
ORBIX
®

PROGRESS
®

Orbix Administrator’s Guide Java Edition
Version 3.3, SP11 March 2012

OW3adminGuide.book Page 1 Wednesday, March 7, 2012 12:10 PM

OW3adminGuide.book Page 2 Wednesday, March 7, 2012 12:10 PM
Progress Orbix v3.3.11

© 2012 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, Corticon,
Corticon (and design), DataDirect (and design), DataDirect Connect, DataDirect
Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery,
DataXtend, Dynamic Routing Architecture, Empowerment Center, Fathom, Fuse Mediation
Router, Fuse Message Broker, Fuse Services Framework, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, Pow-
erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empower-
ment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
RulesCloud, RulesWorld, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic,
Sonic ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our Technol-
ogy-Experience the Connection are registered trademarks of Progress Software Corporation
or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store,
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event
Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress
RPM, Progress Responsive Cloud, Progress Responsive Process Management, Progress
Software, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartCompo-
nent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Con-
tinuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or
service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the
U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any
other marks contained herein may be trademarks of their respective owners.

OW3adminGuide.book Page 3 Wednesday, March 7, 2012 12:10 PM
Third Party Acknowledgements: One or more products in the Progress Orbix v3.3.11
release includes third party components covered by licenses that require that the following
documentation notices be provided:

Progress Orbix v3.3.11 incorporates OpenSSL/SSLeay v0.9.8.i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
OpenSSL License
Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OW3adminGuide.book Page 4 Wednesday, March 7, 2012 12:10 PM
==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
Original SSLeay License
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This pack-
age is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implemen-
tation was written so as to conform with Netscapes SSL. This library is free for commercial
and non-commercial use as long as the following conditions are adhered to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc.,
code; not just the SSL code. The SSL documentation included with this distribution is cov-
ered by the same copyright terms except that the holder is Tim Hudson (tjh@crypt-
soft.com).
Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be
removed. If this package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a textual message at pro-
gram startup or in documentation (online or textual) provided with the package. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement:
"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library being used are not
cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

OW3adminGuide.book Page 5 Wednesday, March 7, 2012 12:10 PM
The licence and distribution terms for any publically available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another distri-
bution licence [including the GNU Public Licence.]

Progress Orbix v3.3.11 incorporates mcpp v2.6.4 from SourceForge (http://sourceforge.net/
softwaremap/index.php). Such technology is subject to the following terms and conditions:
Copyright (c) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved.
This software including the files in this directory is provided under the following license.
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met: 1. Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Orbix v3.3.11 incorporates IDL Compiler Front End v1.0 from Sun Microsystems.
Such technology is subject to the following terms and conditions: COPYRIGHT NOTICE
on OMG IDL CFE: Copyright 1992 Sun Microsystems, Inc. Printed in the United States of
America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front
End (CFE) is made available for your use provided that you include this license and copy-
right notice on all media and documentation and the software program in which this product
is incorporated in whole or part. You may copy and extend functionality (but may not
remove functionality) of the Interface Definition Language CFE without charge, but you are
not authorized to license or distribute it to anyone else except as part of a product or pro-
gram developed by you or with the express written consent of Sun Microsystems, Inc.
("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may
not be used in advertising or publicity pertaining to distribution of Interface Definition Lan-
guage CFE as permitted herein. This license is effective until terminated by Sun for failure
to comply with this license. Upon termination, you shall destroy or return all code and doc-
umentation for the Interface Definition Language CFE. The Interface Definition Language
CFE may not be exported outside the United States without first obtaining the appropriate
government approvals. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS
IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED

OW3adminGuide.book Page 6 Wednesday, March 7, 2012 12:10 PM
WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC-
TION, MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES
OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE
DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN
OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REV-
ENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun
logo are trademarks or registered trademarks of Sun Microsystems, Inc. SunSoft, Inc. 2550
Garcia Avenue Mountain View, California 94043

Updated: 07-Mar-2012

Contents

OW3adminGuide.book Page 7 Wednesday, March 7, 2012 12:10 PM
 Preface 11
Audience 11
Organization of this Guide 11
Document Conventions 14

Part I

Orbix Java Administration

Chapter 1 Overview of Orbix Java Administration 19
Components of the Orbix Java Architecture 20

Servers and the Implementation Repository 20
The Interface Repository 21

Administration of Orbix Components 22

Chapter 2 Configuring Orbix Java 23
Accessing Configuration Parameters 24

Configuration Parameter Formats 24
Using Orbix Java Configuration Files 25

Configuring Root Settings 26
Configuring Common Parameters 26
Configuring Orbix Java-Specific Parameters 27

Using Configuration API Calls 28
Accessing Configuration Items 28
Accessing Configuration Properties 29
Accessing Configuration Files 29

Using Command-Line Arguments 31
Using Java System Properties 31
7

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 8 Wednesday, March 7, 2012 12:10 PM
Chapter 3 Managing the Implementation Repository 33
Implementation Repository Entries 34
Basic Implementation Repository Usage 35

Registering a Server using Putitj 35
Registering a Server on a Remote Host 37
Organizing Servers into Hierarchies 38
Removing a Registered Server 38
Listing Registered Servers 39
Displaying a Server Entry 39
Contacting an Orbix Java Daemon 40

Starting Servers Manually 41
Registering a Manual Server

(orbixd) 41
Starting the Orbix Java Daemon for Unregistered Servers 42

Stopping Servers 43
Security of Registered Servers 43

Modifying Server Access 44
Changing Owners of Registered Servers 44
Determining the User and Group IDs of Running Servers

(orbixd) 45
Server Activation Modes 46

Registering Unshared Servers
(orbixd) 48

Using Markers to Specify Named Objects 48
Registering Per-Method Servers

(orbixd) 50
Secondary Activation Modes 51

Managing Server Port Selection 52
Registering Servers with Specified Ports

(orbixd) 52
Controlling Port Allocation with Configuration Variables 52

Activation Issues Specific to IIOP Servers 53

Chapter 4 Managing the Interface Repository 55
Configuring the Interface Repository 56
Registering the Interface Repository Server 56
Adding IDL Definitions 57
Reading the Interface Repository Contents 58
 8

C o n t e n t s

OW3adminGuide.book Page 9 Wednesday, March 7, 2012 12:10 PM
Removing IDL Definitions 59

Chapter 5 Using Orbix Java on the Internet 61
About Wonderwall 62
Using the Wonderwall with Orbix Java as a Firewall Proxy 62

Orbix Java Configuration Parameters Used to Support the Wonderwall 63
Using the Wonderwall as an Intranet Request Router 66
Applet Signing Technology 67

Overview 67

Part II

Orbix Java GUI Tools

Chapter 6 Orbix Java Configuration Explorer 71
Starting the Configuration Explorer 72
Configuring Common Settings 74
Configuring Orbix Java-Specific Settings 76
Customizing Your Configuration 77

Creating Configuration Variables 78
Creating Configuration Scopes 80
Creating Configuration Files 81

Chapter 7 The Orbix Java Server Manager 83
Starting the Orbix Java Server Manager 84
Connecting to an Implementation Repository 85
Creating a New Directory 87
Registering a Server 89

Providing Server Access Rights to Users 91
Specifying Server Activation Details 93

Modifying Server Registration Details 96
Launching a Persistent Server 97
Configuring the Server Manager 98
9

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 10 Wednesday, March 7, 2012 12:10 PM
Chapter 8 The Interface Repository Browser 101
Starting the Interface Repository Browser 102
Connecting to an Interface Repository 103
Adding IDL to the Interface Repository 104
Viewing the Interface Repository Contents 105

Viewing Information about IDL Definitions 107
Viewing Source Code for IDL Definitions 107

Exporting IDL Definitions to a File 108
Configuring the Interface Repository Browser 109

Part III

Appendices

Appendix A
Orbix Java Configuration Variables 113

Appendix B
Orbix Java Daemon Options 127

Appendix C
Orbix Java Command-Line Utilities 131

Appendix D
System Exceptions 149

System Exceptions Defined by CORBA 149

 Index 151
 10

OW3adminGuide.book Page 11 Wednesday, March 7, 2012 12:10 PM
Preface
The Orbix Administrator’s Guide Java Edition describes the command-line
utilities and GUI tools used during Orbix Java setup and administration.

Orbix documentation is periodically updated. New versions between releases are
available at this site:

http://communities.progress.com/pcom/docs/DOC-105220

If you need assistance with Orbix or any other Progress products, go to http://
www.progress.com/orbix/orbix-support.html.

If you want to provide any comments on Progress documentation, go to http://
www.progress.com/en/about/contact.html.

Audience
The Orbix Administrator’s Guide Java Edition is designed as an introduction for
Orbix Java administrators and programmers. It is assumed that you are familiar
with relevant sections of the Orbix Programmer’s Guide Java Edition and the
Orbix Programmer’s Reference Java Edition .

Organization of this Guide
This guide is divided into the following three parts:

Part I, Orbix Java Administration

Chapter 1, “Overview of Orbix Java Administration”

This chapter introduces the main components of the Orbix Java environment.
You should read this chapter first to familiarize yourself with terminology used
throughout the guide.
11

http://communities.progress.com/pcom/docs/DOC-105220
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/en/about/contact.html
http://www.progress.com/en/about/contact.html

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 12 Wednesday, March 7, 2012 12:10 PM
Chapter 2, “Getting Started”

This is a quick start chapter on how to configure Orbix Java, start the Orbix Java
daemon process, and how to register a server that automatically starts when it is
needed.

Chapter 3, “Configuring Orbix Java”

This chapter describes how to configure Orbix Java and how to use the Orbix
Java configuration Advanced Programming Interfaces (APIs).

Chapter 4, “Managing the Implementation Repository”

This chapter explains more about using the Implementation Repository including
registering servers, displaying and organizing server entries, and security issues.

Chapter 5, “Managing the Interface Repository”

This chapter describes how to configure Orbix Java to store object interface
definitions so that the applications can learn about them at runtime.

Chapter 6, “Using Orbix Java on the Internet”

This chapter describes how client applets can overcome security restrictions using
Progress Orbix Wonderwall or signed applets.

Part II, Orbix Java GUI Tools

Chapter 7, “Orbix Java Configuration Explorer”

This chapter describes how you can configure an OrbxWeb installation using the
Orbix Java Configuration Tool.

Chapter 8, “The Orbix Java Server Manager”

This chapter describes how you can register servers in the Implementation
Repository using the Orbix Java Server Manager.

Chapter 9, “The Interface Repository Browser”

This chapter describes how you can add IDL definitions to the Interface
Repository using the Interface Repository browser.
 12

P r e f a c e

OW3adminGuide.book Page 13 Wednesday, March 7, 2012 12:10 PM
Part III, Appendices

Appendix A, “Configuration Parameters”

This appendix shows the configuration parameters that Orbix Java recognizes.

Appendix B, “Orbix Java Daemon Options”

This appendix describes the start-up options that the Orbix Java daemon can use.

Appendix C, “Orbix Java Command-Line Utilities

This appendix describes the syntax and the options for each Orbix Java command
you can use.

Appendix D, “System Exceptions”

This appendix outlines the system exceptions defined by CORBA, and the system
exceptions that are specific to Orbix Java.
13

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 14 Wednesday, March 7, 2012 12:10 PM
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as classes,
functions, variables, and data structures. For example, text
might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

% cd /users/your_name

Note: some command examples may use angle brackets to
represent variable values you must supply.

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

......

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.
 14

P r e f a c e

OW3adminGuide.book Page 15 Wednesday, March 7, 2012 12:10 PM
[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
15

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 16 Wednesday, March 7, 2012 12:10 PM
 16

OW3adminGuide.book Page 17 Wednesday, March 7, 2012 12:10 PM
Part I
Orbix Java Administration

OW3adminGuide.book Page 18 Wednesday, March 7, 2012 12:10 PM

OW3adminGuide.book Page 19 Wednesday, March 7, 2012 12:10 PM
 1
Overview of Orbix Java
Administration

Orbix Java is a software environment that allows you to develop
distributed applications. This chapter introduces the main
components of the Orbix Java environment.

As described in the Orbix Programmer’s Guide Java Edition , Orbix Java allows
you to build distributed software systems composed of interacting objects. Orbix
Java is a full implementation of the Object Management Group (OMG) Common
Object Request Broker Architecture (CORBA).

An Orbix Java application consists of one or more client programs that
communicate with distributed objects located in server programs. Clients can
communicate with distributed objects from any host in a network through clearly-
defined interfaces specified in the CORBA Interface Definition Language (IDL).

Orbix mediates the communication between clients and distributed objects. This
mediation allows clients to communicate with objects without concern for details
such as:

• The hosts on which the objects exist.

• The operating system that these hosts run.

• The programming language used to implement the objects.

The Orbix architecture includes several configurable components that support the
mediation of communications between clients and objects.
19

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 20 Wednesday, March 7, 2012 12:10 PM
Components of the Orbix Java Architecture
An Orbix Java client invokes IDL operations on a distributed object using normal
Java function calls, as if the object were located in the client’s address space.
Orbix Java converts these function calls to a series of network messages and
sends these messages to the server process that contains the target object. At the
server, Orbix Java receives these messages and translates them to function calls
on the target object, as shown in Figure 1.1.

Servers and the Implementation Repository

Each Orbix Java server program has a name, unique within its host machine. A
server can consist of one or more processes. When a client invokes a method on
an object, a server process containing the target object must be available. If the
process is not running, the Orbix Java daemon at the server host attempts to
launch the server process automatically.

To allow an Orbix Java daemon to manage the server processes running in the
system, Orbix Java provides an Implementation Repository. The Implementation
Repository maintains a mapping from a server’s name to the filename of the
executable code implementing that server. The server code must therefore be
registered with the Implementation Repository.

Figure 1.1: An IDL Operation Call on a Distributed Object
 20

O v e r v i e w o f O r b i x J a v a A d m i n i s t r a t i o n

OW3adminGuide.book Page 21 Wednesday, March 7, 2012 12:10 PM
As shown in Figure 1.2, the Orbix Java daemon launches a server process as
follows:

1. A client makes its first operation call to an object located in a server.

2. The Orbix Java daemon reads the server details from the Implementation
Repository, including the server launch command.

3. If the required server process is not running, the Orbix Java daemon
executes the server launch command.

To allow the daemon to launch server processes, you must maintain records in the
Implementation Repository for each server in your system.

The Interface Repository

Orbix Java maintains object specifications by storing an object’s IDL interface in
a database called the Interface Repository. Some client applications use the
Interface Repository to determine object interfaces and all information about
those interfaces at runtime.

A client accesses the Interface Repository by contacting an Interface Repository
server. This is a standard Orbix Java server that provides a programming
interface, defined in IDL, to the Interface Repository.

Figure 1.2: Automatic Launch of an Orbix Server Process
21

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 22 Wednesday, March 7, 2012 12:10 PM
To allow clients to obtain information about IDL definitions implemented in your
system, you must add those definitions to the Interface Repository.

Administration of Orbix Components
To allow Orbix Java applications to run in your network, you must do the
following:

• Configure Orbix Java for your network and environment, using the Orbix
Java configuration files.

• Run the Orbix Java daemon process.

• Register servers in the Implementation Repository.

Part I of this guide, Orbix Java Administration, presents the configuration files
and command-line utilities that allow you to achieve each of these tasks.

Part II of this guide, Orbix Java GUI Tools, presents the graphical user interfaces
that provide an alternative way to manage Orbix components.
 22

OW3adminGuide.book Page 23 Wednesday, March 7, 2012 12:10 PM
 2
Configuring Orbix Java

You may need to change the default Orbix Java configuration
settings. Orbix Java provides several mechanisms to aid
configuration. This chapter describes the Orbix Java
configuration format and how to use the Orbix Java
configuration APIs.

You may need to change default configuration settings for a variety of reasons,
including the following:

• Enabling or disabling parts of the functionality.

• Altering the use of specific port numbers.

• Optimizing the size of tables used to track objects in servers.

• Reducing the number of classes downloaded for use in applets.
23

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 24 Wednesday, March 7, 2012 12:10 PM
Accessing Configuration Parameters
You can get and set the values of Orbix Java configuration parameters using the
following mechanisms.

• Using the Configuration Explorer to access configuration files.

• Using Orbix Java system properties.

• Using an applet's <param> HTML tag.

• Using an application’s command-line parameters.

• Using Java system properties; for example, loaded from a file.

Configuration Parameter Formats

The various configuration parameter-retrieval mechanisms need to use slightly
different formats to store the parameters and their values. In the examples that
follow, the string IT_PARAMETER represents the Orbix Java configuration
parameter being set, while value represents the value it is set to.

Mechanism Format

Configuration Files OrbixWeb {

IT_PARAMETER=value

}

System Properties -DOrbixWeb.IT_PARAMETER=value

Applet Tags <PARAM NAME="OrbixWeb.IT_PARAMETER"
VALUE="value">

The applet tags must be used in the HTML
document that loads the applet, between the
<APPLET> and </APPLET> HTML tags.

Command-Line
Arguments

-OrbixWeb.IT_PARAMETER=value
 24

C o n f i g u r i n g O r b i x J a v a

OW3adminGuide.book Page 25 Wednesday, March 7, 2012 12:10 PM
Note: You can use the CODEBASE attribute of the <APPLET> tag to specify the
location of files required by the applet. These include packages such
org.omg.CORBA and the Orbix Java configuration files. Refer to
“Developing Applets with Orbix Java” in the Orbix Programmer’s Guide
Java Edition . You will need to use the ARCHIVE attribute to specify the
Orbix Java runtime OrbixWeb.jar.

Scoped Configuration Format

Configuration parameters common to multiple Progress products are scoped
within the Common prefix; for example, Common.IT_DAEMON_PORT. Orbix Java-
specific configuration parameters are scoped within the OrbixWeb prefix; for
example, OrbixWeb.IT_HTTP_TUNNEL_PORT.

