Orbix 6.3.7

CORBA Programmer’s
Reference: C++

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2014. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.

All other marks are the property of their respective owners.

6/17/14

Contents

P e A . .. XiX
[g} dgeYe 16 1e uTo] o T 1

Interface Repository QUICK REfErencCeoooviiiiiiiiii e 1

DIl and DSI QUICK REfEIENCE ..o i 2

Value Type QUICK REfEIreNCe ...ooeeiiiii e e aaee s 3

About Standard Functions for all INterfacesuiiiiiiiiiiii et 4

About Reference Types _ptr, _var, and _OULccoviiiiiiiiiiiii i 5

Y oo 1L AT =T 1 1T g o = PPN 7

YA o Yo BN MY £= 1 (B TSI =) T 9
CORBA OVEINVICWV ...t e e e e e e e e e 13
CORBA::AbstractinterfaceDef Interfacecoveeiioieiiii. .. 47
CORBA::AlASDETr INtErfacCe ... e 49
CORBA I ANY ClasS. . ittt ettt et eaans 51
CORBA::ArrayDef INterfaceccooveviiiiiiiii e 61
CORBA::AttributeDef INterface ..o e 63
CORBA::ConstantDef Interfacecooermi e, 65
CORBA::ConstructionPolicy Interfaceccooooeiiiiiiiin... 67
CORBA::Contained INterface ..o e 69
CORBA::Container INterfaceooueoee e 73
CORBA: i CONTEXTE ClasSS ..ot e e e 87
CORBA: :CONEXTLIST ClasSS ..t e e e 91
CORBA::CUITeNt INTerface ... e e 93
CORBA::CustomMarshal Value Type ..o 95
CORBA::DatalnputStream Value Typeccccoviiiiiiiiiiiiiine.. 97
CORBA::DataOutputStream Value Typecccvvviiiiiiiiiinnnnnnn.. 107

Orbix CORBA Programmer’s Reference: C++ iii

CORBA::DomainManager Interfacecccoovviiiiiiiiiinnnn.... 119

CORBA::EnumMDef INnterface...... ..o 121
CORBA::ENVIrONMENT ClassS ... 123
CORBA:EXCEPLION ClassS. ..ttt 125
CORBA::ExceptionDef Interfaceccoovvviiiiiiiiiiiiiiiiin. 127
CORBA::EXCeptiONLISt ClasS ...coiviiiiiii e 129
CORBA::FixedDef INnterface.........ccooiiiiiiiiiiiiiiiiiie i 131

CORBA.InterfaceDefPackage.FulllnterfaceDescription Class133

CORBA: I IDLTYpe INterface.....ccoviiiiii i 135
CORBA::InterfaceDef Interface...........ccooiiiiiiiiiiiiiiiiiinns 137
CORBA::IRODbject INterface........coiiiiiiii i 141
CORBA::ModuleDef Interface ... 143
CORBA::NamedValue Classccoviiiiiiiiiiii i 145
CORBA::NativeDef Interfacecooooeiiiiiiiiiiiiiiiieene 147
CORBA:IINVLISE ClassS . ..uciiiiii i 149
CORBA::ODJECT ClasS . ittt e eaaan 155
CORBA::OperationDef Interface..........cccoovviiiiiiiiiiiiiiiiiin., 167
CORBA:I:ORB Class ...t 169
CORBA::Policy INterfaceccciiiiiiiiiiiiiiici e 193

Quality Of SErvice FFaMEWOIKuuuriiriiiiiiiiiiiieeaeaeaaeaaeeaeeeaaeeeenneeenees. 193

POLICY METNOMS ...ttt ettt et eeeeas 195
CORBA::POlicyCUurreNt ClassScvviiiiiii e eeeeeee e e 197
CORBA::PolicyManager Classccoiiiiiiiiiiiiiiiiicc e 199
CORBA::PrimitiveDef Interface ..., 203
CORBA::Repository Interface.........cooovviiiiiiiiiiiiiiiieiiiiaas 205

iv Orbix CORBA Programmer’s Reference: C++

CORBA::ReqUESTE ClasS ...iiiiiiiii et 211
CORBA::SequenceDef Interface........ccoooiiiiiiiiiiiiiiiiiiiaeen. 219
CORBA::ServerRequest Class.......ccooiiiiiiiiiiiiiiiieie e 221
CORBA::String_Vvar ClassScuuiii e 223
CORBA::StringDef Interfacecooiiiiiiiiiiiii e 227
CORBA::StructDef Interfaceoooiiiiiiiiiiiiiaiee 229
CORBA::TypeCode Classuuuuiiiieeeee e 231
CORBA::TypedefDef INterface.........ccooviiiiiiiiiiiiiiiiiiiiiaeen 241
CORBA::UnionDef INterfaceoooiiiiiiiiiiii i 243
CORBA::ValueBase Classccoviiiiiiiiiii i 245
CORBA::ValueBoxDef INnterfacec.cooooiiiiiiiiiiiiiiiiiaee 249
CORBA::ValueDef INnterfaceoooiiiiiiiiiiii e 251
CORBA::ValUEFACTONY ...t 259

CORBA::VAIUEBFACIONY TYPE ..eeeiiiiiiiiieieaaeaaaaaaaaaeaaaa e eeeeeeeaaaanns 259

CORBA::ValueFaCtOryBase CIASSceeeeeeeeieeeiiaaaaiiiiiiiiieeieeeeeeeeaaaaanns 259
CORBA::ValueMemberDef Interface.........cccooooiiiiiiiiiiina... 263
CORBA::WString_var Classccoiiiiiiiiiii e 265
CORBA::WstringDef Interface...........cccooiiiiiiiiiiiiiii i 269
CosEventChannelAdmin Module............oooiiiiiiiiiiiiiiiie. 271

CosEventChannelAdmin EXCEPLIONSoiiiiiiii i e e 271
CosEventChannelAdmin::ConsumerAdmin Interface.......... 273
CosEventChannelAdmin::EventChannel Interface.............. 275
CosEventChannelAdmin::ProxyPullConsumer Interface..... 277
CosEventChannelAdmin::ProxyPullSupplier Interface 279

CosEventChannelAdmin::ProxyPushConsumer Interface...281

Orbix CORBA Programmer’s Reference: C++ VvV

CosEventChannelAdmin::ProxyPushSupplier Interface..... 283

CosEventChannelAdmin::SupplierAdmin Interface............ 285
CosEventComm Module........ccooiiiiiiiii e 287
COSEVENTCOMIM EXCEPLIONS . .uiiintiiiiie ettt et e e e ae e aanees 287
CosEventComm::PullConsumer Interface.................ocooo... 289
CosEventComm::PullSupplier Interfacecccoviiiiiiii. 291
CosEventComm::PushConsumer Interface........................ 293
CoskEventComm::PushSupplier Interface........................... 295
COSNAMING OVEIVIEW ...t e e aaas 297
CosNaming::Bindinglterator Interface...................ooooilL 301
CosNaming::NamingContext Interface.............cccccooiiiii. 303
CosNaming::NamingContextExt Interface......................... 313
CosNotification Module ... i 317
CosSNOtIfication Data TYPESuiiiiiiiiie et et enes 317
QoS and Administrative Constant Declarationscccccviviiiiiiiiiiinianinnns 318
QO0S and AdMIN Data TYPESeii ettt et erneeaes 319
QO0S and AdMIN EXCEPLIONS ... 321
CosNotification::AdminPropertiesAdmin Interface............ 323
CosNotification::QoSAdmin Interface...............ooeiiiiee.. .. 325
CosNotifyChannelAdmin Module ..., 327
CosNotifyChannelAdmin Data TYPES ...ueiuiiiii i 327
CosNotifyChannelAdmin EXCEPLIONSo 330
CosNotifyChannelAdmin::ConsumerAdmin Interface 333
CosNotifyChannelAdmin::EventChannel Interface............. 339

CosNotifyChannelAdmin::EventChannelFactory Interface. 345
CosNotifyChannelAdmin::ProxyConsumer Interface 347
CosNotifyChannelAdmin::ProxyPullConsumer Interface ... 349

CosNotifyChannelAdmin::ProxyPullSupplier Interface 351

Vi Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin:
CosNotifyChannelAdmin:
CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

363

CosNotifyChannelAdmin:

365

CosNotifyChannelAdmin:
CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

373

CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

377

CosNotifyChannelAdmin:

379

CosNotifyChannelAdmin::

CosNotifyComm Module

CosNotifyComm Exceptions
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:

CosNotifyComm:

:ProxyPushConsumer Interface ..353
:ProxyPushSupplier Interface.....
:ProxySupplier Interface

:SequenceProxyPullConsumer Interface

:SequenceProxyPushConsumer Interface

:SequenceProxyPullSupplier Interface367
:SequenceProxyPushSupplier Interface369

:StructuredProxyPullConsumer Interface

:StructuredProxyPullSupplier Interface375

:StructuredProxyPushConsumer Interface

:StructuredProxyPushSupplier Interface

SupplierAdmin Interface............ 383
... 389
... 389

:NotifyPublish Interface 391
:NotifySubscribe Interface....................... 393
:PullConsumer Interface.......................... 395
:PullSupplier Interface ...t 397
:PushConsumer Interface 399
:PushSupplier Interface.................cooaeee. 401
:SequencePullConsumer Interface........... 403
:SequencePullSupplier Interface 405

Orbix CORBA Programmer’s Reference: C++ Vii

CosNotifyComm::SequencePushConsumer Interface 407

CosNotifyComm::SequencePushSupplier Interface........... 409
CosNotifyComm::StructuredPullConsumer Interface 411
CosNotifyComm::StructuredPullSupplier Interface 413
CosNotifyComm::StructuredPushConsumer Interface....... 415
CosNotifyComm::StructuredPushSupplier Interface 417
CosNotifyFilter Module.......c.coiiiiiiiiiii e 419

COSNOLITYFIEr Data TYPES -ttt et ettt e e eaneaaas 419

CosNOtIfyFilter EXCePtiONS ... e 421
CosNotifyFilter::Filter Interfaceccovviiiiiiiiiiiiiiiian, 423
CosNotifyFilter::FilterAdmin Interfacecoeeee. . 429
CosNotifyFilter::FilterFactory Interface 431
CosNotifyFilter::MappingFilter Interface...................oooo.. 433
CosTrading Module ... s 441

CoSTrading Data TYPESueie ittt r e e eanes 441

CosTrading EXCePUIONS ...t e e enes 445
CosTrading::Admin Interfaceccoooiiiiiiiiiiiiiiii i 449
CosTrading::ImportAttributes Interface 455
CosTrading::Link INterfacecccoiiiiiiiiiiiiiiiiiiiiieaaeaenn 457

CosTrading::Link EXCEPLIONS ... e 458
CosTrading::LinkAttributes Interface..............ooooiiiiiiiii. 463
CosTrading::Lookup Interface...........ccoooiiiiiiiiiiiiiiiiiiiiiiaas 465
CosTrading::Offerldlterator Interfacecoooeeeeena. .. 471
CosTrading::Offerlterator Interface..........ccooviiiiiiiiiiiniian. 473
CosTrading::Proxy INnterface........ccoooiiiiiiiiiiiiiiiiiiiiiiiaans 475
CosTrading::Register Interface.........ccoooiiiiiiiiiiiiiiiiiiinnnnn... 479
CosTrading::SupportAttributes Interface...........cccoooeeaiii. 485

viii Orbix CORBA Programmer’s Reference: C++

CosTrading::TraderComponents Interface......................... 487

CosTrading::Dynamic Module ... 489
CosTradingDynamic::DynamicPropEval Interface.............. 491
CosTradingRepos Module.........ooii e 493
CosTradingRepos::ServiceTypeRepository Interface 495
CoSTransactioNs OVEIVIEW. ..o 503

OVEIVIEW OF ClaSSES ...ttt ettt et ne e 503

General EXCEPTIONS ...ttt et ettt 504

General Data TYPES ..uuieuiii ettt e et e 506
CosTransactions::Control Class........ccooiiiiiiiiiiiiiiiiicie 511
CosTransactions::Coordinator Classcccooiiiieiiiiiieiiinnn.. 513
CosTransactions::Current Class ..o 521
CosTransactions::RecoveryCoordinator Class 527
CosTransactions::Resource Class.......c.ooooiiiiiiiiiiiiiciiieeen 529
CosTransactions::SubtransactionAwareResource Class..... 531
CosTransactions::Synchronization Class...........cccccvcciine.... 533
CosTransactions::Terminator Class.........ccooviiiiiiiiiiiiiiiinnnn. 535
CosTransactions::TransactionalObject Class...................... 537
CosTransactions::TransactionFactory Class....................... 539
CosTypedEventChannelAdmin Module ..., 541

CosTypedEventChannelAdmin EXCEPLIONScviiiiiiiiiiiiiiii i 541

CosTypedEventChannelAdmin Data TYPES ...viiiieiiiiiiieiiii i i eaieeeans 541

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface543

Unsupported Operationst 544

CosTypedEventChannelAdmin::TypedEventChannel Interface545

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface

547
(O] TS18] o] o Yol {=To I @ o 1=T o= o [] o 1N 547

Orbix CORBA Programmer’s Reference: C++

ixX

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface549

UNSUPPOIrted OPEFALIONSvveeiiiiiiieiieeaaeeeaaeaaeaeeaaaaaeneaeeeeeeeeeeeeeeeaeaaans 550
CosTypedEventComm Module ... 551
CosTypedEventComm::TypedPushConsumer Interface 553
CSI OVEIVIBWV ..ttt et 555
CSTIOP OVEIVIEW ..ttt e e aaaas 559
DsEventLogAdmin Module.........ooiiiiiiiiiiiii e 563
DsEventLogAdmin::EventLog Interface............................. 565
DsEventLogAdmin::EventLogFactory Interface 567
DsLogAdmin Module ... 569

DSLOGAAMIN EXCEPTIONS ...vvvvveeeeeeeeitiiieeeeeeeesseeeeeeeeeensseeeeeeeaeensseneeeeeeas 569

DSLOGAAMIN CONSTANTS vvvvviiiiiiieieeeeeeeeeeeeaeaeaeeeseaaaaennnsnssssseeeeeeeeeeeeeeens 571

DSLOGAAMIN DALALYPESvvvvvvviiiiiiireieeeeeaaeaaaaeaeaeseasaaannnsnsssssseneeeeeeeeeeeens 572
DsLogAdmin::BasicLog Interfaceccoiiiiiiiiiiiiiann.... 579
DsLogAdmin::BasicLogFactory Interface 581
DsLogAdmin::lterator Interfaceccciiiiiiiiiiiiiiiiiiinnn.. 583
DsLogAdmin::Log Interfacecccooviiiiiiiiiiiiiiiiiiieen 585
DsLogAdmin::LogMgr Interfaceoooiiiiiiiiiiiiiiiaa... 597
DsLogNotification Module ..., 599
DsNotifyLogAdmin Module........ ..o 603
DsNotifyLogAdmin::NotifyLog Interfaceoo... 605
DsNotifyLogAdmin::NotifyLogFactory Interface................ 607
Dynamic Module ... 609
DYyNamiCANY OVEIVICW ... eaaaaeees 611
DynamicAny::DYNANY Class ... 617
DynamicAny::DynAnyFactory Class.........ccooiiiiiiiiiiiiiinnn... 645

X Orbix CORBA Programmer’s Reference: C++

DynamicAny::DynArray Classcoooiiiiiiiiiiiiiiiiiiiiiiieaas 649

DynamicAny::DYNENUM Classccoiiiiiiiiiiii e 653
DynamicAny::DynFixed Class........ccooiiiiiiiiiiiiiiiiieaa 657
DynamicAny::DynSequence ClassS........c.cooiiiiiiiiiiiiiiiiiiiinnnnns 659
DynamicAny::DynNStruct Class........cooiiiiiiiiiiiiiiiicieeeas 663
DynamicAny::DynUnNIion Classccooiiiiiiiiiii i 667
DynamicAny::DynValue Class ... 671
GSSUP OVEIVIEW ...t 675
The IT_Buffer Module........oo e 677
I T BUTTer i StOrage .. e 678
IT_BUffer:iSegment.. ... e 680
1T _Buffer Buffer. ... e 681
IT_Buffer::BufferManager ... icicceeaeaennn 685
IT_Certificate OVEeIrVIEW........uuiiii ittt ea 687
IT_Certificate::AVA INterface ... 695
IT _Certificate::AVALIst Interface...........coovviiiiiiiiinnnn.... 697
IT_Certificate::Certificate Interfacecciiiiiiiina.... 701
IT_Certificate::Extension Interfacecccooiiiiiiiiina... 703
IT_Certificate::ExtensionList Interface.............................. 705
IT_Certificate::X509Cert Interfacecccceevviiiiiiiiiinnnn.... 709
IT_Certificate::X509CertificateFactory Interface............... 713
I T CoNTIg OVerVIEWW .. e aeeea 715
IT_Config::Configuration Interface...................coiiiiiiea. ... 717
IT_Config::Listener INnterface ... 723

Orbix CORBA Programmer’s Reference: C++ Xi

IT _CORBA OVEINVIEW ...ttt eeeeeeeeenanenaaas 727

IT_CORBA::RefCountedLocalObject Classccceeiineen... 729
IT_CORBA::RefCountedLocalObjectNC Class..................... 731
IT_CORBA::WellKnownAddressingPolicy Class 733
The IT_CORBASECModAUIE ..o 735
IT_CORBASEC::ExtendedReceivedCredentials................... 738
IT_CosTransactions Module ... 741
IT_CosTransactions::Current Classccccoeiviiiiiiiiiiiinnnn.. 743
IT _CSI OVEIVIEW. ..o aaeaeaas 745
IT_CSIl::AttributeServicePolicy Interface.......................... 751
IT_CSIl::AuthenticateGSSUPCredentials Interface 755
IT_CSI::AuthenticationServicePolicy Interface................. 757
IT_CSIl::CSICredentials Interfacecciiiiiiiinnnn 759
IT_CSI::CSICurrent Interfacec.oooiiiiiiiiiiiiiiiiiiiiiaeen. 761
IT_CSI::CSICurrent2 Interface ..., 763
IT_CSI::CSIReceivedCredentials Interface 767
IT_EventChannelAdmin Module ..., 769

IT_EventChannelAdmin DAta TYPEScccuvveereeeeeeeaiieeieeaeeeaassneeeaeeeeaanness 769

IT_EventChannelAdmin EXCEPHIONSccuveveeieeeeiaiiiiieeeeeeeeiineeeeeaeeeanness 769

IT_EventChannelAdmin::EventChannelFactory Interface.. 771

IT_FPS MoOAUIE.. ... e 773
IT_FPS::InterdictionPolicy Interfaceccccovvviiiiiina.... 775
The IT_GIOP Module........cooiiiiiii e Yaas
Interface IT_GIOP::ClientVersionConstraintsPolicy 778
Interface IT_GIOP::ClientCodeSetConstraintsPolicy 779

Xii Orbix CORBA Programmer’s Reference: C++

Interface IT_GIOP: CUIreNnt... ... e eeeee 780

Interface IT_GIOP::CUIreNt2......cooiiiiiiiiiii i eeeeieee e 783
IT_LoadBalancing OVEerVIEWooiiiiiiiiiii i 787
IT _LoadBalancing::ObjectGroup Interface 791
IT_LoadBalancing::ObjectGroupFactory Interface............. 797
IT_LOging OVEINVIEW ... aeaee e 801
IT _Logging::EventLog Interface.............coovvviiiiiiiiiiiiinnnnn... 809
IT_Logging::LogStream Interfacecc.ooiiiiiiiiiiiiiiinnnn, 813
IT_MessagingAdmin Module...... ..., 815
IT _MessagingAdmin::Manager Interface........................... 817
IT_MessagingBridge Module...... ... 819
IT_MessagingBridge::Endpoint Interface 823
IT _MessagingBridge::SinkEndpoint Interface.................... 825
IT_MessagingBridge::SourceEndpoint Interface................ 826
IT_MessagingBridge::EndpointAdmin Interface 827
IT _MessagingBridgeAdmin Module...............ccoooiiiiiiiiiaan.... 831
IT_MessagingBridgeAdmin::Bridge Interface.................... 833
IT_MessagingBridgeAdmin::BridgeAdmin Interface 835
IT_NotifyBridge Module....... ... 837
IT_NotifyBridge::SinkEndpoint Interface........................... 838
The IT_NamedKey Module....... ..o 839
IT_NamedKey::NamedKeyRegistry.........coovvviiiiiiiiiiiinnnnnn... 840
IT_Naming Module ... e 843
IT_Naming::IT_NamingContextExt Interface 845

Orbix CORBA Programmer’s Reference: C++ Xiii

IT_NotifyChannelAdmin Module...............ooooiiiiiiiiiiiiiiinn 847
IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface849

IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier
INEEr acCe ..o e 851

IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier

INEErTaCe ..o 853
IT_NotifyComm Module 855
IT_NotifyComm::GroupNotifyPublish Interface 857
IT_NotifyComm::GroupPushConsumer Interface............... 859

IT_NotifyComm::GroupSequencePushConsumer Interface 861

IT_NotifyComm::GroupStructuredPushConsumer Interface863

IT_NotifyLogAdmin Module ... 865
IT_NotifyLogAdmin::NotifyLog Interface.......................... 867
IT_NotifyLogAdmin::NotifyLogFactory Interface 869
The IT_PlainTextKey Module ... 871

I I = U T IS0 q 1 =Y/ 871

IT_PlainTextKey: :FOrWarderooiii it eaaeeeaas 871
IT _PortableServer OVEervVieW.........oooviiiiiiiiiiiiiiiiiieeeees 873

IT_PortableServer::DispatchWorkQueuePolicy Interface.. 875

IT_PortableServer::ObjectDeactivationPolicy Class.......... 877
IT_PortableServer::PersistenceModePolicy Class 879
IT _TLS OVEIVICW ..ttt aaaees 881
IT_TLS::CertValidator Interface..........cooooviiiiiiiiiiiiiiiaenn. 885
IT_TLS_API OVEIVIEW. ... eeeee e 887
IT_TLS API::CertConstraintsPolicy Interface................... 891
IT_TLS_API::CertValidatorPolicy Interface....................... 893

Xiv Orbix CORBA Programmer’s Reference: C++

IT_TLS API::MaxChainLengthPolicy Interface 895

IT_TLS_API::SessionCachingPolicy Interface.................... 897
IT_TLS _API:TLS INterface... .o 899
IT_TLS API::TLSCredentials Interfacec.ccooee..... 901
IT_TLS_API::TLSReceivedCredentials Interface 903
IT_TLS_API::TLSTargetCredentials Interface.................... 905
IT_TLS API::TrustedCAListPolicy Interface 907
IT_TypedEventChannelAdmin Module ..., 909

IT_TypedEventChannelAdmin Data TYPEScccveeeeeeeeaiiureieeeaeeaainneenss 909

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface
911

IT_WorkQueue Module......... e 913
IT_WorkQueue::AutomaticWorkQueue Interface 915

IT_WorkQueue::AutomaticWorkQueueFactory Interface...917

IT_WorkQueue::ManualWorkQueue Interface................... 919
IT_WorkQueue::ManualWorkQueueFactory Interface 921
IT_WorkQueue::Workltem Interface..........ccccovviiiiiiinnn.... 923
IT_WorkQueue::WorkQueue Interfaceccooiieveea.... 925
IT_WorkQueue::WorkQueuePolicy Interface..................... 927
The IT_ZIOP Module........ e 929
| A 1O] = 0] 0 0] o] /=110 930
IT_ZIOP: :COMPresSSOrFaCIO Y ..ottt eaeeees 931
| VA (@] =354 0701 ¢ o] o] £=115]To] o117/ = Ug F= T =] SR 933
IT_ZIOP::CompressionCOMPONENT ..ottt raaaeeans 935
IT_ZIOP::CompressionComponentFactoryooooiiiiiiiiiiieiiiieiiinaaaenns 935
IT_ZIOP::CompressionENablingPOlIiCyooiiiiii e 935
IT_ZIOP::CompressorIdPOlICY ... e e ee e 936
MeSSagiNg OVEIVIEW ...t aeaeeeeann 937
Messaging::ExceptionHolder Value Type ... 943

Orbix CORBA Programmer’s Reference: C++ XV

Messaging::RebindPolicy Class
Messaging::ReplyHandler Base Classcccccvvvviiiiiiinnnnn...
Messaging::RoutingPolicy ClasSccoovviiiiiiiiiii i
Messaging::SyncScopePolicy Class
OrbixEventsAdmin Moduleo

OrbixEventsAdmin::ChannelManagercooooeeiviiiiiiinn..

Portablelnterceptor

Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:

PortableServer OVEINVIEWooiiiiiiiiie e
PortableServer conversion functions
PortableServer Data Types, Constants, and Exceptions

PortableServer::AdapterActivator Interface
PortableServer::Current Interfaceoovvviiiiiiiiiiiiiinnn..

PortableServer::Dynamiclmplementation Class..............

ModUIeo e

:ClientRequestiInfo Interface............

:ClientRequestinterceptor Interface. 971

Current Interface ..o 975
Interceptor Interface o977
IORINfo Interface...........cc.oooiiiinnet. 979
IORINnterceptor Interface 981
:ORBlInitializer Interface 983
:ORBInitInfo Interface 985
:PolicyFactory Interface 991
:RequestInfo Interface..................... 993
:ServerRequestinfo Interface........... 999

:ServerRequestinterceptor Interfacel003

XVi Orbix CORBA Programmer’s Reference: C++

PortableServer::1dAssignmentPolicy Interface................ 1021
PortableServer::1dUniquenessPolicy Interface................ 1023
PortableServer::ImplicitActivationPolicy Interface.......... 1025
PortableServer::LifespanPolicy Interface 1027
PortableServer::POA INterfaceccoooiiiiiiiiiiiiiiennnn. 1029
PortableServer::POAManager Interface........................... 1047
PortableServer::RequestProcessingPolicy Interface........ 1051
PortableServer::ServantActivator Interface 1053
PortableServer::ServantBase............ccooiiiiiiiiiiiiiiiiiien. 1057
PortableServer::ServantLocator Interface....................... 1059
PortableServer::ServantManager Interface 1063
PortableServer::ServantRetentionPolicy Interface 1065
PortableServer::ThreadPolicy Interface..................cooool. 1067
SECUNITY OVEIVIEW ...ttt ettt eaaaans 1069
SecurityLevell OVervieW 1077
SecurityLevell::Current Interfaceccooiiiiiiiiiiiiiiii... 1079
SecurityLevel2 OVEerVIEWcooiiiiiiii i 1081
SecurityLevel2::Credentials Interface ...t 1083
SecurityLevel2::Current Interfaceccooiiiiiiiiiiiiiiii... 1087
SecurityLevel2::EstablishTrustPolicy Interface................ 1089
SecurityLevel2::InvocationCredentialsPolicy Interface ...1091
SecurityLevel2::MechanismPolicy Interface 1093
SecurityLevel2::PrincipalAuthenticator Interface............ 1095
SecurityLevel2::QOPPolicy Interfacecooviiiieninn. 1099

Orbix CORBA Programmer’s Reference: C++ Xvii

SecurityLevel2::SecurityManager Interface 1103
SecurityLevel2::TargetCredentials Interface................... 1107
0 [1113

Xviii Orbix CORBA Programmer’s Reference: C++

Audience

Preface

Orbix is a software environment for building and integrating
distributed object-oriented applications. Orbix is a full
implementation of the Common Object Request Broker
Architecture (CORBA) from the Object Management Group (OMG).
Orbix fully supports CORBA version 2.3.

This document is based on the CORBA 2.3 standard with some
additional features and Orbix-specific enhancements.

The reader is expected to understand the fundamentals of writing
a distributed application with Orbix. Familiarity with C++ is
required.

Organization of this Reference

This reference presents core-product modules in alphabetical
order, disregarding IT_ prefixes in order to keep together related
OMG-compliant and Orbix-proprietary modules. For example,
modules corBa and IT CORBA are listed in sequence.

Modules that are specific to a service are also grouped together
under the service’s name—for example, modules
CosPersistentState, IT PSS, and IT PSS DB are listed under
Persistent State Service.

Related Documentation

This document is part of a set that comes with the Orbix product.
Other books in this set include:

* Application Server Platform Administrator’'s Guide
* CORBA Programmer’s Guide
* CORBA Code Generation Toolkit Guide

Document Conventions

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, methods, variables, and
data structures. For example, text might refer to
the CORBA: :Object class.

Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Orbix CORBA Programmer’s Reference: C++ Xxix

Italic

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

This guide may use the following keying conventions:

No prompt

%

[]

{}

xx Orbix CORBA Programmer’s Reference: C++

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root
privileges.

The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and
syntax descriptions.

Braces enclose a list from which you must choose
an item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

* Your computer make and model.

®* Your operating system version number and details of any
networking software you are using.

* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

®* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Orbix CORBA Programmer’s Reference: C++ xXi

http://www.microfocus.com
http://www.microfocus.com

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

* https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsl etters/infocus/newsl etter-subscriptio
n.asp

xxii Orbix CORBA Programmer’s Reference: C++

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Introduction

This describes all of the standard programmer’s APl for CORBA
and Orbix. This introduction contains the following topics:

* “Interface Repository Quick Reference”
e “DIl and DSI Quick Reference”
* “Value Type Quick Reference”

. “About Standard Functions for all Interfaces”

* “About Reference Types _ptr, _var, and _out”

e “About Sequences”
* “About Value Boxes”

The rest of the CORBA Programmer’s Reference contains the fol-
lowing modules and appendix:

COREA
CosNaming

CosPersistentState

CosTransactions

DynamicAny
IT Config
IT CORBA

IT Logging

IT PolicyBase
IT PortableServer

IT PSS

IT PSS DB
Messaging
PortablelInterceptor
PortableServer

“Threading and Synchronization
Toolkit Overview”

“System Exceptions”

Interface Repository Quick Reference

The interface repository (IFR) is the component of Orbix that pro-
vides persistent storage of IDL definitions. Programs use the fol-
lowing API to query the IFR at runtime to obtain information about

IDL definitions:

Table 1: Interface Repository API

CORBA Types

CORBA Sequences

ContextIdentifier
Identifier
RepositoryId
ScopedName
VersionSpec
ValueModifier
Vigibility
ValueModifier
Visibility

AttrDescriptionSeq
ContainedSeq
ContextIdSeq
ExceptionDefSeq
ExcDescriptionSeq
EnumMemberSeq
InitializerSeq
InterfaceDefSeq
OpDescriptionSeq
ParDescriptionSeq
RepositoryIldSeq
StructMemberSeq
UnionMemberSeq
ValueDefSeq
ValueMemberSeq

Orbix CORBA Programmer’s Reference: C++ 1

Table 1 Interface Repository API

CORBA Structures CORBA Enumerated Types
AttributeDescription AttributeMode
ConstantDescription DefinitionKind
ExceptionDescription OperationMode
Initializer ParameterMode
InterfaceDescription PrimitiveKind
ModuleDescription TCKind
OperationDescription
ParameterDescription
StructMember
TypeDescription
UnionMember
ValueDescription
ValueMember

CORBA Classes and Interfaces Typecode Methods in CORBA::ORB
AliasDef create abstract interface tc()
ArrayDef create alias tc()
AttributeDef create array tc()
ConstantDef create enum tc ()
Contained create exception tc()
Container create fixed tc()
EnumDef create interface tc()
ExceptionDef create native tc()
Environment create recursive tc()
FixedDef create sequence tc()
IDLType create string tc()
InterfaceDef create struct tc()
IRObject create union tc()
ModuleDef create value box tc()
NativeDef create value tc()
OperationDef create wstring tc()
PrimitiveDef
Repository
SequenceDef
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueMemberDef
WstringDef

D11 and DSI Quick Reference

The client-side dynamic invocation interface (DII) provides for the
dynamic creation and invocation of requests for objects. The
server-side counterpart to the DIl is the dynamic Skeleton inter-

2 Orbix CORBA Programmer’s Reference: C++

face (DSI) which dynamically handles object invocations. This
dynamic system uses the following data structures, interfaces,

and classes:

Table 2: DIl and DS API

DI11 Classes

DSI Classes

CORBA: : Context
CORBA: :ContextList
CORBA: :ExceptionList
CORBA: :Request
CORBA: : TypeCode

CORBA: : ServerRequest
PortableServer: :DynamicImplementation

Key Data Types

DIl1-Related Methods

CORBA: :Any

CORBA: :Flags
CORBA: :NamedValue
CORBA: :NVList

CORBA: :Object:: create request ()
CORBA: :ORB: :create list ()

CORBA: :ORB: :create operation list ()
CORBA: :ORB: :get default context ()

Value Type Quick Reference

A value type is the mechanism by which objects can be passed by
value in CORBA operations. Value types use the following data
structures, methods, and value types from the CORBA module:

Types

StringValue

ValueFactory
WStringvValue

Value Types and Classes

CustomMarshal
DatalInputStream
DataOutputStream
ValueBase
ValueFactory
ValueFactoryBase
ValueDef

Global Functions

add ref ()
remove ref ()

Sequences
AnySeq
BooleanSeg
CharSeq

DoubleSeq

FloatSeg
OctetSeq

ShortSeqg
UShortSeq
ULongLongSeq
ULongSeq
WCharSeg

Orbix CORBA Programmer’s Reference: C++ 3

About Standard Functions for all Interfaces

Parameters

Note:

Parameters

Note:

Every IDL interface also has generated helper functions:

_duplicate()

inline static crLAss ptr duplicate(
CLASS ptr p

)i
This function returns a duplicate object reference and increments

the reference count of the object. Use this function to create a copy
of an object reference.

p The current object reference to duplicate.

This is a standard function generated for all interfaces.

_narrow()

static CLASS ptr _narrow (
CORBA: :Object ptr obj

)i

This function returns a new object reference given an existing
reference. Use this function to narrow an object reference.

obj A reference to an object. The function returns a nil
object reference if this parameter is a nil object refer-
ence.

This is a standard function generated for all interfaces.

When you have IDL interfaces that inherit from each other, you
often need to convert a ref nerence of one type to a related type.
This is analogous to casting between pointers to classes which
inherit from each other classes in C++. For example suppose you
have the following interfaces:

// IDL
interface Base { ... };
interface Derived : Base { ... };

Now suppose you have a reference of type Base but it refers to an
object which is actually of type Derived. Converting the Base refer-
ence to a berived reference is called narrowing because you are con-
verting from a more general type to a more specific, or narrow,
type. Conversely converting a Derived reference to a Base refer-
ence is called widening. Note that narrowed or widened references
still refer to the same object, they are simply different views of that
object.

Always check the results of narrow() with CORBA: :is nil(). The
_narrow() function checks whether the reference actually refers to
an object of the type you are narrowing to. If not, narrow()
returns a nil reference. The _narrow() function does an implicit

4 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Note:

Parameters

Note:

See Also

duplicate, so you are responsible for releasing both the original
reference and the new reference returned. The easiest way to do
this is by assigning both to _var variables.

The narrow() function can actually both narrow and widen refer-

ences. It takes a CORBA: :Object ptr parameter and tests whether

the requested interface is compatible with the actual most-derived
interface implemented by the object, regardless of the inheritance
relationships involved.

A standard system exception can be raised in some unusual cases
where a remote call occurs to the object being narrowed. However,
normally narrow() is a local function call and it can figure out the
conversion based on information in the IDL compiler generated stub
code.

unchecked narrow ()

_nil()
inline static crass ptr nil();

Returns a nil object reference to the object.

This is a standard function generated for all interfaces.

_unchecked_narrow()
static CLASS ptr _unchecked narrow (

CORBA: :Object ptr obj
)
Returns a new object reference to the object given an existing ref-
erence. However, unlike narrow(), this function does not verify
that the actual type of the parameter at runtime can be widened
to the requested interface’s type.

obj A reference to an object.

This is a standard function generated for all interfaces.

narrow ()

About Reference Types ptr, var, and out

InterfaceName ptr

InterfaceName Var

InterfaceName out

Every IDL interface has generated helper pointer types that you
use as object references. The object reference pointer type names
generated are based on the interface name and include:

Use the Interfacename ptr type to reference interfacename objects in
a manner similar to a C++ pointer.

Use the 1nterfacename var type to reference objects so that the
object’s memory management is automatic.

The 1nterfacename out type is used only in method signatures
when referring to InterfaceName Objects as out parameters. This
type gives Orbix the ability to implicitly release a previous value
of an 1nterfacename var when it is passed as an out parameter.

Orbix CORBA Programmer’s Reference: C++ 5

Reference Example
Assume the following interface for this discussion:

// IDL
interface InterfaceName {
InterfaceName Op (
in InterfaceName argl,
out InterfaceName arg2
)i
}i
The following example shows the C++ pointer helper classes that
the IDL compiler generates for the object reference pointer types.
(No inline implementation details are shown):

class InterfaceName; // forward reference

typedef InterfaceName *InterfaceName ptr;

class InterfaceName var : public var {

public:
InterfaceName var () : ptr (InterfaceName:: nil()) { }
InterfaceName var (InterfaceName ptr p) : ptr (p) { }

InterfaceName var (const InterfaceName var &a)
ptr (InterfaceName:: duplicate (InterfaceName ptr (a) { }
~InterfaceName var () { }
InterfaceName var &operators= (InterfaceName ptr p) { }
InterfaceName var &operator=(const InterfaceName var& a) { }
InterfaceName ptr in() const { }
InterfaceName ptré& inout () { }
InterfaceName ptré& out () { }
InterfaceName ptr retn() { }
operator const InterfaceName ptr&() const { }
operator InterfaceName ptr&() { }
InterfaceName ptr operator->() const { }
protected:
InterfaceName ptr ptr ;
void free() { }
void reset (InterfaceName ptr p) { }
private:

}i

class InterfaceName out ({

public:
InterfaceName out (InterfaceName ptr& p) : ptr (p) { }
InterfaceName out (InterfaceName var& p) : ptr (p.ptr) { }
InterfaceName out (InterfaceName out& a) : ptr (a.ptr) { }

InterfaceName out& operators= (InterfaceName outé& a) { }
InterfaceName out& operators=(const InterfaceName var& a) { }
InterfaceName out& operators= (InterfaceName ptr p) { }
operator InterfaceName ptr&() { }
InterfaceName ptré& ptr() { }
InterfaceName ptr operator->() {

private:

}i

6 Orbix CORBA Programmer’s Reference: C++

Widening and Narrowing References

As with C++ class pointers you can widen ptr references by
assignment. For example:

// C++
// This is legal, but be careful of memory management with ptr!
Derived ptr derived ref = ...; // Get a Derived reference.

Base ptr base ref = derived ref; // Widening assignment.

In general you should use var references to avoid memory leaks.
You cannot widen by direct assignment of var types, instead you
must use duplicate () explicitly. This is because of C++ problems
in implementing all the necessary conversion operators.

Derived var derived ref = ...;

Base var base ref = Base:: duplicate(derived ref);

As in C++ you cannot narrow references by simple assignment or
duplication. Note that it is not legal to use C++ casting to narrow
CORBA object references (even if your compiler supports dynamic
casts.) Instead you use the static narrow() function on a class
corresponding to the interface you want to narrow to. For exam-
ple:

// C++

Base var base ref = ...; // Get a Base reference somehow.
Derived var derived ref = Derived:: narrow(base ref) ;

if (CORBA::is nil (derived ref))

{

}

else

{
}

// base ref does not refer to an object of type Derived.

// We can use derived ref to call Derived operations.

About Sequences

An IDL sequence maps to a class of the same name. For example,
an IDL sequence named TypeSeqg Which is made up of a sequence of
Type IDL data types, has the class Typeseq implemented.

// IDL
typedef sequence<Type> TypeSedq;

The implemented mypeSeq class contains the following functions:

// C++
class TypeSeqg {
public:
// default constructor
TypeSeq () ;
// initial maximum length constructor
TypeSeq (ULong max) ;
// data constructor
TypeSeq (
ULong max,
ULong length,
Type *data,
Boolean release = FALSE
)i
// copy constructor
TypeSeq (const TypeSeq&) ;

Orbix CORBA Programmer’s Reference: C++ 7

// destructor
~TypeSeq () ;

// assignment operator
TypeSeq &operator=(const TypeSeq&) ;

ULong maximum() const;
void length (ULong) ;
ULong length() const;

// subscript operators
Type &operator [] (ULong index) ;
const Type &operator[] (ULong index) const;

Boolean release() const;
void replace (

ULong max,

ULong length,

Type *data,

Boolean release = FALSE

);

// buffer reference
Type* get buffer (Boolean orphan = FALSE) ;
// buffer access
const Type* get buffer() const;
}i

Each function is described as follows.

TypeSeq () A sequence has four possible constructors:
* The default constructor sets the sequence length equal to O.

* The constructor with the single max parameter allows you to
set the initial value for the maximum length of the sequence.
This allows you to control how much buffer space is initially
allocated by the sequence. This constructor also sets the
length to O and the sequence release flag to TRUE.

* The data constructor (the one with the *data parameter) lets
you set the length and contents of the sequence. It also
allows you to set the initial value for the maximum length.
For this constructor, ownership of the buffer is determined
by the release parameter.

* The copy constructor creates a new sequence with the same
maximum and length as the given sequence parameter, cop-
ies each of its current elements (items zero through
length-1), and sets the sequence release flag to TRUE.

~TypeSeq () For the destructor, if the sequence release flag equals TRUE the
destructor destroys each of the current elements (items zero
through length-1), and destroys the underlying sequence buffer.
If the sequence release flag equals FALSE, the calling code is
responsible for managing the buffer’s storage.

&operator=() The assignment operator (=) deep-copies the sequence, releasing
old storage if necessary.

maximum () The maximum() function returns the total number of sequence ele-
ments that can be stored in the current sequence buffer. This
allows you to know how many items you can insert into an
unbounded sequence without causing a reallocation.

8 Orbix CORBA Programmer’s Reference: C++

length() Use the length () functions to access and modify the length of the
sequence. Increasing the length of a sequence adds new ele-
ments at the end. The newly-added elements behave as if they
are default-constructed when the sequence length is increased.

soperator[] () The overloaded subscript operators ([1) return the item at the
given index.

release() The release () function returns the state of the sequence release
flag. FALSE means the caller owns the storage for the buffer and
its elements, while TRUE means that the sequence manages its
own storage for the buffer and its elements.

replace () The replace () function lets you replace the buffer underlying a
sequence. The parameters to replace () are identical in type,
order, and purpose to those for the data constructor for the
sequence.

get_buffer() The overloaded get buffer() functions allow direct access to the
buffer underlying a sequence. These can be very useful when
sending large blocks of data as sequences and the per-element
access provided by the overloaded subscript operators is not suf-
ficient.

®* The non-constant get buffer() reference function allows
read-write access to the underlying buffer. If its orphan
argument is FALSE (the default), the sequence returns a
pointer to its buffer, allocating one if it has not yet done so.
The size of the buffer can be determined using the
sequence’s maximum() function. The number of elements in
the buffer can be determined from the sequence’s length()
function. The sequence maintains ownership of the underly-
ing buffer. Elements in the returned buffer may be directly
replaced by your code. However, because the sequence
maintains the length and size of the buffer, code that calls
get buffer () cannot lengthen or shorten the sequence by
directly adding elements to or removing elements from the
buffer.

® The const get buffer() access function allows read-only
access to the sequence buffer. The sequence returns its buf-
fer, allocating one if one has not yet been allocated. No
direct modification of the returned buffer is allowed by the
calling code.

About Value Boxes

A value box is a value type that is a form of simple containment. It
is like an additional namespace that contains only one name. A
value box has no inheritance or operations and it contains a single
state member. This allows it to be a concrete rather than abstract
class.

The C++ mapping for a value box depends on the underlying
type. CORBA contains the two string value boxes stringvalue and
WStringValue. The mapping as follows:

// IDL

valuetype StringTypeValue stringtype;

The implemented stringTypevalue class contains the following func-
tions:

Orbix CORBA Programmer’s Reference: C++ 9

class StringTypeValue : public DefaultValueRefCountBase {
public:

// constructors

StringTypeValue() ;

StringTypeValue (const StringTypeValue& val) ;

StringTypeValue (char* str);

StringTypeValue (const char* str);

StringTypeValue (const String var& var) ;

// assignment operators

StringTypeValue& operator=(char* str);
StringTypeValue& operator=(const char* str);
StringTypeValue& operator=(const String var& var) ;

// accessor
const char* value() const;

// modifiers

void value(char* str);

void value(const char* str);

void value(const String var& var) ;

// explicit argument passing conversions for underlying
string

const char* boxed in() const;

char*& boxed inout () ;

char*& boxed out () ;

// ...other String var functions such as overloaded

// subscript operators, etc....

static StringTypeValue* _downcast (ValueBase* base) ;
protected:

~StringTypeValue () ;

}i

In order to allow boxed strings to be treated as normal strings
where appropriate, a boxed string provides most of the same
interface as the string var class.

The function of the value box class for strings are described as fol-
lows:
StringTypeValue () Public constructors include:

* The default constructor initializes the underlying string to an
empty string.

®* One constructor takes a char* argument which is adopted.
* One constructor takes a const char* which is copied.

* One constructor takes a const String var& from which the
underlying string value is copied. If the string var holds no
string, the boxed string value is initialized to the empty
string.

10 Orbix CORBA Programmer’s Reference: C++

operator= ()

_value()

_boxed in()

_boxed inout ()

_boxed out ()

operator (] ()

_downcast ()

~StringValue ()

There are three public assignment operators. Each returns a ref-
erence to the object being assigned to:

* one that takes a parameter of type char* which is adopted.

* One that takes a parameter of type const char* which is cop-
ied.

* One that takes a parameter of type const String vars from
which the underlying string value is copied. If the String var
holds no string, the boxed string value is set equal to the
empty string.

Public accessor and modifier functions for the Stringvalue.

* The single accessor function takes no arguments and returns
a const char*.

There are three modifier functions, each taking a single argu-
ment.

* One takes a char* argument which is adopted by the value
box class.

* One modifier function takes a const char* argument which is
copied.

® One takes a const String vars from which the underlying
string value is copied.

Allows the boxed value to be passed as an in parameter. This is
the boxed string counterpart to the String var::in() function.

Allows the boxed value to be passed as an inout parameter. This
is the boxed string counterpart to the String var::inout () func-
tion.

Allows the boxed value to be passed as an out parameter. This is
the boxed string counterpart to the String var::out () function.

Note that even though the boxed string provides overloaded sub-
script operators, the fact that values are normally handled by
pointer means that they must be dereferenced before the sub-
script operators can be used.

A downcast function.
The destructor is not generally used.

Orbix CORBA Programmer’s Reference: C++ 11

12 Orbix CORBA Programmer’s Reference: C++

CORBA Overview

The CORBA namespace implements the IDL CORBA module. Addi-
tional introductory chapters describe the common methods and
definitions found in the scope of the CORBA namespace.

* “Common CORBA Methods”
e “Common CORBA Data Types”

All classes or interfaces defined in the CORBA namespace are
described in the following alphabetically ordered chapters:

AliasDef ExceptionDef Repository
Any ExceptionList Request
ArrayDef FixedDef SequenceDef
AttributeDef IDLType ServerRequest
ConstantDef InterfaceDef StringDef
ConstructionPolicy IRObject String var
Contained ModuleDef StructDef
Container NamedValue TypeCode
Context NativeDef TypedefDef
ContextList NVList UnionDef
Current Object ValueBase
CustomMarshal OperationDef ValueBoxDef
DataInputStream ORB ValueDef
DataOutputStream Policy ValueFactory
DomainManager PolicyCurrent ValueMemberDef
EnumDef PolicyManager WstringDef
Environment PrimitiveDef WString var

Some standard system exceptions are also defined in the CORBA
module. However, these exceptions are described in “System

Exceptions”.

Common CORBA Methods

This section contains details of all common CORBA methods. The
following alphabetically ordered list contains a link to the details of

each method:

4 add ref ()

o duplicate ()
. is nil()

© nilQ

° ORB init ()

4 release ()

® remove ref ()

M string alloc()
o string dup ()

o string free()

Orbix CORBA Programmer’s Reference: C++ 13

Parameters

See Also

Parameters

See Also

Parameters

CORBA::add_ref()

void add ref (ValueBase* vb) ;

Increments the reference count of the valuetype instance pointed
to by the method’s argument. This method does nothing if the
argument is null.

vb Pointer to the object reference for the valuetype
instance.

This method is provided for consistency with the reference count-
ing method for object references. Unlike the valueBase:: add ref ()
member method, add_ref () can be called with null valuetype
pointers.

CORBA:.:remove ref ()
CORBA: :ValueBase: : remove ref ()
CORBA: :ValueBase:: add ref ()

CORBA::_duplicate()

static Type ptr duplicate(Type ptr p);

Increments the reference count of the object reference, p and
returns a copy of the object reference. Ifpis nil, duplicate() returns
a nil object reference.

o) Pointer to the object reference.

CORBA::Object:: duplicate()

CORBA::is_nil(Q)

Boolean is nil (Type ptr p);

Returns a true value if the object reference contains the special
value for a nil object reference as defined by the ORB. Otherwise
the method returns a false value.

p Pointer to the object reference.

Object references cannot be compared using operator==; there-
fore, is nil() is the only compliant way an object reference can
be checked to see if it is nil. A compliant program cannot attempt
to invoke a method through a nil object reference, since a valid
C++ implementation of a nil object reference is a null pointer.

