
Orbix 6.3.9

Migrating from Orbix 3.3 to Orbix 6.3

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-01-13

Contents
Preface..1
Contacting Micro Focus ..3

Part I Overview of Migration

Introduction..7
Advantages of Orbix 6.3...7
Migration Resources ..8
Migration Options..8

Migrating to Orbix 6.3 ...8
Mixed Deployment ..9

Part II Migrating to Orbix 6.3

IDL Migration ..13
The context Clause..13
The opaque Type ..13
The Principal Type...13

Client Migration...15
Replacing the _bind() Function..15
Callback Objects ...17
IDL-to-C++ Mapping ...18
System Exception Semantics ..19
Dynamic Invocation Interface ...19

Server Migration..21
Function Signatures...21
Object IDs versus Markers ...21
CORBA Objects versus Servant Objects..22
BOA to POA Migration ..22

Creating an Object Adapter ..23
Defining an Implementation Class ...23
Creating and Activating a CORBA Object ..24

Migrating Proprietary Orbix 3 Features27
Orbix 3 Locator...27
Filters..29

Request Logging ...29
Piggybacking Data on a Request ...29
Multi-Threaded Request Processing ...30
Accessing the Client's TCP/IP Details ...31
Security Using an Authentication Filter...31

Loaders ...31
Smart Proxies...32
 Migrating from Orbix 3.3 to Orbix 6.3 i i i

Transformers ..34
I/O Callbacks ..34

Connection Management ..35
Session Management...36

CORBA Services .. 39
Interface Repository ..39
Naming Service...39
Notification Service..40

CORBA Specification Updates..40
Quality of Service Properties...42
Configuration/Administration Changes ...43
Deprecated Features ...44

SSL/TLS Toolkit...45
Changes to the Programming Interfaces...45
Configuration and Administration ..47
Migrating Certificate and Private Key Files ..50

Administration.. 53
Orbix Daemons ...53
POA Names ..53
Command-Line Administration Tools ..53
Activation Modes ...55

Part III Interoperability

Configuring for Interoperability.. 59
Interoperability Overview ...59
Launch and Invoke Rights ..60
GIOP Versions...62

IDL Issues .. 65
Using the #pragma Prefix...65
Use of #pragma ID in IDL ..67
Fixed Data Type and Interoperability..68
Use of wchar and wstring ...70
C++ Keywords as Operation Names...70

Exceptions .. 73
Orbix 3.3 C++ Edition—System Exceptions...73

New Semantics and Old Semantics ..73
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions..........................75
The TRANSIENT and COMM_FAILURE Exceptions76
Orbix 3.3 C++ Edition and Orbix 6.3..76

Orbix 3.3 Java Edition—System Exceptions ...78
New Semantics and Old Semantics ..78
The INV_OBJREF and OBJECT_NOT_EXIST Exceptions..........................79
The TRANSIENT and COMM_FAILURE Exceptions79
Orbix 3.3 Java Edition and Orbix 6.3..80

FILTER_SUPPRESS Exception ..81
Dynamic Invocation Interface and User Exceptions82
Dynamic Invocation Interface and LOCATION_FORWARD..............................83
iv Migrating from Orbix 3.3 to Orbix 6.3

Services...85
The Orbix 6.3 Interoperable Naming Service... 85
Interface Repository Interoperability.. 90
SSL/TLS Toolkit Interoperability.. 90
High Availability and Orbix 3.3 Clients.. 91

Connection Management ...93
Orbix 6.3 Active Connection Management... 93
Callbacks and Bidirectional GIOP ... 93
Setting the Listen Queue Size in Orbix 3.3 C++ Edition................................ 94
Multiple LOCATION_FORWARD.. 95

Codeset Negotiation ..97
Introduction to Codeset Negotiation .. 97
Configuring Codeset Negotiation ... 97
Default Codesets... 98
Configuring Legacy Behavior .. 101

Index...103
Migrating from Orbix 3.3 to Orbix 6.3 v

vi Migrating from Orbix 3.3 to Orbix 6.3

Preface
This document explains how to migrate applications from the
Orbix and OrbixWeb products, which conform to CORBA 2.1, to
Orbix 6.3, which conforms to CORBA 2.6.

Audience
This document is aimed at C++ or Java programmers who are
already familiar with Orbix or OrbixWeb products and who now
want to migrate all or part of a system to use Orbix 6.3.
Parts of this document are relevant also to administrators familiar
with Orbix and OrbixWeb administration. See “Administration” on
page 53 and “Configuring for Interoperability” on page 59.

Organization of this guide
This guide is divided as follows:

Part I “Overview of Migration”
This part briefly discusses the advantages of migrating and the
options for your migration strategy.

Part II “Migrating to Orbix 6.3”
This part explains how to migrate client and server source (in C++
or Java) to Orbix 6.3. For each of the features that have been
modified or removed from Orbix 6.3, relative to the features
supported by Orbix 3 and OrbixWeb 3, this part discusses the
replacement features offered by Orbix 6.3.

Part III “Interoperability”
This part discusses the issues that affect a mixed deployment of
interoperating Orbix 3, OrbixWeb 3 and Orbix 6.3 applications.
With appropriate customization of the ORB configuration, you can
obtain an optimum level of compatibility between the various
applications in your system.

Typographical conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal
text represents portions of code and literal
names of items such as classes, functions,
variables, and data structures. For
example, text might refer to the
CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:
#include <stdio.h>
 Migrating from Orbix 3.3 to Orbix 6.3 1

Keying conventions
This guide may use the following keying conventions:

Italic Italic words in normal text represent
emphasis and new terms.
Italic words or characters in code and
commands represent variable values you
must supply, such as arguments to
commands or path names for your
particular system. For example:
% cd /users/your_name
Note: Some command examples may
use angle brackets to represent variable
values you must supply. This is an older
convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX
command shell prompt for a command
that does not require root privileges.

A number sign represents the UNIX
command shell prompt for a command
that requires root privileges.

> The notation > represents the DOS or
Windows command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material
has been eliminated to simplify a
discussion.

[] Brackets enclose optional items in format
and syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format
and syntax descriptions.
 2 Migrating from Orbix 3.3 to Orbix 6.3

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:
• The Product Updates section of the Micro Focus SupportLine

Web site, where you can download fixes and documentation
updates.

• The Examples and Utilities section of the Micro Focus Support-
Line Web site, including demos and additional product docu-
mentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page, then click Support.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Also, visit:
• The Micro Focus Community Web site, where you can browse

the Knowledge Base, read articles and blogs, find demonstra-
tion programs and examples, and discuss this product with
other users and Micro Focus specialists.

• The Micro Focus YouTube channel for videos related to your
product.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
Migrating from Orbix 3.3 to Orbix 6.3 3

http://www.microfocus.com
http://www.microfocus.com

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp
 4 Migrating from Orbix 3.3 to Orbix 6.3

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Overview of Migration

In this part
This part contains the following chapter:

Introduction page 7

 6 Migrating from Orbix 3.3 to Orbix 6.3

Introduction
The newest generation of Orbix provides significant advances over the
previous generation of products.

Advantages of Orbix 6.3
The recommended path for customers upgrading to a new version
of Orbix is to move to Orbix 6.3. The extra features offered by
Orbix can be divided into the following categories:
• CORBA 2.6-compliant features.
• Unique features.

CORBA 2.6-compliant features
Because Orbix 6.3 contains a CORBA 2.6-compliant ORB, it offers
the following advantages over Orbix 2.x (all minor versions of
Orbix 2) and Orbix 3.x (all minor versions of Orbix 3):
• Portable interceptor support.
• Codeset negotiation support.
• Value type support.
• Asynchronous method invocation (AMI) support.
• Persistent State Service (PSS) support.
• Dynamic any support.

Unique features
Orbix 6.3 also offers some unique benefits over other commercial
ORB implementations, including:
• ORB extensibility using Adaptive Runtime Technology (ART).

Orbix 6.3 has a modular structure built on a micro-kernel
architecture. Required ORB modules, ORB plug-ins, are
specified in a configuration file and loaded at runtime, as the
application starts up. The advantage of this approach is that
new ORB functionality can be dynamically loaded into an Orbix
application without rebuilding the application.

• Improved performance.
The performance of Orbix 6.3 has been optimized, resulting in
performance that is faster than Orbix 3.x and OrbixWeb 3.x in
every respect.

• Advanced deployment and configuration.
Orbix 6.3 supports a flexible model for the deployment of
distributed applications. Applications can be grouped into
configuration domains and organized either as file-based
configuration domains or as configuration repository-based
configuration domains.

• Rapid application development using the Orbix code
generation toolkit.
 Migrating from Orbix 3.3 to Orbix 6.3 7

The code generation toolkit is an extension to the IDL
compiler that generates a working application prototype—
based on your application IDL—in a matter of seconds.

Migration Resources

Overview of resources
Micro Focus is committed to assisting you with your migration
effort, to ensure that it proceeds as easily and rapidly as possible.
The following resources are currently available:
• This migration and interoperability guide.

This technical document provides detailed guidance on
converting source code to Orbix 6.3. The document aims to
provide comprehensive coverage of migration issues, and to
demonstrate how features supported in earlier Orbix versions
can be mapped to Application Server Platform features.

• Micro Focus Orbix 6.x Upgrade Assessment.
For customers on Orbix 2000, Orbix E2A ASP or versions of
Orbix predating Orbix 3.3 one may consider the Orbix 6.x
Upgrade Assessment, ensuring the application of best
practices and access to the latest updated functionality.:
http://www.microfocus.com/products/corba/services/orbixup
gradeassessment.aspx.

Migration Options
The basic alternatives for migrating a distributed application to
Orbix are to migrate the whole application at once, or to perform
the migration gradually, replacing parts of the application piece by
piece. For the latter option (gradual migration), you will end up
with a mixed deployment consisting of Orbix and older Orbix
products.

Migrating to Orbix 6.3
The CORBA 2.6 specification, on which the Orbix 6.3 ORB is based,
standardizes almost every aspect of CORBA programming.
Migrating your source code to Application Server Platform,
therefore, represents a valuable investment because your code
will be based on a stable, highly standardized programming
interface.

Client side
On the client side, the main issue for migration is that the Orbix
_bind() function is not supported in Orbix 6.3. The CORBA Naming
Service is now the recommended mechanism for establishing
contact with CORBA servers.
 8 Migrating from Orbix 3.3 to Orbix 6.3

http://www.microfocus.com/products/corba/services/orbixupgradeassessment.aspx
http://www.microfocus.com/products/corba/services/orbixupgradeassessment.aspx

Server side
On the server side, the basic object adapter (BOA) must be
replaced by the portable object adapter (POA). This is one of the
major differences between the CORBA 2.1 and the CORBA 2.6
specifications. The POA is much more tightly specified than the old
BOA; hence server code based on the POA is well standardized.

Proprietary features
Orbix 3.x and OrbixWeb 3.x support a range of proprietary
features not covered by the CORBA standard—for example, the
Orbix locator, filters, loaders, smart proxies, transformers and I/O
callbacks. When migrating to Orbix 6.3, the proprietary features
must be replaced by standard CORBA 2.6 features. This migration
guide details how each of the proprietary features can be replaced
by equivalent Orbix 6.3 functionality.

Further details
The details of migrating to Orbix 6.3 are discussed in Part II of this
guide. See “Migrating to Orbix 6.3” on page 11.

Mixed Deployment
Mixed Deployment is appropriate when a number of CORBA
applications are in deployment simultaneously. Some applications
might be upgraded to use Orbix 6.3 whilst others continue to use
Orbix 3.x and OrbixWeb 3.x. This kind of mixed environment
requires on-the-wire compatibility between the generation 3
products and Orbix 6.3. Extensive testing has been done to ensure
interoperability with Orbix 6.3.

On-the-wire interoperability
Both Orbix 3.3 and Orbix 6.3 have been modified to achieve an
optimum level of on-the-wire compatibility between the two
products.

Further details
Interoperability is discussed in Part III of this guide. See
“Interoperability” on page 57.
Migrating from Orbix 3.3 to Orbix 6.3 9

 10 Migrating from Orbix 3.3 to Orbix 6.3

Part II
Migrating to Orbix 6.3

In this part
This part contains the following chapters:

IDL Migration page 13

Client Migration page 15

Server Migration page 21

Migrating Proprietary Orbix 3 Features page 27

CORBA Services page 39

Administration page 53

 12 Migrating from Orbix 3.3 to Orbix 6.3

IDL Migration
This chapter discusses the Orbix 3.x IDL features that are not available
in Orbix 6.3.

This chapter discusses the following topics:
• The context Clause
• The opaque Type
• The Principal Type

The context Clause

IDL Syntax
According to IDL grammar, a context clause can be added to an
operation declaration, to specify extra variables that are sent with
the operation invocation. For example, the following
Account::deposit() operation has a context clause:

Migrating to Orbix 6
The context clause is not supported by Orbix 6. IDL contexts are
generally regarded as type-unsafe. Orbix clients that use them
need to be migrated, to transmit their context information using
another mechanism, such as service contexts, or perhaps as
normal IDL parameters.

The opaque Type

Migrating to Orbix 6.3
The object-by-value (OBV) specification, introduced in CORBA 2.3
and supported in Orbix 6.3, replaces opaques.

The Principal Type

Principal IDL type
The CORBA specification deprecates the Principal IDL type;
therefore the Principal IDL type is not supported by Orbix 6.3.

//IDL

interface Account {
 void deposit(in CashAmount amount)
 context("sys_time", "sys_location");
 //...
};
 Migrating from Orbix 3.3 to Orbix 6.3 13

Interoperability
Orbix 6.3 has some limited on-the-wire support for the Principal
type, to support interoperability with Orbix 3.x applications.
See “Launch and Invoke Rights” on page 60.
 14 Migrating from Orbix 3.3 to Orbix 6.3

Client Migration
Migration of client code from Orbix 3 to Orbix 6.3 is generally
straightforward, because relatively few changes have been made to the
client-side API.

Replacing the _bind() Function
The _bind() function is not supported in Orbix 6.3. All calls to
_bind() must be replaced by one of the following:
• CORBA Naming Service.
• CORBA Trader Service.
• Object-to-string conversion.
• corbaloc URL.
• ORB::resolve_initial_references().

CORBA Naming Service
The naming service is the recommended replacement for _bind()
in most applications. Migration to the naming service is
straightforward on the client side. The triplet of markerName,
serverName, and hostName, used by the _bind() function to locate an
object, is replaced by a simple name in the naming service.
When using the naming service, an object's name is an
abstraction of the object location and the actual location details
are stored in the naming service. Object names are resolved using
these steps:
1. An initial reference to the naming service is obtained by

calling resolve_initial_references() with NameService as its
argument.

2. The client uses the naming service reference to resolve the
names of CORBA objects, receiving object references in
return.

Orbix 6.3 supports the CORBA Interoperable Naming Service,
which is backward-compatible with the old CORBA Naming Service
and adds support for stringified names.

CORBA Trader Service
The Orbix 6.3 trader service provides advanced capabilities for
object location and discovery. Unlike the Orbix Naming Service
where an object is located by name, an object in the Trading
Service does not have a name. Rather, a server advertises an
object in the Trading Service based on the kind of service provided
by the object. A client locates objects of interest by asking the
Trading Service to find all objects that provide a particular service.
The client can further restrict the search to select only those
objects with particular characteristics.
 Migrating from Orbix 3.3 to Orbix 6.3 15

Object-to-string conversion
CORBA offers two CORBA-compliant conversion functions:
CORBA::ORB::object_to_string()
CORBA::ORB::string_to_object()

These functions allow you to convert an object reference to and
from the stringified interoperable object reference (stringified
IOR) format. These functions enable a CORBA object to be located
as follows:
1. A server generates a stringified IOR by calling

CORBA::ORB::object_to_string().
2. The server passes the stringified IOR to the client (for

example, by writing the string to a file).
3. The client reads the stringified IOR from the file and converts

it back to an object reference, using
CORBA::ORB::string_to_object().

Because they are not scalable, these functions are generally not
useful in a large-scale CORBA system. Use them only to build
initial prototypes or proof-of-concept applications.

corbaloc URL
A corbaloc URL is a form of human-readable stringified object
reference. If you are migrating your clients to Orbix 6.3 but
leaving your servers as Orbix 3.3 applications, the corbaloc URL
offers a convenient replacement for _bind().
To access an object in an Orbix 3.3 server from an Orbix 6.3 client
using a corbaloc URL, perform the following steps:
1. Obtain the object key, ObjectKey, for the object in question, as

follows:
i. Get the Orbix 3.3 server to print out the stringified IOR

using, for example, the CORBA::ORB::object_to_string()
operation. The result is a string of the form IOR:00...

ii. Use the Orbix 6.3 iordump utility to parse the stringified
IOR. Copy the string that represents the object key field,
ObjectKey.

2. Construct a corbaloc URL of the following form:
corbaloc:iiop:1.0@DaemonHost:DaemonPort/ObjectKey%00

Where DaemonHost and DaemonPort are the Orbix daemon’s host
and port respectively. A null character, %00, is appended to the
end of the ObjectKey string because Orbix 3.3 applications
expect object key strings to be terminated by a null character.

3. In the source code of the Orbix 6.3 client, use the
CORBA::ORB::string_to_object() operation to convert the
corbaloc URL to an object reference.

The general form of a corbaloc URL for this case is as follows:
corbaloc:iiop:GIOPVersion@Host:Port/Orbix3ObjectKey%00

Where the components of the corbaloc URL are:
• GIOPVersion—The maximum GIOP version acceptable to the

server. Can be either 1.0 or 1.1.
 16 Migrating from Orbix 3.3 to Orbix 6.3

• Host and Port—The daemon’s (or server’s) host and port. The
Host can either be a DNS host name or an IP address in dotted
decimal format.

The Orbix3ObjectKey has the following general form:
:\Host:SvrName:Marker::IFRSvrName:InterfaceName%00

Where the components of the Orbix 3 object key are:
• Host—The server host. The Host can either be a DNS host name

or an IP address in dotted decimal format.
• SvrName—The server name of the Orbix 3.3 server.
• Marker—The CORBA object’s marker.
• IFRSvrName—Can be either IR or IFR.
• InterfaceName—The object’s IDL interface name.

ORB::resolve_initial_references()
The CORBA::ORB::resolve_initial_references() operation provides
a mechanism for obtaining references to basic CORBA objects (for
example, the naming service, the interface repository, and so on).
Orbix 6.3 allows the resolve_initial_references() mechanism to
be extended. For example, to access the BankApplication service
using resolve_initial_references(), simply add the following
variable to the Orbix 6.3 configuration:

Use this mechanism sparingly. The OMG defines the intended
behavior of resolve_initial_references() and the arguments that
can be passed to it. A name that you choose now might later be
reserved by the OMG. It is generally better to use the naming
service to obtain initial object references for application-level
objects.

Callback Objects

POA policies for callback objects
Callback objects must live in a POA, like any other CORBA object;
hence, there are certain similarities between a server and a client
with callbacks. The most sensible POA policies for a POA that

WARNING: Constructing an Orbix 3.3 object key directly
based on the preceding format does not always work
because some versions of Orbix impose extra restrictions
on the object key format. Extracting the object key from
the server-generated IOR is a more reliable approach.
If you encounter any difficulties with using corbaloc URLs,
please contact support@iona.com.

Orbix 6.3 Configuration File
initial_references:BankApplication:reference =

"IOR:010347923849..."
Migrating from Orbix 3.3 to Orbix 6.3 17

mailto://support@iona.com

manages callback objects are shown in Table 1.

These policies allow for easy management of callback objects and
an easy upgrade path. Callback objects offer one of the few cases
where the root POA has reasonable policies, provided the client is
multi-threaded (as it normally is for callbacks).

