the CRB

6 org.ong. CORBA (hject obj = ... // get object reference somehow
7

8 org.ong. CORBA (bj ect def(hj = obj. _get_interface def();

9 if(defChj == null)

10 {

11 Systemerr.println("No Interface Repository avail able");
12 Systemexit(1);

13 }

14

15 InterfaceDef def = I|nterfaceDef Hel per. narrowdef Chj);

16 org. ong. CORBA. | nt er f aceDef Package. Ful | | nt er f aceDescri pti on
desc =

17 def . describe_i nterface();

18

19 int i;

20 Systemout.println("name =" + desc. nane);

21 Systemout.println("id =" + desc.id);

22 Systemout.println("defined_in =" + desc.defined_ in);

23 Systemout.println("version =" + desc.version);

24 Systemout.println("operations:");

25 for(i =0 ; i < desc.operations.length ; i++)

26 {

27 Systemout.println(i + ": " + desc.operations[i].nane);
28 }

29 Systemout.println("attributes:");

30 for(i =0 ; i <desc.attributes.length ; i++)

31 {

32 Systemout.println(i + ": " + desc.attributes[i].nane);
33 }

34 Systemout.println("base_interfaces:");

35 for(i =0 ; i < desc.base interfaces.length ; i++)

36 {

37 Systemout.printin(i +": " + desc.base_interfaces[i]);
38 }

257

CHAPTER 12 | The Interface Repository

5-8

9-13
15

16-17
19-39

258

After initializing the ORB and obtaining an object reference, we invoke
_get _interface_def 1 on the object.

If no interface definition could be found, _get _i nterface_def returns nil.
Narrow the object reference to I nt er f aceDef . We now have a reference to
an object in the IFR that describes the most-derived type of our object
reference.

Request a complete description of the interface.

Print information about the interface, including the names of its operations
and attributes.

A complete example of how to use the IFR can be found in the

ob/ deno/ r eposi t ory subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the
_get _interface_def operation, which returns or g. ong. CORBA (hj ect
instead of or g. ong. GORBA. | nt er f aceDef . Portable Java applications should
use _get _i nterface_def. In C++, the operation is _get _i nt erf ace.

In this chapter

CHAPTER 13

Orbacus Balancer

Orbacus Balancer provides load balancing of client
connections across a group of replicated objects. The load
balancing service provided by Orbacus Balancer is transparent
and interoperable with any CORBA client. However, the
interface between the servers and the service is strictly
proprietary.

This chapter contains the following sections:

“Basic Concepts” on page 260

“Load Balancing Strategies” on page 261

“Service Security” on page 264

“Usage” on page 265

“Connecting to the Service” on page 273

“Load Balanced IMR-enabled Servers” on page 274

“Utilities” on page 275

“Programming Example” on page 280

259

CHAPTER 13 | Orbacus Balancer

Basic Concepts

260

Let us assume that we wish to provide a library service that is made
available through a set of objects. These objects being a set of book objects
and a library object that manages the book objects. Furthermore, it is
desired that connections made with each of these objects be load balanced.
The replicated objects for each book and the replicated library objects are
managed in the service by a single entity that is called a load balanced
group. Each member of the load balanced group must provide a replica of
each object — for the library service, each member must provide a replica of
each book object and a replica of the library object.

All of the replicas provided by a member must be activated on a single POA
with a member policy (which uniquely identifies the member within the
service), the USER | D ID assignment policy value, and the PERSI STENT
lifespan policy value. Such a POA will be referred to as a member POA and
the corresponding server will be referred to a load balanced server. Object
references created by a member POA will refer to the service instead of the
member POA within the load balanced server.

When a client makes a request on an object using a reference create by a
member POA, the service:

® receives the request,

® determines the load balanced group,

® selects a member of this group, and

® returns a new reference to the client that refers to the replica of the
object that is provided by this member.

The client then establishes a connection with the server using the new

object reference and communicates directly with the server, without the
intervention of the service.

Load Balancing Strategies

Load Balancing Strategies

Member Selection

Each load balanced group within the service has an associated load
balancing strategy. The load balancing strategy determines which member
will be used to service the next client connection. The strategy is also
responsible for load re-balancing. Load re-balancing is done by issuing load
alerts to overload members. When a member receives a load alert, it
forwards the next client request back to the service.

There are two types of strategies: adaptive and non-adaptive. When using
an adaptive strategy, a load balanced group must receive load updates from
the members. These loads are then used by the strategy to determine the
next member to be used for a client connection. Adaptive strategies can also
provide load re-balancing. When using non-adaptive strategies, the service
does not require load updates from the members and load re-balancing is
not possible.

Member selection and load re-balancing are discussed in the following
sections. The advantages and disadvantages of the different types of load
balancing strategies is also presented.

Non-adaptive member selection does not use load information from the

members. Hence, non-adaptive member selection will only correctly balance

connections under a certain set of conditions. These conditions are as

follows:

® Dedicated hosts

® Homogeneous hosts

@ (Clients generate the same load and are connected for the same amount
of time — or —clients are connected for short periods of time

While adaptive member selection can be used in more situations than

non-adaptive member selection, it is not without problems. The problems

with adaptive member selection are highlighted below:

1. Using a polling technigue to retrieve member loads does not scale.
Hence, it is decided that loads will be reported to the load balanced
group at regular intervals by each member. However, this implies that

261

CHAPTER 13 | Orbacus Balancer

Load Re-balancing

262

when making a load balancing decision, loads do not necessarily
represent the current loads of the members, but instead past loads.
This is a source of error.

These errors will be large when many clients connect in a short period
of time. This is because the actual load of members will increase
dramatically before the loads can be updated.

Increasing the frequency of load updates will decrease the error, but
then the overhead of load balancing is increased due the extra network
traffic. Hence, an optimum value must be discovered for each
installation.

2. Another source of error is that spikes in the load of a member may
cause bad load balancing decisions.

3. Yet another problem with load balancing is that, in most cases, it is
difficult to estimate the load that a new client connection will impose
on a member. This becomes a bigger problem on a heavily loaded
system since a load balancing decision may cause a members load to
increase well past the critical level.

Errors of this type can be alleviated by using load re-balancing. However,

load re-balancing will introduce other sources of errors, as discussed in the
next section.

Load re-balancing is the transfer of a client connection from the replica of
one member to the replica of another. This is achieved by getting a member
to forward the next client request back to the service. Load re-balancing is
useful when the loads of the members become imbalanced. Through load
re-balancing these imbalances can be corrected, resulting in a higher
average throughput. Several factors may contribute to a load imbalance:

® Clients not generating a consistent load while connected

® Clients not connected for the same amount of time

® Heterogeneous hosts

® Non-dedicated hosts

® Member selection errors

For effective load re-balancing, we must be able track client connections

and the load generated by each connection. However, the concept of a
connection is hidden from the CORBA developer, so in general, all that is

Choosing a Load Balancing
Strategy

Load Balancing Strategies

available is the load for each member of the load balanced group. Hence,
we must make certain approximations when making load re-balancing
decisions. For these approximations to hold, the following assumptions
must made:

® The average load created by a client can be reliably estimated

® The load created by a client does not deviate much from the average
load

® Dedicated hosts

® Homogeneous hosts

Since load re-balancing decisions are based on approximations that will only
be reasonable when certain conditions are meant, there is always the
chance of a load re-balancing error. Let us say that a load re-balancing error
occurs when the load that is transferred from the replica of one member to
the replica of another causes the target member to become overloaded. This
situation is what we will call system instability. In some cases the system
may remain instable indefinitely. For example, if a single client is solely
responsible for causing a high load, then the client will likely be bounced
from member to member. Yet another source of load re-balancing errors
comes from the fact that a member cannot redirect a client until it receives a
request. When this occurs, the member may no longer be overloaded. This
can be alleviated by associating an expire time with a load alert.

Some important things to note when choosing between adaptive and
non-adaptive load balancing strategies are:

® Non-adaptive strategies impose very little overhead compared to
adaptive strategies.

® Adaptive strategies will produce a more balanced system when the
assumptions for the non-adaptive strategies are not satisfied.

Under certain conditions, load re-balancing will be error-prone. In such a
case, adaptive strategies which take an aggressive approach to re-balancing
may result in many load re-balancing errors. Furthermore, load re-balancing
can be an expensive operation, making these errors even more severe. On
the other hand, if the system is such that load re-balancing errors seldom
occur and the expense of re-balancing is minimal, then adaptive strategies
that take an aggressive approach to load re-balancing should result in a
higher average throughput due to a more balanced system.

263

CHAPTER 13 | Orbacus Balancer

Service Security

264

It is very important that only Orbacus Balancer’s public port (also referred to
as its forward port) be accessible outside of the network firewall. Otherwise,
anyone can mimic the members of a load balanced group causing a denial
of service.

For additional security, many of the operations on the service are only
allowed when the service is running in administrative mode. That is:

® creating and destroying load balanced groups,

® setting the load balancing strategy, and

® adding or removing members

are only possible when the service is running in administrative mode. An
attempt to perform these operations when it is not running in administration
mode will result in a OORBA: : NO_PERM SSI ON exception.

Usage

Usage

Orbacus Balancer is currently only implemented using Orbacus for C++,
but Orbacus for Java servers can also be load balanced. Orbacus Balancer
command line usage is as follows:

bal ancer

[-h,--help] [-v,--version] [-a,--adninistrative]
[-d,--database] [-A --adm n-endpoi nt]
[-F, --forward-endpoint]

-h, --help Display the command-line options supported by the
server.
-v, --version Display the version of the server.

-a, --admnistrative

Run the service in administrative mode. The service will
run in non-administrative mode by default.

-d D RECTCRY,
- -dat abase DI RECTCRY

Specifies the directory in which the service maintains its
database files. If not specified, then the current working
directory is used.

-A INFQ
- -adni n- endpoi nt | NFO

Specifies the service’s administrative public endpoint
settings. This is the endpoint that the load balanced
servers use to communicate with the service. For security
reasons, access to this endpoint can be restricted.

-F INFQ
- -forwar d- endpoi nt | NFO

Specifies the services's public endpoint settings, which is
used by clients for server requests.

265

CHAPTER 13 | Orbacus Balancer

Windows NT Native Service

266

The bal ancer server is also available as a native Windows NT service.
nt bal ancer servi ce
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d,--debug]

-h
--hel p

Display the command-line options supported by the service.

-i
--install

Install the service. The service must be started manually.

-s
--start-install

Install and start the service.

-u
--uninstall

Uninstall the service.

-d
--debug

Run the service in debug mode.

In order to use Orbacus Balancer as a native Windows NT service, first add
the desired configuration properties to the HKEY_LOCAL_MACH NE NT registry
key (see “Using the Windows NT Registry” on page 64 for more details). For
example, add the ooc. bal ancer. adm n_endpoi nt and

ooc. bal ancer . f or war d_endpoi nt properties so that the service will use
non-default ports.

Next the service should be installed with:

nt bal ancer servi ce -i

This adds the O bacus Bal ancer entry to the Services dialog in the Control
Panel. To start the service, select the O bacus Bal ancer entry, and press
Start. If the service is to be started automatically when the machine is
booted, select the O bacus Bal ancer entry, then click Startup. Next select
Automatic for the Startup Type and press OK. Alternatively, the service
could have been installed using the - s option, which configures the service
for automatic start-up:

nt bal ancer service -s
If you want to remove the service, run:

Usage

nt bal ancer service -u
Note: If the executable for the service is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is be placed in the Windows

NT Event Viewer with the title Bal ancer . To enable tracing information, add
the desired trace configuration property (i.e., one of the

ooc. bal ancer . trace properties or one of the ooc. orb. t race properties) to
the HKEY_LOCAL_MACH NE NT registry key with a REG Sz value of at least 1.

267

CHAPTER 13 | Orbacus Balancer

Configuration Properties

ooc.balancer.administrative

ooc.balancer.dbdir

ooc.balancer.admin_endpoint

ooc.balancer.forward_endpoint

ooc.balancer.trace.database

ooc.balancer.trace.lifecycle

ooc.balancer.trace.load_balance

268

In addition to the standard configuration properties described in Chapter ,
Orbacus Balancer also supports the following properties:

Value: true, fal se

If set to t rue, then run the service in administrative mode. For details refer
to the - a command-line option.

Value: directory
Equivalent to the - d command-line option.

Value: info

Equivalent to the - Acommand-line option.

Value: info

Equivalent to the - F command-line option.

Value: level >= 0

Defines the output level for database diagnostic messages printed by the
service. The default level is O, which produces no output. A level of 1 or
higher produces database information (e.g., loading, adding and removing
group records in the database).

Value: level >= 0

Defines the output level for lifecycle diagnostic messages printed by the
service. The default level is O, which produces no output. A level of 1 or
higher produces lifecycle information (e.g., creation and destruction of load
balanced groups, adding and removing members, and setting load balancing
strategies).

Value: level >= 0

Usage

Defines the output level for diagnostic messages related to the load
balancing of members. The default level is O, which produces no output.
Levels greater than O produce different degrees of output.

269

CHAPTER 13 | Orbacus Balancer

Built-in Load Balancing Strategies

random

round-robin

least-load

tolerance

load-per-client

critical-load

270

In this section we present the load balancing strategies that are provided
with Orbacus Balancer. Note that the default strategy is the round-robin
strategy.

Non-adaptive strategy where members are selected at random. There are no
configuration properties for this strategy.

Non-adaptive strategy where members are selected in round-robin order.
There are no configuration properties for this strategy.

Adaptive strategy where the least loaded members are chosen in
round-robin order. The configuration properties for this strategy are as
follows:

Type: QORBA: : ULong
Members with a load difference that is less than t ol er ance are considered
to have the same load. The default value for this property is O.

This alleviates the member selection problem 1. on page 261.

Type: GORBA: : ULong

The | oad- per-cli ent property is an estimate of the load for a given client
connection. It is used so that a member's load can be adjusted without
having to wait for the next load update. It is also used to estimate the effect
of load re-balancing. The default value for this property is O.

This alleviates the member selection problem 1. on page 261.

Type: QORBA: : ULong

A member with a load greater than critical -1 oad is re-balanced if there
exists a member with a load that is less than cri ti cal -1 oad minus

| oad- per-client. This property has a default value of O, which disables
load re-balancing.

This alleviates the member selection problem 3. on page 262.

reject-load

dampening-multiplier

min-dispersion

tolerance

load-per-client

reject-load

Usage

Type: CCRBA: : ULong
A connection request will be rejected if all members have a load greater

than the rej ect -1 oad property. This property has a default value of O,
which means that connections will never be rejected.

Type: CCRBA: : Fl oat
A dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
danpeni ng-nul ti pli er property as follows:

load = mult * old_load + (1 - mult) * new| oad
where mul t is the value of the danpeni ng-nul ti pl i er property. This
property must be greater than or equal to O and less than 1. The default
value of 0, which disables dampening.

This alleviates member selection problems 1. on page 261 and 2. on page
262.

Adaptive strategy which attempts to keep the member loads within a given
tolerance. This strategy takes an aggressive approach to load re-balancing.
The configuration properties for this strategy are as follows:

Type: CCRBA: : ULong

Members with loads less than the average minus the t ol er ance are selected
in round-robin order. Members with loads greater than the average plus the
t ol er ance are re-balanced. If there are no members with loads less than the
average minus the t ol er ance, then members with loads within t ol er ance
of the average are selected in round-robin order. The default value for this
property is O.

This alleviates the member selection problem 1. on page 261 and 3. on
page 262.

See “load-per-client” on page 270.

See “reject-load” on page 271.

271

CHAPTER 13 | Orbacus Balancer

dampening-multiplier See “dampening-multiplier” on page 271.

272

Connecting to the Service

Connecting to the Service

Servers that use Orbacus Balancer must be configured with the service’s
initial reference. The object key of the service is Bal ancer, hence, a
URL-style object reference of the service running on host | bhost at port
10000 would be:

cor bal oc: : | bhost : 10000/ Bal ancer

Using this object reference, a server can configure the Orbacus Balancer
initial reference with the property:

ooc. orb. servi ce. Bal ancer =cor bal oc: : | bhost : 10000/ Bal ancer

An alternative to using the above property is to use the - CRBI ni t Ref
command-line option. Refer to Chapter 5 for more information on URLs and
configuring initial services.

273

CHAPTER 13 | Orbacus Balancer

Load Balanced IMR-enabled Servers

Load balanced servers may also be IMR-enabled servers. For information on
using the IMR, refer to Chapter 6. Note that Orbacus Balancer and the IMR
need no additional configuration.

Object references created by a member POA of an IMR-enabled server will
still refer to the associated load balanced group within Orbacus Balancer.
However, when Orbacus Balancer selects a member implemented by a
IMR-enabled server to service a new connection, the reference returned to
the client will actually refer to the IMR instead of the member's server.
When the client makes a request using this reference, the IMR receives the
request, activates the member's server (if necessary) using the OAD, and
returns a new object reference to the client that refers the server.

274

Utilities

Utilities

In this section This section describes various load balancing utilities:
Service Administration page 276
Making References page 277
Utility Objects page 278
Utility Object Configuration Properties page 279

275

CHAPTER 13 | Orbacus Balancer

Service Administration

The | badni n utility provides complete control over Orbacus Balancer. Its
command interface is shown below:

-h, --help Display this information.
--1list-groups List the load balanced groups.
--create-group group-id Create a load balanced group.
--destroy-group group-id Destroy a load balanced group.
--get-group-info group-id Get the attributes of a group.

--get-group-ior group-id repository-id object-id | Get the IOR for use by a client.

--set-strategy group-id <strat egy> Use the specified built-in strategy.
--set-customstrategy group-id ior Use the given custom strategy.
--list-menbers group-id Enumerate the members of the group.
- - add- nenber group-id member-id Add a member to the group.
--renove- nenber group-id member-id Remove a member from the group.

- - shut down Shutdown the service.

Where <str at egy> can be r andom r ound- r obi n, | east - | oad, or
m n- di sper si on. The | east -1 oad strategy has the options:

--tol erance tol erance

--load-per-client |oad_per_client
--critical-load critical_|oad
--reject-load reject_| oad

--danpeni ng-nul ti plier danmpeni ng_mul tiplier

The mi n- di sper si on strategy has the options:

--tol erance tol erance

--load-per-client |oad_per_client
--reject-load reject_| oad

--danpeni ng-nul tiplier danpeni ng_multiplier

276

Utilities

Making References

The I bnkr ef utility creates object references for use by clients of Orbacus
Balancer. Note that this can only be used to create object references when
the service is configured to use the 11OP. Its usage is shown below.

| brkref [-H host] port group-id repository-id object-id

host The host that the bal ancer server is running on. The
default value is the canonical hostname of the
machine in which I bnkr ef is executed.

port The forward port of the service.

group-id The ID of the load balanced group.

repository-id

The Repository ID of the new object reference.

object-id

The Object ID of the new object reference.

277

CHAPTER 13 | Orbacus Balancer

Utility Objects

LoadAlert

LoadCalculator

LoadUpdater

278

To take advantage of the features of the adaptive load balancing strategies,
a load balanced server must send load updates to the appropriate load
balanced groups and respond to load alerts. Orbacus Balancer provides
utility objects that the developer may use to help implement this
functionality.

The utility objects provided by Orbacus Balancer are part of the

LoadBal anci ng: : Wi | module and are provided as initial services (see “The
BootManager” on page 136). Each utility object is described below. For
further detail, refer to Appendix F, and for an example refer to “Adaptive
Load Balancing” on page 286.

The LoadAlert object is used to manage load alerts sent by the service. The
name of the LoadAlert initial service is LoadAl ert .

The LoadCalculator object is used by the LoadUpdater object (see below) to
calculate the current load of the server (which will be used as the load of
each member registered with the LoadUpdater object). The implementation
provided by the service calculates the load based on the number of active
requests.

The LoadUpdater object is used to manage load updates sent to the
Balancer. At regular intervals the LoadUpdater object gets the load from the
LoadCalculator object and pushes it to the load balanced group of each
registered member.

Utilities

Utility Object Configuration Properties

ooc.balancer.util.create_alert

ooc.balancer.util.create_calculat

or

ooc.balancer.util.create_updater

ooc.balancer.trace.alert_expire

ooc.balancer.trace.load_update

The Orbacus Balancer utility objects support the following properties:

Value: true, fal se

If set to true, then the LoadAlert object will be created and will be available
as an initial service. The default value is true.

Value: true, fal se

If set to true, then the LoadCalculator object will be created and will be
available as an initial service. The default value is true.

Value: true, fal se

If set to true, then the LoadUpdater object will be created and will be
available as an initial service. The default value is true. If the LoadCalculator
object is also created, then this object does not have to be set in the
LoadUpdater object.

Value: timeout >= 0

Specifies the expiry time for a load alert in milliseconds. The default is 1000
(1 second). A value of O means that load alerts never expire.

Value: frequency >= 0

Specifies the load update frequency for the LoadUpdater object in
milliseconds. The default is 1000 (1 second). A value of O means that no
load updates will be sent to the service.

279

CHAPTER 13 | Orbacus Balancer

Programming Example

Implementing a Load Balanced
Server

In this section

280

In this section, we will show how to modify the C++ version of the “Hello
World” server (see Chapter 1) for load balancing. First we will present the
maodifications necessary for non-adaptive load balancing, then the necessary
maodifications for adaptive load balancing will be presented. This is followed
by a description of the steps necessary to configure the service for the load
balanced “Hello World” servers.

This section covers the following topics:

Non-adaptive Load Balancing page 281
Adaptive Load Balancing page 286
Running the Load Balanced Servers page 290

Programming Example

Non-adaptive Load Balancing

11

15

The “Hello World” server presented in Chapter uses the Root POA to
activate its Hello servant. However, a member POA must have a member
policy, the USER | DID assignment policy value and the PERSI STENT lifespan
policy value. Hence, the “Hello World” server must be modified so that the
Hello servant is activated using a POA with the above policies. Furthermore,
the Hello servant is no longer activated under the Root POA, so it becomes
necessary for it to override the _def aul t _POA method. The modified
servant’s class declaration is shown below:

1 /] C++

2 #include <Hell o_skel . h>

3

4 class Hello_inpl : public PQA Hell o,

5 publ i ¢ Port abl eServer: : Ref Count Ser vant Base
6 {

7 Port abl eSer ver:: POA var poa_;

8

9 public:

10

11 Hel | o_i npl (Portabl eServer:: PQA ptr);

12

13 virtual void say_hello() throw GORBA: : Syst enExcepti on);
14

15 virtual Portabl eServer::PQOA ptr _default_ POA);

16 };

Private member to store the servant’s default POA.

A constructor must be defined to allow the assignment of the servant’s
default POA.

Declaration of the _def aul t _PQOA method.