Overloaded versions of this method are generated for each IDL
interface, and for each pseudo object type. Object reference types
include:

Context ptr
Environment ptr
NamedValue ptr
NVList ptr
Object ptr

14 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

Parameters

ORB ptr

POA ptr

Request ptr

TypeCode ptr

CORBA::Object

CORBA: :release ()

CORBA:: nil()

“About Reference Types _ptr, _var, and _out”

CORBA::_nil()
static Type ptr nil();
Returns a nil object reference for the mype interface.

CORBA::Object
CORBA: :is nil ()

CORBA::ORB_init()

static ORB ptr ORB init(
int& argc,
char** argv,
const char* orb identifier = ""

)i
Initializes a client or server connection to an ORB.

argc Number of arguments in the argument list, argv.

argv Pointer to an argument list of environment-specific
data for the call. Valid ORB arguments include:

b -ORBdomain value

Where to get the ORB actual configuration

information.
b -ORBid value

The ORB identifier.
d -ORBname value

The ORB name.

Each ORB argument is a sequence of configuration
strings or options in either of the following forms:

-ORBsuffix value

-ORBsuffixvalue

The suffix is the name of the ORB option being set,
and value is the value to which the option is set.
Spaces between the suffix and value are optional.
Any string in the argument list that is not in one of
these formats is ignored by the OrRB init () method.

orb_identifier The string identifier for the ORB initialized. For
example, the string "Orbix" identifies the Orbix ORB
from Micro Focus.

Orbix CORBA Programmer’s Reference: C++ 15

Exceptions

See Also

Parameters

When an application requires a CORBA environment, it uses
ORB_init () to get the ORB pseudo-object reference. This method
first initializes an application in the ORB environment and then it
returns the ORB pseudo-object reference to the application for use
in future ORB calls. Because applications do not initially have an
object on which to invoke ORB calls, 0rRB init () is a bootstrap call
into the CORBA environment. Thus, the orB init () call is part of
the CORBA module but not part of the CORBA: :ORB class.

Applications can be initialized in one or more ORBs. Special ORB
identifiers (indicated by either the orb_identifier parameter or the
-ORBid argument) are intended to uniquely identify each ORB used
within the same address space in a multi-ORB application. The
ORB identifiers are allocated by the ORB administrator who is
responsible for ensuring that the names are unambiguous. Note
the following when assigning ORB identifiers in an orRB init () call:

* If the orb _identifier parameter has a value, any -ORBid argu-
ments in the argv are ignored. However, all other ORB argu-
ments in argv might be significant during the ORB initialization
process.

* Ifthe orb identifier parameter is null, then the ORB identifier
is obtained from the -0OrRBid argument of argv.

* If the orb identifier is null and there is no -ORBid argument in
argv, the default ORB is returned in the call.

The argv arguments are also examined to determine if there are
any other ORB arguments (arguments of the form -ORBsuffix).
These ORB arguments are processed only by the ORB init ()
method. In fact, before OrRB init () returns, it removes from argv
all ORB arguments. This unique format for start-up arguments
means that your servers do not have to be written to handle ORB
arguments.

ORSB initialization must occur before POA initialization.

BAD PARAM A string in argv that matches the ORB argument pat-
tern -ORBsuffix iS not recognized by the ORB.

CORBA:IORB

CORBA::release()

void release (Type ptr) ;

Indicates that the caller will no longer access the object reference
so that associated resources can be deallocated.

Type ptr Pointer to the object reference to be released.

If the given object reference is nil, release () does nothing.

Overloaded versions of this method are generated for each IDL
interface, and for each pseudo object type. Object reference types
include:

Context ptr
Environment ptr
NamedValue ptr

16 Orbix CORBA Programmer’s Reference: C++

See Also

Parameters

See Also

Parameters

See Also

Parameters

NVList ptr

Object ptr

ORB_ptr

POA ptr

Request ptr

TypeCode ptr

CORBA::Object

CORBA: :is nil ()

“About Reference Types _ptr, _var, and _out”

CORBA::remove_ref()

void remove ref (ValueBase* vb) ;

Decrements the reference count of the valuetype instance pointed
to by the parameter vb. If the parameter value is a null pointer, this
method does nothing.

vb Pointer to the object reference for the valuetype
instance.

Unlike the remove ref () method, remove ref () can be called with
null valuetype pointers.

CORBA::add ref ()
CORBA: :ValueBase: : remove ref ()
CORBA: :ValueBase: : add ref ()

CORBA::string_alloc()

char *string alloc(ULong len) ;

Dynamically allocates a string. The method returns a pointer to the
start of the character array. It returns a zero pointer if it cannot
perform the allocation. A conforming program should use this
method to dynamically allocate a string that is passed between a
client and a server.

len A string of length len + 1 is allocated.

CORBA::string free ()
CORBA: :string dup ()

CORBA::string_dup()

char* string dup(const char* str);

Duplicates a string. The method returns a duplicate of the input
string or it returns a zero pointer if it is unable to perform the
duplication. CORBA: :string alloc () can be used to allocate space for
the string.

str The string to be duplicated.

Orbix CORBA Programmer’s Reference: C++ 17

See Also

Parameters

See Also

CORBA::string alloc ()
CORBA: :string free()

CORBA::string_free()

void string free(char* str);

Deallocates a string that was previously allocated using
CORBA: :string alloc().

str The string to be freed.

CORBA::string alloc ()
CORBA: :string dup ()

Common CORBA Data Types

This chapter contains details of all common CORBA data types.
Table 3 consists of descriptions of the primitive C++ data types

such as short, Long, and so on. The following alphabetically
ordered list contains a link to the details of each data type:

AnySeq InvalidPolicies ServiceOption
AttrDescriptionSeq ModuleDescription ServiceType
AttributeDescription OctetSeq SetOverrideType
AttributeMode OpDescriptionSeq ShortSeq
BooleanSeq OperationDescription StringValue
CharSeq OperationMode StructMember
ConstantDescription ORBid StructMemberSeq
ContainedSeq ParameterDescription TCKind
ContextIdentifier ParameterMode TypeDescription
ContextIdSeq ParDescriptionSeq ULongLongSeq
DefinitionKind PolicyError ULongSeq
DomainManagersList PolicyErrorCode UnionMember
DoubleSeq PolicyList UnionMemberSeqg
EnumMemberSeq PolicyType UShortSeq
ExcDescriptionSeq PolicyTypeSeq ValueDefSeq
ExceptionDefSeq PrimitiveKind ValueDescription
ExceptionDescription RepositoryId ValueMember
Flags RepositoryIdSeg ValueMemberSeq
FloatSeq ScopedName ValueModifier
Identifier ServiceDetail VersionSpec
Initializer ServiceDetailType Visibility
InitializerSeq ServiceInformation WCharSeq
InterfaceDefSeq WStringValue

InterfaceDescription

Primitive C++ types are defined as shown in Table 3:

Table 3: Primitive C++ Data Types

Primitive C++ Type

C++ Definition

Boolean

typedef unsigned char Boolean;
(Valid values are 1 for true or O for

false.)

18 Orbix CORBA Programmer’s Reference: C++

Table 3: Primitive C++ Data Types

Primitive C++ Type C++ Definition
Boolean out typedef Boolean& Boolean out;
Char typedef unsigned char Char;
Char out typedef Char& Char out;

Double typedef double Double;

Double out typedef Double& Double out;
Float typedef float Float;

Float out typedef Floaté& Float out;

Long typedef long Long;

Long out typedef Longé& Long out;
LongDouble typedef long double LongDouble;
LongDouble out typedef LongDouble& LongDouble out;
LongLong typedef ... LongLong;

LongLong out typedef LongLong& Longlong out;
Octet typedef unsigned char Octet;
Octet_out typedef Octeté& Octet out;

Short typedef short Short;

Short out typedef Shorté& Short out;

ULong typedef unsigned long ULong;
ULong out typedef ULongé& ULong out;
ULongLong typedef ... ULongLong;
ULongLong out typedef ULongLong& ULongLong out;
UShort typedef unsigned short UShort;
UShort out typedef UShorté& UShort out;
WChar typedef wchar t WChar;

WChar out typedef WChar& WChar out;

CORBA::AnySeq Sequence

//IDL
typedef sequence<any> AnySedq;

//C++
class AnySeqg {

i
A sequence of any data values used for marshalling custom value
types.

Orbix CORBA Programmer’s Reference: C++ 19

See Also CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::AttrDescriptionSeq Sequence

//IDL
typedef sequence <AttributeDescription> AttrDescriptionSeq;

// C++
class AttrDescriptionSeqg {
}i

A sequence of AttributeDescription Structures in the interface
repository.

See Also CORBA: :AttributeDescription
“About Sequences”

CORBA::AttributeDescription Structure

// IDL

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

}i

struct AttributeDescription {
Identifier name;

RepositoryId id;
RepositoryIld defined in;
VersionSpec version;

TypeCode type;
AttributeMode mode;

}i
The description of an interface attribute in the interface repository.
name The name of the attribute.
id The identifier of the attribute.
defined in The identifier of the interface in which the attribute is
defined.
version The version of the attribute.
type The data type of the attribute.
mode The mode of the attribute.
See Also CORBA::AttributeDef

20 Orbix CORBA Programmer’s Reference: C++

CORBA::AttributeMode Enumeration

// IDL
enum AttributeMode {ATTR NORMAL, ATTR READONLY};

// C++
enum AttributeMode {ATTR NORMAL, ATTR READONLY};

typedef AttributeMode& AttributeMode out;

The mode of an attribute in the interface repository.

ATTR NORMAL Mode is read and write.
ATTR_READONLY Mode is read-only.

See Also CORBA::AttributeDef

CORBA::BooleanSeq Sequence

// IDL
typedef sequence<boolean> BooleanSeq;

// C++

class BooleanSeqg {

}i
A sequence of Boolean values used in marshalling custom value
types.

See Also CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::CharSeq Sequence

// IDL
typedef sequence<char> CharSeq;

// C++
class CharSeq {

i
A sequence of character (char) values used in marshalling custom
value types.

See Also CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::CompletionStatus Enumeration
// C++

enum CompletionStatus {
COMPLETED_ YES,
COMPLETED_ NO,

COMPLETED MAYBE

}i

Orbix CORBA Programmer’s Reference: C++ 21

CORBA::ConstantDescription Structure

// IDL

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;
any value;

}i
// C++

struct ConstantDescription {
Identifier name;
RepositoryId id;
Repositoryld defined in;
VersionSpec version;
TypeCode type;
any value;

i
The description of a constant in the interface repository.
name The name of the constant.
id The identifier of the constant.
defined in The identifier of the interface in which the constant
is defined.
version The version of the constant.
type The data type of the constant.
value The value of the constant.
See Also CORBA: : ConstantDef

CORBA::ContainedSeq Sequence

// IDL
typedef sequence <Contained> ContainedSeq;

// C++

class ContainedSeq {

}i
A sequence of Contained objects in the interface repository.

See Also CORBA: : Contained
“About Sequences”

CORBA::Contextldentifier Type

// IDL
typedef Identifier ContextIdentifier;

// C++
typedef Identifer ContextIdentifier;

22 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

A context identifier used in an IDL operation in the interface
repository.

An IDL operation’s context expression specifies which elements of
the client’s context might affect the performance of a request by
the object. The runtime system makes the context values in the
client’s context available to the object implementation when the
request is delivered.

CORBA::OperationDef
CORBA: : ContextIdSeq

CORBA::ContextldSeq Sequence

// IDL
typedef sequence <ContextIdentifier> ContextIdSeq;

// C++
class ContextIdSeq {

}i

A sequence of ContextIdentifier values in the interface repository.

CORBA: :ContextIdentifier
“About Sequences”

CORBA::DefinitionKind Enumeration

// IDL
enum DefinitionKind {

dk none, dk all,

dk_Attribute, dk Constant, dk Exception, dk Interface,
dk Module, dk Operation, dk Typedef,

dk Alias, dk Struct, dk Union, dk Enum,

dk Primitive, dk String, dk Sequence, dk Array,

dk Repository,

dk Wstring, dk Fixed,

dk Value, dk ValueBox, dk ValueMember,

dk Native

}i
// C++

enum DefinitionKind {
dk none, dk all,
dk_Attribute, dk Constant, dk Exception, dk Interface,
dk Module, dk Operation, dk Typedef,
dk Alias, dk Struct, dk Union, dk Enum,
dk Primitive, dk String, dk Sequence, dk Array,
dk_Repository,
dk Wstring, dk Fixed,
dk Value, dk ValueBox, dk ValueMember,
dk Native
}i

typedef DefinitionKind& DefinitionKind out;

Identifies the type of an interface repository object.

Orbix CORBA Programmer’s Reference: C++ 23

See Also

See Also

See Also

See Also

Each interface repository object has an attribute

(CORBA: : IRObject: :def kind) of the type DefinitionKind that
records the kind of the IFR object. For example, the def kind attri-
bute of an InterfaceDef object is dk_interface. The enumeration
constants dk_none and dk_all have special meanings when search-
ing for an object in a repository.

CORBA::IIRObject:idef kind
CORBA: : Contained
CORBA: :Container

CORBA::DomainManagersList Sequence

// IDL
typedef sequence <DomainManager> DomainManagersList;

// C++

class DomainManagersList {

}i

A sequence of DomainManager objects.

CORBA::DomainManager
“About Sequences”

CORBA::DoubleSeq Sequence

// IDL
typedef sequence<double> DoubleSeq;

// C++
class DoubleSeq {

A sequence of Double values used in marshalling custom value types.

CORBA:DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::EnumMemberSeq Sequence

// IDL
typedef sequence <Identifier> EnumMemberSeq;

// C++
class EnumMemberSeq {

Vi

A sequence of Identifier strings representing the members of an
enumeration type in the interface repository.

CORBA: :Identifier
CORBA: :ORB: :create enum tc ()

“About Sequences”

24 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

See Also

CORBA::ExcDescriptionSeq Sequence

// IDL
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

// C++
class ExcDescriptionSeq {

i

A sequence of ExceptionDescription structures in the interface
repository. This sequence is used only in the OperationbDescription
structure.

CORBA: : ExceptionDescription
CORBA: :OperationDescription

“About Sequences”

CORBA::ExceptionDefSeq Sequence

// IDL
typedef sequence <ExceptionDefs> ExceptionDefSeq;

// C++
class ExceptionDefSeqg {

}i
A sequence of ExceptionDef Objects in the interface repository.

CORBA: : ExceptionDef
“About Sequences”

CORBA::ExceptionDescription
// C++

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;

}i

The description of an exception in the interface repository.

name The name of the exception.

id The identifier of the exception.

defined in The identifier of the interface in which the exception
is defined.

version The version of the exception.

type The data type of the exception.

CORBA::ExcDescriptionSeq

Orbix CORBA Programmer’s Reference: C++ 25

See Also

CORBA::ExceptionType Enumeration

// IDL

enum exception type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM EXCEPTION};

CORBA::Flags Type

// IDL

typedef unsigned long Flags;

typedef string Identifier;

const Flags ARG IN = 1;

const Flags ARG OUT = 2;

const Flags ARG INOUT = 3;

const Flags CTX RESTRICT SCOPE = 15;

//C++
typedef ULong Flags;

A flag value is a bitmask long used to identify one or more modes.

Most flag values identify the argument passing mode for argu-

ments. The common argument passing flag values include:

ARG _IN Indicates that the associated value is an
input-only argument.

ARG INOUT Flag value indicating that the associated value
is an input or output argument.

ARG OUT Flag value indicating that the associated value
is an output-only argument.

Other flag values have specific meanings for request and list
methods.

NVList methods that add a Namedvalue to an NVList have a flags
parameter used to specify features of an argument. These addi-
tional flag values include:

IN COPY VALUE Causes a copy of the argument value to be
made and used instead of the argument.

DEPENDENT LIST If a list structure is added as an item such as
in a sublist, this flag indicates that the sublist
should be freed when the parent list is freed.

The Object:: create request () method has a request flags param-
eter used to specify how storage is to be allocated for output
parameters. The additional flag value is:

OUT_LIST MEMORY Indicates that any out argument memory is
associated with the argument list of the
requested IDL operation.

CORBA::NVList

CORBA: :NamedValue

CORBA: :Object:: create request ()
CORBA: :Context: :get values()

26 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

See Also

CORBA::FloatSeq Sequence

// IDL
typedef sequence<floats> FloatSeq;

// C++
class FloatSeq {

}i

A sequence of Float values used in marshalling custom value types.

CORBA:DataOutputStream
CORBA: :DatalInputStream

“About Sequences”

CORBA::1dentifier Type

// C++

typedef char* Identifier;

A simple name that identifies modules, interfaces, constants, ty-
pedefs, exceptions, attributes, and operations in the interface
repository. An identifier is not necessarily unique within the entire
interface repository; it is unique only within a particular Repository,
ModuleDef, InterfaceDef, Or OperationDef.

CORBA::Initializer Structure

// IDL

struct Initializer {
StructMemberSeq members;
Identifier name;

}i
// C++

struct Initializer {
StructMemberSeq members;
Identifier name;

}i

An initializer structure for a sequence in the interface repository.

members The sequence of structure members.
name The name of the initializer structure.

CORBA::InitializerSeq

CORBA::InitializerSeq Sequence

// C++
class InitializerSeqg {

}i
A sequence of Initializer Structures in the interface repository.

CORBA: :ValueDef

Orbix CORBA Programmer’s Reference: C++ 27

See Also

See Also

“About Sequences”

CORBA:: InterfaceDefSeq Sequence
// C++

class InterfaceDefSeq {
}i
A sequence of interface definitions in the interface repository.

CORBA: : InterfaceDef
CORBA: :Container: :create interface ()
CORBA: :Container: :create value ()

“About Sequences”

CORBA::InterfaceDescription Structure

// IDL

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
RepositoryIdSeq base interfaces;
boolean is abstract;

}i
// C++

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
RepositoryIdSeq base interfaces;
boolean is abstract;

}i

A description of an interface in the interface repository. This
structure is returned by the inherited describe () method in the
InterfaceDef interface. The structure members consist of the fol-
lowing:

name The name of the interface.

id The identifier of the interface.

defined in The identifier of where the interface is defined.
version The version of the interface.

base interfaces The sequence of base interfaces from which

this interface is derived.

is_abstract A true value if the interface is an abstract one,
a false value otherwise.

CORBA: : InterfaceDef : :describe ()

28 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

CORBA::InvalidPolicies Exception

// IDL
exception InvalidPolicies {

sequence <unsigned short> indices;

}i

This exception is thrown by operations that are passed a bad policy.
The indicated policies, although valid in some circumstances, are
not valid in conjunction with other policies requested or already
overridden at this scope.

CORBA::ModuleDescription Structure

// IDL

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

i

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

}i

The description of an IDL module in the interface repository. The
structure members consist of the following:

name The name of the module.

id The identifier of the module.

defined in The identifier of where the module is defined.
version The version of the module.

CORBA: :ModuleDef

CORBA::OctetSeq Sequence

// C++
class OctetSeq {

A sequence of octet values used in marshalling custom value types.

CORBA:DataOutputStream
CORBA: :DataInputStream

“About Sequences”

Orbix CORBA Programmer’s Reference: C++ 29

See Also

CORBA::OpDescriptionSeq Sequence
// C++

class OpDescriptionSeqg {

i

A sequence of OperationDescription Sstructures in the interface
repository that describe each IDL operation of an interface or value
type.

CORBA: :OperationDescription

CORBA: : InterfaceDef: :FullInterfaceDescription
CORBA: :ValueDef : :FullValueDescription

“About Sequences”

CORBA::OperationDescription Structure

// IDL

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

}i

struct OperationDescription {
Identifier name;
RepositoryId id;

RepositorylId defined in;
VersionSpec version;

TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

}i
This structure describes an IDL operation in the interface repository.
The structure members consist of the following:

name The name of the IDL operation.

id The identifier of the IDL operation.

defined in The identifier of where the IDL operation is defined.
version The version of the IDL operation.

result The TypeCode of the result returned by the defined

IDL operation.

mode Specifies whether the IDL operation’s mode is nor-

mal (OP_NORMAL) or one-way (OP ONEWAY).

contexts The sequence of context identifiers specified in the

context clause of the IDL operation.

30 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

parameters The sequence of structures that give details of each

parameter of the IDL operation.

exceptions The sequence of structures containing details of

exceptions specified in the raises clause of the IDL
operation.

CORBA::OpDescriptionSeq

CORBA::OperationMode Enumeration

enum OperationMode {OP_NORMAL, OP ONEWAY};
typedef OperationMode& OperationMode out;

The mode of an IDL operation in the interface repository. An
operation’s mode indicates its invocation semantics.

OP_NORMAL The IDL operation’s invocation mode is normal.

OP_ONEWAY The IDL operation’s invocation mode is oneway which
means the operation is invoked only once with no
guarantee that the call is delivered.

CORBA::ORBid Type

// IDL
typedef string ORBid;
// C++
typedef char* ORBid;

The name that identifies an ORB. ORrBid strings uniquely identify
each ORB used within the same address space in a multi-ORB
application. orBid strings (except the empty string) are not man-
aged by the OMG but are allocated by ORB administrators who must
ensure that the names are unambiguous.

CORBAIIORB init ()

CORBA::ParameterDescription Structure

// IDL

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type def;
ParameterMode mode;

}i

struct ParameterDescription {
Identifier name;

TypeCode type;
IDLType type def;
ParameterMode mode;

}i

Orbix CORBA Programmer’s Reference: C++ 31

See Also

See Also

See Also

This structure describes an IDL operation’s parameter in the inter-
face repository. The structure members consist of the following:

name The name of the parameter.

type The TypeCode of the parameter.

type def Identifies the definition of the type for the parame-
ter.

mode Specifies whether the parameter is an in input, out-

put, or input and output parameter.

CORBA::ParDescriptionSeq

CORBA::ParameterMode Enumeration

enum ParameterMode {PARAM IN, PARAM OUT, PARAM INOUT};
typedef ParameterMode& ParameterMode out;

The mode of an IDL operation’s parameter in the interface reposi-
tory.

PARAM IN The parameter is passed as input only.
PARAM OUT The parameter is passed as output only.
PARAM INOUT The parameter is passed as both input and output.

CORBA::ParDescriptionSeq Sequence
// C++

class ParDescriptionSeq {

}i

A sequence of ParameterDescription structures in the interface
repository.

CORBA::ParameterDescription
CORBA: :OperationDef

CORBA: :OperationDescription
CORBA: : InterfaceDef

CORBA: :ValueDef

“About Sequences”

CORBA::PolicyError Exception

// IDL
exception PolicyError {

PolicyErrorCode reason;
}i

The policyError exception is thrown to indicate problems with
parameter values passed to ORB: :create policy (). Possible reasons
are described in the pPolicyErrorCode.

CORBA: :ORB: :create policy ()
CORBA: : PolicyErrorCode

32 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

CORBA::PolicyErrorCode Type
typedef short PolicyErrorCode;

// C++
typedef short PolicyErrorCode;

A value representing an error when creating a new pPolicy. The
following constants are defined to represent the reasons a request
to create a policy might be invalid:

Table 4: PolicyErrorCode Constants

Constant Explanation

BAD POLICY The requested policy is not under-
stood by the ORB.

UNSUPPORTED POLICY The requested policy is understood
to be valid by the ORB, but is not
currently supported.

BAD POLICY TYPE The type of the value requested for
the policy is not valid for that
PolicyType.

BAD POLICY VALUE The value requested for the policy is

of a valid type but is not within the
valid range for that type.

UNSUPPORTED POLICY VALUE The value requested for the policy is
of a valid type and within the valid
range for that type, but this valid
value is not currently supported.

CORBAI:ORB::create policy ()

CORBA::PolicyList Sequence
// C++

class PolicyList {

}i

A list of policy objects. Policies affect an ORB’s behavior.

CORBA::Policy

CORBA: :Object: :set policy overrides()
PortableServer: :POA: : POA create POA()
“About Sequences”

CORBA::PolicyType Type

// C++
typedef ULong PolicyType;

Defines the type of policy object.
The CORBA module defines the following constant PolicyType:
// IDL

Orbix CORBA Programmer’s Reference: C++ 33

See Also

See Also

See Also

const PolicyType SecConstruction = 11;
// C++
static const PolicyType SecConstruction = 11;

Other valid constant values for a policyType are described with the
definition of the corresponding policy object. There are standard
OMG values and Orbix-specific values.

CORBA::Policy

CORBA: : PolicyTypeSeq

CORBA: :ORB: :create policy ()

CORBA: :Object:: get policy ()

CORBA: :DomainManager: :get domain policy ()

CORBA::PolicyTypeSeq Sequence

// IDL
typedef sequence<PolicyType> PolicyTypeSeq;

// C++
class PolicyTypeSeq {

}i
A sequence of PolicyType data types.

CORBA::Object::get _policy overrides()
CORBA: : PolicyManager: :get policy overrides ()

CORBA::PrimitiveKind Enumeration

// IDL
enum PrimitiveKind {

pk null, pk void, pk short, pk long, pk ushort, pk ulong,
pk float, pk double, pk boolean, pk char, pk octet,

pk any, pk TypeCode, pk Principal, pk string, pk objref,
pk longlong, pk ulonglong, pk longdouble,

pk _wchar, pk wstring, pk value base

}i

typedef PrimitiveKind& PrimitiveKind out;

Indicates the kind of primitive type a primitiveDef Object represents
in the interface repository.

Most kinds are self explanatory with the exception of the follow-
ing:

®* There are no PrimitiveDef objects with the kind pk null.

®* The kind pk_string represents an unbounded string.

®* The kind pk_objref represents the IDL type Object.

®* The kind pk_value base represents the IDL type valueBase.

CORBA::PrimitiveDef
CORBA: :Repository

34 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

Examples

CORBA::Repositoryld Type

// C++
typedef char* Repositoryld;
A string that uniquely identifies, in the interface repository, an IDL

module, interface, constant, typedef, exception, attribute, value
type, value member, value box, native type, or operation.

The format of RepositoryId types is a short format name followed
by a colon followed by characters, as follows:

format _name:string

The most common format encountered is the OMG IDL format. For
example:

IDL:Pre/B/C:5.3

This format contains three components separated by colons:

IDL The first component is the format name, 1DL.

Pre/B/C The second component is a list of identifiers separated
by '/’ characters that uniquely identify a repository item
and its scope. These identifiers can contain other charac-
ters including underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version
numbers separated by a dot (.).

CORBA:IRepository::ilookup id()

CORBA::RepositoryldSeq Sequence

// C++

class RepositoryIdSeq {

}i

A sequence of RepositoryId strings in the interface repository.
CORBA: :RepositoryId

“About Sequences”

CORBA::ScopedName Type

// C++

typedef char* ScopedName;

A string that specifies an IDL item’s name relative to a scope in the
interface repository. A ScopedName correspond to an OMG IDL scoped
name.

A ScopedName that begins with “::” is an absolute scoped name; one
that uniquely identifies an item within a repository. For example:
: :Account : :makeWithdrawal

A ScopedName that does not begin with “::” is a relative scoped
name; one that identifies an item relative to some other item. For
example:

makeWithdrawal

Orbix CORBA Programmer’s Reference: C++ 35

This example would be within the absolute scoped name of
: :Account.

See Also CORBA::Contained::absolute name
CORBA: :Container: : lookup ()

CORBA::ServiceDetalil Structure

// IDL
struct ServiceDetail {

ServiceDetailType service detail type;
sequence <Octet> service detail;

}i
Detailed information about a single service or facility available to
an ORB. Structure members consist of:

service detail type

service detail

See Also CORBA::ServiceInformation

CORBA::ServiceDetailType Type

// C++
typedef ULong ServiceDetailType;

The type of service.

See Also CORBA::ServiceDetail

CORBA::Servicelnformation Structure

//IDL
struct ServiceInformation {

sequence <ServiceOption> service options;
sequence <ServiceDetail> service details;

}i
Information about CORBA facilities and services that are supported
by an ORB. Structure members consist of:

service options

service details

See Also CORBA:IIORB::get service information ()

CORBA::ServiceOption Type

// C++
typedef ULong ServiceOption;

An option for a service.

See Also CORBA::ServiceInformation

36 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

CORBA::ServiceType Type

typedef UShort ServiceType;

Used as a parameter in get service information() to obtain infor-
mation about CORBA facilities and services that are supported by
an ORB. A possible value consists of:

Security =1

CORBA::SetOverrideType Enumeration

// IDL
enum SetOverrideType {SET OVERRIDE, ADD OVERRIDE};

The type of override to use in the set policy overrides() method
when setting new policies for an object reference. Possible types
consist of:

SET OVERRIDE Indicates that new policies are to be associated
with an object reference.

ADD OVERRIDE Indicates that new policies are to be added to
the existing set of policies and overrides for an
object reference.

CORBA:I:Object:: set policy overrides ()

CORBA::ShortSeq Sequence

// C++
class ShortSeqg {

}i

A sequence of short values used in marshalling custom value types.

CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::StringValue Value Box

// C++
class StringValue : public DefaultValueRefCountBase {

public:
// constructors
StringValue() ;
StringValue (const StringValue& val) ;
StringValue (char* str);
StringValue (const char* str);
StringValue (const String var& var) ;
// assignment operators
StringValue& operator=(char* str);
StringValue& operator=(const char* str);
StringValue& operator=(const String var& var) ;
// accessor
const char* value() const;

Orbix CORBA Programmer’s Reference: C++ 37

// modifiers

void value(char* str);

void value(const char* str);

void value(const String var& var) ;

// explicit argument passing conversions for underlying
string

const char* boxed in() const;

char*s boxed inout () ;

char*s boxed out () ;

// ...other String var methods such as overloaded
// subscript operators, etc....

static StringValue* downcast (ValueBase* base) ;

protected:
~StringValue () ;

i
StringValue is a value box class that provides a reference-counted
version of a string.

See Also
“About Sequences”
CORBA::StructMember Structure
// C++
struct StructMember {
Identifier name;
TypeCode type;
IDLType type def;
i
This describes an IDL structure member in the interface repository.
The structure members consist of the following:
name The name of the member.
type The TypeCode for the member.
type def Identifies the definition of the type for the member.
See Also CORBA::StructMemberSeq
CORBA::StructMemberSeq Sequence
// C++
class StructMemberSeqg {
}i
A sequence of structMember Objects in the interface repository.
See Also CORBA::StructMember

CORBA: :ORB: :create struct tc()
CORBA: :ORB: :create exception tc()
CORBA: :Contailner: :create struct ()
CORBA: :Container: :create exception()
CORBA: : StructDef : :members

CORBA: : ExceptionDef : :members
CORBA::Initializer

38 Orbix CORBA Programmer’s Reference: C++

“About Sequences”

CORBA::TCKind Enumeration

// IDL
enum TCKind {

tk null, tk void,

tk short, tk long, tk ushort, tk ulong,

tk float, tk double, tk boolean, tk char,
tk octet, tk any, tk TypeCode, tk Principal, tk objref,
tk _struct, tk union, tk enum, tk string,

tk sequence, tk array, tk alias, tk except,
tk longlong, tk ulonglong, tk longdouble,
tk wchar, tk wstring, tk fixed,

tk value, tk value box,

tk_native,

tk_abstract interface

}i

A TCKind value indicates the kind of data type for a TypeCode. A
TypeCode is a value that represent an invocation argument type or
attribute type, such as that found in the interface repository or with
a dynamic any type.

See Also CORBA: :TypeCode::kind ()
DynamicAny: : DynStruct: : current member kind()
DynamicAny: : DynUnion: : discriminator kind()
DynamicAny: : DynUnion: : member kind ()
DynamicAny: : DynValue: : current member kind()

CORBA::TypeDescription Structure

// IDL

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryIld defined in;
VersionSpec version;
TypeCode type;

}i
// C++

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;

}i
This structure describes an IDL data type in the interface repository.
The structure members consist of the following:

name The name of the data type.

id The identifier for the data type.

defined in The identifier of where the data type is defined.
version The version of the data type.

Orbix CORBA Programmer’s Reference: C++ 39

type The TypeCode of the data type.

CORBA::ULongLongSeq Sequence

// C++
class ULongLongSeq {

i
A sequence of ULongLong values used in marshalling custom value
types.

See Also CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::ULongSeq Sequence

// C++
class ULongSeq {

}i

A sequence of ULong values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::UnionMember Structure

// IDL
struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type def;
}i
// C++
struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type def;
}i
This structure describes an IDL union member in the interface
repository. The structure members consist of the following:

name The name of the union member.

label The label of the union member.

type The TypeCode of the union member.

type def The IDL data type of the union member.
See Also CORBA: :UnionMemberSeq

40 Orbix CORBA Programmer’s Reference: C++

CORBA::UnionMemberSeq Sequence

// C++
class UnionMemberSeq {

i

A sequence of UnionMember structures in the interface repository.
See Also CORBA: :UnionMember

CORBA: :ORB: :create union tc()

CORBA: :Container: :create union/()
CORBA: :UnionDef : :members

“About Sequences”

CORBA::UShortSeq Sequence

// C++
class UShortSeq {

}i
A sequence of ushort values used in marshalling custom value types.

See Also CORBA:DataOutputStream
CORBA: :DatalInputStream

“About Sequences”

CORBA::ValueDefSeq Sequence

// C++
class ValueDefSeq {

}i
A sequence of valueDef objects in the interface repository.

See Also CORBA: :ValueDef
CORBA: :Container: :create value ()

“About Sequences”

CORBA::ValueDescription Structure

// IDL
struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is abstract;
boolean is custom;
RepositoryIld defined in;
VersionSpec version;
RepositoryIdSeq supported interfaces;
RepositoryIdSeq abstract base values;
boolean is truncatable;
RepositoryId base value;

}i

struct ValueDescription {
Identifier name;

Orbix CORBA Programmer’s Reference: C++ 41

See Also

RepositoryId id;

Boolean is abstract;

Boolean is custom;

RepositoryId defined in;

VersionSpec version;

RepositoryIdSeq supported interfaces;
RepositoryldSeq abstract base values;
Boolean is truncatable;

Repositoryld base value;

}i

The description of an IDL value type in the interface repository.
Value types enable the passing of objects by value rather than just
passing by reference. The structure members consist of the follow-
ing:

name The name of the value type.

id The identifier of the value type.

is_abstract True of the value type is abstract. False if
the value type is not abstract.

is custom True of the value type is custom. False if the
value type is not custom.

defined in The identifier of where the value type is
defined.

version The version of the value type.

supported interfaces
abstract base values
is truncatable

base value

CORBA::ValueDef: :describe ()

CORBA::ValueMember Structure

// IDL

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;
IDLType type def;
Visibility access;

}i

// C++
struct ValueMember {

Identifier name;
RepositoryId id;
RepositoryIld defined in;
VersionSpec version;
TypeCode type;
IDLType type def;
Visibility access;

i

42 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

See Also

This structure describes an IDL value type member in the interface
repository. The structure members consist of the following:

name The name of the value type member.

id The identifier of the value type member.

defined in The identifier of where the value type member is
defined.

version The version of the value type member.

type The TypeCode of the value type member.

type def The type definition of the value type member.

access The accessibility of the value type member (public
or private).

CORBA::ValueMemberSeq

CORBA::ValueMemberSeq Sequence

// C++
class ValueMemberSeqg {

}i
A sequence of valueMember Structures in the interface repository.

CORBA: :ValueMember
CORBA: :ORB: :create value tc()

“About Sequences”

CORBA::ValueModifier Type

typedef Short ValueModifier;

A modifier for an IDL value type in the interface repository. Possible
values consist of:

VM_NONE The IDL value type has no modifiers.

VM_CUSTOM The IDL value type has the custom modifier.
This specifies that the value type uses custom
marshalling.

VM_ABSTRACT The IDL value type has the abstract modifier.
Value types that are abstract can not be instan-
tiated. Essentially they are a bundle of IDL
operation signatures with a purely local imple-
mentation.

VM _TRUNCATABLE The IDL value type has the truncatable modi-
fier. A value with a state that derives from
another value with a state can be specified as
truncatable. A truncatable type means the
object can be truncated to the base type.

CORBA:IORB:Icreate value tc()
CORBA: : TypeCode: : type modifier ()

Orbix CORBA Programmer’s Reference: C++ 43

See Also

See Also

See Also

CORBA::VersionSpec Type
// C++

typedef char* VersionSpec;

A string that describes a version of an IDL item in the interface
repository. Version information can be associated with many IDL
data types including modules, constants, types, exceptions, attri-
butes, and operations.

CORBA: : Contained::version
CORBA: :Contained: :move ()
CORBA: :Container

CORBA::Visibility Type
typedef Short Visibility;

Indicates the visibility of a state member of an IDL value type in
the interface repository. Possible values consist of:

PRIVATE MEMBER
PUBLIC MEMBER

IDL value types can have state members that are either public or
private. Private members are not visible to clients but are only vis-
ible to implementation code and the marshalling routines.

CORBA::ValueMember

CORBA: :ValueMemberDef : :access

CORBA: :ValueDef: :create value member ()
CORBA: : TypeCode: :member visibility ()

CORBA::WCharSeq Sequence

// C++

class WCharSeq {

i

A sequence of wchar values used in marshalling custom value types.

CORBA::DataOutputStream
CORBA: :DataInputStream

“About Sequences”

CORBA::WStringValue Value Box

// C++
class WStringValue : public DefaultValueRefCountBase {

public:
// constructors
WStringValue () ;
WStringValue (const WStringValue& val) ;
WStringValue (char* str);
WStringValue (const char* str);
WStringValue (const String var& var) ;
// assignment operators
WStringValue& operator=(char* str);
WStringValue& operator=(const char* str);

44 Orbix CORBA Programmer’s Reference: C++

WStringValue& operator=(const String var& var) ;

// accessor

const char* value() const;

// modifiers

void value(char* str);

void value(const char* str);

void value(const String varé& var) ;

// explicit argument passing conversions for underlying

string

const char* boxed in() const;

char*& boxed inout () ;

char*s& boxed out () ;

// ...other String var methods such as overloaded

// subscript operators, etc....

static WStringValue* downcast (ValueBase* base) ;
protected:

~WStringValue () ;

}i

WStringValue is a value box class that provides a reference-counted
version of a wide string.

See Also
“About Value Boxes”

Orbix CORBA Programmer’s Reference: C++ 45

46 Orbix CORBA Programmer’s Reference: C++

CORBA::AbstractinterfaceDef
Interface

RbstractInterfaceDef describes an abstract IDL interface in the
interface repository. It inherits from the InterfaceDef interface.

// IDL
interface AbstractInterfaceDef : InterfaceDef

{
}i

Orbix CORBA Programmer’s Reference: C++ 47

48 Orbix CORBA Programmer’s Reference: C++

CORBA::AliasDef Interface

See Also

See Also

See Also

The aliaspDef interface describes an IDL typedef that aliases
another definition in the interface repository. It is used to repre-
sent an IDL typedef.

// IDL in module CORBA.

interface AliasDef : TypedefDef {
attribute IDLType original type def;

}i

The following items are described for this interface:
®* The describe () IDL operation
®* The original type def attribute

CORBA: : Contained
CORBA: :Container: :create alias ()

AliasDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which is inherited by TypedefDef), the
describe () operation returns a structure of type

Contained: :Description. The DefinitionKind for the kind member is
dk_Alias. The value member is an any whose TypeCode is

_tc AliasDescription and whose value is a structure of type
TypeDescription.

CORBA: : TypedefDef : :describe ()

AliasDef::original_type_def Attribute

// IDL
attribute IDLType original type def;

Identifies the type being aliased. Modifying the original type def
attribute will automatically update the type attribute (the type
attribute is inherited from TypedefDef which in turn inherits it from
IDLType). Both attributes contain the same information.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: C++ 49

50 Orbix CORBA Programmer’s Reference: C++

CORBA::Any Class

The class any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This
allows a program to handle values whose types are not known at
compile time. The IDL type any is most often used in code that
uses the interface repository or the dynamic invocation interface
(DI1) or with CORBA services in general.

Consider the following interface:

// IDL
interface Example {

void op(in any value) ;
}i

A client can construct an any to contain an arbitrary type of value
and then pass this in a call to op (). A process receiving an any
must determine what type of value it stores and then extract the
value (using the TypeCode). Refer to the CORBA Programmer’s
Guide for more details.

Methods and structures are as follows:

Any ()

~Any ()

from boolean structure
from char structure
from fixed structure
from octet structure
from string structure
from wchar structure
from wstring structure
it get streamable()

it set streamable ()

it take streamable()

// C++
class IT ART API Any :
{
public:
Any () ;
Any (
const Any& any
);
Any (

TypeCode ptr tc,
value,
release = 0

void*
Boolean
)i
Any (
IT Streamable*

operator= ()
replace ()

to boolean structure
to char structure

to fixed structure
to object structure
to_octet structure
to_string structure
to _wchar structure
to wstring structure
type ()

public ITCxxMemBase

strm,

IT Streamable::MemPolicy policy

)i
~Any () ;

Anyé& operator= (
const Any&
)i

Orbix CORBA Programmer’s Reference: C++ 51

//
// type-unsafe operations
//
void replace (
TypeCode ptr tc,
void* value,
Boolean release = 0
)i

TypeCode ptr type() const;

void type (
TypeCode ptr new type
);

const void* value() const;

struct from boolean {
from boolean (
Boolean b
)i
Boolean m val;

}i

struct from octet {
from octet (
Octet octet
)i
Octet m val;

}i

struct from char {
from char (
Char c
)i
Char m val;

}i

struct from wchar {
from wchar (
WChar c
)i
WChar m val;

}i

struct from string {

from string(
char* s,
ULong b,
Boolean nocopy = 0

)i

from string(
const char* s,
ULong b

)i

char* m val;

ULong m_bound;

Boolean m nocopy;

52 Orbix CORBA Programmer’s Reference: C++

struct from wstring {

from wstring(
WChar* s,
ULong b,
Boolean nocopy = 0

)i

from wstring(
const WChar* s,
ULong b

)i

WChar* m val;

ULong m_bound;

Boolean m nocopy;

}i

struct from fixed {
from fixed(
const Fixed& f,
UShort digits,
Short scale
)i
const Fixed& m val;
UShort m digits;
Short m scale;

}i

struct to boolean {
to boolean (
Boolean& b
);
Boolean& m ref;

}i

struct to char {
to char(
Charé& c
)i
Char& m ref;

bi

struct to wchar {
to_wchar (
WChar& c
)i
WChar& m ref;

bi

struct to octet {
to_octet (
Octeté& o
)
Octet& m _ref;

bi

struct to object {
to_object (
Object ptr& obj
)
Object ptr& m ref;

}i

Orbix CORBA Programmer’s Reference: C++ 53

struct to string {

bi

to_string(

char*& s,
ULong b

)i
char*& m ref;
ULong m bound;

struct to wstring {

}i

to wstring(

WChar*& s,
Ulong b
)i

WChar*& m ref;
ULong m bound;

struct to fixed {

}i

to fixed(
Fixed& £,
UShort digits,
Short scale
)i
Fixed& m ref;
UShort m digits;
Short m scale;

IT Streamable* it get streamable (

Boolean make copy = 0

) const;

Boolean it take streamable (

)

IT Streamable* &strm

void it set streamable(

)i

IT Streamable* strm,
IT Streamable::MemPolicy policy

private:

Any::Any() Constructors

Any () ;

The default constructor creates an any with a TypeCode of type
tk null and with a zero value.

Any (

const Any& any

)i

This copy constructor duplicates the TypeCode ptr of any and copies
the value.

54 Orbix CORBA Programmer’s Reference: C++

Parameters

Examples

See Also

See Also

Any (
TypeCode ptr tc,
void* value,
Boolean release = 0

)i

Constructs an any with a specific TypeCode and value. This construc-
tor is needed for cases where it is not possible to use the default
constructor and operator<<=(). For example, since all strings are
mapped to char*, it is not possible to create an any with a specific
TypeCode for a bounded string.

This constructor is not type-safe; you must ensure consistency
between the TypeCode and the actual type of the argument value.

Any (
IT Streamable* strm,
IT Streamable::MemPolicy policy

)i
Constructs an any from a stream.

type A reference to a CORBA: : TypeCode. The constructor
duplicates this object reference.

val The value pointer. A conforming program should make
no assumptions about the lifetime of the value passed
in this parameter once it has been passed to this con-
structor with release=1.

release A boolean variable to decide ownership of the storage
pointed to by value. If set to 1, the any object assumes
ownership of the storage. If the release parameter is
set to O (the default), the calling program is responsi-
ble for managing the memory pointed to by value.

IT Streamable*
IT Streamable:
:MemPolicy

The easiest and the type-safe way to construct an aAny is to use the
default constructor and then use operator<<=() to insert a value into
the any. For example:

// C++
CORBA: :Short s = 10;
CORBA: :Any a;

a <<= 8;

CORBA::Any::operator<<=()

Any::—Any() Destructor
~Any () ;

Destructor for an any. Depending on the value of the Boolean release
parameter to the complex constructor, it frees the value contained
in the any based on the TypeCode of the aAny. It then frees the TypeCode.

CORBA::Any::Any()

Orbix CORBA Programmer’s Reference: C++ 55

Any::from_type Structure

struct from boolean {
from boolean (

Boolean b
)i
Boolean m val;
i
struct from char {
from char (
Char c
)i
Char m val;
}i
struct from fixed {
from fixed(
const Fixed& f,
UShort digits,
Short scale
)i
const Fixed& m val;
UShort m digits;
Short m scale;
}i
struct from octet
from octet (
Octet octet
)
Octet m val;
}i
struct from string {
from string(
char* s,
ULong b,
Boolean nocopy = 0
)i
from string(
const char* s,
ULong b
)i
char* m val;
ULong m_bound;
Boolean m nocopy;

}i

struct from wchar {
from wchar (

WChar c
);
WChar m val;

}i

struct from wstring {
from wstring(
WChar* s,
ULong b,
Boolean nocopy = 0
)i
from wstring(
const WChar* s,

56 Orbix CORBA Programmer’s Reference: C++

See Also

Enhancement

Enhancement

Enhancement

Parameters

ULong b

)i

WChar* m val;

ULong m bound;

Boolean m nocopy;
i
Inserts the specific IDL type into the any. These helper structures
are nested in the any class interface to distinguish these IDL data
types from each other. Because these IDL types are not required
to map to distinct C++ types, another means of distinguishing them
from each other is necessary so that they can be used with the
type-safe any interface.

CORBA::Any::to_type

Any::it_get_streamable()

IT Streamable* it get streamable(
Boolean make copy = 0

) const;

IONA-specific enhancement.

Any::it_set streamable()

void it set streamable (
IT Streamable* strm,

IT Streamable::MemPolicy policy
)i

IONA-specific enhancement.

Any::it_take streamable()

Boolean it take streamable (
IT Streamable* &strm

)i
IONA-specific enhancement.

Any::operator=_)

Any& operator= (
const Any& a

)i

The assignment operator releases its TypeCode and frees the value
if necessary.

a The value to duplicate. The method duplicates the
TypeCode Of a and deep copies the parameter’s value.

void replace (
TypeCode ptr tc,

Orbix CORBA Programmer’s Reference: C++ 57

void* value,
Boolean release = 0

);

This method is needed for cases where it is not possible to use
operator<<=() to insert into an existing any. For example, because
all strings are mapped to char*, it is not possible to create an any
with a specific TypeCode for a bounded string.

Parameters

tc A reference to a CORBA: : TypeCode. The method dupli-
cates this object reference.

value The value pointer. A conforming program should make
no assumptions about the lifetime of the value passed
in this parameter if it has been passed to
Any: :replace () with release=1.

release A boolean variable to decide ownership of the storage
pointed to by value. If set to 1, the Any object assumes
ownership of the storage. If the release parameter is
set to O (the default), the calling program is responsi-
ble for managing the memory pointed to by value.

This function is not type-safe; you must ensure consistency
between the TypeCode and the actual type of the argument value.

Any::to_type Structure

struct to boolean {
to_boolean (

Boolean& b
)

Boolean& m ref;

}i
struct to char {
to char(
Charé& c

);
Char& m ref;

}i

struct to fixed {
to fixed(
Fixed& f,
UShort digits,
Short scale
)i
Fixed& m ref;
UShort m digits;
Short m scale;

bi

struct to object {
to_object (
Object ptré& obj
)i
Object ptr& m ref;

}i

58 Orbix CORBA Programmer’s Reference: C++

See Also

Parameters

struct to octet {
to_octet (
Octet& o
)
Octet& m ref;

}i

struct to_string {
to string(
char*& s,
Ulong b
)i
char*& m ref;
ULong m bound;

}i

struct to wchar {
to wchar (
WChar& c
)i
WChar& m ref;

}i

struct to wstring {
to wstring(
WChar*& s,
Ulong b
)
WChar*& m ref;
ULong m bound;
i
Extracts the specific IDL type from the any. These helper structures
are nested in the any class interface to distinguish these IDL data
types from each other. Because these IDL types are not required
to map to distinct C++ types, another means of distinguishing them
from each other is necessary so that they can be used with the
type-safe any interface.

CORBA::Any::from_type

Any::type()
TypeCode ptr type() const;
Returns the Typecode of the Object encapsulated within the any.

void type (TypeCode ptr t);
Sets the Typecode of the object encapsulated within the any.

t The TypeCode of the object.

Orbix CORBA Programmer’s Reference: C++ 59

60 Orbix CORBA Programmer’s Reference: C++

CORBA::ArrayDef Interface

See Also

See Also

See Also

The arrayDef interface represents a one-dimensional array in an
interface repository. A multi-dimensional array is represented by
an ArrayDef with an element type that is another array definition.
The final element type represents the type of element contained in
the array. An instance of interface ArrayDef can be created using
create array().

