Orbacus’

Using FreeSSL for Orbacus

Version 2.2, January 2007

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: February 1, 2007

Contents

Preface
The Orbacus Library
Audience
Getting the Latest Version
Searching the Orbacus Library
Additional Resources
Document Conventions

Chapter 1 Using FreeSSL for Orbacus
What is SSL?
Installation
Endpoint Configuration
Command-Line Options
Static Linking
URL Support
Contexts

Chapter 2 Extending the Hello World Application

Server Side Usage
Client Side Usage

Determining Peer Identity

Preventing Connections to Secure/Insecure Servers
Complete Example

Client Side

Server Side

Appendix A FSSL Definitions
Appendix B Toolkits Supported by FSSL

Appendix C FSSL Reference
Module CORBA

NOOoOOoOOoO U »

13
15
16
17
18
19

25
26
30
33
35
36
37
46

55

57

59
60

CONTENTS

Module FSSL
Module IOP
Module OB

FSSL Bibliography

61
66
68

69

Preface

The Orbacus Library

The Orbacus documentation library consists of the following books:
® Using Orbacus

® Using FreeSSL for Orbacus (this book)

® JThreads/C+ +

® Orbacus Notify

® _NET Connector Programmer's Guide

Using Orbacus

This manual describes how Orbacus implements the CORBA standard, and
describes how to develop and maintain code that uses the Orbacus ORB.
This is the primary developer's guide and reference for Orbacus.

Using FreeSSL for Orbacus

This manual describes the FreeSSL plug-in, which enables secure
communications using the Orbacus ORB in both Java and C+ +.

JThreads/C+ +

This manual describes JThreads/C+ +, which is a high-level thread
abstraction library that gives C++ programmers the look and feel of Java
threads.

Orbacus Notify

This manual describes Orbacus Notify, an implementation of the Object
Management Group’s Notification Service specification.

PREFACE

.NET Connector Programmer’s Guide

This manual describes the Orbacus .NET Connector, which enables
transparent communication between clients running in a Microsoft .NET
environment and servers running in a CORBA environment.

Audience

Manuals in the Orbacus library are written for intermediate to advanced
level programmers who are:

® Experienced with Java or C++ programming

® Familiar with the CORBA standard and its specifications

These manuals do not teach the CORBA specification or CORBA

programming in general, which are prerequisite skills. These manuals
concentrate on how Orbacus implements the CORBA standard.

Getting the Latest Version
The latest updates to the Orbacus documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Orbacus Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right.

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Additional Resources

The IONA Knowledge Base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles written by IONA experts about Orbacus
and other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml

PREFACE

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width

Fixed width italic

Italic

Bold

Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE

Keying Conventions

This book uses the following keying conventions:

No prompt

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

In this chapter

CHAPTER 1

Using FreeSSL for
Orbacus

This chapter describes the FreeSSL plug-in, which enables
secure communications using the Orbacus ORB in both Java
and C++.

This chapter contains the following sections:

What is SSL? page 10
Installation page 13
Endpoint Configuration page 15
Command-Line Options page 16
Static Linking page 17
URL Support page 18
Contexts page 19

CHAPTER 1 | Using FreeSSL for Orbacus

What is SSL?

Overview

How Does It Work?

10

The Secure Sockets Layer (SSL) protocol, developed by Netscape
Communications Corporation, provides communications privacy over a
network. It is designed to prevent eavesdropping, tampering, and message
forgery. The FreeSSL plug-in enables secure communications using the
Orbacus ORB in both Java and C++. The plug-in supports SSLv3 as
defined in [11.

SSL uses symmetric cryptography for data communication (for example,
DES). In symmetric cryptography, both parties use the same key to encrypt
and decrypt data. This is different than asymmetric cryptography, in which
different keys are used for encryption and decryption. The advantage of
using symmetric cryptography for securing message traffic is that it operates
much faster than asymmetric cryptography, thereby minimizing the
overhead incurred by the use of a secure communication protocol.

Asymmetric cryptography, also known as public key cryptography (for
example, RSA or DSS), is still used in the SSL protocol for authentication
and key exchange. Using public key cryptography, each party has an
associated public and private key. Data encrypted with the public key can
only be decrypted with the private key, and vice versa. This allows a party to
prove its identity by encrypting the data with its private key. As no other
party has access to the private key, the data must have been sent by the
true party.

Each peer is authenticated using an X.509 certificate [4]. Generally, a
certificate will contain the user's name and public key and is signed by a
trustworthy entity, the so-called Certificate Authority (CA).

Usually a chain of X.509 certificates are presented. The certificate at the
head of the chain is the peer's certificate. Each certificate is signed by the
next certificate in the chain. The certificate at the end of the chain is
self-signed, and is generally the certificate of the Certificate Authority itself.

A certificate has an associated private key and passphrase. Without the
private key is it not possible to use a certificate to prove identity. The
passphrase protects the private key and is used to decrypt the private key at
runtime.

Cipher Suites

What is SSL?

Given a certificate, there must be some logic to determine whether this
certificate is trusted. This is typically done against some certificate authority.
A certificate authority is an organization that is responsible for issuing
certificates to individuals. The choice of trusted certificate authorities is
something that is best left up to the application. For instance, a company
may issue certificates to all of their employees and only trust one certificate
authority certificate.

The generation and signing of certificates is beyond the scope of this
document. For the C++ plug-in please see [5], for the Java plug-in using
iSaSiLk see [6].

The SSL protocol ensures that the connection between communicating
parties is reliable. The integrity of the message data is verified using a keyed
Message Authentication Code (MAC). The sender of a message uses a
secure, one-way hash function (for example, SHA, MD5) to compute a
unique MAC for the message. The receiver uses the same function to
compute its own MAC, and then compares what it computed against the
MAC computed by the sender. This means that corrupted or deliberately
changed messages can be detected because the two MACs will not match.

A cipher suite [1] defines: The public key algorithm used for peer
authentication and key exchange. The symmetric algorithm used for data
encryption. The secure hash function for MAC computation. During the
initial handshake, the client offers its set of supported cipher suites in its
preferred order. The server responds by selecting one of the suites, or raising
a handshake failure if they have none in common.

The following table summarizes the algorithms used by each cipher suite for
key exchange, symmetric cryptography, and MAC calculation. Note that the
SSL plug-in only supports the RSA and ADH suites.

Table 1: Supported Cipher Suites

Name Key Alg Symmetric Alg | MAC Calc
FSSL_RSA_EXPORT_WITH_NULL_MD5 RSA None MD5
FSSL_RSA_EXPORT_WITH_NULL_SHA RSA None SHA
FSSL_RSA_EXPORT_WITH_RC4_40 MD5 RSA RC4 (40 bits) MD5
FSSL RSA_WITH_RC4_128 MD5 RSA RC4 (128 bits) | MD5

11

CHAPTER 1 | Using FreeSSL for Orbacus

12

Table 1: Supported Cipher Suites
Name Key Alg Symmetric Alg | MAC Calc
FSSL RSA_WITH_RC4_128 SHA RSA RC4 (128 bits) | SHA
FSSL RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA RC2 (40 bits) MD5
FSSL RSA_WITH_IDEA CBC_SHA RSA IDEA (128 bits) | SHA
FSSL RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES (40 bits) SHA
FSSL RSA_WITH_DES CBC _SHA RSA DES (56 bits) SHA
FSSL RSA_WITH_3DES EDE_CBC_SHA RSA DES (168 bits) | SHA
FSSL DHE RSA_EXPORT_WITH_DES40 CBC SHA | RSA DES (40 bits) SHA
FSSL DHE RSA_WITH_DES CBC SHA RSA DES (56 bits) SHA
FSSL DHE RSA_WITH_3DES EDE _CBC_SHA RSA DES (168 bits) | SHA
FSSL DHE DSS _EXPORT WITH DES40 CBC SHA | DSS DES (40 bits) SHA
FSSL DHE DSS_WITH_DES CBC_SHA DSS DES (56 bits) SHA
FSSL DHE DSS _WITH_3DES EDE_CBC_SHA DSS DES (168 bits) | SHA
FSSL DH_anon_EXPORT_WITH_RC4_40 _MD5 ADH RC4 (40 bits) MD5
FSSL DH_anon WITH_RC4_ 128 MD5 ADH RC4 (128 bits) | MD5
FSSL DH_anon EXPORT WITH_DES40 CBC_SHA ADH DES (40 bits) SHA
FSSL DH_anon WITH_DES CBC_SHA ADH DES (56 bits) SHA
FSSL _DH_anon_WITH_3DES EDE_CBC_SHA ADH DES (168 bits) | SHA

Note: Not all algorithms are supported in JSSE

Installation

Installation

Plug-in Installation

Client Installation

The FSSL plug-in is an implementation of the Orbacus Open
Communications Interface (OCI) and is installed at runtime through
configuration. For more general information on Orbacus configuration and
the OCI please see the Orbacus User Guide.