281

CHAPTER 13 | Orbacus Balancer

The remainder of the class declaration is unchanged. The definition of the
constructor and _def aul t _POA method follow:

1 // C++

2 Hello_inpl::Hello_inpl(Portabl eServer::PQA ptr poa)
3 poa_(Portabl eServer: : POA : _dupl i cat e(poa)

AR

5 1}

6

7 Portabl eServer::PQA ptr Hello_inpl::_defaul t_PQOA()
8 {

9 return Portabl eServer::POA : _duplicate(poa);

10 }

The modified server program is shown below :

1 /] C++

2 #include <OB/ CORBA h>

3 #include <OB/ Bal ancer_init.h>

4 #include <Hel | o_i npl . h>

5

6 int run(CORBA : ORB ptr, int, char*[]);
7

8 int main(int argc, char* argv[])

9 {

10 int status = EXI T_SUCCESS;

11 CORBA: : ORB_var orb;

12

13 try

14 {

15 LoadBal anci ng: : LB_i ni t ();

16 orb = CORBA :GRB_init(argc, argv);
17 status = run(orb, argc, argv);
18 }

19 cat ch(const OCRBA: : Excepti on&)

20 {

21 status = EXI T_FAl LURE;

22 }

23

282

15

Programming Example

24 if(!CORBA: :is_nil(orb))

25 {

26 try

27 {

28 orb -> destroy();

29 }

30 cat ch(const OCRBA: : Excepti on&)
31 {

32 status = EXI T_FAl LURE;
33 }

34 }

35

36 return status;

37 }

Include the header file that declares the Orbacus Balancer initialization
function. This header file also includes the header files 0B/ Bal ancer. h and
CB/ Bal ancer Pol i cyTypes. h, which contain the definitions necessary for
non-adaptive load balancing.

Invoke LoadBal anci ng: : LB_i ni t () . This function initializes the server for
load balancing and must be called before initializing the ORB.

283

CHAPTER 13 | Orbacus Balancer

The remainder of the main() function is similar to that of Chapter . Now we
write the run() function:

1 // C++

2 int run(CORBA: : ORB ptr orb, int argc, char* argv[])
3 {

4 if(argc !'= 2)

5 return EX T_FA LURE

6 const char* nenberld = argv[1];

7

8 CORBA: : hj ect _var poaCth] =

9 orb -> resolve_initial_references("Root PQA");
10 Port abl eServer: : POA var rootPoa =

11 Port abl eServer: : POA : _narrow poathj);

12

13 Port abl eSer ver: : POAManager _var nanager =

14 root Poa -> t he_PQAMVanager () ;

15

16 LoadBal anci ng: : Menber Pol i cyVal ue_var val ue =

17 new LoadBal anci ng: : Menber Pol i cyVal ue() ;

18 value -> group_id = CORBA: :string_dup("Hello");
19 val ue -> menber _id = OCRBA: :string_dup(menberld);
20 CCRBA: : Any any;

21 any <<= value._retn();

22 OCRBA: : Pol i cy_var nenberPolicy =

23 orb -> create_policy(LoadBal anci ng: : MEMBER PQLI CY_I D,
any) ;

24

284

4-6
16-23

25-33
35-40

Programming Example

25 QOORBA: : Poli cyLi st pl (3);
26 pl .l ength(3);
27 pl [0] = rootPQA -> create_|ifespan_policy(

28 Port abl eSer ver : : PERS| STENT) ;
29 pl [1] = root POA -> create_id_assi gnment _pol i cy(
30 Port abl eServer:: USER | D);

31 pl [3] = menber Poli cy;

32 Por t abl eSer ver: : POA var hel | oPQA =

33 root POA -> create POA("hel | 0", manager, pl);

34

35 Hel l o_i npl * hell ol npl = new Hel | o_i npl (hel | oPQY) ;

36 Por t abl eServer : : Servant Base_var servant = hel | ol npl ;
37 Portabl eServer:: Cbjectld var oid =

38 Port abl eServer::string_to_(bjectld("hello");

39 hel | oPQA -> activate_object_w th_ id(oid, servant);
40 Hello_var hello = hellolnpl -> _this();

41

42 nanager -> activate();
43 orb -> run();

44

45 return EXI T_SUCCESS,
46 }

Check the arguments for the member ID.

Create the member policy. The group ID will be Hel | 0 and the member ID is
an argument of the program.

Create the member POA.
Create the Hello servant and activate it on the member POA.
The remainder of the run() function is similar to that of Chapter .

285

CHAPTER 13 | Orbacus Balancer

Adaptive Load Balancing

286

To use adaptive load balancing, the Hello server must send load updates to
the service and react to load alerts. The Orbacus Balancer utility objects will
be used to help implement this functionality. The modified server program is
shown below:

1 /] C++

2 #include <GB/ CCRBA h>

3 #include <OB/ Bal ancer_init.h>

4 #include <CB/ Bal ancerWil _init.h>
5 #include <CB/ Bal ancer _skel . h>

6 #include <Hello_inpl. h>

7

8

9

cl ass LoadA ert _i npl
virtual public PQA LoadBal anci ng: : LoadAl ert,
10 virtual public Portabl eServer:: Ref Count Ser vant Base

11 {

12 LoadBal anci ng: : Wil :: LoadAl ert_var alert_;
13

14 public:

15 LoadAl ert _i npl (LoadBal ancing:: Wil ::LoadAl ert_ptr alert)
16 :

al ert_(LoadBal ancing: : Wil ::LoadA ert::_duplicate(alert))
17 {

18 }

19

20 virtual void alert()

21 t hr on(CORBA: : Syst enExcept i on)

22 {

23 alert_ -> alert();

24 }

25 };

26

27 int run(CORBA : CRB ptr, int, char*[]);

28

29 int main(int argc, char* argv[])

30 {

31 int status = EXI T_SUCCESS;

32 CORBA: : ORB_var orb;

33

8-25

37

Programming Example

34 try

35 {

36 LoadBal anci ng: : LB i nit();

37 LoadBal ancing: : Wil ::LBWil _init();
38 orb = CORBA :CRB_init(argc, argv);
39 status = run(orb, argc, argv);
40 }

41 cat ch(const COCRBA: : Excepti on&)

42 {

43 status = EXI T_FA LURE

44 }

45

46 if(!CORBA: :is_nil(orb))

47 {

48 try

49 {

50 orb -> destroy();

51 }

52 cat ch(const OCRBA: : Excepti on&)
53 {

54 status = EXI T_FAl LURE;

55 }

56 }

57

58 return status;

59 }

Include the header file that declares the Orbacus Balancer utility
initialization function. This header file also includes the header file
CB/ Bal ancer Wi | . h, which contain the definitions of the utility objects.

The header file C8/ Bal ancer _skel . h must be included for the
implementation of the LoadBal anci ng: : LoadAl ert interface.

An implementation of the LoadBal anci ng: : LoadAl ert interface that
delegates to the LoadAlert utility object.

Invoke LoadBal ancing: : Wil ::LBWil _init(). This function initializes the
utility objects and must be called before initializing the ORB.

287

CHAPTER 13 | Orbacus Balancer

The remainder of the main() function is the same as in section
“Non-adaptive Load Balancing” on page 281. Now we write the run()

function:

1 // C++

2 int run(CORBA: : ORB ptr orb, int argc, char* argv[])
3 {

4 if(argc !'= 2)

5 return EX T_FA LURE

6 const char* nenberld = argv[1];

7

8 CORBA: : hj ect _var poaCth] =

9 orb -> resolve_initial_references("Root PQA");
10 Port abl eServer: : POA var rootPoa =

11 Port abl eServer: : POA : _narrow poathj);

12

13 Port abl eSer ver: : POAManager _var nanager =

14 root Poa -> t he_PQAMVanager () ;

15

16 LoadBal anci ng: : Menber Pol i cyVal ue_var val ue =

17 new LoadBal anci ng: : Menber Pol i cyVal ue() ;

18 value -> group_id = CORBA: :string_dup("Hello");
19 val ue -> menber _id = OCRBA: :string_dup(menberld);
20 CCRBA: : Any any;

21 any <<= value._retn();

22 OCRBA: : Pol i cy_var nenberPolicy =

23 orb -> create_policy(LoadBal anci ng: : MEMBER PQLI CY_I D,
any) ;

24

25 CORBA: : Pol i cyLi st pl (3);
26 pl .l ength(3);
27 pl[0] = root PQA -> create_|ifespan_policy(

28 Port abl eSer ver : : PERSI STENT) ;
29 pl[1] = root PQA -> create_i d_assi gnment _pol i cy(
30 Port abl eServer:: USER | D) ;

31 pl [3] = nenberPoli cy;
32 Port abl eServer: : POA var hel | oPQA =

33 root PQA -> create_PQOA("hel | 0", nanager, pl);

34

35 Hel l o_i mpl * hel |l ol mpl = new Hel | o_i npl (hel | oPQA) ;

36 Port abl eServer: : Servant Base_var servant = hel |l ol npl ;
37 Port abl eServer:: (hjectld var oid =

38 Portabl eServer::string_to_(bjectld("hello");

39 hel | oPQA -> activate_object_w th_id(oid, servant);
40 Hello_var hello = hellolnmpl -> _this();

41

288

Programming Example

42 OORBA: : (hj ect _var obj =

43 orb -> resolve_initial_references("Bal ancer");

44 LoadBal anci ng: : @ oupFactory_var factory =

45 LoadBal anci ng: : G oupFact ory: : _narrow(obj);

46

a7 obj = orb -> resolve_initial_references("LoadUpdater");
48 LoadBal anci ng: : Wil :: LoadUpdat er _var updater =

49 LoadBal anci ng: : Wil ::LoadUpdat er:: _narrow(obj);

50

51 obj = orb -> resolve_initial_references("LoadA ert");
52 LoadBal ancing: : Wil ::LoadA ert_var alert =

53 LoadBal anci ng: : Wil ::LoadA ert::_narrow obj);

54

55 LoadAl ert _inpl* |oadA ertlnpl = new LoadAl ert_inpl (alert);
56 Port abl eSer ver:: Servant Base_var al ert Servant =

| oadAl ert | npl ;

57 LoadBal anci ng: : LoadAl ert _var |oadA ert =
58 loadAl ertInpl -> _this();

59

60 nanager -> activate();

61

62 LoadBal anci ng: : G oup_var group = factory -> get("Hello");
63 group -> set_| oad_al ert (menberld, |oadAl ert);

64

65 updat er -> regi ster_nenber (nenberld, "Hello");

66

67 orb -> run();

68

69 return EXI T_SUGCCESS;

70 }

42-53 Get the GroupFactory and the LoadUpdater and LoadAlert utility objects.
25-33 Create the member POA.

55-58 Create the LoadAlert servant and activate it on the root POA.

62-63 Set the member’s LoadAlert object. Note that this should be done after
activating the POA manager since it may result in a request to this server.

65 Register the member with the LoadUpdater.

The remainder of the run() function is the same as in section “Non-adaptive
Load Balancing” on page 281.

289

CHAPTER 13 | Orbacus Balancer

Running the Load Balanced Servers

290

In this section we present the step required to set up the Orbacus Balancer
for the “Hello World” load balanced servers. We will assume that Orbacus
has been installed in the directory / usr/ 1 ocal / O bacus and the executables
bal ancer, | badnmi n and | brkr ef all exist in a directory that is in the search
path. The steps are as follows:

1.

Create a configuration file for Orbacus Balancer containing the

following:

bal ancer . conf

ooc. bal ancer. adni n_endpoi nt =i i op --port 10000

ooc. bal ancer . f orwar d_endpoi nt=i i op --port 10001

ooc. bal ancer. dbdi r=/usr/| ocal / O bacus/ db

This file is placed in the /usr/ 1 ocal / O bacus/ et ¢ directory.

Start the service in administrative mode:

bal ancer - CRBconfig /usr/local / O bacus/ et c/ bal ancer. conf \
--admnistrative

Create the load balanced group.

Before starting the load balanced servers, the associated load balanced

group must be created. This can be done using the | badni n utility as

follows:

| badm n - CRBI ni t Ref Bal ancer =cor bal oc: : | bhost : 10000/ Bal ancer\
--create-group Hello

Where | bhost is the host running the service.

Add the members.

The members can be added to the group explicitly using the

- - add- menber command of the | badmi n utility or they can be added
automatically when the load balanced servers are started.

Note that members cannot be added automatically by the load
balanced servers if the service is not running in administrative mode.
Configure the load balancing strategy.

The --set-strat egy Or - - set -cust om strat egy commands of the

I badni n utility may be used to configure the group’s load balancing
strategy, For example, to use the | east - | oad strategy:

| badm n - CRBI ni t Ref Bal ancer =cor bal oc: : | bhost : 10000/ Bal ancer\

Programming Example

--set-strategy |east-load \
--tolerance 5 --load-per-client 5

Note that the strategy may also be changed after the load balanced
servers are started.

6. Start the load balanced servers. For example, to start a server for the
member with ID menber 1, run:
server -CRBInitRef Bal ancer=corbal oc: : | bhost: 10000/ Bal ancer \

nenber 1

7. Create object references for use by the clients.
To create an object reference run:
| bkref -H I bhost 10001 Hello IDL:Hell0:1.0 Hello > Hello.ref
Note that the object references created by the load balanced servers
can also be used by the clients.

After all members have been registered and the load balancing strategy is

configured, it is recommended to restart the service in non-administrative
mode. This will prevent any accidental (or unauthorized) modifications.

291

CHAPTER 13 | Orbacus Balancer

292

In this chapter

CHAPTER 14

Orbacus Watson

Orbacus Watson is a loadable module that provides request
tracing capabilities based on Portable Interceptors. Method
names, parameter and return values, exceptions and a call
stack can be visualized. The module can be loaded
dynamically at application startup (when shared libraries are
used) or linked statically to an application.

This chapter contains the following sections:

Tracing Levels page 294
Installing Watson in C++ page 295
Installing Watson in Java page 296
Configuration Properties page 297

293

CHAPTER 14 | Orbacus Watson

Tracing Levels

The level of request tracing is controlled by the properties described in the
next section. The default value for all tracing levels is O.

no tracing

displays name, request id, return/exception status of operation

displays parameters and return values

displays the call stack

Al W|DN|FL| O

displays object id, adapter id, effective profile

The tracing levels are cumulative, i.e., the higher levels include the output
generated by the lower levels. In order to make request parameters, results
and exceptions available for tracing the option - - wi t h-i nt er cept or - ar gs
has to be specified to the IDL compiler.

294

Installing Watson in C++

Installing Watson in C++

10-16

If Orbacus was built with shared libraries or DLLs, Orbacus Watson can be
installed dynamically by defining the following configuration properties:

ooc. or b. nodul es=wat son
ooc. or b. modul e. wat son=<l i br ar y- nane>

Please refer to Chapter 3 for more information on these properties.

If Orbacus was built statically, the module initialization function has to be
called directly from the application code:

1 /] C++

2 #if !defined(HAVE SHARED) && !defined(CB DLL)
3 #include <OB wat son. h>

4 #endi f

5

6 int main(int argc, char* argv[])

7 {

8 QORBA: : ORB _var orb;

9 S

10 #if !defined(HAVE_SHARED) && !defi ned(OB_DLL)
11 /1l

12 /1 Wien linking statically, we need to explicitly
initialize

13 /] \étson

14 /1

15 i nit_modul e_wat son();

16 #endi f

17

18 orb = CORBA :CRB_init(argc, argv);

19

20 }

Include OB/ wat son. h only when building statically.

Explicitly install the Watson module prior to initializing the ORB.

Specifying the configuration property ooc. or b. nodul es=wat son will result in
an (informative) error message from the ORBs ModuleManager upon
application startup if the module was linked statically.

295

CHAPTER 14 | Orbacus Watson

Installing Watson in Java

296

Since Orbacus Watson is based on Portable Interceptors, it is installed using

the standard mechanism for installing interceptors. Specifically, a property

is defined which specifies the name of a class to be loaded:

org. ong. Portabl el nterceptor. CRBI nitializerd ass. com ooc. wat son. R
CRBInitializer_inpl

Note that the property has no associated value, as the name of the class to

be loaded is part of the property name.

Configuration Properties

Configuration Properties

The behavior of the Orbacus Watson module is controlled by the following

properties.
Property Description
ooc. wat son. t race. r equest s=<| evel > This property sets the indicated
tracing level for the i n and out
direction. The default value is O.
ooc. wat son. t race. request s. i n=<l evel > This property sets the indicated

tracing level only for the i n
direction. The default value is O.

ooc. wat son. trace. request s. out =<| evel > This property sets the indicated
tracing level only for the out
direction. The default value is O.

The information displayed in the i n and out directions differ for the different
roles an application takes in CORBA. For a client application making a
CORBA request, the out direction corresponds to the request sending
direction and the results are received in the i n direction. For a server
application, requests from clients are coming i n and replies with results or
exceptions are sent out .

Setting one of the more specific properties (ooc. wat son. trace. requests. i n
and ooc. wat son. t r ace. r equest s. out) overrides the corresponding value for
this direction set by ooc. wat son. tr ace. request s.

297

CHAPTER 14 | Orbacus Watson

Sample Configuration File

Applications using Orbacus Watson can simply be started by specifying a
configuration file with appropriate property settings with the - CRBconfi g
command-line option:

server - CRBconfig watson. cfg

The following example file shows how to set properties for C++ and Java
applications:

#

Register CRB initializer for watson (Q bacus/Java)

#

org. omy. Port abl el nterceptor. CRBI ni tial i zerd ass. com ooc. wat son. R
I CRBInitializer_inpl

#

Load nodul e wat son (O bacus/ CG++)

#

Dsable if nodul e was build statically to avoid
error nmessage fromthe CRBs Mbdul eManager

#

ooc. or b. modul es=wat son

#

On Wndows, enable one of the follow ng properties
#if you built with DLLs

#

For debug buil ds:

#

#ooc. or b. nodul e. wat son=wat son412d. dI |
#

For non-debug buil ds:

#

#ooc. or b. modul e. wat son=wat son412. dl |

#

Set request tracing |levels

- nore specific settings (.in and .out) override the
general setting in the first of these lines

#

ooc. wat son. t race. r equest s=3

ooc. wat son. trace. request s. i n=1

ooc. wat son. trace. r equest s. out =2

298

In this chapter

CHAPTER 15

Using Policies

This chapter describes the policies used to configure the ORB

and to create a new POA. These policies are derived from the
interface CORBA::Policy.

This chapter contains the following sections:

Overview page 300
Supported Policies page 301
Programming Examples page 304

299

CHAPTER 15 | Using Policies

Overview

The ORB and its services may allow the application developer to configure

the semantics of its operations. This configuration is accomplished in a

structured manner through interfaces derived from the interface

CCRBA: : Pol i cy.

There are two basic types of policies: those used to configure the ORB and

those used to create a new POA. Furthermore, the configuration of ORB

policy objects is accomplished at two levels:

® ORB Level: These policies override the system defaults. The ORB has
an initial reference ORBPol i cyManager . A Pol i cyManager has a set of
operations through which the current set of overriding policies can be
obtained, and new policies can be applied.

® Object Level: The object interface contains operations to retrieve and
set policies for itself. Policies applied at the object level override those
applied at the thread level, or the ORB level.

For more information on Policies, the Pol i cyManager interface and the
COCRBA: : (j ect policy operations see [8] and [4].

300

Supported Policies

Supported Policies

The following is a brief description of the Orbacus-specific policies that are
currently supported. For a detailed description, please refer to Appendix B.
For standard policies, please refer to [4].

Table 3: Orbacus policies

Policy Description

OB::ACMTimeoutPolicy This policy determines whether the ORB performs
“active connection management” (ACM) on the
connection associated with an object reference. The
policy specifies a time after which idle connections are
shutdown. A value of O means no timeout. The default
for this policy is the value of the

ooc. orb. client_tineout property (see
“ooc.orb.client_timeout” on page 53).

OB::ConnectionReusePolicy This policy determines whether the ORB is permitted to
reuse a communications channel between peers. If this
policy is f al se then each object will have a new
communications channel to its peer. The default for this
policy is true.

OB::ConnectTimeoutPolicy If an object has this policy and a connection cannot be
established after val ue milliseconds, a
CCRBA: : NO_RESPONSE exception is raised.

OB::InterceptorPolicy This policy determines whether client-side interceptors
will be called. Client-side interceptors are enabled by
default. To disable client-side interceptors, this policy
can be set on an ORB or object reference with a value
of fal se.

301

CHAPTER 15 | Using Policies

302

Table 3: Orbacus policies

Policy

Description

OB::LocateRequestPolicy

This policy determines whether the ORB sends GIOP
“LocateRequest” messages. This policy exists to avoid
an interoperability issue regarding the formatting of
GIOP 1.2 LocateReply messages. Orbacus uses the
correct formatting as of version 4.1. Unfortunately, all
versions of Orbacus 4.0.x use the incorrect formatting,
as do some other ORB implementations. As a result,
the default value of this policy is f al se, which means
the ORB will not send LocateRequest messages, and
therefore will not receive improperly formatted replies.

OB::LocationTransparencyPolicy

This policy determines how strictly the ORB will enforce
location transparency. The default behavior is relaxed.
An application may wish to sacrifice performances to
have strict CORBA compliance for local invocations.

OB::ProtocolPolicy

This policy allows an application to influence how the
ORB orders and filters the profiles of an object
reference. The value of the policy is a list of transport
plug-in identifiers which determine the preferred order
in which the ORB should attempt to establish
connections. Only those profiles which match an entry
in the list will be used. If no profile from the object
reference matches a transport in the list, or the ORB
was unable to establish a connection, then a TRANSI ENT
exception is raised.

OB::RequestTimeoutPolicy

If an object has this policy and no response is available
for a request after val ue milliseconds, a
QOCRBA: : NO_RESPONSE exception is raised.

OB::RetryPolicy

This policy is used to specify retry behavior after
communication failures. Namely,

@ the types of failures for which retries are allowed,
® the time between successive retries, and
® the maximum number of retries.

Supported Policies

Table 3: Orbacus policies

Policy Description

OB::TimeoutPolicy If an object has this policy and a connection cannot be
established or no response is available for a request
after val ue milliseconds, a OCRBA: : NO RESPONSE
exception is raised. If an object has

CB: : Connect Ti meout Pol i cy or

CB: : Request Ti meout Pol i cy set, those policies have

precedence.
OBPortableServer::InterceptorCall This policy determines whether server-side interceptors
Policy will be called for requests on a POA. Server-side

interceptors are enabled by default. To disable
server-side interceptors for a POA, create the POA using
this policy with a value of f al se.

303

CHAPTER 15 | Using Policies

Programming Examples

In this section

304

This section provides several examples of setting policies programmatically.
Please note however that policies used to configure the ORB can easily be
set at the ORB level, without requiring changes to the application, through
the use of configuration properties. See “ORB Properties” on page 52 for
more information.

This section contains the following examples:

Connection Reuse Policy page 305
Retry Policy page 308
Timeout Policy page 310
Interceptor Call Policy page 311

Programming Examples

Connection Reuse Policy

Connection Reuse Policy at ORB
Level

2-3
4-5

The following examples demonstrate how to set

CB: : Connect i onReusePol i cy at both the ORB level and the object level in
C++ and Java. Setting a policy at the ORB level means that the ORB will
honor this policy for all newly created objects. Existing objects maintain
their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to f al se at the ORB level means that the
ORB will create a new connection from the client to the server for each new
proxy object instead of reusing existing ones. Setting the connection reuse
policy to f al se at the object level means that the client does not reuse
connections to the server only for a particular proxy object.

If the connection reuse policy is set to t rue at some later point,
communications channels that were previously created with a connection
reuse policy set to f al se will not be reused. That is, the connection reuse
policy is sticky, in the sense that the reuse policy that was in effect at the
time that a communications channel is created stays with it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse
the communications channel that is associated with the proxy object.

Our first example shows how the connection reuse policy can be set at the
ORB level. First in C++:

1 // G+

2 QOORBA: : Any bool Any;

3 bool Any <<= OCORBA:: Any: : from bool ean(0) ;

4 QOCRBA:: PolicyList policies;

5 policies.length(l);

6 policies[0] = orb ->

create_policy(CB:: CONNECTI ON_REUSE PQLI CY_I D,
7

bool Any) ;
8 COORBA : pj ect_var pnChj =
9 orb -> resolve_initial_references("CRBPol i cyManager");

10 QOCRBA: : Pol i cyManager _var pm =
CCRBA: : Pol i cyManager : : _narrow pnchj) ;
11 pm-> add_pol i cy_overrides(policies);

Create an any and insert the value O (false).
Create a sequence containing one policy object.