// IDL in module CORBA.

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element type;
attribute IDLType element type def;

}i

CORBA: : IDLType
CORBA: :ArrayDef: :element type def

CORBA: :Repository: :create array ()

ArrayDef::element_type Attribute

// IDL
readonly attribute TypeCode element type;

Identifies the type of the element contained in the array. This
contains the same information as in the element type def attribute.

CORBA: :ArrayDef: :element type def

ArrayDef::element_type_def Attribute

// IDL
attribute IDLType element type def;

Describes the type of the element contained within the array. This
contains the same information as in the attribute element type
attribute.

The type of elements contained in the array can be changed by
changing this attribute. Changing this attribute also changes the
element type attribute.

CORBA: :ArrayDef: :element type

ArrayDef::length Attribute

// IDL
attribute unsigned long length;

Returns the number of elements in the array.

Specifies the number of elements in the array.

Orbix CORBA Programmer’s Reference: C++ 61

62 Orbix CORBA Programmer’s Reference: C++

CORBA::AttributeDef Interface

The AttributeDef interface describes an attribute of an interface in
the interface repository.

// IDL in module CORBA.

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute AttributeMode mode;

}i

The inherited describe () method is also described.

See Also CORBA: :Contained
CORBA: : InterfaceDef: :create attribute ()

AttributeDef::describe()

// IDL
Description describe() ;

Inherited from Contained, the describe () method returns a structure
of type Contained: :Description. The DefinitionKind for the kind
member of this structure is dk_Attribute. The value member is an
any whose TypeCode iS _tc AttributeDescription. The value is a
structure of type AttributeDescription.

See Also CORBA: :Contained: :describe ()

AttributeDef::mode Attribute

// IDL
attribute AttributeMode mode;

// C++
virtual AttributeMode mode () = 0;

Returns the mode of the attribute.
// C++

virtual void mode (
AttributeMode itvar mode
) = 0;

Specifies whether the attribute is read and write (ATTR NORMAL) Or
read-only (ATTR READONLY).

AttributeDef::type Attribute

// IDL
readonly attribute TypeCode type;
// C++
virtual TypeCode ptr type() = 0;

Returns the type of this attribute. The same information is contained
in the type def attribute.

See Also CORBA: : TypeCode

Orbix CORBA Programmer’s Reference: C++ 63

See Also

CORBA: :AttributeDef: :type def

AttributeDef::type_ def Attribute

// IDL
attribute IDLType type def;

// C++
virtual IDLType ptr type def() = 0;

Returns the type of this attribute.

// C++
virtual void type def (

IDLType ptr _itvar type def
) = 0;

Describes the type for this attribute. The same information is
contained in the type attribute. Changing the type def attribute
automatically changes the type attribute.

CORBA: : IDLType
CORBA: :AttributeDef: : type

64 Orbix CORBA Programmer’s Reference: C++

CORBA::ConstantDef Interface

See Also

See Also

See Also

See Also

Interface CconstantDef describes an IDL constant in the interface
repository. The name of the constant is inherited from Contained.

// IDL

// in module CORBA.

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute any value;

}i

The inherited operation describe () is also described.

CORBA: :Contained
CORBA: :Container: :create constant ()

ConstantDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The kind member is dk_Constant.

The value member is an any whose TypeCode is
_tc_ConstantDescription and whose value is a structure of type
ConstantDescription.

CORBA: :Contained: :describe ()

ConstantDef::type Attribute

// IDL
readonly attribute TypeCode type;

Identifies the type of this constant. The type must be a TypeCode for
one of the simple types (such as long, short, float, char, string,
double, boolean, unsigned long, and unsigned short). The same
information is contained in the type def attribute.

CORBA: :ConstantDef: :type def

ConstantDef::type def Attribute

// IDL
attribute IDLType type_def;

Returns the type of this constant.

Identifies the type of the constant. The same information is con-
tained in the type attribute.

The type of a constant can be changed by changing its type def
attribute. This also changes its type attribute.

CORBA: :ConstantDef: : type

Orbix CORBA Programmer’s Reference: C++ 65

ConstantDef::value Attribute

// IDL
attribute any value;

Returns the value of this attribute.

Contains the value for this constant. When changing the value
attribute, the TypeCode of the any must be the same as the type
attribute.

See Also CORBA: : TypeCode

66 Orbix CORBA Programmer’s Reference: C++

CORBA::ConstructionPolicy

Interface

Parameters

See Also

When new object references are created, the ConstructionPolicy
object allows the caller to specify that the instance should be
automatically assigned membership in a newly created policy
domain. When a policy domain is created, it also has a
DomainManager Object associated with it. The ConstructionPolicy
object provides a single operation that makes the DomainManager
object.

// IDL in CORBA Module
interface ConstructionPolicy: Policy {
void make domain manager (
in CORBA::InterfaceDef object type,
in boolean constr policy

)i
}i

ConstructionPolicy::make_domain_manager()

// IDL
void make domain manager (

in CORBA::InterfaceDef object type,
in boolean constr policy

)

This operation sets the construction policy that is to be in effect in
the policy domain for which this ConstructionPolicy oObject is asso-
ciated.

object type The type of the objects for which domain managers
will be created. If this is nil, the policy applies to all
objects in the policy domain.

constr policy A value of true indicates to the ORB that new object
references of the specified object type are to be asso-
ciated with their own separate policy domains (and
associated domain manager). Once such a construc-
tion policy is set, it can be reversed by invoking
make domain manager () again with the value of false.

A value of false indicates the construction policy is set
to associate the newly created object with the policy
domain of the creator or a default policy domain.

You can obtain a reference to the newly created domain manager
by calling get domain managers () on the newly created object ref-
erence.

CORBA::DomainManager
CORBA: :Object:: get domain managers ()

Orbix CORBA Programmer’s Reference: C++ 67

68 Orbix CORBA Programmer’s Reference: C++

CORBA::Contained Interface

Interface Contained is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or
repository. It is a base interface for the following interfaces:

ModuleDef
InterfaceDef
ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
StructDef
EnumDef
UnionDef
AliasDef
ValueDef

The complete interface is shown here:

// IDL
// In module CORBA.
interface Contained : IRObject {

// read/write interface
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface
readonly attribute Container defined in;
readonly attribute ScopedName absolute name;
readonly attribute Repository containing repository;
struct Description {

DefinitionKind kind;

any value;

}i

Description describe() ;

// write interface
void move (
in Container new container,
in Identifier new name,
in VersionSpec new version
)i
}i
See Also CORBA: :Container
CORBA: : TRObject

Contained::absolute _name Attribute

//IDL
readonly attribute ScopedName absolute name;

Gives the absolute scoped name of an object.

See Also CORBA: : ScopedName

Orbix CORBA Programmer’s Reference: C++ 69

See Also

See Also

Contained::containing_repository Attribute

// IDL
readonly attribute Repository containing repository;

Gives the rRepository within which the object is contained.

Contained::defined_in Attribute

// IDL

attribute Container defined in;

Specifies the Container for the interface repository object in which
the object is contained.

An IFR object is said to be contained by the IFR object in which it
is defined. For example, an InterfaceDef object is contained by the
ModuleDef in which it is defined.

A second notion of contained applies to objects of type
AttributeDef Or OperationDef. These objects may also be said to be
contained in an InterfaceDef Object if they are inherited into that
interface. Note that inheritance of operations and attributes across
the boundaries of different modules is also allowed.

CORBA: :Container: :contents ()

Contained::describe()

// IDL
Description describe() ;

Returns a structure of type Contained: :Description.

The kind field of the Description structure contains the same value
as the def kind attribute that Contained inherits from IRObject.

CORBA: :Container: :describe contents ()
CORBA: :DefinitionKind

Contained::Description Structure

// IDL
struct Description {

DefinitionKind kind;

any value;
}i
This is a generic form of description which is used as a wrapper for
another structure stored in the value field.

Depending on the type of the contained object, the value field will
contain a corresponding description structure:

ConstantDescription
ExceptionDescription
AttributeDescription
OperationDescription
ModuleDescription
InterfaceDescription
TypeDescription

70 Orbix CORBA Programmer’s Reference: C++

See Also

The last of these, TypeDescription is used for objects of type
StructDef, UnionDef, EnumDef, and AliasDef (it is associated with
interface TypedefDef from which these four listed interfaces
inherit).

Contained::id Attribute

// IDL

attribute RepositoryId id;

A RepositoryId provides an alternative method of naming an object
which is independent of the ScopedName.

In order to be CORBA compliant the naming conventions specified
for CORBA RepositoryIds should be followed. Changing the id
attribute changes the global identity of the contained object. It is
an error to change the id to a value that currently exists in the
contained object’s Repository.

Contained::move()

// IDL
void move (

in Container new container,
in Identifier new name,
in VersionSpec new version

)

Removes this object from its container, and adds it to the container
specified by new container. The new container must:

* Be in the same repository.
* Be capable of containing an object of this type.

* Not contain an object of the same name (unless multiple ver-
sions are supported).

The name attribute of the object being moved is changed to that
specified by the new name parameter. The version attribute is
changed to that specified by the new version parameter.

CORBA: :Container

Contained::name Attribute

// IDL
attribute Identifier name;

Return or set the name of the object within its scope. For example,
in the following definition:

// IDL

interface Example {
void op() ;

}i

the names are Example and op. A name must be unique within its
scope but is not necessarily unique within an interface repository.
The name attribute can be changed but it is an error to change it to
a value that is currently in use within the object’s Container.

Orbix CORBA Programmer’s Reference: C++ 71

See Also CORBA: :Contained: :id

Contained::version Attribute

// IDL
attribute VersionSpec version;

Return or set the version number for this object. Each interface
object is identified by a version which distinguishes it from other
versioned objects of the same name.

72 Orbix CORBA Programmer’s Reference: C++

CORBA::Container Interface

Interface container describes objects that can contain other
objects in the interface repository. A Container can contain any
number of objects derived from the Contained interface. Such
objects include:

AttributeDef
ConstantDef
ExceptionDef
InterfaceDef
ModuleDef
OperationDef
TypedefDef
ValueDef
ValueMemberDef

The interface is shown here:

//IDL
// In CORBA Module
interface Container : IRObject {
// read interface
Contained lookup (
in ScopedName search name) ;

ContainedSeq contents (
in DefinitionKind limit type,
in boolean exclude inherited

)i

ContainedSeq lookup name (
in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

)i

struct Description {
Contained contained object;

DefinitionKind kind;
any value;

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe contents (
in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs

)i

// write interface
ModuleDef create module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

)i

ConstantDef create constant (

Orbix CORBA Programmer’s Reference: C++ 73

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType type,

in any value

)i

StructDef create struct(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members
)

UnionDef create union(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator type,
in UnionMemberSeq members

);

EnumDef create enum/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members
)i

AliasDef create alias(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type
)

InterfaceDef create interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base interfaces
in boolean is abstract

)

ValueDef create value (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is custom,
in boolean is abstract,
in ValueDef base value,
in boolean is truncatable,
in ValueDefSeq abstract base values,
in InterfaceDef supported interface,
in InitializerSeqg initializers

)

ValueBoxDef create value box(
in RepositoryId id,
in Identifier name,

74 Orbix CORBA Programmer’s Reference: C++

See Also

Parameters

See Also

in VersionSpec version,
in IDLType original type def
)i

ExceptionDef create exception (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

)i

NativeDef create native (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
)i

}; // End Interface Container

CORBA: : IRObject

Container::contents()

// IDL
ContainedSeqg contents (

in DefinitionKind limit type,

in boolean exclude inherited
)i
Returns a sequence of Ccontained objects that are directly contained
in (defined in or inherited into) the target object. This operation can
be used to navigate through the hierarchy of definitions—starting,
for example, at a Repository.

limit type If set to dk_all, all of the contained interface
repository objects are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

CORBA: :Container: :describe contents()
CORBA: :DefinitionKind

Container::create_alias()

// IDL
AliasDef create alias(

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType original type

Orbix CORBA Programmer’s Reference: C++ 75

Parameters

Exceptions

See Also

Parameters

Creates a new AliasDef oObject within the target Container. The
defined in attribute is set to the target Container. The

containing repository attribute is set to the Repository in which the
new AliasDef object is defined.

id The repository ID for the new AliasDef object. An
exception is raised if an interface repository object
with the same 1D already exists within the object’s
repository.

name The name for the new aAliasDef object. It is an error
to specify a name that already exists within the
object’s container when multiple versions are not
supported.

version A version for the new AliasDef.
original type The original type that is being aliased.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: :AliasDef

Container::create_constant()

// IDL
ConstantDef create constant (

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType type,

in any value

)i

Creates a ConstantDef oObject within the target container. The
defined in attribute is set to the target Container. The

containing repository attribute is set to the Repository in which the
new ConstantDef oObject is defined.

id The repository ID of the new ConstantDef object. It is an
error to specify an ID that already exists within the object’s
repository.

name The name of the new ConstantDef object. It is an error to

specify a name that already exists within the object’s
Container when multiple versions are not supported.

version The version number of the new ConstantDef object.

76 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Parameters

Exceptions

See Also

type The type of the defined constant. This must be one of the
simple types (long, short, ulong, ushort, float, double, char,
string, boolean).

value The value of the defined constant.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : ConstantDef

Container::create_enum()

// IDL
EnumDef create enum(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in EnumMemberSeq members
)i

Creates a new EnumDef object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the Repository in which the new Enumbef object is
defined.

id The repository ID of the new Enumbef object. It is an error
to specify an ID that already exists within the Repository.

name The name of the Enumbef object. It is an error to specify a
name that already exists within the object’s Container
when multiple versions are not supported.

version The version number of the new Enumbef object.

members A sequence of structures that describes the members of
the new EnumbDef object.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : EnumDef

Orbix CORBA Programmer’s Reference: C++ 77

Parameters

Exceptions

See Also

Container::create_exception()

// IDL
ExceptionDef create exception (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in StructMemberSeqg members

)i

Creates a new ExceptionDef object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the Repository in which new ExceptionbDef object
is defined. The type attribute of the StructMember structures is
ignored and should be set to _tc void.

id The repository ID of the new ExceptionDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ExceptionDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version number for the new ExceptionDef oObject.

members A sequence of StructMember structures that describes the
members of the new ExceptionDef object.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : ExceptionDef

Container::create_interface()

// IDL
InterfaceDef create interface(

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in InterfaceDefSeq base interfaces
in boolean is abstract

)i

Creates a new empty InterfaceDef Object within the target Contain-
er. The defined in attribute is set to Container. The

containing repository attribute is set to the Repository in which the
new InterfaceDef object is defined.

78 Orbix CORBA Programmer’s Reference: C++

Parameters

Exceptions

See Also

Parameters

Exceptions

id The repository ID of the new InterfaceDef oObject.
It is an error to specify an ID that already exists
within the object’s repository.

name The name of the new InterfaceDef object. It is an
error to specify a name that already exists within
the object’s container when multiple versions are
not supported.

version A version for the new InterfaceDef object.

base interfaces A sequence of InterfaceDef objects from which
the new interface inherits.

is abstract If true the interface is abstract.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : InterfaceDef

Container::create_module()

// IDL
ModuleDef create module (

in RepositoryId id,
in Identifier name,
in VersionSpec version

)

Creates an empty ModuleDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the newly created ModuleDef
object is defined.

id The repository ID of the new ModuleDef oObject. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ModuleDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the ModuleDef Object to be created.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

Orbix CORBA Programmer’s Reference: C++ 79

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_native()

// IDL
NativeDef create native(

in Repositoryld id,

in Identifier name,

in VersionSpec version,
)i
Creates a NativeDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the newly created NativeDef
object is defined.

Parameters

id The repository ID of the new NativeDef oObject. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new NativeDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the NativeDef oObject to be created.

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_struct()

// IDL
StructDef create struct (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

)i

Creates a new StructDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the new structDef object
is defined. The type attribute of the StructMember structures is
ignored and should be set to _tc void.

80 Orbix CORBA Programmer’s Reference: C++

Parameters

id The repository ID of the new structDef oObject. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new structDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the new StructDef object.
members A sequence of StructMember structures that describes the
members of the new structDef object.
Exceptions
BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from container may restrict
the types of definitions that they may contain.

See Also CORBA: : StructDef

Container::create_union()

// IDL
UnionDef create union(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator type,
in UnionMemberSeq members
)i

Creates a new UnionDef object within the target container. The
defined in attribute is set to the target container. The

containing repository attribute is set to the repository in which the
new UnionDef object is defined. The type attribute of the UnionMember
structures is ignored and should be set to _tc void.

Parameters

id The repository ID of the new UnionDef object.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new UnionDef object. It is an
error to specify a name that already exists
within the object’s Container when multiple
versions are not supported.

version A version for the new UnionbDef object.
discriminator_type The type of the union discriminator.

members A sequence of UnionMember Structures that
describes the members of the new UnionDef
object.

Orbix CORBA Programmer’s Reference: C++ 81

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.
BAD PARAM, The specified name already exists within this Container

minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

See Also CORBA: :UnionDef

Container::create_value()

// IDL
ValueDef create value (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is custom,
in boolean is abstract,
in ValueDef base value,
in boolean is truncatable,
in ValueDefSeqg abstract base values,
in InterfaceDef supported interfaces,
in InitializerSeq initializers

)i

Creates a new empty valueDef object within the target container.
The defined in attribute is set to Container. The

containing repository attribute is set to the repository in which the
new VvalueDef object is defined.

Parameters

id The repository ID of the new valueDef object.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new valueDef object. It is an
error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

version A version for the new valueDef oObject.
is custom If true the value type is custom.

is abstract If true the value type is abstract.
base value The base value for this value type.

is truncatable if true the value type is truncatable.

abstract_base_values A sequence of valueDef structures that
describes the base values of the new valuebDef

object.
supported interfaces The interface the value type supports.
initializers A sequence of initializers for the new valueDef
object.

82 Orbix CORBA Programmer’s Reference: C++

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_value box()

// IDL
ValueBoxDef create value box(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType original type def
)i

Creates a new empty valueBoxDef Object within the target Container.
The defined in attribute is set to Container. The

containing repository attribute is set to the repository in which the
new ValueBoxDef Object is defined.

Parameters

id The repository ID of the new valueBoxDef
object. It is an error to specify an ID that
already exists within the object’s repository.

name The name of the new valueBoxDef object. It is
an error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

version A version for the new valueBoxDef Object.
original type def The IDL data type of the value box.

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::describe_contents()

// IDL
DescriptionSeq describe contents (

in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs

)i

Orbix CORBA Programmer’s Reference: C++ 83

Parameters

See Also

See Also

Returns a sequence of structures of type Container: :Description.
describe contents() iS a combination of operations
Contained: :describe () and Container: :contents ()

limit_type If this is set to dk _all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude_inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

max_returned objs The number of objects that can be returned in
the call. Setting a value of -1 means return all
contained objects.

CORBA: :Container: :contents ()
CORBA: : Contained: :describe ()

Container::Description Structure

// IDL
struct Description {

Contained contained object;

DefinitionKind kind;

any value;
}i
This structure gives the object reference of a contained object,
together with its kind and value.

Each structure has the following members:

contained object The object reference, of type Contained, of the
contained top level object. The describe () func-
tion can be called on an object reference, of
type Contained, to get further information on a
top level object in the repository.

kind The kind of the object being described.

value An any type that may contain one of the follow-
ing structures:

ModuleDescription
ConstantDescription
TypeDescription
ExceptionDescription
AttributeDescription
ParameterDescription
OperationDescription
InterfaceDescription

CORBA: :Container: :describe contents()
CORBA: :Contained: :describe ()

84 Orbix CORBA Programmer’s Reference: C++

See Also

Parameters

See Also

Parameters

Container::DescriptionSeq Sequence

// IDL
typedef sequence<Description> DescriptionSeq;

A sequence of Container: :Description structures in the interface
repository.

CORBA: :Container: :Description
“About Sequences”

Container::lookup()

// IDL
Contained lookup (

in ScopedName search name

)

Locates an object name within the target container. The objects can
be directly or indirectly defined in or inherited into the target
container.

search name The name Of the object to search for relative to the tar-
get container. If a relative name is given, the object
is looked up relative to the target container. If
search name is an absolute scoped name (prefixed by
‘::"), the object is located relative to the containing

Repository.

CORBA: :Container: : lookup name ()
CORBA: : ScopedName

Container::lookup_name()

// IDL
ContainedSeq lookup name (

in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

)

Locates an object or objects by name within the target container
and returns a sequence of contained objects. The named objects
can be directly or indirectly defined in or inherited into the target
container. (More than one object, having the same simple name

can exist within a nested scope structure.)

search name The simple name of the object to search for.

levels to search Defines whether the search is confined to the
current object or should include all interface
repository objects contained by the object. If
set to -1, the current object and all contained
interface repository objects are searched. If set
to 1, only the current object is searched.

Orbix CORBA Programmer’s Reference: C++ 85

limit type

exclude inherited

If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

See Also CORBA: :DefinitionKind

86 Orbix CORBA Programmer’s Reference: C++

CORBA::Context Class

Class CoreA: :Context implements the OMG pseudo-interface

Context. A context is intended to represent information about the
client that is inconvenient to pass via parameters. An IDL opera-
tion can specify that it is to be provided with the client’'s mapping
for particular identifiers (properties). It does this by listing these
identifiers following the operation declaration in a context clause.

An IDL operation that specifies a context clause is mapped to a
C++ member method that takes an extra input parameter of type
Context ptr, just before the Environment parameter. A client can
optionally maintain one or more CORBA Context objects, that pro-
vide a mapping from identifiers (string names) to string values. A
Context Object contains a list of properties; each property consists
of a name and a string value associated with that name and can
be passed to a method that takes a Context parameter.

You can arrange Context objects in a hierarchy by specifying par-
ent-child relationships among them. Then, a child passed to an
operation also includes the identifiers of its parent(s). The called
method can decide whether to use just the context actually
passed, or the hierarchy above it.

The context class is as follows:

// IDL
pseudo interface Context {
readonly attribute Identifier context name;
readonly attribute Context parent;
Context create child(in Identifier child ctx name) ;
void set one value(in Identifier propname, in any
propvalue) ;
void set values(in NVList values) ;
void delete values (in Identifier propname) ;
NVList get values(in Identifier start scope,
in Flags op flags,
in Identifier pattern);

}i

class Context {
public:
const char *context name () const;
Context ptr parent () const;
void create child(
const char *,
Context out
)i
void set one value (
const char *,
const Any &
)i
void set wvalues (
NVList ptr
)i
void delete values (
const char *
)i
void get values(

Orbix CORBA Programmer’s Reference: C++ 87

See Also

Parameters

See Also

Parameters

Exceptions

const char*,

Flags,
const char*,
NVList out

Context::context_name()

const char *context name () const;

Returns the name of the context object. Ownership of the returned
value is maintained by the context and must not be freed by the
caller.

CORBA::Context:icreate child()

Context::create_child()

void create child(
const char *ctx name,

Context out child ctx
)i
Creates a child context of the current context. When a child context
is passed as a parameter to an operation, any searches (using
CORBA: :Context : :get values ()) look in parent contexts if necessary
to find matching property names.

ctx _name The name of the child context. Context object names
follow the rules for IDL identifiers.

child ctx The newly created context.

CORBA::Context:iget values ()

Context::delete_values()

void delete values (
const char *prop name

)i

Deletes the specified property value(s) from the context. The search
scope is limited to the context object on which the invocation is
made.

prop_name The property name to be deleted. If prop name has a
trailing asterisk (*), all matching properties are
deleted.

An exception is raised if no matching property is found.

88 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

See Also

Context::get_values()

void get values(
const char* start_scope,

Flags op flags,
const char* prop name,
NVList out values

)i
Retrieves the specified context property values.

start_scope The context in which the search for the values
requested should be started. The name of a direct or
indirect parent context may be specified to this
parameter. If O is passed in, the search begins in the
context which is the target of the call.

op_flags By default, searching of identifiers propagates
upwards to parent contexts; if the value
CORBA: :CTX RESTRICT SCOPE is specified, then searching
is limited to the specified search scope or context
object.

prop_name If prop name has a trailing asterisk (*), all matching
properties and their values are returned.

values An NVList to contain the returned property values.

Context::parent()

Context ptr parent () const;

Returns the parent of the context object. Ownership of the return
value is maintained by the context and must not be freed by the
caller.

CORBA::Context::create child()

Context::set_one_value()

void set one value(
const char * prop name,

const Any &value
)i

Adds a property name and value to the context. Although the value
member is of type any, the type of the any must be a string.

prop_name The name of the property to add.
value The value of the property to add.

CORBA::Context:iset values ()

Orbix CORBA Programmer’s Reference: C++ 89

Context::set_values()

void set values(
NVList ptr values

)i

Sets one or more property values in the context. The previous value
of a property, if any, is discarded.

Parameters
values An NVList containing the property name:values to add
or change. In the nvList, the flags field must be set to
zero, and the TypeCode associated with an attribute
value must be CORBA:: tc string.
See Also CORBA::Context::set one value()

90 Orbix CORBA Programmer’s Reference: C++

CORBA::ContextList Class

See Also

Parameters

See Also

A contextList allows an application to provide a list of Context
strings that must be supplied when a dynamic invocation Request
is invoked.

The context is where the actual values are obtained by the ORB.
The contextList supplies only the context strings whose values are
to be looked up and sent with the request invocation. The server-
less contextList object allows the application to specify context
information in a way that avoids potentially expensive interface
repository lookups for the information by the ORB during a
request.

// IDL
pseudo interface ContextList {
readonly attribute unsigned long count;
void add(in string ctx) ;
string item(in unsigned long index) raises (CORBA: :Bounds) ;
void remove (in unsigned long index) raises (CORBA::Bounds) ;

}i

// C++
class ContextList {
public:
ULong count () ;
void add(
const char* ctxt
)i
void add consume (
char* ctxt
)i
const char* item(
ULong index
)i
void remove (
ULong index
)i
i
CORBA::Object:: create request ()

CORBA: :Request: :contexts
CORBA: :ORB: :create context list()

ContextList::add()

void add(
const char* ctxt

)i
Adds a context string to the context list.

ctxt A string representing context information.

CORBA::ContextList::add consume ()

Orbix CORBA Programmer’s Reference: C++ 91

Parameters

See Also

Parameters

ContextList::add_consume()

void add consume (
char* ctxt

)i

Adds a context string to the context list. The memory of the ctxt
parameter is managed by the method. The caller cannot access the
memory of ctxt after it has been passed in because this method
could copy and free the original immediately.

ctxt A string representing context information.

CORBA::ContextList::add()

ContextList::count()

ULong count () ;

Returns the number of context strings in the context list.

ContextList::item()

const char* item(
ULong index

)i

Returns the context item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ContextList.

index The indexed location of the desired context item.

ContextList::remove()

void remove (
ULong index

)i

Removes from the context list the context item at the indexed
location.

92 Orbix CORBA Programmer’s Reference: C++

CORBA::Current Interface

See Also

The current interface is the base interface for providing informa-
tion about the current thread of execution. Each ORB or CORBA
service that needs its own context derives an interface from
Current to provide information that is associated with the thread of
execution in which the ORB or CORBA service is running. Inter-
faces that derives from current include:

PortableServer: :Current

Your application can obtain an instance of the appropriate Current
interface by invoking resolve initial references().

Operations on interfaces derived from current access the state
associated with the thread in which they are invoked, not the state
associated with the thread from which the current was obtained.

The IDL interface follows:

//IDL

module CORBA {

// interface for the Current object
interface Current {

}i

PortableServer: :Current

CORBA: :ORB: :resolve initial references ()

Orbix CORBA Programmer’s Reference: C++ 93

94 Orbix CORBA Programmer’s Reference: C++

CORBA::CustomMarshal Value

Type

Custom value types can override the default marshaling/unmar-
shaling mechanism and provide their own way to encode/decode
their state. If an application’s value type is marked as custom, you
use custom marshaling to facilitate integration of such mecha-
nisms as existing class libraries and other legacy systems. Custom
marshaling is not to be used as the standard marshaling mecha-
nism.

CustomMarshal is an abstract value type that is meant to be imple-
mented by the application programmer and used by the ORB. For
example, if an application’s value type needs to use custom mar-
shaling, the IDL declares it explicitly as follows:

// RApplication-specific IDL
custom valuetype type {
// optional state definition

i

When implementing a custom value type such as this, you must
provide a concrete implementation of the CustomMarshal operations
so that the ORB is able to marshal and unmarshal the value type.
Each custom marshaled value type needs its own implementation.

You can use the skeletons generated by the IDL compiler as the
basis for your implementation. These operations provide the
streams for marshaling. Your implemented CustomMarshal code
encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.
It is the responsibility of your implementation to marshal the value
type’s state of all of its base types (if it has any).

The implementation requirements of the streaming mechanism
require that the implementations must be local because local
memory addresses such as those for the marshal buffers have to
be manipulated by the ORB.

Semantically, customMarshal is treated as a custom value type’s
implicit base class, although the custom value type does not actu-
ally inherit it in IDL. While nothing prevents you from writing IDL
that inherits from CustomMarshal, doing so will not in itself make
the type custom, nor will it cause the ORB to treat it as a custom
value type. You must implement these CustomMarshal operations.

Implement the following IDL operations for a custom value type:

// IDL in module CORBA
abstract valuetype CustomMarshal {
void marshal (
in DataOutputStream os
)i
void unmarshal (
in DataInputStream is
) ;
}i

Orbix CORBA Programmer’s Reference: C++ 95

Parameters

See Also

Parameters

See Also

CustomMarshal::marshal()

The operation you implement so that the ORB can marshal a custom
value type.

os A handle to the output stream the ORB uses to mar-
shal the custom value type.

Use the operations of the DataOutputStream in your implementation
to write the custom value type’s data to the stream as appropri-
ate.

CORBA:DataOutputStream

CustomMarshal::unmarshal()

The operation you implement so that the ORB can unmarshal a
custom value type.

is A handle to the input stream the ORB uses to unmar-
shal the custom value type.

Use the operations of the DataInputStream in your implementation
to read the custom value type’s data from the stream as appropri-
ate.

CORBA:DatalnputStream

96 Orbix CORBA Programmer’s Reference: C++

CORBA::DatalnputStream Value
Type

The DataInputStream value type is a stream used by unmarshal () for
unmarshaling an application’s custom value type. You use the
DataInputStream operations in your implementation of unmarshal ()
to read specific types of data from the stream, as defined in the
custom value type. The stream takes care of breaking the data
into chunks if necessary. The IDL code is as follows:

// IDL in module CORBA

abstract valuetype DatalnputStream {
any read any();
boolean read boolean() ;
char read char() ;
wchar read wchar () ;
octet read octet () ;
short read short () ;
unsigned short read ushort () ;
long read long() ;
unsigned long read ulong() ;
unsigned long long read ulonglong() ;
float read float () ;
double read double () ;
long double read longdouble () ;
string read string() ;
wstring read wstring() ;
Object read Object () ;
AbstractBase read Abstract () ;
ValueBase read Value() ;

TypeCode read TypeCode () ;

void read any array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length
)
void read boolean array (
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

)

void read char array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length

) ;

void read wchar array(
inout WcharSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read octet array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)i

Orbix CORBA Programmer’s Reference: C++ 97

void read short array (
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read ushort array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read long array (
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

)

void read ulong array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read ulonglong array (
inout ULonglongSeq sedq,
in unsigned long offset,
in unsigned long length

)i

void read longlong array (
inout LonglongSeq sedq,
in unsigned long offset,
in unsigned long length

)i

void read float array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);

void read double array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);
Exceptions

MARSHAL, An inconsistency is detected for any operations.

See Also CORBA::CustomMarshal
CORBA: :DataOutputStream

DatalnputStreamread_Abstract()

// IDL
AbstractBase read Abstract () ;

Returns an abstract data type from the stream.

98 Orbix CORBA Programmer’s Reference: C++

DatalnputStream::read_any()

// IDL
any read any() ;

Returns an any data type from the stream.

DatalnputStream::read_any_array()

// IDL
void read any array (

inout AnySeqg seq,

in unsigned long offset,

in unsigned long length
)i

Reads an array of any data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_boolean()

// IDL
boolean read boolean() ;

Returns a boolean data type from the stream.

DatalnputStream::read_boolean_array()

// IDL
void read boolean array (

inout BooleanSeqg seq,

in unsigned long offset,

in unsigned long length
)i

Reads an array of boolean data from the stream.
Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_char()

// IDL
char read char();

Orbix CORBA Programmer’s Reference: C++ 99

Parameters

Parameters

Returns a char data type from the stream.

DatalnputStream::read_char_array()

// IDL
void read char array(

inout CharSeqg seq,
in unsigned long offset,
in unsigned long length

)i
Reads an array of char data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_double()

// IDL
double read double() ;

Returns a double data type from the stream.

DatalnputStream::read_double_array()

// IDL
void read double array(

inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

Reads an array of double data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_float()

// IDL
float read float();

Returns a float data type from the stream.

100 Orbix CORBA Programmer’s Reference: C++

DatalnputStream::read_float_array()

// IDL
void read float array(

inout FloatSeq seq,

in unsigned long offset,

in unsigned long length
)i

Reads an array of float data from the stream.
Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_long()

// IDL
long read long() ;

Returns a long data type from the stream.

DatalnputStream::read_long_array()

// IDL
void read long array (

inout LongSeq seq,

in unsigned long offset,

in unsigned long length
)i

Reads an array of long data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_longdouble()

// IDL
long double read longdouble () ;

Unsupported.

Orbix CORBA Programmer’s Reference: C++ 101

Parameters

Parameters

DatalnputStream::read_longlong_array()

// IDL
void read longlong array(

inout LongLongSeq sed,
in unsigned long offset,
in unsigned long length

)i

Reads an array of long long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_Object()

// IDL
Object read Object() ;

Returns an Object (object reference) data type from the stream.

DatalnputStream::read_octet()

// IDL
octet read octet () ;

Returns an octet data type from the stream.

DatalnputStream::read_octet_array()

// IDL
void read octet array(

inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)i

Reads an array of octet data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

102 Orbix CORBA Programmer’s Reference: C++

Parameters

DatalnputStream::read_short()

// IDL
short read short () ;

Returns a short data type from the stream.

DatalnputStream::read_short_array()

// IDL
void read short array(

inout ShortSeg seq,

in unsigned long offset,

in unsigned long length
)i

Reads an array of short data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_string()

// IDL
string read string();

Returns a string data type from the stream.

DatalnputStream::read_TypeCode()
// IDL
TypeCode read TypeCode () ;

Returns a TypeCode data type from the stream.

DatalnputStream::read_ulong()

// IDL
unsigned long read ulong() ;

Returns an unsigned long data type from the stream.

DatalnputStream::read_ulong_array()

// IDL
void read ulong array (

inout ULongSeg sedq,
in unsigned long offset,

in unsigned long length

Orbix CORBA Programmer’s Reference: C++ 103

Parameters

Parameters

)i

Reads an array of unsigned long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_ulonglong()

// IDL
unsigned long long read ulonglong() ;

Returns an unsigned long long data type from the stream.

DatalnputStream::read_ulonglong_array()

// IDL
void read ulonglong array (

inout ULonglongSeq sed,
in unsigned long offset,
in unsigned long length

)i

Reads an array of unsigned long long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_ushort()

// IDL
unsigned short read ushort() ;

Returns an unsigned short data type from the stream.

DatalnputStream::read_ushort_array()

// IDL
void read ushort array(

inout UShortSeg seq,
in unsigned long offset,
in unsigned long length

)i

104 Orbix CORBA Programmer’s Reference: C++

Reads an array of unsigned short data from the stream.
Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_Value()
// IDL

ValueBase read Value() ;

Returns a value type from the stream.

DatalnputStream::read_wchar()

// IDL
wchar read wchar () ;

Returns a wchar data type from the stream.

DatalnputStream::read_wchar_array()

// IDL
void read wchar array (

inout WCharSeq seq,

in unsigned long offset,

in unsigned long length
)i

Reads an array of wchar data from the stream.
Parameters
seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_wstring()
// IDL

wstring read wstring() ;

Returns a wstring data type from the stream.

Orbix CORBA Programmer’s Reference: C++ 105

106 Orbix CORBA Programmer’s Reference: C++

CORBA::DataOutputStream Value
Type

The DataOutputStream value type is a stream used by marshal () for
marshaling an application’s custom value type. You use the
DataOutputStream operations in your implementation of marshal ()
to write specific types of data to the stream, as defined in the cus-
tom value type. The stream takes care of breaking the data into
chunks if necessary. The IDL code is as follows:

//IDL in module CORBA
abstract valuetype DataOutputStream {
void write any(in any value);
void write boolean(in boolean value) ;
void write char(in char value);
void write wchar(in wchar value) ;
void write octet(in octet value);
void write short (in short value);
void write ushort(in unsigned short value);
void write long(in long value);
void write ulong(in unsigned long value) ;
void write longlong(in long long value) ;
void write ulonglong(in unsigned long long value) ;
void write float(in float value);
void write double(in double value) ;
void write longdouble(in long double value) ;
void write string(in string value);
void write wstring(in wstring value) ;
void write Object(in Object value);
void write Abstract(in AbstractBase value) ;
void write Value(in ValueBase value) ;
void write TypeCode(in TypeCode value) ;
void write any array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length) ;
void write boolean array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length) ;
void write char array(
in CharSeq seq,
in unsigned long offset,
in unsigned long length) ;
void write wchar array (
in WcharSeq seq,
in unsigned long offset,
in unsigned long length) ;
void write octet array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length) ;
void write short array(
in ShortSeq seq,
in unsigned long offset,
in unsigned long length) ;
void write ushort array(

Orbix CORBA Programmer’s Reference: C++ 107

in UShortSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write long array(

in LongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ulong array (

in ULongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ulonglong array (

in ULongLongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write longlong array (

in LonglongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write float array(

in FloatSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write double array(

in DoubleSeq seq,

in unsigned long offset,

in unsigned long length) ;

Exceptions

MARSHAL An inconsistency is detected for any operations.

See Also CORBA: : CustomMarshal
CORBA: :DataInputStream

DataOutputStream::write_Abstract()

// IDL
void write Abstract (

in AbstractBase value

)i
Writes an abstract data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_any()

// IDL
void write any(
in any value

)i
Writes an any data type to the stream.

108 Orbix CORBA Programmer’s Reference: C++

Parameters

value The value written to the stream.

DataOutputStream::write_any_array()

// IDL
void write any array(

in AnySeq seq,
in unsigned long offset,
in unsigned long length

)

Writes an array of any data to the stream.

Parameters

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_boolean()

// IDL
void write boolean (

in boolean value

)i
Writes a boolean data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_boolean_array()

// IDL
void write boolean array(

in BooleanSeqg seq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of boolean data to the stream.

Parameters

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_char()

// IDL
void write_char(

Orbix CORBA Programmer’s Reference: C++ 109

Parameters

Parameters

Parameters

Parameters

in char value

)i
Writes a char data type to the stream.

value The value written to the stream.

DataOutputStream::write_char_array()

// IDL
void write char array(

in CharSeqg seq,
in unsigned long offset,
in unsigned long length

)i
Writes an array of char data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_double()

// IDL
void write double (

in double value

)i
Writes a double data type to the stream.

value The value written to the stream.

DataOutputStream::write_double_ array()

// IDL
void write double array(

in DoubleSeqg seq,
in unsigned long offset,
in unsigned long length

)i
Writes an array of double data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

110 Orbix CORBA Programmer’s Reference: C++

Parameters

Parameters

Parameters

Parameters

DataOutputStream::write_float()

// IDL
void write float (

in float value

)
Writes a float data type to the stream.

value The value written to the stream.

DataOutputStream::write_float_array()

// IDL
void write float array(

in FloatSeqg seq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of float data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_long()

// IDL
void write long(

in long value

)i
Writes a long data type to the stream.

value The value written to the stream.

DataOutputStream::write_long_array()

// IDL
void write long array (

in LongSeq sedq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.

Orbix CORBA Programmer’s Reference: C++ 111

length The number of data items to write.

DataOutputStream::write_longdouble()

// IDL
void write longdouble (

in long double value

)i
Writes a long double data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_longlong()
// IDL
void write longlong (
in long long value
)i
Writes a long long data type to the stream.
Parameters
value The value written to the stream.
DataOutputStream::write_longlong_array()
// IDL
void write longlong array (
in LonglLongSeq sedq,
in unsigned long offset,
in unsigned long length
)i
Writes an array of long long data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_Object()
// IDL
void write Object (
in Object value
)i
Writes an object data type (object reference) to the stream.
Parameters

value The value written to the stream.

112 Orbix CORBA Programmer’s Reference: C++

Parameters

Parameters

Parameters

Parameters

DataOutputStream::write_octet()

// IDL
void write octet (

in octet value

)
Writes an octet data type to the stream.

value The value written to the stream.

DataOutputStream::write_octet_array()

// IDL
void write octet array(

in OctetSeqg seq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of octet data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_short()

// IDL
void write short (

in short value

)i
Writes a short data type to the stream.

value The value written to the stream.

DataOutputStream::write_short_array()

// IDL
void write short array(

in ShortSeqg seq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of short data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.

Orbix CORBA Programmer’s Reference: C++ 113

length

The number of data items to write.

DataOutputStream::write_string()

// IDL

void write string(
in string value

)i

Writes a string data type to the stream.

Parameters

value

The value written to the stream.

DataOutputStream::write_TypeCode()

// IDL

void write TypeCode (
in TypeCode value

)i

Writes a TypeCode data type to the stream.

Parameters

value

The value written to the stream.

DataOutputStream::write_ulong()

// IDL

void write ulong(
in unsigned long value

)i

Writes an unsigned long data type to the stream.

Parameters

value

The value written to the stream.

DataOutputStream::write_ulong_array()

// IDL

void write ulong array(
in ULongSeg seq,
in unsigned long offset,
in unsigned long length

)i

Writes an array of unsigned long data to the stream.

Parameters

seq
offset
length

114 Orbix CORBA Programmer’s Reference: C++

The sequence of data to write to the stream.
The offset in seq from which to start writing data.
The number of data items to write.

Parameters

Parameters

Parameters

Parameters

DataOutputStream::write_ulonglong()

// IDL
void write ulonglong (

in unsigned long long value

)i
Writes an unsigned long long data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulonglong_array()

// IDL
void write ulonglong array (

in ULongLongSeqg seq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of unsigned long long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write__ushort()

// IDL
void write ushort (

in unsigned short value

)i
Writes an unsigned short data type to the stream.

value The value written to the stream.

DataOutputStream::write_ushort_array()

// IDL
void write ushort array(

in UShortSeg seq,

in unsigned long offset,

in unsigned long length
)i

Writes an array of unsigned short data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.

Orbix CORBA Programmer’s Reference: C++ 115

length The number of data items to write.

DataOutputStream::write_Value()

// IDL
void write Value(

in ValueBase value

)i
Writes a value type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_wchar()

// IDL
void write wchar (

in wchar value

)i
Writes a wchar data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_wchar_array()

// IDL
void write wchar array(

in WCharSeqg seq,
in unsigned long offset,
in unsigned long length

)i
Writes an array of wchar data to the stream.

Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_wstring()
// IDL
void write wstring(

in wstring value

)i

Writes a wstring data type to the stream.

116 Orbix CORBA Programmer’s Reference: C++

Parameters

value The value written to the stream.

Orbix CORBA Programmer’s Reference: C++ 117

118 Orbix CORBA Programmer’s Reference: C++

CORBA::DomainManager

Interface

The DomainManager interface provides an operation to find the
Policy objects associated with a policy domain. Each policy
domain includes one policy domain manager object
(DomainManager). The DomainManager has associated with it the pol-
icy objects for that domain and it records the membership of the
domain.

// IDL in CORBA Module
interface DomainManager {
Policy get domain policy(
in PolicyType policy type

)i
}i

A policy domain is a set of objects with an associated set of policies.
These objects are the policy domain members. The policies represent
the rules and criteria that constrain activities of the objects of the
policy domain. Policy domains provide a higher granularity for pol-
icy management than an individual object instance provides.

When a new object reference is created, the ORB implicitly associ-
ates the object reference (and hence the object that it is associ-
ated with) with one or more policy domains, thus defining all the
policies to which the object is subject. If an object is simultane-
ously a member of more than one policy domain, it is governed by
all policies of all of its domains.

Each DomainManager has a ConstructionPolicy object associated
with it which has the make domain manager () operation. This opera-
tion controls whether a new DomainManager is created or an existing
one is used when the new object reference is created.

The DomainManager does not include operations to manage domain
membership, structure of domains, or to manage which policies
are associated with domains. However, because a DomainManager iS
a CORBA object, it has access to the CORrBA: :Object interface,
which is available to all CORBA objects. The oObject interface
includes the following related operations:

get domain managers () allowsyour applicationsto retrieve the
domain managers and hence the security and other policies applicable to
individual objects that are members of the policy domain.

Y ou can a'so obtain an object’spolicy using _get policy().

DomainManager::get_domain_policy()

Policy get domain policy (
in PolicyType policy type
)
Returns a reference to the policy object of the specified policy type
for objects in this policy domain.

Orbix CORBA Programmer’s Reference: C++ 119

Parameters

policy type The type of policy for objects in the domain which the
application wants to administer.

There may be several policies associated with a domain, with a
policy object for each. There is at most one policy of each type
associated with a policy domain. The policy objects are thus
shared between objects in the domain, rather than being associ-
ated with individual objects. Consequently, if an object needs to
have an individual policy, then it must be a singleton member of a
policy domain.

Exceptions
INV_POLICY The value of policy type is not valid either because the
specified type is not supported by this ORB or because
a policy object of that type is not associated with this
object.
See Also CORBA::Policy

CORBA: :Object:: get domain managers ()
CORBA: : ConstructionPolicy: :make domain manager ()
CORBA: :Object:: get policy ()

120 Orbix CORBA Programmer’s Reference: C++

CORBA::EnumbDef Interface

See Also

See Also

Interface Enumbef describes an IDL enumeration definition in the
interface repository.

// IDL in module CORBA.

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

}i

The inherited operation describe () is also described.

EnumbDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which TypedefDef inherits), describe ()
returns a structure of type Contained: :Description. The
DefinitionKind for the description’s kind member is dk_Enum. The
value member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription. The type field of
the struct gives the TypeCode of the defined enumeration.

CORBA: : TypedefDef : :describe ()

EnumDef::members Attribute

// IDL
attribute EnumMemberSeg members;

Returns or changes the enumeration’s list of identifiers (its set of
enumerated constants).

CORBA: :Identifier

Orbix CORBA Programmer’s Reference: C++ 121

122 Orbix CORBA Programmer’s Reference: C++

CORBA::Environment Class

See Also

See Also

See Also

The Environment class provides a way to handle exceptions in situ-
ations where true exception-handling mechanisms are unavailable
or undesirable.

For example, in the DIl you can use the Environment class to pass
information between a client and a server where the C++ host
compiler does not support C++ exception handling.

// IDL

pseudo interface Environment {
attribute exception exception;
void clear();

}i
// C++

class Environment {

public:
void exception (Exception* e) ;
Exception *exception() const;
void clear();

duplicate (Environment ptr obj) ;
nil();

}i

CORBA::ORB::.create environment ()

Environment::clear()

//C++
void clear() ;

Deletes the Exception, if any, contained in the Environment. This is
equivalent to passing zero to exception(). It is not an error to call
clear () on an Environment that holds no exception.

CORBA:IEnvironment:Iexception ()

Environment::_duplicate()

// C++
static Environment ptr duplicate(

Environment ptr obj
)i
Returns a reference to obj and increments the reference count of
obj.

CORBA::release ()

Environment::exception()
Extracts the exception contained in the Environment object.

// C++
Exception* exception() const;

Orbix CORBA Programmer’s Reference: C++ 123

Parameters

Examples

See Also

See Also

Returns the exception, if any, raised by a preceding remote request.
The returned pointer refers to memory owned by the Environment
and must not be freed by the caller. Once the Environment is
destroyed, the pointer is no longer valid.

// C++

void exception (
Exception* e

)i

Assigns the Exception denoted by the parameter e into the
Environment.

e The Exception assigned to the Environment The
Environment does not copy the parameter but it
assumes ownership of it. The Exception must be
dynamically allocated.

Following is an example of usage:
// C++

CORBA: :Environment env;

A var obj = ...

obj->op (env) ;

if (CORBA: :Exception* ex = env.exception()) ({

}

You can make a number of remote requests using the same
Environment variable. Each attempt at a request immediately
aborts if the Exception referenced by the Environment is not O, and
thus any failure causes subsequent requests not to be attempted,
until the exception pointer is reset to 0. Any failed call may also
generate one or more null proxies, so that any attempts to use
these proxies prior to the end of a TRY macro (for non-exception
handling compilers) are null operations.

The Environment retains ownership of the Exception returned. Thus,
once the Environment is destroyed, or its Exception cleared, the ref-
erence is no longer valid.

CORBA::Environment::clear ()

Environment::_nil()
// C++

static Environment ptr nil();
Returns a nil object reference for an Environment object.