The client side FSSL plug-in is installed as follows:

ooc.oci.client=fssliop [--seed FILE] [--backend IMPL]

[--trace N]

The following options are supported:

—--seed FILE

FreeSSL for C++ only. If specified, FreeSSL will use
the contents of the file filename as random data to
seed the OpenSSL (PRNG) Psuedo Random Number
Generator. This may be necessary if the operating
system doesn't have its own random data generator.
(usually /dev/random) If no random data generator is
found, and this property is not specified, FreeSSL
will use a generic seeding algorithm.

—--backend IMPL

FreeSSL for Java only. The Java version supports
multiple third-party SSL toolkits which are identified
to the plug-in during installation. Support for
different third party SSL toolkits is provided through
multiple back-end libraries where each library
includes an implementation of the FSSLImpl
interface. The --backend option accepts the name of
the class implementing the FSSLImpl interface. By
default the IAIK toolkit is used.

Please see Appendix B for information on the
supported SSL toolkits and the related back-end
library. In this manual we will assume that the IAIK
toolkit is being used.

13

CHAPTER 1 | Using FreeSSL for Orbacus

Server Installation

14

-—trace N

Sets the level of diagnostic output generated by the
plug-in itself, and vendor-specific information from
the underlying SSL toolkit. The default value is 0.

The server side FSSL plug-in is installed as shown below:

ooc.oci.server=fssliop

Note that FSSL servers must also install the client side plug-in.

Endpoint Configuration

Endpoint Configuration

Options The configuration options for an FSSL endpoint are shown below:
fssliop [--backlog N] [--bind ADDR] [--host ADDRI[,ADDR,...]]
[-—numeric] [--port N]

The following options are supported:

--backlog N Specifies the length of the queue for
incoming connection requests. Note that
the operating system may override this
setting if the value exceeds the maximum
allowed.

--bind ADDR Specifies the hostname or dotted decimal
address of the network interface on which
to bind the socket. If not specified, the
POA Manager will bind its socket to all
available network interfaces. This property
is useful in situations where a host has
several network interfaces, but the POA
Manager should only listen for connections
on a particular interface.

--host ADDR[,ADDR, ...] Specifies a list of one or more hostnames
and/or dotted decimal addresses
representing the addresses that should be
advertised in IORs.

--numeric If set, and if --host is not specified, then
the canonical dotted decimal address is
advertised in IORs. The default behavior is
to use the canonical hostname, if possible.

--port N Specifies the port number on which to
bind the socket. If no port is specified the
operating system selects an unused port
automatically.

15

CHAPTER 1 | Using FreeSSL for Orbacus

Command-Line Options

16

The FreeSSL plug-in defines the following command line options for both
the C++ and the Java version of the plug-in:

-FSSLbacklog N

Equivalent to the --backlog endpoint
option.

-FSSLbind ADDR

Equivalent to the --bind endpoint
option.

-FSSLhost ADDR[,ADDR, ...]

Equivalent to the --host endpoint
option.

-FSSLnumeric Equivalent to the --numeric endpoint
option.
-FSSLport N Equivalent to the --port endpoint option.

Static Linking

Static Linking

When statically linking a C++ application an explicit reference must be
made to the FSSL plug-in in order to include the plug-in's modules. Shown
below is the technique used by the sample programs in the fssl/demo
subdirectory. Note that the code below is enclosed in guard macros that are
only activated when statically linking. These macros are appropriate for both
Unix and Windows. First, extra include files are necessary:

#if !defined (HAVE SHARED) && !defined(FSSL_DLL)

#include <OB/OCI init.h>

#include <FSSL/OCI_FSSLIOP init.h>

#endif

Next, the plug-in must be registered prior to calling ORB init():
#if !defined (HAVE SHARED) && !defined(FSSL DLL)

//

// When linking statically, we need to explicitly register the
// plug-in prior to ORB initialization

//
OCI::register plugin("fssliop", OCI init fssliop);
#endif

17

CHAPTER 1 | Using FreeSSL for Orbacus

URL Support

18

The FSSL plug-in supports corbaloc URLs with the following protocol

syntax:

corbaloc:fssliop:host:port/object-key
The components of the URL are as follows:

fssliop This selects the FSSL plug-in.

host The hostname or IP address of the server.
port The port on which the server is listening.
object-key A stringified object key.

Contexts

Contexts

What is a Context? A context comprises three pieces of information: identity, trust decision, and
a set of cipher suites. This information is necessary to establish an SSL
connection from a client to a server and to allow a server to accept new SSL
connections from clients. For anonymous communications only the set of
cipher suites is necessary.

Context Creation Contexts are managed via a context manager. A reference to the context
manager is obtained by resolving the FSSLContextManager initial reference.
To create a new context FSSL: :Manager: :create_context is called. This
returns the ID of the newly created context.

// C++
FSSL: :ContextID id = fsslManager -> create context (
myChain, myKey, myPassPhrase, myDecider, myCiphers) ;

// Java
int id = fsslManager.create context (
myChain, myKey, myPassPhrase, myDecider, myCiphers) ;

Contexts can also be created using a PKCS12 certificate file which contains
a certificate chain and private key(s). To create a new context from a
PKCS12 file, FSSL: :Manager: :create pkcsl2 context is called.

// C++
FSSL: :ContextID id = fsslManager -> create pkcsl2 context (
pkcsl2 certificate, myPassPhrase, myDecider, myCiphers);

// Java
int id = fsslManager.create pkcsl2 context (pkcsl2 certificate,
myPassPhrase, myDecider, myCiphers);

To destroy a context call FSSL: :Manager: :destroy_context. Applications
should be careful not to destroy contexts that are currently in use.

// C++
fsslManager -> destroy context (id);

19

CHAPTER 1 | Using FreeSSL for Orbacus

// Java
fsslManager.destroy context (id);

Certificates New X.509 certificates are created using the operation
FSSL: :Manager: :create certificate. An octet sequence containing
DER-encoded certificate should be passed as an argument.

8]

// C++
FSSL::Certificate var myCertificate =
fsslManager -> create certificate (data);

// Java++
com.ooc.FSSL.Certificate myCertificate =
fsslManager.create certificate(data);

Since reading certificate data from a file is a typical use-case a helper
method FssL: :1oad file is provided. This takes a file name as the
argument and returns an octet sequence.

// C++
FSSL: :OctetSeq var data = FSSL::load file("mycert.der");

// Java
byte[] data = com.ooc.FSSL.FSSL.load file ("mycert.der");

Handling certificate data from a PKCS12 certificate file differs from DER
certificate files. Data from the PKCS12 files is loaded directly into an octet
sequence using FSSL::load_file and passed as a parameter to

FSSL: :Manager: :create_pkcsl2 context.