305

CHAPTER 15 | Using Policies

6-7 Ask the ORB to create a connection reuse policy. Pass the any that contains
the value for this policy.

8-10 Obtain the ORB level policy manager object.
11 Add the policies to the ORB level policy manager.
And here is the same example in Java:

1 // Java

2 org.ong. CORBA Any bool Any = orb. create_any();

3 bool Any. i nsert_bool ean(f al se);

4 org.onyg. CCRBA Policy[] policies = new org. ong. CCRBA. Pol i cy[1] ;
5 policies[0] =

6

orb. creat e_pol i cy(com ooc. B. CCNNECTI ON_REUSE PCLI CY_I D. val ue,
7 bool Any) ;

8 org. ong. CORBA. Pol i cyManager pm =

9 or g. ong. GORBA. Pol i cyManager Hel per . nar r ow(

10 orb.resol ve_initial _references("CORBPol i cyManager"));

11 pm add_pol i cy_overrides(policies);

1-11 This is equivalent to the C++ version.

Connection Reuse Policy at Object And now the same example, but at the object level. C++ first:
Level

1 /] C++

2 QOORBA : Any bool Any;

3 bool Any <<= OORBA : Any: : from bool ean(0);
4 COCRBA: : PolicyList policies(1);

5 policies.length(1);

6 policies[0] = orb ->

create_policy(CB:: CONNECTI ON_REUSE PQLI CY_I D,
7

bool Any) ;
8 COORBA : (bj ect_var newth] =
9 obj -> _set_policy_overrides(policies,

QOCRBA: : ADD_OVERR! DE) ;

2-6 This is the same as in the example for the ORB level.

Set the policy on the object by using the _set _pol i cy_overri des method.
This method returns a new object that has the set of policies applied.

306

Programming Examples

And here is the same example in Java:

1 // Java

2 org.ong. CORBA Any bool Any = orb.create_any();

3 bool Any. i nsert_bool ean(fal se);

4 org.ong. OCRBA Policy[] policies = new org.ong. CCRBA Pol i cy[1];
5 policies[0] =

6

or b. create_pol i cy(com ooc. OB. CONNECTI ON_REUSE PCLI CY_I D. val ue,
7 bool Any) ;

8 org.ong. CORBA (bj ect newChj =

9 obj . _set_policy_override(policies,

10 or g. ong. CORBA. Set Overri deType. ADD OVERRI DE) ;

1-10 This is equivalent to the C++ version.

307

CHAPTER 15 | Using Policies

Retry Policy

308

13-14

This example shows how to configure retries at the object level. The C++
version is presented first, followed by the Java version:

[l C+

OB:: RetryAttributes attrib;
attrib. node = OB:: RETRY_STRI CT;
attrib.interval = 500;
attrib. max = 5;

attrib.renote = true;

CCRBA: : Any any;

any <<= attrib;

QORBA: : Pol i cyLi st policies(1);

policies.length(1);

policies[0] = orb -> create_policy(CB: : RETRY_ PQLICY_I D, any);
13 OORBA : (bj ect _var new(hj =

14 obj -> _set_policy_overrides(policies,

CORBA: : ADD OVERRI DE) ;

© oOo~NOOUh WNPRE

Il
N R O

Use the RETRY_STRI CT mode, that is, retry only if the exception completion
status is COWPLETED NO.

Wait 500 milliseconds between successive retries.

Retry a maximum of 5 times.

Allow retries on exceptions that are generated remotely (in addition to locally
generated exceptions).

Set the policy on the object by using the _set _pol i cy_overri des method.
This method returns a new object that has the set of policies applied.

Programming Examples

And now the same example in Java:

/1 Java
comooc. B. RetryAttributes attrib =
new com ooc. CB. RetryAttri butes();
attrib. node = com ooc. B. RETRY_STRI CT. val ue;
attrib.interval = 500;
attrib.max = 5;
attrib.renote = true;

©oo~NOoOOhswWNPRE

org. omg. CORBA. Any any = orb. create_any();
comooc. GB. RetryAttri but esHel per.insert(any, attrib);
org.ong. CCRBA Pol i cy[] policies = new org. ong. CORBA Pol i cy[1] ;
policies[0] =

orb. create_pol i cy(com ooc. B. RETRY_PCLI CY_I D. val ue, any);
org. ong. CCRBA. (bj ect newlhj] =

obj . _set_policy_override(policies,
16 or g. omg. CCRBA. Set Overri deType. ADD OVERR! DE) ;

I R S =
aah WNPEFE O

1-16 This is equivalent to the C++ version.

Note that you can also set the retry policy at the ORB level.

309

CHAPTER 15 | Using Policies

Timeout Policy

This example shows how to configure timeouts at the object level. As usual,
the C++ version is presented first, followed by the Java version:

1 /] C++

2 COORBA: : Any ULongAny;

3 ULongAny <<= (OCRBA: : ULong) 1000;

4 COCRBA: : PolicyList policies(1);

5 policies.length(1);

6 policies[0] = orb -> create_policy(CB: : TI MEQUT_PQLICY_I D,
ULongAny) ;

7 COORBA : (bj ect_var newth] =

8 obj -> set_policy_overrides(policies,

QOCRBA: : ADD_OVERR! DE) ;

2-6 We want to set the timeout to a value of 1000 milliseconds.

7-8 Set the policy on the object by using the _set _pol i cy_overri des method.
This method returns a new object that has the set of policies applied.

And now the same example in Java:

1 // Java

2 org.ong. CORBA. Any ULongAny = orb.create_any();

3 UWongAny. i nsert _ul ong(1000) ;

4 org.onyg. CCRBA Policy[] policies = new org. ong. CCRBA. Pol i cy[1] ;
5 policies[0] =

6 orb. create_pol i cy(com ooc. GB. TI MEQUT_PCLI CY_I D. val ue,

7 ULongAny) ;

8 org.ong. CORBA. (hj ect newhj =

9 obj . _set_policy_override(policies,

10 or g. ong. GORBA. Set Overri deType. ADD OVERR DE) ;

1-10 This is equivalent to the C++ version.
Note that you can also set the timeout policy at the ORB level.

310

Programming Examples

Interceptor Call Policy

This example shows how to create a new POA with server-side interceptors
disabled. The C++ version is presented first, followed by the Java version:

Il Cr+
OORBA: : (hj ect _var obj =
orb -> resolve_initial_references("Root PQA");
Por t abl eSer ver: : POA var root PQA =
Port abl eServer: : POA : _narrow obj);
Por t abl eSer ver : : POAManager _var nanager =
r oot PQA -> t he_PQAVanager () ;

© oOo~NOOUh WNPRE

CORBA: : Any any;

QCRBA: : Pol i cyLi st policies(1);

policies.length(1);

any <<= QCRBA : Any::from bool ean(fal se);

policies[0] =

14 orb -> create_policy(

15 CBPor t abl eSer ver: : | NTERCEPTCR CALL_PCLI CY_I D, any);
16

17 Portabl eServer:: PQA var nyPQA =

18 r oot POA -> create_POA("M/PQA", manager, policies)

N S
W NP O

2-7 Obtain references to the root POA and its POA manager.

9-15 Create a policy set consisting of the
CBPor t abl eSer ver: : I ntercept or Cal | Pol i cy policy. The
CBPor t abl eSer ver : : I nt ercept or Cal | Pol i cy policy is given a value of
f al se so that server-side interceptors will be disabled.

17-18 Create a new POA using the policy set created above.

311

CHAPTER 15 | Using Policies

312

And now the same example in Java:

©oo~NOoOOh~WwWNPR

=
o

11
12
13

/1 Java
or g. ong. CORBA. (hj ect obj =
orb.resol ve_initial _references("Root PQA");
or g. ong. Port abl eSer ver. POA r oot POA =
or g. ong. Por t abl eSer ver . POAHel per . nar row(obj) ;
or g. omg. Port abl eSer ver. POAManager nanager =
r oot PQA. t he_PQAManager () ;

org. omg. CORBA Any any = orb. create_any();
org. ong. CCRBA Pol i cy[] policies = new org. ong. CCRBA. Pol i cy[1] ;
any. i nsert_bool ean(fal se);
policies[0] = orb.create_policy(
com ooc. CBPort abl eSer ver. | NTERCEPTCR CALL_PCLI CY_I D. val ue,

any) ;

14
15
16

or g. omy. Port abl eSer ver. PQA nyPQA =
root POA creat e POA("M/PQA', nanager, policies);

This is equivalent to the C++ version.

In this chapter

CHAPTER 16

Concurrency
Models

This chapter describes how an Object Request Broker handles
communication and request execution using single- and
multi-threaded concurrency models.

This chapter contains the following sections:

Concurrency Models page 314
Single-Threaded Concurrency Model page 316
Multi-Threaded Concurrency Models page 319
The Reactor page 325

313

CHAPTER 16 | Concurrency Models

Concurrency Models

What is a Concurrency Model?

Why different Concurrency
Models?

Orbacus Concurrency Models
Overview

314

A concurrency model describes how an Object Request Broker (ORB)
handles communication and request execution. There are two main
categories of concurrency models, single-threaded concurrency models and
multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a
request is sent or received in a single-threaded environment. For example,
one model is to simply let the ORB block while sending and receiving
messages. Another model is to let the ORB do some work while sending and
receiving messages, for example to receive user input through a keyboard or
a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of
multiple threads, for example to send and receive messages “in the
background.” Multi-threaded concurrency models also describe how several
threads can be active in the user code and the strategy the ORB employs to
create these threads.

There is no “one size fits all” approach with respect to concurrency models.
Each concurrency model provides a unique set of properties, each having
advantages and disadvantages. For example, applications using callbacks
must have a concurrency model that allows nested method invocations to
avoid deadlocks. Other applications must be optimized for speed, in which
case a concurrency model with the least overhead will be chosen.

Some ORBs are highly specialized, providing only the most frequently used
concurrency models for a specific domain. Orbacus takes a different
approach by supporting several concurrency models.

Orbacus allows different concurrency models to be established for the client
and server activities of an application. The client-side concurrency models
are Reactive and Threaded. The server-side concurrency models are
Reactive, Threaded, Thread-per-Client, Thread-per-Request and Thread
Pool.

Selecting Concurrency Models

Concurrency Models

Concurrency models can be selected either by properties or command-line
parameters (see Chapter 3). The default concurrency models are shown in

Table 4.
Table 4: Default Concurrency Models
Client Server
Java Threaded Threaded
C++ Threaded Reactive

315

CHAPTER 16 | Concurrency Models

Single-Threaded Concurrency Model

Orbacus supports one single-threaded concurrency model: reactive.

Reactive servers use calls to operations like sel ect in order to
simultaneously accept incoming connection requests, to receive requests
from multiple clients and to send back replies. This is shown in Figure 9.

connect

- = = E accept
f0

- < dispatch

[

connect

accepti:l - T T
f()

dispatch Ly

A

A

»
|

disconnect

____’[Eclose
disconnect
-

close - T 7

Client A Server Client B

Figure 9: Reactive Server

Reactive clients also use operations like sel ect to avoid blocking. This
means that while a request to a server is sent or a reply from that server is
received, the client can simultaneously send buffered requests to other

316

Single-Threaded Concurrency Model

servers or receive and buffer replies. This is very useful for oneway
operations or the Dynamic Invocation Interface (DIl) operation

send_def erred in combination with get _response or pol | _r esponse.1

However, the main advantage of a reactive client becomes apparent if it is
used together with a reactive server in mixed client/server applications. A
mixed client/server application is a program that is both a client and server
at the same time. Without the reactive concurrency model it is not possible
to use nested method calls in single-threaded applications, which are
absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First
A tries to call a method f on B. Before this method returns, B calls back A
by invoking method g. This scenario is quite common, and for example is
used in the popular Model-View-Controller pattern [1]. Using the reactive
concurrency model for the client, A can dispatch incoming requests while
waiting for B’s reply for f . This is shown in Figure 10.

1 1
f0)
g ¢ dispatch
90
dispatch Ly
L]
-]
T 1
Client/Server Client/Server

Figure 10: Reactive Client/Server

The reactive concurrency models are also very fast. There is no overhead for

thread creation or context switching. Only an additional call to an operation

like sel ect is needed before operations such as send, recv or accept can be
used by the ORB.2

1. For more information on send_def err ed, get _r esponse and pol | _r esponse,
see the chapter “The Dynamic Invocation Interface” in [4].

2. Instead of directly using operations like sel ect, Orbacus uses a Reactor to
provide for flexible integration with existing event loops and to allow the
installation of user supplied event handlers. See “The Reactor” on page 325 for
more information.

317

CHAPTER 16 | Concurrency Models

318

The maximum nesting level for the reactive concurrency model is usually
much higher than for threaded concurrency models. The reason is that the
maximum nesting level for threaded models is determined by the maximum
number of threads allowed per process, whereas the reactive concurrency
model is only limited by the maximum stack size per process.

Multi-Threaded Concurrency Models

Multi-Threaded Concurrency Models

In this section This section covers the following concurrency models:
Threaded Clients and Servers page 320
Thread-per-Client Server page 322
Thread-per-Request Server page 323
Thread Pool Server page 324

319

CHAPTER 16 | Concurrency Models

Threaded Clients and Servers

320

For a threaded client, outgoing requests are sent by the user thread, but a
separate “receiver” thread for handling replies is allocated for each
connection to a server. The separate receiver thread allows messages to be
received and buffered for later retrieval by the user thread with DIl
operations such as get _r esponse or pol | _r esponse.

Like a threaded client, a threaded server uses a separate thread for receiving
requests from clients, but sends replies in the dispatch thread. Additionally,
there is a separate thread dedicated to accepting incoming connection

requests, so that a threaded server can serve more than one client at a time.

Orbacus’s threaded server concurrency model allows only one active thread
in the user code. This means that even though many requests can be
received simultaneously, the execution of these requests is serialized. This is
shown in Figure 11. (For simplicity, the “dispatch” arrows and the
corresponding return arrows are omitted in this and all following diagrams.)

1) gl_‘ 1 -
Sl
Janlll

»
|

A

1 ‘I_I 1 T
Client A Threaded Server Client B

Figure 11: Threaded Server

In the example, the threaded server has two clients connected to it and thus
two receiver threads. First A calls f on the server. If, before f returns, B tries
to call another operation g, this request is delayed until f returns. The same
is true for A’s call to h, which must wait until g returns.

Multi-Threaded Concurrency Models

Allowing only one active thread in user code has the advantage of the user
code not having to take care of any kind of thread synchronization. This
means that the user code can be written as if for a single threaded system,
but without losing the advantage of the ORB optimizing its operation by
using multiple threads internally.

The threaded concurrency model is still fast. No calls to operations like

sel ect are required. Time consuming thread creation is only necessary
when a new client is connecting, but not for each request. However, thread
context switching makes this approach slower than the reactive concurrency
model, at least on a single-processor computer.

321

CHAPTER 16 | Concurrency Models

Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the
threaded server concurrency model, except that the ORB allows one active
thread-per-client in the user code. This is shown in Figure 12.

1 1
0 po 90 |

A

T ‘l_‘ T
Client A Thread-per-Client ~ Client B
Server

Figure 12: Thread-per-Client Server

A’s call to f and B’s call to g are carried out simultaneously, each in its own
thread. However, if A tries to call another operation h (for example by
sending requests from different threads in a multi-threaded client or by
using the DIl operation send_def err ed in a single-threaded client) as long as
f has not finished yet, the execution of h is delayed until f returns.

The thread-per-client model is still efficient. Like with the threaded
concurrency model, no threads need to be created, except when new
connections are accepted.

322

Multi-Threaded Concurrency Models

Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB
creates a new thread for each request. This is shown in Figure 13.

. | 1 1

fQ

90
-

h() >

T T T T
Client A Thread-per-Request Client B
Server

Figure 13: Thread-per-Request Server

(For simplicity there are no separate arrows for dispatch and thread creation
in the diagram.) With the thread-per-request model, requests are never
delayed. When they arrive, a new thread is created and the request is
executed in the user code using this thread. On return, the thread is
destroyed.

Besides using a reactive client together with a reactive server, the
thread-per-request server in combination with a threaded client is the only
other model that allows nested method calls with an unlimited nesting level.
The thread pool model also allows nested method calls, but the nesting level
is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem
results from the overhead involved in creating new threads, namely one for
each request.

323

CHAPTER 16 | Concurrency Models

Thread Pool Server

324

The thread pool model uses threads from a pool to carry out requests, so
that threads have to be created only once and can then be reused for other
requests. Figure 14 shows an example with one client and a thread pool
server with three threads in the pool. (Sender and receiver threads are not
shown.)

|

<
¥

AA A A

T [
Client Thread Pool
Server

Figure 14: Thread Pool Server

The first three operation calls f, g and h can be carried out immediately,
since there are three threads in the pool. However, the fourth requesti is
delayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool
concurrency model performs better than the thread-per-request model. The
thread pool is a good trade-off if on the one hand frequent thread creation
and destruction result in unacceptable performance, but on the other hand
delaying the execution of concurrent method calls is also not desired.

The Reactor

The Reactor

What is a Reactor?

Available Reactors

In “reactive” mode (see “Single-Threaded Concurrency Model” on

page 316), Orbacus uses a so-called “Reactor” for event dispatching [14].
Simply speaking, the Reactor is an instance in Orbacus (a singleton) where
special objects — so-called event handlers — can register if they are
interested in specific events. These events can be network events, such as
an event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to Orbacus when used with reactive
concurrency models. If you use Orbacus with any other concurrency model,
for example any of the multi-threaded models, the following examples are
not applicable. Also, since Orbacus for Java currently doesn’t support the
reactive model at all, the following only applies to Orbacus for C++.

Currently there are three Reactors supported by Orbacus:

® The standard “select” Reactor which relies on the Berkeley Sockets
sel ect function.

® A special Reactor for use with the X11 Window System. This Reactor
handles X11 events (which for example can trigger X11 callbacks) and
CORBA network events simultaneously. See “The X11 Reactor” on
page 326.

® A special Reactor for use with Microsoft Windows 95/98/NT/2000.
This Reactor handles Windows messages and CORBA network events
simultaneously. See “The Windows Reactor” on page 327.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is
to be used, it must be initialized explicitly.

325

CHAPTER 16 | Concurrency Models

The X11 Reactor

An application that wants to use the X11 Reactor can obtain a special X11
Reactor using CB: : Get XL1React or (), which it must pass to
OBOORBA: : CRB i nit():

/] C++
#i ncl ude <X11/Intrinsic. h>

#i ncl ude <CB/ CCRBA. h>

#i ncl ude <CB/ Logger . h>

#i ncl ude <CB/ Properties. h>
#i ncl ude <CB/ X11. h>

© oOo~NOOUh WNPRE

int main(int argc, char* argv[])

10 {

11 Xt AppCont ext appCont ext ;

12 Wdget topLevel = Xt Applnitialize(&ppContext,

"M/Appl i cation",

13 0, 0, &rgc, argv, 0, 0, 0);
14

15 OB: : Reactor _var reactor = OB:: Get X11React or (appCont ext) ;
16

17 CORBA: : ORB var = OBOORBA: : CRB_init (argc, argy,

18 CB:: Properties:: _nil (), OB :Logger:: _nil(), reactor);
19

20 ... I/ PQAAinitialization not shown

21

22 orb -> run();

23

24 ... I/l deanup not shown

25 }

1-7 Include header files.
11-13 Initialize the X11 application.
15 Use the X11 application context to obtain a X11 Reactor.
17 Initialize the ORB using the Orbacus-specific CBOORBA: : CRB_i ni t ().

22 Enter the CORBA event loop. This loop will also dispatch X11 events.
Alternatively, the standard X11 event loop may be called, which will also
dispatch CORBA events.

326

The Reactor

The Windows Reactor

2-7
13
15-16
20

Using a Windows Reactor is very similar to using a X11 Reactor:

1 /] C++

2 #include <Wndows. h>

3

4 #incl ude <CB/ CCORBA h>

5 #include <OB Logger. h>

6 #include <OB/ Properties. h>

7 #include <CB/ GBW ndows. h>

8

9 int main(int argc, char* argv[])

10 {

11 H NSTANCE hl nst ance = Get Modul eHandl e(0) ;
12

13 CB: : React or _var reactor =

OB: : Get WndowsReact or (hl nst ance) ;

14

15 OORBA: : ORB var = (BOCCORBA : CRB_i nit (argc, argv,
16 CB:: Properties::_nil (), OB::Logger::_nil(),
17

18 ... I/ PQAinitialization not shown

19

20 orb -> run();

21

22 ... Il deanup not shown

23 }

Include header files.

reactor);

Use the Windows application instance to get a Windows Reactor.
Initialize the ORB using the Orbacus-specific CBOCRBA : CRB i ni t () .
Enter the CORBA event loop, which now also dispatches Windows events.

The standard Windows event loop may also be called, which will then also
dispatch CORBA events.

327

CHAPTER 16 | Concurrency Models

328

In this chapter

CHAPTER 17

The Open
Communications
Interface

The Open Communications Interface (OCI) defines common
interfaces for pluggable protocols. TCP/IP is one possible
candidate for an OCI plug-in. Since Orbacus uses GIOP, such
a plug-in then implements the IIOP protocol. Other candidates
are SCCP (Signaling Connection Control Part, part of SS.7) or
SAAL (Signaling ATM Adaptation Layer).

This chapter contains the following sections:

Interface Summary page 330
OCI Reference page 333
The IIOP OCI Plug-in page 341
The UDP OCI Plug-in page 346
The Bi-directional OCI Plug-in page 355

329

CHAPTER 17 | The Open Communications Interface

Interface Summary

Buffer

Transport

Acceptor and Connector

Acceptor and Connector Factories

The Registries

330

An interface for a buffer. A buffer can be viewed as an object holding an
array of octets and a position counter, which determines how many octets
have already been sent or received.

The Transport interface allows the sending and receiving of octet streams in
the form of Buffer objects. There are blocking and non-blocking send/receive
operations available, as well as operations that handle time-outs and
detection of connection loss.

Acceptors and Connectors are Factories [2] for Transport objects. A
Connector is used to connect clients to servers. An Acceptor is used by a
server to accept client connection requests.

Acceptors and Connectors also provide operations to manage
protocol-specific IOR profiles. This includes operations for comparing
profiles, adding profiles to IORs or extracting object keys from profiles.

Acceptor and Connector Factories are used by clients to create Acceptors
and Connectors. Acceptors are created infrequently, usually only when POA
Managers are created. Connectors, however, need to be created by clients
whenever a new connection to a server has to be established.

The only component of the OCI that is configurable by applications is the
Acceptor. When creating a new Acceptor, an Acceptor Factory takes a
sequence of protocol-specific parameters which are used to configure the
Acceptor. Each plug-in implementation should document these
configuration parameters. The configuration parameters for the plug-ins
included with Orbacus are described later in this chapter.

The ORB provides Acceptor and Connector Factory Registries. These
registries allow the plugging-in of new protocols. Transport, Connector,
Connector Factory, Acceptor Factory and Acceptor must be written by the

Interface Summary

plug-in implementers. The Connector Factory must then be registered with
the ORB’s Connector Factory Registry and the Acceptor Factory must be
registered with the ORB’s Acceptor Factory Registry.

