
CORBA Session Management
Guide, Java

Version 6.2, December 2004

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work
Together are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 10-Apr-2007

M 3 2 1 8

Contents

Preface v

Chapter 1 Using the Leasing Plug-In 1
The Leasing Framework 2
A Sample Leasing Application 6
Using the Leasing Plug-In on the Server Side 8

Overview of Server-Side Leasing 9
Implementing the LeaseCallback Interface 11
Tracking Sessions in the Server 15
Advertising the Lease 22
Configuring the Server 24

Using the Leasing Plug-In on the Client Side 25
Overview of Client-Side Leasing 26
Configuring the Client 29
Tracking Sessions in the Client 31
Implementing the ClientLeaseCallback Interface 35
Activating and Registering the Client Callback 38

Disabling Session Management Selectively 44

Appendix A Leasing Plug-In Configuration Variables 47
Common Variables 48
Server-Side Variables 49

Appendix B Sample Leasing Plug-In Configuration 51

Appendix C Leasing IDL Interfaces 55

Glossary 61

Index 67
iii

CONTENTS
 iv

Preface
This book describes the Orbix session management capability, which is
based on the Orbix leasing plug-in.

Audience This guide is aimed at developers of Orbix applications. Before reading this
guide, you should be familiar with the Object Management Group IDL and
the Java language.

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products. You can access the knowledge base at the
following location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

v

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 vi

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
vii

PREFACE
 viii

CHAPTER 1

Using the Leasing
Plug-In
This chapter describes what the leasing plug-in does and how
to use the leasing plug-in on the client-side and the server-side
of your application.

In this chapter The following topics are discussed in this chapter:

The Leasing Framework page 2

A Sample Leasing Application page 6

Using the Leasing Plug-In on the Server Side page 8

Using the Leasing Plug-In on the Client Side page 25

Disabling Session Management Selectively page 44
1

CHAPTER 1 | Using the Leasing Plug-In
The Leasing Framework

Overview The leasing plug-in is an add-on feature for Orbix that manages server-side
and client-side resources by detecting when client processes have ceased
using a server. This is done using a leasing framework. When a client starts
up, it can acquire a lease for a particular server, renewing it periodically.
When the client terminates, it automatically releases the lease. If the client
crashes, the server later detects that the lease has expired. In this manner,
both graceful and ungraceful client process terminations are detected.

What is session management? It is a common requirement in many CORBA systems to know when a client
process terminates, in order to clean up resources that are used only by that
client. On the server side, session-based applications allocate resources to
cater for client requests. To prevent servers from bloating, it is necessary to
detect when clients are finished dealing with the server. CORBA does not
provide a native solution to this problem.

Features The leasing framework has the following features:

• Zero impact on existing application IDL interfaces.

• Easy to implement.

• CORBA compliant.

• Completely configurable.

Server side behavior On the server side, the leasing framework operates as follows:

Stage Description

1 When a server starts up, it automatically loads the leasing
plug-in.

2 During initialization, the server advertises the lease, which
causes a LeaseCallback object to be bound in the naming
service.
 2

The Leasing Framework
Client side behavior On the client side, the leasing framework operates as follows:

3 Whenever the server exports object references (IORs), the
plug-in automatically adds leasing information to the IOR in a
CORBA-compliant manner.

Stage Description

Stage Description

1 When the client starts up, it automatically loads the leasing
plug-in.

2 If the plug-in detects that the client is going to invoke on an
object using an IOR containing leasing details, the plug-in
automatically initiates a session with the target server by
acquiring a lease.

3 The plug-in automatically renews the lease when needed.

4 Upon client shut down:

• If the client shuts down gracefully, the plug-in
automatically releases the lease with the server.

• If the client crashes, the server-side plug-in later realizes
that the client has not recently renewed the lease. The
lease expires, allowing the server to clean up
appropriately.
3

CHAPTER 1 | Using the Leasing Plug-In
Lease acquisition A client initiates a session by acquiring a lease from a leasing server, as
shown in Figure 1.

The client session is initiated by the leasing plug-in, as follows:

1. The client’s leasing plug-in obtains an IT_Leasing::LeaseCallback
object reference by resolving a name in the CORBA naming service.

2. The client’s leasing plug-in initiates a session by calling
acquire_lease() on the LeaseCallback object.

Lease renewal After acquiring a lease, the client renews the lease at regular intervals, as
shown in Figure 2

The period between lease renewals is specified by the
plugins:lease:lease_ping_time configuration variable.

Figure 1: The Client Acquires a Lease

Figure 2: The Client Renews the Lease
 4

The Leasing Framework
Client shutdown When the client shuts down, the lease is released as shown in Figure 3

The following shutdown scenarios can occur:

• Graceful client shutdown—if the client shuts down gracefully, the
plug-in automatically calls lease_release() to end the session.

• Client crashes—if the client crashes, the server-side plug-in calls
lease_expired() on the LeaseCallback object after a period of time
specified by the plugins:lease:lease_reap_time configuration
variable.

Figure 3: The Lease is Released When the Client Shuts Down
5

CHAPTER 1 | Using the Leasing Plug-In
A Sample Leasing Application

Location Source code and build instructions for a sample leasing application are
located in the asp/6.2/demos/corba/standard/session_management
directory of your Orbix installation.

The LeaseTest IDL module The sample leasing application is based on a server that supports a simple
factory pattern for creating transient Person objects:

Purpose The purpose of this example is to show that no matter how many clients
create Person objects, and no matter how those client processes terminate,
the server is notified when it can safely clean up the objects. Therefore, the
server is able to keep its memory usage down.

Client-server interaction Clients interact with the LeaseTest server as follows:

//IDL
module LeaseTest {
 exception PersonAlreadyExists { };

 interface Person {
 string name();
 };

 interface PersonFactory {
 Person create_person(in string name)
 raises (PersonAlreadyExists);
 };
};

Stage Description

1 A client creates new Person objects by calling the
create_person() operation, with unique name arguments for
each Person.
 6

A Sample Leasing Application
2 When a client terminates, the Person objects it created no
longer need to be held inside the server memory and are
deleted.

Stage Description
7

CHAPTER 1 | Using the Leasing Plug-In
Using the Leasing Plug-In on the Server Side

Overview This section explains how to configure and program a server to use the
session management features of the leasing plug-in.

In this section This section contains the following subsections:

Overview of Server-Side Leasing page 9

Implementing the LeaseCallback Interface page 11

Tracking Sessions in the Server page 15

Advertising the Lease page 22

Configuring the Server page 24
 8

Using the Leasing Plug-In on the Server Side
Overview of Server-Side Leasing

The IT_Leasing module Servers wishing to act as leasing servers interact with the plug-in to
advertise leases. The interfaces used by leasing servers are declared in the
IT_Leasing module, which is defined in the leasing.idl file:

The complete listing for the IT_Leasing module is in “Leasing IDL
Interfaces” on page 55.

//IDL
module IT_Leasing
{
 ...
 interface LeaseCallback
 {
 LeaseID acquire_lease()
 raises (CouldNotAcquireLease);
 void lease_expired(in LeaseID lease_id);
 void lease_released(in LeaseID lease_id);
 void renew_lease(in LeaseID lease_id)
 raises (LeaseHasExpired);
 };
 local interface ServerLeaseAgent
 {
 void advertise_lease(
 in LeaseCallback lease_callback
) raises (CouldNotAdvertiseLease);
 LeaseID manufacture_lease_id();
 void withdraw_lease();
 void lease_acquired(in LeaseID lease_id);
 void lease_released(in LeaseID lease_id);
 };
 local interface Current : CORBA::Current
 {
 exception NoContext {};
 LeaseID get_lease_id() raises (NoContext);
 };
 ...
};
9

CHAPTER 1 | Using the Leasing Plug-In
LeaseCallback interface Your server must provide an implementation of the
IT_Leasing::LeaseCallback interface to receive notifications of
lease-related events from the leasing plug-in. For example, when leases
expire, the plug-in calls IT_Leasing::LeaseCallback::lease_expired().

