
Orbix 6.3.7

Orbix Web Services

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2014. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

2014-06-25

 Orbix Web Services i i i

Contents

Preface..1
What is Covered in This Book..1
Who Should Read This Book ...1
Contacting Micro Focus ..1

Introduction to Orbix Web Services.......................................3
Web Services and Orbix ...3
Invoking a Web Service from Orbix ...4
Exposing an Orbix Service as a Web Service ...6
CORBA Factory Pattern ..8

Exposing an Orbix Server as a Web Service.........................11
Converting IDL to WSDL ..11
Embedding the Orbix Router in an Orbix Server ..17

Embedded Router Scenario ..18
Embedding a Router in the Orbix Server ..19

Integrating the CORBA Naming Service with the Orbix Router23
How the Orbix Router Resolves a Name ...23
How the Orbix Router Binds a Name ..25

Advanced CORBA Port Configuration27
Configuring Fixed Ports and Long-Lived IORs ..27
CORBA Timeout Policies ...31
Retrying Invocations and Rebinding...32

Orbix IDL-to-WSDL Mapping ...35
Introducing CORBA Type Mapping ...35
IDL Primitive Type Mapping ..36
IDL Complex Type Mapping ..38

IDL enum Type...39
IDL struct Type...40
IDL union Type...41
IDL sequence Types ..42
IDL array Types..44
IDL exception Types..45
IDL typedef Expressions ..46

Configuring a CORBA Binding ..49

Configuring a CORBA Port ...53

Web Services Utilities in Orbix ..57
Converting OMG IDL to WSDL...57
Generating a Deployment Descriptor ...59
Generating a CORBA Binding ..60
Adding a Route ...61

iv Orbix Web Services

Generating an HTTP Endpoint..62
Generating a SOAP Binding...66

Index.. 69

 Orbix Web Services 1

Preface
What is Covered in This Book

This book describes a variety of different CORBA integration
scenarios and explains how to use the Orbix command-line tools
to generate or modify WSDL contracts and IDL interfaces as
required. Details of Orbix programming, however, do not fall
within the scope of this book.

Who Should Read This Book
This book is aimed at engineers already familiar with CORBA
technology who need to integrate Web services applications with
CORBA.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

http://www.microfocus.com
http://www.microfocus.com

 2 Orbix Web Services

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 Orbix Web Services 3

Introduction to Orbix
Web Services
Orbix Web services (Orbix/WS) provides a framework for bridging
between CORBA and Web Services domains. This introduction provides
a brief overview of the basic integration scenarios.

Web Services and Orbix
Web services is now firmly established as one of the major
frameworks for distributed systems. In particular, when it comes
to exposing business applications over the Internet, many
companies now prefer to use a combination of Web services with
the SOAP/HTTP protocol.
When adapting an Orbix application, therefore, it frequently
becomes necessary to integrate an Orbix domain with a Web
services domain. Orbix/WS has been developed specifically to
address this use case. Orbix/WS is a powerful integration
framework that enables you to integrate Web services with Orbix,
either to invoke third-party Web services from within an Orbix
application or to expose an Orbix service to third-party Web
service clients.

Supported transports
Orbix/WS currently supports the following protocols:
• IIOP
• SOAP/HTTP
That is, Orbix/WS is capable of performing IIOP-to-SOAP/HTTP
message translation and SOAP/HTTP-to-IIOP message translation.
Hence, by interposing Orbix/WS between Orbix applications and
Web service applications, you can integrate the two technologies.

Mapping between IDL and WSDL
From a programmer’s point of view, the key to the Web
services/Orbix integration is the mapping between IDL (defining
CORBA interfaces) and WSDL (defining Web service contracts). By
mapping a WSDL contract to IDL, an Orbix programmer can
access a Web service using the familiar tools and APIs from the
world of CORBA programming.
Orbix/WS provides utilities to perform the following mappings:
• IDL-to-WSDL
• WSDL-to-IDL

 4 Orbix Web Services

Orbix router
The Orbix router is the runtime component of the Orbix/WS
feature. Installed either as an embedded plug-in (for Orbix C++
applications) or as a standalone process (for Orbix Java
applications), the Orbix router is responsible for translating
messages back and forth between the IIOP protocol and the
SOAP/HTTP protocol.

WSDL contract
The Web Services Definition Language (WSDL) contract plays a
central role in Web services. It defines the interfaces (or port types)
and operations for a Web service. In this respect, the WSDL
contract is analogous to an IDL interface in CORBA. However,
WSDL contracts contain more than just interface definitions. The
main elements of a WSDL contract are as follows:
• Port types—a WSDL port type is analogous to an IDL

interface. It defines remotely callable operations that have
parameters and return values.

• Bindings—a WSDL binding describes how to encode all of the
operations and data types associated with a particular port
type. A binding is specific to a particular protocol—for
example, SOAP or CORBA.
Orbix provides tools that will generate bindings for you
automatically; there is no need to write them by hand.

• Port definitions—a WSDL port contains addressing data that
enables clients to locate and connect to a remote server
endpoint. For example, a CORBA port might contain stringified
IOR data.

Invoking a Web Service from Orbix
This section considers the scenario where you need to integrate an
Orbix application with a remote Web service. The key to this
integration scenario is to map the Web services contract (WSDL
file) to IDL, which enables the Orbix application to invoke the Web
service as if it was a CORBA server.

Orbix Web Services 5

Invoking a third-party Web service
Figure 1 shows the outline of this scenario, where an Orbix C++
client on host A and an Orbix Java client on host B invoke on a
remote third-party Web service on host X.

After building the Orbix application as described in this guide, you
will be able to invoke the Web service from your application code
using the regular C++ or Java Orbix API. From the perspective of
Orbix, each Web service instance looks like a CORBA object.

C++ client architecture
In C++, the Orbix router is embedded in the Orbix application as a
plug-in. When the C++ application code invokes an operation, the
embedded Orbix router converts the invocation into a WSDL
operation invocation and sends a SOAP/HTTP request to the
remote Web service.

Java client architecture
In Java, the Orbix router is deployed as a separate process on the
same host as the Orbix Java client. Because the Orbix router is
implemented in C++, it is not possible to embed it into the Java
client. When the Java application code invokes an operation, the
stub code first of all sends an IIOP request to the Orbix router.
The Orbix router then converts the invocation into a WSDL
operation invocation and sends a SOAP/HTTP request to the
remote Web service.

Figure 1: Orbix Clients Invoke a Third-Party Web Service over SOAP/HTTP

 6 Orbix Web Services

Bootstrapping the clients
Given that a Web service is represented by a CORBA object, the
question then arises: how does an Orbix client get an initial
reference to the CORBA object that represents the Web service?
There are essentially two main bootstrap mechanisms, which are
described in detail later in this guide:
• Write the IOR to a file.
• Use the CORBA Naming Service.

WSDL-to-IDL mapping
At the heart of the Web services integration is the WSDL-to-IDL
mapping, which makes it possible for your Orbix clients to treat
Web services as if they are CORBA objects. Figure 2 shows an
overview of how the WSDL-to-IDL mapping is implemented at
build time.

The starting point is the WSDL file for the Web service, which you
normally obtain directly from the provider of the third-party Web
service. Using the tools provided by Orbix/WS, you can convert
this WSDL file to an IDL file. You can then use the standard Orbix
utilities to generate either C++ client stub code (for C++ clients)
or Java client stub code (for Java clients).

Exposing an Orbix Service as a Web Service
This section considers the scenario where you need to expose an
Orbix service as a Web service. The key to this integration
scenario is to map the Orbix server’s IDL interface to a Web
services contract (WSDL file), thereby enabling Web services (WS)
clients to access your Orbix server as if it was a Web service.

Figure 2: Mapping WSDL to IDL

Orbix Web Services 7

Exposing a WSDL port
Figure 3 shows the outline of this scenario, where a WS client on
host A accesses a WSDL port, which is exposed by the Orbix
router on behalf of a CORBA server.

Orbix C++ server
In C++, the Orbix router is embedded in the Orbix application as a
plug-in. When a SOAP/HTTP request is received from the remote
WS client, the embedded Orbix router converts the request into a
local CORBA operation invocation, which is then invoked through
the C++ skeleton code.

Orbix Java server
In Java, the Orbix router is deployed as a separate process on the
same host as the Orbix Java server. When a SOAP/HTTP request is
received from the remote WS client, the Orbix router converts the
request into an IIOP request, which is then invoked locally on the
Orbix Java server.

Publishing a Web service
There is no analogue of the CORBA Naming Service in Web
services. Unlike CORBA—which keeps the interface details (IDL
interface) separate from the addressing details (IOR)—Web
services keep all of the interface details and addressing details
together in the WSDL file.

Figure 3: WS Client Invokes Operations on a CORBA Server

 8 Orbix Web Services

Hence, in order to publish a Web service, all that you need to do is
to pass a copy of the WSDL file to whoever wants to use the
service. If you want to manage WSDL files more systematically,
however, you can use one of the many commercially available
registry/repository tools for WSDL.

IDL-to-WSDL mapping
At build time, the key step that enables you to expose the Orbix
service as a Web service is the IDL-to-WSDL mapping. After
converting the IDL interface to WSDL, it is possible for WS clients
to access an Orbix object as if it was a Web service instance.
Figure 4 shows an overview of how the IDL-to-WSDL mapping is
implemented at build time.

Starting with the Orbix server’s IDL file, use the tools provided by
Orbix/WS to convert the IDL file to a WSDL file. You can now pass
the WSDL file to any third-party WS clients that need to access
the Orbix server.

CORBA Factory Pattern
One of the more advanced features of Orbix/WS is its support for
the CORBA factory pattern. It turns out that this common CORBA
pattern does not have a natural analogue in the Web services
domain. Nevertheless, the Orbix router provides an effective and
transparent solution for this use case.
Although relatively advanced, this feature is very easy to use. It is
enabled by default and requires no special configuration.

Sample CORBA factory
The following IDL sample shows a typical example of the CORBA
factory pattern:

Figure 4: Mapping IDL to WSDL

// IDL
module WidgetDomain {
 interface Widget {
 // Various operations (not shown)
 ...
 };

 interface WidgetFactory {
 Widget getWidget();
 };
};

Orbix Web Services 9

Whenever you call the WidgetFactory::getWidget() operation, the
WidgetFactory creates a new Widget instance. Hence, the
WidgetFactory object is capable of creating an unlimited number of
Widget instances.

WSDL mapping of IDL interface type
When the IDL module is mapped to WSDL, all interface types are
mapped to the wsa:EndpointReferenceType in the generated WSDL
contract. The wsa:EndpointReferenceType type is defined by the
WS-Addressing standard and in a WSDL contract it is used to
represent any endpoint type. This convention is quite different to
CORBA, where each interface is a distinct type.