// C++

FSSL: :OctetSeq var pkcsl2 data = FSSL::load file("cert.pl2");

FSSL: :ContextID id = fsslManager -> create pkcsl2 context (
pkcsl2 data, myPassPhrase, myDecider, myCiphers);

// Java
byte[] pkcsl2 data = com.ooc.FSSL.FSSL.load file("cert.pl2");

int id = fsslManager.create pkcsl2 context (pkcsl2 data,
myPassPhrase, myDecider, myCiphers) ;

20

Contexts

Passphrase The passphrase is an octet sequence. Again a typical use-case is that the
passphrase is a string, therefore a helper method
FSSL_string to PassPhrase IS provided.

// C++
FSSL: :PassPhrase var myPassphrase =
FSSL::string to PassPhrase ("foobar") ;

// Java
byte[] myPassphrase =
com.ooc.FSSL.FSSL.string to PassPhrase ("foobar");

Cipher Suites The context creation method is passed a sequence of cipher suite identifiers.
A common use-case is to allow all non-anonymous ciphers. Therefore a
helper method FSSL: :get non export ciphers () is provided.

1l Carr
FSSL: :CipherSeq var ciphers = FSSL::get non export ciphers();

// Java
int[] ciphers = com.ooc.FSSL.FSSL.get non export ciphers();

Three other helper methods are also provided.

FSSL::get_export ciphers () returns a sequence of all export RSA cipher
suites (ciphers using keys that are less than 56 bits),

FSSL::get RSA ciphers () returns a sequence of all RSA RSA cipher suites,
FSSL::get DSS ciphers () returns a sequence of all DSS DSS cipher suites,
and FSSL_get_ ADH_ciphers returns a sequence of all ADH cipher suites.

If none of these helper methods supplies the desired functionality it is
possible to manually construct a sequence of the cipher suites as follows:

// C++

FSSL: :CipherSeq ciphers(2);
ciphers.length (2) ;

ciphers[0] = FSSL::RSA WITH RC4 128 MD5;
ciphers[1] = FSSL::RSA WITH RC4 128 SHA;

21

CHAPTER 1 | Using FreeSSL for Orbacus

Trust Decision

22

// Java
com.ooc.FSSL.Cipher[] ciphers =
{
com.ooc.FSSL.Cipher.RSA WITH RC4 128 MD5.value,
com.ooc.FSSL.Cipher.RSA WITH RC4 128 SHA.value,
i

The application itself must be responsible for a determination of whether a
certificate chain is trusted or not. To do this the application should provide
an implementation of the TrustDecider interface.

interface TrustDecider
{
boolean is trusted(in CertificateSeq chain);

}i

The is_trusted method is called when each new connection is established or
accepted. The trust decider can assume that the provided certificate chain is
valid and good. That means that each certificate in the chain is signed by
the next certificate and the last is self signed. If true is returned then the
chain is trusted, and the connection may continue. If false is returned then
the connection is rejected.

Contexts

This example trust decider only trusts those certificates directly signed by
some mythical certificate authority CA-X.

// C++

class MyTrustDecider : public FSSL::TrustDecider
{

!/

// CA-X certificate

!/

FSSL::Certificate var cert ;

public:

MyTrustDecider (FSSL: :Manager ptr fsslManager)

{
FSSL: :OctetSeq var data = FSSL::load file("cax.der");
cert = fsslManager -> create certificate(data);

virtual CORBA::Boolean
is trusted(const FSSL::CertificateSeq& chain)
{
if (chain.length() == 2)
return chain[1l] -> is signed by (cert);
return false;

23

CHAPTER 1 | Using FreeSSL for Orbacus

// Java

final class MyTrustDecider extends com.ooc.CORBA.LocalObject
implements com.ooc.FSSL.TrustDecider

{

//

// CA-X certificate

//

com.ooc.FSSL.Certificate cert ;

MyTrustDecider (com.ooc.FSSL.Manager fsslManager)
{
cert = fsslManager.create creatificate (
com.ooc.FSSL.FSSL.load file("cax.der"));

public bool
is trusted(com.ooc.FSSL.Certificate[] chain)
{
if (chain.length == 2)
return chain[i].is signed by (cert);
return false;

24

In this chapter

CHAPTER 2

Extending the
Hello World
Application

In order to demonstrate how to use the FreeSSL plug-in, the
standard Hello World application included with Orbacus in the
subdirectory demo/hello will be modified. The complete source
code for this example is included with the FreeSSL distribution
in the directory fssl/demo/hello.

This chapter contains the following sections:

Server Side Usage page 26
Client Side Usage page 30
Complete Example page 36

25

CHAPTER 2 | Extending the Hello World Application

Server Side Usage

Setting Identity

26

A server application must provide its identity using a context.

// C++
//
// Load the certificate chain
//
FSSL: :CertificateSeq myCerts(2);
myCerts.length (2) ;
myCerts[0] = fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL::load file("server.der")));

myCerts[1] = fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL::1load file ("CAcert.der")));

//
// Create a new context with this certificate chain
//
FSSL: :ContextID id = fsslManager -> create context (
myCerts,
FSSL: :OctetSeq var (FSSL: :loadFile ("serverkey.der")),
FSSL: :PassPhrase var (FSSL::string to PassPhrase ("foobar")),
myTrustDecider,
FSSL: :CipherSeq var (FSSL::get RSA ciphers()));

Server Side Usage

// Java

//

// Load the certificate chain

//

com.ooc.FSSL.Certificate[] myCerts =
new com.ooc.FSSL.Certificate[2];

myCerts[0] = fsslManager.create certificate (
com.ooc.FSSL.FSSL.load file("server.der"));

myCerts[1l] = fsslManager.create certificate (
com.ooc.FSSL.FSSL.load file("ca.der"));

/!

// Create the server context

//

int id = fsslManager.create context (

myCerts,

com.ooc.FSSL.FSSL.load file("serverkey.der"),
com.ooc.FSSL.FSSL.string to PassPhrase ("foobar"),
myTrustDecider,
com.ooc.FSSL.FSSL.get RSA ciphers());

This example defines the certificate chain for the server. The server's X.509
certificate will be obtained from the file server.der. This certificate is
authenticated by the certificate in the file CAcert.der. The private key of the
server's certificate is contained in the file serverkey.der and is decrypted
using the passphrase foobar. In a real application it wouldn't be prudent to
store the certificate's passphrase in plain text. Typically the pass-phrase
should be requested from the user.

Once a context has been created, the next step is to call
FSSL::create_poa_manager to initialize the server side of the FreeSSL
connection. You can configure the RootPOA's POAManager simply by
creating a POAManager name 'RootPOAManager'. Keep in mind that this
step must be done prior to resolving the 'RootPOA" initial reference,
otherwise the RootPOAManager will have already been created with the
default configuration. The third and fourth arguments to
FSSL::create_poa_manager are the reference to the FSSL::Manager and a

27

CHAPTER 2 | Extending the Hello World Application

ContextID which should be associated with the POAManager to be created.
The associated ContextID identifies the SSL identity the server will use when
establishing connections.

// C++

PortableServer: :POAManager var poaManager =
FSSL: :create poa manager (

"RootPOAManager", orb, fsslManager, id, props);

// Java

org.omg.PortableServer.POAManager poaManager =
com.ooc.FSSL.FSSL.create poa manager (
"RootPOAManager", orb, fsslManager, id, props);

Determining Peer Identity The FSSL::Current interface can be used if the server needs to determine the
identity of the peer that invoked the current operation.

First a reference to the FSSL::Current object must be retrieved.

// C++
FSSL: :Current var fsslCurrent =
FSSL::Current:: narrow (CORBA::Object var (

orb -> resolve initial references ("FSSLCurrent")));

// Java
com.ooc.FSSL.Current fsslCurrent =
com.ooc.FSSL.CurrentHelper.narrow (

orb.resolve initial references ("FSSLCurrent"));

Now the FSSL::Current:get_peer_certificate_chain can be used to determine
the identity of the caller:

// Ct+
FSSL::CertificateSeq var chain =
fsslCurrent -> get peer certificate chain();

// Java
com.ooc.FSSL.X509Certificate[] chain =
fsslCurrent.getPeerCertificateChain () ;

28

Server Side Usage

The negotiated cipher can also be determined using the FssL: :Current
object.