ServerLeaseAgent interface The implementation of the ServerLeaseAgent interface is provided by the
leasing plug-in. Your server communicates with the leasing plug-in by
calling the operations defined on this interface. For example, the server can
initialize the leasing plug-in by calling
IT_Leasing::ServerLeaseAgent::advertise_lease().

Current interface For a leasing server to react correctly to the ending of a lease, it must know
which resources are relevant to that lease. In other words, the server must
maintain an association between the resources that it has created and the
clients that are currently using them.

This problem is solved as follows. When your server needs to figure out
which leasing client invoked a particular operation, you can extract lease
information from an object of IT_Leasing::Current type, which is derived
from CORBA::Current, an interface specifically used for retrieving
meta-information about CORBA invocations. Once the
IT_Leasing::Current object is obtained, you can call get_lease_id() on it
to find the lease ID relevant to that call.

If the call is made from a non-leasing client (or a non-Orbix client), the
IT_Leasing::Current::NoContext user exception is thrown.
 10

Using the Leasing Plug-In on the Server Side
Implementing the LeaseCallback Interface

Overview You must implement the LeaseCallback interface to receive notification of
leasing events from the plug-in.

The following example shows a code extract from the LeaseTest
demonstration, where the LeaseCallback interface is implemented by the
LeaseCallbackImpl class.

Object instances The following two object instances are used by the LeaseCallbackImpl
class:

Table 1: Object Instances Used in the LeaseCallbackImpl Class

Object Instance Description

m_lease_obj An IT_Leasing::ServerLeaseAgent object
reference. This object is used to communicate with
the leasing plug-in.

m_factory A reference to a PersonFactoryImpl object. This
object is used to create new instances of Person
CORBA objects.
11

CHAPTER 1 | Using the Leasing Plug-In
Implementation code The IT_Leasing::LeaseCallback interface is implemented by the
LeaseCallbackImpl Java class, as shown in Example 1.

Example 1: The LeaseCallbackImpl Class (Sheet 1 of 2)

//Java
package demos.session_management.LeaseTest;
//--JDK Imports--
import java.io.*;
//--IONAImports--
import demos.session_management.LeaseTest.*;
import com.iona.corba.IT_Lease_Component.*;
import com.iona.corba.IT_Lease_Logging.*;
import com.iona.corba.IT_Leasing.*;
import com.iona.corba.plugin.*;
import com.iona.corba.util.SystemExceptionDisplayHelper;
class LeaseCallbackImpl extends LeaseCallbackPOA
{
 private PersonFactoryImpl m_factory = null;
 private ServerLeaseAgent m_lease_obj = null;

 // Constructor (not shown)
 ...
 // IDL operations

1 public String acquire_lease()
 {
 // We could throw CouldNotAcquireLease here if we
 // wanted to refuse the lease
 if (m_lease_obj == null)
 {
 System.err.println(
"ERROR: The Lease callback object has not been set correctly.");
 System.exit(1);
 }
 String new_lease = m_lease_obj.manufacture_lease_id();
 m_lease_obj.lease_acquired(new_lease);
 return new_lease;
 }

2 public void lease_expired(String lease_id)
 {
 m_factory.owner_has_gone_away(lease_id);
 }

 12

Using the Leasing Plug-In on the Server Side
The code can be explained as follows:

1. The LeaseCallbackImpl.acquire_lease() method is called by client
lease plug-ins when they need to acquire a lease with your server. The
sample implementation asks the lease plug-in for a new unique lease
ID, and then informs the plug-in that it has accepted the lease
acquisition request by calling lease_acquired() on the
ServerLeaseAgent object. You could also create the lease ID
yourself—however, you are then required to ensure its uniqueness
within the server process.

2. The LeaseCallbackImpl.lease_expired() method is called by the
plug-in when a particular lease has expired—that is, if the lease has
not been renewed within the configured reap time (see “Leasing
Plug-In Configuration Variables” on page 47). This can occur if the
client crashes or if the network link is lost between the client and the
server.

The sample implementation informs the Person factory that a
particular owner of Person objects has disappeared, by calling
owner_has_gone_away(). The Person factory is then free to remove any
Person objects belonging to that client. The sample PersonFactory
removes the Person objects from a hash table, which allows the
garbage collector to free the associated memory. Alternatively, a server
could evict the transient objects by persisting their data before
removing them from the hash table.

3 public void lease_released(String lease_id)
 {
 m_lease_obj.lease_released(lease_id);
 m_factory.owner_has_gone_away(lease_id);
 }

4 public void renew_lease(String lease_id)
 {
 // Nothing to do, since the plugin has already intercepted
 // this request and knows that the lease has been renewed.
 }
}

Example 1: The LeaseCallbackImpl Class (Sheet 2 of 2)
13

CHAPTER 1 | Using the Leasing Plug-In
3. The LeaseCallbackImpl.lease_released() method is called by client
lease plug-ins when the client shuts down gracefully. The
implementation of this method is typically almost identical to the
implementation of lease_expired(), because they are both caused by
client terminations. The sample code delegates to the PersonFactory
servant, informing it that a particular client has shut down.

There is one important difference between lease_released() and
lease_expired(), however. When lease_released() is invoked, you
should inform the plug-in of the event, so that it stops managing that
particular lease and checking for its expiration. Do this by calling
ServerLeaseAgent::lease_released(), as in the example code.

4. The LeaseCallbackImpl.renew_lease() method is the ping method
that the client plug-ins call periodically to renew their leases. You can
leave this function body empty. By virtue of the call reaching this point,
it has already been intercepted and examined by the server-side
plug-in. During the interception, the lease is timestamped with the
current time as its last renewed time. You might want to perform some
logging here.
 14

Using the Leasing Plug-In on the Server Side
Tracking Sessions in the Server

Overview The server has to track the resources associated with each client and this is
done with the help of the IT_Leasing::Current interface. In the LeaseTest
example, the associated resources are Person objects. Whenever a Person
object is created (using the LeaseTest::PersonFactory interface) the server
associates the new Person object with the current client session.

The current client session is identified by the current lease ID, which is
obtained from the IT_Leasing::Current interface.
15

CHAPTER 1 | Using the Leasing Plug-In
Implementation code The LeaseTest::PersonFactory interface is implemented by the
PersonFactoryImpl Java class as shown in Example 2.

Example 2: The PersonFactoryImpl Class (Sheet 1 of 5)

//Java
package demos.session_management.LeaseTest;
//--JDK Imports--
import java.io.*;
import java.util.*;
//--OMG Imports--
import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POAPackage.*;
//--IONAImports--
import com.iona.corba.util.SystemExceptionDisplayHelper;
import com.iona.corba.IT_Leasing.*;
import com.iona.corba.IT_Leasing.CurrentPackage.*;
class PersonFactoryImpl extends PersonFactoryPOA
{
 // The set of People that the Factory is currently managing
 private Hashtable m_people = new Hashtable();
 private ORB m_orb;
 private POA m_poa;

 // Constructor
 ... // (not shown)
 public Person create_person(String name)
 throws PersonAlreadyExists
 {
 Person result = null;
 try
 {
 System.out.println("LeaseTest.create_person("+name+")");

1 String owner = "<unknown>";

 try
 {

2 org.omg.CORBA.Object objref =
 m_orb.resolve_initial_references("LeaseCurrent");
 16

Using the Leasing Plug-In on the Server Side
 if (objref != null)
 {
 com.iona.corba.IT_Leasing.Current current
 = com.iona.corba.IT_Leasing.CurrentHelper.narrow(
 objref
);

3 owner = current.get_lease_id();
 }
 }
 catch (NoContext nc)
 {
 System.err.println(
 "Couldn't find the relevant ServiceContext data.");
 }
 catch (InvalidName in)
 {
 System.err.println("Caught InvalidName exception.");
 }
 catch (SystemException se)
 {
 System.err.println("Unknown exception"
 + SystemExceptionDisplayHelper.toString(se));
 }

 // Create a new Person servant and activate it
 PersonImpl newPersonServant;
 byte[] oid;
 org.omg.CORBA.Object tmp_ref = null;

 synchronized (this)
 {
 // check for Person existence within this process
 if (person_is_alive(name))
 {
 System.err.println("Person already exists!");
 throw new PersonAlreadyExists();
 }
 else
 {
 // Person does not exist, so it is created and
 // stored with the others, indexed by its name