Using Orbix Java Configuration Files
By default, the Orbix Java configuration files are located in the config directory
of your installation. Orbix Java provides a convenient configuration editor in the
form of the Orbix Java Configuration Explorer GUI tool. Refer to “Orbix Java
Configuration Explorer” on page 71 for details. This is the recommended way to
access Orbix Java configuration files.

By default, the configuration files are named as follows:

• iona.cfg

• common.cfg

• orbixweb3.cfg

• orbixnames3.cfg

• orbix3.cfg

For backwards compatibility, Orbix Java can also use OrbixWeb.properties and
Orbix.cfg files that shipped with previous versions of Orbix Java.
25

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 26 Wednesday, March 7, 2012 12:10 PM
Configuring Root Settings

You can configure your root settings by editing the iona.cfg file. This is the
root configuration file used by Orbix Java. This file uses the include command
to link to all other IONA configuration files. You can also edit this file to include
links to customized configuration files.

The default, iona.cfg file contains the following information:

// In file iona.cfg
cfg_dir = "d:\progress\config\";

include cfg_dir + "common.cfg";
include cfg_dir + "orbixnames3.cfg";
include cfg_dir + "orbixweb3.cfg";
include cfg_dir + "orbix3.cfg";
include cfg_dir + "orbixweb3.cfg";

You should set the cfg_dir parameter to <iona_install_dir>\config\.

Configuring Common Parameters

You can configure your common settings by editing the common.cfg file.This
file contains a list of configuration parameters that are common to multiple
Progress products. The configuration parameters in this file are declared within
the scope Common{...}, for example:

// In file common.cfg
Common {

The port number for the Orbix daemon.
IT_DAEMON_PORT = "1570";

The starting port number for daemon-run servers.
IT_DAEMON_SERVER_BASE = "1570";

The full path name of the Implementation Repository
directory.
IT_IMP_REP_PATH = cfg_dir + "Repositories\ImpRep";

The full path name of the Interface Repository
directory.
IT_INT_REP_PATH = cfg_dir + "Repositories\IFR";
 26

C o n f i g u r i n g O r b i x J a v a

OW3adminGuide.book Page 27 Wednesday, March 7, 2012 12:10 PM
The local DNS domain name.
IT_LOCAL_DOMAIN = "";

The full path name to the JRE binary
executable that installs with Orbix.
IT_JAVA_INTERPRETER="C:\progress\bin\jre.exe";

The default classpath used when Java servers
are automatically launched by the daemon.
IT_DEFAULT_CLASSPATH = cfg_dir +

";C:\progress\bin\bongo.zip;C:\progress\bin\marimba.zip
;

C:\progress\bin\NSclasses.zip;C:\progress\bin\utils.zip
;

C:\progress\bin\rt.jar;C:\progress\bin\orbixweb.jar;
C:\progress\Tools\NamingServiceGUI\NSGUI.jar";

};

You can also use the prefix Common. to refer to individual entries in this file. For
example, Common.IT_DAEMON_PORT.

After installation, the common.cfg file provides default settings for the main
environment parameters required by Orbix Java. You can change these default
settings by manually editing the configuration file, or by using the Configuration
Explorer, or by setting a parameter in the user environment. An environment
parameter, if set, takes precedence over the value set in the configuration file.
Environment parameters are not scoped with a Common. prefix.

Configuring Orbix Java-Specific Parameters

You can configure your Orbix Java-specific settings by editing the
orbixweb3.cfg file. This file contains configuration parameters that are specific
to Orbix Java only. The configuration parameters in this file are declared within
the scope OrbixWeb{...}.

You can also use the prefix OrbixWeb. to refer to individual entries in this file.
For example, OrbixWeb.IT_ANY_BUFFER_SIZE.
27

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 28 Wednesday, March 7, 2012 12:10 PM
Note: Orbix Java uses the IT prefix, which represents “Progress Software”, to
distinguish its configuration parameters.

The orbixnames3.cfg file contains configuration parameters that are specific to
OrbixNames. Refer to the OrbixNames Programmer’s and Administrator’s Guide
for more details.

Finding Orbix Java Configuration Information

The dumpconfig utility enables you to obtain information about your Orbix
configuration. This utility outputs the values of the configuration parameters used
by Orbix Java, and the location of the Orbix Java configuration files in your
system. It also reports if there are any syntax errors in your configuration files that
would normally go unrecognized by Orbix Java. The dumpconfig utility is
especially useful if you need to know where Orbix Java is being configured from.

The orbixdj -V command also enables you to obtain information about your
Orbix Java configuration. This outputs the current values of the configuration
parameters used by Orbix Java.

Using Configuration API Calls
You can get and set Orbix Java configuration variables using the methods
provided in class IE.Iona.OrbixWeb.Features.OrbConfig. Orbix Java
configuration is on a per-ORB basis, allowing support for multiple ORBs.

Accessing Configuration Items

You can use the following methods to get and set specific configuration
parameters by passing the name of the parameter as a string:

public String getConfigItem(String);

public synchronized void setConfigItem(String, String);
 28

C o n f i g u r i n g O r b i x J a v a

OW3adminGuide.book Page 29 Wednesday, March 7, 2012 12:10 PM
Note: Because Orbix Java configuration is on a per-ORB basis, OrbConfig calls
should be made on the object returned by calling config() on the selected
ORB; for example,
myOrb.config().getConfigItem(“IT_BIND_USING_IIOP”).

Accessing Configuration Properties

You can use the following methods to get and set multiple configuration
parameters at once, using the java.util.Properties object:

public synchronized Properties getConfiguration();

public synchronized void setConfiguration(Properties);

The getConfiguration() method returns the configuration parameters that
you set programmatically.

To set configuration, you must first set your configuration parameters
programmatically and then pass your Properties object to the
setConfiguration() method.

Accessing Configuration Files

You can use the following method to set your configuration from a specified
configuration file:

public synchronized void setConfiguration(String);

Your specified configuration file must be included on the classpath.

To obtain all of the currently set parameters, use the following method:

public Hashtable getConfigFile();

There is also an API call available for emergency use, if you accidentally delete
your configuration file. A call to this API returns a string containing the default
values:

public String defaultConfigFile()

Refer to the Orbix Programmer’s Reference Java Edition for more details on class
OrbConfig.
29

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 30 Wednesday, March 7, 2012 12:10 PM
Using Orbix Java System Properties
You can use the ORB.init() call to configure Orbix Java using system
properties. The ORB.init() method is a standard part of the OMG Java mapping,
and should be used by all Orbix Java applications and applets.

The API calls are as follows:

org.omg.CORBA.ORB.init (Applet app, Properties
props);

org.omg.CORBA.ORB.init (String[] args, Properties
props);

org.omg.CORBA.ORB.init (Properties props);

org.omg.CORBA.ORB.init ();

Note: Calling ORB.init() without parameters returns a singleton ORB with
restricted functionality. Refer to the class omg.org.CORBA.ORB in the
Orbix Programmer’s Reference Java Edition .

If any of the parameters are null, they are not used for configuration. If the props
parameter is null, the default system properties are used instead.

You should pass the initialization method for applets a this parameter,
representing the applet object itself. This allows the Orbix Java code to search for
Orbix Java-specific applet tags.
 30

C o n f i g u r i n g O r b i x J a v a

OW3adminGuide.book Page 31 Wednesday, March 7, 2012 12:10 PM
Using Command-Line Arguments
The call to initialize Orbix Java from an application's main() method is as
follows. This sample code also illustrates how an application that wishes to use
other command-line arguments can skip over the ORB parameters, since the
Orbix Java arguments all start with the string "-OrbixWeb.".

// Initialize the ORB.
org.omg.CORBA.ORB.init (args, null);
// Now read in the command-line parameters, and
// ignore any of the OrbixWeb ones.

for (int i = 0; i < args.length; i++) {
String ignore = "-OrbixWeb.";
if (args[i].length() < ignore.length() ||

!(args[i].substring (0,
ignore.length())).equalsIgnoreCase
(ignore)){

// This is a non-OrbixWeb command-line
// parameter, take appropriate action.
}

}
// Your application initialization code can now
// continue...

An alternative is to simply parse your own command-line argument format and
set the parameters using the API calls. However, the above command-line parsing
mechanism provides a built-in way to do this.

Using Java System Properties

You can also use the Java system properties to pass configuration parameters.
However, there is no standard way to set Java system properties. The JDK, for
example, uses a file containing a list of the property names and values, and most
web browsers do not allow properties to be set at all. The most useful way to use
this functionality is by passing in parameters using the JDK Java interpreter's -D
command-line switch, or Microsoft JView’s /d: switch. This approach
supplements the command-line argument support.

Refer to Appendix A, “Orbix Java Configuration Variables” for a full table of
Orbix Java configuration parameters.
31

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 32 Wednesday, March 7, 2012 12:10 PM
 32

OW3adminGuide.book Page 33 Wednesday, March 7, 2012 12:10 PM
 3
Managing the Implementation
Repository

When you install server applications on a network host, you
must register those servers in the Implementation Repository.
This repository allows Orbix Java to direct client operation
calls to objects in servers and to start server processes when
necessary. This chapter describes how to manage servers in the
Implementation Repository using the Orbix Java command-line
utilities.

The chapter covers the following topics:

• The Implementation Repository and its entries.

• Basic usage of the Implementation Repository including registering
servers, organizing server entries, removing server entries, listing
registered servers, and displaying information about an entry.

• How to start a server manually.

• How to stop servers manually.

• The security of servers, including how to change ownership of servers,
and how to modify access control lists (ACLs).

• How to register servers in specialized activation modes rather than simply
one server process for all clients.

• How to manage the set of ports Orbix Java uses to run servers.
33

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 34 Wednesday, March 7, 2012 12:10 PM
This chapter explains how to manage the Implementation Repository using Orbix
Java command-line utilities. Refer to “The Orbix Java Server Manager” on
page 83 for details of how you can use Orbix Java GUI tools.

Implementation Repository Entries
The Implementation Repository maintains a mapping from a server’s name to the
filename of the executable code implementing that server. A server must be
registered with the Implementation Repository to make use of this mapping.
Orbix Java automatically starts the server (if it is not already running) when a
client binds to one of the server’s objects, or when an operation invocation is
made on any object that names that particular server.

When a client first communicates with an object, Orbix Java uses the
Implementation Repository to identify an appropriate server to handle the
connection. If a suitable entry cannot be found in the Implementation Repository
during a search for a server, an error is returned to the client.

The Implementation Repository maintains its data in entries that include the
following information:

• The server name.

Because server names can be hierarchical, the Implementation Repository
supports directories.

• The server owner—usually the user who registered the server.

• The server permission values.

These specify which users have the right to launch the server, and which
users have the right to invoke operations on objects in the server.

• One or more activation orders.

An activation order associates an object or group of objects with a launch
command. A launch command specifies how Orbix Java starts the server.
 34

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 35 Wednesday, March 7, 2012 12:10 PM
Basic Implementation Repository Usage
Use the putitj command to register or modify an Implementation Repository
entry. The general form of the putitj command is as follows:

putitj switches server_name command_line

where <command line> is usually an absolute path name specifying an
executable file that implements the server. This can also be a shell command or
script.

Note: The availability of a given feature depends on which Orbix Java daemon is
running orbixd or orbixdj. Features labelled orbixd are currently not
supported by orbixdj. Refer to the Orbix Programmer’s Guide Java
Edition for details of the differences between orbixd and orbixdj.

Registering a Server using Putitj

Orbix Java servers are implemented as Java classes and should be registered
using the -java switch to putitj. This switch allows you to specify a class name
(and an optional classpath) as follows:

putitj switches server_name -java
class_name class _arguments

This command specifies that the Orbix Java daemon, when launching the server,
should invoke the Java interpreter on the specified bytecode. Any command-line
parameters to the target class are appended after the class name in the putitj
command. These parameters are passed to the server every time it is run by Orbix
Java. However, the parameters must be stated explicitly if the server is launched
manually.

Specifying a Classpath for an Orbix Java Server

The Orbix Java configuration variable IT_DEFAULT_CLASSPATH specifies the
default classpath used by the Orbix Java daemon when launching all Java servers.
The putitj command enables you to override IT_DEFAULT_CLASSPATH for a
given server.
35

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 36 Wednesday, March 7, 2012 12:10 PM
To do this, you should register the server with the -classpath switch, followed
by the full class path for that server:

putitj switches server_name -java
-classpath full_classpath

class_name class_arguments

For example:

putitj BankSrv -java -classpath
/vol/jdk/classes:/orbixweb/classes BankerClass

Specifying a Partial Classpath for an Orbix Java Server

As an alternative, Orbix Java also allows a partial classpath to be specified during
server registration. This partial class path will be appended to the value of
IT_DEFAULT_CLASSPATH if the Orbix Java daemon attempts to launch the
specified server. Use the -addpath switch to specify a partial class path:

putitj switches server_name -java
-addpath partial_classpath

class_name class_arguments

For example, you can achieve the functionality of the -classpath example given
above by setting IT_DEFAULT_CLASSPATH to the value /vol/jdk/classes and
registering the server BankSrv as follows:

putitj BankSrv -java -addpath
/orbixweb/classes BankerClass

Specifying the Location of the Java Interpreter

The Orbix Java daemon must be able to locate the Java interpreter to launch Java
servers registered in the Implementation Repository. To enable this, you must set
the value of the configuration variable IT_JAVA_INTERPRETER in the common.cfg
file, as described in “Configuring Orbix Java” on page 23.
 36

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 37 Wednesday, March 7, 2012 12:10 PM
Passing Parameters to the Java Interpreter

Conceptually, the classpath details, class name and class arguments specified
during the registration of an Orbix Java server are passed directly to the Java
Interpreter when the server is launched. If specific parameters also need to be
passed to the Java interpreter, you can add these to the putitj command as
follows:

putitj switches server_name -java
-- interpreter_switches class_name

class_parameters

The string after the -- switch is passed to the Java interpreter instead of the
standard class name and class arguments. You must insert a space after the --
switch, as shown in the following example:

putitj -java GridSrv -- -ms200m -mx200m
grid.javaserver1

Although registering a full Java Interpreter command as an executable file for an
Orbix Java server appears to achieve similar functionality, this is not an
acceptable alternative. The -java switch significantly alters the internal server
launch strategy of the Orbix Java daemon, and an Orbix Java server should not be
registered without this switch.

Registering a Server on a Remote Host

The following command registers a shared server called FirstTrust on the
remote host alpha, with the specified class name:

putitj -h alpha FirstTrust -java BankClass arg1

Using the -h hostname option enables you to use all the commands for remote
hosts. However, for simplicity, most of the examples in this guide do not use this
option and use the local host default instead.

The following command registers the same shared server and also sets the
“OrbixWeb.setDiagnostics” property to “255”.

putitj -h alpha FirstTrust -java
-- -DOrbixWeb.setDiagnostics=255 BankClass
37

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 38 Wednesday, March 7, 2012 12:10 PM
Organizing Servers into Hierarchies

Server names can be hierarchically structured, in the same way as UNIX
filenames. Hierarchical server names are useful in structuring the name space of
servers in Implementation Repositories. You can create hierarchical directories
by using the mkdiritj command. For example, you can make a new banking
registration directory and make a registration within it as follows:

mkdiritj banking
putitj banking/Berliner -java BankClass

Thus banking/Berliner is a valid, hierarchical server name.

The rmdiritj command removes a registration directory. This command can
take a -R option to recursively delete a directory and the Implementation
Repository entries and subdirectories within it. The rmdiritj command returns
an error if it is called without the -R option on a non-empty registration directory.

For example:

lsitj
FirstTrust
banking

rmdiritj banking
directory not empty

rmdiritj -R banking

This example uses the lsitj command to display the Implementation Repository
entries and directories.

To move an entry in the hierarchy, first remove it with the rmitj command and
then re-register it with the putitj command.

Removing a Registered Server

Use the rmitj command to remove an Implementation Repository entry. For
example, the following command removes a server entry:

rmitj FirstTrust

This simplest format of the command removes the entry and all activation orders
for the server.
 38

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 39 Wednesday, March 7, 2012 12:10 PM
You can also use the rmitj command to remove specific activation orders. Use
the -marker option for the shared or unshared activation modes to remove
specific activation orders for individual objects. Use the -method option for the
per-method call activation mode to remove specific activation orders for
individual methods. Activation modes are described in “Server Activation
Modes” on page 46.

Listing Registered Servers

Use the lsitj command to list registered servers and directories. For example, if
you have registered a server called International and another called printer:

putitj International -java
-classpath /usr/users/joe banker

putitj printer -java laser

the output of the lsitj command is as follows:

International
printer

Use the -R option with the lsitj command to recursively list all server entries in
the given directory and its subdirectories.

Displaying a Server Entry

Use the catitj command to display information about a specific server’s
registration entry. The following example assumes that the International
server is registered as in the previous example, and that catitj International
is entered at the command line:

Details for server : International

Comms. Protocol : tcp
Code : cdr
Activation Mode : shared
Owner : jbloggs
Launch : ;all;
Invoke : ;all;
39

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 40 Wednesday, March 7, 2012 12:10 PM
Marker Launch Command

###ORBIXWEB### banker

The output can include the following:

The final output is a table of activation orders. An activation order is identified
with a marker. An asterisk (*) represents all objects and means that there is only
one activation order for the server entry.

Contacting an Orbix Java Daemon

Use the pingitj utility to contact an Orbix Java daemon to determine if it is
running on a specified host. This outputs a success or failure message, as
appropriate; for example:

[New Connection (joe.dublin.iona.ie,IT_daemon,*,,pid=230)]
Trying to contact daemon at joe.dublin.iona.ie and it is running.

Owner The user who put in the entry.

Launch The users and groups who have permission to start or
launch the server.

Invoke The users and groups who have permission to invoke
operations on an object controlled by the server.

Per-client
(orbixd)

Indicates whether a new server is to be launched for
each client that uses the server.
 40

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 41 Wednesday, March 7, 2012 12:10 PM
Starting Servers Manually
Most servers are designed to have Orbix Java start them automatically when a
client uses an object. The majority of an administrator’s work therefore involves
registering servers in the Implementation Repository and managing the
registration entries in the repository. However, some servers do need to be started
before any clients attempt to use their objects.