Mapping the factory pattern
Now, in general, the IDL-to-WSDL mapping dictates that every
CORBA object maps to a distinct Web service. This creates a
peculiar problem in the case of the CORBA factory pattern,
however, because a CORBA factory can create an unlimited
number of CORBA objects. When these CORBA objects are
mapped to the Web services domain, this implies that the CORBA
factory is giving rise to an unlimited number of Web service
instances.
The Web services framework was not originally conceived to deal
with unlimited numbers of dynamically created Web services, but
it turns out that the Orbix router can accommodate this feature
using dynamic proxies.

Dynamic proxying
Dynamic proxying in the Orbix router works as follows:
1. Each time a factory operation is called (for example,

getWidget()), the Orbix router automatically creates a
dynamic proxy object for the newly-created CORBA object.

2. The dynamic proxy object is effectively a new Web service
instance which wraps the new CORBA object.

3. While the Orbix router is processing the return message, the
Orbix router converts the new CORBA object reference (for
example, the return value of getWidget()) into a new
wsa:EndpointReferenceType object that points at the new
dynamic proxy object.

4. The wsa:EndpointReferenceType object is sent back to the WS
client, which can now use it to send requests through the
dynamic proxy, resulting in operation invocations on the new
CORBA object.

Dynamic proxying works seamlessly and is enabled by default.
The Orbix router also performs automatic garbage collection to
prevent stale dynamic proxies from eating up its working memory.

 10 Orbix Web Services

 Orbix Web Services 11

Exposing an Orbix
Server as a Web
Service
This chapter describes how to expose an Orbix Server as a Web service
using Orbix Web Services

Converting IDL to WSDL
The first step in exposing an Orbix server as a Web service is to
convert the Orbix server's IDL into a WSDL contract. For all of the
examples presented in this chapter, the following assumptions are
made:
• The server’s IDL does not feature callbacks.
• Web service clients use the SOAP/HTTP protocol.

WSDL contract files
This subsection describes how to generate the following two WSDL
files:
• router.wsdl file - deployed along with the embedded router

and the Orbix server, the router.wsdl file contains all of the
router information required to map incoming SOAP requests
to outgoing IIOP requests

• client.wsdl file - contains all of the information required by
Web services clients to make SOAP/HTTP invocations on the
router.

Contents of the router contract
Given that the router has to be capable of routing incoming SOAP
requests to outgoing IIOP requests, the router generally must
contain the following elements:
• Port types
• CORBA bindings
• SOAP bindings
• CORBA endpoints
• SOAP/HTTP endpoints
• Routes from SOAP/HTTP endpoints to CORBA endpoints

 12 Orbix Web Services

Generate the router contract
To generate a router contract from a given IDL file, <IDLFile>.idl,
perform the following steps:
1. Generate WSDL from the IDL file-at a command-line prompt,

enter:
> idl -wsdl <IDLFile>.idl

This command generates a WSDL file, <IDLFile>.wsdl, which
contains the following:
♦ XSD schema types, generated from the IDL data types.
♦ portType elements - a port type for each IDL interface in

the source.
♦ binding elements - a CORBA binding for each port type.
♦ service elements - a CORBA endpoint for each port type.
You might need to specify additional flags to the IDL compiler.
Some of the more commonly required options are:

-a <corba_address> specifies a default value for the location attribute in

the corba:address elements.

-unwrap generates doc/literal unwrapped style of WSDL.

-usetypes generates rpc/literal style of WSDL.

The default style of WSDL generated by the IDL compiler is
doc/literal wrapped.

2. Edit the corba:address elements for each CORBA endpoint-for
each CORBA endpoint, you have to specify the location of a
CORBA object reference.
Using your favorite text editor, open the <IDLFile>.wsdl file
generated in the previous step. Replace the dummy setting,
location="...", in each of the corba:address elements, by one
of the following location URL settings:
♦ File URL - if the Orbix server writes an IOR to a file as it

starts up, you specify the location attribute as follows:
location="file:///<DirPath>/<IORFile>.ior"

On Windows platforms, the URL format can indicate a particular drive-for

example the C: drive-as follows:

location=file:///C:/<DirPath>/<IORFile>.ior"

♦ corbaname URL - allows you to retrieve an object
reference from the CORBA naming service. This setting
has the following format:
location="corbaname:rir:/NameService#StringName",

Where StringName is a name in the CORBA naming service.

♦ Stringified IOR - if you know that the Orbix server's IOR is
not going to change for some time, you can paste the
stringified IOR directly into the location attribute, as
follows:
location="IOR:000000..."

Note: It is usually simplest to specify the file name
using an absolute path. If you specify the file name
using a relative path, the location is taken to be
relative to the directory the Orbix process is started in,
not relative to the containing WSDL file.

Orbix Web Services 13

For example, if your Orbix server writes an IOR to the file,
/tmp/app_iors/hello_world_service.ior, you can use it to
specify the endpoint location as follows:

3. Generate SOAP bindings - generate a SOAP binding for each
port type that you want to expose as a Web service. If you
want to expose a single WSDL port type, enter the following
command:
> wsdltosoap -i <PortTypeName> -b <BindingName> <IDLFile>.wsdl

Where <PortTypeName> refers to the name attribute of an existing
portType element and <BindingName> is the name to be given to
the newly generated SOAP binding. This command generates
a new WSDL file, <IDLFile>-soap.wsdl.
If you want to expose multiple WSDL port types, you must run
the wsdltosoap command iteratively, once for each port type.
For example:
> wsdltosoap -i <PortType_A> -b <Binding_A> -o <IDLFile>01.wsdl

<IDLFile>.wsdl
> wsdltosoap -i <PortType_B> -b <Binding_B> -o <IDLFile>02.wsdl

<IDLFile>01.wsdl
> wsdltosoap -i <PortType_C> -b <Binding_C> -o <IDLFile>03.wsdl

<IDLFile>02.wsdl
...

Where the -o <FileName> flag specifies the name of the output
file. At the end of this step, rename the WSDL file to
router.wsdl.

4. Add SOAP endpoints - add a service element for each of the
port types you want to expose. For example, a simple SOAP
endpoint could have the following form:

 <service name="HelloWorldCORBAService">
 <port binding="tns:HelloWorldCORBABinding"

name="HelloWorldCORBAPort">
 <corba:address

location="file:///tmp/app_iors/hello_world_service
.ior"/>

 </port>
</service>

<definitions name="" targetNamespace="..."
 ...
 xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/

xmlns:http-conf=http://schemas.iona.com/transports
/http/configuration

 ...>
 ...
 <service name="<SOAPServiceName>">
 <port binding="tns:<SOAPBinding>"

name="<SOAPPortName>">
 <soap:address

location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>
</definitions>

 14 Orbix Web Services

In the preceding example, you must add a line that defines
the http-conf namespace prefix in the <definitions> tag. The
most important setting in the SOAP port is the location
attribute of the soap:address element, which is set to an HTTP
URL:

5. Add a route for each exposed port type - for each port type,
you need to set up a route to translate incoming SOAP
requests into outgoing CORBA requests. For example, the
following route definition instructs the router to map incoming
SOAP/HTTP request messages to a CORBA endpoint.

In the preceding example, you must add a line that defines
the ns1 namespace prefix in the <definitions> tag. The
ns1:source element identifies the SOAP/HTTP endpoint in the
router that receives incoming requests from a client. The
ns1:destination element identifies the CORBA endpoint in the
Orbix server to which outgoing requests are routed.

location="http://<hostname>:<port>

Note: It is also possible to add a SOAP endpoint to
the WSDL contract using the
“WSDLTOSERVICE-Transport SOAP/HTTP” command
line tool.

<definitions name=""
targetNamespace="TargetNamespaceURI"

 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1=http://schemas.iona.com/routing
 ...>
 ...
 <ns1:route name="route_0">
 <ns1:source service="tns:<SOAPServiceName>"

port="<SOAPPortName>"/>
 <ns1:destination

service="tns:<CORBAServiceName>"
port="<CORBAPortName>"/>

 </ns1:route>
</definitions>

Note: Generally, when defining routes, if the location
of the source endpoint is a placeholder, the location of
the destination endpoint should also be a placeholder.

Orbix Web Services 15

6. Check that you have added all the namespaces that you
need-for a typical SOAP/HTTP to CORBA route, you typically
need to add the following namespaces (in addition to the
namespaces already generated by default):

7. Include the WS-Addressing schema (if required) - if your IDL
passes any object references (for example, as parameters or
return values), the corresponding WSDL contract needs to
include the WS-Addressing schema to represent the object
references. For example, assuming that the wsaddressing.xsd
schema file is stored in the same directory as router.wsdl, you
can include the WS-Addressing schema in the router contract
as follows:

router.wsdl file contents
For example, if the router contract contains a single port type, the
contents of router.wsdl would have the following outline:

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...
 xmlns:tns="TargetNamespaceURI"
 xmlns:ns1=http://schemas.iona.com/routing

xmlns:http-conf=http://schemas.iona.com/transports/http/
configuration

 xmlns:wsa=http://www.w3.org/2005/08/addressing
 ...>
 ...
</definitions>

<definitions name="" targetNamespace="TargetNamespaceURI"
 ...>
 <types>
 <schema targetNamespace="..." ...>
 <import

namespace=http://www.w3.org/2005/08/addressing
schemaLocation="wsaddressing.xsd"/>

 ...
 </schema>
 </types>
 ...
</definitions>

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceURI"
 xmlns:corba=http://schemas.iona.com/bindings/corba
xmlns:corbatm=http://schemas.iona.com/typemap/corba/cdr_over_iiop.idl
 xmlns:wsa=http://www.w3.org/2005/08/addressing
 xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
xmlns:http-conf=http://schemas.iona.com/transports/http/configuration
 xmlns:ns1=http://schemas.iona.com/routing
 xmlns:tns="TargetNamespaceURI"
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:xsd1="http://schemas.iona.com/idltypes/cdr_over_iiop.idl">
 <types>
 ...

 16 Orbix Web Services

Generate the client contract
The client WSDL contract is a modified copy of the router contract
containing only those details of the contract that are relevant to
the client. To generate the client contract, perform the following
steps:
1. Copy the router.wsdl file to client.wsdl.
2. Edit the client.wsdl file to remove redundant elements. That

is, you should remove the following:
♦ CORBA binding elements.
♦ CORBA service elements.
♦ route elements.
You could also optionally remove some of the redundant
namespace definitions, such as corba, corbatm, and ns1.