IDL-to-C++ Mapping
The definition of the IDL-to-C++ mapping has changed little going
from Orbix 3.x to Orbix 6.3 (apart from some extensions to
support valuetypes). Two notable changes are:
• The CORBA::Any Type.
• The CORBA::Environment Parameter.

The CORBA::Any Type
In Orbix 6.3, it is not necessary to use the type-unsafe interface to
Any. Recent revisions to the CORBA specification have filled the
gaps in the IDL-to-C++ mapping that made these functions
necessary. That is, the following functions are deprecated in Orbix
6.3:

Table 1: POA Policies for Callback Objects

Policy Type Policy Value

Lifespan TRANSIENTa

a. By choosing a TRANSIENT lifespan policy, you remove the need to register the
client with an Orbix 6.3 locator daemon.

ID Assignment SYSTEM_ID

Servant Retention RETAIN

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

// C++
// CORBA::Any Constructor.
Any(
 CORBA::TypeCode_ptr tc,
 void* value,
 CORBA::Boolean release = 0
);

// CORBA::Any::replace() function.
void replace(
 CORBA::TypeCode_ptr,
 void* value,
 CORBA::Boolean release = 0
);
 18 Migrating from Orbix 3.3 to Orbix 6.3

The CORBA::Environment Parameter
The signatures of IDL calls no longer contain the
CORBA::Environment parameter. This parameter was needed for
languages that did not support native exception handling.
However, Orbix applications also use it for operation timeouts.

System Exception Semantics
Orbix and OrbixWeb clients that catch specific system exceptions
might need to change the exceptions they handle when they are
migrated to Orbix.

System exceptions
Orbix 6.3 follows the latest CORBA standards for exception
semantics. Table 2 shows the two system exceptions most likely
to affect existing code.

Minor codes
System exception minor codes are completely different between
OrbixWeb 3.2 and Orbix 6.3 for Java. Applications that examine
minor codes need to be modified to use Orbix 6.3 for Java minor
codes.

Dynamic Invocation Interface

Proprietary dynamic invocation interface
Orbix-proprietary dynamic invocation interface (DII) functions are
not available in Orbix 6.3. Code that uses
CORBA::Request::operator<<() operators and overloads must be
changed to use CORBA-compliant DII functions.

Table 2: Migrated System Exceptions

When This
Happens

Orbix 3 and
OrbixWeb Raise

Orbix 6.3 Raises

Server object does
not exist

INV_OBJREF OBJECT_NOT_EXIST

Cannot connect to
server

COMM_FAILURE TRANSIENT

Note: Orbix 6.3-generated stub code consists of sets of
statically generated CORBA-compliant DII calls.
Migrating from Orbix 3.3 to Orbix 6.3 19

 20 Migrating from Orbix 3.3 to Orbix 6.3

Server Migration
Server code typically requires many more changes than client code. The
main issue for server code migration is the changeover from the basic
object adapter (BOA) to the portable object adapter (POA).

Function Signatures

Changes to the signature
In Orbix 6.3, two significant changes have been made to C++
function signatures:
• The CORBA::Environment parameter has been dropped.
• New types are used for out parameters. An out parameter of T

type is now passed as a T_out type.
Consequently, when migrating C++ implementation classes you
must replace the function signatures that represent IDL
operations and attributes.

Object IDs versus Markers

C++ conversion functions
Orbix 6.3 uses a sequence of octets to compose an object's ID,
while Orbix 3 uses string markers. CORBA provides the following
helper methods to convert between the two types; hence
migration from marker dependencies to Object IDs is
straightforward.

// C++
// Converting string marker -----> ObjectId
PortableServer::ObjectId *
PortableServer::string_to_ObjectId(const char *);

// Converting ObjectId -----> string marker
char *
PortableServer::ObjectId_to_string(
 const PortableServer::ObjectId&
);
 Migrating from Orbix 3.3 to Orbix 6.3 21

Java conversion functions
In Java, an object ID is represented as a byte array, byte[]. Hence
the following native Java methods can be used to convert between
string and object ID formats:

CORBA Objects versus Servant Objects

Orbix 3
In Orbix 3 there is no need to distinguish between a CORBA object
and a servant object. When you create an instance of an
implementation class in Orbix 3, the instance already has a unique
identity (represented by a marker) and therefore represents a
unique CORBA object.

Orbix 6.3
In Orbix 6.3, a distinction is made between the identity of a
CORBA object (its object ID) and its implementation (a servant).
When you create an instance of an implementation class in Orbix
6.3, the instance is a servant object, which has no identity. The
identity of the CORBA object (represented by an object ID) must
be grafted on to the servant at a later stage, in one of the
following ways:
• The servant becomes associated with a unique identity. This

makes it a CORBA object, in a similar sense to an object in a
BOA-based implementation.

• The servant becomes associated with multiple identities. This
case has no parallel in a BOA-based implementation.

The mapping between object IDs and servant objects is controlled
by the POA and governed by POA policies.

BOA to POA Migration
It is relatively easy to migrate a BOA-based server by putting all
objects in a simple POA that uses an active object map; however,
this approach is unable to exploit most of the functionality that a
POA-based server offers. It is worth while redesigning and
rewriting servers so they benefit fully from the POA.

// Java
// Converting string marker -----> ObjectId
byte[]
java.lang.String.getBytes();

// Converting ObjectId -----> string marker
// String constructor method:
java.lang.String.String(byte[]);
 22 Migrating from Orbix 3.3 to Orbix 6.3

Creating an Object Adapter

Creating a BOA in Orbix 3.x
In Orbix 3, a single BOA instance is used. All CORBA objects in a
server are implicitly associated with this single BOA instance.

Creating a POA in Orbix 6.3
In Orbix 6.3, an application can create multiple POA instances
(using the PortableServer::POA::create_POA() operation in C++
and the org.omg.PortableServer.create_POA() operation in Java).
Each POA instance can be individually configured, using POA
policies, to manage CORBA objects in different ways. When
migrating to Orbix 6.3, you should give careful consideration to
the choice of POA policies, to obtain the maximum benefit from
the POA's flexibility.

Defining an Implementation Class
There are two approaches to defining an implementation class in
CORBA:
• The inheritance approach.
• The tie approach.

The inheritance approach
The most common approach to implementing an IDL interface in
Orbix is to use the inheritance approach. Consider the following
IDL fragment:

The BankSimple::Account IDL interface can be implemented by
defining a class that inherits from a standard base class. The
name of this standard base class for Orbix 3 and Orbix 6.3 is
shown in Table 3.

//IDL
module BankSimple {
 Account {
 //...
 };
};

Table 3: Standard Base Classes for the Inheritance Approach

Application Type Implementation Base Class
Name

Orbix 3, C++ (BOA) BankSimple::AccountBOAImpl

Orbix 6.3, C++ (POA) POA_BankSimple::Account

Orbix 3, Java (BOA) BankSimple._AccountImplBase
Migrating from Orbix 3.3 to Orbix 6.3 23

Consider a legacy Orbix 3 application that implements
BankSimple::Account in C++ as the BankSimple_Account_i class. The
BankSimple_Account_i class might be declared as follows:

When this implementation class is migrated to Orbix 6.3, the
BankSimple::AccountBOAImpl base class is replaced by the
POA_BankSimple::Account base class, as follows:

The tie approach
The tie approach is an alternative mechanism for implementing
IDL interfaces. It allows you to associate an implementation class
with an IDL interface using a delegation approach rather than an
inheritance approach.
In Application Server Platform (C++) the tie classes are generated
using C++ templates. When migrating from Orbix 3 to Orbix 6.3,
all DEF_TIE and TIE preprocessor macros must be replaced by the
equivalent template syntax.
In Orbix 6.3 (Java) the tie approach is essentially the same as in
Orbix 3. However, the names of the relevant Java classes and
interfaces are different. For example, given an IDL interface, Foo,
an Orbix 6.3 servant class implements the FooOperations Java
interface and the associated Java tie class is called FooPOATie.

Creating and Activating a CORBA Object
To make a CORBA object available to clients, you should:
1. Create an implementation object. An implementation object is

an instance of the class that implements the operations and
attributes of an IDL interface. In Orbix 3, an implementation

Orbix 6.3, Java (POA) BankSimple.AccountPOA

Table 3: Standard Base Classes for the Inheritance Approach

Application Type Implementation Base Class
Name

// C++
// Orbix 3 Version
// Inheritance Approach
class BankSimple_Account_i : BankSimple::AccountBOAImpl {
public:
 // Declare IDL operation and attribute functions...
};

// C++
// Orbix 6.3 Version
// Inheritance Approach
class BankSimple_Account_i : POA_BankSimple::Account {
public:
 // Declare IDL operation and attribute functions...
};
 24 Migrating from Orbix 3.3 to Orbix 6.3

object is the same thing as a CORBA object. In Orbix 6.3, an
implementation object is a servant object, which is not the
same thing as a CORBA object.

2. Activate the servant object. Activating a servant object
attaches an identity to the object (a marker in Orbix 3 or an
object ID in Orbix 6.3) and associates the object with a
particular object adapter.

Orbix 3
In Orbix 3, creating and activating an object are rolled into a
single step. For example, in C++ you might instantiate a
BankSimple::Account CORBA object using the following code:

This step creates the CORBA object and attaches the ObjectID
identity to it (initializing the object's marker). The constructor
automatically activates the CORBA object.

Orbix 6.3
In Orbix 6.3, creating and activating an object are performed as
separate steps. For example, in C++ you might instantiate a
BankSimple::Account CORBA object using the following code:

Activation is performed as an explicit step in Orbix 6.3. The call to
PortableServer::POA::activate_object_with_id() attaches the
ObjectID identity to the object and associates the persistent_poa
object adapter with the object.

// C++
// Orbix 3
// Create and activate a new 'Account' object.
BankSimple_Account_i * acc1 =
 new BankSimple_Account_i("ObjectID");

// C++
// Orbix 6.3

// Step 1: Create a new 'Account' object.
BankSimple_Account_i * acc1 = new BankSimple_Account_i();

// Step 2: Activate the new 'Account' object.
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("ObjectID");
// persistent_poa created previously
persistent_poa->activate_object_with_id(oid, acc1);
Migrating from Orbix 3.3 to Orbix 6.3 25

 26 Migrating from Orbix 3.3 to Orbix 6.3

Migrating Proprietary
Orbix 3 Features
Proprietary Orbix 3 feature are replaced by a range of
standards-compliant Orbix 6.3 features.

Orbix 3 Locator
The Orbix 3 locator is an Orbix-specific feature that is used in
combination with _bind() to locate server processes. Because
Orbix 6.3 does not support _bind(), it cannot use the Orbix 3 style
locator.

If your legacy code uses the Orbix 3 locator, you must replace it
with one of the following Orbix 6.3 features:
• High availability.
• The CORBA Naming Service.
• The CORBA Initialization Service.

High availability
The Orbix 6.3’s high availability feature provides fault tolerance—
that is, a mechanism that avoids having a single point of failure in
a distributed application. With the enterprise edition of Orbix 6.3,
you can protect your system from single points of failure through
clustered servers.
A clustered server comprises multiple instances, or replicas, of the
same server; together, these act as a single logical server. Clients
invoke requests on the clustered server and Orbix routes the
requests to one of the replicas. The actual routing to any replica is
transparent to the client.

The CORBA Naming Service
If your legacy code uses the load-balancing feature of the Orbix 3
locator, you can replace this by the ObjectGroup feature of the
Orbix 6.3’s naming service. Object groups are an Orbix-specific
extension to the naming service that allow you to register a
number of servers under a single name.

Note: Orbix 6.3 has a feature called a locator, which is not
related in any way to the Orbix 3 locator. The Orbix 6.3
locator is a daemon process, itlocator, that locates server
processes for clients.
 Migrating from Orbix 3.3 to Orbix 6.3 27

Table 4 shows how the Orbix 3 locator maps to the equivalent
naming service functionality.

The naming service is the preferred way to locate objects in Orbix
6.3. It is a standard service and is highly scalable.

The CORBA Initialization Service
The initialization service uses the
CORBA::ORB::resolve_initial_references() operation to retrieve an
object reference from an Orbix 6.3 configuration file,
DomainName.cfg.
Table 5 shows how the Orbix 3 locator maps to the equivalent
initialization service functionality.

Table 4: Replacing the Orbix 3 Locator by the Naming Service

Orbix 3-Locator Orbix 6.3-Naming Service

Entry in the locator file,
mapping the server name,
SrvName, to a single server host,
HostName:

SrvName:HostName:

Object binding in the naming
service, mapping a name to a
single object reference.

Entry in the locator file,
mapping the server name,
SrvName, to multiple host
names:
SrvName:Host1,Host2,Host3:

Object group in the naming
service, mapping a name to
multiple object references.

Overriding functionality of
CORBA::LocatorClass.

Custom implementation of the
IT_LoadBalancing::ObjectGroup
interface.

Table 5: Replacing the Orbix 3 Locator by the Initialization Service

Orbix 3-Locator Orbix 6.3-Initialization
Service

Entry in the locator file,
mapping the server name,
SrvName, to a single server host,
HostName:
SrvName:HostName:

Entry in the DomainName.cfg
file, mapping an ObjectId to a
single object reference:
initial_references:ObjectId:
reference = "IOR:00...";

Entry in the locator file,
mapping the server name,
SrvName, to multiple host
names:
SrvName:Host1,Host2,Host3:

No Equivalent

Override functionality of
CORBA::LocatorClass.

No Equivalent
 28 Migrating from Orbix 3.3 to Orbix 6.3

The initialization service can only be used as a replacement for the
Orbix 3 locator when a simple object lookup is needed.

Filters
Filters are a proprietary Orbix 3 mechanism that allow you to
intercept invocation requests on the server and the client side.
Orbix 6.3 does not support the filter mechanism. Instead, a
variety of Orbix 6.3 features replace Orbix 3 filter functionality.

Equivalents
Table 6 summarizes the typical uses of Orbix 3 filters alongside
the equivalent features supported by Orbix 6.3.

Request Logging

Using portable interceptors
In Orbix 6.3, request logging is supported by the new portable
interceptor feature. Interceptors allow you to access a CORBA
request at any stage of the marshaling process, offering greater
flexibility than Orbix filters. You can use them to add and examine
service contexts. You can also use them to examine the request
arguments.

Piggybacking Data on a Request

Piggybacking in Orbix 3
In Orbix 3, filters support a piggybacking feature that enables you
to add and remove extra arguments to a request message.

Table 6: Orbix 6.3 Alternatives to Filter Features

Orbix 3 Filter Feature Orbix 6.3 Equivalent

Request logging Use portable interceptors.

Piggybacking data on a
Request

Use portable interceptors.

Multi-threaded request
processing

Use a multi-threaded POA and
(optionally) a proprietary
WorkQueue POA policy.

Accessing the client's TCP/IP
details

Not supported.

Security using an
authentication filter

Full security support is
provided in the Orbix 6.3
enterprise edition.
Migrating from Orbix 3.3 to Orbix 6.3 29

Piggybacking in Orbix 6.3
In Orbix 6.3, piggybacking is replaced by the CORBA-compliant
approach using service contexts. A service context is an optional block
of data that can be appended to a request message, as specified
in the IIOP 1.1 standard. The content of a service context can be
arbitrary and multiple service contexts can be added to a request.

Multi-Threaded Request Processing

Orbix 3
In Orbix 3, concurrent request processing is supported using an
Orbix thread filter. The mechanism is flexible because it gives the
developer control over the assignment of requests to threads.

Orbix 6.3
In Orbix 6.3, request processing conforms to the CORBA 2.6
specification. Each POA can have its own threading policy:
• SINGLE_THREAD_MODEL ensures that all servant objects in that

POA have their functions called in a serial manner. In Orbix
6.3, servant code is called only by the main thread, therefore
no locking or concurrency-protection mechanisms need to be
used.

• ORB_CTRL_MODEL leaves the ORB free to dispatch CORBA
invocations to servants in any order and from any thread it
chooses.

Orbix 6.3 request processing extensions
Because the CORBA 2.6 specification does not specify exactly
what happens when the ORB_CTRL_MODEL policy is chosen, Orbix 6.3
makes some proprietary extensions to the threading model.
The multi-threaded processing of requests is controlled using the
Orbix 6.3 work queue feature. Two kinds of work queue are
provided by Orbix 6.3:
• Automatic Work Queue: A work queue that feeds a thread

pool. When a POA uses an automatic work queue, request
events are automatically dequeued and processed by threads.
The size of the thread pool is configurable.

• Manual Work Queue: A work queue that requires the
developer to explicitly dequeue and process events.
Manual work queues give developers greater flexibility when it
comes to multi-threaded request processing. For example,
prioritized processing of requests could be implemented by
assigning high-priority CORBA objects to one POA instance
and low-priority CORBA objects to a second POA instance.
Given that both POAs are associated with manual work
 30 Migrating from Orbix 3.3 to Orbix 6.3

queues, the developer can write threading code that
preferentially processes requests from the high-priority POA.

Accessing the Client's TCP/IP Details

Recommendations for Orbix 6.3
Some Orbix 3 applications use Orbix-specific extensions to access
socket-level information, such as the caller's IP address, in order
to implement proprietary security features. These features are not
available in Orbix 6.3, because providing access to low-level
sockets would considerably restrict the flexibility of CORBA
invocation dispatch.
To provide security for your applications, it is recommended that
you use an implementation of the security service provided with
the Orbix 6.3 Enterprise Edition instead.

Security Using an Authentication Filter

Recommendations for Orbix 6.3
Some Orbix 3 applications use authentication filters to implement
security features. In Orbix 6.3, it is recommended that you use
the security service that is made available with the Orbix 6.3
Enterprise Edition.

Loaders

Orbix 3 loader
The Orbix 3 loader provides support for the automatic saving and
restoration of persistent objects. The loader provides a
mechanism that loads CORBA objects automatically into memory,
triggered in response to incoming invocations.

Servant manager
The Orbix 3 loader is replaced by equivalent features of the
Portable Object Adapter (POA) in Orbix 6.3. The POA can be
combined with a servant manager to provide functionality
equivalent to the Orbix 3 loader. There are two different kinds of
servant manager:
• Servant activator: Triggered only when the target CORBA

object cannot be found in memory.
• Servant locator: Triggered for every invocation.
Migrating from Orbix 3.3 to Orbix 6.3 31

Servant activator
Taking the PortableServer::ServantActivator class as an example,
the member functions of CORBA::LoaderClass correspond
approximately as shown in Table 7.

Servant locator
A servant locator can also be used to replace the Orbix 3 loader.
In general, the servant locator is more flexible than the servant
activator and offers greater scope for implementing sophisticated
loader algorithms.

Smart Proxies

Orbix 3
The Orbix 3 smart proxies feature is a proprietary mechanism for
overriding the default implementation of the proxy class. This
allows applications to intercept outbound client invocations and
handle them within the local client process address space, rather
than using the default proxy behavior of making a remote
invocation on the target object. Smart proxies can be used for
such purposes as client-side caching, logging, load-balancing, or
fault-tolerance.