Servers that are started by some mechanism external to Orbix Java are useful for a
number of reasons. For example, if a server takes a long time to initialize and it
starts when a client requests a service, it may cause the client to timeout. In
addition, some servers that are meant to run as long-lived daemons may require
manual starting. Manually launched servers are also known as persistent servers
in CORBA terminology.

Registering a Manual Server
(orbixd)

All servers registered in the shared mode can also be started manually.
Subsequent invocations on the objects are passed to the running process.
However, if you wish to prevent Orbix Java from starting a server and make it
manual-only, use the following command:

putitj FirstTrust -persistent

This command registers a manual-only server called FirstTrust on the local
host. No start command is specified to putitj, because this server cannot be
started by Orbix Java automatically and can only start as a manual server.

The CORBA specification requires that unshared or per-method types of server
fail if an attempt is made to start them manually. This means that manual servers
can only be registered as shared servers. Therefore, you cannot use the
-persistent option with either the -unshared or -per-method options of the
putitj command. These unshared and per-method servers are described in
“Server Activation Modes” on page 46.
41

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 42 Wednesday, March 7, 2012 12:10 PM
Starting the Orbix Java Daemon for Unregistered Servers

In some circumstances, it can be useful not to register servers in the
Implementation Repository. Under normal operation, Orbix Java would know
nothing about these servers. However, if you invoke the Orbix Java daemon with
the -u option, it maintains an active record of unregistered Orbix Java servers and
clients that may use these servers, for example:

orbixdj -u

When Orbix Java is started this way, any server process can be started manually.
However, no access control is enforced and there is no record of the server in the
Implementation Repository. The daemon does not check if this is a server name
known to it.

A disadvantage of this approach is that an unregistered server is not known to the
daemon. This means that the daemon cannot automatically invoke the Java
interpreter on the server bytecode when a client binds to, or invokes an operation
on, one of its objects. If a client invocation is to succeed, the server must be
launched in advance of the invocation.

In a Java context, a more significant disadvantage of this approach is that the
Orbix Java daemon is involved in initial communications between the client and
server, even though the server is not registered in the Implementation Repository.
This restriction applies to all Orbix Java servers that communicate over the
standard Orbix communications protocol, and limits such servers to running on
hosts where an Orbix Java daemon process is available.

Refer to “Activation Issues Specific to IIOP Servers” on page 53 for more
information on unregistered servers.
 42

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 43 Wednesday, March 7, 2012 12:10 PM
Stopping Servers
Just as most servers start automatically when needed, they are usually designed to
stop automatically after a specified time. However, there may be other situations
where you need to manually stop a server.

The killitj command stops a server process by using the SIGTERM signal.

1. For example, the following command stops the Berliner server on the
host omega:

killitj -h omega Banking/Berliner

2. When there is more than one server process, use the marker option and
argument to distinguish between different processes. To do this, use the
following killitj command format:

killitj -m marker server_name

Security of Registered Servers
For each Implementation Repository entry, Orbix Java maintains two access
control lists (ACLs) as follows:

The entries in the ACL can be user names or group names. The owner of an
Implementation Repository entry is always allowed to launch it and invoke
operations on its objects. A client normally needs both launch and invoke access
to use an automatically launched server. The following sections describe how to
modify ACLs by adding groups and users to ACLs, or removing groups and users
from ACLs.

Note: The Java daemon (orbixdj) does not support access rights for user
groups. An exception to this is the pseudo-user group all.

Launch The users or groups that can launch the associated server. Users
on this list, and users in groups on this list, can cause the server
to be launched by invoking on one of its objects.

Invoke The users and groups that can invoke operations on any object
controlled by the associated server.
43

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 44 Wednesday, March 7, 2012 12:10 PM
Modifying Server Access

Use the chmoditj command to modify the launch or invoke ACLs. For example:

1. The following command allows the user chris to launch the server
AlliedBank:

chmoditj AlliedBank l+chris

2. The following command grants the user chris rights to launch any server
in the directory banks/investmentBanks:

chmoditj -a banks/investmentBanks l+chris

3. The following command revokes joe’s right to invoke all servers in the
Implementation Repository directory banks/commercialBanks:

chmoditj -a banks/commercialBanks i-joe

4. There is also a pseudo-group named all that you can use to implicitly add
all users to an ACL. The following command grants all users the right to
invoke the server banks/commercialBanks/AlliedBank:

chmoditj banks/commercialBanks/AlliedBank i+all

On UNIX, the group membership of a user is determined via the user’s primary
group as well as the user’s supplementary groups as specified in the /etc/group
file.

Changing Owners of Registered Servers

Only the owner of an Implementation Repository entry can use the chmoditj
command on that entry. The original owner is the one who uses the putitj
command to register the server. Use the chownitj command to change
ownership. For example, use the following command to change the ownership of
server AlliedBank to user mcnamara:

chownitj -s AlliedBank mcnamara

An Implementation Repository directory can have more than one owner. An
ownership ACL is associated with each directory in the Implementation
Repository, and this ACL can be modified to give certain users or groups
ownership rights on a directory. Only a user on an ownership ACL has the right to
modify the ACL.
 44

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 45 Wednesday, March 7, 2012 12:10 PM
Some other examples of changing ownership are as follows:

1. To add the group progress to the ownership ACL on the Implementation
Repository directory banks/investmentBanks, use the following
command:

chownitj -d banks/investmentBanks + progress

2. To remove mcnamara from the same ACL, do the following:

chownitj -d banks/investmentBanks - mcnamara

Orbix Java supports the pseudo-group all. This grants access to all callers
when added to an ACL. The following command grants all users
ownership rights on directory banks/commercialBanks:

chownitj -d banks/commercialBanks + all

Spaces are significant in this command. For example, the following
command is correct:

chownitj -d banks/investmentBanks + progress

However, the following command is incorrect:

chownitj -dbanks/investmentBanks + progress

Refer to Appendix C, “Orbix Java Command-Line Utilities” for a complete list of
the Orbix Java utilities and their switches.

Determining the User and Group IDs of Running Servers
(orbixd)

On Windows platforms, the user ID uid and group ID gid of a server process
launched by the Orbix Java daemon are the same as those of the daemon itself.

On UNIX platforms, the effective uid and gid of a server process launched by
the Orbix Java daemon are determined as follows:

• If orbixd is not running as a superuser, such as root on UNIX, the uid
and gid of every activated server process is that of orbixd itself.

• If orbixd is running as root, it attempts to activate a server with the uid
and gid of the (possibly remote) principal attempting to activate the
server.

• If the principal is unknown (not a registered user) at the local machine
on which orbixd is running, orbixd attempts to run the new server with
uid and gid of a standard user called orbixusr.
45

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 46 Wednesday, March 7, 2012 12:10 PM
• If there is no such standard user orbixusr, orbixd attempts to run the new
server with uid and gid of a user “nobody”.

• If there is no such user nobody, the activation fails and an exception is
returned to the caller.

The daemon must be able to execute the server’s executable file.

You should not run orbixd as root. This would allow a client running as root on
a remote machine to launch a server with root privileges on a different machine.

You can avoid this security risk by setting the set-uid bit of the orbixd
executable and giving ownership of the executable to a user called, for example,
orbixusr who does not have root privileges. Then orbixd, and any server
launched by the daemon, do not have root privileges. Any servers that must be
run with different privileges can have the set-uid bit set on the executable file.

Server Activation Modes
Orbix Java provides a number of different modes for launching servers. You
specify the mode of a server when it is registered. Usually, clients are not
concerned with the activation details of a server or aware of what server processes
are launched. The following primary activation modes are supported by Orbix
Java.

Note: The availability of a given activation mode depends on which Orbix Java
daemon is running orbixd or orbixdj. Activation modes labelled orbixd
are currently not supported by the Orbix Java daemon orbixdj.
 46

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 47 Wednesday, March 7, 2012 12:10 PM
Shared Activation Mode

In this mode, all of the objects with the same server name on a given
machine are managed by the same server process on that machine. This is
the default activation mode.

If the process is already running when an application invocation arrives for
one of its objects, Orbix Java routes the invocation to that process;
otherwise, Orbix Java launches a process.

Unshared Activation Mode
(orbixd)

In this mode, individual objects of a server are registered with the
Implementation Repository. As each object is invoked, an individual
process is run for that particular object—one process is created for each
active registered object. You can register each object managed by a server
with a different executable file, or any number of objects can share the
same executable file.

Per-Method Activation Mode
(orbixd)

In this mode, individual operation names are registered with the
Implementation Repository. Inter-process calls can be made to these
operations—and each invocation results in the launch of an individual
process. A process is launched to handle each individual operation call,
and the process is destroyed once the operation has completed. You can
specify a different executable file for each operation, or any number of
operations can share the same executable file.

The shared activation mode is the most commonly used. The unshared and per-
method modes are rarely used. Refer to your server documentation to determine
the correct activation modes to use.
47

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 48 Wednesday, March 7, 2012 12:10 PM
Registering Unshared Servers
(orbixd)

The -unshared option registers a server in the unshared activation mode. For
example:

putitj -unshared NationalTrust -java banker

This command registers an unshared server called NationalTrust on the local
host, with the specified executable file. Each activation for an object goes to a
unique server process for that particular object. However, all users accessing a
particular object share the same server process.

Using Markers to Specify Named Objects

Each Orbix Java object has a unique object reference that includes the following
information:

• A name that is usually referred to as a marker.

An object’s interface name and its marker uniquely identify the object
within a server. A server programmer can choose the marker names for
objects or they can be assigned automatically by Orbix Java.

• A server name identifying the server in which the object is located.

• A host name identifying the host on which the server is located.

For example, the object reference for a bank account would include the bank
account name (marker name), the name of the server that manages the account,
and the name of the server’s host.

Server activation policies can specify individual object marker names; this is
because objects can be named shared and unshared.

For example:

1. putitj -marker College_Green NationalBank -java BankClass

This command registers a shared server called NationalBank on the local
host, with the specified executable file. However, activation only occurs
for the object whose marker matches College_Green. There is, at most,
one server process resulting from this registration request; although you
can make other -marker registrations for server NationalBank. All users
share the same server process.
 48

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 49 Wednesday, March 7, 2012 12:10 PM
2. putitj -unshared -marker College_Green FirstNational

-java BankClass
putitj -unshared -marker St_Stephens_Green

FirstNational -java BankClass

The first command registers an unshared server called FirstNational on
the local host with the specified executable files. The second adds an
activation order (marker and launch command) for the
St_Stephens_Green marker. However, activation only occurs for objects
whose marker name is College_Green or St_Stephens_Green and each
activation for a specific object goes to a unique server process for that
particular object. All users of a specific object share the same server
process.

Using Pattern Matching

You can use pattern matching in activation policies when seeking to identify
which server process to communicate with. Specifically, you can register a server
activation policy for a subset of the server’s objects. Because the number of
objects named can become very large, pattern matching also means you do not
have to specify a separate policy for every possible object. You specify this object
subset by using wildcard characters in a marker pattern. The pattern matching is
based on regular expressions, similar to UNIX regular expressions.

You can use pattern matching to specify a set of objects for shared or unshared
servers. For example, some registrations can be used as a means of sharing work
between server processes; in this case, between two processes:

putitj -marker '[0-4]*' NationalBank -java NBBank
putitj -marker '[5-9]*' NationalBank -java NBBank

If these two commands are issued, server NationalBank can have up to two
active processes; one launched for objects whose markers begin with the digits 0
through 4, and the other for markers beginning with digits 5 through 9.

Refer to the entry for the putitj command in Appendix C, “Orbix Java
Command-Line Utilities” for a complete list of recognized patterns with
examples.

Use the rmitj command with -marker option to modify a server entry. This
allows you to remove a specific activation order for a server without removing the
entire server entry. You can also use pattern matching with the rmitj command’s
marker option.
49

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 50 Wednesday, March 7, 2012 12:10 PM
Registering Per-Method Servers
(orbixd)

A per-method server processes each operation call in a separate process.

1. The following command registers a per-method server called
NationalTrust on the local host with the specified executable file. The
activation occurs only if the operation makeWithdrawal() is called.

putitj -per-method -method makeWithdrawal
 NationalTrust -java NTbank

2. If the -method option is used, Orbix Java assumes that the server is a per-
method server.

putitj -method makeDeposit NationalTrust
-java NTbank

You can specify patterns for methods so that operation names matching a
particular pattern cause Orbix Java to use a particular server activation.
The use of pattern matching allows a group of server processes to share a
workload between them, whereby each server process is responsible for a
range of methods. The pattern matching is based on regular expressions
similar to UNIX regular expressions.

3. The following command registers a per-method server called FirstTrust
on the local host with the specified executable file:

putitj -per-method FirstTrust -method 'make*'
-java banker

The activation is to occur only if an operation matching the pattern make*
is being called, for example makeDeposit() or makeWithdrawal(). A
separate process is activated for each method call.

Note: You can only use method pattern matching in the per-method activation
mode, thus the -per-method option is redundant.

Use the rmitj command with -method option to modify a per-method server
entry. This allows you to remove a specific activation order for a server without
removing the entire server entry. You can also use pattern matching with the
rmitj command’s -method option.
 50

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 51 Wednesday, March 7, 2012 12:10 PM
Secondary Activation Modes

For each of the primary activation modes, a server can be launched in one of the
secondary activation modes described as follows:

Multiple-Client Activation Mode

In this mode, activations of the same server by different users share the same
process, in accordance with the selected primary activation mode. This is the
default secondary activation mode. No putitj option is required to specify this
mode when registering a server.

Per-Client Activation Mode
(orbixd)

In this mode, activations of the same server by different users cause a different
process to be launched for each end-user.

Use the putitj -per-client option to register a server in this secondary
activation mode.

Per-Client-Process Activation Mode
(orbixd)

In this mode, activations of the same server by different client processes cause a
different process to be created for each client process.

Use the putitj -per-client-pid option to register a server in this secondary
activation mode. For example, the following command registers a shared, per-
client-process server:

putitj -per-client-pid FirstTrust -java banker

Activation occurs when any of the objects managed by the FirstTrust server are
used; there is a separate server process for each different client process.
51

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 52 Wednesday, March 7, 2012 12:10 PM
Managing Server Port Selection
When the Orbix Java daemon activates a server, it is assigned a port so that
clients can communicate with it. There are two ways to control the port numbers
assigned to a server:

• Registering the server with a specified port number.

• Using configuration variables to control port numbers.

This section describes each of these approaches.

Registering Servers with Specified Ports
(orbixd)

When registering a server, you can specify the port on which the server should
listen using the -port option to putitj. For example, to specify that shared
server FirstTrust should communicate on port 1597, enter the following:

putitj -port 1597 FirstTrust
-java -classpath /work/bank banker

By default, all Orbix Java applications communicate over the CORBA standard
Internet Inter-ORB Protocol (IIOP). The -port option is very important for such
applications.

If an Orbix Java server that communicates over IIOP publishes an object
reference, (for example, using the CORBA Naming Service) this reference is
valid while the server continues to run. However, if the server exits and then
recreates the same object, the published object reference is not valid unless the
server always runs on the same port. If your servers require this functionality, you
should register them using the -port option.

Controlling Port Allocation with Configuration Variables

You can control the range of server port numbers chosen by the Orbix Java
daemon by using the configuration entries IT_DAEMON_SERVER_BASE and
IT_DAEMON_SERVER_RANGE in the common.cfg configuration file. The
IT_DAEMON_SERVER_BASE must be set and the recommended value is 1590. You
do not have to set IT_DAEMON_SERVER_RANGE, which has a default value of 50.
 52

M a n a g i n g t h e I m p l e m e n t a t i o n R e p o s i t o r y

OW3adminGuide.book Page 53 Wednesday, March 7, 2012 12:10 PM
When the Orbix Java daemon starts a server, the first server port assigned is
IT_DAEMON_SERVER_BASE plus 1, and the last assigned is
IT_DAEMON_SERVER_BASE plus IT_DAEMON_SERVER_RANGE.

Once the end of the range is reached, orbixd recycles the range in an attempt to
find a free port. If no free port is found, an IMP_LIMIT system exception is raised
to the client application attempting an invocation to the server.

You should set IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE values
using the Orbix Java Configuration Explorer—refer to page 71 for details. You
should ensure that the values you set do not conflict with other services. Make
sure the range you choose is greater than the maximum number of servers you
expect to run on the host.

Activation Issues Specific to IIOP Servers
You do not have to register all Orbix Java servers communicating over IIOP in
the Implementation Repository. An IIOP server can publish Interoperable Object
References (IORs) for the implementation objects it creates, and then await
incoming client requests on those objects without contacting an Orbix Java
daemon.

Unregistered IIOP servers are important in a Java domain. This is because they
can be completely independent of any supporting processes that may be platform-
specific. In particular, any server that relies on the orbixd daemon to establish
initial connections depends on the availability of the daemon on specific
platforms. However, you can overcome this problem by using the Java daemon,
orbixdj, which is platform-independent. An Orbix Java unregistered IIOP server
is completely self-contained and platform-independent.

However, an unregistered IIOP server does have an important disadvantage. The
TCP/IP port number on which a server communicates is embedded in each IOR
that a server creates. If the port is dynamically allocated to a server process on
start-up, the port may differ between different processes for a single server. This
may invalidate IORs created by a server if, for example, the server is killed and
relaunched. Orbix Java addresses this problem by allowing you to assign a well-
known IIOP port number to the server.

These issues are discussed in more detail in the Orbix Programmer’s Guide Java
Edition .
53

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 54 Wednesday, March 7, 2012 12:10 PM
 54

OW3adminGuide.book Page 55 Wednesday, March 7, 2012 12:10 PM
 4
Managing the Interface Repository

The Interface Repository is the component of Orbix Java that
stores information about IDL definitions and allows clients to
retrieve this information at runtime. This chapter describes how
to manage the contents of the Interface Repository.