 </types>
 <message name="..."/>
 ...
 <portType name="<PortTypeName>">
 ...
 </portType>
 <binding name="<CORBABindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>
 <binding name="<SOAPBindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>
 <service name="<CORBAServiceName>">
 ...
 </service>
 <service name="<SOAPServiceName>">
 ...
 </service>
 <ns1:route name="route_0">
 <ns1:source service="tns:<SOAPServiceName>"
 port="<SOAPPortName>"/>
 <ns1:destination service="tns:<CORBAServiceName>"
 port="<CORBAPortName>"/>
 </ns1:route>
</definitions>

Orbix Web Services 17

client.wsdl file contents
For example, if the client contract contains a single port type, the
contents of client.wsdl would have the following outline:

Embedding the Orbix Router in an Orbix Server
If you are using Orbix C++, the preferred option is to embed the
router in the Orbix server.
Orbix Java servers require the use of a standalone router.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="" targetNamespace="TargetNamespaceURI"
 xmlns=http://schemas.xmlsoap.org/wsdl/
 xmlns:corba=http://schemas.iona.com/bindings/corba
xmlns:corbatm=http://schemas.iona.com/typemap/corba/cdr_over_iiop.idl
 xmlns:wsa=http://www.w3.org/2005/08/addressing
 xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
xmlns:http-conf=http://schemas.iona.com/transports/http/configuration
 xmlns:ns1=http://schemas.iona.com/routing
 xmlns:tns=TargetNamespaceURI
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:xsd1="http://schemas.iona.com/idltypes/cdr_over_iiop.idl">
 <types>
 ...
 </types>
 <message name="..."/>
 ...

 <portType name="<PortTypeName>">
 ...
 </portType>

 <binding name="<SOAPBindingName>"
 type="tns:<PortTypeName>">
 ...
 </binding>

 <service name="<SOAPServiceName>">
 ...
 </service>
</definitions>

 18 Orbix Web Services

Embedded Router Scenario
Figure 5 shows an overview of an Orbix router embedded in an
Orbix server. In this scenario, the Orbix service is exposed as a
Web service that supports SOAP over HTTP. The embedded router
is responsible for converting incoming SOAP/HTTP requests into
colocated requests on the Orbix server. Any replies from the Orbix
server are then converted into SOAP/HTTP replies by the router
and sent back to the client.

Modifications to CORBA server
The following changes must be made to the Orbix server to embed
the Orbix router:
• Code changes - No
• Re-compilation - No
• Configuration - modify the Orbix domain configuration file or

the CFR if deploying the router into an existing
pre-Orbix-6.3.5 domain.

Elements required for this scenario
The following elements are required to implement this scenario:
• WSDL contract for clients
• WSDL contract for the embedded router
• Modified Orbix configuration for the Orbix server

Figure 5: Orbix Router Embedded in an Orbix C++Server

Orbix Web Services 19

Embedding a Router in the Orbix Server
This section describes how to embed a router in an Orbix server.
The embedded router enables the Orbix server to receive requests
from a SOAP/HTTP Web services client. The following steps are
described:
• Convert IDL to WSDL
• Deploy the requisite WSDL files
• If working with an existing pre-Orbix-6.3.5 domain, edit the

domain configuration.

Convert IDL to WSDL
Use the Orbix Web Services command line utilities to generate two
WSDL files, router.wsdl and client.wsdl, from the Orbix server’s
IDL interface. For details of how to convert the IDL file to WSDL,
see “Converting IDL to WSDL” on page 11.

Deploy the requisite WSDL files
Deploy the following WSDL files on the Orbix server host:
• router.wsdl - the router contract, which describes the route

for converting SOAP/HTTP requests into Orbix requests.
• wsaddressing.xsd - the schema that defines the

wsa:EndpointReferenceType data type, which Orbix uses to
represent object references. The WS-Addressing schema is
usually (but not always) required on the server side. If your
IDL does not pass object endpoint references as parameters
or return values, however, you do not need to deploy this file.

If needed, modify the Orbix domain configuration.

Given that your CORBA server is configured by a particular
configuration scope, orbix_srvr_with_embeded_router, Example 1
shows how to modify the server configuration to embed an Orbix
router.

Note: The following is only necessary if you are working with an
Orbix domain configuration deployed by Orbix version earlier
than 6.3.5. Domains deployed with Orbix 6.3.5 or later contain
the necessary configuration variables by default.

Example 1: Orbix Configuration Suitable for an Embedded Orbix Router

Orbix Configuration File

orbix_srvr_with_embedded_router {
 ...

 # Modified configuration required for embedded router:
 #

1 orb_plugins = [..., "soap", "at_http", "routing",
"bus_loader"];;

 20 Orbix Web Services

The preceding Orbix configuration can be explained as follows:
1. Edit the ORB plug-ins, adding the requisite plug-ins to the list.

In this example, the following plug-ins are needed:
♦ soap plug-in - enables the router to send and receive

SOAPmessages.
♦ at_http plug-in - enables the router to send and receive

messages over the HTTP transport.
♦ routing plug-in - contains the core of the Orbix router.
♦ bus_loader plug-in - triggers the Orbix router initialization

step in CORBA application.
2. The Orbix router is not compatible with the POA_Coloc

interceptor. Therefore you must edit the server's
binding:client_binding_list entry to remove any bindings
containing the POA_Coloc interceptor.
For example, if the client binding list is defined as follows:
binding:client_binding_list

=["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];

You would replace it with the following list:
binding:client_binding_list = ["OTS+GIOP+IIOP","GIOP+IIOP"];.

If you do not purge the POA_Coloc entries from the client
binding list, clients that attempt to access the server through
the router will receive a CORBA::UNKNOWN exception.

3. The plugins:routing:wsdl_url setting specifies the location of
the router WSDL contract (see “Converting IDL to WSDL” on
page 11). The URL can be a relative filename (as here) or a
general file:// URL

4. In order for Orbix to load the plug-ins, you must specify for
each plug-in the root name of the shared library (or DLL on
Windows) that contains the plug-in code.

5. In certain circumstances, Orbix creates an internal ORB
instance (for example, for communication with the CFR or the
Node Daemon). To prevent the settings from the current

2 binding:client_binding_list = ["OTS+GIOP+IIOP",
"GIOP+IIOP"];

3 plugins:routing:wsdl_url="../../etc/router.wsdl";

4 plugins:soap:shlib_name = "it_soap";
 plugins:http:shlib_name = "it_http";
 plugins:at_http:shlib_name = "it_at_http";
 plugins:routing:shlib_name = "it_routing";
 plugins:bus_loader:shlib_name = "it_bus_loader";

5 share_variables_with_internal_orb = "false";
};

Example 1: Orbix Configuration Suitable for an Embedded Orbix Router

Note: If the binding:client_binding_list variable
does not appear explicitly in the server's configuration
scope, try to find it in the next enclosing scope (or the
scope that is nearest to the server's configuration
scope) and copy it into the server's scope.

Orbix Web Services 21

scope being used by the internal ORBs-specifically, to prevent
the internal ORB from loading the router plug-ins you should
set the share_variables_with_internal_orb configuration
variable to false.

 22 Orbix Web Services

 Orbix Web Services 23

Integrating the CORBA
Naming Service with
the Orbix Router
In a CORBA system, it is often necessary for an application to retrieve an
object reference from the CORBA Naming Service. The Orbix router
supports a relatively simple configuration option for binding a name to
or resolving a name from the CORBA Naming Service: simply set the
location attribute of <corba:address> to be a corbaname URL.

How the Orbix Router Resolves a Name
Figure 6 shows a typical scenario where an Orbix Router might
need to resolve a name from the CORBA Naming Service. The
Orbix Router, which is configured to have a CORBA binding,
connects to a pure CORBA server using the CORBA Naming
Service. To configure the client to resolve the name, you need to
specify a corbaname URL in the corba:address element within a
service. No programming is required. However, the Naming
Service is required to be deployed in the Orbix domain.

Figure 6: Orbix Router Resolving a Name from the Naming Service

 24 Orbix Web Services

Resolving steps for Orbix 6.x
The Orbix Router performs the following steps to resolve a name
in the Orbix 6.x CORBA Naming Service (as shown in Figure 6):

Prerequisites
Before configuring the router's WSDL contract to resolve a name
from the CORBA Naming Service, you must make sure the Naming
Service is deployed in the Orbix domain.

Configure the WSDL service
To configure the Orbix Router to resolve a name in the CORBA
Naming Service, use the corbaname URL format in the
<corba:address> tag, as follows:

Where StringName is the name that you want to resolve, specified in
the standard CORBA Naming Service string format. For example, if
you have a name with id equal to OrbixWebServicesTest and kind
equal to obj, contained within a naming context with id equal to
Foo and kind equal to ctx, the corbaname URL would be expressed
as:
corbaname:rir:/NameService#Foo.ctx/OrbixWebServicesTest.obj

In other words, the general format of a string name is as follows:
<id>[.<kind>]/<id>[.<kind>]/...

Step Action

1 The Orbix Router sends a GIOP LocateRequest
message to the Orbix locator, whose hostname
and port is specified in the Orbix domain
configuration. The LocateRequest reply gives the
location of the CORBA Naming Service.

2 The Orbix Router contacts the CORBA Naming
Service to resolve the name specified in the WSDL
corba:address element.

3 The object reference returned from the naming
service is used to contact the CORBA server.

<service name="CORBAService">
 <port binding="tns:CORBABinding" name="CORBAPort">
 <corba:address location="corbaname:rir:/NameService#StringName"/>
 </port>
</service>

Orbix Web Services 25

How the Orbix Router Binds a Name
Figure 7 shows a typical scenario where the Orbix Router might
need to bind a name to the CORBA Naming Service. In the context
of the CORBA Naming Service, binding a name means that the
server advertises the location of a CORBA object by storing an
object reference against a name in the Naming Service.
To configure the router to bind the name, you need to specify a
corbaname URL in the corba:address element within a service.
When the router activates the <service> or <port>, the runtime
automatically binds the name in the Naming Service.
.

Binding steps for Orbix 6.x
Orbix Router performs the following steps to bind a name in the
Orbix 6.x CORBA Naming Service (as shown in Figure 7):

Prerequisites
Before configuring the router's WSDL contract to resolve a name
from the CORBA Naming Service, you must make sure the Naming
Service is deployed in the Orbix domain.

Figure 7: Orbix Router Binding a Name to the Naming Service

Step Action

1 The router sends a GIOP LocateRequest message
to the Orbix locator, whose hostname and port is
specified in the Orbix domain configuration. The
LocateRequest reply gives the location of the
CORBA Naming Service.

2 The Orbix Router contacts the CORBA Naming
Service to bind the name specified in the WSDL
corba:address element.

 26 Orbix Web Services

Configure the WSDL service
To configure an Orbix Router to bind a name in the CORBA
Naming Service, use the corbaname URL format in the
<corba:address> tag, as follows:

Where StringName is the name that you want to resolve, specified in
the standard CORBA Naming Service string format. This is
identical to the configuration for resolving the name, but the
router treats this configuration setting differently. When the router
activates a service containing a corbaname URL, it automatically
binds the given StringName into the CORBA Naming Service.

Binding semantics
The automatic binding performed by the router when it encounters
a corbaname URL has the following characteristics:
• The binding operation has the semantics of the

CosNaming::NamingContext::rebind()IDL operation. That is, the
bind operation either creates a new binding or clobbers an
existing binding of the same name.