Table 7: Comparison of Loader with Servant Activator Class

CORBA::LoaderClass
Member Function

ServantActivator Member
Function

save() etherealize()

load() incarnate()

record() No equivalent function.
An Orbix 6.3 object ID
(equivalent to an Orbix 3
marker) can be specified at
the time a CORBA object is
created. This gives sufficient
control over object IDs.

rename() No equivalent function.
An Orbix 6.3 object ID
(equivalent to an Orbix 3
marker) cannot be changed
after a CORBA object has been
created.
 32 Migrating from Orbix 3.3 to Orbix 6.3

Orbix 6.3
Orbix 6.3 does not support smart proxies. The primary difficulty is
that, in the general case, it is not possible for the client-side ORB
to determine if two object references denote the same server
object. The CORBA standard restricts the client-side ORB from
interpreting the object key or making any assumptions about it.
Orbix 3 was able to avoid this limitation by making assumptions
about the structure of the object key. This is neither
CORBA-compliant nor interoperable with other ORBs.
At best, the ORB can only determine that two object references
are equivalent if they have exactly the same server location (host
and port in IIOP) and object key. Unfortunately, this can be an
unreliable indicator if object references pass through bridges,
concentrators, or firewalls that change the server location or
object key.
In this case, it is possible for two object references denoting the
same CORBA object to appear different to the ORB, and thus have
two different smart proxy instances. Since smart proxies are
commonly used for caching, having two smart proxy instances for
a single CORBA object is unacceptable.

Replacing smart proxies
Table 8 shows how smart proxy tasks can be mapped to
equivalent features in Orbix 6.3.

Fault tolerance
Fault tolerance is provided by the high availability feature of the
Orbix 6.3’s locator. See “High availability” on page 27.

Logging
For logging that requires access to request parameters, portable
interceptors can be used in Orbix 6.3. Portable interceptors are
similar to Orbix 3 filters, but they are more flexible in that they
allow you to read request parameters.

Table 8: Orbix 6.3 Alternatives to Smart Proxy Features

Orbix 3 Smart
Proxy Task

Orbix 6.3 Equivalent Feature

Fault tolerance Orbix 6.3 high availability, based on server
clusters.

Logging Orbix 6.3 built-in logging facility or portable
interceptors

Caching Implement smart proxy-like functionality by
hand.
Migrating from Orbix 3.3 to Orbix 6.3 33

Caching
A smart proxy that implements client-side caching of data cannot
be mimicked by a standard Orbix 6.3 feature. In this case, you
have no option but to implement smart proxy-like functionality in
Orbix 6.3, and this can be done as follows:
1. Create a local implementation of the object to be proxified, by

writing a class that derives from the client-side stub class.
2. Every time the client receives an object reference of the

appropriate type, wrap the object reference with a
corresponding smart proxy object. Before wrapping the object
reference, however, you must determine the target object's
identity by making an invocation on the remote target object,
asking it for a system-wide unique identifying name. This is
the key step that avoids the object identity problem described
in “Orbix 6.3” on page 33.

Based on the system-wide unique identifying name, the
application can then either create a new smart proxy, or reuse the
target object's existing smart proxy. The client application should
consistently use the smart proxy in place of the regular proxy
throughout the application.

Transformers

Orbix 3
Transformers are a deprecated feature of Orbix 3 that allow you to
apply customized encryption to CORBA request messages. This
could be used to implement a primitive substitute for a security
service.

Orbix 6.3
In Orbix 6.3, transformers are not supported. It is recommended,
instead, that you use the security service that is made available
with the enterprise edition of Orbix 6.3.

I/O Callbacks
Orbix 6.3 does not allow access to TCP/IP sockets or
transport-level information. This is incompatible with the Orbix 6.3
architecture, which features a pluggable transport layer. Using
Orbix 6.3, you can replace TCP/IP with another transport plug-in
such as IP multicast (which is connectionless), simple object
access protocol (SOAP), hypertext transfer protocol (HTTP),
asynchronous transfer mode (ATM), and so on. For example, the
shared memory transport (SHMIOP) does not use file descriptors
or sockets.
 34 Migrating from Orbix 3.3 to Orbix 6.3

Purposes for using I/O callbacks
Orbix 3 I/O Callback functionality is generally used for two main
purposes:
• Connection Management—the number of TCP/IP connections

that can be made to a single process is typically subject to an
operating system limit. Some form of connection
management is required if this limit is likely to be reached in a
deployed system.

• Session Management—I/O Callback functionality can be used
to implement an elementary session-tracking mechanism. The
opening of a connection from a client defines the beginning of
a session and the closing of the connection defines the end of
the session.

Because Orbix 6.3 has no equivalent to the Orbix 3 I/O Callback
functionality, you must migrate any code that uses it.

Connection Management

Active connection management
Orbix 6.3 provides an active connection manager (ACM) that
allows the ORB to reclaim connections automatically, and thereby
increases the number of clients that can use a server beyond the
limit of available file descriptors.

ACM configuration variables
IIOP connection management is controlled by four configuration
variables:
• plugins:iiop:incoming_connections:hard_limit sets the

maximum number of incoming (server-side) connections
allowed to IIOP. IIOP refuses new connections above this
limit.

• plugins:iiop:incoming_connections:soft_limit specifies the
number of connections at which IIOP begins closing incoming
(server-side) connections..

• plugins:iiop:outgoing_connections:hard_limit sets the
maximum number of outgoing (client-side) connections
allowed to IIOP. IIOP refuses new outgoing connections above
this limit.

• plugins:iiop:outgoing_connections:soft_limit specifies the
number of connections at which IIOP begins closing outgoing
(client-side) connections.

Closing client connections
The ORB first tries to close idle connections in least-recently-used
order. If there are no idle connections, the ORB closes busy
connections in least-recently-opened order.
Migrating from Orbix 3.3 to Orbix 6.3 35

Active connection management effectively remedies file descriptor
limits that has constrained past Orbix applications. If a client is
idle for a while and the server ORB reaches its connection limit, it
sends a GIOP CloseConnection message to the client and closes the
connection. Later, the same client can transparently reestablish its
connection, to send a request without throwing a CORBA
exception.

Default file descriptor limits
Orbix 6.3 is configured to use the largest upper file descriptor limit
on each supported operating system. On UNIX, it is typically
possible to rebuild the kernel to obtain a larger number. However,
active connection management should make this unnecessary.

Session Management
Because Orbix 6.3 features a pluggable transport layer, it is not
appropriate to relate the duration of a client session to the
opening and closing of TCP/IP connections from clients. This type
of session management, which is typically implemented using I/O
callbacks in Orbix 3, has to be migrated to an alternative model.

Session management in Orbix 6.3
Support for session management in Orbix 6.3 is provided by a lease
plug-in. The lease plug-in implements a scheme for automatically
tracking client sessions, based on the idea that a client obtains a
lease from the server for the duration of a client session.

Client migration
Client applications can easily be modified to use session
management. Just edit the Orbix 6.3 configuration to make the
client load the lease plug-in. No changes to the client source code
are required.

Server migration
On the server side, the following changes are required to use
session management in Orbix 6.3:
• Edit the Orbix 6.3 configuration to make the server load the

lease plug-in.
• Modify the server source code so that it uses the lease plug-in

to track client sessions.

Note: In Orbix 3, Orbix tended to throw a COMM_FAILURE on
the first attempt at reconnection; server code that
anticipates this exception should be reevaluated against
current functionality.
 36 Migrating from Orbix 3.3 to Orbix 6.3

Further details
See the CORBA Session Management Guide for details of how to
program and configure the lease plug-in for session management.
Demonstration code for the lease plug-in is also provided with the
Orbix 6.3 product.
Migrating from Orbix 3.3 to Orbix 6.3 37

 38 Migrating from Orbix 3.3 to Orbix 6.3

CORBA Services
Orbix includes several CORBA services, such as the interface repository,
the naming service, the notification service, and the security service.
Because these service are based mainly on the CORBA standard, there
are not many changes between Orbix 3 and Orbix 6.3.

Interface Repository

Migration
Migrating source code that uses the Interface Repository (IFR) to
Orbix 6.3 is straightforward. Link the migrated application against
the stub code derived from the Orbix 6.3 version of the interface
repository. No further changes should be necessary.

Naming Service

Backward compatibility
The Orbix 6.3’s naming service is backward compatible with Orbix
3.x in two respects:
• Source code backward compatibility: source code that is

written to use the standard naming service interfaces can be
migrated to Orbix 6.3 without modification.

• On-the-wire backward compatibility: Orbix 3.x applications
can interoperate with the Orbix 6.3 naming service. If you
need to interoperate Orbix 3.x applications, it is
recommended that you recompile the naming stub code from
the Orbix 6.3 IDL files.

New interface
Orbix 6.3 adds a new interface, CosNaming::NamingContextExt,
which is defined by the CORBA Interoperable Naming Service
specification. This interface adds support for using names in
stringified format.

Load balancing
The naming service load-balancing extensions provided in Orbix 3
are also present in Orbix 6.3. The Orbix 6.3 load-balancing
interfaces are only slightly different from Orbix 3, requiring small
modifications to your source code.
 Migrating from Orbix 3.3 to Orbix 6.3 39

Notification Service
The Orbix 6.3 notification service has undergone significant
modifications since the OrbixNotification 3 generation of the
notification service.
Many of the changes that impact application migration reflect
changes in the CORBA standard and require minimal changes to
legacy OrbixNotification 3 application code.

CORBA Specification Updates
The Orbix 6.3 notification service complies with both the CORBA
2.6 specification and the OMG’s Notification Service Specification,
approved in June of 2000. To achieve compliance with these
specifications several changes were made to the notification
services IDL and APIs.
These changes require that any applications that use generation 3
code need to be recompiled and re-linked, at the very least. Other
minor changes might also need to be made to generation 3 code
to accommodate the changes in the APIs. Compiler warnings warn
you of most changes that need to be made.

_bind()
The Orbix 6.3 notification service clients do not use _bind() to
contact the notification service. Instead, clients should call
resolve_initial_references("NotificationService") to obtain an
object reference to the notification service. See “Replacing the
_bind() Function” on page 15 for more information.

Subscription and publication notification
Orbix 6.3 provides notification service clients greater flexibility
over how they receive subscription and publication details from
the notification channel. To accomplish this, an input parameter
has been added to obtain_offered_types() and
obtain_subscription_types().
The Orbix 6.3 operation signatures are:

// IDL
CosNotification::EventTypeSeq obtain_subscription_types(
 in ObtainInfoMode mode);
CosNotification::EventTypeSeq obtain_offered_types(
 in ObtainInfoMode mode);
 40 Migrating from Orbix 3.3 to Orbix 6.3

The new parameter is of type ObtainInfoMode which is an enum
defined in CosNotifyChannelAdmin as:

Any generation 3 clients that call obtain_offered_types() or
obtain_subscription_types() need to add the parameter.
ALL_NOW_UPDATES_OFF mimics generation 3 functionality. For more
information on the other values, see the CORBA Notification
Service Guide.

Unstructured event clients
Orbix 6.3 introduces unstructured event, any-style, client
interfaces into the CosNotifyComm module. This allows any-style
clients to support the enhanced subscription features and it
standardizes notification service client development. Any-style
clients developed for OrbixNotification 3 use the interfaces from
CosEventComm.
In addition, the Orbix 6.3 any-style proxy interfaces, defined in
CosNotifyChannelAdmin, inherit their client interfaces directly from
CosNotifyComm. In OrbixNotification 3 any-style proxies inherit
client interfaces from CosNotifyComm:NotifyPublish and
CosEventComm::PushConsumer.

Not updating legacy code does not generate any compiler errors.
However, at runtime any-style clients using legacy code are not
able to contact the notification service.

TimeBase::TimeT
Orbix 6.3 supports the new OMG standard definition of
TimeBase::TimeT. In OrbixNotification 3 TimeBase::TimeT is defined
as a structure containing two unsigned longs. In Orbix 6.3 it is
defined as a CORBA::ULongLong.
Any generation 3 clients that use the timing features of the service
need to be updated to support the new definition of
TimeBase::TimeT. If they are not, the Orbix 6.3 notification service
generates mashalling errors at runtime.

// IDL
enum ObtainInfoMode
 {
 ALL_NOW_UPDATES_OFF,
 ALL_NOW_UPDATES_ON,
 NONE_NOW_UPDATES_OFF,
 NONE_NOW_UPDATES_ON
 };

Note: The connect() operation’s parameter is still an
interface defined in CosEventComm.
Migrating from Orbix 3.3 to Orbix 6.3 41

Quality of Service Properties
Orbix 6.3 notification service uses new several new
Quality-of-Service (QoS) properties and has reimplemented
others.

PacingInterval
PacingInterval is re-implemented as a TimeBase::TimeT in Orbix 6.3
and is specified in units of 10-7 seconds. In Orbix 3 it is a
TimeBase:UtcT and is specified in milliseconds.

Orbix 6.3 QoS properties
Table 9 lists the new Orbix 6.3 QoS properties. For more detailed
information on Orbix 6.3 QoS properties, see the CORBA
Notification Service Guide.

Table 9: Orbix 6.3 QoS Properties (Sheet 1 of 2)

QoS Property Description

MaxEventsPerConsumer Specifies the maximum number of
undelivered events that a channel
will queue for a consumer. It is set
with a long and is valid for supplier
proxies, consumer admins, and
notification channels.

MaxRetries Specifies the maximum number of
times a proxy push supplier calls
push() on its consumer before giving
up, or the maximum number of
times a proxy pull consumer calls
pull() or try_pull() on its supplier
before giving up. It is set with a
CORBA::Ulong and is valid for
consumer admins and notification
channels.

RetryTimeout Specifies the amount of time that
elapses between attempts by a proxy
push supplier to call push() on its
consumer. It is set with a
TimeBase::TimeT and defaults to 1
second.

MaxRetryTimeout Sets the ceiling for the calculated
value of RetryTimeout. It is set with a
TimeBase::TimeT and defaults to 60
seconds.

RequestTimeout Specifies the amount of time a
channel object has to perform an
operation on a client. It is set using a
TimeBase::TimeT.
 42 Migrating from Orbix 3.3 to Orbix 6.3

Channel administration properties
Orbix 6.3 has introduced two properties to control the
administration of a notification channel. These properties can only
be set on a notification channel. For more information, see the
CORBA Notification Service Guide.
Table 10 describes the new properties.

Configuration/Administration Changes

Centralized configuration
Orbix 6.3 has a centralized configuration mechanism. This means
that the notification service is configured using the standard Orbix
6.3 configuration tools and the information is stored in the
common Orbix 6.3 database.

PullInterval Specifies the amount of time that
elapses between attempts by a proxy
pull consumer to call pull() or
try_pull() on its consumer. It is
specifies with a long and defaults to
1 second.

RetryMultiplier Specifies the number used to
calculate the amount of time
between attempts by a proxy push
supplier to call push() on its
consumer. It is set with a
CORBA::double and defaults to 1.0.

Table 10: Orbix 6.3 Administration Properties

Property Description

MaxConsumers Specifies the maximum number of
consumers that can be connected to
a channel at a given time. It is set
using a long and defaults to 0
(unlimited).

MaxSuppliers Specifies the maximum number of
suppliers that can be connected to a
channel at a given time. It is set
using a long and defaults to 0
(unlimited).

Table 9: Orbix 6.3 QoS Properties (Sheet 2 of 2)

QoS Property Description
Migrating from Orbix 3.3 to Orbix 6.3 43

Starting the notification service
The Orbix 6.3 notification service can be configured to start on
system boot, on demand, or from the command line.
To start the notification service from the command line use:
itnotify run [-backround]

The -background flag is optional and starts the notification service
to run as a background process.

Managing the notification service
The Orbix 6.3 notification service can be managed in one of two
ways.
• The Orbix 6.3 itadmin tool. For more information, see the

CORBA Administrator’s Guide.
• The Orbix 6.3 notification console, itnotifyconsole. For more

information on using the console, see the CORBA Notification
Service Guide.

Configuration variables
The Orbix 6.3 notification service uses a new set of configuration
variables. See the CORBA Administrator’s Guide for a detailed
listing of the new configuration variables.

Deprecated Features
Orbix 6.3 has deprecated some proprietary features from
OrbixNotification 3. Any notification clients that make use of these
features need to be updated.

HealthCheck
The OrbixNotification 3 HealthCheck feature allows notification
channels, and optionally notification clients, to monitor their
connections. In Orbix 6.3 this feature is no longer supported.

Code Modification
To find code using the HealthCheck feature search for the
following strings:
• DO_HEALTHCHECK
• DO_GL_HEALTHCHECK
• initializeHealthCheck
• startHealthCheck
• stopHealthCheck
• HealthCheck.h

This code must be removed before the clients can be compiled
using the Orbix 6.3 libraries.
 44 Migrating from Orbix 3.3 to Orbix 6.3

Simulating HealthCheck in Orbix 6.3
HealthCheck-like functionality is implemented in Orbix 6.3, using
the MaxRetries QoS property. If a ProxyPushSupplier or a
ProxyPullConsumer fails to communicate with its associated client in
MaxRetries attempts, the notification channel forces a disconnect
and destroys all of the resources used to support the client.

String events
Orbix 6.3 no longer supports string events. All generation 3 clients
using string events must be rewritten to use a valid event type.

SSL/TLS Toolkit
This section describes how to migrate from OrbixSSL or Orbix 3.3
security to the Orbix 6.3 SSL/TLS security service. Orbix 6.3
SSL/TLS has a very similar set of features to Orbix 3.3 security
and it supports interoperability with legacy Orbix applications (see
“SSL/TLS Toolkit Interoperability” on page 90).
The programming interfaces and administration of security have,
however, changed significantly between Orbix 3.3 and Orbix 6.3.
This section provides an overview of these changes.

Changes to the Programming Interfaces

Support for security level 2
The APIs for Orbix 6.3 SSL/TLS are based on the CORBA security
level 2 interfaces. The programming interface is, therefore, based
on the following standard IDL modules:
• Security
• SecurityLevel1
• SecurityLevel2

CORBA policy-based API
In contrast to OrbixSSL 3.x, the Orbix 6.3 SSL/TLS product
supports a CORBA policy-based approach to setting security
properties. This represents a significant enhancement over
OrbixSSL 3.x, because the policy-based approach lets you set
properties at a finer granularity than before.

Note: Orbix 6.3 SSL/TLS does not implement every
interface in the SecurityLevel1 and SecurityLevel2
modules. The CORBA security API is a mechanism-neutral
API that can be layered over a variety of security toolkits.
Some of the standard interfaces are more appropriately
implemented by a higher level security layer.
Migrating from Orbix 3.3 to Orbix 6.3 45

For example, client policies can be set at the following levels:
• ORB
• Thread
• Object reference
Server policies can be set at the following levels:
• ORB
• POA

No support for certificate revocation lists
Orbix 6.3 SSL/TLS has no support for certificate revocation lists
(CRL). Therefore, the following OrbixSSL 3.x interfaces have no
Orbix 6.3 equivalent:
IT_CRL_List
IT_X509_CRL_Info
IT_X509_Revoked
IT_X509_RevokedList

If you require certificate revocation in Orbix 6.3, you can
programmatically implement any required revocation checks by
registering a certificate validator policy,
IT_TLS_API::CertValidatorPolicy.

Mechanism-specific API
Orbix 6.3 SSL/TLS provides a number of value-added APIs that
deal with the mechanism-specific aspects of the SSL/TLS toolkit.
The extra IDL interfaces provide the facility to parse X.509
certificates and set Orbix-specific security policies.
The mechanism-specific API is defined by the following IDL
modules:
• IT_Certificate
• IT_TLS
• IT_TLS_API

Migrating OrbixSSL 3.x classes and data
types
When migrating to Orbix 6.3, most of the old C++ and Java
classes from OrbixSSL 3.x are replaced by equivalent IDL
interfaces. Table 11 shows which OrbixSSL classes and data types
to replace by the equivalent Orbix 6.3 SSL/TLS types.