1l Carr
FSSL: :Cipher cipher = fsslCurrent -> get peer cipher();

// Java
com.ooc.FSSL.Cipher cipher = fsslCurrent.get peer cipher();

If this method is called outside of the context of a server method invocation
a FSSL: :Current : :NoContext exception is raised. If the current connection
is not an SSL connection then a FssL: :Current: :NoPeer exception is
raised.

29

CHAPTER 2 | Extending the Hello World Application

Client Side Usage

Setting Identity First a context must be created, as in the server case. Next a context policy
must be created with the context id. Policies are a standard CORBA
mechanism for controlling operational behaviour, and are considered to be
immutable objects. That is, once they have been created, they may not be
changed. The set of policies associated with an object reference are also
considered to be immutable.

// C++
CORBA: :Policy var contextPolicy = fsslManager ->
create context policy(id);

// Java
org.omg.CORBA.Policy contextPolicy =
fsslManager.create context policy(id);

The CORBA standard provides three methods to associate policies with
object references.

ORB Level Policies The ORB level policies are managed using the ORB Policy Manager, which
is resolved through the initial reference ORBPolicyManager.

// C++
CORBA: :PolicyManager var policyManager =
CORBA: :PolicyManager:: narrow (CORBA: :Object var (
orb -> resolve initial references ("ORBPolicyManager")));

// Java

org.omg.CORBA.PolicyManager policyManager =
org.omg.CORBA.PolicyManagerHelper.narrow (
orb.resolve initial references ("ORBPolicyManager")) ;

Through this interface the current set of ORB level policies can be examined
and changed. The set of ORB level policies will be associated with every
new object reference that is created by that ORB.

30

Object Level Policies

Thread Level Policies

Client Side Usage

Therefore, to associate a context policy with every object reference created
by the ORB, the policy should be set on the ORB Policy Manager.

1l Carr

CORBA: :PolicyList pl(1);

pl.length(1);

pl[0] = contextPolicy;

policyManger -> add policy overrides (pl);

// Java

org.omg.CORBA.Policy[] pl = new org.omg.CORBA.Policy[l];
pl[0] = contextPolicy;
policyManager.add policy overrides (pl);

Once object references have been created it is possible to create, a new
object reference with a different set of associated policies by calling
set_policy_overrides on the object reference. (In Java, set_policy_overrides
is not actually called on the object, but on a delegate created from the
object.)

// C++
CORBA: :PolicyList pl(1l);
pl.length(1) ;
pl[0] = contextPolicy;
CORBA: :Object var obj =
myObj -> set policy overrides (pl, CORBA::ADD OVERRIDE) ;

// Java

org.omg.CORBA.Policy[] pl = new org.omg.CORBA.Policy[l];

pl[0] = contextPolicy;

com.ooc.CORBA.Delegate delegate = (com.ooc.CORBA.Delegate)
((org.omg.CORBA.portable.ObjectImpl)myObj) . get delegate();

org.omg.CORBA.Object obj = delegate.set policy overrides (

pl, org.omg.CORBA.SetOverrideType.ADD OVERRIDE) ;

Once set_policy_overrides has been called, the returned object reference will
have a new set of associated policies. Note that the original object reference
is not affected.

A thread of execution in the application may have an associated set of
policies. For the purposes of the SSL plug-in the context policy is not
considered to be a thread level policy.

31

CHAPTER 2 | Extending the Hello World Application

Full Example The following is the full example:

// C++
FSSL: :CertificateSeq myCerts (2) ;
myCerts.length(2);

myCerts[0] = fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL: :loadFile ("client.der")));
myCerts[1] = fsslManager -> create certificate(

FSSL: :OctetSeq var (FSSL: :loadFile ("CAcert.der")));
FSSL: :ContextID id = fsslManager -> create context (
myCerts,
FSSL: :OctetSeq var (FSSL: :loadFile ("clientkey.der")),
FSSL: :PassPhrase var (FSSL::string to PassPhrase ("foobar")),
myTrustDecider,
FSSL: :CipherSeq var (FSSL: :getDefaultCiphers()));
CORBA: :PolicyManager var policyManager =
CORBA: :PolicyManager:: narrow (CORBA: :Object var (
orb -> resolve initial references ("ORBPolicyManager")));
CORBA: :PolicyList pl(1);
pl.length(1);
pl[0] = fsslManager -> create context policy(id);
policymanger -> add policy overrides (pl);

// Java
com.ooc.FSSL.Certificate[] myCerts = new
com.ooc.FSSL.Certificate([2];

myCerts[0] = fsslManager.create certificate(
com.ooc.FSSL.FSSL.load file("client.der"));
myCerts[1] = fsslManager.create certificate(

com.ooc.FSSL.FSSL.1load file("ca.der"));
int id = fsslManager.create context (
myCerts,
com.ooc.FSSL.FSSL.1load file("clientkey.der"),
com.ooc.FSSL.FSSL.string to PassPhrase ("foobar"),
myTrustDecider,
com.ooc.FSSL.FSSL.get default ciphers());
org.omg.CORBA.PolicyManager policyManager =
org.omg.CORBA.PolicyManagerHelper.narrow (
orb.resolve initial references ("ORBPolicyManager"))
org.omg.CORBA.Policy[] pl = new org.omg.CORBA.Policy[1l]
pl[0] = fsslManager.create context policy(id);
policyManager.add policy overrides (pl);

’
’

32

Client Side Usage

Determining Peer Identity

Before the client can determine the identity of the peer it must first get the
OCI::FSSLIOP::Transportinfo. The client accomplishes this by calling
_non_existent() on the object reference to force the connection and then
narrowing the OCl::Transportinfo.

// C++

OCI::FSSLIOP::TransportInfo var fssliopInfo;

if(!obj -> non existent())

{

OCI::TransportInfo var info obj -> get oci transport info();
fssliopInfo = OCI::FSSLIOP::TransportInfo:: narrow(info);

}

// Java

com.ooc.OCI.FSSLIOP. TransportInfo fssliopInfo = null;
if (lobj. non existent())

{

org.omg.CORBA.portable.ObjectImpl objImpl =
(org.omg.CORBA.portable.ObjectImpl)ob]j;
com.ooc.CORBA.Delegate objDelegate =
(com.ooc.CORBA.Delegate) objImpl. get delegate();

com.ooc.OCI.TransportInfo info =

objDelegate.get oci transport info();

fssliopInfo =
com.ooc.0CI.FSSLIOP.TransportInfoHelper.narrow (info) ;

Once a reference to the FSSLIOP transport information is aquired,
OCI::FSSLIOP::Transportinfo::certificate_chain can be used to determine
the identity of the caller:

// C++
FSSL: :CertificateSeq var chain =
fssliopInfo -> certificate chain();

// Java
com.ooc.FSSL.Certificate[] chain =
fssliopInfo.certificate chain();

The negotiated cipher can be determined using the
OCl::FSSLIOP::Transportinfo::negotiated_cipher.

33

CHAPTER 2 | Extending the Hello World Application

// C++
FSSL::Cipher cipher = fssliopInfo -> negotiated cipher();

// Java
com.ooc.FSSL.Cipher cipher = fssliopInfo.negotiated cipher () ;

34

Client Side Usage

Preventing Connections to Secure/Insecure Servers

In developing your applications you may want to restrict the servers to
which your proxy will connect. For instance, you may want to connect only
with secure servers, or alternatively only with insecure servers.

