
CORBA Programmer’s Reference
C++

Version 6.0, February 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001, 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 26-Nov-2003

M 3 0 3 6

Contents
List of Tables xxvii

Preface xxix
Audience xxix
Organization of this Reference xxix
Related Documentation xxx
Document Conventions xxx

Introduction 1
Interface Repository Quick Reference 2
DII and DSI Quick Reference 4
Value Type Quick Reference 4
About Standard Functions for all Interfaces 5
About Reference Types _ptr, _var, and _out 8
About Sequences 10
About Value Boxes 14

IT_Config Overview 21

IT_Config::Configuration Interface 25

IT_Config::Listener Interface 31

CORBA Overview 37

Common CORBA Methods 37

Common CORBA Data Types 45

CORBA::AliasDef Interface 83
iii

Table of Contents
CORBA::Any Class 85

CORBA::ArrayDef Interface 99

CORBA::AttributeDef Interface 101

CORBA::ConstantDef Interface 103

CORBA::ConstructionPolicy Interface 105

CORBA::Contained Interface 107

CORBA::Container Interface 113

CORBA::Context Class 133

CORBA::ContextList Class 139

CORBA::Current Interface 143

CORBA::CustomMarshal Value Type 145

CORBA::DataInputStream Value Type 149

CORBA::DataOutputStream Value Type 163

CORBA::DomainManager Interface 179

CORBA::EnumDef Interface 181

CORBA::Environment Class 183

CORBA::Exception Class 187
 iv

Table of Contents
CORBA::ExceptionDef Interface 189

CORBA::ExceptionList Class 191

CORBA::FixedDef Interface 195

CORBA::IDLType Interface 197

CORBA::InterfaceDef Interface 199

CORBA::AbstractInterfaceDef Interface 204

CORBA::IRObject Interface 205

CORBA::ModuleDef Interface 207

CORBA::NamedValue Class 209

CORBA::NativeDef Interface 211

CORBA::NVList Class 213

CORBA::Object Class 221

CORBA::OperationDef Interface 235

CORBA::ORB Class 239

CORBA::Policy Interface 273
Quality of Service Framework 274
Policy Methods 276

CORBA::PolicyCurrent Class 279
v

Table of Contents
CORBA::PolicyManager Class 283

CORBA::PrimitiveDef Interface 289

CORBA::Repository Interface 291

CORBA::Request Class 299

CORBA::SequenceDef Interface 309

CORBA::ServerRequest Class 311

CORBA::StringDef Interface 315

CORBA::String_var Class 317

CORBA::StructDef Interface 321

CORBA::TypeCode Class 323

CORBA::TypedefDef Interface 335

CORBA::UnionDef Interface 337

CORBA::ValueBase Class 339

CORBA::ValueBoxDef Interface 343

CORBA::ValueDef Interface 345

CORBA::ValueFactory 357
CORBA::ValueFactory Type 357
CORBA::ValueFactoryBase Class 358
 vi

Table of Contents
CORBA::ValueMemberDef Interface 361

CORBA::WstringDef Interface 363

CORBA::WString_var Class 365

IT_CORBA Overview 371

IT_CORBA::RefCountedLocalObject Class 373

IT_CORBA::RefCountedLocalObjectNC Class 375

IT_CORBA::WellKnownAddressingPolicy Class 377

DynamicAny Overview 381

DynamicAny::DynAny Class 389

DynamicAny::DynAnyFactory Class 427

DynamicAny::DynArray Class 433

DynamicAny::DynEnum Class 437

DynamicAny::DynFixed Class 441

DynamicAny::DynSequence Class 445

DynamicAny::DynStruct Class 451

DynamicAny::DynUnion Class 457

DynamicAny::DynValue Class 463
vii

Table of Contents
IT_Logging Overview 471

IT_Logging::EventLog Interface 481

IT_Logging::LogStream Interface 487

Messaging Overview 493

Messaging::ExceptionHolder Value Type 499

Messaging::RebindPolicy Class 507

Messaging::ReplyHandler Base Class 511

Messaging::RoutingPolicy Class 515

Messaging::SyncScopePolicy Class 519

IT_PolicyBase Overview 525

PortableInterceptor Module 529

PortableInterceptor::ClientRequestInfo Interface 531

PortableInterceptor::ClientRequestInterceptor Interface 539

PortableInterceptor::Current Interface 545

PortableInterceptor::Interceptor Interface 547

PortableInterceptor::IORInfo Interface 549

PortableInterceptor::IORInterceptor Interface 553
 viii

Table of Contents
PortableInterceptor::ORBInitializer Interface 555

PortableInterceptor::ORBInitInfo Interface 557

PortableInterceptor::PolicyFactory Interface 565

PortableInterceptor::RequestInfo Interface 567

PortableInterceptor::ServerRequestInfo Interface 575

PortableInterceptor::ServerRequestInterceptor Interface 579

PortableServer Overview 587
PortableServer Conversion Functions 588
PortableServer Data Types, Constants, and Exceptions 589

PortableServer::AdapterActivator Interface 597

PortableServer::Current Interface 601

PortableServer::DynamicImplementation Class 603

PortableServer::IdAssignmentPolicy Interface 605

PortableServer::IdUniquenessPolicy Interface 607

PortableServer::ImplicitActivationPolicy Interface 609

PortableServer::LifespanPolicy Interface 611

PortableServer::POA Interface 613

PortableServer::POAManager Interface 639
ix

Table of Contents
PortableServer::RequestProcessingPolicy Interface 645

PortableServer::ServantActivator Interface 649

PortableServer::ServantLocator Interface 653

PortableServer::ServantManager Interface 657

PortableServer::ServantRetentionPolicy Interface 659

PortableServer::ThreadPolicy Interface 661

IT_PortableServer Overview 665

IT_PortableServer::ObjectDeactivationPolicy Class 669

IT_PortableServer::PersistenceModePolicy Class 671

IT_PortableServer::DispatchWorkQueuePolicy Interface 673

IT_WorkQueue Module 677
WorkItem Interface 677
WorkQueue Interface 678
ManualWorkQueue Interface 680
ManualWorkQueueFactory Interface 681
AutomaticWorkQueue Interface 682
AutomaticWorkQueueFactory Interface 684
WorkQueuePolicy Interface 686

Threading and Synchronization Toolkit Overview 689
Timeouts 690
Execution Modes 690
Errors and Exceptions 692

IT_Condition Class 695
 x

Table of Contents
IT_CurrentThread Class 699

IT_DefaultTSErrorHandler Class 703

IT_Gateway Class 705

IT_Locker Template Class 709

IT_Mutex Class 715

IT_PODMutex Structure 719

IT_RecursiveMutex Class 723

IT_RecursiveMutexLocker Class 727

IT_Semaphore Class 733

IT_TerminationHandler Class 737

IT_Thread Class 739

IT_ThreadBody Class 745

IT_ThreadFactory Class 747

IT_TimedCountByNSemaphore Class 751

IT_TimedOneshot Class 755

IT_TimedSemaphore Class 761

IT_TSBadAlloc Error Class 765
xi

Table of Contents
IT_TSError Error Class 767

IT_TSErrorHandler Class 771

IT_TSLogic Error Class 773

IT_TSRuntime Error Class 775

IT_TSVoidStar Class 777

Event Service Overview 783

OrbixEventsAdmin::ChannelManager 785

CosEventChannelAdmin Module 791
CosEventChannelAdmin Exceptions 791

CosEventChannelAdmin::ProxyPushConsumer Interface 792

CosEventChannelAdmin::ProxyPullSupplier Interface 793

CosEventChannelAdmin::ProxyPullConsumer Interface 794

CosEventChannelAdmin::ProxyPushSupplier Interface 795

CosEventChannelAdmin::ConsumerAdmin Interface 796

CosEventChannelAdmin::SupplierAdmin Interface 797

CosEventChannelAdmin::EventChannel Interface 798

CosEventComm Module 799
CosEventComm Exceptions 799
 xii

Table of Contents
CosEventComm::PushConsumer Interface 800

CosEventComm::PushSupplier Interface 801

CosEventComm::PullSupplier Interface 802

CosEventComm::PullConsumer Interface 804

CosTypedEventChannelAdmin Module 805
CosTypedEventChannelAdmin Exceptions 805
CosTypedEventChannelAdmin Data Types 806

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface 807

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface 808

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface 810

CosTypedEventChannelAdmin::TypedEventChannel Interface 812

CosTypedEventComm Module 813

CosTypedEventComm::TypedPushConsumer Interface 814

IT_EventChannelAdmin Module 815
IT_EventChannelAdmin Data Types 815
IT_EventChannelAdmin Exceptions 816

IT_EventChannelAdmin::EventChannelFactory Interface 817

IT_TypedEventChannelAdmin Module 821
IT_TypedEventChannelAdmin Data Types 821

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface 822
xiii

Table of Contents
IT_MessagingAdmin::Manager Interface 825

IT_FPS Module 829

IT_FPS::InterdictionPolicy Interface 830

CosNaming Overview 833

CosNaming::BindingIterator Interface 837

CosNaming::NamingContext Interface 839

CosNaming::NamingContextExt Interface 853

IT_Naming Module 857

IT_LoadBalancing Overview 859

IT_LoadBalancing::ObjectGroup Interface 863

IT_LoadBalancing::ObjectGroupFactory Interface 869

Notification Service Interfaces 875

CosNotifyChannelAdmin Module 877
CosNotifyChannelAdmin Data Types 877
CosNotifyChannelAdmin Exceptions 881

CosNotifyChannelAdmin::ProxyConsumer Interface 883

CosNotifyChannelAdmin::ProxySupplier Interface 886

CosNotifyChannelAdmin::ProxyPushConsumer Interface 890
 xiv

Table of Contents
CosNotifyChannelAdmin::StructuredProxyPushConsumer Interface 892

CosNotifyChannelAdmin::SequenceProxyPushConsumer Interface 894

CosNotifyChannelAdmin::ProxyPullSupplier Interface 896

CosNotifyChannelAdmin::StructuredProxyPullSupplier Interface 898

CosNotifyChannelAdmin::SequenceProxyPullSupplier Interface 900

CosNotifyChannelAdmin::ProxyPullConsumer Interface 902

CosNotifyChannelAdmin::StructuredProxyPullConsumer Interface 904

CosNotifyChannelAdmin::SequenceProxyPullConsumer Interface 906

CosNotifyChannelAdmin::ProxyPushSupplier Interface 908

CosNotifyChannelAdmin::StructuredProxyPushSupplier Interface 911

CosNotifyChannelAdmin::SequenceProxyPushSupplier Interface 914

CosNotifyChannelAdmin::ConsumerAdmin Interface 917

CosNotifyChannelAdmin::SupplierAdmin Interface 924

CosNotifyChannelAdmin::EventChannel Interface 930

CosNotifyChannelAdmin::EventChannelFactory Interface 936

IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface 939

IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier Interface942
xv

Table of Contents
IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier Interface 945

CosNotifyComm Module 949
CosNotifyComm Exceptions 949

CosNotifyComm::NotifyPublish Interface 950

CosNotifyComm::NotifySubscribe Interface 952

CosNotifyComm::PushConsumer Interface 954

CosNotifyComm::PullConsumer Interface 955

CosNotifyComm::PullSupplier Interface 956

CosNotifyComm::PushSupplier Interface 957

CosNotifyComm::StructuredPushConsumer Interface 958

CosNotifyComm::StructuredPullConsumer Interface 960

CosNotifyComm::StructuredPullSupplier Interface 961

CosNotifyComm::StructuredPushSupplier Interface 963

CosNotifyComm::SequencePushConsumer Interface 964

CosNotifyComm::SequencePullConsumer Interface 966

CosNotifyComm::SequencePullSupplier Interface 967

CosNotifyComm::SequencePushSupplier Interface 970
 xvi

Table of Contents
IT_NotifyComm::GroupNotifyPublish Interface 971

IT_NotifyComm::GroupPushConsumer Interface 973

IT_NotifyComm::GroupStructuredPushConsumer Interface 975

IT_NotifyComm::GroupSequencePushConsumer Interface 977

CosNotifyFilter Module 979
CosNotifyFilter Data Types 979
CosNotifyFilter Exceptions 982

CosNotifyFilter::Filter Interface 984

CosNotifyFilter::MappingFilter Interface 992

CosNotifyFilter::FilterFactory Interface 1001

CosNotifyFilter::FilterAdmin Interface 1003

CosNotification Module 1005
CosNotification Data Types 1005
QoS and Administrative Constant Declarations 1006
QoS and Admin Data Types 1007
QoS and Admin Exceptions 1010

CosNotification::QoSAdmin Interface 1012

CosNotification::AdminPropertiesAdmin Interface 1014

JMS-Notification Bridge Service Overview 1017

IT_MessagingBridge Module 1019
xvii

Table of Contents
IT_MessagingBridge::Endpoint Interface 1023

IT_MessagingBridge::SinkEndpoint Interface 1026

IT_MessagingBridge::SourceEndpoint Interface 1027

IT_MessagingBridge::EndpointAdmin Interface 1028

IT_MessagingBridgeAdmin Module 1033

IT_MessagingBridgeAdmin::Bridge Interface 1036

IT_MessagingBridgeAdmin::BridgeAdmin Interface 1038

IT_NotifyBridge Module 1041

IT_NotifyBridge::SinkEndpoint Interface 1042

CosTransactions Overview 1045
Overview of Classes 1045
General Data Types 1046
General Exceptions 1052

CosTransactions::Control Class 1057

CosTransactions::Coordinator Class 1059

CosTransactions::Current Class 1069

CosTransactions::RecoveryCoordinator Class 1075

CosTransactions::Resource Class 1077

CosTransactions::SubtransactionAwareResource Class 1081
 xviii

Table of Contents
CosTransactions::Synchronization Class 1083

CosTransactions::Terminator Class 1085

CosTransactions::TransactionalObject Class 1087

CosTransactions::TransactionFactory Class 1089

CosPersistentState Overview 1093

CosPersistentState::CatalogBase Interface 1101

CosPersistentState::Connector Interface 1105

CosPersistentState::EndOfAssociationCallback Interface 1113

CosPersistentState_Factory Template 1115

CosPersistentState::Session Interface 1117

CosPersistentState::StorageHomeBase Interface 1119

CosPersistentState::StorageHomeFactory Native Type 1121

CosPersistentState::StorageObject Interface 1123

CosPersistentState::StorageObjectBase Native Type 1125

CosPersistentState::StorageObjectFactory Native Type 1127

CosPersistentState::StorageObjectRef Class 1129

CosPersistentState::TransactionalSession Interface 1135
xix

Table of Contents
IT_PSS Overview 1141

IT_PSS::CatalogBase Interface 1143

IT_PSS::Connector Interface 1147

IT_PSS::PreparedStatement Interface 1149

IT_PSS:Master Interface 1153

IT_PSS:Replica Interface 1155

IT_PSS::ResultSet Interface 1157

IT_PSS::Session Interface 1173

IT_PSS::SessionManager Interface 1175

IT_PSS::Statement Interface 1177

IT_PSS_StorageHomeFactory Template 1183

IT_PSS::StorageObject Interface 1185

IT_PSS_StorageObjectFactory Template 1187

IT_PSS::TransactionalSession Interface 1189

IT_PSS::TxSessionAssociation Class 1191

The IT_PSS_DB Module Overview 1195

IT_PSS_DB::Env Interface 1197
 xx

Table of Contents
IT_Certificate Overview 1201

IT_Certificate::AVA Interface 1211

IT_Certificate::AVAList Interface 1215

IT_Certificate::Certificate Interface 1219

IT_Certificate::Extension Interface 1221

IT_Certificate::ExtensionList Interface 1223

IT_Certificate::X509Cert Interface 1227

IT_Certificate::X509CertificateFactory Interface 1233

Security Overview 1237

SecurityLevel1 Overview 1249

SecurityLevel1::Current Interface 1251

SecurityLevel2 Overview 1253

SecurityLevel2::Credentials Interface 1255

SecurityLevel2::Current Interface 1261

SecurityLevel2::EstablishTrustPolicy Interface 1263

SecurityLevel2::InvocationCredentialsPolicy Interface 1265

SecurityLevel2::MechanismPolicy Interface 1267
xxi

Table of Contents
SecurityLevel2::PrincipalAuthenticator Interface 1269

SecurityLevel2::QOPPolicy Interface 1273

SecurityLevel2::ReceivedCredentials Interface 1275

SecurityLevel2::SecurityManager Interface 1277

SecurityLevel2::TargetCredentials Interface 1281

IT_TLS Overview 1283

IT_TLS::CertValidator Interface 1289

IT_TLS_API Overview 1291

IT_TLS_API::CertConstraintsPolicy Interface 1295

IT_TLS_API::CertValidatorPolicy Interface 1297

IT_TLS_API::MaxChainLengthPolicy Interface 1299
IT_TLS_API::SessionCachingPolicy Interface 1301

IT_TLS_API::TLS Interface 1303
IT_TLS_API::TLSCredentials Interface 1305
IT_TLS_API::TLSReceivedCredentials Interface 1307
IT_TLS_API::TLSTargetCredentials Interface 1309

IT_TLS_API::TrustedCAListPolicy Interface 1311

Telecom Logging Service Interfaces 1315

DsLogAdmin Module 1317
DsLogAdmin Exceptions 1317
 xxii

Table of Contents
DsLogAdmin Constants 1320
DsLogAdmin Datatypes 1321

DsLogAdmin::Iterator Interface 1329

DsLogAdmin::Log Interface 1330

DsLogAdmin::BasicLog Interface 1345

DsLogAdmin::LogMgr Interface 1346

DsLogAdmin::BasicLogFactory Interface 1347

DsEventLogAdmin Module 1349

DsEventLogAdmin::EventLog Interface 1350

DsEventLogAdmin::EventLogFactory Interface 1351

DsLogNotification Module 1355

DsNotifyLogAdmin Module 1361

DsNotifyLogAdmin::NotifyLog Interface 1362

DsNotifyLogAdmin::NotifyLogFactory Interface 1363

IT_NotifyLogAdmin Module 1367

IT_NotifyLogAdmin::NotifyLog Interface 1368

IT_NotifyLogAdmin::NotifyLogFactory Interface 1369

CosTrading Module 1373
xxiii

Table of Contents
CosTrading Data Types 1373
CosTrading Exceptions 1378

CosTrading::Admin Interface 1383

CosTrading::SupportAttributes Interface 1391

CosTrading::Register Interface 1393

CosTrading::Proxy Interface 1401

CosTrading::OfferIterator Interface 1407

CosTrading::OfferIdIterator Interface 1409

CosTrading::Lookup Interface 1411

CosTrading::LinkAttributes Interface 1419

CosTrading::Link Interface 1421
CosTrading::Link Exceptions 1422

CosTrading::ImportAttributes Interface 1427

CosTrading::TraderComponents Interface 1431

CosTrading::Dynamic Module 1433

CosTradingDynamic::DynamicPropEval Interface 1435

CosTradingRepos Module 1437

CosTradingRepos::ServiceTypeRepository Interface 1439
 xxiv

Table of Contents
Appendix A System Exceptions 1449

Index 1457
xxv

Table of Contents
 xxvi

List of Tables
Table 1: Interface Repository API 2

Table 2: DII and DSI API 4

Table 3: Primitive C++ Data Types 46

Table 4: PolicyErrorCode Constants 65

Table 5: Methods of the Object Class 221

Table 6: Methods and Types of the ORB Class 239

Table 7: Policies 273

Table 8: Operations of the Repository Interface 291

Table 9: DynAny Methods 389

Table 10: Return Values for DynAny::component_count() 395

Table 11: Default Values When Using create_dyn_any_from_type_code() 429

Table 12: IT_Logging Common Data Types, Methods, and Macros 471

Table 13: The Messaging Module 493

Table 14: ClientRequestInfo Validity 532

Table 15: PortableServer Common Types 589

Table 16: Policy Defaults for POAs 622
xxvii

List of Tables
Table 17: Corresponding Policies for Servant Managers 657

Table 18: TS Thread Classes 689

Table 19: Default Thread Settings 691

Table 20: Error and Exception Classes 692

Table 21: IT_LoadBalancing Common Data Types and Exceptions 859

Table 22: Notification IDL Modules 875

Table 23: EndpointTypes and the associated messaging objects 1020

Table 24: InvalidEndpoint return codes and their explanation 1021

Table 25: OTS Exceptions 1052

Table 26: System Exceptions 1055

Table 27: The CosPersistentState Module 1094

Table 28: Additional PSS Session Creation Parameters 1107

Table 29: Additional PSS TransactionalSession Creation Parameters 1109

Table 30: Additional PSS SessionManager Creation Parameters 1148

Table 31: Associations Between a Transaction and Sessions 1194

Table 32: Authentication Method Constants and Authentication Structures 1292

Table 33: Notification IDL Modules 1315

Table 34: Log operational states 1327
 xxviii

Preface
Orbix is a software environment for building and integrating distributed
object-oriented applications. Orbix is a full implementation of the Common
Object Request Broker Architecture (CORBA) from the Object Management
Group (OMG). Orbix fully supports CORBA version 2.3.

This document is based on the CORBA 2.3 standard with some additional
features and Orbix-specific enhancements. If you need help with this or any
other IONA products, contact IONA at support@iona.com. Comments on
IONA documentation can be sent to docs-support@iona.com.

For the latest online versions of Orbix documentation, see the IONA website:

http://www.iona.com/support/docs

Audience
The reader is expected to understand the fundamentals of writing a
distributed application with Orbix. Familiarity with C++ is required.

Organization of this Reference
This reference presents core-product modules in alphabetical order,
disregarding IT_ prefixes in order to keep together related OMG-compliant
and Orbix-proprietary modules. For example, modules CORBA and IT_CORBA
are listed in sequence.

Modules that are specific to a service are also grouped together under the
service�s name�for example, modules CosPersistentState, IT_PSS, and
IT_PSS_DB are listed under Persistent State Service.
xxix

Related Documentation
This document is part of a set that comes with the Orbix product. Other
books in this set include:

� Application Server Platform Administrator�s Guide
� CORBA Programmer�s Guide
� CORBA Code Generation Toolkit Guide

Document Conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, methods, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For exam-
ple:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands repre-
sent variable values you must supply, such as arguments
to commands or path names for your particular system.
For example:

% cd /users/your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or char-
acters.
 xxx

Document Conventions
This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple plat-
forms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root privi-
leges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an item
in format and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed
in { } (braces) in format and syntax descriptions.
xxxi

 xxxii

Introduction
This describes all of the standard programmer�s API for CORBA and Orbix.
This introduction contains the following topics:

� �Interface Repository Quick Reference�

� �DII and DSI Quick Reference�

� �Value Type Quick Reference�

� �About Standard Functions for all Interfaces�

� �About Reference Types _ptr, _var, and _out�

� �About Sequences�

� �About Value Boxes�

The rest of the CORBA Programmer�s Reference contains the following mod-
ules and appendix:

CORBA
CosNaming
CosPersistentState
CosTransactions
DynamicAny
IT_Config
IT_CORBA
IT_Logging
IT_PolicyBase
IT_PortableServer

IT_PSS
IT_PSS_DB
Messaging
PortableInterceptor
PortableServer

�Threading and Synchronization Tool-
kit Overview�

�System Exceptions�
1

Interface Repository Quick Reference
The interface repository (IFR) is the component of Orbix that provides persis-
tent storage of IDL definitions. Programs use the following API to query the
IFR at runtime to obtain information about IDL definitions:

Table 1: Interface Repository API

CORBA Types CORBA Sequences

ContextIdentifier
Identifier
RepositoryId
ScopedName
VersionSpec
ValueModifier
Visibility
ValueModifier
Visibility

AttrDescriptionSeq
ContainedSeq
ContextIdSeq
ExceptionDefSeq
ExcDescriptionSeq
EnumMemberSeq
InitializerSeq
InterfaceDefSeq
OpDescriptionSeq
ParDescriptionSeq
RepositoryIdSeq
StructMemberSeq
UnionMemberSeq
ValueDefSeq
ValueMemberSeq

CORBA Structures CORBA Enumerated Types

AttributeDescription
ConstantDescription
ExceptionDescription
Initializer
InterfaceDescription
ModuleDescription
OperationDescription
ParameterDescription
StructMember
TypeDescription
UnionMember
ValueDescription
ValueMember

AttributeMode
DefinitionKind
OperationMode
ParameterMode
PrimitiveKind
TCKind
 2

Interface Repository Quick Reference
CORBA Classes and Interfaces Typecode Methods in CORBA::ORB

AliasDef
ArrayDef
AttributeDef
ConstantDef
Contained
Container
EnumDef
ExceptionDef
Environment
FixedDef
IDLType
InterfaceDef
IRObject
ModuleDef
NativeDef
OperationDef
PrimitiveDef
Repository
SequenceDef
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueMemberDef
WstringDef

create_abstract_interface_tc()
create_alias_tc()
create_array_tc()
create_enum_tc()
create_exception_tc()
create_fixed_tc()
create_interface_tc()
create_native_tc()
create_recursive_tc()
create_sequence_tc()
create_string_tc()
create_struct_tc()
create_union_tc()
create_value_box_tc()
create_value_tc()
create_wstring_tc()

Table 1: Interface Repository API
3

DII and DSI Quick Reference
The client-side dynamic invocation interface (DII) provides for the dynamic
creation and invocation of requests for objects. The server-side counterpart to
the DII is the dynamic Skeleton interface (DSI) which dynamically handles
object invocations. This dynamic system uses the following data structures,
interfaces, and classes:

Value Type Quick Reference
A value type is the mechanism by which objects can be passed by value in
CORBA operations. Value types use the following data structures, methods,
and value types from the CORBA module:

Types
StringValue
ValueFactory
WStringValue

Value Types and Classes
CustomMarshal

Table 2: DII and DSI API

DII Classes DSI Classes

CORBA::Context
CORBA::ContextList
CORBA::ExceptionList
CORBA::Request
CORBA::TypeCode

CORBA::ServerRequest
PortableServer::DynamicImplementation

Key Data Types DII-Related Methods

CORBA::Any
CORBA::Flags
CORBA::NamedValue
CORBA::NVList

CORBA::Object::_create_request()
CORBA::ORB::create_list()
CORBA::ORB::create_operation_list()
CORBA::ORB::get_default_context()
 4

About Standard Functions for all Interfaces
DataInputStream
DataOutputStream
ValueBase
ValueFactory
ValueFactoryBase
ValueDef

Global Functions
add_ref()
remove_ref()

Sequences
AnySeq
BooleanSeq
CharSeq
DoubleSeq
FloatSeq
OctetSeq
ShortSeq
UShortSeq
ULongLongSeq
ULongSeq
WCharSeq

About Standard Functions for all Interfaces
Every IDL interface also has generated helper functions:

_duplicate()

inline static CLASS_ptr _duplicate(
 CLASS_ptr p
);

This function returns a duplicate object reference and increments the reference
count of the object. Use this function to create a copy of an object reference.
5

Parameters

Notes This is a standard function generated for all interfaces.

_narrow()

static CLASS_ptr _narrow(
 CORBA::Object_ptr obj
);

This function returns a new object reference given an existing reference. Use
this function to narrow an object reference.

Parameters

Notes This is a standard function generated for all interfaces.

When you have IDL interfaces that inherit from each other, you often need to
convert a reference of one type to a related type. This is analogous to casting
between pointers to classes which inherit from each other classes in C++.
For example suppose you have the following interfaces:

// IDL
interface Base { ... };
interface Derived : Base { ... };

Now suppose you have a reference of type Base but it refers to an object
which is actually of type Derived. Converting the Base reference to a Derived
reference is called narrowing because you are converting from a more general
type to a more specific, or narrow, type. Conversely converting a Derived ref-
erence to a Base reference is called widening. Note that narrowed or widened
references still refer to the same object, they are simply different views of that
object.

Always check the results of _narrow() with CORBA::is_nil(). The
_narrow() function checks whether the reference actually refers to an object
of the type you are narrowing to. If not, _narrow() returns a nil reference.

p The current object reference to duplicate.

obj A reference to an object. The function returns a nil object ref-
erence if this parameter is a nil object reference.
 6

About Standard Functions for all Interfaces
The _narrow() function does an implicit duplicate, so you are responsible for
releasing both the original reference and the new reference returned. The eas-
iest way to do this is by assigning both to _var variables.

The _narrow() function can actually both narrow and widen references. It
takes a CORBA::Object_ptr parameter and tests whether the requested inter-
face is compatible with the actual most-derived interface implemented by the
object, regardless of the inheritance relationships involved.

Exceptions A standard system exception can be raised in some unusual cases where a
remote call occurs to the object being narrowed. However, normally _narrow()
is a local function call and it can figure out the conversion based on information
in the IDL compiler generated stub code.

See Also _unchecked_narrow()

_nil()

inline static CLASS_ptr _nil();

Returns a nil object reference to the object.

Notes This is a standard function generated for all interfaces.

_unchecked_narrow()

static CLASS_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

Returns a new object reference to the object given an existing reference.
However, unlike _narrow(), this function does not verify that the actual type
of the parameter at runtime can be widened to the requested interface�s type.

Parameters

Notes This is a standard function generated for all interfaces.

See Also _narrow()

obj A reference to an object.
7

About Reference Types _ptr, _var, and _out
Every IDL interface has generated helper pointer types that you use as object
references. The object reference pointer type names generated are based on
the interface name and include:

Reference Example
Assume the following interface for this discussion:

// IDL
interface InterfaceName {
 InterfaceName op(
 in InterfaceName arg1,
 out InterfaceName arg2
);
};

The following example shows the C++ pointer helper classes that the IDL
compiler generates for the object reference pointer types. (No inline imple-
mentation details are shown):

class InterfaceName; // forward reference

typedef InterfaceName *InterfaceName_ptr;

class InterfaceName_var : public _var {

InterfaceName_ptr Use the InterfaceName_ptr type to reference Inter-
faceName objects in a manner similar to a C++
pointer.

InterfaceName_var Use the InterfaceName_var type to reference objects
so that the object�s memory management is auto-
matic.

InterfaceName_out The InterfaceName_out type is used only in method
signatures when referring to InterfaceName objects
as out parameters. This type gives Orbix the ability to
implicitly release a previous value of an Interface-
Name_var when it is passed as an out parameter.
 8

About Reference Types _ptr, _var, and _out
public:
 InterfaceName_var() : ptr_(InterfaceName::_nil()) { }
 InterfaceName_var(InterfaceName_ptr p) : ptr_(p) { }
 InterfaceName_var(const InterfaceName_var &a) :
 ptr_(InterfaceName::_duplicate(InterfaceName_ptr(a){ }
 ~InterfaceName_var() { }
 InterfaceName_var &operator=(InterfaceName_ptr p) { }
 InterfaceName_var &operator=(const InterfaceName_var& a) { }
 InterfaceName_ptr in() const { }
 InterfaceName_ptr& inout() { }
 InterfaceName_ptr& out() { }
 InterfaceName_ptr _retn() { }
 operator const InterfaceName_ptr&() const { }
 operator InterfaceName_ptr&() { }
 InterfaceName_ptr operator->() const { }
protected:
 InterfaceName_ptr ptr_;
 void free() { }
 void reset(InterfaceName_ptr p) { }
private:
 ...
};

class InterfaceName_out {
public:
 InterfaceName_out(InterfaceName_ptr& p) : ptr_(p) { }
 InterfaceName_out(InterfaceName_var& p) : ptr_(p.ptr_) { }
 InterfaceName_out(InterfaceName_out& a) : ptr_(a.ptr_) { }
 InterfaceName_out& operator=(InterfaceName_out& a) { }
 InterfaceName_out& operator=(const InterfaceName_var& a) { }
 InterfaceName_out& operator=(InterfaceName_ptr p) { }
 operator InterfaceName_ptr&() { }
 InterfaceName_ptr& ptr() { }
 InterfaceName_ptr operator->() { }
private:
 ...
};
9

Widening and Narrowing References
As with C++ class pointers you can widen _ptr references by assignment.
For example:

// C++
// This is legal, but be careful of memory management with _ptr!
Derived_ptr derived_ref = ...; // Get a Derived reference.
Base_ptr base_ref = derived_ref; // Widening assignment.

In general you should use _var references to avoid memory leaks. You cannot
widen by direct assignment of _var types, instead you must use
_duplicate() explicitly. This is because of C++ problems in implementing
all the necessary conversion operators.

Derived_var derived_ref = ...;
Base_var base_ref = Base::_duplicate(derived_ref);

As in C++ you cannot narrow references by simple assignment or duplica-
tion. Note that it is not legal to use C++ casting to narrow CORBA object ref-
erences (even if your compiler supports dynamic casts.) Instead you use the
static _narrow() function on a class corresponding to the interface you want
to narrow to. For example:

// C++
Base_var base_ref = ...; // Get a Base reference somehow.
Derived_var derived_ref = Derived::_narrow(base_ref);
if (CORBA::is_nil(derived_ref))
{
 // base_ref does not refer to an object of type Derived.
}
else
{
 // We can use derived_ref to call Derived operations.
}

About Sequences
An IDL sequence maps to a class of the same name. For example, an IDL
sequence named TypeSeq which is made up of a sequence of Type IDL data
types, has the class TypeSeq implemented.

// IDL
 10

About Sequences
typedef sequence<Type> TypeSeq;

The implemented TypeSeq class contains the following functions:

// C++
class TypeSeq {
public:
 // default constructor
 TypeSeq();
 // initial maximum length constructor
 TypeSeq(ULong max);
 // data constructor
 TypeSeq(
 ULong max,
 ULong length,
 Type *data,
 Boolean release = FALSE
);
 // copy constructor
 TypeSeq(const TypeSeq&);

 // destructor
 ~TypeSeq();

 // assignment operator
 TypeSeq &operator=(const TypeSeq&);

 ULong maximum() const;
 void length(ULong);
 ULong length() const;

 // subscript operators
 Type &operator[](ULong index);
 const Type &operator[](ULong index) const;

 Boolean release() const;
 void replace(
 ULong max,
 ULong length,
 Type *data,
 Boolean release = FALSE
);

 // buffer reference
11

 Type* get_buffer(Boolean orphan = FALSE);
 // buffer access
 const Type* get_buffer() const;
};

Each function is described as follows.

TypeSeq() A sequence has four possible constructors:

� The default constructor sets the sequence length equal
to 0.

� The constructor with the single max parameter allows
you to set the initial value for the maximum length of
the sequence. This allows you to control how much
buffer space is initially allocated by the sequence. This
constructor also sets the length to 0 and the sequence
release flag to TRUE.

� The data constructor (the one with the *data parame-
ter) lets you set the length and contents of the
sequence. It also allows you to set the initial value for
the maximum length. For this constructor, ownership of
the buffer is determined by the release parameter.

� The copy constructor creates a new sequence with the
same maximum and length as the given sequence
parameter, copies each of its current elements (items
zero through length-1), and sets the sequence release
flag to TRUE.

~TypeSeq() For the destructor, if the sequence release flag equals TRUE
the destructor destroys each of the current elements (items
zero through length-1), and destroys the underlying
sequence buffer. If the sequence release flag equals FALSE,
the calling code is responsible for managing the buffer�s stor-
age.

&operator=() The assignment operator (=) deep-copies the sequence,
releasing old storage if necessary.
 12

About Sequences
maximum() The maximum() function returns the total number of
sequence elements that can be stored in the current
sequence buffer. This allows you to know how many items
you can insert into an unbounded sequence without causing
a reallocation.

length() Use the length() functions to access and modify the length
of the sequence. Increasing the length of a sequence adds
new elements at the end. The newly-added elements behave
as if they are default-constructed when the sequence length
is increased.

&operator[]() The overloaded subscript operators ([]) return the item at
the given index.

release() The release() function returns the state of the sequence
release flag. FALSE means the caller owns the storage for the
buffer and its elements, while TRUE means that the
sequence manages its own storage for the buffer and its ele-
ments.

replace() The replace() function lets you replace the buffer underly-
ing a sequence. The parameters to replace() are identical in
type, order, and purpose to those for the data constructor for
the sequence.
13

About Value Boxes
A value box is a value type that is a form of simple containment. It is like an
additional namespace that contains only one name. A value box has no
inheritance or operations and it contains a single state member. This allows it
to be a concrete rather than abstract class.

The C++ mapping for a value box depends on the underlying type. CORBA
contains the two string value boxes StringValue and WStringValue. The
mapping as follows:

// IDL

get_buffer() The overloaded get_buffer() functions allow direct access
to the buffer underlying a sequence. These can be very useful
when sending large blocks of data as sequences and the
per-element access provided by the overloaded subscript
operators is not sufficient.

� The non-constant get_buffer() reference function
allows read-write access to the underlying buffer. If its
orphan argument is FALSE (the default), the sequence
returns a pointer to its buffer, allocating one if it has not
yet done so. The size of the buffer can be determined
using the sequence�s maximum() function. The number
of elements in the buffer can be determined from the
sequence�s length() function. The sequence maintains
ownership of the underlying buffer. Elements in the
returned buffer may be directly replaced by your code.
However, because the sequence maintains the length
and size of the buffer, code that calls get_buffer()
cannot lengthen or shorten the sequence by directly
adding elements to or removing elements from the
buffer.

� The const get_buffer() access function allows
read-only access to the sequence buffer. The sequence
returns its buffer, allocating one if one has not yet been
allocated. No direct modification of the returned buffer
is allowed by the calling code.
 14

About Value Boxes
valuetype StringTypeValue stringtype;

The implemented StringTypeValue class contains the following functions:

class StringTypeValue : public DefaultValueRefCountBase {
public:
 // constructors
 StringTypeValue();
 StringTypeValue(const StringTypeValue& val);
 StringTypeValue(char* str);
 StringTypeValue(const char* str);
 StringTypeValue(const String_var& var);

 // assignment operators
 StringTypeValue& operator=(char* str);
 StringTypeValue& operator=(const char* str);
 StringTypeValue& operator=(const String_var& var);

 // accessor
 const char* _value() const;

 // modifiers
 void _value(char* str);
 void _value(const char* str);
 void _value(const String_var& var);

 // explicit argument passing conversions for underlying string
 const char* _boxed_in() const;
 char*& _boxed_inout();
 char*& _boxed_out();

 // ...other String_var functions such as overloaded

 // subscript operators, etc....
 static StringTypeValue* _downcast(ValueBase* base);
protected:
 ~StringTypeValue();
 ...
};

In order to allow boxed strings to be treated as normal strings where appro-
priate, a boxed string provides most of the same interface as the String_var
class.
15

The function of the value box class for strings are described as follows:

StringTypeValue() Public constructors include:

� The default constructor initializes the underlying
string to an empty string.

� One constructor takes a char* argument which is
adopted.

� One constructor takes a const char* which is
copied.

� One constructor takes a const String_var& from
which the underlying string value is copied. If the
String_var holds no string, the boxed string
value is initialized to the empty string.

operator=() There are three public assignment operators. Each
returns a reference to the object being assigned to:

� one that takes a parameter of type char* which is
adopted.

� One that takes a parameter of type const char*
which is copied.

� One that takes a parameter of type const
String_var& from which the underlying string
value is copied. If the String_var holds no string,
the boxed string value is set equal to the empty
string.
 16

About Value Boxes
_value() Public accessor and modifier functions for the
StringValue.

� The single accessor function takes no arguments
and returns a const char*.

There are three modifier functions, each taking a sin-
gle argument.

� One takes a char* argument which is adopted by
the value box class.

� One modifier function takes a const char* argu-
ment which is copied.

� One takes a const String_var& from which the
underlying string value is copied.

_boxed_in() Allows the boxed value to be passed as an in parame-
ter. This is the boxed string counterpart to the
String_var::in() function.

_boxed_inout() Allows the boxed value to be passed as an inout
parameter. This is the boxed string counterpart to the
String_var::inout() function.

_boxed_out() Allows the boxed value to be passed as an out param-
eter. This is the boxed string counterpart to the
String_var::out() function.

operator[]() Note that even though the boxed string provides over-
loaded subscript operators, the fact that values are
normally handled by pointer means that they must be
dereferenced before the subscript operators can be
used.

_downcast() A downcast function.

~StringValue() The destructor is not generally used.
17

 18

 IT_Config Module

IT_Config Overview
Every ORB is associated with a configuration domain that provides it with
configuration information. The configuration mechanism enables Orbix to get
its configuration information from virtually any source including files or
configuration repositories. The IT_Config module contains the API to both
get configuration settings and receive notifications when a particular
configuration value changes. The module contains the following interfaces:

� Configuration
� Listener

The IT_Config module does not give you a mechanism for changing
configurations. Administrators typically setup and manage a configuration
domain using various tools described in the Application Server Platform
Administrator�s Guide. However, applications can locally override a
configuration, without changing the configuration domain, by passing in
configuration variables in the command line. These configuration variables
are processed by CORBA::ORB_init() where the ORB processes them first
before querying the configuration domain.

A single configuration domain can hold configuration information for multiple
ORBs � each ORB uses its ORB name as a �key� to locate its particular
configuration within the domain. Often, an administrator will want to use a
default configuration domain for a group of applications, overriding only
certain configuration variables for individual applications or ORBs. This
might be useful within a hierarchical organization, or where different
development groups or applications need slightly different configurations.

A configuration domain can be organized into a hierarchy of nested
configuration scopes to enable a high degree of flexibility. Each scope within a
domain must be uniquely named relative to its containing scope. Scope
names consist of any combinations of alphanumeric characters and
underscores. Scopes are usually identified by their fully qualified name,
which contains the scope name and the names of all parent scopes,
separated by a dot (.).
21

Within each configuration scope, variables are organized into configuration
contexts. A configuration context is simply a collection of related configuration
variables. A context may also contain sub-contexts. You can consider the
configuration scope as the root context. Contained in the root context are a
number of sub-contexts. For example, there is a plug-ins context and an
initial-references context. The initial-references context contains a list of
initial-references for the services available to the system. The plug-ins context
contains a sub-context for each plug-in, in which it holds its configuration
information. This context will have the same name as the plug-in, and will
hold information such as the name of the plug-in library and any
dependencies the plug-in has, as well as other plug-in-specific settings.

You as a programmer need not worry about this configuration hierarchy set
up by your administrator. You simply request configuration values via the
Configuration interface. See the Application Server Platform
Administrator�s Guide for more on configuration.

IT_Config::ConfigList Sequence

// IDL
typedef sequence<string> ConfigList;

A list of configuration settings as strings.

Enhancement This is an Orbix enhancement.

See Also IT_Config::Configuration::get_list()
IT_Config::Listener::list_changed()

IT_Config::TargetScope Enumeration

// IDL
enum TargetScope {
 OBJECT_SCOPE,
 ONELEVEL_SCOPE,
 SUBTREE_SCOPE
};
 22

A target scope refers to the extent of a configuration hierarchy that a Listener
object monitors.

Enhancement This is an Orbix enhancement.

See Also IT_Config::Configuration::add_listener()

OBJECT_SCOPE The Listener is only interested in changes to the
specific target variable. For example, a Listener with a
target variable of initial_references:Naming:
reference and a target scope of OBJECT_SCOPE is
informed if that variable changes.

ONELEVEL_SCOPE The Listener is interested in changes to variables
contained in the target, a configuration context, but not
the target itself. For example, if the target is plugins:
iiop, the Listener is informed of any changes to
variable in the plugins:iiop configuration context.

SUBTREE_SCOPE The Listener is interested in changes to the target and
any variables or namespaces in the subtree of the
target. For example, if the target is
initial_references, the Listener is informed of any
changes to anything under the initial_references
namespace, including the namespace itself.
23

 24

IT_Config::Configuration Interface
This interface provides access to configuration information. You get a refer-
ence to a Configuration implementation by calling ORB::
resolve_initial_references() with the string argument
IT_Configuration.

In a configuration domain, the ORB name acts as the configuration scope in
which to start looking for configuration information. The ORB supplies this
information when querying the configuration system for a configuration vari-
able. If the variable cannot be found within that scope or the scope does not
exist, the system recursively searches the containing scope. For example, if
an ORB with an ORB name of IONA.ProdDev.TestSuite.TestMgr requests a
variable, the system will first look in the IONA.ProdDev.TestSuite.TestMgr
scope, then IONA.ProdDev.TestSuite, and so on, until it finally looks in the
root scope. This allows administrators to place default configuration informa-
tion at the highest level scope, then override this information in descendant
scopes to produce a specific, tailored configuration.

Although there are specific operations such as get_boolean() and
get_double() to retrieve certain types of configuration information, the
Configuration interface is not strictly typed. This means that when a certain
type of variable is requested, an effort is made to convert the retrieved value
to the requested type. For example, if you call get_long(), and the domain
has a string such as "1234", an attempt is made to convert the string to a
long. In this case, it can successfully return 1234 as a long. If, however, the
value for the requested variable were words such as "A String Value", then it
cannot be converted to a long and a TypeMismatch exception is thrown.

// IDL in module IT_Config

interface Configuration {

 exception TypeMismatch {};

 boolean get_string(
 in string name,
 out string value
) raises (TypeMismatch);
25

Orbix 2000 Programmer�s Reference Java Edition
 boolean get_list(
 in string name,
 out ConfigList value
) raises (TypeMismatch);

 boolean get_boolean(
 in string name,
 out boolean value
) raises (TypeMismatch);

 boolean get_long(
 in string name,
 out long value
) raises (TypeMismatch);

 boolean get_double(
 in string name,
 out double value
) raises (TypeMismatch);

 void add_listener(
 in string target,
 in TargetScope target_scope,
 in Listener l
);

 void remove_listener(
 in Listener l
);

 // INTERNAL USE ONLY
 //
 void shutdown();
};

Configuration::add_listener()

// IDL
void add_listener(
 in string target,
 26

 in TargetScope target_scope,
 in Listener l
);

Adds a Listener object so your application can be notified of certain configu-
ration changes.

Parameters

Not all types of configuration domains support change notification.

Enhancement This is an Orbix enhancement.

See Also IT_Config::TargetScope
IT_Config::Configuration::remove_listener()

Configuration::get_boolean()

// IDL
boolean get_boolean(
 in string name,
 out boolean value
) raises (TypeMismatch);

Returns true if the boolean value is successfully retrieved and false if the
variable could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

target The target configuration scope for the Listener.

target_scope The scope parameter determines the extent of change that
the Listener is told about.

l The Listener object.

name Name of the variable to retrieve.

value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this operation.
27

Orbix 2000 Programmer�s Reference Java Edition
Configuration::get_double()

// IDL
boolean get_double(
 in string name,
 out double value
) raises (TypeMismatch);

Returns true if the double value is successfully retrieved and false if the variable
could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

Configuration::get_list()

// IDL
boolean get_list(
 in string name,
 out ConfigList value
) raises (TypeMismatch);

Returns true if the list of configuration settings is successfully retrieved and
false if the list could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

name Name of the variable to retrieve.

value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this operation.

name Name of the configuration list to retrieve.

value The values returned.

TypeMismatch The variable exists but is of the wrong type for this operation.
 28

Configuration::get_long()

// IDL
boolean get_long(
 in string name,
 out long value
) raises (TypeMismatch);

Returns true if the long value is successfully retrieved and false if the variable
could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

Configuration::get_string()

// IDL
boolean get_string(
 in string name,
 out string value
) raises (TypeMismatch);

Returns true if the string value is successfully retrieved and false if the variable
could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

name Name of the variable to retrieve.

value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this operation.

name Name of the variable to retrieve.

value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this operation.
29

Orbix 2000 Programmer�s Reference Java Edition
Configuration::remove_listener()

// IDL
void remove_listener(
 in Listener l
);

Removes a Listener object.

Enhancement This is an Orbix enhancement.

See Also IT_Config::Configuration::add_listener()

Configuration::shutdown()

// IDL
void shutdown();

Note: For internal use only

Configuration::TypeMismatch Exception

// IDL
exception TypeMismatch {};

The type of the configuration variable named in the operation does not match
the type required for the operation.

Enhancement This is an Orbix enhancement.
 30

IT_Config::Listener Interface
You can add a Listener object to your application that will be notified of
configuration changes that occur. Use add_listener() and
remove_listener() of the Configuration interface to manage a Listener
object.

// IDL in module IT_Config
interface Listener {
 void string_changed(
 in string name,
 in string new_value,
 in string old_value
);

 void list_changed(
 in string name,
 in ConfigList new_value,
 in ConfigList old_value
);

 void boolean_changed(
 in string name,
 in boolean new_value,
 in boolean old_value
);

 void long_changed(
 in string name,
 in long new_value,
 in long old_value
);

 void double_changed(
 in string name,
 in double new_value,
 in double old_value
);
};
31

Orbix 2000 Programmer�s Reference Java Edition
Listener::boolean_changed()

// IDL
void boolean_changed(
 in string name,
 in boolean new_value,
 in boolean old_value
);

The application is notified if the boolean value changes.

Parameters

Enhancement This is an Orbix enhancement.

Listener::double_changed()

// IDL
void double_changed(
 in string name,
 in double new_value,
 in double old_value
);

The application is notified if the double value changes.

Parameters

Enhancement This is an Orbix enhancement.

name The name of the variable.

new_value The value of the variable after the change occurred. If a vari-
able is deleted this value will be NULL.

old_value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

name The name of the variable.

new_value The value of the variable after the change occurred. If a vari-
able is deleted this value will be NULL.

old_value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.
 32

Listener::list_changed()

// IDL
void list_changed(
 in string name,
 in ConfigList new_value,
 in ConfigList old_value
);

The application is notified if the configuration list changes.

Parameters

Enhancement This is an Orbix enhancement.

Listener::long_changed()

// IDL
void long_changed(
 in string name,
 in long new_value,
 in long old_value
);

The application is notified if the long value changes.

Parameters

Enhancement This is an Orbix enhancement.

name The name of the variable.

new_value The value of the variable after the change occurred. If a vari-
able is deleted this value will be NULL.

old_value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

name The name of the variable.

new_value The value of the variable after the change occurred. If a vari-
able is deleted this value will be NULL.

old_value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.
33

Orbix 2000 Programmer�s Reference Java Edition
Listener::string_changed()

// IDL
void string_changed(
 in string name,
 in string new_value,
 in string old_value
);

The application is notified if the string value changes.

Parameters

Enhancement This is an Orbix enhancement.

name The name of the variable.

new_value The value of the variable after the change occurred. If a vari-
able is deleted this value will be NULL.

old_value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.
 34

 CORBA Module

CORBA Overview
The CORBA namespace implements the IDL CORBA module. Additional
introductory chapters describe the common methods and definitions found in
the scope of the CORBA namespace.

� �Common CORBA Methods�
� �Common CORBA Data Types�

All classes or interfaces defined in the CORBA namespace are described in
the following alphabetically ordered chapters:

Some standard system exceptions are also defined in the CORBA module.
However, these exceptions are described in Appendix A.

Common CORBA Methods
This section contains details of all common CORBA methods. The following
alphabetically ordered list contains a link to the details of each method:

AliasDef
Any
ArrayDef
AttributeDef
ConstantDef
ConstructionPolicy
Contained
Container
Context
ContextList
Current
CustomMarshal
DataInputStream
DataOutputStream
DomainManager
EnumDef
Environment

ExceptionDef
ExceptionList
FixedDef
IDLType
InterfaceDef
IRObject
ModuleDef
NamedValue
NativeDef
NVList
Object
OperationDef
ORB
Policy
PolicyCurrent
PolicyManager
PrimitiveDef

Repository
Request
SequenceDef
ServerRequest
StringDef
String_var
StructDef
TypeCode
TypedefDef
UnionDef
ValueBase
ValueBoxDef
ValueDef
ValueFactory
ValueMemberDef
WstringDef
WString_var
37

� add_ref()
� _duplicate()
� is_nil()
� _nil()
� ORB_init()
� release()
� remove_ref()
� string_alloc()
� string_dup()
� string_free()

CORBA::add_ref()

void add_ref(ValueBase* vb);

Increments the reference count of the valuetype instance pointed to by the
method�s argument. This method does nothing if the argument is null.

Parameters

This method is provided for consistency with the reference counting method
for object references. Unlike the ValueBase::_add_ref() member method,
add_ref() can be called with null valuetype pointers.

See Also CORBA::remove_ref()
CORBA::ValueBase::_remove_ref()
CORBA::ValueBase::_add_ref()

CORBA::_duplicate()

static Type_ptr _duplicate(Type_ptr p);

Increments the reference count of the object reference, p and returns a copy
of the object reference. If p is nil, _duplicate() returns a nil object reference.

Parameters

vb Pointer to the object reference for the valuetype instance.

p Pointer to the object reference.
 38

See Also CORBA::Object::_duplicate()

CORBA::is_nil()

Boolean is_nil(Type_ptr p);

Returns a true value if the object reference contains the special value for a nil
object reference as defined by the ORB. Otherwise the method returns a false
value.

Parameters

Object references cannot be compared using operator==; therefore,
is_nil() is the only compliant way an object reference can be checked to
see if it is nil. A compliant program cannot attempt to invoke a method
through a nil object reference, since a valid C++ implementation of a nil
object reference is a null pointer.

Overloaded versions of this method are generated for each IDL interface, and
for each pseudo object type. Object reference types include:

Context_ptr
Environment_ptr
NamedValue_ptr
NVList_ptr
Object_ptr
ORB_ptr
POA_ptr
Request_ptr
TypeCode_ptr

See Also CORBA::Object
CORBA::release()
CORBA::_nil()

�About Reference Types _ptr, _var, and _out�

p Pointer to the object reference.
39

CORBA::_nil()

static Type_ptr _nil();

Returns a nil object reference for the Type interface.

See Also CORBA::Object
CORBA::is_nil()

CORBA::ORB_init()

static ORB_ptr ORB_init(
 int& argc,
 char** argv,
 const char* orb_identifier = ""
);

Initializes a client or server connection to an ORB.
 40

Parameters

When an application requires a CORBA environment, it uses ORB_init() to
get the ORB pseudo-object reference. This method first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.
Because applications do not initially have an object on which to invoke ORB
calls, ORB_init() is a bootstrap call into the CORBA environment. Thus, the
ORB_init() call is part of the CORBA module but not part of the CORBA::ORB
class.

Applications can be initialized in one or more ORBs. Special ORB identifiers
(indicated by either the orb_identifier parameter or the -ORBid argument)
are intended to uniquely identify each ORB used within the same address

argc Number of arguments in the argument list, argv.

argv Pointer to an argument list of environment-specific data for
the call. Valid ORB arguments include:

� -ORBdomain value

Where to get the ORB actual configuration
information.

� -ORBid value

The ORB identifier.

� -ORBname value

The ORB name.

Each ORB argument is a sequence of configuration strings
or options in either of the following forms:

-ORBsuffix value
-ORBsuffixvalue

The suffix is the name of the ORB option being set, and
value is the value to which the option is set. Spaces
between the suffix and value are optional. Any string in
the argument list that is not in one of these formats is
ignored by the ORB_init() method.

orb_identifier The string identifier for the ORB initialized. For example,
the string "Orbix" identifies the Orbix ORB from IONA
Technologies.
41

space in a multi-ORB application. The ORB identifiers are allocated by the
ORB administrator who is responsible for ensuring that the names are
unambiguous. Note the following when assigning ORB identifiers in an
ORB_init() call:

� If the orb_identifier parameter has a value, any -ORBid arguments in
the argv are ignored. However, all other ORB arguments in argv might
be significant during the ORB initialization process.

� If the orb_identifier parameter is null, then the ORB identifier is
obtained from the -ORBid argument of argv.

� If the orb_identifier is null and there is no -ORBid argument in argv,
the default ORB is returned in the call.

The argv arguments are also examined to determine if there are any other
ORB arguments (arguments of the form -ORBsuffix). These ORB arguments
are processed only by the ORB_init() method. In fact, before ORB_init()
returns, it removes from argv all ORB arguments. This unique format for
start-up arguments means that your servers do not have to be written to
handle ORB arguments.

ORB initialization must occur before POA initialization.

Exceptions

See Also CORBA::ORB

CORBA::release()

void release(Type_ptr);

Indicates that the caller will no longer access the object reference so that
associated resources can be deallocated.

Parameters

If the given object reference is nil, release() does nothing.

Overloaded versions of this method are generated for each IDL interface, and
for each pseudo object type. Object reference types include:

BAD_PARAM A string in argv that matches the ORB argument pattern
-ORBsuffix is not recognized by the ORB.

Type_ptr Pointer to the object reference to be released.
 42

Context_ptr
Environment_ptr
NamedValue_ptr
NVList_ptr
Object_ptr
ORB_ptr
POA_ptr
Request_ptr
TypeCode_ptr

See Also CORBA::Object
CORBA::is_nil()

�About Reference Types _ptr, _var, and _out�

CORBA::remove_ref()

void remove_ref(ValueBase* vb);

Decrements the reference count of the valuetype instance pointed to by the
parameter vb. If the parameter value is a null pointer, this method does nothing.

Parameters

Unlike the _remove_ref() method, remove_ref() can be called with null
valuetype pointers.

See Also CORBA::add_ref()
CORBA::ValueBase::_remove_ref()
CORBA::ValueBase::_add_ref()

CORBA::string_alloc()

char *string_alloc(ULong len);

Dynamically allocates a string. The method returns a pointer to the start of the
character array. It returns a zero pointer if it cannot perform the allocation. A
conforming program should use this method to dynamically allocate a string
that is passed between a client and a server.

vb Pointer to the object reference for the valuetype instance.
43

Parameters

See Also CORBA::string_free()
CORBA::string_dup()

CORBA::string_dup()

char* string_dup(const char* str);

Duplicates a string. The method returns a duplicate of the input string or it
returns a zero pointer if it is unable to perform the duplication. CORBA::
string_alloc() can be used to allocate space for the string.

Parameters

See Also CORBA::string_alloc()
CORBA::string_free()

CORBA::string_free()

void string_free(char* str);

Deallocates a string that was previously allocated using CORBA::
string_alloc().

Parameters

See Also CORBA::string_alloc()
CORBA::string_dup()

len A string of length len + 1 is allocated.

str The string to be duplicated.

str The string to be freed.
 44

Common CORBA Data Types
This chapter contains details of all common CORBA data types. Table 3
consists of descriptions of the primitive C++ data types such as Short, Long,
and so on. The following alphabetically ordered list contains a link to the
details of each data type:

AnySeq
AttrDescriptionSeq
AttributeDescription
AttributeMode
BooleanSeq
CharSeq
ConstantDescription
ContainedSeq
ContextIdentifier
ContextIdSeq
DefinitionKind
DomainManagersList
DoubleSeq
EnumMemberSeq
ExcDescriptionSeq
ExceptionDefSeq
ExceptionDescription
Flags
FloatSeq
Identifier
Initializer
InitializerSeq
InterfaceDefSeq
InterfaceDescription

InvalidPolicies
ModuleDescription
OctetSeq
OpDescriptionSeq
OperationDescription
OperationMode
ORBid
ParameterDescription
ParameterMode
ParDescriptionSeq
PolicyError
PolicyErrorCode
PolicyList
PolicyType
PolicyTypeSeq
PrimitiveKind
RepositoryId
RepositoryIdSeq
ScopedName
ServiceDetail
ServiceDetailType
ServiceInformation

ServiceOption
ServiceType
SetOverrideType
ShortSeq
StringValue
StructMember
StructMemberSeq
TCKind
TypeDescription
ULongLongSeq
ULongSeq
UnionMember
UnionMemberSeq
UShortSeq
ValueDefSeq
ValueDescription
ValueMember
ValueMemberSeq
ValueModifier
VersionSpec
Visibility
WCharSeq
WStringValue
45

Primitive C++ types are defined as shown in Table 3:

Table 3: Primitive C++ Data Types

Primitive C++ Type C++ Definition

Boolean typedef unsigned char Boolean;

(Valid values are 1 for true or 0 for false.)

Boolean_out typedef Boolean& Boolean_out;

Char typedef unsigned char Char;

Char_out typedef Char& Char_out;

Double typedef double Double;

Double_out typedef Double& Double_out;

Float typedef float Float;

Float_out typedef Float& Float_out;

Long typedef long Long;

Long_out typedef Long& Long_out;

LongDouble typedef long double LongDouble;

LongDouble_out typedef LongDouble& LongDouble_out;

LongLong typedef ... LongLong;

LongLong_out typedef LongLong& LongLong_out;

Octet typedef unsigned char Octet;

Octet_out typedef Octet& Octet_out;

Short typedef short Short;

Short_out typedef Short& Short_out;

ULong typedef unsigned long ULong;

ULong_out typedef ULong& ULong_out;
 46

CORBA::AnySeq Sequence

//IDL
typedef sequence<any> AnySeq;

//C++
class AnySeq {
 ...
};

A sequence of Any data values used for marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::AttrDescriptionSeq Sequence

//IDL
typedef sequence <AttributeDescription> AttrDescriptionSeq;

// C++
class AttrDescriptionSeq {
 ...

ULongLong typedef ... ULongLong;

ULongLong_out typedef ULongLong& ULongLong_out;

UShort typedef unsigned short UShort;

UShort_out typedef UShort& UShort_out;

WChar typedef wchar_t WChar;

WChar_out typedef WChar& WChar_out;

Table 3: Primitive C++ Data Types

Primitive C++ Type C++ Definition
47

};

A sequence of AttributeDescription structures in the interface repository.

See Also CORBA::AttributeDescription

�About Sequences�

CORBA::AttributeDescription Structure

// IDL
struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
};

struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
};

The description of an interface attribute in the interface repository.

See Also CORBA::AttributeDef

name The name of the attribute.

id The identifier of the attribute.

defined_in The identifier of the interface in which the attribute is defined.

version The version of the attribute.

type The data type of the attribute.

mode The mode of the attribute.
 48

CORBA::AttributeMode Enumeration

// IDL
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

// C++
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};
typedef AttributeMode& AttributeMode_out;

The mode of an attribute in the interface repository.

See Also CORBA::AttributeDef

CORBA::BooleanSeq Sequence

// IDL
typedef sequence<boolean> BooleanSeq;

// C++
class BooleanSeq {
 ...
};

A sequence of Boolean values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::CharSeq Sequence

// IDL
typedef sequence<char> CharSeq;

// C++
class CharSeq {
 ...
};

ATTR_NORMAL Mode is read and write.

ATTR_READONLY Mode is read-only.
49

A sequence of character (char) values used in marshalling custom value
types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::CompletionStatus Enumeration

// C++
enum CompletionStatus {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE
};

CORBA::ConstantDescription Structure

// IDL
struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
};

// C++
struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
};

The description of a constant in the interface repository.

name The name of the constant.
 50

See Also CORBA::ConstantDef

CORBA::ContainedSeq Sequence

// IDL
typedef sequence <Contained> ContainedSeq;

// C++
class ContainedSeq {
 ...
};

A sequence of Contained objects in the interface repository.

See Also CORBA::Contained

�About Sequences�

CORBA::ContextIdentifier Type

// IDL
typedef Identifier ContextIdentifier;

// C++
typedef Identifer ContextIdentifier;

A context identifier used in an IDL operation in the interface repository.

An IDL operation�s context expression specifies which elements of the client�s
context might affect the performance of a request by the object. The runtime
system makes the context values in the client�s context available to the object
implementation when the request is delivered.

See Also CORBA::OperationDef
CORBA::ContextIdSeq

id The identifier of the constant.

defined_in The identifier of the interface in which the constant is defined.

version The version of the constant.

type The data type of the constant.

value The value of the constant.
51

CORBA::ContextIdSeq Sequence

// IDL
typedef sequence <ContextIdentifier> ContextIdSeq;

// C++
class ContextIdSeq {
 ...
};

A sequence of ContextIdentifier values in the interface repository.

See Also CORBA::ContextIdentifier

�About Sequences�

CORBA::DefinitionKind Enumeration

// IDL
enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 dk_Wstring, dk_Fixed,
 dk_Value, dk_ValueBox, dk_ValueMember,
 dk_Native
};

// C++
enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 dk_Wstring, dk_Fixed,
 dk_Value, dk_ValueBox, dk_ValueMember,
 dk_Native
};
typedef DefinitionKind& DefinitionKind_out;
 52

Identifies the type of an interface repository object.