• If some of the naming contexts in the StringName compound
name do not yet exist in the naming service, the router does
not create the missing contexts.
For example, if you try to bind a StringName with the value
Foo/Bar/SomeName where neither the Foo nor Foo/Bar naming
contexts exist yet, the router will not bind the given name.
You would need to create the naming contexts manually (for
example, you could issue the command itadmin ns newnc
NameContext).

<service name="CORBAService">
 <port binding="tns:CORBABinding" name="CORBAPort">
 <corba:address location="corbaname:rir:/NameService#StringName"/>
 </port>
</service>

 Orbix Web Services 27

Advanced CORBA Port
Configuration
This chapter describes some advanced configuration options for
customizing a CORBA port in the Orbix Router WSDL

Configuring Fixed Ports and Long-Lived IORs
The Orbix Router provides a corba:policy element that enables
you to customize certain CORBA-specific policies for a WSDL
service that acts as a CORBA endpoint. Essentially, the
corba:policy element makes it possible to enable the following
features on a CORBA endpoint:
• Fixed IP port - the WSDL service listens on the same IP port

all the time. This is useful, for example, if the available range
of IP ports is restricted or if the service must be accessible
through a firewall.

• Long-lived interoperable object references (IORs) - the IOR
remains valid even after the server is stopped and restarted.

You can configure a WSDL service to behave in one of the
following ways:
• Transient service.
• Direct persistent service.

Transient service
By default, a CORBA endpoint is automatically configured to be
transient. A transient service generates IORs with the following
characteristics:
• Randomly-assigned IP port - the IP port is assigned by the

underlying operating system. Hence, the port is generally
different each time the router runs.

• Short-lived IORs - the CORBA binding generates IORs in such
a way that they are guaranteed to become invalid when the
server is stopped and restarted.

Direct persistent service
You can optionally configure a CORBA endpoint to be direct persistent.
A direct persistent service generates IORs with the following
characteristics:
• Fixed IP port - you can explicitly assign the IP port by

configuration. Hence, the IP port remains the same each time
the Orbix Router runs.

Note: In this context, transient is a CORBA concept which
refers to the TRANSIENT value of the
PortableServer::LifespanPolicy.

 28 Orbix Web Services

• Long-lived IORs - the CORBA binding generates IORs in such a
way that they remain valid even when the router is stopped
and restarted. All of the addressing information embedded in
the IOR must remain constant, in particular:
♦ IP port is fixed - the WSDL service must be configured to

listen on a fixed IP port.
♦ POA name is fixed - the POA name is a CORBA-specific

construct that identifies an endpoint.
♦ Object ID in IOR is fixed - the Object ID is a

CORBA-specific construct that identifies a particular object
in a given POA instance.

♦ POA is persistent - a prerequisite for generating long-lived
IORs is that the POA must have a life span policy value of
PERSISTENT.

Configuring a CORBA Web Service to be
direct persistent
To configure a router CORBA service to be direct persistent, you
must edit both the WSDL file and the Orbix configuration.

Editing the WSDL file
The Orbix Router enables you to set direct persistence attributes
in WSDL by adding a corba:policy element to the WSDL service,
as shown in Example 2. The corba:policy attributes from
Example 3 can be explained as follows:.

Example 2: Setting Direct Persistence Attributes in WSDL

<definitions name="" targetNamespace="..."
 ...
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...>
...
 <service name="CORBAServiceName">
 <port binding="tns:CORBABinding" name="CORBAPortName">
 <corba:address location="file:///greeter.ior"/>
 <corba:policy persistent="true"
 poaname="FQPN"
 serviceid="ObjectID" />
 </port>
 </service>
</definitions>

Orbix Web Services 29

The corba:policy attributes from Example 2 can be explained as
follows:
• persistent attribute - by setting this attribute to true, you

configure the CORBA binding to generate persistent IORs
(that is, IORs that continue to be valid even after the Orbix
Router is stopped and restarted). The default value is false.

• poaname attribute - in CORBA terminology, a POA is an object
that groups CORBA objects together (a kind of container for
CORBA objects). It is necessary to set the POA name here,
because the POA name is embedded in the generated IORs.
The generated IORs would not be long-lived, unless the POA
name remains constant. By default, a POA name is
automatically generated with the value,
{ServiceNamespace}ServiceLocalPart#PortName.

• serviceid attribute - in CORBA terminology, this attribute
specifies an Object ID for a CORBA object. It is necessary to
set the Object ID here, because the Object ID is embedded in
the server-generated IOR. The Object ID must have a
constant value in order for the IOR to be long-lived. By
default, the underlying POA would generate a random value
for the Object ID.
Currently, the Orbix Router currently, allows you to set only
one Object ID for each port.

Editing Orbix configuration
To complete the configuration of direct persistence, you must also
set some configuration variables in the relevant scope of the Orbix
configuration.

Note: In CORBA terms, this is equivalent to setting
the PortableServer::LifespanPolicy policy to
PERSISTENT.

Note: The POA name, FQPN, is a fully-qualified POA name.
In practice, however, you can only set a simple POA
name. Currently, the Orbix Router does not provide a
way of creating a POA name hierarchy.

Note: The serviceid attribute also implicitly sets the
CORBA PortableServer::IdAssignmentPolicy policy to
USER_ID. If the serviceid attribute is not set, the
PortableServer::IdAssignmentPolicy policy defaults to
SYSTEM_ID.

 30 Orbix Web Services

For example, if your Orbix Router uses the orbix_router
configuration scope, you would add the configuration variables as
shown in Example 3.

The configuration variables from Example 3 can be explained as
follows:
• poa:FQPN:direct_persistent variable - you must set this

variable to true, which configures the CORBA binding to
receive direct connections from Orbix clients. You should
substitute FQPN with the POA name from the poaname
attribute in the WSDL (see Example 2 on page 28).

• poa:FQPN:well_known_address variable - this variable defines a
prefix, WKA_prefix, which forms part of the variable names
that configure a fixed port for the WSDL service. You should
substitute FQPN with the POA name from the poaname
attribute in the WSDL.

• WKA_prefix:iiop:port variable - this variable configures a fixed
IP port for the WSDL service associated with WKA_prefix.

Fixed port configuration variables
The following IIOP configuration variables can be set for a CORBA
endpoint that uses the WKA_prefix prefix:
WKA_prefix:iiop:host = "host";

Specifies the hostname, host, to publish in the IIOP profile of
server-generated IORs. This variable is potentially useful for
multi-homed hosts, because it enables you to specify which
network card the client should attempt to connect to.

WKA_prefix:iiop:port = "port";

Specifies the fixed IP port, port, on which the server listens for
incoming IIOP messages. This port value is also published in
the IIOP profile of generated IORs.

WKA_prefix:iiop:listen_addr = "host";

Restricts the IIOP listening point to listen only on the specified
address, host. It is generally used on multi-homed hosts to
limit incoming connections to a particular network interface.

Example 3: Setting Direct Persistence Configuration Variables

Orbix configuration
...
orbix_router {
 ...
 poa:FQPN:direct_persistent="true";
 poa:FQPN:well_known_address="WKA_prefix";
 WKA_prefix:iiop:port="IP_Port";
};

Note: In CORBA terms, this is equivalent to setting
the IT_PortableServer::PersistenceModePolicy policy to
DIRECT_PERSISTENCE.

Orbix Web Services 31

The default is to listen on 0.0.0.0 (which represents every
network interface on the host).

Secure fixed port configuration variables
Additionally, the following secure fixed port configuration variables
can be set for a CORBA endpoint that uses the WKA_prefix prefix:
WKA_prefix:iiop_tls:host
WKA_prefix:iiop_tls:port
WKA_prefix:iiop_tls:listen_addr.

These configuration variables function analogously to their
insecure counterparts.

CORBA Timeout Policies
The Orbix Router that exposes a CORBA endpoint can be
configured to use CORBA-specific timeout policies. The timeout
policies described here affect GIOP transports (for example, the
IIOP or IIOP/TLS transports), but do not have any affect on
non-CORBA transports.

Example
To use the timeout policies, add the relevant configuration
variables to the Orbix Router configuration scope in Orbix
configuration. For example, for an Orbix Router that uses the
orbix_router configuration scope, you can set the CORBA relative
round trip timeout as follows:

Timeout policies
You can configure the following CORBA timeout policies in your
Orbix configuration:
policies:relative_binding_exclusive_request_timeout

Limits the amount of time allowed to deliver a request,
exclusive of binding attempts. Request delivery is considered
complete when the last fragment of the GIOP request is sent
over the wire to the target object. This policy's value is set in
millisecond units.

Note: These secure configuration variables will have no
effect, unless the iiop_tls plug-in is also loaded. It is
strongly recommended that you read the Orbix Security Guide
for details of how to configure IIOP/TLS security.

Orbix Configuration
orbix_router{
 # Limit total time for an invocation to 2 seconds
 # (including time for connection and binding

establishment).
 policies:relative_roundtrip_timeout = "2000";
}

http://communities.progress.com/pcom/docs/DOC-105215

 32 Orbix Web Services

policies:relative_binding_exclusive_roundtrip_timeout

Limits the amount of time allowed to deliver a request and
receive its reply, exclusive of binding attempts. The
countdown begins immediately after a binding is obtained for
the invocation. This policy's value is set in millisecond units.

policies:relative_connection_creation_timeout

Specifies how much time is allowed to resolve each address in
an IOR, within each binding iteration. Defaults to 8 seconds.
An IOR can have several TAG_INTERNET_IOP (IIOP transport)
profiles, each with one or more addresses, while each address
can resolve through DNS to multiple IP addresses. This policy
applies to each IP address within an IOR. Each attempt to
resolve an IP address is regarded as a separate attempt to
create a connection. The policy's value is set in millisecond
units.

policies:relative_request_timeout

Specifies how much time is allowed to deliver a request.
Request delivery is considered complete when the last
fragment of the GIOP request is sent over the wire to the
target object. The timeout-specified period includes any delay
in establishing a binding. This policy type is useful to a client
that only needs to limit request delivery time. Set this policy's
value in millisecond units. No default is set for this policy; if it
is not set, request delivery has unlimited time to complete.

policies:relative_roundtrip_timeout

Specifies how much time is allowed to deliver a request and
its reply. Set this policy's value in millisecond units. No default
is set for this policy; if it is not set, a request has unlimited
time to complete. The timeout countdown begins with the
request invocation, and includes the following activities:
♦ Marshalling in/inout parameters
♦ Any delay in transparently establishing a binding
If the request times out before the client receives the last
fragment of reply data, all received reply data is discarded. In
some cases, the client might attempt to cancel the request by
sending a GIOP CancelRequest message.

Retrying Invocations and Rebinding
Orbix lets you configure CORBA policies that customize invocation
retries and reconnection. The policies can be grouped into the
following categories:
• Retrying invocations.
• Rebinding.

