
First Northern Bank Demo
Mainframe Guide

Version 6.0, November 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2002, 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 15-Dec-2003

M 3 1 7 0

Contents

Preface v

Chapter 1 Introduction 1
First Northern Bank Architecture 2
CORBA Banking Application 4
J2EE Internet Banking Application 6
Web Services Credit Card Validation Application 8

Chapter 2 Developing the FNB COBOL Back-End Server 11
Introduction 13

Purpose and Design 14
Location of Supplied Elements 18

Developing the Application Interfaces 21
Defining IDL Interfaces 22
Orbix IDL Compiler 28
Generated Source Code and Copybooks 34

Writing the Server 37
Writing the Server Implementation 38
Writing the Server Mainline 62

Building the Server 75

Chapter 3 Running the FNB COBOL Back-End Server 77
Prerequisites 78

Creating the VSAM data sets 79
Starting the Orbix Locator Daemon 80
Starting the Orbix Node Daemon 81
Starting the Naming Service 82

Starting the Server 83
After Starting the Server 84
iii

CONTENTS
 iv

Preface
Orbix provides a demonstration called First Northern Bank (FNB) that
integrates CORBA, J2EE, and Web services components. This guide is
intended for use when running the FNB demonstration with the FNB COBOL
back-end server supplied with Orbix Mainframe. It provides an introductory
overview of the entire FNB demonstration in terms of the technologies it
supports, but focuses specifically on the development and running of the
FNB COBOL back-end server.

This document is intended as an addendum or complement to the core FNB
documentation set that is supplied with Orbix. For full details of the
development and management of the front-end and middle-tier components
of the FNB demonstration, see the core FNB documentation set at
http://www.iona.com/support/docs/orbix/6.1/tutorials.xml.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience Chapter 1 is intended for anyone who wants to familiarize with the overall
architecture of the FNB demonstration.

Chapters 2 and 3 are intended for COBOL application programmers who
want to develop and run CORBA applications on OS/390. The prerequisites
are a good knowledge of COBOL and familiarity with basic CORBA
concepts. See the Mainframe Concepts Guide for more details of basic
CORBA concepts.
v

mailto:support@iona.com
mailto:docs-support@iona.com
http://www.iona.com/support/docs/e2a/asp/6.0/tutorials.xml

PREFACE
Organization of this guide This guide is divided as follows:

Chapter 1, Introduction

This chapter introduces the overall FNB demonstration architecture, and its
CORBA, J2EE, and Web services components.

Chapter 2, �Developing the FNB COBOL Back-End Server�

This chapter discusses the design and implementation of the COBOL
back-end server component of the FNB demonstration. The server is
implemented in COBOL and runs in batch on OS/390.

Chapter 3, Running the FNB COBOL Back-End Server

This chapter describes how to start the COBOL back-end server component
of the FNB demonstration.

Related documentation The following Orbix documentation provides details of the development and
management of the front-end and middle-tier components of the FNB
demonstration:

� First Northern Bank Tutorial

� First Northern Bank Developer�s Introduction

These documents can be found at http://www.iona.com/support/docs/
orbix/6.1/tutorials.xml.

The COBOL Programmer�s Guide and Reference supplied with Orbix
Mainframe complements this guide by providing more details of CORBA
application development in COBOL on OS/390.

The latest updates to all Orbix Mainframe documentation can be found at
http://www.iona.com/support/docs/orbix/mainframe/6.0/index.xml.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/
 vi

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/docs/e2a/asp/5.1/mainframe/index.xml
http://www.iona.com/support/docs/e2a/asp/6.0/tutorials.xml
http://www.iona.com/support/docs/e2a/asp/6.0/tutorials.xml

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Keying conventions This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.
vii

PREFACE
[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 viii

CHAPTER 1

Introduction
Orbix provides a demonstration called First Northern Bank
(FNB) that integrates CORBA, J2EE, and Web services
components. This guide is intended for use when running the
FNB demonstration with the FNB COBOL back-end server that
is supplied with Orbix Mainframe. This chapter introduces the
overall FNB demonstration architecture, and its CORBA, J2EE,
and Web services components.

In this chapter This chapter discusses the following topics:

First Northern Bank Architecture page 2

CORBA Banking Application page 4

J2EE Internet Banking Application page 6

Web Services Credit Card Validation Application page 8
1

CHAPTER 1 | Introduction
First Northern Bank Architecture

Overview This section describes the high-level architecture of the new FNB system,
and gives a brief overview of its components. It includes the following
topics:

� �FNB architecture�.

� �CORBA banking�.

� �J2EE internet banking�.

� �Web services credit card validation�.

FNB architecture Figure 1 shows the overall FNB demonstration system architecture.

The main components in Figure 1 are as follows:

1. CORBA core banking.

2. J2EE Internet banking.

Figure 1: FNB System Architecture
 2

First Northern Bank Architecture
3. Web services credit card validation.

CORBA banking The CORBA banking application provides the core banking services that the
bank offers to its customers. For example, opening an account, making a
deposit, or making a withdrawal.

The CORBA banking application is implemented as a three-tier system,
which consists of the following components:

� Bank teller client GUI (Graphical User Interface) on Windows.

� Middle-tier Java server on Windows or UNIX.

� Back-tier COBOL server on OS/390.

All network communication is sent using the Internet Inter-ORB Protocol
(IIOP).

J2EE internet banking The J2EE application provides customers with Internet banking services. It
provides Web browser access to customer accounts (for example, viewing
an account balance, or paying a bill online).

The J2EE Internet banking application is implemented using Enterprise Java
Beans (EJBs) and Java Server Pages (JSPs), which run in the Orbix
Application Server. This in turn connects to the back-tier CORBA server on
OS/390.

Network communications between the application server and the browser
client are sent using the Hypertext Transfer Protocol (HTTP). Those between
the application server and the back-tier OS/390 server are sent using IIOP.

Web services credit card
validation

The Web services application provides online credit card validation and
payment services for customers. Figure 1 shows a Web services client
application that invokes on the Web service running in the application
server. This client could be implemented in several programming languages
(for example, Java, C#, or Visual Basic).

Like the CORBA and J2EE systems, the Web services application is also a
three-tier system. Network communications between the Web service and
client are sent using the Simple Object Access Protocol (SOAP) over HTTP.
3

CHAPTER 1 | Introduction
CORBA Banking Application

Overview This section describes the CORBA core banking application in more detail. It
includes the following topics:

� �CORBA bank architecture�.

� �Bank teller GUI client�.

� �Middle-tier CORBA server�.

� �Back-tier CORBA server�.

CORBA bank architecture Figure 2 shows the architecture of the three-tier CORBA banking
application.

The main components in Figure 2 are as follows:

� Front-tier client used by bank teller (Java GUI).

� Middle-tier business architecture (CORBA Java server).

� Back-tier mainframe system (CORBA COBOL server) using VSAM files.

Figure 2: FNB Bank Application
 4

CORBA Banking Application
Bank teller GUI client The bank teller GUI enables tellers to open and close accounts, and to make
withdrawal and lodgements to accounts. The bank teller GUI is
implemented as a Java Swing client application.

Middle-tier CORBA server The middle-tier CORBA Java server manages business sessions between the
client and the back-tier server.

The middle-tier server implements a BussinesSessionManager factory
object, which creates session objects to manage interaction with the client
(for example, TellerSession and BusinessSession objects).

The middle-tier CORBA server is also known as the FNB Business
Architecture (FNBBA).

Back-tier CORBA server The back-tier CORBA server on the mainframe is responsible for managing
customer accounts. This is implemented as the COBOL FNB server. The
back-end server is automatically deployed on OS/390 when you install Orbix
Mainframe.

The FNB server implements an AccountMgr factory object, which creates
Account objects (for example, CreditCardAccount and CurrentAccount
objects). These objects represent all customer account information (for
example, customer name, address, and account number).

The Account objects are stored in VSAM data sets on OS/390. Four VSAM
data sets are used, to store the following data:

� Account data�this includes an alternative index, to allow for
referencing data by account number or account type.

� Transaction history.

� Last used account number.

� Last used transaction history key (for each account).

Note: For details on development and building of the COBOL back-end
server, see �Developing the FNB COBOL Back-End Server� on page 11.
5

CHAPTER 1 | Introduction
J2EE Internet Banking Application

Overview This section describes the J2EE Internet banking application and its
components in more detail. It includes the following topics:

� �Internet banking architecture�.

� �Web browser client�.

� �J2EE application server�.

� �Cloudscape database�.

� �Back-tier CORBA server�.

Internet banking architecture Figure 3 shows the architecture of the three-tier J2EE Internet banking
application.

The main components in Figure 3 are as follows:

Figure 3: FNB Internet Banking Application
 6

J2EE Internet Banking Application
� Web browser client on Windows.

� Middle-tier J2EE application server on Windows or UNIX.

� Cloudscape database.

� Back-tier CORBA COBOL server on OS/390 using VSAM files.

Web browser client A standard Web browser provides Internet banking services to customers.
Users must first register, and create a user ID and password, before logging
on. Internet banking services include viewing an account balance and
paying a bill online.

Network communications between the Web browser and the application
server are sent using HTTP.

J2EE application server An Orbix J2EE application server provides the middle-tier J2EE
infrastructure. It runs the Java Server Pages (JSPs) that serve up the Internet
banking Web pages in the browser. The application server also runs the
Enterprise Java Beans (EJBs) that communicate with the Cloudscape
database and the back-tier CORBA server on OS/390.

For example, the User entity bean handles the customer information stored
in the database; while the Internet account session bean (inetAccount)
handles browser sessions with the back-tier server.

Cloudscape database A Cloudscape database stores customer information that is used to access
customer accounts online (for example, the user ID and password
associated with each customer account).

Back-tier CORBA server Communications between the application server and the back-tier server are
sent using IIOP. See �CORBA Banking Application� on page 4 for more
information about the back-tier CORBA server.

Note: For details on development and building of the COBOL back-end
server, see �Developing the FNB COBOL Back-End Server� on page 11.
7

CHAPTER 1 | Introduction
Web Services Credit Card Validation
Application

Overview This section describes the Web services credit card application and its
components in more detail. It includes the following topics:

� �Credit card validation architecture�.

� �J2EE application server�.

� �J2EE application server�.

� �Orbix XMLBus�.

� �Back-tier CORBA server�.

Credit card validation architecture Figure 4 shows the architecture of the three-tier credit card validation
application.

Figure 4: FNB Credit Card Validation Application
 8

Web Services Credit Card Validation Application
The main components in Figure 4 are as follows:

� Web services clients on Windows.

� Middle-tier J2EE application server on Windows or UNIX.

� Orbix XMLBus.

� Back-tier CORBA COBOL server.

Web services clients The Web services client applications provide online facilities for credit card
validation and confirmation of purchase.

Figure 4 shows a variety of client applications. Because this is a Web
service, the client could be written in several programming languages (for
example, C#, Java, or Visual Basic). This tutorial demonstrates how to use
a Web services test client that is provided by Orbix XMLBus, IONA�s Web
services environment.

J2EE application server The middle-tier Orbix application server runs the Orbix XMLBus Web
services environment, and the ValidateCreditCard session bean, shown in
Figure 4. The application server communicates with the Web services client
using SOAP and HTTP.

See �J2EE Internet Banking Application� on page 6 for more information
about the application server.

Orbix XMLBus Orbix XMLBus is IONA�s Web services environment. In the First Northern
Bank demonstration, the XMLBus version supplied with the Orbix
Application Server Platform runs in an Orbix Application Server. The
application server forwards the HTTP request to the XMLBus Container,
which decodes and handles the incoming SOAP message.

You can also run Orbix XMLBus in other application server environments (for
example, IBM WebSphere, BEA WebLogic, and Apache Tomcat).

Back-tier CORBA server Communication between the application server and the back-tier server is
sent using IIOP. See �CORBA Banking Application� on page 4 for more
information about the back-tier CORBA server.

Note: For details on development and building of the COBOL back-end
server, see �Developing the FNB COBOL Back-End Server� on page 11.
9

CHAPTER 1 | Introduction
 10

CHAPTER 2

Developing the
FNB COBOL
Back-End Server
This chapter discusses the design and implementation of the
COBOL back-end server component of the First Northern Bank
(FNB) demonstration. The server is implemented in COBOL
and runs in batch on OS/390.

In this chapter This chapter discusses the following topics:

Introduction page 13

Developing the Application Interfaces page 21

Writing the Server page 37

Building the Server page 75
11

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Note: For more details about CORBA application development in COBOL
on OS/390 see the COBOL Programmer�s Guide and Reference. For more
details of the development of the front-end and middle-tier components of
the FNB demonstration see the First Northern Bank Developer�s
Introduction supplied on the Orbix Documentation CD, or online at:
http://www.iona.com/support/docs/orbix/6.1/tutorials.xml.
 12

http://www.iona.com/support/docs/e2a/asp/5.1/tutorials.xml

Introduction
Introduction

Overview This section introduces the COBOL back-end server component of the FNB
demonstration in terms of its purpose and design. It also outlines where you
can find the various source code and JCL elements for it.