The Info Objects Info objects provide information on Transports, Acceptors and Connectors. A
Transport Info provides information on a Transport, an Acceptor Info on an
Acceptor and a Connector Info on a Connector. To get information for a
concrete protocol, these info objects must be nar r owd to an info object for
this protocol, for example, in the case of an I1IOP plug-in, a
Qd: : Transport | nfo must be narrowd to OO ::11CP:: Transport | nf o.

331

CHAPTER 17 | The Open Communications Interface

Class Diagram

Figure 15 shows the classes and interfaces of the OCI (except for the Buffer
and Info interfaces).

1 . ORB OA 1

Connector Acceptor
Factory Factory
Registry Registry

n n
Connector Acceptor
Factory Connector Transport Acceptor Factory
createss creates» <« creates < creates

Zr;;g(i:f?é' Protocol- Protocol- Protocol- PsrotO(_:fc_)I-
Specific Specific Specific peciric

Connector Acceptor

Connector Transport Acceptor p
Factory P P Factory

332

Figure 15: OCI Class Diagram

Orbacus provides abstract base classes for the interfaces Connector Factory,
Connector, Transport, Acceptor Factory and Acceptor. The protocol plug-in
must inherit from these classes in order to provide concrete implementations
for a specific protocol. Orbacus also provides concrete classes for the
interfaces Buffer, Connector Factory Registry and Acceptor Factory Registry.
Instances of Connector Factory Registry and Acceptor Factory Registry can
be obtained via the ORB operation r esol ve_i ni ti al _ref er ences, using the
identifiers “OCIConFactoryRegistry” and “OClAccFactoryRegistry”,
respectively. Concrete implementations of Connector Factory must be
registered with the Connector Factory Registry, and concrete
implementations of Acceptor Factory must be registered with the Acceptor
Factory Registry.

OCI Reference

OCI Reference

OCI for the Application
Programmer

This chapter does not contain a complete reference of the OCI. It only
explains OCI basics and, in the remainder of this chapter, how it is used
from the application programmer’s point of view for the most common
tasks. For more information on how to use the OCI to write your own
protocol plug-ins, and for a complete reference, please refer to Appendix E.

The following sections only apply to the standard Orbacus IIOP plug-in. For
other plug-ins, please refer to the plug-in's documentation.

A ‘Converter’ Class for Java page 334
Getting Hostnames and Port Numbers page 335
Determining a Server’s IP Address page 339

333

CHAPTER 17 | The Open Communications Interface

A ‘Converter’ Class for Java

As you will see in the following examples, the OCI info objects return port
numbers as IDL unsi gned short values and IP addresses as an array of 4
IDL unsi gned oct et values. This works fine for C++, but in Java this
causes a problem, because there are no unsigned types in Java. The Java
mapping simply maps unsigned types to signed types. Consider for example
the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java
byt e type, are -128 and -127.

To avoid this problem, we will use a helper class which converts port
numbers and IP addresses to Java i nt types. This helper class looks as
follows:

1 // Java

2 final class Converter

3 {

4 static int port(short s)

5 {

6 if(s <0)

7 return Oxffff + (int)s + 1;
8 el se

9 return (int)s;

10 }

11

12 static int[] addr(byte[] bArray)
13 {

14 int[] iArray = new int[4];

15 for(int i =0; i <4 ; i+t
16 if(bArray[i] < 0)

17 iArray[i] = Oxff + (int)bArray[i] + 1;
18 el se

19 iArray[i] = (int)bArray[i];
20

21 return i Array;

22 }

23 }

4-10 Converts short port numbers toint .
12-22 Converts byt e[] IP addressestoint[].

The converter class is used throughout the examples in the sections below.

334

OCI Reference

Getting Hostnames and Port Numbers

10

12-16

The following code fragments show how it is possible to find out on what
hostnames and port numbers a server is listening. First the C++ version:

1 /] C++
2 OOd::AcceptorSeq_var acceptors = poaManager ->
get _acceptors();

3

4 for(OCORBA:UWong i =0 ; i < acceptors -> length() ; i++)
5 {

6 Q0 :: Acceptorlnfo_var info = acceptors[i] -> get_info();
7 QO ::11CP:: Acceptorlnfo_var iioplnfo =

8 Q0 ::11CP:: Acceptorlnfo:: _narrowinfo);

9

10 if(!CORBA :is_nil(iioplnfo))

11 {

12 QCRBA: : StringSeq_var hosts = iioplnfo -> hosts();
13 QOORBA: : Ushort port = iioplnfo -> port();

14

15 cout << "host: " << host[0] << endl;

16 cout << "port: " << port << endl;

17 }

18 }

The list of registered acceptors is requested from the POA Manager.

The for loop iterates over all acceptors.

The info object for the acceptor is requested and narrowed to an 11OP
acceptor info object.

The i f block is only entered in case the info object really belongs to an IIOP

plug-in.

The hostname and port number are requested from the IIOP acceptor info
object and printed on standard output.

335

CHAPTER 17 | The Open Communications Interface

The Java version is basically equivalent to the C++ code and looks as
follows:

1 // Java
2 comooc. OC . Acceptor[] acceptors =
poaManager . get _accept ors();

3

4 for(int i =0 ; i < acceptors.length ; i++)

5 {

6 comooc. OO0 . Acceptorinfo info = acceptors[i].get_info();
7 comooc. Q0. |11 CP. Acceptorlnfo iioplnfo =

8 comooc. O3 . | | CP. Accept or | nf oHel per . nar row(i nf o) ;
9

10 if(iioplnfo !'=null)

11 {

12 String[] hosts = iioplnfo.hosts();

13 short port = Converter.port(iioplnfo.port());

14

15 Systemout. println("host: " + host[0]);

16 Systemout.println("port: " + port);

17 }

18 }

2-12 This is equivalent to the C++ version.
13 The converter class is used to get a port number in i nt format.

15-16 Like in the C++ version, the hostname and port number are printed on
standard output.

336

OCI Reference

Determining a Client’s IP Address

2-4

6-8

10

12-18

To determine the IP address of a client within a server method, the following
code can be used in a servant class method implementation:

1 /] G+
2 COORBA : nj ect _var baseQurrent =
3 orb ->resolve_initial _references("Od CQurrent");

4 Qd::Qurrent_var current =
Qd::Qurrent::_narrow baseCQurrent);

5

6 OC::Transportinfo_var info = current ->
get_oci _transport_info();

7 OO::11C0P:Transportinfo_var iioplnfo =

8 Q0 :: 11 CP:: Transport|nfo::_narrow(info);

9

10 if(!CORBA :is_nil (iioplnfo))

11 {

12 QO ::11CP::InetAddr renoteAddr = iioplnfo ->renote_addr();
13 QOORBA: : Ushort renmotePort = iioplnfo -> remote_port();
14

15 cout << "Call from

16 << renoteAddr[0] << '.' << renoteAddr[1] <<'

17 << renoteAddr[2] << '.' << renoteAddr[3]

18 << ":" << renmotePort << endl;

19 }

The OCI current object is requested and narrowd to the correct
Qd :: Qurrent type.

The info object for the transport is requested and nar rowd to an [IOP
transport info object.

The remainder of the example code is only executed if this was really an
IIOP transport info object.

The address and the port of the client calling this operation are obtained and
printed on standard output.

337

CHAPTER 17 | The Open Communications Interface

The Java version looks as follows:

/1 Java
or g. ong. CORBA. (hj ect baseCurrent =
orb.resolve_initial _references("Od Current");
comooc. Q. Qurrent current =
com ooc. OO . Qurrent Hel per. narrow baseCurrent);

~NOo b WN B

comooc. O . Transportinfo info =
current.get_oci _transport_info();
8 comooc.OC.|1CP. Transportinfo iioplnfo =

9 comooc. OO . | | CP. Transpor t | nf oHel per . nar r ow(basel nf 0) ;
10

11 if(iioplnfo !'= null)

12 {

13 int[] renoteAddr = Converter.addr(iioplnfo.renote_addr());
14 int renotePort = Converter.port(iioplnfo.remote port());
15

16 Systemout.println("Call from " +

17 remoteAddr[0] + "." +

18 remoteAddr[1] + "." +

19 renoteAddr[2] + "." +

20 remoteAddr[3] + ":" + renotePort);

21}

2-11 This code is equivalent to the C++ version.
13-14 Again, the port number must be converted from short toint.
16-20 This is also equivalent to the C++ version.

338

OCI Reference

Determining a Server’s IP Address

To determine the server’s IP address and port that an object will attempt to
connect to, the following code can be used:

1 /] C++

2 COORBA :pject_var obj =... // Get an obj ect reference somehow
3

4 (OO ::Connectorlnfo_var info = obj -> get_oci_connector_info();
5 Od::I11CP:Connectorlnfo_var iioplnfo =

6 Q0 :: 11 CP:: Connectorlnfo::_narrowinfo);

7

8 if(!OCCRBA :is_nil(iioplnfo))

9 {

10 QO ::11CP::InetAddr_var renoteAddr = iioplnfo ->

r enmot eAddr () ;

11 QORBA: : Ushort renmotePort = iioplnfo -> remote_port();

12

13 cout << "WII connect to:

14 << renoteAddr[0] << '.' << renpoteAddr[2] <<'

15 << renoteAddr[2] << '.' << renoteAddr[3]

16 << ":" << renotePort << endl;

17 }

4-6 Get the OCI connector info and narrow to an [IOP connector info
8 The i f block is only executed if this really was an 11OP connector info.
10-16 The address and port are obtained and displayed on standard output.

339

CHAPTER 17 | The Open Communications Interface

The Java version looks as follows:

1 // Java

2 org.ong. CORBA. (hject obj = ... // Get an object reference
somrehow

3

4 org.ong. CCRBA. portabl e. hj ect | npl obj I npl =

5 (org. ong. CCRBA. port abl e. Chj ect | npl) obj ;

6 com ooc. CORBA Del egat e obj Del egate =

7 (com ooc. CCRBA. Del egat e) obj | npl . _get _del egat e() ;

8

9 comooc. QT . Connectorlnfo info =

10 obj Del egat e. get _oci _connector _info();
11 comooc.Od .|| CP. Connectorlinfo iioplnfo =
12 com ooc. OO . | | CP. Connect or | nf oHel per . narrow(i nfo);

13

14 if(iioplnfo !'= null)

15 {

16 int[] renoteAddr = Converter.addr(iioplnfo.renote_addr());
17 int renotePort = Converter.port(iioplnfo.remote port());
18

19 Systemout. println("WII connect to: " +

20 remoteAddr[0] + "." +

21 remoteAddr[1] + "." +

22 renoteAddr[2] + "." +

23 remoteAddr[3] + " + renotePort);

24 }

4-7 We need to retrieve the Orbacus-specific Del egat e object so that we can get
the connector info.

9-12 Get the OCI connector info and narrow to an IIOP connector info.
14 The i f block is only entered if this really was an IIOP connector info.
16-23 The address and port are obtained and displayed on standard output.

340

The IHOP OCI Plug-in

The 11OP OCI Plug-in

Client Installation

Server Installation

In this section

The IIOP plug-in implements the Internet Inter-ORB Protocol as described in
[4]. By default, the ORB automatically installs the client and server (i.e.,
Connector Factory and Acceptor Factory) components of the 1IOP plug-in,
and I1OP is the default protocol used by the ORB.

For configuration purposes, the identifier of the 1IOP plug-in isi i op.

The client-side IIOP plug-in is installed as shown below:
ooc.oci.client=iiop [--no-keepalive]
The following options are supported:

--no- keepal i ve Disable the use of TCP keepalives.

The server-side 110OP plug-in is installed as shown below:

0oc. oci . server=iiop

This sections covers the following topics:

Endpoint Configuration page 342
Command-line Options page 344
Static Linking page 345

341

CHAPTER 17 | The Open Communications Interface

Endpoint Configuration

The configuration options for an [IOP endpoint are shown below:

iiop [--backlog N [--bind ADDR [--host ADDR, ADDR ...]]
[--multi-profile] [--no-keepalive] [--nuneric] [--port N

--backl og N Specifies the maximum length of the listen backlog queue.
Note that the operating system may have a smaller limit
which will override this value. If not specified, a default
value of 50 is used in Java, and 5 in C++.

--bind ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available
interfaces. This option is useful in situations where a host
has several network interfaces, but the server should only
listen for connections on a particular interface.

--host ADDR[, ADDR, .. .] Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Using IIOP 1.0 or 1.1, multiple
addresses are represented as multiple tagged profiles. Using
IIOP 1.2, multiple addresses can be represented as either
multiple tagged profiles, or as a single tagged profile with a
tagged component for each additional address. The

--mul ti-profil e option determines how multiple
addresses are represented in IIOP 1.2. If - - host is not
specified, the canonical hostname is used.

--multi-profile If set, multiple addresses in the - - host option are
represented as multiple tagged profiles in an IOR. By
default, multiple addresses are represented as a single
tagged profile (using the first address in the - - host list as
the primary address), with all additional addresses
represented as alternate addresses in tagged components. If
IIOP 1.0 or 1.1 is in use, multiple addresses are always
represented as multiple tagged profiles.

--no- keepal i ve Disable the use of TCP keepalives.

342

The IHOP OCI Plug-in

--nuneric If set, and if - - host is not specified, then the canonical
dotted decimal address is advertised in IORs. The default
behavior is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If no
port is specified, an unused one will be selected
automatically by the operating system. Use this option if
you plan to publish an IOR (e.g., in a file, a naming service,
etc.) and you want that IOR to remain valid across
executions of your server. Without this option, your server is
likely to use a different port number each time the server is
executed. See Chapter 5 for more information.

343

CHAPTER 17 | The Open Communications Interface

Command-line Options

The 1IOP plug-in supports the following command-line options:

- 11 CPbackl og N Equivalent to the - - backl og endpoint option.
-11CPbi nd ADDR Equivalent to the - - bi nd endpoint option.
-11CPhost ADDR[, ADDR .. .] Equivalent to the - - host endpoint option.
-11 CPnuneric Equivalent to the - - nuneri ¢ endpoint option.
-11CPport N Equivalent to the - - port endpoint option.

See “Command-line Options and Endpoints” on page 76 for more
information on the behavior of command-line options.

344

The IHOP OCI Plug-in

Static Linking

There are no special requirements for linking the 11OP plug-in statically in
C++, since the plug-in is part of the Orbacus core library.

URL Support The 11OP plug-in supports the standard i i op format for cor bal oc URLS, as
described in “corbaloc: URLs” on page 131.

345

CHAPTER 17 | The Open Communications Interface

The UDP OCI Plug-in

The UDP plug-in provides unreliable unicast and multicast functionality,
suitable for applications which can tolerate the potential for lost messages.
Only oneway operations are supported.

For configuration purposes, the identifier of the UDP plug-in is udp.

In this section This sections covers the following topics:
Client Installation page 347
Server Installation page 348
Static Linking page 352
URL Support page 353
Narrowing UDP Object References page 354

346

The UDP OCI Plug-in

Client Installation

The client-side UDP plug-in is installed as shown below:

ooc.oci.client=udp [--buffer-size N [--packet-delay MSEC
[--packet-size N [--no-loopback] [--ttl N [--trace N

The following options are supported:

--buffer-size N Sets the size of the socket’s send buffer. Note that this is
only a hint to the operating system. To determine the
actual size, use the - -trace option. The default value is
operating-system dependent.

- - packet - del ay MSEC Specifies the delay in milliseconds between packets. In
some cases, sending packets too quickly can cause more
packets to be dropped. The default value is O.

- - packet -si ze N Sets the size of a packet in bytes. If necessary, the plug-in
splits a single request into multiple packets of the
specified size and reassembles them on the server. Note
that there are hard operating system limits on the size of a
datagram. The default size is 1472, which is the largest
portable size.

- - no- | oopback Specifies that loopback mode of the socket shall be
disabled for multicast communication. This prevents
sending multicast packets back to the local socket. For
Java this functionality is only available from JDK 1.4.0
on.

--ttl N Specifies the time-to-live value (0..255) of multicast
packets sent. System defaults apply if not specified.

--trace N Sets the level of diagnostic output. The default value is O.

Note: The - - no- | oopback option for multicast communication is to be
specified on the client side for Unix systems and on the server side for
Windows systems.

347

CHAPTER 17 | The Open Communications Interface

Server Installation

348

The server-side UDP plug-in is installed as shown below:

ooc. oci . server=udp [--trace N
The following options are supported:

--trace N

Sets the level of diagnostic output. The
default value is O.

The UDP OCI Plug-in

Endpoint Configuration

The configuration options for a UDP endpoint are shown below:

udp [--bind ADDR [--buffer-size N [--host ADDR, ADDR ...]]
[--nessage-tinmeout SEQ [--multicast] [--no-Ioopback]
[--ttl N [--nuneric] [--port N [--transport-tinmeout SEC

--bi nd ADDR Specifies the hostname or dotted decimal address of the
network interface on which to bind the socket. If not
specified, the socket will be bound to all available
interfaces. This option is useful in situations where a host
has several network interfaces, but the server should only
listen for connections on a particular interface.

--buffer-size N Sets the size of the socket’s receive buffer. Note that this
is only a hint to the operating system. To determine the
actual size, use the --trace option when installing the
plug-in. The default value is operating-system dependent.

--host ADDR, ADDR, .. .] Specifies a list of one or more hostnames and/or dotted
decimal addresses representing the addresses that should
be advertised in IORs. Multiple addresses are represented
as multiple tagged profiles. If - - host is not specified, the
canonical hostname is used. This option must be specified
if multicast is used.

--nessage-ti neout SEC Specifies the expiration time in seconds for incomplete
messages. Because the plug-in may fragment a request
into multiple packets, it is possible for some packets to be
lost. If no more packets have arrived for an incomplete
message after the specified timeout, the message is
discarded. The default value is 15 seconds.

--mul ti cast Specifies that multicast should be used. If this option is
set, the - - host and - - port options must also be
specified, and the host must be an IP address in the
multicast range (224.0.0.0 through 239.255.255.255).
By default, multicast is not used.

349

CHAPTER 17 | The Open Communications Interface

Command-line Options

350

- - no- | oopback

Specifies that loopback mode of the socket shall be
disabled in multicast mode. This prevents sending
multicast packets back to the local socket. For Java this
functionality is only available from JDK 1.4.0 on.

--ttl N Specifies the time-to-live value (0..255) of multicast
packets sent. System defaults apply if not specified.

--nuneric If set, and if - - host is not specified, then the canonical
dotted decimal address is advertised in IORs. The default
behavior is to use the canonical hostname, if possible.

--port N Specifies the port number on which to bind the socket. If

no port is specified, an unused one will be selected
automatically by the operating system. Use this option if
you plan to publish an IOR (e.g., in a file, a naming
service, etc.) and you want that IOR to remain valid
across executions of your server. Without this option, your
server is likely to use a different port number each time
the server is executed. This option must be specified if
multicast is used.

--transport-tinmeout N

Specifies the time in seconds after which inactive
“connections” are reaped. The default value is 60
seconds.

Note: When using multicast, all servers which belong to the same
“multicast group” must specify the same host address and port. The

- - no- | oopback option for multicast communication is to be specified on
the client side for Unix systems and on the server side for Windows

systems.

The UDP plug-in supports the following command-line options:

- UDPbi nd ADDR

Equivalent to the - - bi nd endpoint option.

- UDPhost ADDR[, ADDR . . .]

Equivalent to the - - host endpoint option.

The UDP OCI Plug-in

- UDPmul ti cast Equivalent to the - - nmul ti cast endpoint option.
- UDPnureri ¢ Equivalent to the - - numeri ¢ endpoint option.
-UDPport N Equivalent to the -- port endpoint option.

See “Command-line Options and Endpoints” on page 76 for more
information on the behavior of command-line options.

351

CHAPTER 17 | The Open Communications Interface

Static Linking

When statically a C++ application, an explicit reference must be made to
the UDP plug-in in order to include the plug-in's modules. Shown below is
the technique used by the sample programs in the udp/ dermo subdirectory.
Note that the code below is enclosed in guard macros that are only
activated when statically linking. These macros are appropriate for both
Unix and Windows. First, extra include files are necessary:

f !defined(HAVE_SHARED) && !defined(CB_DLL)

#include <GB/ Q0 _init.h>

#include <GB/ Q0 _UDP_init. h>
#endi f

Next, the plug-in must be registered prior to calling GRB i ni t () :

#if !defined(HAVE_SHARED) && !defined(CB_DLL)
11
/1 Wen linking statically, we need to explicitly register
/1 the plug-in prior to CRB initialization
11
QO ::register_plugin("udp", OJ_init_udp);
#endi f

352

The UDP OCI Plug-in

URL Support

The UDP plug-in supports cor bal oc URLs with the following protocol
syntax:

cor bal oc: udp: host : port/ obj ect - key

The components of the URL are as follows:

® udp - This selects the UDP plug-in.

® host - The hostname or IP address of the server.
® port - The port on which the server is listening.
® obj ect-key - A stringified object key.

353

CHAPTER 17 | The Open Communications Interface

Narrowing UDP Object References

354

When an application calls narrow(), it may result in the ORB making a
twoway call to the _i s_a() operation to determine whether narrow() should
succeed. However, twoway operations cannot be invoked on UDP object
references, therefore the application must take extra precautions.

It is only safe to use narrow() when

8. the object reference has a non-empty repository ID?, and
9. the repository ID matches the type being narrowed.

In all other cases, the ORB will attempt to invoke _i s_a().

Therefore, if an application cannot be sure that narrow() will succeed
without invoking_i s_a(), it should use the standard operation
unchecked_narrow() instead. This operation assumes that the application is
operating correctly and allows the narrow to succeed without using _i s_a() .

1. Object references created from cor bal oc URLs always have empty repository
IDs.

The Bi-directional OCI Plug-in

The Bi-directional OCI Plug-in

In this section

The Orbacus Bi-directional plug-in offers a solution for distributed systems

where security restrictions interfere with a client's ability to receive

callbacks.

This capability is especially useful in two common situations:

® Firewalls prevent the server from establishing a separate connection
back to the client

® Browser restrictions prevent an applet from accepting connections

Note: This plug-in does not implement the Bi-directional [IOP standard
defined by CORBA 2.3. This plug-in uses a proprietary protocol that is not
interoperable with other ORBs.

This sections covers the following topics:

How Does it Work? page 356
Peers page 357
Client Installation page 358
Server Installation page 359
Endpoint Configuration page 360
Command-line Options page 361
Configuration Properties page 362
Static Linking page 363
URL Support page 364

355

CHAPTER 17 | The Open Communications Interface

How Does it Work?

356

The Bi-directional plug-in uses a layered design that theoretically enables
any connection-oriented OCI plug-in to support bi-directional functionality.
Initially however, only bi-directional 11OP is supported.

In Figure 16, a server is shown that is capable of receiving both
bi-directional 11OP connections and regular 11OP connections.

Server
OCl OClI
Bi-dir 110P
ocCl
110P
Requests & Requests Callbacks
Callbacks
ocl ocl
110P 11OP
ocCl .
Bi-dir Client B
Client A

Figure 16: Connection Requirements

Any callback requests from the Server to Client A will travel down the
existing connection already established by the client. On the other hand, any
callback requests from the Server to Client B require a new [IOP connection
to be established from the server to the client.