4 newPersonServant = new PersonImpl(name, owner);

Example 2: The PersonFactoryImpl Class (Sheet 2 of 5)
17

CHAPTER 1 | Using the Leasing Plug-In
 try
 {
 oid = m_poa.activate_object(newPersonServant);
 tmp_ref = m_poa.id_to_reference(oid);
 }
 catch (ServantAlreadyActive sae)
 {
 System.err.println(
 "Unexpected ServantAlreadyActive exception.");
 }
 catch (WrongPolicy wp)
 {
 System.err.println(
 "Unexpected WrongPolicy exception.");
 }
 catch (ObjectNotActive one)
 {
 System.err.println(
 "Unexpected ObjectNotActive exception.");
 }

 result = PersonHelper.narrow(tmp_ref);

 if (result == null)
 {
 System.err.println("Person is null error");
 System.exit(1);
 }

 // store the new servant with the others
 String temp_string = new String(name);

5 m_people.put(temp_string, newPersonServant);
 System.out.println("Created: " + name);
 dump_people_to_screen();
 }
 }
 }
 catch (PersonAlreadyExists pae)
 {
 throw pae;
 }

Example 2: The PersonFactoryImpl Class (Sheet 3 of 5)
 18

Using the Leasing Plug-In on the Server Side
 catch (SystemException se)
 {
 System.err.println("Unexpected system exception." +

SystemExceptionDisplayHelper.toString(se));
 }

6 return result;
 }

7 void owner_has_gone_away(String owner)
 {
 // Iterate through the people map and evict any people
 // who were created by 'owner'.
 //
 Hashtable tmp_table = new Hashtable();
 tmp_table.putAll(m_people);

 Set the_set = tmp_table.keySet();
 String this_owner = null;

 if (!the_set.isEmpty())
 {
 Iterator the_iter = the_set.iterator();
 do
 {
 String key = (String)the_iter.next();
 PersonImpl the_person = (PersonImpl)tmp_table.get(key);
 this_owner = the_person.owner();

 // value may == null if this has already been evicted
 // while we are iterating through the list.
 if (owner.equals(this_owner))
 {
 try
 {
 // deactivate the servant before deleting it
 byte[] oid = m_poa.servant_to_id(the_person);
 // deactivate the servant with the corresponding
 // id on the POA

8 m_poa.deactivate_object(oid);
 }

Example 2: The PersonFactoryImpl Class (Sheet 4 of 5)
19

CHAPTER 1 | Using the Leasing Plug-In
The code can be explained as follows:

1. If the factory cannot figure out the relevant lease ID, it assigns a default
ID of <unknown> as the owner of the object. This happens if a
non-leasing client (either a non-Orbix client or an Orbix client that did
not load the plug-in) invokes the factory.

2. The factory checks to see if it can contact the LeaseCurrent object.

3. If a reference to a LeaseCurrent object can be obtained, the
get_lease_id() method is called to get the lease ID (of string type) for
this invocation.

4. A new Person object is created and activated. The result variable is
set equal to the corresponding Person object reference.

5. The factory stores the new Person object in its own internal table of
Person objects, m_people, using the lease ID, temp_string, as a key.

6. The Person object reference, result, is returned to the calling code.

 catch(ObjectNotActive one)
 {
 System.err.println(
 "ERROR: Unexpected ObjectNotActive exception.");
 }
 catch(WrongPolicy wp)
 {
 System.err.println(
 "ERROR: Unexpected WrongPolicy exception.");
 }
 catch(ServantNotActive sna)
 {
 System.err.println(
 "ERROR: Unexpected ServantNotActive exception.");
 }

9 m_people.remove(key);
 }
 }
 while(the_iter.hasNext());
 }
 dump_people_to_screen();
 }
 ...
}

Example 2: The PersonFactoryImpl Class (Sheet 5 of 5)
 20

Using the Leasing Plug-In on the Server Side
7. The owner_has_gone_away() method is called by
LeaseCallback::lease_expired() or
LeaseCallback::lease_released() to clean up the resources (Person
objects) associated with a client session identified by the owner string.
The code iterates over all of the entries in the m_person table,
searching for entries associated with the owner session.

8. Before removing a Person object from the hash table, the
corresponding servant must be deactivated by calling
PortableServer.POA.deactivate_object().

9. The servant object is removed from the m_people hash table in this line
of code. This allows the Java garbage collector to free the associated
memory.
21

CHAPTER 1 | Using the Leasing Plug-In
Advertising the Lease

Prerequisites Advertising the lease causes the LeaseCallback object reference to be
bound into the naming service. Therefore, you must have your Orbix locator,
node daemon, and naming service properly configured and ready to run.

Where to advertise Lease advertisement is an initialization step that is performed in the server
main() method. This should be done before the server starts to process
incoming CORBA requests (that is, before the server calls ORB.run() or
ORB.perform_work()).

Implementation code The code shown in Example 3 should be added to your server’s main()
method to advertise the lease:

Example 3: Advertising the Lease in the main() Method (Sheet 1 of 2)

//Java
package demos.session_management.LeaseTest;
// Imports (not shown)
...
class Server
{
 ...
 public static void main(String args[])
 {
 ...

 ServerLeaseAgent leaseObj = null;
 ...
 // Contact the Lease Plugin
 try
 {

1 tmp_ref = orb.resolve_initial_references(
 "IT_ServerLeaseAgent"
);
 leaseObj = ServerLeaseAgentHelper.narrow(tmp_ref);
 }
 catch (InvalidName in)
 {
 // Process the exception ...
 }
 22

Using the Leasing Plug-In on the Server Side
The code can be explained as follows:

1. The server obtains an initial reference to a ServerLeaseAgent object,
which is created by the leasing plug-in.

2. The leasing plug-in is initialized by calling advertise_lease() on the
ServerLeaseAgent object. The advertise_lease() operation takes a
single parameter, the_LeaseCallbackObject, which causes the
LeaseCallback object to be registered with the plug-in.

 catch (SystemException se)
 {
 // Process the exception ...
 }
 ...

 // Assume that we have already created and activated a
 // LeaseCallback servant and created a reference for it
 // called the_LeaseCallbackObject.
 ...
 // advertise a lease on the lease plugin
 try
 {

2 leaseObj.advertise_lease(the_LeaseCallbackObject);
 }
 catch (CouldNotAdvertiseLease cna)
 {
 // Process the exception ...
 }
 catch (DuplicateServerID dsid)
 {
 // Process the exception ...
 }
 catch (SystemException se)
 {
 // Process the exception ...
 }
 ...
 }
}

Example 3: Advertising the Lease in the main() Method (Sheet 2 of 2)
23

CHAPTER 1 | Using the Leasing Plug-In
Configuring the Server

Overview Server-side configuration variables are used to initialize the server-side
plug-in and to customize the behavior of the leasing plug-in. Some of these
configuration variables are communicated to clients by inserting the
information into IORs generated by the server.

Configuration variables In addition to the client-side configuration variables, the following basic
configuration variables are needed to configure the server-side plug-in:

The complete set of leasing plug-in configuration variables is given in
“Leasing Plug-In Configuration Variables” on page 47.

Example configuration For a complete example of a client-side and server-side configuration, see
“Sample Leasing Plug-In Configuration” on page 51.

Table 2: Configuration Variables Used on the Client Side

Configuration Variable Purpose

binding:server_binding_list The server binding list is modified,
instructing the ORB to insert LEASE
interceptors into server-side
bindings.

plugins:lease:
lease_name_to_advertise

The name under which the
LeaseCallback object is bound in
the naming service. This name
must be unique per server.

plugins:lease:lease_ping_time The time interval (in milliseconds)
between successive ping messages
sent by client-side plug-ins to
renew the lease.

plugins:lease:lease_reap_time If a particular client’s lease is not
pinged within lease_reap_time,
the server resources associated
with the client are released.
 24

Using the Leasing Plug-In on the Client Side
Using the Leasing Plug-In on the Client Side

Overview This section explains how to configure and program a server to use the
session management features of the leasing plug-in.