In this section This section discusses the following topics:

Purpose and Design page 14

Location of Supplied Elements page 18
13

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Purpose and Design

Overview This subsection provides an overview of the purpose and design of the
COBOL back-end server component of the FNB demonstration. It discusses
the following topics:

� �Purpose� on page 14.

� �CORBA object types� on page 15.

� �AccountMgr object� on page 15.

� �Account objects� on page 15.

� �CurrentAccount objects� on page 16.

� �CreditCardAccount objects� on page 16.

Purpose The purpose of the back-end server is to provide the basic business objects
for the bank application�in this demonstration, Account objects. It accepts
and processes requests from the middle-tier FNB Business Architecture
across the network.

The back-end server has the following general characteristics:

� Provides close integration with persistent storage�the CORBA
back-end server consists of a wrapper around a database that stores
the business data.

� Provides an implementation of Account CORBA objects�the account
data thus becomes accessible to other distributed applications.

� Ignores presentation requirements�the back-end server is not
concerned with the way in which clients access and use the Account
objects. This is left to other parts of the distributed application.
 14

Introduction
CORBA object types Figure 5 shows the inheritance hierarchy for the object types implemented
in the COBOL back-end server. There is a corresponding interface of the
same name defined for each of the object types shown (see �Developing the
Application Interfaces� on page 21 for more details).

AccountMgr object A single AccountMgr factory object is created, based on the AccountMgr
interface. A factory object is an object that creates instances of other object
types. The AccountMgr factory object is used to manage and provide access
to the Account objects. The AccountMgr factory object is needed to:

� Create new Account objects.

� Find existing Account objects�two alternative search methods are
supported:

♦ Lookup by account number.

♦ Listing all accounts of a particular type.

Account objects As shown in Figure 5 on page 15, the Account interface is (in CORBA
terms) an abstract base interface from which other, concrete interfaces
derive. An abstract base interface is not used directly to implement CORBA
objects. Instead, the interfaces that derive from the base interface inherit all

Figure 5: Inheritance Hierarchy for Account Object Types

Note: This version of the FNB COBOL back-end server does not
implement the SavingsAccount objects.

CreditCardAccount

Account

CurrentAccount SavingsAccount

AccountMgr
15

CHAPTER 2 | Developing the FNB COBOL Back-End Server
the elements of it. Therefore, an object that implements a derived interface
can accept invocations on any of the elements of the derived interface and
the base interface.

A number of attributes are defined on the base Account interface:

� Account number.

� Owner details (name and address).

� A list of recent transactions.

Methods are also defined on the base Account interface, as follows:

� Deposit and withdraw cash.

� Transfer money in or out of the account.

CurrentAccount objects Any CurrentAccount object is based on the CurrentAccount interface. The
following attribute is defined on the CurrentAccount interface:

� Current overdraft limit.

The following method is also defined:

� Request approval for a new overdraft limit.

Because the CurrentAccount interface derives from the Account interface,
any CurrentAccount object can accept invocations on all the attributes and
methods of both the CurrentAccount and Account interface.

CreditCardAccount objects Any CreditCardAccount object is based on the CreditCardAccount
interface. The following attributes are defined on the CreditCardAccount
interface:

� Credit limit.

� Interest rate on overdue payments.

The following methods are also defined:

� Authorize an amount of money to be spent.

� Make a purchase, based on an authorization code.

� Calculate the interest due on late payments.

Because the CreditCardAccount interface derives from the Account
interface, any CreditCardAccount object can accept invocations on all the
attributes and methods of both the CreditCardAccount and Account
interface.
 16

Introduction
COBOL and interface inheritance COBOL for OS/390 does not support the concept of IDL interface
inheritance. To cater for this, and to avoid having to duplicate code in the
implementation of all methods that are inherited from the base Account
interface, the FNB COBOL server implementation implements each base
interface method only once, and has the derived interface methods calling
the implemented base methods by means of PERFORM statements.

This should not be seen as a standard or even recommended way of
overcoming interface inheritance restrictions within COBOL, but it is one
possible tradeoff between theory and common sense design in a language
that does not support interface inheritance on OS/390.

This approach to implementing the FNB server, however, works only under
the premise that the base Account methods should not be called directly by
the client. For this reason, the implementation code for any base method
does not include direct calls to COAGET or COAPUT. See �Writing the Server
Implementation� on page 38 for more details. See the preface of the COBOL
Programmer�s Guide and Reference for details of supported compilers.
17

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Location of Supplied Elements

Overview All the source code and JCL components needed to create and run the
COBOL back-end server for the FNB demonstration have been provided with
your Orbix Mainframe installation. This subsection provides an overview of
these components. It discusses the following topics:

� �Location of supplied code and JCL� on page 18.

� �Location of supplied copybooks� on page 19.

Location of supplied code and JCL Table 1 provides a summary of the supplied code elements and JCL
components that are relevant to the FNB COBOL demonstration (where
orbixhlq represents your installation�s high-level qualifier). Apart from
site-specific changes to some JCL, these do not require editing.

Table 1: Supplied Code and JCL (Sheet 1 of 2)

Location Description

orbixhlq.DEMOS.IDL(FNB) This is the supplied IDL for the FNB server.

orbixhlq.DEMOS.IDL(DATADEFS) This is supplied IDL that defines some basic data
types used by the FNB server.

orbixhlq.DEMOS.COBOL.SRC(FNBSV) This is the source code for the FNB server mainline
module.

orbixhlq.DEMOS.COBOL.SRC(FNBS) This is the source code for the FNB server
implementation module.

orbixhlq.JCL(LOCATOR) This JCL runs the Orbix locator daemon.

orbixhlq.JCL(NODEDAEM) This JCL runs the Orbix node daemon.

orbixhlq.JCL(NAMING) This JCL runs the Orbix naming service.

orbixhlq.DEMOS.COBOL.BLD.JCL(FNBIDL) This JCL runs the Orbix IDL compiler, to generate
COBOL copybooks for the FNB server. The -S and -Z
compiler arguments, which generate server mainline
and server implementation code respectively, are
disabled by default in this JCL.
 18

Introduction
Location of supplied copybooks Table 2 provides a summary in alphabetic order of the various copybooks
supplied with your Orbix Mainframe installation that are relevant to this
batch server demonstration. Again, orbixhlq represents your installation�s
high-level qualifier.

orbixhlq.DEMOS.COBOL.BLD.JCL(NAMESIDL) This JCL runs the Orbix IDL compiler, to generate
COBOL copybooks for the IDL operations defined in
the orbixhlq.INCLUDE.OMG.IDL(COSNAMI) IDL
member for the Naming Service.

orbixhlq.DEMOS.COBOL.BLD.JCL(FNBSB) This JCL compiles and links the batch server mainline
and batch server implementation modules.

orbixhlq.DEMOS.COBOL.BLD.JCL(FNBVSAMP) This JCL generates offline prints of the VSAM data
sets used by the FNB demonstration. This is not
necessary for running the FNB demonstration. You
can submit this JCL if you want to print the contents
of the VSAM files.

Note: This job yields a return code of 12 if the FNB
server is active. This is expected behavior, because
the server should not be active while running this job.

orbixhlq.DEMOS.COBOL.RUN.JCL(FNBSV) This JCL runs the server.

Table 1: Supplied Code and JCL (Sheet 2 of 2)

Location Description

Table 2: Supplied Copybooks (Sheet 1 of 2)

Location Description

orbixhlq.INCLUDE.COPYLIB(CHKERRS) This contains a COBOL paragraph that can be called
to check if a system exception has occurred, and to
report that system exception.

orbixhlq.INCLUDE.COPYLIB(CHKFILE) This is used for file handling error checking.

orbixhlq.INCLUDE.COPYLIB(CORBA) This contains various Orbix COBOL definitions, such
as REQUEST-INFO used by the COAREQ function, and
ORBIX-STATUS-INFORMATION which is used to register
and report system exceptions raised by the COBOL
runtime.
19

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Checking JCL components When creating the FNB COBOL back-end application, check that each step
involved within the separate JCL components completes with a condition
code of zero. If the condition codes are not zero, establish the point and
cause of failure. The most likely cause is the site-specific JCL changes
required for the compilers. Ensure that each high-level qualifier throughout
the JCL reflects your installation.

orbixhlq.INCLUDE.COPYLIB(CORBATYP) This contains the COBOL typecode representation for
IDL basic types.

orbixhlq.INCLUDE.COPYLIB(FNBACCNO) This is specific to the FNB demonstration. It defines
the layout of the account number records used in this
demonstration.

orbixhlq.INCLUDE.COPYLIB(FNBRECS) This is specific to the FNB demonstration. It defines
the layout of the account records, transaction account
history records, and transaction number records used
in this demonstration.

orbixhlq.INCLUDE.COPYLIB(IORFD) This contains the COBOL FD statement entry for file
processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(IORSLCT) This contains the COBOL SELECT statement entry for
file processing, for use with the COPY…REPLACING
statement.

orbixhlq.INCLUDE.COPYLIB(PROCPARM) This contains the appropriate definitions for a COBOL
program to accept parameters from the JCL for use
with the ORBARGS API (that is, the argument-string
parameter).

orbixhlq.DEMOS.COBOL.COPYLIB This PDS is used to store all batch copybooks
generated when you run the JCL to run the Orbix IDL
compiler for the supplied demonstrations. It also
contains copybooks with Working Storage data
definitions and Procedure Division paragraphs for use
with the bank, naming, and nested sequences
demonstrations.

Table 2: Supplied Copybooks (Sheet 2 of 2)

Location Description
 20

Developing the Application Interfaces
Developing the Application Interfaces

Overview This section describes how to develop the interfaces to the objects that are
to be implemented in the FNB server. It first describes the IDL interfaces on
which the FNB objects are based. It then describes how to generate COBOL
source and copybooks from these IDL interfaces, and provides a description
of the various members generated.

In this section This section discusses the following topics:

Defining IDL Interfaces page 22

Orbix IDL Compiler page 28

Generated Source Code and Copybooks page 34
21

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Defining IDL Interfaces

Overview The first step in writing any Orbix application is to define the IDL interfaces
for the objects required in your system. This section provides a very brief
overview of IDL and its advantages before then showing and describing the
IDL definitions for the objects implemented by the FNB COBOL back-end
server. It discusses the following topics:

� �OMG IDL� on page 22.

� �Data definitions IDL� on page 22.

� �FNB IDL� on page 24.

OMG IDL The OMG interface definition language (IDL) is a purely declarative
language, with a syntax similar to C++ and Java, that is used to define the
interfaces for CORBA objects.

The advantage of OMG IDL is that it enables you to define distributed
interfaces in a language-neutral manner.

A server developer can use IDL to define the service provided to clients,
irrespective of the language or platform used on the server side. Conversely,
a client programmer can use IDL as a blueprint for accessing the service,
irrespective of the language or platform used on the client side.

For more details about IDL in general see the COBOL Programmer�s Guide
and Reference.

Data definitions IDL Example 1 shows the data definitions IDL member. This IDL member is
contained in orbixhlq.DEMOS.IDL(DATADEFS) and defines some basic data
types used in other parts of the IDL.

Note: The IDL interfaces are already supplied for you, in the
orbixhlq.DEMOS.IDL PDS, so this subsection is provided for the purposes
of illustration.

Example 1: Data Definitions IDL Member

// IDL
1 #ifndef DATADEFS_IDL

#define DATADEFS_IDL
 22

Developing the Application Interfaces
The preceding code can be explained as follows:

1. An IDL member can contain preprocessor macros, similar to the C and
C++ languages. The start of a macro is signalled by a # character at
the beginning of a line.

In this example, the #ifndef, #define, and #endif preprocessor
macros guard against multiple inclusion of this file into other IDL
members.

2. The typedef construction is grammatically similar to typedef in C and
C++. In this example, accountNum becomes a synonym for the IDL
long type (32-bit signed integer).

3. This line defines a sequence type, accountNumList, defined as an
unbounded sequence of integers, accountNum. A sequence is similar to
a one-dimensional array except that its length can be arbitrary.

For example, the IDL-to-COBOL mapping specifies that for the
purposes of mapping an IDL unbounded sequence to COBOL, a group
item is created to hold one element of the sequence, and a supporting
group item is also created. The supporting group item contains data
definitions that define the maximum number of elements for the
sequence, the number of elements currently populated in the
sequence, the actual data associated with each element, and the
typecode associated with the sequence.

Because the elements of a sequence are not directly accessible, you
can call SEQSET to copy the supplied data into the requested element of
the sequence, and SEQGET to provide access to a specific element of

2 typedef long accountNum;
3 typedef sequence<accountNum> accountNumList;

#endif // DATADEFS_IDL

Example 1: Data Definitions IDL Member
23

CHAPTER 2 | Developing the FNB COBOL Back-End Server
the sequence. Because an unbounded sequence is a dynamic type,
memory must be allocated for it at runtime, by calling SEQALLOC.