CORBA::is nil ()

124 Orbix CORBA Programmer’s Reference: C++

CORBA::Exception Class

Details of this class can be found in the CORBA specification. The
C++ Language Mapping document provides the following explana-
tion of the CORBA: :Exception class:

// C++
class Exception
{

public:

virtual ~Exception() ;

virtual void raise() const = 0;

virtual const char * name() const;

virtual const char * rep id() const;
i
The Exception base class is abstract and may not be instantiated
except as part of an instance of a derived class. It supplies one
pure virtual function to the exception hierarchy: the raise() func-
tion. This function can be used to tell an exception instance to
throw itself so that a catch clause can catch it by a more derived

type.
Each class derived from Exception implements raise() as follows:

// C++
void SomeDerivedException:: raise() const

{
}

For environments that do not support exception handling, please
refer to Section 1.42.2, "Without Exception Handling," on page
1-169 of the CORBA specification for information about the
_raise() function.

throw *this;

The name() function returns the unqualified (unscoped) name of
the exception. The rep id() function returns the repository ID of
the exception.

Orbix CORBA Programmer’s Reference: C++ 125

126 Orbix CORBA Programmer’s Reference: C++

CORBA::ExceptionDef Interface

See Also

See Also

See Also

Interface ExceptionDef describes an IDL exception in the interface
repository. It inherits from interface Contained and Container.

// IDL in module CORBA.

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

}i

The inherited operation describe () is also described.

CORBA: :Contained
CORBA: :Container

ExceptionDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The DefinitionKind for the kind member of this structure is
dk_Exception. The value member is an any whose TypeCode is
_tc ExceptionDescription and whose value is a structure of type
ExceptionDescription.

The type field of the ExceptionDescription structure gives the
TypeCode Of the defined exception.

CORBA: :Contained: :describe ()
CORBA: : TypeCode

ExceptionDef::members Attribute

// IDL
attribute StructMemberSeg members;

In a sequence of SstructMember structures, the members attribute
describes the exception’s members.

The members attribute can be modified to change the structure’s
members. Only the name and type def fields of each StructMember
should be set. The type field should be set to tc void, and it will
be set automatically to the TypeCode of the type def field.

CORBA: : StructDef
CORBA: : ExceptionDef: : type

ExceptionDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type of the exception (from which the definition of the exception
can be understood). The TypeCode kind for an exception is tk_except.

Orbix CORBA Programmer’s Reference: C++ 127

See Also CORBA: : TypeCode
CORBA: : ExceptionDef : :members

128 Orbix CORBA Programmer’s Reference: C++

CORBA::ExceptionList Class

See Also

Parameters

See Also

An ExceptionList object allows an application to provide a list of
TypeCodes for all application-specific (user-defined) exceptions that
may result when a dynamic invocation Request is invoked. This
server-less ExceptionList object allows the ORB to avoid poten-
tially expensive interface repository lookups for the exception
information during a request.

// PIDL
pseudo interface ExceptionList {
readonly attribute unsigned long count;
void add(in TypeCode exc) ;
TypeCode item(in unsigned long index) raises (Bounds) ;
void remove (in unsigned long index) raises (Bounds) ;
}i
// C++
class ExceptionList {
public:
ULong count () ;
void add(TypeCode ptr tc);
void add consume (TypeCode ptr tc);
TypeCode ptr item(ULong index) ;
void remove (ULong index) ;

}i

CORBA::Object:: create request ()
CORBA: :Request : :exceptions
CORBA: :ORB: :create exception list ()

ExceptionList::add()

// C++
void add(

TypeCode ptr tc
)i

Adds a TypeCode to the exception list.

te A TypeCode representing exception information.

CORBA::ExceptionlList::add consume ()

ExceptionList::add_consume()
// C++

void add consume (

TypeCode ptr tc
)
Adds an item to the exception list. The memory of the tc parameter
is managed by the function. The caller cannot access the memory
of tc after it has been passed in because this function could copy
and free the original immediately.

Orbix CORBA Programmer’s Reference: C++ 129

Parameters

See Also

Parameters

Parameters

te A TypeCode representing exception information.

CORBA:IExceptionList: :add ()

ExceptionList::count()

// C++
ULong count () ;

Returns the number of items in the exception list.

ExceptionList::item()

// C++
TypeCode ptr item(
ULong index

)i

Returns the exception item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ExceptionList.

index The indexed location of the desired item.

ExceptionList::remove()
// C++

void remove (
ULong index

)i
Removes from the exception list the item at the indexed location.

index The indexed location of the desired item.

130 Orbix CORBA Programmer’s Reference: C++

CORBA::FixedDef Interface

The FixedDef interface describes an IDL fixed-point type in the
interface repository. A fixed-point decimal literal consists of an
integer part, a decimal point, a fraction part, and a 4 or D.

// IDL in module CORBA.
interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;
};The inherited IDLType attribute is a tk_fixed TypeCode, which
describes a fixed-point decimal number.

See Also CORBA::Repository::create fixed()

FixedDef::digits Attribute

// IDL
attribute unsigned short digits;

The digits attribute specifies the total number of decimal digits in
the fixed-point number, and must be in the range of 1 to 31,
inclusive.

FixedDef::scale Attribute

// IDL
attribute short scale;

The scale attribute specifies the position of the decimal point.

Orbix CORBA Programmer’s Reference: C++ 131

132 Orbix CORBA Programmer’s Reference: C++

CORBA.InterfaceDefPackage.Fulll
NnterfaceDescription Class

See Also

InterfaceDefPackage.FulllnterfaceDescription.
FulllnterfaceDescription()

// IDL
struct FullInterfaceDescription {

Identifier name;

RepositoryId id;

RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base interfaces;

TypeCode type;
boolean is abstract;

i

Describes an interface including its operations and attributes.

name The name of the interface.

id An identifier of the interface.

defined in The identifier where the interface is defined.

version The version of the interface.

operations A sequence of interface operations.

attributes A sequence of interface attributes.

base interfaces A sequence of base interfaces from which this
interface is derived.

type The type of the interface.

is abstract True if the interface is an abstract one, false
otherwise.

CORBA:.:InterfaceDef:.describe interface ()

Orbix CORBA Programmer’s Reference: C++ 133

134 Orbix CORBA Programmer’s Reference: C++

CORBA: . IDLType Interface

See Also

See Also

The abstract base interface 1DLType describes interface repository
objects that represent IDL types. These types include interfaces,
type definitions, structures, unions, enumerations, and others.
Thus, the IDLType is a base interface for the following interfaces:

ArrayDef
AliasDef
EnumDef
FixedDef
InterfaceDef
NativeDef
PrimitiveDef
SequenceDef
StringDef
StructDef
TypedefDef
UnionDef
ValueBoxDef
ValueDef
WstringDef

The IDLType provides access to the TypeCode describing the type,
and is used in defining other interfaces wherever definitions of IDL
types must be referenced.

// IDL in module CORBA.

interface IDLType : IRObject {
readonly attribute TypeCode type;

}i

CORBA: : IRObject
CORBA: : TypeCode
CORBA: : TypedefDef

IDLType::type Attribute

//IDL
readonly attribute TypeCode type;

Encodes the type information of an interface repository object. Most
type information can also be extracted using operations and attri-
butes defined for derived types of the IDLType.

CORBA: : TypeCode

Orbix CORBA Programmer’s Reference: C++ 135

136 Orbix CORBA Programmer’s Reference: C++

CORBA::InterfaceDef Interface

See Also

InterfaceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions,
operations, and attributes. it inherits from the interfaces
Container, Contained, and IDLType.

Calling get interface() on a reference to an object (interface ptr
Or interface var) returns a reference to the InterfaceDef object
that defines the CORBA object’s interface.

// IDL in module CORBA.

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface
attribute InterfaceDefSeq base interfaces;

// read interface
boolean is a(
in RepositoryId interface id

)i

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base interfaces;

TypeCode type;

}i

FullInterfaceDescription describe interface() ;

// write interface
AttributeDef create attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create operation/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

)i
}; // End interface InterfaceDef

The inherited operation describe () is also described.

CORBA: :Contained
CORBA: :Container

Orbix CORBA Programmer’s Reference: C++ 137

Exceptions

See Also

Parameters

Exceptions

See Also

CORBA: :Object:: get interface()

InterfaceDef::base_interfaces Attribute

// IDL
attribute InterfaceDefSeq base interfaces;

The base_interfaces attribute lists in a sequence of InterfaceDef
objects the interfaces from which this interface inherits.

The inheritance specification of an InterfaceDef oObject can be
changed by changing its base interfaces attribute.

BAD PARAM, The name of any definition contained in the interface
minor code 5 conflicts with the name of a definition in any of the base
interfaces.

CORBA: :Object:: get interface()

InterfaceDef::create_attribute()

// IDL
AttributeDef create attribute(

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode
)i
Creates a new AttributeDef within the target InterfacebDef. The
defined in attribute of the new AttributeDef is set to the target
InterfaceDef.

id The identifier of the new attribute. It is an error to specify
an id that already exists within the target object’s reposi-
tory.

name The name of the attribute. It is an error to specify a name

that already exists within this InterfaceDef.
version A version for this attribute.
type The 1DLType for this attribute.

mode Specifies whether the attribute is read only
(ATTR READONLY) or read/write (ATTR NORMAL).

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 InterfaceDef.

CORBA: :AttributeDef

138 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

See Also

InterfaceDef::create_operation()

// IDL
OperationDef create operation/(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType result,

in OperationMode mode,

in ParDescriptionSeq params,
in ExceptionDefSeqg exceptions,
in ContextIdSeq contexts

)
Creates a new OperationDef within the target InterfaceDef. The

defined in attribute of the new oOperationDef is set to the target
InterfaceDef.

id The identifier of the new attribute. It is an error to
specify an id that already exists within the target
object’s repository.

name The name of the attribute. It is an error to specify a
name that already exists within this InterfaceDef.

version A version number for this operation.

result The return type for this operation.

mode Specifies whether this operation is normal (OP_NORMAL)

or oneway (OP_ONEWAY).

params A sequence of ParameterDescription structures that
describes the parameters to this operation.

exceptions A sequence of ExceptionDef Objects that describes the
exceptions this operation can raise.

contexts A sequence of context identifiers for this operation.

CORBA: :OperationDef
CORBA: : ExceptionDef

InterfaceDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description. The DefinitionKind for the kind member is
dk_Interface. The value member is an any whose TypeCode is
_tc_InterfaceDescription and whose value is a structure of type
InterfaceDescription.

CORBA: :Contained: :describe ()

InterfaceDef::describe_interface()

// IDL
FullInterfaceDescription describe interface();

Orbix CORBA Programmer’s Reference: C++ 139

Returns a description of the interface, including its operations,
attributes, and base interfaces in a FullInterfaceDescription.

Details of exceptions and contexts can be determined via the
returned sequence of OperationDescription structures.

See Also CORBA: :OperationDef: :describe ()
CORBA: :AttributeDef: :describe ()

InterfaceDef::FulllnterfaceDescription
Structure

// IDL
struct FullInterfaceDescription {

Identifier name;

RepositoryId id;

RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base interfaces;
TypeCode type;

i
Describes an interface including its operations and attributes.
name The name of the interface.
id An identifier of the interface.
defined in The identifier where the interface is defined.
version The version of the interface.
operations A sequence of interface operations.
attributes A sequence of interface attributes.
base interfaces A sequence of base interfaces from which this
interface is derived.
type The type of the interface.
See Also CORBA::InterfaceDef::describe interface ()

InterfaceDef::is_a()

// IDL
boolean is a(

in RepositoryId interface id
)i

Returns TRUE if the interface is either identical to or inherits (directly
or indirectly) from the interface represented by interface id. Oth-
erwise the operation returns FALSE.

Parameters

interface id The repository ID of another InterfaceDef object.

140 Orbix CORBA Programmer’s Reference: C++

CORBA::IRODbject Interface

See Also

Exceptions

The interface IRObject is the base interface from which all inter-
face repository interfaces are derived.

// IDL in module CORBA.
interface IRObject {

readonly attribute DefinitionKind def kind;
void destroy () ;

}i

IRObject::def_kind Attribute

// IDL
readonly attribute DefinitionKind def kind;

Identifies the kind of an IFR object. For example, an OperationDef
object, describing an IDL operation, has the kind dk_Operation.

CORBA: :DefinitionKind

IRObject::destroy()

// IDL
void destroy () ;

Deletes an IFR object. This also deletes any objects contained within
the target object.

BAD INV ORDER With a minor value of:

2 destroy () is invoked on a Repository Or on a
PrimitiveDef oObject.

1 An attempt is made to destroy an object that would
leave the repository in an incoherent state.

Orbix CORBA Programmer’s Reference: C++ 141

142 Orbix CORBA Programmer’s Reference: C++

CORBA::ModuleDef Interface

See Also

The interface ModuleDef describes an IDL module in the interface
repository. It inherits from the interfaces Container and Contained.

// IDL in module CORBA.
interface ModuleDef : Container, Contained { };

The inherited operation describe () is also described.

ModuleDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The kind member is dk_Module. The value member is an any whose
TypeCode IS _tc ModuleDescription and whose value is a structure of
type ModuleDescription.

CORBA: :Contained: :describe ()

Orbix CORBA Programmer’s Reference: C++ 143

144 Orbix CORBA Programmer’s Reference: C++

CORBA::NamedValue Class

See Also

Parameters

See Also

See Also

A Namedvalue object describes an argument to a request or a return
value, especially in the DII, and is used as an element of an NVList
object. A Namedvalue object maintains an any value, parame-
ter-passing mode flags, and an (optional) name.

// IDL

pseudo interface Namedvalue {
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

}i

// C++

class Namedvalue {

public:
const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue ptr duplicate (NamedvValue ptr nv);
static NamedValue ptr nil();

}i

CORBA::NVList

CORBA: :ORB: :create named value ()
CORBA: :Request: :result ()

CORBA: :Object:: create request ()

NamedValue::_ duplicate()

static NamedValue ptr duplicate (NamedValue ptr nv) ;

Returns a new reference to the Namedvalue object input and incre-
ments its reference count.

nv The Namedvalue Object reference to be duplicated.

CORBA::release ()

NamedValue::flags()

Flags flags() const;

Returns the flags associated with the Namedvalue. Flags identify the
parameter passing mode for arguments of an NVList.

CORBA:Flags

NamedValue::name()

const char *name () const;

Returns a pointer to the optional name associated with the
Namedvalue. This is the name of a parameter or argument of a

Orbix CORBA Programmer’s Reference: C++ 145

See Also

request. The return value is a pointer to the internal memory of the
Namedvalue object and must not be freed by the caller.

NamedValue:: _nil()
static Namedvalue ptr nil();
Returns a nil object reference for a Namedvalue.

CORBA::is nil()

NamedValue::value()

Any *value() const;

Returns a pointer to Any value contained in the Namedvalue.

The return value is a pointer to the internal memory of the
Namedvalue object and must not be freed by the caller. However,
the value in a Namedvalue may be manipulated via standard opera-
tions on any values.

146 Orbix CORBA Programmer’s Reference: C++

CORBA::NativeDef Interface

See Also

The interface NativeDef describes an IDL native type in the inter-
face repository. It inherits from the interface TypedefDef. The
inherited type attribute is a tk native TypeCode that describes the
native type.

// IDL in module CORBA

interface NativeDef : TypedefDef {};

CORBA::Container::create native ()

Orbix CORBA Programmer’s Reference: C++ 147

148 Orbix CORBA Programmer’s Reference: C++

CORBA::NVLiIst Class

See Also

An NVList is a pseudo-object used for constructing parameter lists.
It is a list of Namedvalue elements where each Namedvalue describes
an argument to a request.

The Namedvalue and NVList types are used mostly in the DIl in the
request operations to describe arguments and return values. They
are also used in the context object routines to pass lists of prop-

erty names and values. The NvList is also used in the DSI opera-
tion ServerRequest: :arguments () .

The nvList class is partially opaque and may only be created by
using ORB: :create list (). The NvList class is as follows:

// IDL
pseudo interface NVList {
readonly attribute unsigned long count;
NamedValue add(in Flags flags) ;
NamedValue add item(in Identifier item name, in Flags flags);
NamedValue add value(in Identifier item name,
in any val, in Flags flags);
NamedValue item(in unsigned long index) raises (Bounds) ;
void remove (in unsigned long index) raises (Bounds) ;

}i

// C++

class NVList {

public:
ULong count () const;
NamedValue ptr add(Flags) ;
NamedValue ptr add item(const char*, Flags);
NamedValue ptr add value(const char*, const Any&, Flags);
NamedValue ptr add item consume (char*, Flags);
NamedValue ptr add value consume (char*, Any*, Flags);
NamedValue ptr item(ULong) ;
void remove (ULong) ;

static NVList ptr duplicate(NVList ptr nv);
static NVList ptr nil();

}i

CORBA: :NamedValue

CORBA: :ORB:create list()

CORBA: :Object:: create request ()

NVList::count()

ULong count () const;

Returns the number of elements in the list.

NVList::add()

NamedvValue ptr add(
Flags flags

)i

Orbix CORBA Programmer’s Reference: C++ 149

Creates an unnamed value, initializes only the flags, and adds it to
the list. The new Namedvalue is returned.

Parameters

flags Possible values include:

ARG IN

ARG OUT

ARG INOUT

IN COPY VALUE
DEPENDENT LIST

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed, nor assign it to a
type _var Vvariable.

See Also CORBA::NVList::add item()
CORBA: :NVList::add value ()
CORBA: :NVList::add item consume ()
CORBA: :NVList: :add value consume ()

NVList::add_item()

NamedvValue ptr add item(
const char* item_name,
Flags flags
)i
Creates and returns a Namedvalue with name and flags initialized,
and adds it to the list.

Parameters

item name Name of item.
flags Possible values include:

ARG IN

ARG OUT

ARG INOUT

IN COPY VALUE
DEPENDENT LIST

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed, nor assign it to a
type var variable.

See Also CORBA:I:NVList::add ()
CORBA: :NVList::add value()
CORBA: :NVList::add item consume ()
CORBA: :NVList::add value consume ()

NVList::add_item_consume()

NamedValue ptr add item consume (
char* item name,

Flags flags
)i

150 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

See Also

Creates and returns a Namedvalue with name and flags initialised,
and adds it to the list. The NvList takes over memory management
responsibilities for the item name parameter.

item name Name of item. This parameter is consumed by the
NVList. The caller may not access this data after it
has been passed to this function.

flags Possible values include:

ARG IN

ARG OUT

ARG INOUT

IN COPY VALUE
DEPENDENT LIST

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed, nor assign it to a
type _var variable.

CORBA::NVList::add()

CORBA: :NVList::add item()

CORBA: :NVList::add value()

CORBA: :NVList::add value consume ()

NVList::add_value()

NamedvValue ptr add value(
const char* item name,

const Any& value,
Flags flags
)i

Creates and returns a Namedvalue with name, value, and flags
initialized and adds it to the list.

item name Name of item.

value Value of item.

flags Possible values include:
ARG IN
ARG OUT
ARG INOUT

IN COPY VALUE
DEPENDENT LIST

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed, nor assign it to a
type var variable.

CORBA:I:NVList: :add ()

CORBA: :NVList::add item()

CORBA: :NVList::add item consume ()
CORBA: :NVList::add value consume ()

Orbix CORBA Programmer’s Reference: C++ 151

NVList::add_value_consume()

NamedValue ptr add value consume (
char* item name,

Any* value,
Flags flags
)i

Creates and returns a Namedvalue with name, value, and flags
initialised, and adds it to the list. The nvList takes over memory
management responsibilities for both the name and value param-

eters.
Parameters
item name Name of item. This parameter is consumed by the
NvList. The caller may not access this data after it
has been passed to this function.
value Value of item. This parameter is consumed by the
NvList. The caller may not access this data after it
has been passed to this function.
flags Possible values include:
ARG IN
ARG OUT
ARG INOUT
IN COPY VALUE
DEPENDENT LIST
The caller should use Namedvalue: :value () to modify the value
attribute of the underlying Namedvalue, if needed.
The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed, nor assign it to a
type var variable.
See Also CORBA: :NamedValue: :value ()
CORBA: :NVList::add ()
CORBA: :NVList::add item()
CORBA: :NVList::add item consume ()
CORBA: :NVList: :add value ()
NVList::count()
ULong count () const;
Returns the number of Namedvalue elements in the NvList.
NVList:: _duplicate()
static NVList ptr duplicate(
NVList ptr nv
)i
Returns a new reference to the NvList and increments the reference
count of the nv object.
Parameters

nv The Namedvalue for which to get a duplicate reference.

152 Orbix CORBA Programmer’s Reference: C++

See Also

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

CORBA::release ()

NVList::item()

NamedvValue ptr item(
ULong index
)

Returns the Namedvalue list item at the given index. The first item is
at index 0. This method can be used to access existing elements in

the list.
index Index of item.
Bounds The index is out of range.

NVList::_nil()

static NVList ptr nil();
Returns a nil object reference for an NvList object.

CORBA::is nil ()

NVList::remove()

void remove (
ULong index

)i

Removes the item at the given index. The first item is at index O.

The method calls CORBA: :

release () on the item.

index Index of item

Bounds The index is out of range.

CORBA::release ()

Orbix CORBA Programmer’s Reference: C++ 153

154 Orbix CORBA Programmer’s Reference: C++

CORBA::ODbject Class

The object class is the base class for all normal CORBA objects.
This class has some common methods that operate on any CORBA
object. These operations are implemented directly by the ORB, not
passed on to your object’s implementation.

On the client side, the methods of this class are called on a proxy
(unless collocation is set). On the server side, they are called on
the real object.

Table 5 shows the methods provided by the CORBA: :Object class:

Table5: Methods of the Object Class

Manage Object References

Create Requests for the DII

duplicate ()
hash ()

is al()

is equivalent ()
nil ()

non existent ()
release ()

create request ()

request ()

Access Information in the
IFR

get interface ()

Manage Policies and
Domains

Orbix Enhancements

get client policy ()
get domain managers ()
get policy()

get policy overrides()
set policy overrides()
validate connection()

it get orb()

it proxy for()

it marshal ()

it get type id()

The CORBA namespace provides the is nil() and release() oper-
ations that are defined in the object interface’s IDL. All other IDL
operations for the object interface map to C++ functions with

leading underscores.

// IDL

interface Object {
boolean is nil();
Object duplicate() ;
void release() ;

ImplementationDef get implementation();

InterfaceDef get interface();

boolean is a(in string logical type id);

boolean non existent() ;

boolean is equivalent (in Object other object);
unsigned long hash (in unsigned long maximum) ;

void create request (
in Context ctx,

in Identifier operation,

in NVList arg list,
in NamedvValue result,
out Request request,
in Flags req flags

)i

void create request2 (

Orbix CORBA Programmer’s Reference: C++ 155

in Context ctx,

in Identifier operation,

in NVList arg list,

in NamedValue result,

in ExceptionList exclist,

in ContextList ctxtlist,

out Request request,

in Flags req flags
)
Policy ptr get policy(in PolicyType policy type);
DomainManagerList get domain managers() ;
Object set policy overrides (

in PolicyList policies,

in SetOverrideType set or add
)

// IDL Additions from CORBA Messaging
Policy get policy(
in PolicyType type
)i
Policy get client policy(
in PolicyType type
);
Object set policy overrides (
in PolicyList policies,
in SetOverrideType set add

raises (InvalidPolicies) ;
Policylist get policy overrides (
in PolicyTypeSeq types
);
boolean validate connection(
out PolicylList inconsistent policies
)
i
class Object {
public:
static Object ptr duplicate(Object ptr obj) ;
static Object ptr nil();
InterfaceDef ptr get interface();
Boolean 1is a(const char* logical type id);
Boolean non existent () ;
Boolean is equivalent (Object ptr other object) ;
ULong hash (ULong maximum) ;
void create request (
Context ptr ctx,
const char *operation,
NVList_ ptr arg_list,
NamedValue ptr result,
Request_out request,
Flags req_flags

);

void create request (

Context ptr ctx,

const char *operation,
NVList ptr arg list,
NamedValue ptr result,
Exceptionlist ptr ,
ContextList ptr ,

Request out request,

156 Orbix CORBA Programmer’s Reference: C++

Flags req_flags
) ;
Request ptr request (const char* operation) ;
Policy ptr get policy(PolicyType policy type);
DomainManagerList* get domain managers () ;
Object ptr set policy overrides (
const PolicyList &policies,
SetOverrideType set add
) ;

virtual Policy ptr get client policy(
PolicyType type

) = 0;

virtual PolicylList * get policy overrides(
const PolicyTypeSeq & types

) = 0;

virtual Boolean validate connection(
PolicyList &inconsistent policies

) = 0;

//

// Non-CORBA pseudo-operations.

//

virtual ORB ptr it get orb() = 0;

virtual Object ptr it proxy for() = 0;

virtual void it marshal (
IT OutStream ptr os,

ORB ptr orb
) = 0;
virtual char* it get type id() = 0;

Object:: create_request()

void create request (

)i

Context ptr ctx,
const char *operation,

NVList ptr arg list,

NamedValue ptr result,
Request out request,

Flags reqg_flags

void create request (

Context ptr ctx,

const char *operation,

NVList ptr arg list,
NamedValue ptr result,
ExceptionlList ptr exceptions,
ContextList ptr contexts,
Request out request,

Flags reqg_flags

Orbix CORBA Programmer’s Reference: C++ 157

These construct a CORBA: :Request Object. These methods are part
of the DIl and create an ORB request on an object by constructing
one of the object’s operations.

See request () for a simpler alternative way to create a Request.

Parameters

ctx Context Object, if any, to be sent in the request.

If the ctx argument to _create request () is a nil
Context Object reference, then you can add the
Ccontext later by calling the Request::ctx() func-
tion on the request object.

operation The name of the request operation. The opera-
tion name is the same operation identifier that
is specified in the IDL definition for this opera-
tion.

arg_list The parameters, for the operation, each of type
NamedValue.

If this value is zero, you can add the arguments
later by calling the Request: :arguments () func-
tion. You can also add each argument one at a
time by calling the appropriate helper function
such as add in arg() on the Request object.

result The result of the operation invocation is placed
in this argument after the invocation completes.
Use ORB::create named value() to create the
NamedValue Object to be used as this return value

parameter.
request Contains the newly created Request.
req_flags If you specify flag values they are ignored

because argument insertion or extraction is
handled using the any type.

exceptions A reference to a list of TypeCodes for all applica-
tion-specific (user-defined) exceptions that may
result when the rRequest is invoked.

contexts A reference to a list of context strings for the
operation.

The only implicit object reference operations allowed with the
_create request () call include:

non existent ()
is al()
get interface ()

Exceptions

BAD PARAM The name of an implicit operation that is not allowed is
passed to create request ()—for example,
_is equivalent is passed to create request() as the
operation parameter.

See Also CORBA::Object:: request ()
CORBA: :Request
CORBA: :Request : :arguments ()
CORBA: :Request: :ctx ()
CORBA: :NVList

158 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

See Also

See Also

CORBA: :NamedValue

Object::_duplicate()

static Object ptr duplicate(
Object ptr obj

)i

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

obj Pointer to the object to duplicate.

CORBA::release ()

Object::_get_client_policy()

virtual Policy ptr get client policy(

PolicyType type
) = 0;
Returns the effective overriding policy for the object reference.
The effective override is obtained by first checking for an override
of the given policyType at the Object scope, then at the Current
scope, and finally at the orB scope. If no override is present for the
requested PolicyType, the system-dependent default value for that
PolicyType is used.

Portable applications should set the desired defaults at the orB
scope since default policy values are not specified.

type The type of policy desired.

CORBA:I:Object:: get policy ()
CORBA: :Object:: set policy overrides ()
CORBA: :Object:: get policy overrides ()

Object:: _get _domain_managers()

DomainManagersList* get domain managers() ;

Returns the list of immediately enclosing domain managers of this
object. At least one domain manager is always returned in the list
since by default each object is associated with at least one domain
manager at creation.

The get domain managers() method allows applications such as
administration services to retrieve the domain managers and
hence the security and other policies applicable to individual
objects that are members of the domain.

CORBA: :DomainManager

Orbix CORBA Programmer’s Reference: C++ 159

See Also

Parameters

Exceptions

See Also

Object::_get_interface()

InterfaceDef ptr get interface();

Returns a reference to an object in the interface repository that
describes this object’s interface.

CORBA..InterfaceDef

Object::_get policy()

Policy ptr get policy(
PolicyType policy type
)i
Returns a reference to the policy object of the type specified by the
policy type parameter.

policy type The type of policy to get.

_get _policy() returns the effective policy which is the one that
would be used if a request were made. Note that the effective pol-
icy may change from invocation to invocation due to transparent
rebinding. Invoking non existent () on an object reference prior
to get policy() ensures the accuracy of the returned effective
policy.
Quality of Service (see “Quality of Service Framework”) is man-
aged on a per-object reference basis with _get policy(),

set policy overrides(), get policy overrides(), and

get client policy ().

INV_POLICY The value of policy type is not valid either because
the specified type is not supported by this ORB or
because a policy object of that type is not associated
with this object.

CORBA::Object:: non existent ()

CORBA: :Object:: set policy overrides ()
CORBA: :Object:: get policy overrides ()
CORBA: :Object:: get client policy ()
CORBA: :Object:: validate connection()

Object::_get_policy_overrides()

virtual PolicyList * _get policy overrides(
const PolicyTypeSeq & types
) = 0;

Returns the list of policy overrides of the specified policy types set
at the Object scope. If the specified sequence is empty, all policy

overrides at this scope will be returned. If none of the requested

policy types are overridden at the Object scope, an empty sequence
is returned.

160 Orbix CORBA Programmer’s Reference: C++

Parameters

types A sequence of policy types for which the overrides are
desired.
See Also CORBA::Object:: get policy ()

CORBA: :Object:: set policy overrides()
CORBA: :Object:: get client policy ()

Object:: _hash()

ULong hash (
ULong maximum

)

Returns a hashed value for the object reference in the range
0...maximum.

Parameters

maximum The maximum value that is to be returned from the
hash method.

Use hash() to quickly guarantee that objects references refer to
different objects. For example, if _hash() returns the same hash
number for two object references, the objects might or might not
be the same, however, if the method returns different numbers for
object references, these object references are guaranteed to be
for different objects.

In order to efficiently manage large numbers of object references,
some applications need to support a notion of object reference
identity. Object references are associated with internal identifiers
that you can access indirectly by using hash (). The value of this
internal identifier does not change during the lifetime of the object
reference.

You can use hash() and is equivalent () to support efficient
maintenance and search of tables keyed by object references.
_hash() allows you to partition the space of object references into
sub-spaces of potentially equivalent object references. For exam-
ple, setting maximum to 7 partitions the object reference space into
a maximum of 8 sub-spaces (O - 7).

See Also CORBA::Object:: is equivalent ()

Object::_is_a()

Boolean _is af(
const char* logical type id

)i

Returns 1 (true) if the target object is either an instance of the type
specified in logical type id or of a derived type of the type in
logical type id. If the target object is neither, it returns O (false).

Orbix CORBA Programmer’s Reference: C++ 161

Parameters

Exceptions

See Also

Parameters

See Also

Enhancement

logical type id The fully scoped name of the IDL interface. This is
a string denoting a shared type identifier
(RepositoryId). Use an underscore (‘_’) rather than
a scope operator (::) to delimit the scope.

The ORB maintains type-safety for object references over the
scope of an ORB, but you can use this method to help maintaining
type-safety when working in environments that do not have com-
pile time type checking to explicitly maintain type safety.

If _is a() cannot make a reliable determination of type compatibil-
ity due to failure, it raises an exception in the calling application
code. This enables the application to distinguish among the true,
false, and indeterminate cases.

CORBA: :Object:: non existent ()

Object::_is_equivalent()

Boolean _is_equivalent (
Object ptr other object

)i

Returns 1 (true) if the object references definitely refer to the same
object. A return value of O (false) does not necessarily mean that
the object references are not equivalent, only that the ORB cannot
confirm that they reference the same object. Two objects are
equivalentif they have the same object reference, or they both refer
to the same object.

other object An object reference of other object.

A typical application use of is equivalent () iS to match object ref-
erences in a hash table. Bridges could use the method to shorten
the lengths of chains of proxy object references. Externalization
services could use it to flatten graphs that represent cyclical rela-
tionships between objects.

CORBA: :Object:: is a()
CORBA: :Object:: hash()

Object::_it_get_orb()
virtual ORB ptr it get orb() = 0;
Returns the ORB.

This is an Orbix enhancement.

Object::_it_get _type_id()

virtual char* it get type id() = 0;

Returns the repository ID string contained within the Interopera-
ble Object Reference (IOR). If the IOR contains no type ID the
return value is an empty string. This function follows the standard

162 Orbix CORBA Programmer’s Reference: C++

Enhancement

Enhancement

Enhancement

See Also

C++ mapping rules for string return values, which means the
caller of this function must take responsibility for the returned
string and ensure that it is freed via CORBA: :string free () when
they are finished with it.

This is an Orbix enhancement.

Object::_it_marshal()

virtual void it marshal (
IT OutStream ptr os,

ORB ptr orb
) = 0;

This is an Orbix enhancement.

Object::_it_proxy_for()
virtual Object ptr it proxy for() = 0;
Returns a proxy for this object.

This is an Orbix enhancement.

Object::_nil()

static Object ptr nil();
Returns a nil object reference.

CORBA::is nil()

Object::_non_existent()

Boolean non existent();

Returns 1 (true) if the object does not exist or returns O (false)
otherwise.

Normally you might invoke this method on a proxy to determine
whether the real object still exists. This method may be used to
test whether an object has been destroyed because the method
does not raise an exception if the object does not exist.

Applications that maintain state that includes object references,
(such as bridges, event channels, and base relationship services)
might use this method to sift through object tables for objects that
no longer exist, deleting them as they go, as a form of garbage
collection.

Object:: _request()
Request ptr request (

const char* operation

)i

Orbix CORBA Programmer’s Reference: C++ 163

Parameters

See Also

Parameters

Exceptions

See Also

Returns a reference to a constructed Request on the target object.
This is the simpler form of create request ().

operation The name of the operation.

You can add arguments and contexts after construction using
Request : :arguments () and Request: :ctx().

CORBA: :Object:: create request ()
CORBA: :Request : :arguments ()
CORBA: :Request: :ctx ()

Object::_set_policy_overrides()

Object ptr set policy overrides (
const PolicyList& policies,
SetOverrideType set_add

)i

Returns a new object reference with the overriding policies associ-
ated with it.

policies A sequence of policy object references that are to be
associated with the new copy of the object reference
returned.

set_add Indicates whether the policies are in addition to

(RDD OVERRIDE) Or as replacement of (SET OVERRIDE) any
existing overrides already associated with the object
reference.

NO_PERMISSION An attempt is made to override any policy that cannot
be overridden. Only certain policies that pertain to the
invocation of an operation at the client end can be
overridden using this operation.

CORBA::Object:: get policy()
CORBA: :Object:: get policy overrides()
CORBA: :Object:: get client policy ()

Object:: validate connection()

virtual Boolean validate connection(
Policylist &inconsistent policies

) = 0;

Returns true if the current effective policies for the object will allow
an invocation to be made. Returns false if the current effective
policies would cause an invocation to raise the system exception
INV_POLICY.

164 Orbix CORBA Programmer’s Reference: C++

Parameters

Exceptions

inconsistent policies If the current effective policies are incompat-
ible, This parameter contains those policies
causing the incompatibility. This returned list
of policies is not guaranteed to be exhaus-
tive.

If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the
binding is no longer valid, a rebind will be attempted regardless of
the setting of any rRebindPolicy override. This method is the only
way to force such a rebind when implicit rebinds are disallowed by
the current effective RebindpPolicy.

The appropriate system exception is raised if the binding fails due
to some reason unrelated to policy overrides.

Orbix CORBA Programmer’s Reference: C++ 165

166 Orbix CORBA Programmer’s Reference: C++

CORBA::OperationDef Interface

See Also

See Also

See Also

Interface operationDef describes an IDL operation that is defined
in an IDL interface stored in the interface repository.

One way you can use the OperationDef is to construct an NvList for
a specific operation for use in the Dynamic Invocation Interface.
For details see ORB: :create operation list().

// IDL in module CORBA.

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

}i

The inherited operation describe () is also described.
CORBA: : Contained

CORBA: :ORB: :create operation list ()
CORBA: : ExceptionDef

OperationDef::contexts Attribute

// IDL
attribute ContextIdSeqg contexts;

The list of context identifiers specified in the context clause of the
operation.

OperationDef::exceptions Attribute

// IDL
attribute ExceptionDefSeg exceptions;

The list of exceptions that the operation can raise.

CORBA: : ExceptionDef

OperationDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The DefinitionKind for the kind member of this structure is
dk_Operation. The value member is an any whose TypeCode is
_tc_OperationDescription and whose value is a structure of type
OperationDescription.

CORBA: :Contained: :describe ()
CORBA: : ExceptionDef

Orbix CORBA Programmer’s Reference: C++ 167

See Also

See Also

See Also

OperationDef::mode Attribute

// IDL
attribute OperationMode mode;

Specifies whether the operation is normal (0P _NORMAL) Or oneway
(op_ONEWAY). The mode attribute can only be set to op onEwAY if the
result iS _tc void and all parameters have a mode Of PARAM IN.

OperationDef::params Attribute

// IDL
attribute ParDescriptionSeq params;

Specifies the parameters for this operation. It is a sequence of
structures of type ParameterDescription.

The name member of the ParameterDescription structure provides
the name for the parameter. The type member identifies the
TypeCode for the parameter. The type def member identifies the
definition of the type for the parameter. The mode specifies
whether the parameter is an in (PARAM IN), an out (PARAM OUT) Or
an inout (PARAM INOUT) parameter. The order of the
ParameterDescriptions is significant.

CORBA: : TypeCode
CORBA: : IDLType

OperationDef::result Attribute

// IDL
readonly attribute TypeCode result;

The return type of this operation. The attribute result def contains
the same information.

CORBA: : TypeCode
CORBA: :OperationDef: :result def

OperationDef::result_def Attribute

// IDL
attribute IDLType result def;

Describes the return type for this operation. The attribute result
contains the same information.

Setting the result def attribute also updates the result attribute.

CORBA: : IDLType
CORBA: :OperationDef: :result

168 Orbix CORBA Programmer’s Reference: C++

CORBA::ORB Class

The ORB class provides a set of methods and data types that con-
trol the ORB from both the client and the server. See Table 6:

Table6: Methods and Types of the ORB Class

Object Reference Manipulation

ORB Operation and Threads

duplicate ()

list initial services()
nil ()

ObjectId type

ObjectIdList sequence
object to string()

resolve initial references ()

destroy ()
perform work ()
run ()
shutdown ()

work pending ()

ORB Policies and Services

string to object ()

create policy ()
get service information ()

Dynamic Invocation Interface

(DI

TypeCode Creation Methods

create abstract interface tc()
create alias tc()
create array tc()
create enum tc()
create exception tc()
create fixed tc()
create interface tc()
create native tc()
create recursive tc()
create sequence tc()
create string tc()
create struct tc()
create union tc()
create value box tc()
create value tc()
create wstring tc()

create environment ()

create exception list ()

create list ()

create named value ()

create operation list ()

get next response ()

poll next response ()

RequestSeq sequence

send multiple requests deferred()
send multiple requests oneway ()

Value Type Factory Methods

lookup value factory()
register value factory()
unregister value factory()

You initialize the ORB using ORB init ().
The ORB class is defined as follows:

// IDL
pseudo interface ORB {
typedef sequence<Request> RequestSeq;
string object to string(in Object obj);
Object string to object (in string str);
void create list(in long count, out NVList new list);
void create operation list(
in OperationDef oper,
out NVList
new list

)i

Orbix CORBA Programmer’s Reference: C++ 169

void create named value (out NamedValue nmval) ;
void create exception list (out ExceptionList exclist);
void create context list (out ContextList ctxtlist);
void get default context (out Context ctx);
void create environment (out Environment new env) ;
void send multiple requests oneway (in RequestSeq req) ;
void send multiple requests deferred(in RequestSeq req) ;
boolean poll next response() ;
void get next response (out Request req) ;
Boolean work pending() ;
void perform work() ;
void shutdown (in Boolean wait_ for completion) ;
void run() ;
void destroy () ;
Boolean get service information (

in ServiceType service type,

out ServiceInformation service information

)
typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
Object resolve initial references (
in ObjectId id
) raises (InvalidName) ;
ObjectIdList list initial services();
Policy create policy(in PolicyType type, in any val)
raises (PolicyError) ;

}i
// C++

class ORB {
public:
class RequestSeqg {...};
char *object to string(Object var) ;
Object var string to object (const char *);
void create list (Long, NVList out);
void create operation list (OperationDef ptr, NVList out) ;
void create named value (NamedValue out) ;
void create exception list (ExceptionList out) ;
void create context list (ContextList out) ;
void get default context (Context out);
void create environment (Environment out) ;
void send multiple requests oneway (const RequestSeq &) ;
void send multiple requests deferred(const RequestSeq &) ;
Boolean poll next response() ;
void get next response (Request out) ;
Boolean work pending() ;
void perform work () ;
void shutdown (Boolean wait_ for completion) ;
void run() ;
Boolean get service information (
ServiceType svc_type,
ServiceInformation out svc info

)i

void destroy() ;

typedef char* ObjectId;

class ObjectIdiist { ... };

Object ptr resolve initial references(const char* id);
ObjectIdList* list initial services();

Policy ptr create policy(PolicyType type, const Any& val);

170 Orbix CORBA Programmer’s Reference: C++

static ORB ptr duplicate(ORB ptr orb) ;
static ORB ptr nil();

virtual TypeCode ptr
create struct tc(

const char* id,

const char* name,

const StructMemberSeqg & members
) = 0;

virtual TypeCode ptr
create union tc(
const char* id,
const char* name,
TypeCode ptr discriminator type,
const UnionMemberSeq & members
) = 0;

virtual TypeCode ptr
create enum tc(

const char* 1id,

const char* name,

const EnumMemberSeq & members
) = 0;

virtual TypeCode ptr
create alias tc(

const char* id,

const char* name,

TypeCode ptr original type
) = 0;

virtual TypeCode ptr
create exception tc(

const char* id,

const char* name,

const StructMemberSeqg & members
) = 0;

virtual TypeCode ptr
create interface tc(
const char* id,
const char* name
) = 0;

virtual TypeCode ptr
create string tc(

CORBA: :ULong bound
) = 0;

virtual TypeCode ptr
create wstring tc(

CORBA: :ULong bound
) = 0;

virtual TypeCode ptr
create fixed tc(
CORBA: :UShort digits,
CORBA: :Short scale
) = 0;

Orbix CORBA Programmer’s Reference: C++ 171

virtual TypeCode ptr
create sequence tc(
CORBA: :ULong bound,
TypeCode ptr element type
) = 0;

virtual TypeCode ptr
create recursive tc(

const char* id
) = 0;

virtual TypeCode ptr
create array tc(
CORBA: :ULong length,
TypeCode ptr element type
) = 0;

virtual TypeCode ptr
create value tc(
const char* 1id,
const char* name,
ValueModifier type modifier,
TypeCode ptr concrete base,
const ValueMemberSeq & members
) = 0;

virtual TypeCode ptr
create value box tc(
const char* id,
const char* name,
TypeCode ptr original type
) = 0;

virtual TypeCode ptr
create native tc(
const char* id,
const char* name
) = 0;

virtual TypeCode ptr

create abstract interface tc(
const char* id,
const char* name

) = 0;

virtual ValueFactory
register value factory(
const char* id,
ValueFactory factory
) = 0;

virtual void

unregister value factory(
const char* id

) = 0;

virtual ValueFactory
lookup value factory(

172 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

See Also

const char* id

ORB::create_abstract_interface_tc()

virtual TypeCode ptr create abstract interface tc(
const char* id,

const char* name
) = 0;

Returns a pointer to a new TypeCode Of kind tk_abstract interface
representing an IDL abstract interface.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA..TypeCode
CORBA. . TCKind

ORB::.create_alias_tc()

virtual TypeCode ptr create alias tc(
const char* id,

const char* name,

TypeCode ptr original type
) = 0;
Returns a pointer to a new TypeCode Of kind tk_alias representing
an IDL alias.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
original type A pointer to the actual TypeCode object this alias rep-
resents.

CORBA..TypeCode
CORBA. . TCKind

ORB::.create_array_tc()

virtual TypeCode ptr create array tc(
CORBA: :ULong length,
TypeCode ptr element type

) = 0;

Returns a pointer to a new TypeCode of kind tk_array representing
an IDL array.

Orbix CORBA Programmer’s Reference: C++ 173

Parameters

See Also

Parameters

See Also

Parameters

See Also

Parameters

See Also

length The length of the array.
element type The data type for the elements of the array.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_context_list()

void create context list (ContextList out list);
Creates an empty ContextList object for use with a DIl request. You

can add context strings to the list using ContextList: :add () and then
pass the list as a parameter to Object:: create request ().

list A reference to the new ContextList.

CORBA::ContextList
CORBA: :Object:: create request ()

ORB::create_enum_tc()

virtual TypeCode ptr create enum tc(
const char* id,

const char* name,
const EnumMemberSeq & members
) = 0;

Returns a pointer to a new TypeCode of kind tk_enum representing an
IDL enumeration.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of enumeration members.

CORBA..TypeCode
CORBA. . TCKind

ORB::create_environment()

void create environment (
Environment out environment

)i
Gets a newly created Environment object.

new_env New environment created.

CORBA::Environment

174 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

See Also

Parameters

See Also

ORB::create_exception_list()

void create exception list(
ExceptionList out list

)i

Creates an empty ExceptionList object for use with a DIl request.
You can add user-defined exceptions to the list using
ExceptionList::add () and then pass the list as a parameter to
Object:: create request ().

list A reference to the new ExceptionList.

CORBA::ExceptionList
CORBA: :Object:: create request ()

ORB::create_exception_tc()

virtual TypeCode ptr create exception tc(
const char* id,

const char* name,
const StructMemberSeq & members
) = 0;

Returns a pointer to a new TypeCode oOf kind tk_except representing
an IDL exception.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of members.

CORBA. . TypeCode
CORBA. . TCKind

ORB::.create_fixed_tc()

virtual TypeCode ptr create fixed tc(
CORBA: :UShort digits,

CORBA: :Short scale
) = 0;

Returns a pointer to a new TypeCode of kind tk fixed representing
an IDL fixed point type.

digits The number of digits for the fixed point type.
scale The scale of the fixed point type.

CORBA..TypeCode
CORBA. . TCKind

Orbix CORBA Programmer’s Reference: C++ 175

Parameters

See Also

Parameters

See Also

ORB::create_interface_tc()

virtual TypeCode ptr create interface tc(
const char* id,

const char* name
) = 0;

Returns a pointer to a new TypeCode representing an IDL interface.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_list()

void create list(
Long count,

NVList out list
)i

Allocates space for an empty NvList of the size specified by count
to contain Namedvalue Objects. A list of Namedvalue Object can be used
to describe arguments to a request when using the Dynamic
Invocation Interface. You can add Namedvalue items to list using the
NVList::add item() routine.

count Number of elements anticipated for the new NvList.
This is a hint to help with storage allocation.

list A pointer to the start of the list. The caller must
release the reference when it is no longer needed, or
assign it to an NVList var variable for automatic man-
agement.

CORBA..NVList

CORBA. .NamedValue
CORBA..ORB..create operation list ()
CORBA. :Request ()

ORB::create_named_value()

void create named value(
NamedValue out value

)i

Creates Namedvalue ObjeCtS you can use as return value parameters
in the Object:. create request () method.

176 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

See Also

Parameters

value A pointer to the Namedvalue Object created. You must
release the reference when it is no longer needed, or
assign it to a Namedvalue var variable for automatic
management.

CORBA..NVList

CORBA. .NamedValue

CORBA! ! Any
CORBA..ORB..create list()

ORB::create_native tc()

virtual TypeCode ptr create native tc(
const char* id,

const char* name
) = 0;

Returns a pointer to a new TypeCode of kind tk native representing
an IDL native type.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA. . TypeCode
CORBA. . TCKind

ORB::.create_operation_list()

void create operation list(
OperationDef ptr operation,
NVList out list

)

Creates an NvList and returns it in the 1ist parameter, initialized
with the argument descriptions for the operation specified in
operation.

operation A pointer to the interface repository object describing
the operation.

list A pointer to the start of the list. The caller must release
the reference when it is no longer needed, or assign it to
a NVList var variable for automatic management.

The returned nvList is of the correct length with one ele-
ment per argument, and each Namedvalue element of the
list has a valid name and valid flags (denoting the argu-
ment passing mode).

Each element in the list is of type Namedvalue whose value member
(of type CORBA: Any) has a valid type that denotes the type of the
argument. The value of the argument is not filled in.

Orbix CORBA Programmer’s Reference: C++ 177

See Also

Parameters

Exceptions

See Also

Parameters

Examples

Use of this method requires that the relevant IDL file be compiled
with the -r option.

CORBA..NVList

CORBA! :NamedValue

CORBA: . Any
CORBA..ORB:..create list()

ORB::create_policy()

Policy ptr create policy(
PolicyType type,
const Any& value

)i
Returns a reference to a newly created policy object.

type The policyType Of the pPolicy object to be created.
value The value for the initial state of the policy object cre-
ated.

PolicyError The requested policy type or initial state for the policy
is not supported. The appropriate reason as described
in the PolicyErrorCode.

CORBA::Policy
CORBA: : PolicyType
CORBA: : PolicyErrorCode

ORB::create_recursive_tc()

virtual TypeCode ptr create recursive tc(
const char* id

) = 0;

Returns a pointer to a recursive TypeCode, which serves as a place
holder for a concrete TypeCode during the process of creating type
codes that contain recursion. After the recursive TypeCode has been
properly embedded in the enclosing TypeCode, which corresponds to
the specified repository id, it will act as a normal TypeCode.

id The repository ID of the enclosing type for which the
recursive TypeCode iS serving as a place holder.