Each interface repository object has an attribute (CORBA::IRObject::
def_kind) of the type DefinitionKind that records the kind of the IFR
object. For example, the def_kind attribute of an InterfaceDef object is
dk_interface. The enumeration constants dk_none and dk_all have special
meanings when searching for an object in a repository.

See Also CORBA::IRObject::def_kind
CORBA::Contained
CORBA::Container

CORBA::DomainManagersList Sequence

// IDL
typedef sequence <DomainManager> DomainManagersList;

// C++
class DomainManagersList {
 ...
};

A sequence of DomainManager objects.

See Also CORBA::DomainManager

�About Sequences�

CORBA::DoubleSeq Sequence

// IDL
typedef sequence<double> DoubleSeq;

// C++
class DoubleSeq {
 ...
};

A sequence of Double values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�
53

CORBA::EnumMemberSeq Sequence

// IDL
typedef sequence <Identifier> EnumMemberSeq;

// C++
class EnumMemberSeq {
 ...
};

A sequence of Identifier strings representing the members of an enumeration
type in the interface repository.

See Also CORBA::Identifier
CORBA::ORB::create_enum_tc()

�About Sequences�

CORBA::ExcDescriptionSeq Sequence

// IDL
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

// C++
class ExcDescriptionSeq {
 ...
};

A sequence of ExceptionDescription structures in the interface repository.
This sequence is used only in the OperationDescription structure.

See Also CORBA::ExceptionDescription
CORBA::OperationDescription

�About Sequences�

CORBA::ExceptionDefSeq Sequence

// IDL
typedef sequence <ExceptionDef> ExceptionDefSeq;

// C++
class ExceptionDefSeq {
 ...
};
 54

A sequence of ExceptionDef objects in the interface repository.

See Also CORBA::ExceptionDef

�About Sequences�

CORBA::ExceptionDescription

// C++
struct ExceptionDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
};

The description of an exception in the interface repository.

See Also CORBA::ExcDescriptionSeq

CORBA::ExceptionType Enumeration

// IDL
enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION};

name The name of the exception.

id The identifier of the exception.

defined_in The identifier of the interface in which the exception is
defined.

version The version of the exception.

type The data type of the exception.
55

CORBA::Flags Type

// IDL
typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN = 1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const Flags CTX_RESTRICT_SCOPE = 15;

//C++
typedef ULong Flags;

A flag value is a bitmask long used to identify one or more modes.

Most flag values identify the argument passing mode for arguments. The
common argument passing flag values include:

Other flag values have specific meanings for request and list methods.

NVList methods that add a NamedValue to an NVList have a flags
parameter used to specify features of an argument. These additional flag
values include:

ARG_IN Indicates that the associated value is an input-only
argument.

ARG_INOUT Flag value indicating that the associated value is an
input or output argument.

ARG_OUT Flag value indicating that the associated value is an
output-only argument.

IN_COPY_VALUE Causes a copy of the argument value to be made and
used instead of the argument.

DEPENDENT_LIST If a list structure is added as an item such as in a
sublist, this flag indicates that the sublist should be
freed when the parent list is freed.
 56

The Object::_create_request() method has a request flags parameter
used to specify how storage is to be allocated for output parameters. The
additional flag value is:

See Also CORBA::NVList
CORBA::NamedValue
CORBA::Object::_create_request()
CORBA::Context::get_values()

CORBA::FloatSeq Sequence

// IDL
typedef sequence<float> FloatSeq;

// C++
class FloatSeq {
 ...
};

A sequence of Float values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::Identifier Type

// C++
typedef char* Identifier;

A simple name that identifies modules, interfaces, constants, typedefs, excep-
tions, attributes, and operations in the interface repository. An identifier is not
necessarily unique within the entire interface repository; it is unique only within
a particular Repository, ModuleDef, InterfaceDef, or OperationDef.

OUT_LIST_MEMORY Indicates that any out argument memory is associated
with the argument list of the requested IDL operation.
57

CORBA::Initializer Structure

// IDL
struct Initializer {
 StructMemberSeq members;
 Identifier name;
};

// C++
struct Initializer {
 StructMemberSeq members;
 Identifier name;
};

An initializer structure for a sequence in the interface repository.

See Also CORBA::InitializerSeq

CORBA::InitializerSeq Sequence

// C++
class InitializerSeq {
 ...
};

A sequence of Initializer structures in the interface repository.

See Also CORBA::ValueDef

�About Sequences�

CORBA::InterfaceDefSeq Sequence

// C++
class InterfaceDefSeq {
 ...
};

A sequence of interface definitions in the interface repository.

members The sequence of structure members.

name The name of the initializer structure.
 58

See Also CORBA::InterfaceDef
CORBA::Container::create_interface()
CORBA::Container::create_value()

�About Sequences�

CORBA::InterfaceDescription Structure

// IDL
struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 boolean is_abstract;
};

// C++
struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 boolean is_abstract;
};

A description of an interface in the interface repository. This structure is
returned by the inherited describe() method in the InterfaceDef interface.
The structure members consist of the following:

name The name of the interface.

id The identifier of the interface.

defined_in The identifier of where the interface is defined.

version The version of the interface.

base_interfaces The sequence of base interfaces from which this
interface is derived.

is_abstract A true value if the interface is an abstract one, a false
value otherwise.
59

See Also CORBA::InterfaceDef::describe()

CORBA::InvalidPolicies Exception

// IDL
exception InvalidPolicies {
 sequence <unsigned short> indices;
};

This exception is thrown by operations that are passed a bad policy. The
indicated policies, although valid in some circumstances, are not valid in
conjunction with other policies requested or already overridden at this scope.

CORBA::ModuleDescription Structure

// IDL
struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
};
struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
};

The description of an IDL module in the interface repository. The structure
members consist of the following:

name The name of the module.

id The identifier of the module.

defined_in The identifier of where the module is defined.

version The version of the module.
 60

See Also CORBA::ModuleDef

CORBA::OctetSeq Sequence

// C++
class OctetSeq {
 ...
};

A sequence of Octet values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::OpDescriptionSeq Sequence

// C++
class OpDescriptionSeq {
 ...
};

A sequence of OperationDescription structures in the interface repository
that describe each IDL operation of an interface or value type.

See Also CORBA::OperationDescription
CORBA::InterfaceDef::FullInterfaceDescription
CORBA::ValueDef::FullValueDescription

�About Sequences�

CORBA::OperationDescription Structure

// IDL
struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
61

 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

This structure describes an IDL operation in the interface repository. The
structure members consist of the following:

See Also CORBA::OpDescriptionSeq

name The name of the IDL operation.

id The identifier of the IDL operation.

defined_in The identifier of where the IDL operation is defined.

version The version of the IDL operation.

result The TypeCode of the result returned by the defined IDL
operation.

mode Specifies whether the IDL operation�s mode is normal
(OP_NORMAL) or one-way (OP_ONEWAY).

contexts The sequence of context identifiers specified in the context
clause of the IDL operation.

parameters The sequence of structures that give details of each
parameter of the IDL operation.

exceptions The sequence of structures containing details of exceptions
specified in the raises clause of the IDL operation.
 62

CORBA::OperationMode Enumeration

enum OperationMode {OP_NORMAL, OP_ONEWAY};
typedef OperationMode& OperationMode_out;

The mode of an IDL operation in the interface repository. An operation�s mode
indicates its invocation semantics.

CORBA::ORBid Type

// IDL
typedef string ORBid;
// C++
typedef char* ORBid;

The name that identifies an ORB. ORBid strings uniquely identify each ORB
used within the same address space in a multi-ORB application. ORBid strings
(except the empty string) are not managed by the OMG but are allocated by
ORB administrators who must ensure that the names are unambiguous.

See Also CORBA::ORB_init()

CORBA::ParameterDescription Structure

// IDL
struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
};

struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;

OP_NORMAL The IDL operation�s invocation mode is normal.

OP_ONEWAY The IDL operation�s invocation mode is oneway which means
the operation is invoked only once with no guarantee that the
call is delivered.
63

 ParameterMode mode;
};

This structure describes an IDL operation�s parameter in the interface reposi-
tory. The structure members consist of the following:

See Also CORBA::ParDescriptionSeq

CORBA::ParameterMode Enumeration

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
typedef ParameterMode& ParameterMode_out;

The mode of an IDL operation�s parameter in the interface repository.

CORBA::ParDescriptionSeq Sequence

// C++
class ParDescriptionSeq {
 ...
};

A sequence of ParameterDescription structures in the interface repository.

See Also CORBA::ParameterDescription
CORBA::OperationDef
CORBA::OperationDescription
CORBA::InterfaceDef
CORBA::ValueDef

name The name of the parameter.

type The TypeCode of the parameter.

type_def Identifies the definition of the type for the parameter.

mode Specifies whether the parameter is an in input, output, or
input and output parameter.

PARAM_IN The parameter is passed as input only.

PARAM_OUT The parameter is passed as output only.

PARAM_INOUT The parameter is passed as both input and output.
 64

�About Sequences�

CORBA::PolicyError Exception

// IDL
exception PolicyError {
 PolicyErrorCode reason;
};

The PolicyError exception is thrown to indicate problems with parameter
values passed to ORB::create_policy(). Possible reasons are described in
the PolicyErrorCode.

See Also CORBA::ORB::create_policy()
CORBA::PolicyErrorCode

CORBA::PolicyErrorCode Type

typedef short PolicyErrorCode;

// C++

typedef Short PolicyErrorCode;

A value representing an error when creating a new Policy. The following
constants are defined to represent the reasons a request to create a Policy
might be invalid:

Table 4: PolicyErrorCode Constants

Constant Explanation

BAD_POLICY The requested Policy is not understood
by the ORB.

UNSUPPORTED_POLICY The requested Policy is understood to be
valid by the ORB, but is not currently
supported.
65

See Also CORBA::ORB::create_policy()

CORBA::PolicyList Sequence

// C++
class PolicyList {
 ...
};

A list of Policy objects. Policies affect an ORB�s behavior.

See Also CORBA::Policy
CORBA::Object::set_policy_overrides()
PortableServer::POA::POA_create_POA()

�About Sequences�

CORBA::PolicyType Type

// C++
typedef ULong PolicyType;

Defines the type of Policy object.

The CORBA module defines the following constant PolicyType:

// IDL

BAD_POLICY_TYPE The type of the value requested for the
Policy is not valid for that PolicyType.

BAD_POLICY_VALUE The value requested for the Policy is of a
valid type but is not within the valid range
for that type.

UNSUPPORTED_POLICY_VALUE The value requested for the Policy is of a
valid type and within the valid range for
that type, but this valid value is not
currently supported.

Table 4: PolicyErrorCode Constants

Constant Explanation
 66

const PolicyType SecConstruction = 11;
// C++
static const PolicyType SecConstruction = 11;

Other valid constant values for a PolicyType are described with the definition
of the corresponding Policy object. There are standard OMG values and
IONA-specific values.

See Also CORBA::Policy
CORBA::PolicyTypeSeq
CORBA::ORB::create_policy()
CORBA::Object::_get_policy()
CORBA::DomainManager::get_domain_policy()

CORBA::PolicyTypeSeq Sequence

// IDL
typedef sequence<PolicyType> PolicyTypeSeq;

// C++
class PolicyTypeSeq {
 ...
};

A sequence of PolicyType data types.

See Also CORBA::Object::get_policy_overrides()
CORBA::PolicyManager::get_policy_overrides()

CORBA::PrimitiveKind Enumeration

// IDL
enum PrimitiveKind {
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pk_boolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
 pk_longlong, pk_ulonglong, pk_longdouble,
 pk_wchar, pk_wstring, pk_value_base
};
typedef PrimitiveKind& PrimitiveKind_out;

Indicates the kind of primitive type a PrimitiveDef object represents in the
interface repository.
67

Most kinds are self explanatory with the exception of the following:

� There are no PrimitiveDef objects with the kind pk_null.
� The kind pk_string represents an unbounded string.
� The kind pk_objref represents the IDL type Object.
� The kind pk_value_base represents the IDL type ValueBase.

See Also CORBA::PrimitiveDef
CORBA::Repository

CORBA::RepositoryId Type

// C++

typedef char* RepositoryId;

A string that uniquely identifies, in the interface repository, an IDL module,
interface, constant, typedef, exception, attribute, value type, value member,
value box, native type, or operation.

The format of RepositoryId types is a short format name followed by a colon
followed by characters, as follows:

format_name:string

The most common format encountered is the OMG IDL format. For example:

IDL:Pre/B/C:5.3

This format contains three components separated by colons:

See Also CORBA::Repository::lookup_id()

IDL The first component is the format name, IDL.

Pre/B/C The second component is a list of identifiers separated by �/�
characters that uniquely identify a repository item and its scope.
These identifiers can contain other characters including
underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version numbers
separated by a dot (.).
 68

CORBA::RepositoryIdSeq Sequence

// C++
class RepositoryIdSeq {
 ...
};

A sequence of RepositoryId strings in the interface repository.

See Also CORBA::RepositoryId

�About Sequences�

CORBA::ScopedName Type

// C++
typedef char* ScopedName;

A string that specifies an IDL item�s name relative to a scope in the interface
repository. A ScopedName correspond to an OMG IDL scoped name.

Examples A ScopedName that begins with �::� is an absolute scoped name; one that
uniquely identifies an item within a repository. For example:

::Account::makeWithdrawal

A ScopedName that does not begin with �::� is a relative scoped name; one
that identifies an item relative to some other item. For example:

makeWithdrawal

This example would be within the absolute scoped name of ::Account.

See Also CORBA::Contained::absolute_name
CORBA::Container::lookup()

CORBA::ServiceDetail Structure

// IDL
struct ServiceDetail {
 ServiceDetailType service_detail_type;
 sequence <Octet> service_detail;
};
69

Detailed information about a single service or facility available to an ORB.
Structure members consist of:

See Also CORBA::ServiceInformation

CORBA::ServiceDetailType Type

// C++
typedef ULong ServiceDetailType;

The type of service.

See Also CORBA::ServiceDetail

CORBA::ServiceInformation Structure

//IDL
struct ServiceInformation {
 sequence <ServiceOption> service_options;
 sequence <ServiceDetail> service_details;
};

Information about CORBA facilities and services that are supported by an ORB.
Structure members consist of:

See Also CORBA::ORB::get_service_information()

CORBA::ServiceOption Type

// C++
typedef ULong ServiceOption;

An option for a service.

service_detail_type

service_detail

service_options

service_details
 70

See Also CORBA::ServiceInformation

CORBA::ServiceType Type

typedef UShort ServiceType;

Used as a parameter in get_service_information() to obtain information
about CORBA facilities and services that are supported by an ORB. A possible
value consists of:

Security = 1

CORBA::SetOverrideType Enumeration

// IDL
enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

The type of override to use in the set_policy_overrides() method when
setting new policies for an object reference. Possible types consist of:

See Also CORBA::Object::_set_policy_overrides()

CORBA::ShortSeq Sequence

// C++
class ShortSeq {
 ...
};

A sequence of Short values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

SET_OVERRIDE Indicates that new policies are to be associated with
an object reference.

ADD_OVERRIDE Indicates that new policies are to be added to the
existing set of policies and overrides for an object
reference.
71

CORBA::StringValue Value Box

// C++
class StringValue : public DefaultValueRefCountBase {
public:
 // constructors
 StringValue();
 StringValue(const StringValue& val);
 StringValue(char* str);
 StringValue(const char* str);
 StringValue(const String_var& var);
 // assignment operators
 StringValue& operator=(char* str);
 StringValue& operator=(const char* str);
 StringValue& operator=(const String_var& var);
 // accessor
 const char* _value() const;
 // modifiers
 void _value(char* str);
 void _value(const char* str);
 void _value(const String_var& var);
 // explicit argument passing conversions for underlying string
 const char* _boxed_in() const;
 char*& _boxed_inout();
 char*& _boxed_out();
 // ...other String_var methods such as overloaded
 // subscript operators, etc....
 static StringValue* _downcast(ValueBase* base);
protected:
 ~StringValue();
 ...
};

StringValue is a value box class that provides a reference-counted version of
a string.

See Also
�About Value Boxes�
 72

CORBA::StructMember Structure

// C++
struct StructMember {
 Identifier name;
 TypeCode type;
 IDLType type_def;
};

This describes an IDL structure member in the interface repository. The
structure members consist of the following:

See Also CORBA::StructMemberSeq

CORBA::StructMemberSeq Sequence

// C++
class StructMemberSeq {
 ...
};

A sequence of StructMember objects in the interface repository.

See Also CORBA::StructMember
CORBA::ORB::create_struct_tc()
CORBA::ORB::create_exception_tc()
CORBA::Container::create_struct()
CORBA::Container::create_exception()
CORBA::StructDef::members
CORBA::ExceptionDef::members
CORBA::Initializer

�About Sequences�

name The name of the member.

type The TypeCode for the member.

type_def Identifies the definition of the type for the member.
73

CORBA::TCKind Enumeration

// IDL
enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except,
 tk_longlong, tk_ulonglong, tk_longdouble,
 tk_wchar, tk_wstring, tk_fixed,
 tk_value, tk_value_box,
 tk_native,
 tk_abstract_interface
};

A TCKind value indicates the kind of data type for a TypeCode. A TypeCode is
a value that represent an invocation argument type or attribute type, such as
that found in the interface repository or with a dynamic any type.

See Also CORBA::TypeCode::kind()
DynamicAny::DynStruct::current_member_kind()
DynamicAny::DynUnion::discriminator_kind()
DynamicAny::DynUnion::member_kind()
DynamicAny::DynValue::current_member_kind()

CORBA::TypeDescription Structure

// IDL
struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
};

// C++
struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 74

 VersionSpec version;
 TypeCode type;
};

This structure describes an IDL data type in the interface repository. The
structure members consist of the following:

CORBA::ULongLongSeq Sequence

// C++
class ULongLongSeq {
 ...
};

A sequence of ULongLong values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::ULongSeq Sequence

// C++
class ULongSeq {
 ...
};

A sequence of ULong values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

name The name of the data type.

id The identifier for the data type.

defined_in The identifier of where the data type is defined.

version The version of the data type.

type The TypeCode of the data type.
75

CORBA::UnionMember Structure

// IDL
struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
};

// C++
struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
};

This structure describes an IDL union member in the interface repository. The
structure members consist of the following:

See Also CORBA::UnionMemberSeq

CORBA::UnionMemberSeq Sequence

// C++
class UnionMemberSeq {
 ...
};

A sequence of UnionMember structures in the interface repository.

See Also CORBA::UnionMember
CORBA::ORB::create_union_tc()
CORBA::Container::create_union()
CORBA::UnionDef::members

�About Sequences�

name The name of the union member.

label The label of the union member.

type The TypeCode of the union member.

type_def The IDL data type of the union member.
 76

CORBA::UShortSeq Sequence

// C++
class UShortSeq {
 ...
};

A sequence of UShort values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::ValueDefSeq Sequence

// C++
class ValueDefSeq {
 ...
};

A sequence of ValueDef objects in the interface repository.

See Also CORBA::ValueDef
CORBA::Container::create_value()

�About Sequences�

CORBA::ValueDescription Structure

// IDL
struct ValueDescription {
 Identifier name;
 RepositoryId id;
 boolean is_abstract;
 boolean is_custom;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq supported_interfaces;
 RepositoryIdSeq abstract_base_values;
 boolean is_truncatable;
 RepositoryId base_value;
};
77

struct ValueDescription {
 Identifier name;
 RepositoryId id;
 Boolean is_abstract;
 Boolean is_custom;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq supported_interfaces;
 RepositoryIdSeq abstract_base_values;
 Boolean is_truncatable;
 RepositoryId base_value;
};

The description of an IDL value type in the interface repository. Value types
enable the passing of objects by value rather than just passing by reference.
The structure members consist of the following:

See Also CORBA::ValueDef::describe()

CORBA::ValueMember Structure

// IDL
struct ValueMember {
 Identifier name;

name The name of the value type.

id The identifier of the value type.

is_abstract True of the value type is abstract. False if the value
type is not abstract.

is_custom True of the value type is custom. False if the value
type is not custom.

defined_in The identifier of where the value type is defined.

version The version of the value type.

supported_interfaces

abstract_base_values

is_truncatable

base_value
 78

 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 IDLType type_def;
 Visibility access;
};

// C++
struct ValueMember {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 IDLType type_def;
 Visibility access;
};

This structure describes an IDL value type member in the interface repository.
The structure members consist of the following:

See Also CORBA::ValueMemberSeq

CORBA::ValueMemberSeq Sequence

// C++
class ValueMemberSeq {
 ...
};

name The name of the value type member.

id The identifier of the value type member.

defined_in The identifier of where the value type member is defined.

version The version of the value type member.

type The TypeCode of the value type member.

type_def The type definition of the value type member.

access The accessibility of the value type member (public or
private).
79

A sequence of ValueMember structures in the interface repository.

See Also CORBA::ValueMember
CORBA::ORB::create_value_tc()

�About Sequences�

CORBA::ValueModifier Type

typedef Short ValueModifier;

A modifier for an IDL value type in the interface repository. Possible values
consist of:

See Also CORBA::ORB::create_value_tc()
CORBA::TypeCode::type_modifier()

CORBA::VersionSpec Type

// C++
typedef char* VersionSpec;

A string that describes a version of an IDL item in the interface repository.
Version information can be associated with many IDL data types including
modules, constants, types, exceptions, attributes, and operations.

See Also CORBA::Contained::version

VM_NONE The IDL value type has no modifiers.

VM_CUSTOM The IDL value type has the custom modifier. This
specifies that the value type uses custom marshalling.

VM_ABSTRACT The IDL value type has the abstract modifier. Value
types that are abstract can not be instantiated.
Essentially they are a bundle of IDL operation
signatures with a purely local implementation.

VM_TRUNCATABLE The IDL value type has the truncatable modifier. A
value with a state that derives from another value
with a state can be specified as truncatable. A
truncatable type means the object can be truncated to
the base type.
 80

CORBA::Contained::move()
CORBA::Container

CORBA::Visibility Type

typedef Short Visibility;

Indicates the visibility of a state member of an IDL value type in the interface
repository. Possible values consist of:

PRIVATE_MEMBER
PUBLIC_MEMBER

IDL value types can have state members that are either public or private.
Private members are not visible to clients but are only visible to
implementation code and the marshalling routines.

See Also CORBA::ValueMember
CORBA::ValueMemberDef::access
CORBA::ValueDef::create_value_member()
CORBA::TypeCode::member_visibility()

CORBA::WCharSeq Sequence

// C++
class WCharSeq {
 ...
};

A sequence of WChar values used in marshalling custom value types.

See Also CORBA::DataOutputStream
CORBA::DataInputStream

�About Sequences�

CORBA::WStringValue Value Box

// C++
class WStringValue : public DefaultValueRefCountBase {
public:
 // constructors
81

 WStringValue();
 WStringValue(const WStringValue& val);
 WStringValue(char* str);
 WStringValue(const char* str);
 WStringValue(const String_var& var);
 // assignment operators
 WStringValue& operator=(char* str);
 WStringValue& operator=(const char* str);
 WStringValue& operator=(const String_var& var);
 // accessor
 const char* _value() const;
 // modifiers
 void _value(char* str);
 void _value(const char* str);
 void _value(const String_var& var);
 // explicit argument passing conversions for underlying string
 const char* _boxed_in() const;
 char*& _boxed_inout();
 char*& _boxed_out();
 // ...other String_var methods such as overloaded
 // subscript operators, etc....
 static WStringValue* _downcast(ValueBase* base);
protected:
 ~WStringValue();
 ...
};

WStringValue is a value box class that provides a reference-counted version
of a wide string.

See Also
�About Value Boxes�
 82

CORBA::AliasDef Interface
The AliasDef interface describes an IDL typedef that aliases another
definition in the interface repository. It is used to represent an IDL typedef.

// IDL in module CORBA.
interface AliasDef : TypedefDef {
 attribute IDLType original_type_def;
};

The following items are described for this interface:

� The describe() IDL operation
� The original_type_def attribute

See Also CORBA::Contained
CORBA::Container::create_alias()

AliasDef::describe()

// IDL
Description describe();

Inherited from Contained (which is inherited by TypedefDef), the describe()
operation returns a structure of type Contained::Description. The
DefinitionKind for the kind member is dk_Alias. The value member is an
any whose TypeCode is _tc_AliasDescription and whose value is a structure
of type TypeDescription.

See Also CORBA::TypedefDef::describe()

AliasDef::original_type_def Attribute

// IDL
attribute IDLType original_type_def;
83

Identifies the type being aliased. Modifying the original_type_def attribute
will automatically update the type attribute (the type attribute is inherited
from TypedefDef which in turn inherits it from IDLType). Both attributes
contain the same information.

See Also CORBA::IDLType::type
 84

CORBA::Any Class
The class Any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This allows a
program to handle values whose types are not known at compile time. The
IDL type any is most often used in code that uses the interface repository or
the dynamic invocation interface (DII) or with CORBA services in general.

Consider the following interface:

// IDL
interface Example {
 void op(in any value);
};

A client can construct an any to contain an arbitrary type of value and then
pass this in a call to op(). A process receiving an any must determine what
type of value it stores and then extract the value (using the TypeCode). Refer
to the CORBA Programmer�s Guide for more details.

Methods and structures are as follows:

// C++
class IT_ART_API Any : public ITCxxMemBase
{
 public:
 Any();

Any()
~Any()
from_boolean structure
from_char structure
from_fixed structure
from_octet structure
from_string structure
from_wchar structure
from_wstring structure
it_get_streamable()
it_set_streamable()
it_take_streamable()

operator=()
replace()
to_boolean structure
to_char structure
to_fixed structure
to_object structure
to_octet structure
to_string structure
to_wchar structure
to_wstring structure
type()
85

 Any(
 const Any& any
);
 Any(
 TypeCode_ptr tc,
 void* value,
 Boolean release = 0
);
 Any(
 IT_Streamable* strm,
 IT_Streamable::MemPolicy policy
);
 ~Any();

 Any& operator=(
 const Any&
);

 //
 // type-unsafe operations
 //
 void replace(
 TypeCode_ptr tc,
 void* value,
 Boolean release = 0
);

 TypeCode_ptr type() const;

 void type(
 TypeCode_ptr new_type
);

 const void* value() const;

 struct from_boolean {
 from_boolean(
 Boolean b
);
 Boolean m_val;
 };

 struct from_octet {
 86

 from_octet(
 Octet octet
);
 Octet m_val;
 };

 struct from_char {
 from_char(
 Char c
);
 Char m_val;
 };

 struct from_wchar {
 from_wchar(
 WChar c
);
 WChar m_val;
 };

 struct from_string {
 from_string(
 char* s,
 ULong b,
 Boolean nocopy = 0
);
 from_string(
 const char* s,
 ULong b
);
 char* m_val;
 ULong m_bound;
 Boolean m_nocopy;
 };

 struct from_wstring {
 from_wstring(
 WChar* s,
 ULong b,
 Boolean nocopy = 0
);
 from_wstring(
 const WChar* s,
87

 ULong b
);
 WChar* m_val;
 ULong m_bound;
 Boolean m_nocopy;
 };

 struct from_fixed {
 from_fixed(
 const Fixed& f,
 UShort digits,
 Short scale
);
 const Fixed& m_val;
 UShort m_digits;
 Short m_scale;
 };

 struct to_boolean {
 to_boolean(
 Boolean& b
);
 Boolean& m_ref;
 };

 struct to_char {
 to_char(
 Char& c
);
 Char& m_ref;
 };

 struct to_wchar {
 to_wchar(
 WChar& c
);
 WChar& m_ref;
 };

 struct to_octet {
 to_octet(
 Octet& o
);
 88

 Octet& m_ref;
 };

 struct to_object {
 to_object(
 Object_ptr& obj
);
 Object_ptr& m_ref;
 };

 struct to_string {
 to_string(
 char*& s,
 ULong b
);
 char*& m_ref;
 ULong m_bound;
 };

 struct to_wstring {
 to_wstring(
 WChar*& s,
 ULong b
);
 WChar*& m_ref;
 ULong m_bound;
 };

 struct to_fixed {
 to_fixed(
 Fixed& f,
 UShort digits,
 Short scale
);
 Fixed& m_ref;
 UShort m_digits;
 Short m_scale;
 };

 IT_Streamable* it_get_streamable(
 Boolean make_copy = 0
) const;
89

 Boolean it_take_streamable(
 IT_Streamable* &strm
);

 void it_set_streamable(
 IT_Streamable* strm,
 IT_Streamable::MemPolicy policy
);

 private:
 ...
}

Any::Any() Constructors

Any();

The default constructor creates an Any with a TypeCode of type tk_null and
with a zero value.

Any(
 const Any& any
);

This copy constructor duplicates the TypeCode_ptr of any and copies the value.

Any(
 TypeCode_ptr tc,
 void* value,
 Boolean release = 0
);

Constructs an Any with a specific TypeCode and value. This constructor is
needed for cases where it is not possible to use the default constructor and
operator<<=(). For example, since all strings are mapped to char*, it is not
possible to create an Any with a specific TypeCode for a bounded string.

This constructor is not type-safe; you must ensure consistency between the
TypeCode and the actual type of the argument value.

Any(
 IT_Streamable* strm,
 IT_Streamable::MemPolicy policy
);
 90

Constructs an Any from a stream.

Parameters

Examples The easiest and the type-safe way to construct an Any is to use the default
constructor and then use operator<<=() to insert a value into the Any. For
example:

// C++
CORBA::Short s = 10;
CORBA::Any a;
a <<= s;

See Also CORBA::Any::operator<<=()

Any::~Any() Destructor

~Any();

Destructor for an Any. Depending on the value of the Boolean release parameter
to the complex constructor, it frees the value contained in the Any based on
the TypeCode of the Any. It then frees the TypeCode.

See Also CORBA::Any::Any()

type A reference to a CORBA::TypeCode. The constructor duplicates
this object reference.

val The value pointer. A conforming program should make no
assumptions about the lifetime of the value passed in this
parameter once it has been passed to this constructor with
release=1.

release A boolean variable to decide ownership of the storage pointed
to by value. If set to 1, the Any object assumes ownership of
the storage. If the release parameter is set to 0 (the default),
the calling program is responsible for managing the memory
pointed to by value.

IT_Streamable*

IT_Streamable:
:MemPolicy
91

Any::from_type Structure

struct from_boolean {
 from_boolean(
 Boolean b
);
 Boolean m_val;
};

struct from_char {
 from_char(
 Char c
);
 Char m_val;
};

struct from_fixed {
 from_fixed(
 const Fixed& f,
 UShort digits,
 Short scale
);
 const Fixed& m_val;
 UShort m_digits;
 Short m_scale;
};

struct from_octet {
 from_octet(
 Octet octet
);
 Octet m_val;
};

struct from_string {
 from_string(
 char* s,
 ULong b,
 Boolean nocopy = 0
);
 from_string(
 const char* s,
 ULong b
);
 char* m_val;
 92

 ULong m_bound;
 Boolean m_nocopy;
};

struct from_wchar {
 from_wchar(
 WChar c
);
 WChar m_val;
};

struct from_wstring {
 from_wstring(
 WChar* s,
 ULong b,
 Boolean nocopy = 0
);
 from_wstring(
 const WChar* s,
 ULong b
);
 WChar* m_val;
 ULong m_bound;
 Boolean m_nocopy;
};

Inserts the specific IDL type into the any. These helper structures are nested
in the any class interface to distinguish these IDL data types from each other.
Because these IDL types are not required to map to distinct C++ types, another
means of distinguishing them from each other is necessary so that they can
be used with the type-safe any interface.

See Also CORBA::Any::to_type

Any::it_get_streamable()

IT_Streamable* it_get_streamable(
 Boolean make_copy = 0
) const;

Enhancement IONA-specific enhancement.
93

Any::it_set_streamable()

void it_set_streamable(
 IT_Streamable* strm,
 IT_Streamable::MemPolicy policy
);

Enhancement IONA-specific enhancement.

Any::it_take_streamable()

Boolean it_take_streamable(
 IT_Streamable* &strm
);

Enhancement IONA-specific enhancement.

Any::operator=()

Any& operator=(
 const Any& a
);

The assignment operator releases its TypeCode and frees the value if necessary.

Parameters

 void replace(
 TypeCode_ptr tc,
 void* value,
 Boolean release = 0
);

This method is needed for cases where it is not possible to use operator<<=()
to insert into an existing Any. For example, because all strings are mapped to
char*, it is not possible to create an Any with a specific TypeCode for a bounded
string.

a The value to duplicate. The method duplicates the TypeCode
of a and deep copies the parameter�s value.
 94

Parameters

This function is not type-safe; you must ensure consistency between the
TypeCode and the actual type of the argument value.

Any::to_type Structure

struct to_boolean {
 to_boolean(
 Boolean& b
);
 Boolean& m_ref;
};

struct to_char {
 to_char(
 Char& c
);
 Char& m_ref;
};

struct to_fixed {
 to_fixed(
 Fixed& f,
 UShort digits,
 Short scale
);
 Fixed& m_ref;

tc A reference to a CORBA::TypeCode. The method duplicates
this object reference.

value The value pointer. A conforming program should make no
assumptions about the lifetime of the value passed in this
parameter if it has been passed to Any::replace() with
release=1.

release A boolean variable to decide ownership of the storage pointed
to by value. If set to 1, the Any object assumes ownership of
the storage. If the release parameter is set to 0 (the default),
the calling program is responsible for managing the memory
pointed to by value.
95

 UShort m_digits;
 Short m_scale;
};

struct to_object {
 to_object(
 Object_ptr& obj
);
 Object_ptr& m_ref;
};

struct to_octet {
 to_octet(
 Octet& o
);
 Octet& m_ref;
};

struct to_string {
 to_string(
 char*& s,
 ULong b
);
 char*& m_ref;
 ULong m_bound;
};

struct to_wchar {
 to_wchar(
 WChar& c
);
 WChar& m_ref;
};

struct to_wstring {
 to_wstring(
 WChar*& s,
 ULong b
);
 WChar*& m_ref;
 ULong m_bound;
};
 96

Extracts the specific IDL type from the any. These helper structures are nested
in the any class interface to distinguish these IDL data types from each other.
Because these IDL types are not required to map to distinct C++ types, another
means of distinguishing them from each other is necessary so that they can
be used with the type-safe any interface.

See Also CORBA::Any::from_type

Any::type()

TypeCode_ptr type() const;

Returns the Typecode of the Object encapsulated within the Any.

void type(TypeCode_ptr t);

Sets the Typecode of the Object encapsulated within the Any.

Parameters

t The TypeCode of the object.
97

 98

CORBA::ArrayDef Interface
The ArrayDef interface represents a one-dimensional array in an interface
repository. A multi-dimensional array is represented by an ArrayDef with an
element type that is another array definition. The final element type
represents the type of element contained in the array. An instance of
interface ArrayDef can be created using create_array().

// IDL in module CORBA.
interface ArrayDef : IDLType {
 attribute unsigned long length;
 readonly attribute TypeCode element_type;
 attribute IDLType element_type_def;
};

See Also CORBA::IDLType
CORBA::ArrayDef::element_type_def
CORBA::Repository::create_array()

ArrayDef::element_type Attribute

// IDL
readonly attribute TypeCode element_type;

Identifies the type of the element contained in the array. This contains the
same information as in the element_type_def attribute.

See Also CORBA::ArrayDef::element_type_def

ArrayDef::element_type_def Attribute

// IDL
attribute IDLType element_type_def;

Describes the type of the element contained within the array. This contains
the same information as in the attribute element_type attribute.
99

The type of elements contained in the array can be changed by changing this
attribute. Changing this attribute also changes the element_type attribute.

See Also CORBA::ArrayDef::element_type

ArrayDef::length Attribute

// IDL
attribute unsigned long length;

Returns the number of elements in the array.

Specifies the number of elements in the array.
 100

CORBA::AttributeDef Interface
The AttributeDef interface describes an attribute of an interface in the
interface repository.

// IDL in module CORBA.
interface AttributeDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
};

The inherited describe() method is also described.

See Also CORBA::Contained
CORBA::InterfaceDef::create_attribute()

AttributeDef::describe()

// IDL
Description describe();

Inherited from Contained, the describe() method returns a structure of type
Contained::Description. The DefinitionKind for the kind member of this
structure is dk_Attribute. The value member is an any whose TypeCode is
_tc_AttributeDescription. The value is a structure of type
AttributeDescription.

See Also CORBA::Contained::describe()

AttributeDef::mode Attribute

// IDL
attribute AttributeMode mode;

// C++
virtual AttributeMode mode() = 0;

Returns the mode of the attribute.
101

// C++
virtual void mode(
 AttributeMode _itvar_mode
) = 0;

Specifies whether the attribute is read and write (ATTR_NORMAL) or read-only
(ATTR_READONLY).

AttributeDef::type Attribute

// IDL
readonly attribute TypeCode type;

// C++
virtual TypeCode_ptr type() = 0;

Returns the type of this attribute. The same information is contained in the
type_def attribute.

See Also CORBA::TypeCode
CORBA::AttributeDef::type_def

AttributeDef::type_def Attribute

// IDL
attribute IDLType type_def;

// C++
virtual IDLType_ptr type_def() = 0;

Returns the type of this attribute.

// C++
virtual void type_def(
 IDLType_ptr _itvar_type_def
) = 0;

Describes the type for this attribute. The same information is contained in the
type attribute. Changing the type_def attribute automatically changes the
type attribute.

See Also CORBA::IDLType
CORBA::AttributeDef::type
 102

CORBA::ConstantDef Interface
Interface ConstantDef describes an IDL constant in the interface repository.
The name of the constant is inherited from Contained.

// IDL
// in module CORBA.
interface ConstantDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute any value;
};

The inherited operation describe() is also described.

See Also CORBA::Contained
CORBA::Container::create_constant()

ConstantDef::describe()

// IDL
Description describe();

Inherited from Contained, describe() returns a structure of type Contained:
:Description.

The kind member is dk_Constant.

The value member is an any whose TypeCode is _tc_ConstantDescription
and whose value is a structure of type ConstantDescription.

See Also CORBA::Contained::describe()

ConstantDef::type Attribute

// IDL
readonly attribute TypeCode type;
103

Orbix 2000 Programmer�s Reference Java Edition
Identifies the type of this constant. The type must be a TypeCode for one of the
simple types (such as long, short, float, char, string, double, boolean,
unsigned long, and unsigned short). The same information is contained in
the type_def attribute.

See Also CORBA::ConstantDef::type_def

ConstantDef::type_def Attribute

// IDL
attribute IDLType type_def;

Returns the type of this constant.

Identifies the type of the constant. The same information is contained in the
type attribute.

The type of a constant can be changed by changing its type_def attribute.
This also changes its type attribute.

See Also CORBA::ConstantDef::type

ConstantDef::value Attribute

// IDL
attribute any value;

Returns the value of this attribute.

Contains the value for this constant. When changing the value attribute, the
TypeCode of the any must be the same as the type attribute.

See Also CORBA::TypeCode
 104

CORBA::ConstructionPolicy Interface
When new object references are created, the ConstructionPolicy object
allows the caller to specify that the instance should be automatically
assigned membership in a newly created policy domain. When a policy
domain is created, it also has a DomainManager object associated with it. The
ConstructionPolicy object provides a single operation that makes the
DomainManager object.

// IDL in CORBA Module
interface ConstructionPolicy: Policy {
 void make_domain_manager(
 in CORBA::InterfaceDef object_type,
 in boolean constr_policy
);
};

ConstructionPolicy::make_domain_manager()

// IDL
void make_domain_manager(
 in CORBA::InterfaceDef object_type,
 in boolean constr_policy
);

This operation sets the construction policy that is to be in effect in the policy
domain for which this ConstructionPolicy object is associated.
105

Parameters

You can obtain a reference to the newly created domain manager by calling
_get_domain_managers() on the newly created object reference.

See Also CORBA::DomainManager
CORBA::Object::_get_domain_managers()

object_type The type of the objects for which domain managers will be
created. If this is nil, the policy applies to all objects in the
policy domain.

constr_policy A value of true indicates to the ORB that new object
references of the specified object_type are to be associated
with their own separate policy domains (and associated
domain manager). Once such a construction policy is set, it
can be reversed by invoking make_domain_manager() again
with the value of false.

A value of false indicates the construction policy is set to
associate the newly created object with the policy domain of
the creator or a default policy domain.
 106

CORBA::Contained Interface
Interface Contained is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or repository.
It is a base interface for the following interfaces:

ModuleDef
InterfaceDef
ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
StructDef
EnumDef
UnionDef
AliasDef
ValueDef

The complete interface is shown here:

// IDL
// In module CORBA.
interface Contained : IRObject {

 // read/write interface
 attribute RepositoryId id;
 attribute Identifier name;
 attribute VersionSpec version;

 // read interface
 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };
 Description describe();
107

 // write interface
 void move(
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);

See Also };CORBA::Container
CORBA::IRObject

Contained::absolute_name Attribute

//IDL
readonly attribute ScopedName absolute_name;

Gives the absolute scoped name of an object.

See Also CORBA::ScopedName

Contained::containing_repository Attribute

// IDL
readonly attribute Repository containing_repository;

Gives the Repository within which the object is contained.

Contained::defined_in Attribute

// IDL
attribute Container defined_in;

Specifies the Container for the interface repository object in which the object
is contained.

An IFR object is said to be contained by the IFR object in which it is defined.
For example, an InterfaceDef object is contained by the ModuleDef in which
it is defined.
 108

A second notion of contained applies to objects of type AttributeDef or
OperationDef. These objects may also be said to be contained in an
InterfaceDef object if they are inherited into that interface. Note that
inheritance of operations and attributes across the boundaries of different
modules is also allowed.

See Also CORBA::Container::contents()

Contained::describe()

// IDL
Description describe();

Returns a structure of type Contained::Description.

The kind field of the Description structure contains the same value as the
def_kind attribute that Contained inherits from IRObject.

See Also CORBA::Container::describe_contents()
CORBA::DefinitionKind

Contained::Description Structure

// IDL
struct Description {
 DefinitionKind kind;
 any value;
};

This is a generic form of description which is used as a wrapper for another
structure stored in the value field.

Depending on the type of the Contained object, the value field will contain a
corresponding description structure:

ConstantDescription
ExceptionDescription
AttributeDescription
OperationDescription
ModuleDescription
InterfaceDescription
TypeDescription
109

The last of these, TypeDescription is used for objects of type StructDef,
UnionDef, EnumDef, and AliasDef (it is associated with interface TypedefDef
from which these four listed interfaces inherit).

Contained::id Attribute

// IDL
attribute RepositoryId id;

A RepositoryId provides an alternative method of naming an object which is
independent of the ScopedName.

In order to be CORBA compliant the naming conventions specified for
CORBA RepositoryIds should be followed. Changing the id attribute
changes the global identity of the contained object. It is an error to change
the id to a value that currently exists in the contained object�s Repository.

Contained::move()

// IDL
void move(
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);

Removes this object from its container, and adds it to the container specified
by new_container. The new container must:

� Be in the same repository.
� Be capable of containing an object of this type.
� Not contain an object of the same name (unless multiple versions are

supported).

The name attribute of the object being moved is changed to that specified by
the new_name parameter. The version attribute is changed to that specified
by the new_version parameter.

See Also CORBA::Container
 110

Contained::name Attribute

// IDL
attribute Identifier name;

Return or set the name of the object within its scope. For example, in the
following definition:

// IDL
interface Example {
 void op();
};

the names are Example and op. A name must be unique within its scope but is
not necessarily unique within an interface repository. The name attribute can
be changed but it is an error to change it to a value that is currently in use
within the object�s Container.

See Also CORBA::Contained::id

Contained::version Attribute

// IDL
attribute VersionSpec version;

Return or set the version number for this object. Each interface object is
identified by a version which distinguishes it from other versioned objects of
the same name.
111

 112

CORBA::Container Interface
Interface Container describes objects that can contain other objects in the
interface repository. A Container can contain any number of objects derived
from the Contained interface. Such objects include:

AttributeDef
ConstantDef
ExceptionDef
InterfaceDef
ModuleDef
OperationDef
TypedefDef
ValueDef
ValueMemberDef

The interface is shown here:

//IDL
// In CORBA Module
interface Container : IRObject {
 // read interface
 Contained lookup(
 in ScopedName search_name);

 ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq lookup_name(
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 struct Description {
 Contained contained_object;
 DefinitionKind kind;
113

 any value;
 };

 typedef sequence<Description> DescriptionSeq;

 DescriptionSeq describe_contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

 // write interface
 ModuleDef create_module(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version
);

 ConstantDef create_constant(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in any value
);

 StructDef create_struct(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

 UnionDef create_union(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType discriminator_type,
 in UnionMemberSeq members
);

 EnumDef create_enum(
 in RepositoryId id,
 114

 in Identifier name,
 in VersionSpec version,
 in EnumMemberSeq members
);

 AliasDef create_alias(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type
);

 InterfaceDef create_interface(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in InterfaceDefSeq base_interfaces
 in boolean is_abstract
);

 ValueDef create_value(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in boolean is_custom,
 in boolean is_abstract,
 in ValueDef base_value,
 in boolean is_truncatable,
 in ValueDefSeq abstract_base_values,
 in InterfaceDef supported_interface,
 in InitializerSeq initializers
);

 ValueBoxDef create_value_box(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type_def
);

 ExceptionDef create_exception(
 in RepositoryId id,
 in Identifier name,
115

 in VersionSpec version,
 in StructMemberSeq members
);

 NativeDef create_native(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
);
}; // End Interface Container

See Also CORBA::IRObject

Container::contents()

// IDL
ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

Returns a sequence of Contained objects that are directly contained in (defined
in or inherited into) the target object. This operation can be used to navigate
through the hierarchy of definitions�starting, for example, at a Repository.

Parameters

See Also CORBA::Container::describe_contents()
CORBA::DefinitionKind

limit_type If set to dk_all, all of the contained interface reposi-
tory objects are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For example, if
set to, dk_Operation, then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.
 116

Container::create_alias()

// IDL
AliasDef create_alias(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type
);

Creates a new AliasDef object within the target Container. The defined_in
attribute is set to the target Container. The containing_repository attribute
is set to the Repository in which the new AliasDef object is defined.

Parameters

Exceptions

See Also CORBA::AliasDef

Container::create_constant()

// IDL
ConstantDef create_constant(

id The repository ID for the new AliasDef object. An excep-
tion is raised if an interface repository object with the same
ID already exists within the object�s repository.

name The name for the new AliasDef object. It is an error to
specify a name that already exists within the object�s
Container when multiple versions are not supported.

version A version for the new AliasDef.

original_type The original type that is being aliased.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
117

 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in any value
);

Creates a ConstantDef object within the target Container. The defined_in
attribute is set to the target Container. The containing_repository attribute
is set to the Repository in which the new ConstantDef object is defined.

Parameters

Exceptions

See Also CORBA::ConstantDef

Container::create_enum()

// IDL
EnumDef create_enum(

id The repository ID of the new ConstantDef object. It is an error to
specify an ID that already exists within the object�s repository.

name The name of the new ConstantDef object. It is an error to specify a
name that already exists within the object�s Container when multi-
ple versions are not supported.

version The version number of the new ConstantDef object.

type The type of the defined constant. This must be one of the simple
types (long, short, ulong, ushort, float, double, char, string,
boolean).

value The value of the defined constant.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
 118

 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in EnumMemberSeq members
);

Creates a new EnumDef object within the target Container. The defined_in
attribute is set to Container. The containing_repository attribute is set to
the Repository in which the new EnumDef object is defined.

Parameters

Exceptions

See Also CORBA::EnumDef

Container::create_exception()

// IDL
ExceptionDef create_exception(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,

id The repository ID of the new EnumDef object. It is an error to spec-
ify an ID that already exists within the Repository.

name The name of the EnumDef object. It is an error to specify a name
that already exists within the object�s Container when multiple
versions are not supported.

version The version number of the new EnumDef object.

members A sequence of structures that describes the members of the new
EnumDef object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
119

 in StructMemberSeq members
);

Creates a new ExceptionDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository at-
tribute is set to the Repository in which new ExceptionDef object is defined.
The type attribute of the StructMember structures is ignored and should be set
to _tc_void.

Parameters

Exceptions

See Also CORBA::ExceptionDef

Container::create_interface()

// IDL
InterfaceDef create_interface(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in InterfaceDefSeq base_interfaces

id The repository ID of the new ExceptionDef object. It is an error to
specify an ID that already exists within the object�s repository.

name The name of the new ExceptionDef object. It is an error to spec-
ify a name that already exists within the object�s Container when
multiple versions are not supported.

version A version number for the new ExceptionDef object.

members A sequence of StructMember structures that describes the mem-
bers of the new ExceptionDef object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
 120

 in boolean is_abstract
);

Creates a new empty InterfaceDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository at-
tribute is set to the Repository in which the new InterfaceDef object is
defined.

Parameters

Exceptions

See Also CORBA::InterfaceDef

Container::create_module()

// IDL
ModuleDef create_module (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version

id The repository ID of the new InterfaceDef object. It is
an error to specify an ID that already exists within the
object�s repository.

name The name of the new InterfaceDef object. It is an error
to specify a name that already exists within the object�s
Container when multiple versions are not supported.

version A version for the new InterfaceDef object.

base_interfaces A sequence of InterfaceDef objects from which the
new interface inherits.

is_abstract If true the interface is abstract.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
121

);

Creates an empty ModuleDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository at-
tribute is set to the repository in which the newly created ModuleDef object is
defined.

Parameters

Exceptions

Container::create_native()

// IDL
NativeDef create_native(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
);

Creates a NativeDef object within the target Container. The defined_in
attribute is set to Container. The containing_repository attribute is set to
the repository in which the newly created NativeDef object is defined.

id The repository ID of the new ModuleDef object. It is an error to
specify an ID that already exists within the object�s repository.

name The name of the new ModuleDef object. It is an error to specify a
name that already exists within the object�s Container when mul-
tiple versions are not supported.

version A version for the ModuleDef object to be created.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
 122

Parameters

Exceptions

Container::create_struct()

// IDL
StructDef create_struct(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

Creates a new StructDef object within the target Container. The defined_in
attribute is set to Container. The containing_repository attribute is set to
the repository in which the new StructDef object is defined. The type attribute
of the StructMember structures is ignored and should be set to _tc_void.

id The repository ID of the new NativeDef object. It is an error to
specify an ID that already exists within the object�s repository.

name The name of the new NativeDef object. It is an error to specify a
name that already exists within the object�s Container when mul-
tiple versions are not supported.

version A version for the NativeDef object to be created.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
123

Parameters

Exceptions

See Also CORBA::StructDef

Container::create_union()

// IDL
UnionDef create_union(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType discriminator_type,
 in UnionMemberSeq members
);

Creates a new UnionDef object within the target Container. The defined_in
attribute is set to the target Container. The containing_repository attribute
is set to the repository in which the new UnionDef object is defined. The type
attribute of the UnionMember structures is ignored and should be set to
_tc_void.

id The repository ID of the new StructDef object. It is an error to
specify an ID that already exists within the object�s repository.

name The name of the new StructDef object. It is an error to specify a
name that already exists within the object�s Container when mul-
tiple versions are not supported.

version A version for the new StructDef object.

members A sequence of StructMember structures that describes the mem-
bers of the new StructDef object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
 124

Parameters

Exceptions

See Also CORBA::UnionDef

Container::create_value()

// IDL
ValueDef create_value(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in boolean is_custom,
 in boolean is_abstract,
 in ValueDef base_value,
 in boolean is_truncatable,
 in ValueDefSeq abstract_base_values,

id The repository ID of the new UnionDef object. It is
an error to specify an ID that already exists within
the object�s repository.

name The name of the new UnionDef object. It is an error
to specify a name that already exists within the
object�s Container when multiple versions are not
supported.

version A version for the new UnionDef object.

discriminator_type The type of the union discriminator.

members A sequence of UnionMember structures that
describes the members of the new UnionDef object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
125

 in InterfaceDef supported_interfaces,
 in InitializerSeq initializers
);

Creates a new empty ValueDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository at-
tribute is set to the repository in which the new ValueDef object is defined.

Parameters

Exceptions

id The repository ID of the new ValueDef object. It is
an error to specify an ID that already exists within
the object�s repository.

name The name of the new ValueDef object. It is an error
to specify a name that already exists within the
object�s Container when multiple versions are not
supported.

version A version for the new ValueDef object.

is_custom If true the value type is custom.

is_abstract If true the value type is abstract.

base_value The base value for this value type.

is_truncatable if true the value type is truncatable.

abstract_base_values A sequence of ValueDef structures that describes the
base values of the new ValueDef object.

supported_interfaces The interface the value type supports.

initializers A sequence of initializers for the new ValueDef
object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
 126

Container::create_value_box()

// IDL
ValueBoxDef create_value_box(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type_def
);

Creates a new empty ValueBoxDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository at-
tribute is set to the repository in which the new ValueBoxDef object is defined.

Parameters

Exceptions

Container::describe_contents()

// IDL
DescriptionSeq describe_contents(

id The repository ID of the new ValueBoxDef object. It
is an error to specify an ID that already exists within
the object�s repository.

name The name of the new ValueBoxDef object. It is an
error to specify a name that already exists within the
object�s Container when multiple versions are not
supported.

version A version for the new ValueBoxDef object.

original_type_def The IDL data type of the value box.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

The specified name already exists within this Container and
multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container. Certain
interfaces derived from Container may restrict the types of
definitions that they may contain.
127

 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

Returns a sequence of structures of type Container::Description.
describe_contents() is a combination of operations Contained::describe()
and Container::contents().

Parameters

See Also CORBA::Container::contents()
CORBA::Contained::describe()

Container::Description Structure

// IDL
struct Description {
 Contained contained_object;
 DefinitionKind kind;
 any value;
};

This structure gives the object reference of a contained object, together with
its kind and value.

limit_type If this is set to dk_all, then all of the contained inter-
face repository objects are returned. If set to the
DefinitionKind for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Operation, then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

max_returned_objs The number of objects that can be returned in the call.
Setting a value of -1 means return all contained
objects.
 128

Each structure has the following members:

See Also CORBA::Container::describe_contents()
CORBA::Contained::describe()

Container::DescriptionSeq Sequence

// IDL
typedef sequence<Description> DescriptionSeq;

A sequence of Container::Description structures in the interface repository.

See Also CORBA::Container::Description

�About Sequences�

Container::lookup()

// IDL
Contained lookup(
 in ScopedName search_name
);

contained_object The object reference, of type Contained, of the con-
tained top level object. The describe() function can
be called on an object reference, of type Contained,
to get further information on a top level object in the
repository.

kind The kind of the object being described.

value An any type that may contain one of the following
structures:

ModuleDescription
ConstantDescription
TypeDescription
ExceptionDescription
AttributeDescription
ParameterDescription
OperationDescription
InterfaceDescription
129

Locates an object name within the target container. The objects can be directly
or indirectly defined in or inherited into the target container.

Parameters

See Also CORBA::Container::lookup_name()
CORBA::ScopedName

Container::lookup_name()

// IDL
ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

Locates an object or objects by name within the target container and returns
a sequence of contained objects. The named objects can be directly or indirectly
defined in or inherited into the target container. (More than one object, having
the same simple name can exist within a nested scope structure.)

Parameters

search_name The name of the object to search for relative to the target con-
tainer. If a relative name is given, the object is looked up rel-
ative to the target container. If search_name is an absolute
scoped name (prefixed by �::�), the object is located relative
to the containing Repository.

search_name The simple name of the object to search for.

levels_to_search Defines whether the search is confined to the current
object or should include all interface repository
objects contained by the object. If set to -1, the cur-
rent object and all contained interface repository
objects are searched. If set to 1, only the current
object is searched.
 130

See Also CORBA::DefinitionKind

limit_type If this is set to dk_all, then all of the contained inter-
face repository objects are returned. If set to the
DefinitionKind for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Operation, then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.
131

 132

CORBA::Context Class
Class CORBA::Context implements the OMG pseudo-interface Context. A
context is intended to represent information about the client that is
inconvenient to pass via parameters. An IDL operation can specify that it is
to be provided with the client�s mapping for particular identifiers (properties).
It does this by listing these identifiers following the operation declaration in a
context clause.

An IDL operation that specifies a context clause is mapped to a C++
member method that takes an extra input parameter of type Context_ptr,
just before the Environment parameter. A client can optionally maintain one
or more CORBA Context objects, that provide a mapping from identifiers
(string names) to string values. A Context object contains a list of properties;
each property consists of a name and a string value associated with that
name and can be passed to a method that takes a Context parameter.

You can arrange Context objects in a hierarchy by specifying parent-child
relationships among them. Then, a child passed to an operation also
includes the identifiers of its parent(s). The called method can decide
whether to use just the context actually passed, or the hierarchy above it.

The Context class is as follows:

// IDL
pseudo interface Context {

readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child(in Identifier child_ctx_name);
void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
NVList get_values(in Identifier start_scope,

in Flags op_flags,
in Identifier pattern);

};

class Context {
public:
133

 const char *context_name() const;
 Context_ptr parent() const;
 void create_child(
 const char *,
 Context_out
);
 void set_one_value(
 const char *,
 const Any &
);
 void set_values(
 NVList_ptr
);
 void delete_values(
 const char *
);
 void get_values(
 const char*,
 Flags,
 const char*,
 NVList_out
);
};

Context::context_name()

const char *context_name() const;

Returns the name of the Context object. Ownership of the returned value is
maintained by the Context and must not be freed by the caller.

See Also CORBA::Context::create_child()

Context::create_child()

void create_child(
 const char *ctx_name,
 Context_out child_ctx
);
 134

Creates a child context of the current context. When a child context is passed
as a parameter to an operation, any searches (using CORBA::Context::
get_values()) look in parent contexts if necessary to find matching property
names.

Parameters

See Also CORBA::Context::get_values()

Context::delete_values()

void delete_values(
 const char *prop_name
);

Deletes the specified property value(s) from the context. The search scope is
limited to the Context object on which the invocation is made.

Parameters

Exceptions An exception is raised if no matching property is found.

Context::get_values()

void get_values(
 const char* start_scope,
 Flags op_flags,
 const char* prop_name,
 NVList_out values
);

Retrieves the specified context property values.

ctx_name The name of the child context. Context object names follow
the rules for IDL identifiers.

child_ctx The newly created context.

prop_name The property name to be deleted. If prop_name has a trailing
asterisk (*), all matching properties are deleted.
135

Parameters

Context::parent()

Context_ptr parent() const;

Returns the parent of the Context object. Ownership of the return value is
maintained by the Context and must not be freed by the caller.

See Also CORBA::Context::create_child()

Context::set_one_value()

void set_one_value(
 const char * prop_name,
 const Any &value
);

Adds a property name and value to the Context. Although the value member
is of type Any, the type of the Any must be a string.

Parameters

See Also CORBA::Context::set_values()

start_scope The context in which the search for the values requested
should be started. The name of a direct or indirect parent
context may be specified to this parameter. If 0 is passed in,
the search begins in the context which is the target of the
call.

op_flags By default, searching of identifiers propagates upwards to
parent contexts; if the value CORBA::CTX_RESTRICT_SCOPE is
specified, then searching is limited to the specified search
scope or context object.

prop_name If prop_name has a trailing asterisk (*), all matching
properties and their values are returned.

values An NVList to contain the returned property values.

prop_name The name of the property to add.

value The value of the property to add.
 136

Context::set_values()

void set_values(
 NVList_ptr values
);

Sets one or more property values in the Context. The previous value of a
property, if any, is discarded.

Parameters

See Also CORBA::Context::set_one_value()

values An NVList containing the property_name:values to add or
change. In the NVList, the flags field must be set to zero, and
the TypeCode associated with an attribute value must be
CORBA:: _tc_string.
137

 138

CORBA::ContextList Class
A ContextList allows an application to provide a list of Context strings that
must be supplied when a dynamic invocation Request is invoked.

The Context is where the actual values are obtained by the ORB. The
ContextList supplies only the context strings whose values are to be looked
up and sent with the request invocation. The serverless ContextList object
allows the application to specify context information in a way that avoids
potentially expensive interface repository lookups for the information by the
ORB during a request.

// IDL
pseudo interface ContextList {

readonly attribute unsigned long count;
void add(in string ctx);
string item(in unsigned long index) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};

// C++
class ContextList {
public:
 ULong count();
 void add(
 const char* ctxt
);
 void add_consume(
 char* ctxt
);
 const char* item(
 ULong index
);
 void remove(
 ULong index
);
};

See Also CORBA::Object::_create_request()
CORBA::Request::contexts
139

 CORBA::ContextList Class
CORBA::ORB::create_context_list()

ContextList::add()

void add(
 const char* ctxt
);

Adds a context string to the context list.

Parameters

See Also CORBA::ContextList::add_consume()

ContextList::add_consume()

void add_consume(
 char* ctxt
);

Adds a context string to the context list. The memory of the ctxt parameter is
managed by the method. The caller cannot access the memory of ctxt after
it has been passed in because this method could copy and free the original
immediately.

Parameters

See Also CORBA::ContextList::add()

ContextList::count()

ULong count();

Returns the number of context strings in the context list.

ctxt A string representing context information.

ctxt A string representing context information.
 140

CORBA::ContextList Class
ContextList::item()

const char* item(
 ULong index
);

Returns the context item at the indexed location of the list. This return value
must not be released by the caller because ownership of the return value is
maintained by the ContextList.

Parameters

ContextList::remove()

void remove(
 ULong index
);

Removes from the context list the context item at the indexed location.

index The indexed location of the desired context item.
141

 CORBA::ContextList Class
 142

CORBA::Current Interface
The Current interface is the base interface for providing information about
the current thread of execution. Each ORB or CORBA service that needs its
own context derives an interface from Current to provide information that is
associated with the thread of execution in which the ORB or CORBA service
is running. Interfaces that derives from Current include:

PortableServer::Current

Your application can obtain an instance of the appropriate Current interface
by invoking resolve_initial_references().

Operations on interfaces derived from Current access the state associated
with the thread in which they are invoked, not the state associated with the
thread from which the Current was obtained.

The IDL interface follows:

//IDL
module CORBA {
// interface for the Current object
 interface Current {
 };
...
};

See Also PortableServer::Current

CORBA::ORB::resolve_initial_references()
143

 144

CORBA::CustomMarshal Value Type
Custom value types can override the default marshaling/unmarshaling
mechanism and provide their own way to encode/decode their state. If an
application�s value type is marked as custom, you use custom marshaling to
facilitate integration of such mechanisms as existing class libraries and other
legacy systems. Custom marshaling is not to be used as the standard
marshaling mechanism.

CustomMarshal is an abstract value type that is meant to be implemented by
the application programmer and used by the ORB. For example, if an
application�s value type needs to use custom marshaling, the IDL declares it
explicitly as follows:

// Application-specific IDL
custom valuetype type {
 // optional state definition
 ...
};

When implementing a custom value type such as this, you must provide a
concrete implementation of the CustomMarshal operations so that the ORB is
able to marshal and unmarshal the value type. Each custom marshaled value
type needs its own implementation.

You can use the skeletons generated by the IDL compiler as the basis for
your implementation. These operations provide the streams for marshaling.
Your implemented CustomMarshal code encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream
using the CDR encoding. It is the responsibility of your implementation to
marshal the value type�s state of all of its base types (if it has any).

The implementation requirements of the streaming mechanism require that
the implementations must be local because local memory addresses such as
those for the marshal buffers have to be manipulated by the ORB.

Semantically, CustomMarshal is treated as a custom value type�s implicit
base class, although the custom value type does not actually inherit it in IDL.
While nothing prevents you from writing IDL that inherits from
145

CustomMarshal, doing so will not in itself make the type custom, nor will it
cause the ORB to treat it as a custom value type. You must implement these
CustomMarshal operations.