FNB IDL Example 2 shows the main IDL member used by the FNB COBOL back-end
server. This IDL member is contained in orbixhlq.DEMOS.IDL(FNB) and
defines all the CORBA interfaces implemented by the back-end server.

Note: See the COBOL Programmer�s Guide and Reference for more
details of IDL-to-COBOL mapping rules, SEQGET, SEQSET, and
SEQALLOC.

Example 2: FNB IDL Member (Sheet 1 of 3)

// IDL
#ifndef FNB_IDL
#define FNB_IDL

1 #include "DATADEFS"

// Exceptions raised in this file

2 module bankobjects {
3 exception INSUFFICIENT_FUNDS {};

 exception CANNOT_CLOSE_ACCOUNT {};
 exception ACCOUNT_DOESNT_EXIST {};
 exception FAILED_TO_AUTHORIZE {};

4 struct address {
 string address_1;
 string address_2;
 string address_3;
 };

 // Stucture to hold information on what a customer
 // is doing with the bank
 struct BankTransaction {
 short id;
 string date;
 string record_type;
 string value;
 };

5 typedef sequence<BankTransaction> AccountTransactions;
6 interface Account;
 24

Developing the Application Interfaces
7 interface AccountMgr {
8 Account openAccount (in accountNum accountNumber)

 raises (ACCOUNT_DOESNT_EXIST);
 Account newAccount (in string accountType);
 void closeAccount (in accountNum accountNumber)
 raises (CANNOT_CLOSE_ACCOUNT);

 accountNumList getCurrentAccountList ();
 accountNumList getCreditCardList ();
 };

 interface Account {
9 readonly attribute accountNum accountnumber;

 readonly attribute address addr;
 readonly attribute string accountType;

10 attribute string firstname;
 attribute string lastname;

 readonly attribute float accountBalance;

 readonly attribute AccountTransactions
 recentTransactions;

 // Update methods
 boolean makeLodgement (in float amount);
 boolean withdrawFunds (in float amount)
 raises (INSUFFICIENT_FUNDS);
 boolean updateAddress (in address newAddress);

 void transferFundsIn (in float amount);
 void transferFundsOut (in float amount)
 raises (INSUFFICIENT_FUNDS);

 // Admin stuff
 void sendStatement ();
 };

11 interface CurrentAccount : Account {
 readonly attribute float overdraftLimit;

 // Account maintenace routines
 boolean approveNewOverdraft (in float amount);
 };

Example 2: FNB IDL Member (Sheet 2 of 3)
25

CHAPTER 2 | Developing the FNB COBOL Back-End Server
The preceding code can be explained as follows:

1. Definitions from the DATADEFS IDL member (see �Data definitions IDL�
on page 22) are included in this file by calling the #include
preprocessor macro.

2. The definitions in the FNB IDL member are enclosed within the
bankobjects module. An IDL module is a scoping mechanism for IDL.

All the entities defined in the scope of the bankobjects module gain
bankobjects:: as a prefix. For example, bankobjects::Account is the
fully scoped identifier for the Account interface.

3. This line and the following lines define some IDL user exception types.
The exception definitions shown here have an empty body, {}, because
there is no data associated with these user exceptions.

4. The syntax for declaring an IDL struct is similar to the syntax of a
C++ struct.

For example, the address struct type contains three strings
corresponding to the three fields of an address, address_1, address_2,
and address_3.

 interface SavingsAccount : Account {
 };

 typedef short authorizationCode;

 interface CreditCardAccount : Account {
 attribute float limit;
 attribute float interest_rate;

 // Calculate how much interest is owed on this account
 float calculateInterest ();

 // Basic operations on a credit card
 authorizationCode authoriseAmount (in float amount)
 raises (FAILED_TO_AUTHORIZE);
 boolean makePurchase (in string vendor, in float amount,
 in authorizationCode auth_code);
 };

}; // Module
#endif //ACCOUNT_IDL

Example 2: FNB IDL Member (Sheet 3 of 3)
 26

Developing the Application Interfaces
5. The typedef declares an unbounded sequence, AccountTransactions,
that holds a list of BankTransaction structs. A sequence should always
be declared using a typedef construction.

6. This is an example of a forward declaration of an interface, Account.
This enables the Account interface to be referenced before it is defined.
The actual definition of the Account interface appears further on.

7. This line introduces the definition of an IDL interface, AccountMgr.
Interfaces are the most important sort of definition in IDL. An IDL
interface defines the attributes and operations for CORBA objects of a
particular type.

8. This line shows an example of an IDL operation, openAccount(). A
raises() clause introduces the list of user exceptions that can be
thrown by this operation.

9. A readonly attribute in an IDL interface maps to an operation with a
-GET- prefix that enables you to retrieve the attribute value..

10. An attribute that is not readonly maps to two operations: one with a
-GET- prefix that enables you to retrieve the attribute value, and one
with a -SET- prefix that enables you to update the attribute value.

11. The CurrentAccount interface inherits from Account. IDL inheritance is
indicated using : (that is, a colon). Multiple inheritance is supported in
IDL.

Note: See the COBOL Programmer�s Guide and Reference for more
details of IDL-to-COBOL mapping rules.
27

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Orbix IDL Compiler

Overview This subsection describes how to configure and run the Orbix IDL compiler
to generate COBOL source and copybooks from IDL definitions. It discusses
the following topics:

� �Using Orbix IDL compiler� on page 28.

� �Orbix IDL compiler configuration� on page 28.

� �Configuration settings� on page 29.

� �Configuration settings explanation� on page 29.

� �Generating COBOL copybooks for Naming Service� on page 32.

Using Orbix IDL compiler To access the definitions expressed in IDL, it is necessary to compile the IDL
into a target language such as COBOL. This is accomplished using the IDL
compiler, which takes an IDL file as input and generates server skeleton
files as output.

Orbix IDL compiler configuration The Orbix IDL compiler uses the Orbix configuration member for its settings.
The FNBIDL JCL that runs the Orbix IDL compiler on OS/390 uses a
configuration member provided in orbixhlq.CONFIG(IDL).

Note: See the COBOL Programmer�s Guide and Reference for more
details of the Orbix IDL compiler, including all the arguments that you can
use with it.

Note: For certain languages, such as C++ or Java, the Orbix IDL
compiler generates client stub files as well as server skeleton files. It does
not, however, generate client stub files for COBOL.
 28

Developing the Application Interfaces
Configuration settings The COBOL configuration for the Orbix IDL compiler is listed under Cobol as
follows:

Configuration settings explanation The available configuration settings can be explained as follows:

Cobol
{

Switch = "cobol";
ShlibName = "ORXBCBL";
ShlibMajorVersion = "x";
IsDefault = "NO";
PresetOptions = "";

COBOL source and copybooks extensions
The default is .cbl, .xxx and .cpy on NT and none for OS/390.

CobolExtension = "";
ImplementationExtension = "";
CopybookExtension = "";

};

Note: Settings listed with a # are considered to be comments and are not
in effect. The default in relation to COBOL source and copybooks
extensions is also none for OS/390 UNIX System Services.

Table 3: COBOL Configuration Settings (Sheet 1 of 3)

Variable Name Description Default

Switch This informs the Orbix IDL
compiler how to recognise the
COBOL switch that indicates to
generate COBOL code. This
setting is mandatory and must
not be altered.

ShlibName This informs the Orbix IDL
compiler what name the DLL
plug-in is stored under. This
setting is mandatory and must
not be altered.
29

CHAPTER 2 | Developing the FNB COBOL Back-End Server
ShlibMajorVersion This is the version number of
the supplied ShlibName DLL.
This setting is mandatory and
must not be altered.

IsDefault Indicates whether COBOL is
the language that the Orbix IDL
compiler generates by default
from IDL. If this is set to YES,
you do not need to specify the
-cobol switch when running
the compiler.

PresetOptions The arguments that are passed
by default as parameters to the
Orbix IDL compiler.

CobolExtensiona Extension for the server
mainline source code file on
OS/390 UNIX System Services
and Windows NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is .cbl.

ImplementationExtensiona Extension for the server
implementation source code
filename on OS/390 UNIX
System Services and Windows
NT. You should copy this to a
file with a .cbl extension, to
avoid overwriting any
subsequent changes if you run
the Orbix IDL compiler again.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is .xxx.

Table 3: COBOL Configuration Settings (Sheet 2 of 3)

Variable Name Description Default
 30

Developing the Application Interfaces
Generating alternative mapping
entries

The Orbix IDL compiler can take various arguments as parameters. See the
COBOL Programmer�s Guide and Reference for full details of these. One of
these arguments, -M, allows you to set up an alternative mapping scheme
for data names. By default, the Orbix IDL compiler generates COBOL data
names based on fully scoped interface names. This can lead to unwieldy
and possibly truncated identifier names.

CopybookExtensiona Extension for COBOL copybook
names on OS/390 UNIX
System Services and Windows
NT.

Note: This is left blank by
default, and you can set it to
any value you want. The
recommended setting is .cpy.

MainCopybookSuffix Suffix for the main copybook
member name.

RuntimeCopybookSuffix Suffix for the runtime copybook
member name.

X

SelectCopybookSuffix Suffix for the select copybook
member name.

D

ImplementationSuffix Suffix for the server
implementation source code
member name.

S

ServerSuffix Suffix for the server mainline
source code member name.

SV

a. This is ignored on native OS/390.

Note: The last five variables in Table 3 are not listed by default in
orbixhlq.CONFIG(IDL). If you want to change the generated member
suffixes from the default values shown in Table 3, you must manually
enter the relevant variable name and its corresponding value.

Table 3: COBOL Configuration Settings (Sheet 3 of 3)

Variable Name Description Default
31

CHAPTER 2 | Developing the FNB COBOL Back-End Server
To allow you to specify an alternative and more meaningful naming scheme
for your COBOL identifiers, you can specify the -M argument when you run
the IDL compiler, to generate a mapping member that contains a more
logical naming scheme. The following is an example of the contents of the
supplied mapping member for the FNB demonstration:

For example, based on the preceding mapping member example, the
alternative name for the bankobjects/CreditCardAccount identifier is CCA.

Generating COBOL copybooks for
Naming Service

Before you run the Orbix IDL compiler to generate the COBOL copybooks for
the FNB demonstration server, run the Orbix IDL compiler to generate the
COBOL copybooks for the Naming Service. To do this, submit
orbixhlq.DEMOS.COBOL.BLD.JCL(NAMESIDL). This takes as input the IDL
defined in orbixhlq.INCLUDE.OMG.IDL(COSNAMI) for the Naming Service
and generates the COBOL copybooks NAMES, NAMESX, and NAMESD in
orbixhlq.DEMOS.COBOL.COPYLIB.

In this case, the NAMESIDL JCL specifies the -O argument with the Orbix IDL
compiler, to generate alternative copybook names instead of allowing the
generated copybook names to be automatically based on the IDL member
name, COSNAMI.

Generating COBOL copybooks for
the FNB server

Submit orbixhlq.DEMOS.COBOL.BLD.JCL(FNBIDL) to run the Orbix IDL
compiler, to generate the COBOL copybooks for the FNB server. This takes
as input the IDL defined in orbixhlq.DEMOS.IDL(FNB) for the FNB
demonstration and generates the COBOL copybooks FNB, FNBX, and FNBD in
orbixhlq.DEMOS.COBOL.COPYLIB.

bankobjects bo
bankobjects/Account Account
bankobjects/AccountMgr AccMgr
bankobjects/CurrentAccount CA
bankobjects/SavingsAccount SA
bankobjects/CreditCardAccount CCA
bankobjects/CreditCardAccount/limit CCA-LIMIT
bankobjects/BankTransaction/id TXN-ID
bankobjects/BankTransaction/date TXN-DATE
bankobjects/BankTransaction/record_type TXN-RECORD-TYPE
bankobjects/BankTransaction/value TXN-VALUE
 32

Developing the Application Interfaces
The source code members for the FNB COBOL back-end server are already
generated and shipped with Orbix Mainframe. The arguments to generate
the relevant source code members are therefore disabled in
orbixhlq.DEMOS.COBOL.BLD.JCL(FNBIDL). See the COBOL Programmer�s
Guide and Reference for full details of IDL compiler arguments.
33

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Generated Source Code and Copybooks

Overview This subsection provides an overview of the source code and copybook
members that the Orbix IDL compiler generates for the FNB COBOL
back-end server.

Generated source code members Table 4 provides an overview of the server source code members that the
Orbix IDL compiler generates, based on the defined IDL.

Note: These are already generated for you for the purposes of this
demonstration. They are provided in the orbixhlq.DEMOS.COBOL.SRC PDS.