In this section This section contains the following subsections:

Overview of Client-Side Leasing page 26

Configuring the Client page 29

Tracking Sessions in the Client page 31

Implementing the ClientLeaseCallback Interface page 35

Activating and Registering the Client Callback page 38
25

CHAPTER 1 | Using the Leasing Plug-In
Overview of Client-Side Leasing

Prerequisites The client plug-in makes periodic resolve() calls to the Naming Service
during its lifetime. Therefore, your Orbix domain should have a properly
configured locator, activator, and naming service ready before running a
leasing client.

How to use the plug-in There are two approaches to using the leasing plug-in on the client side, as
follows:

• Configuration only—no modifications to the client code are required.
This approach enables you to manage session resources on the server
side of an application. Whenever a client session ends, the server can
automatically clean up associated session resources. See “Configuring
the Client” on page 29 for details.

• Configuration and programming—if you need to manage session
resources on the client side as well, it is necessary to modify the client
code, as described in “Tracking Sessions in the Client” on page 31,
“Implementing the ClientLeaseCallback Interface” on page 35, and
“Activating and Registering the Client Callback” on page 38.

IT_Leasing module for the client Example 4 shows an extract from the IT_Leasing module, showing the
interfaces that are relevant to programming on the client side of session
management application.

Example 4: IT_Leasing Module for the Client

// IDL
IT_Leasing
{
 interface ClientLeaseCallback
 {
 void lease_started(
 in string lease_id,
 in string server_lease_id
);

 void lease_renewal_failed(
 in string lease_id,
 26

Using the Leasing Plug-In on the Client Side
ClientLeaseCallback interface The client must provide an implementation of the
IT_Leasing::ClientLeaseCallback interface to receive notifications of
lease-related events from the leasing plug-in. For example, if a connection to
a server is lost, the plug-in calls back on
IT_Leasing::ClientLeaseCallback::lease_stopped().

ClientLeaseAgent interface The implementation of the IT_Leasing::ClientLeaseAgent interface is
provided by the leasing plug-in. The client uses this interface to register a
cleint lease callback object with the plug-in.

 in string server_lease_id
);

 void lease_stopped(
 in string lease_id,
 in string server_lease_id
);
 };

 local interface ClientLeaseAgent
 {
 void register_lease_callback(
 in ClientLeaseCallback client_lease_callback
) raises (CouldNotRegisterLeaseCallback);
 };

 local interface Current :
 CORBA::Current
 {
 exception NoContext {};

 LeaseID get_lease_id() raises (NoContext);
 };

 local interface Current2 :
 IT_Leasing::Current
 {
 ServerID get_server_id() raises (NoContext);
 };
};

Example 4: IT_Leasing Module for the Client
27

CHAPTER 1 | Using the Leasing Plug-In
Current2 interface The client accesses the IT_Leasing::Current2 interface to obtain the lease
ID (by calling get_lease_id()) and the server ID (by calling
get_server_id()) associated with the current session. The returned lease
ID and server ID refer to the session associated with the most recently
invoked-upon proxy object.
 28

Using the Leasing Plug-In on the Client Side
Configuring the Client

Configuration variables The following basic configuration variables are needed to configure and
activate the client-side plug-in:

The complete set of leasing plug-in configuration variables is given in
“Leasing Plug-In Configuration Variables” on page 47.

Configuring for colocated CORBA
objects

In the client_binding_list, a binding description containing the
POA_Coloc interceptor name must appear before the first binding description
that contains a LEASE interceptor name. This is to ensure that a leasing
application does not attempt to lease a colocated CORBA object.

Example configuration In an Orbix file-based configuration, the client-side plug-in might be
configured as follows:

Table 3: Configuration Variables Used on the Client Side

Configuration Variable Purpose

plugins:lease:ClassName Identifies the lease plug-in class
name.

orb_plugins The ORB plug-in list is modified to
ensure that the lease plug-in is
automatically loaded when the
client ORB is initialized.

binding:client_binding_list The client binding list is modified
to ensure that the plug-in can
participate in request processing.

Orbix Configuration File
plugins:lease:ClassName =

"com.iona.corba.plugin.lease.LeasePlugIn";
orb_plugins = ["local_log_stream", "lease", "iiop_profile",

"giop", "iiop"];
binding:client_binding_list = ["POA_Coloc", "LEASE+GIOP+IIOP",

"GIOP+IIOP"];
29

CHAPTER 1 | Using the Leasing Plug-In
 30

Using the Leasing Plug-In on the Client Side
Tracking Sessions in the Client

Overview In order to manage session resources on the client side, the first prerequisite
is to have some way of identifying the current session. You can then
associate any session resources with the relevant session identifiers (for
example, storing resources in a hash map, where the session identifier is
used as the key).

This section explains how to use the leasing programming interface to
identify the current session on the client side.

Identifying sessions on the client
side

In order to identify a session uniquely on the client side, you need both the
current lease ID and the current server ID. The IDs have the following
significance on the client side:

• Server ID—uniquely identifies a server with which the client has a
connection.

• Lease ID—used in combination with the server ID to identify a session
uniquely. Servers allocate a distinct lease ID for each established
connection.

Because a client can open multiple connections to a single server, the server
ID alone is not sufficient to identify a session uniquely. In scenarios where
the client opens multiple connections to the server, the lease ID is used to
distinguish between the different connctions.

You can obtain the server ID and lease ID for a particular connection by
accessing the IT_Leasing::Current2 interface immediately after invoking
an operation on a proxy object associated with that connection.

IT_Leasing::Current2 interface Example 5 shows the Current interfaces from the IT_Leasing module. The
IT_Leasing::Current2 (which inherits from IT_Leasing::Current)
provides both the get_server_id() operation and the get_lease_id()
operation.

Example 5: The IT_Leasing Current Interfaces

// IDL
module IT_Leasing {
 local interface Current :
31

CHAPTER 1 | Using the Leasing Plug-In
Tracking sessions using the
current lease ID and server ID

Example 6 shows an example of how to track session resources on the
client side using the leasing plug-in (based on the leasing demonstration).

The factory1 object is a proxy for the LeaseTest::PersonFactory IDL
interface. Immediately after invoking the create_person() operation on the
factory1 object, the server ID and lease ID for this connection can be
retrieved from the IT_Leasing::Current2 object (see “Obtaining the lease
ID” on page 33 and “Obtaining the server ID” on page 33 for the
implementation of the get_lease_id() and get_server_id() methods).

 CORBA::Current
 {
 exception NoContext {};

 LeaseID
 get_lease_id() raises (NoContext);
 };

 local interface Current2 :
 IT_Leasing::Current
 {
 ServerID
 get_server_id() raises (NoContext);
 };
};

Example 5: The IT_Leasing Current Interfaces

Example 6: Tracking Session Resources in the Client

// Java
package session_management.LeaseTest;
Person newPerson1;
java.lang.String lease_id, server_id;

newPerson1 = factory1.create_person(newName);

// Get IDs for the current connection
lease_id = get_lease_id(orb);
server_id = get_server_id(orb);

// Cache the newPerson1 object
add_session_resource(newPerson1, server_id, lease_id);
 32

Using the Leasing Plug-In on the Client Side
Once you have the server ID and lease ID, you can track resources for this
session. For example, if you decided to cache a copy of the Person object,
newPerson1, you might define a method, add_session_resource(), that
associates the cached data with the current server ID and lease ID.

Obtaining the lease ID Example 7 shows you how to obtain the current lease ID by querying the
IT_Leasing::Current2 object.

Obtaining the server ID Example 8 shows you how to obtain the current server ID by querying the
IT_Leasing::Current2 object.