Invoking operations on the recursive TypeCode before it has been
embedded in the enclosing TypecCode will result in undefined behav-
ior.

The following IDL type declarations contains TypeCode recursion:

// IDL

struct foo {
long value;
sequence<foo> chain;

}i

178 Orbix CORBA Programmer’s Reference: C++

See Also

Parameters

See Also

Parameters

See Also

valuetype V {
public V member;

}i

To create a TypeCode for valuetype V, you invoke the TypeCode cre-

ation functions as follows:
// C++

TypeCode var recursive tc =
orb->create recursive tc("IDL:V:1.0");
ValueMemberSeq v_seq;
v_seq.length(1);
v_seq[0] .name string dup ("member") ;
v_seq[0] .type = recursive tc;
v_seq[0] .access = PUBLIC MEMBER;
TypeCode var v_val tc = orb->create value tc(
"IDL:V:1.0",
IIVII ,
VM_NONE,
TypeCode:: nil(),
v_seq

)i
CORBA. . TypeCode

ORB::create_sequence_tc()

virtual TypeCode ptr create sequence tc(
CORBA: :ULong bound,

TypeCode ptr element type
) = 0;

Returns a pointer to a new TypeCode of kind tk_sequence representing

an IDL sequence.

bound The upper bound of the sequence.
element_type The data type for the elements of the sequence.

CORBA. . TypeCode
CORBA. . TCKind

ORB::.create_string_tc()

virtual TypeCode ptr create string tc(
CORBA: :ULong bound

) = 0;

Returns a pointer to a new TypeCode of kind tk_string representing
an IDL string.

bound The upper bound of the string.

CORBA. . TypeCode
CORBA. . TCKind

Orbix CORBA Programmer’s Reference: C++ 179

Parameters

See Also

Parameters

See Also

ORB::create_struct_tc()

virtual TypeCode ptr create struct tc(
const char* id,

const char* name,
const StructMemberSeq & members
) = 0;

Returns a pointer to a new TypeCode of kind tk_struct representing
an IDL structure.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of structure members.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_union_tc()

virtual TypeCode ptr create union tc(
const char* 1id,

const char* name,

TypeCode ptr discriminator type,

const UnionMemberSeqg & members
) = 0;
Returns a pointer to a TypeCode of kind tk_union representing an IDL
union.

id The repository ID that globally identifies the
TypeCode object.

name The simple name identifying the TypeCode
object within its enclosing scope.

discriminator _type The union discriminator type.
members The sequence of union members.

CORBA..TypeCode
CORBA. . TCKind

ORB::create_value box_ tc()

virtual TypeCode ptr create value box tc(
const char* id,

const char* name,

TypeCode ptr original type
) = 0;
Returns a pointer to a new TypeCode of kind tk _value box represent-
ing an IDL boxed value.

180 Orbix CORBA Programmer’s Reference: C++

Parameters

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
original type A pointer to the original TypeCode object this boxed
value represents.

See Also CORBA. . TypeCode
CORBA. . TCKind

ORB::.create_value_tc()

virtual TypeCode ptr create value tc(
const char* id,

const char* name,
ValueModifier type modifier,

TypeCode ptr concrete base,
const ValueMemberSeqg & members

) = 0;
Returns a pointer to a TypeCode of kind tk_value representing an IDL
value type.
Parameters
id The repository ID that globally identifies the
TypeCode Object.
name The simple name identifying the TypeCode object
within its enclosing scope.
type modifier A value type modifier.
concrete base A TypeCode for the immediate concrete value type
base of the value type for which the TypeCode is
being created. If the value type does not have a
concrete base, use a nil TypeCode reference.
members The sequence of value type members.
See Also CORBA.: . TypeCode
CORBA! . TCKind
ORB::create_wstring_tc()
virtual TypeCode ptr create wstring tc(
CORBA: :ULong bound
) = 0;
Returns a pointer to a new TypeCode of kind tk_wstring representing
an IDL wide string.
Parameters
bound The upper bound of the string.
See Also CORBA. . TypeCode

CORBA: : TCKind

Orbix CORBA Programmer’s Reference: C++ 181

Exceptions

See Also

Parameters

See Also

Parameters

See Also

ORB::destroy()

void destroy () ;

This thread operation destroys the ORB so that its resources can be
reclaimed by the application.

If destroy () is called on an ORB that has not been shut down (see
shutdown ()) it will start the shut down process and block until the
ORB has shut down before it destroys the ORB. For maximum por-
tability and to avoid resource leaks, applications should always call
shutdown () and destroy () on all ORB instances before exiting.

After an ORB is destroyed, another call to orB init () with the
same ORB ID will return a reference to a newly constructed ORB.

BAD INV ORDER, An application calls destroy() in a thread that is cur-
minor code 3 rently servicing an invocation because blocking would
result in a deadlock.

OBJECT_NOT_EXI An operation is invoked on a destroyed ORB reference.
ST

The exception is raise if

CORBA:IORB:Irun()
CORBA: :ORB: : shutdown ()
CORBA: :ORB init ()

ORB::_duplicate()

static ORB ptr duplicate(
ORB ptr obj

)i

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

obj Pointer to the object to duplicate.

CORBA::release ()

ORB::get_default _context()

void get default context (Context out context);

Obtains a CORBA: :Context Object representing the default context of
the process.

context The default context of the process.

CORBA..Context
CORBA. .NVList

182 Orbix CORBA Programmer’s Reference: C++

ORB::get_next_response()

void get next response (
Request out request

)i
Gets the next response for a request that has been sent.

Parameters

request A pointer to the rRequest whose completion is being
reported.

You can call get_next_response () successively to determine the
outcomes of the individual requests from

send multiple requests deferred() calls. The order in which
responses are returned is not necessarily related to the order in
which the requests are completed.

Exceptions

WrongTransaction The thread invoking this method has a non-null
transaction context that differs from that of the
request and the request has an associated trans-
action context.

See Also CORBA.ORB..send multiple requests deferred()
CORBA. .Request..get response ()
CORBA. .Request..send deferred ()
CORBA..ORB..poll next response ()

ORB::get_service_information()

Boolean get service information(

ServiceType svc_type,

ServiceInformation out svc info

}i

Gets the service information about CORBA facilities and services
that this ORB supports. Returns 1 (true) if service information is
available for the svc _type and returns O (false) otherwise.

Parameters
svc_type The service type for which information is being
requested.
svc_info The service information available for svc_type, if that
information is available.
See Also CORBA::ServiceInformation

ORB::list_initial_services()

ObjectIdList* list initial services();

Returns a sequence of objectid strings, each of which names a
service provided by Orbix. This method allows your application to
determine which objects have references available. Before you can
use some services such as the naming service in your application
you have to first obtain an object reference to the service.

Orbix CORBA Programmer’s Reference: C++ 183

See Also

Parameters

See Also

See Also

See Also

The ObjectIdList may include the following names:

DynAnyFactory

IT Configuration
InterfaceRepository
NameService
ORBPolicyManager
POACurrent

PSS

RootPOA
SecurityCurrent
TradingService
TransactionCurrent

CORBA::ORB::resolve initial references ()

ORB::lookup_value_factory()

virtual ValueFactory lookup value factory(
const char* id

) = 0;
Returns a pointer to the factory method.

id A repository ID that identifies a value type factory
method.

Your application assumes ownership of the returned reference to
the factory. When you are done with the factory, invoke
ValueFactoryBase:: remove ref () once on that factory.

CORBA:IValueFactory
CORBA: :ORB: :register value factory()
CORBA: :ORB: :unregister value factory()

Object::_nil()
static ORB ptr nil();
Returns a nil object reference.

CORBA:Iis nil ()

ORB::Objectld

typedef char* ObjectId;
The name that identifies an object for a service. ObjectId strings
uniquely identify each service used by an ORB.

CORBA::ORB::ObjectIdList
CORBA::0ORB::1list initial services()

ORB::ObjectldList Sequence Class

class ObjectIdList {
public:

184 Orbix CORBA Programmer’s Reference: C++

See Also

// default constructor
ObjectIdList () ;
// initial maximum length constructor
ObjectIdList (ULong max) ;
// data constructor
ObjectIdList (
ULong max,
ULong length,
ObjectId *data,
Boolean release = FALSE
)i
// copy constructor
ObjectIdList (const ObjectIdListé&) ;

// destructor
~ObjectIdList () ;

// assignment operator
ObjectIdList &operator=(const ObjectIdListé&) ;

ULong maximum() const;
void length (ULong) ;
ULong length() const;

// subscript operators
ObjectId &operator[] (ULong index) ;
const ObjectId &operator[] (ULong index) const;

Boolean release () const;
void replace (

ULong max,

ULong length,

ObjectId *data,

Boolean release = FALSE

)i

// buffer reference

ObjectId* get buffer (Boolean orphan = FALSE) ;
// buffer access

const ObjectId* get buffer() const;

i

A sequence of ObjectId objects.
CORBA::0RB::0ObjectId

CORBA: :ORB: :1list initial services/()
“About Sequences”

ORB::object_to_string()

char *object to string(
Object var obj
)i

Returns a string representation of an object reference. An object
reference can be translated into a string by this method and the

resulting value stored or communicated in whatever ways strings
are manipulated.

Orbix CORBA Programmer’s Reference: C++ 185

Parameters

Note:

See Also

Exceptions

See Also

obj Object reference to be translated to a string.

Use string to object () to translate the string back to the corre-
sponding object reference.

A string representation of an object reference has the prefix 10r:
followed by a series of hexadecimal octets. The hexadecimal
strings are generated by first turning an object reference into an
interoperable object reference (IOR), and then encapsulating the IOR
using the encoding rules of common data representation (CDR). The
content of the encapsulated IOR is then turned into hexadecimal
digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded
as a hexadecimal digit, then the low four bits are encoded.

Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for
storing references to objects in persistent storage or
communicating references by means other than invocation.

CORBA..ORB..string to object ()

ORB::perform_work()

void perform work () ;

A thread function that provides execution resources to your appli-
cation if called by the main thread. This function does nothing if
called by any other thread.

Y ou can use perform work () and work pending () for asimple polling loop
that multiplexes the main thread among the ORB and other activities. Such a
loop would most likely be used in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code
that required use of the main thread. Here is a simple example of such a
polling loop:
// C++
for (;;) {

if (orb-swork pending()) {

orb->perform work () ;
}i

// do other things

// sleep
}i

BAD INV_ORDER, The method is called after the ORB has shut down.
minor code 4 You can catch this exception to determine when to ter-
minate a polling loop.

CORBA::ORB::run()
CORBA: :ORB: :work pending ()

186 Orbix CORBA Programmer’s Reference: C++

ORB::poll_next_response()

Boolean poll next response() ;

Returns 1 (true) if any request has completed or returns 0 (false)
if none have completed. This method returns immediately, whether
any request has completed or not.

You can call this method successively to determine whether the
individual requests specified in a send multiple requests oneway ()
Oor send multiple requests deferred() call have completed success-
fully.

Alternatively you can call Request: :poll response () on the individ-
ual request objects in the sequence of requests passed to

send multiple requests oneway () Or

send multiple requests deferred().

See Also CORBAI:ORBI:get next response ()
CORBA: :ORB: :send multiple requests oneway ()
CORBA: :ORB: :send multiple requests deferred()
CORBA: :Request: :poll response ()

ORB::register_value_factory()

virtual ValueFactory register value factory(
const char* id,

ValueFactory factory
) = 0;
Registers a value type factory method with the ORB for a particular
value type. The method returns a null pointer if no previous factory
was registered for the type. If a factory is already registered for the
value type, the method replaces the factory and returns a pointer
to the previous factory for which the caller assumes ownership.

Parameters
id A repository ID that identifies the factory.
factory The application-specific factory method that the ORB
calls whenever it needs to create the value type during
the unmarshaling of value instances.

When a value type factory is registered with the ORB, the ORB

invokes valueFactoryBase:: add ref () once on the factory before

returning from register value factory(). When the ORB is done
using that factory, the reference count is decremented once with

ValueFactoryBase:: remove ref (). This can occur in any of the fol-

lowing circumstances:

* If the factory is explicitly unregistered via
unregister value factory(), the ORB invokes
ValueFactoryBase:: remove ref () once on the factory.

* If the factory is implicitly unregistered due to a call to
shutdown (), the ORB invokes valueFactoryBase:: remove ref ()
once on each registered factory.

* If you replace a factory by calling this
register value factory() again, you should invoke
ValueFactoryBase:: remove ref () once on the previous factory.

See Also CORBA::ValueFactory

Orbix CORBA Programmer’s Reference: C++ 187

See Also

CORBA: :ORB: : lookup value factory ()
CORBA: :ORB: :unregister value factory ()

ORB::RequestSeq Sequence

class RequestSeqg {
public:
// default constructor
RequestSeq() ;
// initial maximum length constructor
RequestSeq (ULong max) ;
// data constructor
RequestSeq (
ULong max,
ULong length,
Request *data,
Boolean release = FALSE
)i
// copy constructor
RequestSeq(const RequestSeqs) ;

// destructor
~RequestSeq () ;

// assignment operator
RequestSeq &operator=(const RequestSeqs) ;

ULong maximum() const;
void length (ULong) ;
ULong length() const;

// subscript operators
Request &operator[] (ULong index) ;
const Request &operator[] (ULong index) const;

Boolean release() const;
void replace (

ULong max,

ULong length,

Request *data,

Boolean release = FALSE

)i

// buffer reference

Request* get buffer (Boolean orphan = FALSE) ;
// buffer access

const Request* get buffer() const;

}i
A sequence of rRequest Objects.

CORBA:IRequest
CORBA: :ORB: :send multiple requests oneway ()

CORBA: :ORB: :send multiple requests deferred()
“About Sequences”

188 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

See Also

Parameters

ORB::resolve_initial_references()

Object ptr resolve initial references (
const char* id

)i
Returns an object reference for a desired service.

id The name of the desired service. Use
list initial services() to obtain the list of services
supported.

Applications require a portable means by which to obtain some ini-
tial object references such as the root POA, the interface reposi-
tory, and various object services instances. The functionality of
resolve initial references() and list initial services() is like a
simplified, local version of the naming service that has only a
small set of objects in a flattened single-level name space.

The object reference returned must be narrowed to the correct
object type. For example, the object reference returned from
resolving the id name InterfaceRepository must be narrowed to
the type CORBA: :Repository.

CORBA:I:ORB::list initial services()

ORB::run()

void run() ;

A thread method that enables the ORB to perform work using the
main thread. If called by any thread other than the main thread,
this method simply waits until the ORB has shut down.

This method provides execution resources to the ORB so that it
can perform its internal functions. Single threaded ORB implemen-
tations, and some multi-threaded ORB implementations need to
use the main thread. For maximum portability, your applications
should call either run() or perform work() on the main thread.

run() returns after the ORB has completed the shutdown process,
initiated when some thread calls shutdown ().

CORBA::ORB::perform work ()
CORBA: :ORB: :work pending ()
CORBA: :ORB: : shutdown ()
CORBA: :ORB: :destroy ()

“Threading and Synchronization Toolkit Overview”

ORB::send_multiple_requests_deferred()

void send multiple requests deferred(
const RequestSeqg &req

)i
Initiates a number of requests in parallel.

reg A sequence of requests.

Orbix CORBA Programmer’s Reference: C++ 189

See Also

Parameters

See Also

Parameters

The method does not wait for the requests to finish before return-
ing to the caller. The caller can use get next response() Or
Request: :get response () to determine the outcome of the
requests. Memory leakage will result if one of these methods is
not called for a request issued with

send multiple requests oneway () Or Request::send deferred().

CORBAIIORB::send multiple requests oneway ()
CORBA: :Request: :get response ()

CORBA: :Request: :send deferred ()

CORBA: :ORB: :get next response ()

ORB::send_multiple_requests_oneway()

void send multiple requests oneway (
const RequestSeqg &req

)i

Initiates a number of requests in parallel. It does not wait for the
requests to finish before returning to the caller.

req A sequence of requests. The operations in this
sequence do not have to be IDL oneway operations.
The caller does not expect a response, nor does it
expect out or inout parameters to be updated.

CORBA::Request:isend oneway ()
CORBA: :0ORB: :send multiple requests deferred ()

ORB::shutdown()

void shutdown (
Boolean wait for completion

)i

This thread method instructs the ORB to shut down in preparation
for ORB destruction.

wait_for completion Designates whether or not to wait for comple-
tion before continuing.

If the value is 1 (true), this method blocks until
all ORB processing has completed, including
request processing and object deactivation or
other methods associated with object adapters.

If the value is O (false), then shut down may
not have completed upon return of the
method.

While the ORB is in the process of shutting down, the ORB oper-

ates as normal, servicing incoming and outgoing requests until all
requests have been completed. Shutting down the ORB causes all
object adapters to be shut down because they cannot exist with-
out an ORB.

190 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Parameters

See Also

Parameters

See Also

Once an ORB has shutdown, you can invoke only object reference
management methods including CORBA:: duplicate(), release(),
and is nil() on the ORB or any object reference obtained from
the ORB. An application may also invoke ORB: :destroy () on the
ORB itself. Invoking any other method raises exception

BAD INV ORDER System with the OMG minor code 4.

BAD INV_ORDER, An application calls this method in a thread that is cur-
minor code rently servicing an invocation because blocking would
3 result in a deadlock.

CORBA::ORB: :run ()
CORBA: :ORB: :destroy ()

ORB::string_to_object()

Object var string to object (
const char *obj_ref string

)i
Returns an object reference by converting a string representation
of an object reference.

obj ref string String representation of an object reference to be
converted.

To guarantee that an ORB will understand the string form of an
object reference, the string must have been produced by a call to
object to string().

CORBA..ORB..object to string()

ORB::unregister_value_factory()

virtual void unregister value factory(
const char* id

) = 0;

Unregisters a value type factory method from the ORB.

id A repository ID that identifies a value type factory
method.

CORBA::ValueFactory
CORBA: :ORB: : lookup value factory ()
CORBA: :ORB: :register value factory()

ORB::work_pending()

Boolean work pending() ;

This thread method returns an indication of whether the ORB needs
the main thread to perform some work. A return value of 1 (true)
indicates that the ORB needs the main thread to perform some work

Orbix CORBA Programmer’s Reference: C++ 191

and a return value of O (false) indicates that the ORB does not need
the main thread.

Exceptions

BAD INV ORDER, The method is called after the ORB has shutdown.
minor code 4

See Also CORBA::ORB::run ()
CORBA: :ORB: :perform work ()

192 Orbix CORBA Programmer’s Reference: C++

CORBA::Policy Interface

An ORB or CORBA service may choose to allow access to certain
choices that affect its operation. This information is accessed in a
structured manner using interfaces derived from the policy inter-
face defined in the CORBA module. A CORBA service is not
required to use this method of accessing operating options, but
may choose to do so.

This chapter is divided into the following sections:
* “Quality of Service Framework”
e “Policy Methods”

The following policies are available. These are classes that inherit
from the CORBA: :Policy class:

Table7: Policies
Category Policy

CORBA and CORBA: : ConstructionPolicy

IT_CORBA IT CORBA::WellKnownAddressingPolicy

PortableServer PortableServer: : ThreadPolicy

and IT_Portable- | PortableServer: :LifespanPolicy

Server PortableServer: : IdUniquenessPolicy
PortableServer: : IdAssignmentPolicy
PortableServer: :ImplicitActivationPolicy
PortableServer: :ServantRetentionPolicy
PortableServer: :RequestProcessingPolicy
IT PortableServer: :ObjectDeactivationPolicy
IT PortableServer: :PersistenceModePolicy

Messaging RebindPolicy
SyncScopePolicy
RoutingPolicy

You create instances of a policy by calling
CORBA: :ORB: :create policy ().

Quality of Service Framework

A policy is the key component for a standard Quality of Service
framework (QoS). In this framework, all qualities are defined as
interfaces derived from CORBA: :Policy. This framework is how all
service-specific qualities are defined. The components of the
framework include:

Policy This base interface from which all QoS objects
derive.

PolicyList A sequence of policy objects.

PolicyManager An interface with operations for querying and

overriding QoS policy settings.

Orbix CORBA Programmer’s Reference: C++ 193

Policy Transport Mechanisms for transporting policy values as
Mechanisms part of interoperable object references and
within requests. These include:

® TAG POLICIES - A Profile Component con-
taining the sequence of QoS policies
exported with the object reference by an
object adapter.

L INVOCATION POLICIES - A Service Context
containing a sequence of QoS policies in
effect for the invocation.

Most policies are appropriate only for management at either the
server or client, but not both. Server-side policies are associated
with a POA. Client-side policies are divided into ORB-level,
thread-level, and object-level policies. At the thread and ORB lev-
els, use the policyManager interface to query the current set of pol-
icies and override these settings.

POA Policies for Servers

Server-side policy management is handled by associating QoS
Policy objects with a POA. Since all QoS are derived from interface
Policy, those that are applicable to server-side behavior can be
passed as arguments to POA: :create POA(). Any such policies that
affect the behavior of requests (and therefore must be accessible
by the ORB at the client side) are exported within the object refer-
ences that the POA creates. It is clearly noted in a POA policy defi-
nition when that policy is of interest to the client. For those
policies that can be exported within an object reference, the
absence of a value for that policy type implies that the target sup-
ports any legal value of that policyType.

ORB-level Policies for Clients

You obtained the ORB’s locality-constrained policyManager through
an invocation of CORBA: :ORB: :resolve initial references (), Speci-
fying an identifier of ORBPolicyManager. This PolicyManager has
operations through which a set of policies can be applied and the
current overriding policy settings can be obtained. Policies applied
at the ORB level override any system defaults.

Thread-level Policies for Clients

You obtained a thread’s locality-constrained policyCurrent through
an invocation of CORBA: :ORB: :resolve initial references (), Speci-
fying an identifier of policycurrent. Policies applied at the
thread-level override any system defaults or values set at the ORB
level. When accessed from a newly spawned thread, the
PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy Of ORB CONTROL MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a

SINGLE THREAD MODEL POA, the thread-level overrides are reset to
have no overridden values.

194 Orbix CORBA Programmer’s Reference: C++

Object-level Policies for Clients

Policy Methods

Enhancement

Operations are defined on the base object interface through which
a set of policies can be applied. Policies applied at the object level
override any system defaults or values set at the ORB or thread
levels. In addition, accessors are defined for querying the current
overriding policies set at the object level, and for obtaining the
current effective client-side policy of a given policyType. The effec-
tive client-side policy is the value of a pPolicyType that would be in
effect if a request were made. This is determined by checking for
overrides at the object level, then at the thread level, and finally
at the ORB level. If no overriding policies are set at any level, the
system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default val-
ues are not specified in most cases.

The policy interface is as follows:

// IDL in module CORBA

interface Policy {
readonly attribute PolicyType policy type;
Policy copy () ;

void destroy() ;

}i

Policy::policy_type Attribute

// IDL
readonly attribute PolicyType policy type;

This read-only attribute returns the constant value of type
PolicyType that corresponds to the type of the policy object.

Policy::copy()

// IDL

Policy copy () ;

This operation copies the policy object. The copy does not retain
any relationships that the original policy had with any domain, or
object.

Policy::destroy()

// IDL
void destroy () ;

This operation destroys the policy object. It is the responsibility of
the policy object to determine whether it can be destroyed.

Orbix guarantees to always destroy all local objects it creates when
the last reference to them is released so you do not have to call
destroy (). However, code that relies on this feature is not strictly
CORBA compliant and may leak resources with other ORBs. (Ac-

Orbix CORBA Programmer’s Reference: C++ 195

cording to the CORBA specification, simply calling CORBA: : release ()
on all references to a policy object does not delete the object or its
components so each policy object created must be explicitly de-
stroyed to avoid memory leaks.)

Exceptions

NO_PERMISSION The policy object determines that it cannot be
destroyed.

196 Orbix CORBA Programmer’s Reference: C++

CORBA::PolicyCurrent Class

Parameters

See Also

The policyCurrent interface allows access to policy settings at the
current programming context level. Within a client, you obtain a
PolicyCurrent Object reference to set the quality of service for all
invocations in the current thread. You obtain a reference to this
interface by invoking ORB: :resolve initial references() with the
ObjectId PolicyCurrent.

The policyCurrent interface is derived from the policyManager and
the current interfaces. The PolicyManager interface allows you to
change the policies for each invocation and the current interface
allows control from the current thread.

Policies applied at the thread level override any system defaults or
values set at the ORB level. When accessed from a newly spawned
thread, the policyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy Of ORB CONTROL MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a POA of
the SINGLE THREAD MODEL, the thread-level overrides are reset to
have no overridden values.

class IT ART API PolicyCurrent
public virtual PolicyManager,
public virtual Current
{
public:
typedef CORBA::PolicyCurrent ptr ptr type;
typedef CORBA::PolicyCurrent var var type;
virtual ~PolicyCurrent () ;
static PolicyCurrent ptr narrow (
CORBA: :Object ptr obj

)i
static PolicyCurrent ptr unchecked narrow (
CORBA: :Object ptr obj

)i

inline static PolicyCurrent ptr duplicate(
PolicyCurrent ptr p

)i

inline static PolicyCurrent ptr nil();

static const IT FWString it fw type id;

PolicyCurrent::_duplicate()

inline static PolicyCurrent ptr duplicate(
PolicyCurrent ptr p

)i

Returns a duplicate object reference and increments the reference
count of the object.

p The current object reference to duplicate.

Orbix CORBA Programmer’s Reference: C++ 197

“About Standard Functions for all Interfaces”

PolicyCurrent::_narrow()

static PolicyCurrent ptr _narrow (
CORBA: :Object ptr obj

)i
Returns a new object reference to a policyCurrent object given an
existing reference.

Parameters
obj A reference to an object.
See Also CORBA::PolicyCurrent:: unchecked narrow ()
“About Standard Functions for all Interfaces”
PolicyCurrent::_nil()
inline static PolicyCurrent ptr nil();
Returns a nil object reference to a policyCurrent object.
See Also
“About Standard Functions for all Interfaces”
PolicyCurrent::—PolicyCurrent() Destructor
virtual ~PolicyCurrent () ;
The destructor for the object.
PolicyCurrent:: _unchecked_narrow()
static PolicyCurrent ptr unchecked narrow (
CORBA: :Object ptr obj
)i
Returns a new object reference to a policyCurrent object given an
existing reference.
Parameters
obj A reference to an object.
See Also CORBA::PolicyCurrent:: narrow ()

“About Standard Functions for all Interfaces”

198 Orbix CORBA Programmer’s Reference: C++

CORBA::PolicyManager Class

PolicyManager is an interface with operations for querying and
overriding QoS policy settings. It includes mechanisms for obtain-
ing policy override management operations at each relevant appli-
cation scope. You obtain the ORB’s PolicyManager by invoking
ORB: :resolve initial references () with the objectId
ORBPolicyManager.

You use a CORBA: :PolicyCurrent Object, derived from

CORBA: :Current, for managing the thread’s QoS policies. You obtain
a reference to this interface by invoking

ORB: :resolve initial references() with the Objectld
PolicyCurrent.

®* Accessor operations on CORBA: :0Object allow querying and
overriding of QoS at the object reference scope.

* The application of QoS on a POA is done through the currently
existing mechanism of passing a PolicyList to
POA: :create POA().

class IT ART API PolicyManager : public virtual CORBA::Object {
public:
typedef CORBA::PolicyManager ptr ptr type;
typedef CORBA::PolicyManager var var type;
virtual ~PolicyManager () ;
static PolicyManager ptr narrow (
CORBA: :Object _ptr obj

) ;
static PolicyManager ptr unchecked narrow (
CORBA: :Object ptr obj

)i

inline static PolicyManager ptr duplicate(
PolicyManager ptr p

)i

inline static PolicyManager ptr nil();

virtual PolicyList* get policy overrides(
const PolicyTypeSeq & ts

) = 0;

virtual void set policy overrides (
const PolicyList & policies,
SetOverrideType set add

) = 0;

static const IT FWString it fw type id;

PolicyManager::_duplicate()

inline static PolicyManager ptr duplicate(
PolicyManager ptr p

)i

Returns a duplicate object reference and increments the reference
count of the object.

Orbix CORBA Programmer’s Reference: C++ 199

Parameters

See Also

Parameters

Parameters

See Also

Parameters

See Also

See Also

p The current object reference to duplicate.

“About Standard Functions for all Interfaces”

PolicyManager::get_policy_overrides()

virtual PolicyList* get policy overrides (
const PolicyTypeSeq & ts
) = 0;

Returns a list containing the overridden polices for the requested

policy types. This returns only those policy overrides that have been
set at the specific scope corresponding to the target policyManager
(no evaluation is done with respect to overrides at other scopes).
If none of the requested policy types are overridden at the target
PolicyManager, an empty sequence is returned.

ts A sequence of policy types to get. If the specified
sequence is empty, the method returns all policy over-
rides at this scope.

CORBA::PolicyManager::iset policy overrides ()

PolicyManager::_narrow()

static PolicyManager ptr _narrow (
CORBA: :Object ptr obj

)i
Returns a new object reference to a policyManager object given an
existing reference.

obj A reference to an object.

CORBA:IPolicyManager:: unchecked narrow ()
“About Standard Functions for all Interfaces”

PolicyManager::_nil()
inline static PolicyManager ptr nil();

Returns a nil object reference to a policyManager object.

“About Standard Functions for all Interfaces”

PolicyManager::—PolicyManager() Destructor

virtual ~PolicyManager () ;

The destructor for the object.

200 Orbix CORBA Programmer’s Reference: C++

Parameters

Exceptions

Parameters

See Also

PolicyManager::set_policy_ overrides()

virtual void set policy overrides(
const PolicyList & policies,
SetOverrideType set add

) = 0;

Modifies the current set of overrides with the requested list of policy
overrides.

policies A sequence of references to policy objects.

set_add Indicates whether the policies in the policies parame-
ter should be added to existing overrides in the
PolicyManager Or used to replace existing overrides:

®* Use ADD OVERRIDE to add policies onto any other
overrides that already exist in the PolicyManager.

®* Use SET OVERRIDE to create a clean PolicyManager
free of any other overrides.

Invoking the method with an empty sequence of policies and a
mode of SET OVERRIDE removes all overrides from a policyManager.

There is no evaluation of compatibility with policies set within
other policy managers.

NO_PERMISSION Only certain policies that pertain to the invocation of
an operation at the client end can be overridden using
this operation. This exception is raised if you attempt
to override any other policy.

InvalidPolicie The request would put the set of overriding policies for
d the target policyManager in an inconsistent state. No
policies are changed or added.

PolicyManager:: _unchecked_ narrow()

static PolicyManager ptr unchecked narrow (
CORBA: :Object ptr obj
)i
Returns a new object reference to a policyManager object given an
existing reference.

obj A reference to an object.

CORBA::PolicyManager:: narrow ()
“About Standard Functions for all Interfaces”

Orbix CORBA Programmer’s Reference: C++ 201

202 Orbix CORBA Programmer’s Reference: C++

CORBA::PrimitiveDef Interface

Interface primitiveDef represents an IDL primitive type such as
short, long, and others. PrimitiveDef Objects are anonymous
(unnamed) and owned by the interface repository.

Objects of type primitiveDef cannot be created directly. You can
obtain a reference to a primitiveDef by calling
Repository::get primitive().

// IDL in module CORBA.
interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

See Also CORBA: : PrimitiveKind

CORBA: : IDLType
CORBA: :Repository: :get primitive ()

PrimitiveDef::kind Attribute

// IDL
readonly attribute PrimitiveKind kind;

Identifies which of the IDL primitive types is represented by this
PrimitiveDef.

A PrimitiveDef with a kind of type pk string represents an
unbounded string, a bounded string is represented by the inter-
face stringDef. A PrimitiveDef with a kind of type pk objref rep-
resents the IDL type Object. A PrimitiveDef with a kind of type
pk _value base represents the IDL type valueBase.

See Also CORBA: : IDLType
CORBA: :Object
CORBA: : StringDef

Orbix CORBA Programmer’s Reference: C++ 203

204 Orbix CORBA Programmer’s Reference: C++

CORBA::Repository Interface

The interface repository itself is a container for IDL type defini-
tions. Each interface repository is represented by a global root
Repository object.

The Repository interface describes the top-level object for a repos-
itory name space. It contains definitions of constants, typedefs,
exceptions, interfaces, value types, value boxes, native types, and
modules.

You can use the Repository operations to look up any IDL defini-
tion, by either name or identity, that is defined in the global name
space, in a module, or in an interface. You can also use other
Repository operations to create information for the interface
repository. See Table 8:

Table8: Operations of the Repository Interface
Read Operations Write Operations
describe contents () create array ()
get canonical typecode () create fixed()
get primitiwve () create sequence ()
lookup id() create string()
create wstring()

The five create_type Operations create new interface repository
objects defining anonymous types. Each anonymous type defini-
tion must be used in defining exactly one other object. Because
the interfaces for these anonymous types are not derived from
Contained, it is your responsibility to invoke in your application
destroy () on the returned object if it is not successfully used in
creating a definition that is derived from Contained.

The RrRepository interface is as follows:

// IDL in module CORBA.
interface Repository : Container {
Contained lookup id(
in RepositoryId search id
);
TypeCode get canonical typecode (
in TypeCode tc

) ;

PrimitiveDef get primitive(
in PrimitiveKind kind

)

StringDef create string(
in unsigned long bound

)

WstringDef create wstring(
in unsigned long bound

)

SequenceDef create sequence (
in unsigned long bound,
in IDLType element type

)i
ArrayDef create array(
in unsigned long length,

Orbix CORBA Programmer’s Reference: C++ 205

See Also

Parameters

See Also

in IDLType element type
);
FixedDef create fixed(
in unsigned short digits,
in short scale
)i

The inherited describe contents () is also described.

Note that although a Repository does not have a Repositoryld
associated with it (because it derives only from Container and not
from Contained) you can assume that its default RepositoryId. is an
empty string. This allows a value to be assigned to the defined in
field of each description structure for ModuleDef, InterfaceDef,
ValueDef, ValueBoxDef, TypedefDef, ExceptionDef and ConstantDef
that may be contained immediately within a Repository object.

CORBA: :Container

Repository::create_array()

// IDL
ArrayDef create array(

in unsigned long length,

in IDLType element type
)i
Returns a new array object defining an anonymous (unnamed) type.
The new array object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

length The number of elements in the array.
element_type The type of element that the array will contain.

CORBA: :ArrayDef
CORBA: : IRObject

Repository::create_fixed()

// IDL
FixedDef create fixed (

in unsigned short digits,
in short scale

)i

Returns a new fixed-point object defining an anonymous (unnamed)
type. The new object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility
to delete it.

206 Orbix CORBA Programmer’s Reference: C++

Parameters

digits The number of digits in the fixed-point number. Valid
values must be between 1 and 31, inclusive.

scale The scale.

Repository::create_sequence()

// IDL
SequenceDef create sequence (

in unsigned long bound,
in IDLType element type
)i

Returns a new sequence object defining an anonymous (unnamed)
type. The new sequence object must be used in the definition of
exactly one other object. Itis deleted when the object itis contained
in is deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility

to delete it.
Parameters
bound The number of elements in the sequence. A bound of
0 indicates an unbounded sequence.
element_type The type of element that the sequence will contain.
See Also CORBA: : SequenceDef
Repository::create_string()
// IDL
StringDef create string/(
in unsigned long bound
)i
Returns a new string object defining an anonymous (unnamed)
type. The new string object must be used in the definition of exactly
one other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.
Parameters
bound The maximum number of characters in the string.
(This cannot be 0.)
Use get primitive() to create unbounded strings.
See Also CORBA: : StringDef

CORBA: :Repository: :get primitiwve ()

Repository::create_wstring()
// IDL

StringDef create wstring (
in unsigned long bound

Orbix CORBA Programmer’s Reference: C++ 207

Parameters

See Also

Parameters

See Also

)i

Returns a new wide string object defining an anonymous (unnamed)
type. The new wide string object must be used in the definition of
exactly one other object. It is deleted when the object itis contained
in is deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

bound The maximum number of characters in the string.
(This cannot be 0.)

Use get primitive() to create unbounded strings.

CORBA: :WstringDef
CORBA: :Repository: :get primitive ()

Repository::.describe_contents()

// IDL
sequence<Description> describe contents (

in InterfaceName restrict type,
in boolean exclude inherited,
in long max returned objs

)i

The operation describe contents () is inherited from interface
Container. It returns a sequence of Container: :Description Struc-
tures; one such structure for each top level item in the repository.

restrict type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk Operation, then it
returns contained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

max_returned objs The number of objects that can be returned in
the call. Setting a value of -1 means return all
contained objects.

CORBA::Container: :describe contents()
CORBA: :Container: :Description
CORBA: :DefinitionKind

Repository::get_canonical_typecode()

// IDL
TypeCode get canonical typecode (

in TypeCode tc
)i

208 Orbix CORBA Programmer’s Reference: C++

Parameters

Parameters

See Also

Parameters

See Also

Returns a TypeCode that is equivalent to tc that also includes all
repository ids, names, and member names.

te The TypeCode to lookup.

If the top level TypeCode does not contain a RepositoryId (such as
array and sequence type codes or type codes from older ORBSs) or
if it contains a RepositoryId that is not found in the target
Repository, then a new TypeCode is constructed by recursively call-
iNng get canonical typecode() on each member TypeCode of the
original TypeCode.

Repository::get_primitive()
// IDL
PrimitiveDef get primitive(

in PrimitiveKind kind
)i
Returns a reference to a primitiveDef Of the specified PrimitiveKind.
All primitiveDef objects are owned by the Repository, one primitive
object per primitive type (for example, short, long, unsigned short,
unsigned long and so on).

kind The kind of primitive to get.

CORBA: : PrimitiveDef

Repository::lookup_id()

// IDL
Contained lookup id(

in RepositoryId search id
)i
Returns an object reference to a Contained object within the repos-
itory given its RepositoryId. If the repository does not contain a
definition for the given ID, a nil object reference is returned.

search id The RepositoryId of the IDL definition to lookup.

CORBA: : Contained

Orbix CORBA Programmer’s Reference: C++ 209

210 Orbix CORBA Programmer’s Reference: C++

CORBA::Request Class

This class is the key support class for the Dynamic Invocation
Interface (DII), whereby an application may issue a request for
any interface, even if that interface was unknown at the time the
application was compiled.

Orbix allows invocations, that are instances of class rRequest, to be
constructed by specifying at runtime the target object reference,
the operation name and the parameters. Such calls are termed
dynamic because the IDL interfaces used by a program do not
have to be statically determined at the time the program is
designed and implemented.

You create a request using methods Object:: create request() Or
Object:: request().

class Request {

public:
Object ptr target() const;
const char *operation() const;
NVList ptr arguments() ;
NamedValue ptr result();
Environment ptr env() ;
Exceptionlist ptr exceptions() ;
ContextList ptr contexts();
void ctx(Context ptr);
Context ptr ctx() const;

// argument manipulation helper functions
Any &add in arg() ;

Any &add in arg(const char* name) ;
Any &add inout arg();

Any &add inout arg(const char* name) ;
Any &add out arg() ;

Any &add out arg(const char* name) ;
void set return type (TypeCode ptr tc);
Any &return value() ;

void invoke () ;

void send oneway () ;

void send deferred() ;

void get response () ;

Boolean poll response () ;

// additional Messaging functions

virtual void sendc (CORBA::Object ptr handler) = 0;
virtual CORBA::Object ptr sendp() = 0;

virtual void prepare (CORBA::Object ptr p) = 0;

Vi

See Also CORBA::Object:: request ()
CORBA: :Object:: create request ()

Orbix CORBA Programmer’s Reference: C++ 211

Parameters

See Also

Parameters

See Also

Parameters

See Also

Request::add_in_arg()
Any &add_in arg() ;

Any &add in arg(
const char* name

)i
Returns an any value for the input argument that is added.

name The name for the argument that is added to the
request.

CORBA::Request : :arguments ()
CORBA: :Request: :add inout arg()
CORBA: :Request: :add out arg()

Request::add_inout_arg()

Any &add inout arg() ;

Any &add inout arg(
const char* name

)i
Returns an any value for the in/out argument that is added.

name The name for the argument that is added to the
request.

CORBA:IRequest: :arguments ()
CORBA: :Request::add in arg()
CORBA: :Request: :add out arg()

Request::add_out_arg()

Any &add out_arg() ;

Any &add out arg(
const char* name

)i
Returns an any value for the output argument that is added.

name The name for the argument that is added to the
request.

CORBA:IRequest: :arguments ()
CORBA: :Request::add in arg()
CORBA: :Request: :add inout arg()

212 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

Parameters

See Also

See Also

Request::arguments()

NVList ptr arguments() ;

Returns the arguments to the requested operation in an NVList.
Ownership of the return value is maintained by the Request and must
not be freed by the caller. You can add additional arguments to the
request using the add * arg() helper methods.

CORBA:INVList

CORBA: :Request::add in arg()
CORBA: :Request: :add inout arg()
CORBA: :Request::add out arg()

Request::contexts()

ContextList ptr contexts() ;

Returns a pointer to a list of contexts for the request. Ownership of
the return value is maintained by the rRequest and must not be freed
by the caller.

CORBA::ContextList

Request::ctx()

Context ptr ctx() const;

Returns the context associated with a request. Ownership of the
return value is maintained by the rRequest and must not be freed by
the caller.

void ctx(
Context ptr c
)i

Inserts a Context into a request.

c The context to insert with the request.

CORBA::Context

Request::env()

Environment ptr env();

Returns the Environment associated with the request from which
exceptions raised in DIl calls can be accessed. Ownership of the
return value is maintained by the rRequest and must not be freed by
the caller.

CORBA::Environment

Orbix CORBA Programmer’s Reference: C++ 213

See Also

See Also

See Also

See Also

Request::exceptions()

ExceptionList ptr exceptions();

Returns a pointer to list of possible application-specific exceptions
for the request. Ownership of the return value is maintained by the
Request and must not be freed by the caller.

CORBA::ExceptionList

Request::get_response()

void get response() ;

Determines whether a request has completed successfully. It re-
turns only when the request, invoked previously using

send deferred(), has completed.

CORBA:IRequest: :result ()
CORBA: :Request: :send deferred ()

Request::invoke()

void invoke () ;

Instructs the ORB to make a request. The parameters to the request
must already be set up. The caller is blocked until the request has
been processed by the target object or an exception occurs.

To make a non-blocking request, see send deferred() and
send oneway () .

CORBA::Request:isend oneway ()
CORBA: :Request: :send deferred ()
CORBA: :Request: :result ()

Request::operation()

const char *operation() const;

Returns the operation name of the request. Ownership of the return
value is maintained by the rRequest and must not be freed by the
caller.

Request::poll_response()

Boolean poll response () ;

Returns 1 (true) if the operation has completed successfully and
indicates that the return value and out and inout parameters in the
request are valid. Returns O (false) otherwise. The method returns
immediately.

If your application makes an operation request using

send deferred(), it can call poll response() to determine whether
the operation has completed. If the operation has completed, you
can get the result by calling Request: :result ().

CORBA::Request:isend deferred ()

214 Orbix CORBA Programmer’s Reference: C++

CORBA: :Request : :get response ()
CORBA: :Request: :result ()

Request::prepare()

virtual void prepare (

CORBA: :Object ptr p
) = 0;
Associates an initialized rRequest with a previous operation that was
initiated via sendp (). The Request must be created and associated
with the operation’s out arguments and return value prior to calling
prepare (). Once prepare () has been called, it is as if that prepared
Request was the one that actually had sendp () used.

Parameters
p An object reference.

This function along with sendp () and sendc () enable dynamic
time-Independent invocations and dynamic use of the Messaging
callback model.

Exceptions

BAD INV ORDER prepare () iS invoked on a Request that had previously
been used for a send or one of its variants.

BAD PARAM prepare () is invoked with an object reference that was
not previously returned from an invocation of sendp () .

See Also CORBA::Request::sendp ()
CORBA: :Request : : sendc ()

Request::result()

NamedValue ptr result() ;

Returns the result of the operation request in a Namedvalue. Owner-
ship of the return value is maintained by the Request and must not
be freed by the caller.

Request::return_value()

Any &return value() ;

Returns an any value for the returned value of the operation.

Request::sendc()

virtual void sendc(
CORBA: :Object ptr handler

) = 0;
Initiates an operation according to the information in the Request.

Orbix CORBA Programmer’s Reference: C++ 215

Parameters

handler Pass in the callback Messaging: :ReplyHandler as a base
CORBA: :Object. The results of invocations made with
sendc () will be available through this handler.

A truly dynamic client can implement the ReplyHandler using the
DSI.

Exceptions A system exception may be raise if a failure is detected before
control is returned to the client, but this is not guaranteed. Any
other exceptions are passed to the ReplyHandler.

See Also CORBA::Request::sendp ()
CORBA: :Request : :prepare ()

Request::send_deferred()

void send deferred() ;

Instructs the ORB to make the request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

To make a blocking request, use invoke (). You can use
poll response () to determine whether the operation completed.

See Also CORBA::Request::send oneway ()
CORBA: :ORB::send multiple requests deferred()
CORBA: :Request : : invoke ()
CORBA: :Request: :poll response ()
CORBA: :Request: :get response ()

Request::send_oneway()

void send oneway () ;

Instructs Orbix to make the oneway request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

You can use this method even if the operation has not been
defined to be oneway in its IDL definition, however, do not expect
any output or inout parameters to be updated.

To make a blocking request, use invoke ().

See Also CORBA::Request::send deferred()
CORBA: :ORB::send multiple requests oneway ()
CORBA: :Request : : invoke ()
CORBA: :Request: :poll response ()
CORBA: :Request: :get response ()

Request::sendp()

virtual CORBA::Object ptr sendp() = 0;

216 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Parameters

Initiates an operation according to the information in the Request.
The results of invocations made with sendp () will be available once
the caller uses get response() Or get next response (). The out
parameters and return value of the initiated operation must not be
used before the operation is done.

A system exception may be raise if a failure is detected before
control is returned to the client, but this is not guaranteed. Any
other exceptions will be raised when get response () is called.

CORBA::Request::isendc ()
CORBA: :Request : :prepare ()

Request::set_return_type()

void set return type(
TypeCode ptr tc
)i

Sets the TypeCode associated with a Request object. When using the
DIl with the Internet Inter-ORB Protocol (I10P), you must set the
return type of a request before invoking the request.

tc The TypeCode for the return type of the operation asso-
ciated with the Request object.

Request::target()

Object ptr target () const;

Gets the target object of the rRequest. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

Orbix CORBA Programmer’s Reference: C++ 217

218 Orbix CORBA Programmer’s Reference: C++

CORBA::SequenceDef Interface

See Also

See Also

See Also

See Also

Interface sequenceDef represents an IDL sequence definition in the
interface repository. It inherits from the interface IDLType.

// IDL in module CORBA.

interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element type;
attribute IDLType element type def;

}i

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create sequence ()

SequenceDef::bound Attribute

// IDL
attribute unsigned long bound;

The maximum number of elements in the sequence. A bound of 0
indicates an unbounded sequence.

Changing the bound attribute will also update the inherited type
attribute.

CORBA: : SequenceDef : : type

SequenceDef::element_type Attribute

// IDL
readonly attribute TypeCode element type;

The type of element contained within this sequence. The attribute
element type def contains the same information.

CORBA: : SequenceDef : :element type def

SequenceDef::element_type def Attribute

// IDL
attribute IDLType element type def;

Describes the type of element contained within this sequence. The
attribute element type contains the same information. Setting the
element type def attribute also updates the element type and
IDLType: :type attributes.

CORBA: : SequenceDef: :element type
CORBA: : IDLType: : type

SequenceDef::type Attribute

// IDL
readonly attribute TypeCode type;

Orbix CORBA Programmer’s Reference: C++ 219

The type attribute is inherited from interface IDLType. This attribute
is a tk_sequence TypeCode that describes the sequence. It is updated
automatically whenever the attributes bound or element type def are
changed.

See Also CORBA: : SequenceDef: :element type def
CORBA: : SequenceDef : :bound

220 Orbix CORBA Programmer’s Reference: C++

CORBA::ServerRequest Class

Parameters

See Also

Class serverRequest describes a Dynamic Skeleton Interface (DSI)
operation request. It is analogous to the Request class used in the
Dynamic Invocation Interface (DII).

An instance of serverRequest is created by the ORB when it
receives an incoming request that is to be handled by the DSI—
that is, an instance of the portableServer: :DynamicImplementation
class has been registered to handle the target interface.

An instance of serverRequest is a pseudo-object so an instance of a
ServerRequest cannot be transmitted in an IDL operation.

You should not define derived classes of ServerRequest.
The following code is the complete class definition:

// in CORBA namespace
class ServerRequest {
public:
const char* operation() const;
void arguments (
NVList ptr& parameters
);
Context ptr ctx();
void set result(
const Any& value
)
void set exception(
const Any& value
);

ServerRequest::arguments()

void arguments (
NVList ptr& parameters

)i

Allows a redefinition of the following method to specify the values
of incoming arguments:

PortableServer: :DynamicImplementation: : invoke ()

parameters Obtains output and input arguments.

This method must be called exactly once in each execution of
invoke ().

CORBA:ServerRequest:paramso
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::ctx()

Context ptr ctx();
Returns the context associated with the call.