Implement the following IDL operations for a custom value type:

// IDL in module CORBA
abstract valuetype CustomMarshal {
 void marshal(
 in DataOutputStream os
);
 void unmarshal(
 in DataInputStream is
);
};

CustomMarshal::marshal()

The operation you implement so that the ORB can marshal a custom value type.

Parameters

Use the operations of the DataOutputStream in your implementation to write
the custom value type�s data to the stream as appropriate.

See Also CORBA::DataOutputStream

CustomMarshal::unmarshal()

The operation you implement so that the ORB can unmarshal a custom value
type.

Parameters

Use the operations of the DataInputStream in your implementation to read
the custom value type�s data from the stream as appropriate.

os A handle to the output stream the ORB uses to marshal the
custom value type.

is A handle to the input stream the ORB uses to unmarshal the
custom value type.
 146

See Also CORBA::DataInputStream
147

 148

CORBA::DataInputStream Value Type
The DataInputStream value type is a stream used by unmarshal() for
unmarshaling an application�s custom value type. You use the
DataInputStream operations in your implementation of unmarshal() to read
specific types of data from the stream, as defined in the custom value type.
The stream takes care of breaking the data into chunks if necessary. The IDL
code is as follows:

// IDL in module CORBA
abstract valuetype DataInputStream {
 any read_any();
 boolean read_boolean();
 char read_char();
 wchar read_wchar();
 octet read_octet();
 short read_short();
 unsigned short read_ushort();
 long read_long();
 unsigned long read_ulong();
 unsigned long long read_ulonglong();
 float read_float();
 double read_double();
 long double read_longdouble();
 string read_string();
 wstring read_wstring();
 Object read_Object();
 AbstractBase read_Abstract();
 ValueBase read_Value();
 TypeCode read_TypeCode();

 void read_any_array(
 inout AnySeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_boolean_array(
 inout BooleanSeq seq,
 in unsigned long offset,
149

 in unsigned long length
);
 void read_char_array(
 inout CharSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_wchar_array(
 inout WcharSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_octet_array(
 inout OctetSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_short_array(
 inout ShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_ushort_array(
 inout UShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_long_array(
 inout LongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_ulong_array(
 inout ULongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_ulonglong_array(
 inout ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_longlong_array(
 150

 inout LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_float_array(
 inout FloatSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_double_array(
 inout DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length
);
};

Exceptions

See Also CORBA::CustomMarshal
CORBA::DataOutputStream

DataInputStreamread_Abstract()

// IDL
AbstractBase read_Abstract();

Returns an abstract data type from the stream.

DataInputStream::read_any()

// IDL
any read_any();

Returns an any data type from the stream.

DataInputStream::read_any_array()

// IDL
void read_any_array(

MARSHAL An inconsistency is detected for any operations.
151

 inout AnySeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of any data from the stream.

Parameters

DataInputStream::read_boolean()

// IDL
boolean read_boolean();

Returns a boolean data type from the stream.

DataInputStream::read_boolean_array()

// IDL
void read_boolean_array(
 inout BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of boolean data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
 152

DataInputStream::read_char()

// IDL
char read_char();

Returns a char data type from the stream.

DataInputStream::read_char_array()

// IDL
void read_char_array(
 inout CharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of char data from the stream.

Parameters

DataInputStream::read_double()

// IDL
double read_double();

Returns a double data type from the stream.

DataInputStream::read_double_array()

// IDL
void read_double_array(
 inout DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
153

);

Reads an array of double data from the stream.

Parameters

DataInputStream::read_float()

// IDL
float read_float();

Returns a float data type from the stream.

DataInputStream::read_float_array()

// IDL
void read_float_array(
 inout FloatSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of float data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
 154

DataInputStream::read_long()

// IDL
long read_long();

Returns a long data type from the stream.

DataInputStream::read_long_array()

// IDL
void read_long_array(
 inout LongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of long data from the stream.

Parameters

DataInputStream::read_longdouble()

// IDL
long double read_longdouble();

Unsupported.

DataInputStream::read_longlong_array()

// IDL
void read_longlong_array(
 inout LongLongSeq seq,
 in unsigned long offset,

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
155

 in unsigned long length
);

Reads an array of long long data from the stream.

Parameters

DataInputStream::read_Object()

// IDL
Object read_Object();

Returns an Object (object reference) data type from the stream.

DataInputStream::read_octet()

// IDL
octet read_octet();

Returns an octet data type from the stream.

DataInputStream::read_octet_array()

// IDL
void read_octet_array(
 inout OctetSeq seq,
 in unsigned long offset,
 in unsigned long length
);

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
 156

Reads an array of octet data from the stream.

Parameters

DataInputStream::read_short()

// IDL
short read_short();

Returns a short data type from the stream.

DataInputStream::read_short_array()

// IDL
void read_short_array(
 inout ShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of short data from the stream.

Parameters

DataInputStream::read_string()

// IDL
string read_string();

Returns a string data type from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
157

DataInputStream::read_TypeCode()

// IDL
TypeCode read_TypeCode();

Returns a TypeCode data type from the stream.

DataInputStream::read_ulong()

// IDL
unsigned long read_ulong();

Returns an unsigned long data type from the stream.

DataInputStream::read_ulong_array()

// IDL
void read_ulong_array(
 inout ULongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of unsigned long data from the stream.

Parameters

DataInputStream::read_ulonglong()

// IDL
unsigned long long read_ulonglong();

Returns an unsigned long long data type from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
 158

DataInputStream::read_ulonglong_array()

// IDL
void read_ulonglong_array(
 inout ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of unsigned long long data from the stream.

Parameters

DataInputStream::read_ushort()

// IDL
unsigned short read_ushort();

Returns an unsigned short data type from the stream.

DataInputStream::read_ushort_array()

// IDL
void read_ushort_array(
 inout UShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of unsigned short data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
159

Parameters

DataInputStream::read_Value()

// IDL
ValueBase read_Value();

Returns a value type from the stream.

DataInputStream::read_wchar()

// IDL
wchar read_wchar();

Returns a wchar data type from the stream.

DataInputStream::read_wchar_array()

// IDL
void read_wchar_array(
 inout WCharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Reads an array of wchar data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.

seq The sequence into which the data is placed.

offset The starting index from which to read from the sequence.

length The number of items to read from the array.
 160

DataInputStream::read_wstring()

// IDL
wstring read_wstring();

Returns a wstring data type from the stream.
161

 162

CORBA::DataOutputStream Value
Type

The DataOutputStream value type is a stream used by marshal() for
marshaling an application�s custom value type. You use the
DataOutputStream operations in your implementation of marshal() to write
specific types of data to the stream, as defined in the custom value type. The
stream takes care of breaking the data into chunks if necessary. The IDL
code is as follows:

//IDL in module CORBA
abstract valuetype DataOutputStream {
 void write_any(in any value);
 void write_boolean(in boolean value);
 void write_char(in char value);
 void write_wchar(in wchar value);
 void write_octet(in octet value);
 void write_short(in short value);
 void write_ushort(in unsigned short value);
 void write_long(in long value);
 void write_ulong(in unsigned long value);
 void write_longlong(in long long value);
 void write_ulonglong(in unsigned long long value);
 void write_float(in float value);
 void write_double(in double value);
 void write_longdouble(in long double value);
 void write_string(in string value);
 void write_wstring(in wstring value);
 void write_Object(in Object value);
 void write_Abstract(in AbstractBase value);
 void write_Value(in ValueBase value);
 void write_TypeCode(in TypeCode value);
 void write_any_array(
 in AnySeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_boolean_array(
163

 in BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_char_array(
 in CharSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_wchar_array(
 in WcharSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_octet_array(
 in OctetSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_short_array(
 in ShortSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_ushort_array(
 in UShortSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_long_array(
 in LongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_ulong_array(
 in ULongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_ulonglong_array(
 in ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_longlong_array(
 in LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_float_array(
 in FloatSeq seq,
 in unsigned long offset,
 in unsigned long length);
 164

 void write_double_array(
 in DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length);
};

Exceptions

See Also CORBA::CustomMarshal
CORBA::DataInputStream

DataOutputStream::write_Abstract()

// IDL
void write_Abstract(
 in AbstractBase value
);

Writes an abstract data type to the stream.

Parameters

DataOutputStream::write_any()

// IDL
void write_any(
 in any value
);

Writes an any data type to the stream.

Parameters

MARSHAL An inconsistency is detected for any operations.

value The value written to the stream.

value The value written to the stream.
165

DataOutputStream::write_any_array()

// IDL
void write_any_array(
 in AnySeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of any data to the stream.

Parameters

DataOutputStream::write_boolean()

// IDL
void write_boolean(
 in boolean value
);

Writes a boolean data type to the stream.

Parameters

DataOutputStream::write_boolean_array()

// IDL
void write_boolean_array(
 in BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of boolean data to the stream.

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.
 166

Parameters

DataOutputStream::write_char()

// IDL
void write_char(
 in char value
);

Writes a char data type to the stream.

Parameters

DataOutputStream::write_char_array()

// IDL
void write_char_array(
 in CharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of char data to the stream.

Parameters

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.
167

DataOutputStream::write_double()

// IDL
void write_double(
 in double value
);

Writes a double data type to the stream.

Parameters

DataOutputStream::write_double_array()

// IDL
void write_double_array(
 in DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of double data to the stream.

Parameters

DataOutputStream::write_float()

// IDL
void write_float(
 in float value
);

Writes a float data type to the stream.

Parameters

value The value written to the stream.

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.
 168

DataOutputStream::write_float_array()

// IDL
void write_float_array(
 in FloatSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of float data to the stream.

Parameters

DataOutputStream::write_long()

// IDL
void write_long(
 in long value
);

Writes a long data type to the stream.

Parameters

DataOutputStream::write_long_array()

// IDL
void write_long_array(
 in LongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of long data to the stream.

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.
169

Parameters

DataOutputStream::write_longdouble()

// IDL
void write_longdouble(
 in long double value
);

Writes a long double data type to the stream.

Parameters

DataOutputStream::write_longlong()

// IDL
void write_longlong(
 in long long value
);

Writes a long long data type to the stream.

Parameters

DataOutputStream::write_longlong_array()

// IDL
void write_longlong_array(
 in LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

value The value written to the stream.
 170

);

Writes an array of long long data to the stream.

Parameters

DataOutputStream::write_Object()

// IDL
void write_Object(
 in Object value
);

Writes an Object data type (object reference) to the stream.

Parameters

DataOutputStream::write_octet()

// IDL
void write_octet(
 in octet value
);

Writes an octet data type to the stream.

Parameters

DataOutputStream::write_octet_array()

// IDL
void write_octet_array(

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

value The value written to the stream.
171

 in OctetSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of octet data to the stream.

Parameters

DataOutputStream::write_short()

// IDL
void write_short(
 in short value
);

Writes a short data type to the stream.

Parameters

DataOutputStream::write_short_array()

// IDL
void write_short_array(
 in ShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of short data to the stream.

Parameters

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
 172

DataOutputStream::write_string()

// IDL
void write_string(
 in string value
);

Writes a string data type to the stream.

Parameters

DataOutputStream::write_TypeCode()

// IDL
void write_TypeCode(
 in TypeCode value
);

Writes a TypeCode data type to the stream.

Parameters

DataOutputStream::write_ulong()

// IDL
void write_ulong(
 in unsigned long value
);

Writes an unsigned long data type to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

value The value written to the stream.
173

Parameters

DataOutputStream::write_ulong_array()

// IDL
void write_ulong_array(
 in ULongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of unsigned long data to the stream.

Parameters

DataOutputStream::write_ulonglong()

// IDL
void write_ulonglong(
 in unsigned long long value
);

Writes an unsigned long long data type to the stream.

Parameters

DataOutputStream::write_ulonglong_array()

// IDL
void write_ulonglong_array(
 in ULongLongSeq seq,

value The value written to the stream.

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.
 174

 in unsigned long offset,
 in unsigned long length
);

Writes an array of unsigned long long data to the stream.

Parameters

DataOutputStream::write_ushort()

// IDL
void write_ushort(
 in unsigned short value
);

Writes an unsigned short data type to the stream.

Parameters

DataOutputStream::write_ushort_array()

// IDL
void write_ushort_array(
 in UShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of unsigned short data to the stream.

Parameters

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
175

DataOutputStream::write_Value()

// IDL
void write_Value(
 in ValueBase value
);

Writes a value type to the stream.

Parameters

DataOutputStream::write_wchar()

// IDL
void write_wchar(
 in wchar value
);

Writes a wchar data type to the stream.

Parameters

DataOutputStream::write_wchar_array()

// IDL
void write_wchar_array(
 in WCharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

Writes an array of wchar data to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.

value The value written to the stream.
 176

Parameters

DataOutputStream::write_wstring()

// IDL
void write_wstring(
 in wstring value
);

Writes a wstring data type to the stream.

Parameters

seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.

length The number of data items to write.

value The value written to the stream.
177

 178

CORBA::DomainManager Interface
The DomainManager interface provides an operation to find the Policy
objects associated with a policy domain. Each policy domain includes one
policy domain manager object (DomainManager). The DomainManager has
associated with it the policy objects for that domain and it records the
membership of the domain.

// IDL in CORBA Module
interface DomainManager {
 Policy get_domain_policy(
 in PolicyType policy_type
);
};

A policy domain is a set of objects with an associated set of policies. These
objects are the policy domain members. The policies represent the rules and
criteria that constrain activities of the objects of the policy domain. Policy
domains provide a higher granularity for policy management than an
individual object instance provides.

When a new object reference is created, the ORB implicitly associates the
object reference (and hence the object that it is associated with) with one or
more policy domains, thus defining all the policies to which the object is
subject. If an object is simultaneously a member of more than one policy
domain, it is governed by all policies of all of its domains.

Each DomainManager has a ConstructionPolicy object associated with it
which has the make_domain_manager() operation. This operation controls
whether a new DomainManager is created or an existing one is used when the
new object reference is created.

The DomainManager does not include operations to manage domain
membership, structure of domains, or to manage which policies are
associated with domains. However, because a DomainManager is a CORBA
object, it has access to the CORBA::Object interface, which is available to all
CORBA objects. The Object interface includes the following related
operations:
179

_get_domain_managers() allows your applications to retrieve the
domain managers and hence the security and other policies applicable
to individual objects that are members of the policy domain.

You can also obtain an object�s policy using _get_policy().

DomainManager::get_domain_policy()

Policy get_domain_policy (
 in PolicyType policy_type
);

Returns a reference to the policy object of the specified policy type for objects
in this policy domain.

Parameters

There may be several policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with a policy
domain. The policy objects are thus shared between objects in the domain,
rather than being associated with individual objects. Consequently, if an
object needs to have an individual policy, then it must be a singleton member
of a policy domain.

Exceptions

See Also CORBA::Policy
CORBA::Object::_get_domain_managers()
CORBA::ConstructionPolicy::make_domain_manager()
CORBA::Object::_get_policy()

policy_type The type of policy for objects in the domain which the
application wants to administer.

INV_POLICY The value of policy type is not valid either because the speci-
fied type is not supported by this ORB or because a policy
object of that type is not associated with this object.
 180

CORBA::EnumDef Interface
Interface EnumDef describes an IDL enumeration definition in the interface
repository.

// IDL in module CORBA.
interface EnumDef : TypedefDef {
 attribute EnumMemberSeq members;
};

The inherited operation describe() is also described.

EnumDef::describe()

// IDL
Description describe();

Inherited from Contained (which TypedefDef inherits), describe() returns a
structure of type Contained::Description. The DefinitionKind for the
description�s kind member is dk_Enum. The value member is an any whose
TypeCode is _tc_TypeDescription and whose value is a structure of type
TypeDescription. The type field of the struct gives the TypeCode of the
defined enumeration.

See Also CORBA::TypedefDef::describe()

EnumDef::members Attribute

// IDL
attribute EnumMemberSeq members;

Returns or changes the enumeration�s list of identifiers (its set of enumerated
constants).

See Also CORBA::Identifier
181

 182

CORBA::Environment Class
The Environment class provides a way to handle exceptions in situations
where true exception-handling mechanisms are unavailable or undesirable.

For example, in the DII you can use the Environment class to pass
information between a client and a server where the C++ host compiler
does not support C++ exception handling.

// IDL
pseudo interface Environment {
 attribute exception exception;
 void clear();
};

// C++
class Environment {
public:
 void exception(Exception* e);
 Exception *exception() const;
 void clear();

 _duplicate(Environment_ptr obj);
 _nil();
};

See Also CORBA::ORB::create_environment()

Environment::clear()

//C++
void clear();

Deletes the Exception, if any, contained in the Environment. This is equivalent
to passing zero to exception(). It is not an error to call clear() on an
Environment that holds no exception.

See Also CORBA::Environment::exception()
183

Environment::_duplicate()

// C++
static Environment_ptr _duplicate(
 Environment_ptr obj
);

Returns a reference to obj and increments the reference count of obj.

See Also CORBA::release()

Environment::exception()

Extracts the exception contained in the Environment object.

// C++
Exception* exception() const;

Returns the exception, if any, raised by a preceding remote request. The
returned pointer refers to memory owned by the Environment and must not be
freed by the caller. Once the Environment is destroyed, the pointer is no longer
valid.

// C++
void exception(
 Exception* e
);

Assigns the Exception denoted by the parameter e into the Environment.

Parameters

Examples Following is an example of usage:

// C++
CORBA::Environment env;
A_var obj = ...
obj->op(env);
if(CORBA::Exception* ex = env.exception()) {

e The Exception assigned to the Environment The
Environment does not copy the parameter but it assumes
ownership of it. The Exception must be dynamically
allocated.
 184

 ...
}

You can make a number of remote requests using the same Environment
variable. Each attempt at a request immediately aborts if the Exception
referenced by the Environment is not 0, and thus any failure causes
subsequent requests not to be attempted, until the exception pointer is reset
to 0. Any failed call may also generate one or more null proxies, so that any
attempts to use these proxies prior to the end of a TRY macro (for
non-exception handling compilers) are null operations.

The Environment retains ownership of the Exception returned. Thus, once
the Environment is destroyed, or its Exception cleared, the reference is no
longer valid.

See Also CORBA::Environment::clear()

Environment::_nil()

// C++
static Environment_ptr _nil();

Returns a nil object reference for an Environment object.

See Also CORBA::is_nil()
185

 186

CORBA::Exception Class
Details of this class can be found in the CORBA specification. The C++
Language Mapping document provides the following explanation of the
CORBA::Exception class:

// C++
class Exception
{
 public:
 virtual ~Exception();
 virtual void _raise() const = 0;
 virtual const char * _name() const;
 virtual const char * _rep_id() const;
};

The Exception base class is abstract and may not be instantiated except as
part of an instance of a derived class. It supplies one pure virtual function to
the exception hierarchy: the _raise() function. This function can be used to
tell an exception instance to throw itself so that a catch clause can catch it
by a more derived type.

Each class derived from Exception implements _raise() as follows:

// C++
void SomeDerivedException::_raise() const
{
 throw *this;
}

For environments that do not support exception handling, please refer to
Section 1.42.2, "Without Exception Handling," on page 1-169 of the CORBA
specification for information about the _raise() function.

The _name() function returns the unqualified (unscoped) name of the
exception. The _rep_id() function returns the repository ID of the exception.
187

 188

CORBA::ExceptionDef Interface
Interface ExceptionDef describes an IDL exception in the interface
repository. It inherits from interface Contained and Container.

// IDL in module CORBA.
interface ExceptionDef : Contained, Container {
 readonly attribute TypeCode type;
 attribute StructMemberSeq members;
};

The inherited operation describe() is also described.

See Also CORBA::Contained
CORBA::Container

ExceptionDef::describe()

// IDL
Description describe();

Inherited from Contained, describe() returns a structure of type Contained:
:Description.

The DefinitionKind for the kind member of this structure is dk_Exception.
The value member is an any whose TypeCode is _tc_ExceptionDescription
and whose value is a structure of type ExceptionDescription.

The type field of the ExceptionDescription structure gives the TypeCode of
the defined exception.

See Also CORBA::Contained::describe()
CORBA::TypeCode

ExceptionDef::members Attribute

// IDL
attribute StructMemberSeq members;
189

In a sequence of StructMember structures, the members attribute describes the
exception�s members.

The members attribute can be modified to change the structure�s members.
Only the name and type_def fields of each StructMember should be set. The
type field should be set to _tc_void, and it will be set automatically to the
TypeCode of the type_def field.

See Also CORBA::StructDef
CORBA::ExceptionDef::type

ExceptionDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type of the exception (from which the definition of the exception can be
understood). The TypeCode kind for an exception is tk_except.

See Also CORBA::TypeCode
CORBA::ExceptionDef::members
 190

CORBA::ExceptionList Class
An ExceptionList object allows an application to provide a list of TypeCodes
for all application-specific (user-defined) exceptions that may result when a
dynamic invocation Request is invoked. This server-less ExceptionList
object allows the ORB to avoid potentially expensive interface repository
lookups for the exception information during a request.

// PIDL
pseudo interface ExceptionList {
 readonly attribute unsigned long count;
 void add(in TypeCode exc);
 TypeCode item(in unsigned long index) raises(Bounds);
 void remove(in unsigned long index) raises(Bounds);
};
// C++
class ExceptionList {
public:
 ULong count();
 void add(TypeCode_ptr tc);
 void add_consume(TypeCode_ptr tc);
 TypeCode_ptr item(ULong index);
 void remove(ULong index);
};

See Also CORBA::Object::_create_request()
CORBA::Request::exceptions
CORBA::ORB::create_exception_list()

ExceptionList::add()

// C++
void add(
 TypeCode_ptr tc
);

Adds a TypeCode to the exception list.
191

Parameters

See Also CORBA::ExceptionList::add_consume()

ExceptionList::add_consume()

// C++
void add_consume(
 TypeCode_ptr tc
);

Adds an item to the exception list. The memory of the tc parameter is managed
by the function. The caller cannot access the memory of tc after it has been
passed in because this function could copy and free the original immediately.

Parameters

See Also CORBA::ExceptionList::add()

ExceptionList::count()

// C++
ULong count();

Returns the number of items in the exception list.

ExceptionList::item()

// C++
TypeCode_ptr item(
 ULong index
);

Returns the exception item at the indexed location of the list. This return value
must not be released by the caller because ownership of the return value is
maintained by the ExceptionList.

tc A TypeCode representing exception information.

tc A TypeCode representing exception information.
 192

Parameters

ExceptionList::remove()

// C++
void remove(
 ULong index
);

Removes from the exception list the item at the indexed location.

Parameters

index The indexed location of the desired item.

index The indexed location of the desired item.
193

 194

CORBA::FixedDef Interface
The FixedDef interface describes an IDL fixed-point type in the interface
repository. A fixed-point decimal literal consists of an integer part, a decimal
point, a fraction part, and a d or D.

// IDL in module CORBA.
interface FixedDef : IDLType {
 attribute unsigned short digits;
 attribute short scale;

};The inherited IDLType attribute is a tk_fixed TypeCode, which describes a
fixed-point decimal number.

See Also CORBA::Repository::create_fixed()

FixedDef::digits Attribute

// IDL
attribute unsigned short digits;

The digits attribute specifies the total number of decimal digits in the
fixed-point number, and must be in the range of 1 to 31, inclusive.

FixedDef::scale Attribute

// IDL
attribute short scale;

The scale attribute specifies the position of the decimal point.
195

 196

CORBA::IDLType Interface
The abstract base interface IDLType describes interface repository objects
that represent IDL types. These types include interfaces, type definitions,
structures, unions, enumerations, and others. Thus, the IDLType is a base
interface for the following interfaces:

ArrayDef
AliasDef
EnumDef
FixedDef
InterfaceDef
NativeDef
PrimitiveDef
SequenceDef
StringDef
StructDef
TypedefDef
UnionDef
ValueBoxDef
ValueDef
WstringDef

The IDLType provides access to the TypeCode describing the type, and is
used in defining other interfaces wherever definitions of IDL types must be
referenced.

// IDL in module CORBA.
interface IDLType : IRObject {
 readonly attribute TypeCode type;
};

See Also CORBA::IRObject
CORBA::TypeCode
CORBA::TypedefDef
197

IDLType::type Attribute

//IDL
readonly attribute TypeCode type;

Encodes the type information of an interface repository object. Most type
information can also be extracted using operations and attributes defined for
derived types of the IDLType.

See Also CORBA::TypeCode
 198

CORBA::InterfaceDef Interface
InterfaceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions, operations,
and attributes. it inherits from the interfaces Container, Contained, and
IDLType.

Calling _get_interface() on a reference to an object (interface_ptr or
interface_var) returns a reference to the InterfaceDef object that defines
the CORBA object�s interface.

// IDL in module CORBA.
interface InterfaceDef : Container, Contained, IDLType {
 // read/write interface
 attribute InterfaceDefSeq base_interfaces;

 // read interface
 boolean is_a(
 in RepositoryId interface_id
);

 struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 };

 FullInterfaceDescription describe_interface();

 // write interface
 AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
199

 in IDLType type,
 in AttributeMode mode
);

 OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);
}; // End interface InterfaceDef

The inherited operation describe() is also described.

See Also CORBA::Contained
CORBA::Container
CORBA::Object::_get_interface()

InterfaceDef::base_interfaces Attribute

// IDL
attribute InterfaceDefSeq base_interfaces;

The base_interfaces attribute lists in a sequence of InterfaceDef objects
the interfaces from which this interface inherits.

The inheritance specification of an InterfaceDef object can be changed by
changing its base_interfaces attribute.

Exceptions

See Also CORBA::Object::_get_interface()

BAD_PARAM,
minor code 5

The name of any definition contained in the interface conflicts
with the name of a definition in any of the base interfaces.
 200

InterfaceDef::create_attribute()

// IDL
AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);

Creates a new AttributeDef within the target InterfaceDef. The defined_in
attribute of the new AttributeDef is set to the target InterfaceDef.

Parameters

Exceptions

See Also CORBA::AttributeDef

InterfaceDef::create_operation()

// IDL
OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,

id The identifier of the new attribute. It is an error to specify an id
that already exists within the target object�s repository.

name The name of the attribute. It is an error to specify a name that
already exists within this InterfaceDef.

version A version for this attribute.

type The IDLType for this attribute.

mode Specifies whether the attribute is read only (ATTR_READONLY) or
read/write (ATTR_NORMAL).

BAD_PARAM,
minor code 2

An object with the specified id already exists in the reposi-
tory.

BAD_PARAM,
minor code 3

An object with the same name already exists in this
InterfaceDef.
201

 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);

Creates a new OperationDef within the target InterfaceDef. The defined_in
attribute of the new OperationDef is set to the target InterfaceDef.

Parameters

See Also CORBA::OperationDef
CORBA::ExceptionDef

InterfaceDef::describe()

// IDL
Description describe();

Inherited from Contained, describe() returns a structure of type Contained:
:Description. The DefinitionKind for the kind member is dk_Interface.
The value member is an any whose TypeCode is _tc_InterfaceDescription
and whose value is a structure of type InterfaceDescription.

See Also CORBA::Contained::describe()

id The identifier of the new attribute. It is an error to specify an
id that already exists within the target object�s repository.

name The name of the attribute. It is an error to specify a name that
already exists within this InterfaceDef.

version A version number for this operation.

result The return type for this operation.

mode Specifies whether this operation is normal (OP_NORMAL) or
oneway (OP_ONEWAY).

params A sequence of ParameterDescription structures that
describes the parameters to this operation.

exceptions A sequence of ExceptionDef objects that describes the
exceptions this operation can raise.

contexts A sequence of context identifiers for this operation.
 202

InterfaceDef::describe_interface()

// IDL
FullInterfaceDescription describe_interface();

Returns a description of the interface, including its operations, attributes, and
base interfaces in a FullInterfaceDescription.

Details of exceptions and contexts can be determined via the returned
sequence of OperationDescription structures.

See Also CORBA::OperationDef::describe()
CORBA::AttributeDef::describe()

InterfaceDef::FullInterfaceDescription Structure

// IDL
struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
};

Describes an interface including its operations and attributes.

name The name of the interface.

id An identifier of the interface.

defined_in The identifier where the interface is defined.

version The version of the interface.

operations A sequence of interface operations.

attributes A sequence of interface attributes.

base_interfaces A sequence of base interfaces from which this
interface is derived.

type The type of the interface.
203

See Also CORBA::InterfaceDef::describe_interface()

InterfaceDef::is_a()

// IDL
boolean is_a(
 in RepositoryId interface_id
);

Returns TRUE if the interface is either identical to or inherits (directly or
indirectly) from the interface represented by interface_id. Otherwise the
operation returns FALSE.

Parameters

CORBA::AbstractInterfaceDef
Interface

AbstractInterfaceDef describes an abstract IDL interface in the interface
repository. It inherits from the InterfaceDef interface.

// IDL
interface AbstractInterfaceDef : InterfaceDef
{
};

interface_id The repository ID of another InterfaceDef object.
 204

CORBA::IRObject Interface
The interface IRObject is the base interface from which all interface
repository interfaces are derived.

// IDL in module CORBA.

interface IRObject {
 readonly attribute DefinitionKind def_kind;
 void destroy();
};

IRObject::def_kind Attribute

// IDL
readonly attribute DefinitionKind def_kind;

Identifies the kind of an IFR object. For example, an OperationDef object,
describing an IDL operation, has the kind dk_Operation.

See Also CORBA::DefinitionKind

IRObject::destroy()

// IDL
void destroy();

Deletes an IFR object. This also deletes any objects contained within the target
object.

Exceptions BAD_INV_ORDER with a minor value of:

2 destroy() is invoked on a Repository or on a PrimitiveDef
object.

1 An attempt is made to destroy an object that would leave the
repository in an incoherent state.
205

 206

CORBA::ModuleDef Interface
The interface ModuleDef describes an IDL module in the interface repository.
It inherits from the interfaces Container and Contained.

// IDL in module CORBA.
interface ModuleDef : Container, Contained { };

The inherited operation describe() is also described.

ModuleDef::describe()

// IDL
Description describe();

Inherited from Contained, describe() returns a structure of type Contained:
:Description.

The kind member is dk_Module. The value member is an any whose
TypeCode is _tc_ModuleDescription and whose value is a structure of type
ModuleDescription.

See Also CORBA::Contained::describe()
207

 208

CORBA::NamedValue Class
A NamedValue object describes an argument to a request or a return value,
especially in the DII, and is used as an element of an NVList object. A
NamedValue object maintains an any value, parameter-passing mode flags,
and an (optional) name.

// IDL
pseudo interface NamedValue {
 readonly attribute Identifier name;
 readonly attribute any value;
 readonly attribute Flags flags;
};
// C++
class NamedValue {
public:
 const char *name() const;
 Any *value() const;
 Flags flags() const;

 static NamedValue_ptr _duplicate(NamedValue_ptr nv);
 static NamedValue_ptr _nil();
};

See Also CORBA::NVList
CORBA::ORB::create_named_value()
CORBA::Request::result()
CORBA::Object::_create_request()

NamedValue::_duplicate()

static NamedValue_ptr _duplicate(NamedValue_ptr nv);

Returns a new reference to the NamedValue object input and increments its
reference count.

Parameters

nv The NamedValue object reference to be duplicated.
209

See Also CORBA::release()

NamedValue::flags()

Flags flags() const;

Returns the flags associated with the NamedValue. Flags identify the parameter
passing mode for arguments of an NVList.

See Also CORBA::Flags

NamedValue::name()

const char *name() const;

Returns a pointer to the optional name associated with the NamedValue. This
is the name of a parameter or argument of a request. The return value is a
pointer to the internal memory of the NamedValue object and must not be freed
by the caller.

NamedValue:: _nil()

static NamedValue_ptr _nil();

Returns a nil object reference for a NamedValue.

See Also CORBA::is_nil()

NamedValue::value()

Any *value() const;

Returns a pointer to Any value contained in the NamedValue.

The return value is a pointer to the internal memory of the NamedValue object
and must not be freed by the caller. However, the value in a NamedValue may
be manipulated via standard operations on any values.
 210

CORBA::NativeDef Interface
The interface NativeDef describes an IDL native type in the interface
repository. It inherits from the interface TypedefDef. The inherited type
attribute is a tk_native TypeCode that describes the native type.

// IDL in module CORBA
interface NativeDef : TypedefDef {};

See Also CORBA::Container::create_native()
211

 212

CORBA::NVList Class
An NVList is a pseudo-object used for constructing parameter lists. It is a list
of NamedValue elements where each NamedValue describes an argument to a
request.

The NamedValue and NVList types are used mostly in the DII in the request
operations to describe arguments and return values. They are also used in
the context object routines to pass lists of property names and values. The
NVList is also used in the DSI operation ServerRequest::arguments().

The NVList class is partially opaque and may only be created by using ORB::
create_list(). The NVList class is as follows:

// IDL
pseudo interface NVList {
 readonly attribute unsigned long count;
 NamedValue add(in Flags flags);
 NamedValue add_item(in Identifier item_name, in Flags flags);
 NamedValue add_value(in Identifier item_name,
 in any val, in Flags flags);
 NamedValue item(in unsigned long index) raises(Bounds);
 void remove(in unsigned long index) raises(Bounds);
};

// C++
class NVList {
public:
 ULong count() const;
 NamedValue_ptr add(Flags);
 NamedValue_ptr add_item(const char*, Flags);
 NamedValue_ptr add_value(const char*, const Any&, Flags);
 NamedValue_ptr add_item_consume(char*, Flags);
 NamedValue_ptr add_value_consume(char*, Any*, Flags);
 NamedValue_ptr item(ULong);
 void remove(ULong);

 static NVList_ptr _duplicate(NVList_ptr nv);
 static NVList_ptr _nil();
};
213

See Also CORBA::NamedValue
CORBA::ORB:create_list()
CORBA::Object::_create_request()

NVList::count()

ULong count() const;

Returns the number of elements in the list.

NVList::add()

NamedValue_ptr add(
 Flags flags
);

Creates an unnamed value, initializes only the flags, and adds it to the list.
The new NamedValue is returned.

Parameters

The reference count of the returned NamedValue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a type_var variable.

See Also CORBA::NVList::add_item()
CORBA::NVList::add_value()
CORBA::NVList::add_item_consume()
CORBA::NVList::add_value_consume()

flags Possible values include:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST
 214

NVList::add_item()

NamedValue_ptr add_item(
 const char* item_name,
 Flags flags
);

Creates and returns a NamedValue with name and flags initialized, and adds it
to the list.

Parameters

The reference count of the returned NamedValue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a type_var variable.

See Also CORBA::NVList::add()
CORBA::NVList::add_value()
CORBA::NVList::add_item_consume()
CORBA::NVList::add_value_consume()

NVList::add_item_consume()

NamedValue_ptr add_item_consume(
 char* item_name,
 Flags flags
);

Creates and returns a NamedValue with name and flags initialised, and adds it
to the list. The NVList takes over memory management responsibilities for the
item_name parameter.

item_name Name of item.

flags Possible values include:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST
215

Parameters

The reference count of the returned NamedValue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a type_var variable.

See Also CORBA::NVList::add()
CORBA::NVList::add_item()
CORBA::NVList::add_value()
CORBA::NVList::add_value_consume()

NVList::add_value()

NamedValue_ptr add_value(
 const char* item_name,
 const Any& value,
 Flags flags
);

Creates and returns a NamedValue with name, value, and flags initialized and
adds it to the list.

Parameters

item_name Name of item. This parameter is consumed by the NVList.
The caller may not access this data after it has been passed
to this function.

flags Possible values include:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

item_name Name of item.
 216

The reference count of the returned NamedValue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a type_var variable.

See Also CORBA::NVList::add()
CORBA::NVList::add_item()
CORBA::NVList::add_item_consume()
CORBA::NVList::add_value_consume()

NVList::add_value_consume()

NamedValue_ptr add_value_consume(
 char* item_name,
 Any* value,
 Flags flags
);

Creates and returns a NamedValue with name, value, and flags initialised, and
adds it to the list. The NVList takes over memory management responsibilities
for both the name and value parameters.

Parameters

value Value of item.

flags Possible values include:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

item_name Name of item. This parameter is consumed by the NVList.
The caller may not access this data after it has been passed
to this function.
217

The caller should use NamedValue::value() to modify the value attribute of
the underlying NamedValue, if needed.

The reference count of the returned NamedValue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a type_var variable.

See Also CORBA::NamedValue::value()
CORBA::NVList::add()
CORBA::NVList::add_item()
CORBA::NVList::add_item_consume()
CORBA::NVList::add_value()

NVList::count()

ULong count() const;

Returns the number of NamedValue elements in the NVList.

NVList::_duplicate()

static NVList_ptr _duplicate(
 NVList_ptr nv
);

Returns a new reference to the NVList and increments the reference count of
the nv object.

Parameters

value Value of item. This parameter is consumed by the NVList.
The caller may not access this data after it has been passed
to this function.

flags Possible values include:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

nv The NamedValue for which to get a duplicate reference.
 218

See Also CORBA::release()

NVList::item()

NamedValue_ptr item(
 ULong index
);

Returns the NamedValue list item at the given index. The first item is at index
0. This method can be used to access existing elements in the list.

Parameters

Exceptions

NVList::_nil()

static NVList_ptr _nil();

Returns a nil object reference for an NVList object.

See Also CORBA::is_nil()

NVList::remove()

void remove(
 ULong index
);

Removes the item at the given index. The first item is at index 0. The method
calls CORBA::release() on the item.

Parameters

index Index of item.

Bounds The index is out of range.

index Index of item
219

Exceptions

See Also CORBA::release()

Bounds The index is out of range.
 220

CORBA::Object Class
The Object class is the base class for all normal CORBA objects. This class
has some common methods that operate on any CORBA object. These
operations are implemented directly by the ORB, not passed on to your
object�s implementation.

On the client side, the methods of this class are called on a proxy (unless
collocation is set). On the server side, they are called on the real object.

Table 5 shows the methods provided by the CORBA::Object class:

The CORBA namespace provides the is_nil() and release() operations
that are defined in the Object interface�s IDL. All other IDL operations for the
Object interface map to C++ functions with leading underscores.

// IDL
interface Object {
 boolean is_nil();

Table 5: Methods of the Object Class

Manage Object References Create Requests for the DII

_duplicate()
_hash()
_is_a()
_is_equivalent()
_nil()
_non_existent()
_release()

_create_request()
_request()

Access Information in the IFR

_get_interface()

Manage Policies and Domains Orbix Enhancements

_get_client_policy()
_get_domain_managers()
_get_policy()
_get_policy_overrides()
_set_policy_overrides()
_validate_connection()

_it_get_orb()
_it_proxy_for()
_it_marshal()
_it_get_type_id()
221

 Object duplicate();
 void release();
 ImplementationDef get_implementation();
 InterfaceDef get_interface();
 boolean is_a(in string logical_type_id);
 boolean non_existent();
 boolean is_equivalent(in Object other_object);
 unsigned long hash(in unsigned long maximum);
 void create_request(
 in Context ctx,
 in Identifier operation,
 in NVList arg_list,
 in NamedValue result,
 out Request request,
 in Flags req_flags
);
 void create_request2(
 in Context ctx,
 in Identifier operation,
 in NVList arg_list,
 in NamedValue result,
 in ExceptionList exclist,
 in ContextList ctxtlist,
 out Request request,
 in Flags req_flags
);
 Policy_ptr get_policy(in PolicyType policy_type);
 DomainManagerList get_domain_managers();
 Object set_policy_overrides(
 in PolicyList policies,
 in SetOverrideType set_or_add
);

// IDL Additions from CORBA Messaging
 Policy get_policy(
 in PolicyType type
);
 Policy get_client_policy(
 in PolicyType type
);
 Object set_policy_overrides(
 in PolicyList policies,
 in SetOverrideType set_add
 222

)
 raises (InvalidPolicies);
 PolicyList get_policy_overrides(
 in PolicyTypeSeq types
);
 boolean validate_connection(
 out PolicyList inconsistent_policies
);
};
class Object {
public:
 static Object_ptr _duplicate(Object_ptr obj);
 static Object_ptr _nil();
 InterfaceDef_ptr _get_interface();
 Boolean _is_a(const char* logical_type_id);
 Boolean _non_existent();
 Boolean _is_equivalent(Object_ptr other_object);
 ULong _hash(ULong maximum);
 void _create_request(
 Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 Request_out request,
 Flags req_flags
);
 void _create_request(
 Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 ExceptionList_ptr ,
 ContextList_ptr ,
 Request_out request,
 Flags req_flags
);
 Request_ptr _request(const char* operation);
 Policy_ptr _get_policy(PolicyType policy_type);
 DomainManagerList* _get_domain_managers();
 Object_ptr _set_policy_overrides(
 const PolicyList &policies,
 SetOverrideType set_add
);
223

 virtual Policy_ptr _get_client_policy(
 PolicyType type
) = 0;
 virtual PolicyList * _get_policy_overrides(
 const PolicyTypeSeq & types
) = 0;
 virtual Boolean _validate_connection(
 PolicyList &inconsistent_policies
) = 0;

 //
 // Non-CORBA pseudo-operations.
 //

 virtual ORB_ptr _it_get_orb() = 0;

 virtual Object_ptr _it_proxy_for() = 0;

 virtual void _it_marshal(
 IT_OutStream_ptr os,
 ORB_ptr orb
) = 0;

 virtual char* _it_get_type_id() = 0;
};

Object::_create_request()

void _create_request(
 Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 Request_out request,
 Flags req_flags
);

void _create_request(
 Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 224

 NamedValue_ptr result,
 ExceptionList_ptr exceptions,
 ContextList_ptr contexts,
 Request_out request,
 Flags req_flags
);

These construct a CORBA::Request object. These methods are part of the DII
and create an ORB request on an object by constructing one of the object�s
operations.

See _request() for a simpler alternative way to create a Request.

Parameters

ctx Context object, if any, to be sent in the request.

If the ctx argument to _create_request() is a nil
Context object reference, then you can add the
Context later by calling the Request::ctx() function
on the Request object.

operation The name of the request operation. The operation
name is the same operation identifier that is specified
in the IDL definition for this operation.

arg_list The parameters, for the operation, each of type
NamedValue.

If this value is zero, you can add the arguments later
by calling the Request::arguments() function. You
can also add each argument one at a time by calling
the appropriate helper function such as add_in_arg()
on the Request object.

result The result of the operation invocation is placed in this
argument after the invocation completes. Use ORB::
create_named_value() to create the NamedValue
object to be used as this return value parameter.

request Contains the newly created Request.

req_flags If you specify flag values they are ignored because
argument insertion or extraction is handled using the
Any type.
225

The only implicit object reference operations allowed with the
_create_request() call include:

_non_existent()
_is_a()
_get_interface()

Exceptions

See Also CORBA::Object::_request()
CORBA::Request
CORBA::Request::arguments()
CORBA::Request::ctx()
CORBA::NVList
CORBA::NamedValue

Object::_duplicate()

static Object_ptr _duplicate(
 Object_ptr obj
);

Returns a new reference to obj and increments the reference count of the
object. Because object references are opaque and ORB-dependent, it is not
possible for your application to allocate storage for them. Therefore, if more
than one copy of an object reference is needed, use this method to create a
duplicate.

Parameters

See Also CORBA::release()

exceptions A reference to a list of TypeCodes for all
application-specific (user-defined) exceptions that may
result when the Request is invoked.

contexts A reference to a list of context strings for the operation.

BAD_PARAM The name of an implicit operation that is not allowed is
passed to _create_request()�for example, _is_equivalent
is passed to _create_request() as the operation parameter.

obj Pointer to the object to duplicate.
 226

Object::_get_client_policy()

virtual Policy_ptr _get_client_policy(
 PolicyType type
) = 0;

Returns the effective overriding policy for the object reference. The effective
override is obtained by first checking for an override of the given PolicyType
at the Object scope, then at the Current scope, and finally at the ORB scope.
If no override is present for the requested PolicyType, the system-dependent
default value for that PolicyType is used.

Portable applications should set the desired defaults at the ORB scope since
default policy values are not specified.

Parameters

See Also CORBA::Object::_get_policy()
CORBA::Object::_set_policy_overrides()
CORBA::Object::_get_policy_overrides()

Object::_get_domain_managers()

DomainManagersList* _get_domain_managers();

Returns the list of immediately enclosing domain managers of this object. At
least one domain manager is always returned in the list since by default each
object is associated with at least one domain manager at creation.

The _get_domain_managers() method allows applications such as
administration services to retrieve the domain managers and hence the
security and other policies applicable to individual objects that are members
of the domain.

See Also CORBA::DomainManager

type The type of policy desired.
227

Object::_get_interface()

InterfaceDef_ptr _get_interface();

Returns a reference to an object in the interface repository that describes this
object�s interface.

See Also CORBA::InterfaceDef

Object::_get_policy()

Policy_ptr _get_policy(
 PolicyType policy_type
);

Returns a reference to the Policy object of the type specified by the
policy_type parameter.

Parameters

_get_policy() returns the effective policy which is the one that would be
used if a request were made. Note that the effective policy may change from
invocation to invocation due to transparent rebinding. Invoking
_non_existent() on an object reference prior to _get_policy() ensures the
accuracy of the returned effective policy.

Quality of Service (see �Quality of Service Framework�) is managed on a
per-object reference basis with _get_policy(), _set_policy_overrides(),
_get_policy_overrides(), and _get_client_policy().

Exceptions

See Also CORBA::Object::_non_existent()
CORBA::Object::_set_policy_overrides()
CORBA::Object::_get_policy_overrides()
CORBA::Object::_get_client_policy()
CORBA::Object::_validate_connection()

policy_type The type of policy to get.

INV_POLICY The value of policy_type is not valid either because the
specified type is not supported by this ORB or because a pol-
icy object of that type is not associated with this object.
 228

Object::_get_policy_overrides()

virtual PolicyList * _get_policy_overrides(
 const PolicyTypeSeq & types
) = 0;

Returns the list of policy overrides of the specified policy types set at the Object
scope. If the specified sequence is empty, all policy overrides at this scope will
be returned. If none of the requested policy types are overridden at the Object
scope, an empty sequence is returned.

Parameters

See Also CORBA::Object::_get_policy()
CORBA::Object::_set_policy_overrides()
CORBA::Object::_get_client_policy()

Object::_hash()

ULong _hash(
 ULong maximum
);

Returns a hashed value for the object reference in the range 0...maximum.

Parameters

Use _hash() to quickly guarantee that objects references refer to different
objects. For example, if _hash() returns the same hash number for two
object references, the objects might or might not be the same, however, if the
method returns different numbers for object references, these object
references are guaranteed to be for different objects.

In order to efficiently manage large numbers of object references, some
applications need to support a notion of object reference identity. Object
references are associated with internal identifiers that you can access
indirectly by using _hash(). The value of this internal identifier does not
change during the lifetime of the object reference.

types A sequence of policy types for which the overrides are
desired.

maximum The maximum value that is to be returned from the hash
method.
229

You can use _hash() and _is_equivalent() to support efficient
maintenance and search of tables keyed by object references. _hash() allows
you to partition the space of object references into sub-spaces of potentially
equivalent object references. For example, setting maximum to 7 partitions the
object reference space into a maximum of 8 sub-spaces (0 - 7).

See Also CORBA::Object::_is_equivalent()

Object::_is_a()

Boolean _is_a(
 const char* logical_type_id
);

Returns 1 (true) if the target object is either an instance of the type specified
in logical_type_id or of a derived type of the type in logical_type_id. If the
target object is neither, it returns 0 (false).

Parameters

The ORB maintains type-safety for object references over the scope of an
ORB, but you can use this method to help maintaining type-safety when
working in environments that do not have compile time type checking to
explicitly maintain type safety.

Exceptions If _is_a() cannot make a reliable determination of type compatibility due to
failure, it raises an exception in the calling application code. This enables the
application to distinguish among the true, false, and indeterminate cases.

See Also CORBA::Object::_non_existent()

Object::_is_equivalent()

Boolean _is_equivalent(
 Object_ptr other_object
);

logical_type_id The fully scoped name of the IDL interface. This is a string
denoting a shared type identifier (RepositoryId). Use an
underscore (�_�) rather than a scope operator (::) to
delimit the scope.
 230

Returns 1 (true) if the object references definitely refer to the same object. A
return value of 0 (false) does not necessarily mean that the object references
are not equivalent, only that the ORB cannot confirm that they reference the
same object. Two objects are equivalent if they have the same object reference,
or they both refer to the same object.

Parameters

A typical application use of _is_equivalent() is to match object references
in a hash table. Bridges could use the method to shorten the lengths of
chains of proxy object references. Externalization services could use it to
flatten graphs that represent cyclical relationships between objects.

See Also CORBA::Object::_is_a()
CORBA::Object::_hash()

Object::_it_get_orb()

virtual ORB_ptr _it_get_orb() = 0;

Returns the ORB.

Enhancement This is an Orbix enhancement.

Object::_it_get_type_id()

virtual char* _it_get_type_id() = 0;

Returns the repository ID string contained within the Interoperable Object
Reference (IOR). If the IOR contains no type ID the return value is an empty
string. This function follows the standard C++ mapping rules for string
return values, which means the caller of this function must take responsibility
for the returned string and ensure that it is freed via CORBA::string_free()
when they are finished with it.

Enhancement This is an Orbix enhancement.

other_object An object reference of other object.
231

Object::_it_marshal()

virtual void _it_marshal(
 IT_OutStream_ptr os,
 ORB_ptr orb
) = 0;

Enhancement This is an Orbix enhancement.

Object::_it_proxy_for()

virtual Object_ptr _it_proxy_for() = 0;

Returns a proxy for this object.

Enhancement This is an Orbix enhancement.

Object::_nil()

static Object_ptr _nil();

Returns a nil object reference.

See Also CORBA::is_nil()

Object::_non_existent()

Boolean _non_existent();

Returns 1 (true) if the object does not exist or returns 0 (false) otherwise.

Normally you might invoke this method on a proxy to determine whether the
real object still exists. This method may be used to test whether an object
has been destroyed because the method does not raise an exception if the
object does not exist.

Applications that maintain state that includes object references, (such as
bridges, event channels, and base relationship services) might use this
method to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection.
 232

Object::_request()

Request_ptr _request(
 const char* operation
);

Returns a reference to a constructed Request on the target object. This is the
simpler form of _create_request().

Parameters

You can add arguments and contexts after construction using Request::
arguments() and Request::ctx().

See Also CORBA::Object::_create_request()
CORBA::Request::arguments()
CORBA::Request::ctx()

Object::_set_policy_overrides()

Object_ptr _set_policy_overrides(
 const PolicyList& policies,
 SetOverrideType set_add
);

Returns a new object reference with the overriding policies associated with it.

Parameters

operation The name of the operation.

policies A sequence of Policy object references that are to be
associated with the new copy of the object reference
returned.

set_add Indicates whether the policies are in addition to
(ADD_OVERRIDE) or as replacement of (SET_OVERRIDE) any
existing overrides already associated with the object
reference.
233

Exceptions

See Also CORBA::Object::_get_policy()
CORBA::Object::_get_policy_overrides()
CORBA::Object::_get_client_policy()

Object::_validate_connection()

virtual Boolean _validate_connection(
 PolicyList &inconsistent_policies
) = 0;

Returns true if the current effective policies for the object will allow an
invocation to be made. Returns false if the current effective policies would
cause an invocation to raise the system exception INV_POLICY.

Parameters

If the object reference is not yet bound, a binding will occur as part of this
operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid,
a rebind will be attempted regardless of the setting of any RebindPolicy
override. This method is the only way to force such a rebind when implicit
rebinds are disallowed by the current effective RebindPolicy.

Exceptions The appropriate system exception is raised if the binding fails due to some
reason unrelated to policy overrides.

NO_PERMISSION An attempt is made to override any policy that cannot be
overridden. Only certain policies that pertain to the invocation
of an operation at the client end can be overridden using this
operation.

inconsistent_policies If the current effective policies are incompatible,
This parameter contains those policies causing the
incompatibility. This returned list of policies is not
guaranteed to be exhaustive.
 234

CORBA::OperationDef Interface
Interface OperationDef describes an IDL operation that is defined in an IDL
interface stored in the interface repository.

One way you can use the OperationDef is to construct an NVList for a
specific operation for use in the Dynamic Invocation Interface. For details see
ORB::create_operation_list().

// IDL in module CORBA.
interface OperationDef : Contained {
 readonly attribute TypeCode result;
 attribute IDLType result_def;
 attribute ParDescriptionSeq params;
 attribute OperationMode mode;
 attribute ContextIdSeq contexts;
 attribute ExceptionDefSeq exceptions;
};

The inherited operation describe() is also described.

See Also CORBA::Contained
CORBA::ORB::create_operation_list()
CORBA::ExceptionDef

OperationDef::contexts Attribute

// IDL
attribute ContextIdSeq contexts;

The list of context identifiers specified in the context clause of the operation.

OperationDef::exceptions Attribute

// IDL
attribute ExceptionDefSeq exceptions;

The list of exceptions that the operation can raise.
235

See Also CORBA::ExceptionDef

OperationDef::describe()

// IDL
Description describe();

Inherited from Contained, describe() returns a structure of type Contained:
:Description.

The DefinitionKind for the kind member of this structure is dk_Operation.
The value member is an any whose TypeCode is _tc_OperationDescription
and whose value is a structure of type OperationDescription.

See Also CORBA::Contained::describe()
CORBA::ExceptionDef

OperationDef::mode Attribute

// IDL
attribute OperationMode mode;

Specifies whether the operation is normal (OP_NORMAL) or oneway (OP_ONEWAY).
The mode attribute can only be set to OP_ONEWAY if the result is _tc_void and
all parameters have a mode of PARAM_IN.

OperationDef::params Attribute

// IDL
attribute ParDescriptionSeq params;

Specifies the parameters for this operation. It is a sequence of structures of
type ParameterDescription.

The name member of the ParameterDescription structure provides the name
for the parameter. The type member identifies the TypeCode for the
parameter. The type_def member identifies the definition of the type for the
parameter. The mode specifies whether the parameter is an in (PARAM_IN), an
out (PARAM_OUT) or an inout (PARAM_INOUT) parameter. The order of the
ParameterDescriptions is significant.
 236

See Also CORBA::TypeCode
CORBA::IDLType

OperationDef::result Attribute

// IDL
readonly attribute TypeCode result;

The return type of this operation. The attribute result_def contains the same
information.

See Also CORBA::TypeCode
CORBA::OperationDef::result_def

OperationDef::result_def Attribute

// IDL
attribute IDLType result_def;

Describes the return type for this operation. The attribute result contains the
same information.

Setting the result_def attribute also updates the result attribute.

See Also CORBA::IDLType
CORBA::OperationDef::result
237

 238

CORBA::ORB Class
The ORB class provides a set of methods and data types that control the ORB
from both the client and the server. See Table 6:

You initialize the ORB using ORB_init().

Table 6: Methods and Types of the ORB Class

Object Reference Manipulation ORB Operation and Threads

_duplicate()
list_initial_services()
_nil()
ObjectId type
ObjectIdList sequence
object_to_string()
resolve_initial_references()
string_to_object()

destroy()
perform_work()
run()
shutdown()
work_pending()

ORB Policies and Services

create_policy()
get_service_information()

Dynamic Invocation Interface (DII) TypeCode Creation Methods

create_environment()
create_exception_list()
create_list()
create_named_value()
create_operation_list()
get_next_response()
poll_next_response()
RequestSeq sequence
send_multiple_requests_deferred()
send_multiple_requests_oneway()

create_abstract_interface_tc()
create_alias_tc()
create_array_tc()
create_enum_tc()
create_exception_tc()
create_fixed_tc()
create_interface_tc()
create_native_tc()
create_recursive_tc()
create_sequence_tc()
create_string_tc()
create_struct_tc()
create_union_tc()
create_value_box_tc()
create_value_tc()
create_wstring_tc()

Value Type Factory Methods

lookup_value_factory()
register_value_factory()
unregister_value_factory()
239

The ORB class is defined as follows:

// IDL
pseudo interface ORB {

typedef sequence<Request> RequestSeq;
string object_to_string(in Object obj);
Object string_to_object(in string str);
void create_list(in long count, out NVList new_list);
void create_operation_list(

in OperationDef oper,
out NVList
new_list

);
void create_named_value(out NamedValue nmval);
void create_exception_list(out ExceptionList exclist);
void create_context_list(out ContextList ctxtlist);
void get_default_context(out Context ctx);
void create_environment(out Environment new_env);
void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
void get_next_response(out Request req);
Boolean work_pending();
void perform_work();
void shutdown(in Boolean wait_for_completion);
void run();
void destroy();

 Boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);
typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
Object resolve_initial_references(

in ObjectId id
) raises(InvalidName);
ObjectIdList list_initial_services();
Policy create_policy(in PolicyType type, in any val)
 240

raises(PolicyError);
};

// C++
class ORB {
public:

class RequestSeq {...};
char *object_to_string(Object_var);
Object_var string_to_object(const char *);
void create_list(Long, NVList_out);
void create_operation_list(OperationDef_ptr, NVList_out);
void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);
void get_default_context(Context_out);
void create_environment(Environment_out);
void send_multiple_requests_oneway(const RequestSeq &);
void send_multiple_requests_deferred(const RequestSeq &);
Boolean poll_next_response();
void get_next_response(Request_out);
Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();
Boolean get_service_information(

ServiceType svc_type,
ServiceInformation_out svc_info

);
void destroy();
typedef char* ObjectId;
class ObjectIdList { ... };
Object_ptr resolve_initial_references(const char* id);
ObjectIdList* list_initial_services();
Policy_ptr create_policy(PolicyType type, const Any& val);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();

virtual TypeCode_ptr
create_struct_tc(

const char* id,
const char* name,
const StructMemberSeq & members
241

) = 0;

virtual TypeCode_ptr
create_union_tc(

const char* id,
const char* name,
TypeCode_ptr discriminator_type,
const UnionMemberSeq & members

) = 0;

virtual TypeCode_ptr
create_enum_tc(

const char* id,
const char* name,
const EnumMemberSeq & members

) = 0;

virtual TypeCode_ptr
create_alias_tc(

const char* id,
const char* name,
TypeCode_ptr original_type

) = 0;

virtual TypeCode_ptr
create_exception_tc(

const char* id,
const char* name,
const StructMemberSeq & members

) = 0;

virtual TypeCode_ptr
create_interface_tc(

const char* id,
const char* name

) = 0;

virtual TypeCode_ptr
create_string_tc(

CORBA::ULong bound
) = 0;

virtual TypeCode_ptr
 242

create_wstring_tc(
CORBA::ULong bound

) = 0;

virtual TypeCode_ptr
create_fixed_tc(

CORBA::UShort digits,
CORBA::Short scale

) = 0;

virtual TypeCode_ptr
create_sequence_tc(

CORBA::ULong bound,
TypeCode_ptr element_type

) = 0;

virtual TypeCode_ptr
create_recursive_tc(

const char* id
) = 0;

virtual TypeCode_ptr
create_array_tc(

CORBA::ULong length,
TypeCode_ptr element_type

) = 0;

virtual TypeCode_ptr
create_value_tc(

const char* id,
const char* name,
ValueModifier type_modifier,
TypeCode_ptr concrete_base,
const ValueMemberSeq & members

) = 0;

virtual TypeCode_ptr
create_value_box_tc(

const char* id,
const char* name,
TypeCode_ptr original_type

) = 0;
243

virtual TypeCode_ptr
create_native_tc(

const char* id,
const char* name

) = 0;

virtual TypeCode_ptr
create_abstract_interface_tc(

const char* id,
const char* name

) = 0;

virtual ValueFactory
register_value_factory(

const char* id,
ValueFactory factory

) = 0;

virtual void
unregister_value_factory(

const char* id
) = 0;

virtual ValueFactory
lookup_value_factory(

const char* id
) = 0;

};

ORB::create_abstract_interface_tc()

virtual TypeCode_ptr create_abstract_interface_tc(
const char* id,
const char* name

) = 0;

Returns a pointer to a new TypeCode of kind tk_abstract_interface repre-
senting an IDL abstract interface.
 244

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_alias_tc()

virtual TypeCode_ptr create_alias_tc(
const char* id,
const char* name,
TypeCode_ptr original_type

) = 0;

Returns a pointer to a new TypeCode of kind tk_alias representing an IDL alias.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_array_tc()

virtual TypeCode_ptr create_array_tc(
CORBA::ULong length,
TypeCode_ptr element_type

) = 0;

Returns a pointer to a new TypeCode of kind tk_array representing an IDL
array.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

original_type A pointer to the actual TypeCode object this alias represents.
245

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_context_list()

void create_context_list(ContextList_out list);

Creates an empty ContextList object for use with a DII request. You can add
context strings to the list using ContextList::add() and then pass the list as
a parameter to Object::_create_request().

Parameters

See Also CORBA::ContextList
CORBA::Object::_create_request()

ORB::create_enum_tc()

virtual TypeCode_ptr create_enum_tc(
const char* id,
const char* name,
const EnumMemberSeq & members

) = 0;

Returns a pointer to a new TypeCode of kind tk_enum representing an IDL
enumeration.

Parameters

See Also CORBA::TypeCode

length The length of the array.

element_type The data type for the elements of the array.

list A reference to the new ContextList.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

members The sequence of enumeration members.
 246

CORBA::TCKind

ORB::create_environment()

void create_environment(
Environment_out environment

);

Gets a newly created Environment object.

Parameters

See Also CORBA::Environment

ORB::create_exception_list()

void create_exception_list(
ExceptionList_out list

);

Creates an empty ExceptionList object for use with a DII request. You can
add user-defined exceptions to the list using ExceptionList::add() and then
pass the list as a parameter to Object::_create_request().

Parameters

See Also CORBA::ExceptionList
CORBA::Object::_create_request()

ORB::create_exception_tc()

virtual TypeCode_ptr create_exception_tc(
const char* id,
const char* name,
const StructMemberSeq & members

) = 0;

new_env New environment created.

list A reference to the new ExceptionList.
247

Returns a pointer to a new TypeCode of kind tk_except representing an IDL
exception.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_fixed_tc()

virtual TypeCode_ptr create_fixed_tc(
CORBA::UShort digits,
CORBA::Short scale

) = 0;

Returns a pointer to a new TypeCode of kind tk_fixed representing an IDL
fixed point type.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_interface_tc()

virtual TypeCode_ptr create_interface_tc(
const char* id,
const char* name

) = 0;

Returns a pointer to a new TypeCode representing an IDL interface.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

members The sequence of members.

digits The number of digits for the fixed point type.

scale The scale of the fixed point type.
 248

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_list()

void create_list(
Long count,
NVList_out list

);

Allocates space for an empty NVList of the size specified by count to contain
NamedValue objects. A list of NamedValue object can be used to describe
arguments to a request when using the Dynamic Invocation Interface. You can
add NamedValue items to list using the NVList::add_item() routine.

Parameters

See Also CORBA::NVList
CORBA::NamedValue
CORBA::ORB::create_operation_list()
CORBA::Request()

ORB::create_named_value()

void create_named_value(
NamedValue_out value

);

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

count Number of elements anticipated for the new NVList. This is a
hint to help with storage allocation.

list A pointer to the start of the list. The caller must release the
reference when it is no longer needed, or assign it to an
NVList_var variable for automatic management.
249

Creates NamedValue objects you can use as return value parameters in the
Object::_create_request() method.

Parameters

See Also CORBA::NVList
CORBA::NamedValue
CORBA::Any
CORBA::ORB::create_list()

ORB::create_native_tc()

virtual TypeCode_ptr create_native_tc(
const char* id,
const char* name

) = 0;

Returns a pointer to a new TypeCode of kind tk_native representing an IDL
native type.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_operation_list()

void create_operation_list(
OperationDef_ptr operation,
NVList_out list

);

Creates an NVList and returns it in the list parameter, initialized with the
argument descriptions for the operation specified in operation.

value A pointer to the NamedValue object created. You must
release the reference when it is no longer needed, or assign
it to a NamedValue_var variable for automatic management.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.
 250

Parameters

Each element in the list is of type NamedValue whose value member (of type
CORBA::Any) has a valid type that denotes the type of the argument. The
value of the argument is not filled in.