Table 4: Generated FNB Server Source Code Members

Source Member
Name

JCL Keyword
Parameter

Description

FNBS IMPL This is the server implementation
source code member. It contains
stub paragraphs for all the
callable operations.

FNBSV IMPL This is the server mainline source
code member.
 34

Developing the Application Interfaces
Generated copybooks Table 5 provides an overview of the COBOL copybook members that the
Orbix IDL compiler generates, based on the defined IDL, when you submit
the orbixhlq.DEMOS.COBOL.BLD.JCL(FNBIDL) JCL.

How IDL maps to COBOL
copybooks

Each IDL interface maps to a group of COBOL data definitions. There is one
definition for each IDL operation. A definition contains each of the
parameters for the relevant IDL operation in their corresponding COBOL
representation. See the COBOL Programmer�s Guide and Reference for
details of how IDL types map to COBOL.

Attributes map to two operations (get and set), and readonly attributes map
to a single get operation.

Table 5: Generated COBOL Copybooks

Copybook JCL Keyword
Parameter

Description

FNB COPYLIB The FNB copybook contains data
definitions that are used for
working with operation
parameters and return values
for each interface defined in the
FNB IDL member.

FNBX COPYLIB The FNBX copybook contains
data definitions that are used by
the COBOL runtime to support
the interfaces defined in the FNB
IDL member.

This copybook is automatically
included in the FNB copybook.

FNBD COPYLIB The FNBD copybook contains
procedural code for performing
the correct paragraph for the
requested operation.

This copybook is automatically
included in the FNBS server
implementation source code
member.
35

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Location of demonstration source You can find examples of the source code for the FNB back-end server
demonstration in the following locations:

� orbixhlq.DEMOS.COBOL.SRC(FNBSV)

� orbixhlq.DEMOS.COBOL.SRC(FNBS)

Location of demonstration
copybooks

You can find examples of the copybooks generated for the FNB back-end
server demonstration in the following locations:

� orbixhlq.DEMOS.COBOL.COPYLIB(FNB)

� orbixhlq.DEMOS.COBOL.COPYLIB(FNBX)

� orbixhlq.DEMOS.COBOL.COPYLIB(FNBD)

Note: These source code members are shipped with your Orbix
Mainframe installation.

Note: These copybooks are not shipped with your Orbix Mainframe
installation. They are generated when you run the supplied JCL in
orbixhlq.DEMOS.COBOL.BLD.JCL(FNBIDL), to run the Orbix IDL compiler.
 36

Writing the Server
Writing the Server

Overview This section describes the steps you must follow to develop the server
executable for the FNB back-end server demonstration.

Steps to develop the server The steps to develop the server application are:

Note: This section is provided for the purposes of illustration only. The
server is supplied fully written with your Orbix Mainframe installation.

Step Action

1 �Writing the Server Implementation� on page 38

2 �Writing the Server Mainline� on page 62
37

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Writing the Server Implementation

The server implementation
module

You must implement the server interface by writing a COBOL module that
implements each operation in the generated FNB copybook.

Example of the FNBS module Example 3 shows parts of the FNBS module (ellipses are used to denote code
omitted for the sake of brevity):

Note: Ordinarily, when you specify the -Z argument with the Orbix IDL
compiler, it generates a module called idlmembernameS, which contains
the server skeleton implementation code. For the purposes of this
demonstration, however, the FNBS module is provided fully implemented
for you. The -Z argument is therefore disabled by default in the FNBIDL JCL
that you use to run the IDL compiler for this demonstration.

Note: You can find the complete FNBS server implementation program in
orbixhlq.DEMOS.COBOL.SRC(FNBS).

Example 3: FNBS Server Implementation Module (Sheet 1 of 11)

**
* Copyright (c) 2001-2003 IONA Technologies PLC.
* All Rights Reserved.
*
* Description: This is the batch server implementation of the
* FNB demo.
*
**

IDENTIFICATION DIVISION.
PROGRAM-ID. FNBS.

ENVIRONMENT DIVISION.

1 INPUT-OUTPUT SECTION.
…

DATA DIVISION.

2 FILE SECTION.
…

 38

Writing the Server
WORKING-STORAGE SECTION.
…

3 COPY FNB.
4 COPY CORBA.

5 LINKAGE SECTION.
01 LS-ACCOUNT-CHAIN-ENTRY.
 05 LS-ACCOUNT-IOR POINTER.
 05 LS-ACCOUNT-NUMBER PIC 9(10) BINARY.
 05 LS-ACCOUNT-NEXT-ENTRY POINTER.

PROCEDURE DIVISION.
6 ENTRY "DISPATCH".

7 CALL "COAREQ" USING REQUEST-INFO.
SET WS-COAREQ TO TRUE.
PERFORM CHECK-STATUS.
* Resolve the pointer reference to the interface name which is
* the fully scoped interface name

8 CALL "STRGET" USING INTERFACE-NAME
 WS-INTERFACE-NAME-LENGTH
 WS-INTERFACE-NAME.
 SET WS-STRGET TO TRUE.
 PERFORM CHECK-STATUS.

**
* Interface(s) :
**
MOVE SPACES TO ACCMGR-OPERATION.
MOVE SPACES TO ACCOUNT-OPERATION.
MOVE SPACES TO CA-OPERATION.
MOVE SPACES TO CCA-OPERATION.

* Evaluate Interface(s) :

EVALUATE WS-INTERFACE-NAME
WHEN 'IDL:bankobjects/AccountMgr:1.0'

* Resolve the pointer reference to the operation information
9 CALL "STRGET" USING OPERATION-NAME

Example 3: FNBS Server Implementation Module (Sheet 2 of 11)
39

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 ACCMGR-OPERATION-LENGTH
 ACCMGR-OPERATION
SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
WHEN 'IDL:bankobjects/Account:1.0'

* Resolve the pointer reference to the operation information
9 CALL "STRGET" USING OPERATION-NAME

 ACCOUNT-OPERATION-LENGTH
 ACCOUNT-OPERATION
SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
WHEN 'IDL:bankobjects/CurrentAccount:1.0'

* Resolve the pointer reference to the operation information
9 CALL "STRGET" USING OPERATION-NAME

 CA-OPERATION-LENGTH
 CA-OPERATION
SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
WHEN 'IDL:bankobjects/CreditCardAccount:1.0'

* Resolve the pointer reference to the operation information
9 CALL "STRGET" USING OPERATION-NAME

 CCA-OPERATION-LENGTH
 CCA-OPERATION
SET WS-STRGET TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.

10 COPY FNBD.
GOBACK.
ENTRY "SHUTDOWN".

* This entry point is not really needed but is used to demon
* -strate how dynamic storage can be freed again. The dynamic
* storage is in this case the linked list containing the account
* object references that have been already been created. This
* entry point is called at the end of the server main program
* when it is shutting down.

SET ADDRESS OF LS-ACCOUNT-CHAIN-ENTRY TO
 WS-ACCOUNT-ANCHOR
PERFORM UNTIL ADDRESS OF LS-ACCOUNT-CHAIN-ENTRY = NULL

Example 3: FNBS Server Implementation Module (Sheet 3 of 11)
 40

Writing the Server
 CALL "OBJREL" USING LS-ACCOUNT-IOR
 SET WS-OBJREL TO TRUE
 PERFORM CHECK-STATUS

 SET WS-ACCOUNT-ENTRY-PTR TO
 ADDRESS OF LS-ACCOUNT-CHAIN-ENTRY
 SET ADDRESS OF LS-ACCOUNT-CHAIN-ENTRY TO
 LS-ACCOUNT-NEXT-ENTRY

 CALL "MEMFREE" USING WS-ACCOUNT-ENTRY-PTR
 SET WS-MEMFREE TO TRUE
 PERFORM CHECK-STATUS

END-PERFORM.
GOBACK.

12 DO-ACCMGR-OPENACCOUNT.
SET D-NO-USEREXCEPTION TO TRUE.

11 CALL "COAGET" USING ACCMGR-OPENACCOUNT-ARGS.
SET WS-COAGET TO TRUE.
PERFORM CHECK-STATUS.

MOVE ACCOUNTNUMBER OF ACCMGR-OPENACCOUNT-ARGS TO
 ACCOUNT-NUMBER.

READ ACCOUNTS KEY IS ACCOUNT-KEY
END-READ.

IF (ACCOUNT-STATUS NOT = 0
 AND ACCOUNT-STATUS NOT = 2
 AND ACCOUNT-STATUS NOT = 23)
 DISPLAY '*** A response of, ' ACCOUNT-STATUS ', was '
 'detected when reading the Account file.'
 GOBACK
END-IF

IF ACCOUNT-STATUS = 23
 DISPLAY " account number not found "
 SET D-BO-ACCOUNT-DOESNT-EXIST TO TRUE

 DISPLAY "set exception id ..."
 CALL "STRSET" USING EXCEPTION-ID
 EX-BO-ACCOUNT-DOESNT-EXIS-4410
 EX-BO-ACCOUNT-DOESNT-EXIST

Example 3: FNBS Server Implementation Module (Sheet 4 of 11)
41

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 SET WS-STRSET TO TRUE
 PERFORM CHECK-STATUS

 DISPLAY "raise user exception with coaerr..."
 CALL "COAERR" USING FNB-USER-EXCEPTIONS

 SET WS-COAERR TO TRUE
 PERFORM CHECK-STATUS

END-IF
* the account exists in the datastore. Have we created an
* object reference for it? Search the linked list first.
* These searches are extremely fast despite being O(N).
* If the search fails then call objnew to create the object
* and insert it into the linked list.
PERFORM SEARCH-ACCOUNT-CHAIN
IF WS-QUIT-SEARCH-ACCOUNT-LOOP = 0 THEN
 DISPLAY " no record in linked list for "
 DISPLAY " account number " ACCOUNT-NUMBER
 DISPLAY " call objnew "
* set up the call to OBJNEW.
EVALUATE ACCOUNT-CLASS
 WHEN 'Credit Card'
 MOVE "IDL:bankobjects/CreditCardAccount:1.0 "
 TO WS-INTERFACE-NAME
 WHEN 'Current'
 MOVE "IDL:bankobjects/CurrentAccount:1.0 "
 TO WS-INTERFACE-NAME
END-EVALUATE

* convert binary account number key to string - must
* be at least one trailing space for use in OBJNEW
* call
 MOVE ACCOUNT-NUMBER TO WS-ACCOUNT-NUMBER-STR11
 MOVE SPACES TO WS-ACCOUNT-NUMBER-STR11(11:1)

* create new account object reference
 CALL "OBJNEW" USING SERVER-NAME
 WS-INTERFACE-NAME
 WS-ACCOUNT-NUMBER-STR11
 WS-OBJ-COPY
 SET WS-OBJNEW TO TRUE
 PERFORM CHECK-STATUS
* OBJNEW was Ok - add the new obj reference to the linked list
 MOVE LENGTH OF LS-ACCOUNT-CHAIN-ENTRY

Example 3: FNBS Server Implementation Module (Sheet 5 of 11)
 42

Writing the Server
 TO WS-TEMP-LENGTH
 CALL "MEMALLOC" USING WS-TEMP-LENGTH
 WS-ACCOUNT-ENTRY-PTR
 SET WS-MEMALLOC TO TRUE
 PERFORM CHECK-STATUS

* set current chain entry to newly allocated memory
 SET ADDRESS OF LS-ACCOUNT-CHAIN-ENTRY TO
 WS-ACCOUNT-ENTRY-PTR
* write the newly created account number to the chain entry
 MOVE ACCOUNT-NUMBER TO LS-ACCOUNT-NUMBER
* duplicate object just created in order to prevent deletion
* when COAPUT runs
 SET LS-ACCOUNT-IOR TO WS-OBJ-COPY
* finally insert the new chain entry at the head of the chain.
 SET LS-ACCOUNT-NEXT-ENTRY TO WS-ACCOUNT-ANCHOR
 SET WS-ACCOUNT-ANCHOR TO WS-ACCOUNT-ENTRY-PTR
 CALL "OBJDUP" USING LS-ACCOUNT-IOR
 RESULT OF
 ACCMGR-OPENACCOUNT-ARGS
 SET WS-OBJDUP TO TRUE
 PERFORM CHECK-STATUS
ELSE
 CALL "OBJDUP" USING LS-ACCOUNT-IOR
 RESULT OF
 ACCMGR-OPENACCOUNT-ARGS
 SET WS-OBJDUP TO TRUE
 PERFORM CHECK-STATUS
* end of linked list search test ********************
END-IF.