Orbix CORBA Programmer’s Reference: C++ 221

See Also

Parameters

See Also

See Also

Parameters

See Also

Parameters

See Also

This function can be called once or not at all. If it is called, it must
be called before params () or ServerRequest: :arguments () .

CORBA..Context

ServerRequest::operation()
const char* operation() const;
Returns the name of the operation being invoked.

This method must be called at least once in each execution of the
dynamic implementation routine, that is, in each redefinition of
the method:

PortableServer: :DynamicImplementation: : invoke ()

CORBA::ServerRequest:iop name ()
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::set_exception()

void set exception(
const Any& value

)i
Allows (a redefinition of)

PortableServer: :DynamicImplementation: : invoke () to return an ex-
ception to the caller.

value A pointer to an any, which holds the
exception returned to the caller.

CORBA: :Environment()
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::set_result()

void set result(
const Any& value

)i

Allows PortableServer: :DynamicImplementation: :invoke () to return
the result of an operation request in an Any.

value A pointer to a any, which holds the result
returned to the caller.

This method must be called once for operations with non-void
return types and not at all for operations with void return types. If
it is called, then set exception() cannot be used.

CORBA::ServerRequest:iset exception ()

222 Orbix CORBA Programmer’s Reference: C++

CORBA::String_var Class

The class string var implements the var type for IDL strings
required by the standard C++ mapping. The string var class con-
tains a char* value and ensures that this is properly freed when a
String var object is deallocated, for example when exectution
goes out of scope.

class String var {
public:
String var() ;
String var (char *p);
String var (const char *p);
String var (const String var &s);
~String var() ;
String var & operator=(char *p);
String var & operator=(const char *p);
String var & operator=(const String var &s);
operator char* () ;
operator const char* () const;
const char* in() const;
char*& inout () ;
char*& out () ;
char* retn();
char & operator|[] (ULong index) ;
char operator [] (ULong index) const;

String_var::char*()

operator char* () ;
operator const char* () const;

Converts a string var object to a char*.

See Also CORBA::String var: :operator=()

String_var::in()
const char* in() const;
Returns the proper string for use as an input parameter.

See Also CORBA::String var::out ()
CORBA: :String var: :inout ()
CORBA: :String var:: retn()

String_var::inout()
char*& inout () ;
Returns the proper string for use as an inout parameter.

See Also CORBA::String var::in()
CORBA: :String var::out ()
CORBA: :String var:: retn()

Orbix CORBA Programmer’s Reference: C++ 223

String_var::operator=() Assignment Operators

String var &operator=(
char *p

)i

String var &operator=(
const char *p

)i

String var &operator=(
const String var &s

)i

Assignment operators allow you to assign values to a String var
from a char* or from another string var type.

Parameters

p A character string to assign to the String var.
A string var to assign to the String var.

See Also CORBA::String var: :char* ()

String_var::operator[]() Subscript Operators

char &operator[] (
ULong index

)i

char operator(] (
ULong index

) const;

Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

Parameters

index The index location in the string.

String_var::out()
char*& out () ;
Returns the proper string for use as an output parameter.

See Also CORBA::String var::in()
CORBA: :String var::inout ()
CORBA: :String var:: retn()

String_var::String_var() Constructors
String var() ;
The default constructor.

String var(
char *p

)i

String var (
const char *p

224 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

See Also

See Also

)i
Constructors that convert from a char* to a String var.

String var(
const String var &s

)i
The copy constructor.

p The character string to convert to a String var. The
String var assumes ownership of the parameter.

s The original string var that is copied.

CORBA::String var:I~String var()

String_var::—String_var() Destructor

~String var();

The destructor.

CORBA::String var::String var ()

String_var::_retn()
char* retn();
Returns the proper string for use as a method’s return value.

CORBA::String var: :inout ()
CORBA: :String var::in()
CORBA: :String var::out ()

Orbix CORBA Programmer’s Reference: C++ 225

226 Orbix CORBA Programmer’s Reference: C++

CORBA::StringDef Interface

See Also

See Also

Interface stringDef represents an IDL bounded string type in the
interface repository. A stringDef object is anonymous, which
means it is unnamed.

Use Repository: :create string() to obtain a new sStringDef. Use
Repository: :get primitive() for unbounded strings.

// IDL in module CORBA.

interface StringDef : IDLType {
attribute unsigned long bound;

}i

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create string()

StringDef::bound Attribute

// IDL
attribute unsigned long bound;

Specifies the maximum number of characters in the string. This
cannot be zero.

StringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_string TypeCode that describes the string.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: C++ 227

228 Orbix CORBA Programmer’s Reference: C++

CORBA::StructDef Interface

Interface structDef describes an IDL structure in the interface
repository.

// IDL in module CORBA.

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

}i

The inherited operation describe () is also described.

See Also CORBA: :Contained
CORBA: :Container: :create struct ()

StructDef::describe()

// IDL
Description describe() ;

describe (returns a Contained: :Description structure. describe () is
inherited from Contained (which TypedefDef inherits).

The DefinitionKind for the kind member is dk_Struct. The value
member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

See Also CORBA: : TypedefDef : :describe ()

StructDef::members Attribute

// IDL
attribute StructMemberSeg members;

Describes the members of the structure.

You can modify this attribute to change the members of a struc-
ture. Only the name and type def fields of each structMember should
be set (the type field should be set to tc void and it will be set
automatically to the TypeCode of the type def field).

See Also CORBA: : TypedefDef

Orbix CORBA Programmer’s Reference: C++ 229

230 Orbix CORBA Programmer’s Reference: C++

CORBA::TypeCode Class

The class TypeCode is used to describe IDL type structures at run-
time. A TypeCode is a value that represents an IDL invocation argu-
ment type or an IDL attribute type. A TypeCode is typically used as
follows:

* In the dynamic invocation interface (DIIl) to indicate the type
of an actual argument.

* By the interface repository to represent the type specification
that is part of an OMG IDL declaration.

* To describe the data held by an any type.

A TypeCode consists of a kind that classifies the TypeCode as to
whether it is a basic type, a structure, a sequence and so on. See
the data type Tckind for all possible kinds of TypeCode objects.

A TypeCode may also include a sequence of parameters. The
parameters give the details of the type definition. For example,
the IDL type sequence<long, 20> has the kind tk_sequence and has
parameters long and 20.

You typically obtain a TypeCode from the interface repository or it
may be generated by the IDL compiler. You do not normally create
a TypeCode in your code so the class contains no constructors, only
methods to decompose the components of an existing TypeCode.
However, if your application does require that you create a
TypeCode, see the set of create Type tc() methods in the ORB class.

For functions that require TypeCode parameters, such as with the
DIl, you can use the appropriate constant from the following list:

CORBA::_tc_any CORBA::_ tc_octet
CORBA: :_tc boolean CORBA::_tc_Principal
CORBA: :_tc char CORBA: :_tc_short
CORBA::_tc double CORBA::_tc string
CORBA:: tc_float CORBA: :_tc_TypeCode
CORBA:: tc_long CORBA:: tc ulong
CORBA:: tc_ longdouble CORBA:: tc ulonglong
CORBA:: tc longlong CORBA:: tc ushort
CORBA: :_tc_NamedValue CORBA::_tc_void
CORBA:: tc_null CORBA: :_tc_wchar
CORBA::_tc_Object CORBA::_tc wstring

The class TypeCode contains the following methods:

// C++

class TypeCode {

public:
class Bounds : public UserException { ... };
class BadKind : public UserException { ... };

Boolean equal (TypeCode ptr) const;

Boolean equivalent (TypeCode ptr) const;
TCKind kind() const;

TypeCode ptr get compact typecode() const;
const char* id() const;

const char* name() const;

ULong member count () const;

const char* member name (ULong index) const;
TypeCode ptr member type (ULong index) const;

Orbix CORBA Programmer’s Reference: C++ 231

See Also

See Also

Any* member label (ULong index) const;

TypeCode ptr discriminator type() const;

Long default index() const;

ULong length() const;

TypeCode ptr content type() const;

UShort fixed digits() const;

Short fixed scale() const;

Visibility member visibility (ULong index) const;
ValueModifier type modifier() const;

TypeCode ptr concrete base type() const;

static TypeCode ptr duplicate (TypeCode ptr tc);
static TypeCode ptr nil();

bi

CORBA::TCKind

TypeCode::BadKind Exception

class BadKind : public UserException { ... };

The Badkind exception is raised if a TypeCode member method is
invoked for a kind that is not appropriate.

TypeCode::Bounds Exception

class Bounds : public UserException { ... };

The Bounds exception is raised if an attempt is made to use an index
for a type’s member that is greater than or equal to the number of
members for the type.

The type of IDL constructs that have members include enumera-
tions, structures, unions, value types, and exceptions. Some of
the TypeCode methods return information about specific members
of these IDL constructs. The first member has index value O, the
second has index value 1, and so on up to »-1 where nis the count
of the total number of members.

The order in which members are presented in the interface repos-
itory is the same as the order in which they appeared in the IDL
specification.

This exception is not the same as the CORBA: :Bounds exception.

CORBA::TypeCode:member count ()
CORBA: : TypeCode: :member label ()
CORBA: : TypeCode : :member name ()
CORBA: : TypeCode: :member type ()
CORBA: : TypeCode: :member visibility ()

TypeCode::concrete_base_type()

TypeCode ptr concrete base type() const;

Returns a TypeCode for the concrete base if the value type repre-
sented by this TypeCode has a concrete base value type. Otherwise

232 Orbix CORBA Programmer’s Reference: C++

Exceptions

Exceptions

Exceptions

See Also

Exceptions

See Also

it returns a nil TypeCode reference. This method is valid to use only
if the kind of TypeCode has a TCKind value of tk value.

BadKind The kind of TypeCode is not valid for this method.

TypeCode::content_type()

TypeCode ptr content type() const;

For sequences and arrays this method returns a reference to the
element type. For aliases it returns a reference to the original
type. For a boxed value type it returns a reference to the boxed
type. This method is valid to use if the kind of TypeCode is one of
the following TCKind values:

tk alias

tk array

tk sequence
tk_value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::default_index()

Long default index() const;

Returns the index of the default union member, or -1 if there is no
default member. This method is valid to use only if the kind of
TypeCode has a TCKind value of tk union.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCode:member label ()

TypeCode::discriminator_type()

TypeCode ptr discriminator type() const;

Returns a TypeCode for the union discriminator type. This method is
valid to use only if the kind of TypeCode has a TCKkind value of tk union.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCode::default index()
CORBA: : TypeCode: :member label ()

TypeCode::_duplicate()

static TypeCode ptr duplicate(
TypeCode ptr obj

)i

Orbix CORBA Programmer’s Reference: C++ 233

Parameters

See Also

Parameters

See Also

Parameters

See Also

Exceptions

See Also

Increments the reference count of obj and returns a new reference
to the TypeCode object.

obj A reference to the original TypeCode to duplicate.

CORBA: :release ()

TypeCode::equal()

Boolean equal (
TypeCode ptr tc
) const;

Returns 1 (true) if this TypeCode and the tc parameter are equal.
Returns O (false) otherwise. Two type codes are equal if the set of
legal operations is the same and invoking an operation from one
set returns the same results as invoking the operation from the
other set.

tc The TypeCode to compare.

CORBA::TypeCode:lequivalent ()

TypeCode::equivalent()

Boolean equivalent (
TypeCode ptr tc

) const;

Returns 1 (true) if this TypeCode and the tc parameter are equivalent.
Returns O (false) otherwise.

tc The TypeCode to compare.

equivalent () is typically used by the ORB to determine type equiv-
alence for values stored in an IDL any. You can use equal () to
compare type codes in your application. equivalent () would return
true if used to compare a type and an alias of that type while

equal () would return false.

CORBA::TypeCode:iequal ()

TypeCode::fixed_digits()
UShort fixed digits() const;

Returns the number of digits in the fixed point type. This method
is valid to use only if the kind of TypeCode has a TCKind value of
tk fixed.

BadKind The Kkind of TypeCode is not valid for this method.

CORBA::TypeCode::fixed scale()

234 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Exceptions

TypeCode::fixed_scale()

Short fixed scale() const;

Returns the scale of the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk fixed.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCode::fixed digits()

TypeCode::get_compact_typecode()

TypeCode ptr get compact typecode() const;

Removes all optional name and member name fields from the
TypeCode and returns a reference to the compact TypecCode. This
method leaves all alias type codes intact.

TypeCode::id()

const char* id() const;

Returns the repositoryId that globally identifies the type.

Type codes that always have a RepositoryId. include object refer-
ences, value types, boxed value types, native, and exceptions.
Other type codes that also always have a RepositoryId and are
obtained from the interface repository or

ORB::create operation list() include structures, unions, enumera-
tions, and aliases. In other cases id() could return an empty
string.

The TypeCode oObject maintains the memory of the return value;
this return value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk abstract interface
tk alias

tk enum

tk except

tk native

tk objref

tk struct

tk union

tk value

tk_value box

BadKind The kind of TypeCode is not valid for this method.

Orbix CORBA Programmer’s Reference: C++ 235

See Also

Exceptions

Exceptions

Parameters

TypeCode::kind()

TCKind kind () const;

Returns the kind of the TypeCode which is an enumerated value of
type TCKind. You can use kind () on any TypeCode to help determine
which other TypeCode methods can be invoked on the TypeCode.

CORBA::TCKind

TypeCode::length()

ULong length() const;

For strings, wide strings, and sequences, length() returns the
bound, with zero indicating an unbounded string or sequence. For
arrays, length() returns the number of elements in the array. This
method is valid to use if the kind of TypeCode has a TCKind value of
one of the following:

tk array
tk sequence
tk string
tk wstring

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_count()

ULong member count () const;

Returns the number of members in the type. This method is valid
to use if the kind of TypeCode has a TCKind value of one of the
following:

tk_enum

tk except
tk _struct
tk union
tk value

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_label()

Any *member label (
ULong index
) const;

Returns the label of the union member. For the default member,
the label is the zero octet. This method is valid to use only if the
kind of TypeCode has a TCKind value of tk union.

index The index indicating which union member you want.

236 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

BadKind The kind of TypeCode is not valid for this method.
Bounds The index parameter is greater than or equal to the
number of members for the type.

CORBA::TypeCode::default index()
CORBA: : TypeCode: :member count ()

TypeCode::member_name()

const char* member name (
ULong index
) const;

Returns the simple name of the member. Because names are local
to a repository, the name returned from a TypeCode may not match
the name of the member in any particular repository, and may even
be an empty string.

index The index indicating which member to use.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk enum

tk except

tk struct

tk union

tk value

The TypeCode oObject maintains the memory of the return value;
this return value must not be freed by the caller.

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the
number of members for the type.

CORBA::TypeCode:member count ()

TypeCode::member_type()

TypeCode ptr member type (
ULong index

) const;

Returns a reference to the TypeCode of the member identified by
index.

index The index indicating which member you want.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk except
tk struct

Orbix CORBA Programmer’s Reference: C++ 237

Exceptions

See Also

Parameters

Exceptions

See Also

tk union

tk value
BadKind The kind of TypeCode is not valid for this method.
Bounds The index parameter is greater than or equal to the

number of members for the type.

CORBA::TypeCode:member count ()

TypeCode::member_visibility()

Visibility member visibility(
ULong index
) const;

Returns the visibility of a value type member. This method is valid
to use only if the kind of TypeCode has a TCKind value of tk value.

index The index indicating which value type member you
want.

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the

number of members for the type.

CORBA::Visibility
CORBA: : TypeCode: :member count ()

CORBA::TypeCode:member count () TypeCode :name()

const char* name() const;

Returns the simple name identifying the type within its enclosing
scope. Because names are local to a repository, the name returned
from a TypeCode may not match the name of the type in any
particular repository, and may even be an empty string.

The TypeCode oObject maintains the memory of the return value;
this return value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk_abstract interface
tk alias

tk enum

tk except

tk_native

tk objref

tk _struct

tk union

tk value

tk value box

238 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Exceptions

BadKind The kind of TypeCode is not valid for this method.

TypeCode::_nil()
static TypeCode ptr nil();
Returns a nil object reference for a TypeCode.

CORBA: :is nil ()

TypeCode::type_modifier()

ValueModifier type modifier() const;

Returns the valueModifier that applies to the value type represented
by this TypeCode. This method is valid to use only if the kind of
TypeCode has a TCKind value of tk value.

BadKind The kind of TypeCode is not valid for this method.

Orbix CORBA Programmer’s Reference: C++ 239

240 Orbix CORBA Programmer’s Reference: C++

CORBA:: TypedefDef Interface

See Also

The abstract interface TypedefDef is simply a base interface for
interface repository interfaces that define named types. Named
types are types for which a name must appear in their definition
such as structures, unions, and so on. Interfaces that inherit from
typedefDef include:

o AliasDef

® EnumDef

® NativeDef

® StructDef

° UnionDef

o ValueBoxDef

Anonymous types such as primitiveDef, StringDef, SequenceDef
and ArrayDef do not inherit from TypedefDef.

//IDL in module CORBA.
interface TypedefDef : Contained, IDLType {};

The inherited operation describe () is described here.

TypedefDef::describe()

//IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The Definitionkind type for the kind member is dk_Typedef. The
value member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

CORBA: :Contained: :describe ()
CORBA: :Contained: :Description
CORBA: : TypeDescription

Orbix CORBA Programmer’s Reference: C++ 241

242 Orbix CORBA Programmer’s Reference: C++

CORBA::UnionDef Interface

See Also

See Also

See Also

See Also

Interface UnionDef represents an IDL union in the interface reposi-
tory.

// IDL in module CORBA.

interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator type;
attribute IDLType discriminator type def;
attribute UnionMemberSeq members;

i
The inherited operation describe () is also described.
CORBA: :Contained

CORBA: : TypedefDef
CORBA: :Container: :create union/()

UnionDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which TypedefDef inherits), describe ()
returns a structure of type Contained: :Description.

The DefinitionKind for the kind member is dk_Union. The value
member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

CORBA: : TypedefDef : :describe ()

UnionDef::discriminator_type Attribute

// IDL
readonly attribute TypeCode discriminator type;

Describes the discriminator type for this union. For example, if the
union currently contains a long, the discriminator typeiS tc long.
The attribute discriminator type def contains the same informa-
tion.

CORBA: : TypeCode

UnionDef::discriminator_type_def Attribute

// IDL
attribute IDLType discriminator type def;

Describes the discriminator type for this union. The attribute
discriminator type contains the same information.

Changing this attribute will automatically update the
discriminator type attribute and the IDLType: :type attribute.

CORBA: : IDLType: : type
CORBA: :UnionDef: :discriminator type

Orbix CORBA Programmer’s Reference: C++ 243

UnionDef::members Attribute

// IDL
attribute UnionMemberSeq members;

Contains a description of each union member: its name, label, and
type (type and type def contain the same information).

The members attribute can be modified to change the union’s mem-
bers. Only the name, label and type def fields of each UnionMember
should be set (the type field should be set to tc void, and it will
be set automatically to the TypeCode of the type def field).

See Also CORBA: : TypedefDef

244 Orbix CORBA Programmer’s Reference: C++

CORBA::VValueBase Class

See Also

See Also

See Also

All value types have a conventional base type called valueBase.
ValueBase serves a similar role for value types that the object class
serves for interfaces. valueBase serves as an abstract base class
for all value type classes. You must implement concrete value type
classes that inherit from valueBase. ValueBase provides several
pure virtual reference counting methods inherited by all value type
classes.

namespace CORBA {
class ValueBase {

public:
virtual ValueBase* add ref() = 0;
virtual void remove ref() = 0;
virtual ValueBase* copy value() = 0;
virtual ULong refcount value() = 0;
static ValueBase* downcast (ValueBase*) ;
protected:
ValueBase () ;

ValueBase (const ValueBase&) ;
virtual ~ValueBase() ;
i
1
The names of these methods begin with an underscore to keep

them from clashing with your application-specific methods in
derived value type classes.

CORBA::ValueFactory

ValueBase:: _add_ref()

virtual ValueBase* add ref() = 0;

Increments the reference count of a value type instance and returns
a pointer to this value type.

CORBA::ValueBase: : remove ref ()

ValueBase:: copy_value()

virtual ValueBase* copy value() = 0;

Makes a deep copy of the value type instance and returns a pointer
to the copy. The copy has no connections with the original instance
and has a lifetime independent of that of the original.

Portable applications should not assume covariant return types
but should use downcasting to regain the most derived type of a
copied value type. A covariant return type means that a class
derived from valueBase can override copy value() to return a
pointer to the derived class rather than the base class, valueBase*.

CORBA::ValueBase:: downcast ()

Orbix CORBA Programmer’s Reference: C++ 245

Parameters

See Also

See Also

See Also

ValueBase:: _downcast()

static ValueBase* downcast (
ValueBase* vt

)i
Returns a pointer to the base type for a derived value type class.

vt Pointer to the value type class to be downcast.

ValueBase:: refcount_ value()

virtual ULong refcount value() = 0;
Returns the current value of the reference count for this value type
instance.

CORBA::ValueBase:: add ref ()
CORBA: :ValueBase:: remove ref ()

ValueBase:: remove_ref()

virtual remove ref() = 0;

Decrements the reference count of a value type instance and deletes
the instance when the reference count drops to zero.

If you use delete() to destroy instances, you must use the new
operator to allocate all value type instances.

CORBA::ValueBase:: add ref ()

ValueBase::—ValueBase() Destructor

protected:
virtual ~ValueBase() ;

The default destructor.

The destructor is protected to prevent direct deletion of instances
of classes derived from valueBase.

CORBA::ValueBase::ValueBase ()

ValueBase::ValueBase() Constructors

protected:
ValueBase () ;

The default constructor.

protected:
ValueBase (

const ValueBase& vt

)
The copy constructor. Creates a new object that is a copy of vt.

246 Orbix CORBA Programmer’s Reference: C++

The copy constructor is protected to disallow copy construction of
derived value type instances except from within derived class

methods.
Parameters

vt The original value type from which a copy is made.
See Also CORBA::ValueBase::~ValueBase ()

Orbix CORBA Programmer’s Reference: C++ 247

248 Orbix CORBA Programmer’s Reference: C++

CORBA::VValueBoxDef Interface

See Also

See Also

See Also

The valueBoxDef interface describes an IDL value box type in the
interface repository. A value box is a value type with no inheri-
tance or operations and with a single state member. A value box is
a shorthand IDL notation used to simplify the use of value types
for simple containment. It behaves like an additional namespace
that contains only one name.

// IDL in module CORBA.

interface ValueBoxDef : IDLType {
attribute IDLType original type def;

}i

The inherited type attribute is also described.

CORBA::Container::create value box()

ValueBoxDef::original _type_ def Attribute

// IDL
attribute IDLType original type def;

Identifies the IDL type def that is being “boxed”. Setting the
original type def attribute also updates the type attribute.

CORBA::ValueBoxDef: :type

ValueBoxDef::type Attribute

// IDL
readonly attribute TypeCode type;

Inherited from IDLType, this attribute is a tk value box TypeCode
describing the value box.

CORBAIIIDLType: :type

Orbix CORBA Programmer’s Reference: C++ 249

250 Orbix CORBA Programmer’s Reference: C++

CORBA::VValueDef Interface

A valueDef object represents an IDL value type definition in the
interface repository. It can contain constants, types, exceptions,
operations, and attributes.

A valueDef used as a Container may only contain TypedefDef,
(including definitions derived from TypedefDef), ConstantDef, and
ExceptionDef definitions.

// IDL in module CORBA.

interface ValueDef

// read/write interface

attribute InterfaceDef supported interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base value;

attribute ValueDefSeq abstract base values;
attribute boolean is abstract;

attribute boolean is custom;

attribute boolean is truncatable;

// read interface

boolean is a(
in RepositoryId id

)i

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_ custom;
RepositoryIld defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported interfaces;
RepositoryIdSeq abstract base values;
boolean is truncatable;
RepositoryId base value;

TypeCode type;

}i
FullValueDescription describe value() ;
ValueMemberDef create value member (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Vigibility access
)i
AttributeDef create attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create operation (

Container, Contained, IDLType {

Orbix CORBA Programmer’s Reference: C++ 251

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts
) ;
}; // End ValueDef Interface

The inherited describe () and contents () operations are also
described.

See Also CORBA:.Container:.create value ()

ValueDef::abstract_base values Attribute

// IDL
attribute ValueDefSeq abstract base values;

The abstract base values attribute lists the abstract value types
from which this value inherits.

Exceptions

BAD PARAM, The name attribute of any object contained by this
minor code 5 vVvalueDef conflicts with the name attribute of any object
contained by any of the specified bases.

ValueDef::base_ value Attribute

// IDL
attribute ValueDef base value;

The base_value attribute describes the value type from which this
value inherits.

Parameters

BAD PARAM, The name attribute of any object contained by the

minor code 5 minor code 5 is raised if the name attribute of any
object contained by this valuebDef conflicts with the
name attribute of any object contained by any of the
specified bases.

ValueDef::contents()

// IDL
ContainedSeqg contents (

in DefinitionKind limit type,
in boolean exclude inherited

)i

Inherited from Container, contents() returns the list of constants,
types, and exceptions defined in this valueDef and the list of
attributes, operations, and members either defined or inherited in
this valueDef.

252 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

Parameters

Exceptions

See Also

limit type If set to dk_all, all of the contained objects in
the valueDef are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude inherited Applies only to interfaces. If true, only attri-
butes, operations and members defined within
this value type are returned. If false, all attri-
butes, operations and members are returned.

CORBA::Container: :contents ()

ValueDef::create_attribute()

// IDL
AttributeDef create attribute(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode
)i

Returns a new AttributeDef Object contained in the valueDef on
which it is invoked.

id The repository ID to use for the new AttributeDef. An
AttributeDef inherits the id attribute from Contained.

name The name to use for the new AttributeDef. An
AttributeDef inherits the name attribute from Contained.

version The version to use for the new AttributebDef. An
AttributeDef inherits the version attribute from
Contained.

type The IDL data type for the new AttributeDef. Both the
type_def and type attributes are set for AttributeDef.

mode The read or read/write mode to use for the new
AttributeDef.

The defined in attribute (which the AttributeDef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::AttributeDef
CORBA: :Contained

Orbix CORBA Programmer’s Reference: C++ 253

Parameters

Exceptions

See Also

ValueDef::create_operation()

// IDL
OperationDef create operation(

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType result,

in OperationMode mode,

in ParDescriptionSeq params,
in ExceptionDefSeqg exceptions,
in ContextIdSeq contexts

)i

Returns a new OperationDef Object contained in the valueDef on
which it is invoked.

id The repository ID to use for the new OperationDef. An
OperationDef inherits the id attribute from Contained.

name The name to use for the new OperationDef. An
OperationDef inherits the name attribute from Contained.

version The version to use for the new OperationDef. An
OperationDef inherits the version attribute from
Contained.

result The IDL data type of the return value for the new
OperationDef. Both the result def and result attri-
butes are set for the OperationbDef.

mode The mode to use for the new OperationDef. Specifies
whether the operation is normal (OP_NORMAL) Or one-
way (OP ONEWAY).

params The parameters for this OperationDef.

exceptions The list of exceptions to use for the Operationbef. These
are exceptions the operation can raise.

contexts The list of context identifiers to use for the OperationDef.
These represent the context clause of the operation.

The defined in attribute (which the Operationbef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::OperationDef
CORBA: : Contained

ValueDef::create_value _member()

// IDL
ValueMemberDef create value member (

in RepositoryId id,

254 Orbix CORBA Programmer’s Reference: C++

Parameters

Exceptions

See Also

See Also

in Identifier name,

in VersionSpec version,
in IDLType type,

in Visibility access

)i

Returns a new valueMemberDef contained in the valueDef on which it
is invoked.

id The repository ID to use for the new valueMemberDef.
An ValueMemberDef inherits the id attribute from
Contained.

name The name to use for the new valueMemberDef. An
ValueMemberDef inherits the name attribute from
Contained.

version The version to use for the new valueMemberDef. An
ValueMemberDef inherits the version attribute from
Contained.

type The IDL data type for the new valueMemberDef. Both
the type def and type attributes are set for
ValueMemberDef.

access The visibility to use for the new valueMemberDef. IDL
value types can have state members that are either
public or private.

The defined in attribute (which the valueMemberDef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

A BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::ValueMemberDef
CORBA: :Contained

ValueDef::describe()

// IDL
ValueDescription describe () ;

Inherited from Contained, describe () for a valueDef returns a
ValueDescription object. Use describe value () for a full description
of the value.

CORBA::ValueDescription
CORBA: :Contained: :describe ()
CORBA: :ValueDef : :describe value ()

ValueDef::describe_ value()

// IDL
FullValueDescription describe value() ;

Orbix CORBA Programmer’s Reference: C++ 255

Returns a FullvalueDescription Object describing the value, includ-

ing its operations and attributes.

See Also

CORBA::FullValueDescription

CORBA: :ValueDef : :describe ()

ValueDef::FullvValueDescription Structure

// IDL

struct FullValueDescription {

Identifier name;
RepositoryId id;

boolean is abstract;

boolean is custom;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;

ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported interfaces;
RepositoryIdSeq abstract base values;
boolean is truncatable;

Repositoryld base value;

TypeCode type;

bi

A full description of a value type in the interface repository.

name
id

is abstract

is_custom

defined in

version

operations

attributes

members
initializers
supported interfaces

abstract base values

is_truncatable

base value

type

See Also

The name of the value type.
The repository ID of the value type.

Has a value of 1 (true) if the value is an
abstract value type. A value of O is false.

Has a value of 1 (true) if the value uses cus-
tom marshalling. A value of O is false.

The repository ID that identifies where this
value type is defined.

The version of the value type.

A list of operations that the value type sup-
ports.

A list of attributes that the value type sup-
ports.

A list of value type members.
A list of initializer values for the value type.
A list of interfaces this value type supports.

A list of repository IDs that identify abstract
base values.

Has a value of 1 (true) if the value type is
truncatable. A value of 0 is false.

A repository ID that identifies a base value.
The IDL type of the value type.

CORBA::ValueDef::describe value ()

256 Orbix CORBA Programmer’s Reference: C++

Parameters

ValueDef::initializers Attribute

// IDL
attribute InitializerSeqg initializers;

Lists the initializers this value type supports.

ValueDef::is_a()

// IDL
boolean is a(

in RepositoryId id
)i

Returns 1 (true) if this value type is either identical to or inherits,
directly or indirectly, from the interface or value identified by the
id parameter. Otherwise it returns O (false).

id The repository ID of the value type or interface to
compare with this value type.

ValueDef::is_abstract Attribute

// IDL
attribute boolean is abstract;

Returns 1 (true) if this value type is an abstract value type.
Otherwise it returns O (false).

ValueDef::is_custom Attribute

// IDL
attribute boolean is custom;

Returns 1 (true) if this value type uses custom marshalling. Other-
wise it returns O (false).

ValueDef::is_truncatable Attribute

// IDL
attribute boolean is truncatable;

Returns 1 (true) if this value type inherits safely (supports trunca-
tion) from another value. Otherwise it returns O (false).

ValueDef::supported_interfaces Attribute

// IDL
attribute InterfaceDef supported interfaces;

Lists the interfaces that this value type supports.

Orbix CORBA Programmer’s Reference: C++ 257

Exceptions

BAD PARAM,
minor code 5

258 Orbix CORBA Programmer’s Reference: C++

The name attribute of any object contained by the
minor code 5 is raised if the name attribute of any
object contained by this valueDef conflicts with the
name attribute of any object contained by any of the
specified bases.

CORBA::ValueFactory

This describes the mapping of the IDL native type

CORBA: :ValueFactory. For native IDL types, each language mapping
specifies how repository IDs are used to find the appropriate fac-
tory for an instance of a value type so that it may be created as it
is unmarshaled off the wire.

// IDL in module CORBA

native ValueFactory;

Recall that value types allow objects to be passed by value which
implies that the ORB must be able to create instances of your
value type classes during unmarshaling. However, because the
ORB cannot know about all potential value type classes, you must
implement factory classes for those types and register them with
the ORB so the ORB can create value instances when necessary.

The C++ mapping for the IDL CORBA: :ValueFactory native type
includes the following:

®* The valueFactory type which is a pointer to a valueFactoryBase
class.

®* The valueFactoryBase class which is is the base class for all
value type factory classes.

Just as your applications must provide concrete value type classes
(see CORBA: :ValueBase), your applications must also provide fac-
tory classes for those concrete classes.

If the ORB is unable to locate and use the appropriate factory,
then a MARSHAL exception with a minor code is raised.

CORBA::ValueFactory Type

See Also

// C++ in namespace CORBA
typedef ValueFactoryBase* ValueFactory;

The valueFactory is a pointer to a valueFactoryBase class. Applica-
tions derive concrete factory classes from valueFactoryBase, and
register instances of those factory classes with the ORB via

ORB: :register value factory().

CORBA::ValueFactoryBase

CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :register value factory ()
CORBA: :ORB: :unregister value factory ()

CORBA::ValueFactoryBase Class

When unmarshaling value instances, the ORB needs to be able to
call up to the application to ask it to create those instances. Value
instances are normally created via their type-specific value facto-
ries so as to preserve any invariants they might have for their
state. However, creation for unmarshaling is different because the
ORB has no knowledge of application-specific factories, and in fact
in most cases may not even have the necessary arguments to pro-
vide to the type-specific factories.

Orbix CORBA Programmer’s Reference: C++ 259

To allow the ORB to create value instances required during unmar-
shaling, the valueFactoryBase class provides the private
create for unmarshal () pure virtual function. The function is pri-
vate so that only the ORB, can invoke it. Your applications do not
invoke create for unmarshal (), however, your derived classes
must override create for unmarshal () and implement it such that
it creates a new value instance and returns a pointer to the
instance. The caller (in this case the ORB) assumes ownership of
the returned instance. Once the ORB has created a value instance
via the create for unmarshal () function, it uses the value data
member modifier functions to set the state of the new value
instance from the unmarshaled data.

// C++ in namespace CORBA
class ValueFactoryBase {
public:
virtual ~ValueFactoryBase() ;
virtual void add ref();
virtual void remove ref () ;
static ValueFactory downcast (ValueFactory vf) ;
protected:
ValueFactoryBase () ;
private:
virtual ValueBase* create for unmarshal() = 0;

bi

See Also CORBA: :ValueBase

ValueFactoryBase:: add_ref()

virtual void _add ref();

Increases this object factory’s reference count by one. The
ValueFactoryBase uses reference counting to prevent itself from
being destroyed while still in use by the application. A
ValueFactoryBase Object initially has a reference count of one.

See Also CORBA: :ValueFactoryBase:: remove ref ()

ValueFactoryBase:: _downcast()

static ValueFactory downcast (
ValueFactory vf
)i

Returns a pointer to the type-specific factory object.

Parameters
vE The original value factory object.

You can use downcast () on the return type of the function

ORB: : lookup value factory() to obtain a pointer to a type-specific
factory object. Memory management of the return value from
_downcast () is not the responsibility of the caller, and thus you
should not call _remove ref() on it.

See Also CORBA::ORB::lookup value factory ()
CORBA: :ValueFactoryBase:: remove ref ()

260 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

See Also

ValueFactoryBase:: _remove_ref()

virtual void remove ref();

Decreases this object factory’s reference count by one, and if the
resulting reference count equals zero, the object factory is de-
stroyed.

CORBA: :ValueFactoryBase:: add ref ()

ValueFactoryBase::—ValueFactoryBase()
Destructor

virtual ~ValueFactoryBase() ;
The default destructor.

CORBA: :ValueFactoryBase: :ValueFactoryBase ()

ValueFactoryBase::ValueFactoryBase()
Constructor

protected:
ValueFactoryBase () ;

The default constructor.

CORBA: :ValueFactoryBase: : ~ValueFactoryBase ()

Orbix CORBA Programmer’s Reference: C++ 261

262 Orbix CORBA Programmer’s Reference: C++

CORBA::ValueMemberDef

Interface

See Also

See Also

The valueMemberDef interface provides the definition of a value type
member in the interface repository.
// IDL in module CORBA.
interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute Visibility access;

}i

ValueMemberDef::access Attribute

// IDL
attribute Visibility access;

Contains an indicator of the visibility of an IDL value type state
member. IDL value types can have state members that are either
public or private.

ValueMemberDef::type Attribute

// IDL
readonly attribute TypeCode type;

Describes the type of this valueMemberDef.
CORBA: :ValueMemberDef : : type def

ValueMemberDef::type def Attribute

// IDL
attribute IDLType type_ def;

Identifies the object that defines the IDL type of this ValueMemberDef.
The same information is contained in the type attribute.

You can change the type of a valueMemberDef by changing its
type def attribute. This also changes its type attribute.

CORBA: :ValueMemberDef: : type

Orbix CORBA Programmer’s Reference: C++ 263

264 Orbix CORBA Programmer’s Reference: C++

CORBA::WString _var Class

The class wstring var implements the var type for IDL wide
strings required by the standard C++ mapping. The WString var
class contains a char* value and ensures that this is properly freed
when a wstring var object is deallocated, for example when exec-
tution goes out of scope.

class WString var {
public:
WString var() ;
WString var (char *p);
WString var (const char *p);
WString var (const WString var &s);
~WString var () ;
WString var & operator=(char *p);
WString var & operator=(const char *p);
WString var & operator=(const WString var &s);
operator char* () ;
operator const char* () const;
const char* in() const;
char*& inout () ;
char*& out () ;
char* retn();
char & operator|[] (ULong index) ;
char operator [] (ULong index) const;

WString_var::char*()

operator char* () ;
operator const char* () const;
Converts a Wstring var object to a char*.

See Also CORBA::WString var: :operator= ()

WString_var::in()
const char* in() const;
Returns the proper string for use as an input parameter.

See Also CORBA::WString var: :out ()
CORBA: :WString var: :inout ()
CORBA: :WString var:: retn()

WString_var::inout()

char*& inout () ;
Returns the proper string for use as an inout parameter.

See Also CORBA::WString var::in()
CORBA: :WString var: :out ()
CORBA: :WString var:: retn()

Orbix CORBA Programmer’s Reference: C++ 265

WString_var::operator=() Assignment
Operators

WString var &operators=(
char *p

)i

WString var &operator=(
const char *p

)i

WString var &operator=(
const WString var &s

)i

Assignment operators allow you to assign values to a WString var
from a char* or from another wstring var type.

Parameters
P A character string to assign to the WString var.
A WString var to assign to the wstring var.
See Also CORBA::WString var::char* ()
WString_var::operator[]() Subscript Operators
char &operator[] (
ULong index
)i
char operator (] (
ULong index
) const;
Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.
Parameters
index The index location in the string.
WString_var::out()
char*& out () ;
Returns the proper string for use as an output parameter.
See Also CORBA:IWString var::in()

CORBA: :WString var: :inout ()
CORBA: :WString var:: retn()

WString_var::WString_var() Constructors

WString var() ;

The default constructor.

WString var (
char *p

)i

266 Orbix CORBA Programmer’s Reference: C++

Parameters

See Also

See Also

See Also

WString var (
const char *p

)i
Constructors that convert from a char* to a WString var.

WString var (
const WString var &s

)i
The copy constructor.

P The character string to convert to a wString var. The
WString var assumes ownership of the parameter.

s The original wstring var that is copied.

CORBA::WString var::~WString var ()

WString_var::—WString_var() Destructor

~WString var() ;
The destructor.

CORBA::WString var::WString var ()

WString_var::_retn()

char* retn();

Returns the proper string for use as a method’s return value.
CORBA:IIWString var: :inout ()

CORBA: :WString var::in()

CORBA: :WString var: :out ()

Orbix CORBA Programmer’s Reference: C++ 267

268 Orbix CORBA Programmer’s Reference: C++

CORBA::WstringDef Interface

See Also

See Also

Interface wstringDef represents a bounded IDL wide string type in
the interface repository. A WstringDef object is anonymous, which
means it is unnamed. Use Repository: :create wstring() to obtain
a new WstringDef object.

Unbounded strings are primitive types represented with the
PrimitiveDef interface. Use Repository::get primitive() to obtain
unbounded wide strings.

// IDL in module CORBA.
interface WstringDef : IDLType {
attribute unsigned long bound;

The inherited type attribute is also described.

CORBA: : IDLType

CORBA: :Repository: :create wstring()
CORBA: :PrimitiveDef
CORBA: : StringDef

WstringDef::bound Attribute

// IDL
attribute unsigned long bound;

Specifies the maximum number of characters in the wide string.
This cannot be zero.

WstringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk wstring TypeCode that describes the wide string.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: C++ 269

270 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin Module

The CosEventChannelAdmin module specifies the interfaces and
exceptions for connecting suppliers and consumers to an event
channel. It also provides the methods for managing these connec-
tions.

It contains the following interfaces:

* CosEventChannelAdmin::ProxyPushConsumer Interface
* CosEventChannelAdmin::ProxyPushSupplier Interface

®* CosEventChannelAdmin::ProxyPullConsumer Interface
* CosEventChannelAdmin::ProxyPullSupplier Interface

®* CosEventChannelAdmin::ConsumerAdmin Interface

®* CosEventChannelAdmin::SupplierAdmin Interface

®* CosEventChannelAdmin::EventChannel Interface

CosEventChannelAdmin Exceptions

exception AlreadyConnected {};

An AlreadyConnected exception is raised when an attempt is made
to connect an object to the event channel when that objectis already
connected to the channel.

exception TypeError {};

The TypeError exception is raised when a proxy object trys to
connect an object that does not support the proper typed interface.

Orbix CORBA Programmer’s Reference: C++ 271

272 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::Consum
erAdmin Interface

Once a consumer has obtained a reference to a ConsumerAdmin
object (by calling EventChannel: : for consumers ()), they can use
this interface to obtain a proxy supplier. This is necessary in order
to connect to the event channel.

interface ConsumerAdmin

{
ProxyPushSupplier obtain push supplier();
ProxyPullSupplier obtain pull supplier();

}i

ConsumerAdmin::obtain_push_supplier()

//IDL
ProxyPushSupplier obtain push supplier() ;

Returns a proxyPushSupplier object. The consumer can then use this
object to connect to the event channel as a push-style consumer.

ConsumerAdmin::obtain_pull_supplier()

//IDL
ProxyPushSupplier obtain pull supplier();

Returns a proxyPullSupplier Oobject. The consumer can then use this
object to connect to the event channel as a pull-style consumer.

Orbix CORBA Programmer’s Reference: C++ 273

274 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::EventCh
annel Interface

The EventChannel interface lets consumers and suppliers establish
a logical connection to the event channel.

interface EventChannel

{
ConsumerAdmin for consumers() ;
SupplierAdmin for suppliers/()
void destroy () ;

7

}i

EventChannel::for_consumers()

//IDL
ConsumerAdmin for consumers() ;

Used by a consumer to obtain an object reference that supports the
ConsumerAdmin interface.

EventChannel::for_suppliers()

//IDL
SupplierAdmin for suppliers()

Used by a supplier to obtain an object reference that supports the
SupplierAdmin interface.

EventChannel::destroy()

//IDL
void destroy () ;

Destroys the event channel. All events that are not yet delivered,

as well as all administrative objects created by the channel, are also
destroyed. Connected pull consumers and push suppliers are noti-
fied when their channel is destroyed.

Orbix CORBA Programmer’s Reference: C++ 275

276 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::ProxyPul
IConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer
using the supplierAdmin interface, they use the ProxyPullConsumer
interface to connect to the event channel.

interface ProxyPullConsumer : CosEventComm: :PushConsumer

{

void connect pull supplier (
in CosEventComm: :PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

}i

ProxyPullConsumer::connect_pull_supplier()

//IDL
void connect pull supplier(

in CosEventComm::PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

This operation connects the supplier to the event channel.

If the proxy pull consumer is already connected to a PushSupplier,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is raised when supplier that is being connected does not support
the proper typed event structure.

pull supplier The supplier that is trying to connect to the event
channel.

Orbix CORBA Programmer’s Reference: C++ 277

278 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::ProxyPul
ISupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the pProxyPullSupplier interface
to connect to the event channel.

interface ProxyPullSupplier : CosEventComm::PullSupplier

{

void connect pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

}i

ProxyPullSupplier::connect_pull_consumer()

//IDL
void connect pull consumer (

in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

This operation connects the consumer to the event channel. If the
consumer passes a nil object reference, the proxy pull supplier will
not notify the consumer when it is about to be disconnected.

If the proxy pull supplier is already connected to the pPullConsumer,
then the AlreadyConnected exception is raised.

pull consumer The consumer that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: C++ 279

280 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::ProxyPu
shConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer
using the supplierAdmin interface, they use the ProxyPushConsumer
interface to connect to the event channel.

// IDL
interface ProxyPushConsumer : CosEventComm: :PushConsumer
{
void connect push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (AlreadyConnected) ;

}i

ProxyPushConsumer::connect_push_supplier(
)

//IDL
void connect push supplier (

in CosEventComm: : PushSupplier push supplier)
raises (AlreadyConnected) ;

This operation connects the supplier to the event channel. If the
supplier passes a nil object reference, the proxy push consumer will
not notify the supplier when it is about to be disconnected.

If the proxy push consumer is already connected to the
pPushSupplier, then the AlreadyConnected exception is raised.

push supplier The supplier that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: C++ 281

282 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::ProxyPu
shSupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the pProxyPushSupplier interface
to connect to the event channel.

interface ProxyPushSupplier : CosEventComm::PushSupplier
void connect push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

}i

ProxyPushSupplier::connect_push_consumer(
)

//IDL
void connect push consumer (

in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

This operation connects the consumer to the event channel.

If the proxy push supplier is already connected to the PushConsumer,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is when the consumer that is being connected does not support
the proper typed event structure.

push_consumer The consumer that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: C++ 283

284 Orbix CORBA Programmer’s Reference: C++

CosEventChannelAdmin::Supplier
Admin Interface

Once a supplier has obtained a reference to a SupplierAdmin object
(by calling EventChannel::for suppliers()), they can use this inter-
face to obtain a proxy consumer. This is necessary in order to con-
nect to the event channel.

interface SupplierAdmin

{
ProxyPushConsumer obtain push consumer () ;
ProxyPullConsumer obtain pull_ consumer () ;

}i

SupplierAdmin::obtain_push_consumer()

//IDL
ProxyPushConsumer obtain push consumer () ;

Returns a ProxyPushConsumer object. The supplier can then use this
object to connect to the event channel as a push-style supplier.

SupplierAdmin::obtain_pull _consumer()

//IDL
ProxyPushConsumer obtain pull consumer () ;

Returns a proxyPullConsumer object. The supplier can then use this
object to connect to the event channel as a pull-style supplier.

Orbix CORBA Programmer’s Reference: C++ 285

286 Orbix CORBA Programmer’s Reference: C++

CosEventComm Module

The cosEventComm module specifies the interfaces which define the
event service consumers and suppliers.

CosEventComm Exceptions

CosEventComm::Disconnected

exception Disconnected {};
Disconnected is raised when an attempt is made to contact a proxy
that has not been connected to an event channel.

Orbix CORBA Programmer’s Reference: C++ 287

288 Orbix CORBA Programmer’s Reference: C++

CosEventComm::PullConsumer
Interface

A pull-style consumer supports the pullConsumer interface.

interface PullConsumer

{
}i

void disconnect pull consumer() ;

PullConsumer::disconnect_pull _consumer()

//IDL
void disconnect pull consumer() ;

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The pullConsumer Object reference is discarded.

Orbix CORBA Programmer’s Reference: C++ 289

290 Orbix CORBA Programmer’s Reference: C++

CosEventComm::PullSupplier

Interface

Parameters

A pull-style supplier supports the pullsupplier interface to trans-
mit event data. A consumer requests event data from the supplier
by invoking either the pull () operation or the try pull () opera-
tion.

interface PullSupplier

{

any pull() raises (Disconnected) ;
any try pull (out boolean has event) raises (Disconnected);
void disconnect pull supplier();

}i

PullSupplier::pull()

//IDL
any pull () raises (Disconnected);

The consumer requests event data by calling this operation. The
operation blocks until the event data is available, in which case it
returns the event data to the consumer. Otherwise an exception is
raised. If the event communication has already been disconnected,
the OBJECT NOT EXIST exception is raised.

PullSupplier::try_pull()

//IDL
any try pull (out boolean has event) raises (Disconnected) ;

Unlike the try operation, this operation does not block. If the event
data is available, it returns the event data and sets the has _event
parameter to true. If the event is not available, it sets the has event
parameter to false and the event data is returned with an undefined
value. If the event communication has already been disconnected,
the OBJECT NOT EXIST exception is raised.

has event Indicates whether event data is available to the
try pull operation

PullSupplier::disconnect_pull_supplier()

//IDL
void disconnect pull supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The pullsupplier object reference is discarded.

Orbix CORBA Programmer’s Reference: C++ 291

292 Orbix CORBA Programmer’s Reference: C++

CosEventComm::PushConsumer

Interface

Parameters

A push-style consumer supports the pushConsumer interface to
receive event data.

interface PushConsumer

{

void push(in any data) raises (Disconnected) ;
void disconnect push consumer() ;

}i

PushConsumer::push()

//IDL
void push(in any data) raises(Disconnected) ;

Used by a supplier to communicate event data to the consumer.
The supplier passes the event data as a parameter of type any. If
the event communication has already been disconnected, the
OBJECT NOT EXIST exception is raised.

data The event data, of type any.

PushConsumer::disconnect_push_consumer()

//IDL
void disconnect push consumer() ;

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The pushConsumer Object reference is discarded.