Use of this method requires that the relevant IDL file be compiled with the -R
option.

See Also CORBA::NVList
CORBA::NamedValue
CORBA::Any
CORBA::ORB::create_list()

ORB::create_policy()

Policy_ptr create_policy(
PolicyType type,
const Any& value

);

Returns a reference to a newly created Policy object.

Parameters

operation A pointer to the interface repository object describing the
operation.

list A pointer to the start of the list. The caller must release the
reference when it is no longer needed, or assign it to a
NVList_var variable for automatic management.

The returned NVList is of the correct length with one element
per argument, and each NamedValue element of the list has a
valid name and valid flags (denoting the argument passing
mode).

type The PolicyType of the Policy object to be created.

value The value for the initial state of the Policy object created.
251

Exceptions

See Also CORBA::Policy
CORBA::PolicyType
CORBA::PolicyErrorCode

ORB::create_recursive_tc()

virtual TypeCode_ptr create_recursive_tc(
const char* id

) = 0;

Returns a pointer to a recursive TypeCode, which serves as a place holder for
a concrete TypeCode during the process of creating type codes that contain
recursion. After the recursive TypeCode has been properly embedded in the
enclosing TypeCode, which corresponds to the specified repository id, it will
act as a normal TypeCode.

Parameters

Invoking operations on the recursive TypeCode before it has been embedded
in the enclosing TypeCode will result in undefined behavior.

Examples The following IDL type declarations contains TypeCode recursion:

// IDL
struct foo {

long value;
sequence<foo> chain;

};

valuetype V {
public V member;
};

To create a TypeCode for valuetype V, you invoke the TypeCode creation
functions as follows:

PolicyError The requested policy type or initial state for the policy is not
supported. The appropriate reason as described in the
PolicyErrorCode.

id The repository ID of the enclosing type for which the recursive
TypeCode is serving as a place holder.
 252

// C++
TypeCode_var recursive_tc = orb->create_recursive_tc("IDL:V:1.0");
ValueMemberSeq v_seq;
v_seq.length(1);
v_seq[0].name = string_dup(ìmemberî);
v_seq[0].type = recursive_tc;
v_seq[0].access = PUBLIC_MEMBER;
TypeCode_var v_val_tc = orb->create_value_tc(

"IDL:V:1.0",
"V",
VM_NONE,
TypeCode::_nil(),
v_seq

);

See Also CORBA::TypeCode

ORB::create_sequence_tc()

virtual TypeCode_ptr create_sequence_tc(
CORBA::ULong bound,
TypeCode_ptr element_type

) = 0;

Returns a pointer to a new TypeCode of kind tk_sequence representing an IDL
sequence.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_string_tc()

virtual TypeCode_ptr create_string_tc(
CORBA::ULong bound

) = 0;

bound The upper bound of the sequence.

element_type The data type for the elements of the sequence.
253

Returns a pointer to a new TypeCode of kind tk_string representing an IDL
string.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_struct_tc()

virtual TypeCode_ptr create_struct_tc(
const char* id,
const char* name,
const StructMemberSeq & members

) = 0;

Returns a pointer to a new TypeCode of kind tk_struct representing an IDL
structure.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_union_tc()

virtual TypeCode_ptr create_union_tc(
const char* id,
const char* name,
TypeCode_ptr discriminator_type,
const UnionMemberSeq & members

) = 0;

Returns a pointer to a TypeCode of kind tk_union representing an IDL union.

bound The upper bound of the string.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

members The sequence of structure members.
 254

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_value_box_tc()

virtual TypeCode_ptr create_value_box_tc(
const char* id,
const char* name,
TypeCode_ptr original_type

) = 0;

Returns a pointer to a new TypeCode of kind tk_value_box representing an
IDL boxed value.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_value_tc()

virtual TypeCode_ptr create_value_tc(
const char* id,
const char* name,

id The repository ID that globally identifies the
TypeCode object.

name The simple name identifying the TypeCode object
within its enclosing scope.

discriminator_type The union discriminator type.

members The sequence of union members.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

original_type A pointer to the original TypeCode object this boxed value
represents.
255

ValueModifier type_modifier,
TypeCode_ptr concrete_base,
const ValueMemberSeq & members

) = 0;

Returns a pointer to a TypeCode of kind tk_value representing an IDL value
type.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_wstring_tc()

virtual TypeCode_ptr create_wstring_tc(
CORBA::ULong bound

) = 0;

Returns a pointer to a new TypeCode of kind tk_wstring representing an IDL
wide string.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within its
enclosing scope.

type_modifier A value type modifier.

concrete_base A TypeCode for the immediate concrete value type base of
the value type for which the TypeCode is being created. If
the value type does not have a concrete base, use a nil
TypeCode reference.

members The sequence of value type members.

bound The upper bound of the string.
 256

ORB::destroy()

void destroy();

This thread operation destroys the ORB so that its resources can be reclaimed
by the application.

If destroy() is called on an ORB that has not been shut down (see
shutdown()) it will start the shut down process and block until the ORB has
shut down before it destroys the ORB. For maximum portability and to avoid
resource leaks, applications should always call shutdown() and destroy()
on all ORB instances before exiting.

After an ORB is destroyed, another call to ORB_init() with the same ORB ID
will return a reference to a newly constructed ORB.

Exceptions

The exception is raise if

See Also CORBA::ORB::run()
CORBA::ORB::shutdown()
CORBA::ORB_init()

ORB::_duplicate()

static ORB_ptr _duplicate(
ORB_ptr obj

);

Returns a new reference to obj and increments the reference count of the
object. Because object references are opaque and ORB-dependent, it is not
possible for your application to allocate storage for them. Therefore, if more
than one copy of an object reference is needed, use this method to create a
duplicate.

BAD_INV_ORDER,
minor code 3

An application calls destroy() in a thread that is currently
servicing an invocation because blocking would result in a
deadlock.

OBJECT_NOT_EXI
ST

An operation is invoked on a destroyed ORB reference.
257

Parameters

See Also CORBA::release()

ORB::get_default_context()

void get_default_context(Context_out context);

Obtains a CORBA::Context object representing the default context of the
process.

Parameters

See Also CORBA::Context
CORBA::NVList

ORB::get_next_response()

void get_next_response(
Request_out request

);

Gets the next response for a request that has been sent.

Parameters

You can call get_next_response() successively to determine the outcomes
of the individual requests from send_multiple_requests_deferred() calls.
The order in which responses are returned is not necessarily related to the
order in which the requests are completed.

Exceptions

See Also CORBA::ORB::send_multiple_requests_deferred()

obj Pointer to the object to duplicate.

context The default context of the process.

request A pointer to the Request whose completion is being reported.

WrongTransacti
on

The thread invoking this method has a non-null transaction
context that differs from that of the request and the request
has an associated transaction context.
 258

CORBA::Request::get_response()
CORBA::Request::send_deferred()
CORBA::ORB::poll_next_response()

ORB::get_service_information()

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info

};

Gets the service information about CORBA facilities and services that this
ORB supports. Returns 1 (true) if service information is available for the
svc_type and returns 0 (false) otherwise.

Parameters

See Also CORBA::ServiceInformation

ORB::list_initial_services()

ObjectIdList* list_initial_services();

Returns a sequence of ObjectId strings, each of which names a service
provided by Orbix. This method allows your application to determine which
objects have references available. Before you can use some services such as
the naming service in your application you have to first obtain an object
reference to the service.

The ObjectIdList may include the following names:

DynAnyFactory
IT_Configuration
InterfaceRepository
NameService
ORBPolicyManager
POACurrent
PSS

svc_type The service type for which information is being requested.

svc_info The service information available for svc_type, if that
information is available.
259

RootPOA
SecurityCurrent
TradingService
TransactionCurrent

See Also CORBA::ORB::resolve_initial_references()

ORB::lookup_value_factory()

virtual ValueFactory lookup_value_factory(
const char* id

) = 0;

Returns a pointer to the factory method.

Parameters

Your application assumes ownership of the returned reference to the factory.
When you are done with the factory, invoke ValueFactoryBase::
_remove_ref() once on that factory.

See Also CORBA::ValueFactory
CORBA::ORB::register_value_factory()
CORBA::ORB::unregister_value_factory()

Object::_nil()

static ORB_ptr _nil();

Returns a nil object reference.

See Also CORBA::is_nil()

ORB::ObjectId

typedef char* ObjectId;

The name that identifies an object for a service. ObjectId strings uniquely
identify each service used by an ORB.

See Also CORBA::ORB::ObjectIdList

id A repository ID that identifies a value type factory method.
 260

CORBA::ORB::list_initial_services()

ORB::ObjectIdList Sequence Class

class ObjectIdList {
public:

// default constructor
ObjectIdList();
// initial maximum length constructor
ObjectIdList(ULong max);
// data constructor
ObjectIdList(

ULong max,
ULong length,
ObjectId *data,
Boolean release = FALSE

);
// copy constructor
ObjectIdList(const ObjectIdList&);

 // destructor
~ObjectIdList();

// assignment operator
ObjectIdList &operator=(const ObjectIdList&);

ULong maximum() const;
void length(ULong);
ULong length() const;

// subscript operators
ObjectId &operator[](ULong index);
const ObjectId &operator[](ULong index) const;

Boolean release() const;
void replace(

ULong max,
ULong length,
ObjectId *data,
Boolean release = FALSE

);
261

// buffer reference
ObjectId* get_buffer(Boolean orphan = FALSE);
// buffer access
const ObjectId* get_buffer() const;

};

A sequence of ObjectId objects.

See Also CORBA::ORB::ObjectId
CORBA::ORB::list_initial_services()

�About Sequences�

ORB::object_to_string()

char *object_to_string(
Object_var obj

);

Returns a string representation of an object reference. An object reference can
be translated into a string by this method and the resulting value stored or
communicated in whatever ways strings are manipulated.

Parameters

Use string_to_object() to translate the string back to the corresponding
object reference.

A string representation of an object reference has the prefix IOR: followed by
a series of hexadecimal octets. The hexadecimal strings are generated by first
turning an object reference into an interoperable object reference (IOR), and
then encapsulating the IOR using the encoding rules of common data
representation (CDR). The content of the encapsulated IOR is then turned into
hexadecimal digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded as a
hexadecimal digit, then the low four bits are encoded.

obj Object reference to be translated to a string.
 262

Note: Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for storing
references to objects in persistent storage or communicating references by
means other than invocation.

See Also CORBA::ORB::string_to_object()

ORB::perform_work()

void perform_work();

A thread function that provides execution resources to your application if called
by the main thread. This function does nothing if called by any other thread.

You can use perform_work() and work_pending() for a simple polling loop
that multiplexes the main thread among the ORB and other activities. Such a
loop would most likely be used in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code
that required use of the main thread. Here is a simple example of such a
polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep

};

Exceptions

See Also CORBA::ORB::run()
CORBA::ORB::work_pending()

BAD_INV_ORDER,
minor code 4

The method is called after the ORB has shut down. You can
catch this exception to determine when to terminate a polling
loop.
263

ORB::poll_next_response()

Boolean poll_next_response();

Returns 1 (true) if any request has completed or returns 0 (false) if none have
completed. This method returns immediately, whether any request has com-
pleted or not.

You can call this method successively to determine whether the individual
requests specified in a send_multiple_requests_oneway() or
send_multiple_requests_deferred() call have completed successfully.

Alternatively you can call Request::poll_response() on the individual
Request objects in the sequence of requests passed to
send_multiple_requests_oneway() or
send_multiple_requests_deferred().

See Also CORBA::ORB::get_next_response()
CORBA::ORB::send_multiple_requests_oneway()
CORBA::ORB::send_multiple_requests_deferred()
CORBA::Request::poll_response()

ORB::register_value_factory()

virtual ValueFactory register_value_factory(
const char* id,
ValueFactory factory

) = 0;

Registers a value type factory method with the ORB for a particular value type.
The method returns a null pointer if no previous factory was registered for the
type. If a factory is already registered for the value type, the method replaces
the factory and returns a pointer to the previous factory for which the caller
assumes ownership.

Parameters

id A repository ID that identifies the factory.

factory The application-specific factory method that the ORB calls
whenever it needs to create the value type during the
unmarshaling of value instances.
 264

When a value type factory is registered with the ORB, the ORB invokes
ValueFactoryBase::_add_ref() once on the factory before returning from
register_value_factory(). When the ORB is done using that factory, the
reference count is decremented once with ValueFactoryBase::
_remove_ref(). This can occur in any of the following circumstances:

� If the factory is explicitly unregistered via unregister_value_factory(),
the ORB invokes ValueFactoryBase::_remove_ref() once on the
factory.

� If the factory is implicitly unregistered due to a call to shutdown(), the
ORB invokes ValueFactoryBase::_remove_ref() once on each
registered factory.

� If you replace a factory by calling this register_value_factory() again,
you should invoke ValueFactoryBase::_remove_ref() once on the
previous factory.

See Also CORBA::ValueFactory
CORBA::ORB::lookup_value_factory()
CORBA::ORB::unregister_value_factory()

ORB::RequestSeq Sequence

class RequestSeq {
public:

// default constructor
RequestSeq();
// initial maximum length constructor
RequestSeq(ULong max);
// data constructor
RequestSeq(

ULong max,
ULong length,
Request *data,
Boolean release = FALSE

);
// copy constructor
RequestSeq(const RequestSeq&);

 // destructor
~RequestSeq();
265

// assignment operator
RequestSeq &operator=(const RequestSeq&);

ULong maximum() const;
void length(ULong);
ULong length() const;

// subscript operators
Request &operator[](ULong index);
const Request &operator[](ULong index) const;

Boolean release() const;
void replace(

ULong max,
ULong length,
Request *data,
Boolean release = FALSE

);

// buffer reference
Request* get_buffer(Boolean orphan = FALSE);
// buffer access
const Request* get_buffer() const;

};

A sequence of Request objects.

See Also CORBA::Request
CORBA::ORB::send_multiple_requests_oneway()
CORBA::ORB::send_multiple_requests_deferred()

�About Sequences�

ORB::resolve_initial_references()

Object_ptr resolve_initial_references(
const char* id

);

Returns an object reference for a desired service.
 266

Parameters

Applications require a portable means by which to obtain some initial object
references such as the root POA, the interface repository, and various object
services instances. The functionality of resolve_initial_references() and
list_initial_services() is like a simplified, local version of the naming
service that has only a small set of objects in a flattened single-level name
space.

The object reference returned must be narrowed to the correct object type.
For example, the object reference returned from resolving the id name
InterfaceRepository must be narrowed to the type CORBA::Repository.

See Also CORBA::ORB::list_initial_services()

ORB::run()

void run();

A thread method that enables the ORB to perform work using the main thread.
If called by any thread other than the main thread, this method simply waits
until the ORB has shut down.

This method provides execution resources to the ORB so that it can perform
its internal functions. Single threaded ORB implementations, and some
multi-threaded ORB implementations need to use the main thread. For
maximum portability, your applications should call either run() or
perform_work() on the main thread.

run() returns after the ORB has completed the shutdown process, initiated
when some thread calls shutdown().

See Also CORBA::ORB::perform_work()
CORBA::ORB::work_pending()
CORBA::ORB::shutdown()
CORBA::ORB::destroy()

�Threading and Synchronization Toolkit Overview�

id The name of the desired service. Use
list_initial_services() to obtain the list of services
supported.
267

ORB::send_multiple_requests_deferred()

void send_multiple_requests_deferred(
const RequestSeq &req

);

Initiates a number of requests in parallel.

Parameters

The method does not wait for the requests to finish before returning to the
caller. The caller can use get_next_response() or Request::
get_response() to determine the outcome of the requests. Memory leakage
will result if one of these methods is not called for a request issued with
send_multiple_requests_oneway() or Request::send_deferred().

See Also CORBA::ORB::send_multiple_requests_oneway()
CORBA::Request::get_response()
CORBA::Request::send_deferred()
CORBA::ORB::get_next_response()

ORB::send_multiple_requests_oneway()

void send_multiple_requests_oneway(
const RequestSeq &req

);

Initiates a number of requests in parallel. It does not wait for the requests to
finish before returning to the caller.

Parameters

See Also CORBA::Request::send_oneway()
CORBA::ORB::send_multiple_requests_deferred()

req A sequence of requests.

req A sequence of requests. The operations in this sequence do
not have to be IDL oneway operations. The caller does not
expect a response, nor does it expect out or inout parameters
to be updated.
 268

ORB::shutdown()

void shutdown(
Boolean wait_for_completion

);

This thread method instructs the ORB to shut down in preparation for ORB
destruction.

Parameters

While the ORB is in the process of shutting down, the ORB operates as
normal, servicing incoming and outgoing requests until all requests have
been completed. Shutting down the ORB causes all object adapters to be
shut down because they cannot exist without an ORB.

Once an ORB has shutdown, you can invoke only object reference
management methods including CORBA::_duplicate(), release(), and
is_nil() on the ORB or any object reference obtained from the ORB. An
application may also invoke ORB::destroy() on the ORB itself. Invoking any
other method raises exception BAD_INV_ORDER system with the OMG minor
code 4.

Exceptions

See Also CORBA::ORB::run()
CORBA::ORB::destroy()

wait_for_completion Designates whether or not to wait for completion
before continuing.

If the value is 1 (true), this method blocks until all
ORB processing has completed, including request
processing and object deactivation or other methods
associated with object adapters.

If the value is 0 (false), then shut down may not have
completed upon return of the method.

BAD_INV_ORDER,
minor code
3

An application calls this method in a thread that is currently
servicing an invocation because blocking would result in a
deadlock.
269

ORB::string_to_object()

Object_var string_to_object(
const char *obj_ref_string

);

Returns an object reference by converting a string representation of an object
reference.

Parameters

To guarantee that an ORB will understand the string form of an object
reference, the string must have been produced by a call to
object_to_string().

See Also CORBA::ORB::object_to_string()

ORB::unregister_value_factory()

virtual void unregister_value_factory(
const char* id

) = 0;

Unregisters a value type factory method from the ORB.

Parameters

See Also CORBA::ValueFactory
CORBA::ORB::lookup_value_factory()
CORBA::ORB::register_value_factory()

ORB::work_pending()

Boolean work_pending();

This thread method returns an indication of whether the ORB needs the main
thread to perform some work. A return value of 1 (true) indicates that the ORB
needs the main thread to perform some work and a return value of 0 (false)
indicates that the ORB does not need the main thread.

obj_ref_string String representation of an object reference to be converted.

id A repository ID that identifies a value type factory method.
 270

Exceptions

See Also CORBA::ORB::run()
CORBA::ORB::perform_work()

BAD_INV_ORDER,
minor code 4

The method is called after the ORB has shutdown.
271

 272

CORBA::Policy Interface
An ORB or CORBA service may choose to allow access to certain choices
that affect its operation. This information is accessed in a structured manner
using interfaces derived from the Policy interface defined in the CORBA
module. A CORBA service is not required to use this method of accessing
operating options, but may choose to do so.

This chapter is divided into the following sections:

� �Quality of Service Framework�
� �Policy Methods�

The following policies are available. These are classes that inherit from the
CORBA::Policy class:

You create instances of a policy by calling CORBA::ORB::create_policy().

Table 7: Policies

Category Policy

CORBA and
IT_CORBA

CORBA::ConstructionPolicy
IT_CORBA::WellKnownAddressingPolicy

PortableServer and
IT_PortableServer

PortableServer::ThreadPolicy
PortableServer::LifespanPolicy
PortableServer::IdUniquenessPolicy
PortableServer::IdAssignmentPolicy
PortableServer::ImplicitActivationPolicy
PortableServer::ServantRetentionPolicy
PortableServer::RequestProcessingPolicy
IT_PortableServer::ObjectDeactivationPolicy
IT_PortableServer::PersistenceModePolicy

Messaging RebindPolicy
SyncScopePolicy
RoutingPolicy
273

Quality of Service Framework
A Policy is the key component for a standard Quality of Service framework
(QoS). In this framework, all qualities are defined as interfaces derived from
CORBA::Policy. This framework is how all service-specific qualities are
defined. The components of the framework include:

Most policies are appropriate only for management at either the server or
client, but not both. Server-side policies are associated with a POA.
Client-side policies are divided into ORB-level, thread-level, and object-level
policies. At the thread and ORB levels, use the PolicyManager interface to
query the current set of policies and override these settings.

POA Policies for Servers

Server-side policy management is handled by associating QoS Policy objects
with a POA. Since all QoS are derived from interface Policy, those that are
applicable to server-side behavior can be passed as arguments to POA::
create_POA(). Any such policies that affect the behavior of requests (and
therefore must be accessible by the ORB at the client side) are exported
within the object references that the POA creates. It is clearly noted in a POA
policy definition when that policy is of interest to the client. For those policies

Policy This base interface from which all QoS objects derive.

PolicyList A sequence of Policy objects.

PolicyManager An interface with operations for querying and
overriding QoS policy settings.

Policy Transport
Mechanisms

Mechanisms for transporting policy values as part of
interoperable object references and within requests.
These include:

� TAG_POLICIES - A Profile Component containing
the sequence of QoS policies exported with the
object reference by an object adapter.

� INVOCATION_POLICIES - A Service Context
containing a sequence of QoS policies in effect
for the invocation.
 274

Quality of Service Framework
that can be exported within an object reference, the absence of a value for
that policy type implies that the target supports any legal value of that
PolicyType.

ORB-level Policies for Clients

You obtained the ORB�s locality-constrained PolicyManager through an
invocation of CORBA::ORB::resolve_initial_references(), specifying an
identifier of ORBPolicyManager. This PolicyManager has operations through
which a set of policies can be applied and the current overriding policy
settings can be obtained. Policies applied at the ORB level override any
system defaults.

Thread-level Policies for Clients

You obtained a thread�s locality-constrained PolicyCurrent through an
invocation of CORBA::ORB::resolve_initial_references(), specifying an
identifier of PolicyCurrent. Policies applied at the thread-level override any
system defaults or values set at the ORB level. When accessed from a newly
spawned thread, the PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a servant.
Each time an invocation is dispatched through a SINGLE_THREAD_MODEL POA,
the thread-level overrides are reset to have no overridden values.

Object-level Policies for Clients

Operations are defined on the base Object interface through which a set of
policies can be applied. Policies applied at the object level override any
system defaults or values set at the ORB or thread levels. In addition,
accessors are defined for querying the current overriding policies set at the
object level, and for obtaining the current effective client-side policy of a
given PolicyType. The effective client-side policy is the value of a
PolicyType that would be in effect if a request were made. This is
determined by checking for overrides at the object level, then at the thread
level, and finally at the ORB level. If no overriding policies are set at any
275

level, the system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default values are not
specified in most cases.

Policy Methods
The Policy interface is as follows:

// IDL in module CORBA
interface Policy {
 readonly attribute PolicyType policy_type;
 Policy copy();
 void destroy();
};

Policy::policy_type Attribute

// IDL
readonly attribute PolicyType policy_type;

This read-only attribute returns the constant value of type PolicyType that
corresponds to the type of the Policy object.

Policy::copy()

// IDL
Policy copy();

This operation copies the Policy object. The copy does not retain any
relationships that the original policy had with any domain, or object.

Policy::destroy()

// IDL
void destroy();

This operation destroys the Policy object. It is the responsibility of the Policy
object to determine whether it can be destroyed.
 276

Policy Methods
Enhancement Orbix guarantees to always destroy all local objects it creates when the last
reference to them is released so you do not have to call destroy(). However,
code that relies on this feature is not strictly CORBA compliant and may leak
resources with other ORBs. (According to the CORBA specification, simply
calling CORBA::release() on all references to a policy object does not delete
the object or its components so each policy object created must be explicitly
destroyed to avoid memory leaks.)

Exceptions

NO_PERMISSION The policy object determines that it cannot be destroyed.
277

 278

CORBA::PolicyCurrent Class
The PolicyCurrent interface allows access to policy settings at the current
programming context level. Within a client, you obtain a PolicyCurrent
object reference to set the quality of service for all invocations in the current
thread. You obtain a reference to this interface by invoking ORB::
resolve_initial_references() with the ObjectId PolicyCurrent.

The PolicyCurrent interface is derived from the PolicyManager and the
Current interfaces. The PolicyManager interface allows you to change the
policies for each invocation and the Current interface allows control from the
current thread.

Policies applied at the thread level override any system defaults or values set
at the ORB level. When accessed from a newly spawned thread, the
PolicyCurrent initially has no overridden policies. The PolicyCurrent also
has no overridden values when a POA with ThreadPolicy of
ORB_CONTROL_MODEL dispatches an invocation to a servant. Each time an
invocation is dispatched through a POA of the SINGLE_THREAD_MODEL, the
thread-level overrides are reset to have no overridden values.

class IT_ART_API PolicyCurrent :
 public virtual PolicyManager,
 public virtual Current
{
public:
 typedef CORBA::PolicyCurrent_ptr _ptr_type;
 typedef CORBA::PolicyCurrent_var _var_type;
 virtual ~PolicyCurrent();
 static PolicyCurrent_ptr _narrow(
 CORBA::Object_ptr obj
);
 static PolicyCurrent_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static PolicyCurrent_ptr _duplicate(
 PolicyCurrent_ptr p
);
 inline static PolicyCurrent_ptr _nil();
279

 static const IT_FWString _it_fw_type_id;
};

PolicyCurrent::_duplicate()

inline static PolicyCurrent_ptr _duplicate(
 PolicyCurrent_ptr p
);

Returns a duplicate object reference and increments the reference count of the
object.

Parameters

See Also
�About Standard Functions for all Interfaces�

PolicyCurrent::_narrow()

static PolicyCurrent_ptr _narrow(
 CORBA::Object_ptr obj
);

Returns a new object reference to a PolicyCurrent object given an existing
reference.

Parameters

See Also CORBA::PolicyCurrent::_unchecked_narrow()

�About Standard Functions for all Interfaces�

PolicyCurrent::_nil()

inline static PolicyCurrent_ptr _nil();

Returns a nil object reference to a PolicyCurrent object.

p The current object reference to duplicate.

obj A reference to an object.
 280

See Also
�About Standard Functions for all Interfaces�

PolicyCurrent::~PolicyCurrent() Destructor

virtual ~PolicyCurrent();

The destructor for the object.

PolicyCurrent::_unchecked_narrow()

static PolicyCurrent_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

Returns a new object reference to a PolicyCurrent object given an existing
reference.

Parameters

See Also CORBA::PolicyCurrent::_narrow()

�About Standard Functions for all Interfaces�

obj A reference to an object.
281

 282

CORBA::PolicyManager Class
PolicyManager is an interface with operations for querying and overriding
QoS policy settings. It includes mechanisms for obtaining policy override
management operations at each relevant application scope. You obtain the
ORB�s PolicyManager by invoking ORB::resolve_initial_references()
with the ObjectId ORBPolicyManager.

You use a CORBA::PolicyCurrent object, derived from CORBA::Current, for
managing the thread�s QoS policies. You obtain a reference to this interface
by invoking ORB::resolve_initial_references() with the ObjectId
PolicyCurrent.

� Accessor operations on CORBA::Object allow querying and overriding of
QoS at the object reference scope.

� The application of QoS on a POA is done through the currently existing
mechanism of passing a PolicyList to POA::create_POA().

class IT_ART_API PolicyManager : public virtual CORBA::Object {
public:
 typedef CORBA::PolicyManager_ptr _ptr_type;
 typedef CORBA::PolicyManager_var _var_type;
 virtual ~PolicyManager();
 static PolicyManager_ptr _narrow(
 CORBA::Object_ptr obj
);
 static PolicyManager_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static PolicyManager_ptr _duplicate(
 PolicyManager_ptr p
);
 inline static PolicyManager_ptr _nil();

 virtual PolicyList* get_policy_overrides(
 const PolicyTypeSeq & ts
) = 0;
 virtual void set_policy_overrides(
 const PolicyList & policies,
 SetOverrideType set_add
283

) = 0;
 static const IT_FWString _it_fw_type_id;
};

PolicyManager::_duplicate()

inline static PolicyManager_ptr _duplicate(
 PolicyManager_ptr p
);

Returns a duplicate object reference and increments the reference count of the
object.

Parameters

See Also
�About Standard Functions for all Interfaces�

PolicyManager::get_policy_overrides()

virtual PolicyList* get_policy_overrides(
 const PolicyTypeSeq & ts
) = 0;

Parameters Returns a list containing the overridden polices for the requested policy types.
This returns only those policy overrides that have been set at the specific scope
corresponding to the target PolicyManager (no evaluation is done with respect
to overrides at other scopes). If none of the requested policy types are
overridden at the target PolicyManager, an empty sequence is returned.

Parameters

See Also CORBA::PolicyManager::set_policy_overrides()

p The current object reference to duplicate.

ts A sequence of policy types to get. If the specified sequence is
empty, the method returns all policy overrides at this scope.
 284

PolicyManager::_narrow()

static PolicyManager_ptr _narrow(
 CORBA::Object_ptr obj
);

Returns a new object reference to a PolicyManager object given an existing
reference.

Parameters

See Also CORBA::PolicyManager::_unchecked_narrow()

�About Standard Functions for all Interfaces�

PolicyManager::_nil()

inline static PolicyManager_ptr _nil();

Returns a nil object reference to a PolicyManager object.

See Also
�About Standard Functions for all Interfaces�

PolicyManager::~PolicyManager() Destructor

virtual ~PolicyManager();

The destructor for the object.

PolicyManager::set_policy_overrides()

virtual void set_policy_overrides(
 const PolicyList & policies,
 SetOverrideType set_add
) = 0;

Modifies the current set of overrides with the requested list of policy overrides.

obj A reference to an object.
285

Parameters

Invoking the method with an empty sequence of policies and a mode of
SET_OVERRIDE removes all overrides from a PolicyManager.

There is no evaluation of compatibility with policies set within other policy
managers.

Exceptions

PolicyManager::_unchecked_narrow()

static PolicyManager_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

Returns a new object reference to a PolicyManager object given an existing
reference.

Parameters

See Also CORBA::PolicyManager::_narrow()

policies A sequence of references to policy objects.

set_add Indicates whether the policies in the policies parameter
should be added to existing overrides in the PolicyManager or
used to replace existing overrides:

� Use ADD_OVERRIDE to add policies onto any other
overrides that already exist in the PolicyManager.

� Use SET_OVERRIDE to create a clean PolicyManager free
of any other overrides.

NO_PERMISSION Only certain policies that pertain to the invocation of an oper-
ation at the client end can be overridden using this operation.
This exception is raised if you attempt to override any other
policy.

InvalidPolicie
d

The request would put the set of overriding policies for the
target PolicyManager in an inconsistent state. No policies are
changed or added.

obj A reference to an object.
 286

�About Standard Functions for all Interfaces�
287

 288

CORBA::PrimitiveDef Interface
Interface PrimitiveDef represents an IDL primitive type such as short,
long, and others. PrimitiveDef objects are anonymous (unnamed) and
owned by the interface repository.

Objects of type PrimitiveDef cannot be created directly. You can obtain a
reference to a PrimitiveDef by calling Repository::get_primitive().

// IDL in module CORBA.
interface PrimitiveDef: IDLType {
 readonly attribute PrimitiveKind kind;
};

See Also CORBA::PrimitiveKind
CORBA::IDLType
CORBA::Repository::get_primitive()

PrimitiveDef::kind Attribute

// IDL
readonly attribute PrimitiveKind kind;

Identifies which of the IDL primitive types is represented by this PrimitiveDef.

A PrimitiveDef with a kind of type pk_string represents an unbounded
string, a bounded string is represented by the interface StringDef. A
PrimitiveDef with a kind of type pk_objref represents the IDL type Object.
A PrimitiveDef with a kind of type pk_value_base represents the IDL type
ValueBase.

See Also CORBA::IDLType
CORBA::Object
CORBA::StringDef
289

 290

CORBA::Repository Interface
The interface repository itself is a container for IDL type definitions. Each
interface repository is represented by a global root Repository object.

The Repository interface describes the top-level object for a repository name
space. It contains definitions of constants, typedefs, exceptions, interfaces,
value types, value boxes, native types, and modules.

You can use the Repository operations to look up any IDL definition, by
either name or identity, that is defined in the global name space, in a
module, or in an interface. You can also use other Repository operations to
create information for the interface repository. See Table 8:

The five create_type operations create new interface repository objects
defining anonymous types. Each anonymous type definition must be used in
defining exactly one other object. Because the interfaces for these
anonymous types are not derived from Contained, it is your responsibility to
invoke in your application destroy() on the returned object if it is not
successfully used in creating a definition that is derived from Contained.

The Repository interface is as follows:

// IDL in module CORBA.
interface Repository : Container {
 Contained lookup_id(
 in RepositoryId search_id
);
 TypeCode get_canonical_typecode(
 in TypeCode tc

Table 8: Operations of the Repository Interface

Read Operations Write Operations

describe_contents()
get_canonical_typecode()
get_primitive()
lookup_id()

create_array()
create_fixed()
create_sequence()
create_string()
create_wstring()
291

);
 PrimitiveDef get_primitive(
 in PrimitiveKind kind
);
 StringDef create_string(
 in unsigned long bound
);
 WstringDef create_wstring(
 in unsigned long bound
);
 SequenceDef create_sequence(
 in unsigned long bound,
 in IDLType element_type
);
 ArrayDef create_array(
 in unsigned long length,
 in IDLType element_type
);
 FixedDef create_fixed(
 in unsigned short digits,
 in short scale
);
};

The inherited describe_contents() is also described.

Note that although a Repository does not have a RepositoryId associated
with it (because it derives only from Container and not from Contained) you
can assume that its default RepositoryId. is an empty string. This allows a
value to be assigned to the defined_in field of each description structure for
ModuleDef, InterfaceDef, ValueDef, ValueBoxDef, TypedefDef,
ExceptionDef and ConstantDef that may be contained immediately within a
Repository object.

See Also CORBA::Container

Repository::create_array()

// IDL
ArrayDef create_array(
 in unsigned long length,
 in IDLType element_type
 292

);

Returns a new array object defining an anonymous (unnamed) type. The new
array object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Contained object, it is your
application�s responsibility to delete it.

Parameters

See Also CORBA::ArrayDef
CORBA::IRObject

Repository::create_fixed()

// IDL
FixedDef create_fixed (
 in unsigned short digits,
 in short scale
);

Returns a new fixed-point object defining an anonymous (unnamed) type. The
new object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Contained object, it is your
application�s responsibility to delete it.

Parameters

Repository::create_sequence()

// IDL
SequenceDef create_sequence (
 in unsigned long bound,

length The number of elements in the array.

element_type The type of element that the array will contain.

digits The number of digits in the fixed-point number. Valid values
must be between 1 and 31, inclusive.

scale The scale.
293

 in IDLType element_type
);

Returns a new sequence object defining an anonymous (unnamed) type. The
new sequence object must be used in the definition of exactly one other object.
It is deleted when the object it is contained in is deleted. If the created object
is not successfully used in the definition of a Contained object, it is your
application�s responsibility to delete it.

Parameters

See Also CORBA::SequenceDef

Repository::create_string()

// IDL
StringDef create_string(
 in unsigned long bound
);

Returns a new string object defining an anonymous (unnamed) type. The new
string object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Contained object, it is your
application�s responsibility to delete it.

Parameters

Use get_primitive() to create unbounded strings.

See Also CORBA::StringDef
CORBA::Repository::get_primitive()

bound The number of elements in the sequence. A bound of 0 indi-
cates an unbounded sequence.

element_type The type of element that the sequence will contain.

bound The maximum number of characters in the string. (This
cannot be 0.)
 294

Repository::create_wstring()

// IDL
StringDef create_wstring (
 in unsigned long bound
);

Returns a new wide string object defining an anonymous (unnamed) type. The
new wide string object must be used in the definition of exactly one other
object. It is deleted when the object it is contained in is deleted. If the created
object is not successfully used in the definition of a Contained object, it is your
application�s responsibility to delete it.

Parameters

Use get_primitive() to create unbounded strings.

See Also CORBA::WstringDef
CORBA::Repository::get_primitive()

Repository::describe_contents()

// IDL
sequence<Description> describe_contents(
 in InterfaceName restrict_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

The operation describe_contents() is inherited from interface Container. It
returns a sequence of Container::Description structures; one such structure
for each top level item in the repository.

bound The maximum number of characters in the string. (This
cannot be 0.)
295

Parameters

See Also CORBA::Container::describe_contents()
CORBA::Container::Description
CORBA::DefinitionKind

Repository::get_canonical_typecode()

// IDL
TypeCode get_canonical_typecode(
 in TypeCode tc
);

Returns a TypeCode that is equivalent to tc that also includes all repository
ids, names, and member names.

Parameters

If the top level TypeCode does not contain a RepositoryId (such as array and
sequence type codes or type codes from older ORBs) or if it contains a
RepositoryId that is not found in the target Repository, then a new
TypeCode is constructed by recursively calling get_canonical_typecode() on
each member TypeCode of the original TypeCode.

restrict_type If this is set to dk_all, then all of the contained inter-
face repository objects are returned. If set to the
DefinitionKind for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Operation, then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

max_returned_objs The number of objects that can be returned in the call.
Setting a value of -1 means return all contained
objects.

tc The TypeCode to lookup.
 296

Repository::get_primitive()

// IDL
PrimitiveDef get_primitive(
 in PrimitiveKind kind
);

Returns a reference to a PrimitiveDef of the specified PrimitiveKind. All
PrimitiveDef objects are owned by the Repository, one primitive object per
primitive type (for example, short, long, unsigned short, unsigned long and
so on).

Parameters

See Also CORBA::PrimitiveDef

Repository::lookup_id()

// IDL
Contained lookup_id(
 in RepositoryId search_id
);

Returns an object reference to a Contained object within the repository given
its RepositoryId. If the repository does not contain a definition for the given
ID, a nil object reference is returned.

Parameters

See Also CORBA::Contained

kind The kind of primitive to get.

search_id The RepositoryId of the IDL definition to lookup.
297

 298

CORBA::Request Class
This class is the key support class for the Dynamic Invocation Interface (DII),
whereby an application may issue a request for any interface, even if that
interface was unknown at the time the application was compiled.

Orbix allows invocations, that are instances of class Request, to be
constructed by specifying at runtime the target object reference, the
operation name and the parameters. Such calls are termed dynamic because
the IDL interfaces used by a program do not have to be statically determined
at the time the program is designed and implemented.

You create a request using methods Object::_create_request() or Object:
:_request().

class Request {
public:
 Object_ptr target() const;
 const char *operation() const;
 NVList_ptr arguments();
 NamedValue_ptr result();
 Environment_ptr env();
 ExceptionList_ptr exceptions();
 ContextList_ptr contexts();
 void ctx(Context_ptr);
 Context_ptr ctx() const;

 // argument manipulation helper functions
 Any &add_in_arg();
 Any &add_in_arg(const char* name);
 Any &add_inout_arg();
 Any &add_inout_arg(const char* name);
 Any &add_out_arg();
 Any &add_out_arg(const char* name);
 void set_return_type(TypeCode_ptr tc);
 Any &return_value();
 void invoke();
 void send_oneway();
 void send_deferred();
 void get_response();
299

 Boolean poll_response();

 // additional Messaging functions
 virtual void sendc(CORBA::Object_ptr handler) = 0;
 virtual CORBA::Object_ptr sendp() = 0;
 virtual void prepare(CORBA::Object_ptr p) = 0;

};

See Also CORBA::Object::_request()
CORBA::Object::_create_request()

Request::add_in_arg()

Any &add_in_arg();

Any &add_in_arg(
 const char* name
);

Returns an any value for the input argument that is added.

Parameters

See Also CORBA::Request::arguments()
CORBA::Request::add_inout_arg()
CORBA::Request::add_out_arg()

Request::add_inout_arg()

Any &add_inout_arg();

Any &add_inout_arg(
 const char* name
);

Returns an any value for the in/out argument that is added.

Parameters

See Also CORBA::Request::arguments()

name The name for the argument that is added to the request.

name The name for the argument that is added to the request.
 300

CORBA::Request::add_in_arg()
CORBA::Request::add_out_arg()

Request::add_out_arg()

Any &add_out_arg();

Any &add_out_arg(
 const char* name
);

Returns an any value for the output argument that is added.

Parameters

See Also CORBA::Request::arguments()
CORBA::Request::add_in_arg()
CORBA::Request::add_inout_arg()

Request::arguments()

NVList_ptr arguments();

Returns the arguments to the requested operation in an NVList. Ownership of
the return value is maintained by the Request and must not be freed by the
caller. You can add additional arguments to the request using the add_*_arg()
helper methods.

See Also CORBA::NVList
CORBA::Request::add_in_arg()
CORBA::Request::add_inout_arg()
CORBA::Request::add_out_arg()

Request::contexts()

ContextList_ptr contexts();

Returns a pointer to a list of contexts for the request. Ownership of the return
value is maintained by the Request and must not be freed by the caller.

See Also CORBA::ContextList

name The name for the argument that is added to the request.
301

Request::ctx()

Context_ptr ctx() const;

Returns the Context associated with a request. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

void ctx(
 Context_ptr c
);

Inserts a Context into a request.

Parameters

See Also CORBA::Context

Request::env()

Environment_ptr env();

Returns the Environment associated with the request from which exceptions
raised in DII calls can be accessed. Ownership of the return value is maintained
by the Request and must not be freed by the caller.

See Also CORBA::Environment

Request::exceptions()

ExceptionList_ptr exceptions();

Returns a pointer to list of possible application-specific exceptions for the
request. Ownership of the return value is maintained by the Request and must
not be freed by the caller.

See Also CORBA::ExceptionList

c The context to insert with the request.
 302

Request::get_response()

void get_response();

Determines whether a request has completed successfully. It returns only when
the request, invoked previously using send_deferred(), has completed.

See Also CORBA::Request::result()
CORBA::Request::send_deferred()

Request::invoke()

void invoke();

Instructs the ORB to make a request. The parameters to the request must
already be set up. The caller is blocked until the request has been processed
by the target object or an exception occurs.

To make a non-blocking request, see send_deferred() and send_oneway().

See Also CORBA::Request::send_oneway()
CORBA::Request::send_deferred()
CORBA::Request::result()

Request::operation()

const char *operation() const;

Returns the operation name of the request. Ownership of the return value is
maintained by the Request and must not be freed by the caller.

Request::poll_response()

Boolean poll_response();

Returns 1 (true) if the operation has completed successfully and indicates that
the return value and out and inout parameters in the request are valid. Returns
0 (false) otherwise. The method returns immediately.
303

If your application makes an operation request using send_deferred(), it can
call poll_response() to determine whether the operation has completed. If
the operation has completed, you can get the result by calling Request::
result().

See Also CORBA::Request::send_deferred()
CORBA::Request::get_response()
CORBA::Request::result()

Request::prepare()

virtual void prepare(
 CORBA::Object_ptr p
) = 0;

Associates an initialized Request with a previous operation that was initiated
via sendp(). The Request must be created and associated with the operation�s
out arguments and return value prior to calling prepare(). Once prepare()
has been called, it is as if that prepared Request was the one that actually had
sendp() used.

Parameters

This function along with sendp() and sendc() enable dynamic
time-Independent invocations and dynamic use of the Messaging callback
model.

Exceptions

See Also CORBA::Request::sendp()
CORBA::Request::sendc()

p An object reference.

BAD_INV_ORDER prepare() is invoked on a Request that had previously been
used for a send or one of its variants.

BAD_PARAM prepare() is invoked with an object reference that was not
previously returned from an invocation of sendp().
 304

Request::result()

NamedValue_ptr result();

Returns the result of the operation request in a NamedValue. Ownership of the
return value is maintained by the Request and must not be freed by the caller.

Request::return_value()

Any &return_value();

Returns an any value for the returned value of the operation.

Request::sendc()

virtual void sendc(
 CORBA::Object_ptr handler
) = 0;

Initiates an operation according to the information in the Request.

Parameters

A truly dynamic client can implement the ReplyHandler using the DSI.

Exceptions A system exception may be raise if a failure is detected before control is returned
to the client, but this is not guaranteed. Any other exceptions are passed to
the ReplyHandler.

See Also CORBA::Request::sendp()
CORBA::Request::prepare()

handler Pass in the callback Messaging::ReplyHandler as a base
CORBA::Object. The results of invocations made with
sendc() will be available through this handler.
305

Request::send_deferred()

void send_deferred();

Instructs the ORB to make the request. The arguments to the request must
already be set up. The caller is not blocked, and thus may continue in parallel
with the processing of the call by the target object.

To make a blocking request, use invoke(). You can use poll_response() to
determine whether the operation completed.

See Also CORBA::Request::send_oneway()
CORBA::ORB::send_multiple_requests_deferred()
CORBA::Request::invoke()
CORBA::Request::poll_response()
CORBA::Request::get_response()

Request::send_oneway()

void send_oneway();

Instructs Orbix to make the oneway request. The arguments to the request
must already be set up. The caller is not blocked, and thus may continue in
parallel with the processing of the call by the target object.

You can use this method even if the operation has not been defined to be
oneway in its IDL definition, however, do not expect any output or inout
parameters to be updated.

To make a blocking request, use invoke().

See Also CORBA::Request::send_deferred()
CORBA::ORB::send_multiple_requests_oneway()
CORBA::Request::invoke()
CORBA::Request::poll_response()
CORBA::Request::get_response()

Request::sendp()

virtual CORBA::Object_ptr sendp() = 0;

Initiates an operation according to the information in the Request. The results
of invocations made with sendp() will be available once the caller uses
 306

get_response() or get_next_response(). The out parameters and return
value of the initiated operation must not be used before the operation is done.

Exceptions A system exception may be raise if a failure is detected before control is returned
to the client, but this is not guaranteed. Any other exceptions will be raised
when get_response() is called.

See Also CORBA::Request::sendc()
CORBA::Request::prepare()

Request::set_return_type()

void set_return_type(
 TypeCode_ptr tc
);

Sets the TypeCode associated with a Request object. When using the DII with
the Internet Inter-ORB Protocol (IIOP), you must set the return type of a request
before invoking the request.

Parameters

Request::target()

Object_ptr target() const;

Gets the target object of the Request. Ownership of the return value is
maintained by the Request and must not be freed by the caller.

tc The TypeCode for the return type of the operation associated
with the Request object.
307

 308

CORBA::SequenceDef Interface
Interface SequenceDef represents an IDL sequence definition in the interface
repository. It inherits from the interface IDLType.

// IDL in module CORBA.
interface SequenceDef : IDLType {
 attribute unsigned long bound;
 readonly attribute TypeCode element_type;
 attribute IDLType element_type_def;
};

The inherited type attribute is also described.

See Also CORBA::IDLType
CORBA::Repository::create_sequence()

SequenceDef::bound Attribute

// IDL
attribute unsigned long bound;

The maximum number of elements in the sequence. A bound of 0 indicates an
unbounded sequence.

Changing the bound attribute will also update the inherited type attribute.

See Also CORBA::SequenceDef::type

SequenceDef::element_type Attribute

// IDL
readonly attribute TypeCode element_type;

The type of element contained within this sequence. The attribute
element_type_def contains the same information.

See Also CORBA::SequenceDef::element_type_def
309

SequenceDef::element_type_def Attribute

// IDL
attribute IDLType element_type_def;

Describes the type of element contained within this sequence. The attribute
element_type contains the same information. Setting the element_type_def
attribute also updates the element_type and IDLType::type attributes.

See Also CORBA::SequenceDef::element_type
CORBA::IDLType::type

SequenceDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute is a
tk_sequence TypeCode that describes the sequence. It is updated automati-
cally whenever the attributes bound or element_type_def are changed.

See Also CORBA::SequenceDef::element_type_def
CORBA::SequenceDef::bound
 310

CORBA::ServerRequest Class
Class ServerRequest describes a Dynamic Skeleton Interface (DSI) operation
request. It is analogous to the Request class used in the Dynamic Invocation
Interface (DII).

An instance of ServerRequest is created by the ORB when it receives an
incoming request that is to be handled by the DSI�that is, an instance of the
PortableServer::DynamicImplementation class has been registered to
handle the target interface.

An instance of ServerRequest is a pseudo-object so an instance of a
ServerRequest cannot be transmitted in an IDL operation.

You should not define derived classes of ServerRequest.

The following code is the complete class definition:

// in CORBA namespace
class ServerRequest {
public:
 const char* operation() const;
 void arguments(
 NVList_ptr& parameters
);
 Context_ptr ctx();
 void set_result(
 const Any& value
);
 void set_exception(
 const Any& value
);
};

ServerRequest::arguments()

void arguments(
 NVList_ptr& parameters
);
311

Allows a redefinition of the following method to specify the values of incoming
arguments:

PortableServer::DynamicImplementation::invoke()

Parameters

This method must be called exactly once in each execution of invoke().

See Also CORBA::ServerRequest::params()
PortableServer::DynamicImplementation::invoke()

ServerRequest::ctx()

Context_ptr ctx();

Returns the Context associated with the call.

This function can be called once or not at all. If it is called, it must be called
before params() or ServerRequest::arguments().

See Also CORBA::Context

ServerRequest::operation()

const char* operation() const;

Parameters Returns the name of the operation being invoked.

This method must be called at least once in each execution of the dynamic
implementation routine, that is, in each redefinition of the method:

PortableServer::DynamicImplementation::invoke()

See Also CORBA::ServerRequest::op_name()
PortableServer::DynamicImplementation::invoke()

See Also

parameters Obtains output and input arguments.
 312

ServerRequest::set_exception()

void set_exception(
 const Any& value
);

Allows (a redefinition of) PortableServer::DynamicImplementation::
invoke() to return an exception to the caller.

Parameters

See Also CORBA::Environment()
PortableServer::DynamicImplementation::invoke()

ServerRequest::set_result()

void set_result(
 const Any& value
);

Allows PortableServer::DynamicImplementation::invoke() to return the
result of an operation request in an Any.

Parameters

This method must be called once for operations with non-void return types
and not at all for operations with void return types. If it is called, then
set_exception() cannot be used.

See Also CORBA::ServerRequest::set_exception()

value A pointer to an Any, which holds the
exception returned to the caller.

value A pointer to a Any, which holds the result
returned to the caller.
313

 314

CORBA::StringDef Interface
Interface StringDef represents an IDL bounded string type in the interface
repository. A StringDef object is anonymous, which means it is unnamed.

Use Repository::create_string() to obtain a new StringDef. Use
Repository::get_primitive() for unbounded strings.

// IDL in module CORBA.
interface StringDef : IDLType {
 attribute unsigned long bound;
};

The inherited type attribute is also described.

See Also CORBA::IDLType
CORBA::Repository::create_string()

StringDef::bound Attribute

// IDL
attribute unsigned long bound;

Specifies the maximum number of characters in the string. This cannot be zero.

StringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute is a
tk_string TypeCode that describes the string.

See Also CORBA::IDLType::type
315

 316

CORBA::String_var Class
The class String_var implements the _var type for IDL strings required by
the standard C++ mapping. The String_var class contains a char* value
and ensures that this is properly freed when a String_var object is deallo-
cated, for example when exectution goes out of scope.

class String_var {
public:
 String_var();
 String_var(char *p);
 String_var(const char *p);
 String_var(const String_var &s);
 ~String_var();
 String_var & operator=(char *p);
 String_var & operator=(const char *p);
 String_var & operator=(const String_var &s);
 operator char*();
 operator const char*() const;
 const char* in() const;
 char*& inout();
 char*& out();
 char* _retn();
 char & operator[](ULong index);
 char operator[](ULong index) const;
};

String_var::char*()

operator char*();

operator const char*() const;

Converts a String_var object to a char*.

See Also CORBA::String_var::operator=()
317

Orbix 2000 Programmer�s Reference Guide C++ Edition
String_var::in()

const char* in() const;

Returns the proper string for use as an input parameter.

See Also CORBA::String_var::out()
CORBA::String_var::inout()
CORBA::String_var::_retn()

String_var::inout()

char*& inout();

Returns the proper string for use as an inout parameter.

See Also CORBA::String_var::in()
CORBA::String_var::out()
CORBA::String_var::_retn()

String_var::operator=() Assignment Operators

String_var &operator=(
 char *p
);

String_var &operator=(
 const char *p
);

String_var &operator=(
 const String_var &s
);

Assignment operators allow you to assign values to a String_var from a char*
or from another String_var type.

Parameters

See Also CORBA::String_var::char*()

p A character string to assign to the String_var.

s A String_var to assign to the String_var.
 318

String_var::operator[]() Subscript Operators

char &operator[](
 ULong index
);

char operator[](
 ULong index
) const;

Return the character at the given location of the string. Subscript operators
allow access to the individual characters in the string.

Parameters

String_var::out()

char*& out();

Returns the proper string for use as an output parameter.

See Also CORBA::String_var::in()
CORBA::String_var::inout()
CORBA::String_var::_retn()

String_var::String_var() Constructors

String_var();

The default constructor.

String_var(
 char *p
);

String_var(
 const char *p
);

Constructors that convert from a char* to a String_var.

String_var(
 const String_var &s
);

index The index location in the string.
319

Orbix 2000 Programmer�s Reference Guide C++ Edition
The copy constructor.

Parameters

See Also CORBA::String_var::~String_var()

String_var::~String_var() Destructor

~String_var();

The destructor.

See Also CORBA::String_var::String_var()

String_var::_retn()

char* _retn();

Returns the proper string for use as a method�s return value.

See Also CORBA::String_var::inout()
CORBA::String_var::in()
CORBA::String_var::out()

p The character string to convert to a String_var. The
String_var assumes ownership of the parameter.

s The original String_var that is copied.
 320

CORBA::StructDef Interface
Interface StructDef describes an IDL structure in the interface repository.

// IDL in module CORBA.
interface StructDef : TypedefDef, Container {
 attribute StructMemberSeq members;
};

The inherited operation describe() is also described.

See Also CORBA::Contained
CORBA::Container::create_struct()

StructDef::describe()

// IDL
Description describe();

describe(returns a Contained::Description structure. describe() is inher-
ited from Contained (which TypedefDef inherits).

The DefinitionKind for the kind member is dk_Struct. The value member
is an any whose TypeCode is _tc_TypeDescription and whose value is a
structure of type TypeDescription.

See Also CORBA::TypedefDef::describe()

StructDef::members Attribute

// IDL
attribute StructMemberSeq members;

Describes the members of the structure.

You can modify this attribute to change the members of a structure. Only the
name and type_def fields of each StructMember should be set (the type field
should be set to _tc_void and it will be set automatically to the TypeCode of
the type_def field).
321

See Also CORBA::TypedefDef
 322

CORBA::TypeCode Class
The class TypeCode is used to describe IDL type structures at runtime. A
TypeCode is a value that represents an IDL invocation argument type or an
IDL attribute type. A TypeCode is typically used as follows:

� In the dynamic invocation interface (DII) to indicate the type of an actual
argument.

� By the interface repository to represent the type specification that is part
of an OMG IDL declaration.

� To describe the data held by an any type.

A TypeCode consists of a kind that classifies the TypeCode as to whether it is
a basic type, a structure, a sequence and so on. See the data type TCKind for
all possible kinds of TypeCode objects.

A TypeCode may also include a sequence of parameters. The parameters give
the details of the type definition. For example, the IDL type
sequence<long, 20> has the kind tk_sequence and has parameters long
and 20.

You typically obtain a TypeCode from the interface repository or it may be
generated by the IDL compiler. You do not normally create a TypeCode in
your code so the class contains no constructors, only methods to decompose
the components of an existing TypeCode. However, if your application does
require that you create a TypeCode, see the set of create_Type_tc()
methods in the ORB class.
323

For functions that require TypeCode parameters, such as with the DII, you
can use the appropriate constant from the following list:

The class TypeCode contains the following methods:

// C++
class TypeCode {
public:
 class Bounds : public UserException { ... };
 class BadKind : public UserException { ... };
 Boolean equal(TypeCode_ptr) const;
 Boolean equivalent(TypeCode_ptr) const;
 TCKind kind() const;
 TypeCode_ptr get_compact_typecode() const;
 const char* id() const;
 const char* name() const;
 ULong member_count() const;
 const char* member_name(ULong index) const;
 TypeCode_ptr member_type(ULong index) const;
 Any* member_label(ULong index) const;
 TypeCode_ptr discriminator_type() const;
 Long default_index() const;
 ULong length() const;
 TypeCode_ptr content_type() const;
 UShort fixed_digits() const;
 Short fixed_scale() const;
 Visibility member_visibility(ULong index) const;
 ValueModifier type_modifier() const;
 TypeCode_ptr concrete_base_type() const;

 static TypeCode_ptr _duplicate(TypeCode_ptr tc);

CORBA::_tc_any
CORBA::_tc_boolean
CORBA::_tc_char
CORBA::_tc_double
CORBA::_tc_float
CORBA::_tc_long
CORBA::_tc_longdouble
CORBA::_tc_longlong
CORBA::_tc_NamedValue
CORBA::_tc_null
CORBA::_tc_Object

CORBA::_tc_octet
CORBA::_tc_Principal
CORBA::_tc_short
CORBA::_tc_string
CORBA::_tc_TypeCode
CORBA::_tc_ulong
CORBA::_tc_ulonglong
CORBA::_tc_ushort
CORBA::_tc_void
CORBA::_tc_wchar
CORBA::_tc_wstring
 324

 static TypeCode_ptr _nil();

};

See Also CORBA::TCKind

TypeCode::BadKind Exception

class BadKind : public UserException { ... };

The BadKind exception is raised if a TypeCode member method is invoked for
a kind that is not appropriate.

TypeCode::Bounds Exception

class Bounds : public UserException { ... };

The Bounds exception is raised if an attempt is made to use an index for a
type�s member that is greater than or equal to the number of members for the
type.

The type of IDL constructs that have members include enumerations,
structures, unions, value types, and exceptions. Some of the TypeCode
methods return information about specific members of these IDL constructs.
The first member has index value 0, the second has index value 1, and so on
up to n-1 where n is the count of the total number of members.

The order in which members are presented in the interface repository is the
same as the order in which they appeared in the IDL specification.

This exception is not the same as the CORBA::Bounds exception.

See Also CORBA::TypeCode::member_count()
CORBA::TypeCode::member_label()
CORBA::TypeCode::member_name()
CORBA::TypeCode::member_type()
CORBA::TypeCode::member_visibility()
325

TypeCode::concrete_base_type()

TypeCode_ptr concrete_base_type() const;

Returns a TypeCode for the concrete base if the value type represented by this
TypeCode has a concrete base value type. Otherwise it returns a nil TypeCode
reference. This method is valid to use only if the kind of TypeCode has a TCKind
value of tk_value.

Exceptions

TypeCode::content_type()

TypeCode_ptr content_type() const;

For sequences and arrays this method returns a reference to the element
type. For aliases it returns a reference to the original type. For a boxed value
type it returns a reference to the boxed type. This method is valid to use if the
kind of TypeCode is one of the following TCKind values:

tk_alias
tk_array
tk_sequence
tk_value_box

Exceptions

TypeCode::default_index()

Long default_index() const;

Returns the index of the default union member, or -1 if there is no default
member. This method is valid to use only if the kind of TypeCode has a TCKind
value of tk_union.

Exceptions

See Also CORBA::TypeCode::member_label()

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.
 326

TypeCode::discriminator_type()

TypeCode_ptr discriminator_type() const;

Returns a TypeCode for the union discriminator type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk_union.

Exceptions

See Also CORBA::TypeCode::default_index()
CORBA::TypeCode::member_label()

TypeCode::_duplicate()

static TypeCode_ptr _duplicate(
 TypeCode_ptr obj
);

Increments the reference count of obj and returns a new reference to the
TypeCode object.

Parameters

See Also CORBA::release()

TypeCode::equal()

Boolean equal(
 TypeCode_ptr tc
) const;

Returns 1 (true) if this TypeCode and the tc parameter are equal. Returns 0
(false) otherwise. Two type codes are equal if the set of legal operations is the
same and invoking an operation from one set returns the same results as
invoking the operation from the other set.

Parameters

See Also CORBA::TypeCode::equivalent()

BadKind The kind of TypeCode is not valid for this method.

obj A reference to the original TypeCode to duplicate.

tc The TypeCode to compare.
327

TypeCode::equivalent()

Boolean equivalent(
 TypeCode_ptr tc
) const;

Returns 1 (true) if this TypeCode and the tc parameter are equivalent. Returns
0 (false) otherwise.

Parameters

equivalent() is typically used by the ORB to determine type equivalence for
values stored in an IDL any. You can use equal() to compare type codes in
your application. equivalent() would return true if used to compare a type
and an alias of that type while equal() would return false.

See Also CORBA::TypeCode::equal()

TypeCode::fixed_digits()

UShort fixed_digits() const;

Returns the number of digits in the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk_fixed.

Exceptions

See Also CORBA::TypeCode::fixed_scale()

TypeCode::fixed_scale()

Short fixed_scale() const;

Returns the scale of the fixed point type. This method is valid to use only if the
kind of TypeCode has a TCKind value of tk_fixed.

Exceptions

See Also CORBA::TypeCode::fixed_digits()

tc The TypeCode to compare.

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.
 328

TypeCode::get_compact_typecode()

TypeCode_ptr get_compact_typecode() const;

Removes all optional name and member name fields from the TypeCode and
returns a reference to the compact TypeCode. This method leaves all alias type
codes intact.

TypeCode::id()

const char* id() const;

Returns the RepositoryId that globally identifies the type.

Type codes that always have a RepositoryId. include object references,
value types, boxed value types, native, and exceptions. Other type codes that
also always have a RepositoryId and are obtained from the interface
repository or ORB::create_operation_list() include structures, unions,
enumerations, and aliases. In other cases id() could return an empty string.

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_abstract_interface
tk_alias
tk_enum
tk_except
tk_native
tk_objref
tk_struct
tk_union
tk_value
tk_value_box

Exceptions

BadKind The kind of TypeCode is not valid for this method.
329

TypeCode::kind()

TCKind kind() const;

Returns the kind of the TypeCode which is an enumerated value of type TCKind.
You can use kind() on any TypeCode to help determine which other TypeCode
methods can be invoked on the TypeCode.

See Also CORBA::TCKind

TypeCode::length()

ULong length() const;

For strings, wide strings, and sequences, length() returns the bound, with
zero indicating an unbounded string or sequence. For arrays, length() returns
the number of elements in the array. This method is valid to use if the kind of
TypeCode has a TCKind value of one of the following:

tk_array
tk_sequence
tk_string
tk_wstring

Exceptions

TypeCode::member_count()

ULong member_count() const;

Returns the number of members in the type. This method is valid to use if the
kind of TypeCode has a TCKind value of one of the following:

tk_enum
tk_except
tk_struct
tk_union
tk_value

Exceptions

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.
 330

TypeCode::member_label()

Any *member_label(
 ULong index
) const;

Returns the label of the union member. For the default member, the label is
the zero octet. This method is valid to use only if the kind of TypeCode has a
TCKind value of tk_union.

Parameters

Exceptions

See Also CORBA::TypeCode::default_index()
CORBA::TypeCode::member_count()

TypeCode::member_name()

const char* member_name(
 ULong index
) const;

Returns the simple name of the member. Because names are local to a
repository, the name returned from a TypeCode may not match the name of
the member in any particular repository, and may even be an empty string.

Parameters

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_enum
tk_except
tk_struct
tk_union
tk_value

index The index indicating which union member you want.

BadKind The kind of TypeCode is not valid for this method.

 Bounds The index parameter is greater than or equal to the number
of members for the type.

index The index indicating which member to use.
331

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

Exceptions

See Also CORBA::TypeCode::member_count()

TypeCode::member_type()

TypeCode_ptr member_type(
 ULong index
) const;

Returns a reference to the TypeCode of the member identified by index.