The Interface Repository maintains full information about the IDL definitions
implemented in your system. Given an object reference, a client can determine at
runtime the object’s type and all information about that type by using the
Interface Repository. Clients can also browse contents of the Interface
Repository.

To allow a client to obtain information about a set of IDL definitions, you must
add those definitions to the Interface Repository. Orbix supports commands that
allow you to add IDL definitions to the repository, read the contents of the
repository, and remove definitions from it. Each of these commands accesses the
Interface Repository through the Interface Repository server.

This chapter explains how to manage the Interface Repository using Orbix
command-line utilities. Refer to “The Interface Repository Browser” on page 101
for details of how you can use Orbix GUI tools.
55

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 56 Wednesday, March 7, 2012 12:10 PM
Configuring the Interface Repository
The Interface Repository has its own directory, which is specified by the
IT_INT_REP_PATH entry in the common.cfg configuration file.

You must configure the Interface Repository before the IDL compiler or
applications can use it. To configure the Interface Repository, do the following:

1. Specify a value for the IT_INT_REP_PATH entry in the common.cfg file
using the Orbix Java Configuration Explorer GUI tool. For example:

IT_INT_REP_PATH /orbix/IntRep

2. Create the corresponding directory if it does not already exist.

mkdir /orbix/IntRep

3. If the Orbix Java daemon is running, stop it and then restart it so that it
recognizes the new configuration variable.

Registering the Interface Repository Server
The Interface Repository is accessed through an Orbix Java server. The interfaces
to the Interface Repository objects are defined in IDL and you must register the
Interface Repository server using the putitj command. For example:

putitj IFR /opt/progress/bin/ifr

Orbix Java expects that the server is registered with the name IFR as a shared
server. The Interface Repository’s executable file is in the bin directory with the
name IFR.

The Interface Repository server can be launched by the Orbix daemon, or it can
be launched manually. For example, the server executable file can be explicitly
run as a background process:

/opt/progress/bin/ifr

This has the advantage that the Interface Repository can initialize itself before
any other processes need to use it.
 56

M a n a g i n g t h e I n t e r f a c e R e p o s i t o r y

OW3adminGuide.book Page 57 Wednesday, March 7, 2012 12:10 PM
The IFR server executable file takes the following options:

Adding IDL Definitions
The Orbix Java utility putidl allows you to enter all the definitions in a single
IDL source file into the Interface Repository. This utility provides a simple and
safe way to add IDL definitions to the repository.

For example, the following command adds the definitions in the file
banksimple.idl to the Interface Repository:

putidl banksimple.idl

The putidl utility parses the definitions in the file banksimple.idl and
integrates the definitions into the repository. If the file banksimple.idl uses
definitions already registered in the repository, putidl checks that the definitions
are used consistently before updating the repository contents.

If you modify the file banksimple.idl, you can update the contents of the
Interface Repository by repeating the putidl command.

Although putidl takes an IDL file as an argument, the Interface Repository does
not store information about the file itself. The Interface Repository has no
knowledge of the file associated with specific IDL definitions. This means that
you cannot remove definitions based on the file in which they were declared. For
this reason, it is important that you use modules in your IDL definitions to group
definitions in logical units.

-? Print a summary of switches.

-h Specify an IFR server host name.

-L Immediately load data from the Interface Repository data
directory. The default is not to do this, but instead to load
each file on demand at runtime as it is required.

-t seconds Specify the timeout in seconds for the Interface Repository
server. The default timeout is infinite.

-v Print version information about the Interface Repository.
57

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 58 Wednesday, March 7, 2012 12:10 PM
The syntax for the putidlj command is:

putidl { [-?] | [-v] [-h <hostname>]
[-s <filename for output>]
[-I<path>] <IDL file name> }

Refer to “Orbix Java Command-Line Utilities” on page 131 for a full description
of each option.

Reading the Interface Repository Contents
The readifr utility allows you to read a specified IDL definition from the
Interface Repository. For example, to view the definition of interface Bank
defined in module Finance, enter the following:

readifr Finance::Bank1

This utility prints the IDL definition to the standard output.

If you use readifr to view an IDL interface definition, you can instruct it to also
display all derived interfaces. To do this, specify the -d option, for example:

readifr -d Finance::Bank

You can also invoke readifr with no arguments, in which case the default is to
output the whole repository. Because the repository may be very large, you are
prompted to confirm this operation.

1. The C++ scoping operator is used in IFR scoped names.
 58

M a n a g i n g t h e I n t e r f a c e R e p o s i t o r y

OW3adminGuide.book Page 59 Wednesday, March 7, 2012 12:10 PM
Removing IDL Definitions
The rmidl utility allows you to remove an IDL definition from the Interface
Repository. This utility takes a fully scoped name for an IDL definition as an
argument.

For example, to remove information about the IDL operation create_Account()
defined on interface Bank in module Finance, do the following:

rmidl Finance::Bank::create_Account()

The rmidl command removes definitions recursively. For example, to remove the
module Finance and all definitions within this module, do the following:

rmidl Finance

You should only use the rmidl utility to remove old or incorrect entries.

Note: Refer to “Orbix Java Command-Line Utilities” on page 131 for a full
description of the Orbix Java utilities and their options.
59

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 60 Wednesday, March 7, 2012 12:10 PM
 60

OW3adminGuide.book Page 61 Wednesday, March 7, 2012 12:10 PM
 5
Using Orbix Java on the Internet

Orbix Java client applets are, like any applet, subject to security
restrictions imposed by the browser in which they execute. The
most fundamental of these restrictions include the inability to
access local disks and the inability to contact an arbitrary
Internet host. This chapter describes how client applets can get
around these restrictions in a secure manner. The first technique
involves Progress Orbix Wonderwall, which is a full IIOP
firewall proxy. The second technique involves the use of signed
applets.
61

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 62 Wednesday, March 7, 2012 12:10 PM
About Wonderwall
Orbix Java provides inbuilt support for Orbix Wonderwall. You can use the
Wonderwall in two main ways:

• As a full firewall proxy that can filter, control and log your IIOP traffic.

• As a simple intranet request-routing server that passes IIOP messages from
your applet, via the Web server, to the target server.

Figure 5.1: Using Orbix Java and Wonderwall

Using the Wonderwall with Orbix Java as a Firewall
Proxy

To run the Wonderwall in a traditional secure mode, use the file secure.cf. The
Wonderwall command is as follows:

iiopproxy -config secure.cf

This mode of operation requires that the target objects and operations be listed in the
configuration file. For further details, refer to the Wonderwall Administrator’s Guide.
This provides a guide to using Wonderwall’s access control lists and object
specifiers.

Wonderwall
OrbixJava

Server

IDL

IIOP

Server

External Network

Internal Network
 62

U s i n g O r b i x J a v a o n t h e I n t e r n e t

OW3adminGuide.book Page 63 Wednesday, March 7, 2012 12:10 PM
Orbix Java Configuration Parameters Used to Support the
Wonderwall

Orbix Java has automatic inbuilt support for the Wonderwall. This means that if a
connection attempt fails using the default direct socket connection mechanism,
Orbix Java can transparently attempt to connect to any IIOP servers via the
Wonderwall. This also means that Wonderwall can be used to:

• Provide HTTP Tunnelling for Orbix Java-powered Java applets and
applications.

• Provide automatic intranet routing capability for Orbix Java-powered
applets, to avoid browser security restrictions.

• Use Orbix Java applications and applets with the Wonderwall, with no
code changes.

Configuring Orbix Java to Use the Wonderwall

To use the Wonderwall with Orbix Java, you must supply Orbix Java with the
location of the Wonderwall. You should use the following configuration
parameters:

• OrbixWeb.IT_IIOP_PROXY_HOST

This contains the name of the host on which the Wonderwall is running.

• OrbixWeb.IT_IIOP_PROXY_PORT

This contains the IIOP port on which the Wonderwall is running.

You can set these configuration parameters using any of the following:

• The Orbix Java Configuration Tool.

• The Config.setConfigItem() call.

• Other Orbix Java configuration mechanisms, such as applet tags, system
properties or command-line options.
63

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 64 Wednesday, March 7, 2012 12:10 PM
For example, the following is a fragment of a HTML file that uses applet-tag
parameters:

<APPLET code=GridApplet.class height=300 width=400>
<param name=”OrbixWeb.IT_IIOP_PROXY_HOST”value =

”wwall.iona.com”>
<param name=”OrbixWeb.IT_IIOP_PROXY_PORT” value=”1570”>

</APPLET>

Configuring Orbix Java to Use HTTP Tunnelling

HTTP Tunnelling is a mechanism for traversing client-side firewalls. Each IIOP
Request message is encoded in HTTP base-64 encoding, and a HTTP form query
is sent to the Wonderwall, containing the IIOP message as query data. The IIOP
Reply is then sent as a HTTP response.

Using HTTP Tunnelling allows your applets to be used behind a client’s firewall,
even when a direct connection, or even a DNS lookup of the Wonderwall
hostname, is impossible.

To use HTTP Tunnelling, you must use the ORB.init() API call to initialize
Orbix Java. The call to initialize Orbix Java from inside an applet's init()
method is as follows:

public void init () {
// Initialize the ORB.
IE.Iona.OrbixWeb.CORBA.ORB.init (this, null);

// Continue applet initialization.
...

}

This allows Orbix Java to retrieve the codebase from which the applet was
loaded. The codebase is then used to find the Wonderwall’s interface for HTTP
Tunnelling, a pseudo-CGI-script called “/cgi-bin/tunnel”. For more
information on use of the codebase in Java, see the Javasoft Web site, at
http://www.javasoft.com/.

The Wonderwall should be used as the Web server that provides the applet’s
classes, because an untrusted Java applet is only permitted to connect to the Web
server named in the codebase parameter.
 64

U s i n g O r b i x J a v a o n t h e I n t e r n e t

OW3adminGuide.book Page 65 Wednesday, March 7, 2012 12:10 PM
However, you can provide the HTML and images for your main Web site from
another Web server, such as Apache, IIS or Netscape, and simply refer to the
Wonderwall Web server in the applet tag, as follows:

<APPLET code=GridApplet.class
codebase=http://wwall.iona.com/GridApplet/classes
height=300 width=400>

</APPLET>

With this setup, your HTML and images are loaded from the main Web site
www.iona.com, yet your applet code is loaded from wwall.iona.com. As a result
the applet is permitted to open connections to that host. For greater efficiency,
you should make a ZIP, JAR and/or CAB file containing the classes used by your
applet, and store these on the main Web site also. The Web browser downloads
these from the main site, and does not need to load the classes from the
Wonderwall site. This is a generally recommended practice, even if you are not
using Wonderwall.

You can also provide a Wonderwall set-up to support HTTP Tunnelling on the
same machine as the real HTTP server. This requires that the Wonderwall runs on
a different port from the main server. Some sites may only allow outgoing HTTP
traffic on port 80, the standard port, so this could restrict the potential audience
for your applet slightly.

You should ensure that the applet’s classes are available in the directory you
named in the codebase URL. In the example above, this would be GridApplet/
classes. This directory path is relative to the directory named in the http-
files parameter of your Wonderwall configuration file.

If you wish an application to use HTTP Tunnelling, or would prefer to override
an applet’s HTTP Tunnelling setup, the following three configuration parameters
are provided:

• OrbixWeb.IT_HTTP_TUNNEL_HOST

This contains the name of the host on which the Wonderwall is running.

• OrbixWeb.IT_HTTP_TUNNEL_PORT

This contains the HTTP port on which the Wonderwall is running.

• OrbixWeb.IT_HTTP_TUNNEL_PROTO

This contains the protocol used.
65

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 66 Wednesday, March 7, 2012 12:10 PM
Note: Currently the only protocol value supported for HTTP Tunnelling is
“http”. Refer to “Configuring Orbix Java to Use the Wonderwall” on
page 63 for more details on how to set these parameters. HTTPS
tunnelling is not supported by Orbix Java.

The Wonderwall supports HTTP 1.1 and HTTP 1.0’s Keep-Alive extension. This
means that more than one HTTP request can be sent across TCP connections
between the client and the Wonderwall (or between a HTTP proxy and the
Wonderwall). This greatly increases the efficiency of HTTP.

Manually Configuring Orbix Java to Test Tunnelling

In order to test HTTP Tunnelling or IIOP via the Wonderwall, Orbix Java
provides two more configuration parameters:

• OrbixWeb.IT_IIOP_PROXY_PREFERRED

• OrbixWeb.IT_HTTP_TUNNEL_PREFERRED

If you set either of these parameters to true, the relevant connection mechanism
is tried first, before the direct connection is attempted. IIOP Proxying takes
precedence over HTTP Tunnelling, so if you enable both of these parameters,
IIOP Proxying is tried.

Using the Wonderwall as an Intranet Request Router
The Wonderwall can also be used as an intranet request router for IIOP, providing
a means by which your Orbix Java applets can contact servers that reside on hosts
other than the host on which your Web server is running. The file intranet.cf is
used in this configuration, so the Wonderwall command is as follows:

iiopproxy -config intranet.cf

Refer to the Wonderwall Administrator’s Guide for more details on using the
Wonderwall as an intranet request router.

This mode of operation requires no configuration. Using the Wonderwall, any
server can be connected to, and any operation can be called.
 66

U s i n g O r b i x J a v a o n t h e I n t e r n e t

OW3adminGuide.book Page 67 Wednesday, March 7, 2012 12:10 PM
Applet Signing Technology
For security reasons, an applet is prevented from accessing the local file system
and connecting to a host other than the host from which it was downloaded. Often
these restrictions must be relaxed, in order for an applet to be fully functional. It is
possible to achieve this using signed applet technology.

A signed applet has a digital signature which is interpreted as a sign of good
intent. An applet that has been signed with a trusted digital signature may
therefore be treated more permissively by a browser, and may even be granted the
permission of a full application.

The following section provides a brief overview of signed applet technology.
More detailed information is available on-line in the Progress Knowledge Base.
See the Progress Software Web site at: http://www.progress.com.

Overview

There is no single standard implementation of applet-signing technology,
however the implementations offered by Netscape and Microsoft are widely
adopted. Specific details of these vendors implementations are available from
their corporate Web sites. In this section, discussion is limited to the
implementation independent characteristics of the technology.

How Applets are Signed

Applets may be signed using public key cryptography technology. Distributors of
the applet must digitally sign the applet with their private key. When a signed
applet is downloaded by a browser, it can determine the identity of the signing
entity by consulting a Certification Authority. A Certification Authority is a
trusted third party that verifies the identify of a key holder. The browser may also
determine whether the applet has been tampered with. Assuming there are no
problems, the browser may assume that the applet is not malicious, and grant it
extended privileges.

The user must ultimately grant the applet these extended privileges, either by
configuring browser security settings or responding at runtime to individual
requests for privileges from the applet. In some circumstances it may be the case
that an applet does not function correctly unless it is granted extended privileges.
67

http://www.progress.com

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 68 Wednesday, March 7, 2012 12:10 PM
The benefits of signed applet technology to the Orbix Java applet programmer
include the following:

• The ability to contact any host.

• The ability to cache information locally on disk.

• The ability to access system properties.

It is common for the applet, other classes it requires and associated files to be
bundled into a single archive file. In this case, it is the archive that is signed and
downloaded to the browser, thereby reducing download time.

Looking Ahead

It is expected that browsers will be able to support multiple archives in the future.
Deployment should then become more flexible and efficient as applications can
be split into a number of archives, each containing classes pertaining to a
particular area of functionality. For example, an Orbix Java applet may be split
into archives containing the Orbix Java runtime, the Java classes generated by the
IDL compiler, the applet code and finally third party archives.

The Orbix Java installation includes Microsoft CAB (signed) and Netscape JAR
(unsigned) compatible archives. They can be found in the classes directory of
your Orbix Java installation.
 68

OW3adminGuide.book Page 69 Wednesday, March 7, 2012 12:10 PM
Part II
Orbix Java GUI Tools

OW3adminGuide.book Page 70 Wednesday, March 7, 2012 12:10 PM

OW3adminGuide.book Page 71 Wednesday, March 7, 2012 12:10 PM
 6
Orbix Java Configuration Explorer

Components of an Orbix Java system are configured using a
number of configuration files, as described in Chapter 2,
“Configuring Orbix Java”. The Orbix Java Configuration
Explorer allows you to configure Orbix Java components
without modifying the configuration files directly.

The Orbix Java configuration files configure the main components of Orbix Java,
and each Orbix Java installation has at least one copy of each file. The Orbix Java
Configuration Explorer allows you to modify any Orbix Java configuration file
on your system.

The configuration files include settings that affect the configuration of Orbix Java
and settings that affect the configuration of other Orbix Java products; for
example OrbixNames. The Orbix Java Configuration Explorer allows you to
modify all these settings, and to create additional settings. This tool integrates all
Orbix Java configuration in a single user interface.

By default, the Configuration Explorer allows you to configure settings that are:

• Common to multiple Progress products.

• Orbix Java-specific.

• OrbixNames-specific.
71

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 72 Wednesday, March 7, 2012 12:10 PM
Starting the Configuration Explorer
You can run the Orbix Configuration Explorer from the Windows Start menu, or
by entering configurationexplorer at the command line. The Configuration
Explorer appears as shown in Figure 6.1.

Figure 6.1: Orbix Java Configuration Explorer
 72

O r b i x J a v a C o n f i g u r a t i o n E x p l o r e r

OW3adminGuide.book Page 73 Wednesday, March 7, 2012 12:10 PM
This tool includes the following elements:

• A menu bar.

• A toolbar.

• A navigation tree.

The navigation tree displays icons that represent each configuration file
and configuration scope.

• A textbox.

The Name textbox displays the name of the current configuration file or
scope.

• A textpane.

The textpane control contains a Name column and a Value column as
shown in Figure 6.2 on page 74. Each row corresponds to individual
configuration file entries. The text pane enables you to view and modify
these entries.