Table 11: Mapping OrbixSSL 3.x Types to Orbix 6.3 SSL/TLS (Sheet 1 of 2)

OrbixSSL 3.x Type Orbix 6.3 SSL/TLS Equivalent

IT_AVA IT_Certificate::AVA

IT_AVAList IT_Certificate::AVAList

IT_CertError IT_Certificate::CertError
 46 Migrating from Orbix 3.3 to Orbix 6.3

Configuration and Administration

Enabling security in Orbix 6.3
Security in Orbix 6.3 is enabled by configuring an application to
load the security plug-in, iiop_tls.This is a relatively simple
procedure involving just a few changes in the Orbix 6.3
configuration file; although advanced applications might also need
to use security APIs.
Because application security is controlled by editing the
configuration file, you must ensure that access to the
configuration file is restricted.

External configuration granularity
The external configuration granularity refers to the effective scope
of security configuration settings that are made in a configuration
file. The external configuration granularity is mapped as follows:
• In OrbixSSL 3.x, it is identified with a process.
• In Orbix 6.3 SSL/TLS, it is identified with a single ORB

instance.

IT_CRL_List No equivalent

IT_Extension IT_Certificate::Extension

IT_ExtensionList IT_Certificate::ExtensionList

IT_OID IT_Certificate::ASN_OID

IT_OIDTag IT_Certificate::OIDTag

IT_SSL Equivalent functionality provided by
the Security, SecurityLevel1,
SecurityLevel2, and IT_TLS_API IDL
modules.

IT_UTCTime IT_Certificate::UTCTime

IT_ValidateX509CertCB Use a combination of the
IT_TLS::CertValidator interface and
the IT_TLS_API::CertValidatorPolicy
interface.

IT_X509_CRL_Info No equivalent

IT_X509_Revoked No equivalent

IT_X509_RevokedList No equivalent

IT_X509Cert IT_Certificate::X509Cert

IT_X509CertChain IT_Certificate::X509CertChain

Table 11: Mapping OrbixSSL 3.x Types to Orbix 6.3 SSL/TLS (Sheet 2 of 2)

OrbixSSL 3.x Type Orbix 6.3 SSL/TLS Equivalent
Migrating from Orbix 3.3 to Orbix 6.3 47

KDM support
The key distribution management (KDM) is a framework that
enables automatic activation of secure servers. Both OrbixSSL 3.x
and Orbix 6.3 SSL/TLS provide a KDM and the functionality is
similar in each.
There is one significant difference between the OrbixSSL 3.x KDM
and the Orbix 6.3 KDM. Protection against server impostors
implemented differently in the two products:
• In OrbixSSL 3.x, a binary checksum is calculated from the

contents of the server executable file. The server is launched
only if the calculated checksum matches the cached value.

• In Orbix 6.3 SSL/TLS, the node daemon relies on the server
executables being stored in a secured directory to prevent
tampering. A different sort of checksum is calculated (based
on the contents of the server activation record) to ensure that
the node daemon cannot be fooled into launching a server
from an insecure directory.

No CRL support
Orbix 6.3 SSL/TLS does not support certificate revocation lists.
Hence, there are no equivalents for the corresponding OrbixSSL
3.x configuration variables. See also “No support for certificate
revocation lists” on page 46.

Migrating OrbixSSL 3.x configuration
Most of the OrbixSSL 3.x configuration variables have direct
equivalents in Orbix 6.3, as shown in Table 12. In addition, many
of the properties listed in Table 12 can also be set
programmatically in Orbix 6.3.

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix 6.3 (Sheet 1 of 2)

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent

IT_CA_LIST_FILE policies:trusted_ca_list_policy

IT_AUTHENTICATE_CLIENTS policies:target_secure_invocation_policy

IT_SERVERS_MUST_AUTHENTICATE_CLIENTS. policies:target_secure_invocation_policy

IT_INVOCATION_POLICY policies:target_secure_invocation_policy
policies:client_secure_invocation_policy

IT_SECURE_REMOTE_INTERFACES
IT_SECURE_SERVERS
IT_INSECURE_REMOTE_INTERFACES
IT_INSECURE_SERVERS

These properties cannot currently be
specified in the Orbix 6.3 configuration file.
You can, however, set the properties
programmatically using the following
interfaces:
SecurityLevel2::EstablishTrustPolicy
SecurityLevel2::QOPPolicy

IT_CIPHERSUITES policies:mechanism_policy
 48 Migrating from Orbix 3.3 to Orbix 6.3

IT_ALLOWED_CIPHERSUITES No equivalent in Orbix 6.3.

IT_CERTIFICATE_FILE
IT_CERTIFICATE_PATH

Equivalent functionality provided by:
principal_sponsor:auth_method_data

IT_BIDIRECTIONAL_IIOP_BY_DEFAULT

IT_CACHE_OPTIONS policies:session_caching_policy
plugins:atli_tls_tcp:session_cache_validity

_period
plugins:atli_tls_tcp:session_cache_size

IT_DEFAULT_MAX_CHAIN_DEPTH policies:max_chain_length

IT_MAX_ALLOWED_CHAIN_DEPTH. No equivalent in Orbix 6.3.

IT_DAEMON_POLICY
IT_DAEMON_UNRESTRICTED_METHODS
IT_DAEMON_AUTHENTICATES_CLIENTS
IT_ORBIX_BIN_SERVER_POLICY

In Orbix 6.3, the services are configured
using standard Orbix 6.3 configuration
variables such as the secure invocation
policies.

IT_DAEMON_UNRESTRICTED_METHODS No equivalent in Orbix 6.3.
There is currently no concept of service
authorization in Orbix 6.3.

IT_FILTER_BAD_CONNECTS_BY_DEFAULT Not needed in Orbix 6.3.

IT_ENABLE_DEFAULT_CERT Not needed in Orbix 6.3.
There is no need for this option because
Orbix 6.3 supports security unaware
applications.

IT_DISABLE_SSL Not needed in Orbix 6.3.
Configure your application not to load the
security plug-in.

IT_KDM_CLIENT_COMMON_NAMES
IT_KDM_ENABLED
IT_KDM_PIPES_ENABLED
IT_KDM_REPOSITORY
IT_KDM_SERVER_PORT

Equivalent functionality is provided by the
KDM in Orbix 6.3.
See the CORBA SSL/TLS Guide.

IT_CHECKSUMS_ENABLED
IT_CHECKSUM_REPOSITORY

No equivalent in Orbix 6.3.
There is no binary checksum functionality in
Orbix 6.3. Orbix 6.3 SSL/TLS relies on
storing server executables in secured
directories.

IT_CRL_ENABLED
IT_CRL_REPOSITORY
IT_CRL_UPDATE_INTERVAL

No equivalent in Orbix 6.3.
There is no CRL functionality in Orbix 6.3.

Table 12: Mapping OrbixSSL 3.x Configuration Variables to Orbix 6.3 (Sheet 2 of 2)

OrbixSSL 3.x Configuration Variable Orbix 6.3 SSL/TLS Equivalent
Migrating from Orbix 3.3 to Orbix 6.3 49

Migrating Certificate and Private Key Files
In OrbixSSL 3.x, a variety of certificate and private key formats
are used in different parts of the product. Orbix 6.3 SSL/TLS is
based on a unified certificate file format, the industry standard
PKCS#12 format, and the PEM format for storing trusted CA
certificates. This subsection describes how to convert each of the
legacy formats to PKCS#12.

Certificate file formats
The following certificate file formats are used by OrbixSSL 3.x and
Orbix 6.3 SSL/TLS:
• Privacy enhanced mail (PEM) format—A PEM file typically

contains a single certificate. OrbixSSL 3.x can use this format
to hold peer certificates. Orbix 6.3 SSL/TLS cannot use this
format for peer certificates.

• PKCS#12 format—A PKCS#12 file contains a peer certificate
chain, concatenated with a private key at the end. Both
OrbixSSL 3.x and Orbix 6.3 SSL/TLS can use this format for
peer certificates.

Migrating certificate files
You can migrate OrbixSSL 3.x certificate files to Orbix 6.3 SSL/TLS
as shown in Table 13.

Private key file formats
The following private key file formats are used by OrbixSSL 3.x
and Orbix 6.3 SSL/TLS:
• PKCS#1 format—An unencrypted private key format. Orbix

6.3 SSL/TLS only supports this format programmatically.
• PKCS#8 format—An encrypted private key format. Orbix 6.3

SSL/TLS only supports this format programmatically.
• OpenSSL proprietary private key format—A proprietary

encrypted format generated by the OpenSSL toolkit utilities.

Table 13: Converting Certificate Files

Source OrbixSSL
3.x File Format

Target Orbix 6.3
File SSL/TLS

Format

How to Convert

PEM format PKCS#12 format Use the openssl pkcs12 utility, specifying the
complete peer cert chain, private key and pass
phrase.

PKCS#12 format PKCS#12 format No conversion needed.
 50 Migrating from Orbix 3.3 to Orbix 6.3

• Proprietary KEYENC format (deprecated)—An encrypted
private key format generated by the OrbixSSL 3.x keyenc
utility. This format was formerly used by OrbixSSL 3.x Java
applications and is now deprecated.

Migrating key files
You can migrate OrbixSSL 3.x private key files to Orbix 6.3
SSL/TLS as shown in Table 14.

Trusted CA certificate lists
In both OrbixSSL 3.x and Orbix 6.3 SSL/TLS, a trusted CA
certificate list file consists of a concatenated list of PEM
certificates.

Interoperability
In a mixed system containing Orbix 3.3 Java Edition and Orbix 6.3
SSL/TLS, the PKCS#12 format can be used for peer certificates
because Orbix 3.3 Java Edition also accepts the PKCS#12 format.

Table 14: Converting Private Key Files

Source OrbixSSL
3.x File Format

Target Orbix 6.3
SSL/TLS File

Format

How to Convert

PKCS#1 format PKCS#12 format Use the openssl pkcs12 utility, specifying the
complete peer cert chain, private key, and pass
phrase.

OpenSSL
proprietary
encrypted private
key format

PKCS#12 format Convert as follows:
1. Decrypt using the openssl rsa command.
2. Encrypt as PKCS#12 using the openssl pkcs12

utility, specifying the complete peer cert chain,
private key, and pass phrase.

Proprietary keyenc
format

PKCS#12 format Convert as follows:
1. Decrypt using the keyenc -d command:
2. Encrypt as PKCS#12 using the openssl pkcs12

utility, specifying the complete peer cert chain,
private key, and pass phrase.

Note: The Orbix 6.3 SSL/TLS Java Edition product
currently does not accept any extraneous text (comments
and so on) in a trusted CA list file. The extra text must
therefore be removed if you are using Orbix 6.3 SSL/TLS
Java Edition.
Migrating from Orbix 3.3 to Orbix 6.3 51

 52 Migrating from Orbix 3.3 to Orbix 6.3

Administration
The administration of Orbix 6.3 has changed significantly from Orbix 3.
This chapter provides a brief overview of the main changes in Orbix
administration.

Orbix Daemons

Orbix 6.3 daemons
To provide greater flexibility and scaling, Orbix 6.3 replaces the
Orbix 3 daemon, orbixd, with two daemons:
• The locator daemon, itlocator, helps clients to find Orbix 6.3

servers.
• The node daemon, itnode_daemon, launches dormant Orbix 6.3

servers in response to a client's request for service.

POA Names

Administering POA Names
In Orbix 3, CORBA objects were associated with a named server.
In Orbix 6.3, CORBA objects are associated with named POAs.
This means that Orbix 6.3 object references include an embedded
POA name instead of a server name.
The Orbix 6.3 locator daemon locates the CORBA object using the
object reference’s embedded POA name. Hence, POA names play
a major role in configuring the Orbix 6.3 locator daemon.

Command-Line Administration Tools
Orbix 6.3 unifies many of Orbix 3’s command-line tools under a
single utility, itadmin. Also, some of the Orbix 3 command
line-tools have been deprecated.

General command-line tools
Table 15 compares the Orbix 3 general purpose command-line
tools with the Orbix 6.3’s tools.

Table 15: Comparison of Orbix 3 and Orbix 6.3 General Command-Line Tools (Sheet 1 of 2)

Description Orbix 3 Orbix 6.3

Show implementation
repository (IMR) entry.

catit itadmin process show

Security commands. chownit, chmodit No equivalent

Show configuration. dumpconfig itadmin config dump
 Migrating from Orbix 3.3 to Orbix 6.3 53

Naming Service Command Line Tools
Table 16 compares the Orbix 3 naming service command-line
tools with the Orbix 6.3 tools.

Associate hosts into groups. grouphosts No equivalent

C++ IDL compiler. idl idl

CodeGen toolkit. idlgen idlgen

Java IDL compiler. idlj idl

Interface Repository (IFR). ifr itifr

Kill a server process. killit itadmin process stop

List server. lsit itadmin process list

Create a sub-directory in the
IMR.

mkdirit No equivalent

Orbix daemon. orbixd itlocator and itnode_daemon

Ping the Orbix daemon. pingit No equivalent

List active servers. psit itadmin process list -active

Add a definition to the IFR. putidl idl -R

Register a server in the IMR. putit itadmin process create

Show an IFR definition. readifr itadmin ifr show

Remove a sub-directory from
the IMR.

rmdirit No equivalent

Unregister a server from the
IMR.

rmit itadmin process remove

Remove a definition from the
IFR.

rmidl itadmin ifr remove

Associate servers with
groups.

servergroups No equivalent

Associate hosts with servers. serverhosts No equivalent

Table 15: Comparison of Orbix 3 and Orbix 6.3 General Command-Line Tools (Sheet 2 of 2)

Description Orbix 3 Orbix 6.3

Table 16: Comparison of Orbix 3 and Orbix 6.3 Naming Service Command-Line Tools (Sheet 1 of 2)

Description Orbix 3 Orbix 6.3

Add a member to an object
group.

add_member itadmin nsog add_member

Print the IOR of an object
group.

cat_group No equivalent
 54 Migrating from Orbix 3.3 to Orbix 6.3

Activation Modes

Orbix 3
Orbix 3 process activation modes, shared, unshared, per-method,
per-client-pid, and persistent are used for a variety of reasons. For
example, they are used to achieve multi-threaded behavior in a
single-threaded environment, to increase server reliability, and so
on. The two most popular modes are:
• Shared mode—which enables all clients to communicate with

the same server process.
• Per-client-pid mode—which enforces a 1-1 relationship

between client process and server process, is sometimes used
to maximize server availability.

Print the IOR of an object
group’s member.

cat_member itadmin nsog show_member

Print the IOR of a given
name.

catns itadmin ns resolve

Remove an object group. del_group itadmin nsog remove

Remove a member from an
object group.

del_member itadmin nsog remove_member

List all object groups. list_groups itadmin nsog list

List the members of an
object group.

list_members itadmin nsog list_member

List the bindings in a context. lsns itadmin ns list

Create an object group. new_group itadmin nsog create

Create an unbound context. newncns itadmin ns newnc

Select a member of an object
group.

pick_member No equivalent

Bind a name to a context. putncns itadmin ns bind -context

Create a bound context. putnewncns itadmin ns newnc

Bind a name to an object. putns itadmin ns bind -object

Rebind a name to a context. reputncns itadmin ns bind -context

Rebind a name to an object. reputns itadmin ns bind -object

Remove a binding. rmns itadmin ns remove

Table 16: Comparison of Orbix 3 and Orbix 6.3 Naming Service Command-Line Tools (Sheet 2 of 2)

Description Orbix 3 Orbix 6.3
Migrating from Orbix 3.3 to Orbix 6.3 55

Orbix 6.3
Orbix 6.3 provides the following activation modes:
• on_demand—the process only activates when required.
• per_client—a new process is activated for each client.
Orbix 6.3 moved CORBA object association from the server to the
POA. Because of this, all Orbix 6.3 processes are shared.

Migration
Migration of source code should be straightforward, because the
choice of activation mode has almost no impact on BOA or
POA-based server code.

Load balancing
The additional activation modes provided by Orbix 3 are typically
used to achieve some form of load-balancing that is transparent to
the client. The Enterprise Edition of Orbix 6.3 includes transparent
locator-based load balancing over a group of replica POAs. This
answers the needs currently addressed by Orbix 3 activation
modes.
 56 Migrating from Orbix 3.3 to Orbix 6.3

Part III
Interoperability

In this part
This part contains the following chapters:

Configuring for Interoperability page 59

IDL Issues page 65

Exceptions page 73

Services page 85

Connection Management page 93

Codeset Negotiation page 97

 58 Migrating from Orbix 3.3 to Orbix 6.3

Configuring for
Interoperability
This chapter describes the main configuration changes that must be made
to facilitate interoperability between Orbix 3.x and Orbix 6.3
applications.

Interoperability Overview
This Interoperability Guide describes how to configure applications
that use a mixture of Orbix products and any feature limitations
that apply to such interoperating systems.

Orbix 6.3 interoperability
Because Orbix 6.3 is binary-compatible with Orbix E2A ASP v6.0,
Orbix 6.3 has the same interoperability characteristics as ASP 6.0.

Orbix E2A ASP v6.0 interoperability
The following product releases have been tested for
interoperability with Orbix E2A ASP v6.0:
• Orbix 3.3.4 C++ Edition
• Orbix 3.3.4 Java Edition

Orbix E2A ASP v5.1 interoperability
The following product releases have been tested for
interoperability with Orbix E2A ASP v5.1:
• Orbix 3.0.1-82
• OrbixWeb 3.2-15
• Orbix 3.3.2 C++ Edition
• Orbix 3.3.2 Java Edition

The _bind() function
Orbix 6.3 does not support the _bind() function for establishing
connections between clients and servers. Neither Orbix 3.0.1-82,
OrbixWeb 3.2-15, nor Orbix 3.3 clients can use the _bind()
function to establish a connection to an Orbix 6.3 server. You
must use a CORBA Naming Service instead. For example, you
could use either the Orbix 3.3 naming service or the Orbix 6.3
naming service.
 Migrating from Orbix 3.3 to Orbix 6.3 59

IDL feature support
Orbix 6.3 supports a larger set of IDL data types and features than
Orbix 3.3. When developing IDL interfaces for use with Orbix 6.3
and other products you need to restrict your IDL to a subset that
is supported by all of the interoperating products.
In particular, the following describe IDL features that are subject
to limitations or require special configuration:
• “Using the #pragma Prefix” on page 65
• “Use of #pragma ID in IDL” on page 67
• “Fixed Data Type and Interoperability” on page 68
• “Use of wchar and wstring” on page 70
• “C++ Keywords as Operation Names” on page 70

Changed exception semantics
The semantics of some CORBA system exceptions are different in
Orbix 6.3, as compared with Orbix 3.0.1-82, OrbixWeb 3.2-15, or
Orbix 3.3. If you have existing code written for Orbix 3.0.1-82,
OrbixWeb 3.2-15, or Orbix 3.3, you should read the following:
• “Orbix 3.3 C++ Edition—System Exceptions” on page 73
• “Orbix 3.3 Java Edition—System Exceptions” on page 78
These sections describe how to configure your legacy application
so that it is insulated from any differences in exception semantics.

Bidirectional GIOP
Orbix 6.3 introduces support for bidirectional GIOP, based on an
OMG standard. Previously (Orbix E2A ASP v5.x and v6.0),
bidirectional GIOP was not supported, or was not based on an
OMG standard (Orbix 3.x and earlier).
See “Callbacks and Bidirectional GIOP” on page 93 for details.

Other affected features
If you want to use the Orbix 6.3 interoperable naming service as
the common naming service for your interoperating system, see
“The Orbix 6.3 Interoperable Naming Service” on page 85.
The rest of this guide describe miscellaneous issues that might
affect interoperability in a mixed product environment.