Example 7: Extracting the Lease ID from IT_Leasing::Current2

// Java
static String get_lease_id(ORB orb)
{
 String lease_id = null;
 try
 {
 org.omg.CORBA.Object objref =

orb.resolve_initial_references("LeaseCurrent");
 if (objref!=null)
 {
 Current2 current = Current2Helper.narrow(objref);

 lease_id = current.get_lease_id();
 }
 }
 catch (NoContext nc)
 {
 System.out.println("Couldn't find the relevant ServiceContext

data. " + nc);
 }
 catch (Exception e)
 {
 System.out.println("An unknown exception occurred while

getting ServiceContext data.");
 }
 return lease_id;
}

33

CHAPTER 1 | Using the Leasing Plug-In
Example 8: Extracting the Server ID from IT_Leasing::Current2

// Java
static String get_server_id(ORB orb)
{
 String server_id = null;
 try
 {
 org.omg.CORBA.Object objref =

orb.resolve_initial_references("LeaseCurrent");
 if (objref!=null)
 {
 Current2 current = Current2Helper.narrow(objref);

 server_id = current.get_server_id();
 }
 }
 catch (NoContext nc)
 {
 System.out.println("Couldn't find the relevant ServiceContext

data.");
 }
 catch (Exception e)
 {
 System.out.println("An unknown exception occurred while

getting ServiceContext data.");
 }
 return server_id;
}

 34

Using the Leasing Plug-In on the Client Side
Implementing the ClientLeaseCallback Interface

Overview You can optionally implement the ClientLeaseCallback interface in a
leasing client, if you are interested in receiving notifications about session
lifecycles. In particular, you can use the client lease callback to manage
session-related resources on the client side.

ClientLeaseCallback
implementation class

Example 9 shows the ClientLeaseCallbackImpl class, which implements
the ClientLeaseCallback IDL interface (see Example 4 on page 26).

Example 9: The ClientLeaseCallbackImpl Class

// Java
package session_management.LeaseTest;

//--JDK Imports--
import java.io.*;
import java.util.*;

//--IONAImports--
import session_management.LeaseTest.*;
import com.iona.corba.IT_Lease_Component.*;
import com.iona.corba.IT_Lease_Logging.*;
import com.iona.corba.IT_Leasing.*;
import com.iona.corba.plugin.lease.*;
import com.iona.corba.util.SystemExceptionDisplayHelper;

/**
 * Client Lease Callback Object
 * <p>
 * This class represents the implementation of the
 * IT_Leasing.ClientLeaseCallback interface which will be
 * registered with the leasing plugin so that this client
 * can be notified of server death, etc.
 */
class ClientLeaseCallbackImpl extends ClientLeaseCallbackPOA
{
 List m_resource_list = new ArrayList();
 String m_server_id;
 /**
 * LeaseCallbackImpl Constructor
 */
 ClientLeaseCallbackImpl()
35

CHAPTER 1 | Using the Leasing Plug-In
The preceding implementation code can be explained as follows:

1. The lease plug-in calls lease_started() when a new lease has been
acquired from a leasing server, indicating that a new session has
started. The new session is uniquely identified by the combination of a
lease ID, lease_id, and a server ID, server_id.

2. The lease plug-in calls lease_renewal_failed(), if the remote server
refuses to renew the client’s lease. For example, when the client’s
lease plug-in calls the server’s heartbeat operation,

 {

 }

 // IDL operations

1 public void lease_started(String lease_id, String server_id)
 {
 System.out.println("A lease has started with the following

details:");
 System.out.println("\tServer ID: " + server_id + ", Lease ID:

" + lease_id);
 }

2 public void lease_renewal_failed(String lease_id, String
server_id)

 {
 System.out.println("A lease with the following details has

failed to renew:");
 System.out.println("\tServer ID: " + server_id + ", Lease ID:

" + lease_id);
 }

3 public void lease_stopped(String lease_id, String server_id)
 {
 System.out.println("A lease has stopped with the following

details:");
 System.out.println("\tServer ID: " + server_id + ", Lease ID:

" + lease_id);
 }
}

Example 9: The ClientLeaseCallbackImpl Class
 36

Using the Leasing Plug-In on the Client Side
IT_Leasing::LeasCallback::renew_lease(), the server might throw
the IT_Leasing::LeaseHasExpired exception instead of renewing the
lease.

Upon receiving this callback notification, the client should clean up
any resources associated with the session identified by lease_id and
server_id.

3. The lease plug-in calls lease_stopped(), if a session becomes
unavailable for any reason other than a failed renewal—for example, if
the server closes the connection or if the server shuts down.

Upon receiving this callback notification, the client should clean up
any resources associated with the session identified by lease_id and
server_id.
37

CHAPTER 1 | Using the Leasing Plug-In
Activating and Registering the Client Callback

Overview In order to start receiving notifications from the leasing plug-in, it is
necessary both to activate and register the client lease callback object.
These steps can be described as follows:

• Activation—is the same set of programming steps that you usually use
on the server side to activate a CORBA object. Although the client
callback object is only used locally, you still have to perform the same
activation steps that you would use for a fully-fledged CORBA object.

• Registration—before the callback can receive notifications from the
leasing plug-in, it is necessary for the plug-in to be aware of the
existence of the callback object. Therefore, you must register the
callback object with the leasing plug-in by obtaining a reference to an
IT_Leasing::ClientLeaseAgent instance and then calling the
register_lease_callback() operation.

ClientLeaseAgent interface Example 10 shows the IDL for the IT_Leasing::ClientLeaseAgent
interface. This interface exposes a single operation,
register_lease_callback(), that is used to register a client lease callback
object.

Example 10:The IT_Leasing::ClientLeaseAgent Interface

// IDL
...
module IT_Leasing {
 local interface ClientLeaseAgent
 {
 void
 register_lease_callback(
 in ClientLeaseCallback client_lease_callback
) raises (CouldNotRegisterLeaseCallback);
 };
};
 38

Using the Leasing Plug-In on the Client Side
ClientLeaseAgent initial reference
string

In order to obtain a ClientLeaseAgent instance, you invoke the
CORBA::ORB::resolve_initial_references() operation, passing in the
IT_ClientLeaseAgent initial reference string. For example:

Activating and registering the
client callback object

Example 11 shows the code from the client main() method that activates
and registers a client callback object. Once the callback object is activated
and registered, it is then ready to receive notifications from the lease plug-in.

// Java
org.omg.CORBA.Object obj = null;

try
{
 obj =orb.resolve_initial_references("IT_ClientLeaseAgent");
 ...

Example 11:Activating and Registering a Client Leasing Callback

// Java
byte[] oid;
POA root_poa = null;

org.omg.CORBA.Object tmp_ref = null;

try
{
 System.out.println("getting object reference to root POA");

1 org.omg.CORBA.Object obj = orb.resolve_initial_references(
 "RootPOA"
);
 root_poa = POAHelper.narrow(obj);
}
catch (InvalidName in)
{
 System.err.println("FAIL\t resolving reference to root POA: " +

in);
 System.exit(1);
}
catch (SystemException se)
{
 System.err.println("Error: " +

SystemExceptionDisplayHelper.toString(se));
 System.exit(1);
}

39

CHAPTER 1 | Using the Leasing Plug-In
2 POAManager root_poa_manager = root_poa.the_POAManager();

3 ClientLeaseCallbackImpl the_ClientLeaseCallbackServant
 = new ClientLeaseCallbackImpl();

try
{

4 oid = root_poa.activate_object(
 the_ClientLeaseCallbackServant
);
 tmp_ref = root_poa.id_to_reference(oid);
}
catch (ServantAlreadyActive sae)
{
 System.err.println("ServantAlreadyActive exception");
 System.exit(1);
}
catch (WrongPolicy wp)
{
 System.err.println("ServantAlreadyActive exception");
 System.exit(1);
}
catch (ObjectNotActive one)
{
 System.err.println("ObjectNotActive exception");
 System.exit(1);
}
catch (SystemException se)
{
 System.err.println("Error activating lease callback object: " +

SystemExceptionDisplayHelper.toString(se));
 System.exit(1);
}
ClientLeaseCallback the_ClientLeaseCallbackObject =

ClientLeaseCallbackHelper.narrow(tmp_ref);

try
{

5 tmp_ref = orb.resolve_initial_references(
 "IT_ClientLeaseAgent"
);

 leaseObj = ClientLeaseAgentHelper.narrow(tmp_ref);
}

Example 11:Activating and Registering a Client Leasing Callback
 40

Using the Leasing Plug-In on the Client Side
catch (InvalidName in)
{
 System.err.println("Caught InvalidName exception obtaining

Client Lease Agent");
 System.exit(1);
}
catch (SystemException se)
{
 System.err.println("Error obtaining lease object: " +

SystemExceptionDisplayHelper.toString(se));
 System.err.println("Continuing without leasing.");
}

// Register a lease with the lease plugin
try
{

6 leaseObj.register_lease_callback(
 the_ClientLeaseCallbackObject
);
}
catch (CouldNotRegisterLeaseCallback cna)
{
 System.err.println("Caught CouldNotRegisterLeaseCallback

exception..");
 System.exit(1);
}
catch (SystemException se)
{
 System.err.println("Error registering lease: " +

SystemExceptionDisplayHelper.toString(se));
 System.err.println("Continuing without leasing.");
}

try
{

7 root_poa_manager.activate();
}
catch (Exception ex)
{
 System.err.println("Unexpected exception obtaining or

activating");
 System.err.println("the POA Manager." + ex);
 System.exit(1);
}

Example 11:Activating and Registering a Client Leasing Callback
41

CHAPTER 1 | Using the Leasing Plug-In
The preceding code example can be explained as follows:

1. Obtain a reference to the root POA. In this example, the client lease
callback object is activated by the root POA. It so happens that the root
POA’s default policies are appropriate for activating a callback object.