Parameters

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_except
tk_struct
tk_union
tk_value

Exceptions

See Also CORBA::TypeCode::member_count()

TypeCode::member_visibility()

Visibility member_visibility(
 ULong index

BadKind The kind of TypeCode is not valid for this method.

 Bounds The index parameter is greater than or equal to the number
of members for the type.

index The index indicating which member you want.

BadKind The kind of TypeCode is not valid for this method.

 Bounds The index parameter is greater than or equal to the number
of members for the type.
 332

) const;

Returns the Visibility of a value type member. This method is valid to use
only if the kind of TypeCode has a TCKind value of tk_value.

Parameters

Exceptions

See Also CORBA::Visibility
CORBA::TypeCode::member_count()

CORBA::TypeCode::member_count()TypeCode::name()

const char* name() const;

Returns the simple name identifying the type within its enclosing scope.
Because names are local to a repository, the name returned from a TypeCode
may not match the name of the type in any particular repository, and may even
be an empty string.

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_abstract_interface
tk_alias
tk_enum
tk_except
tk_native
tk_objref
tk_struct
tk_union
tk_value
tk_value_box

index The index indicating which value type member you want.

BadKind The kind of TypeCode is not valid for this method.

 Bounds The index parameter is greater than or equal to the number
of members for the type.
333

Exceptions

TypeCode::_nil()

static TypeCode_ptr _nil();

Returns a nil object reference for a TypeCode.

See Also CORBA::is_nil()

TypeCode::type_modifier()

ValueModifier type_modifier() const;

Returns the ValueModifier that applies to the value type represented by this
TypeCode. This method is valid to use only if the kind of TypeCode has a TCKind
value of tk_value.

Exceptions

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.
 334

CORBA::TypedefDef Interface
The abstract interface TypedefDef is simply a base interface for interface
repository interfaces that define named types. Named types are types for
which a name must appear in their definition such as structures, unions, and
so on. Interfaces that inherit from typedefDef include:

� AliasDef
� EnumDef
� NativeDef
� StructDef
� UnionDef
� ValueBoxDef

Anonymous types such as PrimitiveDef, StringDef, SequenceDef and
ArrayDef do not inherit from TypedefDef.

//IDL in module CORBA.
interface TypedefDef : Contained, IDLType {};

The inherited operation describe() is described here.

TypedefDef::describe()

//IDL
Description describe();

Inherited from Contained, describe() returns a structure of type Contained:
:Description.

The DefinitionKind type for the kind member is dk_Typedef. The value
member is an any whose TypeCode is _tc_TypeDescription and whose
value is a structure of type TypeDescription.

See Also CORBA::Contained::describe()
CORBA::Contained::Description
CORBA::TypeDescription
335

 336

CORBA::UnionDef Interface
Interface UnionDef represents an IDL union in the interface repository.

// IDL in module CORBA.
interface UnionDef : TypedefDef {
 readonly attribute TypeCode discriminator_type;
 attribute IDLType discriminator_type_def;
 attribute UnionMemberSeq members;
};

The inherited operation describe() is also described.

See Also CORBA::Contained
CORBA::TypedefDef
CORBA::Container::create_union()

UnionDef::describe()

// IDL
Description describe();

Inherited from Contained (which TypedefDef inherits), describe() returns a
structure of type Contained::Description.

The DefinitionKind for the kind member is dk_Union. The value member is
an any whose TypeCode is _tc_TypeDescription and whose value is a
structure of type TypeDescription.

See Also CORBA::TypedefDef::describe()

UnionDef::discriminator_type Attribute

// IDL
readonly attribute TypeCode discriminator_type;

Describes the discriminator type for this union. For example, if the union
currently contains a long, the discriminator_type is _tc_long. The attribute
discriminator_type_def contains the same information.
337

See Also CORBA::TypeCode

UnionDef::discriminator_type_def Attribute

// IDL
attribute IDLType discriminator_type_def;

Describes the discriminator type for this union. The attribute
discriminator_type contains the same information.

Changing this attribute will automatically update the discriminator_type
attribute and the IDLType::type attribute.

See Also CORBA::IDLType::type
CORBA::UnionDef::discriminator_type

UnionDef::members Attribute

// IDL
attribute UnionMemberSeq members;

Contains a description of each union member: its name, label, and type (type
and type_def contain the same information).

The members attribute can be modified to change the union�s members. Only
the name, label and type_def fields of each UnionMember should be set (the
type field should be set to _tc_void, and it will be set automatically to the
TypeCode of the type_def field).

See Also CORBA::TypedefDef
 338

CORBA::ValueBase Class
All value types have a conventional base type called ValueBase. ValueBase
serves a similar role for value types that the Object class serves for inter-
faces. ValueBase serves as an abstract base class for all value type classes.
You must implement concrete value type classes that inherit from ValueBase.
ValueBase provides several pure virtual reference counting methods inherited
by all value type classes.

namespace CORBA {
 class ValueBase {
 public:
 virtual ValueBase* _add_ref() = 0;
 virtual void _remove_ref() = 0;
 virtual ValueBase* _copy_value() = 0;
 virtual ULong _refcount_value() = 0;
 static ValueBase* _downcast(ValueBase*);
 protected:
 ValueBase();
 ValueBase(const ValueBase&);
 virtual ~ValueBase();
 ...
 };
}

The names of these methods begin with an underscore to keep them from
clashing with your application-specific methods in derived value type classes.

See Also CORBA::ValueFactory

ValueBase::_add_ref()

virtual ValueBase* _add_ref() = 0;

Increments the reference count of a value type instance and returns a pointer
to this value type.

See Also CORBA::ValueBase::_remove_ref()
339

ValueBase::_copy_value()

virtual ValueBase* _copy_value() = 0;

Makes a deep copy of the value type instance and returns a pointer to the copy.
The copy has no connections with the original instance and has a lifetime
independent of that of the original.

Portable applications should not assume covariant return types but should
use downcasting to regain the most derived type of a copied value type. A
covariant return type means that a class derived from ValueBase can override
_copy_value() to return a pointer to the derived class rather than the base
class, ValueBase*.

See Also CORBA::ValueBase::_downcast()

ValueBase::_downcast()

static ValueBase* _downcast(
 ValueBase* vt
);

Returns a pointer to the base type for a derived value type class.

Parameters

ValueBase::_refcount_value()

virtual ULong _refcount_value() = 0;

Returns the current value of the reference count for this value type instance.

See Also CORBA::ValueBase::_add_ref()
CORBA::ValueBase::_remove_ref()

vt Pointer to the value type class to be downcast.
 340

ValueBase::_remove_ref()

virtual _remove_ref() = 0;

Decrements the reference count of a value type instance and deletes the
instance when the reference count drops to zero.

If you use delete() to destroy instances, you must use the new operator to
allocate all value type instances.

See Also CORBA::ValueBase::_add_ref()

ValueBase::~ValueBase() Destructor

protected:
 virtual ~ValueBase();

The default destructor.

The destructor is protected to prevent direct deletion of instances of classes
derived from ValueBase.

See Also CORBA::ValueBase::ValueBase()

ValueBase::ValueBase() Constructors

protected:
 ValueBase();

The default constructor.

protected:
 ValueBase(
 const ValueBase& vt
);

The copy constructor. Creates a new object that is a copy of vt.

The copy constructor is protected to disallow copy construction of derived
value type instances except from within derived class methods.

Parameters

See Also CORBA::ValueBase::~ValueBase()

vt The original value type from which a copy is made.
341

 342

CORBA::ValueBoxDef Interface
The ValueBoxDef interface describes an IDL value box type in the interface
repository. A value box is a value type with no inheritance or operations and
with a single state member. A value box is a shorthand IDL notation used to
simplify the use of value types for simple containment. It behaves like an
additional namespace that contains only one name.

// IDL in module CORBA.
interface ValueBoxDef : IDLType {
 attribute IDLType original_type_def;
};

The inherited type attribute is also described.

See Also CORBA::Container::create_value_box()

ValueBoxDef::original_type_def Attribute

// IDL
attribute IDLType original_type_def;

Identifies the IDL type_def that is being �boxed�. Setting the
original_type_def attribute also updates the type attribute.

See Also CORBA::ValueBoxDef::type

ValueBoxDef::type Attribute

// IDL
readonly attribute TypeCode type;

Inherited from IDLType, this attribute is a tk_value_box TypeCode describing
the value box.

See Also CORBA::IDLType::type
343

 344

CORBA::ValueDef Interface
A ValueDef object represents an IDL value type definition in the interface
repository. It can contain constants, types, exceptions, operations, and
attributes.

A ValueDef used as a Container may only contain TypedefDef, (including
definitions derived from TypedefDef), ConstantDef, and ExceptionDef
definitions.

// IDL in module CORBA.
interface ValueDef : Container, Contained, IDLType {

 // read/write interface
 attribute InterfaceDef supported_interfaces;
 attribute InitializerSeq initializers;
 attribute ValueDef base_value;
 attribute ValueDefSeq abstract_base_values;
 attribute boolean is_abstract;
 attribute boolean is_custom;
 attribute boolean is_truncatable;

 // read interface
 boolean is_a(
 in RepositoryId id
);
 struct FullValueDescription {
 Identifier name;
 RepositoryId id;
 boolean is_abstract;
 boolean is_custom;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 ValueMemberSeq members;
 InitializerSeq initializers;
 RepositoryIdSeq supported_interfaces;
 RepositoryIdSeq abstract_base_values;
 boolean is_truncatable;
345

 RepositoryId base_value;
 TypeCode type;
 };
 FullValueDescription describe_value();
 ValueMemberDef create_value_member(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in Visibility access
);
 AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);
 OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);
}; // End ValueDef Interface

The inherited describe() and contents() operations are also described.

See Also CORBA::Container::create_value()

ValueDef::abstract_base_values Attribute

// IDL
attribute ValueDefSeq abstract_base_values;

The abstract_base_values attribute lists the abstract value types from which
this value inherits.
 346

Exceptions

ValueDef::base_value Attribute

// IDL
attribute ValueDef base_value;

The base_value attribute describes the value type from which this value
inherits.

Parameters

ValueDef::contents()

// IDL
ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

Inherited from Container, contents() returns the list of constants, types, and
exceptions defined in this ValueDef and the list of attributes, operations, and
members either defined or inherited in this ValueDef.

BAD_PARAM,
minor code 5

The name attribute of any object contained by this ValueDef
conflicts with the name attribute of any object contained by
any of the specified bases.

BAD_PARAM,
minor code 5

The name attribute of any object contained by the minor code
5 is raised if the name attribute of any object contained by this
ValueDef conflicts with the name attribute of any object con-
tained by any of the specified bases.
347

Parameters

See Also CORBA::Container::contents()

ValueDef::create_attribute()

// IDL
AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);

Returns a new AttributeDef object contained in the ValueDef on which it is
invoked.

Parameters

limit_type If set to dk_all, all of the contained objects in the
ValueDef are returned. If set to the DefinitionKind
for a specific interface type, it returns only interfaces
of that type. For example, if set to, dk_Operation,
then it returns contained operations only.

exclude_inherited Applies only to interfaces. If true, only attributes,
operations and members defined within this value
type are returned. If false, all attributes, operations
and members are returned.

id The repository ID to use for the new AttributeDef. An
AttributeDef inherits the id attribute from Contained.

name The name to use for the new AttributeDef. An AttributeDef
inherits the name attribute from Contained.

version The version to use for the new AttributeDef. An
AttributeDef inherits the version attribute from Contained.

type The IDL data type for the new AttributeDef. Both the
type_def and type attributes are set for AttributeDef.

mode The read or read/write mode to use for the new AttributeDef.
 348

The defined_in attribute (which the AttributeDef inherits from Contained)
is initialized to identify the containing ValueDef.

Exceptions

See Also CORBA::AttributeDef
CORBA::Contained

ValueDef::create_operation()

// IDL
OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);

Returns a new OperationDef object contained in the ValueDef on which it is
invoked.

Parameters

BAD_PARAM,
minor code 5

The name attribute of any object contained by minor code 2 is
raised if an object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

An object with the same name already exists in this ValueDef.

id The repository ID to use for the new OperationDef. An
OperationDef inherits the id attribute from Contained.

name The name to use for the new OperationDef. An OperationDef
inherits the name attribute from Contained.

version The version to use for the new OperationDef. An
OperationDef inherits the version attribute from Contained.
349

The defined_in attribute (which the OperationDef inherits from Contained)
is initialized to identify the containing ValueDef.

Exceptions

See Also CORBA::OperationDef
CORBA::Contained

ValueDef::create_value_member()

// IDL
ValueMemberDef create_value_member(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in Visibility access
);

Returns a new ValueMemberDef contained in the ValueDef on which it is
invoked.

result The IDL data type of the return value for the new
OperationDef. Both the result_def and result attributes
are set for the OperationDef.

mode The mode to use for the new OperationDef. Specifies whether
the operation is normal (OP_NORMAL) or oneway (OP_ONEWAY).

params The parameters for this OperationDef.

exceptions The list of exceptions to use for the OperationDef. These are
exceptions the operation can raise.

contexts The list of context identifiers to use for the OperationDef. These
represent the context clause of the operation.

BAD_PARAM,
minor code 5

The name attribute of any object contained by minor code 2 is
raised if an object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

An object with the same name already exists in this ValueDef.
 350

Parameters

The defined_in attribute (which the ValueMemberDef inherits from
Contained) is initialized to identify the containing ValueDef.

Exceptions

See Also CORBA::ValueMemberDef
CORBA::Contained

ValueDef::describe()

// IDL
ValueDescription describe();

Inherited from Contained, describe() for a ValueDef returns a
ValueDescription object. Use describe_value() for a full description of the
value.

See Also CORBA::ValueDescription
CORBA::Contained::describe()
CORBA::ValueDef::describe_value()

id The repository ID to use for the new ValueMemberDef. An
ValueMemberDef inherits the id attribute from Contained.

name The name to use for the new ValueMemberDef. An
ValueMemberDef inherits the name attribute from Contained.

version The version to use for the new ValueMemberDef. An
ValueMemberDef inherits the version attribute from
Contained.

type The IDL data type for the new ValueMemberDef. Both the
type_def and type attributes are set for ValueMemberDef.

access The visibility to use for the new ValueMemberDef. IDL value
types can have state members that are either public or
private.

BAD_PARAM,
minor code 5

The name attribute of any object contained by minor code 2 is
raised if an object with the specified id already exists in the
repository.

A BAD_PARAM,
minor code 3

An object with the same name already exists in this ValueDef.
351

ValueDef::describe_value()

// IDL
FullValueDescription describe_value();

Returns a FullValueDescription object describing the value, including its
operations and attributes.

See Also CORBA::FullValueDescription
CORBA::ValueDef::describe()

ValueDef::FullValueDescription Structure

// IDL
struct FullValueDescription {
 Identifier name;
 RepositoryId id;
 boolean is_abstract;
 boolean is_custom;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 ValueMemberSeq members;
 InitializerSeq initializers;
 RepositoryIdSeq supported_interfaces;
 RepositoryIdSeq abstract_base_values;
 boolean is_truncatable;
 RepositoryId base_value;
 TypeCode type;
};

A full description of a value type in the interface repository.

name The name of the value type.

id The repository ID of the value type.

is_abstract Has a value of 1 (true) if the value is an abstract
value type. A value of 0 is false.

is_custom Has a value of 1 (true) if the value uses custom
marshalling. A value of 0 is false.
 352

See Also CORBA::ValueDef::describe_value()

ValueDef::initializers Attribute

// IDL
attribute InitializerSeq initializers;

Lists the initializers this value type supports.

ValueDef::is_a()

// IDL
boolean is_a(
 in RepositoryId id
);

Returns 1 (true) if this value type is either identical to or inherits, directly or
indirectly, from the interface or value identified by the id parameter. Otherwise
it returns 0 (false).

defined_in The repository ID that identifies where this value
type is defined.

version The version of the value type.

operations A list of operations that the value type supports.

attributes A list of attributes that the value type supports.

members A list of value type members.

initializers A list of initializer values for the value type.

supported_interfaces A list of interfaces this value type supports.

abstract_base_values A list of repository IDs that identify abstract base
values.

is_truncatable Has a value of 1 (true) if the value type is
truncatable. A value of 0 is false.

base_value A repository ID that identifies a base value.

type The IDL type of the value type.
353

Parameters

ValueDef::is_abstract Attribute

// IDL
attribute boolean is_abstract;

Returns 1 (true) if this value type is an abstract value type. Otherwise it returns
0 (false).

ValueDef::is_custom Attribute

// IDL
attribute boolean is_custom;

Returns 1 (true) if this value type uses custom marshalling. Otherwise it returns
0 (false).

ValueDef::is_truncatable Attribute

// IDL
attribute boolean is_truncatable;

Returns 1 (true) if this value type inherits safely (supports truncation) from
another value. Otherwise it returns 0 (false).

ValueDef::supported_interfaces Attribute

// IDL
attribute InterfaceDef supported_interfaces;

Lists the interfaces that this value type supports.

id The repository ID of the value type or interface to compare
with this value type.
 354

Exceptions

BAD_PARAM,
minor code 5

The name attribute of any object contained by the minor code
5 is raised if the name attribute of any object contained by this
ValueDef conflicts with the name attribute of any object con-
tained by any of the specified bases.
355

 356

CORBA::ValueFactory
This describes the mapping of the IDL native type CORBA::ValueFactory. For
native IDL types, each language mapping specifies how repository IDs are
used to find the appropriate factory for an instance of a value type so that it
may be created as it is unmarshaled off the wire.

// IDL in module CORBA
native ValueFactory;

Recall that value types allow objects to be passed by value which implies
that the ORB must be able to create instances of your value type classes dur-
ing unmarshaling. However, because the ORB cannot know about all poten-
tial value type classes, you must implement factory classes for those types
and register them with the ORB so the ORB can create value instances when
necessary.

The C++ mapping for the IDL CORBA::ValueFactory native type includes
the following:

� The ValueFactory type which is a pointer to a ValueFactoryBase class.

� The ValueFactoryBase class which is is the base class for all value type
factory classes.

Just as your applications must provide concrete value type classes (see
CORBA::ValueBase), your applications must also provide factory classes for
those concrete classes.

If the ORB is unable to locate and use the appropriate factory, then a
MARSHAL exception with a minor code is raised.

CORBA::ValueFactory Type
// C++ in namespace CORBA
typedef ValueFactoryBase* ValueFactory;

The ValueFactory is a pointer to a ValueFactoryBase class. Applications
derive concrete factory classes from ValueFactoryBase, and register instances
of those factory classes with the ORB via ORB::register_value_factory().
357

Orbix 2000 Programmer�s Reference Java Edition
See Also CORBA::ValueFactoryBase
CORBA::ORB::lookup_value_factory()
CORBA::ORB::register_value_factory()
CORBA::ORB::unregister_value_factory()

CORBA::ValueFactoryBase Class
When unmarshaling value instances, the ORB needs to be able to call up to
the application to ask it to create those instances. Value instances are nor-
mally created via their type-specific value factories so as to preserve any
invariants they might have for their state. However, creation for unmarshaling
is different because the ORB has no knowledge of application-specific facto-
ries, and in fact in most cases may not even have the necessary arguments to
provide to the type-specific factories.

To allow the ORB to create value instances required during unmarshaling,
the ValueFactoryBase class provides the private create_for_unmarshal()
pure virtual function. The function is private so that only the ORB, can invoke
it. Your applications do not invoke create_for_unmarshal(), however, your
derived classes must override create_for_unmarshal() and implement it
such that it creates a new value instance and returns a pointer to the
instance. The caller (in this case the ORB) assumes ownership of the
returned instance. Once the ORB has created a value instance via the
create_for_unmarshal() function, it uses the value data member modifier
functions to set the state of the new value instance from the unmarshaled
data.

// C++ in namespace CORBA
 class ValueFactoryBase {
 public:
 virtual ~ValueFactoryBase();
 virtual void _add_ref();
 virtual void _remove_ref();
 static ValueFactory _downcast(ValueFactory vf);
 protected:
 ValueFactoryBase();
 private:
 virtual ValueBase* create_for_unmarshal() = 0;
 ...
 };
 358

See Also CORBA::ValueBase

ValueFactoryBase::_add_ref()

virtual void _add_ref();

Increases this object factory�s reference count by one. The ValueFactoryBase
uses reference counting to prevent itself from being destroyed while still in use
by the application. A ValueFactoryBase object initially has a reference count
of one.

See Also CORBA::ValueFactoryBase::_remove_ref()

ValueFactoryBase::_downcast()

static ValueFactory _downcast(
 ValueFactory vf
);

Returns a pointer to the type-specific factory object.

Parameters

You can use _downcast() on the return type of the function ORB::
lookup_value_factory() to obtain a pointer to a type-specific factory object.
Memory management of the return value from _downcast() is not the
responsibility of the caller, and thus you should not call _remove_ref() on it.

See Also CORBA::ORB::lookup_value_factory()
CORBA::ValueFactoryBase::_remove_ref()

ValueFactoryBase::_remove_ref()

virtual void _remove_ref();

Decreases this object factory�s reference count by one, and if the resulting
reference count equals zero, the object factory is destroyed.

See Also CORBA::ValueFactoryBase::_add_ref()

vf The original value factory object.
359

Orbix 2000 Programmer�s Reference Java Edition
ValueFactoryBase::~ValueFactoryBase() Destructor

virtual ~ValueFactoryBase();

The default destructor.

See Also CORBA::ValueFactoryBase::ValueFactoryBase()

ValueFactoryBase::ValueFactoryBase() Constructor

protected:
 ValueFactoryBase();

The default constructor.

See Also CORBA::ValueFactoryBase::~ValueFactoryBase()
 360

CORBA::ValueMemberDef Interface
The ValueMemberDef interface provides the definition of a value type member
in the interface repository.

// IDL in module CORBA.
interface ValueMemberDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute Visibility access;
};

ValueMemberDef::access Attribute

// IDL
attribute Visibility access;

Contains an indicator of the visibility of an IDL value type state member. IDL
value types can have state members that are either public or private.

ValueMemberDef::type Attribute

// IDL
readonly attribute TypeCode type;

Describes the type of this ValueMemberDef.

See Also CORBA::ValueMemberDef::type_def

ValueMemberDef::type_def Attribute

// IDL
attribute IDLType type_def;

Identifies the object that defines the IDL type of this ValueMemberDef. The
same information is contained in the type attribute.
361

You can change the type of a ValueMemberDef by changing its type_def
attribute. This also changes its type attribute.

See Also CORBA::ValueMemberDef::type
 362

CORBA::WstringDef Interface
Interface WstringDef represents a bounded IDL wide string type in the
interface repository. A WstringDef object is anonymous, which means it is
unnamed. Use Repository::create_wstring() to obtain a new
WstringDef object.

Unbounded strings are primitive types represented with the PrimitiveDef
interface. Use Repository::get_primitive() to obtain unbounded wide
strings.

// IDL in module CORBA.
interface WstringDef : IDLType {
 attribute unsigned long bound;
};

The inherited type attribute is also described.

See Also CORBA::IDLType
CORBA::Repository::create_wstring()
CORBA::PrimitiveDef
CORBA::StringDef

WstringDef::bound Attribute

// IDL
attribute unsigned long bound;

Specifies the maximum number of characters in the wide string. This cannot
be zero.

WstringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute is a
tk_wstring TypeCode that describes the wide string.
363

See Also CORBA::IDLType::type
 364

CORBA::WString_var Class
The class WString_var implements the _var type for IDL wide strings
required by the standard C++ mapping. The WString_var class contains a
char* value and ensures that this is properly freed when a WString_var
object is deallocated, for example when exectution goes out of scope.

class WString_var {
public:
 WString_var();
 WString_var(char *p);
 WString_var(const char *p);
 WString_var(const WString_var &s);
 ~WString_var();
 WString_var & operator=(char *p);
 WString_var & operator=(const char *p);
 WString_var & operator=(const WString_var &s);
 operator char*();
 operator const char*() const;
 const char* in() const;
 char*& inout();
 char*& out();
 char* _retn();
 char & operator[](ULong index);
 char operator[](ULong index) const;
};

WString_var::char*()

operator char*();

operator const char*() const;

Converts a WString_var object to a char*.

See Also CORBA::WString_var::operator=()
365

Orbix 2000 Programmer�s Reference Guide C++ Edition
WString_var::in()

const char* in() const;

Returns the proper string for use as an input parameter.

See Also CORBA::WString_var::out()
CORBA::WString_var::inout()
CORBA::WString_var::_retn()

WString_var::inout()

char*& inout();

Returns the proper string for use as an inout parameter.

See Also CORBA::WString_var::in()
CORBA::WString_var::out()
CORBA::WString_var::_retn()

WString_var::operator=() Assignment Operators

WString_var &operator=(
 char *p
);

WString_var &operator=(
 const char *p
);

WString_var &operator=(
 const WString_var &s
);

Assignment operators allow you to assign values to a WString_var from a char*
or from another WString_var type.

Parameters

See Also CORBA::WString_var::char*()

p A character string to assign to the WString_var.

s A WString_var to assign to the WString_var.
 366

WString_var::operator[]() Subscript Operators

char &operator[](
 ULong index
);

char operator[](
 ULong index
) const;

Return the character at the given location of the string. Subscript operators
allow access to the individual characters in the string.

Parameters

WString_var::out()

char*& out();

Returns the proper string for use as an output parameter.

See Also CORBA::WString_var::in()
CORBA::WString_var::inout()
CORBA::WString_var::_retn()

WString_var::WString_var() Constructors

WString_var();

The default constructor.

WString_var(
 char *p
);

WString_var(
 const char *p
);

Constructors that convert from a char* to a WString_var.

WString_var(
 const WString_var &s
);

index The index location in the string.
367

Orbix 2000 Programmer�s Reference Guide C++ Edition
The copy constructor.

Parameters

See Also CORBA::WString_var::~WString_var()

WString_var::~WString_var() Destructor

~WString_var();

The destructor.

See Also CORBA::WString_var::WString_var()

WString_var::_retn()

char* _retn();

Returns the proper string for use as a method�s return value.

See Also CORBA::WString_var::inout()
CORBA::WString_var::in()
CORBA::WString_var::out()

p The character string to convert to a WString_var. The
WString_var assumes ownership of the parameter.

s The original WString_var that is copied.
 368

 IT_CORBA Module

IT_CORBA Overview
This module contains Orbix enhancements to the CORBA module. The key
additional feature is the policy WellKnownAddressingPolicy. The classes
include:

� RefCountedLocalObject
� RefCountedLocalObjectNC
� WellKnownAddressingPolicy

The IDL code is as follows:

IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID
Constant

// IDL in module IT_CORBA
const CORBA::PolicyType WELL_KNOWN_ADDRESSING_POLICY_ID =
 IT_PolicyBase::IONA_POLICY_ID + 2;

// C++ in namespace IT_CORBA
IT_ART_API IT_NAMESPACE_STATIC
 const CORBA::ULong WELL_KNOWN_ADDRESSING_POLICY_ID;

Defines a policy ID for well-known addressing.

Enhancement This is an Orbix enhancement to CORBA.

See Also CORBA::PolicyType
371

 372

IT_CORBA::RefCountedLocalObject
Class

RefCountedLocalObject is an implementation of a CORBA local object that
automatically handles reference counting in a thread safe manner.

// in namespace IT_CORBA
...
class IT_ART_API RefCountedLocalObject :
public CORBA::LocalObject {
 public:

 RefCountedLocalObject();

 void _add_ref();

 void _remove_ref();

 protected:
 virtual void _destroy_this();

 private:
 ...
};

See Also IT_CORBA::RefCountedLocalObjectNC

RefCountedLocalObject::_add_ref()

void _add_ref();

Increments the reference count.

Enhancement This is an Orbix enhancement to CORBA.
373

RefCountedLocalObject::_destroy_this()

virtual void _destroy_this();

Destroys the local object.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObject::RefCountedLocalObject() Constructor

RefCountedLocalObject();

The constructor.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObject::_remove_ref()

void _remove_ref()

Decrements the reference count.

Enhancement This is an Orbix enhancement to CORBA.
 374

IT_CORBA::
RefCountedLocalObjectNC Class

RefCountedLocalObjectNC is an implementation of a CORBA local object that
automatically handles reference counting but not in a thread-safe manner as
the RefCountedLocalObject class does. A RefCountedLocalObjectNC object
does not protect its reference count with a mutex, making it suitable for
lightweight objects such as CORBA::Request.

// in namespace IT_CORBA
...
class IT_ART_API RefCountedLocalObjectNC :
public CORBA::LocalObject {
 public:
 RefCountedLocalObjectNC();

 void _add_ref();

 void _remove_ref();

 protected:
 virtual void _destroy_this();

 private:
 ...
}

See Also IT_CORBA::RefCountedLocalObject

RefCountedLocalObjectNC::_add_ref()

void _add_ref();

Increments the reference count.

Enhancement This is an Orbix enhancement to CORBA.
375

RefCountedLocalObjectNC::_destroy_this()

virtual void _destroy_this();

Destroys the local object.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC::RefCountedLocalObjectNC()
Constructor

RefCountedLocalObjectNC();

The constructor.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC::_remove_ref()

void _remove_ref();

Decrements the reference count.

Enhancement This is an Orbix enhancement to CORBA.
 376

IT_CORBA::
WellKnownAddressingPolicy Class

This is an interface for a local policy object derived from CORBA::Policy. You
create instances of WellKnownAddressingPolicy by calling CORBA::ORB::
create_policy().

// in namespace IT_CORBA
...
class IT_ART_API WellKnownAddressingPolicy :
public virtual ::CORBA::Policy {
 public:

 typedef IT_CORBA::WellKnownAddressingPolicy_ptr _ptr_type;
 typedef IT_CORBA::WellKnownAddressingPolicy_var _var_type;

 virtual ~WellKnownAddressingPolicy();

 static WellKnownAddressingPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);

 static WellKnownAddressingPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

 inline static WellKnownAddressingPolicy_ptr _duplicate(
 WellKnownAddressingPolicy_ptr p
);

 inline static WellKnownAddressingPolicy_ptr _nil();

 virtual char* config_scope() = 0;

 static const IT_FWString _it_fw_type_id;
};

See page 5 for descriptions of the standard helper functions:
377

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

WellKnownAddressingPolicy::config_scope()

// C++
virtual char* config_scope() = 0;

Returns the configuration scope.

Enhancement This is an Orbix enhancement to CORBA.

WellKnownAddressingPolicy::~WellKnownAddressingPolicy()
Destructor

virtual ~WellKnownAddressingPolicy();

The destructor for this policy object.

Enhancement This is an Orbix enhancement to CORBA.
 378

 DynamicAny Module

DynamicAny Overview
The DynamicAny namespace implements the IDL DynamicAny module which
includes the following classes:

DynAny
DynAnyFactory
DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

The common data types in the scope of the DynamicAny module include the
following:

AnySeq
DynAnySeq
FieldName
NameDynAnyPair
NameDynAnyPairSeq
NameValuePair
NameValuePairSeq

For most IDL data types there is a straight-forward language mapping that an
object implementation uses to interpret data. However, an any data type can
be passed to a program that may not have any static information about how
to interpret the type of data in the any value. The DynamicAny module
provides a runtime mechanism for constructing any values, traversing them,
and extracting the data from any values. This mechanism is especially
helpful for writing generic clients and servers such as bridges, browsers,
debuggers, and user interface tools.

Applications dynamically construct and interpret any values using DynAny
objects. For complex any types a DynAny object is an ordered collection of
other component DynAny objects.

A DynAny object can be created as follows:
381

� Invoking a method on a DynAnyFactory object.
� Invoking a method on an existing DynAny object.

A constructed DynAny object supports methods that enable the creation
of new DynAny objects that encapsulate access to the value of some
constituent of the DynAny object. DynAny objects also support a copy
method for creating new DynAny objects.

There is a different interface associated with each kind of constructed IDL
type that inherits from the DynAny interface. The interfaces that inherit the
DynAny interface include:

DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

Exceptions are represented by the DynStruct interface and value types are
represented by the DynValue interface.

DynamicAny::AnySeq Sequence

class AnySeq: private ITCxxUSeq< CORBA::Any > {
public:
 typedef AnySeq_var _var_type;

 AnySeq(
 CORBA::ULong max,
 CORBA::ULong length,
 CORBA::Any* buf,
 CORBA::Boolean release = 0
) : ITCxxUSeq< CORBA::Any >(max, length, buf, release) {}
 AnySeq() : ITCxxUSeq< CORBA::Any >() {}

 AnySeq(
 CORBA::ULong max
) : ITCxxUSeq< CORBA::Any >(max) {}

 AnySeq(
 382

 const AnySeq& seq
) : ITCxxUSeq< CORBA::Any >(seq) {}

 AnySeq& operator=(
 const AnySeq& seq
)
 {
 ITCxxUSeq< CORBA::Any >::operator=(seq);
 return *this;
 }

 ITCxxUSeq< CORBA::Any >::maximum;
 ITCxxUSeq< CORBA::Any >::length;
 ITCxxUSeq< CORBA::Any >::operator[];
 ITCxxUSeq< CORBA::Any >::replace;
 ITCxxUSeq< CORBA::Any >::get_buffer;
 ITCxxUSeq< CORBA::Any >::allocbuf;
 ITCxxUSeq< CORBA::Any >::freebuf;

 ITCxxUSeq< CORBA::Any >::operator new;
 ITCxxUSeq< CORBA::Any >::operator delete;
};

A sequence of CORBA::Any values.

See Also DynamicAny::DynSequence
DynamicAny::DynArray

�About Sequences�

DynamicAny::DynAnySeq Sequence

class DynAnySeq:
 private ITCxxUIntfSeq< DynAny_ptr,
 DynAny, ITCxxIntfAlloc< DynAny_ptr, DynAny > > {
public:
 typedef DynAnySeq_var _var_type;

 DynAnySeq(
 CORBA::ULong max,
 CORBA::ULong length,
 DynAny_ptr* buf,
 CORBA::Boolean release = 0
383

) : ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc<
DynAny_ptr, DynAny > >(max, length, buf, release) {}

 DynAnySeq() : ITCxxUIntfSeq< DynAny_ptr, DynAny,
ITCxxIntfAlloc< DynAny_ptr, DynAny > >() {}

 DynAnySeq(
 CORBA::ULong max
) : ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc<

DynAny_ptr, DynAny > >(max) {}

 DynAnySeq(
 const DynAnySeq& seq
) : ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc<

DynAny_ptr, DynAny > >(seq) {}

 DynAnySeq& operator=(
 const DynAnySeq& seq
)
 {
 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc<

DynAny_ptr, DynAny > >::operator=(seq);
 return *this;
 }

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::maximum;

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::length;

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::operator[];

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::replace;

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::get_buffer;

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::allocbuf;

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::freebuf;

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::operator new;
 384

 ITCxxUIntfSeq< DynAny_ptr, DynAny, ITCxxIntfAlloc< DynAny_ptr,
DynAny > >::operator delete;

};

A sequence of DynAny values.

See Also DynamicAny::DynSequence
DynamicAny::DynArray

�About Sequences�

DynamicAny::FieldName Type

// IDL
typedef string FieldName;

// C++
typedef char* FieldName;

A string representing the name of a member in a structure, union, or value type.

See Also DynamicAny::DynStruct
DynamicAny::DynUnion
DynamicAny::DynValue

DynamicAny::NameDynAnyPair Structure

// IDL
struct NameDynAnyPair {
 FieldName id;
 DynAny value;
};

struct NameDynAnyPair {
 typedef NameDynAnyPair_var _var_type;
 ITGenFieldName_mgr id;
 ITGenDynAny_mgr value;
};

A structure containing the name and value of a field or member.

See Also DynamicAny::NameDynAnyPairSeq
385

DynamicAny::NameDynAnyPairSeq Sequence

class NameDynAnyPairSeq: private ITCxxUSeq< NameDynAnyPair > {
public:
 typedef NameDynAnyPairSeq_var _var_type;

 NameDynAnyPairSeq(
 CORBA::ULong max,
 CORBA::ULong length,
 NameDynAnyPair* buf,
 CORBA::Boolean release = 0
) : ITCxxUSeq< NameDynAnyPair >(max, length, buf, release) {}
 NameDynAnyPairSeq() : ITCxxUSeq< NameDynAnyPair >() {}

 NameDynAnyPairSeq(
 CORBA::ULong max
) : ITCxxUSeq< NameDynAnyPair >(max) {}

 NameDynAnyPairSeq(
 const NameDynAnyPairSeq& seq
) : ITCxxUSeq< NameDynAnyPair >(seq) {}

 NameDynAnyPairSeq& operator=(
 const NameDynAnyPairSeq& seq
)
 {
 ITCxxUSeq< NameDynAnyPair >::operator=(seq);
 return *this;
 }

 ITCxxUSeq< NameDynAnyPair >::maximum;
 ITCxxUSeq< NameDynAnyPair >::length;
 ITCxxUSeq< NameDynAnyPair >::operator[];
 ITCxxUSeq< NameDynAnyPair >::replace;
 ITCxxUSeq< NameDynAnyPair >::get_buffer;
 ITCxxUSeq< NameDynAnyPair >::allocbuf;
 ITCxxUSeq< NameDynAnyPair >::freebuf;

 ITCxxUSeq< NameDynAnyPair >::operator new;
 ITCxxUSeq< NameDynAnyPair >::operator delete;
};

A sequence of NameDynAnyPair structures.
 386

See Also DynamicAny::DynStruct
DynamicAny::DynValue

�About Sequences�

DynamicAny::NameValuePair Structure

struct NameValuePair {
 typedef NameValuePair_var _var_type;
 ITGenFieldName_mgr id;
 CORBA::Any value;
};

A structure containing the name and value of a field or member.

See Also DynamicAny::NameValuePairSeq

DynamicAny::NameValuePairSeq Sequence

class NameValuePairSeq: private ITCxxUSeq< NameValuePair > {
public:
 typedef NameValuePairSeq_var _var_type;

 NameValuePairSeq(
 CORBA::ULong max,
 CORBA::ULong length,
 NameValuePair* buf,
 CORBA::Boolean release = 0
) : ITCxxUSeq< NameValuePair >(max, length, buf, release) {}
 NameValuePairSeq() : ITCxxUSeq< NameValuePair >() {}

 NameValuePairSeq(
 CORBA::ULong max
) : ITCxxUSeq< NameValuePair >(max) {}

 NameValuePairSeq(
 const NameValuePairSeq& seq
) : ITCxxUSeq< NameValuePair >(seq) {}

 NameValuePairSeq& operator=(
 const NameValuePairSeq& seq
)
387

 {
 ITCxxUSeq< NameValuePair >::operator=(seq);
 return *this;
 }

 ITCxxUSeq< NameValuePair >::maximum;
 ITCxxUSeq< NameValuePair >::length;
 ITCxxUSeq< NameValuePair >::operator[];
 ITCxxUSeq< NameValuePair >::replace;
 ITCxxUSeq< NameValuePair >::get_buffer;
 ITCxxUSeq< NameValuePair >::allocbuf;
 ITCxxUSeq< NameValuePair >::freebuf;

 ITCxxUSeq< NameValuePair >::operator new;
 ITCxxUSeq< NameValuePair >::operator delete;
};

A sequence of NameValuePair structures.

See Also DynamicAny::DynStruct
DynamicAny::DynValue

�About Sequences�
 388

DynamicAny::DynAny Class
Your application can dynamically construct and interpreted Any values using
DynAny objects. A DynAny object is associated with a data value which
corresponds to a copy of the value inserted into an any. Portable programs
should use the DynAny interface to access and modify the contents of an Any
in those cases where basic insertion and extraction operators are not
sufficient.

DynAny methods can be organized as follows:

The following exceptions are also defined in the DynAny class:

InvalidValue

Table 9: DynAny Methods

General Methods Insert Methods Get Methods

assign()
component_count()
copy()
current_component()
destroy()
~DynAny()
equal()
from_any()
next()
rewind()
seek()
to_any()
type()

insert_any()
insert_boolean()
insert_char()
insert_double()
insert_dyn_any()
insert_float()
insert_long()
insert_longdouble()
insert_longlong()
insert_octet()
insert_reference()
insert_short()
insert_string()
insert_typecode()
insert_ulong()
insert_ulonglong()
insert_ushort()
insert_val()
insert_wchar()
insert_wstring()

get_any()
get_boolean()
get_char()
get_double()
get_dyn_any()
get_float()
get_long()
get_longdouble()
get_longlong()
get_octet()
get_reference()
get_short()
get_string()
get_typecode()
get_ulong()
get_ulonglong()
get_ushort()
get_val()
get_wchar()
get_wstring()
389

TypeMismatch

The DynAny class is the base for the following classes:

DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

Because the values of Any types can be quite complex, it is helpful to think of
a DynAny object as an ordered collection of other component DynAny objects.
For simpler DynAny objects that represent a basic type, the ordered collection
of components is empty. For example, a long or a type without components
(such as an empty exception) has empty components.

The DynAny interface allows a client to iterate through the components of the
values pointed to by these objects. Each DynAny object maintains the notion
of a current position into its collection of component DynAny objects. The
current position is identified by an index value that runs from 0 to n-1, where
n is the number of components. Methods are available that allow you to
recursively examine DynAny contents. For example, you can determine the
current position using current_component(), and component_count()
returns the number of components in the DynAny object. You can also use
rewind(), seek(), and next() to change the current position. If a DynAny is
initialized with a value that has components, the index is initialized to 0. The
special index value of -1 indicates a current position that points nowhere. For
example, some values (such as an empty exception) cannot have a current
position. In these cases the index value is fixed at -1.

You can use the iteration operations, together with current_component(), to
dynamically compose an Any value. After creating a dynamic any, such as a
DynStruct, you can use current_component() and next() to initialize all the
components of the value. Once the dynamic value is completely initialized,
to_any() creates the corresponding Any value.

You use the insert_type() and get_type() methods to not only handle
basic DynAny objects but they are also helpful in handling constructed DynAny
objects. when you insert a basic data type value into a constructed DynAny
object, it initializes the current component of the constructed data value
associated with the DynAny object.
 390

For example, invoking insert_boolean() on a DynStruct object implies
inserting a boolean data value at the current position of the associated
structure data value. In addition, you can use the insert_type() and
get_type() methods to traverse Any values associated with sequences of
basic data types without the need to generate a DynAny object for each
element in the sequence.

The DynAny object has a destroy() method that you can use to destroy a
top-level DynAny object and any component DynAny objects obtained from it.

Exceptions TypeMismatch is raised if you call methods insert_type() or get_type() on
a DynAny whose current component itself has components.

MARSHAL is raised if you attempt to export DynAny objects to other processes
or externalize one with CORBA::ORB::object_to_string(). This is because
DynAny objects are intended to be local to the process in which they are
created and used.

NO_IMPLEMENT might be raised if you attempt the following:

� Invoke operations exported through the CORBA::Object interface even
though DynAny objects export operations defined in this standard
interface.

� Use a DynAny object with the DII.

The following code is the complete class:

// class is in namespace DynamicAny
class IT_DYNANY_API DynAny : public virtual CORBA::Object {
public:
 typedef DynamicAny::DynAny_ptr _ptr_type;
 typedef DynamicAny::DynAny_var _var_type;

 virtual ~DynAny();

 static DynAny_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynAny_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynAny_ptr _duplicate(
 DynAny_ptr p
);
391

 inline static DynAny_ptr _nil();

 class IT_DYNANY_API InvalidValue: public CORBA::UserException
 { ... };

 class IT_DYNANY_API TypeMismatch: public CORBA::UserException
 { ... };

 virtual ::CORBA::TypeCode_ptr type() = 0;
 virtual void assign(
 DynAny_ptr dyn_any
) = 0;
 virtual void from_any(
 const CORBA::Any& value
) = 0;
 virtual CORBA::Any* to_any() = 0;
 virtual CORBA::Boolean equal(
 DynAny_ptr dyn_any
) = 0;
 virtual void destroy() = 0;
 virtual DynAny_ptr copy() = 0;
 virtual void insert_boolean(
 CORBA::Boolean value
) = 0;
 virtual void insert_octet(
 CORBA::Octet value
) = 0;
 virtual void insert_char(
 CORBA::Char value
) = 0;
 virtual void insert_short(
 CORBA::Short value
) = 0;
 virtual void insert_ushort(
 CORBA::UShort value
) = 0;
 virtual void insert_long(
 CORBA::Long value
) = 0;
 virtual void insert_ulong(
 CORBA::ULong value
) = 0;
 virtual void insert_float(
 392

 CORBA::Float value
) = 0;
 virtual void insert_double(
 CORBA::Double value
) = 0;
 virtual void insert_string(
 const char* value
) = 0;
 virtual void insert_reference(
 CORBA::Object_ptr value
) = 0;
 virtual void insert_typecode(
 ::CORBA::TypeCode_ptr value
) = 0;
 virtual void insert_longlong(
 CORBA::LongLong value
) = 0;
 virtual void insert_ulonglong(
 CORBA::ULongLong value
) = 0;
 virtual void insert_longdouble(
 CORBA::LongDouble value
) = 0;
 virtual void insert_wchar(
 CORBA::WChar value
) = 0;
 virtual void insert_wstring(
 const CORBA::WChar* value
) = 0;
 virtual void insert_any(
 const CORBA::Any& value
) = 0;
 virtual void insert_dyn_any(
 DynAny_ptr value
) = 0;
 virtual void insert_val(
 CORBA::ValueBase* value
) = 0;
 virtual CORBA::Boolean get_boolean() = 0;
 virtual CORBA::Octet get_octet() = 0;
 virtual CORBA::Char get_char() = 0;
 virtual CORBA::Short get_short() = 0;
 virtual CORBA::UShort get_ushort() = 0;
393

 virtual CORBA::Long get_long() = 0;
 virtual CORBA::ULong get_ulong() = 0;
 virtual CORBA::Float get_float() = 0;
 virtual CORBA::Double get_double() = 0;
 virtual char* get_string() = 0;
 virtual CORBA::Object_ptr get_reference() = 0;
 virtual ::CORBA::TypeCode_ptr get_typecode() = 0;
 virtual CORBA::LongLong get_longlong() = 0;
 virtual CORBA::ULongLong get_ulonglong() = 0;
 virtual CORBA::LongDouble get_longdouble() = 0;
 virtual CORBA::WChar get_wchar() = 0;
 virtual CORBA::WChar* get_wstring() = 0;
 virtual CORBA::Any* get_any() = 0;
 virtual DynAny_ptr get_dyn_any() = 0;
 virtual CORBA::ValueBase* get_val() = 0;

 virtual CORBA::Boolean seek(
 CORBA::Long index
) = 0;
 virtual void rewind() = 0;
 virtual CORBA::Boolean next() = 0;
 virtual CORBA::ULong component_count() = 0;
 virtual DynAny_ptr current_component() = 0;

 static const IT_FWString _it_fw_type_id;
};

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynAny::assign()

// C++
virtual void assign(
 DynAny_ptr dyn_any
) = 0;
 394

Initializes the value associated with a DynAny object with the value associated
with another DynAny object.

Parameters

The current position of the target DynAny is set to zero for values that have
components and to -1 for values that do not have components.

Exceptions

DynAny::component_count()

// C++
virtual CORBA::ULong component_count() = 0;

Returns the number of components of a DynAny. For a DynAny without
components, it returns zero.

The operation only counts the components at the top level. For example, if
you invoke component_count() on a DynStruct with a single member, the
return value is 1, irrespective of the type of the member.

dyn_any The DynAny object to initialize to.

TypeMismatch The type of the passed DynAny is not equivalent to the type of
the target DynAny.

Table 10: Return Values for DynAny::component_count()

Type Return Value

DynSequence The current number of elements.

DynStruct
DynValue

The number of members.
395

Exceptions

See Also DynamicAny::DynAny::current_component()
DynamicAny::DynAny::seek()
DynamicAny::DynAny::rewind()
DynamicAny::DynAny::next()

DynAny::copy()

// C++
virtual DynAny_ptr copy() = 0;

Returns a new DynAny object whose value is a deep copy of the DynAny on
which it is invoked.

The operation is polymorphic, that is, invoking it on one of the types derived
from DynAny, such as DynStruct, creates the derived type but returns its
reference as the DynAny base type.

DynAny::current_component()

// C++
virtual DynAny_ptr current_component() = 0;

DynArray The number of elements.

DynUnion 2 if the discriminator indicates that a
named member is active.

1 Otherwise.

DynFixed
DynEnum

zero

TypeMismatch The method is called on a DynAny that cannot have compo-
nents, such as a DynEnum or an empty exception.

Table 10: Return Values for DynAny::component_count()

Type Return Value
 396

Returns the DynAny for the component at the current position. It does not
advance the current position, so repeated calls without an intervening call to
rewind(), next(), or seek() return the same component. If the current position
current position is -1, the method returns a nil reference.

The returned DynAny object reference can be used to get or set the value of
the current component. If the current component represents a complex type,
the returned reference can be narrowed based on the TypeCode to get the
interface corresponding to the complex type.

Exceptions

See Also DynamicAny::DynAny::component_count()
DynamicAny::DynAny::seek()
DynamicAny::DynAny::rewind()
DynamicAny::DynAny::next()

DynAny::destroy()

// C++
virtual void destroy() = 0;

Destroys a DynAny object. This operation frees any resources used to represent
the data value associated with a DynAny object.

Destroying a top-level DynAny object (one that was not obtained as a
component of another DynAny) also destroys any component DynAny objects
obtained from it. Destroying a non-top level (component) DynAny object does
nothing.

You can manipulate a component of a DynAny object beyond the life time of
its top-level DynAny by making a copy of the component with copy() before
destroying the top-level DynAny object.

Enhancement Orbix guarantees to always destroy all local objects it creates when the last
reference to them is released so you do not have to call destroy(). However,
code that relies on this feature is not strictly CORBA compliant and may leak
resources with other ORBs. (According to the CORBA specification, simply
calling CORBA::release() on all references to a DynAny object does not delete
the object or its components so each DynAny object created must be explicitly
destroyed to avoid memory leaks.)

TypeMismatch The method is called on a DynAny that cannot have compo-
nents, such as a DynEnum or an empty exception.
397

Exceptions

See Also DynamicAny::DynAny::copy()
CORBA::release()
IT_CORBA::RefCountedLocalObject

DynAny::~DynAny() Destructor

// C++
virtual ~DynAny();

The destructor for a DynAny object.

DynAny::equal()

// C++
virtual CORBA::Boolean equal(
 DynAny_ptr dyn_any
) = 0;

Compares two DynAny values for equality and returns true of the values are
equal, false otherwise. Two DynAny values are equal if their type codes are
equivalent and, recursively, all respective component DynAny values are equal.
The current position of the two DynAny values being compared has no effect
on the result of equal().

Parameters

DynAny::from_any()

// C++
virtual void from_any(
 const CORBA::Any& value
) = 0;

OBJECT_NOT_EXI
ST

A destroyed DynAny object or any of its components is refer-
enced.

dyn_any The DynAny value to compare.
 398

Initializes the value associated with a DynAny object with the value contained
in an Any type.

The current position of the target DynAny is set to zero for values that have
components and to -1 for values that do not have components.

Parameters

Exceptions

See Also DynamicAny::DynAny::to_any()

DynAny::get_any()

// C++
virtual CORBA::Any* get_any() = 0;

Returns an Any value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_any (an Any TypeCode), or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent to _tc_any. The
current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_any()

DynAny::get_boolean()

// C++
virtual CORBA::Boolean get_boolean() = 0;

value An Any value to initialize the DynAny object to.

TypeMismatch The type of the passed Any is not equivalent to the type of the
target DynAny.

InvalidValue The passed Any does not contain a legal value (such as a null
string).

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
399

Returns a Boolean value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_boolean (a boolean TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_boolean. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_boolean()

DynAny::get_char()

// C++
virtual CORBA::Char get_char() = 0;

Returns a Char value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_char (a char TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_char. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_char()

DynAny::get_double()

// C++
virtual CORBA::Double get_double() = 0;

Returns a Double value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 400

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_double (a double TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_double. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_double()

DynAny::get_dyn_any()

// C++
virtual DynAny_ptr get_dyn_any() = 0;

Returns a DynAny reference value from the DynAny object. get_dyn_any() is
provided to deal with Any values that contain another any.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to the TypeCode of a DynAny or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent the TypeCode of a
DynAny. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_dyn_any()

DynAny::get_float()

// C++
virtual CORBA::Float get_float() = 0;

Returns a Float value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
401

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_float (a float TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_float. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_float()

DynAny::get_long()

// C++
virtual CORBA::Long get_long() = 0;
Returns a Long value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_long (a long TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_long. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_long()

DynAny::get_longdouble()

// C++
virtual CORBA::LongDouble get_longdouble() = 0;

Returns a LongDouble value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 402

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_longdouble (a long double TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_longdouble. The current position is unchanged after the
call.

Exceptions

See Also DynamicAny::DynAny::insert_longdouble()

DynAny::get_longlong()

// C++
virtual CORBA::LongLong get_longlong() = 0;

Returns a LongLong value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_longlong (a long long TypeCode), or, if the TypeCode at
the current position (a DynAny objects with components) is equivalent to
_tc_longlong. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_longlong()

DynAny::get_octet()

// C++
virtual CORBA::Octet get_octet() = 0;

Returns an Octet value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
403

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_octet (an octet TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_octet. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_octet()

DynAny::get_reference()

// C++
virtual CORBA::Object_ptr get_reference() = 0;

Returns an Object reference from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_Object (an object reference TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_Object. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_reference()

DynAny::get_short()

// C++
virtual CORBA::Short get_short() = 0;

Returns a Short value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 404

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_short_tc_short (a short TypeCode), or, if the TypeCode
at the current position (a DynAny objects with components) is equivalent to
_tc_short. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_short()

DynAny::get_string()

// C++
virtual char* get_string() = 0;

Returns a string value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_string (a string TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_string. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_string()

DynAny::get_typecode()

// C++
virtual CORBA::TypeCode_ptr get_typecode() = 0;

Returns a TypeCode value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
405

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_TypeCode (a TypeCode), or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent to _tc_TypeCode.
The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_typecode()

DynAny::get_ulong()

// C++
virtual CORBA::ULong get_ulong() = 0;

Returns a ULong value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_ulong (an unsigned long TypeCode), or, if the TypeCode
at the current position (a DynAny objects with components) is equivalent to
_tc_ulong. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_ulong()

DynAny::get_ulonglong()

// C++
virtual CORBA::ULongLong get_ulonglong() = 0;

Returns a ULongLong value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 406

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_ulonglong (an unsigned long long TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_ulonglong. The current position is unchanged after the
call.

Exceptions

See Also DynamicAny::DynAny::insert_ulonglong()

DynAny::get_ushort()

// C++
virtual CORBA::UShort get_ushort() = 0;

Returns a UShortshort value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_ushort (an unsigned short TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_ushort. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_ushort()

DynAny::get_val()

// C++
virtual CORBA::ValueBase* get_val() = 0;

Returns a value type value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
407

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to a value type TypeCode, or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent to a value type
TypeCode. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_val()

DynAny::get_wchar()

// C++
virtual CORBA::WChar get_wchar() = 0;

Returns a WChar value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_wchar (a wchar TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_wchar. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_wchar()

DynAny::get_wstring()

// C++
virtual CORBA::WChar* get_wstring() = 0;

Returns a wide string value from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 408

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_wstring (a wide string TypeCode), or, if the TypeCode at
the current position (a DynAny objects with components) is equivalent to
_tc_wstring. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_wstring()

DynAny::insert_any()

// C++
virtual void insert_any(
 const CORBA::Any& value
) = 0;

Inserts an Any value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_any (an Any TypeCode), or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent to _tc_any. The
current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_any()

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.
409

DynAny::insert_boolean()

// C++
virtual void insert_boolean(
 CORBA::Boolean value
) = 0;

Inserts a Boolean value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_boolean (a boolean TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_boolean. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_boolean()

DynAny::insert_char()

// C++
virtual void insert_char(
 CORBA::Char value
) = 0;

Inserts a Char value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_char (a char TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_char. The current position is unchanged after the call.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.

value The value to insert into the DynAny object.
 410

Exceptions

See Also DynamicAny::DynAny::get_char()

DynAny::insert_double()

// C++
virtual void insert_double(
 CORBA::Double value
) = 0;

Inserts a Double value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_double (a double TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_double. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_double()

DynAny::insert_dyn_any()

// C++
virtual void insert_dyn_any(
 DynAny_ptr value
) = 0;

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.
411

Inserts a DynAny value into the DynAny object. insert_dyn_any() is provided
to deal with Any values that contain another any.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to the TypeCode of a DynAny or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent the TypeCode of a
DynAny. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_dyn_any()

DynAny::insert_float()

// C++
virtual void insert_float(
 CORBA::Float value
) = 0;

Inserts a Float value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_float (a float TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_float. The current position is unchanged after the call.

Exceptions

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.
 412

See Also DynamicAny::DynAny::get_float()

DynAny::insert_long()

// C++
virtual void insert_long(
 CORBA::Long value
) = 0;

Inserts a Long value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_long (a long TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_long. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_long()

DynAny::insert_longdouble()

// C++
virtual void insert_longdouble(
 CORBA::LongDouble value
) = 0;

Inserts a LongDouble value into the DynAny object.

Parameters

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.
413

It is valid for you to use this function if the TypeCode contained in the DynAny
is equivalent to _tc_longdouble (a long double TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_longdouble. The current position is unchanged after the
call.

Exceptions

See Also DynamicAny::DynAny::get_longdouble()

DynAny::insert_long long()

// C++
virtual void insert_longlong(
 CORBA::LongLong value
) = 0;

Inserts a LongLong value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_longlong (a long long TypeCode), or, if the TypeCode at
the current position (a DynAny objects with components) is equivalent to
_tc_longlong. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_longlong()

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is -1.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.
 414

DynAny::insert_octet()

// C++
virtual void insert_octet(
 CORBA::Octet value
) = 0;

Inserts an Octet value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_octet (an octet TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_octet. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_octet()

DynAny::insert_reference()

// C++
virtual void insert_reference(
 CORBA::Object_ptr value
) = 0;

Inserts an Object reference into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_Object (an object reference TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_Object. The current position is unchanged after the call.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.
415

Exceptions

See Also DynamicAny::DynAny::get_reference()

DynAny::insert_short()

// C++
virtual void insert_short(
 CORBA::Short value
) = 0;

Inserts a Short value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_short (a short TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_short. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_short()

DynAny::insert_string()

// C++
virtual void insert_string(
 const char* value
) = 0;

Inserts a string into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 416

Parameters

You can insert both bounded and unbounded strings using insert_string().

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_string (a string TypeCode), or, if the TypeCode at the
current position (a DynAny objects with components) is equivalent to
_tc_string. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_string()

DynAny::insert_typecode()

// C++
virtual void insert_typecode(
 ::CORBA::TypeCode_ptr value
) = 0;

Inserts a TypeCode value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_TypeCode (a TypeCode), or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent to _tc_TypeCode.
The current position is unchanged after the call.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.

InvalidValue � The DynAny has components and the current position is
-1.

� The string inserted is longer than the bound of a bounded
string.

value The value to insert into the DynAny object.
417

Exceptions

See Also DynamicAny::DynAny::get_typecode()

DynAny::insert_ulong()

// C++
virtual void insert_ulong(
 CORBA::ULong value
) = 0;

Inserts a ULong value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_ulong (an unsigned long TypeCode), or, if the TypeCode
at the current position (a DynAny objects with components) is equivalent to
_tc_ulong. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_ulong()

DynAny::insert_ulonglong()

// C++
virtual void insert_ulonglong(
 CORBA::ULongLong value
) = 0;

Inserts a ULongLong value into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
 418

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_ulonglong (an unsigned long long TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_ulonglong. The current position is unchanged after the
call.

Exceptions

See Also DynamicAny::DynAny::get_ulonglong()

DynAny::insert_ushort()

// C++
virtual void insert_ushort(
 CORBA::UShort value
) = 0;

Inserts a UShort value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_ushort (an unsigned short TypeCode), or, if the
TypeCode at the current position (a DynAny objects with components) is
equivalent to _tc_ushort. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_ushort()

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.
419

DynAny::insert_val()

// C++
virtual void insert_val(
 CORBA::ValueBase* value
) = 0;

Inserts a value type value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to a value type TypeCode, or, if the TypeCode at the current
position (a DynAny objects with components) is equivalent to a value type
TypeCode. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_val()

DynAny::insert_wchar()

// C++
virtual void insert_wchar(
 CORBA::WChar value
) = 0;

Inserts a WChar value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_wchar (a wide character TypeCode), or, if the TypeCode
at the current position (a DynAny objects with components) is equivalent to
_tc_wchar. The current position is unchanged after the call.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.
 420

Exceptions

See Also DynamicAny::DynAny::get_wchar()

DynAny::insert_wstring()

// C++
virtual void insert_wstring(
 const CORBA::WChar* value
) = 0;

Inserts a wide string into the DynAny object.

Parameters

You can insert both bounded and unbounded strings using
insert_wstring().

It is valid for you to use this method if the TypeCode contained in the DynAny
is equivalent to _tc_wstring (a wide string TypeCode), or, if the TypeCode
at the current position (a DynAny objects with components) is equivalent to
_tc_wstring. The current position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_wstring()

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the requested type.

InvalidValue The DynAny has components and the current position is -1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that is not
equivalent to the inserted type.

InvalidValue � The DynAny has components and the current position is
-1.

� The string inserted is longer than the bound of a bounded
string.
421

DynAny::InvalidValue User Exception

class IT_DYNANY_API InvalidValue: public CORBA::UserException {
public:
 InvalidValue();
 void operator=(
 const InvalidValue&
);
 static InvalidValue* _downcast(
 CORBA::Exception* exc
);
 static const InvalidValue* _downcast(
 const CORBA::Exception* exc
);
 static InvalidValue* _narrow(
 CORBA::Exception* exc
);
 static const InvalidValue* _narrow(
 const CORBA::Exception* exc
);
 virtual void _raise() const;
 virtual CORBA::TypeCode_ptr _it_get_typecode() const;
 virtual CORBA::Exception* _it_copy() const;
 virtual void _it_insert(
 CORBA::Any& any,
 CORBA::Boolean consume
);
 virtual ~InvalidValue();
};
static CORBA::TypeCode_ptr _tc_InvalidValue;

A user exception meaning that an invalid value has been used as a parameter.

See Also DynamicAny::DynAny::TypeMismatch

DynAny::next()

// C++
virtual CORBA::Boolean next() = 0;

Advances the current position to the next component of the DynAny object.
Returns true if the resulting current position indicates a component, false
 422

otherwise. Invoking next() on a DynAny that has no components returns false.
A false return value always sets the current position to -1.

See Also DynamicAny::DynAny::component_count()
DynamicAny::DynAny::current_component()
DynamicAny::DynAny::seek()
DynamicAny::DynAny::rewind()

DynAny::rewind()

// C++
virtual void rewind() = 0;

Sets the current position to the first component of the DynAny object. This is
equivalent to calling seek(0).

See Also DynamicAny::DynAny::seek()

DynAny::seek()

// C++
virtual CORBA::Boolean seek(
 CORBA::Long index
) = 0;

Sets the current position to a component of the DynAny object. The method
returns true if the resulting current position indicates a component of the DynAny
object and false if the position does not correspond to a component.

Parameters

index The new index to set the current position to. An index can
range from 0 to n-1. An index of zero corresponds to the first
component.

Calling seek with a negative index is legal and sets the current
position to -1 to indicate no component. The method returns
false in this case.

Passing a non-negative index value for a DynAny that does not
have a component at the corresponding position sets the
current position to - 1 and returns false.
423

See Also DynamicAny::DynAny::component_count()
DynamicAny::DynAny::current_component()
DynamicAny::DynAny::rewind()
DynamicAny::DynAny::next()

DynAny::to_any()

// C++
virtual CORBA::Any* to_any() = 0;

Returns an Any value created from a DynAny object. A copy of the TypeCode
associated with the DynAny object is assigned to the resulting any. The value
associated with the DynAny object is copied into the Any value.