EVALUATE TRUE
WHEN D-NO-USEREXCEPTION

11 CALL "COAPUT" USING ACCMGR-OPENACCOUNT-ARGS
SET WS-COAPUT TO TRUE
PERFORM CHECK-STATUS
END-EVALUATE.

13 DO-ACCMGR-NEWACCOUNT.
…

14 DO-ACCMGR-CLOSEACCOUNT.
…

15 DO-ACCMGR-GETCURRENTACCOU-AE9B.

Example 3: FNBS Server Implementation Module (Sheet 6 of 11)
43

CHAPTER 2 | Developing the FNB COBOL Back-End Server
…

15 DO-ACCMGR-GETCREDITCARDLIST.
…

16 DO-ACCOUNT-GET-ACCOUNTNUMBER.
…

17 DO-ACCOUNT-GET-ADDR.
…

18 DO-ACCOUNT-GET-ACCOUNTTYPE.
…

18 DO-ACCOUNT-GET-FIRSTNAME.
…

19 DO-ACCOUNT-SET-FIRSTNAME.
…

18 DO-ACCOUNT-GET-LASTNAME.
…

19 DO-ACCOUNT-SET-LASTNAME.
…

20 DO-ACCOUNT-GET-ACCOUNTBALANCE.
…

16 DO-ACCOUNT-GET-RECENTTRAN-D044.
…

21 DO-ACCOUNT-MAKELODGEMENT.
…

22 DO-ACCOUNT-UPDATEADDRESS.
…

21 DO-ACCOUNT-TRANSFERFUNDSIN.
…

23 DO-CA-GET-OVERDRAFTLIMIT.
…

24 DO-CA-APPROVENEWOVERDRAFT.

Example 3: FNBS Server Implementation Module (Sheet 7 of 11)
 44

Writing the Server
…

25 DO-CA-GET-ACCOUNTNUMBER.
…

26 DO-CA-GET-ADDR.
…

27 DO-CA-GET-ACCOUNTTYPE.
…

28 DO-CA-GET-FIRSTNAME.
…

29 DO-CA-SET-FIRSTNAME.
…

30 DO-CA-GET-LASTNAME.
…

31 DO-CA-SET-LASTNAME.
…

32 DO-CA-GET-ACCOUNTBALANCE.
…

33 DO-CA-GET-RECENTTRANSACTIONS.
…

34 DO-CA-MAKELODGEMENT.
…

35 DO-CA-WITHDRAWFUNDS.
…

36 DO-CA-UPDATEADDRESS.
…

37 DO-CA-TRANSFERFUNDSIN.
…

38 DO-CA-TRANSFERFUNDSOUT.
…

39 DO-CCA-GET-LIMIT.

Example 3: FNBS Server Implementation Module (Sheet 8 of 11)
45

CHAPTER 2 | Developing the FNB COBOL Back-End Server
…

40 DO-CCA-SET-LIMIT.
…

39 DO-CCA-GET-INTEREST-RATE.
…

40 DO-CCA-SET-INTEREST-RATE.
…

41 DO-CCA-CALCULATEINTEREST.
…

42 DO-CCA-AUTHORISEAMOUNT.
…

43 DO-CCA-MAKEPURCHASE.
…

25 DO-CCA-GET-ACCOUNTNUMBER.
…

26 DO-CCA-GET-ADDR.
…

27 DO-CCA-GET-ACCOUNTTYPE.
…

28 DO-CCA-GET-FIRSTNAME.
…

29 DO-CCA-SET-FIRSTNAME.
…

30 DO-CCA-GET-LASTNAME.
…

31 DO-CCA-SET-LASTNAME.
…

32 DO-CCA-GET-ACCOUNTBALANCE.
…

33 DO-CCA-GET-RECENTTRANSACTIONS.

Example 3: FNBS Server Implementation Module (Sheet 9 of 11)
 46

Writing the Server
…

34 DO-CCA-MAKELODGEMENT.
…

35 DO-CCA-WITHDRAWFUNDS.
…

36 DO-CCA-UPDATEADDRESS.
…

37 DO-CCA-TRANSFERFUNDSIN.
…

38 DO-CCA-TRANSFERFUNDSOUT.
…

**
* Check Errors Copybook
**

*
44 COPY CHKERRS.

FIND-LAST-ACCNUM.
*=================
…

UPDATE-LAST-ACCNUM.
*==================
…

CREATE-NEW-ACCOUNT.
*===================
…

GET-OBJECTID-FROM-TARGET.
*=========================
…

RETRIEVE-ACCOUNT-DETAILS.
*=========================
…

UPDATE-ACCOUNT-DETAILS.
*=========================

Example 3: FNBS Server Implementation Module (Sheet 10 of 11)
47

CHAPTER 2 | Developing the FNB COBOL Back-End Server
…

BUILD-ACCOUNT-SEQUENCE.
*=========================
…

BUILD-CCA-SEQUENCE.
*===================
…

BUILD-TXNHIST-SEQUENCE.
*=========================
…

BUILD-CCA-TXNHIST-SEQUENCE.
*===========================
…

SEARCH-ACCOUNT-CHAIN.
*=====================
…

GET-TXN-ID.
*===========
…

UPDATE-TXNNUM.
*==============
…

UPDATE-TXNHIST.
*==============
…

CREATE-TXN-HIST.
*================
…

Example 3: FNBS Server Implementation Module (Sheet 11 of 11)
 48

Writing the Server
Explanation of the batch FNBS
module

The FNBS module can be explained as follows:

1. This section defines the files to be used by the server application for
storing account data (ACCOUNTS), last-account-number-used data
(ACCNUM), transaction history data (TXNHIST), and
last-transaction-history-key-used-per-account data (TXNNUM).

2. This section defines the layout of the records in each of the files used
by the server application.

3. The data definitions used for working with operation parameters and
return values for each interface being implemented are copied in from
the FNB copybook.

4. Various Orbix COBOL definitions, such as REQUEST-INFO used by the
COAREQ function, and ORBIX-STATUS-INFORMATION used to register and
report system exceptions raised by the COBOL runtime, are copied in
from the CORBA copybook.

5. This section defines the layout of the data in the linked list for
recording currently active objects.

6. The DISPATCH logic is automatically coded for you, and the bulk of the
code is contained in the FNBD copybook. When an incoming request
arrives from the network, it is processed by the ORB and a call is made
to the DISPATCH entry point.

7. COAREQ is called to provide information about the current invocation
request, which is held in the REQUEST-INFO block that is contained in
the CORBA copybook.

COAREQ is called once for each operation invocation�after a request
has been dispatched to the server, but before any calls are made to
access the parameter values.

8. STRGET is called to copy the characters in the unbounded string pointer
for the interface name to the string item representing the fully scoped
interface name.

9. STRGET is called again to copy the characters in the unbounded string
pointer for the relevant operation name, in each interface respectively,
to the string item representing the operation name.
49

CHAPTER 2 | Developing the FNB COBOL Back-End Server
10. The procedural code used to perform the correct paragraph for the
requested operation is copied into the program from the FNBD
copybook.

11. This operation (and every other operation) calls COAGET and COAPUT to
copy incoming values and return values, respectively, from and to the
COBOL structures for the operation�s parameter list. COAGET and
COAPUT must be called by every operation, even if the operation takes
no parameters or returns no values.

12. The DO-ACCMGR-OPENACCOUNT operation:

i. Moves the account number passed in from the client to file.

ii. Reads the account file, to check if the account already exists,
using the account number as the key.

iii. Checks the account status to see if the account exists on file.

iv. If the account does not exist, the server calls COAERR, to raise the
ACCOUNT_DOESNT_EXIST user exception.

v. If the account does exist, the server searches the linked list, to
see if an object reference already exists for it.

If an object reference does not exist for the account, the server
checks the ACCOUNT-CLASS value on the account record to see if it
is a credit card or current account, calls OBJNEW to create an
object reference, calls MEMALLOC to dynamically allocate memory
in the account chain for the account�s IOR, and then moves the
account number to the newly created entry in the account chain.

Alternatively, if an object reference already exists, the server calls
OBJDUP to create a copy of the object reference, to conform with
the memory management rules for object references (see the
COBOL Programmer�s Guide and Reference for more details).

13. The DO-ACCMGR-NEWACCOUNT operation:

i. Performs the FIND-LAST-ACCNUM paragraph, to find out the last
account number created in the ACCNUM data set.

ii. Initializes an account record and assigns it an account number
equal to the last account number plus one.

iii. Calls STRGET, using the account type passed in, to see what type
of account is to be created.
 50

Writing the Server
iv. Converts the binary account number key to a string.

v. Calls MEMALLOC to dynamically allocate memory in the account
chain for the new account�s IOR.

vi. Calls OBJNEW to create an object reference for the new account,
and then moves the newly created account number to the newly
created entry in the account chain.

vii. Calls OBJDUP to create a copy of the object reference, to conform
with the memory management rules for object references (see the
COBOL Programmer�s Guide and Reference for more details)..

viii. Performs the CREATE-NEW-ACCOUNT paragraph to create the new
account record in the ACCOUNTS data set, and then performs the
UPDATE-LAST-ACCNUM paragraph to store the new account number
as the last account number created in the ACCNUM data set.

ix. Finally, it performs the CREATE-TXN-HIST paragraph, to update
the transaction history for the new account in the TXNHIST data
set.

14. The DO-ACCMGR-CLOSEACCOUNT operation:

i. Moves the account number passed in to the record key of the
accounts file (ACCOUNTS).

ii. If the record exists on file, it is deleted. Otherwise, the server
raises the CANNOT_CLOSE_ACCOUNT user exception.

15. The DO-ACCMGR-GETCURRENTACCOU-AE9B and
DO-ACCMGR-GETCREDITCARDLIST operations:

i. Moves the literal value relating to the account type (that is
"Current" or "Credit Card") to file.

ii. Reads the account file, using the account class (that is, the
account type) as the key.

iii. Calls SEQALLOC, if no accounts of that type exist, to return a
sequence of zero length.

iv. Calls SEQALLOC, if accounts of that type do exist, to return a
sequence of those accounts.
51

CHAPTER 2 | Developing the FNB COBOL Back-End Server
16. The DO-ACCOUNT-GET-ACCOUNTNUMBER and
DO-ACCOUNT-GET-RECENTTRAN-D044 generic operations:

i. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Convert the account number in Working Storage to a numeric
string.

17. The DO-ACCOUNT-GET-ADDR generic operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.

iii. Performs the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Moves the account record address line 1 and its length to
Working Storage.

v. Calls STRSET to create an unbounded string from address line 1 in
Working Storage.

vi. Repeats steps v and vi for address line 2 and address line 3.

18. The DO-ACCOUNT-GET-ACCOUNTTYPE, DO-ACCOUNT-GET-FIRSTNAME, and
DO-ACCOUNT-GET-LASTNAME generic operations:

i. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Convert the account number in Working Storage to a numeric
string.

iii. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Move the account record field being processed (account class,
first name, or last name), and its length, to Working Storage.

v. Call STRSET to create an unbounded string for the relevant field.
 52

Writing the Server
19. The DO-ACCOUNT-SET-FIRSTNAME and DO-ACCOUNT-SET-LASTNAME
generic operations:

i. Move the length of the first name or last name unbounded strings
passed in from the client to Working Storage.

ii. Call STRGET to copy the characters in the unbounded string
pointer in Working Storage to the bound string data item in
Working Storage.

iii. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

iv. Convert the account number in Working Storage to a numeric
string.

v. Move the account number in Working Storage to file.

vi. Move account first name or last name in Working Storage to file.

vii. Perform the UPDATE-ACCOUNT-DETAILS paragraph, which updates
the relevant account record.

20. The DO-ACCOUNT-GET-ACCOUNTBALANCE generic operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Convert the account number in Working Storage to a numeric
string.

iii. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

21. The DO-ACCOUNT-MAKE-LODGEMENT and DO-ACCOUNT-TRANSFERFUNDSIN
operations:

i. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Convert the account number in Working Storage to a numeric
string.
53

CHAPTER 2 | Developing the FNB COBOL Back-End Server
iii. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Calculate the new account balance as the existing account
balance plus the temporary amount in Working Storage.

v. Perform the UPDATE-ACCOUNT-DETAILS paragraph, which updates
the relevant account record.

vi. Update the transaction history record for the account, by
initializing the transaction history record and calling the
CREATE-TXN-HIST paragraph, which in turn calls the GET-TXN-ID
paragraph (to read the transaction number key), the
UPDATE-TXNHIST paragraph (to update the transaction history
record for the account), and the UPDATE-TXNNUM paragraph (to
update the last-transaction-history-key-used record).

22. The DO-ACCOUNT-UPDATEADDRESS operation:

i. Moves the length of address line 1 to Working Storage.

ii. Calls STRGET to copy the characters in the unbounded string
pointer in Working Storage to the string item in Working Storage.

iii. Moves address line 1 from Working Storage to file.

iv. Repeats steps i�iii for address line 2 and address line 3.

v. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

vi. Converts the account number in Working Storage to a numeric
string.

vii. Moves the account number in Working Storage to file.

viii. Performs the UPDATE-ACCOUNT-DETAILS paragraph, which updates
the relevant account record.

23. The DO-CA-GET-OVERDRAFTLIMIT operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.
 54

Writing the Server
iii. Performs the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Moves the overdraft limit from the relevant account record to the
operation argument list, and returns this value to the client.