The Bi-directional OCI Plug-in

Peers

The Bi-directional plug-in requires each peer in a bi-directional connection
to have a unique identifier, called the “peer ID”. Currently, this identifier is
just a simple ISO-LATIN1 string. In [IOP terms, a unique endpoint is derived
from the hostname/port combination. However, since the Bi-directional OCI
plug-in has no knowledge of the underlying protocol, a separate
identification scheme is currently required, and must be provided by the
application. It is therefore the application's responsibility to ensure that each
server and client has a unique peer ID.

In 1IOP, object references can be made “persistent” (i.e., valid across
process restarts) by ensuring that the process is restarted on the same host
and port, and that the object keys in the object references will continue to
be valid. The same is true of peer IDs. If you want a bi-directional [IOP
object reference to remain valid across process restarts, you must use the
same peer ID, host, port and object key. Conversely, if an object reference is
transient, then the peer ID can vary along with the host, port and object key.

357

CHAPTER 17 | The Open Communications Interface

Client Installation

358

The client-side bi-directional plug-in is installed as shown below:
ooc.oci.client=ID [options], bidir --protocol ID
The following options are supported:

--protocol 1D Specifies the identifier of the underlying plug-in.
This parameter is required.

Because the bi-directional plug-in is layered on another plug-in, the
underlying plug-in must be installed first. For example, to install
bi-directional 110P, the IIOP plug-in is installed first, and then the
bi-directional plug-in is installed:

ooc.oci.client=iiop, bidir --protocol iiop
Note that a bi-directional application generally needs to install both the
client- and server-side plug-ins.

The Bi-directional OCI Plug-in

Server Installation

The server-side bi-directional plug-in is installed as shown below:
ooc.oci.server=ID [options], bidir --protocol 1D
The following options are supported:

--protocol 1D Specifies the identifier of the underlying plug-in.
This parameter is required.

Because the bi-directional plug-in is layered on another plug-in, the
underlying plug-in must be installed first. For example, to install
bi-directional 110P, the IIOP plug-in is installed first, and then the
bi-directional plug-in is installed:

ooc.oci.server=iiop, bidir --protocol iiop
Note that a bi-directional application generally needs to install both the
client- and server-side plug-ins.

359

CHAPTER 17 | The Open Communications Interface

Endpoint Configuration

360

There are two distinct types of bi-directional endpoints: one which creates a
“real” endpoint using the underlying plug-in, and one which only listens for
callbacks on existing, outgoing bi-directional connections. The latter type
will be referred to as a “callback” endpoint.

A server will typically create the first type of endpoint; a security-restricted
client will only create the second type, since listening on a real port is often
forbidden (or pointless, if a firewall prevents incoming connections).

The implication of creating a callback endpoint is that a server wishing to
call back to a client will only be able to do so if there is an existing
bi-directional connection from the client to the server. If not, the server will
receive a TRANSI ENT exception.

The configuration options for a bi-directional endpoint are shown below.
Note that the plug-in identifier for endpoint configuration purposes is formed
by combining “bi di r _" with the identifier of the underlying plug-in (e.g.,
bi di r_i i op).

bidir_ID[--callback] [options]
The only option supported by the bi-directional plug-in is - - cal | back, which
creates a callback endpoint. If this option is specified, it must be the only
option.
If - - cal I back is not the first and only option, all additional options are
passed to the underlying plug-in for processing. For example, a server would
typically use a configuration such as:

ooc. orb. oa. endpoi nt=bidir_iiop --port 7000
This creates a bi-directional 11OP endpoint on the static port 7000.
On the other hand, a bi-directional client would use the following
configuration:

ooc. orb. oa. endpoi nt =bi dir_iiop --call back

This creates a callback endpoint which can only receive requests when an
existing, outgoing bi-directional IIOP connection has been established from
this client to the server that wishes to make a callback.

The Bi-directional OCI Plug-in

Command-line Options

No command-line options are supported.

361

CHAPTER 17 | The Open Communications Interface

Configuration Properties

The bi-directional plug-in supports a single configuration property:

ooc. bi di r. peer Specifies the peer ID. If not specified, a
unique peer ID is used.

362

The Bi-directional OCI Plug-in

Static Linking

When statically a C++ application, an explicit reference must be made to
the bi-directional plug-in (as well as to the underlying plug-in) in order to
include the plug-in’s modules. Shown below is the technique used by the
sample programs in the bi di r/ demo subdirectory. Note that the code below
is enclosed in guard macros that are only activated when statically linking.

These macros are appropriate for both Unix and Windows. First, extra
include files are necessary:

#i f !defined(HAVE SHARED) && !defined(CB_DLL)
#include <GB/ OJ _init. h>

#include <CB/OA _BiDr_init.h>

#endi f

Next, the plug-in must be registered prior to calling GRB i nit ():

#i f !defined(HAVE SHARED) && !defined(CB_DLL)
/1l
// Wien linking statically, we need to explicitly register
// the plug-in prior to ORBinitialization
/1l
Q0 ::register_plugin("bidir", OO _init_bidir);
#endi f

363

CHAPTER 17 | The Open Communications Interface

URL Support

364

The bi-directional plug-in supports cor bal oc URLs with the following
protocol syntax:

cor bal oc: bi di r_I D: peer/ obj ect - key
corbal oc: bi di r_| D peer: [opti ons]/ obj ect - key

The first form indicates a callback endpoint, whereas the second form
indicates an endpoint using an underlying plug-in.
The components of the URL are as follows:
® pidir_ID - This selects the bi-directional plug-in using the underlying
plug-in identified by 1 D.
® peer - The peer ID.
® options - Options specific to the underlying plug-in.
obj ect - key - A stringified object key.
For example:
corbal oc: bidir_iiop:dient/Foo
cor bal oc: bi di r_i i op: Server: t hehost : 9999/ Foo
The first example is a URL for a bi-directional [IOP callback endpoint. The
second example is a URL for a bi-directional IIOP endpoint on host t hehost
and port 9999.

CHAPTER 18

Exceptions and
Error Messages

365

CHAPTER 18 | Exceptions and Error Messages

CORBA System Exceptions

The CORBA specification defines the standard system exceptions shown in
the following table.

UNKNOAN

Unknown exception type

BAD PARAM

An invalid parameter was passed

NO_MEMCRY

Failure to allocate dynamic memory

IMP LIMT

Implementation limit was violated

OCOW FAI LURE

Communication failure

| NV_OBIREF

Invalid object reference

NO_PERM SSI N

The attempted operation was not permitted

| NTERNAL

Internal error in ORB

VARSHAL

Error marshalling a parameter or result

I'NTI ALI ZE

Failure when initializing ORB

NO_| MPLEMENT

Operation implementation unavailable

BAD TYPECCDE

Bad typecode

BAD_CPERATI ON

Invalid operation

NO_RESOURCES

Insufficient resources for a request

NO_RESPCNSE

Response to a request is not yet available

PERS| ST_STCRE

Persistent storage failure

BAD | N\V_CRDER

Routine invocation out of order

TRANSI ENT

Transient failure, request can be reissued

FREE_MEM

Cannot free memory

I NV_I DENT

Invalid identifier syntax

| NV_FLAG

Invalid flag was specified

366

In this section

CORBA System Exceptions

| NTF_REPCS Error accessing interface repository
BAD OONTEXT Error processing context object
CBJ_ADAPTER Failure detected by object adapter

DATA CONVERSI ON

Error in data conversion

CBJECT_NOT_EXI ST

Non-existent object, references should be
discarded

TRANSACTI CN_REQU RED

Active transaction context required

TRANSACTI ON_RCLLEDBACK

Transaction has rolled back or is marked to be
rolled back

I NVALI D_TRANSACTI ON

Invalid transaction context

I NV_PCLI CY

Invalid Policy

OCDESET_| NOOVPATI BLE

Incompatible client and server native code sets

REBI ND Thrown on a OBJECT_FORWARD or
LOCATION_FORWARD status, depending on
the RebindPolicy

TI MEQUT Time-to-live period was exceeded

TRANSACTI ON_UNAVAI LABLE

Transaction service context could not be
processed

TRANSACTI ON_MDE

Mismatch between TransactionPolicy and
current transaction mode

BAD_QO5

Object cannot support the required QOS

In the following subsections the minor exception codes are presented. Minor
codes that are Orbacus-specific are presented as MinorCodeName”, that is,
are tagged with the superscript .

This section describes the following minor exception codes:

INITIALIZE Minor Exception Code page 369

UNKNOWN Minor Exception Code page 370

367

CHAPTER 18 | Exceptions and Error Messages

368

BAD_PARAM Minor Exception Code page 371
NO_MEMORY Minor Exception Code page 373
IMP_LIMIT Minor Exception Code page 374
COMM_FAILURE Minor Exception Code page 375
MARSHAL Minor Exception Code page 376
NO_IMPLEMENT Minor Exception Code page 378
NO_RESOURCES Minor Exception Code page 379
BAD_INV_ORDER Minor Exception Code page 380
TRANSIENT Minor Exception Code page 381
INTF_REPOS Minor Exception Code page 382
OBJECT_NOT_EXIST Minor Exception Code page 383
INV_POLICY Minor Exception Code page 384

CORBA System Exceptions

INITIALIZE Minor Exception Code

‘M nor CRBDest r oyed ‘ORB already destroyed

369

CHAPTER 18 | Exceptions and Error Messages

UNKNOWN Minor Exception Code

‘M nor UnknownUser Excepti on ‘Unknown user exception

370

CORBA System Exceptions

BAD_PARAM Minor Exception Code

M nor Val ueFact or yEr r or

Failure to register, unregister or
lookup value factory

M nor Reposi t or yl dExi st's

Repository ID already exists in
Interface Repository

M nor NanmeExi st s

Name already used in Interface
Repository

M nor | nval i dCont ai ner

Target is not a valid container

M nor Narmed ashl nl nher i t edCont ext

Name clash in inherited context

M nor BadAbst r act | nt er f aceType

Incorrect type for abstract interface

M nor BadScheneNane

Bad scheme name

M nor BadAddr ess

Bad address

M nor BadScheneSpeci fi cPart

Bad scheme specific part

M nor Q her

Other

M nor I nval i dAbst ract | nterfacel nheritance

Invalid abstract interface
inheritance

M nor | nval i dval uel nheri t ance

Invalid valuetype inheritance

M nor | nval i dServi ceCont ext | d

Invalid service context ID

M nor hj ect | sNul |

Object parameter to
obj ect _to_ior() is null

M nor | nval i dConponent | d

Invalid component ID

M norlnvalidProfileld

Invalid profile ID

M nor Dupl i cat ePol i cyType

Duplicate policy types

M nor Dupl i cat eDecl ar at or”

Duplicate declarator

M nor | nval i dval ueMbdi fier ™

Invalid valuetype modifier

M nor Dupl i cat eVal uel ni t”

Duplicate valuetype initializer

M nor Abst r act Val uel nit

Abstract valuetype cannot have
initializer

371

CHAPTER 18 | Exceptions and Error Messages

372

M nor Dupl i cat eBaseType*

Base type appears more than once

M nor Si ngl eThr eadedOnl y*

ORB does not support multiple
threads

M nor NaneRedef i ni ti onl nl medi at eScope*

Invalid name redefinition in an
immediate scope

M nor | nval i dval ueBoxType*

Invalid type for valuebox

. . *
M nor | nval i dLocal | nt erf acel nheritance

Invalid local interface inheritance

M nor Const ant TypeM snat ch”

Constant type doesn't match
definition

CORBA System Exceptions

NO_MEMORY Minor Exception Code

‘M nor Al | ocat i onFail ure” ‘Memory allocation failure

373

CHAPTER 18 | Exceptions and Error Messages

IMP_LIMIT Minor Exception Code

374

M nor NoUsabl eProfi |l e

No usable profile in IOR

M nor MessageSi zeLi m t *

Maximum message size exceeded

M nor ThreadLi nit "

Can't create new thread

CORBA System Exceptions

COMM_FAILURE Minor Exception Code

*
M nor Recv

recv() failed

M nor Send”

send() failed

*
M nor RecvZer o

recv() returned zero

M nor SendZero”

send() returned zero

M nor Socket *

socket () failed

M nor Set sockopt *

set sockopt () failed

M nor Get sockopt *

get sockopt () failed

M nor Bi nd"

bi nd() failed

M norLi sten”

l'isten() failed

M nor Connect

connect () failed

M nor Accept *

accept () failed

M nor Sel ect

sel ect () failed

M nor Get host nare”

get host nane() failed

M nor Get host byname*

get host bynane() failed

M nor WBASt artup*

WBASt ar t up() failed

M nor VBAQ eanup*

WBAQ eanup() failed

M nor No@ OP"

Not a GIOP message

M nor Unknovaassage*

Unknown GIOP message

M norWongMessage*

Wrong GIOP message

M nor MessageEr r or”

Got a message error message

M nor Fr agrrent *

Invalid fragment message

M nor UnknownReq| d”

Unknown request ID

. *
M nor Ver si on

Incompatible GIOP version

M nor Pi pe*

Creation of pipe failed

M nor Set SoTi meout

setSoTimeout() failed

375

CHAPTER 18 | Exceptions and Error Messages

MARSHAL Minor Exception Code

376

M nor NoVal ueFact ory

Unable to locate value factory

M nor DSI Resul t Bef or eCont ext

DSI result cannot be set before context

M nor DSI | nval i dPar anet er Li st

DSI argument list does not describe all
parameters

M nor Local (bj ect

Attempt to marshal local object

M nor Wehar Sent Byd i ent

wchar data sent by client on GIOP 1.0
connection

M nor Wehar Sent By Ser ver

wchar data returned by server on GIOP 1.0
connection

M nor ReadOver f| ow’

Input stream buffer overflow

M nor ReadBool eanOver f | ow"

Overflow while reading boolean

M nor ReadChar Over f | ow

Overflow while reading char

M nor ReadWWhar Over f | ow'

Overflow while reading wchar

M nor ReadCct et Over f | ow'

Overflow while reading octet

M nor ReadShor t Over f | ow'

Overflow while reading short

M nor ReadUShor t Over f| ow’

Overflow while reading ushort

M nor ReadLongOver f | ow'

Overflow while reading long

M nor ReadULongOver f | ow

Overflow while reading ulong

M nor ReadLongLongOver f | ow

Overflow while reading longlong

M nor ReadULongLongOver f | ow'

Overflow while reading ulonglong

M nor ReadFl oat Over f | ow'

Overflow while reading float

M nor ReadDoubl eOverfl ow’

Overflow while reading double

M nor ReadLongDoubl eOver f | ow'

Overflow while reading longdouble

M nor ReadStri ngOver f | ow'

Overflow while reading string

M nor ReadSt ri ngZer oLengt h*

Encountered zero-length string

M nor ReadSt ri ngNul | Char ™

Encountered null char in string

CORBA System Exceptions

M nor ReadSt ri ngNoTer mi nat or”

Terminating null char missing in string

M nor ReadW5t ri ngOver f | ow'

Overflow while reading wstring

M nor ReadW5t r i ngZer oLengt h"

Encountered zero-length wstring

M nor ReadW&t ri ngNul | Whar ©

Encountered null char in wstring

M nor ReadW&t r i ngNoTer m nat or”

Terminating null char missing in wstring

M nor ReadFi xedOver f | ow'

Overflow while reading fixed

M nor ReadFi xedI nval i d”

Invalid encoding for fixed value

M nor ReadBool eanArrayQverf ow'

Overflow while reading boolean array

M nor ReadChar ArrayQver f | ow

Overflow while reading char array

M nor ReadWohar Ar rayOver f | ow'

Overflow while reading wchar array

M nor ReadCct et ArrayOverfl ow'

Overflow while reading octet array

M nor ReadShort ArrayOverf | ow'

Overflow while reading short array

M nor ReadUshor t ArrayQOver f | ow'

Overflow while reading ushort array

M nor ReadLongAr r ayOver f | ow

Overflow while reading long array

M nor ReadULongAr r ayOver f | ow'

Overflow while reading ulong array

M nor ReadLongLongAr rayOver f | ow'

Overflow while reading longlong array

M nor ReadULongLongAr r ayOver f | ow'

Overflow while reading ulonglong array

M nor ReadFl oat ArrayOverf | ow'

Overflow while reading float array

M nor ReadDoubl eArrayQverf | ow

Overflow while reading double array

M nor ReadLongDoubl eAr rayOver f | ow

Overflow while reading longdouble array

M nor Readl nvTypeCodel ndi rect i on”

Invalid type code indirection

M nor Wi t eChj ect Local *

Attempt to marshal a locality-constrained
object

M nor LongDoubl eNot Suppor t ed”

Long double is not supported

377

CHAPTER 18 | Exceptions and Error Messages

NO_IMPLEMENT Minor Exception Code

378

M nor M ssi ngLocal Val uel npl enent ati on

Missing local value
implementation

M nor | nconpat i bl eVal uel npl enent at i onVer si on

Incompatible value
implementation version

M nor Not Support edByLocal (bj ect

Operation not supported by local
object

M nor DI | Not Suppor t edByLocal (bj ect

DIl operation not supported by
local object

CORBA System Exceptions

NO_RESOURCES Minor Exception Code

M nor | nval i dBi ndi ng Portable Interceptor operation not supported in
binding

379

CHAPTER 18 | Exceptions and Error Messages

BAD_INV_ORDER Minor Exception Code

380

M nor DependencyPr event sDest ructi on

Dependency exists in Interface Repository
prevents destruction of object

M nor | ndest ructi bl eChj ect

Attempt to destroy indestructible object in
Interface Repository

M nor Dest r oyVWul dBl ock

Operation would deadlock

M nor Shut downCal | ed

ORB has shutdown

M nor Dupl i cat eSend

Request has already been sent

M nor Ser vant Manager Al r eady Set

Servant manager already set

M nor | nval i dUseCr DSI Ar gunent s

Invalid use of DSI arguments

M nor | nval i dUuseCf DSI Cont ext

Invalid use of DSI context

M nor Request Al r eady Sent

DIl request has already been sent

M nor Request Not Sent

DIl request has not been sent yet

M nor ResponseAl r eadyRecei ved

DIl response has already been received

M nor Synchr onousRequest

Operation not supported on synchronous DlII
request

M nor I nval i dPI Cal |

Invalid Portable Interceptor call

M nor Ser vi ceCont ext Exi st's

A service context already exists with the
given ID

M nor Pol i cyFact or yExi st s

A factory already exists for the given
PolicyType

M nor NoCr eat ePQA

Cannot create POA while undergoing
destruction

M nor BadConcModel

Invalid concurrency model

M nor CRBRunni ng*

CRB: : run() already called

CORBA System Exceptions

TRANSIENT Minor Exception Code

M nor Request D scar ded

Request has been discarded

M nor NoUsabl eProf i | el nl OR

No usable profile in IOR

M nor Request Cancel | ed

Request has been cancelled

M nor PQADest r oyed

POA has been destroyed

M nor Connect Fai | ed”

Request has been cancelled

. *
M nor d oseConnect i on

Got a ‘close connection’ message

M nor Act i veConnect i onManagenent ¥

Active connection management closed
connection

M nor For cedShut down”

Forced connection shutdown because of
timeout

M nor Locat i onFor war dHopCount Exceeded”

Forced connection shutdown because of
timeout

381

CHAPTER 18 | Exceptions and Error Messages

INTF_REPOS Minor Exception Code

382

M nor Nol nt f Repos*

Interface Repository is not available

M nor LookupAmbi guous*

Search name for I ookup() is ambiguous

. *
M nor ||| egal Recursi on

Illegal Recursion

M nor NoEnt ry*

IFR is not populated with a required definition.

CORBA System Exceptions

OBJECT_NOT_EXIST Minor Exception Code

M nor Unr egi st er edVal ue

Attempt to pass unactivated (unregistered) value
as an object reference

M nor Cannot D spat ch

Unable to dispatch - servant or POA not found

383

CHAPTER 18 | Exceptions and Error Messages

INV_POLICY Minor Exception Code

384

M nor Cannot Reconci | ePol i cy

Cannot reconcile IOR policy with effective policy
override

M nor | nval i dPol i cyType

Invalid PolicyType

M nor NoPol i cyFact ory

No PolicyFactory for the PolicyType has been
registered

Non-Compliant Application Asserts

Non-Compliant Application Asserts

If the Orbacus library was compiled without the preprocessor definition
- DNDEBUG defined, Orbacus tries to detect common programming mistakes
that lead to non—-compliant CORBA applications. If such a mistake is found
an error messages like this will appear:

Non-conpl i ant application error detected:

Application used wong nenory allocation function
After detecting such an error, the Orbacus library dumps a core (Unix only)
and prints the file and line number where the error was detected. You can
use the core dump in order to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implementedThis is
not an application error. This error message appears if an application
attempts to use a feature that has not yet been implemented in Orbacus. In
this case the only thing that can be done is to wait for the next Orbacus
version that has this particular feature implemented.

Application used a deprecated feature that is not implemented anymoreThis
is not an application error. This error message appears if an application

attempts to use a feature that is no longer implemented in Orbacus. In this
case the only thing that can be done is to avoid using this particular feature.

Application used wrong memory allocation functionlf this message appears,
an incorrect memory allocation function has been used. A common mistake
that leads to this error is to use nal | oc, strdup and free (or the newand
del et e operator) instead of OORBA: : string_al | oc and OORBA: : st ri ng_dup
and OORBA: : string_free for string memory management.

Message

Description

was deallocated again

Memory that was already deallocated This message indicates multiple memory deallocations. For

example, if OCRBA: : string_free is called twice on the
same string, this message will be displayed.

reference count of zero

Object was deleted without an object This message appears if an object was deleted by calling

del et e on its object reference. Never use the del ete
operator for that; use CORBA: : rel ease instead.

385

CHAPTER 18 | Exceptions and Error Messages

Message

Description

Object was already deleted (object
reference count was already zero)

This message appears if the number of r el ease operations
on an object reference is greater than the number of
_dupl i cat e operations.

Sequence length was greater than
maximum sequence length

This message indicates that the application tried to set the
length of a bounded sequence to a value greater than its
maximum length.

Index for sequence operator[]() or
remove() function was out of range

This message appears if the argument to the sequence
member functions operator[] or renove exceeds the
sequence length.

Buffer size not equal to sequence bound

This message indicates that the application attempted to
call al I ocbuf on a bounded sequence with an argument not
equal to the sequence bound.

Null pointer was used to initialize T_var
type

This message indicates an attempt to initialize a _var type
with a null pointer.

operator->() was used on null pointer or
nil object reference

This message indicates an attempt to use oper at or - > on an
uninitialized _var type.

Application tried to dereference a null
pointer

Some CORBA _var types have built-in conversion operators
to a C++ reference type, i.e., some _var types for type T
have a conversion operator to T& This message appears if
an application uses this conversion operator on an
uninitialized _var type.

Null pointer was passed as string
parameter or return value

According to the IDL-to-C++ mapping specification, no
null pointers may be passed as string parameters or return
values. This message appears if an application tries to do
s0.

Null value passed as parameter

This message indicates that an application attempted to
pass a null value across an IDL interface.

386

Non-Compliant Application Asserts

Message

Description

Self assignment caused a dangling
pointer

This message appears if the content of a _var type is
assigned to itself. For example, the following code will lead
to this error message:

/1 Sonmehow get a pointer to a variable struct
AVari abl eStruct _var var = ...

AVariabl eStruct* ptr = var;

var = ptr;

A WN PR

This will result in a dangling pointer, because var will free
its own content on assignment.