At startup, the Orbix Java Configuration Explorer opens the iona.cfg root
configuration file. By default, this file is located in the config directory of your
Orbix Java installation. The Configuration Explorer navigation tree displays icons
that represent the configuration files included in iona.cfg as shown in Figure 6.1
on page 72.
73

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 74 Wednesday, March 7, 2012 12:10 PM
Configuring Common Settings
To configure settings that are common to multiple Progress products, select the
Common icon in the navigation tree. This icon represents the Common
configuration scope in the file common.cfg. The Common variables stored in the
default common.cfg configuration file then appear in the text pane, as shown in
Figure 6.2 on page 74.

Figure 6.2: Common Configuration Settings
 74

O r b i x J a v a C o n f i g u r a t i o n E x p l o r e r

OW3adminGuide.book Page 75 Wednesday, March 7, 2012 12:10 PM
The default Common configuration settings are as follows:

To update any of these settings, do the following:

1. Select the variable in the text pane.

2. Double-click on this variable in the Value column.

3. Enter your new setting.

4. Select the Apply button to save your setting to the appropriate
configuration file.

You cannot undo settings that you have saved to file.

IT_DAEMON_PORT The TCP port number on which the Orbix
Java daemon receives communications
from clients.

IT_DAEMON_ SERVER_ BASE The first TCP port number assigned by the
daemon to a server. Each server listens on
a single port number for client connection
attempts.

IT_IMP_REP_PATH The full path name of the Orbix Java
Implementation Repository directory.

IT_INT_REP_PATH The full path name of the Orbix Java
Interface Repository directory.

IT_LOCAL_DOMAIN The Internet domain name for your local
network.

IT_JAVA_INTERPRETER The full path name to the Java Runtime
Environment binary executable. This
installs with Orbix Java by default.

IT_DEFAULT_CLASSPATH The default classpath used when Java
servers are automatically launched by the
daemon.
75

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 76 Wednesday, March 7, 2012 12:10 PM
Configuring Orbix Java-Specific Settings
To configure settings that apply to Orbix Java only, select the Orbix Java icon in
the navigation tree. This icon represents the OrbixWeb configuration scope in the
file orbixweb3.cfg. The OrbixWeb variables stored in the default
orbixweb3.cfg configuration file then appear in the text pane, as shown in
Figure 6.3.

Figure 6.3: Configuring Orbix Java-Specific Settings
 76

O r b i x J a v a C o n f i g u r a t i o n E x p l o r e r

OW3adminGuide.book Page 77 Wednesday, March 7, 2012 12:10 PM
For example, the Orbix Java configuration settings include the following:

To update these settings, do the following:

1. Select the variable in the text pane.

2. Double-click on this variable in the Value column to enter your setting.

3. Select the Apply button to save your setting to the appropriate
configuration file.

You can also modify configuration variables specific to other Orbix Java
components by following these steps. Refer to the OrbixNames Programmer’s
and Administrator’s Guide for details of configuration variables that are specific
OrbixNames.

Customizing Your Configuration
By default, the Orbix Java Configuration Explorer displays the configuration
variables contained in the default configuration files. You can use the Orbix Java
Configuration Explorer to customize your configuration by:

• Creating configuration variables.

• Creating configuration scopes.

• Creating configuration files.

IT_JAVA_COMPILER The path to the Java compiler
executable.

IT_CLASSPATH_SWITCH The switch used by the Java
interpreter to specify a classpath.
77

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 78 Wednesday, March 7, 2012 12:10 PM
Creating Configuration Variables

By default, the Configuration Explorer displays a default subset of the available
configuration variables. You can also create additional configuration variables, as
shown in Figure 6.4.

Figure 6.4: Creating Configuration Variables

To create a configuration variable, perform the following steps:

1. Select the Create Configuration Variable button, shown in Figure 6.5 on
page 79.

2. Double-click the new entry in the Name column of the text pane.

3. Enter a name for your configuration setting.
 78

O r b i x J a v a C o n f i g u r a t i o n E x p l o r e r

OW3adminGuide.book Page 79 Wednesday, March 7, 2012 12:10 PM
4. Double-click the entry in the Value column.

5. Enter a value for your configuration variable

6. Select the Apply button to save your setting to the appropriate
configuration file.

Figure 6.5: Creating and Deleting Configuration Variables

Valid Names for Configuration Variables and Scopes

You can use the following characters when naming configuration variables and
scopes:

["_", "-"], ["a"-"z","A"-"Z"], ["0"-"9"]

Note: You cannot use spaces when naming configuration variables and
configuration scopes.

There are no restrictions on the valid characters for configuration values.

Deleting Configuration Variables

You cannot delete the configuration variables included in the default
configuration files. You can only change the values of these variables. However,
you can delete any additional variables that you may have created.

To delete a configuration variable, do the following:

1. Select the setting to be deleted from the text pane.

2. Select the Delete Configuration Variable button, shown in Figure 6.5.

3. Select the Apply button to save your setting to the appropriate
configuration file.

Refer to Appendix A, “Orbix Java Configuration Variables” on page 113 for a
complete list of both common and Orbix Java-specific configuration variables.

Delete Configuration Variable Create Configuration Variable
79

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 80 Wednesday, March 7, 2012 12:10 PM
Creating Configuration Scopes

The Configuration Explorer displays the configuration variables contained in the
default configuration files. You can customize your configuration by creating
additional configuration scopes. Configuration scopes are containers for
configuration variables. Refer to “Using Orbix Java Configuration Files” on
page 25 for more details.

In the navigation tree, user-defined configuration scopes are displayed as
branching from default configuration scope icons, as shown in Figure 6.6 on
page 81.

To create a user-defined configuration scope, do the following:

1. Select Edit→Create Scope from the menu bar. Alternatively, you can use
the Create Scope toolbar.

2. In the Name text box, enter the name of your configuration scope.

3. Select the Apply button to save your setting to the appropriate
configuration file.

You can then create new configuration variables within your configuration scope,
as described in “Creating Configuration Variables” on page 78.

Deleting Configuration Scopes

You cannot delete the default configuration scopes included in the default
configuration files. However, you can delete any additional scopes that you may
have created.

To delete a configuration scope, do the following:

1. From the navigation tree, select the scope to be deleted.

2. Select the Edit→Delete Scope menu option. Alternatively, you can use the
Delete Scope button on the toolbar.

Select the Apply button to save your setting to the appropriate configuration file.
 80

O r b i x J a v a C o n f i g u r a t i o n E x p l o r e r

OW3adminGuide.book Page 81 Wednesday, March 7, 2012 12:10 PM
Figure 6.6: Creating Configuration Scopes

Creating Configuration Files

You can extend the Configuration Explorer to display custom configuration files.
To create a configuration file you should edit your iona.cfg file to include the
additional configuration file. An icon associated with this configuration file then
appears in the Configuration Explorer navigation tree.

You can then create new configuration scopes and variables within your new
configuration file as usual, as described in “Creating Configuration Variables” on
page 78 and “Creating Configuration Scopes” on page 80.
81

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 82 Wednesday, March 7, 2012 12:10 PM
 82

OW3adminGuide.book Page 83 Wednesday, March 7, 2012 12:10 PM
 7
The Orbix Java Server Manager

The Implementation Repository is the component of Orbix Java
that maintains registration information about servers and
controls their activation. The Orbix Java Server Manager
allows you to manage the Implementation Repository.

The Implementation Repository maintains a mapping from a server name to the
executable code that implements that server. In an Orbix Java system, the Orbix
Java daemon on each host has an associated Implementation Repository. The
Implementation Repository allows the daemon to launch server processes in
response to operation calls from Orbix Java clients.

The Orbix Java Server Manager allows you to do the following:

• Browse an Implementation Repository.

• Register new servers.

• Modify existing server registration details.

The Orbix Programmer’s Guide Java Edition describes the Implementation
Repository in detail. This chapter assumes that you are familiar with this
description.
83

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 84 Wednesday, March 7, 2012 12:10 PM
Starting the Orbix Java Server Manager
To start the Orbix Java Server Manager, choose the Server Manager option in
the Orbix Java menu. Alternatively, enter srvmgr at the command line.

The main Server Manager window appears as shown in Figure 7.1.

Figure 7.1: Server Manager Main Window
 84

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 85 Wednesday, March 7, 2012 12:10 PM
The Server Manager window includes the following elements:

• A menu bar.

• A toolbar.

• A navigation tree.

This tree displays a graphical representation of the contents of an
Implementation Repository.

• A server information pane.

If you select an item in the navigation tree, the pane to the right of the tree
displays detailed information about that item. Information about servers is
displayed in a tabbed folder.

• A status bar.

You can use the toolbar icons in place of the menu options described in this
chapter.

Connecting to an Implementation Repository
To connect to an Implementation Repository, do the following:

1. Select Host/Connect.
The Connect dialog box appears, as shown in Figure 7.2.

Figure 7.2: Connect Dialog Box
85

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 86 Wednesday, March 7, 2012 12:10 PM
2. In the Host Name text box, type the name or IP address of the host on
which the required Orbix Java daemon runs. The default is the local host.

3. In the Port Number text box, type the TCP/IP port number on which the
Orbix Java daemon runs. To make a port number the default, click the Set
as Default Port check box. The default port number is initially set to
1570.

4. Click Connect.

The main Server Manager window then displays the contents of the
Implementation Repository. For example, Figure 7.3 shows an
Implementation Repository on the local host.

You can disconnect from an Implementation Repository at any time. To
disconnect, in the main window, select the required host and then select Host/
Disconnect.

Figure 7.3: Connection to an Implementation Repository
 86

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 87 Wednesday, March 7, 2012 12:10 PM
Creating a New Directory
The Implementation Repository supports the concept of directories. This allows
you to structure server names hierarchically, and organize the contents of an
Implementation Repository.

To create an Implementation Repository directory, do the following:

1. Select the Implementation Repository on the appropriate host.

2. Select Directory/New.

The Directory Name text box appears in the right hand pane of the main
window, as shown in Figure 7.4 on page 88.

3. Type the name of the new directory in the Directory Name text box.

4. Click Apply.

The main Server Manager window now includes the new directory when
displaying the contents of the Implementation Repository. For example, if
you create a Bank directory, this directory is displayed in the directory tree
after the Apply button is clicked. This is shown in Figure 7.4 on page 88.

To delete a directory, select the directory in the main Server Manager window
and then select Directory/Delete.
87

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 88 Wednesday, March 7, 2012 12:10 PM
Figure 7.4: Creating a New Directory
 88

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 89 Wednesday, March 7, 2012 12:10 PM
Registering a Server
To register a server, do the following:

1. Select the Implementation Repository directory in which you wish to
register the server. For example, to register a server in directory Bank,
select the icon for this directory in the main window.

2. Select Server/New.

A tabbed folder appears in the right pane of the main window as shown in
Figure 7.5 on page 90. This folder is used to record a server’s registration
details.

3. Enter the server name in the Server Name text box on the General tab.

4. If the server is an Orbix Java server, click the Orbix Java Server check
box.

5. By default, only the user who registers the server can run clients that
launch the server or invoke operations on server objects.

To provide server access rights to other users, click the Rights tab. The
Rights tab is described in “Providing Server Access Rights to Users” on
page 91.

6. The default server primary activation mode is shared. The default
secondary activation mode is normal.

To modify the server activation details, click the Activation tab. The
Activation tab is described in “Specifying Server Activation Details” on
page 93.
89

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 90 Wednesday, March 7, 2012 12:10 PM
Figure 7.5: Registering a New Server
 90

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 91 Wednesday, March 7, 2012 12:10 PM
Providing Server Access Rights to Users

During server registration, you can provide server access rights to other users by
clicking the Rights tab in the main window. The Rights tab appears as shown in
Figure 7.6 on page 92.

Orbix Java offers two types of access rights:

• Launch rights

• Invoke rights

Launch rights allow clients owned by a specified user to cause the Orbix Java
daemon to activate the server.

Invoke rights allow clients owned by a specified user to invoke operations on
objects in the server.

To provide launch or invoke rights to a user, do the following:

1. In the appropriate area, type the user identifier in the text box. To grant
these rights to all users, type the user name all.

2. Click Add.

To remove launch or invoke rights for a user, do the following:

1. In the appropriate user list, select the required user identifier.

2. Click Remove.

When you have added or removed the required users from the access rights lists,
click Apply to commit the changes.
91

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 92 Wednesday, March 7, 2012 12:10 PM
Figure 7.6: Providing Server Access Rights
 92

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 93 Wednesday, March 7, 2012 12:10 PM
Specifying Server Activation Details

During server registration, you can specify the server activation details by
clicking the Activation tab in the Server Manager main window. The Activation
tab appears as shown in Figure 7.7.

Figure 7.7: Specifying Server Activation Details
93

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 94 Wednesday, March 7, 2012 12:10 PM
Activation Modes

To specify a server’s primary activation mode, use the radio buttons in the
Activation Mode section of the Activation tab. The default server primary
activation mode is shared.

To specify a server’s secondary activation mode click the Advanced button in the
Activation Mode section. This launches the Secondary Activation Modes
dialog box, as shown in Figure 7.8. The default secondary activation mode is
normal.

Figure 7.8: Secondary Activation Modes

A server registered in shared activation mode can have an associated maximum
number of processes. The Orbix Java daemon launches up to the specified
number of processes for that server.

Each new client connection results in a new server process until the maximum
number of processes is available. Subsequent client connections are routed to
existing server processes using a round-robin algorithm. This provides a primitive
form of load balancing for shared servers.

To specify the number of processes associated with a shared server, enter a
positive integer value in the Max. number of processes associated with this
server text box.
 94

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 95 Wednesday, March 7, 2012 12:10 PM
You can associate a well-known TCP/IP port number with servers that
communicate using the CORBA-defined Internet Inter-ORB Protocol (IIOP). To
specify a well-known IIOP port for a server, click the Use a Well known IIOP
Port check box and enter a value in the Port Number text box.

When you have specified the server activation details, click OK to confirm these
details.

Note: The Orbix Java daemon currently supports shared primary activation
mode and normal secondary activation mode only.

Launch Commands

The Commands section on the Activation tab allows you to modify the launch
commands associated with a server. A registered server must have at least one
launch command.

Launch commands depend on the server activation mode, as follows:

Shared Activation Mode

If the server activation mode is shared:

1. Enter the server launch command in the Command text box.

2. Enter a * character in the Marker text box.

3. Click Add.

Unshared Activation Mode

If the server activation mode is unshared:

1. Enter a marker pattern in the Marker text box.

2. Enter the launch command for this marker pattern in the Command text
box.

3. Click Add.

Repeat this process for each marker pattern you wish to register.
95

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 96 Wednesday, March 7, 2012 12:10 PM
Per-Method Activation Mode

If the server activation mode is per-method:

1. Enter a method name in the Marker text box.

2. Enter the launch command for this method in the Command text box.

3. Click Add.

Repeat this process for each method you wish to register.

Modifying Server Registration Details
When you register a server, the Orbix Java daemon creates a server registration
record in the Implementation Repository. This record stores detailed information
about the server.

To modify a server registration record, do the following:

1. Select the server you wish to modify.

The Server Manager displays the tabbed folder containing all the
registration details for the selected server.

2. Select the required tab from the following:

♦ General

♦ Activation

♦ Rights

3. Enter the value in the appropriate section of the tab, as described in
“Registering a Server” on page 89.

4. Click the Apply button.
 96

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 97 Wednesday, March 7, 2012 12:10 PM
Launching a Persistent Server
Orbix Java allows you to launch shared servers manually. A manually-launched
server is known as a persistent server.

To launch a persistent server process, do the following:

1. Select the server you wish to launch.

The server must be registered in shared mode.

2. Select Server/Launch.

If successful, this starts the server executable file specified in the server
launch command. The icon for the selected server displays a green traffic
light while the server process runs, as shown in Figure 7.9.

To kill a shared server process, select Server/Kill.

Figure 7.9: Launching a Persistent Server
97

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 98 Wednesday, March 7, 2012 12:10 PM
Configuring the Server Manager
To configure the Server Manager, do the following:

1. In the main Server Manager window, select Server Manager/Options.
The Options dialog box appears, as shown in Figure 7.10.

Figure 7.10: The Options Dialog Box

2. By default, the Server Manager does not connect to an Orbix Java daemon
at startup. To specify that the Server Manager should connect to the Orbix
Java daemon at the local host, click the Connect to your local host on
startup check box.

3. The Server Manager allows you to register Orbix or Orbix Java servers.
By default, the Server Manager assumes that servers are Orbix Java
servers.

To change this default, check Create Java servers by default.
 98

T h e O r b i x J a v a S e r v e r M a n a g e r

OW3adminGuide.book Page 99 Wednesday, March 7, 2012 12:10 PM
4. You can also select the transport protocol used. The default protocol is
IIOP (Internet Inter-Orb Protocol). To change this default, click the check
box labelled Set the transport protocol to Orbix.

5. To enable online help, enter the Location of your Internet browser in the
text box provided.

6. Click OK to commit the new configuration.

Note: The main Server Manager window refreshes itself automatically,
reflecting updates as they occur. This means that the Refresh Time
option, used in earlier versions of the Server Manager, is no longer
necessary.
99

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 100 Wednesday, March 7, 2012 12:10 PM
 100

OW3adminGuide.book Page 101 Wednesday, March 7, 2012 12:10 PM
 8
The Interface Repository Browser

The Interface Repository provides persistent storage of IDL
definitions and allows CORBA applications to retrieve
information about those definitions at runtime. The Interface
Repository Browser allows you to manage IDL definitions in
the Interface Repository.

Some CORBA applications, for example applications that use the Dynamic
Invocation Interface (DII) to invoke operations, require runtime access to
information about IDL definitions. The Interface Repository allows you to store
IDL definitions for retrieval by these applications.

The Interface Repository Browser allows you to add IDL definitions to the
Interface Repository and view information about those definitions. CORBA
applications can retrieve information about those definitions using standard IDL
interfaces implemented by the Interface Repository.

The Interface Repository Browser also allows you to export IDL definitions from
the Interface Repository to a file. This feature makes the Interface Repository
Browser a useful development tool for managing the availability of IDL
definitions in your system.