Launch and Invoke Rights
When an Orbix 6.3 client attempts to open a connection to an
Orbix 3.0.1-82, OrbixWeb 3.2-15, or Orbix 3.3 server you must
make sure that the system is configured such that the Orbix 6.3
client has launch and invoke rights.
 60 Migrating from Orbix 3.3 to Orbix 6.3

Role of launch and invoke rights
In Orbix 3.3 the orbixd daemon process is responsible both for
launching servers and for redirecting client requests to servers.
These two functions are governed by launch rights and invoke rights,
respectively.
Launch and invoke rights on Orbix 3.3 servers are based on the
idea that the client userID is transmitted along with request
messages. The field of the request message that contains the user
ID is known as the Principal of the invocation.
If launch and invoke rights are not configured correctly, the Orbix
6.3 client raises a CORBA::OBJECT_NOT_EXIST system exception.

Setting launch rights
The launch rights associated with an Orbix 3.3 server specify
which users are allowed to cause automatic launching of the
server. Launch rights in Orbix 3.3 are granted with the following
form of chmodit:
chmodit l+userID ServerName

Setting invoke rights
The invoke rights associated with an Orbix 3.3 server are used to
determine which users are allowed to invoke on the server. Invoke
rights are granted using:
chmodit i+userID ServerName

Orbix 6.3 and Orbix 3.3
The configuration must be altered for an Orbix 6.3 client invoking
on an Orbix 3.3 server. There are two possible approaches to fix
the launch and invoke rights:
• Alter the configuration of the Orbix 6.3 Client.
• Relax the security on the orbixd daemon.

Alter the configuration of the Orbix 6.3
Client
Three configuration variables must be made (or changed) in the
Orbix 6.3 configuration file:

Orbix 6.3 Configuration File
policies:giop:interop_policy:send_locate_request = "false";
policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =
"true";
Migrating from Orbix 3.3 to Orbix 6.3 61

The policies:giop:interop_policy:send_locate_request option
controls whether Orbix 6.3 sends LocateRequest messages before
sending initial Request messages. This option must be set to false
because LocateRequest messages do not contain a Principal field.
The policies:giop:interop_policy:send_principal option controls
whether Orbix 6.3 sends Principal information containing the
current user name in GIOP 1.0 and GIOP 1.1 requests. The user
name is matched against the launch and invoke rights listed in the
orbixd daemon, to determine the permissions of the Orbix 6.3
client.

Relax the security on the orbixd daemon
Alternatively, you can relax the security on the orbixd daemon so
that all clients have launch and invoke rights. For example, use
the chmodit command line utility to change the launch and invoke
rights:
chmodit l+all ServerName
chmodit i+all ServerName

These commands give permission for any client to invoke or
launch the server ServerName. Permissions are granted even if the
Principal value is left blank in the incoming requests.

GIOP Versions

GIOP version of a connection
The GIOP version used by a client-server connection is determined
by the client. When a client is about to open a connection to a
CORBA object, the client examines the version information in the
object’s IOR:
• If the GIOP version in the IOR is greater than or equal to the

default GIOP version of the client, the client initiates a
connection using the client’s default GIOP version.

• Otherwise, the client initiates a connection using the GIOP
version in the IOR.
 62 Migrating from Orbix 3.3 to Orbix 6.3

Effect of GIOP version
The GIOP version of a connection is important, because some
CORBA features are not supported in early GIOP versions.
Table 17 shows the minimum GIOP version required for some
CORBA features, according to the CORBA specification.

Orbix-specific minimum GIOP versions
Notwithstanding the CORBA-specified minimum GIOP versions,
Orbix allows some features to be used at a lower GIOP version (in
some cases requiring specific configuration variables to be set).
Table 18 shows the Orbix-specific minimum GIOP versions.

For more details on these CORBA features, see these sections:
• “Fixed Data Type and Interoperability” on page 68.
• “Use of wchar and wstring” on page 70.
• “Introduction to Codeset Negotiation” on page 97.

Table 17: CORBA-Specified Minimum GIOP Versions

CORBA Feature CORBA-Specified
Minimum GIOP

Version

fixed type 1.1

wchar and wstring types 1.1

codeset negotiation (Orbix 6.3 only) 1.1

Table 18: Orbix-Specific Minimum GIOP Versions

CORBA Feature Orbix-Specific
Minimum GIOP

Version

fixed type 1.0

wchar and wstring types 1.0

codeset negotiation (Orbix 6.3 only) 1.1
Migrating from Orbix 3.3 to Orbix 6.3 63

Table of default GIOP versions
Table 19 shows the default GIOP versions for different Orbix
clients when opening a connection to a server.

Table 19: Default GIOP Version Used by Orbix Clients

Client Version Default GIOP Version

Orbix 3.0.1-82 1.0

OrbixWeb 3.2-15 1.0

Orbix 3.3 C++ Edition 1.1

Orbix 3.3 Java Edition 1.0

Orbix 6.3 1.1
 64 Migrating from Orbix 3.3 to Orbix 6.3

IDL Issues
This chapter describes those features of IDL that affect interoperability
between Orbix 3.x and Orbix 6.3 applications.

Using the #pragma Prefix
Using the #pragma prefix preprocessor directive in your IDL affects
the semantics of the _narrow() function. When an Orbix 3.0.1-82
or Orbix 3.3 C++ client attempts to _narrow() an object reference
originating from an Orbix 6.3 server, a remote _is_a() call is
implicitly made.
The #pragma prefix preprocessor directive is not fully supported in
OrbixWeb 3.2-15 and Orbix 3.3 Java Edition. An OrbixWeb 3.2-15
or Orbix 3.3 Java application can, however, interoperate with
Orbix 6.3, with an implicit is_a() call being made by the Orbix
runtime.

Effect of #pragma prefix
The #pragma prefix directive is used to add a prefix to the
RepositoryId of all the IDL declarations that follow. For example:

The default RepositoryId of the Foo interface would be IDL:Foo:1.0.
When used as above, the #pragma prefix causes the RepositoryId
of the interface Foo to change to IDL:mydomain.com/Foo:1.0.

C++ code example
Consider, a Foo object reference that is generated by an Orbix 6.3
server. The Orbix 6.3 server stringifies the object reference, using
the CORBA::ORB::object_to_string() operation and writes it to a
temporary file.

//IDL
#pragma prefix "mydomain.com"

interface Foo {
 //Various operations and attributes (not shown)
 ...
};
 Migrating from Orbix 3.3 to Orbix 6.3 65

An Orbix 3.3 C++ client then reads the stringified object reference
from the temporary file and converts it back to a Foo object
reference, as follows:

Semantics of the _narrow() function
When Foo::_narrow(objV) is invoked, the object's RepositoryId is
checked to make sure that it really is of type Foo. There are two
ways a client can check the type of an object when it performs a
_narrow():
• Check the type locally, using the information in the client stub

code.
• Check the type remotely, by calling back to the Orbix 6.3

server. The _is_a() function is invoked on the remote Foo
object.

Because the Foo object reference originates from an Orbix 6.3
server, the Orbix 3.3 C++ client is unable to check the
RepositoryId using its local stub code. It must call back to the
server instead. The implementation of _narrow() calls the remote
operation CORBA::Object::_is_a() on the object reference objV. The
_is_a() function returns TRUE if the object is really of type Foo,
otherwise it returns FALSE.

//C++
...
//---

-
// The following variables are assumed to be initialized

already:
// 'stringObj'- A stringified object reference of char * type
// 'orbV' - A reference to an ORB object,
// of CORBA::ORB_var type
//
try {
 CORBA::Object_var objV = orbV->string_to_object(stringObj);
 // Attempt to 'narrow' the object reference to type

'Foo_ptr'
 Foo_var myFooV = Foo::_narrow(objV);
 if (CORBA::is_nil(myFooV)) {
 cerr << "error: narrow to Foo failed" << endl;
 exit(1);
 }
}
catch (CORBA::SystemException& sysEx) {
 ... // deal with exceptions
}

 66 Migrating from Orbix 3.3 to Orbix 6.3

Effect on the CORBA Naming Service
The naming service is affected because it uses a #pragma prefix
directive:

When used as above, #pragma prefix causes the RepositoryId of
the interface NamingContext to change to
IDL:omg.org/CosNaming/NamingContext:1.0. An Orbix 3.3 C++ client
that uses the Orbix 6.3 naming service, therefore, implicitly
makes a remote _is_a() invocation whenever it invokes _narrow()
on a naming service object.

Orbix 3.3 C++ Edition and Orbix 6.3
When Orbix 3.3 C++ Edition and Orbix 6.3 applications are mixed
in the same system, you can use IDL that has a #pragma prefix
directive, but the semantic behavior of _narrow() is affected.

Orbix 3.3 Java Edition and Orbix 6.3
If a #pragma prefix preprocessor directive appears in your IDL, it is
ignored by the Orbix 3.3 IDL-to-Java compiler. The Java stub and
skeleton code is generated as if the #pragma prefix was not there.
When Orbix 3.3 Java Edition and Orbix 6.3 applications are mixed
in the same system, you can use IDL that has a #pragma prefix
directive, but implicit is_a() calls are made by the Orbix runtime.

Use of #pragma ID in IDL
The #pragma ID directive is supported in Orbix 6.3, but is not
supported in Orbix 3.3.

Syntax of #pragma ID
The #pragma ID directive is used to associate an arbitrary
repository ID with a given IDL type name. It has the following
syntax:

//IDL for the CORBA Naming Service
#pragma prefix "omg.org"

module CosNaming {
 ...
 interface NamingContext {
 ...
 };
};

#pragma ID TypeName "RepositoryID"
Migrating from Orbix 3.3 to Orbix 6.3 67

The RepositoryId must be of the form Format:String where no colon can
appear in Format. For example, if the Format of the repository ID is
IDL:

The default repository ID that would normally be associated with
Foo is IDL:Example/Foo:1.0. By including the #pragma ID directive
the repository ID becomes IDL:ArbitraryFooId:1.1 instead.

Orbix 3.3 C++ Edition and Orbix 6.3
IDL that makes use of the #pragma ID directive cannot be used
interoperably between Orbix 3.3 C++ Edition and Orbix 6.3
applications.

Orbix 3.3 Java Edition and Orbix 6.3
IDL that makes use of the #pragma ID directive cannot be used
interoperably between Orbix 3.3 Java Edition and Orbix 6.3
applications.

Fixed Data Type and Interoperability
When interoperating between an Orbix 3.0.1-82/OrbixWeb 3.2-15
application and an Orbix 6.3 C++ application, it is necessary to
change the configuration of Orbix 6.3 in order to be able to use
the fixed-point IDL type.

C++ applications
To enable the fixed-point type to be sent between an Orbix
3.0.1-82 application and an Orbix 6.3 application, the following
configuration entry must be made (or changed) in the Orbix 6.3
configuration file:

If set to true, Orbix 6.3 permits fixed-point types to be sent over
GIOP 1.0. Defaults to false.

Java applications
Orbix 6.3 accepts fixed-point types through GIOP 1.0 and GIOP
1.1 connections. No special configuration is needed, therefore,
when sending fixed-point types between Orbix 6.3 and legacy
products such as Orbix 3.0.1-82 or Orbix 3.3.

//IDL
module Example {
 interface Foo {};
#pragma ID Foo "IDL:ArbitraryFooId:1.1"
};

Orbix 6.3 Configuration File
policies:giop:interop_policy:allow_fixed_types_in_1_0 = "true";
 68 Migrating from Orbix 3.3 to Orbix 6.3

Orbix 3.0.1-82 and Orbix 6.3
Orbix 3.0.1-82 uses GIOP 1.0 by default and Orbix 6.3 does not
permit fixed-point types to be sent over GIOP 1.0. It is necessary,
therefore, to reconfigure Orbix 6.3 in this case by setting the
allow_fixed_types_in_1_0 variable to true.

Orbix 3.3 C++ Edition and Orbix 6.3
Orbix 6.3 uses GIOP 1.1 by default and Orbix 6.3 permits
fixed-point types to be sent over GIOP 1.1. There is, therefore, no
need to reconfigure Orbix 6.3 in this case.

Orbix 3.3 Java Edition and Orbix 6.3
To enable the fixed-point type to be sent between Orbix 3.3 Java
Edition and Orbix 6.3 applications, two alternative configurations
can be used:
• Make, or change, the following configuration entry in the

Orbix 6.3 configuration file:

If set to true, Orbix 6.3 permits fixed-point types to be sent
over GIOP 1.0. Defaults to false.

• Alternatively, you can configure Orbix 3.3 Java Edition to use
GIOP 1.1, using the IT_DEFAULT_IIOP_VERSION configuration
variable. This configuration variable can be set in any of the
ways described in the Orbix 3.3 Administrator's Guide
Java Edition. For example, you can set it in the orbixweb3.cfg
file, as follows:

By setting the IT_DEFAULT_IIOP_VERSION configuration variable
to 11 you ensure that Orbix 3.3 Java Edition uses GIOP 1.1 by
default on connections to servers. Because GIOP 1.1 officially
supports marshalling of fixed-point data, this enables you to
use fixed-point data interoperably.

Orbix 6.3 Configuration File
policies:giop:interop_policy:allow_fixed_types_in_1_0 =

"true";

#File: 'orbixweb3.cfg'
OrbixWeb {
 # Other options not shown
 # ...
 IT_DEFAULT_IIOP_VERSION = "11";
};

Note: Orbix 3.3 C++ Edition has a similarly named environment
variable, IT_IIOP_VERSION. However, setting IT_IIOP_VERSION in
Orbix 3.3 C++ Edition does not have the same effect as setting
IT_DEFAULT_IIOP_VERSION in Orbix 3.3 Java Edition. The
IT_IIOP_VERSION environment variable cannot be used to enable
use of the fixed point type between Orbix 3.3 C++ Edition and
Orbix 6.3.
Migrating from Orbix 3.3 to Orbix 6.3 69

Use of wchar and wstring
Table 20 summarizes the support for the wchar and wstring IDL
types in the Orbix 3.3 and Orbix 6.3 products.

All of the products that support wchar and wstring types can
interoperate with each other.

C++ Keywords as Operation Names
Previously, if your IDL contained operation names that were the
same as C++ keywords, Orbix 3.0.1-82 and Orbix 3.3 C++
Edition could not interoperate with Orbix 6.3.
This problem is now fixed. Orbix 3.3 applications can now
interoperate with Orbix 6.3 even when your IDL contains C++
keywords as operation names.

IDL example
Consider the following IDL:

C++ stub code
The Orbix 3.3 IDL-to-C++ compiler maps this interface to the
following proxy class:

Table 20: Support for the wchar and wstring Types by Product

Product Supports
wchar

Supports
wstring

Orbix 6.3 (C++) Yes Yes

Orbix 6.3 (Java) Yes Yes

Orbix 3.3 C++ Edition No No

Orbix 3.3 Java Edition Yes Yes

//IDL
interface CPlusPlusKeywords {
 void for();
 boolean class();
};

//C++
class CPlusPlusKeywords: public virtual CORBA::Object {
 ...
public:
 ...
 virtual void _for (...) ;
 virtual CORBA::Boolean _class (...) ;
 ...
};
 70 Migrating from Orbix 3.3 to Orbix 6.3

The names of the functions in C++ have a leading underscore
character (for example, _for and _class) to avoid clashing with the
for and class C++ keywords.

On-the-wire format for operation names
When an Orbix 3.3 C++ or Java client makes a remote invocation
using the _for() and _class() functions, the operation names are
marshaled as "for" and "class" respectively. This behavior
complies with CORBA 2.6 and is compatible with Orbix 6.3 CORBA
servers.
Migrating from Orbix 3.3 to Orbix 6.3 71

 72 Migrating from Orbix 3.3 to Orbix 6.3

Exceptions
This chapter discusses the differences in the handling of CORBA
exceptions between Orbix 3.x and Orbix 6.3.

Orbix 3.3 C++ Edition—System Exceptions
The semantics of system exceptions in Orbix prior to
Orbix 3.0.1-20 are different from the semantics in Orbix 6.3. In
Orbix 3.0.1-20 and later Orbix 3.x versions, however, exception
semantics have been altered to make them compatible with Orbix
6.3. An environment variable, IT_USE_ORBIX3_STYLE_SYS_EXC, is
introduced that enables you to insulate legacy code from the
change.

New Semantics and Old Semantics
Some system exceptions in Orbix 6.3 have different semantics to
the corresponding exceptions in Orbix prior to Orbix 3.0.1-20. The
exception semantics used by Orbix 6.3 are referred to here as new
semantics. The exception semantics used by Orbix prior to Orbix
3.0.1-20 are referred to here as old semantics.

The IT_USE_ORBIX3_STYLE_SYS_EXC
Variable
The IT_USE_ORBIX3_STYLE_SYS_EXC variable affects three different
aspects of Orbix 3.0.1-82 and Orbix 3.3 applications:
• System exceptions raised by the server.
• System exceptions raised by the client.
• Transformation of exceptions arriving at the client.
System exceptions are not only raised by servers, they can also
be raised on the client side. If a client encounters an error before
it sends a Request message to a server, or after it receives a Reply
message from a server, the client raises a system exception. The
IT_USE_ORBIX3_STYLE_SYS_EXC variable therefore affects both client
and server applications.

System exceptions raised by the server
Table 21 shows how system exceptions raised by an Orbix
3.0.1-82 and an Orbix 3.3 server are influenced by
IT_USE_ORBIX3_STYLE_SYS_EXC.

Table 21: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3
Server - Exception Raising

Not defined Old semantics
 Migrating from Orbix 3.3 to Orbix 6.3 73

System exceptions raised by the client
Table 22 shows how system exceptions raised by an Orbix
3.0.1-82 and an Orbix 3.3 client are influenced by
IT_USE_ORBIX3_STYLE_SYS_EXC.

Transformation of exceptions arriving at
the client
Table 23 shows how transformation of exceptions arriving at an
Orbix 3.0.1-82 and an Orbix 3.3 client are influenced by
IT_USE_ORBIX3_STYLE_SYS_EXC.

Transformation is applied to system exceptions incoming from the
network. This feature dynamically intercepts system exceptions
arriving at the client and, if necessary, converts them to the type
of system exception expected by the client (consistent with either
new or old semantics). This is essential to ensure that the client
can apply a consistent style of exception handling, irrespective of
the type of server it is talking to.

YES Old semantics

NO New semantics

Table 22: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3
Client - Exception Raising

Not defined Old semantics

YES Old semantics

NO New semantics

Table 23: Transformation of Exceptions at the Client Side

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3
Client - Exception
Transformation

Not defined Transform to old semantics

YES Transform to old semantics

NO Transform to new semantics

Table 21: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.0.1-82 and Orbix 3.3
Server - Exception Raising
 74 Migrating from Orbix 3.3 to Orbix 6.3

Difference between Orbix Prior to Orbix
3.0.1-82 and Orbix 3.3
The presence of the transformation feature means that there is a
significant difference between Orbix clients prior to Orbix 3.0.1-20
and Orbix 3.0.1-82/Orbix 3.3 clients even when the
IT_USE_ORBIX3_STYLE_SYS_EXC variable is not set (or set equal to
YES). An Orbix 3.0.1-82 or Orbix 3.3 client that uses old
semantics actively transforms incoming system exceptions to old
semantics. A pre-Orbix 3.0.1-20 client does not.

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions

Orbix 6.3 semantics
In Orbix 6.3 the INV_OBJREF and OBJECT_NOT_EXIST system
exceptions are raised under the following circumstances:
• The INV_OBJREF system exception is raised by

CORBA::ORB::string_to_object() to indicate that the stringified
object reference is malformed in some way.

• The OBJECT_NOT_EXIST system exception is raised by a server to
indicate that a CORBA object does not exist.

Orbix 3.3 (new semantics)
In Orbix 3.0.1-82 and Orbix 3.3 (new semantics) the INV_OBJREF
and OBJECT_NOT_EXIST system exceptions are raised under the
following circumstances:
• The INV_OBJREF system exception is raised for a variety of

reasons. However, it is not raised to indicate that a CORBA
object does not exist.