Replacement of Any content by its own
value caused a dangling pointer

This message appears if there is an attempt to replace the
content of an Any by its own value. For example:

char* s = CORBA :string_dup("Hello, world!");
CORBA: : Any any;

any <<= s;

4 any <<= s;

w N -

Inserting s into any twice will result in a dangling pointer,
because any will free its own value (which is s) on
assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to
OCRBA: : CRB: : creat e_uni on_t ¢ denotes a type invalid for
union discriminators. Valid types have a CORBA: : TCKi nd
that is one of OCRBA : tk_short, OCRBA: : tk_ushort ,

CORBA: : tk_| ong, OORBA: : t k_ul ong, CORBA: : t k_char,
QCRBA: : t k_bool ean or CORBA: : t k_enum

Union discriminator mismatch

This message either indicates an attempt to set a union
discriminator to an invalid value with the _d modifier
function or the use of a wrong accessor function, i.e., an
accessor function that does not correspond to the type of
the union’s actual value.

Uninitialized union used

If this message appears, an uninitialized union (i.e., a union
that was created with the default constructor and that was
not set to any legal value) was used.

387

CHAPTER 18 | Exceptions and Error Messages

388

Message

Description

CORBA::Any::operator<<=(Exception*)
cannot be used with --no-type-codes

This message indicates that

OCRBA: : Any: : oper at or <<=(Except i on*) was invoked for an
exception for which no TypeCode is available. That is, the
IDL defining the exception was compiled with the

- - no- t ypecodes option.

An operation on an unembedded
recursive TypeCode was invoked

If this message appears, an operation was invoked on a
recursive TypeCode that has not yet been embedded.

An already embedded TypeCode was
reused

This message indicates that an application attempted to
embed a recursive TypeCode that was already embedded.

LongDouble type is not supported on this
platform

This message appears when an application uses the
COCRBA: : LongDoubl e type on a platform which does not
support this type.

APPENDIX A

Boot Manager
Reference

This appendix describes the interfaces for the Orbacus Boot

Manager.
In this appendix This appendix contains the following sections:
Interface OB::BootManager page 390
Interface OB::BootLocator page 392

389

CHAPTER A | Boot Manager Reference

Interface OB::BootManager

I ocal interface Boot Manager
Interface to manage bootstrapping of objects.

Exceptions NotFound
exception Not Found

{
h
This exception indicates that a binding has not been found.

AlreadyExists
exception A readyExi sts

{
h
This exception indicates that a binding already exists.

Operations add_binding

voi d add_bi ndi ng(i n Portabl eServer::Cbjectld oid,
in Chject obj)
rai ses(Al readyExi sts);

Add a new binding to the internal table.
Parameters:

oi d — The object id to bind.

obj — The object reference.

Raises:

Al readyExi st s — Thrown if binding already exists.
remove_binding

voi d renove_bi nding(in Portabl eServer:: Cbjectld oid)
rai ses(Not Found) ;

Remove a binding from the internal table.
Parameters:

oi d — The object id to remove.

Raises:

Not Found — Thrown if no binding found.

390

Interface OB::BootManager

set_locator
voi d set_| ocator (in BootlLocator |ocator);

Set the BootLocator. The BootLocator is called when a binding for an object
id does not exist in the internal table.

Parameters:

| ocat or — The BootLocator reference.
See Also:

“Interface OB::BootLocator”

391

CHAPTER A | Boot Manager Reference

Interface OB::BootLocator

I ocal interface BootLocator

Interface used by BootManager to assist in locating objects.
See Also:

“Interface OB::BootManager”

Operations locate

voi d | ocate(in Portabl eServer:: (hjectld oid,
out (hject obj,
out bool ean add)
rai ses(Boot Manager : : Not Found) ;

Locate the object corresponding to the given object id.
Parameters:

oi d — The object id.

obj — The object reference to associate with the id.

add — Whether the binding should be added to the internal table.
Raises:

Not Found — Raised if no binding found.

392

In this appendix

APPENDIX B

Orbacus Policy
Reference

This appendix describes the Orbacus Policy interfaces.

This appendix contains the following sections:

Module OB page 394

Module OBPortableServer page 405

393

CHAPTER B | Orbacus Policy Reference

Module OB

Constants

394

CONNECTION_REUSE_POLICY_ID
const OCRBA: : Pol i cyType CONNECTI ON REUSE POLI CY_I D = 1330577411;
This policy type identifies the connection reuse policy.

CONNECT_TIMEOUT_POLICY_ID
const OCORBA : Pol i cyType OONNECT_TI MEQUT_PQLI CY_I D = 1330577416;
This policy type identifies the connect timeout policy.

INTERCEPTOR_POLICY_ID

const OCRBA: : Pol i cyType | NTERCEPTCR PCLI CY_| D = 1330577415;
This policy type identifies the interceptor policy.
LOCATE_REQUEST_POLICY_ID

const OCORBA : Pol i cyType LOCATE REQUEST_PCLI CY_| D = 1330577418;
This policy type identifies the locate request policy.

LOCATION_TRANSPARENCY_POLICY_ID

const OCRBA: : Pol i cyType LOCATI ON_TRANSPARENCY_PCLICY_ID =
1330577414,

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED
const short LOCATI ON_TRANSPARENCY RELAXED = 1,
The LOCATI ON_TRANSPARENCY_RELAXED LocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT
const short LOCATI ON_TRANSPARENCY_STRI CT = 0;
The LOCATI ON_TRANSPARENCY_STR! CT LocationTransparencyPolicy value.

PROTOCOL_POLICY_ID

const OCRBA: : Pol i cyType PROTOOCL_PCLI CY_| D = 1330577410;

This policy type identifies the protocol policy.
REQUEST_TIMEOUT_POLICY_ID

const OCORBA : Pol i cyType REQUEST TI MEQUT_PQLI CY_I D = 1330577417,
This policy type identifies the request timeout policy.

Structs

Module OB

RETRY_ALWAYS
const short RETRY_ALWAYS = 2;
The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER
const short RETRY_NEVER = 0;
The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID
const COORBA: : Pol i cyType RETRY_PCQLICY_I D = 1330577412
This policy type identifies the retry policy.

RETRY_STRICT
const short RETRY_STRICT = 1;
The RETRY_STR CT RetryPolicy value.

TIMEOUT_POLICY_ID
const COORBA: : Pol i cyType TI MEQUT_PQLI CY_I D = 1330577413;
This policy type identifies the timeout policy.

RetryAttributes
struct RetryAttributes

{
short node;
unsi gned long interval;
unsi gned | ong nax;
bool ean renot e;
h

The retry information

395

CHAPTER B | Orbacus Policy Reference

Interface OB::ConnectTimeoutPolicy

local interface Connect Ti neout Pol i cy
inherits from CORBA : Policy

The connect timeout policy. This policy can be used to specify a maximum
time limit for connection establishment.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value
readonly attribute unsigned | ong val ue;

If an object has a Connect Ti neout Pol i cy set and a connection cannot be
established after val ue milliseconds, a CORBA: : NO_RESPONSE exception is
raised. The default value is - 1, which means no timeout.

396

Module OB

Interface OB::ConnectionReusePolicy

I ocal interface ConnectionReusePolicy
inherits from CORBA: : Pol i cy

The connection reuse policy. This policy determines whether connections
may be reused or are private to specific objects.

Attributes value
readonly attribute bool ean val ue;
If an object has a Connect i onReusePol i cy set with val ue set to FALSE, then
other object references will not be permitted to use connections made on
behalf of this object. If set to TRUE, then connections are shared. The default
value is TRUE.

397

CHAPTER B | Orbacus Policy Reference

Interface OB::InterceptorPolicy

Attributes

398

local interface InterceptorPolicy
inherits from CORBA : Policy

The interceptor policy. This policy can be used to control whether the
client-side interceptors are called.

value

readonly attribute bool ean val ue;

If an object reference has an I nt er cept or Pol i cy set and val ue is FALSE
then any installed client-side interceptors are not called. Otherwise,
interceptors are called for each method invocation. The default value is
TRUE.

Module OB

Interface OB::LocateRequestPolicy

Attributes

local interface Locat eRequestPolicy
inherits from CORBA: : Pol i cy

The locate request policy. This policy can be used to specify whether the
ORB sends locate request messages.

value
readonly attribute bool ean val ue;

If an object has a Locat eRequest Pol i cy set to f al se then the ORB will not
send locate request messages for the object.

399

CHAPTER B | Orbacus Policy Reference

Interface OB::LocationTransparencyPolicy

local interface LocationTransparencyPolicy

inherits from CORBA : Policy

The location transparency policy. This policy is used to control how strict the
ORB is in enforcing location transparency. This is useful for performance
reasons.

Attributes value
readonly attribute short val ue;
LQCATI ON_TRANSPARENCY_STRI CT ensures strict location transparency is
followed. LOCATI ON_TRANSPARENCY RELAXED relaxes the location
transparency guarantees for performance reasons. Specifically for collocated
method invocations, the dispatch concurrency model will be ignored, and
policy overrides are not removed. The default value is
LOCATI ON_TRANSPARENCY_RELAXED.

400

Module OB

Interface OB::ProtocolPolicy

Attributes

Operations

I ocal interface Protocol Policy
inherits from CORBA: : Pol i cy

The protocol policy. This policy specifies the order in which profiles should
be tried.

value

readonly attribute OO ::PluginldSeq val ue;

If a Prot ocol Pol i cy is set, then the value specifies the list of plugins that
may be used. The profiles of an IOR will be used in the order specified by
this policy. If no profile in an IOR matches any of the plugins specified by
this policy, a GORBA: : TRANSI ENT exception will be raised. By default, the
ORB chooses the protocol to be used.

contains
bool ean contains(in O ::Pluginldid);
Determines if this policy includes the given plugin id.

401

CHAPTER B | Orbacus Policy Reference

Interface OB::RequestTimeoutPolicy

local interface RequestTi neout Policy
inherits from CORBA : Policy

The request timeout policy. This policy can be used to specify a maximum
time limit for requests.

See Also:

“Interface OB::TimeoutPolicy”

Attributes value
readonly attribute unsigned | ong val ue;

If an object has a Request Ti neout Pol i cy Set and no response to a request is
available after val ue milliseconds, a CORBA: : NO_RESPONSE exception is
raised. The default value is - 1, which means no timeout.

402

Module OB

Interface OB::RetryPolicy

Attributes

local interface RetryPolicy

inherits from CORBA: : Pol i cy

The retry policy. This policy is used to specify retry behavior after
communication failures (i.e., GORBA: : TRANSI ENT and CORBA: : COMM FAI LURE
exceptions).

retry_interval
readonly attribute unsigned long retry_interval;

retry_max
readonly attribute unsigned long retry_max;

retry_mode

readonly attribute short retry_node;

For retry_mode RETRY_NEVER indicates that requests should never be retried,
and the exception is re-thrown to the application. RETRY_STR CT will retry
once if the exception completion status is COVPLETED_NO, in order to
guarantee at-most-once semantics. RETRY_ALWAYS will retry once, regardless
of the exception completion status. The default value is RETRY_STR CT.
retry_interval is the time in milliseconds between retries. The default is O.
retry_max is the maximum number of retries. The default is 1.

retry_renot e determines whether or not to retry on exceptions received
over-the-wire. The default is f al se: only retry on locally generated
exceptions. Note: Many TCP/IP stacks do not provide a reliable indication of
communication failure when sending smaller requests, therefore the failure
may not be detected until the ORB attempts to read the reply. In this case,
the ORB must assume that the remote end has received the request, in
order to guarantee at-most-once semantics for the request. The implication
is that when using the default setting of RETRY_STRI CT, most communication
failures will not cause a retry. This behavior can be relaxed using
RETRY_ALVAYS.

retry_remote
readonly attribute bool ean retry_renote;

403

CHAPTER B | Orbacus Policy Reference

Interface OB::TimeoutPolicy

Attributes

404

local interface TineoutPolicy
inherits from CORBA : Policy

The timeout policy. This policy can be used to specify the default timeout for
connection establishment and requests. If an object also has

Connect i onTi meout Pol i cy or Request Ti meout Pol i cy set, those values have
precedence.

See Also:
“Interface OB::ConnectTimeoutPolicy”
“Interface OB::RequestTimeoutPolicy”

value

readonly attribute unsigned | ong val ue;

If an object has a Ti meout Pol i cy set and a connection cannot be
established or no response to a request is available after val ue milliseconds,
a OORBA: : NO_RESPONSE exception is raised. The default value is - 1, which
means no timeout.

Module OBPortableServer

Module OBPortableServer

Constants INTERCEPTOR_CALL_POLICY_ID
const CORBA: : Pol i cyType | NTERCEPTCR CALL_PCLI CY_|I D = 1330577667,
This policy type identifies the interceptor call policy.

405

CHAPTER B | Orbacus Policy Reference

Interface OBPortableServer::InterceptorCallPolicy

local interface InterceptorCallPolicy
inherits from CORBA : Policy

The interceptor call policy. This policy controls whether the server-side
interceptors are called for a particular POA.

Attributes value
readonly attribute bool ean val ue;
The InterceptorCallPolicy value. If a POA has an I nter cept or Cal | Pol i cy
set and val ue is FALSE then any installed server-side interceptors are not
called for requests on this POA. Otherwise, interceptors are called for each
request. The default value is TRUE.

406

APPENDIX C

Reactor Reference

This appendix describes the Orbacus Reactor interfaces.

In this appendix This appendix contains the following section:

Module OB page 408

407

CHAPTER C | Reactor Reference

Module OB

Aliases Handle
typedef |ong Handl e;
An event handler's handle.

Mask
typedef |ong Mask;

An event handler's mask. The mask determines which events the event
handler is interested in.

TypeMask
typedef |ong TypeMask;

An event handler's type mask. The type mask determines which category
the event handler belongs to. A value of zero means no specific category.

Constants EventRead
const Mask Event Read = 1;
The mask for read events.

EventWrite
const Mask EventWite = 2;
The mask for write events.

TypeClient
const TypeMask Typedient = 1;
The type mask for client event handlers.

TypeServer
const TypeMask TypeServer = 2;
The type mask for server event handlers.

Native Types EventHandler
native Event Handl er;
An event handler is a native type.

408

Module OB

Interface OB::Reactor

Operations

| ocal interface Reactor
A generic Reactor interface.

register_handler

voi d register_handl er (i n Event Handl er handl er,
in Mask handl er _nask,
in TypeMask type_nask,
in Handl e h);

Register an event handler with the Reactor, or change the registration of an
already registered event handler.

Parameters:

handl er — The event handler to register.

mask — The type of events the event handler is interested in.
type_mask — The category the event handler belongs to.
h — The event handler's handle.

unregister_handler

voi d unregi ster_handl er (i n Event Handl er handl er);
Remove an event handler from the Reactor.
Parameters:

handl er — The event handler to remove.

dispatch

bool ean di spat ch(i n TypeMask type_nask);

Dispatch events.

Parameters:

type_nask — If not zero, this operation will return once all registered event
handlers that match the type mask have unregistered.

Returns:

TRUE if all event handlers that match the type mask have unregistered, or
FALSE if event dispatching has been interrupted.

interrupt_dispatch
voi d interrupt_dispatch();

409

CHAPTER C | Reactor Reference

410

Interrupt event dispatching. After calling this operation, i nterrupt () will
return with FALSE.

dispatch_one_event

bool ean di spatch_one_event (in long tineout);
Dispatch at least one event.

Parameters:

ti meout — The timeout in milliseconds. A negative value means no timeout,
i.e., the operation will not return before at least one event has been
dispatched. A zero timeout means that the operation will return immediately
if there is no event to dispatch.

Returns:
TRUE if at least one event has been dispatched, or FALSE otherwise.
event_ready

bool ean event _ready();
Check whether an event is available.

Returns:
TRUE if an event is ready, or FALSE otherwise.

APPENDIX D

Logger Reference

This appendix describes the Orbacus Logger interfaces.

In this appendix This appendix contains the following sections:
Interface OB::Logger page 412
Interface OB::WLogger page 413

411

CHAPTER D | Logger Reference

Interface OB::Logger

Operations

412

I ocal interface Logger
The Orbacus message logger interface.

info

void info(in string nsg);
Log an informational message.
Parameters:

msg — The message.

error

void error(in string nsg);
Log an error message.
Parameters:

msg — The error message.
warning

void warning(in string nsg);
Log a warning message.
Parameters:

msg — The warning message.

trace

void trace(in string category,
in string nsg);

Log a trace message.
Parameters:

cat egory — The trace category.
msg — The trace message.

Interface OB::WLogger

Interface OB::WLogger

Operations

local interface Wogger : Logger
The Orbacus message logger interface with support for wide strings.

winfo

void winfo(in wstring nsg);
Log an informational message.
Parameters:

msg — The message.

werror

void error(in wstring nsg);
Log an error message.
Parameters:

msg — The error message.
wwarning

void warning(in wstring nsg);
Log a warning message.
Parameters:

msg — The warning message.
wtrace

void trace(in wstring category,
in wstring nsg);

Log a trace message.
Parameters:

cat egory — The trace category.
msg — The trace message.

413

CHAPTER D | Logger Reference

414

In this appendix

APPENDIX E

Open
Communications
Interface
Reference

This appendix describes the interfaces for the Open
Communication Interface.

This appendix contains the following sections:

Module OCI page 416

Module OCI::lIOP page 451

415

CHAPTER E | Open Communications Interface Reference

Module OCI

Aliases BufferSeq
typedef sequence<Buffer> BufferSeq;
Alias for a sequence of buffers.

IOR
typedef 1CP:IORICR
Alias for an IOR.

Profileld
typedef 1CP::Profileld Profileld;
Alias for a profile id.

ProfileldSeq
typedef sequence<Profileld> Profil el dSeq;
Alias for a sequence of profile ids.

Pluginid
typedef string Pluginld;
Alias for a plugin id.

PluginldSeq
typedef sequence<Pl ugi nl d> P ugi nl dSeq;
Alias for a sequence of plugin ids.

ObjectKey
typedef OCRBA:: Crtet Seq (bj ect Key;
Alias for an object key, which is a sequence of octets.

TaggedComponentSeq
typedef | CP:: TaggedConponent Seq TaggedConponent Seq;
Alias for a sequence of tagged components.

Handle
typedef |ong Handl e;
Alias for a system-specific handle type.

416

Constants

Module OCI

ProfilelnfoSeq
typedef sequence<Profil el nfo> Profil el nfoSeq;
Alias for a sequence of basic information about profiles.

ParamSeq
typedef sequence<string> Paranfeq;
Alias for a sequence of parameters.

CloseCBSeq
typedef sequence<d ose(B> O oseCBSeq;
Alias for a sequence of close callback objects.

ConnectorSeq
typedef sequence<Connect or> Connect or Seq;
Alias for a sequence of Connectors.

ConnectCBSeq
typedef sequence<Connect CB> Connect CBSeq;
Alias for a sequence of connect callback objects.

ConFactorySeq
typedef sequence<ConFact ory> ConFact or ySeq;
Alias for a sequence of Connector factories.

AcceptorSeq
typedef sequence<Accept or> Accept or Seq;
Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<Accept CB> Accept (BSeq;
Alias for a sequence of accept callback objects.

AccFactorySeq
typedef sequence<AccFact ory> AccFact orySeq;
Alias for a sequence of AccFactory objects.

Version
const string Version = "1.0";

The OCI version. If an interface or implementation changes in an
incompatible way, this version will be changed.

417

CHAPTER E | Open Communications Interface Reference

Enums

Structs

Exceptions

418

SendReceiveMode
enum SendRecei veMde

{
Sendnl y,
Recei venl y,
SendRecei ve
}

Indicates the send/receive capabilities of an OCI component.

ProfileInfo
struct Profilelnfo
{
(bj ect Key key;
octet major;
octet mnor;
Profileld id;
unsi gned | ong i ndex;
TaggedConponent Seq conponent s;
h

Basic information about an IOR profile. Profiles for specific protocols contain
additional data. (For example, an IIOP profile also contains a hostname and
a port number.)

Members:
key — The object key.

maj or — The major version number of the ORB's protocol. (For example, the
major GIOP version, if the underlying ORB uses GIOP.)

m nor — The minor version number of the ORB's protocol. (For example, the
minor GIOP version, if the underlying ORB uses GIOP.)

i d — The id of the profile that contains this information.
i ndex — The position index of this profile in an IOR.

conponent s — A sequence of tagged components.

FactoryAlreadyExists
exception FactoryAl readyExi sts

{

}
A factory with the given plugin id already exists.

Pl uginld id;

Module OCI

Members:
i d — The plugin id.

NoSuchFactory

exception NoSuchFactory
{

H
No factory with the given plugin id could be found.

Pluginld id;

Members:

i d — The plugin id.
InvalidParam

exception InvalidParam

{

h
A parameter is invalid.

string reason;

Members:

reason — A description of the error.

419

CHAPTER E | Open Communications Interface Reference

Interface OCI::Buffer

Attributes

Operations

420

local interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an

array of octets and a position counter, which determines how many octets

have already been sent or received. The IDL interface definition for Buffer is

incomplete and must be extended by the specific language mappings. For

example, the C++ mapping defines the following additional functions:

® (tet* data(): Returns a C++ pointer to the first element of the array
of octets, which represents the buffer's contents.

® (tet* rest(): Similar to dat a(), this operation returns a C++
pointer, but to the n-th element of the array of octets with n being the
value of the position counter.

length
readonly attribute unsigned | ong | ength;
The buffer length.

pos
attribute unsigned | ong pos;

The position counter. Note that the buffer's length and the position counter
don't depend on each other. There are no restrictions on the values
permitted for the counter. This implies that it's even legal to set the counter
to values beyond the buffer's length.

advance

voi d advance(in unsigned | ong delta);
Increment the position counter.
Parameters:

del ta — The value to add to the position counter.

rest_length

unsi gned long rest_length();

Returns the rest length of the buffer. The rest length is the length minus the
position counter's value. If the value of the position counter exceeds the
buffer's length, the return value is undefined.

Module OCI

Returns:

The rest length.
is_full

bool ean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal
to the position counter's value.

Returns:
TRUE if the buffer is full, FALSE otherwise.

421

CHAPTER E | Open Communications Interface Reference

Interface OCI::Plugin

local interface P ugin
The interface for a Plugin object, which is used to initialize an OCI plug-in.

Attributes id
readonly attribute Pluginld id;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

Operations init_client
void init_client(in ParanBeq parans);
Initialize the client-side of the plug-in.
Parameters:
par ans — Plug-in specific parameters.
init_server
voi d init_server(in ParanBeq parans);
Initialize the server-side of the plug-in.
Parameters:

par ans — Plug-in specific parameters.

422

Module OCI

Interface OCI::Transport

Attributes

Operations

local interface Transport

The interface for a Transport object, which provides operations for sending
and receiving octet streams. In addition, it is possible to register callbacks

with the Transport object, which are invoked whenever data can be sent or
received without blocking.

See Also:
“Interface OCI::Connector”

“Interface OCI::Acceptor”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

mode
readonly attribute SendRecei veMbde node;
The send/receive capabilities of this Transport.

handle

readonly attribute Handl e handl e;

The “handle” for this Transport. The handle may only be used to determine
whether the Transport object is ready to send or to receive data, e.g., with
sel ect () on Unix-based operating systems. All other uses (e.g., calls to
read(), wite(), close()) are strictly non-compliant. A handle value of -1
indicates that the protocol plug-in does not support “selectable” Transports.

close

voi d cl ose();

Closes the Transport. After calling cl ose, no operations on this Transport
object and its associated Transportinfo object may be called. To ensure that
no messages get lost when cl ose is called, shut down should be called first.
Then dummy data should be read from the Transport, using one of the

423

CHAPTER E | Open Communications Interface Reference

424

recei ve operations, until either an exception is raised, or until connection
closure is detected. After that its save to call cl ose, i.e., no messages can
get lost.