Retrying invocations
The following configuration variables determine how the CORBA
binding deals with requests that raise the CORBA::TRANSIENT
exception with a completion status of COMPLETED_NO. In terms of an
IIOP connection, a TRANSIENT exception is raised if an error
occurred before or during an attempt to write to or connect to a
socket.

Orbix Web Services 33

policies:invocation_retry:backoff_ratio

Specifies the degree to which delays between invocation
retries increase from one retry to the next. Defaults to 2.

policies:invocation_retry:initial_retry_delay

Specifies the amount of time, in milliseconds, between the
first and second retries. Defaults to 100.

policies:invocation_retry:max_forwards

Specifies the number of times an invocation message can be
forwarded. Defaults to 20. To specify unlimited forwards, set
to -1.

policies:invocation_retry:max_retries

Specifies the number of transparent reinvocations attempted
on receipt of a TRANSIENT exception. Defaults to 5.

Rebinding
The following configuration variables determine how the CORBA
binding deals with requests that raise the CORBA::COMM_FAILURE
exception with a completion status of COMPLETED_NO. In terms of an
IIOP connection, a COMM_FAILURE exception is raised with a
completion status of COMPLETED_NO, if the connection went down.
policies:rebind_policy

Specifies the default value for the rebind policy. Can be one of
the following:
♦ TRANSPARENT (default)
♦ NO_REBIND
♦ NO_RECONNECT

policies:invocation_retry:max_rebinds

Specifies the number of transparent rebinds attempted on
receipt of a COMM_FAILURE exception. Defaults to 5.

Note: The delay between the initial invocation and
first retry is always 0.

Note: This setting is valid only if the effective
policies:rebind_policy value is TRANSPARENT; otherwise,
no rebinding occurs.

 34 Orbix Web Services

 Orbix Web Services 35

Orbix IDL-to-WSDL
Mapping
This chapter describes how the Orbix IDL-to-WSDL compiler maps OMG
IDL types to WSDL types.

Introducing CORBA Type Mapping
To ensure that messages are converted into the proper format for
a CORBA application to understand, WSDL contracts need to
unambiguously describe how data is mapped to CORBA data
types. For primitive types, the mapping is straightforward.
However, complex types such as structures, arrays, and
exceptions require more detailed descriptions.

Unsupported types
The following CORBA types are not supported:
• Value types
• Boxed values
• Local interfaces
• Abstract interfaces
• Forward-declared interfaces
• Preprocessor include directives

Preprocessor include directives
When converting IDL to WSDL, you can use either of the following
preprocessor include directives in your IDL code:
#include "IncludedFile"
#include <IncludedFile>

Both of these include directives are processed in the same way:
the preprocessor searches for the specified IDL files in the current
include path. The include path consists of the directories specified
using the -I option on the IDL-to-WSDL compiler command line
(idl -wsdl). For example:

idl -wsdl -I FirstIncludeDir -I SecondIncludeDir ...

 36 Orbix Web Services

IDL Primitive Type Mapping

Mapping chart
Most primitive IDL types are directly mapped to primitive XML
Schema types. Table 1 lists the mappings for the supported IDL
primitive types.

Unsupported types
The Orbix Router does not support the CORBA long double type.

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema
Type

CORBA Binding
Type

any xsd:anyType corba:any

boolean xsd:boolean corba:boolean

char xsd:byte corba:char

string xsd:string corba:string

wchar xsd:string corba:wchar

wstring xsd:string corba:wstring

short xsd:short corba:short

long xsd:int corba:long

long long xsd:long corba:longlong

unsigned short xsd:unsignedShort corba:ushort

unsigned long xsd:unsignedInt corba:ulong

unsigned long long xsd:unsignedLong corba:ulonglong

float xsd:float corba:float

double xsd:double corba:double

long double Not Supported Not Supported

octet xsd:unsignedByte corba:octet

fixed xsd:decimal corba:fixed

Object wsa:EndpointReferen
ceType

corba:object

TimeBase::UtcT xsd:dateTimea

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the
restrictions see “Unsupported time/date values” on page 37

corba:dateTime

Orbix Web Services 37

Unsupported time/date values
 The following xsd:dateTime values cannot be mapped to
TimeBase::UtcT:
• Values with a local time zone. Local time is treated as a 0 UTC

time zone offset.
• Values prior to 15 October 1582.
• Values greater than approximately 30,000 A.D.
The following TimeBase::UtcT values cannot be mapped to
xsd:dateTime:
• Values with a non-zero inacclo or inacchi.
• Values with a time zone offset that is not divisible by 30

minutes.
• Values with time zone offsets greater than 14:30 or less than

-14:30.
• Values with greater than millisecond accuracy.
• Values with years greater than 9999.

String type
The IDL-to-WSDL mapping for strings is ambiguous, because the
string, wchar, and wstring IDL types all map to the same type,
xsd:string. This ambiguity can be resolved, however, because the
generated WSDL records the original IDL type in the CORBA
binding description (that is, within the scope of the <wsdl:binding>
</wsdl:binding> tags). Hence, whenever an xsd:string is sent over
a CORBA binding, it is automatically converted back to the original
IDL type (string, wchar, or wstring).

Fixed type
The mapping of fixed is a special case. Although fixed maps
directly to the xsd:decimal type, Orbix must store additional
mapping information to support round-trip conversion between
WSDL and IDL. Therefore, Orbix records the details of the IDL
fixed mapping in a corba:fixed element (within the scope of the
corba:typeMapping element). For example, the mapping of a
fixed<6,2> type might be recorded as follows:

<corba:typeMapping ... >
 <corba:fixed digits="6"
 scale="2"
 name="SampleTypes.Money"
 repositoryID="IDL:SampleTypes/Money:1.0"
 type="xsd:decimal"/>
</corba:typeMapping>

 38 Orbix Web Services

Example
The mapping of primitive types is handled in the CORBA binding
section of the WSDL contract. For example, consider an input
message that has a part, score, that is described as an xsd:int as
shown in Example 4.

 It is described in the CORBA binding as shown in Example 5.

The IDL is shown in Example 6.

IDL Complex Type Mapping
This section describes how the complex IDL data types are
mapped to WSDL. It contains the following types:
• IDL enum Type
• IDL struct Type
• IDL union Type
• IDL sequence Types
• IDL array Types
• IDL exception Types
• IDL typedef Expressions

Example 4: WSDL Operation Definition

<message name="runsScored">
 <part name="score"/>
</message>
<portType ...>
 <operation name="getRuns">
 <input message="tns:runsScored" name="runsScored"/>
 </operation>
</portType>

Example 5: Example CORBA Binding

<binding ...>
 <operation name="getRuns">
 <corba:operation name="getRuns">
 <corba:param name="score" mode="in" idltype="corba:long"/>
 </corba:operation>
 <input/>
 <output/>
 </operation>
</binding>

Example 6: getRuns IDL

// IDL
void getRuns(in score);

Orbix Web Services 39

IDL enum Type
An IDL enumeration maps to an XML string with enumeration
facets. The mapped enumeration is a simple type derived by
restriction from the xsd:string type.

IDL example
Consider the following definition of an IDL enum type,
SampleTypes::Shape:

WSDL mapping
The IDL-to-WSDL compiler maps the SampleTypes::Shape enum to
a WSDL restricted simple type, SampleTypes.Shape, as follows:

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of the enumeration type mapping in a
corba:enum element (within the scope of the corba:typeMappin
element), as follows:

// IDL
module SampleTypes {
 enum Shape { Square, Circle, Triangle };
 ...
};

<xsd:simpleType name="SampleTypes.Shape">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Square"/>
 <xsd:enumeration value="Circle"/>
 <xsd:enumeration value="Triangle"/>
 </xsd:restriction>
</xsd:simpleType>

corba:typeMapping ... >
 <corba:enum name="SampleTypes.Shape"

repositoryID="IDL:SampleTypes/Shape:1.0"
 type="xsd1:SampleTypes.Shape">
 <corba:enumerator value="Square"/>
 <corba:enumerator value="Circle"/>
 <corba:enumerator value="Triangle"/>
 </corba:enum>
...
</corba:typeMapping>

 40 Orbix Web Services

IDL struct Type
An IDL structure maps to an xsd:sequence type. Each field in the
IDL structure maps to an element in the sequence.

IDL example
Consider the following definition of an IDL struct type,
SampleTypes::SampleStruct:

WSDL mapping
The IDL-to-WSDL compiler maps the SampleTypes::SampleStruct
struct to an XML schema sequence complex type,
SampleTypes.SampleStruct, as follows:

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of the structure type mapping in a corba:struct
element (within the scope of the corba:typeMapping element), as
follows:

// IDL
module SampleTypes {
 struct SampleStruct {
 string theString;
 long theLong;
 };
};

<xsd:complexType name="SampleTypes.SampleStruct">
 <xsd:sequence>
 <xsd:element name="theString" type="xsd:string"/>
 <xsd:element name="theLong" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

<corba:typeMapping ... >
 <corba:struct name="SampleTypes.SampleStruct"

repositoryID="IDL:SampleTypes/SampleStruct:1.0"
type="xsd1:SampleTypes.SampleStruct">

 <corba:member idltype="corba:string" name="theString"/>
 <corba:member idltype="corba:long" name="theLong"/>
 </corba:struct>
</corba:typeMapping>

Orbix Web Services 41

IDL union Type
Unions are particularly difficult to describe using the XML schema
framework. In the logical data type descriptions, the difficulty is
how to describe the union without losing the relationship between
the members of the union and the discriminator used to select the
members. The easiest method is to describe a union using an
xsd:choice and list the members in the specified order. The OMG's
proposed method is to describe the union as an xsd:sequence
containing one element for the discriminator and an xsd:choice to
describe the members of the union. However, neither of these
methods can accurately describe all the possible permutations of a
CORBA union.

IDL example
Consider the following definition of an IDL union type,
SampleTypes::Poly:

WSDL mapping—default
The IDL-to-WSDL compiler generates the following mapping for
the IDL union type by default:

// IDL
module SampleTypes {
 union Poly switch (short)
 {
 case 0:
 string StringCase0;
 case 1:
 case 2:
 float FloatCase1and2;
 default:
 long caseDef;
 };
};

<complexType name="SampleTypes.Poly">
 <choice>
 <element name="StringCase0" type="string"/>
 <element name="FloatCase1and2" type="float"/>
 <element name="caseDef" type="int"/>
 </choice>
</complexType>

 42 Orbix Web Services

In this case, the IDL union maps to xsd:choice, where the name of
the type is SampleTypes.Poly. By default, Orbix uses the xsd:choice
type as the representation of the union throughout the contract.

WSDL mapping—OMG alternative
The IDL-to-WSDL compiler also generates the following
alternative mapping for the IDL union type:

In this case, the IDL union maps to xsd:sequence, where the name
of the type is obtained by prepending _omg_ to the basic type
name, giving SampleTypes._omg_Poly.