• The OBJECT_NOT_EXIST system exception is raised by a server to
indicate that a CORBA object does not exist.

Pre-Orbix 3.0.1-20 (old semantics)
Prior to Orbix 3.0.1-20 (old semantics) the INV_OBJREF and
OBJECT_NOT_EXIST system exceptions are raised under the following
circumstances:
• The INV_OBJREF system exception is raised for a variety of

reasons. When raised by a server, with minor code 10101, it
indicates that a CORBA object does not exist.

• The OBJECT_NOT_EXIST system exception is never raised by
pre-Orbix 3.0.1-20 applications.
Migrating from Orbix 3.3 to Orbix 6.3 75

The TRANSIENT and COMM_FAILURE Exceptions

Orbix 6.3 Semantics and Orbix 3.3 (new
semantics)
In Orbix 6.3 and in Orbix 3.0.1-82/Orbix 3.3 (new semantics) the
TRANSIENT and COMM_FAILURE system exceptions are raised under
the following circumstances:
• The TRANSIENT exception is raised if a client tries to send a

message to a server, but is unable to do so. In terms of the
TCP/IP transport layer, this means an error occurred before or
during an attempt to write to or connect to a socket.

• The COMM_FAILURE exception is raised if a client has already
sent a message to a server, but is unable to receive the
associated reply. In terms of the TCP/IP transport layer, this
means either the connection went down or an error occurred
during an attempt to read from a socket.

Pre-Orbix 3.0.1-20 (old semantics)
Prior to Orbix 3.0.1-20 (old semantics) the TRANSIENT and
COMM_FAILURE system exceptions are raised under the following
circumstances:
• The TRANSIENT exception is never raised in pre-Orbix 3.0.1-20

applications.
• The COMM_FAILURE exception is raised in pre-Orbix 3.0.1-20

applications if an error occurs while writing to, reading from,
or connecting to a TCP/IP socket.

Orbix 3.3 C++ Edition and Orbix 6.3
There are three different ways of setting the
IT_USE_ORBIX3_STYLE_SYS_EXC configuration value:
• Setting an environment variable.
• Setting a configuration variable.
• Using the SetConfigValue() function.

Setting an environment variable
Set the environment variable, IT_USE_ORBIX3_STYLE_SYS_EXC, as
follows:

Windows
set IT_USE_ORBIX3_STYLE_SYS_EXC=yes_or_no

UNIX
export IT_USE_ORBIX3_STYLE_SYS_EXC=yes_or_no

Where yes_or_no can be the string YES or the string NO.
 76 Migrating from Orbix 3.3 to Orbix 6.3

Setting a configuration variable
Set the configuration variable, IT_USE_ORBIX3_STYLE_SYS_EXC, by
editing the Orbix 3.3 configuration file:

Using the SetConfigValue() function
Use the CORBA::ORB::SetConfigValue() function:

Where orb_p is a pointer to a CORBA::ORB instance.

Compatibility matrix
Table 24 shows the compatibility matrix between Orbix
3.0.1-82/Orbix 3.3 and Orbix 6.3.

A Yes entry in the above table indicates compatible exception
semantics for that combination.
An Orbix 3.0.1-82/Orbix 3.3 application described in the table as
old semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable set
equal to YES, or unset. An Orbix 3.0.1-82/Orbix 3.3 application
described in the table as new semantics has its
IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to NO.

Orbix 3.3 Configuration File
Orbix {
 IT_USE_ORBIX3_STYLE_SYS_EXC = "yes_or_no";
};

// C++
orb_p->SetConfigValue(
 "Orbix.IT_USE_ORBIX3_STYLE_SYS_EXC",
 "yes_or_no"
);

Table 24: System Exception Handling Compatibility between Orbix 3.0.1-82/Orbix 3.3 and Orbix 6.3

Client Application Orbix
3.0.1-82/Orbix 3.3

Server (Old
Semantics)

Orbix
3.0.1-82/Orbix 3.3

Server (New
Semantics)

Orbix 6.3 CORBA
Server

Orbix 3.0.1-82/Orbix
3.3 Client (Old
Semantics)

Yes Yes Yes

Orbix 3.0.1-82/Orbix
3.3 Client (New
Semantics)

Yes Yes Yes

Orbix 6.3 CORBA
Client

No Yes Yes
Migrating from Orbix 3.3 to Orbix 6.3 77

Orbix 3.3 Java Edition—System Exceptions
The semantics of system exceptions in OrbixWeb prior to
OrbixWeb 3.2-05 are different from the semantics in Orbix 6.3. In
OrbixWeb 3.2-15 and Orbix 3.3 Java Edition, however, exception
semantics have been altered to make them compatible with Orbix
6.3. An environment variable, IT_USE_ORBIX3_STYLE_SYS_EXC, is
introduced that enables you to insulate legacy code from the
change.

New Semantics and Old Semantics
Some system exceptions in Orbix 6.3 have different semantics to
the corresponding exceptions in OrbixWeb prior to OrbixWeb
3.2-05. The exception semantics used by Orbix 6.3 are referred to
here as new semantics. The exception semantics used by
OrbixWeb prior to OrbixWeb 3.2-05 are referred to here as old
semantics.

The IT_USE_ORBIX3_STYLE_SYS_EXC
variable
The IT_USE_ORBIX3_STYLE_SYS_EXC variable affects two aspects of
OrbixWeb 3.2-15 and Orbix 3.3 Java Edition applications:
• System exceptions raised by the server.
• System exceptions raised by the client.
The IT_USE_ORBIX3_STYLE_SYS_EXC variable therefore affects both
client and server applications.

System exceptions raised by the server
System exceptions raised by an OrbixWeb 3.2-15/Orbix 3.3 Java
server are influenced in the following way by
IT_USE_ORBIX3_STYLE_SYS_EXC.

Note: OrbixWeb 3.2-15 and Orbix 3.3 Java applications
do not perform transformations on incoming system
exceptions.

Table 25: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Server

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Java Server -
Exception Raising

Not defined Old semantics

TRUE Old semantics

FALSE New semantics
 78 Migrating from Orbix 3.3 to Orbix 6.3

System exceptions raised by the client
System exceptions raised by an OrbixWeb 3.2-15/Orbix 3.3 Java
client are influenced in the following way by
IT_USE_ORBIX3_STYLE_SYS_EXC.

The INV_OBJREF and OBJECT_NOT_EXIST Exceptions

Orbix 6.3 Semantics and Orbix 3.3 Java
Edition (new semantics)
In Orbix 6.3 and OrbixWeb 3.2-15/Orbix 3.3 Java Edition (new
semantics) the INV_OBJREF and OBJECT_NOT_EXIST system exceptions
are raised under the following circumstances:
• The INV_OBJREF system exception is raised by

CORBA::ORB::string_to_object() to indicate that the stringified
object reference is malformed in some way.

• The OBJECT_NOT_EXIST system exception is raised by a server to
indicate that a CORBA object does not exist.

Orbix 3.3 Java Edition (old semantics)
In OrbixWeb 3.2-15/Orbix 3.3 Java Edition (old semantics) the
INV_OBJREF and OBJECT_NOT_EXIST system exceptions are raised
under the following circumstances:
• The INV_OBJREF system exception, with minor code 10100, is

raised by a server to indicate that a CORBA object does not
exist.

• The OBJECT_NOT_EXIST system exception is never raised in
OrbixWeb 3.2-15/Orbix 3.3 Java Edition.

The TRANSIENT and COMM_FAILURE Exceptions

Orbix 6.3 Semantics and Orbix 3.3 Java
Edition (new semantics)
In Orbix 6.3 and OrbixWeb 3.2-15/Orbix 3.3 Java Edition (new
semantics) the TRANSIENT and COMM_FAILURE system exceptions are
raised under the following circumstances:

Table 26: Effect of IT_USE_ORBIX3_STYLE_SYS_EXC on a Client

IT_USE_ORBIX3_STYLE_SYS_EXC Orbix 3.3 Java Client -
Exception Raising

Not defined Old semantics

TRUE Old semantics

FALSE New semantics
Migrating from Orbix 3.3 to Orbix 6.3 79

• The TRANSIENT exception is raised if a client tries to send a
message to a server but is unable to do so. In terms of the
TCP/IP transport layer, this means an error occurred before or
during an attempt to write to or connect to a socket.

• The COMM_FAILURE exception is raised if a client has already
sent a message to a server but is unable to receive the
associated reply. In terms of the TCP/IP transport layer, this
means either the connection went down or an error occurred
during an attempt to read from a socket.

Orbix 3.3 Java Edition (old semantics)
In OrbixWeb 3.2-15/Orbix 3.3 Java Edition (old semantics) the
TRANSIENT and COMM_FAILURE system exceptions are raised under
the following circumstances:
• The TRANSIENT exception can be raised in an OrbixWeb

3.2-15/Orbix 3.3 Java client when attempting to make a
connection through Orbix Wonderwall, or when attempting to
deal with a LOCATION_FORWARD Reply message.

• The COMM_FAILURE exception is raised in OrbixWeb 3.2-15/Orbix
3.3 Java Edition if an error occurs while writing to, reading
from, or connecting to a TCP/IP socket.

Orbix 3.3 Java Edition and Orbix 6.3

Setting the
IT_USE_ORBIX3_STYLE_SYS_EXC
variable
The IT_USE_ORBIX3_STYLE_SYS_EXC variable can be set in any of the
ways described in the Orbix 3.3 Administrator's Guide.
For example, to switch on new semantics you can make the
following entry in the OrbixWeb3.cfg configuration file:

Orbix 3.3 Configuration File
OrbixWeb.IT_USE_ORBIX3_STYLE_SYS_EXC = "FALSE";
 80 Migrating from Orbix 3.3 to Orbix 6.3

Compatibility matrix
Table 27 shows the compatibility matrix between OrbixWeb
3.2-15/Orbix 3.3 Java Edition and Orbix 6.3.

A Yes entry in the above table indicates compatible exception
semantics for that combination.
An OrbixWeb 3.2-15/Orbix 3.3 Java application described in the
table as old semantics has its IT_USE_ORBIX3_STYLE_SYS_EXC variable
set equal to TRUE, or unset. An OrbixWeb 3.2-15/Orbix 3.3 Java
application described in the table as new semantics has its
IT_USE_ORBIX3_STYLE_SYS_EXC variable set equal to FALSE.

FILTER_SUPPRESS Exception
The FILTER_SUPPRESS exception is a system exception specific to
Orbix and OrbixWeb. If an Orbix 3.3 C++ server or an Orbix 3.3
Java server sends the FILTER_SUPPRESS exception to an Orbix 6.3
CORBA client, it is converted to the standard system exception
CORBA::UNKNOWN.

Purpose of the FILTER_SUPPRESS
exception
Filters are a proprietary feature of Orbix 3.3 that enable you to
read and manipulate all incoming and outgoing messages. Prior to
the availability of a standard CORBA Security Service, some
applications used filters to implement a rudimentary security
mechanism. These legacy applications could block the execution of
an operation on the server side, by raising the FILTER_SUPPRESS
exception in a filter.

Table 27: System Exception Handling Compatibility between OrbixWeb 3.2-15/Orbix 3.3 Java Edition and Orbix 6.3

Client Application OrbixWeb
3.2-15/Orbix 3.3
Java Server (Old

Semantics)

OrbixWeb
3.2-15/Orbix 3.3
Java Server (New

Semantics)

Orbix 6.3 CORBA
Server

OrbixWeb
3.2-15/Orbix 3.3
Java Client (Old
Semantics)

Yes No No

OrbixWeb
3.2-15/Orbix 3.3
Java Client (New
Semantics)

No Yes Yes

Orbix 6.3 CORBA
Client

No Yes Yes
Migrating from Orbix 3.3 to Orbix 6.3 81

How Orbix 6.3 handles a
FILTER_SUPPRESS exception
When a FILTER_SUPPRESS exception is sent back to an Orbix 6.3
CORBA client, the Orbix 6.3 CORBA client does not recognize the
exception. A CORBA::UNKNOWN system exception is raised instead by
the Orbix 6.3 CORBA client.

Dynamic Invocation Interface and User Exceptions
The dynamic invocation interface (DII) in Orbix 3.3 cannot handle
CORBA user exceptions.

Orbix 3.3 and user exceptions
If a user exception is received by an Orbix 3.3 invocation, the
Orbix 3.3 runtime converts the exception into a CORBA::UNKNOWN
system exception, which is then thrown by the
CORBA::Request::invoke() operation.

Handling user exceptions in Orbix 3.3
C++ Edition
Given an initialized request object, req, the following example
shows an outline of how to deal with user exceptions in the DII:

// C++ - Orbix 3.3
// Initialize DII Request object, req.
...
// Make the invocation
try {
 req.invoke();
}
catch (...) {
 // You will reach this point if a user exception is thrown.
 ...
}

 82 Migrating from Orbix 3.3 to Orbix 6.3

Handling user exceptions in Orbix 3.3
Java Edition
Given an initialized request object, req, the following example
shows an outline of how to deal with user exceptions in the DII:

Orbix 6.3 and user exceptions
In the Orbix 6.3 DII, however, user exceptions are supported in
the DII. The CORBA::UnknownUserException standard exception class
holds a CORBA::Any which can then be parsed with the aid of the
dynamic any module to obtain the contents of the user exception.

Dynamic Invocation Interface and
LOCATION_FORWARD

The dynamic invocation interface (DII) in Orbix 3.3 C++ Edition is
now able to handle reply messages that have the LOCATION_FORWARD
status. Previously, LOCATION_FORWARD replies were not supported in
Orbix C++ applications.
The DII in Orbix 3.3 Java Edition has always been able to handle
reply messages that have the LOCATION_FORWARD status.
See also “Multiple LOCATION_FORWARD” on page 95.

Location forwarding mechanisms
The IIOP protocol features support for location forwarding. It is
used to dynamically discover the location of CORBA objects. There
are two distinct kinds of message exchange that form the basis of
location forwarding:
• The client ORB can deliberately probe the location of a CORBA

object, by sending a LocateRequest message to the server (or
agent). The server (or agent) responds with a LocateReply
message containing details of the object's location.

• When a client sends a regular Request message, the server (or
agent) might respond with a special type of Reply message
that has a reply status of LOCATION_FORWARD. This reply has
details of the object's location.

// Java - Orbix 3.3
// Initialize DII Request object, req.
...
// Make the invocation
try {
 req.invoke();
}
catch (java.lang.Exception) {
 // You will reach this point if a user exception is thrown.
 ...
}

Migrating from Orbix 3.3 to Orbix 6.3 83

Support for location forwarding
The location forward mechanism is used by the Orbix 3.3 daemon
and the Orbix 6.3 locator service to direct clients to the true
location of a CORBA server:
• The first type of message exchange is a LocateRequest

followed by LocateReply.
• The second type of message exchange is a Request followed by

a Reply with status LOCATION_FORWARD.
Both kinds of message exchange are supported in Orbix 3.3.
 84 Migrating from Orbix 3.3 to Orbix 6.3

Services
In a mixed system with Orbix 3.x and Orbix 6.3 applications, you
generally have a choice between an Orbix 3.x or an Orbix 6.3
implementation of a CORBA service. This chapter discusses the viable
configurations of CORBA services in a mixed system.

The Orbix 6.3 Interoperable Naming Service
The naming service provided with Orbix 6.3 is an implementation
of the CORBA Interoperable Naming Service (INS) specification.
This section explains how to set up Orbix 3.3 applications to use
the Orbix 6.3 INS.

Old and new naming services
In an environment that mixes Orbix 3.3 and Orbix 6.3
applications, you have a choice between using the old CORBA
Naming Service (NS), provided with Orbix 3.3, or the new CORBA
Interoperable Naming Service (INS), provided with Orbix 6.3.

The NamingContextExt interface
The main difference between the old and new naming services is
that the INS adds a new IDL CosNaming::NamingContextExt
interface:

// File: CosNaming.idl
#pragma prefix "omg.org"

module CosNaming {
 ...
 interface NamingContextExt : NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;

 StringName to_string (in Name n)
 raises (InvalidName);
 Name to_name (in StringName sn)
 raises (InvalidName);

 exception InvalidAddress {};

 URLString to_url (in Address addr, in StringName sn)
 raises (InvalidAddress, InvalidName);
 Object resolve_str (in StringName sn)
 raises (NotFound, CannotProceed, InvalidName);

 };
};
 Migrating from Orbix 3.3 to Orbix 6.3 85

Stub code
Applications that use the INS should preferably be built against
the new naming stub (generated from the INS IDL). This makes
the new NamingContextExt interface accessible. However, the old
naming stubs (generated from the old NS IDL) can also be used.

Narrowing and remote _is_a() operation
When an Orbix 3.3 application invokes
CosNaming::NamingContext::_narrow() on an Orbix 6.3
NamingContext, it makes a remote _is_a() invocation on the INS.
The _is_a() invocation is used to confirm the type of the
NamingContext object reference. See “Using the #pragma Prefix” on
page 65.

Orbix 3.3 and Orbix 6.3
You can configure Orbix 3.3 to use both the Orbix 3.3 NS and the
Orbix 6.3 INS. This section describes how to configure the CORBA
Initialization Service to obtain a reference to either naming service
using the CORBA::ORB::resolve_initial_references() function.

Configuring Orbix 3.3 to use the Orbix 6.3
INS
To connect to both the Orbix 3.3 NS and the Orbix 6.3 INS from
an Orbix 3.3 application you must first configure the initialization
service. Edit the common.cfg configuration file and make the
following entries in the Common.Services scope:

Orbix 3.3 Configuration File
Common {
 Services {
 # This is the stringified IOR for the root 'NamingContext'
 # of the 'Orbix 3' naming service.
 # You can obtain this IOR by running the naming service
 # as follows:
 # ns -I <iorfile>
 NameService = "IOR:1234......";

 # This is the stringified IOR for the root 'NamingContext'
 # of the 'Orbix 6.3' Interoperable Naming Service.
 # You can obtain this IOR using the Orbix 6.3 admin
 # utility as follows:
 # itadmin ns resolve
 INS = "IOR:4567......";
 };
};
 86 Migrating from Orbix 3.3 to Orbix 6.3

Orbix 3.3 configuration variables
The following configuration variables are set in the Common.Services
scope:
• The Common.Services.NameService configuration variable is set

to a stringified IOR for a NamingContext in the Orbix 3 NS.
• The Common.Services.INS configuration variable is set to a

stringified IOR for a NamingContext in the Orbix 6.3 INS.

Setting the Common.Services.INS variable
For example, consider the following IOR string:

You can assign this IOR string to Common.Services.INS as follows:

IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616
d696e672f49545f4e616d696e67436f6e746578744578743a312e3
0000001000000000000006e000000010102000b00000031302e322
e312e31313300008a1300003f0000003a3e0232311744656661756
c74204c6f636174696f6e20446f6d61696e185f64656661756c745
f69745f6e635f6578745f706f615f0008000000000000020000010
000000600000006000000010000003500

Orbix 3.3 Configuration File
Common {
 Services {
 INS =

"IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4
e616d696e672f49545f4e616d696e67436f6e746578744578743a3
12e30000001000000000000006e000000010102000b00000031302
e322e312e31313300008a1300003f0000003a3e023231174465666
1756c74204c6f636174696f6e20446f6d61696e185f64656661756
c745f69745f6e635f6578745f706f615f000800000000000002000
0010000000600000006000000010000003500";

 };
};
Migrating from Orbix 3.3 to Orbix 6.3 87

Orbix 3.3 client code for using both
naming services
The following C++ code extract shows how an Orbix 3.0.1-20
application can make an initial connection to both naming
services:

After this code runs, orbix3RootContextV holds a reference to an
Orbix 3 NamingContext and orbix2000RootContextV holds a reference
to an Orbix 6.3 NamingContext.