See Also DynamicAny::DynAny::from_any()

DynAny::type()

// C++
virtual CORBA::TypeCode_ptr type() = 0;

Returns the TypeCode associated with a DynAny object.

A DynAny object is created with a TypeCode value assigned to it. This value
determines the type of the value handled through the DynAny object. type()
returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized at the
time the DynAny is created and cannot be changed during the lifetime of the
DynAny object.

DynAny::TypeMismatch User Exception

class IT_DYNANY_API TypeMismatch: public CORBA::UserException {
public:
 TypeMismatch();
 void operator=(
 const TypeMismatch&
);
 static TypeMismatch* _downcast(
 CORBA::Exception* exc
 424

);
 static const TypeMismatch* _downcast(
 const CORBA::Exception* exc
);
 static TypeMismatch* _narrow(
 CORBA::Exception* exc
);
 static const TypeMismatch* _narrow(
 const CORBA::Exception* exc
);
 virtual void _raise() const;
 virtual CORBA::TypeCode_ptr _it_get_typecode() const;
 virtual CORBA::Exception* _it_copy() const;
 virtual void _it_insert(
 CORBA::Any& any,
 CORBA::Boolean consume
);
 virtual ~TypeMismatch();
};
static CORBA::TypeCode_ptr _tc_TypeMismatch;

A user exception meaning that the type of a parameter does not match the
type of the target.

This exception is also raised when attempts are made to access DynAny
components illegally. For example:

� If an attempt is made to access an object�s component but the type of
object does not have components.

� If an attempt is made to call an insert_type() or get_type() method
on a DynAny object whose current component itself has components.

See Also DynamicAny::DynAny::InvalidValue
425

 426

DynamicAny::DynAnyFactory Class
You can create DynAny objects by invoking operations on the DynAnyFactory
object. You obtain a reference to the DynAnyFactory object by calling CORBA:
:ORB::resolve_initial_references() with the identifier parameter set to
"DynAnyFactory".

A typical first step in dynamic interpretation of an Any involves creating a
DynAny object using create_dyn_any() or
create_dyn_any_from_type_code(). Then, depending on the type of the
Any, you narrow the resulting DynAny object reference to one of the following
complex types of object references:

DynFixed
DynStruct
DynSequence
DynArray
DynUnion
DynEnum
DynValue

Finally, you can use DynAny::to_any() (which each of these classes inherits
from the DynAny class) to create an Any value from the constructed DynAny.

Exceptions MARSHAL: an attempt is made to exported references to DynAnyFactory objects
to other processes or if an attempt is made to externalized them with ORB::
object_to_string(). DynAnyFactory objects are intended to be local to the
process in which they are created and used.

// class is in namespace DynamicAny
class IT_DYNANY_API DynAnyFactory : public virtual CORBA::Object {
public:
 typedef DynamicAny::DynAnyFactory_ptr _ptr_type;
 typedef DynamicAny::DynAnyFactory_var _var_type;

 virtual ~DynAnyFactory();
 static DynAnyFactory_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynAnyFactory_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
427

);
 inline static DynAnyFactory_ptr _duplicate(
 DynAnyFactory_ptr p
);
 inline static DynAnyFactory_ptr _nil();

 class IT_DYNANY_API InconsistentTypeCode:
 public CORBA::UserException
 { ... }
 static CORBA::TypeCode_ptr _tc_InconsistentTypeCode;

 virtual DynAny_ptr create_dyn_any(
 const CORBA::Any& value
) = 0;
 virtual DynAny_ptr create_dyn_any_from_type_code(
 ::CORBA::TypeCode_ptr type
) = 0;

 static const IT_FWString _it_fw_type_id;
};

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynAnyFactory::create_dyn_any()

// C++
virtual DynAny_ptr create_dyn_any(
 const CORBA::Any& value
) = 0;

Returns a new DynAny object from an Any value.

Parameters

value An Any value to use to set the DynAny object.
 428

A copy of the TypeCode associated with the any value is assigned to the
resulting DynAny object. The value associated with the DynAny object is a
copy of the value in the original Any. The current position of the created
DynAny object is set to zero if the passed value has components; otherwise,
the current position is set to -1.

Exceptions InconsistentTypeCode: the value has a TypeCode with a TCKind of
tk_Principal, tk_native, or tk_abstract_interface.

See Also DynamicAny::DynAnyFactory::create_dyn_any_from_type_code()

DynAnyFactory::create_dyn_any_from_type_code()

// C++
virtual DynAny_ptr create_dyn_any_from_type_code(
 ::CORBA::TypeCode_ptr type
) = 0;

Returns a new DynAny object from a TypeCode value. Depending on the
TypeCode, the created object may be of type DynAny, or one of its derived types,
such as DynStruct. The returned reference can be narrowed to the derived type.

Parameters

Table 11 shows the initial default values set depending on the type created:

type A TypeCode value to use to set the DynAny object.

Table 11: Default Values When Using create_dyn_any_from_type_code()

Type Default Value

Any values An Any containing a TypeCode with a TCKind value of
tk_null and no value.

Boolean FALSE

char zero

DynArray The operation sets the current position to zero and
recursively initializes elements to their default value.
429

Exceptions InconsistentTypeCode: the TypeCode has a TCKind of tk_Principal,
tk_native, or tk_abstract_interface.

DynEnum The operation sets the current position to -1 and sets
the value of the enumerator to the first enumerator
value indicated by the TypeCode.

DynFixed Operations set the current position to -1 and sets the
value to zero.

DynSequence The operation sets the current position to -1 and
creates an empty sequence.

DynStruct The operation sets the current position to -1 for empty
exceptions and to zero for all other TypeCode values.
The members (if any) are recursively initialized to their
default values.

DynUnion The operation sets the current position to zero. The
discriminator value is set to a value consistent with the
first named member of the union. That member is
activated and recursively initialized to its default value.

DynValue The members are initialized as for a DynStruct.

numeric types zero

object
references

nil

octet zero

string the empty string

TypeCode A TypeCode with a TCKind value of tk_null

wchar zero

wstring the empty string

Table 11: Default Values When Using create_dyn_any_from_type_code()

Type Default Value
 430

See Also DynamicAny::DynAnyFactory::create_dyn_any()

DynAnyFactory::~DynAnyFactory() Destructor

// C++
virtual ~DynAnyFactory();

Destroys the DynAnyFactory object.

See Also CORBA::ORB::resolve_initial_references()
CORBA::ORB::list_initial_services()

DynAnyFactory::InconsistentTypeCode User Exception Class

// C++
class IT_DYNANY_API InconsistentTypeCode:
 public CORBA::UserException
{
 public:

 InconsistentTypeCode();
 void operator=(
 const InconsistentTypeCode&
);

 static InconsistentTypeCode* _downcast(
 CORBA::Exception* exc
);
 static const InconsistentTypeCode* _downcast(
 const CORBA::Exception* exc
);
 static InconsistentTypeCode* _narrow(
 CORBA::Exception* exc
);
 static const InconsistentTypeCode* _narrow(
 const CORBA::Exception* exc
);
 virtual void _raise() const;

 virtual CORBA::TypeCode_ptr _it_get_typecode() const;
431

 virtual CORBA::Exception* _it_copy() const;

 virtual void _it_insert(
 CORBA::Any& any,
 CORBA::Boolean consume
);

 virtual ~InconsistentTypeCode();
};
static CORBA::TypeCode_ptr _tc_InconsistentTypeCode;

A user exception meaning that a parameter has an inconsistent TypeCode
compared to the object.
 432

DynamicAny::DynArray Class
DynArray objects let you dynamically manipulate Any values as arrays. The
following methods let you get and set array elements:

get_elements()
set_elements()
get_elements_as_dyn_any()
set_elements_as_dyn_any()

This class inherits from the DynAny class. Use component_count() to get the
dimension of the array. Use the iteration methods such as seek() to access
portions of the array.

// C++ class is in namespace DynamicAny
class IT_DYNANY_API DynArray : public virtual DynAny {
public:
 typedef DynamicAny::DynArray_ptr _ptr_type;
 typedef DynamicAny::DynArray_var _var_type;

 virtual ~DynArray();
 static DynArray_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynArray_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynArray_ptr _duplicate(
 DynArray_ptr p
);
 inline static DynArray_ptr _nil();

 virtual AnySeq* get_elements() = 0;
 virtual void set_elements(
 const AnySeq & value
) = 0;
 virtual DynAnySeq* get_elements_as_dyn_any() = 0;
 virtual void set_elements_as_dyn_any(
 const DynAnySeq & value
) = 0;
433

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynArray::~DynArray() Destructor

// C++
virtual ~DynArray();

The destructor for a DynArray object.

DynArray::get_elements()

// C++
virtual AnySeq* get_elements() = 0;

Returns a sequence of Any values containing the elements of the array.

See Also DynamicAny::DynArray::set_elements()
DynamicAny::DynArray::get_elements_as_dyn_any()
DynamicAny::DynAny::component_count()

DynArray::get_elements_as_dyn_any()

// C++
virtual DynAnySeq* get_elements_as_dyn_any() = 0;

Returns a sequence of DynAny objects that describes each member in the array.

Use this method instead of get_elements() if you want to avoid converting
DynAny objects to Any objects when your application needs to handle
DynArray objects extensively.
 434

See Also DynamicAny::DynArray::get_elements()
DynamicAny::DynArray::set_elements_as_dyn_any()
DynamicAny::DynAny::component_count()

DynArray::set_elements()

// C++
virtual void set_elements(
 const AnySeq & value
) = 0;

Sets the array values with a sequence of Any values.

Parameters

This method sets the current position to -1 if the sequence has a zero length
and it sets it to 0 otherwise.

Exceptions TypeMismatch is raised if an inconsistent value is passed in the sequence.

InvalidValue is raised if the sequence length does not match the array
length.

See Also DynamicAny::DynArray::get_elements()
DynamicAny::DynArray::set_elements_as_dyn_any()
DynamicAny::DynAny::component_count()

DynArray::set_elements_as_dyn_any()

// C++
virtual void set_elements_as_dyn_any(
 const DynAnySeq & value
) = 0;

Initializes the array data associated with a DynArray object from a sequence
of DynAny objects. Use this method instead of set_elements() if you want to
avoid converting DynAny objects to Any objects when your application needs
to handle DynArray objects extensively.

value A sequence of Any values containing the elements for the
array.
435

Parameters

This method sets the current position to -1 if the sequence has a zero length
and it sets it to 0 otherwise.

Exceptions TypeMismatch is raised if an inconsistent value is passed in the sequence.

InvalidValue is raised if the sequence length does not match the array
length.

See Also DynamicAny::DynArray::get_elements_as_dyn_any()
DynamicAny::DynArray::set_elements()
DynamicAny::DynAny::component_count()

value A sequence of DynAny objects representing the array
elements.
 436

DynamicAny::DynEnum Class
A DynEnum object lets you dynamically manipulate an Any value as an
enumerated value. The key methods allow you to get and set a value as an
IDL identifier string or you can manipulate the number that the enumerated
value represents:

get_as_string()
set_as_string()
get_as_ulong()
set_as_ulong()

This class inherits from the DynAny class. The current position of a DynEnum is
always -1 because it can only be one value at a given time.

// C++ class is in namespace DynamicAny
class IT_DYNANY_API DynEnum : public virtual DynAny {
public:

 typedef DynamicAny::DynEnum_ptr _ptr_type;
 typedef DynamicAny::DynEnum_var _var_type;

 virtual ~DynEnum();
 static DynEnum_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynEnum_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynEnum_ptr _duplicate(
 DynEnum_ptr p
);
 inline static DynEnum_ptr _nil();

 virtual char* get_as_string() = 0;
 virtual void set_as_string(
 const char* value
) = 0;
 virtual CORBA::ULong get_as_ulong() = 0;
 virtual void set_as_ulong(
437

 CORBA::ULong value
) = 0;

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynEnum::~DynEnum() Destructor

virtual ~DynEnum();

The destructor for a DynEnum object.

DynEnum::get_as_string()

// C++
virtual char* get_as_string() = 0;

Returns a string for the DynEnum that represents the IDL enumeration identifier.

See Also DynamicAny::DynEnum::set_as_string()
DynamicAny::DynEnum::get_as_ulong()

DynEnum::get_as_ulong()

// C++
virtual CORBA::ULong get_as_ulong() = 0;

Returns a number for the DynEnum that represents the enumerated ordinal
value. Enumerators have ordinal values of 0 to n-1, as they appear from left
to right in the corresponding IDL definition.

See Also DynamicAny::DynEnum::set_as_ulong()
DynamicAny::DynEnum::get_as_string()
 438

DynEnum::set_as_string()

// C++
virtual void set_as_string(
 const char* value
) = 0;

Sets the enumerated identifier string value for the DynEnum.

Parameters

Exceptions

See Also DynamicAny::DynEnum::get_as_string()
DynamicAny::DynEnum::set_as_ulong()

DynEnum::set_as_ulong()

void set_as_ulong(
 int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

virtual void set_as_ulong(
 CORBA::ULong value
) = 0;

Sets the numerical value for the DynEnum that represents the enumerated
ordinal value.

Parameters

Exceptions

See Also DynamicAny::DynEnum::get_as_ulong()
DynamicAny::DynEnum::set_as_string()

value The identifier string to set the enumerated value to.

InvalidValue The value string is not a valid IDL identifier for the corre-
sponding IDL enumerated type.

value The number to set the enumerated value to.

InvalidValue The value is outside the range of ordinal values for the corre-
sponding IDL enumerated type.
439

 440

DynamicAny::DynFixed Class
A DynFixed object lets you dynamically manipulate an Any value as a fixed
point value. This class inherits from the DynAny class. The key methods
include get_value() and set_value().

These methods use strings to represent fixed-point values. A fixed-point
format consists of an integer part of digits, a decimal point, a fraction part of
digits, and a d or D. Examples include:

1.2d
35.98D
456.32
.467

Either the integer part or the fraction part (but not both) may be missing. The
decimal point is not required for whole numbers. The d or D are optional.
leading or trailing white space is allowed.

// C++ class is in namespace DynamicAny
class IT_DYNANY_API DynFixed : public virtual DynAny {
public:
 typedef DynamicAny::DynFixed_ptr _ptr_type;
 typedef DynamicAny::DynFixed_var _var_type;

 virtual ~DynFixed();
 static DynFixed_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynFixed_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynFixed_ptr _duplicate(
 DynFixed_ptr p
);
 inline static DynFixed_ptr _nil();

 virtual char* get_value() = 0;
 virtual CORBA::Boolean set_value(
 const char* val
441

) = 0;

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynFixed::~DynFixed() Destructor

// C++
virtual ~DynFixed();

The destructor for a DynFixed object.

DynFixed::get_value()

// C++
virtual char* get_value() = 0;

Returns a string representing the fixed value of the DynFixed object.

See Also DynamicAny::DynFixed::set_value()

DynFixed::set_value()

// C++
virtual CORBA::Boolean set_value(
 const char* val
) = 0;

Sets the value of the DynFixed. The method returns true if val can be
represented as the DynFixed without loss of precision. If val has more fractional
 442

digits than can be represented in the DynFixed, the fractional digits are
truncated and the method returns false.

Parameters

Exceptions

See Also DynamicAny::DynFixed::get_value()

val A string containing the fixed point value to be set in the
DynFixed. The string must contain a fixed string constant in
the same format as would be used for IDL fixed-point literals.
However, the trailing d or D is optional.

InvalidValue val contains a value whose scale exceeds that of the
DynFixed or is not initialized.

TypeMismatch val does not contain a valid fixed-point literal or contains
extraneous characters other than leading or trailing white
space.
443

 444

DynamicAny::DynSequence Class
DynSequence objects let you dynamically manipulate Any values as
sequences. The key methods allow you to manage the sequence length and
get and set sequence elements:

get_length()
set_length()
get_elements()
set_elements()
get_elements_as_dyn_any()
set_elements_as_dyn_any()

This class inherits from the DynAny class.

// C++ class is in namespace DynamicAny
class IT_DYNANY_API DynSequence : public virtual DynAny {
public:
 typedef DynamicAny::DynSequence_ptr _ptr_type;
 typedef DynamicAny::DynSequence_var _var_type;

 virtual ~DynSequence();
 static DynSequence_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynSequence_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynSequence_ptr _duplicate(
 DynSequence_ptr p
);
 inline static DynSequence_ptr _nil();

 virtual CORBA::ULong get_length() = 0;
 virtual void set_length(
 CORBA::ULong len
) = 0;
 virtual AnySeq* get_elements() = 0;
 virtual void set_elements(
 const AnySeq & value
445

) = 0;
 virtual DynAnySeq* get_elements_as_dyn_any() = 0;
 virtual void set_elements_as_dyn_any(
 const DynAnySeq & value
) = 0;

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynSequence::~DynSequence()

virtual ~DynSequence();

The destructor for a DynSequence object.

DynSequence::get_elements()

virtual AnySeq* get_elements() = 0;

Returns a sequence of Any values containing the elements of the sequence.

See Also DynamicAny::DynSequence::set_elements()
DynamicAny::DynSequence::get_elements_as_dyn_any()

DynSequence::get_elements_as_dyn_any()

virtual DynAnySeq* get_elements_as_dyn_any() = 0;

Returns a sequence of DynAny objects that describes each member in the
sequence.
 446

Use this method instead of get_elements() if you want to avoid converting
DynAny objects to Any objects when your application needs to handle
DynSequence objects extensively.

See Also DynamicAny::DynSequence::get_elements()
DynamicAny::DynSequence::get_elements_as_dyn_any()

DynSequence::get_length()

virtual CORBA::ULong get_length() = 0;

Returns the number of elements in the sequence.

See Also DynamicAny::DynSequence::set_length()
DynamicAny::DynSequence::get_elements()

DynSequence::set_elements()

virtual void set_elements(
 const AnySeq & value
) = 0;

Sets the sequence values.

Parameters

This method sets the current position to -1 if the sequence has a zero length
and it sets it to 0 otherwise.

value A sequence of Any values containing the elements for the
sequence.
447

Exceptions

See Also DynamicAny::DynSequence::get_elements()
DynamicAny::DynSequence::set_elements_as_dyn_any()
DynamicAny::DynSequence::get_length()
DynamicAny::DynSequence::set_length()

DynSequence::set_elements_as_dyn_any()

virtual void set_elements_as_dyn_any(
 const DynAnySeq & value
) = 0;

Initializes the sequence data associated with a DynSequence object from a
sequence of DynAny objects. Use this method instead of set_elements() if you
want to avoid converting DynAny objects to Any objects when your application
needs to handle DynSequence objects extensively.

Parameters

This method sets the current position to -1 if the sequence has a zero length
and it sets it to 0 otherwise.

Invalidvalue The parameter�s length is greater than the DynSequence
length.

TypeMismatch an inconsistent value is passed in. This can happen if:

� The element type codes between the DynSequence and
the parameter do not agree.

� The DynSequence is a bounded sequence and the
number of elements in the parameter are greater than
the bound allows.

value A sequence of DynAny objects to represent the elements of the
DynSequence.
 448

Exceptions

See Also DynamicAny::DynSequence::get_elements_as_dyn_any()
DynamicAny::DynSequence::set_elements()
DynamicAny::DynSequence::get_length()
DynamicAny::DynSequence::set_length()

DynSequence::set_length()

void set_length(
 int len
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

virtual void set_length(
 CORBA::ULong len
) = 0;

Sets the length of the sequence.

Parameters

Increasing the length adds new (default-initialized) elements to the end of the
sequence without affecting existing elements in the sequence. The new
current position is set to the first new element if the previous current position
was -1. The new current position remains the same as the old one if the
previous current position indicates a valid element (was anything but -1).

Decreasing the length removes elements from the end of the sequence
without affecting the rest of the elements. The new current position is as
follows:

Invalidvalue The parameter�s length is greater than the DynSequence
length.

TypeMismatch An inconsistent value is passed in. This can happen if:

� The element type codes between the DynSequence and
the parameter do not agree.

� The DynSequence is a bounded sequence and the
number of elements in the parameter are greater than
the bound allows.

len The length desired for the sequence.
449

� If the previous current position indicates a valid element and that
element is not removed, the new current position remains the same.

� If the previous current position indicates a valid element and that
element is removed, the new current position is set to -1.

� If the sequence length is set to 0, the new current position is set to -1.
� If the previous current position was -1, the new current position remains

-1.

Exceptions

See Also DynamicAny::DynSequence::get_length()
DynamicAny::DynSequence::set_elements()

InvalidValue An attempt is made to increase the length of a bounded
sequence to a value greater than the bound.
 450

DynamicAny::DynStruct Class
You use DynStruct objects for dynamically handling structures and
exceptions in Any values. This class inherits from the DynAny class. Key
methods allow you to set and get the structure (or exception) as a sequence
of name-value pairs:

get_members()
set_members()
get_members_as_dyn_any()
set_members_as_dyn_any()

Use the DynAny iteration methods such as seek() to set the current position
to a member of the structure. You can also obtain the name and kind of
TypeCode for a member at the current position:

current_member_name()
current_member_kind()

// C++ class is in namespace DynamicAny
class IT_DYNANY_API DynStruct : public virtual DynAny {
public:
 typedef DynamicAny::DynStruct_ptr _ptr_type;
 typedef DynamicAny::DynStruct_var _var_type;

 virtual ~DynStruct();
 static DynStruct_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynStruct_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynStruct_ptr _duplicate(
 DynStruct_ptr p
);
 inline static DynStruct_ptr _nil();

 virtual FieldName current_member_name() = 0;
 virtual ::CORBA::TCKind current_member_kind() = 0;
451

 virtual NameValuePairSeq* get_members() = 0;
 virtual void set_members(
 const NameValuePairSeq & value
) = 0;
 virtual NameDynAnyPairSeq* get_members_as_dyn_any() = 0;
 virtual void set_members_as_dyn_any(
 const NameDynAnyPairSeq & value
) = 0;

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynStruct::current_member_kind()

virtual ::CORBA::TCKind current_member_kind() = 0;

Returns the kind of TypeCode associated with the current position.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynStruct::current_member_name()

TypeMismatch The DynStruct object represents an empty exception.

InvalidValue The current position does not indicate a member.
 452

DynStruct::current_member_name()

virtual FieldName current_member_name() = 0;

Returns the name of the member at the current position. This method can
return an empty value since the TypeCode of the value being manipulated may
not contain the names of members.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynStruct::current_member_kind()

DynStruct::~DynStruct()

virtual ~DynStruct();

The destructor of a DynStruct object.

DynStruct::get_members()

virtual NameValuePairSeq* get_members() = 0;

Returns a sequence of members that describes the name and the value of each
member in the structure (or exception) associated with a DynStruct object.

The sequence order is the same as the declaration order of members as
indicated by the TypeCode of the DynStruct. The current position is not
affected. The member names in the returned sequence will be empty strings
if the TypeCode of the DynStruct does not contain member names.

See Also DynamicAny::DynStruct::set_members()
DynamicAny::DynStruct::get_members_as_dyn_any()

TypeMismatch DynStruct object represents an empty exception.

InvalidValue The current position does not indicate a member.
453

DynStruct::get_members_as_dyn_any()

virtual NameDynAnyPairSeq* get_members_as_dyn_any() = 0;

Returns a sequence of name-DynAny pairs that describes each member in the
structure (or exception) associated with a DynStruct object. Use this method
instead of get_members() if you want to avoid converting DynAny objects to
any objects when your application needs to handle DynStruct objects exten-
sively.

The sequence order is the same as the declaration order of members as
indicated by the TypeCode of the DynStruct. The current position is not
affected. The member names in the returned sequence will be empty strings
if the TypeCode of the DynStruct does not contain member names.

See Also DynamicAny::DynStruct::set_members_as_dyn_any()
DynamicAny::DynStruct::get_members()

DynStruct::set_members()

virtual void set_members(
 const NameValuePairSeq & value
) = 0;

Initializes the structure data associated with a DynStruct object from a
sequence of name-value pairs.

Parameters

The current position is set to zero if the sequence passed in has a non-zero
length. The current position is set to -1 if an empty sequence is passed in.

Members in the sequence must follow these rules:

� Members must be in the order in which they appear in the IDL
specification of the structure.

� If member names are supplied in the sequence, they must either match
the corresponding member name in the TypeCode of the DynStruct or
they must be empty strings.

value A sequence of name-value pairs representing member names
and the values of the members.
 454

� Members must be supplied in the same order as indicated by the
TypeCode of the DynStruct. The method does not reassign member
values based on member names.

Exceptions

See Also DynamicAny::DynStruct::get_members()
DynamicAny::DynStruct::set_members_as_dyn_any()
DynamicAny::NameValuePairSeq

DynStruct::set_members_as_dyn_any()

virtual void set_members_as_dyn_any(
 const NameDynAnyPairSeq & value
) = 0;

Initializes the structure data associated with a DynStruct object from a
sequence of name-DynAny pairs. Use this method instead of set_members() if
you want to avoid converting DynAny objects to any objects when your
application needs to handle DynStruct objects extensively.

Parameters

The current position is set to zero if the sequence passed in has a non-zero
length. The current position is set to -1 if an empty sequence is passed in.

Members in the sequence must follow these rules:

InvalidValue The sequence has a number of elements that disagrees with
the number of members as indicated by the TypeCode of the
DynStruct.

TypeMismatch Raised if:

� One or more sequence elements have a type that is not
equivalent to the TypeCode of the corresponding
member.

� The member names do not match the corresponding
member name in the TypeCode of the DynStruct.

value A sequence of name-DynAny pairs representing member
names and the values of the members as DynAny objects.
455

� Members must be in the order in which they appear in the IDL
specification of the structure.

� If member names are supplied in the sequence, they must either match
the corresponding member name in the TypeCode of the DynStruct or
they must be empty strings.

� Members must be supplied in the same order as indicated by the
TypeCode of the DynStruct. The method does not reassign DynAny
values based on member names.

Exceptions

See Also DynamicAny::DynStruct::get_members_as_dyn_any()
DynamicAny::DynStruct::set_members()
DynamicAny::NameDynAnyPairSeq

InvalidValue The sequence has a number of elements that disagrees with
the number of members as indicated by the TypeCode of the
DynStruct.

TypeMismatch Raised if:

� One or more sequence elements have a type that is not
equivalent to the TypeCode of the corresponding
member.

� The member names do not match the corresponding
member name in the TypeCode of the DynStruct.
 456

DynamicAny::DynUnion Class
The DynUnion class lets you dynamically manage an Any value as a union
value. This class inherits from the DynAny class. Key methods to manipulate
a union include:

has_no_active_member()
member()
member_kind()
member_name()

Other methods are available to manipulate a union�s discriminator:

discriminator_kind()
get_discriminator()
set_discriminator()
set_to_default_member()
set_to_no_active_member()

A union can have only two valid current positions: Zero denotes the
discriminator and 1 denotes the active member.

The value returned by DynAny::component_count() for a union depends on
the current discriminator: it is 2 for a union whose discriminator indicates a
named member, and 1 otherwise.

class IT_DYNANY_API DynUnion : public virtual DynAny {
public:

 typedef DynamicAny::DynUnion_ptr _ptr_type;
 typedef DynamicAny::DynUnion_var _var_type;

 virtual ~DynUnion();
 static DynUnion_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynUnion_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynUnion_ptr _duplicate(
 DynUnion_ptr p
457

);
 inline static DynUnion_ptr _nil();

 virtual DynAny_ptr get_discriminator() = 0;
 virtual void set_discriminator(
 DynAny_ptr d
) = 0;
 virtual void set_to_default_member() = 0;
 virtual void set_to_no_active_member() = 0;
 virtual CORBA::Boolean has_no_active_member() = 0;
 virtual ::CORBA::TCKind discriminator_kind() = 0;
 virtual DynAny_ptr member() = 0;
 virtual FieldName member_name() = 0;
 virtual ::CORBA::TCKind member_kind() = 0;

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynUnion::discriminator_kind()

virtual ::CORBA::TCKind discriminator_kind() = 0;

Returns the kind of TypeCode of the union�s discriminator.

See Also DynamicAny::DynUnion::get_discriminator()
DynamicAny::DynUnion::set_discriminator()

DynUnion::~DynUnion()

virtual ~DynUnion();

The destructor for a DynUnion object.
 458

DynUnion::get_discriminator()

virtual DynAny_ptr get_discriminator() = 0;

Returns the current discriminator value of the DynUnion.

See Also DynamicAny::DynUnion::set_discriminator()
DynamicAny::DynUnion::discriminator_kind()

DynUnion::has_no_active_member()

virtual CORBA::Boolean has_no_active_member() = 0;

Returns true if the union has no active member (that is, the union�s value
consists solely of its discriminator because the discriminator has a value that
is not listed as an explicit case label). The method returns false if:

� The IDL union has a default case.
� The IDL union�s explicit case labels use the entire range of discriminator

values.

See Also DynamicAny::DynUnion::member()
DynamicAny::DynUnion::set_to_default_member()
DynamicAny::DynUnion::set_to_no_active_member()

DynUnion::member()

virtual DynAny_ptr member() = 0;

Returns the currently active member. Note that the returned reference remains
valid only for as long as the currently active member does not change.

Parameters

See Also DynamicAny::DynUnion::member_kind()
DynamicAny::DynUnion::member_name()
DynamicAny::DynUnion::has_no_active_member()

InvalidValue The union has no active member.

OBJECT_NOT_EXI
ST

The returned reference is used beyond the life time of the cur-
rently active member.
459

DynUnion::member_kind()

virtual ::CORBA::TCKind member_kind() = 0;

Returns the kind of TypeCode of the currently active member.

Exceptions

See Also DynamicAny::DynUnion::member()
DynamicAny::DynUnion::member_name()

DynUnion::member_name()

virtual FieldName member_name() = 0;

Returns the name of the currently active member. The method returns an empty
string if the union�s TypeCode does not contain a member name for the currently
active member.

Exceptions

See Also DynamicAny::DynUnion::member()
DynamicAny::DynUnion::member_kind()

DynUnion::set_discriminator()

virtual void set_discriminator(
 DynAny_ptr d
) = 0;

Sets the discriminator of the DynUnion.

InvalidValue The method is called on a union without an active member.

InvalidValue The method is called on a union without an active member.
 460

Parameters

Setting the discriminator of a union sets the current position to 0 if the
discriminator value indicates a non-existent union member (The method
has_no_active_member() would return true in this case). Otherwise, if the
discriminator value indicates a named union member, the current position is
set to 1, has_no_active_member() would return false, and
component_count() would return 2 in this case.

Exceptions

See Also DynamicAny::DynUnion::get_discriminator()
DynamicAny::DynUnion::has_no_active_member()
DynamicAny::DynUnion::set_to_default_member()
DynamicAny::DynUnion::set_to_no_active_member()

DynUnion::set_to_default_member()

virtual void set_to_default_member() = 0;

Sets the discriminator to a value that is consistent with the value of the default
case of a union.

This method sets the current position to zero and causes component_count()
to return 2.

Exceptions

See Also DynamicAny::DynUnion::has_no_active_member()

d The value to set the discriminator to. Setting the discriminator
to a value that is consistent with the currently active union
member does not affect the currently active member. Setting
the discriminator to a value that is inconsistent with the
currently active member deactivates the member and
activates the member that is consistent with the new
discriminator value (if there is a member for that value) by
initializing the member to its default value.

TypeMismatch The TypeCode of the parameter is not equivalent to the
TypeCode of the union�s discriminator.

TypeMismatch The method is called on a union without an explicit default
case.
461

DynamicAny::DynUnion::set_discriminator()
DynamicAny::DynUnion::set_to_no_active_member()
DynamicAny::DynUnion::set_to_no_active_member()

DynUnion::set_to_no_active_member()

virtual void set_to_no_active_member() = 0;

Sets the discriminator to a value that does not correspond to any of the union�s
case labels.

This method sets the current position to zero and causes DynAny::
component_count() to return 1.

Exceptions

See Also DynamicAny::DynUnion::has_no_active_member()
DynamicAny::DynUnion::set_discriminator()
DynamicAny::DynUnion::set_to_default_member()

TypeMismatch Raised if this method is called on a union that:

� Does not have an explicit default case.
� Uses the entire range of discriminator values for explicit

case labels.
 462

DynamicAny::DynValue Class
You use DynValue objects for dynamically handling value types in Any values.
Value types are used for objects-by-value. This class inherits from the DynAny
class. Key methods allow you to set and get the value type as a sequence of
name-value pairs:

get_members()
set_members()
get_members_as_dyn_any()
set_members_as_dyn_any()

Use the DynAny iteration methods such as seek() to set the current position
to a member of the value type. You can also obtain the name and kind of
TypeCode for a member at the current position:

current_member_name()
current_member_kind()

The class is as follows:

// class is in namespace DynamicAny
class IT_DYNANY_API DynValue : public virtual DynAny {
public:
 typedef DynamicAny::DynValue_ptr _ptr_type;
 typedef DynamicAny::DynValue_var _var_type;

 virtual ~DynValue();
 static DynValue_ptr _narrow(
 CORBA::Object_ptr obj
);
 static DynValue_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static DynValue_ptr _duplicate(
 DynValue_ptr p
);
 inline static DynValue_ptr _nil();

 virtual FieldName current_member_name() = 0;
 virtual ::CORBA::TCKind current_member_kind() = 0;
463

 virtual NameValuePairSeq* get_members() = 0;
 virtual void set_members(
 const NameValuePairSeq & values
) = 0;
 virtual NameDynAnyPairSeq* get_members_as_dyn_any() = 0;
 virtual void set_members_as_dyn_any(
 const NameDynAnyPairSeq & value
) = 0;

 static const IT_FWString _it_fw_type_id;
};

See Also DynamicAny::DynAny

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

DynValue::current_member_kind()

virtual ::CORBA::TCKind current_member_kind() = 0;

Returns the kind of TypeCode associated with the current position.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynValue::current_member_name()

TypeMismatch The DynValue object represents an empty value type.

InvalidValue The current position does not indicate a member.
 464

DynValue::current_member_name()

virtual FieldName current_member_name() = 0;

Returns the name of the member at the current position. This method can
return an empty value since the TypeCode of the value being manipulated may
not contain the names of members.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynValue::current_member_kind()

DynValue:: ~DynValue()

virtual ~DynValue();

The destructor for a DynValue object.

DynValue::get_members()

virtual NameValuePairSeq* get_members() = 0;

Returns a sequence of members that describes the name and the value of each
member in the DynValue object.

The sequence order is the same as the declaration order of members as
indicated by the TypeCode of the DynValue. The current position is not
affected. The member names in the returned sequence will be empty strings
if the TypeCode of the DynValue does not contain member names.

See Also DynamicAny::DynValue::set_members()
DynamicAny::DynValue::get_members_as_dyn_any()

TypeMismatch The DynValue object represents an empty value type.

InvalidValue The current position does not indicate a member.
465

DynValue::get_members_as_dyn_any()

virtual NameDynAnyPairSeq* get_members_as_dyn_any() = 0;

Returns a sequence of name-DynAny pairs that describes each member in the
value type associated with a DynValue object. Use this method instead of
get_members() if you want to avoid converting DynAny objects to Any objects
when your application needs to handle DynValue objects extensively.

The sequence order is the same as the declaration order of members as
indicated by the TypeCode of the DynValue. The current position is not
affected. The member names in the returned sequence will be empty strings
if the TypeCode of the DynValue does not contain member names.

See Also DynamicAny::DynValue::set_members_as_dyn_any()
DynamicAny::DynValue::get_members()

DynValue::set_members()

virtual void set_members(
 const NameValuePairSeq & values
) = 0;

Initializes the data value associated with a DynValue object from a sequence
of name-value pairs.

Parameters

The current position is set to zero if the sequence passed in has a non-zero
length. The current position is set to -1 if an empty sequence is passed in.

Members in the sequence must follow these rules:

� Members must be in the order in which they appear in the IDL
specification.

� If member names are supplied in the sequence, they must either match
the corresponding member name in the TypeCode of the DynValue or
they must be empty strings.

� Members must be supplied in the same order as indicated by the
TypeCode of the DynValue. The method does not reassign member
values based on member names.

values A sequence of name-value pairs representing member names
and the values of the members.
 466

Exceptions

See Also DynamicAny::DynValue::get_members()
DynamicAny::DynValue::set_members_as_dyn_any()
DynamicAny::NameValuePairSeq

DynValue::set_members_as_dyn_any()

virtual void set_members_as_dyn_any(
 const NameDynAnyPairSeq & value
) = 0;

Initializes the data value associated with a DynValue object from a sequence
of name-DynAny pairs. Use this method instead of set_members() if you want
to avoid converting DynAny objects to any objects when your application needs
to handle DynValue objects extensively.

Parameters

The current position is set to zero if the sequence passed in has a non-zero
length. The current position is set to -1 if an empty sequence is passed in.

Members in the sequence must follow these rules:

� Members must be in the order in which they appear in the IDL
specification of the structure.

� If member names are supplied in the sequence, they must either match
the corresponding member name in the TypeCode of the DynValue or
they must be empty strings.

InvalidValue The sequence has a number of elements that disagrees with
the number of members as indicated by the TypeCode of the
DynValue.

TypeMismatch Raised if:

� One or more sequence elements have a type that is not
equivalent to the TypeCode of the corresponding
member.

� The member names do not match the corresponding
member name in the TypeCode of the DynValue.

value A sequence of name-DynAny pairs representing member
names and the values of the members as DynAny objects.
467

� Members must be supplied in the same order as indicated by the
TypeCode of the DynValue. The method does not reassign DynAny values
based on member names.

Exceptions

See Also DynamicAny::DynValue::get_members_as_dyn_any()
DynamicAny::DynValue::set_members()
DynamicAny::NameDynAnyPairSeq

InvalidValue The sequence has a number of elements that disagrees with
the number of members as indicated by the TypeCode of the
DynValue.

TypeMismatch Raised if:

� One or more sequence elements have a type that is not
equivalent to the TypeCode of the corresponding
member.

� The member names do not match the corresponding
member name in the TypeCode of the DynValue.
 468

 IT_Logging Module

IT_Logging Overview
The IT_Logging module is the centralized point for controlling all logging
methods.

� The EventLog interface controls the reporting of log events.
� The LogStream interface controls how and where events are received.

The IT_Logging module also uses the following common data types, static
method, and macros.

IT_Logging::ApplicationId Data Type

//IDL
typedef string ApplicationId;

An identifying string representing the application that logged the event.

For example, a Unix and Windows ApplicationId contains the host name
and process ID (PID) of the reporting process. Because this value can differ
from platform to platform, streams should only use it as informational text,
and should not attempt to interpret it.

Enhancement Orbix enhancement to CORBA.

Table 12: IT_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros

ApplicationId
EventId
EventParameters
EventPriority
SubsystemId
Timestamp

format_message()

IT_LOG_MESSAGE()
IT_LOG_MESSAGE_1()
IT_LOG_MESSAGE_2()
IT_LOG_MESSAGE_3()
IT_LOG_MESSAGE_4()
IT_LOG_MESSAGE_5()
471

IT_Logging::EventId Data Type

//IDL
typedef unsigned long EventId;

An identifier for the particular event.

Enhancement Orbix enhancement to CORBA.

IT_Logging::EventParameters Data Type

//IDL
typedef CORBA::AnySeq EventParameters;

A sequence of locale-independent parameters encoded as a sequence of Any
values.

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::format_message()

IT_Logging::EventPriority Data Type

//IDL
typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into the following
categories of priority.

Information A significant non-error event has occurred. Examples
include server startup/shutdown, object creation/
deletion, and information about administrative
actions. Informational messages provide a history of
events that can be invaluable in diagnosing problems.

Warning The subsystem has encountered an anomalous
condition, but can ignore it and continue functioning.
Examples include encountering an invalid parameter,
but ignoring it in favor of a default value.
 472

The possible values for an EventPriority consist of the following:

LOG_NO_EVENTS
LOG_ALL_EVENTS
LOG_INFO_LOW
LOG_INFO_MED
LOG_INFO_HIGH
LOG_INFO (LOG_INFO_LOW)
LOG_ALL_INFO

LOG_WARNING
LOG_ERROR
LOG_FATAL_ERROR

A single value is used for EventLog operations that report events or
LogStream operations that receive events. In filtering operations such as
set_filter(), these values can be combined as a filter mask to control
which events are logged at runtime.

Enhancement Orbix enhancement to CORBA.

IT_Logging::format_message()

// C++
static char* format_message(
 const char* description,
 const IT_Logging::EventParameters& params
);

Returns a formatted message based on a format description and a sequence
of parameters.

Error An error has occurred. The subsystem will attempt to
recover, but may abandon the task at hand. Examples
include finding a resource (such as memory)
temporarily unavailable, or being unable to process a
particular request due to errors in the request.

Fatal Error An unrecoverable error has occurred. The subsystem
or process will terminate.
473

Parameters Messages are reported in two pieces for internationalization:

format_message() copies the description into an output string, interprets
each event parameter, and inserts the event parameters into the output string
where appropriate. Event parameters that are primitive and SystemException
parameters are converted to strings before insertion. For all other types,
question marks (?) are inserted.

Enhancement Orbix enhancement to CORBA.

IT_Logging::SubsystemId Data Type

//IDL
typedef string SubsystemId;

An identifying string representing the subsystem from which the event origi-
nated. The constant _DEFAULT may be used to enable all subsystems.

Enhancement Orbix enhancement to CORBA.

IT_Logging::Timestamp Data Type

//IDL
typedef unsigned long Timestamp;

The time of the logged event in seconds since January 1, 1970.

Enhancement Orbix enhancement to CORBA.

IT_LOG_MESSAGE() Macro

// C++
#define IT_LOG_MESSAGE(\
 event_log, \
 subsystem, \
 id, \

description A locale-dependent string that describes of how to use the
sequence of parameters in params.

params A sequence of locale-dependent parameters.
 474

 severity, \
 desc \
) ...

A macro to use for reporting a log message.

Parameters

Enhancement Orbix enhancement to CORBA.

Examples Here is a simple example of usage:

...
IT_LOG_MESSAGE(
 event_log,
 IT_IIOP_Logging::SUBSYSTEM,
 IT_IIOP_Logging::SOCKET_CREATE_FAILED,
 IT_Logging::LOG_ERROR,
 SOCKET_CREATE_FAILED_MSG
);

IT_LOG_MESSAGE_1() Macro

// C++
#define IT_LOG_MESSAGE_1(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0 \
) ...

A macro to use for reporting a log message with one event parameter.

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.
475

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_2() Macro

// C++
#define IT_LOG_MESSAGE_2(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0, \
 param1 \
) ...

A macro to use for reporting a log message with two event parameters.

Parameters

Enhancement Orbix enhancement to CORBA.

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 A single parameter for an EventParameters sequence.

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

param1 The second parameter for an EventParameters sequence.
 476

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_3() Macro

// C++
#define IT_LOG_MESSAGE_3(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0, \
 param1, \
 param2 \
) ...

A macro to use for reporting a log message with three event parameters.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_4() Macro

// C++
#define IT_LOG_MESSAGE_4(\
 event_log, \
 subsystem, \

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

param1 The second parameter for an EventParameters sequence.

param2 The third parameter for an EventParameters sequence.
477

 id, \
 severity, \
 desc, \
 param0, \
 param1, \
 param2, \
 param3 \
) ...

A macro to use for reporting a log message with four event parameters.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_5() Macro

// C++
#define IT_LOG_MESSAGE_5(\
 event_log, \
 subsystem, \
 id, \
 severity, \
 desc, \
 param0, \
 param1, \
 param2, \
 param3, \

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

param1 The second parameter for an EventParameters sequence.

param2 The third parameter for an EventParameters sequence.

param3 The forth parameter for an EventParameters sequence.
 478

 param4 \
) ...

A macro to use for reporting a log message with five event parameters.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

event_log The log (EventLog) where the message is to be reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

param1 The second parameter for an EventParameters sequence.

param2 The third parameter for an EventParameters sequence.

param3 The forth parameter for an EventParameters sequence.

param4 The fifth parameter for an EventParameters sequence.
479

 480

IT_Logging::EventLog Interface
Logging is controlled with the EventLog interface, which defines operations
to register interfaces for receiving notification of logged events, report logged
events, and filter logged events. Each ORB maintains its own EventLog
instance, which applications obtain by calling
resolve_initial_references() with the string argument IT_EventLog.

The EventLog interface has the following operations:

� register_stream() registers the receivers of log events.
report_event() reports log events and report_message() reports
messages to receivers.

� get_filter(), set_filter(), expand_filter(), and clear_filter()
set filters for which log events are reported.

An EventLog has several operations for controlling which events are logged at
runtime. A filter has an EventPriority that describes the types of events
that are reported. Every subsystem is associated with a filter that controls
which events are allowed for that subsystem. A default filter is also
associated with the entire EventLog.

The complete EventLog interface is as follows:

// IDL in module IT_Logging
interface EventLog {
 void register_stream(
 in LogStream the_stream
);

 void report_event(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in any event_data
);

 void report_message(
 in SubsystemId subsystem,
 in EventId event,
481

 in EventPriority priority,
 in string description,
 in EventParameters parameters
);

 EventPriority get_filter(
 in SubsystemId subsystem
);

 void set_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

 void expand_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

 void clear_filter(
 in SubsystemId subsystem
);
...
};

EventLog::clear_filter()

// IDL
void clear_filter(
 in SubsystemId subsystem
);

Removes an explicitly configured subsystem filter, causing the subsystem to
revert to using the default filter.

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::get_filter()
 482

EventLog::expand_filter()

// IDL
void expand_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

Adds to a subsystem filter by combining the new filter mask with the existing
subsystem filter.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::set_filter()
IT_Logging::EventLog::clear_filter()

EventLog::get_filter()

// IDL
EventPriority get_filter(
 in SubsystemId subsystem
);

Returns a sub-system�s filter priorities.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::get_filter()

EventLog::register_stream()

// IDL
void register_stream(

subsystem The name of the subsystem for which the filter
applies.

filter_mask A value representing the types of events to be
reported.

subsystem The name of the subsystem for which the filter applies.
483

 in LogStream the_stream
);

Explicitly registers a LogStream.

Parameters

Log events �flow� to receivers on streams, thus streams must be registered
with the EventLog. Once registered, the stream will receive notification of
logged events.

An EventLog can have multiple streams registered at one time, and it can
have a single stream registered more than once.

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::LogStream

EventLog::report_event()

// IDL
void report_event(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in any event_data
);

Reports an event and its event-specific data.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_message()

the_stream The stream to register.

subsystem The name of the subsystem reporting the event.

event The unique ID defining the event.

priority The event priority.

event_data Event-specific data.
 484

EventLog::report_message()

// IDL
void report_message(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in string description,
 in EventParameters parameters
);

Reports an event and message.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_event()

EventLog::set_filter()

// IDL
void set_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

Sets a filter for a given subsystem. This operation overrides the subsystem�s
existing filter.

subsystem The name of the subsystem reporting the event.

event The unique ID defining the event.

priority The event priority.

description A string describing the format of parameters.

parameters A sequence of parameters for the log.
485

Parameters

A subsystem will use the default filter if its filter has not been explicitly
configured by a call to set_filter().

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::get_filter()

subsystem The name of the subsystem for which the filter
applies.

filter_mask A value representing the types of events to be
reported.
 486

IT_Logging::LogStream Interface
The LogStream interface allows an application to intercept events and write
them to some concrete location via a stream. IT_Logging::EventLog objects
maintain a list of LogStream objects. You register a LogStream object from an
EventLog using register_stream(). The complete LogStream interface is as
follows:

// IDL in module IT_Logging
interface LogStream {
 void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

 void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);
};

These operations are described in detail as follows:

LogStream::report_event()

// IDL
void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
487

 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

Reports an event and its event-specific data to the log stream.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_event()
IT_Logging::LogStream::report_message()

LogStream::report_message()

// IDL
void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);

Reports an event and message to the log stream.

Parameters

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.

event A unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

event_data Event-specific data.

application An ID representing the reporting application.

subsystem The name of the subsystem reporting the event.
 488

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_message()
IT_Logging::LogStream::report_event()

event The unique ID defining the event.

priority The event priority.

event_time The time when the event occurred.

description A string describing the format of parameters.

parameters A sequence of parameters for the log.
489

 490

Messaging Module

Messaging Overview
CORBA provides synchronous and deferred synchronous modes of invoca-
tions. The Messaging module provides the additional asynchronous mode,
also known here as Asynchronous Method Invocation (AMI). The Messaging
module includes the following base classes, value types, policy classes, com-
mon data structures, and constants:

With synchronous invocations, the client program, or thread, blocks when a
remote invocation is made and waits until the results arrive. With deferred
synchronous invocations, the client thread continues processing, subse-
quently polling to see if results are available. Within the CORBA module, the
deferred synchronous model is only available when using the Dynamic Invo-
cation Interface.

Many applications require some way of managing remote requests within an
asynchronous, event-driven environment in which callbacks are invoked to
handle events. Sophisticated applications often need to manage several
activities simultaneously, making overlapping remote requests to many
objects. This can be achieved using a separate thread for each invocation,
but the use of threads considerably raises the application�s complexity and
the probability of programming errors. The use of threads also creates a
resource and synchronization problem in addition to the memory manage-
ment problem inherent in asynchronous communications.

Table 13: The Messaging Module

Base Classes and
Value Types

Common Structures
and Constants

QoS Policy Classes

ExceptionHolder
ReplyHandler

INVOCATION_POLICIES
RebindMode
RoutingType
RoutingTypeRange
SyncScope
TAG_POLICIES

RebindPolicy
RoutingPolicy
SyncScopePolicy
493

Orbix 2000 Programmer�s Reference Guide C++ Edition
Messaging provides the callback model in which the client passed a callback
object reference as part of the invocation. When the reply is available, that
callback object is invoked with the data of the reply. The callback model uses
a ReplyHandler, which is a CORBA object, implemented by the client appli-
cation. The ReplyHandler is passed to an asynchronous method invocation.
The ReplyHandler is invoked when the reply to that request is available.

The Messaging module also provides a QoS property to help obtain asynchro-
nous behavior. The Messaging QoS includes some CORBA::Policy derived
interfaces for client-side policies to control the behavior of requests and
replies. Note however that QoS for method invocations applies to both asyn-
chronous and synchronous invocations. See also the discussion �Quality of
Service Framework�.

The following constants and types are available for messaging.

Messaging::INVOCATION_POLICIES Constant

IT_ART_API IT_NAMESPACE_STATIC
 const CORBA::ULong INVOCATION_POLICIES;

A service context containing a sequence of quality of service policies in effect
for the invocation. The quality of service framework abstract model includes
this mechanism for transporting Policy values as part of interoperable object
references and within requests.

Messaging::RebindMode Type

typedef CORBA::Short RebindMode;
typedef CORBA::Short_out RebindMode_out;
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr _tc_RebindMode;

This describes the level of transparent rebinding that may occur during the
course of an invocation on an object. Values of type RebindMode are used in
conjunction with a RebindPolicy. All non-negative values are reserved for use
in OMG specifications and include the following constants:

TRANSPARENT Allows the ORB to silently handle object-forwarding and
necessary reconnection during the course of making a
remote request.
 494

Any negative value for a RebindMode is considered a vendor extension.

See Also Messaging::RebindPolicy

Messaging::RoutingType Type

typedef CORBA::Short RoutingType;
typedef CORBA::Short_out RoutingType_out;
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr

_tc_RoutingType;

Describes the type of routing to be used for invocations on an object reference.
RoutingType values are used in conjunction with a RoutingPolicy. All
non-negative values are reserved for use in OMG specifications and include the
following constants:

NO_REBIND Allows the ORB to silently handle reopening of closed
connections while making a remote request, but prevents
any transparent object-forwarding that would cause a
change in client-visible effective QoS policies. When the
RebindPolicy has this mode in effect, only explicit
rebinding is allowed by calling CORBA::Object::
_validate_connection().

NO_RECONNECT Prevents the ORB from silently handling object-forwards
or the reopening of closed connections. When the
RebindPolicy has this mode in effect, only explicit
rebinding is allowed by calling CORBA::Object::
_validate_connection().

ROUTE_NONE Synchronous or deferred synchronous delivery is
used. No routers will be used to aid in the deliv-
ery of the request.

ROUTE_FORWARD Asynchronous delivery is used. The request is
made through the use of a router and not deliv-
ered directly to the target by the client ORB.

ROUTE_STORE_AND_FORWARD Asynchronous TII is used. The request is made
through the use of a router that persistently
stores the request before attempting delivery.
495

Orbix 2000 Programmer�s Reference Guide C++ Edition
Any negative value for a RoutingType is considered a vendor extension.

See Also Messaging::RoutingTypeRange

Messaging::RoutingTypeRange Structure

struct RoutingTypeRange;
typedef ITCxxFixLenConstr_var< RoutingTypeRange>

RoutingTypeRange_var;
typedef RoutingTypeRange& RoutingTypeRange_out;

struct RoutingTypeRange {
 typedef RoutingTypeRange_var _var_type;
 ::Messaging::RoutingType min;
 ::Messaging::RoutingType max;
};
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr

_tc_RoutingTypeRange;

This structure describes a range of routing types. It is invalid for the minimum
RoutingType to be greater than the maximum RoutingType.

Messaging::SyncScope Type

typedef CORBA::Short SyncScope;
typedef CORBA::Short_out SyncScope_out;
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr _tc_SyncScope;

Describes the level of synchronization for a request with respect to the target.
Values of type SyncScope are used in conjunction with a SyncScopePolicy to
control the behavior of one way operations. All non-negative values are reserved
 496

for use in OMG specifications. Any negative value of SyncScope is considered
a vendor extension. Valid values include:

SYNC_NONE This is equivalent to one allowable interpretation of
CORBA 2.2 oneway operations. The ORB returns
control to the client (that is, returns from the method
invocation) before passing the request message to
the transport protocol. The client is guaranteed not
to block. You cannot do location-forwarding with
this level of synchronization because no reply is
returned from the server.

SYNC_WITH_TRANSPORT This is equivalent to one allowable interpretation of
CORBA 2.2 oneway operations. The ORB returns
control to the client only after the transport has
accepted the request message. This gives no guar-
antee that the request will be delivered, but in con-
junction with knowledge of the transport it may
provide the client with enough assurance.

For example, for a direct message over TCP,
SYNC_WITH_TRANSPORT is not a stronger guarantee
than SYNC_NONE. However, for a store and forward
transport, this QoS provides a high level of reliabil-
ity. You cannot do location-forwarding with this level
of synchronization because no reply is returned from
the server.

SYNC_WITH_SERVER The server-side ORB shall send a reply before invok-
ing the target implementation. If a reply of
NO_EXCEPTION is sent, any necessary location-for-
warding has already occurred. Upon receipt of this
reply, the client-side ORB returns control to the cli-
ent application. This form of guarantee is useful
where the reliability of the network is substantially
lower than that of the server. The client blocks until
all location-forwarding has been completed. For a
server using a POA, the reply would be sent after
invoking any ServantManager, but before delivering
the request to the target Servant.
497

Orbix 2000 Programmer�s Reference Guide C++ Edition
See Also Messaging::SyncScopePolicy

Messaging::TAG_POLICIES Constant

IT_ART_API IT_NAMESPACE_STATIC const CORBA::ULong TAG_POLICIES;

A profile component containing the sequence of quality of service policies
exported with the object reference by an object adapter. The quality of service
framework abstract model includes this mechanism for transporting policy
values as part of interoperable object references and within requests.

See Also Messaging::RoutingPolicy

SYNC_WITH_TARGET Equivalent to a synchronous, non-oneway operation
in CORBA 2.2. The server-side ORB shall only send
the reply message after the target has completed the
invoked operation. Note that any
LOCATION_FORWARD reply will already have been
sent prior to invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at anytime
(depending on the semantics of the exception). Even
though it was declared oneway, the operation actu-
ally has the behavior of a synchronous operation.
This form of synchronization guarantees that the cli-
ent knows that the target has seen and acted upon a
request. the OTS can only be used with this highest
level of synchronization. Any operations invoked
with lesser synchronization precludes the target from
participating in the client�s current transaction.
 498

Messaging::ExceptionHolder Value
Type

The messaging callback model uses an ExceptionHolder to deliver excep-
tions. Because the ReplyHandler implements an IDL interface, all arguments
passed to its operations must be defined in IDL also. However, exceptions
cannot be passed as arguments to operations, but are only raised as part of a
reply. An ExceptionHolder value is created to encapsulate the identity and
contents of the exception that might be raised. An instance of this
ExceptionHolder is passed as the argument to the ReplyHandler operation
that indicates an exception was raised by the target. In addition to its excep-
tion state, the ExceptionHolder also has operations that raise the returned
exception, so the ReplyHandler implementation can have the returned
exception re-raised within its own context.

AMI operations do not raise user exceptions. Rather, user exceptions are
passed to the implemented type specific ReplyHandler. If an AMI operation
raises a system exception with a completion status of COMPLETED_NO, the
request has not been made. This clearly distinguishes exceptions raised by
the server (which are returned via the ReplyHandler) from the local excep-
tions that caused the AMI to fail.

The ExceptionHolder value class implementation is provided by the ORB.
For each interface, a type specific ExceptionHolder value is generated by the
IDL compiler. This ExceptionHolder is implemented by the ORB and passed
to an application using the callback model when exception replies are
returned from the target. See the CORBA Programmer’s Guide for more on the
generated value types and operations.

The code is as follows:

...
class IT_ART_API ExceptionHolder : public virtual CORBA::ValueBase
{
public:
 virtual CORBA::Any* get_exception() = 0;
499

Orbix 2000 Programmer�s Reference Guide C++ Edition
 virtual CORBA::Any* get_exception_with_list(
 ::CORBA::ExceptionList_ptr exc_list
) = 0;

 typedef ITCxxUFixedSeq< CORBA::Octet >
_marshaled_exception_seq;

 ...

 static ExceptionHolder* _downcast(
 CORBA::ValueBase* _val
);

 ...

protected:
 ExceptionHolder();
 ExceptionHolder(
 CORBA::Boolean _itfld_is_system_exception,
 CORBA::Boolean _itfld_byte_order,
 const ITCxxUFixedSeq< CORBA::Octet > &

_itfld_marshaled_exception
);

 virtual ~ExceptionHolder();

 virtual CORBA::Boolean is_system_exception() const = 0;
 virtual void is_system_exception(
 CORBA::Boolean
) = 0;

 virtual CORBA::Boolean byte_order() const = 0;
 virtual void byte_order(
 CORBA::Boolean
) = 0;

 virtual void marshaled_exception(
 const _marshaled_exception_seq&
) = 0;
 virtual const _marshaled_exception_seq &
 marshaled_exception() const = 0;
 virtual _marshaled_exception_seq & marshaled_exception() = 0;
private:
 500

 ...
};

Enhancement The ExceptionHolder class is not compliant with the CORBA Messaging
specification.

ExceptionHolder::byte_order()

virtual CORBA::Boolean byte_order() const = 0;

Returns the byte order for the exception.

virtual void byte_order(
 CORBA::Boolean
) = 0;

Sets the byte order for the exception.

ExceptionHolder::_downcast()

static ExceptionHolder* _downcast(
 CORBA::ValueBase* _val
);

Returns a pointer to the ExceptionHolder type for a derived class. Each value
type class provides _downcast() as a portable way for applications to cast
down the C++ inheritance hierarchy.

Parameters

This is especially required after an invocation of _copy_value().

_val Pointer to the value type class to be downcast.

� If the value type instance pointed to by the argument is
an instance of the value type class being downcast to, a
pointer to the downcast-to class type is returned.

� If the value type instance pointed to by the argument is
not an instance of the value type class being downcast
to, a null pointer is returned.

� If a null pointer is passed to _downcast(), it returns a
null pointer.
501

Orbix 2000 Programmer�s Reference Guide C++ Edition
Enhancement Orbix enhancement.

See Also CORBA::ValueBase::_copy_value()

ExceptionHolder::ExceptionHolder() Constructors

ExceptionHolder();

ExceptionHolder(
 CORBA::Boolean _itfld_is_system_exception,
 CORBA::Boolean _itfld_byte_order,
 const ITCxxUFixedSeq< CORBA::Octet > &

_itfld_marshaled_exception
);

Constructors for the ExceptionHolder.

Enhancement Orbix enhancement.

ExceptionHolder::~ExceptionHolder() Destructor

virtual ~ExceptionHolder();

The destructor for the ExceptionHolder.

Enhancement Orbix enhancement.

ExceptionHolder::get_exception()

virtual CORBA::Any* get_exception() = 0;

Returns the exception.

See Also Messaging::ExceptionHolder::get_exception_with_list()

Enhancement Orbix enhancement.

ExceptionHolder::get_exception_with_list()

virtual CORBA::Any* get_exception_with_list(
 ::CORBA::ExceptionList_ptr exc_list
) = 0;
 502

Returns a list of exceptions.

Enhancement Orbix enhancement.

See Also Messaging::ExceptionHolder::get_exception()

ExceptionHolder::is_system_exception()

virtual CORBA::Boolean is_system_exception() const = 0;

virtual void is_system_exception(
 CORBA::Boolean
) = 0;

ExceptionHolder::_it_demarshal_value()

 virtual void _it_demarshal_value(
 CORBA::IT_InStream_ptr _is,
 CORBA::ORB_ptr _orb
);

Note: For internal use only.

ExceptionHolder::_it_get_fw_type_id()

static const IT_FWString& _it_get_fw_type_id();

Note: For internal use only.
503

Orbix 2000 Programmer�s Reference Guide C++ Edition
ExceptionHolder::_it_get_safe_bases()

const char** _it_get_safe_bases() const;

Note: For internal use only.

ExceptionHolder::_it_marshal_value()

virtual void _it_marshal_value(
 CORBA::IT_OutStream_ptr _os,
 CORBA::ORB_ptr _orb
);

Note: For internal use only.

ExceptionHolder::_it_type()

virtual CORBA::TypeCode_ptr _it_type() const;

Note: For internal use only.

ExceptionHolder::_local_narrow()

virtual void* _local_narrow(
 const char* tag
);

Note: For internal use only.
 504

ExceptionHolder::marshaled_exception()

Enhancement Orbix enhancement.

ExceptionHolder::marshaled_exception_seq Sequence

typedef ITCxxUFixedSeq< CORBA::Octet > _marshaled_exception_seq;

Enhancement Orbix enhancement.
505

Orbix 2000 Programmer�s Reference Guide C++ Edition
 506

Messaging::RebindPolicy Class
The RebindPolicy is a client-side QoS policy that specifies whether or not
the ORB is allowed to transparently relocate the target corresponding to an
object reference. The default RebindPolicy supports this transparent rebind.

Rebinding means changing the client-visible QoS as a result of replacing the
IOR profile used by a client�s object reference with a new IOR profile. Trans-
parent rebinding is when this happens without notice to the client application.

If your application has rigorous QoS requirements, transparent rebinding can
cause problems. For instance, unexpected errors may occur if your applica-
tion sets its QoS policies appropriately for an object reference, and then the
ORB transparently changes the application�s assumptions about that refer-
ence by obtaining a new IOR. Your applications can prevent the ORB from
silently changing the IOR Profile and therefore the server-side QoS that you
have assumed. A more rigorous value of this policy even precludes the ORB
from silently closing and opening connections such as when IIOP is being
used.

RebindPolicy is a local object derived from CORBA::Policy.

class RebindPolicy;
typedef RebindPolicy* RebindPolicy_ptr;
typedef ITCxxObjRef_var< RebindPolicy_ptr, RebindPolicy,

ITCxxIntfAlloc< RebindPolicy_ptr, RebindPolicy> >
RebindPolicy_var;

typedef ITCxxObjRef_out< RebindPolicy_ptr, RebindPolicy,
ITCxxIntfAlloc< RebindPolicy_ptr, RebindPolicy> >
RebindPolicy_out;

 ...

IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr
_tc_RebindPolicy;

class IT_ART_API RebindPolicy : public virtual ::CORBA::Policy {
public:
 typedef Messaging::RebindPolicy_ptr _ptr_type;
 typedef Messaging::RebindPolicy_var _var_type;
507

Orbix 2000 Programmer�s Reference Guide C++ Edition
 virtual ~RebindPolicy();

 ...
 static RebindPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static RebindPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static RebindPolicy_ptr _duplicate(
 RebindPolicy_ptr p
);
 inline static RebindPolicy_ptr _nil();

 virtual ::Messaging::RebindMode rebind_mode() = 0;
 ...
};

See page 5 for descriptions of the standard helper methods:

� _duplicate()

� _narrow()

� _nil()

� _unchecked_narrow()

RebindPolicy::_local_narrow()

virtual void* _local_narrow(
 const char* tag
);

Note: For internal use only.
 508

RebindPolicy::rebind_mode()

virtual ::Messaging::RebindMode rebind_mode() = 0;

Returns the effective rebind policy mode. The effective policies of other types
for this object reference may change from invocation to invocation.

For GIOP-based protocols an object reference is considered bound once it is
in a state where a locate-request message would result in a locate-reply mes-
sage with status indicating where the object is. If rebind_mode() returns an
effective policy value of TRANSPARENT, the ORB will silently forward any sub-
sequent messages.

Regardless of the rebind policy in effect, you can always explicitly requested
rebind or reconnection by calling Object::_validate_connection(). When
instances of RebindPolicy are created, a value of type RebindMode is passed
to ORB::create_policy().

Exceptions

See Also Messaging::RebindMode
CORBA::ORB::create_policy()
CORBA::Object::_validate_connection()

RebindPolicy::~RebindPolicy() Destructor

virtual ~RebindPolicy();

The destructor for the object.

REBIND Raised if:

� The effective policy value is NO_REBIND and if any rebind
handling would cause a client-visible change in policies.

� The effective policy value is NO_RECONNECT and if any
rebind handling would cause a client-visible change in
policies, or if a new connection must be opened.
509

Orbix 2000 Programmer�s Reference Guide C++ Edition
 510

Messaging::ReplyHandler Base Class
This is the base class for the messaging callback model. A ReplyHandler is a
CORBA object, implemented by the client application, which encapsulates
the functionality for handling an asynchronous reply. The ReplyHandler is
used with an asynchronous method invocation (AMI). The ReplyHandler is
passed to an AMI and it is invoked when the reply to that request is avail-
able.

In the callback model, the client passes a reference to a reply handler (a cli-
ent side CORBA object implementation that handles the reply for a client
request), in addition to the normal parameters needed by the request. The
reply handler interface defines operations to receive the results of that
request (including inout and out values and possible exceptions). The
ReplyHandler is a normal CORBA object that is implemented by the pro-
grammer as with any object implementation.

You must write the implementation for a type-specific ReplyHandler. A client
obtains an object reference for this ReplyHandler and passes it as part of the
AMI. When the server completes the request, its reply is delivered as an invo-
cation on the ReplyHandler object. This invocation is made on the
ReplyHandler using the normal POA techniques of servant and object activa-
tion. As a result, the callback operation may be handled in a different pro-
gramming context than that in which the original request was made.

Exceptions can only be raised as part of a reply in the callback model. You
use an ExceptionHolder to handle these exception replies. You create an
ExceptionHolder value to encapsulate the identity and contents of an excep-
tion that might be raised, and an instance of this ExceptionHolder is passed
as the argument to the ReplyHandler operation to indicate if an exception
was raised by the target.

For each operation in an interface, corresponding callback asynchronous
method signatures are generated by the IDL compiler. See the CORBA Pro-
grammer’s Guide for generated methods and how to write your asynchronous
callback implementations.
511

Orbix 2000 Programmer�s Reference Guide C++ Edition
class ReplyHandler;
class ITGenReplyHandlerStreamable;
typedef ReplyHandler* ReplyHandler_ptr;
typedef ITCxxObjRef_var< ReplyHandler_ptr, ReplyHandler,

ITCxxIntfAlloc< ReplyHandler_ptr, ReplyHandler> >
ReplyHandler_var;

typedef ITCxxObjRef_out< ReplyHandler_ptr, ReplyHandler,
ITCxxIntfAlloc< ReplyHandler_ptr, ReplyHandler> >
ReplyHandler_out;

...
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr

_tc_ReplyHandler;

class IT_ART_API ReplyHandler : public virtual CORBA::Object {
public:
 typedef Messaging::ReplyHandler_ptr _ptr_type;
 typedef Messaging::ReplyHandler_var _var_type;

 virtual ~ReplyHandler();

 ...
 static ReplyHandler_ptr _narrow(
 CORBA::Object_ptr obj
);

 static ReplyHandler_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

 inline static ReplyHandler_ptr _duplicate(
 ReplyHandler_ptr p
);

 inline static ReplyHandler_ptr _nil();
 ...
};

See page 5 for descriptions of the standard helper methods:

� _duplicate()

� _narrow()

� _nil()
 512

� _unchecked_narrow()

ReplyHandler::_local_narrow()

virtual void* _local_narrow(
 const char* tag
);

Note: For internal use only.

ReplyHandler::~ReplyHandler() Destructor

virtual ~ReplyHandler();

The destructor for the object.
513

Orbix 2000 Programmer�s Reference Guide C++ Edition
 514

Messaging::RoutingPolicy Class
The RoutingPolicy is a QoS policy that specifies whether or not the ORB
must ensure delivery of a request through the use of queueing. This interface
is a local object derived from CORBA::Policy.

When you create instances of RoutingPolicy, you pass a value of type
RoutingTypeRange to CORBA::ORB::create_policy(). An instance of
RoutingPolicy may be specified when creating a POA and therefore may be
represented in object references.

In addition, a POA�s RoutingPolicy is visible to clients through the object
references it creates, and reconciled with the client�s override. If set on both
the client and server, reconciliation is performed by intersecting the
server-specified RoutingPolicy range with the range of the client�s effective
override.

 class RoutingPolicy;
typedef RoutingPolicy* RoutingPolicy_ptr;
typedef ITCxxObjRef_var< RoutingPolicy_ptr, RoutingPolicy,

ITCxxIntfAlloc< RoutingPolicy_ptr, RoutingPolicy> >
RoutingPolicy_var;

typedef ITCxxObjRef_out< RoutingPolicy_ptr, RoutingPolicy,
ITCxxIntfAlloc< RoutingPolicy_ptr, RoutingPolicy> >
RoutingPolicy_out;

...
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr

_tc_RoutingPolicy;

class IT_ART_API RoutingPolicy : public virtual ::CORBA::Policy {
public:
 typedef Messaging::RoutingPolicy_ptr _ptr_type;
 typedef Messaging::RoutingPolicy_var _var_type;

 virtual ~RoutingPolicy();
 ...
 static RoutingPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
515

Orbix 2000 Programmer�s Reference Guide C++ Edition
 static RoutingPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

 inline static RoutingPolicy_ptr _duplicate(
 RoutingPolicy_ptr p
);

 inline static RoutingPolicy_ptr _nil();

 virtual ::Messaging::RoutingTypeRange routing_range() = 0;
 ...
};

See page 5 for descriptions of the standard helper methods:

� _duplicate()

� _narrow()

� _nil()

� _unchecked_narrow()

RoutingPolicy::_local_narrow()

virtual void* _local_narrow(
 const char* tag
);

Note: For internal use only.

RoutingPolicy::~RoutingPolicy() Destructor

virtual ~RoutingPolicy();

The destructor for the object.
 516

RoutingPolicy::routing_range()

virtual ::Messaging::RoutingTypeRange routing_range() = 0;

Returns the routing type range.
517

Orbix 2000 Programmer�s Reference Guide C++ Edition
 518

Messaging::SyncScopePolicy Class
The SyncScopePolicy is an ORB-level QoS policy that modifies the behavior
of oneway operations. (Operations are specified in IDL with the oneway key-
word.) This policy is only applicable as a client-side override. It is applied to
oneway operations to indicate the synchronization scope with respect to the
target of that operation request. It is ignored when any non-oneway operation
is invoked. This policy is also applied when the DII is used with a flag of
INV_NO_RESPONSE because the DII is not required to consult an interface defi-
nition to determine if an operation is declared oneway. The default value of
this policy is not defined.

SyncScopePolicy is a local object derived from CORBA::Policy. You create
instances of SyncScopePolicy by passing a value of type Messaging::
SyncScope to CORBA::ORB::create_policy(). The client�s SyncScopePolicy
is propagated within a request in the request header�s response flags. Your
applications must explicitly set a SyncScopePolicy to ensure portability
across ORB implementations.

class SyncScopePolicy;
typedef SyncScopePolicy* SyncScopePolicy_ptr;
typedef ITCxxObjRef_var< SyncScopePolicy_ptr, SyncScopePolicy,

ITCxxIntfAlloc< SyncScopePolicy_ptr, SyncScopePolicy> >
SyncScopePolicy_var;

typedef ITCxxObjRef_out< SyncScopePolicy_ptr, SyncScopePolicy,
ITCxxIntfAlloc< SyncScopePolicy_ptr, SyncScopePolicy> >
SyncScopePolicy_out;

...
IT_ART_API IT_NAMESPACE_STATIC CORBA::TypeCode_ptr

_tc_SyncScopePolicy;

class IT_ART_API SyncScopePolicy :
 public virtual ::CORBA::Policy
{
public:
 typedef Messaging::SyncScopePolicy_ptr _ptr_type;
 typedef Messaging::SyncScopePolicy_var _var_type;

 virtual ~SyncScopePolicy();
519

Orbix 2000 Programmer�s Reference Guide C++ Edition
 ...
 static SyncScopePolicy_ptr _narrow(
 CORBA::Object_ptr obj
);

 static SyncScopePolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

 inline static SyncScopePolicy_ptr _duplicate(
 SyncScopePolicy_ptr p
);

 inline static SyncScopePolicy_ptr _nil();

 virtual ::Messaging::SyncScope synchronization() = 0;
 ...
};

See page 5 for descriptions of the standard helper methods:

� _duplicate()

� _narrow()

� _nil()

� _unchecked_narrow()

SyncScopePolicy::_local_narrow()

virtual void* _local_narrow(
 const char* tag
);

Note: For internal use only.
 520

SyncScopePolicy::synchronization()

virtual ::Messaging::SyncScope synchronization() = 0;

Returns the level of synchronization.

See Also Messaging::SyncScope

SyncScopePolicy::~SyncScopePolicy() Destructor

virtual ~SyncScopePolicy();

The destructor for the object.
521

Orbix 2000 Programmer�s Reference Guide C++ Edition
 522

IT_PolicyBase Module

IT_PolicyBase Overview
The IT_PolicyBase provides an IONA-specific base number for policy IDs so
that IONA policies do not conflict with any other policies.

IT_PolicyBase::IONA_POLICY_ID

// IDL
module IT_PolicyBase
{
 const unsigned long IONA_POLICY_ID = 0x49545F00;
};

// C++ in namespace IT_PolicyBase
IT_ART_API IT_NAMESPACE_STATIC const
 CORBA::ULong IONA_POLICY_ID;

The base policy identifier for all IONA-specific policies. Each IONA policy is
identified with a unique policy ID that is some increment of this base number.

Enhancement This is an Orbix enhancement.

See Also IT_CORBA
IT_PortableServer
525

Orbix 2000 Programmer�s Reference Guide C++ Edition
 526

 PortableInterceptor

Module

PortableInterceptor Module
The PortableInterceptor module consists of these interfaces:

ClientRequestInfo
ClientRequestInterceptor
Current
Interceptor
IORInfo
IORInterceptor
ORBInitializer
ORBInitInfo
PolicyFactory
RequestInfo
ServerRequestInfo
ServerRequestInterceptor

The PortableInterceptor module also has the following exceptions and
data types:

� InvalidSlot exception
� ForwardRequest exception
� ReplyStatus type
� SlotId type

PortableInterceptor::ForwardRequest Exception

// IDL
exception ForwardRequest {
 Object forward;
 boolean permanent;
};

The ForwardRequest exception allows an Interceptor to indicate to the ORB
that a retry of the request should occur with the new object given in the
exception. The permanent flag indicates whether the forward object is to
become permanent or used only on the forwarded request.
529

If an Interceptor raises a ForwardRequest exception, no other Interceptors
are called for that interception point. The remaining Interceptors in the Flow
Stack have their appropriate ending interception point called: receive_other
on the client, or send_other on the server. The reply_status in the
receive_other or send_other would be LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT, depending on the value of the permanent
element of ForwardRequest.

PortableInterceptor::InvalidSlot Exception

// IDL
exception InvalidSlot {};

Raised when a slot ID does not match an allocated slot.

PortableInterceptor::ReplyStatus Type

// IDL
typedef short ReplyStatus;
// Valid reply_status values:
const ReplyStatus SUCCESSFUL = 0;
const ReplyStatus SYSTEM_EXCEPTION = 1;
const ReplyStatus USER_EXCEPTION = 2;
const ReplyStatus LOCATION_FORWARD = 3;
const ReplyStatus LOCATION_FORWARD_PERMANENT = 4;
const ReplyStatus TRANSPORT_RETRY = 5;

This type is used to define an attribute describing the state of the result of an
operation invocation.

See Also RequestInfo::reply_status

PortableInterceptor::SlotId Type

// IDL
typedef unsigned long SlotId;

This type is used to define a slot ID, identifying a slot within its table.
 530

PortableInterceptor::
ClientRequestInfo Interface

This is a locally constrained interface.

// IDL
local interface ClientRequestInfo : RequestInfo {
 readonly attribute Object target;
 readonly attribute Object effective_target;
 readonly attribute IOP::TaggedProfile effective_profile;
 readonly attribute any received_exception;
 readonly attribute CORBA::RepositoryId received_exception_id;

 IOP::TaggedComponent get_effective_component(
 in IOP::ComponentId id
);
 IOP_N::TaggedComponentSeq get_effective_components(
 in IOP::ComponentId id
);
 CORBA::Policy get_request_policy(
 in CORBA::PolicyType type
);
 void add_request_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);
};

ClientRequestInfo is an object through which the client-side Interceptor
can access request information. It is passed to the client-side interception
points, just as ServerRequestInfo is passed to server-side interception
points. As there is information that is common to both, they both inherit from
a common interface�RequestInfo.
531

Some attributes and operations on ClientRequestInfo are not valid at all
interception points. Table 14 shows the validity of each attribute or
operation. If it is not valid, attempting to access it will result in a
BAD_INV_ORDER being raised with a standard minor code of 10.

Table 14: ClientRequestInfo Validity

send_request send_poll receive_reply receive_
exception

receive_other

request_id Yes Yes Yes Yes Yes

operation Yes Yes Yes Yes Yes

arguments Yes (note 1) No Yes No No

exceptions Yes No Yes Yes Yes

contexts Yes No Yes Yes Yes

operation_
context

Yes No Yes Yes Yes

result No No Yes No No

response_
expected

Yes Yes Yes Yes Yes

sync_scope Yes No Yes Yes Yes

reply_statu
s

No No Yes Yes Yes

forward_ref
erence

No No No No Yes (note 2)

get_slot Yes Yes Yes Yes Yes

get_request
service
context

Yes No Yes Yes Yes

get_reply_
service_
context

No No Yes Yes Yes
 532

Notes 1. When ClientRequestInfo is passed to send_request, there is an entry in
the list for every argument, whether in, inout, or out. But only the in and inout
arguments are available.

2. If the reply_status attribute is not LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT, accessing this attribute raises BAD_INV_ORDER
with a standard minor code of 10.

See Also ServerRequestInfo : RequestInfo; RequestInfo

target Yes Yes Yes Yes Yes

effective_
target

Yes Yes Yes Yes Yes

effective_
profile

Yes Yes Yes Yes Yes

received_
exception

No No No Yes No

received_
exception_i
d

No No No Yes No

get_effecti
ve_componen
t

Yes No Yes Yes Yes

get_effecti
ve_componen
ts

Yes No Yes Yes Yes

get_request
_policy

Yes No Yes Yes Yes

add_request
service
context

Yes No No No No

Table 14: ClientRequestInfo Validity

send_request send_poll receive_reply receive_
exception

receive_other
533

ClientRequestInfo::add_request_service_context()

// IDL
void add_request_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);

This operation allows Interceptors to add service contexts to a request for
information. There is no declaration of the order of the service contexts. They
may or may not appear in the order that they are added.

Parameters

ClientRequestInfo::effective_profile Attribute

// IDL
readonly attribute IOP::TaggedProfile effective_profile;

This attribute is the profile that is used to send a request for information. If a
location forward has occurred for this operation�s object and that object�s
profile changed accordingly, then this profile is that located profile.

ClientRequestInfo::effective_target Attribute

// IDL
readonly attribute Object effective_target;

This attribute is the actual object on which a request for information is
invoked. If the reply_status is LOCATION_FORWARD, then on subsequent
requests, effective_target contains the forwarded IOR while target

service_context The IOP::ServiceContext to be added to the request.

replace Indicates the behavior of this operation when a service
context already exists with the given ID:

� true: the existing service context is replaced by the
new one.

� false: BAD_INV_ORDER with minor code of 11 is
raised.
 534

remains unchanged. If the reply_status is LOCATION_FORWARD_PERMANENT,
then on subsequent requests, both effective_target and target contains
the forwarded IOR.

ClientRequestInfo::get_effective_component()

// IDL
IOP::TaggedComponent get_effective_component(
 in IOP::ComponentId id
);

This operation returns the IOP::TaggedComponent with the given ID from the
profile selected for this request. If there is more than one component for a
given component ID, it is undefined which component this operation returns.

If there is more than one component for a given component ID, call
get_effective_components instead.

Parameters

Exceptions

ClientRequestInfo::get_effective_components()

// IDL
IOP_N::TaggedComponentSeq get_effective_components(
 in IOP::ComponentId id
);

This operation returns all the tagged components with the given ID from the
profile elected for this request. This sequence is in the form of an IOP::
TaggedComponentSeq.

id The IOP::ComponentId of the component that is to be
returned.

BAD_PARAM,
minor code 25

No component exists for the given component ID.
535

Parameters

Exceptions

ClientRequestInfo::get_request_policy()

// IDL
CORBA::Policy get_request_policy(
 in CORBA::PolicyType type
);

This operation returns the given policy in effect for the current request for
information.

Parameters

Exceptions

ClientRequestInfo::received_exception Attribute

// IDL
readonly attribute any received_exception;

This attribute is an any that contains the exception to be returned to the
client.

If the exception is a user exception which cannot be inserted into an any (for
example, it is unknown or the bindings do not provide the TypeCode, this

id The IOP::ComponentId of the components which are to be
returned.

BAD_PARAM,
minor code 25

No component exists for the given component ID.

type The CORBA::PolicyType that specifies the policy to be
returned.

INV_POLICY,
minor code 1

The policy type is not valid either because the specified type
is not supported by this ORB or because a policy object of
that type is not associated with this Object.
 536

attribute will be an any containing the system exception UNKNOWN with a
standard minor code of 1.

However, the RepositoryId of the exception is available in the
received_exception_id attribute.

ClientRequestInfo::received_exception_id Attribute

// IDL
readonly attribute CORBA::RepositoryId received_exception_id;

This attribute is the CORBA::RepositoryId of the exception to be returned to
the client.

ClientRequestInfo::target Attribute

// IDL
readonly attribute Object target;

This attribute is the object that the client called to perform the operation.
537

 538

PortableInterceptor::
ClientRequestInterceptor Interface

This is a locally constrained interface.

// IDL
local interface ClientRequestInterceptor : Interceptor {
 void send_request(
 in ClientRequestInfo ri
) raises (ForwardRequest);
 void send_poll(
 in ClientRequestInfo ri
);
 void receive_reply(
 in ClientRequestInfo ri
);
 void receive_exception(
 in ClientRequestInfo ri
) raises (ForwardRequest);
 void receive_other(
 in ClientRequestInfo ri
) raises (ForwardRequest);
};

A request Interceptor is designed to intercept the flow of a request/reply
sequence through the ORB at specific points so that services can query the
request information and manipulate the service contexts which are
propagated between clients and servers.

The primary use of request Interceptors is to enable ORB services to transfer
context information between clients and servers. ClientRequestInterceptor
provides the client-side request interceptor.

See Also Interceptor
539

ClientRequestInterceptor::receive_exception()

// IDL
 void receive_exception(
 in ClientRequestInfo ri
) raises (ForwardRequest);

This interception point is called when an exception occurs. It allows an
Interceptor to query the exception�s information before it is raised to the
client. This interception point can raise a system exception. This has the
effect of changing the exception that successive Interceptors popped from the
Flow Stack receive on their calls to receive_exception. The exception
raised to the client is the last exception raised by an Interceptor, or the
original exception if no Interceptor changes the exception.

This interception point can also raise a ForwardRequest exception (see
�PortableInterceptor::ForwardRequest Exception� on page 529 for details on
this exception). If an Interceptor raises this exception, no other Interceptors�
receive_exception operations are called. The remaining Interceptors in the
Flow Stack are popped and have their receive_other interception point
called.

If the completion_status of the exception is not COMPLETED_NO, then it is
inappropriate for this interception point to raise a ForwardRequest exception.
The request�s at-most-once semantics would be lost.

Compliant Interceptors that follow completion_status semantics raise a
system exception from this interception point. If the original exception is a
system exception, the completion_status of the new exception is the same
as the original. If the original exception is a user exception, then the
completion_status of the new exception is COMPLETED_YES.

Under some conditions, depending on what policies are in effect, an
exception (such as COMM_FAILURE) can result in a retry of the request. While
this retry is a new request with respect to Interceptors, there is one point of
correlation between the original request and the retry: because control has
not returned to the client, the PortableInterceptor::Current for both the
original request and the retrying request is the same.
 540

ClientRequestInterceptor::receive_other()

// IDL
 void receive_other(
 in ClientRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query the information
available when a request results in something other than a normal reply or an
exception.

For example, a request could result in a retry (for example, a GIOP Reply with
a LOCATION_FORWARD status was received); or on asynchronous calls, the
reply does not immediately follow the request, but control returns to the
client and an ending interception point is called.

For retries, depending on the policies in effect, a new request may or may not
follow when a retry has been indicated. If a new request does follow there is
one point of correlation between the original request and the retry, with
respect to Interceptors, and for as long as this request is a new request. This
is because control has not returned to the client, and so the request scoped
PortableInterceptor::Current for both the original request and the
retrying request is the same.

This interception point can raise a system exception. If it does, no other
Interceptors� receive_other operations are called. The remaining
Interceptors in the Flow Stack are popped and have their receive_exception
interception point called.

This interception point can also raise a ForwardRequest exception (see
�PortableInterceptor::ForwardRequest Exception� on page 529 for details on
this exception). If an Interceptor raises this exception, successive
Interceptors� receive_other operations are called with the new information
provided by the ForwardRequest exception.

Compliant Interceptors properly follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status must be COMPLETED_NO. If the target invocation had
completed, this interception point would not be called.
541

ClientRequestInterceptor::receive_reply()

// IDL
 void receive_reply(
 in ClientRequestInfo ri
);

This interception point allows an Interceptor to query the information on a
reply, after it is returned from the server, and before control is returned to the
client. This interception point can raise a system exception. If it does, no
other Interceptors� receive_reply operations are called. The remaining
Interceptors in the Flow Stack have their receive_exception interception
point called.

Compliant Interceptors properly follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status is COMPLETED_YES.

ClientRequestInterceptor::send_poll()

// IDL
 void send_poll(
 in ClientRequestInfo ri
);

This interception point allows an Interceptor to query information during a
Time-Independent Invocation (TII) polling get reply sequence. With TII, an
application can poll for a response to a request sent previously by the polling
client or some other client. This poll is reported to Interceptors through the
send_poll interception point and the response is returned through the
receive_reply or receive_exception interception points. If the response is
not available before the poll time-out expires, the system exception TIMEOUT
is raised and receive_exception is called with this exception.

This interception point can raise a system exception. If it does, no other
Interceptors� send_poll operations are called. Those Interceptors on the
Flow Stack are popped and their receive_exception interception points are
called. Compliant Interceptors properly follow completion_status semantics
if they raise a system exception from this interception point. The
completion_status is COMPLETED_NO.
 542

ClientRequestInterceptor::send_request()

// IDL
 void send_request(
 in ClientRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query request information and
modify the service context before the request is sent to the server. This
interception point can raise a system exception. If it does, no other
Interceptors� send_request operations are called. Those Interceptors on the
Flow Stack are popped and their receive_exception interception points are
called.

This interception point may also raise a ForwardRequest exception (see
�PortableInterceptor::ForwardRequest Exception� on page 529 for details of
this exception). If an Interceptor raises this exception, no other Interceptors�
send_request operations are called. Those Interceptors on the Flow Stack
are popped and their receive_other interception points are called.

Compliant Interceptors follow completion_status semantics if they raise a
system exception from this interception point. The completion_status is
COMPLETED_NO.
543

 544

PortableInterceptor::Current Interface
This is a locally constrained interface.

// IDL
local interface Current : CORBA::Current {
 any get_slot(
 in SlotId id
) raises (InvalidSlot);
 void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);
};

The PortableInterceptor::Current object (referred to as PICurrent) is a
Current object that is used specifically by portable Interceptors to transfer
thread context information to a request context. Portable Interceptors are not
required to use PICurrent. But if information from a client�s thread context is
required at an Interceptor�s interception points, then PICurrent can be used
to propagate that information. PICurrent allows portable service code to be
written regardless of an ORB�s threading model.

On the client side, this information includes, but is not limited to, thread
context information that is propagated to the server through a service
context.

On the server side, this information includes, but is not limited to, service
context information received from the client which is propagated to the
target�s thread context.

Current::get_slot()

// IDL
any get_slot(
 in SlotId id
) raises (InvalidSlot);
545

A service can get the slot data it set in PICurrent with get_slot(). The
return value is the data, in the form of an any, of the given slot identifier.

If the given slot has not been set, an any containing a type code with a
TCKind value of tk_null and no value is returned.

Parameters

Exceptions

Current::set_slot()

// IDL
void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);

A service sets data in a slot with set_slot(). The data is in the form of an
any. If data already exists in that slot, it is overwritten.

Parameters

Exceptions

id The SlotId of the slot from which the data will be returned.

InvalidSlot get_slot() is called on a slot that has not been allocated.

id The SlotId of the slot to which the data is set.

data The data, in the form of an any, which will be set to the iden-
tified slot.

InvalidSlot set_slot() is called on a slot that has not been allocated.
 546

PortableInterceptor::Interceptor
Interface

This is a locally constrained interface.

// IDL
local interface Interceptor {
 readonly attribute string name;
};

Portable Interceptor interfaces and related type definitions reside in the module
PortableInterceptor. All portable Interceptors inherit from the local interface
Interceptor.

Interceptor::name Attribute

// IDL
readonly attribute string name;

Each Interceptor can have a name that is used to order the lists of
Interceptors. Only one Interceptor of a given name can be registered with the
ORB for each Interceptor type. An Interceptor can be anonymous, that is,
have an empty string as the name attribute. Any number of anonymous
Interceptors can be registered with the ORB.
547

 548

PortableInterceptor::IORInfo Interface
This is a locally constrained interface.

// IDL
local interface IORInfo {
 CORBA::Policy get_effective_policy(
 in CORBA::PolicyType type
);
 void add_ior_component(
 in IOP::TaggedComponent a_component
);
 void add_ior_component_to_profile(
 in IOP::TaggedComponent a_component,
 in IOP::ProfileId profile_id
);
};

In some cases, a portable ORB service implementation has to add information
describing the server�s or object�s ORB service capabilities to object references.
This permits the ORB service implementation in the client to function properly.

This is supported through the IORInterceptor and IORInfo interfaces. The
IOR Interceptor is used to establish tagged components in the profiles within
an IOR.

IORInfo::add_ior_component()

// IDL
void add_ior_component(
 in IOP::TaggedComponent a_component
);

A portable ORB service implementation can call add_ior_component from its
implementation of establish_components to add a tagged component to the
set that is included when constructing IORs. The components in this set is
included in all profiles.
549

Any number of components can exist with the same component ID.

Parameters

IORInfo::add_ior_component_to_profile()

// IDL
void add_ior_component_to_profile(
 in IOP::TaggedComponent a_component,
 in IOP::ProfileId profile_id
);

A portable ORB service can call add_ior_component_to_profile from its
implementation of establish_components to add a tagged component to the
set that is included when constructing IORs. The components in this set
included in the specified profile.

Any number of components can exist with the same component ID.

Exceptions

Parameters

.IORInfo::get_effective_policy()

// IDL
CORBA::Policy get_effective_policy(
 in CORBA::PolicyType type
);

a_component The IOP::TaggedComponent to add.

BAD_PARAM,
minor code 26

The given profile ID does not define a known profile or it is
impossible to add components to that profile.

a_component The IOP::TaggedComponent to add.

profile_id The IOP::ProfileId of the profile to which this component
is to be added.
 550

An ORB service implementation can determine what server side policy of a
particular type is in effect for an IOR being constructed by calling
get_effective_policy(). The returned CORBA::Policy object can only be a
policy whose type was registered with ORBInitInfo::
register_policy_factory (see �ORBInitInfo::register_policy_factory()� on
page 562).

The return value is the effective CORBA::Policy object of the requested type.

Parameters

Exceptions

type The CORBA::PolicyType specifying the type of policy to
return.

INV_POLICY,
minor code 2

A policy for the given type was not registered with
register_policy_factory().
551

 552

PortableInterceptor::IORInterceptor
Interface

This is a locally constrained interface.

// IDL
local interface IORInterceptor : Interceptor {
 void establish_components(
 in IORInfo info
);
};

In some cases, a portable ORB service implementation has to add information
describing the server�s or object�s ORB service capabilities to object references.
This permits the ORB service implementation in the client to function properly.

This is supported through the IORInterceptor and IORInfo interfaces. The
IOR Interceptor is used to establish tagged components in the profiles within
an IOR.

IORInterceptor::establish_components()

// IDL
void establish_components(
 in IORInfo info
);

A server side ORB calls establish_components() on all registered
IORInterceptor instances when it is assembling the list of components that
to be included in the profile or profiles of an object reference.

This operation is not necessarily called for each individual object reference.
For example, the POA specifies policies at POA granularity and therefore, this
operation might be called once per POA rather than once per object. In any
case, establish_components is guaranteed to be called at least once for
each distinct set of server policies.
553

An implementation of establish_components must not throw exceptions. If
it does, the ORB ignores the exception and proceeds to call the next IOR
Interceptor�s establish_components() operation.

Parameters

info The IORInfo instance used by the ORB service to query
applicable policies and add components to be included in the
generated IORs.
 554

PortableInterceptor::ORBInitializer
Interface

This is a locally constrained interface.

// IDL
local interface ORBInitializer {
 void pre_init(
 in ORBInitInfo info
);
 void post_init(
 in ORBInitInfo info
);
};

Interceptors are a means by which ORB services gain access to ORB process-
ing, effectively becoming part of the ORB. Since Interceptors are part of the
ORB, when ORB_init returns an ORB, the Interceptors have been registered.

Interceptors cannot be registered on an ORB after it has been returned by a
call to ORB_init.

An Interceptor is registered by registering an associated ORBInitializer object
that implements the ORBInitializer interface. When an ORB initializes, it
calls each registered ORBInitializer, passing it an ORBInitInfo object that
is used to register its Interceptor.

ORBInitializer::post_init()

// IDL
 void post_init(
 in ORBInitInfo info
);

This operation is called during ORB initialization. If a service must resolve
initial references as part of its initialization, it can assume that all initial
references are available at this point.
555

Parameters

ORBInitializer::pre_init()

// IDL
 void pre_init(
 in ORBInitInfo info
);

This operation is called during ORB initialization. All calls to ORBInitInfo::
register_initial_reference must be made at this point so that the list of
initial references is complete for the post_init point.

Parameters

info This object provides initialization attributes and operations by
which Interceptors can be registered.

info This object provides initialization attributes and operations by
which Interceptors can be registered.
 556

PortableInterceptor::ORBInitInfo
Interface

This is a locally constrained interface.

// IDL
local interface ORBInitInfo {
 typedef string ObjectId;
 exception DuplicateName {
 string name;
 };
 exception InvalidName {};
 readonly attribute CORBA::StringSeq arguments;
 readonly attribute string orb_id;
 readonly attribute IOP_N::CodecFactory codec_factory;

 void register_initial_reference(
 in ObjectId id,
 in Object obj
) raises (InvalidName);
 void resolve_initial_references(
 in ObjectId id
) raises (InvalidName);
 void add_client_request_interceptor(
 in ClientRequestInterceptor interceptor
) raises (DuplicateName);
 void add_server_request_interceptor(
 in ServerRequestInterceptor interceptor
) raises (DuplicateName);
 void add_ior_interceptor(
 in IORInterceptor interceptor
) raises (DuplicateName);
 SlotId allocate_slot_id();
 void register_policy_factory(
 in CORBA::PolicyType type,
 in PolicyFactory policy_factory
557

);
};

Interceptors are a means by which ORB services gain access to ORB process-
ing, effectively becoming part of the ORB. Since Interceptors are part of the
ORB, when ORB_init returns an ORB, the Interceptors have been registered.

Interceptors cannot be registered on an ORB after it has been returned by a
call to ORB_init.

An Interceptor is registered by registering an associated ORBInitializer object
that implements the ORBInitializer interface. When an ORB initializes, it
calls each registered ORBInitializer, passing it an ORBInitInfo object that
is used to register its Interceptor.

ORBInitInfo::add_client_request_interceptor()

// IDL
void add_client_request_interceptor(
 in ClientRequestInterceptor interceptor
) raises (DuplicateName);

This operation is used to add a client-side request Interceptor to the list of
client-side request Interceptors.

Parameters

Exceptions

ORBInitInfo::add_ior_interceptor()

// IDL
void add_ior_interceptor(
 in IORInterceptor interceptor
) raises (DuplicateName);

This operation is used to add an IOR Interceptor to the list of IOR
Interceptors.

interceptor The ClientRequestInterceptor to be added.

DuplicateName A client-side request Interceptor has already been registered
with this Interceptor�s name.
 558

Parameters

Exceptions

ORBInitInfo:add_server_request_interceptor()

// IDL
void add_server_request_interceptor(
 in ServerRequestInterceptor interceptor
) raises (DuplicateName);

This operation is used to add a server-side request Interceptor to the list of
server-side request Interceptors.

If a server-side request Interceptor has already been registered with this
Interceptor�s name, DuplicateName is raised.

Parameters

ORBInitInfo::allocate_slot_id()

// IDL
SlotId allocate_slot_id();

A service calls allocate_slot_id to allocate a slot on
PortableInterceptor::Current.

The return value is the allocated slot index.

ORBInitInfo::arguments Attribute

// IDL
readonly attribute CORBA::StringSeq arguments;

interceptor The IORInterceptor to be added.

DuplicateName An IOR Interceptor has already been registered with this Inter-
ceptor�s name.

interceptor The ServerRequestInterceptor to be added.
559

This attribute contains the arguments passed to ORB_init. They may or may
not contain the ORB�s arguments.

ORBInitInfo::codec_factory Attribute

// IDL
readonly attribute IOP_N::CodecFactory codec_factory;

This attribute is the IOP::CodecFactory. The CodecFactory is normally
obtained with a call to ORB::resolve_initial_references
(“CodecFactory”), but as the ORB is not yet available and Interceptors,
particularly when processing service contexts, require a Codec, a means of
obtaining a Codec is necessary during ORB initialization.

ORBInitInfo::DuplicateName Exception

// IDL
exception DuplicateName {
 string name;
};

Only one Interceptor of a given name can be registered with the ORB for each
Interceptor type. If an attempt is made to register a second Interceptor with
the same name, DuplicateName is raised.

An Interceptor can be anonymous, that is, have an empty string as the name
attribute.

Any number of anonymous Interceptors may be registered with the ORB so, if
the Interceptor being registered is anonymous, the registration operation will
not raise DuplicateName.

ORBInitInfo::InvalidName Exception

// IDL
exception InvalidName {};

This exception is raised by register_initial_reference and
resolve_initial_references.
 560

register_initial_reference raises InvalidName if this operation is called
with an empty string id; or this operation is called with an id that is already
registered, including the default names defined by OMG.

resolve_initial_references raises InvalidName if the name to be
resolved is invalid.

ORBInitInfo::ObjectId Type

// IDL
typedef string ObjectId;

See Also ORBInitInfo::register_initial_reference()

ORBInitInfo::orb_id Attribute

// IDL
readonly attribute string orb_id;

This attribute is the ID of the ORB being initialized.

ORBInitInfo::register_initial_reference()

// IDL
void register_initial_reference(
 in ObjectId id,
 in Object obj
) raises (InvalidName);

If this operation is called with an id, �Y�, and an object, YY, then a
subsequent call to ORB::resolve_initial_references (“Y”) will return
object YY.

Parameters

id The ID by which the initial reference will be known.

obj The initial reference itself.
561

Exceptions

Notes This method is identical to an operation is available in the ORB interface. This
same functionality exists here because the ORB, not yet fully initialized, is not
yet available but initial references may need to be registered as part of
Interceptor registration. The only difference is that the version of this operation
on the ORB uses PIDL (CORBA::ORB::ObjectId and CORBA::ORB::
InvalidName) whereas the version in this interface uses IDL defined in this
interface; the semantics are identical.

ORBInitInfo::register_policy_factory()

// IDL
void register_policy_factory(
 in CORBA::PolicyType type,
 in PolicyFactory policy_factory
);

Register a PolicyFactory for the given PolicyType.

Parameters

Exceptions

BAD_PARAM,
minor code 24

The Object parameter is null.

InvalidName Raised if this operation is called with:

� an empty string id.
� an id that is already registered, including the default

names defined by OMG.

type The CORBA::PolicyType that the given PolicyFactory
serves.

policy_factory The factory for the given CORBA::PolicyType.

BAD_INV_ORDER
with minor code
12

A PolicyFactory already exists for the given PolicyType.
 562

ORBInitInfo::resolve_initial_references()

// IDL
void resolve_initial_references(
 in ObjectId id
) raises (InvalidName);

This operation is only valid during post_init. It is identical to ORB::
resolve_initial_references. This same functionality exists here because
the ORB, not yet fully initialized, is not yet available but initial references can
be required from the ORB as part of Interceptor registration. The only
difference is that the version of this operation on the ORB uses PIDL (CORBA:
:ORB::ObjectId and CORBA::ORB::InvalidName) whereas the version in
this interface uses IDL defined in this interface; the semantics are identical.
563

 564

PortableInterceptor::PolicyFactory
Interface

This is a locally constrained interface.

// IDL
local interface PolicyFactory {
 CORBA::Policy create_policy(
 in CORBA::PolicyType type,
 in any value
) raises (CORBA::PolicyError);
};

A portable ORB service implementation registers an instance of the
PolicyFactory interface during ORB initialization in order to enable its policy
types to be constructed using CORBA::ORB::create_policy. The POA is
required to preserve any policy which is registered with ORBInitInfo in this
manner.

PolicyFactory::create_policy()

// IDL
CORBA::Policy create_policy(
 in CORBA::PolicyType type,
 in any value
) raises (CORBA::PolicyError);

The ORB calls create_policy on a registered PolicyFactory instance
when CORBA::ORB::create_policy is called for the PolicyType under
which the PolicyFactory has been registered.

create_policy returns an instance of the appropriate interface derived from
CORBA::Policy whose value corresponds to the specified any. If it cannot, it
raises an exception as described for CORBA::ORB::create_policy.
565

Parameters

type A CORBA::PolicyType specifying the type of policy being cre-
ated.

value An any containing data with which to construct the CORBA::
Policy.
 566

PortableInterceptor::RequestInfo
Interface

This is a locally constrained interface.

// IDL
local interface RequestInfo {
 readonly attribute unsigned long request_id;
 readonly attribute string operation;
 readonly attribute Dynamic::ParameterList arguments;
 readonly attribute Dynamic::ExceptionList exceptions;
 readonly attribute Dynamic::ContextList contexts;
 readonly attribute Dynamic::RequestContext operation_context;
 readonly attribute any result;
 readonly attribute boolean response_expected;
 readonly attribute Messaging::SyncScope sync_scope;
 readonly attribute ReplyStatus reply_status;
 readonly attribute Object forward_reference;
 any get_slot(
 in SlotId id
) raises (InvalidSlot);
 IOP::ServiceContext get_request_service_context(
 in IOP::ServiceId id
);
 IOP::ServiceContext get_reply_service_context(
 in IOP::ServiceId id
);
};

Each interception point is given an object through which the Interceptor can
access request information. Client-side and server-side interception points are
concerned with different information, so there are two information objects.
ClientRequestInfo is passed to the client-side interception points and
ServerRequestInfo is passed to the server-side interception points. But as
there is information that is common to both, so they both inherit from a
common interface: RequestInfo.
567

See Also ClientRequestInfo; ServerRequestInfo

RequestInfo::arguments Attribute

// IDL
readonly attribute Dynamic::ParameterList arguments;

This attribute is a Dynamic::ParameterList containing the arguments on the
operation being invoked. If there are no arguments, this attribute is a zero
length sequence.

Exceptions

RequestInfo::contexts Attribute

// IDL
readonly attribute Dynamic::ContextList contexts;

This attribute is a Dynamic::ContextList describing the contexts that can be
passed on this operation invocation. If there are no contexts, this attribute is
a zero length sequence.

Exceptions

RequestInfo::exceptions Attribute

// IDL
readonly attribute Dynamic::ExceptionList exceptions;

This attribute is a Dynamic::ExceptionList describing the TypeCodes of the
user exceptions that this operation invocation can raise. If there are no user
exceptions, this attribute is a zero length sequence.

NO_RESOURCES,
minor code 1

The environment does not provide access to the arguments�
for example, in the case of Java portable bindings.

NO_RESOURCES,
minor code 1

The environment does not provide access to the context list�
for example, in the case of Java portable bindings.
 568

Exceptions

RequestInfo::forward_reference Attribute

// IDL
readonly attribute Object forward_reference;

If the reply_status attribute is LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT, then this attribute contains the object to which
the request is to be forwarded. It is indeterminate whether a forwarded request
actually occurs.

RequestInfo::get_reply_service_context()

// IDL
IOP::ServiceContext get_reply_service_context(
 in IOP::ServiceId id
);

This operation returns a copy of the service context with the given ID that is
associated with the reply.

The return value is the IOP::ServiceContext obtained with the given identi-
fier.

Parameters

Exceptions

NO_RESOURCES,
minor code 1

The environment does not provide access to the exception
list�for example, in the case of Java portable bindings.

id The IOP::ServiceId of the service context which is to be
returned.

BAD_PARAM with
minor code 23

The request�s service context does not contain an entry for the
specified ID.
569

RequestInfo::get_request_service_context()

// IDL
IOP::ServiceContext get_request_service_context(
 in IOP::ServiceId id
);

This operation returns a copy of the service context with the given ID that is
associated with the request.

The return value is the IOP::ServiceContext obtained with the given identifier.

Parameters

Exceptions

RequestInfo::get_slot()

// IDL
any get_slot(
 in SlotId id
) raises (InvalidSlot);

This operation returns the data from the given slot of the
PortableInterceptor::Current that is in the scope of the request. If the
given slot has not been set, then an any containing a type code with a TCKind
value of tk_null is returned.

The return value is the slot data, in the form of an any, obtained with the given
identifier.

Parameters

Exceptions

id The IOP::ServiceId of the service context which is to be
returned.

BAD_PARAM with
minor code 23

The request�s service context does not contain an entry for the
specified ID.

id The SlotId of the slot that is to be returned.

InvalidSlot The ID does not define an allocated slot.
 570

RequestInfo::operation Attribute

// IDL
readonly attribute string operation;

This attribute is the name of the operation being invoked.

RequestInfo::operation_context Attribute

// IDL
readonly attribute Dynamic::RequestContext operation_context;

This attribute is a Dynamic::RequestContext containing the contexts being
sent on the request

Exceptions

RequestInfo::reply_status Attribute

// IDL
readonly attribute ReplyStatus reply_status;

This attribute describes the state of the result of the operation invocation. Its
value can be one of the following:

PortableInterceptor::SUCCESSFUL
PortableInterceptor::SYSTEM_EXCEPTION
PortableInterceptor::USER_EXCEPTION
PortableInterceptor::LOCATION_FORWARD
PortableInterceptor::LOCATION_FORWARD_PERMANENT
PortableInterceptor::TRANSPORT_RETRY

On the client:

� Within the receive_reply interception point, this attribute is only
SUCCESSFUL.

� Within the receive_exception interception point, this attribute is either
SYSTEM_EXCEPTION or USER_EXCEPTION.

NO_RESOURCES,
minor code 1

The environment does not provide access to the context�for
example, in the case of Java portable bindings.
571

� Within the receive_other interception point, this attribute is any of
SUCCESSFUL, LOCATION_FORWARD, LOCATION_FORWARD_PERMANENT, or
TRANSPORT_RETRY.

SUCCESSFUL means an asynchronous request returned successfully.

LOCATION_FORWARD and LOCATION_FORWARD_PERMANENT mean that a reply
came back with one of these as its status.

TRANSPORT_RETRY means that the transport mechanism indicated a retry: a
GIOP reply with a status of NEEDS_ADDRESSING_MODE, for instance.

On the server:

� Within the send_reply interception point, this attribute is only
SUCCESSFUL.

� Within the send_exception interception point, this attribute is either
SYSTEM_EXCEPTION or USER_EXCEPTION.

� Within the send_other interception point, this attribute is any of:
SUCCESSFUL, LOCATION_FORWARD, or LOCATION_FORWARD_PERMANENT.
SUCCESSFUL means an asynchronous request returned successfully.
LOCATION_FORWARD and LOCATION_FORWARD_PERMANENT mean that a
reply came back with one of these as its status.

RequestInfo::request_id Attribute

// IDL
readonly attribute unsigned long request_id;

This ID uniquely identifies an active request/reply sequence. Once a request/
reply sequence is concluded this ID may be reused.

Note that this id is not the same as the GIOP request_id. If GIOP is the
transport mechanism used, then these IDs may very well be the same, but
this is not guaranteed nor required.

RequestInfo::response_expected Attribute

// IDL
readonly attribute boolean response_expected;
 572

This boolean attribute indicates whether a response is expected. On the
client:

� A reply is not returned when response_expected is false, so
receive_reply cannot be called.

� If an exception occurs, receive_exception is called.
� Otherwise receive_other is called.

On the client, within send_poll, this attribute is true.

RequestInfo::result Attribute

// IDL
readonly attribute any result;

This attribute is an any containing the result of the operation invocation.

If the operation return type is void, this attribute is an any containing a type
code with a TCKind value of tk_void and no value.

Exceptions

RequestInfo::sync_scope Attribute

// IDL
readonly attribute Messaging::SyncScope sync_scope;

This attribute, defined in the Messaging specification, is pertinent only when
response_expected is false. If response_expected is true, the value of
sync_scope is undefined. It defines how far the request progresses before
control is returned to the client. This attribute may have one of the following
values:

Messaging::SYNC_NONE
Messaging::SYNC_WITH_TRANSPORT
Messaging::SYNC_WITH_SERVER
Messaging::SYNC_WITH_TARGET

NO_RESOURCES,
minor code 1

The environment does not provide access to the result�for
example, in the case of Java portable bindings.
573

On the server, for all scopes, a reply is created from the return of the target
operation call, but the reply does not return to the client. Although it does not
return to the client, it does occur, so the normal server-side interception
points are followed (that is, receive_request_service_contexts,
receive_request, send_reply or send_exception). For SYNC_WITH_SERVER
and SYNC_WITH_TARGET, the server does send an empty reply back to the
client before the target is invoked. This reply is not intercepted by server-side
Interceptors.
 574

PortableInterceptor::
ServerRequestInfo Interface

This is a locally constrained interface.

// IDL
local interface ServerRequestInfo : RequestInfo {
 readonly attribute any sending_exception;
 readonly attribute CORBA::OctetSeq object_id;
 readonly attribute CORBA::OctetSeq adapter_id;
 readonly attribute
 CORBA::RepositoryId target_most_derived_interface;
 CORBA::Policy get_server_policy(
 in CORBA::PolicyType type
);
 void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);
 boolean target_is_a(
 in CORBA::RepositoryId id
);
 void add_reply_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);
};

ServerRequestInfo is an object through which the server-side Interceptor
can access request information. It is passed to the server-side interception
points, just as ClientRequestInfo is passed to client-side interception
points. As there is information that is common to both, they both inherit from
a common interface�RequestInfo.
575

f

ServerRequestInfo::adapter_id Attribute

// IDL
readonly attribute CORBA::OctetSeq adapter_id;

This attribute is the opaque identifier for the object adapter.

ServerRequestInfo::add_reply_service_context()

// IDL
void add_reply_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);

This operation allows Interceptors to add service contexts to the request. There
is no declaration of the order of the service contexts. They may or may not
appear in the order that they are added.

Parameters

ServerRequestInfo::get_server_policy()

// IDL
CORBA::Policy get_server_policy(
 in CORBA::PolicyType type
);

This operation returns the policy in effect for this operation for the given policy
type. The returned CORBA::Policy object is a policy whose type was registered
using register_policy_factory

service_context The IOP::ServiceContext to add to the reply.

replace Indicates the behavior of this operation when a service con-
text already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 11 is raised. I
true, then the existing service context is replaced by the new
one.
 576

Parameters

Exceptions

ServerRequestInfo::object_id Attribute

// IDL
readonly attribute CORBA::OctetSeq object_id;

This attribute is the opaque object_id describing the target of the
operationinvocation.

ServerRequestInfo::sending_exception Attribute

// IDL
readonly attribute any sending_exception;

This attribute is an any that contains the exception to be returned to the
client.

If the exception is a user exception which cannot be inserted into an any (that
is, it is unknown or the bindings do not provide the TypeCode), this attribute
is an any containing the system exception UNKNOWN with a standard minor code
of 1.

ServerRequestInfo::set_slot()

// IDL
void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);

type The CORBA::PolicyType which specifies the policy to be
returned.

INV_POLICY,
minor code 2

A policy for the given type was not registered using
register_policy_factory().
577

This operation allows an Interceptor to set a slot in the PortableInterceptor:
:Current that is in the scope of the request. If data already exists in that slot,
it is overwritten.

Parameters

Exceptions

ServerRequestInfo::target_is_a()

// IDL
boolean target_is_a(
 in CORBA::RepositoryId id
);

This operation returns true if the servant is the given RepositoryId, and
false if it is not.

Parameters

ServerRequestInfo::target_most_derived_interface Attribute

// IDL
readonly attribute
 CORBA::RepositoryId target_most_derived_interface;

This attribute is the RepositoryID for the most derived interface of the servant.

id The SlotId of the slot.

data The data, in the form of an any, to store in that slot.

InvalidSlot The ID does not define an allocated slot.

id The caller wants to know if the servant is this CORBA::
RepositoryId.
 578

PortableInterceptor::
ServerRequestInterceptor Interface

This is a locally constrained interface.

// IDL
local interface ServerRequestInterceptor : Interceptor {
 void receive_request_service_contexts(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 void receive_request(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 void send_reply(
 in ServerRequestInfo ri
);
 void send_exception(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 void send_other(
 in ServerRequestInfo ri
) raises (ForwardRequest);
};

A request Interceptor is designed to intercept the flow of a request/reply
sequence through the ORB at specific points so that services can query the
request information and manipulate the service contexts which are
propagated between clients and servers.

The primary use of request Interceptors is to enable ORB services to transfer
context information between clients and servers. ServerRequestInterceptor
provides the server-side request interceptor.
579

ServerRequestInterceptor::receive_request()

// IDL
void receive_request(
 in ServerRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query request information
after all the information, including operation parameters, is available. This
interception point may or may not execute in the same thread as the target
invocation.

In the DSI model, as the parameters are first available when the user code
calls arguments, receive_request is called from within arguments. It is
possible that arguments is not called in the DSI model. The target can call
set_exception before calling arguments.

The ORB guarantees that receive_request is called once, either through
arguments or through set_exception. If it is called through set_exception,
requesting the arguments results in NO_RESOURCES being raised with a
standard minor code of 1.This interception point can raise a system
exception. If it does, no other Interceptors� receive_request operations are
called. Those Interceptors on the Flow Stack are popped and their
send_exception interception points are called.

This interception point can also raise a ForwardRequest exception If an
Interceptor raises this exception, no other Interceptors� receive_request
operations are called. Those Interceptors on the Flow Stack are popped and
their send_other interception points are called.

Compliant Interceptors follow completion_status semantics if they raise a
system exception from this interception point. The completion_status shall
be COMPLETED_NO.

ServerRequestInterceptor::receive_request_service_contexts()

// IDL
void receive_request_service_contexts(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 580

At this interception point, Interceptors must get their service context
information from the incoming request transfer it to PortableInterceptor::
Current slots This interception point is called before the servant manager is
called. Operation parameters are not yet available at this point. This
interception point may or may not execute in the same thread as the target
invocation.

This interception point can raise a system exception. If it does, no other
Interceptors� receive_request_service_contexts operations are called.
Those Interceptors on the Flow Stack are popped and their send_exception
interception points are called.

This interception point can also raise a ForwardRequest exception (see
�PortableInterceptor::ForwardRequest Exception� on page 529). If an
Interceptor raises this exception, no other Interceptors�
receive_request_service_contexts operations are called. Those
Interceptors on the Flow Stack are popped and their send_other interception
points are called.

Compliant Interceptors follow completion_status semantics if they raise a
system exception from this interception point. The completion_status is
COMPLETED_NO.

ServerRequestInterceptor::send_exception()

// IDL
void send_exception(
 in ServerRequestInfo ri
) raises (ForwardRequest);

This interception point is called when an exception occurs. It allows an
Interceptor to query the exception information and modify the reply service
context before the exception is raised to the client.

This interception point can raise a system exception. This has the effect of
changing the exception that successive Interceptors popped from the Flow
Stack receive on their calls to send_exception. The exception raised to the
client is the last exception raised by an Interceptor, or the original exception if
no Interceptor changes the exception.
581

This interception point also raises a ForwardRequest exception (see
�PortableInterceptor::ForwardRequest Exception� on page 529). If an
Interceptor raises this exception, no other Interceptors� send_exception
operations are called. The remaining Interceptors in the Flow Stack have their
send_other interception points called.

If the completion_status of the exception is not COMPLETED_NO, then it is
inappropriate for this interception point to raise a ForwardRequest exception.
The request�s at-most-once semantics would be lost.

Compliant Interceptors follow completion_status semantics if they raise a
system exception from this interception point. If the original exception is a
system exception, the completion_status of the new exception is the same
as on the original. If the original exception is a user exception, then the
completion_status of the new exception shall be COMPLETED_YES.

ServerRequestInterceptor::send_other()

// IDL
void send_other(
 in ServerRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query the information
available when a request results in something other than a normal reply or an
exception. For example, a request could result in a retry (for example, a GIOP
Reply with a LOCATION_FORWARD status was received).

This interception point can raise a system exception. If it does, no other
Interceptors� send_other operations are called. The remaining Interceptors
in the Flow Stack have their send_exception interception points called.

This interception point can also raise a ForwardRequest exception (see
�PortableInterceptor::ForwardRequest Exception� on page 529). If an
Interceptor raises this exception, successive Interceptors� operations are
called with the new information provided by the ForwardRequest exception.

Compliant Interceptors follow completion_status semantics if they raise a
system exception from this interception point. The completion_status is
COMPLETED_NO.
 582

ServerRequestInterceptor::send_reply()

// IDL
void send_reply(
 in ServerRequestInfo ri
);

This interception point allows an Interceptor to query reply information and
modify the reply service context after the target operation has been invoked
and before the reply is returned to the client.

This interception point can raise a system exception. If it does, no other
Interceptors� send_reply operations are called. The remaining Interceptors in
the Flow Stack have their send_exception interception point called.

Compliant Interceptors follow completion_status semantics if they raise a
system exception from this interception point. The completion_status is
COMPLETED_YES.
583

 584

 PortableServer Module

PortableServer Overview
The PortableServer module includes a number of data structures and
classes that are specific to a portable object adapter, or POA. This chapter
describes the following:

� �PortableServer Conversion Functions�
� �PortableServer Data Types, Constants, and Exceptions�

The rest of the PortableServer classes and interfaces are described in
subsequent chapters as follows:

� �PortableServer::AdapterActivator Interface�
� �PortableServer::Current Interface�
� �PortableServer::DynamicImplementation Class�
� �PortableServer::POA Interface�
� �PortableServer::POAManager Interface�
� �PortableServer::ServantActivator Interface�
� �PortableServer::ServantLocator Interface�
� �PortableServer::ServantManager Interface�

The PortableServer policy classes are described in subsequent chapters as
follows:

� �PortableServer::IdAssignmentPolicy Interface�
� �PortableServer::IdUniquenessPolicy Interface�
� �PortableServer::ImplicitActivationPolicy Interface�
� �PortableServer::LifespanPolicy Interface�
� �PortableServer::RequestProcessingPolicy Interface�
� �PortableServer::ServantRetentionPolicy Interface�
� �PortableServer::ThreadPolicy Interface�
587

PortableServer Conversion Functions
Objects that are registered with POAs are identified by ObjectId types, which
are sequences of octets. The PortableServer module contains several
conversion functions that let you use strings as object identifiers.

// C++
namespace PortableServer {
 char* ObjectId_to_string(const ObjectId&);
 wchar_t* ObjectId_to_wstring(const ObjectId&);
 ObjectId* string_to_ObjectId(const char*);
 ObjectId* wstring_to_ObjectId(const wchar_t*);
}

ObjectId_to_string()

char* ObjectId_to_string(
 const ObjectId&
);

Converts an ObjectId to a string.

ObjectId_to_wstring()

wchar_t* ObjectId_to_wstring(
 const ObjectId&
);

Converts an ObjectId to a wide string.

string_to_ObjectId()

ObjectId* string_to_ObjectId(
 const char*
);

Converts a string to an ObjectId.
 588

PortableServer Data Types, Constants, and Exceptions
wstring_to_ObjectId()

ObjectId* wstring_to_ObjectId(
 const wchar_t*
);

Converts a wide string to an ObjectId.

PortableServer Data Types, Constants, and
Exceptions

The PortableServer module contains the following common exception and
data types:

PortableServer::ForwardRequest Exception

//IDL
exception ForwardRequest {
 Object forward_reference;
};

In addition to standard CORBA exceptions, a servant manager is capable of
raising a ForwardRequest exception. This exception includes an object refer-
ence.

Table 15: PortableServer Common Types

Common Types
and Exceptions

Policy Value Enumerations Policy ID Constants

ForwardRequest
ObjectId
POAList
Servant

IdAssignmentPolicyValue
IdUniquenessPolicyValue
ImplicitActivationPolicyValue
LifespanPolicyValue
RequestProcessingPolicyValue
ServantRetentionPolicyValue
ThreadPolicyValue

ID_ASSIGNMENT_POLICY_ID
ID_UNIQUENESS_POLICY_ID
IMPLICIT_ACTIVATION_POLICY_ID
LIFESPAN_POLICY_ID
REQUEST_PROCESSING_POLICY_ID
SERVANT_RETENTION_POLICY_ID
THREAD_POLICY_ID
589

PortableServer::ID_ASSIGNMENT_POLICY_ID Constant

//IDL
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;

Defines an ID for the policy IdAssignmentPolicy.

PortableServer::IdAssignmentPolicyValue Enumeration

// IDL
enum IdAssignmentPolicyValue {
 USER_ID,
 SYSTEM_ID
};

One of the following values can be supplied when creating an
IdAssignmentPolicy policy.

PortableServer::ID_UNIQUENESS_POLICY_ID Constant

//IDL
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;

Defines an ID for the policy IdUniquenessPolicy.

PortableServer::IdUniquenessPolicyValue Enumeration

// IDL
enum IdUniquenessPolicyValue {
 UNIQUE_ID,
 MULTIPLE_ID

USER_ID Objects created with the POA are assigned an
ObjectId only by the application.

SYSTEM_ID Objects created with the POA are assigned an
ObjectId only by the POA. If the POA also has the
PERSISTENT policy for its objects, the assigned
ObjectId must be unique across all instantiations of
the same POA.
 590

PortableServer Data Types, Constants, and Exceptions
};

One of the following values can be supplied when creating an
IdUniquenessPolicy policy.

PortableServer::IMPLICIT_ACTIVATION_POLICY_ID Constant

//IDL
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;

Defines an ID for the policy ImplicitActivationPolicy.

PortableServer::ImplicitActivationPolicyValue Enumeration

// IDL
enum ImplicitActivationPolicyValue {
 IMPLICIT_ACTIVATION,
 NO_IMPLICIT_ACTIVATION
};

One of the following values can be supplied when creating an
ImplicitActivationPolicy policy.

PortableServer::LIFESPAN_POLICY_ID Constant

//IDL
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;

UNIQUE_ID Servants activated with the POA support exactly one
ObjectId.

MULTIPLE_ID A servant activated with the POA may support one or
more ObjectId types.

IMPLICIT_ACTIVATION The POA will support implicit activation of
servants. IMPLICIT_ACTIVATION also requires the
SYSTEM_ID and RETAIN policy values.

NO_IMPLICIT_ACTIVATION The POA will not support implicit activation of
servants.
591

Defines an ID for the policy LifeSpanPolicy.

PortableServer::LifespanPolicyValue Enumeration

// IDL
enum LifespanPolicyValue {
 TRANSIENT,
 PERSISTENT
};

One of the following values can be supplied when creating a LifespanPolicy
policy:

Persistent objects have a POA associated with them which is the POA that
created them. When the ORB receives a request on a persistent object, it first
searches for the matching POA, based on the names of the POA and all of its
ancestors.

See Also PortableServer::LifespanPolicy

PortableServer::ObjectId Sequence

// IDL
typedef sequence<octet> ObjectId;

//C++
class ObjectId { ...

ObjectIds are strings that identify a required object reference.

See page 10 for a description of the mapping of IDL sequences.

TRANSIENT The objects implemented in the POA cannot outlive
the POA instance in which they are first created. Once
the POA is deactivated, use of any object references
generated from it will result in an OBJECT_NOT_EXIST
exception.

PERSISTENT The objects implemented in the POA can outlive the
process in which they are first created.
 592

PortableServer Data Types, Constants, and Exceptions
PortableServer::POAList Sequence

// IDL
typedef sequence<POA> POAList;

//C++
class POAList { ...

A POAList is a sequence of child POAs.

See page 10 for a description of the mapping of IDL sequences.

PortableServer::REQUEST_PROCESSING_POLICY_ID
Constant

//IDL
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

Defines an ID for the policy RequestProcessingPolicy.

PortableServer::RequestProcessingPolicyValue Enumeration

// IDL
enum RequestProcessingPolicyValue {
 USE_ACTIVE_OBJECT_MAP_ONLY,
 USE_DEFAULT_SERVANT,
 USE_SERVANT_MANAGER
};

One of the following values can be supplied when creating a
RequestProcessingPolicy policy.

USE_ACTIVE_OBJECT_MAP_ONLY If the ObjectId is not found in the active
object map, an OBJECT_NOT_EXIST exception
is returned to the client. The RETAIN policy
value is also required.
593

PortableServer::Servant Native Type

// IDL
native Servant;

// C++ in namespace PortableServer
typedef ServantBase* Servant;

The native Servant type has a language-specific mapping.

PortableServer::SERVANT_RETENTION_POLICY_ID Constant

//IDL
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;

Defines an ID for the policy ServantRetentionPolicy.

USE_DEFAULT_SERVANT If the ObjectId is not found in the active
object map or the NON_RETAIN policy value is
present, and a default servant has been
registered with the POA using
set_servant(), the request is dispatched to
the default servant. If no default servant has
been registered, an OBJ_ADAPTER exception is
returned to the client. The MULTIPLE_ID
policy value is also required.