24. The DO-CA-APPROVENEWOVERDRAFT operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.

iii. Performs the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file, based on the account number, to retrieve the
account details.

iv. Moves the new overdraft amount passed in to the overdraft field
on the customer record.

v. Performs the UPDATE-ACCOUNT-DETAILS paragraph, which updates
the relevant account record with the new overdraft amount.

25. The DO-CA-GET-ACCOUNTNUMBER and DO-CCA-GET-ACCOUNTNUMBER
operations:

i. Perform DO-ACCOUNT-GET-ACCOUNTNUMBER (see point 16).

ii. Assign the account number to the account number parameter of
the customer account, and return this to the client.

26. The DO-CA-GET-ADDR and DO-CCA-GET-ADDR operations:

i. Perform DO-ACCOUNT-GET-ADDR (see point 17).

ii. Assign the customer address to the three address parameters of
the customer account, and return these to the client. These three
string data items are unbounded strings.

27. The DO-CA-GET-ACCOUNTTYPE and DO-CCA-GET-ACCOUNTTYPE
operations:

i. Perform DO-ACCOUNT-GET-ACCOUNTTYPE (see point 18).

ii. Assign the relevant account type to the account type parameter of
the customer account, and return this to the client. The account
type is an unbounded string data item.
55

CHAPTER 2 | Developing the FNB COBOL Back-End Server
28. The DO-CA-GET-FIRSTNAME and DO-CCA-GET-FIRSTNAME operations:

i. Perform DO-ACCOUNT-GET-FIRSTNAME (see point 18).

ii. Assign the relevant first name to the first name parameter of the
customer account, and return this to the client. The first name is
an unbounded string data item.

29. The DO-CA-SET-FIRSTNAME and DO-CCA-SET-FIRSTNAME operations:

i. Assign the unbounded string data item in Working Storage to the
first name parameter of the customer account.

ii. Perform DO-ACCOUNT-SET-FIRSTNAME (see point 19).

30. The DO-CA-GET-LASTNAME and DO-CCA-GET-LASTNAME operations:

i. Perform DO-ACCOUNT-GET-LASTNAME (see point 18).

ii. Assign the relevant last name to the last name parameter of the
customer account, and return this to the client. The last name is
an unbounded string data item.

31. The DO-CA-SET-LASTNAME and DO-CCA-SET-LASTNAME operations:

i. Assign the bounded string data item in Working Storage to the
last name parameter of the customer account.

ii. Perform DO-ACCOUNT-SET-LASTNAME (see point 19).

32. The DO-CA-GET-ACCOUNTBALANCE and DO-CCA-GET-ACCOUNTBALANCE
operations:

i. Perform DO-ACCOUNT-GET-ACCOUNTBALANCE (see point 20).

ii. Assign the account balance to the account balance parameter of
the customer account, and return this to the client.

33. The DO-CA-GET-RECENTTRANSACTIONS and
DO-CCA-GET-RECENTTRANSACTIONS operations:

i. Perform DO-ACCOUNT-GET-RECENTTRAN-D044 (see point 16).

ii. Read the transaction history file, using the transaction history key
as the key, to check if the specific account has any history
records.

iii. If no transaction history exists, an error message is displayed.
Otherwise, SEQALLOC is called to create an unbounded sequence
and populate it with elements containing details of each history
account record, and this sequence is returned to the client.
 56

Writing the Server
34. The DO-CA-MAKELODGEMENT and DO-CCA-MAKELODGEMENT operations:

i. Move the amount to be lodged to Working Storage.

ii. Perform DO-ACCOUNT-MAKELODGEMENT (see step 21).

35. The DO-CA-WITHDRAWFUNDS and DO-CCA-WITHDRAWFUNDS operations:

i. Move the amount to be withdrawn to Working Storage.

ii. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

iii. Convert the account number in Working Storage to a numeric
string.

iv. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

v. Calculate the withdrawal limit in Working Storage as the account
balance plus the overdraft or credit limit.

vi. If the amount to be withdrawn is not greater than the withdrawal
limit, the server calculates the account balance as the existing
account balance minus the amount to be withdrawn, performs
the UPDATE-ACCOUNT-DETAILS paragraph to update the relevant
account record, and performs the CREATE-TXN-HIST paragraph to
to update the transaction history for the account.

vii. Conversely, if the amount to be withdrawn is greater than the
withdrawal limit, the server calls COAERR to raise the
INSUFFICIENT_FUNDS user exception.

36. The DO-CA-UPDATEADDRESS and DO-CCA-UPDATEADDRESS operations:

i. Assign the unbounded string data items in Working Storage to the
three address parameters of the customer account.

ii. Perform DO-ACCOUNT-UPDATEADDRESS (see step 22).

37. The DO-CA-TRANSFERFUNDSIN and DO-CCA-TRANSFERFUNDSIN
operations:

i. Move amount, to be transferred, to Working Storage.

ii. Perform DO-ACCOUNT-TRANSFERFUNDSIN (see point 21).
57

CHAPTER 2 | Developing the FNB COBOL Back-End Server
38. The DO-CA-TRANSFERFUNDSOUT and DO-CCA-TRANSFERFUNDSOUT
operations:

i. Move amount, to be transferred, to Working Storage.

ii. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

iii. Convert the account number in Working Storage to a numeric
string.

iv. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

v. Calculate the withdrawal limit in Working Storage as the account
balance plus the overdraft limit.

vi. If the amount to be withdrawn is less than the withdrawal limit,
the server calculates the account balance as the existing account
balance minus the amount to be withdrawn, performs the
UPDATE-ACCOUNT-DETAILS paragraph to update the relevant
account record, and performs the CREATE-TXN-HIST paragraph to
to update the transaction history for the account.

vii. Conversely, if the amount to be withdrawn is greater than the
withdrawal limit, the server calls COAERR to raise the
INSUFFICIENT_FUNDS user exception.

39. The DO-CCA-GET-LIMIT and DO-CCA-GET-INTEREST-RATE operations:

i. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Convert the account number in Working Storage to a numeric
string.

iii. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

iv. Assign the limit or interest rate amount of the customer account
to the limit or interest rate parameter, and return this to the
client.
 58

Writing the Server
40. The DO-CCA-SET-LIMIT and DO-CCA-SET-INTEREST-RATE operations:

i. Perform the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Convert the account number in Working Storage to a numeric
string.

iii. Perform the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

iv. Move the limit or interest rate passed in to the limit or interest
rate field on the customer record.

v. Perform the UPDATE-ACCOUNT-DETAILS paragraph, which updates
the relevant account record.

41. The DO-CCA-CALCULATEINTEREST operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.

iii. Performs the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

iv. Checks if the account balance is negative. If so, it calculates the
interest due as the account balance multiplied by the interest
rate, and places it in the result of the operation�s argument list.
Otherwise, it moves zero to the result of the opertion�s argument
list.

42. The DO-CCA-AUTHORISEAMOUNT operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.
59

CHAPTER 2 | Developing the FNB COBOL Back-End Server
iii. Performs the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

iv. Calculates the real limit in Working Storage as the account
balance plus the account limit.

v. Checks if the amount being requested for authorization is within
the calculated credit limit. If so, the server calculates an
authorization code, by using the COBOL random function, to
retrieve a value between 0.0 and 1.0. The result calculated is
then multiplied by 10000, to obtain the first four significant
digits. The calculated authorization code is assigned to the
authorization code parameter of the operation, and then returned
to the client. The server performs the UPDATE-ACOUNT-DETAILS
paragraph to then update the account record.

vi. Conversely, if the amount being requested for authorization is not
within the calculated credit limit, the server calls COAERR to raise
the FAILED_TO_AUTHORIZE user exception.

43. The DO-CCA-MAKEPURCHASE operation:

i. Performs the GET-OBJECTID-FROM-TARGET paragraph, which calls
OBJGETID to retrieve the object name from the related object
reference.

ii. Converts the account number in Working Storage to a numeric
string.

iii. Performs the RETRIEVE-ACCOUNT-DETAILS paragraph, which reads
the accounts file based on the account key, to retrieve account
details.

iv. Checks to see if the purchase is already authorized (that is, if the
authorisation code passed in equals the authorization code on
record). If so, the server calculates the account balance as the
existing account balance minus the purchase amount, performs
the UPDATE-ACCOUNT-DETAILS paragraph to update the account
record, performs the CREATE-TXN-HIST paragraph to update the
transaction history for the account, and calls STRGET to output the
transaction vendor details.
 60

Writing the Server
44. A COBOL function that is called to check to see if a system exception
has occurred, and to report that system exception, is copied in from
the CHKERRS copybook.
61

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Writing the Server Mainline

The server mainline module The next step is to write the server mainline module in which to run the
server implementation.

Example of the batch FNBSV
module

Example 4 shows parts of the batch FNBSV module (ellipses are used to
denote code omitted for the sake of brevity):

Note: Ordinarily, when you specify the -S argument with the Orbix IDL
compiler, it generates a module called idlmembernameSV, which contains
the server mainline code. For the purposes of this demonstration, however,
the FNBSV module is already provided for you. The -S argument is therefore
disabled by default in the FNBIDL JCL that you use to run the IDL compiler
for this demonstration.

Note: You can find the complete FNBSV server implementation program in
orbixhlq.DEMOS.COBOL.SRC(FNBSV).

Example 4: FNBSV Server Mainline Module (Sheet 1 of 11)

**
* Copyright (c) 2001-2003 IONA Technologies PLC.
* All Rights Reserved.
*
* Description: This is the batch server mainline of the FNB
* demo.
*
**
IDENTIFICATION DIVISION.
PROGRAM-ID. FNBSV.
ENVIRONMENT DIVISION.

1 INPUT-OUTPUT SECTION.
FILE-CONTROL.
 …

2 COPY IORSLCT REPLACING
 "X-IOR" BY ACCMGR-IOR
 "X-IORFILE" BY "IORFILE"
 "X-IOR-STAT" BY ACCMGR-IOR-STAT.

DATA DIVISION.
 62

Writing the Server
FILE SECTION.

3 COPY FNBRECS.
4 COPY IORFD REPLACING

 "X-IOR" BY ACCMGR-IOR
 "X-REC" BY ACCMGR-REC.

WORKING-STORAGE SECTION.

5 COPY NAMES.
6 COPY FNB.
7 COPY CORBA.

…

8 COPY PROCPARM.

9 PERFORM OPEN-FILE.

10 CALL "ORBSTAT" USING ORBIX-STATUS-INFORMATION.
 SET WS-ORBSTAT TO TRUE.
 PERFORM CHECK-STATUS.

11 CALL "ORBARGS" USING ARG-LIST
 ARG-LIST-LEN
 ORB-NAME
 ORB-NAME-LEN.
 SET WS-ORBARGS TO TRUE.
 PERFORM CHECK-STATUS.

12 CALL "ORBSRVR" USING SERVER-NAME
 SERVER-NAME-LEN.
 SET WS-ORBSRVR TO TRUE.
 PERFORM CHECK-STATUS.

**
* Interface Section Block
**

* Generating IOR for interface bankobjects/AccountMgr
13 CALL "ORBREG" USING ACCMGR-INTERFACE.

 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

Example 4: FNBSV Server Mainline Module (Sheet 2 of 11)
63

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 OPEN OUTPUT ACCMGR-IOR.
 IF ACCMGR-IOR-STAT NOT = 0
 GO TO EXIT-PRG
 END-IF.

14 CALL "OBJNEW" USING SERVER-NAME
 INTERFACE-NAME OF INTERFACE-NAMES-ARRAY(1)
 OBJECT-IDENTIFIER OF OBJECT-ID-ARRAY(1)
 ACCMGR-OBJ.
 SET WS-OBJNEW TO TRUE.
 PERFORM CHECK-STATUS.

15 CALL "OBJTOSTR" USING ACCMGR-OBJ
 IOR-REC-PTR.
 SET WS-OBJTOSTR TO TRUE.
 PERFORM CHECK-STATUS.

16 CALL "STRGET" USING IOR-REC-PTR
 IOR-REC-LEN
 ACCMGR-REC.
 SET WS-STRGET TO TRUE.
 PERFORM CHECK-STATUS.

17 CALL "STRFREE" USING IOR-REC-PTR.
 SET WS-STRFREE TO TRUE.
 PERFORM CHECK-STATUS.

18 WRITE ACCMGR-REC.
 IF ACCMGR-IOR-STAT NOT = 0 THEN
 GO TO EXIT-PRG
 END-IF.

 CLOSE ACCMGR-IOR.
 IF ACCMGR-IOR-STAT NOT = 0 THEN
 GO TO EXIT-PRG
 END-IF.

* Register interface bankobjects/Account
19 CALL "ORBREG" USING ACCOUNT-INTERFACE.

 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

* Register interface bankobjects/CurrentAccount
19 CALL "ORBREG" USING CA-INTERFACE.