Orbix 3.3 Java Edition and Orbix 6.3
The following steps describe how to configure Orbix 3.3 Java
Edition to connect to both the Orbix 3.3 NS and the Orbix 6.3 INS:

// C++ - Orbix 3 Client Code
int
main (int argc, char *argv[])
{
 CORBA::ORB_var orbV;

 try
 {
 cout << "Initializing the ORB." << endl;
 orbV = CORBA::ORB_init(argc, argv, "Orbix");

 CosNaming::NamingContext_var orbix3RootContextV;
 CosNaming::NamingContext_var orbix2000RootContextV;
 CORBA::Object_var objV;

 try
 {
 objV = orbV->resolve_initial_references("NameService");
 orbix3RootContextV = CosNaming::NamingContext::_narrow(objV);

 objV = orbV->resolve_initial_references("INS");
 orbix2000RootContextV = CosNaming::NamingContext::_narrow(objV);
 }
 catch (CORBA::SystemException &sysEx)
 {
 cerr << &sysEx << endl;
 return 1;
 }
 ...
 ...
}

Step Action

1 Obtain the IOR for the root naming context of the
naming service.

2 Connect to the Orbix 3.3 NS and the Orbix INS.
 88 Migrating from Orbix 3.3 to Orbix 6.3

Step 1—obtain the IOR
Obtain the IOR for the root naming context of the NS.
Start the Orbix 6.3 INS and enter the following command:
itadmin ns resolve > Naming.ref

The output of this command is an IOR string that looks similar to
the following:

This is the IOR string for the root naming context of the Orbix 6.3
INS.

Step 2—connect to the naming services
Connect to the Orbix 3.3 NS and the Orbix INS.
The following Java code shows how an Orbix 3.3 Java client
connects to both the Orbix 3.3 NS and the Orbix 6.3 INS:

IOR:010000002f00000049444c3a696f6e612e636f6d2f49545f4e616
d696e672f49545f4e616d696e67436f6e746578744578743a312e3
0000001000000000000006e000000010102000b00000031302e322
e312e31313300008a1300003f0000003a3e0232311744656661756
c74204c6f636174696f6e20446f6d61696e185f64656661756c745
f69745f6e635f6578745f706f615f0008000000000000020000010
000000600000006000000010000003500

//Java
NamingContext OWrootContext = null;

try {
 org.omg.CORBA.Object ncOWeb =
 orb_wrapper.get_orb().resolve_initial_references(
 "NameService"
);
 OW32rootContext = NamingContextHelper.narrow(ncOWeb);

 // read the ART Naming IOR from the file:
 String objRef = null;
 BufferedReader br = null;

 try {
 br = new BufferedReader(new FileReader("Naming.ref"));
 objRef = br.readLine();
 } catch (IOException e) {
 System.err.println(
 "IOException caught: " + e.toString()
);
 ioe = new IOException();
 } finally {
 try {
 br.close();
 } catch (IOException ignore) { }
 }

Migrating from Orbix 3.3 to Orbix 6.3 89

This code reads the stringified IOR for the Orbix 6.3 NS from the
Naming.ref file. The stringified IOR is converted to an object
reference, O2KRootContext, using the
org.omg.CORBA.ORB.string_to_object() function. The O2KRootContext
object reference is used to access the root NamingContext of the
Orbix 6.3 INS.

Interface Repository Interoperability
Significant changes were made to the IDL definition of the
Interface Repository (IFR) between CORBA 2.2 and CORBA 2.3.
The Orbix 6.3 IFR is written to conform to the CORBA 2.6
specification and it has many advantages over the Orbix 3.3 IFR.
If you have both Orbix 3.3 and Orbix 6.3 applications that use the
IFR, it is recommended that you change the Orbix 3.3 applications
to use the Orbix 6.3 IFR.

Modifying Orbix 3.3 applications to use
the Orbix 6.3 IFR
To change an Orbix 3.3 C++ application to use the Orbix 6.3 IFR,
perform the following steps:
1. Take the IDL for the Orbix 6.3 IFR and generate stub code

from it using the Orbix 3.3 IDL compiler.
2. Modify the source code of your Orbix 3.3 application to be

consistent with the IDL for the Orbix 6.3 IFR.
3. Link your Orbix 3.3 application with the IFR stub code

generated in step 1.

SSL/TLS Toolkit Interoperability

Orbix 3.3 to Orbix 6.3 interoperability
Orbix version 3.3 or later is recommended for secure
interoperability with Orbix 6.3 SSL/TLS. Both C++ and Java
editions of Orbix 3.3 have been tested with Orbix 6.3 SSL/TLS.
There are no known SSL-related interoperability problems
affecting this product combination.

 org.omg.CORBA.Object objNaming =
orb.string_to_object(objRef);

 O2KRootContext = NamingContextHelper.narrow(objNaming);
} catch (SystemException ex) {
 System.err.println ("Exception caught during bind : " +

ex.toString());
 System.exit (1);
} catch (org.omg.CORBA.ORBPackage.InvalidName in) {
 System.err.println ("Exception during narrow of initial

reference : " + in.toString());
 System.exit (1);
}

 90 Migrating from Orbix 3.3 to Orbix 6.3

Orbix 6.3 Interoperability with Orbix
2000
Orbix 6.3 SSL/TLS (both C++ and Java) has been tested for
secure interoperability with Orbix 2000 versions 1.2 and 2.0.
There are no known SSL-related interoperability problems.

High Availability and Orbix 3.3 Clients
High availability is a feature of Orbix 6.3 that provides fault
tolerance by grouping servers into server clusters. Orbix 3.3
clients (C++ and Java Editions) are now able to interoperate with
Orbix 6.3 server clusters.

Support for multi-profile IORs
In Orbix 3.3.2 the client ORB iterates over a multi-profiled IOR
until it is able to establish a connection to a server. It always
starts at the first profile, when connecting or reconnecting to a
server.
Migrating from Orbix 3.3 to Orbix 6.3 91

 92 Migrating from Orbix 3.3 to Orbix 6.3

Connection
Management
There are some differences in connection management between Orbix 3.x
and Orbix 6.3 applications. In most cases these differences are
unimportant, but a minority of applications might be affected.

Orbix 6.3 Active Connection Management
Orbix 6.3 has a feature called active connection management
(ACM) that is used to limit the number of open connections on an
Orbix 6.3 application.
The Orbix 6.3 ACM feature has been interoperably tested with
Orbix 3.3 and found to be fully compatible.

Configuring the ACM
To configure ACM in Orbix 6.3, edit the configuration file, making
the following additional entries:

A value of -1 indicates that there is no limit on the number of
connections.

Callbacks and Bidirectional GIOP
Orbix 6.3 supports bidirectional GIOP. This is a new feature
introduced since Orbix E2A ASP v 6.0.

Motivation for bi-directional IIOP
Bidirectional GIOP was introduced in Orbix in order to overcome
the limitations of standard GIOP in relation to using callback
objects through a firewall.

Features
Micro Focus’s implementation of bidirectional GIOP has the
following features:
1. Compliant with the modified bidirectional GIOP approach

described in the firewall submission.
2. Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4

NegotiateSession messages).

Orbix 6.3 Configuration File
plugins:iiop:incoming_connections:hard_limit = "InHardLimit";
plugins:iiop:incoming_connections:soft_limit = "InSoftLimit";
plugins:iiop:outgoing_connections:hard_limit = "OutHardLimit";
plugins:iiop:outgoing_connections:soft_limit = "OutSoftLimit";
 Migrating from Orbix 3.3 to Orbix 6.3 93

3. Decoupled from IIOP, so that it can be used over arbitrary
connection-oriented transports (for example, SHMIOP).

4. Supports weak BiDirIds initially.
5. Supports bidirectional invocations on legacy Orbix 3.x callback

object references in order to facilitate phased migration to
Orbix 6.3.

References
For more details about the bidirectional GIOP support in Orbix 6.3,
see the following references:
• CORBA Programmer’s Guide
• Administrator’s Guide

Setting the Listen Queue Size in Orbix 3.3 C++
Edition

A new configuration variable, IT_LISTEN_QUEUE_SIZE, is defined in
Orbix 3.3 C++ Edition. It allows you to set the size of the queue
associated with listening ports on an Orbix 3.3 C++ server. This is
a useful optimization for a heavily loaded server that might
receive many connection attempts in a short time.

Listen queue size
When an Orbix server wants to receive connections from clients, it
needs to call the listen(int,int) socket function. The second
parameter of listen() sets the listen queue size associated with
the socket. The listen queue size determines the maximum length
that the queue of pending connections can grow to. In Orbix 3.3,
the queue length is 5, by default.

The IT_LISTEN_QUEUE_SIZE
configuration variable
Orbix 3.3 C++ Edition supports a new IT_LISTEN_QUEUE_SIZE
configuration variable that enables you to configure the listen
queue size. It can be set subject to the following constraints:
• The value should lie between 5 and 2000 (inclusive).
• If it is set to a value less than 5, the value 5 is used instead.
• If it is set to a value greater than 2000, the value 2000 is used

instead.

Queue size hard limit
The maximum queue size is subject to a hard limit that varies
between platforms:
• Solaris—there is currently no limit.
• HPUX—the limit is 20.
 94 Migrating from Orbix 3.3 to Orbix 6.3

• Windows—the limit is 5.

Setting the listen queue size
There are three different ways to set the IT_LISTEN_QUEUE_SIZE
configuration value:
• Set the IT_LISTEN_QUEUE_SIZE environment variable:

Windows

set IT_LISTEN_QUEUE_SIZE=QueueSize

UNIX

export IT_LISTEN_QUEUE_SIZE=QueueSize

• Set the IT_LISTEN_QUEUE_SIZE configuration variable by editing
the Orbix 3.3 configuration file, as follows:

• Use the CORBA::ORB::SetConfigValue() function:

Where orb_p is a pointer to a CORBA::ORB instance.

Querying the listen queue size
An application can query the value of IT_LISTEN_QUEUE_SIZE, using
the following code:

Multiple LOCATION_FORWARD
When an Orbix 3.3 C++ client attempts to connect to a server, it
can deal with at most one LOCATION_FORWARD reply on a single
request. In some cases, this limit might be exceeded when an
Orbix 3.3 client attempts to connect to an Orbix 6.3 CORBA
server.
An Orbix 3.3 Java client can deal with an infinite number of
LOCATION_FORWARD replies on a single request.

Orbix 3.3 Configuration File
Orbix {
 IT_LISTEN_QUEUE_SIZE = "QueueSize";
};

// C++
orb_p->SetConfigValue(
 "Orbix.IT_LISTEN_QUEUE_SIZE",
 "QueueSize"
);

// C++
char* value = 0;
CORBA::Orbix.GetConfigValue("Orbix.IT_LISTEN_QUEUE_SIZE",value);
cout << endl << "Listen Queue size is " << value << endl;
// Caller is responsible for memory allocated
// in out parameter to GetConfigValue
//
delete[] value;
value = 0;
Migrating from Orbix 3.3 to Orbix 6.3 95

Description
In a pure Orbix 3.3 environment, the only time a LOCATION_FORWARD
reply can be generated is when an Orbix 3.3 client contacts the
Orbix daemon. In Orbix 6.3, any CORBA server can generate a
LOCATION_FORWARD reply. It is, therefore, possible that the limit of a
single LOCATION_FORWARD could be exceeded when an Orbix 3.3
client attempts to connect to an Orbix 6.3 CORBA server.

Summary
Table 28 summarizes the handling of multiple LOCATION_FORWARD
reply messages.

Table 28: Number of LOCATION_FORWARD Replies that Can Be Handled by
Orbix Products

Product Maximum Number of
LOCATION_FORWARD

Replies

Orbix 3.3 C++ Edition 1

Orbix 3.3 Java Edition Infinity

Orbix 6.3 Infinity
 96 Migrating from Orbix 3.3 to Orbix 6.3

Codeset Negotiation
Codeset negotiation enables CORBA applications to agree on a common
character set for transmission of narrow and wide characters.

Introduction to Codeset Negotiation
The CORBA codeset conversion framework enables applications to
ensure that they communicate using compatible character formats
for both narrow characters, char, and wide characters, wchar.

Support for codeset negotiation
Orbix 2000 (version 1.1 and later) and Orbix 6.3 support codeset
negotiation, as defined by the CORBA 2.6 specification.
Neither Orbix 3.3 nor Orbix 2000 version 1.0 support codeset
negotiation.

Servers and codeset negotiation
A server that supports codeset negotiation appends a list of
supported codesets (character formats) to the interoperable
object references (IORs) it generates. The codesets are placed in
standard IOP::TAG_CODE_SETS components in the IOR.

Clients and codeset negotiation
A client that supports codeset negotiation examines an IOR to
check the list of codesets supported by the server. The client
compares this list with its own list of supported codesets and, if a
match is found, the client chooses the pair of transmission
codesets (narrow character format and wide character format) to
use for that particular connection.
When sending a Request message, the client appends an
IOP::CodeSets service context that tells the server which codesets
are used. The client continues to include an IOP::CodeSets service
context in Request messages until the first Reply message is
received from the server. Receipt of the first server Reply message
implicitly indicates that codeset negotiation is complete. The same
characters formats are used for subsequent communication on the
connection.

Configuring Codeset Negotiation
Orbix 6.3 features greatly enhanced support for
internationalization and codeset negotiation. In particular, it is
now possible to specify explicitly the codesets that a server
exports in an IOR.
 Migrating from Orbix 3.3 to Orbix 6.3 97

CORBA configuration variables
Table 29 gives the configuration variables that are used to specify
the codesets for an Orbix 6.3 CORBA application.

Default Codesets
This section describes the default codesets used by the Orbix 6.3
product. The following default codesets are defined:
• CORBA C++ codesets for non-MVS platforms.
• CORBA C++ codesets for MVS platform.
• CORBA Java codesets for US-ASCII locale.
• CORBA Java codesets for Shift_JIS locale.
• CORBA Java codesets for EUC-JP locale.
• CORBA Java codesets for other locales.

Native and conversion codesets
Native codesets are used by the application to pass char and wchar
data to the ORB.
Conversion codesets are used, where necessary, to facilitate
interoperability with other ORBs or platforms.

Table 29: CORBA Codeset Configuration Variables (Orbix 6.3)

Configuration Variable Description

plugins:codeset:char:ncs = "<codeset>"; Specifies the native narrow character
codeset.

plugins:codeset:char:ccs = ["<codeset1>",
"<codeset2>", ...];

Specifies the list of conversion
narrow character codesets
supported.

plugins:codeset:wchar:ncs = "<codeset>"; Specifies the native wide character
codeset.

plugins:codeset:wchar:ccs = ["<codeset1>",
"<codeset2>", ...];

Specifies the list of conversion wide
character codesets supported.

plugins:codeset:always_use_default = <boolean>; Specifies that hardcoded default
values are used and the preceding
variables are ignored, if set in the
same configuration scope or higher.
 98 Migrating from Orbix 3.3 to Orbix 6.3

CORBA C++ codesets for non-MVS
platforms
Table 30 shows the default codesets for Orbix 6.3 C++
applications on non-MVS platforms (Latin-1 locale).

In Orbix 6.3, the choice of native wide character codeset, UCS-2
or UCS-4, is based on the size of CORBA::WChar (either 2 or 4
bytes). On Windows, UCS-2 is used and on most UNIX platforms,
UCS-4 is used.

CORBA C++ codesets for MVS platform
Table 31 shows the default codesets for Orbix 6.3 C++
applications on the MVS platform.

CORBA Java codesets for US-ASCII locale
Table 32 shows the codesets supported by Orbix 6.3 Java
applications in a US-ASCII locale.

Table 30: CORBA C++ Codesets (Non-MVS Platforms)

Codeset Type Codeset

Native codeset for char (NCS-C) ISO-8859-1

Conversion codesets for char (CCS-C) none

Native codeset for wchar (NCS-W) UCS-2 or UCS-4

Conversion codesets for wchar
(CCS-W)

UTF-16

Table 31: CORBA C++ Codesets (Non-MVS Platforms)

Codeset Type Codeset

Native codeset for char (NCS-C) EBCDIC

Conversion codesets for char (CCS-C) ISO-8859-1

Native codeset for wchar (NCS-W) UCS-2 or UCS-4

Conversion codesets for wchar
(CCS-W)

UTF-16

Table 32: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale)

Codeset Type Codeset

Native codeset for char (NCS-C) ISO-8859-1

Conversion codesets for char (CCS-C) UTF-8

Native codeset for wchar (NCS-W) UTF-16
Migrating from Orbix 3.3 to Orbix 6.3 99

CORBA Java codesets for Shift_JIS locale
Table 33 shows the codesets supported by Orbix 6.3 Java
applications in a Shift_JIS locale.

CORBA Java codesets for EUC-JP locale
Table 34 shows the codesets supported by Orbix 6.3 Java
applications in a EUC-JP locale.

CORBA Java codesets for other locales
Table 35 shows the codesets supported by Orbix 6.3 Java
applications in other locales.

Conversion codesets for wchar
(CCS-W)

UCS-2

Table 33: CORBA Java Codesets (Shift_JIS locale)

Codeset Type Codeset

Native codeset for char (NCS-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or
Shift_JIS or euc_JP

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar
(CCS-W)

UCS-2 or Shift_JIS or
euc_JP

Table 34: CORBA Java Codesets (EUC-JP locale)

Codeset Type Codeset

Native codeset for char (NCS-C) UTF-8

Conversion codesets for char (CCS-C) ISO-8859-1 or
Shift_JIS or euc_JP

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar
(CCS-W)

UCS-2 or Shift_JIS or
euc_JP

Table 35: CORBA Java Codesets (other locale)

Codeset Type Codeset

Native codeset for char (NCS-C) UTF-8

Table 32: CORBA Java Codesets (ISO-8859-1/Cp-1292/US-ASCII locale)

Codeset Type Codeset
 100 Migrating from Orbix 3.3 to Orbix 6.3

Configuring Legacy Behavior

Default behavior
By default, the IOP::TAG_CODE_SETS tagged component is included
in generated IORs and the transmission codesets are negotiated
by clients and transmitted through an IOP::CodeSets service
context. This is the CORBA-defined behavior.

Legacy behavior
Orbix 6.3 (all versions) also provides legacy behavior, to support
the scenario where wide character data is communicated between
Orbix 6.3 and Orbix 3.3 Java Edition.

Disabling codeset negotiation
The following configuration variable can be used to explicitly
disable the codeset negotiation mechanism:

The default is true.
This is a proprietary setting provided for interoperability with
legacy implementations, such as Orbix 3.3 Java Edition. The
native codeset for character data, ISO-8859-1 (Latin-1), is used
and the overhead of full negotiation is avoided. If wide character
data is used, Orbix 6.3 reverts to the UTF-16 transmission
codeset.

Conversion codesets for char (CCS-C) ISO-8859-1 or file
encoding

Native codeset for wchar (NCS-W) UTF-16

Conversion codesets for wchar
(CCS-W)

UCS-2 or file encoding

Table 35: CORBA Java Codesets (other locale)

Codeset Type Codeset

Orbix 6.3 Configuration File
policies:giop:interop_policy:negotiate_transmission_codeset =

"false";
Migrating from Orbix 3.3 to Orbix 6.3 101

Enabling wchar transmission on a GIOP
1.0 connections
Passing wchar data over GIOP 1.0 can be enabled using the
following configuration variable:

The default is false.
The transmission of wchar data is not legal in GIOP 1.0, by default.