To do this, a ProtocolPolicy policy must be used. The ProtocolPolicy is used
to restrict the protocol that will be used to establish communications. By
default, after initializing the FreeSSL plug-in, a protocol policy with a value
of OCI::FSSLIOP::PLUGIN_ID is set as an ORB level policy. Therefore, only
secure connections will be established unless this is overridden. To allow an
object reference to use [IOP the protocol policy can be overridden on the
reference as follows:

// C++

CORBA: :Any any;

any <<= OCI::IIOP::PLUGIN ID;

CORBA: :PolicyList pl(1);

pl.length(1l);

pl[0] = orb -> create policy (OB::PROTOCOL POLICY ID, any);

CORBA: :Object var myObj = obj -> set policy overrides(
pl, CORBA: :ADD_OVERRIDE) g

// Java
org.omg.CORBA.Any any = orb .create any();

any.insert ulong(com.ooc.OCI.IIOP.PLUGIN ID.value);
org.omg.CORBA.Policy[] pl = new org.omg.CORBA.Policy[1l];
pl[0] = orb.create policy (

com.ooc.O0B.PROTOCOL POLICY ID.value, any);
com.ooc.CORBA.Delegate delegate = (com.ooc.CORBA.Delegate)

((org.omg.CORBA.portable.ObjectImpl)myOb]j) . get delegate();
org.omg.CORBA.Object obj = delegate.set policy overrides (

myObj, pl, org.omg.CORBA.SetOverrideType.ADD OVERRIDE) ;

If it is necessary to revert to a secure transport again for establishing further
connections (for instance: case of a client creating successive connections to
secure and insecure servers), simply reapply the OCI::FSSLIOP::PLUGIN_ID
protocol policy as needed.

35

CHAPTER 2 | Extending the Hello World Application

Complete Example

Certificates

OpenSSL

iSaSiLk

36

First the certificates must be created for both the client and the server. For a
real world application the certificates will most likely be provided by an
actual certificate authority. However, for the purposes of this demo we'll
generate the certificates by hand.

First create a certificate authority.

> cd /tmp

> CA.sh -newca

Next create a certificate request and sign the request using the new
certificate authority. Use passphrase blahblah.

> CA.sh -newreq

> CA.sh -sign

Next the private key must be converted from PEM format to PKCS#8 DER
format.

> openssl pkcs8 -outform DER -in newreq.pem -out newkey.der -topk8
Finally, the new certificate and the CA's certificate must be converted from
PEM to DER encoding.

> openssl x509 -outform DER -in newcert.pem -out newcert.der

> openssl x509 -outform DER -in demoCA/cacert.pem -out cacert.der
This must be done to create two sets of certificates and private keys, one set
for the server and one set for the client. Store the client set in client.der, and
client.key. Store the server set in server.der and server.key. The CA's
certificate should be in ca.der.

When creating certificates it's necessary to provide identity information. For

the Server, use Server for the common name section of the certificate's
Subject field. This will be used later for trust decisions.

For this toolkit an application must be written to generate the certificates.
Since this is beyond the scope of the manual the reader is advised to consult
the application fssl/demo/hello/GenCerts.java bundled with the FreeSSL for
Java distribution.

Complete Example

Client Side

main First initialize the ORB.

// C++

int

main (int argc, char* argv[], char*[])
{

int status = EXIT SUCCESS;

CORBA: :ORB var orb;

try
{
orb = CORBA::0RB_init (argc, argv);
status = run(orb, argc, argv);
}
catch (const CORBA::Exception& ex)
{
cerr << ex << endl;
status = EXIT FAILURE;
}

if (!CORBA::is nil (orb))
{

try

{

orb -> destroy();

}

catch (const CORBA::Exception& ex)
{

cerr << ex << endl;
status = EXIT FAILURE;
}

}

return status;

}

37

CHAPTER 2 | Extending the Hello World Application

// Java

public static void

main (String args[])

{

int status = 0;
org.omg.CORBA.ORB orb = null;

java.util.Properties props = System.getProperties();
props.put ("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB") ;
props.put ("org.omg.CORBA.ORBSingletonClass",
"com.ooc.CORBA.ORB") ;

try
{
orb = org.omg.CORBA.ORB.init (args, props);
status = run(orb, args);
}
catch (Exception ex)
{
ex.printStackTrace () ;
status = 1;

}

if (orb != null)

{

try

{

((com.ooc.CORBA.ORB) orb) .destroy () ;
}

catch (Exception ex)

{
ex.printStackTrace () ;
status = 1;

}

}

System.exit (status);

}

38

Complete Example

run Next obtain a reference to the FSSL Context Manager.

// C++

int
run (CORBA: :ORB ptr orb, int argc, char* argv(])
{
OBCORBA: :ORB var oborb = OBCORBA::ORB:: narrow (orb) ;

//
// Obtain the ORB's property set
//

OB::Properties var props = oborb -> properties();

//

// Resolve the FSSL Context Manager

//

CORBA: :Object var fsslManagerObj =

orb -> resolve initial references ("FSSLContextManager") ;
FSSL: :Manager var fsslManager =

FSSL: :Manager: : narrow (fsslManagerObj) ;

// Java

static int
run (org.omg.CORBA.ORB orb, String[] args)
throws org.omg.CORBA.UserException
{
//
// Obtain the ORB's property set
//
java.util.Properties props =
((com.ooc.CORBA.ORB) orb) .properties () ;

//

// Resolve the FSSL Context Manager

//

com.ooc.FSSL.Manager fsslManager =
com.ooc.FSSL.ManagerHelper.narrow (

orb.resolve initial references ("FSSLContextManager"));

39

CHAPTER 2 | Extending the Hello World Application

Next the client's certificate chain must be constructed.

// C++

//
// Create the clients certificate chain
//
FSSL::Certificate var clientCert =
fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL::load file("client.der")));
FSSL::Certificate var caCert =
fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL::load file("ca.der")));

FSSL::CertificateSeq chain;
chain.length(2) ;

chain[0] = clientCert;

chain[1l] = caCert;

// Java
//
// Create the client certificate chain
//

com.ooc.FSSL.Certificate clientCert =
fsslManager.create certificate(
com.ooc.FSSL.FSSL.1load file("client.der"));
com.ooc.FSSL.Certificate caCert =
fsslManager.create certificate(
com.ooc.FSSL.FSSL.1load file("ca.der"));

com.ooc.FSSL.Certificate[] chain =
new com.ooc.FSSL.Certificate[2];
chain[0] = clientCert;

chain[l] = caCert;

40

Complete Example

Once that has been done a context must be created. For this demo all RSA
ciphers can be used. The implementation of the TrustDecider will come a
little later.

// C++

//

// Create the client context

//

FSSL: :ContextID id = fsslManager -> create context (

chain,

FSSL: :OctetSeq var (FSSL::1load file("client.key")),

FSSL: :PassPhrase var (FSSL::string to PassPhrase ("blahblah")),
FSSL: :TrustDecider var (new TrustDecider impl (caCert)),

FSSL: :CipherSeq var (FSSL::get RSA ciphers()));

// Java

//

// Create the client context

//

int id = fsslManager.create context (

chain,

com.ooc.FSSL.FSSL.load file("client.key"),
com.ooc.FSSL.FSSL.string to PassPhrase ("blahblah"),
new ClientTrustDecider (caCert),
com.ooc.FSSL.FSSL.get RSA ciphers());

After that the context should be set as the default context for all object
references.

// C++

!/

// Set this as the default context for all object references
//

fsslManager -> set context (id);

// Java

//

// Set this as the default context for all object references

//

fsslManager.set context (id);

41

CHAPTER 2 | Extending the Hello World Application

After this has been done the remainder of run will be the same as the
original demo.