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of the union type mapping in a corba:union
element (within the scope of the corba:typeMapping element), as
follows:

IDL sequence Types
An IDL sequence maps to a sequence containing a single element
that has minOccurs equal to zero and maxOccurs equal to the
sequence's upper bound (maxOccurs equals unbounded, for an
unbounded sequence).

<complexType name="SampleTypes._omg_Poly">
 <sequence>
 <element maxOccurs="1" minOccurs="1"

name="discriminator"
 type="short"/>
 <choice maxOccurs="1" minOccurs="0">
 <element name="StringCase0" type="string"/>
 <element name="FloatCase1and2" type="float"/>
 <element name="caseDef" type="int"/>
 </choice>
 </sequence>
</complexType>

<corba:typeMapping ... >
 <corba:union discriminator="corba:short" name="SampleTypes.Poly"

repositoryID="IDL:SampleTypes/Poly:1.0"
type="xsd1:SampleTypes.Poly">

 <corba:unionbranch idltype="corba:string" name="StringCase0">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch idltype="corba:float" name="FloatCase1and2">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch default="true" idltype="corba:long"

name="caseDef"/>
 </corba:union>
</corba:typeMapping>

Orbix Web Services 43

IDL example
Consider the following definition of an IDL unbounded sequence
type, SampleTypes::SeqOfStruct:

WSDL mapping
The IDL-to-WSDL compiler maps theSampleTypes::SeqOfStruct
sequence to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of the IDL sequence type mapping in a
corba:sequence element (within the scope of the corba:typeMapping
element), as follows:

// IDL
module SampleTypes {
 typedef sequence< SampleStruct > SeqOfStruct;
 ...
};

<xsd:complexType name="SampleTypes.SeqOfStruct">
 <xsd:sequence>
 <xsd:element name="item"

type="xsd1:SampleTypes.SampleStruct" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
</xsd:complexType>

<corba:typeMapping ... >
 <corba:sequence bound="0"

elemtype="corbatm:SampleTypes.SampleStruct"
 name="SampleTypes.SeqOfStruct"

repositoryID="IDL:SampleTypes/SeqOfStruct:1.0"
 type="xsd1:SampleTypes.SeqOfStruct"/>
</corba:typeMapping>

 44 Orbix Web Services

IDL array Types
An IDL array maps to a sequence containing a single element that
sets both minOccurs and maxOccurs equal to the array bound.

IDL example
Consider the following definition of an IDL union type,
SampleTypes::ArrOfStruct:

WSDL mapping
The IDL-to-WSDL compiler maps the SampleTypes::ArrOfStruct
array to a WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of the IDL array type mapping in a corba:array
element (within the scope of the corba:typeMapping element), as
follows:

// IDL
module SampleTypes {
 typedefSampleStructArrOfStruct[10];
 ...
};

<xsd:complexType name="SampleTypes.ArrOfStruct">
 <xsd:sequence>
 <xsd:element name="item"
 type="xsd1:SampleTypes.SampleStruct"

minOccurs="10"
 maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

<corba:typeMapping ... >
 <corba:array bound="10"

elemtype="corbatm:SampleTypes.SampleStruct"
 name="SampleTypes.ArrOfStruct"

repositoryID="IDL:SampleTypes/ArrOfStruct:1.0"
 type="xsd1:SampleTypes.ArrOfStruct"/>
</corba:typeMapping>

Orbix Web Services 45

IDL exception Types
An IDL exception type maps to an xsd:sequence type and to an
exception message. Each field in the IDL exception maps to an
element in the xsd:sequence.

IDL example
Consider the following definition of an IDL exception type,
SampleTypes::GenericException:

WSDL mapping
The IDL-to-WSDL compiler maps the SampleTypes::GenericExc
exception to a WSDL sequence type, SampleTypes.GenericExcc, and
to a WSDL fault message, SampleTypes.GenericExc, as follows:

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of the IDL exception type mapping in a
corba:exception element (within the scope of the
corba:typeMapping element).

// IDL
module SampleTypes {
 exception GenericExc {
 string reason;
 };
 ...
};

<xsd:complexType name="SampleTypes.GenericExc">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"

type="xsd1:SampleTypes.GenericExc"/>
...
 <message name="SampleTypes.GenericExc">
 <part element="xsd1:SampleTypes.GenericExc"

name="exception"/>
</message>

 46 Orbix Web Services

The IDL-to-WSDL compiler generates the following
corba:exception element:

IDL typedef Expressions
If a type is aliased in IDL, using a typedef expression, Orbix
simply replaces the type alias with the original type when mapping
to WSDL.

IDL example
Consider the following IDL typedef that defines an alias of a float,
SampleTypes::FloatAlias, and an alias of a struct,
SampleTypes::SampleStruct:

<xsd:complexType name="SampleTypes.GenericExcType">
 <xsd:sequence>
 <xsd:element name="reason" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:element name="SampleTypes.GenericExc"

type="xsd1:SampleTypes.GenericExcType"/>
...
<message name="SampleTypes.GenericExc">
 <part element="xsd1:SampleTypes.GenericExc"

name="exception"/>
</message>

<corba:typeMapping ... >
 <corba:exception name="SampleTypes.GenericExc"
 repositoryID="IDL:SampleTypes/GenericExc:1.0"
 type="xsd1:SampleTypes.GenericExc">
 <corba:member idltype="corba:string" name="reason"/>
 </corba:exception>
</corba:typeMapping>

// IDL
module SampleTypes {
 typedef float FloatAlias;
 typedef SampleStruct SampleStructAlias;
 ...
};

Orbix Web Services 47

CORBA type mapping
To support round-trip conversion between WSDL and IDL, Orbix
records the details of each IDL alias mapping in a corba:alias
element (within the scope of the corba:typeMapping element), as
follows:

WSDL mapping
The IDL-to-WSDL compiler maps the SampleTypes::FloatAlias type
alias directly to the type, xsd:float and the
SampleTypes::SampleStructAlias type alias directly to the type,
SampleTypes.SampleStruct.

<corba:typeMapping ... >
 <corba:alias basetype="corba:float"
 name="SampleTypes.FloatAlias"

repositoryID="IDL:SampleTypes/FloatAlias:1.0"
 type="xsd:float"/>
 <corba:alias

basetype="corbatm:SampleTypes.SampleStruct"
 name="SampleTypes.SampleStructAlias"

repositoryID="IDL:SampleTypes/SampleStructAlias:1.0"
 type="xsd1:SampleTypes.SampleStruct"/>
</corba:typeMapping>

 48 Orbix Web Services

 Orbix Web Services 49

Configuring a CORBA
Binding
CORBA bindings are described using a variety of Orbix-specific WSDL
elements within the WSDL binding element. In most cases, the CORBA
binding description is generated automatically using the wsdltocorba
utility. Usually, it is unnecessary to modify generated CORBA bindings.

Namespace
The WSDL extensions used to describe CORBA data mappings and
CORBA transport details are conventionally prefixed by the
namespace prefix, corba.
The following is the definition of the corba namespace prefix:

 corba:binding element
The corba:binding element indicates that the binding is a CORBA
binding. This element has one required attribute: repositoryID.
repositoryID specifies the full type ID of the interface. The type ID
is embedded in the object's IOR and therefore must conform to
the IDs that are generated from an IDL compiler. These are of the
form:

The corba:binding element also has an optional attribute, bases,
that specifies that the interface being bound inherits from another
interface. The value for bases is the type ID of the interface from
which the bound interface inherits. For example, the following
IDL:

would produce the following corba:binding:

corba:operation element
The corba:operation element is an Orbix-specific element of
<operation> and describes the parts of the operation's messages.
<corba:operation> takes a single attribute, name, which duplicates
the name given in <operation>.

xmlns:corba="http://schemas.iona.com/bindings/corba"

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>

 50 Orbix Web Services

corba:param element
The corba:param element is a member of <corba:operation>. Each
<part> of the input and output messages specified in the logical
operation, except for the part representing the return value of the
operation, must have a corresponding <corba:param>. The
parameter order defined in the binding must match the order
specified in the IDL definition of the operation. <corba:param> has
the following required attributes:

corba:return element
The corba:return element is a member of <corba:operation> and
specifies the return type, if any, of the operation. It only has two
attributes:

corba:raises element
The corba:raises element is a member of <corba:operation> and
describes any exceptions the operation can raise. The exceptions
are defined as fault messages in the logical definition of the
operation. Each fault message must have a corresponding
corba:raises element. The corba:raises element has one required
attribute, exception, which specifies the type of data returned in
the exception.

mode Specifies the direction of the parameter. The
values directly correspond to the IDL
directions: in, inout, out. Parameters set to
in must be included in the input message of
the logical operation. Parameters set to out
must be included in the output message of
the logical operation. Parameters set to inout
must appear in both the input and output
messages of the logical operation.

idltype Specifies the IDL type of the parameter. The
type names are prefaced with corba: for
primitive IDL types, and corbatm: for complex
data types, which are mapped out in the
corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given
in the logical portion of the contract.

name Specifies the name of the parameter as given
in the logical portion of the contract.

idltype Specifies the IDL type of the parameter. The
type names are prefaced with corba: for
primitive IDL types and corbatm: for complex
data types which are mapped out in the
corba:typeMapping portion of the contract.

Orbix Web Services 51

In addition to operations specified in <corba:operation> tags,
within the <operation> block, each <operation> in the binding must
also specify empty input and output elements as required by the
WSDL specification. The CORBA binding specification, however,
does not use them.
For each fault message defined in the logical description of the
operation, a corresponding fault element must be provided in the
<operation>, as required by the WSDL specification. The name
attribute of the fault element specifies the name of the schema
type representing the data passed in the fault message.

Example
For example, a logical interface for a system to retrieve employee
information might look similar to personalInfoLookup, shown in
Example 7.

The CORBA binding for personalInfoLookup is shown in Example 8.

Example 7: personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return"

message="personalLookupResponse"/>
 <fault name="exception"

message="idNotFoundException"/>
 </operation>
</portType>

Example 8: personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>

 52 Orbix Web Services

 Orbix Web Services 53

Configuring a CORBA
Port
CORBA ports are described using the Orbix-specific WSDL elements,
corba:address and corba:policy, within the WSDL port element, to
specify how a CORBA object is exposed.