Orbix 6.3 Configuration File
policies:giop:interop_policy:allow_wchar_types_in_1_0 = "true";
 102 Migrating from Orbix 3.3 to Orbix 6.3

Index
Symbols
#pragma ID 67
#pragma prefix

and naming service 67
#pragma prefix, using 65

A
ACM 35
activate_object_with_id() operation 25
activating CORBA objects

in Application Server Platform 25
in Orbix 3 25

activation, and the KDM 48
activation modes 55
active connection management

and interoperability 93
in Application Server Platform 35

add_member command 54
administration properties

MaxConsumers 43
MaxSuppliers 43

allow_fixed_types_in_1_0 variable 68
allow_wchar_types_in_1_0 variable 102
Any constructor 18
any-style clients 41
Any type

migrating 18
type-unsafe functions 18

ASN_OID structure 47
authentication filters 31
auth_method_data variable 49
automatic activation 48, 55
automatic work queues 30
AVA interface 46
AVAList interface 46

B
bi-directional IIOP 93
binary checksums 48
_bind() function 59

and corbaloc URLs 16
and notification service 40
and the Orbix 3 locator 27

BOA, replacing with the POA 22

C
C++ function signatures 21
C++ keywords

in IDL 70
on-the-wire format 71

C++ mapping changes 18
caching
and smart proxies 33
of data using smart proxies 34

callbacks
POA policies for 17

cat_group command 54
catit command 53
cat_member command 55
catns command 55
CertError interface 46
certificate authorities

trusted CA list 51
certificate revocation lists

configuration of 48
no support for 46

certificates
interoperability 51
migrating 50
PKCS#12 format 50

CertValidator interface 47
CertValidatorPolicy interface 46, 47
char type 97
checksums, in the KDM 48
chmodit command 53
chmodit utility 61
chownit command 53
client_secure_invocation_policy
variable 48

clustered servers 27
codeset negotiation

interoperability 101
support for 97

codesets
Application Server Platform (C++) 99
transmission 97

codesetsApplication Server Platform
(Java) 99, 100

CodeSets service context 97, 101
command-line tools 53
COMM_FAILURE system exception 19, 36

new semantics 76, 80
old semantics 76, 80

common.cfg file 86
Common.Services scope 87
compatibility matrix

for Java applications 81
for system exceptions 77

concurrent request processing 30
configuration

active connection management 93
allow_fixed_types_in_1_0 variable 68
itadmin utility 53
IT_IIOP_VERSION variable 69
IT_LISTEN_QUEUE_SIZE variable 94
Migrating from Orbix 3.3 to Orbix 6.3 103

IT_USE_ORBIX3_STYLE_SYS_EXC
variable 73

security variables 48
send_locate_request variable 61
send_principal variable 61

connection management
and ACM 35
and I/O callbacks 35

context clause 13
CORBA::Environment parameter

migrating 19
corbaloc URL 16
CORBA objects, creating and activating 24
CORBA Security Level 2 45
CosNotifyComm module 41
CRL 46

D
daemons

locator 53
node daemon 53
orbixd 53

DEF_TIE macro 24
del_group command 55
del_member command 55
deprecated IDL types

Principal 13
DII, See dynamic invocation interface
documentation

.pdf format 4
updates on the web 4

DO_GL_HEALTHCHECK 44
DO_HEALTHCHECK 44
dumpconfig command 53
dynamic any module 83
dynamic invocation interface

and LOCATION_FORWARD reply
status 83

and user exceptions 82

E
enable_principal_service_context
variable 61

Environment parameter 19
and C++ function signatures 21
migrating 19

EstablishTrustPolicy interface 48
etherealize() function 32
Extension interface 47
ExtensionList interface 47
external configuration granularity 47

F
fault tolerance 27, 33
file descriptor limits

and active connection management 36
extending 36

filters
and FILTER_SUPPRESS exception 81
migrating to Application Server
Platform 29

typical uses 29
FILTER_SUPPRESS system exception 81
firewalls, and bi-directional IIOP 93
fixed type, interoperating 68

G
GIOP

default version 69
grouphosts command 54

H
HealthCheck

overview 44
simulating in Application Server
Platform 45

high availability 27, 33

I
I/O Callbacks 34
IDL

C++ keywords appearing in 70
wchar type 70
wstring type 70

idl command 54
idlgen command 54
idlj command 54
IDL migration 60
IDL-to-C++ mapping

and C++ keywords in IDL 70
changes 18

IFR 90
ifr command 54
IIOP

bi-directional 93
IT_DEFAULT_IIOP_VERSION
variable 69

iiop_tls plug-in 47
implementing CORBA objects

inheritance approach 23
tie approach 24

incarnate() function 32
incoming_connections:hard_limit
variable 35

incoming_connections:soft_limit
variable 35

inheritance approach 23
initialization service

and the Orbix 3 locator 28
configuring for naming service 86

initializeHealthCheck() function 44
initial references

NotificationService object ID 40
interface repository 90
internationalization 70, 97
interoperable naming service

interoperability 85
new interface 39

INV_OBJREF system exception
migration 19
new semantics 75, 79
old semantics 75
 104 Migrating from Orbix 3.3 to Orbix 6.3

invoke rights 60
IOR, and supported codesets 97
_is_a() function 65, 67
itadmin utility 53
IT_ALLOWED_CIPHERSUITES variable 49
IT_AUTHENTICATE_CLIENTS variable 48
IT_AVA interface 46
IT_AVAList interface 46
IT_BIDIRECTIONAL_IIOP_BY_DEFAULT
variable 49

IT_CACHE_OPTIONS variable 49
IT_CA_LIST_FILE variable 48
IT_CertError structure 46
IT_CERTIFICATE_FILE variable 49
IT_Certificate interface 46
IT_CERTIFICATE_PATH variable 49
IT_CHECKSUM_REPOSITORY variable 49
IT_CHECKSUMS_ENABLED variable 49
IT_CIPHERSUITES variable 48
IT_CRL_ENABLED variable 49
IT_CRL_List interface 46, 47
IT_CRL_REPOSITORY variable 49
IT_CRL_UPDATE_INTERVAL variable 49
IT_DAEMON_AUTHENTICATES_CLIENTS
variable 49

IT_DAEMON_POLICY variable 49
IT_DAEMON_UNRESTRICTED_METHODS
variable 49

IT_DEFAULT_IIOP_VERSION variable 69
IT_DEFAULT_MAX_CHAIN_DEPTH
variable 49

IT_DISABLE_SSL variable 49
IT_ENABLE_DEFAULT_CERT variable 49
IT_Extension interface 47
IT_ExtensionList interface 47
IT_FILTER_BAD_CONNECTS_BY_DEFAUL
T variable 49

IT_IIOP_VERSION variable 69
IT_INSECURE_REMOTE_INTERFACES
variable 48

IT_INSECURE_SERVERS variable 48
IT_INVOCATION_POLICY variable 48
IT_KDM_CLIENT_COMMON_NAMES
variable 49

IT_KDM_ENABLED variable 49
IT_KDM_PIPES_ENABLED variable 49
IT_KDM_REPOSITORY variable 49
IT_KDM_SERVER_PORT variable 49
IT_LISTEN_QUEUE_SIZE variable 94, 95
itlocator daemon 53
IT_MAX_ALLOWED_CHAIN_DEPTH
variable 49

itnode_daemon daemon 53
itnotifyconsole utility 44
IT_OID structure 47
IT_OIDTag type 47
IT_ORBIX_BIN_SERVER_POLICY
variable 49

IT_SECURE_REMOTE_INTERFACES
variable 48

IT_SECURE_SERVERS variable 48

IT_SERVERS_MUST_AUTHENTICATE_CLI
ENTS variable 48

IT_SSL interface 47
IT_TLS_API interface 46
IT_TLS interface 46
IT_USE_ORBIX3_STYLE_SYS_EXC
variable
in C++ 73
in Java 78
setting for Java applications 80
setting in C++ 76

IT_UTCTime interface 47
IT_ValidateX509CertCB interface 47
IT_X509CertChain interface 47
IT_X509Cert interface 47
IT_X509_CRL_Info interface 46, 47
IT_X509_Revoked interface 46, 47
IT_X509_RevokedList interface 46, 47

K
KDM 48
key distribution management 48
killit command 54

L
launch rights 60
lease plug-in, and session
management 36

level 2, security 45
listen queue size

range 94
setting for C++ applications 95

list_groups command 55
list_members command 55
load() function 32
load balancing

and activation modes 56
and the CORBA Naming Service 27

loader 31
LoaderClass class 32
loading persistent objects 31
LocateReply messages 83
LocateRequest messages 62, 83
LOCATION_FORWARD reply status 83, 95
locator, Orbix 3 migrating to Application
Server Platform 27

LocatorClass class 28
locator daemon

administering POA names 53
in Application Server Platform 53

logging
and portable interceptors 29
and smart proxies 33

lsit command 54
lsns command 55

M
manual work queues 30
markers, converting to object ID 21
max_chain_length variable 49
Migrating from Orbix 3.3 to Orbix 6.3 105

MaxConsumers administration
properties 43

MaxEventsPerConsumer QoS property 42
MaxRetries QoS property 42, 45
MaxRetryTimeout QoS property 42
MaxSuppliers administration property 43
mechanism_policy variable 48
minor codes, for system exceptions 19
mkdirit command 54
multiple location forward 95
multi-threaded request processing 29

N
NamingContextExt interface 39, 85
naming service

and #pragma prefix 67
and NamingContextExt interface 85
C++ code sample 88
extensions 39
interoperability 39, 85
Java code sample 88
load-balancing extensions 39
source code compatibility 39
stub code 86

_narrow() function 65
and NamingContext 86
semantics 66

narrow characters, and codeset
negotiation 97

negotiate_transmission_codeset variable
setting 101

new_group command 55
newncns command 55
node daemon 48, 53
notification console 44
notification service

administration properties 43
any-style clients 41
CORBA compliance 40
deprecated features 44
management 44
migrating 40
overview 40
PacingInterval type, migrating 42
Quality-of-Service properties 42
starting 44
subscribing and publishing, updates 40
TimeBase::TimeT, migrating 41
unstructured events 41

NotificationService object ID 40

O
object-by-value 13
ObjectGroup interface 28
object groups, and load balancing 27
object IDs, converting to marker 21
OBJECT_NOT_EXIST system exception

and new semantics 75
Application Server Platform
semantics 75

launch and invoke rights 61

migration 19
new semantics 79
old semantics 75

object_to_string() function 65
ObtainInfoMode enumeration 41
obtain_offered_types() operation 40
obtain_subscription_types() operation 40
OIDTag type 47
on_demand 56
opaque type 13
OpenSSL proprietary private key
format 50

operation signatures
context clause 13
Environment parameter 19

ORB_CTRL_MODEL policy 30
orbixd daemon 53, 54

chmodit utility 61
invoke rights 60
launch rights 60

OrbixNotification 3 40
OrbixSSL 3.x configuration, migrating 48
OrbixWeb3.cfg configuration file 80
outgoing_connections:hard_limit 35
outgoing_connections:soft_limit 35
out parameters, and C++ function
signatures 21

P
PacingInterval type 42
PEM format 50
per_client 56
pick_member command 55
piggybacking

in filters 29
migrating to Application Server
Platform 30

pingit command 54
PKCS#12 format 50
PKCS#1 format 50
PKCS#8 format 50
plug-ins

iiop_tls 47
lease 36

POA
and object identities 22
creating 23
names, administering 53
replacing the BOA 22

POA policies
and POA creation 23
for callback objects 17

policies
allow_wchar_types_in_1_0 102
negotiate_transmission_codeset 101
threading policies 30

policy-based API 45
portable interceptors

and logging 29
replacement for filters 29

principal
 106 Migrating from Orbix 3.3 to Orbix 6.3

enabling 61
Principal type 13, 61

interoperability 14
prioritized request processing 30
privacy enhanced mail format 50
private keys

migrating 51
OpenSSL proprietary format 50
PKCS#1 format 50
PKCS#8 format 50
proprietary KEYENC format 51

Proprietary KEYENC format 51
psit command 54
publication, to notification channel 40
PullInterval QoS property 43
putidl command 54
putit command 54
putncns command 55
putnewncns command 55
putns command 55

Q
QOPPolicy interface 48
QoS properties 42

MaxEventsPerConsumer 42
MaxRetries 42, 45
MaxRetryTimeout 42
PullInterval 43
RequestTimeout 42
RetryMultiplier 43
RetryTimeout 42

Quality-of-Service properties 42

R
readifr command 54
record() function 32
rename() function 32
replace() function 18
replies, LOCATION_FORWARD status 83
repository IDs 65

and #pragma ID 67
reputncns command 55
reputns command 55
request processing, prioritized 30
RequestTimeout QoS property 42
RetryMultiplier QoS property 43
RetryTimeout QoS property 42
rmdirit command 54
rmidl command 54
rmit command 54
rmns command 55

S
save() function 32
saving persistent objects 31
security 29

and filters 81
and transformers 34
ASN_OID structure 47
AVA interface 46
AVAList interface 46

CertError interface 46
CertValidator interface 47
CertValidatorPolicy interface 47
configuration variables 48
enabling 47
EstablishTrustPolicy interface 48
Extension interface 47
ExtensionList interface 47
IT_AVA interface 46
IT_AVAList interface 46
IT_CertError structure 46
IT_Certificate interface 46
IT_CRL_List interface 47
IT_Extension interface 47
IT_ExtensionList interface 47
IT_OID structure 47
IT_OIDTag type 47
IT_SSL interface 47
IT_TLS_API interface 46
IT_TLS interface 46
IT_UTCTime interface 47
IT_ValidateX509CertCB 47
IT_X509CertChain interface 47
IT_X509Cert interface 47
IT_X509_CRL_Info interface 47
IT_X509_Revoked interface 47
IT_X509_RevokedList interface 47
OIDTag type 47
QOPPolicy interface 48
UTCTime type 47
X509CertChain interface 47
X509Cert interface 47

SecurityLevel1 module 45
SecurityLevel2 module 45
Security module 45
security service 31
send_locate_request variable 61
send_principal variable 61
servant activator 31
ServantActivator class 32
servant locator 31
servant manager 31
servant objects 22
server clusters 27
servergroups command 54
serverhosts command 54
service contexts

CodeSets 97, 101
replacement for piggybacking filters 30

session_cache_size variable 49
session_cache_validity_period variable 49
session_caching_policy variable 49
session management

and I/O callbacks 35
client migration 36
overview 36
server migration 36

SetConfigValue() function
and listen queue size 95
using 76

SINGLE_THREAD_MODEL policy 30
smart proxies
Migrating from Orbix 3.3 to Orbix 6.3 107

caching 34
definition 32
migrating to Application Server
Platform 33

socket-level information 31
startHealthCheck() function 44
stopHealthCheck() function 44
string events 45
subscription

to notification channel 40
system exceptions

and
IT_USE_ORBIX3_STYLE_SYS_EXC 73

changes in semantics 19
COMM_FAILURE 80
compatibility matrix 77, 81
FILTER_SUPPRESS 81
INV_OBJREF 75, 79
IT_USE_ORBIX3_STYLE_SYS_EXC
variable 78

minor code differences 19
new semantics 73, 78
OBJECT_NOT_EXIST 75, 79
old semantics 73, 78
semantics 73
TRANSIENT 80
UNKNOWN 81, 82

T
TAG_CODE_SETS IOR component 97, 101
target_secure_invocation_policy
variable 48

TCP/IP
accessing details 31
accessing from application 34
and session management 36

templates, and tie approach 24
thread filter, migrating to Application
Server Platform 30

tie approach 24
TIE macro 24
TimeBase::TimeT

and notification service 41
replacing PacingInterval type 42

TLS, policy-based API 45
transformation of exceptions, and
IT_USE_ORBIX3_STYLE_SYS_EXC 74

transformers 34
TRANSIENT system exception

new semantics 76, 80
old semantics 76, 80
when raised 19

transmission codesets 97
transports, accessing TCP/IP layer 34
trusted CA certificate list 51
trusted_ca_list variable 48

U
UNKNOWN system exception 81, 82
UnknownUserException user exception
class 83

unstructured events 41
URL, corbaloc format 16
user exceptions

and DII 82
parsing with dynamic any 83
UnknownUserException 83

UTCTime type 47

W
wchar type

and codeset negotiation 97
interoperating 70
over GIOP 1.0 connections 102

wide characters
and codeset negotiation 97

Wonderwall 93
WorkQueue policy 29
work queues

automatic 30
manual 30

wstring type, interoperating 70

X
X509CertChain interface 47
X509Cert interface 47
 108 Migrating from Orbix 3.3 to Orbix 6.3

	Preface
	Contacting Micro Focus

	Overview of Migration
	Introduction
	Advantages of Orbix 6.3
	Migration Resources
	Migration Options
	Migrating to Orbix 6.3
	Mixed Deployment

	Migrating to Orbix 6.3
	IDL Migration
	The context Clause
	The opaque Type
	The Principal Type

	Client Migration
	Replacing the _bind() Function
	Callback Objects
	IDL-to-C++ Mapping
	System Exception Semantics
	Dynamic Invocation Interface

	Server Migration
	Function Signatures
	Object IDs versus Markers
	CORBA Objects versus Servant Objects
	BOA to POA Migration
	Creating an Object Adapter
	Defining an Implementation Class
	Creating and Activating a CORBA Object

	Migrating Proprietary Orbix 3 Features
	Orbix 3 Locator
	Filters
	Request Logging
	Piggybacking Data on a Request
	Multi-Threaded Request Processing
	Accessing the Client's TCP/IP Details
	Security Using an Authentication Filter

	Loaders
	Smart Proxies
	Transformers
	I/O Callbacks
	Connection Management
	Session Management

	CORBA Services
	Interface Repository
	Naming Service
	Notification Service
	CORBA Specification Updates
	Quality of Service Properties
	Configuration/Administration Changes
	Deprecated Features

	SSL/TLS Toolkit
	Changes to the Programming Interfaces
	Configuration and Administration
	Migrating Certificate and Private Key Files

	Administration
	Orbix Daemons
	POA Names
	Command-Line Administration Tools
	Activation Modes

	Interoperability
	Configuring for Interoperability
	Interoperability Overview
	Launch and Invoke Rights
	GIOP Versions

	IDL Issues
	Using the #pragma Prefix
	Use of #pragma ID in IDL
	Fixed Data Type and Interoperability
	Use of wchar and wstring
	C++ Keywords as Operation Names

	Exceptions
	Orbix 3.3 C++ Edition—System Exceptions
	New Semantics and Old Semantics
	The INV_OBJREF and OBJECT_NOT_EXIST Exceptions
	The TRANSIENT and COMM_FAILURE Exceptions
	Orbix 3.3 C++ Edition and Orbix 6.3

	Orbix 3.3 Java Edition—System Exceptions
	New Semantics and Old Semantics
	The INV_OBJREF and OBJECT_NOT_EXIST Exceptions
	The TRANSIENT and COMM_FAILURE Exceptions
	Orbix 3.3 Java Edition and Orbix 6.3

	FILTER_SUPPRESS Exception
	Dynamic Invocation Interface and User Exceptions
	Dynamic Invocation Interface and LOCATION_FORWARD

	Services
	The Orbix 6.3 Interoperable Naming Service
	Interface Repository Interoperability
	SSL/TLS Toolkit Interoperability
	High Availability and Orbix 3.3 Clients

	Connection Management
	Orbix 6.3 Active Connection Management
	Callbacks and Bidirectional GIOP
	Setting the Listen Queue Size in Orbix 3.3 C++ Edition
	Multiple LOCATION_FORWARD

	Codeset Negotiation
	Introduction to Codeset Negotiation
	Configuring Codeset Negotiation
	Default Codesets
	Configuring Legacy Behavior

	Index