Orbix CORBA Programmer’s Reference: C++ 293

294 Orbix CORBA Programmer’s Reference: C++

CosEventComm::PushSupplier

Interface

A push-style supplier supports the pushSupplier interface.
interface PushSupplier

{

void disconnect push supplier();

Vi

PushSupplier::disconnect_push_supplier()

//IDL
void disconnect push supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The pushSupplier oObject reference is discarded.

Orbix CORBA Programmer’s Reference: C++ 295

296 Orbix CORBA Programmer’s Reference: C++

CosNaming Overview

See Also

See Also

The CcosNaming module contains all IDL definitions for the CORBA
naming service. The interfaces consist of:

* “CosNaming::Bindinglterator Interface”
®* “CosNaming::NamingContext Interface”
* “CosNaming::NamingContextExt Interface”

Use the NamingContext and BindingIterator interfaces to access
standard naming service functionality. Use the NamingContextExt
interface to use URLs and string representations of names.

The rest of this chapter describes data types common to the
CosNaming module that are defined directly within its scope.

CosNaming::Binding Structure

// IDL
struct Binding {

Name binding name;
BindingType binding type;

i
A Binding structure represents a single binding in a naming context.
A Binding structure indicates the name and type of the binding:

binding name The full compound name of the binding.

binding type The binding type, indicating whether the name is
bound to an application object or a naming con-
text.

When browsing a naming graph in the naming service, an applica-
tion can list the contents of a given naming context, and deter-
mine the name and type of each binding in it. To do this, the
application calls the NamingContext::1list () method on the target
NamingContext object. This method returns a list of Binding struc-
tures.

CosNaming: :BindingList
CosNaming: :BindingType
NamingContext::1list ()

CosNaming::BindingList Sequence

// IDL

typedef sequence<Binding> BindinglList;

A sequence containing a set of Binding structures, each of which
represents a single name binding.

An application can list the bindings in a given naming context
using the NamingContext::list() method. An output parameter of
this method returns a value of type BindingList.

CosNaming: :Binding
CosNaming: :BindingType
NamingContext::1list ()

Orbix CORBA Programmer’s Reference: C++ 297

“About Sequences”

CosNaming::BindingType Enumeration

// IDL
enum BindingType {nobject, ncontext};

The enumerated type BindingType represents these two forms of
name bindings:

nobject Describes a name bound to an application
object.
ncontext Describes a name bound to a naming context in

the naming service.

There are two types of name binding in the CORBA naming ser-
vice: names bound to application objects, and names bound to
naming contexts. Names bound to application objects cannot be
used in a compound name, except as the last element in that
name. Names bound to naming contexts can be used as any com-
ponent of a compound name and allow you to construct a naming
graph in the naming service.

Name bindings created using NamingContext: :bind () oOr
NamingContext: :rebind () are nobject bindings.

Name bindings created using the operations
NamingContext: :bind context () Or NamingContext::rebind context ()
are ncontext bindings.

See Also CosNaming: :Binding
CosNaming: :BindingList

CosNaming::Istring Data Type

// IDL
typedef string Istring;

Type Istringis a place holder for an internationalized string format.

CosNaming::Name Sequence

// IDL

typedef sequence<NameComponent> Name;

A Name represents the name of an object in the naming service. If
the object name is defined within the scope of one or more naming
contexts, the name is a compound name. For this reason, type Name
is defined as a sequence of name components.

Two names that differ only in the contents of the kind field of one
NameComponent Structure are considered to be different names.
Names with no components, that is sequences of length zero, are
illegal.

See Also CosNaming: : NameComponent
“About Sequences”

298 Orbix CORBA Programmer’s Reference: C++

See Also

CosNaming::NameComponent Structure

// IDL
struct NameComponent {

Istring id;

Istring kind;
i
A NameComponent Structure represents a single component of a name
that is associated with an object in the naming service. The
members consist of:

id The identifier that corresponds to the name of the
component.
kind The element that adds secondary type information to

the component name.

The id field is intended for use purely as an identifier. The seman-
tics of the kind field are application-specific and the naming ser-
vice makes no attempt to interpret this value.

A name component is uniquely identified by the combination of
both id and kind fields. Two name components that differ only in
the contents of the kind field are considered to be different com-
ponents.

CosNaming: :Name

Orbix CORBA Programmer’s Reference: C++ 299

300 Orbix CORBA Programmer’s Reference: C++

CosNaming::Bindinglterator

Interface

See Also

Parameters

See Also

A CosNaming.BindingIterator object stores a list of name bindings
and allows application to access the elements of this list.

The NamingContext.list () method obtains a list of bindings in a
naming context. This method allows applications to specify a max-
imum number of bindings to be returned. To provide access to all
other bindings in the naming context, the method returns an
object of type CosNaming.BindingIterator.

// IDL
// In module CosNaming
interface BindingIterator {
boolean next one (
out Binding b
)i
boolean next n(
in unsigned long how many,
out BindingList bl
)i
void destroy () ;

Vi

CosNaming: :NamingContext: :1list ()

Bindinglterator::destroy()

// IDL
void destroy () ;

Deletes the CosNaming: :BindingIterator object on which it is called.

Bindinglterator::next_n()

// IDL
boolean next n(
in unsigned long how many,
out BindingList bl
)i
Gets the next how many elements in the list of bindings, subsequent
to the last element obtained by a call to next n() Or next one(). If
the number of elements in the list is less than the value of
how many, all the remaining elements are obtained.

Returns true if one or more bindings are obtained, but returns false
if no more bindings remain.

how_many The maximum number of bindings to be obtained in
parameter bl.

bl The list of name bindings.

CosNaming: :BindingTterator: :next one ()

Orbix CORBA Programmer’s Reference: C++ 301

Parameters

See Also

CosNaming: :BindingList

Bindinglterator::next_one()

// IDL
boolean next one(

out Binding b
)i

Gets the next element in the list of bindings, subsequent to the last
element obtained by a call to next n() Or next one().

Returns true if a binding is obtained, but returns false if no more
bindings remain.

b The name binding.

CosNaming: :BindingTterator: :next n()
CosNaming: :Binding

302 Orbix CORBA Programmer’s Reference: C++

CosNaming::NamingContext
Interface

The interface CosNaming: :NamingContext provides operations to
access the main features of the CORBA naming service, such as
binding and resolving names. Name bindings are the associations
the naming service maintains between an object reference and a
useful name for that reference.

// IDL
// In module CosNaming
interface NamingContext {
enum NotFoundReason {missing node, not context, not object};

exception NotFound {
NotFoundReason why;
Name rest of name;
exception CannotProceed {
NamingContext cxt;
Name rest of name;
exception InvalidName {};
exception AlreadyBound {};

exception NotEmpty {};:
void bind(
in Name n,

in Object obj

raises (NotFound, CannotProceed, InvalidName,
AlreadyBound) ;

void rebind(

in Name n,

in Object obj

raises (NotFound, CannotProceed, InvalidName) ;
void bind context (

in Name n,

in NamingContext nc

raises (NotFound, CannotProceed, InvalidName,
AlreadyBound) ;

void rebind context (
in Name n,
in NamingContext nc

raises (NotFound, CannotProceed, InvalidName) ;

Object resolve (
in Name n

raises (NotFound, CannotProceed, InvalidName) ;

Orbix CORBA Programmer’s Reference: C++ 303

Parameters

void unbind (
in Name n

)
raises (NotFound, CannotProceed, InvalidName) ;

NamingContext new context () ;

NamingContext bind new context (
in Name n

)
raises (NotFound, CannotProceed, InvalidName,
AlreadyBound) ;

void destroy() raises (NotEmpty) ;

void list(
in unsigned long how many,
out BindingList bl,
out BindingIterator bi

)i

NamingContext::AlreadyBound Exception

// IDL

exception AlreadyBound {};

If an application calls a method that attempts to bind a name to an
object or naming context, but the specified name has already been
bound, the method throws an exception of type AlreadyBound.

The following methods can throw this exception:

bind ()
bind context ()
bind new context ()

NamingContext::bind()

// IDL
void bind(

in Name n,
in Object obj

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Creates a name binding, relative to the target naming context,
between a name and an object.

n The name to be bound to the target object, relative to
the naming context on which the method is called.

obj The application object to be associated with the speci-
fied name.

If the name passed to this method is a compound name with more
than one component, all except the last component are used to
find the sub-context in which to add the name binding.

304 Orbix CORBA Programmer’s Reference: C++

Exceptions

See Also

Parameters

Exceptions

See Also

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

AlreadyBound

The contexts associated with the components must already exist,
otherwise the method throws a NotFound exception.

CosNaming: :NamingContext : : rebind ()
CosNaming: :NamingContext : : resolve ()

NamingContext::bind_context()

// IDL
void bind context (

in Name n,
in NamingContext nc

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Creates a binding, relative to the target naming context, between
a name and another, specified naming context.

n The name to be bound to the target naming context,
relative to the naming context on which the method is
called. All but the final naming context specified in
parameter n must already exist.

nc The NamingContext Object to be associated with the
specified name. This object must already exist. To cre-
ate a new NamingContext Object, call
NamingContext: :new context (). The entries in naming
context nc can be resolved using compound names.

This new binding can be used in any subsequent name resolutions.
The naming graph built using bind context () is not restricted to
being a tree: it can be a general naming graph in which any nam-
ing context can appear in any other naming context.

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

AlreadyBound

This method throws an AlreadyBound exception if the name speci-
fied by n is already in use.

CosNaming.NamingContext .bind new context ()

CosNaming.NamingContextnew context ()
CosNamingNamingContext .rebind context ()
CosNamingNamingContextresolve ()

NamingContext::bind_new_context()

// IDL
NamingContext bind new context (

in Name n

Orbix CORBA Programmer’s Reference: C++ 305

Parameters

Exceptions

See Also

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Creates a new NamingContext Object in the naming service and binds
the specified name to it, relative to the naming context on which
the method is called. The method returns a reference to the newly
created NamingContext object.

n The name to be bound to the newly created naming
context, relative to the naming context on which the
method is called. All but the final naming context
specified in parameter n must already exist.

This method has the same effect as a call to
NamingContext: :new context () followed by a call to
NamingContext: :bind context ().

The new name binding created by this method can be used in any
subsequent name resolutions: the entries in the returned naming
context can be resolved using compound names.

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

AlreadyBound

This method throws an AlreadyBound exception if the name speci-
fied by n is already in use.

CosNaming: :NamingContext: :bind context ()
CosNaming: :NamingContext : :new context ()

NamingContext::CannotProceed Exception

// IDL
exception CannotProceed {

NamingContext cxt;
Name rest of name;

}i
If a naming service method fails due to an internal error, the method
throws a CannotProceed exception.

A cannotProceed exception consists of two member fields:

coxt The NamingContext object associated with the
component at which the method failed.

rest of name The remainder of the compound name, after
the binding for the component at which the
method failed.

The application might be able to use the information returned in
this exception to complete the method later. For example, if you
use a naming service federated across several hosts and one of
these hosts is currently unavailable, a naming service method
might fail until that host is available again.

The following methods can throw this exception:
bind ()

306 Orbix CORBA Programmer’s Reference: C++

See Also

Exceptions

See Also

bind context ()
bind new context ()
rebind ()

rebind context ()
resolve ()

unbind ()

CosNaming: : Name
CosNaming: :NamingContext

NamingContext::destroy()

// IDL
void destroy ()

raises (NotEmpty) ;

Deletes the NamingContext object on which itis called. Before deleting
a NamingContext in this way, ensure that it contains no bindings.

To avoid leaving name bindings with no associated objects in the
naming service, call NamingContext .unbind () to unbind the context
name before calling destroy (). See resolve () for information about
the result of resolving names of context objects that no longer
exist.

NamingContext : destroy () is called on a NamingContext that contains
:NotEmpty existing bindings.

CosNaming: :NamingContext : : resolve ()
CosNaming: :NamingContext : :unbind ()

NamingContext::InvalidName Exception

// IDL
exception InvalidName {};

If a method receives an in parameter of type CosNaming.Name for
which the sequence length is zero, the method throws an
InvalidName exception.

The following methods can throw this exception:
bind ()

bind context ()
bind new context ()
rebind ()

rebind context ()
resolve ()

unbind ()

NamingContext::list()

// IDL
void list(

in unsigned long how many,

out BindingList bl,
out BindingIterator bi

Orbix CORBA Programmer’s Reference: C++ 307

Parameters

See Also

See Also

)i

Gets a list of the name bindings in the naming context on which the
method is called.

how_many The maximum number of bindings to be obtained in
the BindingList parameter, bl.

bl The list of bindings contained in the naming context on
which the method is called.

bi A BindingIterator object that provides access to all
remaining bindings contained in the naming context
on which the method is called.

If the naming context contains more than the
requested number of bindings, the BindingIterator
contains the remaining bindings. If the naming con-
text does not contain any additional bindings, the
parameter bi is a nil object reference.

CosNaming: :BindingIterator
CosNaming: :BindingList

NamingContext::new_context()

// IDL
NamingContext new context () ;

Creates a new NamingContext Object in the naming service, without
binding a name to it. The method returns a reference to the newly
created NamingContext object.

After creating a naming context with this method, your application
can bind a name to it by calling NamingContext : :bind context ().
There is no relationship between this object and the NamingContext
object on which the application call the method.

CosNaming: :NamingContext: :bind context ()

CosNaming: :NamingContext: :bind new context ()

NamingContext::NotEmpty Exception

// IDL

exception NotEmpty {};

An application can call the NamingContext: :destroy () method to
delete a naming context object in the naming service. For this
method to succeed, the naming context must contain no bindings.
If bindings exist in the naming context, the method throws a
NotEmpty exception.

NamingContext::NotFound Exception

// IDL
exception NotFound {

NotFoundReason why;
Name rest of name;

308 Orbix CORBA Programmer’s Reference: C++

See Also

See Also

}i

Several methods in the interface CosNaming: :NamingContext require
an existing name binding to be passed as an input parameter. If
such an method receives a name binding that it determines is
invalid, the method throws a NotFound exception. This exception
contains two member fields:

why The reason why the name binding is invalid.

rest_of name The remainder of the compound name following the
invalid portion of the name that the method deter-
mined to be invalid.

The following methods can throw this exception:

bind ()

bind context ()
bind new context ()
rebind ()

rebind context ()
resolve ()

unbind ()

CosNaming: :NamingContext : :NotFoundReason

NamingContext::NotFoundReason Enumeration

// IDL
enum NotFoundReason {missing node, not context, not object};

If an method throws a NotFound exception, a value of enumerated
type NotFoundReason indicates the reason why the exception was
thrown. The reasons consists of:

missing node The component of the name passed to the
method did not exist in the naming service.

not_context The method expected to receive a name that is
bound to a naming context, for example using
NamingContext: :bind context (), but the name
received did not satisfy this requirement.

not_object The method expected to receive a name that is
bound to an application object, for example
using NamingContext::bind (), but the name
received did not satisfy this requirement.

CosNaming: :NamingContext : : NotFound

NamingContext::rebind()

// IDL
void rebind (

in Name n,
in Object obj

raises (NotFound, CannotProceed, InvalidName) ;

Orbix CORBA Programmer’s Reference: C++ 309

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

Creates a binding between an object and a name that is already
bound in the target naming context. The previous name is unbound
and the new binding is created in its place.

n The name to be bound to the specified object, relative
to the naming context on which the method is called.

obj The application object to be associated with the speci-
fied name.

As is the case with NamingContext::bind (), all but the last compo-
nent of a compound name must exist, relative to the naming con-
text on which you call the method.

The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

CosNaming: :NamingContext: :bind ()
CosNaming: :NamingContext: : resolve ()

NamingContext::rebind_context()

// IDL
void rebind context (

in Name n,

in NamingContext nc

raises (NotFound, CannotProceed, InvalidName) ;

The rebind context () method creates a binding between a naming
context and a name that is already bound in the context on which
the method is called. The previous name is unbound and the new
binding is made in its place.

n The name to be bound to the specified naming con-
text, relative to the naming context on which the
method is called.

nc The naming context to be associated with the specified
name.

As is the case for NamingContext::bind context (), all but the last
component of a compound name must name an existing
NamingContext.

The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

CosNaming: :NamingContext: :bind context ()
CosNaming: :NamingContext: : resolve ()

310 Orbix CORBA Programmer’s Reference: C++

Parameters

Exceptions

See Also

Parameters

Exceptions

NamingContext::resolve()

// IDL
Object resolve (

in Name n
)

raises (NotFound, CannotProceed, InvalidName) ;

Returns the object reference that is bound to the specified name,
relative to the naming context on which the method was called. The
first component of the specified name is resolved in the target
naming context.

n The name to be resolved, relative to the naming con-
text on which the method is called.

An IDL Object maps to the type CORBA: :Object ptr in C++. You
must narrow the result to the appropriate type before using it in
your application.

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

If the name n refers to a naming context, it is possible that the
corresponding NamingContext object no longer exists in the naming
service. For example, this could happen if you call

NamingContext: :destroy () to destroy a context without first unbind-
ing the context name. In this case, resolve () throws a CORBA sys-
tem exception.

CosNaming: :NamingContext : : Cannot Proceed
CosNaming: :NamingContext : : InvalidName
CosNaming: :NamingContext : : NotFound

NamingContext::unbind()

// IDL
void unbind (

in Name n
)

raises (NotFound, CannotProceed, InvalidName) ;

Removes the binding between a specified name and the object
associated with it.

n The name to be unbound in the naming service, rela-
tive to the naming context on which the method is
called.

Unbinding a name does not delete the application object or nam-
ing context object associated with the name. For example, if you
want to remove a naming context completely from the naming
service, you should first unbind the corresponding name, then
delete the NamingContext Object by calling
NamingContext : :destroy () .

The method can throw these exceptions:

Orbix CORBA Programmer’s Reference: C++ 311

NotFound

CannotProceed
InvalidName

See Also CosNaming: :NamingContext : : Cannot Proceed
CosNaming: :NamingContext : :destroy ()
CosNaming: :NamingContext : : InvalidName
CosNaming: :NamingContext : : NotFound

312 Orbix CORBA Programmer’s Reference: C++

CosNaming::NamingContextExt

Interface

The

NamingContextExt interface, derived from NamingContext, pro-

vides the capability for applications to use strings and Uniform
Resource Locator (URL) strings to access names in the naming
service.

// IDL
// In module CosNaming
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;

typedef string URLString;

StringName to string(
in Name n

)

raises (InvalidName) ;

Name to name (
in StringName sn

raises (InvalidName) ;
exception InvalidAddress {};
URLString to url (

in Address addr,

in StringName sn

raises (InvalidAddress, InvalidName) ;
Object resolve str(

in StringName n

)

raises (NotFound, CannotProceed, InvalidName,

AlreadyBound) ;

}i

NameContextExt::Address Data Type

// IDL
typedef string Address;

A URL address component is a host name optionally followed by a
port number (delimited by a colon). Examples include the follow-

ing:

my_backup host.555xXyz.com:900
myhost .xyz.com
myhost . 555xyz . com

Orbix CORBA Programmer’s Reference: C++ 313

NameContextExt::InvalidAddress Exception

// IDL
exception InvalidAddress {};

The to url () method throws an Invalidaddress exception when an
invalid URL address component is passed to it.

See Also CosNaming: :NamingContextExt::to url ()

NameContextExt::resolve_str()

// IDL
Object resolve str(

in StringName sn
)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Resolves a naming service name to the object it represents in the
same manner as NamingContext: :resolve (). This method accepts a
string representation of a name as an argument instead of a Name
data type.

Parameters

sn String representation of a name to be resolved to an
object reference.
Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

AlreadyBound

NameContextExt::StringName Data Type

// IDL
typedef string StringName;

A string representation of an object’s name in the naming service.

See Also CosNaming: :Name

NameContextExt::to _name()

// IDL
Name to name (

in StringName sn
)

raises (InvalidName) ;

Returns a naming service Name given a string representation of it.

Parameters

sn String representation of a name in the naming service
to be converted to a Name data type.

314 Orbix CORBA Programmer’s Reference: C++

Exceptions

Parameters

Exceptions

Parameters

Exceptions

InvalidName The string name is syntactically malformed or violates
an implementation limit.

NameContextExt::to_string()

// IDL

StringName to string(
in Name n

)

raises (InvalidName) ;

Returns a string representation of a naming service Name data type.

n The naming service Name to be converted to a string.

InvalidName Name is invalid.

NameContextExt::to_url()

// IDL

URLString to url(
in Address addr,
in StringName sn

raises (InvalidAddress, InvalidName) ;

Returns a fully formed URL string, given a URL address component
and a string representation of a name. It adds the necessary escape
sequences to create a valid URLString.

addr The URL address component. An empty address
means the local host.

sn The string representation of a naming service name.
An empty string is allowed.
The method can throw these exceptions:

InvalidAddress
InvalidName

NameContextExt::URLString Data Type

// IDL
typedef string URLString;

A valid Uniform Resource Locator (URL) string. URL strings describe
the location of a resource that is accessible via the Internet.

Orbix CORBA Programmer’s Reference: C++ 315

316 Orbix CORBA Programmer’s Reference: C++

CosNotification Module

CosNotification

The cosNotification module defines the structured event data
type, and a data type used for transmitting sequences of struc-
tured events. In addition, this module provides constant declara-
tions for each of the standard quality of service (QoS) and
administrative properties supported by the notification service.
Some properties also have associated constant declarations to
indicate their possible settings. Finally, administrative interfaces
are defined for managing sets of QoS and administrative proper-
ties.

Data Types

CosNotification::StructuredEvent Data
Structure

//IDL

struct EventType {
string domain name;
string type name;

}i

struct FixedEventHeader {
EventType event type;
string event name;

}i

struct EventHeader {
FixedEventHeader fixed header;
OptionalHeaderFields variable header;

struct StructuredEvent {

EventHeader header;

FilterableEventBody filterable data;

any remainder of body;
}; // StructuredEvent
The structuredivent data structure defines the fields which make
up a structured event. A detailed description of structured events
is provided in the CORBA Notification Service Guide.

CosNotification::EventTypeSeq Type

//IDL

struct EventType {
string domain name;
string type name;

}i

typedef sequence <EventType> EventTypeSeq

Orbix CORBA Programmer’s Reference: C++ 317

CosNotification::EventBatch Type

The CosNotification module defines the EventBatch data type as a
sequence of structured events. The CosNotifyComm module defines
interfaces supporting the transmission and receipt the EventBatch
data type.

QoS and Administrative Constant Declarations

The cosNotification module declares several constants related to
QoS properties, and the administrative properties of event chan-
nels.

// IDL in CosNotification module

const string EventReliability = "EventReliability";
const short BestEffort = 0;

const short Persistent = 1;

const string ConnectionReliability = "ConnectionReliability";
// Can take on the same values as EventReliability

const string Priority = "Priority";
const short LowestPriority = -32767;
const short HighestPriority = 32767;
const short DefaultPriority = 0;

const string StartTime = "StartTime";
// StartTime takes a value of type TimeBase: :UtcT

const string StopTime = "StopTime";
// StopTime takes a value of type TimeBase::UtcT

const string Timeout = "Timeout";
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = "OrderPolicy";
const short AnyOrder = O;
const short FifoOrder = 1;

const short PriorityOrder = 2;
const short DeadlineOrder = 3;
const string DiscardPolicy = "DiscardPolicy";

// DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = "MaximumBatchSize";
// MaximumBatchSize takes on a value of type long

const string PacingInterval = "PacingInterval";
/ PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = "StartTimeSupported";
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = "StopTimeSupported";
// StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = "MaxEventsPerConsumer";
// MaxEventsPerConsumer takes on a value of type long

318 Orbix CORBA Programmer’s Reference: C++

QoS and Admin Data Types

Members

The cosNotification module defines several data types related to
QoS properties, and the administrative properties of event chan-
nels.

CosNotification::PropertyName Type

typedef string PropertyName;

PropertyName iS @ string holding the name of a QoS or an Admin
property.

CosNotification::PropertyValue Type

typedef any PropertyValue;

PropertyValue iS an any holding the setting of QoS or Admin prop-
erties.

CosNotification::PropertySeq Type

//IDL in CosNotification module
struct Property

{

PropertyName name;

PropertyValue value;

}i

typedef sequence <Property> PropertySeq;

PropertySeq is a set of name-value pairs that encapsulate QoS or
Admin properties and their values.

name A string identifying the QoS or Admin property.
value An Any containing the setting of the QoS or Admin
property.

CosNotification::QoSProperties Type
typedef PropertySeq QoSProperties;

QoSProperties is a name-value pair of PropertySeqg used to specify
QoS properties.

CosNotification::AdminProperties Type

typedef PropertySeq AdminProperties;

AdminProperties iS @ name-value pair of PropertySeq used to specify
Admin properties.

Orbix CORBA Programmer’s Reference: C++ 319

CosNotification::QoSError_code Enum

enum QoSError code
{
UNSUPPORTED PROPERTY,
UNAVAILABLE PROPERTY,
UNSUPPORTED VALUE,
UNAVAILABLE VALUE,
BAD PROPERTY,
BAD TYPE,
BAD VALUE
}i
QoSError code specifies the error codes for Unsupportedgos and
UnsupportedAdmin exceptions. The return codes are:

UNSUPPORTED PROPERTYOrbix does not support the property for this
type of object

UNAVAILABLE PROPERTYThis property cannot be combined with existing
QoS properties.

UNSUPPORTED VALUE The value specified for this property is invalid
for the target object.

UNAVAILABLE VALUE The value specified for this property is invalid
in the context of other QoS properties currently

in force.

BAD PROPERTY The property name is unknown.

BAD TYPE The type supplied for the value of this property
is incorrect.

BAD VALUE The value specified for this property is illegal.

CosNotification::PropertyErrorSeq Type

// IDL from CosNotification module
struct PropertyRange
{
PropertyValue low val;
PropertyValue high val;

bi

struct PropertyError
QoSError code code;
PropertyName name;
PropertyRange available range;

typedef sequence <PropertyError> PropertyErrorSedq;

A PropertyErrorSeq is returned when UnsupportedQoS or
UnsupportedAdmin iS raised. It specifies a sequence containing the
reason for the exception, the property that caused it, and a range
of valid settings for the property.

320 Orbix CORBA Programmer’s Reference: C++

QoS and Admin

CosNotification::NamedPropertyRangeSeq
Type

struct NamedPropertyRange

PropertyName name;
PropertyRange range;

}i

typedef sequence <NamedPropertyRange> NamedPropertyRangeSeq;

Specifies a range of values for the named property.

Exceptions

The CosNotification module defines two exceptions related to QoS
properties, and the administrative properties of event channels.

CosNotification::UnsupprtedQoS

exception UnsupportedQoS { PropertyErrorSeq gos_err; };

Raised when setting QoS properties on notification channel objects,
or when validating QoS properties. It returns with a
PropertyErrorSeq specifying the reason for the exception, which
property was invalid, and a list of valid settings for the QoS property.

CosNotification::UnsupportedAdmin

exception UnsupportedAdmin { PropertyErrorSeq admin err; };

Raised when setting Admin properties on notification channels. It
returns with a PropertyErrorSeg specifying the reason for the excep-
tion, which property was invalid, and a list of valid settings for the

property.

Orbix CORBA Programmer’s Reference: C++ 321

322 Orbix CORBA Programmer’s Reference: C++

CosNotification::AdminProperties
Admin Interface

Parameters

Exceptions

//IDL
interface AdminPropertiesAdmin {
AdminProperites get admin() ;
void set admin (in AdminProperites admin)
raises (UnsupportedAdmin) ;

}i

The aAdminPropertiesAdmin interface defines operations enabling
clients to manage the values of administrative properties. This
interface is an abstract interface which is inherited by the Event
Channel interfaces defined in the CosNotifyChannelAdmin module.

AdminPropertiesAdmin::get_admin()

AdminProperites get admin() ;

Returns a sequence of name-value pairs encapsulating the current
administrative settings for the target channel.

AdminPropertiesAdmin::set_admin()

void set_admin (in AdminProperites admin)
raises (UnsupportedAdmin) ;

Sets the specified administrative properties on the target object.

admin A sequence of name-value pairs
encapsulating administrative property
settings.

UnsupportedAdmin Raised if If any of the requested settings cannot
be satisfied by the target object.

Orbix CORBA Programmer’s Reference: C++ 323

324 Orbix CORBA Programmer’s Reference: C++

CosNotification::QoSAdmMiIn
Interface

//IDL
interface QoSAdmin {
QoSProperties get gos() ;
void set gos (in QoSProperties gos)
raises (UnsupportedQoS) ;
void validate gos (
in QoSProperites required gos,
out NamedPropertyRangeSeq available gos)
raises (UnsupportedQoS) ;
The Qosadmin interface defines operations enabling clients to man-
age the values of QoS properties. It also defines an operation to
verify whether or not a set of requested QoS property settings can
be satisfied, along with returning information about the range of
possible settings for additional QoS properties. QoSAdmin is an
abstract interface which is inherited by the proxy, admin, and
event channel interfaces defined in the CosNotifyChannelAdmin
module.

QoSAdmin::get_qgos()

QoSProperites get gos() ;

Returns a sequence of name-value pairs encapsulating the current
quality of service settings for the target object (which could be an
event channel, admin, or proxy object).

QoSAdmin::set_qgos()

void set _gos (in QoSProperites gos)

raises (UnsupportedQoS) ;
Sets the specified QoS properties on the target object (which
could be an event channel, admin, or proxy object).

Parameters

gos A sequence of name-value pairs
encapsulating quality of service prop-
erty settings

Exceptions

UnsupportedQos The implementation of the target object is incapable of
supporting some of the requested quality of service
settings, or one of the requested settings are in con-
flict with a QoS property defined at a higher level of
the object hierarchy.

Orbix CORBA Programmer’s Reference: C++ 325

QoSAdmin::validate qgos()

void validate gos (

in QoSProperites required dos,

out NamedPropertyRangeSeq available gos)

raises (UnsupportedQoS) ;
Enables a client to discover if the target object is capable of sup-
porting a set of QoS settings. If all requested QoS property value
settings can be satisfied by the target object, the operation
returns successfully (without actually setting the QoS properties
on the target object).

Parameters

required gos A sequence of QoS property
name-value pairs specifying a set of
QoS settings.

available gos An output parameter that contains a
sequence of NamedPropertyRange. Each
element in this sequence includes the
name of a an additional QoS property
supported by the target object which
could have been included on the input
list and resulted in a successful return
from the operation, along with the
range of values that would have been
acceptable for each such property.

Exceptions

UnsupportedQos Raised if If any of the requested settings cannot be
satisfied by the target object.

326 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin Module

The CosNotifyChanneladmin module specifies the interfaces, excep-
tions, and data types for connecting suppliers and consumers to
an event channel. It also provides the methods for managing
these connections.

CosNotifyChannelAdmin Data Types

CosNotifyChannelAdmin specifies data types that facilitate the con-
nection of clients to an event channel. The data types specify the
proxy type used by a client, the type of events a client can send or
recieve, and how the clients recieve subscription information.
Several data types identify the client and the event channel objets
responsible for managing it.

CosNotifyChyyyyyannelAdmin::ProxyType
Enum

// IDL in CosNotifyChannelAdmin

enum ProxyType

{
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL STRUCTURED,
PUSH SEQUENCE,
PULL SEQUENCE,
PUSH_TYPED,
PULL TYPED

}

Specifies the type of proxy used by a client to connect to an event
channel. The type of proxy must match the type of client it connects
to the channel. For example, a structured push consumer must use
a PUSH_STRUCTURED Proxy.

CosNotifyChannelAdmin::ObtainlnfoMode
Enum

// IDL in CosNotifyChannelAdmin Module
enum ObtainInfoMode
{
ALL NOW UPDATES ON,
ALL NOW UPDATES OFF,
NONE_NOW_UPDATES_ON,
NONE NOW UPDATES OFF

Orbix CORBA Programmer’s Reference: C++ 327

Specifies how the client wishes to be notified of changes in subscrip-
tion/publication information. The values have the following mean-
ings:

ALL NOW_UPDATES ON Returns the current subscription/publication
information and enables automatic updates.

ALL_NOW_UPDATES_OFFReturns the current subscription/publication
information and disables automatic updates.

NONE NOW_UPDATES_ONEnables automatic updates of subscription/publi-
cation information without returning the current
information.

NON_NOW_UPDATES_OFFDisables automatic updates of subscription/pub-
lication information without returning the cur-
rent information.

CosNotifyChannelAdmin::ProxyID Type

typedef long ProxyID;
Specifies the ID of a proxy in an event channel.

CosNotifyChannelAdmin::ProxylDSeq Type

typedef sequence <ProxyID> ProxyIDSeq

Contains a list of proxyID values.

CosNotifyChannelAdmin::ClientType Enum

// IDL in CosNotifyChannelAdmin
enum ClientType

{
ANY EVENT,
STRUCTURED EVENT,
SEQUENCE_EVENT

}

Specifies the type of messages a client handles. The values have
the following meanings:

ANY EVENT The client sends or receives messages as an Any.
Consumers set with ANY EVENT can receive struc-
tured messages, but the consumer is responsible
for decoding it.

STRUCTURED EVENT The client sends or receives messages as a
CosNotification::StructuredEvent.

SEQUENCE EVENT The client sends or receives messages as a
CosNotification::EventBatch.

328 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::InterFilterGroupOper
ator Enum

// IDL in CosNotifyChannelAdmin
enum InterFilterGroupOperator

{
AND OP,
OR_OP

}

Specifies the relationship between filters set on an admin object
and the filters set on its associated filter objects. The values have
the following meanings:

AND OP Events must pass at least one filter in both the proxy
and the admin in order to be forwarded along the
delivery path.

OR_OP Events must pass at least one filter in either the proxy
or the admin in order to be forwarded along the deliv-
ery path.

CosNotifyChannelAdmin::AdminlID Type

typedef long AdminID;

Specifies the ID of an admin object in an event channel.

CosNotifyChannelAdmin::AdminIDSeq

typedef sequence <AdminID> AdminIDSeq;

Contains a list of IDs for admin objects in an event channel.

CosNotifyChannelAdmin::AdminLimit Type

//IDL in CosNotifyChannelAdmin
struct AdminLimit

{

CosNotification: :PropertyName name;
CosNotification: :PropertyValue value;

}

Specifies the administration property whose limit is exceeded and
the value of that property. It is returned by an
CosNotifyChannelAdmin: :AdminLimitExceeded exception.

Members
name Name of the admin property that caused the excep-
tion.
value The current value of the property.

CosNotifyChannelAdmin::ChannellD Type

typedef long ChannellID;

Orbix CORBA Programmer’s Reference: C++ 329

Specifies an event channel in the notification service.

CosNotifyChannelAdmin::ChannellDSeq Type

typedef sequence <ChannelID> ChannelIDSeq;

Contains a list of IDs for event channels in the notification service.

CosNotifyChannelAdmin Exceptions

The CosNotifyChannelAdmin module defines exceptions to handle
errors generated while managing client connections to an event
channel.

CosNotifyChannelAdmin::ConnectionAlreadyAc
tive Exception
exception ConnectionAlreadyActive{};

Raised when attempting to resume an already active connection
between a client and an event channel.

CosNotifyChannelAdmin::ConnetionAlreadylna
ctive Exception
exception ConnectionAlreadyInactive{};

Raised when attempting to suspend a connection between a client
and an event channel while it is suspended.

CosNotifyChannelAdmin::NotConnected
Exception

exception NotCennected{};

Raised when attempting to suspend or resume a connection be-
tween a client and an event channel when the client is not connected
to the channel.

CosNotifyChannelAdmin::AdminNotFound
Exception

exception AdminNotFound{};

Raised when the specified Admin ID cannot be resolved.

CosNotifyChannelAdmin::ProxyNotFound
Exception

exception ProxyNotFound{};

330 Orbix CORBA Programmer’s Reference: C++

Raised when the specified proxy ID cannot be resolved.

CosNotifyChannelAdmin::AdminLimitExceeded
Exception
exception AdminLimitExceeded{ AdminLimit admin property err };

Raised when an attempt to obtain a proxy and the new connection
will put the event channel over the limit set by its MaxConsumers oOr
MaxSuppliers setting.

The returned adminLimit specifies which property caused the
exception and the current setting of the property.

CosNotifyChannelAdmin::ChannelNotFound
Exception

exception ChannelNotFound{};

Raised when the specified channel ID cannot be resolved.

Orbix CORBA Programmer’s Reference: C++ 331

332 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Consum
erAdmin Interface

//IDL

interface ConsumerAdmin :
CosNotification: :QoSAdmin,
CosNotifyComm: :NotifySubscribe,
CosNotifyFilter: :FilterAdmin,
CosEventChannelAdmin: : ConsumerAdmin

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

attribute CosNotifyFilter::MappingFilter priority filter;
attribute CosNotifyFilter::MappingFilter lifetime filter;

readonly attribute ProxyIDSeq pull suppliers;
readonly attribute ProxyIDSeq push suppliers;

ProxySupplier get proxy supplier (in ProxyID proxy id)
raises (ProxyNotFound) ;

ProxySupplier obtain notification pull supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxySupplier obtain notification push supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxySupplier obtain txn notification pull supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

void destroy () ;
i
The consumerAdmin interface defines the behavior of objects that
create and manage lists of proxy supplier objects within an event
channel. A event channel can have any number of ConsumerAdmin
instances associated with it. Each instance is responsible for creat-
ing and managing a list of proxy supplier objects that share a
common set of QoS property settings, and a common set of filter
objects. This feature enables clients to group proxy suppliers
within a channel into groupings that each support a set of con-
sumers with a common set of QoS requirements and event sub-
scriptions.

The ConsumeraAdmin interface inherits the Qosadmin interface defined
within CosNotification, enabling each ConsumerAdmin to manage a
set of QOS property settings. These Qo0S property settings are

assigned as the default QoS property settings for any proxy sup-

Orbix CORBA Programmer’s Reference: C++ 333

plier object created by a ConsumerAdmin.The ConsumerAdmin interface
also inherits from the rFilterAdmin interface defined within
CosNotifyFilter. This enables each ConsumerAdmin to maintain a list
of filters. These filters encapsulate subscriptions that apply to all
proxy supplier objects that have been created by a given Consum-
erAdmin.

The ConsumerAdmin interface also inherits from the NotifySubscribe
interface defined in CosNotifyComm. This inheritance enables a con-
sumerAdmin to be registered as the callback object for notification of
subscription changes made on filters. This optimizes the notifica-
tion of a group of proxy suppliers that have been created by the
same ConsumerAdmin Of changes to these shared filters.

The ConsumerAdmin interface also inherits from
CosEventChannelAdmin: : ConsumerAdmin. This inheritance enables cli-
ents to use the ConsumerAdmin interface to create pure OMG event
service style proxy supplier objects. Proxy supplier objects created
in this manner do not support configuration of QoS properties, and
do not have associated filters. Proxy suppliers created through the
inherited CosEventChannelAdmin: : ConsumerAdmin interface do not
have unique identifiers associated with them, whereas proxy sup-
pliers created by operations supported by the ConsumerAdmin inter-
face do have unique identifiers.

The ConsumerAdmin interface supports a read-only attribute that
maintains a reference to the EventChannel instance that created it.
The ConsumerAdmin interface also supports a read-only attribute
that contains a unique numeric identifier which is assigned event
channel upon creation of a Consumeradmin instance. This identifier is
unigue among all ConsumerAdmin instances created by a given chan-
nel.

As described above, a Consumeradmin can maintain a list of filters
that are applied to all proxy suppliers it creates. Each proxy sup-
plier can also support a list of filters that apply only to the proxy.
When combining these two lists during the evaluation of a given
event, either AND or orR semantics may be applied. The choice is
determined by an input flag when creating of the ConsumeraAdmin,
and the operator that is used for this purpose by a given Consum-
erAdmin iS maintained in a read-only attribute.

The ConsumerAdmin interface also supports attributes that maintain
references to priority and lifetime mapping filter objects. These
mapping filter objects are applied to all proxy supplier objects cre-
ated by a given ConsumerAdmin.

Each Consumeradmin assigns a unique numeric identifier to each
proxy supplier it maintains. The Consumeradmin interface supports
attributes that maintain the list of these unique identifiers associ-
ated with the proxy pull and the proxy push suppliers created by a
given ConsumerAdmin. The ConsumerAdmin interface also supports an
operation that, given the unique identifier of a proxy supplier,
returns the object reference of that proxy supplier. Finally, the
ConsumerAdmin interface supports operations that create the various
styles of proxy supplier objects supported by the event channel.

ConsumerAdmin::MyID

readonly attribute AdminID MyID;

334 Orbix CORBA Programmer’s Reference: C++

Maintains the unique identifier of the target ConsumerAdmin instance
that is assigned to it upon creation by the event channel.

ConsumerAdmin::MyChannel

readonly attribute EventChannel MyChannel

Maintains the object reference of the event channel that created a
given ConsumerAdmin instance.

ConsumerAdmin::MyOperator

readonly attribute InterFilterGroupOperator MyOperator;

Maintains the information regarding whether aND or OrR semantics
are used during the evaluation of a given event when combining
the filter objects associated with the target Consumeradmin and those
defined locally on a given proxy supplier.

ConsumerAdmin::priority_filter

attribute CosNotifyFilter::MappingFilter priority filter;

Maintains a reference to a mapping filter object that affects how
each proxy supplier created by the target ConsumerAdmin treats
events with respect to priority.

Each proxy supplier also has an associated attribute which main-
tains a reference to a mapping filter object for the priority prop-
erty. This local mapping filter object is only used by the proxy
supplier in the event that the priority filter attribute of the con-
sumerAdmin instance that created it is set to OBJECT NIL.

ConsumerAdmin::lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime filter;

Maintains a reference to a mapping filter that affects how each proxy
supplier created by the target ConsumerAdmin treats events with
respect to lifetime.

Each proxy supplier object also has an associated attribute that
maintains a reference to a mapping filter object for the lifetime
property. This local mapping filter object is only used by the proxy
supplier in the event that the lifetime filter attribute of the con-
sumerAdmin instance that created it is set to OBJECT NIL.

ConsumerAdmin::pull_suppliers

readonly attribute ProxyIDSeq pull suppliers;

Contains the list of unique identifiers that have been assigned by a
ConsumerAdmin instance to each pull-style proxy supplier it has
created.

Orbix CORBA Programmer’s Reference: C++ 335

Parameters

Exceptions

ConsumerAdmin::push_suppliers

readonly attribute ProxyIDSeq push suppliers;

Contains the list of unique identifiers that have been assigned by a
ConsumerAdmin instance to each push-style proxy supplier it has
created.

ConsumerAdmin::get_proxy_supplier()

ProxySupplier get proxy supplier (in ProxyID proxy id)

raises (ProxyNotFound) ;
Returns an object reference to the proxy supplier whose unique id
was passed to the method.

proxy id A numeric identifier associated with one of the
proxy suppliers that created by the target
ConsumerAdmin.

ProxyNotFound The input parameter does not correspond to the
unique identifier of a proxy supplier object created
by the target consumerAdmin.

ConsumerAdmin::obtain_notification_pull_sup
plier()
ProxySupplier obtain notification pull supplier (

in ClientType ctype,

out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates instances of the pull-style proxy suppliers defined in
CosNotifyChannelAdmin and returns an object reference to the new
proxy.

Three varieties of pull-style proxy suppliers are defined in this
module:

®* The proxyPullSupplier interface supports connections to pull
consumers that receive events as Anys.

* The structuredProxyPullSupplier interface supports connec-
tions to pull consumers that receive structured events.

®* The SequenceProxyPullSupplier interface support connections
to pull consumers that receive sequences of structured
events.

The input parameter flag indicates which type of pull style proxy
instance to create.

The target ConsumerAdmin creates the new pull-style proxy supplier
and assigns a numeric identifier to it that is unique among all
proxy suppliers the ConsumeraAdmin has created.

336 Orbix CORBA Programmer’s Reference: C++

Parameters

ctype A flag that indicates which style of pull-style proxy
supplier to create.

proxy id The unique identifier of the new proxy supplier.
Exceptions

AdminLimitExceededThe number of consumers currently connected to
the channel with which the target ConsumerAdmin is
associated exceeds the value of the MaxConsumers
administrative property.

ConsumerAdmin::obtain_notification_push_su
pplier()

ProxySupplier obtain notification push supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates instances of the push-style proxy supplier objects defined
in CosNotifyChannelAdmin and returns an object reference to the new
proxy.

Three varieties of push-style proxy suppliers are defined in this
module:

* The proxyPushSupplier interface supports connections to push
consumers that receive events as 2nys.

®* The structuredProxyPushSupplier interface supports connec-
tions to push consumers that receive structured events.

* The sequenceProxyPushSupplier interface supports connections
to push consumers that receive sequences of structured
events.

The input parameter flag indicates which type of push-style proxy
to create.

The target ConsumerAdmin creates the new push-style proxy sup-
plier and assigns a numeric identifier to it that is unique among all
proxy suppliers the ConsumeraAdmin has created.

Parameters
ctype A flag indicating which style of push-style proxy
supplier to create.
proxy_ id The unique identifier of the new proxy supplier.

Exceptions

AdminLimitExceededThe number of consumers currently connected to
the channel with which the target ConsumerAdmin is
associated exceeds the value of the MaxConsumers
administrative property.

Orbix CORBA Programmer’s Reference: C++ 337

ConsumerAdmin::destroy()

void destroy () ;

Destroys all proxies under the administration of the target object,
and then destroys the target object itself. When destroying each
object, it frees any storage associated with the object in question,
and then invalidates the object's IOR.

338 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::EventCh
annel Interface

//IDL

interface EventChannel
CosNotification: :QoSAdmin,
CosNotification: :AdminPropertiesAdmin,
CosEventChannelAdmin: : EventChannel

readonly attribute EventChannelFactory MyFactory;
readonly attribute ConsumerAdmin default_ consumer admin;
readonly attribute SupplierAdmin default_ supplier admin;
readonly attribute CogNotifyFilter::FilterFactory
default filter factory;

ConsumerAdmin new for consumers (
in InterFilterGroupOperator op,
out AdminID id);

SupplierAdmin new for suppliers(
in InterFilterGroupOperator op,
out AdminID id);

ConsumerAdmin get consumeradmin (in AdminID id)
raises (AdminNotFound) ;

SupplierAdmin get supplieradmin (in AdminID id)
raises (AdminNotFound) ;

AdminIDSeq get all consumeradmins () ;

AdminIDSeq get all supplieradmins() ;
}i
The EventcChannel interface defines the behavior of an event chan-
nel. This interface inherits from CosEventChannelAdmin: : EventChan-
nel; this makes an instance of the notification service EventChannel
interface fully compatible with an OMG event service style untyped
event channel.

Inheritance of CosEventChannelAdmin: : EventChannel enables an
instance of the EventChannel interface to create event service style
ConsumerAdmin and SupplierAdmin instances. These instances can
subsequently be used to create pure event service style proxies,
which support connections to pure event service style suppliers
and consumers.

While notification service style proxies and admin objects have
unique identifiers associated with them, enabling their references
to be obtained by invoking operations on the notification service
style admin and event channel interfaces, event service style
proxies and admin objects do not have associated unique identifi-
ers, and cannot be returned by invoking an operation on the noti-
fication service style admin or event channel interfaces.

The EventChannel interface also inherits from the gosadmin and the
AdminPropertiesAdmin interfaces defined in CosNotification. Inheri-
tance of these interfaces enables a notification service style event
channel to manage lists of QoS and administrative properties.

Orbix CORBA Programmer’s Reference: C++ 339

The EventChannel interface supports a read-only attribute that
maintains a reference to the EventChannelFactory that created it.
Each instance of the EventChannel interface has an associated
default ConsumerAdmin and an associated default SupplierAdmin,
both of which exist upon creation of the channel and that have the
unique identifier of zero. Admin object identifiers must only be
unique among a given type of admin, which means that the identi-
fiers assigned to ConsumerAdmin Objects can overlap those assigned
to SupplierAdmin objects. The EventChannel interface supports
read-only attributes that maintain references to these default
admin objects.

The EventChannel interface supports operations that create new
ConsumerAdmin and SupplierAdmin instances. The EventChannel inter-
face also supports operations that, when provided with the unique
identifier of an admin object, can return references to the
ConsumerAdmin and SupplierAdmin instances associated with a given
EventChannel . Finally, the EventChannel interface supports opera-
tions that return the sequence of unique identifiers of all
ConsumerAdmin and SupplierAdmin instances associated with a given
EventChannel.

EventChannel::MyFactory

readonly attribute EventChannelFactory MyFactory;

Maintains the object reference of the event channel factory that
created a given EventChannel.

EventChannel::default_consumer_admin

readonly attribute ConsumerAdmin default_ consumer admin;

Maintains a reference to the default ConsumerAdmin associated with
the target EventChannel. Each EventChannel instance has an associ-
ated default consumeradmin, that exists upon creation of the channel
and is assigned the unique identifier of zero. Clients can create
additional event service style Consumeradmin by invoking the inher-
ited for consumers operation, and additional notification service
style ConsumerAdmin by invoking the new for consumers operation
defined by the EventcChannel interface.

EventChannel::default_supplier_admin

readonly attribute SupplierAdmin default supplier admin;

Maintains a reference to the default Supplieradmin associated with
the target EventChannel. Each EventChannel has an associated default
SupplierAdmin, that exists upon creation of the channel and is
assigned the unique identifier of zero. Clients can create additional
event service style SupplierAdmin by invoking the inherited for sup-
pliers operation, and additional notification service style
SupplierAdmin by invoking the new for suppliers operation defined
by the EventChannel interface.