Namespace
• The WSDL extensions used to describe CORBA data mappings

and CORBA transport details are conventionally prefixed by
the namespace prefix, corba. The definition of the corba
namespace prefix is

corba:address element
The IOR of the CORBA object is specified using the corba:address
element. You have four options for specifying IORs in WSDL
contracts:
• Specify the objects IOR directly, by entering the object's IOR

directly into the contract using the stringified IOR format:

• Specify a file location for the IOR, using the following syntax:

It is usually simplest to specify the file name using an absolute
path. If you specify the file name using a relative path, the
location is taken to be relative to the directory the Orbix process is
started in, not relative to the containing WSDL file.
• Specify that the IOR is published to the Naming Service, by

entering the object's name using the corbaname format:

For more information on using the Naming Service with Orbix
Web Services see Integrating the CORBA Naming Service with
the Orbix Router page 23

• Specify the IOR using corbaloc, by specifying the port at which
the service exposes itself, using the corbaloc syntax.

xmlns:corba="http://schemas.iona.com/bindings/corba"

IOR:22342....

file:///file_name

Note: The file specification requires three backslashes
(///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

 54 Orbix Web Services

When using corbaloc, you must be sure to configure your
service to start up on the specified host and port.

corba:policy element
Using the optional corba:policy element, you can describe a
number of POA polices the Orbix Router will use when creating the
POA for connecting
to a CORBA application. These policies include:
• POA Name
• Persistence
• ID Assignment
Setting these policies lets you exploit some of the enterprise
features of Micro Focus's Orbix, such as load balancing and fault
tolerance. For information on using these advanced CORBA
features, see the Orbix Documentation Library.

POA Name
By default, a router POA is created with the default name,
{ServiceNamespace}ServiceLocalPart#PortName. For example, if a CORBA
port is defined by the following WSDL fragment:

The unique POA name automatically generated for this CORBA
port is {http://iona.com/mycorbaservice}CorbaService#CorbaPort.
Alternatively, you can specify the POA name explicitly by setting
the poaname attribute, as follows:

When setting a POA name using the poaname attribute, it is your
responsibility to ensure that the POA name is unique. That is, the
POA name should not be shared between CORBA ports within a
service or across CORBA services.

Persistence
By default Orbix POA's have a persistence policy of false. To set
the POA's persistence policy to true, use the following:

<definitions
 ...
 xmlns:corbatm="http://iona.com/mycorbaservice" >

 <service name="CorbaService">
 <port binding="corbatm:CorbaBinding"

name="CorbaPort">
 <corba:address

location="file:../../hello_world_service.ior"/>
 </port>
 </service>
 ...

<corba:policy poaname="poa_name" />

<corba:policy persistent="true" />

Orbix Web Services 55

ID Assignment
By default Orbix POAs are created with a SYSTEM_ID policy,
meaning that their ID is assigned by the ORB. To specify that the
POA connecting a specific object should use a user-assigned ID,
use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Example
For example, a CORBA port for the personalInfoLookup binding
would look similar to Example 9:

Orbix expects the IOR for the CORBA object to be located in a file
called objref.ior (relative to the directory in which the Orbix
process is started), and creates a persistent POA with an object id
of personalInfo to connect the CORBA application.

<corba:policy serviceid="POAid" />

Example 9: CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file:///objref.ior" />
 <corba:policy persistent="true" />
 <corba:policy serviceid="personalInfoLookup" />
 </port>

</ service>

 56 Orbix Web Services

 Orbix Web Services 57

Web Services Utilities
in Orbix
Use the Orbix Web Services command-line utilities to convert OMG IDL
to WSDL and to generate CORBA bindings.

Converting OMG IDL to WSDL
Micro Focus’s IDL compiler supports several command line flags
that specify how to create a WSDL file from an IDL file. The default
behavior of the tool is to create WSDL file that uses wrapped
doc/literal style messages. Wrapped doc/literal style messages
have a single part, defined using an element that wraps all of the
elements in the message.

Location
The location of the utility tool is $IT_PRODUCT_DIR/asp/6.3/bin.

WSDLTOCORBA/WSDLTOIDL

Synopsis
idl -wsdl [-I idl-include-dir...] [-o output-dir] [-a
corba-address] [-b] [-f corba-address-file] [-n

schema-import-file] [-s idl-sequence-type] [-w
target-namespace] [-x schema-namespace]

[-t corba-typemap-namespace] [-L logical-wsdl-filename] [-P
physical-wsdl-filename] [-T schema-filename] [-qualified] [-e
xml-encoding-type] [-mnsnamespaceMapping] [-ow wsdloutput-file]
[exexcludedModules] [-pf] [-v] [[-verbose] | [-quiet]] idl

Required Arguments
The command has the following required arguments:

Options The command has the following options:

idl Specifies the name of the IDL file.

-I idl-include-directory Specify a directory to be included in the
search path for the IDL preprocessor.
You can use this flag multiple times.

-o output-directory Specifies the directory into which the
WSDL file is written.

-a corba-address Specifies an absolute address through
which the object reference may be
accessed. The corba-address may be a
relative or absolute path to a file, or a
corbaname URL

 58 Orbix Web Services

-b Specifies that bounded strings are to be
treated as unbounded. This eliminates
the generation of the special types for
the bounded string.

-f corba-address-file Specifies a file containing a string
representation of an object reference.
The object reference is placed in the
corba:address element in the <port>
definition of the generated service. The
file must exist when you run the IDL
compiler.

-n schema-import-file Specifies that a schema file is to be
included in the generated contract by
an import statement. This option cannot
be used with the -T option.

-s idl-sequence-type Specifies the XML schema type used to
map the IDL sequence<octet> type. Valid
values are base64Binary or hexBinary.
The default is base64Binary.

-w target-namespace Specifies the namespace to use for the
WSDL document’s target namespace.

-x schema-namespace Specifies the namespace to use for the
generated XML Schema’s target
namespace.

-t corba-typemap-namespace Specifies the namespace to use for the
CORBA type map's target namespace.

-L logical-wsdl-filename Specifies that the logical portion of the
generated WSDL specification into is
written to logical-wsdl-filename. The
logical WSDL is then imported into the
default generated file.

-P physical-wsdl-filename Specifies that the physical portion of
the generated WSDL specification into
is written to physical-wsdl-filename.
The physical WSDL is then imported
into the default generated file.

-T schema-filename Specifies that the schema types are to
be generated into a separate file. The
schema file is included in the generated
contract using an import statement.
This option cannot be used with the -n
option.

-qualified Generates fully qualified WSDL.
-e xml-encoding-type Specifies the value for the generated

WSDL document’s xml encoding
attribute. the generated WSDL
document’s xml encoding attribute.
The default is UTF-8.

-mnsnamespaceMapping Specifies a mapping between IDL
modules and XML namespaces.

-ow wsdloutput-file Specifies the name of the generated
WSDL file.

Orbix Web Services 59

Generating a Deployment Descriptor
WSDD generates a deployment descriptor that can be used to
deploy the Orbix Router into the Orbix Router container.

Location
The location of the utility tool is $IT_PRODUCT_DIR/asp/6.3/bin.

Deploy the Orbix Router into the Orbix Router container

Synopsis
wsdd {-service QName} {-pluginName name} {-pluginType { Cxx

| Java }}[-pluginImpl name] [-pluginURL dir] [-wsdlurl
URL] [-provider namespace][-file file] [-d dir]
[[-quiet] | [-verbose]] [-h] [-v]

Required Arguments
The command has the following required arguments:

Options The command has the following options:

-exexcludeModules Specifies one or more IDL modules to
exclude when generating the WSDL file.

-pf Specifies that polymorphic factory
support is enabled.

-h Displays the tool's usage statement.
-v Displays the version number for the

tool.
-verbose Displays comments during the code

generation process.
-quiet Suppresses comments during the code

generation process.

-service QName Specifies the QName of the plug-in’s
service as given in its contract.

-pluginName name Specifies the name of the plug-in as
specified in the Orbix configuration.

-pluginType{Cxx} Specifies that the plug-in is
implemented as a shared library.

-pluginImpl name Specifies the library name of the plug-in’s
implementation.

-pluginURL dir Specifies the directory where the plug-in’s
implementation is located.

-wsdlurl URL Specifies the location of the contract
defining the service implemented by the
plug-in.

 60 Orbix Web Services

Generating a CORBA Binding
Adds a CORBA binding to a WSDL document. The generated WSDL
file will also contain a CORBA port with no address specified.

Location
The location of the utility tool is $IT_PRODUCT_DIR/asp/6.3/bin.

WSDLTOCORBA -CORBA

Synopsis
wsdltocorba -corba {-i portType} [-d dir] [-b binding] [-o file][-props

namespace] [-wrapped] [-L file] [[-quiet] | [-verbose]] [-h] [-v]
wsdl

Required Arguments
The command has the following required arguments:

Options The command has the following options:

-provider namespace Specifies the namespace under which your
plug-in’s ServantProvider is registered with
the bus.

-file file Specifies the name of the generated
deployment descriptor.

-d dir Specifies the directory where the
generated file will be written.

-quiet Specifies that the tool is to run in quiet
mode.

-verbose Specifies that the tool is to run in verbose
mode.

-h Displays the tool’s usage statement.
-v Displays the tool's version.

-i portType Specifies the name of the port type for
which the CORBA binding is
generated.

wsdl Specifies the WSDL document to
which the binding is added.

-d dir Specifies the directory into which the
new WSDL document is written.

-b binding Specifies the name of the generated
CORBA binding. The default is
portTypeBinding.

-o file Specifies the name of the generated
WSDL document. The default is
wsdl_file-corba.wsdl.

Orbix Web Services 61

Adding a Route
Adds a route to a WSDL document. Routes are used by the Orbix
router to direct messages between endpoints.

Location
The location of the utility tool is $IT_PRODUCT_DIR/asp/6.3/bin.

WSDLROUTING

Synopsis
wsdltorouting [-rn name] [-ssn service] [-spn port] [-dsn service][-dpn

port] [-on operation] [-ta attribute] [-d dir] [-o file] [-L
file][[-quiet] | [-verbose]] [-h] [-v] {wsdl}

Options The command has the following options:

-props namespace Specifies the namespace to use for
the generated CORBA typemap.

-wrapped Specifies that the generated binding
uses wrapped types.

-L file Specifies the location of your Orbix
license file. The default behavior is to
check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool is to run in
quiet mode.

-verbose Specifies that the tool is to run in
verbose mode.

-h Displays the tool’s usage statement.
-v Displays the tool's version.

-rn name Specifies the name of the generated
route. If no name is given a unique
name will be generated for the route.

-ssn service Specifies the name of the service to
use as the source of the route.

-spn port Specifies the name of the port to use
as the source of the route. The port
must correspond to a port element in
the specified service.

-dsn service Specifies the name of the service to
use as the destination of the route.

-dpn port Specifies the name of the port to use
as the destination of the route. The
port must correspond to a port
element in the specified service.

-on operation Specifies the name of the operation to
use for the route. If the route is
port-based, you do need to use this
flag.

 62 Orbix Web Services

Generating an HTTP Endpoint
Generates a WSDL document containing an HTTP endpoint.

Location
The location of the utility tool is $IT_PRODUCT_DIR/asp/6.3/bin.