The Orbix Programmer’s Guide Java Edition describes the Interface Repository in
detail. The remainder of this chapter assumes that you are familiar with this
description.
101

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 102 Wednesday, March 7, 2012 12:10 PM
Starting the Interface Repository Browser
You can start the Interface Repository Browser from the Windows Start menu.
Alternatively, enter the orbixifr command at the command line.

The main Interface Repository Browser window appears as shown in Figure 8.1.

The browser interface includes the following elements:

• A menu bar.

• A tool bar.

• A navigation tree. This tree displays a graphical representation of the
contents of an Implementation Repository.

• A multi-columned list box. This list box displays information about IDL
definitions selected in the navigation tree.

• A status bar.

Figure 8.1: The Main Interface Repository Browser Window
 102

T h e I n t e r f a c e R e p o s i t o r y B r o w s e r

OW3adminGuide.book Page 103 Wednesday, March 7, 2012 12:10 PM
Note: You can use the tool bar icons in place of the menu options described in
this chapter.

Connecting to an Interface Repository
The Interface Repository is implemented as an Orbix server. The Orbix
Programmer’s Guide Java Edition describes how you make an Interface
Repository server available to your system.

To connect to an Interface Repository server, do the following:

1. Select Host/Connect. The Connect dialog box appears as shown in
Figure 8.2.

2. In the text box, enter the name or IP address of the host on which the
Interface Repository server runs.

3. Click OK. The navigation tree in the main browser window displays the
contents of the Interface Repository.

Figure 8.2: The Connect Dialog Box
103

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 104 Wednesday, March 7, 2012 12:10 PM
Adding IDL to the Interface Repository
The Interface Repository Browser allows you to import IDL definitions from a
source file. This is a safe mechanism for adding IDL definitions to the Interface
Repository which maintains the Interface Repository in a consistent state.

To add IDL definitions to the Interface Repository, do the following:

1. Select File/Import. The standard Open File dialog box for your operating
system appears.

2. In the dialog box, enter the name of the source file in which your IDL is
defined.

3. Click OK. In the main browser window, the navigation tree control
displays the contents of the Interface Repository including the new IDL
definitions.

Consider the following example IDL source file:

// IDL
interface Grid {

readonly attribute short height;
readonly attribute short width;

long get (in short row, in short col);
void set (in short row, in short col, in long value);

};

If you import this file into an empty Interface Repository, the main browser
window appears as shown in Figure 8.3 on page 105.
 104

T h e I n t e r f a c e R e p o s i t o r y B r o w s e r

OW3adminGuide.book Page 105 Wednesday, March 7, 2012 12:10 PM
Figure 8.3: IDL Definitions in the Interface Repository Browser

Viewing the Interface Repository Contents
The navigation tree in the main browser window represents the contents of the
Interface Repository in terms of containment relationships. As described in the
Orbix Programmer’s Guide Java Edition , the Interface Repository uses
containment relationships to represent the nested structure of IDL definitions.

Consider the following example IDL source file:

// IDL
module Finance {

interface Account {
readonly attribute float balance;
void makeDeposit (in float amount);
void makeWithdrawal (in float amount);

};
105

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 106 Wednesday, March 7, 2012 12:10 PM
interface Bank {
Account newAccount ();

};
};

If you import this file into an Interface Repository, the browser navigation tree
illustrates that the definition of module Finance contains interfaces Account and
Bank which in turn contain attribute and operation definitions, as shown in
Figure 8.4.

Figure 8.4: Containment Relationships in the Interface Repository Browser
 106

T h e I n t e r f a c e R e p o s i t o r y B r o w s e r

OW3adminGuide.book Page 107 Wednesday, March 7, 2012 12:10 PM
Viewing Information about IDL Definitions

The list box in the main browser window displays information about selected IDL
definitions. To view information about an IDL definition, select the navigation
tree icon of the container in which the definition is contained. The list box
displays information about the contents of the container, including the type and
name of each contained definition.

For example, if you select the icon for module Finance, the list box displays
information about the IDL interface definitions contained within this module, as
shown in Figure 8.4.

Viewing Source Code for IDL Definitions

To view the source for an IDL definition, do the following:

1. Navigate to the required IDL definition.

2. Select View/View CORBA IDL. The View Interface Definition
Language dialog box displays the IDL source associated with the selected
definition.

For example, if you view the source for interface Bank, the View Interface
Definition Language dialog box appears as shown in Figure 8.5.
107

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 108 Wednesday, March 7, 2012 12:10 PM
Figure 8.5: The View Interface Definition Language Dialog Box

Exporting IDL Definitions to a File
The Interface Repository Browser allows you to save an IDL definition to a file.
To export an IDL definition from the Interface Repository to a file, do the
following:

1. Navigate to the required IDL definition.

2. Select File/Export. The standard Save File As dialog box for your
operating system appears.

3. In the dialog box, enter the name of the target file in which you wish to
save the IDL definition.

4. Click OK to save the definition to the specified file.
 108

T h e I n t e r f a c e R e p o s i t o r y B r o w s e r

OW3adminGuide.book Page 109 Wednesday, March 7, 2012 12:10 PM
Configuring the Interface Repository Browser
To configure the Interface Repository Browser, do the following:

1. Select Network/Options. The Interface Repository Options dialog box
appears as shown in Figure 8.6.

Figure 8.6: The Interface Repository Options Dialog Box

2. By default, the main browser window refreshes every seven seconds. To
modify this refresh time, enter a positive integer value in the Refresh
Time text box.

3. By default, the browser does not connect to an Interface Repository at
startup. To specify that the browser should connect to the Interface
Repository at the local host, click the Connect to local host on startup
button.

4. Click OK to commit the new configuration.

Note that you can manually refresh the main browser window at any time. To do
this, select View/Refresh.
109

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 110 Wednesday, March 7, 2012 12:10 PM
 110

OW3adminGuide.book Page 111 Wednesday, March 7, 2012 12:10 PM
Part III
Appendices

OW3adminGuide.book Page 112 Wednesday, March 7, 2012 12:10 PM

OW3adminGuide.book Page 113 Wednesday, March 7, 2012 12:10 PM
Appendix A
Orbix Java Configuration Variables

There are two types of Orbix Java configuration variables: those that are common
to multiple Progress products, and variables that are specific to Orbix Java only.

Common Configuration variables
You can set the following variables as environment variables using the
Configuration Explorer GUI tool, or by editing the common.cfg configuration
file.

Variable Type Description

IT_DAEMON_PORT Integer TCP port number for the Orbix Java
daemon.

IT_DAEMON_SERVER_BASE Integer A server that is launched in separate
processes listens on its own port.

The first server port assigned is
IT_DAEMON_SERVER_BASE plus 1,
subsequently allocated ports increment
until IT_DAEMON_SERVER_BASE plus
IT_DAEMON_SERVER_RANGE.

IT_DAEMON_SERVER_RANGE Integer Refer to the entry for
IT_DAEMON_SERVER_BASE.

The default value is 2000.

Table A.1: Common Configuration variables
113

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 114 Wednesday, March 7, 2012 12:10 PM
IT_DEFAULT_CLASSPATH String This is the classpath the daemon uses to
find Java servers when launching them.

You can supplement this on a per-server
basis using the -addpath variable to
putitj.

There is no default.

IT_IMP_REP_PATH String The full path name of the
Implementation Repository directory.

IT_INT_REP_PATH String The full path name of the Interface
Repository directory.

IT_JAVA_INTERPRETER String The path to the Java interpreter
executable. Used by the "owjava" tool
when starting servers or other Java
applications. Also used by the Orbix Java
daemon when starting servers.

IT_LOCAL_DOMAIN String The name of the local Internet domain;
for example, progress.com.

Variable Type Description

Table A.1: Common Configuration variables
 114

O r b i x J a v a C o n f i g u r a t i o n V a r i a b l e s

OW3adminGuide.book Page 115 Wednesday, March 7, 2012 12:10 PM
Orbix Java-Specific Configuration variables
You can set these variables using the Configuration Explorer GUI tool, or by
editing the orbixweb3.cfg configuration file.

The available configuration variables are listed here in alphabetical order.
Infrequently-used variables are marked with an asterisk (*); these generally do
not need to be changed.

Variable Type Description

IT_ACCEPT_CONNECTIONS Boolean Allow connections to be opened from
remote ORBs so that operations can be
called on this ORB’s objects.

The default value is true. (*)

IT_ALWAYS_CHECK_LOCAL_OBJS Boolean A true value here indicates that when
an object reference arrives, always
check to see if this is a reference for a
local object.

The default value is false. (*)

IT_ANY_BUFFER_SIZE Integer The initial size of the internal buffer
used for marshalling anys.

The default value is 512. (*)

IT_BIND_IIOP_VERSION String This controls the IOR (Interoperable
Object Reference) version used in
bind() calls. Orbix Java supplies a
separate version control for bind() calls
because they create their own IORs, and
do not return IORs created by servers.

This defaults to 10 (version 1.0). You
should only set this to 11 if you are sure
that the target server supports IIOP 1.1.

Table A.2: Orbix Java-Specific Configuration Variables
115

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 116 Wednesday, March 7, 2012 12:10 PM
IT_BIND_USING_IIOP Boolean Use the IIOP protocol to bind() instead
of the Orbix protocol.

The default is true.

IT_BUFFER_SIZE Integer The initial size of the internal buffer
used for marshalling operation
variables.

The default value is 8192. (*)

IT_CLASSPATH_SWITCH String The switch used by the Java interpreter
to specify a classpath. Used by the
owjava tool when starting servers or
other Java applications.

This defaults to -classpath. (*)

IT_CONNECT_ATTEMPTS Integer The maximum number of retries Orbix
Java makes to connect a client to a
server.

The default value is 5. (*)

IT_CONNECTION_ORDER String Specifies the order in which clients try
different connect mechanisms to
servers. You can specify direct,
iiopproxy or http. If SSL is enabled,
the SSL version of the connection
mechanism is used.

The default is iiopproxy.

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
 116

O r b i x J a v a C o n f i g u r a t i o n V a r i a b l e s

OW3adminGuide.book Page 117 Wednesday, March 7, 2012 12:10 PM
IT_CONNECTION_TABLE_PER_THREAD Boolean This variable allows you to specify a
connection table for each thread as
opposed to for each ORB.This prevents
multi threaded HTTP connections from
being locked.

This setting is independent of the
IT_MULTI_THREADED_SERVER. variable.
You must set both to true for multi
threaded HTTP to work.

The default is false.

IT_CONNECTION_TIMEOUT Integer The time (in milliseconds) an existing
connection from client to server is kept
alive to be used for further invocations.

The default is 300000. (*)

IT_CONNECT_TABLE_SIZE_DEFAULT Integer The initial size of the connection table.
This is resized automatically.

This defaults to 100. (*)

IT_DETECT_APPLET_SANDBOX Boolean If set to true, always try to detect
whether the ORB is being used in an
applet. If the applet sandbox is detected,
do not perform operations that cause a
SecurityException, such as accessing
system properties.

The default value is true. (*)

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
117

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 118 Wednesday, March 7, 2012 12:10 PM
IT_DEFAULT_IIOP_VERSION String This controls the IIOP version
embedded in IORs produced in Orbix
Java servers. It indicates what versions
of IIOP the target supports, and also the
version of messages sent by a client (as
long as it is less than or equal to that of
the target).

Set to 10 (IIOP version 1.0) by default.
You must set this to 11 in servers to
allow clients to use IIOP fragmentation.

IT_DII_COPY_ARGS Boolean Whether the DII should copy invocation
arguments.

Set this to false to optimize stub
marshalling for large messages.

This defaults to false. (*)

IT_DSI_COPY_ARGS Boolean Whether the DSI should copy
invocation arguments.

The default value is false. (*)

IT_HTTP_TUNNEL_HOST String The TCP/IP hostname used by a client
to contact a Wonderwall IIOP proxy for
HTTP tunnelling.

IT_HTTP_TUNNEL_PORT Integer The TCP/IP port used by a client to
contact a Wonderwall IIOP proxy for
HTTP tunnelling.

This defaults to 0.

IT_HTTP_TUNNEL_PREFERRED Boolean Whether HTTP tunnelling should be
used in preference to any other
connection mechanism.

This defaults to false.

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
 118

O r b i x J a v a C o n f i g u r a t i o n V a r i a b l e s

OW3adminGuide.book Page 119 Wednesday, March 7, 2012 12:10 PM
IT_HTTP_TUNNEL_PROTO String The HTTP protocol used by a client to
contact a Wonderwall IIOP proxy for
HTTP tunnelling (usually http).

IT_IIOP_LISTEN_PORT Integer A server’s well-known port; the port to
listen for client invocations using IIOP.

The default value is 0. (*)

IT_IIOP_PROXY_HOST String The TCP/IP hostname used by a client
to contact a Wonderwall IIOP proxy for
IIOP proxy connections.

IT_IIOP_PROXY_PORT Integer The TCP/IP port used by a client to
contact a Wonderwall IIOP proxy for
IIOP proxy connections.

This has a default value of 0.

IT_IIOP_PROXY_PREFERRED Boolean Indicates whether connecting using
IIOP proxying via a Wonderwall should
be used in preference to any other
connection mechanism.

This defaults to false.

IT_IMPL_READY_IF_CONNECTED Boolean Specifies whether the Orbix Java
runtime should inform the daemon that
the server is ready by calling
impl_is_ready() when the server
calls ORB.connect().

This defaults to true.

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
119

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 120 Wednesday, March 7, 2012 12:10 PM
IT_IMPL_IS_READY_TIMEOUT Integer When an in-process server is launched,
the Java daemon waits to be informed
that the server is active before allowing
the causative client request to proceed.
Refer to the Orbix Programmer’s Guide
Java Edition for further details.

It waits a maximum of this amount of
time, specified in milliseconds.

The default is 30000 milliseconds (30
seconds).

IT_INITIAL_REFERENCES String A list of IORs for initial service objects,
as returned by the ORB operation
list_initial_references(). It is
specified in a "name value name
value..." format.

For example, "NameService
IOR:[IOR_for_naming_service]
TradingService
IOR:[IOR_for_Trader]".

IT_IORS_USE_DNS Boolean Indicates whether IIOP object
references use DNS hostnames or IP
addresses. A true value here indicates
that they should use DNS hostnames.

This defaults to false. (*)

IT_JAVA_COMPILER String The path to the Java compiler
executable. Used by the owjavac tool
when building the Orbix Java demos.

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
 120

O r b i x J a v a C o n f i g u r a t i o n V a r i a b l e s

OW3adminGuide.book Page 121 Wednesday, March 7, 2012 12:10 PM
IT_JVM_SYSTEM_PROPERTY_SWITCH String This allows the Java daemon to be run
on different JVMs.

It facilitates the different switches that
different Java Interpreters support to
pass system properties to the JVM.

The default is -D for the JDK. You
should set this to /d: for Microsoft’s
JView.

IT_KEEP_ALIVE_FORWARDER_CONN Boolean Whether the connection from the client
to the Orbix Java daemon should be kept
alive after a bind() call.

The default is true. (*)

IT_LISTENER_PRIORITY Integer The priority of the server-side
connection-listener thread.

The default value is 5. (*)

IT_LOCAL_DOMAIN String The name of the local DNS domain.

IT_LOCAL_HOSTNAME String The name of the local host. You do not
need to set this normally, but it can be
useful if you wish to control the interface on
which incoming connections are accepted.

IT_MARSHAL_NULLS_OK Boolean Allow Java nulls to be used to
represent null IDL strings and anys.

This variable enables API compatibility
with pre-OMG standard versions of
Orbix Java and Orbix C++.

The default is false.

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
121

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 122 Wednesday, March 7, 2012 12:10 PM
IT_MULTI_THREADED_SERVER Boolean Whether this instance of the Java
runtime can contain multiple servers in
the one process.

This defaults to false. (*)

IT_NAMES_HASH_TABLE_LOAD_FACTOR Float Percentage of table elements used
before a resize. The default value is 0.5.

IT_NAMES_HASH_TABLE_SIZE Integer The initial size for the Naming Service
hash table. This value must be a prime
number.

The default value is 23.

IT_NAMES_REPOSITORY_PATH String This represents the default location of
the Naming Service repository entries.

This is set to the following directory by
default:

<install dir>/config/NamesRep

IT_NAMES_SERVER String The name of the Name Server that is
registered with the Implementation
Repository.

IT_NAMES_TIMEOUT Integer The default timeout, set to the
following:

-1(IT-INFINITE_TIMEOUT)

IT_NAMES_SERVER_HOST String The TCP/IP hostname of the host where
the CORBA Naming Service is
installed.

IT_NS_IP_ADDR String The IP address of the host where the
CORBA Naming Service is installed. If
this is not set, the
IT_NAMES_SERVER_HOST variable is
used instead. (*)

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
 122

O r b i x J a v a C o n f i g u r a t i o n V a r i a b l e s

OW3adminGuide.book Page 123 Wednesday, March 7, 2012 12:10 PM
IT_NS_PORT Integer The TCP/IP port of the host running the
CORBA Naming Service.

The default value is 1570.

IT_OBJECT_CONNECT_TIMEOUT Integer The amount of time an object is
available after connect() is called.

The default value of -1 means
indefinitely. (*)

IT_OBJECT_TABLE_LOAD_FACTOR Float The load factor of the server object
table. Once this proportion of objects
has been registered, it is resized.

This has a default of 0.75. (*)

IT_OBJECT_TABLE_SIZE Integer The initial size of the internal table used
to register Orbix Java objects in a
server.

The default value is 1789. (*)

IT_ORBIXD_IIOP_PORT Integer The TCP/IP port number on which the
Orbix Java daemon can be contacted
when using IIOP. Provided to support
legacy daemons requiring a separate
port for each protocol.

The default is 1570.

IT_ORBIXD_PORT Integer The TCP/IP port number on which the
Orbix Java daemon should be contacted
when using the Orbix protocol.

The default is 1570.

IT_READER_PRIORITY Integer The priority of the server-side request-
reader thread.