// C++

//

// Get "hello" object

//

CORBA: :Object var obj = orb ->
string to object ("relfile:/Hello.ref");

if (CORBA::is nil (obj))

{

cerr << argv[0] << ": cannot read IOR from Hello.ref" << endl;
return EXIT FAILURE;

Hello var hello = Hello:: narrow(obj);
assert (!CORBA::is nil (hello));

//
// Main loop
//
cout << "Enter 'h' for hello or 'x' for exit:\n";
char c;
do
{
cout << "> ";
cin >> c;
if(c == 'h'")
hello -> say hello();
}

while(cin.good() && c != 'x'");

return EXIT SUCCESS;
}

42

The Trust Decider

Complete Example

// Java

//

// Get "hello" object

//

CORBA: :Object var obj = orb —>
string to object ("relfile:/Hello.ref");

if (CORBA::is nil (obj))

{

cerr << argv[0] << ": cannot read IOR from Hello.ref" << endl;
return EXIT_FAILURE;

Hello var hello = Hello:: narrow(obj);
assert (!CORBA: :is nil (hello));

//
// Main loop
//
cout << "Enter 'h' for hello or 'x' for exit:\n";
char c;
do
{
cout << "> ";
cin >> c;
if(c == 'h'")
hello -> say hello();
}

while (cin.good() && c != 'x'");

return EXIT SUCCESS;
}

The TrustDecider implementation for the demo will be extremely simple. It
will trust only those certificates directly signed by the provided CA. To
implement the TrustDecider the class FSSL_TrustDecider must be
implemented. In addition on the client side only the server will be trusted.

// C++

class TrustDecider impl : public FSSL::TrustDecider

43

CHAPTER 2 | Extending the Hello World Application

// Java

class ClientTrustDecider extends com.ooc.CORBA.LocalObject
implements com.ooc.FSSL.TrustDecider

Next the private members and constructor.

// Ct++
FSSL::Certificate var ca ;

public:
TrustDecider impl (FSSL::Certificate var ca)
: ca_ (FSSL::Certificate:: duplicate(ca))

{
}

// Java
private com.ooc.FSSL.Certificate ca ;
ClientTrustDecider (com.ooc.FSSL.Certificate ca)
{
ca_ = ca;

Next, is_trusted must be implemented.

// C++

virtual CORBA::Boolean
is trusted(const FSSL::CertificateSeqs& chain)

// Java

public boolean
is trusted(com.ooc.FSSL.Certificate[] chain)

This method should ensure that the CA in the certificate chain is the CA
provided by the constructor. To do that it should be verfied that the CA has
signed the last certificate in the chain (since CA certificates are self signed),
and that the subject distinguished names are the same. In addition the
common name portion of the server side certificate will be examined to

44

Complete Example

ensure that only the server is accepted. Note that for a real world example
more than just the common name should be validated, since it's possible
that the common name is the same for two certificates.

// C++

CORBA: :String var serverDN = chain[0] -> subject DN();

if (strstr(serverDN, "CN=Server/") == 0)
return false;
if (chain.length() == 2 && chain[1l] -> is signed by (ca))

{
CORBA: :String var dnl = chain[l] -> subject DN();
CORBA: :String var dn2 = ca_ -> subject DN();
if (strcmp (dnl, dn2) == 0)
return true;
}

return false;

// Java

String serverDN = chain[0].subject DN();
if (serverDN. indexOf ("CN=Server,") == -1)
return false;

if (chain.length == 2 && chain[1l].is signed by(ca))
{

String dnl chain[1] .subject DN();

String dn2 = ca .subject DN();

if (dnl.equals (dn2))

return true;

}

return false;

45

CHAPTER 2 | Extending the Hello World Application

Server Side

main

46

First initialize the ORB.
// C++

int

main (int argc, char* argv([], char*[])
{

int status = EXIT SUCCESS;

CORBA: :ORB var orb;

try
{
orb = CORBA::0RB_init (argc, argv);
status = run(orb, argc, argv);
}
catch (const CORBA::Exception& ex)
{
cerr << ex << endl;
status = EXIT FAILURE;
}

if (!CORBA::is nil (orb))
{

try

{

orb -> destroy();

}

catch (const CORBA::Exception& ex)
{

cerr << ex << endl;
status = EXIT FAILURE;
}

}

return status;

}

Complete Example

// Java

public static void

main (String args[])

{

int status = 0;
org.omg.CORBA.ORB orb = null;

java.util.Properties props = System.getProperties|();
props.put ("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB") ;
props.put ("org.omg.CORBA.ORBSingletonClass",
"com.ooc.CORBA.ORB") ;

try
{
orb = org.omg.CORBA.ORB.init (args, props);
status = run(orb, args);
}
catch (Exception ex)
{
ex.printStackTrace () ;
status = 1;

}

if (orb != null)

{

try

{

((com.ooc.CORBA.ORB) orb) .destroy () ;
}

catch (Exception ex)

{
ex.printStackTrace () ;
status = 1;

}

}

System.exit (status);

}

47

CHAPTER 2 | Extending the Hello World Application

run Next obtain a reference to the FSSL Context Manager.

// C++

int
run (CORBA: :ORB ptr orb, int argc, char* argv(])
{
OBCORBA: :ORB_var oborb = OBCORBA::ORB:: narrow (orb) ;

//
// Obtain the ORB's property set
//

OB: :Properties var props = oborb -> properties();

//

// Resolve the FSSL Context Manager

//

CORBA: :Object var fsslManagerObj =

orb -> resolve initial references ("FSSLContextManager") ;
FSSL: :Manager var fsslManager =

FSSL: :Manager:: narrow (fsslManagerObj) ;

// Java

static int
run (org.omg.CORBA.ORB orb, String[] args)
throws org.omg.CORBA.UserException
{
//
// Obtain the ORB's property set
//
java.util.Properties props =
((com.ooc.CORBA.ORB) orb) .properties () ;

//

// Resolve the FSSL Context Manager

//

com.ooc.FSSL.Manager fsslManager =
com.ooc.FSSL.ManagerHelper.narrow (

orb.resolve initial references ("FSSLContextManager"));

48

Complete Example

Next the certificate chain for the server must be created. This is exactly the
same procedure as for the client.

// C++

//
// Create the servers certificate chain
//
FSSL::Certificate var serverCert =
fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL: :1load file("server.der")));
FSSL::Certificate var caCert =
fsslManager -> create certificate(
FSSL: :OctetSeq var (FSSL::load file("ca.der")));

FSSL: :CertificateSeq chain;
chain.length(2) ;

chain[0] = serverCert;

chain[1l] = caCert;

// Java
//
// Create the server certificate chain
//

com.ooc.FSSL.Certificate serverCert =
fsslManager.create certificate (
com.ooc.FSSL.FSSL.load file("server.der"));
com.ooc.FSSL.Certificate caCert =
fsslManager.create certificate (
com.ooc.FSSL.FSSL.load file("ca.der"));

com.ooc.FSSL.Certificate[] chain =
new com.ooc.FSSL.Certificate[2];
chain[0] = serverCert;

chain[1l] = caCert;

49

CHAPTER 2 | Extending the Hello World Application

Once that has been done a context must be created. For this demo all RSA
ciphers can be used. The implementation of the TrustDecider will come a
little later.

// C++

//

// Create the server context

//

FSSL: :ContextID id = fsslManager -> create context (

chain,

FSSL: :OctetSeq var (FSSL::1load file("server.key")),

FSSL: :PassPhrase var (FSSL::string to PassPhrase ("blahblah")),
FSSL: :TrustDecider var (new TrustDecider impl (caCert)),

FSSL: :CipherSeq var (FSSL::get RSA ciphers()));

// Java

//

// Create the server context

//

int id = fsslManager.create context (

chain,

com.ooc.FSSL.FSSL.load file("server.key"),
com.ooc.FSSL.FSSL.string to PassPhrase ("blahblah"),
new ClientTrustDecider (caCert),
com.ooc.FSSL.FSSL.get RSA ciphers());

50

Complete Example

Once the SSL context has been created, the POAManager can be initialized
and the RootPOA resolved.

// C++

//
// Create the POA Manager
//
PortableServer: :POAManager var poaManager =
FSSL: :create poa manager (
"RootPOAManager", orb, fsslManager, id, props);

//

// Resolve Root POA

//

CORBA: :Object var poalbj =

orb -> resolve initial references ("RootPOA");
PortableServer: :POA var rootPOA =
PortableServer: :POA:: narrow (poalbj) ;

// Java

!/
// Create the POA Manager
//
org.omg.PortableServer.POAManager poaManager =
com.ooc.FSSL.FSSL.create poa manager (
"RootPOAManager", orb, fsslManager, id, props);

//

// Resolve Root POA

!/

org.omg.PortableServer.POA root =
org.omg.PortableServer.POAHelper.narrow (
orb.resolve initial references ("RootPOA")) ;

51

CHAPTER 2 | Extending the Hello World Application

After this has been done the remainder of run will be the same as the
original demo.