Example 4: FNBSV Server Mainline Module (Sheet 3 of 11)
 64

Writing the Server
 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

* Register interface bankobjects/CreditCardAccount
19 CALL "ORBREG" USING CCA-INTERFACE.

 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

* Register interface NamingContextExt for access as a
* CORBA Interace

20 CALL "ORBREG" USING COSNAMING-NAMIN-EF2D-INTERFACE.
 SET WS-ORBREG TO TRUE.
 PERFORM CHECK-STATUS.

* Attain a reference to the Naming service using OBJRIR
 DISPLAY "Attaining reference to the Naming Service".
 SET NAMING-SERVICE TO TRUE.

21 CALL "OBJRIR" USING SERVICE-REQUESTED
 NAME-SERVICE-OBJ.
 SET WS-OBJRIR TO TRUE.
 PERFORM CHECK-STATUS.

* Bind acc mgr object reference to the naming service
* setting up values
* set ID to object to resolve
 MOVE SPACES TO WS-THE-STRING.
 MOVE "BankObjects_AccountMgr" TO WS-THE-STRING.
 MOVE LENGTH OF WS-THE-STRING TO
 WS-THE-STRING-LENGTH.

22 CALL "STRSET" USING IDL-ID OF N OF N-1 OF
 COSNAMING-NAMINGCONT-330B-ARGS
 WS-THE-STRING-LENGTH
 WS-THE-STRING.
 SET WS-STRSET TO TRUE.
 PERFORM CHECK-STATUS.
* set kind to nothing
 MOVE SPACES TO WS-THE-STRING.
 MOVE 1 TO WS-THE-STRING-LENGTH.

22 CALL "STRSET" USING KIND OF N OF N-1 OF
 COSNAMING-NAMINGCONT-330B-ARGS
 WS-THE-STRING-LENGTH
 WS-THE-STRING.
 SET WS-STRSET TO TRUE.

Example 4: FNBSV Server Mainline Module (Sheet 4 of 11)
65

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 PERFORM CHECK-STATUS.

* A sequence of name components is used by cosnaming to describe
* a path in the naming service graph.
* For demo purposes, just branch off root

23 MOVE 1 TO WS-SEQUENCE-LENGTH.
 SET COSNAMING-NAME TO TRUE.

24 CALL "SEQALLOC" USING WS-SEQUENCE-LENGTH
 NAMES-TYPE
 NAMES-TYPE-LENGTH
 N-SEQUENCE OF
 COSNAMING-NAMINGCONT-330B-ARGS.
 SET WS-SEQALLOC TO TRUE.
 PERFORM CHECK-STATUS.

 MOVE 1 TO SEQUENCE-MAXIMUM OF N-SEQUENCE OF
 COSNAMING-NAMINGCONT-330B-ARGS.
 MOVE 1 TO SEQUENCE-LENGTH OF N-SEQUENCE OF
 COSNAMING-NAMINGCONT-330B-ARGS.

25 CALL "SEQSET" USING N-SEQUENCE OF
 COSNAMING-NAMINGCONT-330B-ARGS
 WS-SEQUENCE-LENGTH
 N-1 OF
 COSNAMING-NAMINGCONT-330B-ARGS.
 SET WS-SEQSET TO TRUE.
 PERFORM CHECK-STATUS.
* set obj value

26 SET OBJ OF COSNAMING-NAMINGCONT-330B-ARGS TO
 ACCMGR-OBJ.
* Bind acc mgr object reference to the naming service
 DISPLAY "Trying to Bind to the Naming Service...".

 SET COSNAMING-NAMINGCONTEXTEX-330B TO TRUE

27 CALL "ORBEXEC" USING NAME-SERVICE-OBJ
 COSNAMING-NAMIN-EF2D-OPERATION
 COSNAMING-NAMINGCONT-330B-ARGS
 NAMES-USER-EXCEPTIONS.
 SET WS-ORBEXEC TO TRUE.
 PERFORM CHECK-STATUS.

28 * already bound exception, call rebind

Example 4: FNBSV Server Mainline Module (Sheet 5 of 11)
 66

Writing the Server
 IF D OF NAMES-USER-EXCEPTIONS = 4
 SET D-NO-USEREXCEPTION OF NAMES-USER-EXCEPTIONS TO TRUE
 DISPLAY "Already bound exception Thrown… "
 DISPLAY "Trying to Rebind to the Naming Service… "

* Rebind acc mgr object reference to the naming service
* setting up values
* set ID to object to resolve
 MOVE SPACES TO WS-THE-STRING
 MOVE "BankObjects_AccountMgr" TO WS-THE-STRING
 MOVE LENGTH OF WS-THE-STRING TO
 WS-THE-STRING-LENGTH

 CALL "STRSET" USING IDL-ID OF N OF N-1 OF
 COSNAMING-NAMINGCONT-A492-ARGS
 WS-THE-STRING-LENGTH
 WS-THE-STRING
 SET WS-STRSET TO TRUE
 PERFORM CHECK-STATUS
* set kind to nothing
 MOVE SPACES TO WS-THE-STRING
 MOVE 1 TO WS-THE-STRING-LENGTH
 CALL "STRSET" USING KIND OF N OF N-1 OF
 COSNAMING-NAMINGCONT-A492-ARGS
 WS-THE-STRING-LENGTH
 WS-THE-STRING
 SET WS-STRSET TO TRUE
 PERFORM CHECK-STATUS

* A sequence of name components is used by cosnaming to describe
* a path in the naming service graph.
* For demo purposes, just branch off root

 MOVE 1 TO WS-SEQUENCE-LENGTH
 SET COSNAMING-NAME TO TRUE
 CALL "SEQALLOC" USING WS-SEQUENCE-LENGTH
 NAMES-TYPE
 NAMES-TYPE-LENGTH
 N-SEQUENCE OF
 COSNAMING-NAMINGCONT-A492-ARGS
 SET WS-SEQALLOC TO TRUE
 PERFORM CHECK-STATUS

 MOVE 1 TO SEQUENCE-MAXIMUM OF N-SEQUENCE OF
 COSNAMING-NAMINGCONT-A492-ARGS

Example 4: FNBSV Server Mainline Module (Sheet 6 of 11)
67

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 MOVE 1 TO SEQUENCE-LENGTH OF N-SEQUENCE OF
 COSNAMING-NAMINGCONT-A492-ARGS

 CALL "SEQSET" USING N-SEQUENCE OF
 COSNAMING-NAMINGCONT-A492-ARGS
 WS-SEQUENCE-LENGTH
 N-1 OF
 COSNAMING-NAMINGCONT-A492-ARGS
 SET WS-SEQSET TO TRUE
 PERFORM CHECK-STATUS
* set obj value
 SET OBJ OF COSNAMING-NAMINGCONT-A492-ARGS TO
 ACCMGR-OBJ
* Rebind acc mgr object reference to the naming service

 SET COSNAMING-NAMINGCONTEXTEX-A492 TO TRUE

 CALL "ORBEXEC" USING NAME-SERVICE-OBJ
 COSNAMING-NAMIN-EF2D-OPERATION
 COSNAMING-NAMINGCONT-A492-ARGS
 NAMES-USER-EXCEPTIONS
 SET WS-ORBEXEC TO TRUE
 PERFORM CHECK-STATUS

 IF NOT D-NO-USEREXCEPTION OF NAMES-USER-EXCEPTIONS
 PERFORM BIND-EVAL
 ELSE
 DISPLAY "Rebind Success…"
 END-IF

* clean up after ourselves
29 CALL "SEQFREE" USING N-SEQUENCE OF

 COSNAMING-NAMINGCONT-A492-ARGS
 SET WS-SEQFREE TO TRUE
 PERFORM CHECK-STATUS
 ELSE
 IF NOT D-NO-USEREXCEPTION OF NAMES-USER-EXCEPTIONS
 PERFORM BIND-EVAL
 ELSE
 DISPLAY "Bind Success…"
 END-IF
* clean up after ourselves
 CALL "SEQFREE" USING N-SEQUENCE OF
 COSNAMING-NAMINGCONT-300B-ARGS
 SET WS-SEQFREE TO TRUE

Example 4: FNBSV Server Mainline Module (Sheet 7 of 11)
 68

Writing the Server
 PERFORM CHECK-STATUS
 END-IF.

 DISPLAY "Giving control to the ORB to process Requests".

30 CALL "COARUN".
 SET WS-COARUN TO TRUE.
 PERFORM CHECK-STATUS.

 EXIT-PRG.
31 PERFORM CLOSE-FILE.

 DISPLAY " Bank shutting down… "
 CALL "SHUTDOWN".
 STOP RUN.

**
* Check Errors Copybook
**
 COPY CHKERRS.

 OPEN-FILE.
*=============

 OPEN I-O ACCOUNTS.
 IF ACCOUNT-STATUS NOT = 0
 IF ACCOUNT-STATUS = 97
 DISPLAY '*** integrity check successful '
 'server starting ...'
 DISPLAY '*** previous shutdown without file '
 ' closure detected. '
 DISPLAY '*** In future use MVS stop (/p) to stop '
 'server in orderly way'
 ELSE
 DISPLAY '*** A response of, ' ACCOUNT-STATUS ', was '
 'detected when opening the Account file.'
 GOBACK
 END-IF
 END-IF.

 OPEN I-O TXNHIST.
 IF TXNHIST-STATUS NOT = 0
 IF TXNHIST-STATUS = 97
 DISPLAY '*** integrity check successful '
 'server starting ...'

Example 4: FNBSV Server Mainline Module (Sheet 8 of 11)
69

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 DISPLAY '*** previous shutdown without file '
 ' closure detected. '
 DISPLAY '*** In future use MVS stop (/p) to stop '
 'server in orderly way'
 ELSE
 DISPLAY '*** A response of, ' TXNHIST-STATUS ', was '
 'detected when opening the TXNHIST file.'
 GOBACK
 END-IF
 END-IF.
 OPEN I-O TXNNUM.
 IF TXNNUM-STATUS NOT = 0
 IF TXNNUM-STATUS = 97
 DISPLAY '*** integrity check successful '
 'server starting ...'
 DISPLAY '*** previous shutdown without file '
 ' closure detected. '
 DISPLAY '*** In future use MVS stop (/p) to stop '
 'server in orderly way.'
 ELSE
 DISPLAY '*** A response of, ' TXNNUM-STATUS ', was '
 'detected when opening the Txnnum file.'

 GOBACK
 END-IF
 END-IF.

 EXIT.

 CLOSE-FILE.
*=============

 CLOSE ACCOUNTS.
 IF ACCOUNT-STATUS NOT = 0
 DISPLAY '*** A response of, ' ACCOUNT-STATUS ', was '
 'detected when closing the Account file.'
 END-IF.
 CLOSE TXNHIST.
 IF TXNHIST-STATUS NOT = 0
 DISPLAY '*** A response of, ' TXNHIST-STATUS ', was '
 'detected when closing the TXNHIST file.'
 END-IF.

 CLOSE TXNNUM.
 IF TXNNUM-STATUS NOT = 0

Example 4: FNBSV Server Mainline Module (Sheet 9 of 11)
 70

Writing the Server
 DISPLAY '*** A response of, ' TXNNUM-STATUS ', was '
 'detected when closing the Txnnum file.'
 END-IF.

 EXIT.

**
*
* Bind Evaluate checks if a user exception is returned from
* the bind/rebind operation and deals with the user exception if
* one is thrown.
*
**
 BIND-EVAL.
*===========
 EVALUATE TRUE

* CannotProceed exception thrown
 WHEN D-COSNAMING-NAMINGCONTEXT-9F29 OF
 NAMES-USER-EXCEPTIONS
 DISPLAY "Bind Unsuccessful ……"
 MOVE SPACES TO WS-EXCEPTION-STRING
 MOVE EX-COSNAMING-NAMINGCONTEX-1482 TO
 WS-EXCEPTION-STRING-LEN
 PERFORM THROW-USER-EXCEPTION

* InvalidName exception thrown
 WHEN D-COSNAMING-NAMINGCONTEXT-29EC OF
 NAMES-USER-EXCEPTIONS
 DISPLAY "Bind Unsuccessful ……"
 MOVE SPACES TO WS-EXCEPTION-STRING
 MOVE EX-COSNAMING-NAMINGCONTEX-9079 TO
 WS-EXCEPTION-STRING-LEN
 PERFORM THROW-USER-EXCEPTION

 END-EVALUATE.

**
*
* Print exception message
*
**

 THROW-USER-EXCEPTION.
*====================

Example 4: FNBSV Server Mainline Module (Sheet 10 of 11)
71

CHAPTER 2 | Developing the FNB COBOL Back-End Server
Explanation of the batch FNBSV
module

The FNBSV module can be explained as follows:

1. This section defines the files to be used by the server application for
storing account data, transaction history data, and
last-transaction-history-key-used-per-account data.