WSDLTOSERVICE-Transport SOAP/HTTP

Synopsis
wsdltoservice -transport soap/http [-e service] [-t port] [-b binding]

[-a address] [-hssdt serverSendTimeout] [-hscvt serverReceiveTimeout]
[-hstrc trustedRootCertificates] [-hsuss useSecureSockets] [-hsct
contentType] [-hscc serverCacheControl] [-hsscse
supressClientSendErrors] [-hsscre supressClientReceiveErrors] [-hshka
honorKeepAlive] [-hsrurl redirectURL] [-hscl contentLocation] [-hsce
contentEncoding] [-hsst serverType] [-hssc serverCentificate] [-hsscc
serverCentificateChain] [-hsspk serverPrivateKey] [-hsspkp
serverPrivateKeyPassword] [-hcst clientSendTimeout] [-hccvt
clientReceiveTimeout] [-hctr trustedRootCertificates] [-hcuss
useSecureSockets] [-hcct contentType] [-hccc clientCacheControl]
[-hcar autoRedirect] [-hcun userName] [-hcp password] [-hcat
clientAuthorizationType] [-hca clientAuthorization] [-hca accept]
[-hcal acceptLanguage] [-hcae acceptEncoding] [-hch host] [-hccn
clientConnection] [-hcck cookie] [-hcbt browserType] [-hcr referer]
[-hcps proxyServer] [-hcpun proxyUserName] [-hcpp proxyPassword]
[-hcpat proxyAuthorizationType] [-hcpa proxyAuthorization] [-hccce
ClientCertificate] [-hcccc clientCertificateChain] [-hcpk
clientPrivateKey] [-hcpkp clientPrivateKeyPassword] [-o file] [-d
dir] [-L file] [[-quiet] | [-verbose]] [-h] [-v] wsdlurl

-ta attribute Specifies a transport to use in defining
the route.

-d dir Specifies the output directory for the
generated contract.

-o file Specifies the filename for the
generated contract.

-L file Specifies the location of your Orbix
license file. The default behavior is to
check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool is to run in
quiet mode.

-verbose Specifies that the tool is to run in
verbose mode.

-h Displays the tool’s usage statement.
-v Displays the tool's version.
wsdl Specifies the name of the WSDL

document to which the route is added.

Orbix Web Services 63

Required Arguments
The command has the following required arguments:

Options The command has the following options:

wsdlurl Specifies the WSDL document from
which to base the generated WSDL
document.

-transport soap/http If the payload being sent over the
wire is SOAP, use -transport soap. For
all other payloads use -transport http.

-e service Specifies the name of the generated
service.

-t port Specifies the value of the name
attribute of the generated port
element.

-b binding Specifies the name of the binding for
which the service is generated.

-a address Specifies the value used in the address
element of the port.

-hssdt serverSendTimeout Specifies the number if milliseconds
that the server can continue to try to
send a response to the client before
the connection is timed out.

-hscvt serverReceiveTimeout Specifies the number of milliseconds
that the server can continue to try to
receive a request from the client
before the connection is timed out.

-hstrc trustedRootCertificates Specifies the full path to the X509
certificate for the certificate authority.

-hsuss useSecureSockets Specifies if the server uses secure
sockets. Valid values are true or false.

-hsct contentType Specifies the media type of the
information being sent in a server
response.

-hscc serverCacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
request from a client to a server.

-hsscse
supressClientSendErrors

Specifies whether exceptions are
thrown when an error is encountered
on receiving a client request. Valid
values are true or false.

-hsscre
supressClientReceiveErrors

Specifies whether exceptions are
thrown when an error is encountered
on sending a response to a client.
Valid values are true or false.

-hshka honorKeepAlive Specifies if the server honors client
keep-alive requests. Valid values are
true or false.

 64 Orbix Web Services

-hsrurl redirectURL Specifies the URL to which the client
request should be redirected if the
URL specified in the client request is
no longer appropriate for the
requested resource.

-hscl contentLocation Specifies the URL where the resource
being sent in a server response is
located.

-hsce contentEncoding Specifies what additional content
codings have been applied to the
information being sent by the server,
and what decoding mechanisms the
client therefore needs to retrieve the
information.

-hsst serverType Specifies what type of server is
sending the response to the client.

-hssc serverCentificate Specifies the full path to the X509
certificate issued by the authority for
the server.

-hsscc serverCentificateChain Specifies the full path to the file that
contains all the certificates in the
chain.

-hsspk serverPrivateKey Specifies the full path to the private
key that corresponds to the X509
certificate specified by
serverCertificate.

-hsspkp
serverPrivateKeyPassword

Specifies a password that is used to
decrypt the private key.

-hcst clientSendTimeout Specifies the number of milliseconds
that the client can continue to try to
send a request to the server before
the connection is timed out.

-hccvt clientReceiveTimeout Specifies the number of milliseconds
that the client can continue to try to
receive a response from the server
before the connection is timed out.

-hctrc trustedRootCertificates Specifies the full path to the X509
certificate for the certificate authority.

-hcuss useSecureSockets Specifies if the client uses secure
sockets. Valid values are true or
false.

-hcct contentType Specifies the media type of the data
being sent in the body of the client
request.

-hccc clientCacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
request from a client to a server.

-hcar autoRedirect Specifies if the server should
automatically redirect client requests.

Orbix Web Services 65

-hcun userName Specifies the username the client uses
to register with servers.

-hcp password Specifies the password the client uses
to register with servers.

-hcat clientAuthorizationType Specifies the authorization
mechanisms the client uses when
contacting servers.

-hca clientAuthorization Specifies the authorization credentials
used to perform the authorization.

-hca accept Specifies what media types the client
is prepared to handle.

-hcal acceptLanguage Specifies what language the client
prefers for the purposes of receiving a
response.

hcae acceptEncoding Specifies what content codings the
client is prepared to handle.

-hch host Specifies the internet host and port
number of the resource on which the
client request is being invoked.

-hccn clientConnection Specifies if the client will open a new
connection for each request or if it will
keep the original one open. Valid
values are close and Keep-Alive.

-hcck cookie Specifies a static cookie to be sent to
the server.

-hcbt browserType Specifies information about the
browser from which the client request
originates.

-hcr referer Specifies the value for the client’s
referring entity.

-hcps proxyServer Specifies the URL of the proxy server,
if one exists along the message path.

-hcpun proxyUserName Specifies the username that the client
uses to authorize with proxy servers.

-hcpp proxyPassword Specifies the password that the client
uses to authorize with proxy servers.

-hcpat proxyAuthorizationType Specifies the authorization mechanism
the client uses with proxy servers.

-hcpa proxyAuthorization Specifies the actual data that the
proxy server should use to
authenticate the client.

-hccce ClientCertificate Specifies the full path to the X509
certificate issued by the certificate
authority for the client.

-hcccc clientCertificateChain Specifies the full path to the file that
contains all the certificates in the
chain.

 66 Orbix Web Services

Generating a SOAP Binding
Generates a WSDL document containing a SOAP binding to a
WSDL document based on the values provided as arguments to
the tool.

Location
The location of the utility tool is $IT_PRODUCT_DIR/asp/6.3/bin.

WSDLTOSOAP

Synopsis
wsdltosoap {-i portType} {-n namespace} [-soapversion [1.1 | 1.2

]][-style [document | rpc]] [-use [literal | encoded]] [-b
binding] [-o file][-d dir] [-L file] [[-quiet] | [-verbose]] [-h]
[-v] wsdlurl

Required Arguments
The command has the following required arguments:

-hcpk clientPrivateKey Specifies the full path to the private
key that corresponds to the X509
certificate specified by
clientCertificate.

-hcpkp
clientPrivateKeyPassword

Specifies a password that is used to
decrypt the private key.

-o file Specifies the filename for the
generated contract. The default is to
append -service to the name of the
imported contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Orbix
license file. The default behavior is to
check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet
mode.

-verbose Specifies that the tool runs in verbose
mode.

-h Displays the tool’s usage statement.
-v Displays the tool’s version.

-i portType Specifies the name of the portType
element being mapped to a SOAP
binding.

-n namespace Specifies the namespace to use for
the SOAP binding.

Orbix Web Services 67

The command has the following options:

wsdlurl Specifies the WSDL document from
which to base the generated WSDL
document.

-soapversion [1.1 | 1.2] Specifies the SOAP version of the
generated binding. Defaults to 1.1.

-style [document | rpc] Specifies the encoding style to use in
the SOAP binding. Defaults to
document.

-use [literal | encoded] Specifies how the data is encoded.
Default is literal.

-o file Specifies the filename for the
generated contract. The default is to
append -service to the name of the
imported contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Orbix
license file. The default behavior is to
check IT_PRODUCT_DIR\etc\license.txt.

-quiet Specifies that the tool runs in quiet
mode.

-verbose Specifies that the tool runs in verbose
mode.

-h Displays the tool’s usage statement.
-v Displays the tool’s version.

 68 Orbix Web Services

Orbix Web Services 69

Index

A
Address specification

CORBA 53

C
CORBA

sequence type 43
struct type 40, 41
typedef 46
union type 44

corba:policy 54

D
documentation

.pdf format 2
updates on the web 2

F
fixed ports

host 30
IIOP/TLS listen_addr 30
IIOP/TLS port 30

I
IDL

sequence type 43
struct type 40, 41
typedef 46
union type 44

IIOP/TLS
host 30

IIOP/TLS listen_addr 30
IIOP/TLS port 30
IOR specification 53

P
ports 4
port types 4

S
sequence type 43
Specifying POA policies 54
struct type 40, 41

T
typedef 46

U
union type 44

W
Web Services Definition Language 4
WSDL contract 4

 70 Orbix Web Services

	Preface
	What is Covered in This Book
	Who Should Read This Book
	Contacting Micro Focus

	Introduction to Orbix Web Services
	Web Services and Orbix
	Invoking a Web Service from Orbix
	Exposing an Orbix Service as a Web Service
	CORBA Factory Pattern

	Exposing an Orbix Server as a Web Service
	Converting IDL to WSDL
	Embedding the Orbix Router in an Orbix Server
	Embedded Router Scenario
	Embedding a Router in the Orbix Server

	Integrating the CORBA Naming Service with the Orbix Router
	How the Orbix Router Resolves a Name
	How the Orbix Router Binds a Name

	Advanced CORBA Port Configuration
	Configuring Fixed Ports and Long-Lived IORs
	CORBA Timeout Policies
	Retrying Invocations and Rebinding

	Orbix IDL-to-WSDL Mapping
	Introducing CORBA Type Mapping
	IDL Primitive Type Mapping
	IDL Complex Type Mapping
	IDL enum Type
	IDL struct Type
	IDL union Type
	IDL sequence Types
	IDL array Types
	IDL exception Types
	IDL typedef Expressions

	Configuring a CORBA Binding
	Configuring a CORBA Port
	Web Services Utilities in Orbix
	Converting OMG IDL to WSDL
	Generating a Deployment Descriptor
	Generating a CORBA Binding
	Adding a Route
	Generating an HTTP Endpoint
	Generating a SOAP Binding

	Index