// C++

//

// Create implementation object

//

Hello impl* helloImpl = new Hello impl();
PortableServer::ServantBase var servant = helloImpl;
Hello var hello = helloImpl -> this();

//

// Save reference

//

CORBA::String var s = orb -> object to string(hello);

const char* refFile = "Hello.ref";

ofstream out (refFile);

if (out.fail ())

{
cerr << argv[0] << ": can't open " << refFile << "': "
<< strerror (errno) << endl;
return EXIT_FAILURE;

out << s << endl;

out.close() ;

//

// Run implementation
//

cout << "Server is ready." << endl;
poaManager -> activate();
orb -> run();

return EXIT SUCCESS;
}

52

Complete Example

// Java

//

// Create implementation object

//

Hello impl helloImpl = new Hello impl();
Hello hello = helloImpl. this (orb);

//

// Save reference

//

try

{

String ref = orb.object to string(hello);

String refFile = "Hello.ref";

java.io.FileOutputStream file =

new java.io.FileOutputStream(refFile);

java.io.PrintWriter out = new java.io.PrintWriter (file);

out.println(ref);

out.flush();

file.close();

}

catch (java.io.IOException ex)

{

System.err.println("hello.Server: can't write to " +
ex.getMessage() + "'");

return 1;

}

//
// Run implementation
//
System.out.println("Server is ready.");
poaManager.activate () ;
orb.run () ;

return 0;

}

53

CHAPTER 2 | Extending the Hello World Application

Trust Decider The trust decider for the server is slightly different in that the distinguished
name of the client is not validated since the server accepts connections from
any client validated by the CA.

// C++

if (chain.length() == 2 && chain[l] -> is signed by(ca))
{
CORBA String var dnl = chain[l] -> subject DN();
CORBA String var dn2 = ca_-> subject DN();
if (strcmp (dnl, dn2) == 0)
return true;

}

return false;

// Java

if (chain.length == 2 && chain[1l].is signed by(ca))
{

String dnl = chain[1].subject DN();

String dn2 = ca_.subject DN();

if (dnl.equals (dn2))

return true;

}

return false;

54

APPENDIX A

FSSL Definitions

ADH
The anonymous Diffie-Hellman public-key algorithm, see [9].

ASN.1
Abstract Syntax Notation One, see [14].

DER
Distinguished Encoding Rules for ASN.1, see [4].

DES
Data Encryption Standard, see [12].

DSS
The Digital Signature Standard, see [11]

IDEA

International Data Encryption Algorithm, see [111].

MD5
RSA Data Security, Inc.'s MD5 message-digest algorithm, see [8].

PEM
Internet Privacy-Enhanced Mail, see [14]-[171.

PKCS#8
Private-Key Information Syntax Standard, see [18].

55

APPENDIX A | FSSL Definitions

RC2, RC4
Rivest's Ciphers, variable-key-size encryption algorithms, see [111.

RSA
The RSA public-key cryptosystem, see [3].

SHA
Secure Hash Algorithm, see [7].

56

Supported Toolkits

OpenSSL

IAIK iSaSiLk

JSSE

APPENDIX B

Toolkits Supported
by FSSL

Both FreeSSL for C++ and Java require third-party SSL toolkits to operate.

DISCLAIMER: IONA Technologies does not assume any responsibility for
the purchase or licensing of any third-party product that is required to
work with a particular version of the SSL plug-in. Any licensing issues that
arise as a result of the use of any third party product is the sole
responsibility of the purchaser.

FreeSSL for C++ requires OpenSSL 0.9.7g. This is a public domain
implementation of the Secure Sockets Layer version 3.0. Please see
http://www.openssl.org for more information on this product.

FreeSSL for Java supports version 3.04 of the IAIK-iSaSiLk SSL toolkit and
version 3.0 (or equivalent Applet Edition) of the IAIK JCE. This is an
excellent SSL toolkit available from the IAIK-Java Group. Please see
http://jce.iaik.tugraz.at/ for more information on this product.

FreeSSL for Java supports the JSSE toolkit. JSSE is available from Sun and
is bundled with JDK 1.4 and above. Please see http://java.sun.com for
more information on this product.

57

http://www.openssl.org
http://jce.iaik.tugraz.at/

APPENDIX B | Toolkits Supported by FSSL

58

In this appendix

APPENDIX C

FSSL Reference

This appendix documents the FSSL interfaces.

This appendix contains the following sections:

Module CORBA page 60
Module FSSL page 61
Module I0P page 66
Module OB page 68

59

APPENDIX C | FSSL Reference

Module CORBA

Interface Index Current
Provides information on the current connection.

Policy
Provides information on the current policy.

Aliases PolicyList
typedef sequence<Policy> PolicylList;
PolicyType
typedef unsigned long PolicyType;
PolicyTypeSeq
typedef sequence<PolicyType> PolicyTypeSeq;

60

Module FSSL

Module FSSL

Overview

Interface Index

Constants

The FSSL plug-in interfaces. This module allows for the configuration of the
Secure Sockets Layer OCI plug-in.

Certificate
X509 Certificate Interface

ContextPolicy
Context Policy Interface

Current
Provides information on the current connection.

Manager
Manager Interface

TrustDecider

TrustDecider Interface allows users to provide custom certificate chain trust
algorithms

BAD_CIPHER
const Cipher BAD CIPHER = 0;
Identifies an invalid cipher

CONTEXT_POLICY
const CORBA::PolicyType CONTEXT POLICY = 100;
Identifies the ContextPolicy.

DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

const Cipher DHE DSS EXPORT WITH DES40 CBC SHA = 14;
Key Exchange Algorithm DHE_DSS

Symmetric Encryption Algorithm DES(40)

MAC Encoding SHA

DHE_DSS WITH_3DES_EDE_CBC_SHA

const Cipher DHE DSS WITH 3DES EDE CBC SHA = 16;

61

APPENDIX C | FSSL Reference

Key Exchange Algorithm DHE_DSS

Symmetric Encryption Algorithm DES(168)

MAC Encoding SHA

DHE_DSS _WITH_DES CBC_SHA

const Cipher DHE DSS WITH DES CBC SHA = 15;
Key Exchange Algorithm DHE_DSS

Symmetric Encryption Algorithm DES(56)

MAC Encoding SHA
DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

const Cipher DHE RSA EXPORT WITH DES40 CBC SHA = 11;
Key Exchange Algorithm DHE_RSA

MAC Encoding SHA

DHE_RSA WITH_3DES_EDE_CBC_SHA

const Cipher DHE RSA WITH 3DES_EDE CBC SHA = 13;
Key Exchange Algorithm DHE_RSA

Symmetric Encryption Algorithm DES(168)

MAC Encoding SHA

DHE_RSA _WITH_DES_CBC_SHA

const Cipher DHE RSA WITH DES CBC SHA = 12;
Key Exchange Algorithm DHE_RSA

Symmetric Encryption Algorithm DES(56)

MAC Encoding SHA
DH_anon_EXPORT_WITH_DES40_CBC_SHA

const Cipher DH anon EXPORT WITH DES40 CBC SHA = 19;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm DES(40)

MAC Encoding SHA
DH_anon_EXPORT_WITH_RC4_40_MD5

const Cipher DH anon EXPORT WITH RC4 40 MD5 = 17;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm RC4(40)

MAC Encoding MD5

62

Module FSSL

DH_anon_WITH_3DES_EDE_CBC_SHA

const Cipher DH anon WITH 3DES EDE CBC SHA = 21;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm DES(168)

MAC Encoding SHA

DH_anon_WITH_DES CBC_SHA
const Cipher DH anon WITH DES CBC SHA = 20;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm DES(56)