2. The root POA manager is needed later in order to complete activation
of the root POA.

3. Create an instance of the client lease callback servant object,
the_ClientLeaseCallbackServant.

4. Activate the client lease callback object on the root POA. Because the
root POA’s ID assignment policy is SYSTEM_ID, it will automatically
generate an object ID, oid, for the callback object. From this object ID,
you can then generate an object reference,
the_ClientLeaseCallbackObject.

5. Obtain a reference to the IT_Leasing::ClientLeaseAgent object by
resolving the initial reference string, IT_ClientLeaseAgent.

6. Register the callback object with the leasing plug-in by calling
register_lease_callback() on the client lease agent object.

7. Complete the activation of the POA by calling activate() on the root
POA manager object.

Activating the callback object in a
mid-tier server

A special case arises when you want to register a client lease callback in a
program that is simultaneously acting as a leasing client and a leasing
server. For example, this case can arise in a mid-tier server, when the
application is set up as follows:

• First tier (client)—is configured as a leasing client. In particular, the
binding:client_binding_list variable is configured to load the LEASE
interceptor.

• Second tier (mid-tier server)—is configured both as a leasing client
and as a leasing server. In particular, both the
binding:client_binding_list variable and the
binding:server_binding_list variable are configured to load the
LEASE interceptor.

• Third tier (target server)—is configured as a leasing server. In
particular, the binding:server_binding_list variable is configured to
load the LEASE interceptor.
 42

Using the Leasing Plug-In on the Client Side
Now if you try to register a client lease callback in the mid-tier server a
potential problem arises. Because the mid-tier server is configured as a
leasing server, the leasing plug-in automatically attempts to modify the
callback’s object reference by inserting a leasing IOR profile. To avoid this,
you should activate the callback object with a POA that has been configured
to suppress these IOR modifications—see “Disabling Session Management
Selectively” on page 44.
43

CHAPTER 1 | Using the Leasing Plug-In
Disabling Session Management Selectively

Overview Normally, session management is enabled for all CORBA objects in a server
as long as the LEASE interceptor is included in the server binding list,
binding:server_binding_list. Conversely, session management would be
disabled for all CORBA objects in a server, if the LEASE interceptor is omitted
from the server binding list.

Sometimes, however, you might require some CORBA objects in a server to
use session management, whilst others have session management disabled.
To accomodate this scenario, it is possible to disable session management
selectively by applying the LeasingRequiredPolicy to a POA instance. The
LeasingRequiredPolicy can be set to one of the following boolean values:

• True— (default value) enable session management. POAs governed by
this policy generate IORs that contain an additional leasing IOR
component.

• False—disable session management. POAs governed by this policy do
not add leasing IOR components to the IOR.

If you create a POA that has the LeasingRequiredPolicy policy set to false,
any CORBA objects activated by that POA will have session management
disabled.

The LeasingRequiredPolicy The IT_Leasing::LeasingRequiredPolicy is defined by the following IDL
fragment from the IT_Leasing module:

Example 12:The IT_Leasing::LeasingRequiredPolicy Policy

// IDL
...
module IT_Leasing
{
 const CORBA::PolicyType LEASING_POLICY_ID = 0x49545F6A;

 local interface LeasingRequiredPolicy : CORBA::Policy
 {
 // A value of True enables leasing IOR changes, a value of
 // False will disable them.
 readonly attribute boolean should_lease;
 44

Disabling Session Management Selectively
To create an instance of a LeasingRequiredPolicy policy, call the
CORBA::ORB::create_policy() operation, passing
IT_Leasing::LEASING_POLICY_ID as the first argument and an any
containing either a true or a false boolean value as the second argument.

Creating a POA with the
LeasingRequiredPolicy

Example 13 shows some sample code that you can use to create a
non-leasing POA—that is, a POA whose CORBA objects do not use the
session management feature. Session management is disabled by setting
the LeasingRequiredPolicy policy to false in the POA.

 };
};

Example 12:The IT_Leasing::LeasingRequiredPolicy Policy

Example 13:Creating a POA that Disables Leasing

// Java
public synchronized static POA
create_non_leasing_poa(
 String poa_name,
 POA parent_poa,
 POAManager poa_manager
)
{
 // Create a policy list.
 Policy[] policies = new Policy[2];

 // Make the POA multi threaded
 policies[0] = parent_poa.create_thread_policy(
 ThreadPolicyValue.ORB_CTRL_MODEL
);

 // Add the LeasingRequiredPolicy policy.
 org.omg.CORBA.Any any =
 org.omg.CORBA.ORB.init().create_any();
 boolean policy_val = false;
 any.insert_boolean(policy_val);
 policies[1] = global_orb.create_policy(
 LEASING_POLICY_ID.value,
 any
);

 POA p = null;
45

CHAPTER 1 | Using the Leasing Plug-In

 try
 {
 p = parent_poa.create_POA(poa_name, poa_manager,

policies);
 }
 catch (AdapterAlreadyExists aae)
 {
 System.err.println(
 "Unexpected AdapterAlreadyExists exception"
);
 }
 catch (InvalidPolicy ip)
 {
 System.err.println("Unexpected InvalidPolicy exception");
 }
 return p;
}

Example 13:Creating a POA that Disables Leasing
 46

APPENDIX A

Leasing Plug-In
Configuration
Variables
The following list describes the leasing plug-in configuration
variables and their allowed values, ranges, and defaults.

In this appendix This appendix contains the following sections:

Common Variables page 48

Server-Side Variables page 49
47

CHAPTER A | Leasing Plug-In Configuration Variables
Common Variables

List of variables The following configuration variables apply to both clients and servers:

event_log:filters Specifies a list of logging filters. You can configure the
plug-in to write to a log stream by appending the plug-in log stream to the
list of filters (see the CORBA Administrator’s Guide for more information on
log stream configuration). The plug-in’s log stream object is IT_LEASE. For
example, to get full diagnostic output from the plug-in, set the variable
event_log:filters equal to ["IT_LEASE=*"].

plugins:lease:lease_ns_context Identifies the naming service
NamingContext where the leasing plug-in registers the LeaseCallback
object. The name should be a valid NamingContext id (see the CORBA
Naming Service specification). Since both leasing clients and leasing servers
use this value, it should be set to the same value across your entire domain.
The default is IT_Leases.

plugins:lease:ClassName Identifies the entry point for the Java leasing
plug-in code. The ClassName variable should be set to the leasing plug-in
class name, which is com.iona.corba.plugin.lease.LeasePlugIn.
 48

Server-Side Variables
Server-Side Variables

List of Variables The following configuration variables apply only to servers:

plugins:lease:allow_advertisement_overwrites Determines whether the
server can re-advertise the same lease when it comes back up after a crash
or disorderly shutdown. Internally, the plug-in uses
NamingContext::rebind() if set to true, or NamingContext::bind() if set
to false, when binding the LeaseCallback object in the naming service.