340 Orbix CORBA Programmer’s Reference: C++

Parameters

Parameters

EventChannel::default_filter_factory

readonly attribute CosNotifyFilter::FilterFactory
default_filter factory;

Maintains an object reference to the default factory to be used by
its associated EventChannel for creating filters. If the target channel
does not support a default filter factory, the attribute maintains the
value of OBJECT NIL.

EventChannel::new_for_consumers()

ConsumerAdmin new for consumers (
in InterFilterGroupOperator op,
out AdminID id) ;

Creates a notification service style ConsumerAdmin. The new instance
is assigned a unique identifier by the target EventChannel that is
unique among all Consumeradmins currently associated with the
channel. Upon completion, the operation returns the reference to
the new ConsumerAdmin, and the unique identifier assigned to the
new ConsumerAdmin as the output parameter.

op A boolean flag indicating whether to use 2AND or OR
semantics when the ConsumerAdmin’s filters are
combined with the filters associated with any sup-
plier proxies the ConsumerAdmin creates.

id The unique identifier assigned to the new
ConsumerAdmin.

EventChannel::new_for_suppliers()

SupplierAdmin new for suppliers(
in InterFilterGroupOperator op,
out AdminID id);

Creates a notification service style supplierAdmin. The new
SupplierAdmin is assigned an identifier by the target EventChannel
that is unique among all supplieradmins currently associated with
the channel. Upon completion, the operation returns the reference
to the new supplierAdmin, and the unique identifier assigned to the
new SupplierAdmin as the output parameter.

op A boolean flag indicating whether to use aND or OrR
semantics when the supplieraAdmin’s filters are
combined with the filters associated with any sup-
plier proxies the SupplierAdmin creates.

id The unique identifier assigned to the new
SupplierAdmin.

Orbix CORBA Programmer’s Reference: C++ 341

Note:

Parameters

Exceptions

Note:

Parameters

Exceptions

EventChannel::get_consumeradmin()

ConsumerAdmin get consumeradmin (in AdminID id)
raises (AdminNotFound) ;

Returns a reference to one of the ConsumerAdmins associated with
the target EventChannel.

While a notification service event channel can support both event
service and notification service style ConsumerAdmins, only
notification service style Consumeradmins have unique identifiers.

id A numeric value that is the unique identifier of one
of the ConsumerAdmins associated with the target
EventChannel.

AdminNotFound The id is not the identifier of one of the
ConsumerAdmins associated with the target EventChan-
nel.

EventChannel::get_supplieradmin()

SupplierAdmin get supplieradmin (in AdminID id)

raises (AdminNotFound) ;
Returns a reference to one of the SupplierAdmins associated with
the target EventChannel.

While a notification service style event channel can support both
Event service and notification service style SupplierAdmins, only
notification service style SupplierAdmins have unique identifiers.

id A numeric value that is the unique identifier of one
of the sSupplieradmins associated with the target
EventChannel.

AdminNotFound The id is not the unique identifier of one of the Sup-
plierAdmins associated with the target EventChannel.

EventChannel::get_all _consumeradmins()

AdminIDSeq get all consumeradmins() ;

Returns a sequence of unique identifiers assigned to all notifica-
tion service style ConsumerAdmins created by the target EventChan-
nel.

EventChannel::get_all_supplieradmins()

AdminIDSeq get all supplieradmins() ;

342 Orbix CORBA Programmer’s Reference: C++

Returns a sequence of unique identifiers assigned to all notifica-
tion service style SupplierAdmins created by the target EventChan-
nel.

Orbix CORBA Programmer’s Reference: C++ 343

344 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::EventCh
annelFactory Interface

Parameters

//IDL

interface EventChannelFactory

{

EventChannel create channel (
in CosNotification::QoSProperties initial gos,
in CosNotification::AdminProperties initial admin,
out ChannelID id)
raises (CosNotification: :UnsupportedQoS,
CosNotification: :UnsupportedAdmin) ;

ChannelIDSeq get all channels() ;

EventChannel get event channel (in ChannelID id)
raises (ChannelNotFound) ;

i

The EventChannelFactory interface defines operations for creating
and managing event channels. It supports a routine that creates
new instances of event channels and assigns unique numeric iden
tifiers to them.

The EventChannelFactory interface supports a routine that returns
the unique identifiers assigned to all event channels created by a
given EventChannelFactory, and another routine that, given the
unique identifier of an event channel, returns the object reference
of that event channel.

EventChannelFactory::create_channel()

EventChannel create channel (
in CosNotification::QoSProperties initial gos,
in CosNotification::AdminProperties initial admin,
out ChannelID id)
raises (CosNotification: : UnsupportedQoS,
CosNotification: :UnsupportedAdmin) ;

Creates an instance of an event channel and returns an object
reference to the new channel.

initial gos A list of name-value pairs specifying the initial QoS
property settings for the new channel.

initial admin A list of name-value pairs specifying the initial
administrative property settings for the new chan-
nel.

id A numeric identifier that is assigned to the new
event channel and which is unique among all event
channels created by the target object.

Orbix CORBA Programmer’s Reference: C++ 345

Exceptions

Parameters

Exceptions

UnsupportedQoS Raised if no implementation of the EventChannel
interface exists that can support all of the
requested QoS property settings. This exception
contains a sequence of data structures which iden-
tifies the name of a QoS property in the input list
whose requested setting could not be satisfied,
along with an error code and a range of settings for
the property that could be satisfied.

UnsupportedAdminRaised if no implementation of the EventChannel
interface exists that can support all of the
requested administrative property settings.This
exception contains a sequence of data structures
that identifies the name of an administrative prop-
erty in the input list whose requested setting could
not be satisfied, along with an error code and a
range of settings for the property that could be sat-
isfied.

EventChannelFactory::get_all _channels()

ChannelIDSeq get all channels() ;

Returns a sequence containing all of the unique numeric identifiers
for the event channels which have been created by the target
object.

EventChannelFactory::get_event_channel()

EventChannel get event channel (in ChannelID id)
raises (ChannelNotFound) ;

Returns the object reference of the event channel corresponding to
the input identifier.

id A numeric value that is the unique identifier of an
event channel that has been created by the target
object.

ChannelNotFound The id does not correspond to he unique identifier
of an event channel that has been created by the
target object.

346 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::ProxyCo
nsumer Interface

//IDL in CosNotifyChannelAdmin

interface ProxyConsumer:
CosNotification: :QoSAdmin,
CosNotifyFilter: :FilterAdmin

readonly attribute ProxyType MyType;
readonly attribute SupplierAdmin MyAdmin;

CosNotification: :EventTypeSeq obtain subscription types(
in ObtainInfoMode mode) ;

void validate event gos (
in CosNotification::QoSProperties required gos,
out CosNotification::NamedPropertyRangeSeq
available gos)
raises (CosNotification: :UnsupportedQoS) ;

i

The ProxyConsumer interface is an abstract interface that is inher-
ited by the different proxy consumers that can be instantiated
within an event channel. It encapsulates the behaviors common to
all notification service proxy consumers. In particular, the
ProxyConsumer interface inherits the Qosadmin interface defined
within the CosNotification module, and the FilterAdmin interface
defined within the CosNotifyFilter module. The former inheritance
enables proxy consumers to administer a list of associated QoS
properties. The latter inheritance enables proxy consumers to
administer a list of associated filter objects. Locally, the
ProxyConsumer interface defines a read-only attribute that contains
a reference to the supplierAdmin object that created it. The
ProxyConsumer interface also defines an operation to return the list
of event types a given proxy consumer instance can forward, and
an operation to determine which QoS properties can be set on a
per-event basis.

ProxyConsumer::obtain_subscription_types()

CosNotification: :EventTypeSeq obtain subscription types(

in ObtainInfoMode mode) ;
Returns a list of event type names that consumers connected to
the channel are interested in receiving.

Parameters

mode Specifies whether to automatically notify the supplier
of changes to the subsrciption list.

ProxyConsumer::validate event_qgos()

void validate event gos (
in CosNotification::QoSProperties required gos,

Orbix CORBA Programmer’s Reference: C++ 347

out CosNotification::NamedPropertyRangeSeq available gos)
raises (CosNotification::UnsupportedQoS) ;

Checks whether the target proxy object will honor the setting of the
specified QoS properties on a per-event basis. If all requested QoS
property value settings can be satisfied by the target object, the
operation returns successfully with an output parameter that con-
tains a sequence of NamedPropertyRange data structures.

Parameters

required gos A sequence of QoS property name-value pairs that
specify a set of QoS settings that a client is interested
in setting on an event.

Note: The QoS property
settings contained in the
optional header fields of
a structured event may
differ from those that
are configured on a
given proxy object.

available gosA sequence of NamedPropertyRange. Each element
includes the name of a an additional QoS property

whose setting is supported by the target object on a

per-event basis. Each element also includes the range

of values that are acceptable for each property.

Exceptions

UnsupportedQos Raised if any of the requested settings cannot be hon-
ored by the target object. This exception contains as
data a sequence of data structures identifying the
name of a QoS property in the input list whose
requested setting could not be satisfied, along with an
error code and a range of valid settings for the prop-
erty.

Exceptions

348 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::ProxyPu
lIConsumer Interface

//IDL
interface ProxyPullConsumer :
ProxyConsumer,
CosEventComm: : PullConsumer

void connect any pull supplier (
in CosEventComm::PullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

i
The proxyPullConsumer interface supports connections to the chan-
nel by suppliers who make events, packaged as anys, available to
the channel using the pull model.

The proxyPullConsumer interface extends the OMG event service
pull-style suppliers of untyped events by supporting event filtering
and the configuration of QoS properties. This interface enables
OMG event service style untyped event suppliers to take advan-
tage of the features offered by the notification service.

Through inheritance of the ProxyConsumer interface, the proxyPull-
Consumer interface supports administration of QoS properties,
administration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin object that
created it. In addition, this inheritance implies that a proxyPullCon-
sumer instance supports an operation that returns the list of event
types that consumers connected to the same channel are inter-
ested in receiving, and an operation that returns information
about the instance’s ability to accept a QoS request.

The proxyPullConsumer interface also inherits from the pullConsumer
interface defined within CosEventComm. This interface supports the

operation to disconnect the ProxyPullConsumer from its associated

supplier. Finally, the proxyPullcConsumer interface defines the oper-
ation to establish the connection over which the pull supplier can

send events to the channel.

ProxyPullConsumer::connect_any_ pull_suppli

er(Q

void connect any pull supplier (
in CosEventComm: :PullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a pull-style supplier of events in
the form of anys, and the event channel. Once the connection is
established, the proxy can proceed to receive events from the
supplier by invoking pull or try pull on the supplier (whether the
proxy invokes pull or try pull, and the frequency with which it
performs such invocations, is a detail that is specific to the imple-
mentation of the channel).

Orbix CORBA Programmer’s Reference: C++ 349

Parameters

pull supplier A reference to an object supporting the
PullSupplier interface defined within CosEventComm.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the proxyPullConsumer inter-
face may impose additional requirements on the
interface supported by a pull supplier (for example,
it may be designed to invoke some operation other
than pull or try pull in order to receive events). If
the pull supplier being connected does not meet
those requirements, this operation raises the
TypeError exception.

350 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::ProxyPu
lISupplier Interface

//IDL

interface ProxyPullSupplier :
ProxySupplier,
CosEventComm: : PullSupplier

void connect any pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;
}i
The proxyPullSupplier interface supports connections to the chan-
nel by consumers that pull events from the channel as anys.

The proxyPullSupplier interface extends the OMG event service
pull-style consumers of untyped events by supporting event filter-
ing and the configuration of QoS properties. This interface enables
OMG event service style untyped event consumers to take advan-
tage of the features offered by the notification service.

Through inheritance of the proxySupplier interface, the proxypull-
Supplier interface supports administration of QoS properties,
administration of a list of associated filter objects, mapping filters
for event priority and lifetime, and a read-only attribute containing
a reference to the ConsumerAdmin object that created it. This inheri-
tance also means that a ProxyPullSupplier instance supports an
operation that returns the list of event types that the proxy sup-
plier will potentially supply, and an operation that returns informa-
tion about the instance’s ability to accept a QoS request.

The proxyPullSupplier interface also inherits from the pullSupplier
interface defined within the CosEventComm module of the OMG event
service. This interface supports the pull and try pull operations
that the consumer connected to a ProxyPullSupplier instance
invokes to receive an event from the channel in the form of an
Any, and the operation to disconnect the proxyPullSupplier from its
associated consumer.

Finally, the proxyPullSupplier interface defines the operation to
establish a connection over which the pull consumer receives
events from the channel.

ProxyPullSupplier::connect_any_ pull_consum

er()

void connect any pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a pull consumer of events in the
form of anys and an event channel. Once established, the consumer
can receive events from the channel by invoking pull or try pull
on its associated proxyPullSupplier.

Orbix CORBA Programmer’s Reference: C++ 351

Parameters

pull consumer A reference to an object supporting the
PullConsumer interface defined within the
CosEventComm module of the OMG event service.

Exceptions

AlreadyConnectedThe target object of this operation is already con-
nected to a pull consumer object.

352 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::ProxyPu
shConsumer Interface

//IDL

interface ProxyPushConsumer :
ProxyConsumer,
CosEventComm: : PushConsumer

void connect any push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

i
The proxyPushConsumer interface supports connections to the chan-
nel by suppliers that push events to the channel as anys.

The proxyPushConsumer extends the OMG event service push con-

sumer interface by supporting event filtering and the configuration
of various QoS properties. This interface enables OMG event ser-

vice style untyped event suppliers to take advantage of these new
features offered by the notification service.

Through inheritance of the proxyConsumer interface, the
ProxyPushConsumer interface supports administration of QoS prop-
erties, administration of a list of associated filter objects, and a
read-only attribute containing a reference to the SupplierAdmin
object that created it. In addition, this inheritance means that a
ProxyPushConsumer instance supports an operation that returns the
list of event types that consumers connected to the same channel
are interested in receiving, and an operation that returns informa-
tion about the instance’s ability to accept a QoS request.

The pProxyPushConsumer interface also inherits from the PushConsumer
interface defined within the CosEventComm module of the OMG event
service. This interface supports the push operation which the sup-
plier connected to a ProxyPushConsumer instance invokes to send an
event to the channel in the form of an any, and the operation to
disconnect the ProxyPushConsumer from its associated supplier.

Finally, the proxyPushConsumer interface defines the operation to
establish the connection over which the push supplier sends
events to the channel.

ProxyPushConsumer::connect_any_push_supp
lierQ)

void connect any push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a push-style supplier of events in
the form of an any and an event channel. Once established, the
supplier can send events to the channel by invoking the push
operation supported by the target pProxyPushConsumer instance.

Orbix CORBA Programmer’s Reference: C++ 353

Parameters

push supplierThe reference to an object supporting the PushSupplier
interface defined within the CosEventComm module.

Exceptions

AlreadyConnected The target object of this operation is already con-
nected to a push supplier object.

Exceptions

354 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::ProxyPu
shSupplier Interface

//IDL

interface ProxyPushSupplier :
ProxySupplier,
CosEventComm: : PushSupplier

void connect any push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

void suspend connection/()
raises (CosEventChannel : : ConnectionAlreadyInactive) ;

void resume connection()

raises (CosEventChannelAdmin: : ConnectionAlreadyActive) ;
The proxyPushSupplier interface supports connections to the chan-
nel by consumers that receive events from the channel as untyped
Anys.

The proxyPushSupplier interface extends the OMG event service
push-style consumers of untyped events by supporting event fil-
tering and the configuration of QoS properties. Thus, this interface
enables OMG event service push-style untyped event consumers
to take advantage of the features offered by the notification ser-
vice.

Through inheritance of pProxySupplier, the ProxyPushSupplier inter-
face supports administration of QoS properties, administration of
a list of associated filter objects, mapping filters for event priority
and lifetime, and a read-only attribute containing a reference to
the consumerAdmin that created it. This inheritance also implies that
a ProxyPushSupplier instance supports an operation that returns
the list of event types that the proxy supplier can supply, and an
operation that returns information about the instance’s ability to
accept a QoS request.

The proxyPushSupplier interface also inherits from the pushSupplier
interface defined within CosEventComm. This interface supports the
operation to disconnect a proxyPushSupplier from its associated
consumer.

The proxyPushSupplier interface defines the operation to establish
the connection over which the push consumer can receive events
from the channel. The proxyPushSupplier interface also defines a
pair of operations that can suspend and resume the connection
between a pProxyPushSupplier and its associated PushConsumer.
During the time a connection is suspended, the ProxyPushSupplier
accumulates events destined for the consumer but does not trans-
mit them until the connection is resumed.

Orbix CORBA Programmer’s Reference: C++ 355

Parameters

Exceptions

Exceptions

ProxyPushSupplier::connect_any_push_consu
mer()

void connect any push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (CosEventChannelAdmin: : AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a push-style consumer of events
in the form of anys, and the event channel. Once the connection is
established, the proxyPushSupplier sends events to its associated
consumer by invoking push on the consumer.

push consumer A reference to an object supporting the
PushConsumer interface defined within CosEventComm

AlreadyConnectedRaised if the proxy is already connected to a push
consumer.

TypeError An implementation of the proxyPushSupplier inter-
face may impose additional requirements on the
interface supported by a push consumer (for exam-
ple, it may be designed to invoke some operation
other than push in order to transmit events). If the
push consumer being connected does not meet
those requirements, this operation raises the
TypeError exception.

ProxyPushSupplier::suspend_connection()

void suspend connection()
raises (ConnectionAlreadyInactive) ;

Causes the proxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The ProxyPushSupplier does
not forward events to its associated PushConsumer until

resume connection() is invoked. During this time, the
ProxyPushSupplier continues to queue events destined for the
PushConsumer; however, events that time out prior to resumption of
the connection are discarded. Upon resumption of the connection,
all queued events are forwarded to the PushConsumer.

The ConnectionAlreadyInactive exception is raised if the connection
is currently in a suspended state.

ProxyPushSupplier::resume_connection()

void resume connection ()
raises (ConnectionAlreadyActive) ;

Causes the proxyPushSupplier interface to resume sending events
to the pushConsumer instance connected to it, including those events
that have been queued while the connection was suspended and
have not yet timed out.

356 Orbix CORBA Programmer’s Reference: C++

Exceptions

ConnectionAlreadyActiveThe connection is not in a suspended state.

Orbix CORBA Programmer’s Reference: C++ 357

358 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::ProxySu
pplier Interface

//IDL

interface ProxySupplier :
CosNotification: :QoSAdmin,
CosNotifyFilter: :FilterAdmin

readonly attribute ConsumerAdmin MyAdmin;

readonly attribute ProxyType MyType;

attribute CosNotifyFilter::MappingFilter priority filter;
attribute CosNotifyFilter::MappingFilter lifetime filter;

CosNotification: :EventTypeSeq obtain offered types(
in ObtainInfoMode mode) ;

void validate event gos (
in CosNotification::QoSProperties required gos,
out CosNotification::NamedPropertyRangeSeq
available gos)
raises (CosNotification: :UnsupportedQoS) ;

i

The proxySupplier interface is an abstract interface that is inher-
ited by the different proxy suppliers that can be instantiated within
an event channel. It encapsulates the behaviors common to all
notification service proxy suppliers. In particular, the
ProxySupplier interface inherits the gosadmin interface defined
within the CosNotification module, and the Filteradmin interface
defined within the cosNotifyFilter module. The former inheritance
enables proxy suppliers to administer a list of associated QoS
properties. The latter inheritance enables proxy suppliers to
administer a list of associated filter objects.

Locally, the proxySupplier interface defines a read-only attribute

that contains a reference to the Consumeradmin object that created
it. In addition, the proxysupplier interface defines attributes that
associate two mapping filter objects with each proxy supplier, one
for priority and one for lifetime. For more information on mapping
filters refer to the CORBA Notification Service Guide.

Lastly, the proxySupplier interface defines an operation to return
the list of event types that a given proxy supplier can forward to
its associated consumer, and an operation to determine which
QoS properties can be set on a per-event basis.

ProxySupplier::priority_filter

attribute CosNotifyFilter::MappingFilter priority filter;

Contains a reference to an object supporting the MappingFilter
interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint
is a boolean expression based on the type and contents of an event,
and the value is a possible priority setting for the event.

Orbix CORBA Programmer’s Reference: C++ 359

Upon receipt of an event by a proxy supplier object whose
priority filter attribute contains a non-zero reference, the proxy
supplier invokes the match operation supported by the mapping fil-
ter object. The mapping filter object then applies its encapsulated
constraints to the event.

If the match operation returns TRUE, the proxy supplier changes the
events priority to the value specified in the constraint-value pair
that matched the event.

If the match operation returns FALSE, the proxy supplier checks if
the events priority property is already set. If so, the filter does
nothing. If the priority property is not set, the filter sets the prior-
ity property to its default value.

ProxySupplier::lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime filter;

Contains a reference to an object supporting the MappingFilter
interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint
is a boolean expression based on the type and contents of an event,
and the value is a possible lifetime setting for the event.

Upon receipt of each event by a proxy supplier object whose
lifetime filter attribute contains a non-zero reference, the proxy
supplier invokes the match operation supported by the mapping fil-
ter object. The mapping filter object then proceeds to apply its
encapsulated constraints to the event.

If the match operation returns TRUE, the proxy supplier changes the
events lifetime to the value specified in the constraint-value pair
that matched the event.

If the match operation returns FALSE, the proxy supplier checks if
the events lifetime property is already set. If so, the filter does
nothing. If the lifetime property is not set, the filter sets the life-
time property to its default value.

ProxySupplier::obtain_offered_types()

CosNotification: :EventTypeSeq obtain offered types (
in ObtainInfoMode mode) ;

Returns a list names of event types that the target proxy supplier
can forward to its associated consumer.

This mechanism relies on event suppliers keeping the channel
informed of the types of events they plan to supply by invoking
the offer change operation on their associated proxy consumer
objects. The proxy consumers automatically share the information
about supplied event types with the proxy suppliers associated
with the channel. This enables consumers to discover the types of
events that can be supplied to them by the channel by invoking
the obtain offered types operation on their associated proxy sup-
plier.

360 Orbix CORBA Programmer’s Reference: C++

Parameters

Parameters

Exceptions

mode Specifies how to notify consumers of changes to the
publication list.

ProxySupplier::validate _event_qgos()

void validate event gos (
in CosNotification::QoSProperties required gos,
out CosNotification::NamedPropertyRangeSeq available gos)
raises (CosNotification: :UnsupportedQoS) ;

Checks whether the target proxy object will honor the setting of the
specified QoS properties on a per-event basis. If all requested QoS
property value settings can be satisfied by the target object, the
operation returns successfully with an output parameter that con-
tains a sequence of NamedPropertyRange data structures.

required gos A sequence of QoS property name-value pairs that
specify a set of QoS settings that a client is interested
in setting on an event

Note:

The QoS property settings contained in the optional
header fields of a structured event may differ from
those that are configured on a given proxy object.

available gosA sequence of NamedPropertyRange. Each element
includes the name of a an additional QoS property
whose setting is supported by the target object on a
per-event basis. Each element also includes the range
of values that are acceptable for each such property.

UnsupportedQoS Raised if any of the requested settings cannot be
honored by the target object. This exception contains
as data a sequence of data structures, each of which
identifies the name of a QoS property in the input list
whose requested setting could not be satisfied, along
with an error code and a range of settings for the
property that could be satisfied.

Orbix CORBA Programmer’s Reference: C++ 361

362 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Sequenc
eProxyPullConsumer Interface

//IDL

interface SequenceProxyPullConsumer :
ProxyConsumer,
CosNotifyComm: : SequencePullConsumer

void connect sequence pull supplier (
in CosNotifyComm: : SequencePullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

}i

The sequenceProxyPullConsumer interface supports connections to
the channel by suppliers who make sequences of structured
events available to the channel using the pull model.

Through inheritance of proxyConsumer, the SequenceProxyPullCon-
sumer interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin that created
it. This inheritance also implies that a SequenceProxyPullConsumer
supports an operation that returns the list of event types that con-
sumers connected to the same channel are interested in receiving,
and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequenceProxyPullConsumer interface also inherits from the
SequencePul lConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation to close the connection
from the supplier to the SequenceProxyPullConsumer. Since the
SequencePullConsumer interface inherits from NotifyPublish, a sup-
plier can inform its associated SequenceProxyPullConsumer When-
ever the list of event types it plans to supply to the channel
changes.

The sequenceProxyPullConsumer interface also defines a method to
establish a connection between the supplier and an event channel.

SequenceProxyPullConsumer::connect_sequen
ce_pull_supplier()

void connect sequence pull supplier (
in CosNotifyComm: :SequencePullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a pull-style supplier of sequences
of structured events and the event channel. Once the connection is
established, the proxy can receive events from the supplier by
invoking pull structured events OF try pull structured events ON
the supplier (whether the proxy invokes pull structured events Or
try pull structured events, and the frequency with which it per-
forms such invocations, is a detail specific to the implementation of
the channel).

Orbix CORBA Programmer’s Reference: C++ 363

Parameters

pull supplier A reference to an object supporting the
SequencePullSupplier interface defined within

CosNotifyComm.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the
SequenceProxyPullConsumer interface may impose
additional requirements on the interface supported
by a pull supplier (for example, it may be designed
to invoke some operation other than
pull structured events Or
try pull structured events in order to receive
events). If the pull supplier being connected does
not meet those requirements, this operation raises
the TypeError exception.

364 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Sequenc
eProxyPushConsumer Interface

//IDL

interface SequenceProxyPushConsumer :
ProxyConsumer,
CosNotifyComm: : SequencePushConsumer

void connect sequence push supplier (
in CosNotifyComm: : SequencePushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

i

The sequenceProxyPushConsumer interface supports connections to
the channel by suppliers that push events to the channel as
sequences of structured events.

Through inheritance of the proxyConsumer interface, the interface
supports administration of QoS properties, administration of a list
of associated filter objects, and a read-only attribute containing a
reference to the supplierAdmin object that created it. In addition,
this inheritance means that a sequenceProxyPushConsumer instance
supports an operation that returns the list of event types that con-
sumers connected to the same channel are interested in receiving,
and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequenceProxyPushConsumer interface also inherits from the
SequencePushConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation that enables a supplier
of sequences of structured events to push them to a sequen-
ceProxyPushConsumer, and also the operation to close down the con-
nection from the supplier to the sequenceProxyPushConsumer. Since
the sequencePushConsumer interface inherits from the NotifyPublish
interface, a supplier can inform its associated SequenceProxyPush-
consumer When the list of event types it supplies to the channel
changes.

Lastly, the sequenceProxyPushConsumer interface defines a method
to establish a connection between a supplier and an event chan-
nel.

SequenceProxyPushConsumer::connect_seque
nce_push_supplier()
void connect sequence push supplier (

in CosNotifyComm: : SequencePushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a push-style supplier of sequenc-
es of structured events and an event channel. Once the connection
is established, the supplier can send events to the channel by
invoking push_structured events On its associated
SequenceProxyPushConsumer.

Orbix CORBA Programmer’s Reference: C++ 365

Parameters

push supplier A reference to an object supporting the
SequencePushSupplier interface defined within the

CosNotifyComm module.

Exceptions

AlreadyConnectedThe proxy is already connected to a push supplier
object.

366 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Sequenc
eProxyPullSupplier Interface

//IDL

interface SequenceProxyPullSupplier :
ProxySupplier,
CosNotifyComm: : SequencePullSupplier

void connect sequence pull consumer (
in CosNotifyComm: : SequencePullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

i

The sequenceProxyPullSupplier interface supports connections to
the channel by consumers who pull sequences of structured
events from an event channel.

Through inheritance of the ProxySupplier interface, the Sequen-
ceProxyPullSupplier interface supports administration of QoS
properties, administration of a list of associated filter objects, and
a read-only attribute containing a reference to the ConsumerAdmin
object that created it. In addition, this inheritance implies that a
SequenceProxyPullSupplier instance supports an operation that
returns the list of event types that the proxy supplier can supply,
and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequenceProxyPullSupplier interface also inherits from the
SequencePullSupplier interface defined in CosNotifyComm. This inter-
face supports the operations enabling a consumer of sequences of
structured events to pull them from the SequenceProxyPullSup-
plier, and also the operation to close the connection from the
consumer to its associated SequenceProxyPullSupplier. Since the
SequencePullSupplier interface inherits from the NotifySubscribe
interface, a sequenceProxyPullSupplier can be notified whenever
the list of event types that its associated consumer is interested in
receiving changes.

The SequenceProxyPullSupplier interface also defines a method to
establish a connection between the consumer and an event chan-
nel.

SequenceProxyPullSupplier::
connect_sequence_pull_consumer()
void connect sequence pull consumer (

in CosNotifyComm: : SequencePullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a pull-style consumer of sequenc-
es of structured events and the event channel. Once the connection
is established, the consumer can proceed to receive events from
the channel by invoking pull structured events Or

try pull structured events On its associated
SequenceProxyPullSupplier.

Orbix CORBA Programmer’s Reference: C++ 367

Parameters

pull consumer A reference to an object supporting the
SequencePullConsumer interface defined in

CosNotifyComm.

Exceptions

AlreadyConnectedThe proxy is already connected to a pull consumer.

368 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Sequenc
eProxyPushSupplier Interface

//IDL

interface SequenceProxyPushSupplier :
ProxySupplier,
CosNotifyComm: : SequencePushSupplier

{

void connect sequence push consumer (
in CosNotifyComm: : SequencePushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

void suspend connection/()
raises (ConnectionAlreadyInactive) ;

void resume connection()
raises (ConnectionAlreadyActive) ;

}i

The sequenceProxyPushSupplier interface supports connections to
the channel by consumers that receive sequences of structured
events from the channel.

Through inheritance of proxySupplier, the SequenceProxyPushSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a SequenceProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the instance’s ability to accept a QoS request.

The SequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in CosNotifyComm. This inter-
face supports the operation to close the connection from the con-
sumer to the SequenceProxyPushSupplier. Since the
SequencePushSupplier interface inherits from the NotifySubscribe
interface, a sequenceProxyPushSupplier can be notified whenever
the list of event types that its associated consumer is interested in
receiving changes.

Lastly, the sequenceProxyPushSupplier interface defines the opera-
tion to establish the connection over which the push consumer
receives events from the channel. The SequenceProxyPushSupplier
interface also defines a pair of operations to suspend and resume
the connection between a SequenceProxyPushSupplier instance and
its associated SequencePushConsumer. While a connection is sus-
pended, the SequenceProxyPushSupplier accumulates events des-
tined for the consumer but does not transmit them until the
connection is resumed.

Orbix CORBA Programmer’s Reference: C++ 369

SequenceProxyPushSupplier::connect_sequen
ce_push_consumer()

void connect sequence push consumer (
in CosNotifyComm: : SequencePushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a push-style consumer of se-
quences of structured events and the event channel. Once the
connection is established, the SequenceProxyPushSupplier sends
events to its associated consumer by invoking push struc-
tured events.

Parameters

push consumer A reference to a SequencePushConsumer.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a push
consumer.

TypeError An implementation of the
SequenceProxyPushSupplier interface may impose
additional requirements on the interface supported
by a push consumer (for example, it may be
designed to invoke some operation other than
push_structured events in order to transmit
events). If the push consumer being connected
does not meet those requirements, this operation
raises the TypeError exception.

SequenceProxyPushSupplier::suspend_connec
tion()

void suspend connection()
raises (ConnectionAlreadyInactive) ;

Causes the sequenceProxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The
StructuredProxyPushSupplier does not forward events to its
SequencePushConsumer UNtil resume connection() is invoked. During
this time, the SequenceProxyPushSupplier continues to queue events
destined for the SequencePushConsumer; however, events that time
out prior to resumption of the connection are discarded. Upon
resumption of the connection, all queued events are forwarded to
the SequencePushConsumer.

Exceptions

ConnectionAlreadyInactiveThe connection is already suspended.

SequenceProxyPushSupplier::resume_connect
ion()

void resume connection ()
raises (ConnectionAlreadyActive) ;

370 Orbix CORBA Programmer’s Reference: C++

Causes the sequenceProxyPushSupplier to resume sending events to
the SequencePushConsumer instance connected to it, including those
that have been queued while the connection was suspended and
have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not suspended.

Orbix CORBA Programmer’s Reference: C++ 371

372 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Structur
edProxyPullConsumer Interface

//IDL

interface StructuredProxyPullConsumer :
ProxyConsumer,
CosNotifyComm: : StructuredPullConsumer

void connect structured pull supplier (
in CosNotifyComm: : StructuredPullSupplier
pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

}i

The structuredProxyPullConsumer interface supports connections to
the channel by suppliers that make structured events available to
the channel using the pull model.

Through inheritance of proxyConsumer, the StructuredpProxyPullCon-
sumer interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin object that
created it. This inheritance also implies that a StructuredProxy-
PullConsumer instance supports an operation that returns the list of
event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information
about the instance’s ability to accept a QoS request.

The StructuredProxyPullConsumer interface also inherits from the
StructuredPullConsumer interface defined in CosNotifyComm. This
interface supports the operation to close the connection from the
supplier to the structuredProxyPullConsumer. Since the
StructuredPullConsumer interface inherits from NotifyPublish, a
supplier can inform the StructuredProxyPullConsumer to which it is
connected whenever the list of event types it plans to supply to
the channel changes.

Lastly, the structuredProxyPullConsumer interface defines a method
to establish a connection between the supplier and an event chan-
nel.

StructuredProxyPullConsumer::connect_struct
ured_pull_supplier()

void connect structured pull supplier (
in CosNotifyComm: :StructuredPullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a pull-style supplier of structured
events and the event channel. Once the connection is established,
the proxy can receive events from the supplier by invoking

pull structured event Or try pull structured event on the supplier
(whether the proxy invokes pull structured event Or

try pull structured event, and the frequency with which it per-

Orbix CORBA Programmer’s Reference: C++ 373

forms such invocations, is a detail specific to the implementation of
the channel).

Parameters
pull supplier A reference to an object supporting the

StructuredPullSupplier interface defined within
CosNotifyComm.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the
StructuredProxyPul 1Consumer interface may impose
additional requirements on the interface supported
by a pull supplier (for example, it may be designed
to invoke some operation other than
pull structured event Or try pull structured event
in order to receive events). If the pull supplier
being connected does not meet those require-
ments, this operation raises the TypeError excep-
tion.

374 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Structur
edProxyPullSupplier Interface

//IDL

interface StructuredProxyPullSupplier :
ProxySupplier,
CosNotifyComm: : StructuredPullSupplier

void connect structured pull consumer (
in CosNotifyComm: : StructuredPullConsumer
pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;
}i
The structuredProxyPullSupplier interface supports connections to
the channel by consumers that pull structured events from the
channel.

Through inheritance of proxySupplier, the StructuredpProxyPullSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin object that
created it. In addition, this inheritance means that a Structured-
ProxyPullSupplier instance supports an operation that returns the
list of event types that the proxy supplier can supply, and an oper-
ation that returns information about the instance’s ability to
accept a QoS request.

The StructuredProxyPullSupplier interface also inherits from the
StructuredPullSupplier interface defined in CosNotifyComm. This
interface supports the operations enabling a consumer of struc-
tured events to pull them from a StructuredProxyPullSupplier, and
the operation to close the connection from the consumer to the
StructuredProxyPullSupplier. Since the StructuredpPullSupplier
interface inherits from NotifySubscribe, a StructuredProxyPullSup-
plier can be notified whenever the list of event types that its
associated consumer is interested in receiving changes.

Lastly, the structuredProxyPullSupplier interface defines a method
to establish a connection between the consumer and an event
channel.

StructuredProxyPullSupplier::connect_structur
ed_pull_consumer()

void connect structured pull consumer (
in CosNotifyComm: : StructuredPullSupplier
pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a pull consumer of structured
events and the event channel. Once established, the consumer can
receive events from the channel by invoking pull structured event
or try pull structured event On its associated
StructuredProxyPullSupplier.

Orbix CORBA Programmer’s Reference: C++ 375

Parameters

pull consumer A reference to an object supporting the
StructuredpPullSupplier interface defined in

CosNotifyComm.

Exceptions

AlreadyConnectedThe proxy is already connected to a pull consumer.

376 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Structur
edProxyPushConsumer Interface

//IDL

interface StructuredProxyPushConsumer :
ProxyConsumer,
CosNotifyComm: : StructuredPushConsumer

void connect structured push supplier (
in CosNotifyComm: : StructuredPushSupplier
push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

}i

The structuredProxyPushConsumer interface supports connections to
the channel by suppliers that push events to the channel as struc-
tured events.

Through inheritance of the proxyConsumer interface, the interface
supports administration of QoS properties, administration of a list
of associated filter objects, and a read-only attribute containing a
reference to the supplierAdmin object that created it. In addition,
this inheritance means that a structuredProxyPushConsumer
instance supports an operation that returns the list of event types
that consumers connected to the same channel are interested in
receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The StructuredProxyPushConsumer interface also inherits from the
StructuredPushConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation that enables a supplier
of structured events to push them to the structuredProxyPushConu-
mer, and also an operation to close down the connection from the
supplier to the structuredProxyPushConsumer. Since the
StructuredPushConsumer interface inherits from the NotifyPublish
interface, a supplier can inform the StructuredProxyPushConsumer to
which it is connected whenever the list of event types it plans to
supply to the channel changes.

Lastly, the structuredProxyPushConsumer interface defines a method
to establish a connection between the supplier and an event chan-
nel.

StructuredProxyPushConsumer::connect_struc
tured_push_supplier()

void connect structured push supplier (
in CosNotifyComm: : StructuredPushSupplier
push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a push-style supplier of struc-
tured events and the event channel. Once the connection is estab-
lished, the supplier can send events to the channel by invoking
push_structured event On its associated
StructuredProxyPushConsumer instance.

Orbix CORBA Programmer’s Reference: C++ 377

Parameters

push supplierA reference to an object supporting the
StructuredPushSupplier interface defined within the

CosNotifyComm module.

Exceptions

AlreadyConnectedThe proxy object is already connected to a push
supplier object.

Exceptions

378 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Structur
edProxyPushSupplier Interface

//IDL

interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm: : StructuredPushSupplier

void connect structured push consumer (
in CosNotifyComm: : StructuredPushConsumer
push_consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

void suspend connection/()
raises (ConnectionAlreadyInactive) ;

void resume connection()
raises (ConnectionAlreadyActive) ;

}i

The structuredProxyPushSupplier interface supports connections to
the channel by consumers that receive structured events from the
channel.

Through inheritance of proxySupplier, the structuredpProxyPushSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a StructuredProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the instance’s ability to accept a QoS request.

The structuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in CosNotifyComm. This
interface supports the operation that to close the connection from
the consumer to the structuredProxyPushSupplier. Since
StructuredPushSupplier inherits from NotifySubscribe, a Struc-
turedProxyPushSupplier can be notified whenever the list of event
types that its associated consumer is interested in receiving
changes.

Lastly, the structuredProxyPushSupplier interface defines the oper-
ation to establish the connection over which the push consumer
can receive events from the channel. The structuredProxyPushSup-
plier interface also defines a pair of operations to suspend and
resume the connection between a structuredProxyPushSupplier
and its associated StructuredPushConsumer. During the time such a
connection is suspended, the structuredProxyPushSupplier accu-
mulates events destined for the consumer but does not transmit
them until the connection is resumed.

Orbix CORBA Programmer’s Reference: C++ 379

Parameters

Exceptions

Exceptions

StructuredProxyPushSupplier::connect_struct
ured_push_consumer()

void connect structured push consumer (
in CosNotifyComm: : StructuredPushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a push-style consumer of struc-
tured events and the event channel. Once the connection is estab-
lished, the structuredProxyPushSupplier sends events to the
consumer by invoking push structured event.

push consumer A reference to an object supporting the
StructuredPushConsumer interface defined within
CosNotifyComm

AlreadyConnectedRaised if the proxy is already connected to a push
consumer.

TypeError An implementation of the
StructuredProxyPushSupplier interface may impose
additional requirements on the interface supported
by a push consumer (for example, it may be
designed to invoke some operation other than
push_structured event to transmit events). If the
push consumer being connected does not meet
those requirements, this operation raises the
TypeError exception.

StructuredProxyPushSupplier::suspend_conne
ction()

void suspend connection()
raises (ConnectionAlreadyInactive) ;

Causes the structuredProxyPushSupplier to stop sending events to
the PushConsumer connected to it. The StructuredProxyPushSupplier
does not forward events to its StructuredPushConsumer until

resume connection() is invoked. During this time, the
StructuredProxyPushSupplier queues events destined for the
StructuredPushConsumer; however, events that time out prior to
resumption of the connection are discarded. Upon resumption of
the connection, all queued events are forwarded to the
StructuredPushConsumer.

ConnectionAlreadyInactiveThe connection is already suspended.

StructuredProxyPushSupplier::resume_connec
tion()

void resume connection ()

380 Orbix CORBA Programmer’s Reference: C++

raises (ConnectionAlreadyActive) ;

Causes causes the StructuredproxyPushSupplier to resume sending
events to the StructuredPushConsumer connected to it, including
those that have been queued while the connection was suspended
and have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not currently suspended.

Orbix CORBA Programmer’s Reference: C++ 381

382 Orbix CORBA Programmer’s Reference: C++

CosNotifyChannelAdmin::Supplier
Admin Interface

//IDL

interface SupplierAdmin :
CosNotification: :QoSAdmin,
CosNotifyComm: :NotifyPublish,
CosNotifyFilter: :FilterAdmin,
CosEventChannelAdmin: : SupplierAdmin

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

readonly attribute ProxyIDSeq pull consumers;
readonly attribute ProxyIDSeq push consumers;

ProxyConsumer get proxy consumer (in ProxyID proxy id)
raises (ProxyNotFound) ;

ProxyConsumer obtain notification pull consumer (
in ClientType ctype,

out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxyConsumer obtain notification push consumer (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxyConsumer obtain txn notification push consumer (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

void destroy () ;

i

The supplierAdmin interface defines the behavior of objects that
create and manage lists of proxy consumers within an event chan-
nel. A event channel can have any number of SupplierAdmin
instances associated with it. Each instance is responsible for creat-
ing and managing a list of proxy consumers that share a common
set of QoS property settings, and a common set of filters. This fea-
ture enables clients to group proxy consumer objects within a
channel into groupings that each support a set of suppliers with a
common set of QoS requirements, and that make event forward-
ing decisions using a common set of filters.

The SupplierAdmin interface inherits Qosadmin. This enables each
SupplierAdmin to manage a set of QoS property settings. These
QoS property settings are assigned as the default QoS property
settings for any proxy consumer created by a SupplierAdmin.

Orbix CORBA Programmer’s Reference: C++ 383

The SupplierAdmin interface inherits from the FilterAdmin interface
defined in CosNotifyFilter, enabling each SupplierAdmin to main-
tain a list of filters. These filters encapsulate subscriptions that
apply to all proxy consumer objects that have been created by a
given SupplierAdmin instance.

The SupplierAdmin interface also inherits from the NotifyPublish
interface defined in CosNotifyComm. This inheritance enables a sup-
plierAdmin to be the target of an offer change request made by a
supplier, and for the change in event types being offered to be
shared by all proxy consumer that were created by the target Sup-
plieradmin. This optimizes the notification of a group of proxy
consumers that have been created by the same SupplierAdmin of
changes to the types of events being offered by suppliers.

The SupplierAdmin interface also inherits from
CosEventChannelAdmin: : SupplierAdmin. This inheritance enables cli-
ents to use the supplierAdmin interface to create pure OMG event
service style proxy consumer objects. Proxy consumer objects
created in this manner do not support configuration of QoS prop-
erties, and do not have associated filters. Proxy consumer objects
created through the inherited CosEventChannelAdmin: : SupplierAdmin
interface do not have unique identifiers associated with them,
whereas proxy consumers created by invoking the operations sup-
ported by the supplierAdmin interface do.

The supplierAdmin interface supports a read-only attribute that
maintains a reference to the EventChannel that created a given
SupplierAdmin. The SupplierAdmin interface also supports a
read-only attribute that contains a numeric identifier that is
assigned to a supplierAdmin the event channel that creates it. This
identifier is unique among all supplierAdmins created by a given
channel.

A supplierAdmin maintains a list of filters that are applied to all
proxy consumers it creates. Each proxy consumer also supports a
list of filters that apply only that proxy. When combining these two
lists during the evaluation of an event, either AND or OrR semantics
can be applied. The choice is determined by an input flag upon
creation of the supplieradmin, and the operator that is used for this
purpose by a given SupplierAdmin iS maintained in a read-only
attribute.

Each supplierAdmin assigns a unique numeric identifier to each
proxy consumer it maintains. The SupplierAdmin interface supports
attributes that maintain the list of these unique identifiers associ-
ated with the proxy pull and the proxy push consumers created by
a given SupplierAdmin. The SupplierAdmin interface also supports
an operation which, when provided with the unique identifier of a
proxy consumer, returns the object reference of that proxy con-
sumer object. Finally, the SupplierAdmin interface supports opera-
tions that can create the various styles of proxy consumers
supported by the event channel.

SupplierAdmin::MyID
readonly attribute AdminID MyID;

Maintains the unique identifier of the target SupplierAdmin. This ID
is assigned to it upon creation by the event channel.

384 Orbix CORBA Programmer’s Reference: C++

SupplierAdmin::MyChannel

readonly attribute EventChannel MyChannel;

Maintains an object reference to the event channel that created the
SupplierAdmin.

SupplierAdmin::MyOperator

readonly attribute InterFilterGroupOperator MyOperator;;

Maintains the information regarding whether AND or OrR Semantics
are used during the evaluation of events when combining the filters
associated with the target SupplierAadmin and those defined on a
given proxy consumer.

SupplierAdmin::pull_consumers

readonly attribute ProxyIDSeq pull consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin
to each pull-style proxy consumer it has created.

SupplierAdmin::push_consumers

readonly attribute ProxyIDSeq push consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin
to each push-style proxy consumer it has created.

SupplierAdmin::get_proxy_consumer()

ProxyConsumer get proxy consumer (in ProxyID proxy id)
raises (ProxyNotFound) ;

Returns an object reference to the proxy consumer whose unique
identifier was specified.

Parameters

proxy id The numeric identifier associated with one of the
proxy consumers created by the target
SupplierAdmin.

Exceptions

ProxyNotFound The input parameter does not correspond to the
unique identifier of a proxy consumer created by the
target SupplierAdmin.

SupplierAdmin::obtain__notification_pull_cons
umer()

ProxyConsumer obtain notification pull consumer (
in ClientType ctype,

Orbix CORBA Programmer’s Reference: C++ 385

out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates an instances of a pull-style proxy consumers and returns
an object reference to the new proxy.

Three varieties of pull-style proxy consumers are defined:

®* The proxyPullConsumer interface supports connections to pull
suppliers that send events as anys.

* The structuredProxyPullConsumer interface supports connec-
tions to pull suppliers that send structured events.

®* The SequenceProxyPullConsumer interface supports connections
to pull suppliers that send sequences of structured events.

The input parameter flag indicates which type of pull style proxy
to create.

The target SupplierAdmin creates the new pull-style proxy con-
sumer and assigns it a numeric identifier that is unique among all
proxy consumers it has created.

Parameters
ctype A flag indicating which style of pull-style proxy con-
sumer to create.
proxy id The unique identifier of the new proxy consumer.

Exceptions

AdminLimitExceededThe number of consumers currently connected to
the channel that the target SupplierAdmin is asso-
ciated with exceeds the value of the MaxSuppliers
administrative property.

SupplierAdmin::obtain_notification_push_cons
umer()

ProxyConsumer obtain notification push consumer (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates an instance of a push-style proxy supplier and returns an
object reference to the new proxy.

Three varieties of push-style proxy consumer are defined:

®* The proxyPushConsumer interface supports connections to push
consumers that receive events as Anys.

* The structuredProxyPushConsumer interface supports connec-
tions to push consumers that receive structured events.

®* The SequenceProxyPushConsumer interface supports connections
to push consumers that receive sequences of structured
events.

The input parameter flag indicates which type of push-style proxy
to create.

386 Orbix CORBA Programmer’s Reference: C++

Parameters

Exceptions

The target supplierAdmin creates the new push-style proxy con-
sumer and assigns it a numeric identifier that is unique among all
proxy suppliers it has created.

ctype A flag that indicates the type of push-style proxy
consumer to create.

proxy_ id The unique identifier of the new proxy consumer.

AdminLimitExceededThe number of consumers currently connected to
the channel that the target SupplierAdmin is asso-
ciated with exceeds the value of the MaxSuppliers
administrative property.

SupplierAdmin::destroy()
void destroy () ;

Iteratively destroys each proxy under the administration of the
target object, and finally destroys the target object itself. When
destroying each object, it frees any storage associated with the
object, and then invalidates the object's IOR.

Orbix CORBA Programmer’s Reference: C++ 387

388 Orbix CORBA Programmer’s Reference: C++

CosNotifyComm Module

CosNotifyComm specifies the following interfaces to instantiate noti-
fication service clients:

PushCongsumer PushSupplier
PullConsumer PullSupplier
StructuredPushConsumer StructuredPushSupplier
StructuredPullConsumer StructuredPullSupplier
SequencePushConsumer SequencePushSupplier
SequencePullConsumer SequencePullSupplier

The module also specifies the NotifyPublish and NotifyS