MAC Encoding SHA
DH_anon_WITH_RC4_128 MD5

const Cipher DH anon WITH RC4 128 MD5 = 18;
Key Exchange Algorithm DH

Symmetric Encryption Algorithm RC4(128)

MAC Encoding MD5
RSA_EXPORT_WITH_DES40 CBC_SHA

const Cipher RSA EXPORT WITH DES40 CBC SHA = 8;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm DES(40)

MAC Encoding SHA

RSA_EXPORT _WITH_NULL_MD5

const Cipher RSA EXPORT WITH NULL MDS = 1;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm NULL
MAC Encoding MD5
RSA_EXPORT_WITH_NULL_SHA

const Cipher RSA EXPORT WITH NULL SHA = 2;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm NULL
MAC Encoding MD5

RSA_EXPORT_WITH_RC2_CBC_40_MD5
const Cipher RSA EXPORT WITH RC2 CBC 40 MD5 = 6;

63

APPENDIX C | FSSL Reference

Key Exchange Algorithm RSA

Symmetric Encryption Algorithm RC2(40)

MAC Encoding MD5
RSA_EXPORT_WITH_RC4 40 _MD5

const Cipher RSA EXPORT WITH RC4 40 MD5 = 3;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm RC4(40)

MAC Encoding MD5

RSA WITH_3DES_EDE_CBC_SHA

const Cipher RSA WITH 3DES EDE CBC SHA = 10;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm DEC(168)
MAC Encoding SHA
RSA_WITH_DES_CBC_SHA

const Cipher RSA WITH DES CBC SHA = 9;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm DEC(56)
MAC Encoding SHA
RSA_WITH_IDEA_CBC_SHA

const Cipher RSA WITH IDEA CBC SHA = 7;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm IDEA(128)
MAC Encoding SHA
RSA_WITH_RC4_128 MD5

const Cipher RSA WITH RC4 128 MD5 = 4;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm RC4(128)
MAC Encoding MD5
RSA_WITH_RC4_128 SHA

const Cipher RSA WITH RC4 128 SHA = 5;
Key Exchange Algorithm RSA

Symmetric Encryption Algorithm RC4(128)

64

Aliases

Module FSSL

MAC Encoding SHA

CertificateSeq
typedef sequence<Certificate> CertificateSeq;

Alias for an X509 Certificate Chain
Cipher
typedef unsigned long Cipher;

An alias for a cipher suite

CipherSeq

typedef sequence<Cipher> CipherSeq;
Alias for a sequence of Ciphers
ContextID

typedef unsigned long ContextID;
Alias for Context ID.

OctetSeq

typedef sequence<octet> OctetSeq;
Alias for sequences of octets

PassPhrase
typedef sequence<octet> PassPhrase;

Alias for a PassPhrase

PrivateKey
typedef sequence<octet> PrivateKey;

Alias for a PrivateKey

65

APPENDIX C | FSSL Reference

Module IOP

Constants CodeSets

const Serviceld CodeSets = 1;

TAG_INTERNET_IOP
const ProfileId TAG_INTERNET IOP = O;

TAG_MULTIPLE_COMPONENTS
const ProfileId TAG MULTIPLE COMPONENTS = 1;

TransactionService

const ServiceId TransactionService = 0;

Structs IOR

struct IOR
{
string type id;
sequence<TaggedProfile> profiles;
}i

ServiceContext

struct ServiceContext
{
Serviceld context id;
sequence<octet> context data;
}i

TaggedComponent

struct TaggedComponent

{
ComponentId tag;
sequence<octet> component data;

bi
TaggedProfile

struct TaggedProfile
{
Profileld tag;
sequence<octet> profile data;
}i

66

Module IOP

Aliases Componentid
typedef unsigned long ComponentId;

MultipleComponentProfile

typedef sequence<TaggedComponent> MultipleComponentProfile;
Profileld

typedef unsigned long Profileld;

ServiceContextList

typedef sequence<ServiceContext> ServiceContextList;

Serviceld
typedef unsigned long Serviceld;

67

APPENDIX C | FSSL Reference

Module OB

Interface Index ConnectionReusePolicy
The connection reuse policy.

ProtocolPolicy
The protocol policy.

ReconnectPolicy
The reconnect policy.

TimeoutPolicy
The timeout policy.

Constants CONNECTION_REUSE_POLICY
const CORBA::PolicyType CONNECTION REUSE POLICY = 3;
This policy type identifies the connection reuse policy.

PROTOCOL_POLICY
const CORBA::PolicyType PROTOCOL POLICY = 2;
This policy type identifies the protocol policy.

RECONNECT_POLICY
const CORBA::PolicyType RECONNECT POLICY = 4;
This policy type identifies the reconnect policy.

TIMEOUT_POLICY
const CORBA::PolicyType TIMEOUT POLICY = 5;
This policy type identifies the timeout policy.

68

FSSL Bibliography

The SSL Protocol, Version 3.0, Transport Layer Security
Working Group.

ANSI X3.106, American National Standard for Information
Systems-Data Link Encryption, American National
Standards Institute, 1983.

R. Rivest, A. Shamir, and L. M. Adleman, A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,
Communications of the ACM, v. 21, n. 2, Feb 1978, pp.
120-126.

CCITT. Recommendation X.509: The Directory -
Authentication Framework. 1988.

SSLeay and SSLapps FAQ, T. J. Hudson, E. A. Young.

iSaSiLk 2.0 User Manual, Institute for Applied Information
Processing and Communications, Graz University of
Technology, 1998.

NIST FIPS PUB 180-1, Secure Hash Standard, National
Institute of Standards and Technology, U.S. Department of
Commerce, DRAFT, 31 May 1994.

R. Rivest. RFC 1321: The MD5 Message Digest Algorithm,
April 1992.

W. Diffie and M. E. Hellman, New Directions in
Cryptography, IEEE Transactions on Information Theory,
V.IT-22, n. 6, Jun 1977, pp. 74-84.

Marc Laukien, Uwe Seimet, Matthew Newhook, and Mark
Spruiell, ORBacus For C++ and Java, Object Oriented
Concepts, Inc.

Bruce Schneier, Applied Cryptography, John Wiley & Sons,
Inc.

PUB 46-1 National Bureau of Standards. FIPS PUB 46-1:
Data Encryption Standard. January 1988.

69

BIBLIOGRAPHY

70

[13]

[14]

[15]

[16]

[17]

[18]

CCITT. Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1). 1988.

RFC 1421 Linn, J., "Privacy Enhancement for Internet
Electronic Mail: Part |: Message Encryption and
Authentication Procedures," RFC 1421 February 1993.

RFC 1422 Kent, S., "Privacy Enhancement for Internet
Electronic Mail: Part Il: Certificate- Based Key
Management," RFC 1422, February 1993.

RFC 1423 Balenson, D., "Privacy Enhancement for Internet
Electronic Mail: Part IlI: Algorithms, Modes, and Identifiers,"
RFC 1423, February 1993.

RFC 1424 Kaliski, B., "Privacy Enhancement for Internet
Electronic Mail: Part IV: Key Certification and Related
Services," RFC 1424, February 1993.

PKCS #8: Private-Key Information Syntax Standard, An
RSA Laboratories Technical Note, Version 1.2, Revised
November 1, 1993.

	Preface
	The Orbacus Library
	Audience
	Getting the Latest Version
	Searching the Orbacus Library
	Additional Resources
	Document Conventions

	Using FreeSSL for Orbacus
	What is SSL?
	Installation
	Endpoint Configuration
	Command-Line Options
	Static Linking
	URL Support
	Contexts

	Extending the Hello World Application
	Server Side Usage
	Client Side Usage
	Determining Peer Identity
	Preventing Connections to Secure/Insecure Servers

	Complete Example
	Client Side
	Server Side

	FSSL Definitions
	Toolkits Supported by FSSL
	FSSL Reference
	Module CORBA
	Module FSSL
	Module IOP
	Module OB

	FSSL Bibliography