The default is false, but in a real deployment scenario the recommended
setting is true.

plugins:lease:lease_name_to_advertise Determines the lease name used
when registering the LeaseCallback object in the naming service. This
name should be configured to be unique among all your leasing servers. The
name should be a valid NamingContext id (see the CORBA naming service
specification). The default value is default_lease_name.

plugins:lease:lease_ping_time Determines the value inserted into
TAG_IONA_LEASE IOR components for the lease ping time. Leasing clients
using that IOR automatically renew the lease by pinging every N ms, where N
is the value specified in this variable. The default value is 900,000 ms (15
minutes). Legal values are unsigned longs > 1. In addition, if the ping time
is specified to be greater than the reap time, lease_reap_time, it is
automatically changed to half the reap time.

plugins:lease:lease_reap_time Determines how often the server-side plug-in
checks whether leases have expired. The value is specified in ms. If a
particular lease has not been renewed (pinged) by its client in this amount
of time, the lease expires. Legal values are unsigned longs > 2. The default
value is 1,800,000 ms (30 minutes).
49

CHAPTER A | Leasing Plug-In Configuration Variables
 50

APPENDIX B

Sample Leasing
Plug-In
Configuration
This appendix shows the leasing plug-in configuration used in
the session management demonstration.
51

CHAPTER B | Sample Leasing Plug-In Configuration
Configuration file extract The following listing is a sample valid configuration for a set of applications,
Server1, Server2, and clients, using the leasing plug-in. This configuration
is included in generated Orbix domains,
OrbixInstallDir/etc/domains/domain_name.cfg, where domain_name is
the name of your domain.

Example 14:Configuration File Extract for Leasing Plug-In

Orbix Configuration File
...
demos {
 ...
 session_management
 {
 plugins:lease:shlib_name = "it_lease";
 plugins:lease:ClassName =
 "com.iona.corba.plugin.lease.LeasePlugIn";
 orb_plugins = ["local_log_stream", "lease",
 "iiop_profile", "giop", "iiop"];
 binding:client_binding_list = ["POA_Coloc",
 "LEASE+GIOP+IIOP",
 "GIOP+IIOP"];
 binding:server_binding_list = ["LEASE", ""];
 plugins:lease:allow_advertisement_overwrites = "true";
 # default is false
 event_log:filters = ["IT_LEASE=*"];
 server1 {
 # client must ping every 10 seconds
 plugins:lease:lease_ping_time = "10000";
 # leases will expire after 20 seconds of inactivity
 plugins:lease:lease_reap_time = "20000";
 plugins:lease:lease_name_to_advertise
 = "PersonFactorySrv1";
 };
 server2 {
 # client must ping every 20 seconds
 plugins:lease:lease_ping_time = "20000";
 # leases will expire after 40 seconds of inactivity
 plugins:lease:lease_reap_time = "40000";
 plugins:lease:lease_name_to_advertise
 = "PersonFactorySrv2";
 };
 };
 ...
};
 52

53

CHAPTER B | Sample Leasing Plug-In Configuration
 54

APPENDIX C

Leasing IDL
Interfaces
The complete IDL for the leasing plug-in.

The IT_Leasing IDL module The IT_Leasing module is defined as follows:

Example 15:The IT_Leasing Module

// IDL
#pragma IT_SystemSpecification
#include <omg/orb.idl>
#include <omg/IOP.idl>
#include <orbix_pdk/policy.idl>

#pragma prefix "iona.com"

module IT_Leasing
{
 // Type definitions
 //
 typedef string LeaseID;
 typedef string ServerID;

 // Possible error conditions
 //
 exception LeaseHasExpired {};

 enum LeaseAdvertisementError {
 NAMING_SERVICE_UNREACHABLE,
55

CHAPTER C | Leasing IDL Interfaces
 LEASE_ALREADY_ADVERTISED,
 LEASE_ALREADY_BOUND_IN_NS,
 UNKNOWN_ERROR
 };

 exception CouldNotAdvertiseLease
 {
 LeaseAdvertisementError reason;
 };

 exception CouldNotAcquireLease {};

 exception CouldNotRegisterLeaseCallback {};

 // This is the maximum amount of time that a client leasing
 // plugin will wait before automatically renewing a
 // particular lease.
 // The value is set in the server plugins' configuration.
 //
 typedef unsigned long IdleTimeBeforePing; // milliseconds

 // This interface must be implemented by servers that
 // wish to advertise leases.
 //
 interface LeaseCallback
 {
 // Informs the server that a client wants a new lease.
 //
 LeaseID
 acquire_lease(
) raises (CouldNotAcquireLease);

 // Informs the server that a lease not been renewed
 // (usually because the client has gone away)
 //
 void
 lease_expired(
 in LeaseID lease_id
);

Example 15:The IT_Leasing Module
 56

 // Informs the server that a client has explicitly
 // released a lease
 //
 void
 lease_released(
 in LeaseID lease_id
);

 // renew_lease() is called by leasing plugins on the
 // client side to renew leases after some idle time.
 // This is semantically equivalent to a 'keepalive'
 // or 'heartbeat' method.
 //
 void
 renew_lease(
 in LeaseID lease_id
) raises (LeaseHasExpired);
 };

 // This is the interface that leasing plugins will
 // expose on the server side. Server programmers must
 // interact with this interface to advertise leases.
 //
 local interface ServerLeaseAgent
 {
 // advertise_lease() is called by the server
 // to start the lease advertisement. The ping time
 // and ServerID values for the lease are obtained
 // from configuration.
 //
 void
 advertise_lease(
 in LeaseCallback lease_callback
) raises (CouldNotAdvertiseLease);

 // Helper function that generates a system defined lease
 // ID, in case the server does not need to attach any
 // specific meaning to incoming leases.
 //
 LeaseID
 manufacture_lease_id();

 // You may call this method at any time to withdraw your
 // lease, but note that the plugin will automatically

Example 15:The IT_Leasing Module
57

CHAPTER C | Leasing IDL Interfaces
 // withdraw your lease at ORB shutdown time, so you
 // typically never need to call this method.
 //
 void
 withdraw_lease();

 // Call this method if you wish the plugin to
 // detect that a particular lease has expired (usually
 // due to non-graceful client termination).
 // The typical place to call this is from your
 // implementation of LeaseCallback::acquire_lease().
 //
 void lease_acquired(
 in LeaseID lease_id
);

 // Call this method when you wish the plugin to stop
 // detecting that a particular lease has expired, usually
 // because a client has terminated gracefully and
 // released the lease themselves.
 // The typical place to call this is from your
 // implementation of LeaseCallback::lease_released().
 //
 void lease_released(
 in LeaseID lease_id
);
 };

 // This interface must be implemented to allow client
 // callbacks from the leasing plugin
 interface ClientLeaseCallback
 {
 // Call this method when a lease starts
 //
 void
 lease_started(
 in string lease_id,
 in string server_lease_id
);

 // Call this method when a lease fails to renew
 //
 void
 lease_renewal_failed(
 in string lease_id,

Example 15:The IT_Leasing Module
 58

 in string server_lease_id
);

 void
 lease_stopped(
 in string lease_id,
 in string server_lease_id
);

 };

 // This is the interface that the leasing plugin will expose
 // to the client side
 local interface ClientLeaseAgent
 {
 // register_lease_callback is called by the client to
 // register a lease callback object with the leasing
 // plugin.
 void
 register_lease_callback(
 in ClientLeaseCallback client_lease_callback
) raises (CouldNotRegisterLeaseCallback);
 };

 // The following Policy definition can be used to prevent the
 // leasing information being placed into IORs, since there
 // can be a need to export object references that do not have
 // leasing information within them (for instance, callback
 // objects within leasing clients).

 const CORBA::PolicyType LEASING_POLICY_ID = 0x49545F6A;

 local interface LeasingRequiredPolicy : CORBA::Policy
 {
 // A value of True enables leasing IOR changes, a value
 // of False will disable them.
 readonly attribute boolean should_lease;
 };

 // This interface represents the lease details that will
 // be added to requests by leasing clients. The information
 // will be added as a ServiceContext and be available within
 // the servant implementations through the Current interface.
 //

Example 15:The IT_Leasing Module
59

CHAPTER C | Leasing IDL Interfaces
 local interface Current :
 CORBA::Current
 {
 exception NoContext {};

 LeaseID
 get_lease_id(
) raises (NoContext);

 };

 local interface Current2 :
 IT_Leasing::Current
 {
 ServerID
 get_server_id(
) raises (NoContext);

 };

 const IOP::ServiceId SERVICE_ID = 0x49545F43;
};

Example 15:The IT_Leasing Module
 60

Glossary
A activator

A server host facility that is used to activate server processes.