The default is 3. (*)

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
123

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 124 Wednesday, March 7, 2012 12:10 PM
IT_REQ_CACHE_SIZE Integer The initial size of the internal cache for
outgoing requests.

The default is 10. (*)

IT_SEND_FRAGMENTS Boolean If this is set to true and the target server
supports IIOP version 1.1 or higher,
messages that exceed IT_BUFFER_SIZE
are sent as fragments.

This defaults to false.

IT_TRADING_SERVER String The server name for the CORBA Trader
service. (*)

IT_USE_ALIAS_TYPECODE Boolean When set to true creates an alias
TypeCode.

This defaults to false.

IT_USE_BIDIR_IIOP Boolean Whether bidirectional IIOP connections
should be used to support callbacks
through firewalls.

This is set to false by default.

IT_USE_EXTENDED_CAPABILITIES Boolean Orbix Java provides built-in support for
Netscape's Capabilities API. If this is
enabled, connections can be opened to
any host using IIOP, Orbix protocol or
SSL-IIOP, when a valid Netscape
Object Signing certificate is used.

This is set to true by default. (*)

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
 124

O r b i x J a v a C o n f i g u r a t i o n V a r i a b l e s

OW3adminGuide.book Page 125 Wednesday, March 7, 2012 12:10 PM
IT_USE_ORBIX_COMP_OBJREF Boolean When this is set to false, the default
TypeCode alias is used for object
references. This is IDL:CORBA/
Object:1.0

When this is set to true, the following
TypeCode alias is used for object
references: IDL:omg.org/CORBA/
Object:1.0

The default is false.

IT_USE_ORB_THREADGROUP Boolean When set to true, this causes Orbix
Java to place any threads it creates into
an "ORB threadgroup", a top-level
thread-group.

This allows ORB threads to be separated
from application threads, and is
especially useful in Netscape-signed
applets. In the JVM, multiple instances
of the same applet sharing the same
ORB object can interfere with each
others operation.

This is set to true by default. (*)

config String The configuration file to use. By default,
the first configuration file found in the
classpath, or the first found in the
CODEBASE directory for applets is used.

pingDuringBind Boolean Whether a client should try to ping the
server during a bind() call.

This is set to true by default. (*)

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
125

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 126 Wednesday, March 7, 2012 12:10 PM
Note: The entries in IONA configuration files are scoped with a prefix; for
example, Common{...} or OrbixWeb{...}.

For details of OrbixNames-specific configuration variables, refer to the
OrbixNames Programmer’s and Administrator’s Guide.

setDiagnostics Integer Specifies the Orbix Java diagnostics
level output to stdout. You should
enter a value in the range 0-255.

The default value is 1.

useDefaults Boolean If this is set to true, Orbix Java does not
output a warning if the configuration file
cannot be found.

Variable Type Description

Table A.2: Orbix Java-Specific Configuration Variables
 126

OW3adminGuide.book Page 127 Wednesday, March 7, 2012 12:10 PM
Appendix B
Orbix Java Daemon Options

Orbixd Options

The Orbix Java daemon process, orbixd, takes the following options:

-c filename Specifies the log file to use for check-point information.
In the event that a daemon is terminated, this allows a
new daemon to recover information about existing
running servers.

Unless an absolute pathname is specified, the file is
placed in a directory relative to that from which the
daemon is launched.

-i filename Outputs the daemon’s interoperable object reference
(IOR) to the specified file.

Unless an absolute pathname is specified, the file is
placed in a directory relative to that from which the
daemon is launched.

-p Runs the daemon in protected mode. In this mode, only
clients running as the same user as the daemon are
allowed to modify the Implementation Repository. No
updates are accepted from remote hosts.

-r seconds Specifies the frequency (in seconds) at which orbixd’s
child processes should be reaped. The default is 60
seconds.

-s Runs the daemon in silent mode. By default, the
daemon outputs some trace information.

-t Outputs more than the default trace information while
the daemon is running.
127

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 128 Wednesday, March 7, 2012 12:10 PM
Orbixdj Options
The Orbix Java daemon process, orbixdj, takes the following options:

-u Allows invocations on a manually-launched
unregistered server. This means that the manually-
launched (persistent) server does not have to be
registered in the Implementation Repository.

-x seconds Sets the time limit in seconds for establishing that a
connection to the daemon is fully operational. The
default is 30 seconds.

-v Outputs the daemon version number and a summary of
the configuration details that a new daemon process
would use. Specifying -v does not cause a new daemon
to be run.

-? Displays the switches to orbixd.

-inProcess By default, the Java daemon activates servers
in a separate process. This is termed out-of-
process activation.

If this switch is set, the Java daemon starts
servers in a separate thread. This is termed in-
process activation.

-textConsole By default, the Java daemon launches a GUI
console.

Adding this switch causes the Java daemon to
use the invoking terminal as the console.

-noProcessRedirect By default, the stdout and stderr streams
of servers activated in a separate process are
redirected to the Java daemon console.

Specifying this switch causes the output
streams to be hidden.

-u Allows the use of unregistered persistently-
launched servers.
 128

O r b i x J a v a D a e m o n O p t i o n s

OW3adminGuide.book Page 129 Wednesday, March 7, 2012 12:10 PM
-V Prints a detailed description of the
configuration parameters used by the Java
daemon on start-up.

The Java daemon then exits.

-v Causes the Java daemon to print a summary
of the configuration it runs with.

The Java daemon then exits.

-? Displays the switches to orbixdj.
129

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 130 Wednesday, March 7, 2012 12:10 PM
 130

OW3adminGuide.book Page 131 Wednesday, March 7, 2012 12:10 PM
Appendix C
Orbix Java Command-Line Utilities

This appendix acts as a reference for the command-line interface to Orbix Java.
The utilities described in this appendix allow you to manage the Implementation
Repository and the Interface Repository.

Utility Summary
The following table shows the available command-line utilities:

Table C.1: Orbix Java Command-Line Utilities

Purpose Utility

Server Registration putitj, rmitj

Listing Server Information lsitj, psitj, catitj

Process Management pingitj, killitj

Implementation Repository
Directories

mkdiritj, rmdiritj

Security chownitj, chmoditj

Interface Repository
Management

putidl, readifr, rmidl

Configuration Information dumpconfig
131

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 132 Wednesday, March 7, 2012 12:10 PM
This appendix describes each command-line utility in alphabetical order.

Note: To get help on any utility, enter the utility name followed by the -? or the
-help switch. For example, putitj -?.

catitj

The catitj utility outputs full information about a given Implementation
Repository entry.

Syntax

catitj [-v] [-h host] server_name

Options

chmoditj
The chmoditj utility modifies access control for a server. For example, you can
use it to grant launch and invoke rights on a server to users other than the server
owner.

Syntax

chmoditj [-v] [-h host]
{ server | -a directory }
{ i{+,-}{user, group}|
 l{+,-}{user, group} }

-v Outputs the utility version information.

-h host Outputs information about an entry on a specific machine.
 132

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 133 Wednesday, March 7, 2012 12:10 PM
Options

By default, only the owner of an Implementation Repository entry can launch or
invoke the registered server. However, launch and invoke ACLs are associated
with each entry in the Implementation Repository, and you can modify these
ACLs to give certain users or groups the right to launch or invoke a specific
server or a directory of servers.

There is also a pseudo-group name called all that you can use to implicitly add
all users to an ACL.

chownitj

The chownitj utility makes changes to the ownership of Implementation
Repository entries and directories.

Syntax

chownitj [-v] [-h host]
{ -s server_name new_owner |
 -d directory { +, - } {user, group} }

-v Outputs the utility version information.

-h host Modify an entry on a specific host.

-a Specify that a user or group is to be added to an access control list
(ACL) for a directory of servers.

i+
i-

Add a user or group to the invoke ACL.
Remove a user or group from the invoke ACL.

l+
l-

Add a user or group to the launch ACL.
Remove a user or group from the launch ACL.
133

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 134 Wednesday, March 7, 2012 12:10 PM
Options

Only the current owner of an Implementation Repository entry has the right to
change its ownership.

An Implementation Repository directory can have more than one owner. An
ownership ACL is associated with each directory in the Implementation
Repository, and this ACL can be modified to give certain users or groups
ownership rights on a directory. Only a user on an ownership ACL has the right to
modify the ACL.

Note: Spaces are significant in this command. Spaces must exist between an
option and its argument, and on either side of the + or - that follows a
directory.

Orbix Java supports the pseudo-group all which, when added to an ACL, grants
access to all callers.

dumpconfig
The dumpconfig utility outputs the values of the configuration variables used by
Orbix, and the location of the Orbix configuration files in your system. It also
reports if there are any syntax errors in your configuration files.

-v Outputs the utility version information.

-h host Indicates which host to use.

-s Changes the ownership of an Implementation Repository entry.

-d Modifies the ACL on a directory, allowing you to add (+) or
remove (-) a user or group from the list of directory owners.
 134

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 135 Wednesday, March 7, 2012 12:10 PM
Syntax

dumpconfig [-v]

Options

killitj
The killitj utility kills (stops) a running server process.

Syntax

killitj [-v] [-h host] [-m marker] server_name

Where there is more than one server process, use the marker parameter to select
between different processes. You must specify the -m marker parameter when
killing a process in the unshared mode.

The killitj utility uses the SIGTERM signal. This utility does not remove the
entry from the Implementation Repository.

lsitj

The lsitj utility lists entries in an Implementation Repository directory.

Syntax

lsitj [-v] [-h host] [-R] directory

-v Outputs the utility version information.

-v Outputs the utility version information.

-h host Kills a server on a specific machine.

-m Specifies a marker value to identify a specific object, or set of
objects, to which the killitj utility applies.
135

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 136 Wednesday, March 7, 2012 12:10 PM
Options

mkdiritj

The mkdiritj utility creates a new registration directory.

Syntax

mkdiritj [-v] [-h host] directory

Options

Hierarchical names are extremely useful in structuring the name space of servers
in Implementation Repositories.

pingitj

The pingitj utility tries to contact an Orbix Java daemon to determine if it is
running.

Syntax

pingitj [-v] [-h host]

Options

-v Outputs the utility version information.

-h host Lists entries on a specific host.

-R Recursively lists all subdirectories and entries.

-v Outputs the utility version information.

-h host Creates a new directory on a specific host.

-v Outputs the utility version information.

-h host Pings a specific host machine.
 136

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 137 Wednesday, March 7, 2012 12:10 PM
psitj
The psitj utility outputs a list of server processes known to an Orbix Java
daemon.

Syntax

psitj [-v] [-h host]

Options

One line is output for each server process. Each line has values for the following
fields:

Name Marker Code Comms Port Status Per-Client? OS-pid

The fields are as follows:

putidl
The putidl utility allows you to add a set of IDL definitions to the Interface
Repository. This utility takes the name of an IDL file as an argument. All IDL
definitions within that file are added to the repository.

-v Outputs the utility version information.

-h host Lists server processes on the specified host.

Name The server name.

Marker The object marker pattern associated with the process;
for example, *.

Code The data encoder used; for example, cdr.

Comms The communications protocol used; for example, tcp.

Port The port number used by the communications system.

Status This can be auto, manual or inactive.

Per-Client? Indicates whether the server is a per-client server.

OS-pid The operating system process.
137

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 138 Wednesday, March 7, 2012 12:10 PM
The Interface Repository server must be available for this utility to succeed.

Syntax

putidl {[-?] | [-v] [-h host] [-s] file}

Options

putitj
The putitj utility creates an entry in the Implementation Repository that
represents how Orbix Java can start a server.

Note: The availability of a given putitj switch depends on which Orbix Java
daemon is used orbixd or orbixdj. Switches labelled orbixd are not
currently supported by the Java daemon orbixdj.

-? Displays the allowed options for this command.

-v Outputs the utility version information.

-h host Indicates the host at which the Interface Repository server is
available.

-s Indicates that the utility should run in silent mode.
 138

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 139 Wednesday, March 7, 2012 12:10 PM
Syntax

putitj [-v] [-h host] [-per-client | -per-client-pid]
[-shared | -unshared] [-marker marker]
[-per-method [-method method]
[-j | -java] [-classpath classpath | -addpath path]
[-oc ORB_class] [-os ORB_singleton_class] [-jdk2]
[-port iiop portnumber][-l] [-persistent]
[-nservers | -n number_of_servers]
serverName [-- command_line_parameters]

Options

Executing putitj without any arguments outputs a summary of its options. The
options are as follows:

-v Outputs the utility’s version information without
executing the command. This option is available on
all of the utilities.

-h host Specifies the hostname on which to execute the
putitj command. By default, this utility is
executed on the local host.

-per-client
(orbixd)

Specifies that a separate server process is used for
each user. You can use this activation mode with the
shared, unshared, or per-method modes.

-per-client-pid
(orbixd)

Specifies that a separate server process is used for
each client process. You can use this activation
mode with the shared, unshared, or per-method
modes.

-shared Specifies that all active objects managed by a given
server on a given machine are contained in the same
process. This is the default mode.

-unshared
(orbixd)

Specifies that as an object for a given server is
invoked, an individual process is activated to handle
all requests for that object. Each object managed by
a server can (but does not have to) be registered with
a different executable file—as specified in
command_line.
139

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 140 Wednesday, March 7, 2012 12:10 PM
-java The -java switch indicates that the specified server
should be launched via the Java interpreter. You can
truncate this switch to -j.

-classpath
full classpath

You can only use this switch in conjunction with the
-java switch. Specifies a full class path to be passed
to the Java interpreter when the server is launched.
Overrides the default value IT_DEFAULT_CLASSPATH
in common.cfg.

-addpath
partial classpath

You can only use this switch in conjunction with the
-java switch. Specifies a partial class path to be
appended to the default value
IT_DEFAULT_CLASSPATH when the Orbix Java
daemon attempts to launch the server.

-oc ORB_class Passes -Dorg.omg.CORBA.ORBClass=ORB_class to
the Java interpreter. You should use this switch with
the -os switch.

For Orbix Java servers, the parameter to this switch
should be as follows:

 IE.Iona.OrbixWeb.CORBA.ORB.

You should pass this string to the Java interpreter
before the server class name.

-os

ORB_singleton_class

Passes -Dorg.omg.CORBA.ORBSingletonClass=
ORB_singleton_class to the Java interpreter. You
should use this switch with the -oc switch.

For Orbix Java servers the parameter to this switch
should be

IE.Iona.OrbixWeb.CORBA.singletonORB.

This string must be passed to the Java interpreter
before the server class name.

The -os and -oc switches provide foreign ORB
support.
 140

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 141 Wednesday, March 7, 2012 12:10 PM
-jdk2 Passes the following system properties to the Java
interpreter:

Dorg.omg.CORBA.ORBClass=
IE.Iona.OrbixWeb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=
IE.Iona.OrbixWeb.CORBA.singletonORB

You must pass this string to the Java interpreter
before the server class name. You should use this
switch for Orbix Java servers being executed by
JDK1.2.

-l Allows you to register pre-Orbix 2.3 servers using
the putitj command.

-per method
(orbixd)

Specifies that each invocation to a server results in a
process being activated to handle that request. Each
method can (but does not have to) be registered with
a different executable file—as specified in
command_line.

-port port
(orbixd)

Specifies a well-known port number for a server so
that Orbix Java, if necessary, activates a server that
communicates on the specified port number. Often
required by servers that communicate over the
CORBA Internet Inter-ORB Protocol (IIOP).

-- parameters Allows the addition of extra command-line
parameters to be passed to a server.

All parameters specified after the -- switch are
ignored by the putitj utility and passed to the
daemon as the launch command. For example,

putitj -j testServer
-- -DOrbixWeb.setDiagnostics=255
packageName.className
141

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 142 Wednesday, March 7, 2012 12:10 PM
The following options apply to the shared mode:

The following option applies to the shared and unshared modes:

-nservers
number_of_servers
(orbixd)

This switch is applicable only to servers registered in
shared activation mode. It instructs the daemon to
launch up to the specified number of servers. Each
new client connection results in a new server being
launched as long as the number of clients is less than
the number specified in number_of_servers. When the
number of clients equals the number of servers
specified in number_of_servers, new clients are
connected to running servers using a round robin
algorithm.

The default number of servers is 1. You can truncate
the -nservers switch to -n.

-persistent
(orbixd)

Specifies that the server can only be launched
persistently (that is, manually). The server is never
automatically launched by Orbix Java.

If the -u option is passed to the Orbix Java daemon,
such servers do not have to be registered in the
Implementation Repository.

-marker marker Specifies a marker value to identify a specific object,
or set of objects, to which the putitj applies.

Marker names specified using putitj cannot contain
white space.
 142

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 143 Wednesday, March 7, 2012 12:10 PM
The following option applies to the per-method mode:

Server Activation Modes

Activation modes control how servers are implemented when they become
processes of the underlying operating system. The primary activation modes are
as follows:

You should note the following:

• For a given server name, you can select only one of shared, unshared, or
per-method.

-method method
(orbixd)

Specifies a method name to identify a specific method,
or set of methods, to which the putitj applies.

Shared In shared mode, all of the objects with the
same server name on a given machine are
managed by one process on that machine.

If a server is registered in shared mode, it can
also be launched manually prior to any
invocation on its objects.

This is the default activation mode.

Unshared In unshared mode, individual objects are
registered with the Implementation
Repository, and a process is launched for
each object.

Per-Method In per-method mode, individual operations
are registered with the Implementation
Repository, and each invocation on an
operation results in a separate process.
143

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 144 Wednesday, March 7, 2012 12:10 PM
• For each of the modes shared or unshared, a server can be registered in a
secondary activation mode:

♦multiple-client

♦per-client

♦per-client-process

The default is multiple-client activation. This means that a server process
is shared between multiple principals and multiple client processes.

Per-client activation results in a separate server process for each principal
(end-user). Per-client-process activation results in a separate server
process for each separate client process. Per-client and per-client-process
activation are independent from shared, unshared and per-method modes.
You can combine these activation modes in an arbitrary manner; for
example, you can combine per-client with shared, unshared or with per-
method.