Raises:
COWM FAI LURE — In case of an error.

shutdown
voi d shut down();

Shutdown the Transport. Upon a successful shutdown, threads blocking in
the recei ve operations will return or throw an exception. After calling

shut down, no operations on associated Transportinfo object may be called.
To fully close the Transport, cl ose must be called.

Raises:
COW FAI LURE — In case of an error.

receive

voi d receive(in Buffer buf,
i n bool ean bl ock);

Receives a buffer's contents.
Parameters:
buf — The buffer to fill.

bl ock — If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Raises:
COW FAI LURE — In case of an error.

receive_detect

bool ean recei ve_detect (in Buffer buf,
i n bool ean bl ock);

Similar to recei ve, but it signals a connection loss by returning FALSE
instead of raising COW FAI LURE.

Parameters:
buf — The buffer to fill.

bl ock — If set to TRUE, the operation blocks until the buffer is full. If set to
FALSE, the operation fills as much of the buffer as possible without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.

Module OCI

Raises:
COW FAI LURE — In case of an error.

receive_timeout

voi d receive_timeout (in Buffer buf,
in unsigned long tineout);

Similar to recei ve, but it is possible to specify a timeout. On return the
caller can test whether there was a timeout by checking if the buffer has
been filled completely.

Parameters:
buf — The buffer to fill.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling r ecei ve(buf, FALSE).

Raises:
COW FAI LURE — In case of an error.

receive_timeout_detect

bool ean receive_tinmeout_detect(in Buffer buf,
in unsigned | ong tineout);

Similar to recei ve_ti meout, but it signals a connection loss by returning
FALSE instead of raising COwl FAl LURE.

Parameters:
buf — The buffer to fill.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling recei ve(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
Raises:

COW FAI LURE — In case of an error.

send

void send(in Buffer buf,
i n bool ean bl ock) ;

Sends a buffer's contents.
Parameters:
buf — The buffer to send.

425

CHAPTER E | Open Communications Interface Reference

426

bl ock — If set to TRUE, the operation blocks until the buffer has completely
been sent. If set to FALSE, the operation sends as much of the buffer's data
as possible without blocking.

Raises:
COWM FAI LURE — In case of an error.

send_detect

bool ean send_det ect (i n Buf fer buf,
i n bool ean bl ock);

Similar to send, but it signals a connection loss by returning FALSE instead of
raising COW FAI LURE.

Parameters:

buf — The buffer to fill.

bl ock — If set to TRUE, the operation blocks until the entire buffer has been
sent. If set to FALSE, the operation sends as much of the buffer's data as
possible without blocking.

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
Raises:

COW FAI LURE — In case of an error.

send_timeout

voi d send_timeout (in Buffer buf,
in unsigned long timeout);

Similar to send, but it is possible to specify a timeout. On return the caller
can test whether there was a timeout by checking if the buffer has been sent
completely.

Parameters:
buf — The buffer to send.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Raises:
COWM FAI LURE — In case of an error.

send_timeout_detect

bool ean send_ti neout _det ect (i n Buffer buf,
in unsigned long tineout);

Module OCI

Similar to send_t i neout , but it signals a connection loss by returning FALSE
instead of raising COW FAI LURE.

Parameters:
buf — The buffer to fill.

ti meout — The timeout value in milliseconds. A zero timeout is equivalent to
calling send(buf, FALSE).

Returns:

FALSE if a connection loss is detected, TRUE otherwise.
Raises:

COW FAI LURE — In case of an error.

get_info

Transportlnfo get_info();

Returns the information object associated with the Transport.

Returns:
The Transport information object.

427

CHAPTER E | Open Communications Interface Reference

Interface OCI::Transportinfo

local interface Transportlnfo

Information on an OCI Transport object. Objects of this type must be
narrowed to a Transport information object for a concrete protocol
implementation, for example to OO :: 11 CP: : Transport | nf o in case the
plug-in implements [IOP.

See Also:
“Interface OCI::Transport”

Attributes id
readonly attribute Pluginld id;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

connector_info

readonly attribute Connectorlnfo connector_info;

The Connectorlnfo object for the Connector that created the Transport object
that this Transportinfo object belongs to. If the Transport for this
Transportinfo was not created by a Connector, this attribute is set to the nil
object reference.

acceptor_info

readonly attribute Acceptorlnfo acceptor_info;

The Acceptorinfo object for the Acceptor that created the Transport object
that this Transportinfo object belongs to. If the Transport for this
Transportinfo was not created by an Acceptor, this attribute is set to the nil
object reference.

Operations describe
string describe();
Returns a human readable description of the transport.
Returns:
The description.

428

Module OCI

add_close_cb
voi d add_cl ose_ch(in O o0seCB ch);

Add a callback that is called before a connection is closed. If the callback
has already been registered, this method has no effect.

Parameters:

cb — The callback to add.
remove_close_ch

voi d renove_cl ose_ch(in 4 o0seCB ch);

Remove a close callback. If the callback was not registered, this method has
no effect.

Parameters:

cb — The callback to remove.

429

CHAPTER E | Open Communications Interface Reference

Interface OCI::CloseCB

Operations

430

local interface A oseCB
An interface for a close callback object.

See Also:
“Interface OCI::Transportinfo”

close_cb

voi d close_cb(in TransportInfo transport_info);
Called before a connection is closed.

Parameters:

transport _i nf o — The Transportinfo for the new closeion.

Module OCI

Interface OCI::Connector

Attributes

Operations

I ocal interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to
initiate a connection to a server. It also provides operations for the
management of IOR profiles.

See Also:
“Interface OCI::ConFactory”

“Interface OCI::Transport”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

connect
Transport connect ();

Used by CORBA clients to establish a connection to a CORBA server. It
returns a Transport object, which can be used for sending and receiving
octet streams to and from the server.

Returns:

The new Transport object.

Raises:

TRANSI ENT — If the server cannot be contacted.
COW FAI LURE — In case of other errors.
connect_timeout

Transport connect_timeout (i n unsigned | ong timeout);

Similar to connect , but it is possible to specify a timeout. On return the
caller can test whether there was a timeout by checking whether a nil object
reference was returned.

Parameters:

431

CHAPTER E | Open Communications Interface Reference

432

ti meout — The timeout value in milliseconds.
Returns:

The new Transport object.

Raises:

TRANSI ENT - If the server cannot be contacted.
COW FAI LURE — In case of other errors.

get_usable_profiles
Profil el nfoSeq get_usable_profiles(in IOR ref,

in OCORBA: : PolicyList policies);
From the given IOR and list of policies, get basic information about all
profiles for which this Connector can be used.

Parameters:

ref — The IOR from which the profiles are taken.
pol i ci es — The policies that must be satisfied.
Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that matches this Connector and the list of
policies.

equal

bool ean equal (i n Connect or con);

Find out whether this Connector is equal to another Connector. Two
Connectors are considered equal if they are interchangeable.

Parameters:

con — The connector to compare with.

Returns:

TRUE if the Connectors are equal, FALSE otherwise.

get_info

ConnectorInfo get_info();

Returns the information object associated with the Connector.
Returns:

The Connector information object.

Module OCI

Interface OCI::Connectorinfo

Attributes

Operations

local interface Connectorlnfo

Information on a OCI Connector object. Objects of this type must be
narrowed to a Connector information object for a concrete protocol
implementation, for example to OO :: 11 CP; : Connect or I nf o in case the
plug-in implements IIOP.

See Also:
“Interface OCI::Connector”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

describe

string describe();

Returns a human readable description of the transport.
Returns:

The description.

add_connect_cb

voi d add_connect _cb(i n Connect CB ch);

Add a callback that is called whenever a new connection is established. If
the callback has already been registered, this method has no effect.
Parameters:

cb — The callback to add.
remove_connect_cb

voi d renove_connect _cb(in Connect B cbh);

Remove a connect callback. If the callback was not registered, this method
has no effect.

Parameters:

433

CHAPTER E | Open Communications Interface Reference

cb — The callback to remove.

434

Module OCI

Interface OCI::ConnectCB

Operations

local interface ConnectCB
An interface for a connect callback object.

See Also:
“Interface OCI::Connectorinfo”

connect_cb

voi d connect_cb(in Transportinfo transport_info);

Called after a new connection has been established. If the application
wishes to reject the connection CORBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o — The Transportinfo for the new connection.

435

CHAPTER E | Open Communications Interface Reference

Interface OCI::ConFactory

local interface ConFactory

A factory for Connector objects.
See Also:

“Interface OCI::Connector”
“Interface OCI::ConFactoryRegistry”

Attributes id
readonly attribute Pluginld id;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

Operations describe_profile
string describe_profile(in | COP::TaggedProfile prof);
Returns a description of the given tagged profile.
Parameters:
prof — The tagged profile.
Returns:
The profile description.

create_connectors
Connect or Seq create_connectors(in I CR ref,

in CORBA: : PolicyList policies);
Returns a sequence of Connectors for a given IOR and a list of policies. The
sequence includes one or more Connectors for each IOR profile that
matches this Connector factory and satisfies the list of policies.

Parameters:

ref — The IOR for which Connectors are returned.
pol i ci es — The policies that must be satisfied.
Returns:

The sequence of Connectors.

436

Module OCI

equivalent

bool ean equivalent(in IORiorl,
inIRior2);

Checks whether two I0ORs are equivalent, taking only profiles into account
matching this Connector factory.

Parameters:

i or1 — The first IOR to check for equivalence.

i or2 — The second IOR to check for equivalence.
Returns:

TRLE if the IORs are equivalent, FALSE otherwise.

hash

unsi gned | ong hash(in IR ref,
i n unsigned | ong naxi mnj;

Calculates a hash value for an IOR.

Parameters:

ref — The IOR to calculate a hash value for.

maxi num— The maximum value of the hash value.

Returns:

The hash value.

get_info

ConFactorylnfo get_info();

Returns the information object associated with the Connector factory.
Returns:

The Connector factory information object.

437

CHAPTER E | Open Communications Interface Reference

Interface OCI::ConFactoryinfo

Attributes

Operations

438

local interface ConFactorylnfo
Information on an OCI ConFactory object.
See Also:

“Interface OCI::ConFactory”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

describe

string describe();

Returns a human readable description of the transport.
Returns:

The description.

add_connect_cb

voi d add_connect _cb(i n Connect @B ch);

Add a callback that is called whenever a new connection is established. If
the callback has already been registered, this method has no effect.
Parameters:

cb — The callback to add.
remove_connect_cb

voi d renove_connect _cb(in Connect CB ch);

Remove a connect callback. If the callback was not registered, this method
has no effect.

Parameters:
cb — The callback to remove.

Module OCI

Interface OCI::ConFactoryRegistry

Operations

l ocal interface ConFactoryRegistry
A registry for Connector factories.

See Also:

“Interface OCI::Connector”

“Interface OCI::ConFactory”

add_factory

voi d add_factory(in ConFactory factory)
rai ses(Fact or yAl r eadyExi sts);

Adds a Connector factory to the registry.

Parameters:

fact ory — The Connector factory to add.

Raises:

Fact or yAl r eadyExi st s — If a factory already exists with the same plugin id
as the given factory.

get_factory

ConFactory get_factory(in Pl uginld id)
rai ses(NoSuchFact ory) ;

Returns the factory with the given plugin id.
Parameters:

i d — The plugin id.

Returns:

The Connector factory.

Raises:

NoSuchFact ory — If no factory was found with a matching plugin id.
get_factories

ConFact orySeq get _factories();

Returns all registered factories.

Returns:

The Connector factories.

439

CHAPTER E | Open Communications Interface Reference

Interface OCI::Acceptor

Attributes

Operations

440

local interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to
accept client connection requests. It also provides operations for the
management of IOR profiles.

See Also:

“Interface OCI::AccFactoryRegistry”
“Interface OCI::AccFactory”
“Interface OCI::Transport”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

handle

readonly attribute Handl e handl e;

The “handle” for this Acceptor. Like with the handle for Transports, the
handle may only be used with operations like sel ect () . A handle value of
-1 indicates that the protocol plug-in does not support “selectable”
Transports.

close
voi d cl ose();

Closes the Acceptor. accept or | i sten may not be called after cl ose has
been called.

Raises:
COWM FAI LURE — In case of an error.

shutdown
voi d shut down();

Module OCI

Shutdown the Acceptor. After shutdown, the socket will not listen to further
connection requests.

Raises:
COW FAI LURE — In case of an error.

listen
void listen();

Sets the acceptor up to listen for incoming connections. Until this method is
called on the acceptor, new connection requests should result in a
connection request failure.

Raises:
COW FAI LURE — In case of an error.

accept
Transport accept (i n bool ean bl ock);

Used by CORBA servers to accept client connection requests. It returns a
Transport object, which can be used for sending and receiving octet streams
to and from the client.

Parameters:

bl ock — If set to TRUE, the operation blocks until a new connection has been
accepted. If set to FALSE, the operation returns a nil object reference if there
iS no new connection ready to be accepted.

Returns:

The new Transport object.

Raises:

OOW FAI LURE — In case of an error.
connect_self

Transport connect_sel f();

Connect to this acceptor. This operation can be used to unblock threads that
are blocking in accept .

Returns:

The new Transport object.

Raises:

TRANSI ENT — If the server cannot be contacted.
QOOWM FAI LURE — In case of other errors.

441

CHAPTER E | Open Communications Interface Reference

442

add_profiles

void add_profiles(in Profilelnfo profile_info,
inout ICRref);

Add new profiles that match this Acceptor to an I0R.

Parameters:

profile_i nfo — The basic profile information to use for the new profiles.
ref — The IOR.

get_local_profiles
Profil elnfoSeq get_local _profiles(in ICR ref);

From the given IOR, get basic information about all profiles for which are
local to this Acceptor.

Parameters:

ref — The IOR from which the profiles are taken.

Returns:

The sequence of basic information about profiles. If this sequence is empty,
there is no profile in the IOR that is local to the Acceptor.

get_info

Acceptorinfo get_info();

Returns the information object associated with the Acceptor.

Returns:

The Acceptor information object.

Module OCI

Interface OCI::Acceptorinfo

Attributes

Operations

local interface Acceptorlnfo

Information on an OCI Acceptor object. Objects of this type must be
narrowed to an Acceptor information object for a concrete protocol
implementation, for example to OC1:: 11 CP: : Accept or I nf o in case the
plug-in implements IIOP.

See Also:
“Interface OCI::Acceptor”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

describe

string describe();

Returns a human readable description of the transport.
Returns:

The description.

add_accept_cb

voi d add_accept _cb(in Accept (B ch);

Add a callback that is called whenever a new connection is accepted. If the
callback has already been registered, this method has no effect.

Parameters:
cb — The callback to add.

remove_accept_ch

voi d renove_accept _cb(in Accept B ch);

Remove an accept callback. If the callback was not registered, this method
has no effect.

Parameters:

443

CHAPTER E | Open Communications Interface Reference

cb — The callback to remove.

444

Module OCI

Interface OCI::AcceptCB

Operations

local interface AcceptCB

An interface for an accept callback object.
See Also:

“Interface OCI::Acceptorinfo”

accept_cb

voi d accept _cb(in Transportlnfo transport_info);

Called after a new connection has been accepted. If the application wishes
to reject the connection CORBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o — The Transportinfo for the new connection.

445

CHAPTER E | Open Communications Interface Reference

Interface OCI::AccFactory

Attributes

Operations

446

local interface AccFactory

An interface for an AccFactory object, which is used by CORBA servers to
create Acceptors.

See Also:
“Interface OCI::Acceptor”
“Interface OCI::AccFactoryRegistry”

id

readonly attribute Pluginld id;
The plugin id.

tag

readonly attribute Profileld tag;
The profile id tag.

create_acceptor

Accept or create_acceptor (i n ParanBeq parans)
rai ses(Inval i dParanj;

Create an Acceptor using the given configuration parameters. Refer to the
plug-in documentation for a description of the configuration parameters
supported for a particular protocol.

Parameters:

par ans — The configuration parameters.

Returns:

The new Acceptor.

Raises:

I nval i dPar am— If any of the parameters are invalid.
change_key

voi d change_key(inout ICOP.:ICRior,
in (oj ectKey key);

Change the object-key in the IOR profile for this given protocol.
Parameters:

Module OCI

i or —The IOR

key — The new object key

get_info

AccFactoryl nfo get_info();

Returns the information object associated with the Acceptor factory.

Returns:
The Acceptor

447

CHAPTER E | Open Communications Interface Reference

Interface OCI::AccFactorylnfo

local interface AccFactorylnfo
Information on an OCI AccFactory object.
See Also:

“Interface OCI::AccFactory”

Attributes id
readonly attribute Pluginld id;
The plugin id.
tag

readonly attribute Profileld tag;
The profile id tag.

Operations describe
string describe();
Returns a human readable description of the transport.
Returns:
The description.

448

Module OCI

Interface OCI::AccFactoryRegistry

Operations

local interface AccFactoryRegistry
A registry for Acceptor factories.

See Also:

“Interface OCI::Acceptor”

“Interface OCI::AccFactory”

add_factory

voi d add_factory(in AccFactory factory)
rai ses(Fact or yAl r eadyExi sts);

Adds an Acceptor factory to the registry.

Parameters:

fact ory — The Acceptor factory to add.

Raises:

Fact or yAl r eadyExi st s — If a factory already exists with the same plugin id
as the given factory.

get_factory

AccFactory get_factory(in Pluginld id)
rai ses(NoSuchFact ory) ;

Returns the factory with the given plugin id.
Parameters:

i d — The plugin id.

Returns:

The Acceptor factory.

Raises:

NoSuchFact ory — If no factory was found with a matching plugin id.
get_factories

AccFact orySeq get _factories();

Returns all registered factories.

Returns:

The Acceptor factories.

449

CHAPTER E | Open Communications Interface Reference

Interface OCI::Current

Operations

450

local interface Qurrent
inherits from CORBA : Qurrent

Interface to access Transport and Acceptor information objects related to the
current request.

get_oci_transport_info

Transport|nfo get_oci _transport_info();

This method returns the Transport information object for the Transport used
to invoke the current request.

get_oci_acceptor_info

Acceptorlnfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which
created the Transport used to invoke the current request.

Module OCI::110P

Module OCI::I1IOP

This module contains interfaces to support the 11OP OCI plug-in.

Aliases InetAddr
typedef octet |netAddr[4];

Alias for an array of four octets. This alias will be used for address
information from the various information classes. The address will always be
in network byte order.

Constants PLUGIN_ID
const Pluginld PLUAN_ID = "iiop";
The identifier for the <SmallCaps=0RBacus IIOP plug-in.

451

CHAPTER E | Open Communications Interface Reference

Interface OCI::IIOP::Transportinfo

local interface Transportlnfo
inherits fromQd:: Transport!|nfo

Information on an 110P OCI Transport object.
See Also:

“Interface OCI::Transport”

“Interface OCI::Transportinfo”

Attributes addr
readonly attribute |net Addr addr;
The local 32 bit IP address.

port
readonly attribute unsigned short port;
The local port.

remote_addr
readonly attribute |netAddr renote_addr;
The remote 32 bit IP address.

remote_port
readonly attribute unsigned short renote_port;
The remote port.

452

Module OCI::110P

Interface OCI::I1IOP::Connectorinfo

Attributes

local interface Connectorlnfo
inherits fromQd:: Connectorlnfo

Information on an [IOP OCI Connector object.
See Also:

“Interface OCI::Connector”

“Interface OCI::Connectorinfo”

remote_addr
readonly attribute |netAddr renote_addr;
The remote 32 bit IP address to which this connector connects.

remote_port
readonly attribute unsigned short renote_port;
The remote port to which this connector connects.

453

CHAPTER E | Open Communications Interface Reference

Interface OCI::11OP::ConFactorylnfo

454

I ocal interface ConFactorylnfo
inherits fromQd:: ConFactoryl nfo

Information on an 11OP OCI Connector Factory object.
See Also:

“Interface OCI::ConFactory”

“Interface OCI::ConFactorylnfo”

Module OCI::110P

Interface OCI::110OP::Acceptorinfo

Attributes

local interface Acceptorlnfo
inherits fromQd:: Acceptorlnfo

Information on an [IOP OCI Acceptor object.
See Also:

“Interface OCI::Acceptor”

“Interface OCI::Acceptorinfo”

hosts
readonly attribute CORBA : StringSeq hosts;
Hostnames used for creation of 11OP object references.

addr
readonly attribute |netAddr addr;
The local 32 bit IP address on which this acceptor accepts.

port
readonly attribute unsigned short port;
The local port on which this acceptor accepts.

455

CHAPTER E | Open Communications Interface Reference

Interface OCI::IIOP::AccFactorylnfo

I ocal interface AccFactorylnfo
inherits fromQd:: AccFactorylnfo

Information on an IIOP OCI Acceptor Factory object.

456

In this appendix

APPENDIX F

Orbacus Balancer
Reference

This appendix describes the interfaces for the Orbacus
Balancer.

This appendix contains the following sections:

Module LoadBalancing page 458

Module LoadBalancing::Util page 469

457

CHAPTER F | Orbacus Balancer Reference

Module LoadBalancing

The definitions in this module provide the interface of the Orbacus Balancer.

Aliases Groupld
typedef string G oupld;
A load balanced group ID.

GroupldSeq
typedef sequence<G oupl d> G oupl dSegq;
A sequence of load balanced group IDs.

Memberld
typedef string Menberld;
A member ID.

MemberldSeq
typedef sequence<Menber | d> Menber | dSeq;
A sequence of member IDs.

Objectld
typedef Portabl elnterceptor:: Chjectld (bjectld;
An object ID.

PropertyName
typedef string PropertyNane;
A load balancing strategy configuration property name.

PropertyValue
typedef any PropertyVal ue;
A load balancing strategy configuration property value.

PropertySeq
typedef sequence<Property> PropertySeq;
A sequence of load balancing strategy configuration properties.

PropertyErrorSeq
t ypedef sequence<PropertyError> PropertyErrorSeq;
A sequence of load balancing strategy configuration property errors.

458

Constants

Module LoadBalancing

MemberDataSeq
typedef sequence<Menber Dat a> Menber Dat aSeq;
A sequence of member data.

TolerancePropertyValue
typedef unsigned | ong Tol er ancePropertyVal ue;
The tolerance load balancing strategy property value. The default value is O.

LoadPerClientPropertyType

typedef unsigned | ong LoadPer d i ent PropertyType;

The load-per-client load balancing strategy property value. The default value
is 0.

RejectPropertyValue

typedef unsigned | ong Rej ect PropertyVal ue;

The reject-load load balancing strategy property value. The default value is
0, meaning no rejections.

DampeningMultiplierPropertyValue

typedef float Danpeni ngMiltipli er PropertyVal ue;

The dampening-multiplier load balancing strategy property value. The
default value is 0, which disables dampening.

CriticalLoadPropertyValue

typedef unsigned |ong Oitical LoadPropertyVal ue;

The critical-load load balancing strategy property value. The default value is
0, which disables re-balancing.

MEMBER_POLICY_ID

const COORBA: : Pol i cyType MEMBER PCLI CY_I D = 1000;
This policy type identifies the member policy.
TolerancePropertyName

const string Tol erancePropertyNane = "tol erance”;

The tolerance load balancing strategy property name. Members with a load
difference that is less than tolerance are considered to have the same load.