ART
Adaptive Runtime Technology. IONA’s modular, distributed object
architecture, which supports dynamic deployment and configuration of
services and application code. ART provides the foundation for IONA software
products.

C CFR
See configuration repository.

client
An application (process) that typically runs on a desktop and requests services
from other applications that often run on different machines (known as server
processes). In CORBA, a client is a program that requests services from
CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services and
applications use. Defines a set of common configuration settings that specify
available services and control ORB behavior. This information consists of
configuration variables and their values. Configuration domain data can be
implemented and maintained in a centralised Orbix configuration repository
or as a set of files distributed among domain hosts. Configuration domains
let you organise ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration file and
configuration repository.

configuration file
A file that contains configuration information for Orbix components within a
specific configuration domain. See also configuration domain.
61

GLOSSARY
configuration repository
A centralised store of configuration information for all Orbix components
within a specific configuration domain. See also configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically organized into
a root scope and a hierarchy of nested scopes, the fully-qualified names of
which map directly to ORB names. By organising configuration properties into
various scopes, different settings can be provided for individual ORBs, or
common settings for groups of ORB. Orbix services, such as the naming
service, have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard that enables
objects to communicate with one another regardless of what programming
language they are written in, or what operating system they run on. The
CORBA specification is produced and maintained by the OMG. See also OMG.

CORBA naming service
An implementation of the OMG Naming Service Specification. Describes how
applications can map object references to names. Servers can register object
references by name with a naming service repository, and can advertise those
names to clients. Clients, in turn, can resolve the desired objects in the naming
service by supplying the appropriate name. The Orbix naming service is an
example.

CORBA objects
Self-contained software entities that consist of both data and the procedures
to manipulate that data. Can be implemented in any programming language
that CORBA supports, such as C++ and Java.

D deployment
The process of distributing a configuration or system element into an
environment.
 62

GLOSSARY
I IDL
Interface Definition Language. The CORBA standard declarative language that
allows a programmer to define interfaces to CORBA objects. An IDL file defines
the public API that CORBA objects expose in a server application. Clients use
these interfaces to access server objects across a network. IDL interfaces are
independent of operating systems and programming languages.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging protocol,
defined by the OMG, for communications between ORBs and distributed
applications. IIOP is defined as a protocol layer above the transport layer,
TCP/IP.

implementation repository
A database of available servers, it dynamically maps persistent objects to their
server’s actual address. Keeps track of the servers available in a system and
the hosts they run on. Also provides a central forwarding point for client
requests. See also location domain and locator daemon.

interceptor
An implementation of an interface that the ORB uses to process requests.
Abstract request handlers that can implement transport protocols (such as
IIOP), or manipulate requests on behalf of a service (for example, adding
transaction identity).

Interface Definition Language
See IDL.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.
63

GLOSSARY
L location domain
A collection of servers under the control of a single locator daemon. Can span
any number of hosts across a network, and can be dynamically extended with
new hosts. See also locator daemon and node daemon.

locator daemon
A server host facility that manages an implementation repository and acts as
a control center for a location domain. Orbix clients use the locator daemon,
often in conjunction with a naming service, to locate the objects they seek.
Together with the implementation repository, it also stores server process data
for activating servers and objects. When a client invokes on an object, the
client ORB sends this invocation to the locator daemon, and the locator
daemon searches the implementation repository for the address of the server
object. In addition, enables servers to be moved from one host to another
without disrupting client request processing. Redirects requests to the new
location and transparently reconnects clients to the new server instance. See
also location domain, node daemon, and implementation repository.

N naming service
See CORBA naming service.

node daemon
Starts, monitors, and manages servers on a host machine. Every machine
that runs a server must run a node daemon.

O object reference
Uniquely identifies a local or remote object instance. Can be stored in a
CORBA naming service, in a file or in a URL. The contact details that a client
application uses to communicate with a CORBA object. Also known as
interoperable object reference (IOR) or proxy.

OMG
Object Management Group. An open membership, not-for-profit consortium
that produces and maintains computer industry specifications for
interoperable enterprise applications, including CORBA. See www.omg.com.
 64

http://www.omg.com

GLOSSARY
ORB
Object Request Broker. Manages the interaction between clients and servers,
using the Internet Inter-ORB Protocol (IIOP). Enables clients to make requests
and receive replies from servers in a distributed computer environment. Key
component in CORBA.

POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object references to all
objects used by an application, manages object state, and provides the
infrastructure to support persistent objects and the portability of object
implementations between different ORB products. Can be transient or
persistent.

server
A program that provides services to clients. CORBA servers act as containers
for CORBA objects, allowing clients to access those objects using IDL
interfaces.
65

GLOSSARY
 66

Index

Symbols
<unknown> lease ID 20

A
acquire_lease() 13
advertise_lease() 10, 23
allow_advertisement_overwrites variable 49

C
callbacks 11
client_binding_list 29
colocation, and the leasing plug-in 29
configuration

of leasing client 29
of leasing plug-in 48, 52
of leasing server 24

CORBA::Current 10
Current interface

in IT_Leasing module 10
using IT_Leasing::Current 15

D
deactivate_object() 21

E
event_log:filters variable 48

F
filters variable 48

G
get_lease_id() 10, 20

I
initial references 23
IT_Leasing module 9, 55
IT_ServerLeaseAgent 23

L
lease, advertising 22
lease_acquired() 13
LeaseCallbackImpl class 12
LeaseCallback interface 10, 11
lease_expired() 21

and client shut down 5
implementing 13

lease ID 15, 20
lease_name_to_advertise 24
lease_name_to_advertise variable 49
lease_ns_context variable 48
lease_ping_time variable 4, 24, 49
lease_reap_time variable 5, 24, 49
lease_release() 5
lease_released() 14, 21
LeaseTest module 6
leasing demonstration 6
leasing plug-in

client configuration 29
client-side behavior 3
client-side usage 26
colocated CORBA objects 29
common variables 48
configuration example 52
features 2
framework 2
lease acquisition 4
lease renewal 4
prerequisites 26
server-side behavior 2
server-side configuration 24
server-side variables 49
shutdown 5
tracking client sessions 15

logging filters 48

N
naming service

and advertising a lease 22
and lease_ns_context variable 48
and the leasing plug-in 26

NoContext user exception 10
67

INDEX
O
orb_plugins variable 29
owner_has_gone_away() 21

P
PersonFactoryImpl class 16
plugins:lease:allow_advertisement_overwrites

variable 49
plugins:lease:lease_name_to_advertise variable 49
plugins:lease:lease_ns_context variable 48
plugins:lease:lease_ping_time variable 49
plugins:lease:lease_reap_time variable 49
POA_Coloc interceptor 29

R
renew_lease() 14

S
server_binding_list 24
ServerLeaseAgent interface 10
session management

demonstration location 6
overview 2

shlib_name 29

T
TAG_IONA_LEASE tag 49
 68

INDEX
69

INDEX
 70

	Preface
	Using the Leasing Plug-In
	The Leasing Framework
	A Sample Leasing Application
	Using the Leasing Plug-In on the Server Side
	Overview of Server-Side Leasing
	Implementing the LeaseCallback Interface
	Tracking Sessions in the Server
	Advertising the Lease
	Configuring the Server

	Using the Leasing Plug-In on the Client Side
	Overview of Client-Side Leasing
	Configuring the Client
	Tracking Sessions in the Client
	Implementing the ClientLeaseCallback Interface
	Activating and Registering the Client Callback

	Disabling Session Management Selectively

	Leasing Plug-In Configuration Variables
	Common Variables
	Server-Side Variables

	Sample Leasing Plug-In Configuration
	Leasing IDL Interfaces
	Glossary
	Index