• Manually-launched servers behave in a similar way to shared activation
mode servers. If a server is registered as unshared or per-method, the
server fails if it is launched manually. This is in line with the CORBA
specification.

Note: Per-method servers are activated for a single IDL operation call. As a
result, the per-client flag is ignored for per-method servers.

Pattern Matching for Markers and Methods

Pattern matching specifies a set of objects for the -marker option, or a set of
methods for the -method option. Pattern matching allows a group of server
processes to share a workload between them, whereby each server process is
responsible for a range of object marker values. The pattern matching is based on
regular expressions, as follows:

* Matches any sequence of characters.

? Matches any single character.
 144

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 145 Wednesday, March 7, 2012 12:10 PM
A SET, as presented above, is composed of characters and ranges. A range is
specified using a hyphen character -.

Lastly, because each of the characters *?!^-[]\ is special, in the sense that it is
interpreted by the pattern matching algorithm; each can be preceded by a \
character to suppress its interpretation.

Examples of patterns are:

If an activation order exists in an Implementation Repository entry for a specific
object marker or method, and another exists for an overlapping set of markers or
methods, the particular server that is activated for a given object is non-
deterministic. This means that no attempt is made to find an entry registered for
best or exact match.

[SET] Matches any characters belonging to the specified set; for
example, [abc].

[!SET] Matches any characters not belonging to the specified set; for
example, [!abc].

[^SET] Equivalent to [!SET]; for example, [^abc].

hello matches “hello”.

he* matches any text beginning with “he”; for example,
“he”, “help”, “hello”.

he? matches any three character text beginning with
“he”; for example, “hec”.

[abc] matches “a”, “b” or “c”.

he[abc] matches “hea”, “heb” or “hec”.

[a-zA-Z0-9] matches any alphanumeric character.

[!a-zA-Z0-9] matches any non-alphanumeric character.

_[gs]et_balance matches _get_balance and _set_balance.

make* matches makeDeposit and makeWithdrawal.
145

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 146 Wednesday, March 7, 2012 12:10 PM
readifr
The readifr utility allows you to view an IDL definition stored in the Interface
Repository. This utility takes the fully scoped name of the IDL definition as an
argument and displays that definition. Calling readifr with no arguments lists
the contents of the entire Interface Repository.

The Interface Repository server must be available for this utility to succeed.

Syntax

readifr [-?] | [-v] [-h host] [-d] [-c] definition_name

Options

rmdiritj
The rmdiritj utility removes an Implementation Repository registration
directory.

Syntax

rmdiritj [-v] [-h host] [-R] directory

Options

-? Displays the allowed options for this command.

-v Outputs the utility version information.

-h host Indicates the host at which the Interface Repository server is
available.

-d Displays all derived types of an IDL interface.

-v Outputs the utility version information.

-h host Indicates the host from which the directory is deleted.

-R Recursively deletes the directory, and all the Implementation
Repository entries and subdirectories within it.
 146

O r b i x J a v a C o m m a n d - L i n e U t i l i t i e s

OW3adminGuide.book Page 147 Wednesday, March 7, 2012 12:10 PM
The rmdiritj utility returns an error if it is called without the -R option on a
registration directory that is not empty.

rmidl

The rmidl utility allows you to remove an IDL definition from the Interface
Repository. This utility takes the fully scoped name of the IDL definition as an
argument.

The Interface Repository server must be available for this utility to succeed.

Syntax

rmidl [-?] | [-v] [-h host] definition_name

Options

-? Displays the allowed options for this command.

-v Outputs the utility version information.

-h host Indicates the host at which the Interface Repository server is
available.
147

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 148 Wednesday, March 7, 2012 12:10 PM
rmitj
Removes an Implementation Repository entry or modifies an entry.

Syntax

rmitj [-v] [-h host]
[-marker marker | -method method] server_name

Options

This utility does not kill any currently running processes associated with a server.

You can use pattern matching for markers and methods as described in the
putitj utility reference on page 138.

-v Outputs the utility version information.

-h host Indicates the host to use.

-marker marker Specifies a marker value to identify the object, or set of
objects, to which the rmitj utility applies.

-method method Specifies a method name to identify the method, or set of
methods, to which the rmitj applies.
 148

OW3adminGuide.book Page 149 Wednesday, March 7, 2012 12:10 PM
Appendix D
System Exceptions

The following tables shows the system exceptions defined by
CORBA, and the system exceptions that are specific to Orbix
Java.

System Exceptions Defined by CORBA

Exception Description

BAD_CONTEXT Error processing context object.

BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

Bounds Bounds exception.

BAD_TYPECODE Bad TypeCode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

IMP_LIMIT Violated implementation limit.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS Error accessing Interface Repository.

Table D.1: CORBA System Exceptions
149

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 150 Wednesday, March 7, 2012 12:10 PM
System Exceptions Specific to Orbix Java

INV_IDENT Invalid identifier syntax.

INV_FLAG Invalid flag was specified.

INV_OBJREF Invalid object reference.

MARSHAL Request marshalling error.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_IMPLEMENT Operation implementation unavailable.

NO_RESOURCES Insufficient resources for request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

PERSIST_STORE Persistent storage failure.

TRANSACTION Transaction exception.

TRANSIENT Transient failure—reissue request.

UNKNOWN The unknown exception.

Orbix Java Exception Description

FILTER_SUPPRESS Suppress exception raised in per-object pre-
filter.

Table D.2: Orbix Java-Specific System Exceptions

Exception Description

Table D.1: CORBA System Exceptions
 150

OW3adminGuide.book Page 151 Wednesday, March 7, 2012 12:10 PM
Index
A
access control lists 43, 133
access rights to servers 89, 91
activation modes 46–51, 143

multiple-client 51
per-client 51, 137
per-client-process 51
per-method 47, 50
setting 89, 93
shared 47
unshared 47, 48

activation orders for servers 40
adding IDL to the Interface Repository 104
administration, overview 22
applets

signed 67

C
catitj 39, 132
chmoditj 44, 132
chownitj 44, 133
clients

applets
security issues 67

common.cfg 26
modifying 74
opening in Configuration Explorer 74

communications protocols 137
config 125
configuration

API calls 28
parameters

getting 24, 28
setting 24, 28

Configuration Explorer 71, 77
adding configuration files 81
adding configuration scopes 80
adding configuration variables 78
deleting configuration scopes 80
deleting configuration variables 79
modifying configuration values 74, 76
opening iona.cfg 73
valid names 79
valid values 79
configuration files
common.cfg 26, 74
iona.cfg 26, 73
orbixweb3.cfg 27, 76

connecting
to an Interface Repository 103

connection timeout 128
CORBA 19
customizing configuration 77

D
daemon

configuring
port value 75
server base port value 75

data encoders 137
default classpath 75
defaultConfigFile() 29
directories in Implementation Repository 38
distributed objects 19
domains 75, 114
dumpconfig 134

E
Exceptions

system exceptions 149
exporting IDL to files 108

G
getConfigFile() 29
getConfigItem() 28
getConfiguration() 29
gids 45
group identifiers 45

H
hierarchical server names 38
HTTP Tunnelling 64

I
IDL 19
IDL definitions
151

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 152 Wednesday, March 7, 2012 12:10 PM
adding to Interface Repository 57
removing from Interface Repository 59

IFR server 56
IIOP 95

server ports 52
well-known ports for servers 141

Implementation Repository 20, 33–53, 83–99
basic usage 35
changing owners of servers 44
connecting to 85
deleting directories 87
directories 38
directory path 114
disconnecting from 86
entries 34
listing details of servers 39
listing registered servers 39
location of 75
modifying server registration details 96
permissions to servers 43
registering servers 37, 89, 95
removing server registrations 38

IMP_LIMIT 53
Interface Repository 21, 55–59

adding IDL definitions 57
configuring 56
exporting 108
location of 75
reading contents 58
removing IDL definitions 59
server 56

command-line options 57
Interface Repository Browser 101–109

adding IDL definitions 104
configuring 109
connecting to an Interface Repository 103
exporting IDL to files 108
IDL

adding 104
viewing 105, 107

refreshing 109
starting 102
viewing IDL definitions 105–108

Internet domains 75, 114
invoke permissions to servers 43
invoke rights to servers 91
iona.cfg 26

opening in Configuration Explorer 73
IOR for Orbix Java daemon 127
IT_ACCEPT_CONNECTIONS 115
 152
IT_ALWAYS_CHECK_LOCAL_OBJS 115
IT_ANY_BUFFER_SIZE 115
IT_BIND_IIOP_VERSION 115
IT_BIND_USING_IIOP 116
IT_BUFFER_SIZE 116
IT_CLASSPATH_SWITCH 77, 116
IT_CONNECT_ATTEMPTS 116
IT_CONNECTION_ORDER 116
IT_CONNECTION_TABLE_PER_THREAD 11

7
IT_CONNECTION_TIMEOUT 117
IT_CONNECT_TABLE_SIZE_DEFAULT 117
IT_DAEMON_PORT 75, 113
IT_DAEMON_SERVER_BASE 52, 75, 113
IT_DAEMON_SERVER_RANGE 52, 113
IT_DEFAULT_CLASSPATH 35, 36, 75, 114
IT_DEFAULT_IIOP_VERSION 118
IT_DETECT_APPLET_SANDBOX 117
IT_DII_COPY_ARGS 118
IT_DSI_COPY_ARGS 118
IT_HTTP_TUNNEL_HOST 118
IT_HTTP_TUNNEL_PORT 118
IT_HTTP_TUNNEL_PREFERRED 118
IT_HTTP_TUNNEL_PROTO 119
IT_IIOP_LISTEN_PORT 119
IT_IIOP_PROXY_HOST 119
IT_IIOP_PROXY_PORT 119
IT_IIOP_PROXY_PREFERRED 119
IT_IMPL_IS_READY_TIMEOUT 120
IT_IMPL_READY_IF_CONNECTED 119
IT_IMP_REP_PATH 75, 114
IT_INITIAL_REFERENCES 120
IT_INT_REP_PATH 56, 75, 114
IT_IORS_USE_DNS 120
IT_JAVA_COMPILER 77, 120
IT_JAVA_INTERPRETER 36, 75, 114
IT_JAVA_SYSTEM_PROPERTY_SWITCH 121
IT_KEEP_ALIVE_FORWARDER_CONN 121
IT_LISTENER_PRIORITY 121
IT_LOCAL_DOMAIN 75, 114, 121
IT_LOCAL_HOSTNAME 121
IT_MARSHAL_NULLS_OK 121
IT_MULTI_THREADED_SERVER 122
IT_NAMES_HASH_TABLE_LOAD_FACTOR

122
IT_NAMES_HASH_TABLE_SIZE 122
IT_NAMES_REPOSITORY_PATH 122
IT_NAMES_SERVER 122
IT_NAMES_SERVER_HOST 122
IT_NAMES_TIMEOUT 122

I n d e x

OW3adminGuide.book Page 153 Wednesday, March 7, 2012 12:10 PM
IT_NS_IP_ADDR 122
IT_NS_PORT 123
IT_OBJECT_CONNECT_TIMEOUT 123
IT_OBJECT_TABLE_LOAD_FACTOR 123
IT_OBJECT_TABLE_SIZE 123
IT_ORBIXD_IIOP_PORT 123
IT_ORBIXD_PORT 123
IT_READER_PRIORITY 123
IT_REQ_CACHE_SIZE 124
IT_SEND_FRAGMENTS 124
IT_TRADING_SERVER 124
IT_USE_ALIAS_TYPECODE 124
IT_USE_BIDIR_IIOP 124
IT_USE_EXTENDED_CAPABILITIES 124
IT_USE_ORBIX_COMP_OBJREF 125
IT_USE_ORB_THREADGROUP 125

K
killitj 43, 135

L
launch commands for servers 95
launch permissions to servers 43
launch rights to servers 91
listing registered servers 39
lsitj 38, 39, 135

M
manually-started servers 41
mkdiritj 38, 136
multiple-client activation mode 51

N
nobody, user identifier 46

O
OMG 19
Orbix

architecture components 20
Orbix Java daemon

check-point information 127
command options 127
contacting 40
starting for unregistered servers 42
trace information 127

orbixd 20
running in protected mode 127
running in silent mode 127
version information 128
orbixusr, user identifier 45
orbixweb3.cfg 27

modifying 76
owners, changing for servers 44

P
pattern matching, when registering servers 49
per-client activation mode 51, 137
per-client-process activation mode 51
per-method activation mode 47, 50
persistent servers 41, 97, 128
pingDuringBind 125
pingitj 40, 136
port numbers

for servers 95
for the Orbix Java daemon 75

ports
for Orbix Java daemon 113
for servers 52, 137, 141

protected mode
running orbixd in 127

protocols 137
putidl 57, 137
putitj 35, 138

specifying classpath 35
specifying partial classpath 36

R
readifr 58, 146
reading contents of the Interface Repository 58
registering servers 37
regular expressions 49
rmdiritj 38, 146
rmidl 59, 147
rmitj 38, 49, 50, 148

S
security

of servers 43
Server Manager 83–99

configuring 98
connecting to an Implementation Repository 85
deleting directories 87
disconnecting from an Implementation

Repository 86
killing persistent servers 97
launching persistent servers 97
modifying server details 96
153

O r b i x A d m i n i s t r a t o r ’ s G u i d e J a v a E d i t i o n

OW3adminGuide.book Page 154 Wednesday, March 7, 2012 12:10 PM
registering servers 89, 95
specifying access rights 91
specifying activation modes 93, 95

starting 84
servers

access control lists 43
access rights 89, 91
activation modes 46–51, 89
activation orders 34
details of registration 39
details of running servers 137
for Interface Repository 56
hierarchical names 38
IIOP port numbers 95
IIOP ports 141
invoke permissions 43
killing 97
launch commands 95
launch permissions 43
launching persistently 97
listing 39
managing 33
modifying registration details 96
names of 34
owners of 34, 44
permissions for 34, 43
ports 52
registering 37, 89, 95
removing registration of 38
starting manually 41
stopping 43

setConfigItem() 28
setConfiguration() 29
setDiagnostics 126
shared activation mode 47
silent mode, running orbixd in 127
starting

the Interface Repository Browser 102
the Server Manager 84

stopping servers 43

T
TCP/IP 137
toolbar 84
tools

Configuration Explorer 71
Interface Repository Browser 101–109
Server Manager 83–99

toolbar 84
trace information from Orbix Java daemon 127
 154
U
uids 45
unregistered servers 128
unshared activation mode 47, 48
useDefaults 126
user identifiers 45

V
version number, of Orbix Java 128

W
Wonderwall 62

configuring 63
configuring Orbix Java for use 63

X
XDR 137

Z
109

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I
	Orbix Java Administration
	Overview of Orbix Java Administration
	Components of the Orbix Java Architecture
	Servers and the Implementation Repository
	The Interface Repository

	Administration of Orbix Components

	Configuring Orbix Java
	Accessing Configuration Parameters
	Configuration Parameter Formats

	Using Orbix Java Configuration Files
	Configuring Root Settings
	Configuring Common Parameters
	Configuring Orbix Java-Specific Parameters

	Using Configuration API Calls
	Accessing Configuration Items
	Accessing Configuration Properties
	Accessing Configuration Files

	Using Command-Line Arguments
	Using Java System Properties

	Managing the Implementation Repository
	Implementation Repository Entries
	Basic Implementation Repository Usage
	Registering a Server using Putitj
	Registering a Server on a Remote Host
	Organizing Servers into Hierarchies
	Removing a Registered Server
	Listing Registered Servers
	Displaying a Server Entry
	Contacting an Orbix Java Daemon

	Starting Servers Manually
	Registering a Manual Server (orbixd)
	Starting the Orbix Java Daemon for Unregistered Servers

	Stopping Servers
	Security of Registered Servers
	Modifying Server Access
	Changing Owners of Registered Servers
	Determining the User and Group IDs of Running Servers (orbixd)

	Server Activation Modes
	Registering Unshared Servers (orbixd)
	Using Markers to Specify Named Objects
	Registering Per-Method Servers (orbixd)
	Secondary Activation Modes

	Managing Server Port Selection
	Registering Servers with Specified Ports (orbixd)
	Controlling Port Allocation with Configuration Variables

	Activation Issues Specific to IIOP Servers

	Managing the Interface Repository
	Configuring the Interface Repository
	Registering the Interface Repository Server
	Adding IDL Definitions
	Reading the Interface Repository Contents
	Removing IDL Definitions

	Using Orbix Java on the Internet
	About Wonderwall
	Using the Wonderwall with Orbix Java as a Firewall Proxy
	Orbix Java Configuration Parameters Used to Support the Wonderwall

	Using the Wonderwall as an Intranet Request Router
	Applet Signing Technology
	Overview

	Part II
	Orbix Java GUI Tools
	Orbix Java Configuration Explorer
	Starting the Configuration Explorer
	Configuring Common Settings
	Configuring Orbix Java-Specific Settings
	Customizing Your Configuration
	Creating Configuration Variables
	Creating Configuration Scopes
	Creating Configuration Files

	The Orbix Java Server Manager
	Starting the Orbix Java Server Manager
	Connecting to an Implementation Repository
	Creating a New Directory
	Registering a Server
	Providing Server Access Rights to Users
	Specifying Server Activation Details

	Modifying Server Registration Details
	Launching a Persistent Server
	Configuring the Server Manager

	The Interface Repository Browser
	Starting the Interface Repository Browser
	Connecting to an Interface Repository
	Adding IDL to the Interface Repository
	Viewing the Interface Repository Contents
	Viewing Information about IDL Definitions
	Viewing Source Code for IDL Definitions

	Exporting IDL Definitions to a File
	Configuring the Interface Repository Browser

	Part III
	Appendices
	Appendix A Orbix Java Configuration Variables
	Appendix B Orbix Java Daemon Options
	Appendix C Orbix Java Command-Line Utilities
	Appendix D System Exceptions
	System Exceptions Defined by CORBA

	Index