LoadPerClientPropertyName
const string LoadPerdientPropertyName = "l oad-per-client”;

459

CHAPTER F | Orbacus Balancer Reference

Enums

Structs

460

The load-per-client load balancing strategy property name. The
load-per-client property is an estimate of the load produced by a client.

RejectLoadPropertyName

const string RejectlLoadPropertyName = “reject-I|oad";

The reject-load load balancing strategy property name. Only members with
loads less than reject-load are selected.

DampeningMultiplierPropertyName
const string Danpeni ngMil tiplierPropertyName =

"danpeni ng-nul tiplier";
The dampening-multiplier load balancing strategy property name. A
dampening technique is used to smooth out spikes that may occur in the
reported loads of members. The load of a member is calculated using the
dampening-multiplier property as follows:
load = mult * old_load + (1 - nult) * new | oad
where mul t is the dampening-multiplier property value. The
dampening-multiplier property must be greater than or equal to O and less
than 1.

CriticalLoadPropertyName

const string Oitical LoadPropertyNane = "critical -1oad";

The critical-load load balancing strategy property name. Members with
loads greater than or equal to the critical-load are re-balanced.

PropertyErrorCode

enum Pr opert yEr r or Code
{ BAD PRCPERTY,
BAD VALUE
h
This enumeration contains the various load balancing strategy configuration
property error codes.

Property

struct Property
{

Pr opert yNanme nane;
PropertyVal ue val ue;

}s

Module LoadBalancing

A load balancing strategy configuration property.

PropertyError

struct PropertyError
{

Propert yNane nane;
Propert yError Code code;
h
A load balancing strategy configuration property error.

MemberData

struct Menber Dat a

{
Menber 1 d menber _i d;
LoadAl ert alert;

}
The member data.

MemberPolicyValue

struct Menber Pol i cyVal ue
{
G oupld group_id;
Menber 1 d menber _i d;
h
The member policy value.

Exceptions MemberExists

exception Menber Exi sts

{

h

A MemberExists exception indicates that a member with the specified id is
already exists in the load balanced group.

MemberNotFound

exception Menber Not Found

{

h

A MemberNotFound exception indicates that the specified member does not
exist in the load balanced group.

GroupExists
exception & oupExi sts

{

461

CHAPTER F | Orbacus Balancer Reference

462

h
A GroupExists exception indicates that a load balanced group with the
specified id already exists.

GroupNotFound

exception @ oupNot Found

{

h

A GroupNotFound exception indicates that the specified load balanced
group does not exist.

StrategyNotFound

exception StrategyNot Found

{

}

A StrategyNotFound exception indicates that the specified strategy is not
supported by the Balancer.

StrategyNotAdaptive

exception StrategyNot Adaptive

{

}

A StrategyNotAdaptive exception indicates that the strategy is not an
adaptive strategy and does not require load updates.

InvalidProperties
exception InvalidProperties

{

H
An InvalidProperties exception indicates that specified properties were not
valid and could not be used to create the strategy.

PropertyErrorSeq error;

Module LoadBalancing

Interface LoadBalancing::LoadAlert

interface LoadA ert

Implemented by a server that wishes to receive load alerts (a signal to
redirect requests back to the Balancer).

Operations alert
void alert();
Redirect the next request back to the Balancer.

463

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Strategy

interface Strategy

Used to choose the next member to service a new client connection. The
Balancer provides several implementations of the Strategy interface.

Operations get_name
string get_nane();
Retrieve the name of the strategy.

get_properties
PropertySeq get _properties();
Get the property set of the strategy.

adjust
voi d adj ust (i n Menber Dat aSeq nenbers) ;
Update the members.

get_next

Menber | d get _next ()
rai ses(Menber Not Found) ;

Get an un-loaded member.

push_load

voi d push_|l oad(in Menber|d nenber_id,
i n unsigned | ong | oad)
rai ses(Menber Not Found,
St rat egyNot Adapt i ve) ;

Update the load of a member.

destroy
voi d destroy();
Destroy the strategy.

464

Module LoadBalancing

Interface LoadBalancing::StrategyProxy

Operations

interface StrategyProxy
Acts as a proxy for the load balancing strategy.

get_name
string get_nane();
Retrieve the name of the strategy.

get_properties
PropertySeq get_properties();
Get the property set of the strategy.

push_load

voi d push_l oad(in Menber|d nenber_id,
in unsigned | ong | oad)
rai ses(Menber Not Found,
Strat egyNot Adapti ve);

Update the load of a member.

465

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Group

Operations

466

interface Q oup
Represents a load balanced group.

get_id
QGoupld get_id();
Get the id of the load balanced group.

get_ior

Cbj ect get_ior(in string repository_id,
in ojectld oid);

Get an IOR for use by a client of this load balanced group.

get_strategy_proxy
Strat egyProxy get_strategy_proxy();
Get the strategy proxy of the load balanced group.

set_strategy

voi d set_strategy(in string nane,
in PropertySeq properties)
rai ses(Strat egyNot Found,
I nval i dProperties);

Use the specified built-in load balancing strategy.

set_custom_strategy
voi d set_customstrategy(in Strategy the_strategy);
Use the given custom load balancing strategy.

add_member

voi d add_renber (i n Menber | d nenber_id)
rai ses(Menber Exi sts) ;

Add a member to the load balanced group.

remove_member

voi d renove_renber (i n Menber | d menber _i d)
rai ses(Menber Not Found) ;

Remove a member of the load balanced group.

set_load_alert
voi d set_| oad_al ert(in Menberld menber _id,

in LoadAlert alert)
rai ses(Menber Not Found) ;

Set the LoadAlert object for a member.

list_members
Menber | dSeq | i st_menbers();
Enumerate the members.

destroy
voi d destroy();
Destroy the load balanced group.

Module LoadBalancing

467

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::GroupFactory

Operations

468

interface G oupFactory
Used to create, destroy and retrieve load balanced groups.

create

QG oup create(in Qoupld group_id)
rai ses(QG oupExi sts);

Create a new load balanced group with the given id.

get

Goup get(in QGoupld group_id)
rai ses(@ oupNot Found) ;

Get the load balanced group with the given id.
list

QoupldSeq list();

List the set of existing load balanced groups.

shutdown
voi d shut down();
Shutdown the Balancer.

Module LoadBalancing::Util

Module LoadBalancing::Util

The definitions in this module provide the interface for the Orbacus Balancer
utility objects that are provided by the Balancer. These utility objects can be

used to implement the features required by load balanced servers that use
adaptive load balancing.

469

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Util::LoadAlert

local interface LoadAl ert
Interface to manage load alerts sent by the Balancer.

Operations alert
void alert();
Forward the next request to the Balancer.

get_alert_expire
unsigned long get_alert_expire();
Retrieve the alert expire time.

set_alert_expire
void set_alert_expire(in unsigned long mllis);
Set the alert expire time.

470

Module LoadBalancing::Util

Interface LoadBalancing::Util::LoadCalculator

I ocal interface LoadCal cul ator

Interface for the calculation of the server load.

The LoadCalculator is used by the LoadUpdater to calculate the current
load of the server (which will be used as the load of each member registered
with the LoadUpdater). The implementation provided by the Balancer
calculates the load based on the number of active requests since the last
invocation of cal cul ate_| oad() .

See Also:

“Interface LoadBalancing::Util::LoadUpdater”

Operations calculate_load
unsi gned | ong cal cul ate_| oad();
Calculate the load.

471

CHAPTER F | Orbacus Balancer Reference

Interface LoadBalancing::Util::LoadUpdater

Operations

472

local interface LoadUpdat er
Interface to manage load updates sent to the Balancer.

At regular intervals (set by the update frequency) the LoadUpdater gets the
load from the LoadCalculator and pushes it to the load balanced group of
each registered member.

See Also:
“Interface LoadBalancing::Util::LoadCalculator”

get_update_frequency
unsi gned | ong get _updat e_frequency();
Retrieve the load push frequency.

set_update_frequency
voi d set_update_frequency(in unsigned long mllis);
Set the load push frequency.

set_load_calculator
voi d set_| oad_cal cul ator (i n LoadCal cul ator calc);
Set the load calculator.

register_member

voi d regi ster_nenber (in Menberld nenber_id,
in Goupld group_id)
rai ses(@ oupNot Found) ;

Register a load balanced group member.

unregister_member

voi d unregi ster_mnenber(in Menberld menber _id,
in Goupld group_id);

Unregister a load balanced group member.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Buschman, F., et al. 1996. Pattern-Oriented Software
Architecture: A System of Patterns. New York: Wiley.

Gamma, E., et al. 1994. Design Patterns. Reading, MA:
Addison-Wesley

Henning, M., and S. Vinoski. 1999. Advanced CORBA
Programming with C++. Reading, MA: Addison-Wesley.

Object Management Group. 1999. The Common Object
Request Broker: Architecture and Specification. Revision
2.3.1. ftp://www.omg.org/pub/docs/formal/99-10-07 .pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. C++ Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. IDL/Java Language
Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-53.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. Portable Interceptors.
ftp://ftp.omg.org/pub/docs/orbos/99-12-02.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1998. CORBA Messaging.
ftp://ftp.omg.org/pub/docs/orbos/98-05-06.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1998. CORBAservices: Common
Object Services Specification.
ftp://www.omg.org/pub/docs/formal/98-12-09.pdf.
Framingham, MA: Object Management Group.

Object Management Group. 1999. Naming Service
Specification. ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf.
Framingham, MA: Object Management Group.

473

CHAPTER G |

474

[11]

[12]

[13]

[14]

IONA Technologies, Inc. 2001. JThreads/C++.
http://www.orbacus.com/jtc/. Waltham, MA: IONA
Technologies, Inc.

IONA Technologies, Inc. 2001. JThreads/C++ User's Manual.
Waltham, MA: IONA Technologies, Inc.

IONA Technologies, Inc. 2001. Orbacus.
http://www.orbacus.com/ob/. Waltham, MA: IONA
Technologies, Inc.

Schmidt, D. C. 1995. “Reactor: An Object Behavioral
Pattern for Concurrent Event Demultiplexing and Event
Handler Dispatching.” In Pattern Languages of Program
Design, ed. James O. Coplien and Douglas C. Schmidt.
Reading, MA: Addison-Wesley.

Index

B

Basic Object Adapter 85
Bindings 189

BOA 85

C

Callbacks 78

Command-line Options 61

Concurrency Models
Threaded 320
Thread-per-Client 322
Thread-per-Request 323
Thread Pool 324

Configuration File 63

Currently Executing Request 114

D
Documenting IDL Files 41

E

Event Channel 238
Event Consumers 239
Event Loop 80

Event Service 229
Event Suppliers 239
Exceptions 365

H

Hello World example application 2
Hostname 123, 335

HTML 41

I
IFR 249
Implementation Repository 149, 151
Implementation Repository Administration 162
IMR 149, 151
IMR Console 173
included IDL files 40
Initial Services 136, 146
Configuring 143

Resolving 141
Interface Repository 249
IP Address 337, 339
irdel 256
irfeed 256

J

javadoc 43

N

Names Console 203

Name Service
Configuration 185
Initialization 193
Persistence 186

0]
OAD 151
Object Activation Daemon 151
Object Adapter
Configuration 59
Initialization 50
Object Key 125
Object References 118
Objects
Locating 117
Persistent 104
Transient 104
OCl 329
Acceptor 330
Acceptor Factory 330
Bi-directional Plug-in 355
Connector 330
Connector Factory 330
IIOP Plug-in 341, 346, 355
Info Objects 331
Registries 330
Transport 330
Open Communications Interface 329
Options
hidl 35
irgen 38

475

INDEX

jidl 33
ridl 36
ORB
Configuration 52
Destruction 79
ORBacus Names 179

P

POA 85, 154

POA Manager 70
Root POA Manager 71

Policies 299
ConnectionReusePolicy 301
ConnectTimeoutPolicy 301
InterceptorPolicy 301, 303
LocationTransparencyPolicy 302
ProtocolPolicy 302
RequestTimeoutPolicy 302
RetryPolicy 302
TimeoutPolicy 303

Popup Menu 215

Port 124, 335

Portable Object Adapter 85

Programming Examples
Event Service 245
Implementation Repository 168, 280
Interface Repository 257
Name Service 192
OCl 333
Policies 304
Property Service 225

Properties
ooc.config 52
ooc.event.max_events 233
ooc.event.max_retries 233
ooc.event.port 233
ooc.event.pull_interval 233
ooc.event.retry_multiplier 233
ooc.event.retry_timeout 233
ooc.event.trace.events 234
ooc.event.trace.lifecycle 234
ooc.event.typed_service 234
ooc.ifr.options 253
ooc.ifr.port 253
ooc.imr.dbdir 160, 268, 279
ooc.imr.trace.oad 160, 268, 279
ooc.naming.callback_timeout 185
ooc.naming.database 185
0oc.naming.no_updates 185

476

ooc.naming.port 185
ooc.naming.timeout 185
ooc.naming.trace_level 185
ooc.oci.client 52
ooc.oci.plugin 52
ooc.oci.server 52
ooc.orb.client_timeout 53
ooc.orb.conc_model 53
ooc.orb.default_init_ref 53
ooc.orb.default wecs 53
ooc.orb.extended_wchar 53
ooc.orb.giop.max_message_size 53
ooc.orb.id 54
ooc.orb.module.name 54
ooc.orb.modules 54
ooc.orb.native_cs 54
ooc.orb.native_wcs 54
ooc.orb.oa.conc_model 59
ooc.orb.oa.endpoint 59
ooc.orb.oa.numeric 60
ooc.orb.oa.thread_pool 60
ooc.orb.oa.version 60

ooc.orb.poamanager.manager.conc_model 60

ooc.orb.poamanager.manager.endpoint 60
ooc.orb.poamanager.manager.version 60
ooc.orb.policy.connection_reuse 55
ooc.orb.policy.connect_timeout 55
ooc.orb.policy.interceptor 55
ooc.orb.policy.locate_request 55
ooc.orb.policy.location_transparency 55
ooc.orb.policy.protocol 55
ooc.orb.policy.rebind 55
ooc.orb.policy.request_timeout 55
ooc.orb.policy.retry 56
ooc.orb.policy.retry.interval 56
ooc.orb.policy.retry.max 56
ooc.orb.policy.retry.remote 56
ooc.orb.policy.sync_scope 56
ooc.orb.policy.timeout 56
ooc.orb.server_name 56
ooc.orb.server_shutdown_timeout 57
ooc.orb.server_timeout 57
ooc.orb.service.name 57
ooc.orb.trace.connections 58
ooc.orb.trace.retry 58
ooc.orb.use_type_code_cache 57
ooc.property.port 218

Property Service 217

R

Reactor 325
Recursion 207
RTF 41

S

Servants 86
Activation 99
C++ 96
Deactivation 104
Delegation 90
Inheritance 87
Java 97

T
Toolbar 176, 214

U

URL 129, 130
corbaloc 131
corbaname 133
file 134
relfile 135

wW

Windows NT Registry 64
Windows Reactor 327

X
X11 Reactor 326

INDEX

477

INDEX

478

	Preface
	Getting Started
	The ‘Hello World’ Example Application
	Defining the Example in IDL
	Implementing the Example in C++
	Implementing the Server
	Writing the Server Program
	Implementing the Client
	Compiling and Linking
	Running the Application

	Implementing the Example in Java
	Implementing the Server
	Implementing the Client
	Compiling
	Running the Application

	Summary
	Where To Go From Here

	Generating Code with Orbacus
	Orbacus Translators
	Translating IDL to C++
	Translating IDL to Java
	Translating IDL to HTML
	Translating IDL to RTF
	Generating C++ from an Interface Repository
	The IDL-to-C++ Translator and the Interface Repository
	Include Statements
	Documenting IDL Files
	Using javadoc

	ORB and Object Adapter Initialization
	Initializing the C++ ORB
	Initializing the Java ORB
	Object Adapter Initialization
	Configuring the ORB and Object Adapter
	ORB Properties
	OA Properties
	Command-line Options
	Using a Configuration File
	Using the Windows NT Registry
	Defining Properties
	Precedence of Properties
	Advanced Property Usage

	Using POA Managers
	The Root POA Manager
	Anonymous POA Managers
	The POA Manager Factory
	Endpoints
	Command-line Options and Endpoints
	Dispatching Requests
	Callbacks

	ORB Destruction
	Server Event Loop

	CORBA Objects
	Overview
	Implementing Servants
	Implementing Servants using Inheritance
	Implementing Servants using Delegation

	Creating Servants
	Creating Servants using C++
	Creating Servants using Java

	Activating Servants
	Implicit Activation of Servants using C++
	Implicit Activation of Servants using Java
	Explicit Activation of Servants using C++
	Explicit Activation of Servants using Java

	Deactivating Servants
	Factory Objects
	Factory Objects using C++
	Factory Objects using Java
	Caveats
	Obtaining the POA for a Servant
	Getting the POA for a Currently Executing Request

	Locating Objects
	Obtaining Object References
	Lifetime of Object References
	Hostname
	Port Number
	Object Key

	Stringified Object References
	Using a File
	Using a URL

	Object Reference URLs
	corbaloc: URLs
	corbaname: URLs
	file: URLs
	relfile: URLs

	The BootManager
	BootManager Interface
	How the BootManager Works
	Using the BootManager

	Initial Services
	Resolving an Initial Service
	Configuring the Initial Services
	The Initial Service Locator

	The IORDump utility

	The Implementation Repository
	Background
	Information Managed by the IMR
	IMR Security
	Usage
	Windows NT Native Service
	Configuration Properties
	Connecting to the Service
	Utilities
	Getting Started with the Implementation Repository
	Programming Example

	The Implementation Repository Console
	Usage
	The Menus

	Orbacus Names
	Usage
	Windows NT Native Service
	Configuration Properties
	Persistence
	Connecting to the Service
	Using the Naming Service with the IMR
	Bindings
	Name Resolution
	Programming Example
	Initialization
	Binding
	Exceptions
	The Event Loop
	Releasing Resources

	Orbacus Names Console
	Usage
	Naming Service Lookup
	The Menus
	The Edit Menu
	The View Menu
	The Tools Menu

	The Toolbar
	The Popup Menu

	Orbacus Properties
	Usage
	Connecting to the Service
	Using the Property Service with the IMR
	Creating Properties
	Querying for Properties
	Deleting Properties
	Programming Example

	Orbacus Events
	Usage
	Windows NT Native Service
	Configuration Properties

	Connecting to the Service
	Using the Event Service with the IMR
	Event Service Concepts
	The Event Channel
	Event Suppliers and Consumers
	Event Channel Policies
	Event Channel Factories

	Programming Example

	The Interface Repository
	Usage
	Windows NT Native Service
	Configuration Properties

	Connecting to the Interface Repository
	Configuration Issues
	Interface Repository Utilities
	Programming Example

	Orbacus Balancer
	Basic Concepts
	Load Balancing Strategies
	Service Security
	Usage
	Windows NT Native Service
	Configuration Properties
	Built-in Load Balancing Strategies

	Connecting to the Service
	Load Balanced IMR-enabled Servers
	Utilities
	Service Administration
	Making References
	Utility Objects
	Utility Object Configuration Properties

	Programming Example
	Non-adaptive Load Balancing
	Adaptive Load Balancing
	Running the Load Balanced Servers

	Orbacus Watson
	Tracing Levels
	Installing Watson in C++
	Installing Watson in Java
	Configuration Properties
	Sample Configuration File

	Using Policies
	Overview
	Supported Policies
	Programming Examples
	Connection Reuse Policy
	Retry Policy
	Timeout Policy
	Interceptor Call Policy

	Concurrency Models
	Concurrency Models
	Single-Threaded Concurrency Model
	Multi-Threaded Concurrency Models
	Threaded Clients and Servers
	Thread-per-Client Server
	Thread-per-Request Server
	Thread Pool Server

	The Reactor
	The X11 Reactor
	The Windows Reactor

	The Open Communications Interface
	Interface Summary
	Class Diagram

	OCI Reference
	A ‘Converter’ Class for Java
	Getting Hostnames and Port Numbers
	Determining a Client’s IP Address
	Determining a Server’s IP Address

	The IIOP OCI Plug-in
	Endpoint Configuration
	Command-line Options
	Static Linking

	The UDP OCI Plug-in
	Client Installation
	Server Installation
	Endpoint Configuration
	Static Linking
	URL Support
	Narrowing UDP Object References

	The Bi-directional OCI Plug-in
	How Does it Work?
	Peers
	Client Installation
	Server Installation
	Endpoint Configuration
	Command-line Options
	Configuration Properties
	Static Linking
	URL Support

	Exceptions and Error Messages
	CORBA System Exceptions
	INITIALIZE Minor Exception Code
	UNKNOWN Minor Exception Code
	BAD_PARAM Minor Exception Code
	NO_MEMORY Minor Exception Code
	IMP_LIMIT Minor Exception Code
	COMM_FAILURE Minor Exception Code
	MARSHAL Minor Exception Code
	NO_IMPLEMENT Minor Exception Code
	NO_RESOURCES Minor Exception Code
	BAD_INV_ORDER Minor Exception Code
	TRANSIENT Minor Exception Code
	INTF_REPOS Minor Exception Code
	OBJECT_NOT_EXIST Minor Exception Code
	INV_POLICY Minor Exception Code

	Non-Compliant Application Asserts

	Boot Manager Reference
	Interface OB::BootManager
	Interface OB::BootLocator

	Orbacus Policy Reference
	Module OB
	Interface OB::ConnectTimeoutPolicy
	Interface OB::ConnectionReusePolicy
	Interface OB::InterceptorPolicy
	Interface OB::LocateRequestPolicy
	Interface OB::LocationTransparencyPolicy
	Interface OB::ProtocolPolicy
	Interface OB::RequestTimeoutPolicy
	Interface OB::RetryPolicy
	Interface OB::TimeoutPolicy

	Module OBPortableServer
	Interface OBPortableServer::InterceptorCallPolicy

	Reactor Reference
	Module OB
	Interface OB::Reactor

	Logger Reference
	Interface OB::Logger
	Interface OB::WLogger

	Open Communications Interface Reference
	Module OCI
	Interface OCI::Buffer
	Interface OCI::Plugin
	Interface OCI::Transport
	Interface OCI::TransportInfo
	Interface OCI::CloseCB
	Interface OCI::Connector
	Interface OCI::ConnectorInfo
	Interface OCI::ConnectCB
	Interface OCI::ConFactory
	Interface OCI::ConFactoryInfo
	Interface OCI::ConFactoryRegistry
	Interface OCI::Acceptor
	Interface OCI::AcceptorInfo
	Interface OCI::AcceptCB
	Interface OCI::AccFactory
	Interface OCI::AccFactoryInfo
	Interface OCI::AccFactoryRegistry
	Interface OCI::Current

	Module OCI::IIOP
	Interface OCI::IIOP::TransportInfo
	Interface OCI::IIOP::ConnectorInfo
	Interface OCI::IIOP::ConFactoryInfo
	Interface OCI::IIOP::AcceptorInfo
	Interface OCI::IIOP::AccFactoryInfo

	Orbacus Balancer Reference
	Module LoadBalancing
	Interface LoadBalancing::LoadAlert
	Interface LoadBalancing::Strategy
	Interface LoadBalancing::StrategyProxy
	Interface LoadBalancing::Group
	Interface LoadBalancing::GroupFactory

	Module LoadBalancing::Util
	Interface LoadBalancing::Util::LoadAlert
	Interface LoadBalancing::Util::LoadCalculator
	Interface LoadBalancing::Util::LoadUpdater

	Index