2. The COBOL SELECT statement entry for file processing, for use with the
COPY…REPLACING statement, is copied from the IORSLCT copybook.

3. The record layouts for storing account data, transaction history data,
and last-transaction-history-key-used-per-account data are copied from
the FNBRECS copybook.

4. The COBOL FD statement entry for file processing, for use with the
COPY…REPLACING statement, is copied from the IORFD copybook.

5. Data definitions used for working with operation parameters and return
values for each Naming Service interface, defined in the COSNAMI IDL
member, are copied from the NAMES copybook.

6. Data definitions used for working with operation parameters and return
values for each FNB server interface, defined in the FNB IDL member,
are copied from the FNB copybook.

 CALL "STRGET" USING EXCEPTION-ID OF
 NAMES-USER-EXCEPTIONS
 WS-EXCEPTION-STRING-LEN
 WS-EXCEPTION-STRING.
 SET WS-STRGET TO TRUE.
 PERFORM CHECK-STATUS.

 DISPLAY "Exception ID : " WS-EXCEPTION-STRING.

 CALL "STRFREE" USING EXCEPTION-ID OF
 NAMES-USER-EXCEPTIONS.
 SET WS-STRFREE TO TRUE.
 PERFORM CHECK-STATUS.

 MOVE 12 TO RETURN-CODE.
 GO TO EXIT-PRG.

Example 4: FNBSV Server Mainline Module (Sheet 11 of 11)
 72

Writing the Server
7. Various Orbix COBOL definitions, such as REQUEST-INFO used by the
COAREQ function, and ORBIX-STATUS-INFORMATION which is used to
register and report system exceptions raised by the COBOL runtime,
are copied from the CORBA copybook.

8. The appropriate definitions to allow the program to accept parameters
for use with the ORBARGS call are copied from the PROCPARM copybook.

9. The OPEN-FILE paragraph is performed to open the ACCOUNTS, TXNHIST,
and TXNNUM data sets.

10. ORBSTAT is called to register the ORBIX-STATUS-INFORMATION block that
is contained in the CORBA copybook. Registering the
ORBIX-STATUS-INFORMATION block allows the COBOL runtime to
populate it with exception information, if necessary.

11. ORBARGS is called to initialize a connection to the ORB, and to read the
command-line arguments to the program, which are specified as
parameters on the PPARM JCL parameter.

12. ORBSRVR is called to set the server name.

13. ORBREG is called to register the AccountMgr interface with the Orbix
COBOL runtime.

14. OBJNEW is called to create a persistent server object of the AccountMgr
type. The object reference created encapsulates the specified object ID
and interface name.

15. OBJTOSTR is called to translate the object reference created by OBJNEW
into a stringified IOR. The stringified IOR is then written to the IORFILE
member.

16. STRGET is called to copy the characters in the unbounded stringified
IOR to a bounded string.

17. STRFREE is called to release the dynamically allocated memory for the
unbounded stringified IOR.

18. The account manager IOR is written to file.

19. ORBREG is called to register the Account, CurrentAccount, and
CreditCardAccount interfaces respectively with the Orbix COBOL
runtime.
73

CHAPTER 2 | Developing the FNB COBOL Back-End Server
20. ORBREG is called again to register the NamingContextExt interface with
the Orbix COBOL runtime, so that it can be accessed as a CORBA
interface.

21. OBJRIR is called to obtain an object reference to the Naming Service.

22. STRSET is called to set the id and kind fields of the sequence member
for the name sequence that is now about to be built.

23. A sequence of length 1 is allocated.

24. SEQALLOC is called to allocate initial storage for the sequence.

25. SEQSET is called to create the first sequence element.

26. Set the account manager object that you want to bind into the Naming
Service.

27. ORBEXEC is called to allow for invocations on the server interface
represented by the supplied object reference.

28. If the already bound exception is thrown, a rebind is attempted and
steps 22�27 are then repeated.

29. SEQFREE is called to release the name sequence.

30. COARUN is called, to enter the ORB::run loop, to allow the ORB to
receive and process client requests.

31. The CLOSE-FILE paragraph is called to close the ACCOUNT, TXNHIST, and
TXNNUM data sets.
 74

Building the Server
Building the Server

Overview This section describes how to build the FNB COBOL server.

Before building the server Before you build the server ensure that you have completed the steps
described in �Generating COBOL copybooks for Naming Service� on
page 32 and �Generating COBOL copybooks for the FNB server� on
page 32.

JCL to build the server Sample JCL used to compile and link the FNB back-end server mainline and
server implementation is in orbixhlq.DEMOS.COBOL.BLD.JCL(FNBSB). When
this JCL has successfully executed, it results in a load module that is
contained in orbixhlq.DEMOS.COBOL.LOAD(FNBSV).

Note: The server is not supplied pre-built, so you must complete the
steps described in this section.
75

CHAPTER 2 | Developing the FNB COBOL Back-End Server
 76

CHAPTER 3

Running the FNB
COBOL Back-End
Server
This chapter describes how to start the COBOL back-end server
component of the FNB demonstration.

In this chapter This chapter discusses the following topics:

Note: You must start the back-end server on OS/390 before you start the
front-end and middle-tier components on Windows or UNIX. After you
have completed this chapter see the First Northern Bank Tutorial supplied
with Orbix for details of how to start the front end and middle tier.

Prerequisites page 78

Starting the Server page 83

After Starting the Server page 84
77

CHAPTER 3 | Running the FNB COBOL Back-End Server
Prerequisites

Overview This section describes what you need to do before you can actually start the
FNB COBOL back-end server on OS/390.

In this section This section discusses the following topics:

Note: See the Mainframe Installation Guide for more details about
customizing various services such as the Naming Service.

Creating the VSAM data sets page 79

Starting the Orbix Locator Daemon page 80

Starting the Orbix Node Daemon page 81

Starting the Naming Service page 82
 78

Prerequisites
Creating the VSAM data sets

Overview As explained in �Back-tier CORBA server� on page 5, the FNB COBOL
server uses four VSAM data sets for object data persistence. Before you can
start the server and run the FNB demonstration these data sets must be
created.

Summary of data sets To recap, the four data sets used store the following data:

� Account data�this includes an alternate index, to allow for referencing
account records by account number or account type.

� Transaction history.

� Last used account number.

� Last used transaction history key (for each account).

JCL to create the data sets You can use the JCL in orbixhlq.DEMOS.COBOL.RUN.JCL(FNBVSAM) to create
these VSAM data sets.

Note: An IEC161I rc 39 with VSAM error code 100 is generated when
you submit the FNBVSAM JCL. This error is normal and can be ignored.
79

CHAPTER 3 | Running the FNB COBOL Back-End Server
Starting the Orbix Locator Daemon

Overview An Orbix locator daemon must be running on the server�s location domain
before you try to run the server application. The Orbix locator daemon is a
program that implements several components of the ORB, including the
Implementation Repository. The locator runs in its own address space on
the server host, and provides services to the client and server, both of which
need to communicate with it.

When you start the Orbix locator daemon, it appears as an active job waiting
for requests. See the CORBA Administrator�s Guide for more details about
the locator daemon.

JCL to start the Orbix locator
daemon

If the Orbix locator daemon is not already running, you can use the JCL in
orbixhlq.JCL(LOCATOR) to start it.

Locator daemon configuration The Orbix locator daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the locator daemon uses a sample
configuration member that is provided in orbixhlq.CONFIG(DEFAULT@).
 80

Prerequisites
Starting the Orbix Node Daemon

Overview An Orbix node daemon must be running on the server�s location domain
before you try to run the server application. The node daemon acts as the
control point for a single machine in the system. Every machine that will run
an application server must be running a node daemon. The node daemon
monitors and manages the application servers running on that machine. The
locator daemon relies on the node daemons to start processes and inform it
when new processes have become available.

When you start the Orbix node daemon, it appears as an active job waiting
for requests. See the CORBA Administrator�s Guide for more details about
the node daemon.

JCL to start the Orbix node
daemon

If the Orbix node daemon is not already running, you can use the JCL in
orbixhlq.JCL(NODEDAEM) to start it.

Node daemon configuration The Orbix node daemon uses the Orbix configuration member for its
settings. The JCL that you use to start the node daemon uses a configuration
member that is provided in orbixhlq.CONFIG(DEFAULT@).
81

CHAPTER 3 | Running the FNB COBOL Back-End Server
Starting the Naming Service

Overview The Naming Service maintains a database of names and the objects
associated with them. An association between a name and an object
is called a binding. The IDL interfaces to the Naming Service provide
operations to access the database of bindings. For example, you can create
new bindings, resolve names, and delete existing bindings.

IONA�s implementation of the Naming Service is implemented as a normal
Orbix server. This server contains objects that support the standard IDL
interfaces to the Naming Service. These interfaces are defined in
orbixhlq.INCLUDE.OMG.IDL(COSNAMI). See the CORBA Programmer�s
Guide, C++ for more details about the Naming Service.

JCL to start the Naming Service If the Naming Service is not already running, you can use the JCL in
orbixhlq.JCL(NAMING) to start it.

Naming Service configuration The Naming Service uses the Orbix configuration member for its settings.
The JCL that you use to start the Naming Service uses a configuration
member that is provided in orbixhlq.CONFIG(DEFAULT@).
 82

Starting the Server
Starting the Server

Overview This section describes how to run the FNB COBOL back-end server. The
following topics are discussed:

� �JCL to run the server� on page 83.

� �JCL to publish the Naming Service IOR� on page 83.

JCL to run the server To run the supplied FNB server application, submit the following JCL:

When you run the server, the object reference of the AccountManager
factory object is automatically published in the Naming Service.

JCL to publish the Naming Service
IOR

To allow the FNB demonstration mid-tier to access the COBOL back-end
server, the client must be able to obtain the IOR for the Naming Service. To
publish the IOR for the Naming Service, submit the following JCL:

This writes the IOR for the Naming Service to orbixhlq.DEMOS.IOR(NS).

orbixhlq.DEMOS.COBOL.RUN.JCL(FNBSV)

Note: You should use the OS/390 STOP (/P) operator command to
subsequently stop the server. Otherwise, the server cannot close the VSAM
data sets and will issue a warning the next time it tries to open them.

orbixhlq.DEMOS.COBOL.RUN.JCL(FNBNSIOR)
83

CHAPTER 3 | Running the FNB COBOL Back-End Server
After Starting the Server

Overview This section describes two extra steps that must be completed after you
have started the FNB COBOL server on OS/390 but before you start the
front-end and middle-tier components of the FNB demonstration on
Windows or UNIX. These steps are essential to ensure that the front-end
and middle-tier components can successfully contact the mainframe server.

The following topics are discussed:

� �Copying Naming Service IOR to Windows or UNIX� on page 84.

� �Contacting the Mainframe Naming Service� on page 84.

Copying Naming Service IOR to
Windows or UNIX

The IOR member in orbixhlq.DEMOS.IOR(NS) is a simple text file that
contains the IOR for the back-end Naming Service on OS/390.

You must copy this IOR file to the Windows or UNIX host where you have
installed the front-end and middle-tier components of the FNB
demonstration. You should copy the IOR file to the
install-dir/asp/6.0/demos/common/fnb directory, where install-dir
represents the full path to your installation directory.

Contacting the Mainframe
Naming Service

After you have copied the IOR for the back-end Naming Service to the
relevant Windows or UNIX host, enter the following command on that host,
in the install-dir/asp/6.0/demos/common/fnb directory:

Note: After you have completed these two steps, the front-end and
middle-tier components can be started as normal, as described in the First
Northern Bank Tutorial that is supplied with Orbix.

itant -Dmainframe_ns_ior_file=mainframe.ior
add_federated_mainframe

Note: Even though you can give the IOR file any name, you should call it
something meaningful, such as mainframe.ior in the preceding example.
 84

After Starting the Server
The preceding command allows the middle-tier client to subsequently
contact the Naming Service on the OS/390 backend instead of the local
Naming Service on its own host.

At this stage, the front-end and middle-tier components of the FNB
demonstration can now be started on Windows or UNIX. See the First
Northern Bank Tutorial that is supplied with Orbix for details of how to start
these components.
85

CHAPTER 3 | Running the FNB COBOL Back-End Server
 86

	Preface
	Introduction
	First Northern Bank Architecture
	CORBA Banking Application
	J2EE Internet Banking Application
	Web Services Credit Card Validation Application

	Developing the FNB COBOL Back-End Server
	Introduction
	Purpose and Design
	Location of Supplied Elements

	Developing the Application Interfaces
	Defining IDL Interfaces
	Orbix IDL Compiler
	Generated Source Code and Copybooks

	Writing the Server
	Writing the Server Implementation
	Writing the Server Mainline

	Building the Server

	Running the FNB COBOL Back-End Server
	Prerequisites
	Creating the VSAM data sets
	Starting the Orbix Locator Daemon
	Starting the Orbix Node Daemon
	Starting the Naming Service

	Starting the Server
	After Starting the Server