USE_SERVANT_MANAGER If the ObjectId is not found in the active
object map or the NON_RETAIN policy value is
present, and a servant manager has been
registered with the POA using
set_servant_manager(), the servant
manager is given the opportunity to locate a
servant or raise an exception. If no servant
manager has been registered, an
OBJECT_ADAPTER exception is returned to the
client.
 594

PortableServer Data Types, Constants, and Exceptions
PortableServer::ServantRetentionPolicyValue Enumeration

// IDL
enum ServantRetentionPolicyValue {
 RETAIN,
 NON_RETAIN
};

One of the following values can be supplied when creating a
ServantRetentionPolicy policy.

PortableServer::THREAD_POLICY_ID Constant

//IDL
const CORBA::PolicyType THREAD_POLICY_ID = 16;

Defines an ID for the policy ThreadPolicy.

PortableServer::ThreadPolicyValue Enumeration

//IDL
enum ThreadPolicyValue {
 ORB_CTRL_MODEL,
 SINGLE_THREAD_MODEL
};

One of the following values can be supplied when creating a ThreadPolicy
policy.

RETAIN The POA will retain active servants in its active object
map.

NON_RETAIN Servants are not retained by the POA. The
NON_RETAIN policy requires either the
USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER
policy values.

ORB_CTRL_MODEL The ORB is responsible for assigning requests for an
ORB-controlled POA to threads. In a multi-threaded
environment, concurrent requests may be delivered
using multiple threads.
595

In some environments, using a value of SINGLE_THREAD_MODEL may mean
that the POA will use only the main thread, in which case the application
programmer is responsible to ensure that the main thread is given to the
ORB, using ORB::perform_work() or ORB::run(). POAs using a value of
SINGLE_THREAD_MODEL may need to cooperate to ensure that calls are safe
even when a servant manager is shared by multiple single-threaded POAs.
These models presume that the ORB and the application are using
compatible threading primitives in a multi-threaded environment.

SINGLE_THREAD_MODEL Requests for a single-threaded POA are processed
sequentially. In a multi-threaded environment, all
up-calls made by this POA to implementation code
(servants and servant managers) are made in a
manner that is safe for code that is
multi-thread-unaware.
 596

PortableServer::AdapterActivator
Interface

Adapter activators are associated with POAs. An adapter activator supplies a
POA with the ability to create child POAs on demand, as a side-effect of
receiving a request that names the child POA (or one of its children), or when
find_POA() is called with an activate parameter value of TRUE. An
application server that creates all its needed POAs at the beginning of
execution does not need to use or provide an adapter activator; it is
necessary only for the case in which POAs need to be created during request
processing.

While a request from the POA to an adapter activator is in progress, all
requests to objects managed by the new POA (or any descendant POAs) will
be queued. This serialization allows the adapter activator to complete any
initialization of the new POA before requests are delivered to that POA.

//IDL
interface AdapterActivator {
 boolean unknown_adapter(
 in POA parent,
 in string name);
};

AdapterActivator::unknown_adapter()

//IDL
boolean
unknown_adapter(
 in POA parent,
 in string name
);

//C++
virtual CORBA::Boolean unknown_adapter(
 POA_ptr parent,
 const char* name
597

) = 0;

Recreates a POA name through the adapter activator of its parent POA. This
method returns either true or false:

Parameters

This method is called on the parent POA�s adapter activator when the ORB
receives a request for an object reference whose POA does not exist. If the
POA of the requested object has ancestor POAs that also no longer exist, the
ORB calls this method on the adapter activator of each POA that must be
recreated. The ORB iterates over the ancestral tree of the missing POA,
starting with the most immediate existing ancestor�that is, the parent of the
first missing POA. For each missing child POA (specified in parameter name),
the ORB invokes this method on its parent�s adapter activator until name
resolves to the POA that contains the requested object reference.

For example, the ORB might seek an object reference in POA x, where x is
descended from POA b, which in turn is a child of the root POA. If b and x no
longer exist, the ORB must restore both POAs in order to recreate the context
of the target object reference. By evaluating the object reference, it
determines which POAs it needs to restore and calls unknown_adapter() on
each one�s parent:

1. Calls unknown_adapter() on the adapter activator of the root POA to
recreate POA b.

2. If the first call to unknown_adapter() returns TRUE, the ORB calls
unknown_adapter() on POA b�s adapter activator in order to recreate
POA x.

Until this method returns, all requests to objects managed by the POAs that
it creates are queued. If unknown_adapter() returns FALSE, ARTreplies to all
queued requests with OBJECT_NOT_EXIST.

True The required POA is created; the ORB continues processing the
request.

False The required POA was not created; the ORB returns an exception
of OBJECT_NOT_EXIST to the client.

parent The parent POA.

name The new name for the POA.
 598

Note: POA::find_POA() calls this method if the POA to be found does not
exist and its activate_it parameter is set to TRUE. If unknown_adapter()
creates the POA and returns TRUE, find_POA() returns the required POA.

Exceptions

See Also PortableServer::POA::find_POA()

OBJECT_NOT_EXIST Raised by the ORB to the client if the parent of a POA
that needs to be recreated does not have an adapter
activator.

OBJ_ADAPTER Raised to the client if the adapter activator raises a
system exception.
599

 600

PortableServer::Current Interface
The Current interface, derived from CORBA::Current, provides method
implementations with access to the identity of the object on which the
method was invoked. The Current interface supports servants that
implement multiple objects, but can be used within the context of
POA-dispatched method invocations on any servant.

You obtain an instance of Current by calling CORBA::ORB::
resolve_initial_references("POACurrent"). Thereafter, it can be used
within the context of a method dispatched by the POA to obtain the POA and
ObjectId that identify the object on which that operation was invoked.

//IDL
interface Current : CORBA::Current {
 exception NoContext {};
 POA get_POA() raises (NoContext);
 ObjectId get_object_id() raises (NoContext);
};

Current::get_object_id()

//IDL
objectId get_object_id()
 raises(NoContext);

//C++
virtual ObjectId* get_object_id() = 0;

When called within the context of a request, this method returns the ObjectId
of the target CORBA object.

Use this method to differentiate among different objects that map to the
same servant, in a POA that has a MULTIPLE_ID policy value.

Exceptions

NoContext get_object_id() is called outside the context of a POA-dis-
patched operation.
601

Current::get_POA()

//IDL
POA get_POA()
 raises(NoContext);

//C++
virtual POA_ptr get_POA() = 0;

When called within the context of a request, this method returns a reference
to the POA that implements the target CORBA object.

Exceptions

Current::NoContext Exception

// IDL
exception NoContext {};

Indicates a Current method was called outside the context of POA-dispatched
method invocations on a servant.

NoContext get_POA() is called outside this context.
 602

PortableServer::
DynamicImplementation Class

In C++, DSI servants inherit from the standard DynamicImplementation
class. This class inherits from the ServantBase class and is also defined in
the PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from
dynamic skeleton classes.

// C++
namespace PortableServer {
 class DynamicImplementation : public virtual ServantBase {
 public:
 CORBA::Object_ptr _this();
 virtual void invoke(CORBA::ServerRequest_ptr request) = 0;
 virtual CORBA::RepositoryId _primary_interface(
 const ObjectId& oid,
 POA_ptr poa
) = 0;
 };
}

DynamicImplementation::invoke()

//C++
virtual void invoke(
 CORBA::ServerRequest_ptr request
) = 0;

The invoke() method receives requests issued to any CORBA object incarnat-
ed by the DSI servant and performs the processing necessary to execute the
request.

The invoke() method should only be invoked by the POA in the context of
serving a CORBA request. Invoking this method in other circumstances may
lead to unpredictable results.
603

DynamicImplementation::_primary_interface()

virtual CORBA::RepositoryId _primary_interface(
 const ObjectId& oid,
 POA_ptr poa
) = 0;

The _primary_interface() method returns a valid RepositoryId representing
the most-derived interface for that oid.

Parameters

The _primary_interface() method should only be invoked by the POA in
the context of serving a CORBA request. Invoking this method in other
circumstances may lead to unpredictable results.

DynamicImplementation::_this()

CORBA::Object_ptr _this();

The _this() method returns a CORBA::Object_ptr for the target object. Unlike
_this() for static skeletons, its return type is not interface-specific because a
DSI servant may very well incarnate multiple CORBA objects of different types.

Exceptions

oid An object identifier.

poa A POA reference.

PortableServer
::
WrongPolicy

DynamicImplementation::_this() is invoked outside of the
context of a request invocation on a target object being served
by the DSI servant .
 604

PortableServer::IdAssignmentPolicy
Interface

You obtain an IdAssignmentPolicy object by using POA::
create_id_assignment_policy() and passing the policy to POA::
create_POA() to specify whether ObjectId values in the created POA are
generated by the application or by the ORB. This is a policy class derived
from CORBA::Policy.

If no IdAssignmentPolicy value is specified at POA creation, the default
value is SYSTEM_ID.

// IDL
interface IdAssignmentPolicy : CORBA::Policy {
 readonly attribute IdAssignmentPolicyValue value;
};

// C++ in namespace PortableServer
 class IT_POA_API IdAssignmentPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::IdAssignmentPolicy_ptr _ptr_type;
 typedef PortableServer::IdAssignmentPolicy_var _var_type;
 virtual ~IdAssignmentPolicy();
 static IdAssignmentPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static IdAssignmentPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static IdAssignmentPolicy_ptr _duplicate(
 IdAssignmentPolicy_ptr p
);
 inline static IdAssignmentPolicy_ptr _nil();

 virtual IdAssignmentPolicyValue value() = 0;
605

 static const IT_FWString _it_fw_type_id;
 };

See page 5 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

IdAssignmentPolicy::value()

// C++
virtual IdAssignmentPolicyValue value() = 0;

Returns the value of this POA policy.
 606

PortableServer::IdUniquenessPolicy
Interface

You obtain an IdUniquenessPolicy object by using POA::
create_id_uniqueness_policy() and passing the policy to POA::
create_POA() to specify whether the servants activated in the created POA
must have unique object identities. This is a policy class derived from CORBA:
:Policy.

If no IdUniquenessPolicy value is specified at POA creation, the default
value is UNIQUE_ID.

// IDL
interface IdUniquenessPolicy : CORBA::Policy {
 readonly attribute IdUniquenessPolicyValue value;
};

// C++ in namespace PortableServer
 class IT_POA_API IdUniquenessPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::IdUniquenessPolicy_ptr _ptr_type;
 typedef PortableServer::IdUniquenessPolicy_var _var_type;
 virtual ~IdUniquenessPolicy();
 static IdUniquenessPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static IdUniquenessPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static IdUniquenessPolicy_ptr _duplicate(
 IdUniquenessPolicy_ptr p
);
 inline static IdUniquenessPolicy_ptr _nil();
607

 virtual IdUniquenessPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
 };

See page 5 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

IdUniquenessPolicy::value()

// C++
virtual IdUniquenessPolicyValue value() = 0;

Returns the value of this POA policy.
 608

PortableServer::
ImplicitActivationPolicy Interface

You obtain an ImplicitActivationPolicy object by using POA::
create_implicit_activation_policy() and passing the policy to POA::
create_POA() to specify whether implicit activation of servants is supported
in the created POA. This is a policy class derived from CORBA::Policy.

If no ImplicitActivationPolicy value is specified at POA creation, the
default value is NO_IMPLICIT_ACTIVATION.

// IDL
interface ImplicitActivationPolicy : CORBA::Policy {
 readonly attribute ImplicitActivationPolicyValue value;
};

// C++ in namespace PortableServer
 class IT_POA_API ImplicitActivationPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::ImplicitActivationPolicy_ptr
_ptr_type;

 typedef PortableServer::ImplicitActivationPolicy_var
_var_type;

 virtual ~ImplicitActivationPolicy();
 static ImplicitActivationPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static ImplicitActivationPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static ImplicitActivationPolicy_ptr _duplicate(
 ImplicitActivationPolicy_ptr p
);
 inline static ImplicitActivationPolicy_ptr _nil();
609

 virtual ImplicitActivationPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
 };

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

ImplicitActivationPolicy::value()

// C++
virtual ImplicitActivationPolicyValue value() = 0;

Returns the value of this POA policy.
 610

PortableServer::LifespanPolicy
Interface

You obtain a LifespanPolicy object by using POA::
create_lifespan_policy() and passing the policy to POA::create_POA() to
specify the lifespan of the objects implemented in the created POA. This is a
policy class derived from CORBA::Policy.

If no LifespanPolicy object is passed to create_POA(), the lifespan policy
value defaults to TRANSIENT.

// IDL
interface LifespanPolicy : CORBA::Policy {
 readonly attribute LifespanPolicyValue value;
};
// C++ in namespace PortableServer
 class IT_POA_API LifespanPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::LifespanPolicy_ptr _ptr_type;
 typedef PortableServer::LifespanPolicy_var _var_type;
 virtual ~LifespanPolicy();
 static LifespanPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static LifespanPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static LifespanPolicy_ptr _duplicate(
 LifespanPolicy_ptr p
);
 inline static LifespanPolicy_ptr _nil();

 virtual LifespanPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
611

 };

See page 5 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

LifespanPolicy::value()

// C++
virtual LifespanPolicyValue value() = 0;

Returns the value of this POA policy.
 612

PortableServer::POA Interface
A POA object manages the implementation of a collection of objects. The POA
supports a name space for the objects, which are each identified by an
ObjectId. A PPOAOA also provides a name space for POAs. A POA is created
as a child of an existing POA, which forms a hierarchy starting with the root
POA.

//IDL
interface POA {
 exception AdapterAlreadyExists {};
 exception AdapterInactive {};
 exception AdapterNonExistent {};
 exception InvalidPolicy { unsigned short index; };
 exception NoServant {};
 exception ObjectAlreadyActive {};
 exception ObjectNotActive {};
 exception ServantAlreadyActive {};
 exception ServantNotActive {};
 exception WrongAdapter {};
 exception WrongPolicy {};

 //--
 // POA creation and destruction
 //--
 POA create_POA(
 in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies
)
 raises (AdapterAlreadyExists, InvalidPolicy);

 POA find_POA(
 in string adapter_name,
 in boolean activate_it
)
 raises (AdapterNonExistent);

 void destroy(
613

 in boolean etherealize_objects,
 in boolean wait_for_completion
);

 // **
 // Factories for Policy objects
 // **
 ThreadPolicy create_thread_policy(
 in ThreadPolicyValue value
);

 LifespanPolicy create_lifespan_policy(
 in LifespanPolicyValue value
);

 IdUniquenessPolicy create_id_uniqueness_policy(
 in IdUniquenessPolicyValue value
);

 IdAssignmentPolicy create_id_assignment_policy(
 in IdAssignmentPolicyValue value
);

 ImplicitActivationPolicy create_implicit_activation_policy(
 in ImplicitActivationPolicyValue value
);

 ServantRetentionPolicy create_servant_retention_policy(
 in ServantRetentionPolicyValue value
);

 RequestProcessingPolicy create_request_processing_policy(
 in RequestProcessingPolicyValue value
);

 //--
 // POA attributes
 //--
 readonly attribute string the_name;
 readonly attribute POA the_parent;
 readonly attribute POAManager the_POAManager;
 attribute AdapterActivator the_activator;
 614

 //--
 // Servant Manager registration
 //--
 ServantManager get_servant_manager()
 raises (WrongPolicy);

 void set_servant_manager(in ServantManager imgr)
 raises (WrongPolicy);

 //--
 // operations for the USE_DEFAULT_SERVANT policy
 //--
 Servant get_servant()
 raises (NoServant, WrongPolicy);

 void set_servant(in Servant servant)
 raises (WrongPolicy);

 // **
 // object activation and deactivation
 // **
 ObjectId activate_object(in Servant servant)
 raises (ServantAlreadyActive, WrongPolicy);

 void activate_object_with_id(
 in ObjectId id,
 in Servant servant
)
 raises(
 ServantAlreadyActive,
 ObjectAlreadyActive,
 WrongPolicy
);

 void deactivate_object(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

 // **
 // reference creation operations
 // **
 Object create_reference(in CORBA::RepositoryId intf)
 raises (WrongPolicy);
615

 Object create_reference_with_id(
 in ObjectId oid,
 in CORBA::RepositoryId intf
)

 //--
 // Identity mapping operations
 //--
 ObjectId servant_to_id(in Servant servant)
 raises (ServantNotActive, WrongPolicy);

 Object servant_to_reference(in Servant servant)
 raises (ServantNotActive, WrongPolicy);

 Servant reference_to_servant(in Object reference)
 raises (ObjectNotActive, WrongAdapter, WrongPolicy);

 ObjectId reference_to_id(in Object reference)
 raises (WrongAdapter, WrongPolicy);

 Servant id_to_servant(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

 Object id_to_reference(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);
};

The exceptions defined for the POA class consists of the following:

AdapterAlreadyExists
AdapterInactive
AdapterNonExistent
InvalidPolicy
NoServant
ObjectAlreadyActive
ObjectNotActive
ServantAlreadyActive
ServantNotActive
WrongAdapter
WrongPolicy

The POA methods are described as follows:
 616

POA::activate_object()

//IDL
ObjectId activate_object(in Servant servant)
 raises(ServantAlreadyActive, WrongPolicy);

//C++
virtual ObjectId* activate_object(
 Servant servant
) = 0;

Returns a system-generated object ID and associates it with servant in the
POA�s active object map. This method can only be issued in a POA that has
policies of SYSTEM_ID and RETAIN; otherwise, it raises an exception of
WrongPolicy.

If the specified servant is already in the active object map and the POA has
the UNIQUE_ID policy, the ServantAlreadyActive exception is raised.

Exceptions ServantAlreadyActive, WrongPolicy

See Also PortableServer::POA::deactivate_object()

POA::activate_object_with_id()

//IDL
void activate_object_with_id(
 in ObjectId oid,
 in Servant servant
)
 raises (
 ObjectAlreadyActive,
 ServantAlreadyActive,
 WrongPolicy);

//C++
virtual void
activate_object_with_id(
 const ObjectId & id,
 Servant servant
) = 0;

Associates object oid with servant servant in the POA�s active object map.
This method can only be issued in a POA that has the RETAIN policy.
617

If you call activate_object_with_id() on a POA that has a policy of
SYSTEM_ID policy, the object ID must be generated by that POA. To get the
object ID of a system-generated object reference, call reference_to_id().

Exceptions

POA::create_id_assignment_policy()

//IDL
IdAssignmentPolicy create_id_assignment_policy(
 in IdAssignmentPolicyValue value
);

//C++
virtual IdAssignmentPolicy_ptr create_id_assignment_policy(
 IdAssignmentPolicyValue value
) = 0;

Creates an object of the IdAssignmentPolicy interface. This object can be
added to the policies list (CORBA::PolicyList) of a new POA. The ID assign-
ment policy determines whether object IDs are generated by the POA or the
application.

Parameters Specify the POA�s ID assignment policy by supplying one of these values for
the value parameter:

SYSTEM_ID: (default) Only the POA can assign IDs to its objects. If the
POA�s lifespan policy is set to PERSISTENT, object IDs are unique across all
instantiations of the same POA.

USER_ID: Only the application can assign object IDs to objects in this POA.
The application must ensure that all user-assigned IDs are unique across all
instantiations of the same POA.

ObjectAlreadyA
ctive

Object oid is already active in this POA�that is, it is associ-
ated with a servant in the active object map.

ServantAlready
Active

The POA has the UNIQUE_ID policy and the servant is already
associated with another object.

WrongPolicy The POA has the NON_RETAIN policy.
 618

Typically, a POA with a SYSTEM_ID policy manages objects that are active for
only a short period of time, and so do not need to outlive their server process.
In this case, the POA also has an object lifespan policy of TRANSIENT.

USER_ID is usually assigned to a POA that has an object lifespan policy of
PERSISTENT�that is, it generates object references whose validity can span
multiple instantantations of a POA or server process, so the application
requires explicit control over object IDs.

See Also PortableServer::POA::create_poa()

POA::create_id_uniqueness_policy()

//IDL
IdUniquenessPolicy create_id_uniqueness_policy(
 in IdUniquenessPolicyValue value
);

//C++
virtual IdUniquenessPolicy_ptr
create_id_uniqueness_policy(
 IdUniquenessPolicyValue value
) = 0;

Creates an object of the IdUniquenessPolicy interface. This object can be
added to the policies list (CORBA::PolicyList) of a new POA. The ID unique-
ness policy determines whether a servant can be associated with multiple
objects in this POA.

Parameters Specify the POA�s ID uniqueness policy by supplying one of these values for
the value parameter:

UNIQUE_ID: (default) Each servant in the POA can be associated with only
one object ID.

MULTIPLE_ID: Any servant in the POA can be associated with multiple
object IDs.
619

Note: If the same servant is used by different POAs, that servant conforms
to the uniqueness policy of each POA. Thus, it is possible for the same
servant to be associated with multiple objects in one POA, and be restricted
to one object in another.

See Also PortableServer::POA::create_poa()

POA::create_implicit_activation_policy()

//IDL
ImplicitActivationPolicy create_implicit_activation_policy(
 in ImplicitActivationPolicyValue value);

//C++
virtual ImplicitActivationPolicy_ptr
create_implicit_activation_policy(
 ImplicitActivationPolicyValue value
) = 0;

Creates an object of the ImplicitActivationPolicy interface. This object can
be added to the policies list (CORBA::PolicyList) of a new POA. The activation
policy determines whether the POA supports implicit activation of servants.

Parameters Specify the POA�s activation policy by supplying one of these values for the
value parameter:

NO_IMPLICIT_ACTIVATION: (default) The POA only supports explicit
activation of servants.

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants.
This policy requires that the POA�s object ID assignment policy be set to
SYSTEM_ID, and its servant retention policy be set to RETAIN.

See Also PortableServer::POA::create_poa()
PortableServer::POA::create_id_assignment_policy
PortableServer::POA::create_servant_retention_policy
 620

POA::create_lifespan_policy()

//IDL
LifespanPolicy create_lifespan_policy(
 in LifespanPolicyValue value
);

//C++
virtual LifespanPolicy_ptr create_lifespan_policy(
 LifespanPolicyValue value
) = 0;

Creates an object of the LifespanPolicy interface. This object can be added
to the policies list (CORBA::PolicyList) of a new POA. The lifespan policy
determines whether object references outlive the process in which they were
created.

Parameters Specify a POA�s lifespan policy by supplying one of these values for the value
parameter:

TRANSIENT: (default) Object references do not outlive the POA in which
they are created. After a transient object�s POA is deactivated, attempts to
reference this object yield the exception CORBA:OBJECT_NOT_EXIST.

PERSISTENT Object references can outlive the POA in which they are
created.

When a POA creates an object reference, it encapsulates it within an IOR. If
the POA has a TRANSIENT policy, the IOR contains the server process�s
current location�its host address and port. Consequently, that object
reference is valid only as long as the server process remains alive. If the
server process dies, the object reference becomes invalid.

If the POA has a PERSISTENT policy, the IOR contains the address of the
location domain�s implementation repository, which maps all servers and
their POAs to their current locations. Given a request for a persistent object,
the Orbix daemon uses the object�s �virtual� address first, and looks up the
server process�s actual location via the implementation repository.

A POA typically correlates its lifespan and ID assignment policies. TRANSIENT
and SYSTEM_ID are the default settings for a new POA, out of recognition that
system-assigned ID�s are generally sufficient for transient object references.
621

PERSISTENT and USER_ID policies are usually set together, inasmuch as an
application typically requires explicit control over the object IDs of its
persistent object references.

See Also PortableServer::POA::create_poa()
PortableServer::AdapterActivator::unknown_adapter()

POA::create_POA()

//IDL
POA create_POA(
 in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies
)
 raises(AdapterAlreadyExists, InvalidPolicy);

//C++
virtual POA_ptr create_POA(
 const char* adapter_name,
 POAManager_ptr a_POAManager,
 const CORBA::PolicyList & policies
) = 0;

Creates a portable object adapter (POA). An application calls this method on
the parent of the new POA. The name of the new POA adapter_name must be
unique among the names of all existing sibling POAs.

You control a POA�s behavior through the policy objects that are created and
attached to it through the policies parameter. A new POA has the following
policy defaults

Table 16: Policy Defaults for POAs

Policy Default Setting

IdAssignmentPolicy SYSTEM_ID

IdUniquenessPolicy UNIQUE_ID

ImplicitActivationPolicy NO_IMPLICIT_ACTIVATION

LifespanPolicy TRANSIENT
 622

Policy objects are copied to the POA before this operation returns, so the
application can destroy them while the POA is in use.

You can register either an existing POA manager or a new one with the POA
through the a_POAManager parameter. If a_POAManager is null, a new
POAManager object is registered with the POA. To obtain the POAManager
object of the current POA, call PortableServer::the_POAManager().

When you create a POA, it is in the state of its POA manager�typically,
either active or holding. If you create a new POA manager with the POA, it is
initially in a holding state. To process requests, it must be put into an active
state through PortableServer::POAManager::activate().

If you register an existing manager with the new POA and the manager is in
an active state, the new POA might receive requests for objects before it is
prepared to process them�that is, before its adapter activator, servant
manager, or default servant is initialized. You can avoid this problem in one
of these ways:

� Create the POA indirectly through its parent�s adapter activator. For
example, call find_POA() on the new POA�s parent, supplying
parameters adapter_name and activate_it arguments of the new
(non-existent) POA and TRUE. Orbix queues all incoming requests on
the new POA until the adapter activator returns on successful
initialization of the POA.

� Before creating the POA, set its manager to a holding state through
PortableServer::POAManager::hold_requests().

RequestProcessingPolicy USE_ACTIVE_OBJECT_MAP_ONLY

ServantRetentionPolicy RETAIN

ThreadPolicy ORB_CTRL_MODEL

Table 16: Policy Defaults for POAs

Policy Default Setting
623

Exceptions

POA::create_reference()

//IDL
Object create_reference(
 in CORBA::RepositoryId intf
)

//C++
virtual CORBA::Object_ptr create_reference(
 CORBA::RepositoryId const char* intf
) = 0;

Creates a CORBA object and returns an object reference. The object reference
encapsulates a POA-generated object ID value and the specified interface
repository ID. This reference can be passed to clients so it can make requests
on the corresponding object.

This operation requires the SYSTEM_ID policy. To obtain the generated object
ID value call POA::reference_to_id() with the created reference. The
returned object ID can then be used to associate the servant with an object
(and thereby activate the object) by calling activate_object_with_id().

See Also PortableServer::POA::create_reference_with_id

POA::create_reference_with_id()

//IDL
Object create_reference_with_id(

AdapterAlready
Exists

The parent POA already has a child POA with the specified
name.

InvalidPolicy Raised for one of these reasons:

� A policy object is not valid for the ORB implementation.
� Conflicting policy objects are specified�for example,

NON_RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY.

The exception index number specifies the first offending
policy object through the corresponding index in the policies
parameter.
 624

 in ObjectId oid,
 in CORBA::RepositoryId intf
)

//C++
virtual CORBA::Object_ptr create_reference_with_id(
 const ObjectId & oid,
 CORBA::RepositoryId const char* intf
) = 0;

Returns an object reference that encapsulates the specified object and interface
repository identifiers. The resulting reference can be returned to clients to
initiate requests on that object.

See Also PortableServer::POA::create_reference

POA::create_request_processing_policy()

//IDL
RequestProcessingPolicy create_request_processing_policy(
 in RequestProcessingPolicyValue value
);

//C++
virtual RequestProcessingPolicy_ptr
 create_request_processing_policy(
 RequestProcessingPolicyValue value
) = 0;

Creates an object of the RequestProcessingPolicy interface. This object can
be added to the policies list (CORBA::PolicyList) of a new POA. This policy
determines how the POA finds servants to implement requests.

Specify the POA�s request processing policy by supplying one of these values:

� USE_ACTIVE_OBJECT_MAP_ONLY (default): Assumes that all object IDs are
mapped to a servant in the active object map. The active object map
maintains an object-servant mapping until the object is explicitly
deactivated through deactivate_object().

This policy is typically used for a POA that processes requests for a small
number of objects. If the object ID is not found in the active object map,
an OBJECT_NOT_EXIST exception is raised to the client. This policy
requires that the POA have a servant retention policy of RETAIN.
625

� USE_DEFAULT_SERVANT: Dispatch requests to the default servant when
the POA cannot find a servant for the requested object. This can occur
because the object�s ID is not in the active object map, or the POA�s
servant retention policy is set to NON_RETAIN. This policy is typically used
for a POA that needs to process many objects that are instantiated from
the same class, and thus can be implemented by the same servant.

This policy requires that the application register a default servant with
the POA via set_servant(); otherwise, an OBJ_ADAPTER exception is
raised to the client. It also requires the POA�s ID uniqueness policy be
set to MULTIPLE_ID, so multiple objects can use the default servant.

� USE_SERVANT_MANAGER: The POA�s servant manager finds a servant for
the requested object when the object�s ID is not in the active object
map, or when the POA�s servant retention policy is set to NON_RETAIN. If
the servant manager fails to locate a servant, it raises an exception. This
policy requires that the application register a servant manager with the
POA via set_servant_manager(); otherwise, an OBJ_ADAPTER exception
is returned to the client.

An application can implement either a servant activator or servant
locator as a POA�s servant manager, according to the POA�s servant
retention policy:

� A POA with a policy of RETAIN can register a servant activator. The
servant activator incarnates servants for inactive objects on request;
these objects remain active until the servant activator etherealizes them.

� A POA with a policy of NON_RETAIN can register a servant locator. The
servant locator incarnates a servant for an inactive object each time the
object is requested; the servant locator must etherealize the object and
delete the servant from memory after the request returns.

A POA with a of USE_SERVANT_MANAGER policy allows the application to
manage object activation directly.

See Also PortableServer::POA::create_poa()
PortableServer::POA::create_servant_retention_policy
PortableServer::POA::create_id_uniqueness_policy

POA::create_servant_retention_policy()

//IDL
ServantRetentionPolicy create_servant_retention_policy(
 626

 in ServantRetentionPolicyValue value
);

//C++
virtual ServantRetentionPolicy_ptr
create_servant_retention_policy(
 ServantRetentionPolicyValue value
) = 0;

Creates an object of the ServantRetentionPolicy interface. This object can
be added to the policies list (CORBA::PolicyList) of a new POA. This policy
determines whether the POA has an active object map to maintain servant-ob-
ject associations.

Parameters Specify the servant retention policy by supplying one of these arguments for
the value parameter:

RETAIN: (default) The POA retains active servants in its active object map. If
combined with a policy of USE_SERVANT_MANAGER, the POA uses a servant
activator as its servant manager.

NON_RETAIN: The POA has no active object map. For each request, the
POA relies on the servant manager or default servant to map between an
object and its servant; all mapping information is destroyed when request
processing returns. Therefore, a NON_RETAIN policy also requires that the
POA have a request processing policy of USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER.

See Also PortableServer::POA::create_poa()
PortableServer::POA::create_request_processing_policy()

POA::create_thread_policy()

//IDL
ThreadPolicy create_thread_policy(
 in ThreadPolicyValue value
);

//C++
virtual ThreadPolicy_ptr create_thread_policy(
 ThreadPolicyValue value
) = 0;
627

Creates an object of the ThreadPolicy interface. This object can be added to
the policies list (CORBA::PolicyList) of a new POA.

Parameters Specify the POA�s thread policy by supplying one of these values for the value
parameter:

ORB_CTRL_MODEL: (default) The ORB is responsible for assigning requests
for an ORB-controlled POA to threads. In a multi-threaded environment,
concurrent requests can be delivered using multiple threads.

SINGLE_THREAD_MODEL: Requests for a single-threaded POA are
processed sequentially. In a multi-threaded environment, all calls by a
single-threaded POA to implementation code (servants and servant
managers) are made in a manner that is safe for code that does not account
for multi-threading.

Orbix uses the main thread for a single-threaded POA. In this case, make
sure that the main thread is given to the ORB via ORB::perform_work() or
ORB::run(). Multiple single-threaded POAs might need to cooperate to
ensure that calls are safe when they share implementation code such as a
servant manager.

Both threading policies assume that the ORB and the application are using
compatible threading primitives in a multi-threaded environment. All uses of
the POA within the server must conform to its threading policy.

See Also PortableServer::POA::create_poa()

POA::deactivate_object()

//IDL
void deactivate_object(
 in ObjectId oid
)
 raises(ObjectNotActive, WrongPolicy);

//C++
virtual void
deactivate_object(
 const ObjectId & oid
) = 0;
 628

Deactivates object oid by removing its servant association from the active
object map. Call this method only for a POA with a RETAIN policy. If the POA
has policies of RETAIN and USE_SERVANT_MANAGER, it calls the servant activa-
tor�s etherealize() method. deactivate_object() returns immediately after
its call to etherealize().

Exceptions

POA::destroy()

//IDL
void destroy(
 in boolean etherealize_objects
 in boolean wait_for_completion
);

//C++
virtual void destroy(
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion
) = 0;

Destroys the target POA and all its descendant POAs. A POA thus destroyed
can be recreated later on the same server process.

When a POA is destroyed, requests that already began execution on it or its
descendents continue to completion. Requests that have not started
execution are processed as if they were newly arrived�that is, the ORB tries
to recreate the destroyed POA after all of its pending requests have finished
processing.

etherealize_objects can be set to TRUE for a POA that has policies of
RETAIN and USE_SERVANT_MANAGER. This parameter determines whether to
call the servant activator�s etherealize() method on each active object.
Orbix perceives the POA to be destroyed, and therefore unavailable to
requests, before any calls to etherealize() are made.

ObjectNotActiv
e

The specified object ID is not associated with a servant.

WrongPolicy The POA has a NON_RETAIN policy.
629

If wait_for_completion is set to TRUE, destroy() returns only after all
requests in process and all calls to etherealize() return. If set to FALSE,
destroy() returns after destroying the target POAs.

See Also PortableServer::POAManager::deactivate()

POA::find_POA()

//IDL
POA find_POA(
 in string adapter_name,
 in boolean activate_it
)
 raises(AdapterNonExistent);

//C++
virtual POA_ptr find_POA(
 const char* adapter_name,
 CORBA::Boolean activate_it
) = 0;

Returns a pointer to POA adapter_name if it is a child of the target POA. If the
target POA has no child of the specified name and activate_it is set to TRUE,
find_POA() invokes the target POA's adapter activator, if one exists. The
adapter activator attempts to restore POA adapter_name; if successful,
find_POA() returns the specified POA object.

Exceptions

See Also PortableServer::AdapterActivator::unknown_adapter()

POA::get_servant()

//IDL
Servant get_servant()
 raises(NoServant, WrongPolicy);

//C++
virtual Servant get_servant() = 0;

AdapterNonExis
tent

No POA is returned.
 630

Returns the POA�s default servant. This method can only be called on a POA
that has the USE_DEFAULT_SERVANT policy.

Exceptions

POA::get_servant_manager()

//IDL
ServantManager get_servant_manager()
 raises(WrongPolicy);

//C++
virtual ServantManager_ptr get_servant_manager() = 0;

Returns the POA�s servant manager. If no servant manager is associated with
the POA, the method returns a null reference.

See Also PortableServer::AdapterActivator::set_servant_manager()

POA::id_to_reference()

//IDL
Object id_to_reference(
 in ObjectId oid
)
 raises(ObjectNotActive, WrongPolicy);

//C++
virtual CORBA::Object_ptr id_to_reference(
 const ObjectId & oid
) = 0;

Returns an object reference for active object oid. The object reference
encapsulates the information used to direct requests to this object.

Exceptions

NoServant No default servant is associated with the POA.

WrongPolicy The POA should have the USE_DEFAULT_SERVANT policy.

WrongPolicy The POA has a policy of NON_RETAIN policy.

ObjectNotActiv
e

The active object map does not contain the specified object
ID.
631

POA::id_to_servant()

//IDL
Servant id_to_servant(
 in ObjectId oid
)
 raises(ObjectNotActive, WrongPolicy);

//C++
virtual Servant id_to_servant(
 const ObjectId & oid
) = 0;

Returns the servant that is associated with object ID oid in the active object
map. This method call is valid only for a POA with a RETAIN policy.

Exceptions

POA::reference_to_id()

//IDL
ObjectId reference_to_id(
 in Object reference
)
 raises WrongAdapter, WrongPolicy);

//C++
virtual ObjectId* reference_to_id(
 CORBA::Object_ptr reference
) = 0;

Returns the object ID that is encapsulated by the specified object reference,
where reference can specify an active or inactive object. Call this method only
if the target POA created reference.

Exceptions

ObjectNotActiv
e

The POA�s active object map does not contain the specified
object ID.

WrongPolicy The POA has a policy of NON_RETAIN.

WrongAdapter The object reference was not created by this POA.

WrongPolicy Reserved for future extensions.
 632

POA::reference_to_servant()

//IDL
Servant
reference_to_servant(
 in Object reference
)
 raises(ObjectNotActive, WrongAdapter, WrongPolicy);

//C++
virtual Servant reference_to_servant(
 CORBA::Object_ptr reference
) = 0;

Returns the servant that incarnates the reference-specified object if one of
these conditions is true:

� The POA has a policy of RETAIN and the specified object is in the active
object map.

� The POA has the USE_DEFAULT_SERVANT policy and a default servant is
registered with the POA.

Exceptions

POA::servant_to_id()

//IDL
ObjectId
servant_to_id(
 in Servant servant
)
 raises(ServantNotActive, WrongPolicy);

//C++
virtual ObjectId* servant_to_id(

ObjectNotActiv
e

The POA policies are correct but no servant is associated with
the specified object.

WrongAdapter The object reference was not created by this POA.

WrongPolicy The POA does not have a policy of either RETAIN or
USE_DEFAULT_SERVANT.

WrongAdapter The object reference was not created by this POA.
633

 Servant servant
) = 0;

Returns an object ID for an object that is incarnated by servant.

Depending on the POA�s policies, the method can take one of the following
actions:

� Returns the ID of an already active object if the POA has the UNIQUE_ID
policy and servant already incarnates an object.

� Associates servant with a POA-generated object ID and returns that ID
if the POA has the IMPLICIT_ACTIVATION policy and one of these
conditions is true:

♦ The POA has the MULTIPLE_ID policy.

♦ servant is not associated with any object.

Exceptions

POA::servant_to_reference()

//IDL
Object servant_to_reference(
 in Servant servant
)
 raises (ServantNotActive, WrongPolicy);

//C++
virtual CORBA::Object_ptr servant_to_reference(
 Servant servant
) = 0;

Returns an object reference for an object that is incarnated by servant.

WrongPolicy The POA must have policies of RETAIN and either UNIQUE_ID
or IMPLICIT_ACTIVATION; otherwise, it raises this exception.
For example, if a POA has a policy of RETAIN,
NO_IMPLICIT_ACTIVATION, and MULTIPLE_ID,
servant_to_id() cannot tell which of the objects that this
servant potentially incarnates it should return.

ServantNotActi
ve

servant is not associated with any object and the POA has a
NO_IMPLICIT_ACTIVATION policy; therefore, no activation
occurs.
 634

Depending on the POA�s policies, the method can take one of the following
actions:

� If the POA has the UNIQUE_ID policy and servant already incarnates an
active object, the method returns an object reference that encapsulates
the information used to activate that object.

� If the POA has the IMPLICIT_ACTIVATION policy, and the POA has the
MULTIPLE_ID policy or servant is not associated with any object, the
servant is associated with a POA-generated object ID�thereby
activating the object�and a corresponding object reference is returned.

Exceptions

POA::set_servant()

//IDL
void
set_servant(
 in Servant servant
)
 raises(WrongPolicy);

//C++
virtual void set_servant(
 Servant servant
) = 0;

Registers servant with the POA as the default servant. This servant is used in
a POA that has the USE_DEFAULT_SERVANT policy; it services any requests for
objects that are not registered in the active object map

WrongPolicy The POA policy must have the RETAIN and either the
UNIQUE_ID or IMPLICIT_ACTIVATION policies; otherwise, the
exception is raised. For example, if a POA has a policy of
RETAIN, NO_IMPLICIT_ACTIVATION, and MULTIPLE_ID,
servant_to_reference() cannot ascertain which of the
many objects potentially incarnated by the specified servant it
should specify in its return.

ServantNotActi
ve

servant is not associated with any object and the POA has a
NO_IMPLICIT_ACTIVATION policy; therefore, no activation
occurs.
635

Exceptions

POA::set_servant_manager()

//IDL
void set_servant_manager(
 in ServantManager imgr
)
 raises(WrongPolicy);

//C++
virtual void set_servant_manager(
 ServantManager_ptr imgr
) = 0;

Sets the default servant manager for the target POA.

Exceptions

POA::the_name()

//C++
virtual char* the_name() = 0;

Returns the name of the target POA.

POA::the_parent()

//C++
virtual POA_ptr the_parent() = 0;

Returns a pointer to the target POA�s parent.

WrongPolicy The POA does not have the USE_DEFAULT_SERVANT policy.

WrongPolicy Raised if the POA does not have a policy of
USE_SERVANT_MANAGER.
 636

POA::the_POAManager()

//C++
virtual POAManager_ptr the_POAManager() = 0;

Returns a pointer to the target POA�s manager.

POA::the_activator()

//C++
virtual AdapterActivator_ptr the_activator() = 0;

virtual void the_activator(
 AdapterActivator_ptr _the_activator
) = 0;

Returns or sets a pointer to the target POA�s adapter activator.
637

 638

PortableServer::POAManager
Interface

A POAManager is associated with one or more POA objects. (Each POA object
has an associated POAManager object.) A POA manager encapsulates the
processing state of its POAs. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded,
and can cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit
POAManager object is provided at POA creation time, a POA manager is
created when a POA is created and is automatically associated with that
POA. A POAManager object is implicitly destroyed when all of its associated
POAs have been destroyed.

//IDL
interface POAManager {
 exception AdapterInactive{};
 enum State { HOLDING, ACTIVE, DISCARDING, INACTIVE };
 void activate()
 raises(AdapterInactive);
 void hold_requests(
 in boolean wait_for_completion)
 raises(AdapterInactive);
 void discard_requests(
 in boolean wait_for_completion)
 raises(AdapterInactive);
 void deactivate(
 in boolean etherealize_objects,
 in boolean wait_for_completion)
 raises(AdapterInactive);
 State get_state();
};
639

POAManager::activate()

//IDL
void
activate()
 raises (AdapterInactive);

//C++
virtual void activate() = 0;

Changes the state of the POA manager to active so it can process requests.
When a POA manager is active, all associated POAs can receive requests.

Note: A POA manager�s ability to process requests is dependent on resource
limits. Orbix provides queues whose lengths are configurable, and raises a
system exception of TRANSIENT when the queues are full.

When a POA manager is created, it is initially in a holding state. All requests
sent to that POA are queued until you call activate() on a POA�s manager.
activate() can also reactivate a POA manager that has reverted to a holding
state (due to a hold_requests() call) or is in a discarding state (due to a
discard_requests() call).

If a new POA is associated with an existing active POA manager, it is
unnecessary to call this method. However, it is generally, a good idea to put
a POA manager in a holding state before creating a new POA with it.

Exceptions

See Also PortableServer::POAManager::activate()
PortableServer::POAManager::deactivate()
PortableServer::POAManager::discard_requests()
PortableServer::POAManager::hold_requests()

POAManager::AdapterInactive Exception

// IDL
exception AdapterInactive{};

Indicates that the POAManager is inactive and unable to process requests.

AdapterInactiv
e

This method is issued on an inactive POA manager.
 640

POAManager::deactivate()

//IDL
void deactivate(
 in boolean etherealize_objects,
 in boolean wait_for_completion
);
 raises(AdapterInactive);

//C++
virtual void deactivate(
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion
) = 0;

Causes the POA manager to shut down. A POA manager deactivates before its
associated POAs are destroyed. When it is in an inactive state, the POA
manager allows all outstanding requests to complete processing, but refuses
all incoming requests.

Parameters The method takes two boolean parameters:

Exceptions

See Also PortableServer::POA::destroy()

POAManager::discard_requests()

//IDL
void discard_requests(
 in boolean wait_for_completion

etherealize_objects Determines whether the target POAs etherealize their
servants after all request processing is complete. This
argument applies only to POAs that have a servant
retention policy of RETAIN and request processing
policy of USE_SERVANT_MANAGER.

wait_for_completion Determines whether the method returns immediately
or waits until the completion of all requests whose
processing began before the call to deactivate().

AdapterInactiv
e

The method is issued on a POA manager that is already inac-
tive.
641

)
 raises(AdapterInactive);

//C++
virtual void discard_requests(
 CORBA::Boolean wait_for_completion
) = 0;

Causes the POA manager to discard all incoming requests. When a request is
discarded, the server raises a TRANSIENT system exception to the client so it
can reissue the request. This method can return immediately or wait until the
return of all requests whose processing had already begun, according to the
argument supplied for wait_for_completion.

Parameters wait_for_completion determines whether the method returns immediately or
waits until the completion of all requests whose processing began before the
call.

This method is typically called when an application detects that an object or
the POA in general is overwhelmed by incoming requests. A POA manager
should be in a discarding state only temporarily. On resolution of the problem
that required this call, the application should restore the POA manager to its
active state with activate().

Exceptions

See Also PortableServer::POAManager::activate()
PortableServer::POAManager::discard_requests()
PortableServer::POAManager::hold_requests()

POAManager::get_state()

//IDL
State get_state();

//C++
PortableServer::POAManager::State get_state();

Returns the current state of the POAManager.

AdapterInactiv
e

The method is issued on an inactive POA manager.
 642

POAManager::hold_requests()

//IDL
void hold_requests(
 in boolean wait_for_completion
);
 raises(AdapterInactive);

//C++
virtual void hold_requests(
 CORBA::Boolean wait_for_completion
) = 0;

Causes all POAs associated with this manager to queue incoming requests.

The number of requests that can be queued is implementation-dependent. .
Set wait_for_completion to determine whether this method returns
immediately or waits until the return of all requests whose processing began
before this call.

A POA manager is always created in a holding state.

Exceptions

See Also PortableServer::POAManager::activate()
PortableServer::POAManager::deactivate()
PortableServer::POAManager::discard_requests()

POAManager::State Enumeration

//IDL
enum State { HOLDING, ACTIVE, DISCARDING, INACTIVE };

The possible state values consist of the following:

HOLDING
ACTIVE
DISCARDING
INACTIVE

AdapterInactive The method is issued on an inactive POA manager.
643

 644

PortableServer::
RequestProcessingPolicy Interface

You obtain a RequestProcessingPolicy object by using POA::
create_request_processing_policy() and passing the policy to POA::
create_POA() to specify how requests are processed by the created POA.
This is a policy class derived from CORBA::Policy.

If no RequestProcessingPolicy value is specified at POA creation, the
default value is USE_ACTIVE_OBJECT_MAP_ONLY.

You can define many possible combinations of behaviors with the policies
RequestProcessingPolicy and ServantRetentionPolicy.

� RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no
automatic object activation (that is, the POA searches only the active
object map). The server must activate all objects served by the POA
explicitly, using either activate_object() or
activate_object_with_id().

� RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an
active object map and a ServantManager. Because RETAIN is in effect,
the application can call activate_object() or
activate_object_with_id() to establish known servants in the active
object map for use in later requests. If the POA doesn't find a servant in
the active object map for a given object, it tries to determine the servant
by means of invoking incarnate() in the ServantManager (specifically a
ServantActivator) registered with the POA. If no ServantManager is
available, the POA raises the OBJECT_ADAPTER system exception.

� RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default
servant defined for all requests involving unknown objects. Because
RETAIN is in effect, the application can call activate_object() or
activate_object_with_id() to establish known servants in the active
645

object map for use in later requests. The POA first tries to find a servant
in the active object map for a given object. If it does not find such a
servant, it uses the default servant. If no default servant is available, the
POA raises the OBJECT_ADAPTER system exception.

� NON-RETAIN and USE_SERVANT_MANAGER

This combination represents the situation where one servant is used per
method call. The POA doesn't try to find a servant in the active object
map because the active object map does not exist. In every request, it
will call preinvoke() on the ServantManager (specifically a
ServantLocator) registered with the POA. If no ServantManager is
available, the POA will raise the OBJECT_ADAPTER system exception.

� NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single
servant defined for all CORBA objects. The POA does not try to find a
servant in the active object map because the active object map doesn't
exist. In every request, the POA will invoke the appropriate operation on
the default servant registered with the POA. If no default servant is
available, the POA will raise the OBJECT_ADAPTER system exception.

// IDL
interface RequestProcessingPolicy : CORBA::Policy {
 readonly attribute RequestProcessingPolicyValue value;
};

// C++ in namespace PortableServer
 class IT_POA_API RequestProcessingPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::RequestProcessingPolicy_ptr
_ptr_type;

 typedef PortableServer::RequestProcessingPolicy_var
_var_type;

 virtual ~RequestProcessingPolicy();
 static RequestProcessingPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static RequestProcessingPolicy_ptr _unchecked_narrow(
 646

 CORBA::Object_ptr obj
);
 inline static RequestProcessingPolicy_ptr _duplicate(
 RequestProcessingPolicy_ptr p
);
 inline static RequestProcessingPolicy_ptr _nil();

 virtual RequestProcessingPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
 };

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

RequestProcessingPolicy::value()

// C++
virtual RequestProcessingPolicyValue value() = 0;

Returns the value of this POA policy.
647

 648

PortableServer::ServantActivator
Interface

When a POA has the RETAIN policy value, it uses the ServantActivator type
of servant manager.

//IDL
interface ServantActivator : ServantManager {
 Servant incarnate(
 in ObjectId oid,
 in POA adapter
)
 raises (ForwardRequest);

 void etherealize(
 in ObjectId oid,
 in POA adapter,
 in Servant serv,
 in boolean cleanup_in_progress,
 in boolean remaining_activations
);
};

ServantActivator::etherealize()

//IDL
void etherealize(
 in ObjectId oid,
 in POA adapter,
 in Servant serv
 in boolean cleanup_in_progress
 in boolean remaining_activations
);

//C++
virtual void etherealize(
 const ObjectId & oid,
649

 POA_ptr adapter,
 Servant serv,
 CORBA::Boolean cleanup_in_progress,
 CORBA::Boolean remaining_activations
) = 0;

Destroys a servant in a POA that has the RETAIN and USE_SERVANT_MANAGER
policy values.

The cleanup_in_progress parameter indicates the context in which this
method was called. If is set to true, etherealize() was called because of
calls to either PortableServer::POAManager::deactivate() or
PortableServer::POA::destroy() with its etherealize_objects parameter
set to true. If cleanup_in_progress is false, this method was called for other
reasons.

Because a servant can incarnate multiple objects, etherealize() checks the
remaining_activations parameter to determine whether this servant
incarnates any other objects within this POA; if remaining_activations is
set to FALSE and the servant is not used by other POAs, the method can
safely delete the servant from memory.

Before the POA calls on a servant manager�s etherealize() method, it takes
steps to ensure the safe destruction of servants in a multi-threaded
environment:

� Removes the target object and its servant from the active object map.
Thus, new requests for the target object cannot be invoked on the
servant while it undergoes etherealization.

� Calls etherealize() on the servant only after all outstanding requests
finish processing.

A servant can be etherealized by a servant activator other than the one that
originally incarnated it.

ServantActivator::incarnate()

//IDL
Servant incarnate(
 in ObjectId oid,
 in POA adapter
)

 650

 raises (ForwardRequest);

//C++
virtual Servant incarnate(
 const ObjectId & oid,
 POA_ptr adapter
) = 0;

Called by the POA when it receives a request for object oid, where oid contains
the ID of an inactive object. incarnate() returns an appropriate servant for
the requested object; this servant is associated with oid in the POA�s active
object map, thereby activating the object. Subsequent requests for this object
are mapped directly to the servant.

This method is only called by the POA on a servant activator, which the POA
uses as its servant manager when it has policies of USE_SERVANT_MANAGER
and RETAIN. When using a servant activator, the active object map retains a
servant-object association until the servant is etherealized. A servant can only
incarnate a given object once. If the POA has a policy of UNIQUE_ID,
incarnate() can only return a servant that does not incarnate any object
other than oid in that POA.

Note: If the same servant is used by different POAs, that servant conforms
to the uniqueness policy of each POA. Thus, it is possible for the same
servant to be associated with multiple objects in one POA, and be restricted
to one object in another.

Exceptions

See Also PortableServer::ServantActivator::etherealize()
PortableServer::ServantLocator::preinvoke()

ForwardRequestThe client is instructed to send this request and subsequent
requests for oid to the object specified in the exception�s
forward_reference member�in IIOP, through a
LOCATION_FORWARD reply.
651

 652

PortableServer::ServantLocator
Interface

When the POA has the NON_RETAIN policy value it uses servant locators as its
servant managers. Because the POA knows that the servant returned by a
ServantLocator will be used only for a single request, it can supply extra
information to the servant manager�s operations. Also, the servant manager�s
pair of operations may be able to cooperate to do something different than a
ServantActivator.

//IDL
interface ServantLocator : ServantManager {
 native Cookie;
 Servant preinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 out Cookie the_cookie
) raises (ForwardRequest);

 void postinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 in Cookie the_cookie,
 in Servant the_servant
);
};

ServantLocator::Cookie Native Type

// IDL
native Cookie;

// C++
typedef void* Cookie;
653

The Cookie native type is opaque to the POA. It can be set by the servant
manager for use later by postinvoke().

ServantLocator::postinvoke()

//IDL
void postinvoke(
 in ObjectId oid,
 in POA adapter
 in CORBA::Identifier operation,
 in Cookie the_cookie,
 in Servant the_servant
);

//C++
virtual void postinvoke(
 const ObjectId & oid,
 POA_ptr adapter,
 CORBA::Identifier const char* operation,
 Cookie the_cookie,
 Servant the_servant
) = 0;

Called on a POA�s servant locator to delete a servant when processing of a
request for object oid is complete.

Each postinvoke() call is paired to an earlier preinvoke() call. In order to
explicitly map data between the two calls, you set the preinvoke() method�s
the_cookie parameter. This can be especially useful in a multi-threaded
environment where it is important to ensure that a pair of preinvoke() and
postinvoke() calls operate on the same servant. For example, each
preinvoke() call can set its the_cookie parameter to data that identifies its
servant; the postinvoke() code can then compare that data to its
the_servant parameter.

The POA calls this method only on a servant locator, which the POA uses as
its servant manager when it has policies of USE_SERVANT_MANAGER and
NON_RETAIN.

See Also PortableServer::ServantLocator::preinvoke()
PortableServer::POA::create_reference_with_id()
 654

ServantLocator::preinvoke()

//IDL
Servant preinvoke(
 in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 out Cookie the_cookie
)
 raises (ForwardRequest);

//C++
virtual Servant preinvoke(
 const ObjectId & oid,
 POA_ptr adapter,
 CORBA::Identifier const char* operation,
 Cookie& the_cookie
) = 0;

Returns an appropriate servant for the requested object. This method is called
on a POA�s servant locator when the POA receives a request for object oid,
where oid contains the ID of an inactive object.

This method is only called by the POA on a servant locator, which the POA
uses as its servant manager when it has policies of USE_SERVANT_MANAGER
and NON_RETAIN.

The lack of an active object map can require the following behavior:

� After processing on the requested object is complete, the POA calls
postinvoke() on the object and etherealizes its servant.

� Each request for an object is treated independently, irrespective of the
status of earlier requests for that object. So, it is possible for a POA to
accept multiple requests for the same object concurrently and for its
servant locator to incarnate several servants for that object
simultaneously.

Alternatively, the application can maintain its own object-servant map in
order to allow a servant to process multiple requests for the same object, or
to process requests for multiple objects. For example, a database server can
use a servant locator to direct concurrent operations to the same servant;
database transactions are opened and closed within the preinvoke() and
postinvoke() operations.
655

Each preinvoke() call is paired to an later postinvoke() call. In order to
explicitly map data between the two calls, set preinvoke()�s the_cookie
parameter. This can be especially useful in a multi-threaded environment
where it is important to ensure that a pair of preinvoke() and postinvoke()
calls operate on the same servant. For example, each preinvoke() call can
set its cookie parameter to data that identifies its servant; the postinvoke()
code can then compare that data to its the_servant parameter.

Exceptions

See Also PortableServer::ServantLocator::postinvoke()

ForwardRequestThe client is instructed to send this request and subsequent
requests for oid to the object specified in the exception�s
forward_reference member�in IIOP, through a
LOCATION_FORWARD reply.
 656

PortableServer::ServantManager
Interface

A servant manager supplies a POA with the ability to activate objects on
demand when the POA receives a request targeted at an inactive object. A
servant manager is registered with a POA as a callback object, to be invoked
by the POA when necessary.

A servant manager is used in servers only for the case in which an object
must be activated during request processing. An application server that
activates all its needed objects at the beginning of execution does not need to
use a servant manager.

The ServantManager interface is an empty base interface that is inherited by
the interfaces ServantActivator and ServantLocator. These two types of
servant managers have the following corresponding policy values:

//IDL
interface ServantManager
{ };

See Also PortableServer::ServantActivator
PortableServer::ServantLocator

Table 17: Corresponding Policies for Servant Managers

Servant Manager POA Policy Value

ServantActivator RETAIN

ServantLocator NON_RETAIN
657

 658

PortableServer::
ServantRetentionPolicy Interface

You obtain a ServantRetentionPolicy object by using POA::
create_servant_retention_policy() and passing the policy to POA::
create_POA() to specify whether the created POA retains active servants in
an active object map. This is a policy class derived from CORBA::Policy.

If no ServantRetentionPolicy value is specified at POA creation, the default
value is RETAIN.

See Also PortableServer::RequestProcessingPolicy

// IDL
interface ServantRetentionPolicy : CORBA::Policy {
 readonly attribute ServantRetentionPolicyValue value;
};
// C++ in namespace PortableServer
 class IT_POA_API ServantRetentionPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::ServantRetentionPolicy_ptr
_ptr_type;

 typedef PortableServer::ServantRetentionPolicy_var
_var_type;

 virtual ~ServantRetentionPolicy();
 static ServantRetentionPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static ServantRetentionPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static ServantRetentionPolicy_ptr _duplicate(
 ServantRetentionPolicy_ptr p
);
659

 inline static ServantRetentionPolicy_ptr _nil();

 virtual ServantRetentionPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
 };

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

ServantRetentionPolicy::value()

// C++
virtual ServantRetentionPolicyValue value() = 0;

Returns the value of this POA policy.
 660

PortableServer::ThreadPolicy
Interface

You obtain a ThreadPolicy object by using POA::create_thread_policy()
and passing the policy to POA::create_POA() to specify the threading model
used with the created POA. This is a policy class derived from CORBA::
Policy.

// IDL
interface ThreadPolicy : CORBA::Policy {
 readonly attribute ThreadPolicyValue value;
};

// C++ in namespace PortableServer

 class IT_POA_API ThreadPolicy :
 public virtual ::CORBA::Policy
 {
 public:

 typedef PortableServer::ThreadPolicy_ptr _ptr_type;
 typedef PortableServer::ThreadPolicy_var _var_type;
 virtual ~ThreadPolicy();
 static ThreadPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static ThreadPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static ThreadPolicy_ptr _duplicate(
 ThreadPolicy_ptr p
);
 inline static ThreadPolicy_ptr _nil();

 virtual ThreadPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
 };
661

See page 4 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

ThreadPolicy::value()

// C++
virtual ThreadPolicyValue value() = 0;

Returns the value of this POA policy.
 662

 IT_PortableServer

Module

IT_PortableServer Overview
This module contains Orbix policy enhancements to the PortableServer
module. The IT_PortableServer policies are:

� ObjectDeactivationPolicy
� PersistenceModePolicy
� DispatchWorkQueuePolicy

The IT_PortableServer module also contains the following common data
structures and constants related to the policies:

� OBJECT_DEACTIVATION_POLICY_ID
� ObjectDeactivationPolicyValue
� PERSISTENCE_MODE_POLICY_ID
� PersistenceModePolicyValue
� DISPATCH_WORKQUEUE_POLICY_ID

IT_PortableServer::OBJECT_DEACTIVATION_POLICY_ID
Constant

// IDL
const CORBA::PolicyType OBJECT_DEACTIVATION_POLICY_ID =

IT_PolicyBase::IONA_POLICY_ID + 1;

// C++
IT_POA_API IT_NAMESPACE_STATIC const
 CORBA::ULong OBJECT_DEACTIVATION_POLICY_ID;

Defines a policy ID for object deactivation.

Enhancement This is an Orbix enhancement.

IT_PortableServer::ObjectDeactivationPolicyValue
Enumeration

// IDL
665

enum ObjectDeactivationPolicyValue {
 DISCARD,
 DELIVER,
 HOLD
};

// C++
enum ObjectDeactivationPolicyValue {
 DISCARD,
 DELIVER,
 HOLD,
 _dummy_ObjectDeactivationPolicyValue = 0x80000000
};

An object deactivation policy value. Valid values consist of:

DISCARD
DELIVER
HOLD

Enhancement This is an Orbix enhancement.

See Also IT_PortableServer::ObjectDeactivationPolicy

IT_PortableServer::PERSISTENCE_MODE_POLICY_ID
Constant

// IDL
const CORBA::PolicyType PERSISTENCE_MODE_POLICY_ID =

IT_PolicyBase::IONA_POLICY_ID + 3;

// C++
IT_POA_API IT_NAMESPACE_STATIC const
 CORBA::ULong PERSISTENCE_MODE_POLICY_ID;

Defines a policy ID for the mode of object persistence.

Enhancement This is an Orbix enhancement.

IT_PortableServer::PersistenceModePolicyValue Enumeration

// IDL
enum PersistenceModePolicyValue {
 666

 DIRECT_PERSISTENCE,
 INDIRECT_PERSISTENCE
};

enum PersistenceModePolicyValue {
 DIRECT_PERSISTENCE,
 INDIRECT_PERSISTENCE,
 _dummy_PersistenceModePolicyValue = 0x80000000
};

A persistence mode policy value. Valid values consist of:

DIRECT_PERSISTENCE
INDIRECT_PERSISTENCE

Enhancement This is an Orbix enhancement.

See Also IT_PortableServer::PersistenceModePolicy

IT_PortableServer::DISPATCH_WORKQUEUE_POLICY_ID
Constant

const CORBA::PolicyType DISPATCH_WORKQUEUE_POLICY_ID =
IT_PolicyBase::IONA_POLICY_ID + 42;

// C++
IT_POA_API IT_NAMESPACE_STATIC const
 CORBA::ULong DISPATCH_WORKQUEUE_POLICY_ID;

Defines the policy ID for using WorkQueues to process ORB requests.

Enhancement This is an Orbix enhancement.
667

 668

IT_PortableServer::
ObjectDeactivationPolicy Class

This is an interface for a local policy object derived from CORBA::Policy. You
create instances of ObjectDeactivationPolicy by calling CORBA::ORB::
create_policy().

// IDL
interface ObjectDeactivationPolicy : CORBA::Policy {
 readonly attribute ObjectDeactivationPolicyValue value;
};

// C++ in namespace IT_PortableServer
class IT_POA_API ObjectDeactivationPolicy :
 public virtual ::CORBA::Policy {
 public:

 typedef IT_PortableServer::ObjectDeactivationPolicy_ptr
 _ptr_type;
 typedef IT_PortableServer::ObjectDeactivationPolicy_var
 _var_type;

 virtual ~ObjectDeactivationPolicy();

 static ObjectDeactivationPolicy_ptr _narrow(
 CORBA::Object_ptr obj
);

 static ObjectDeactivationPolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

 inline static ObjectDeactivationPolicy_ptr _duplicate(
 ObjectDeactivationPolicy_ptr p
);

 inline static ObjectDeactivationPolicy_ptr _nil();
669

 virtual ObjectDeactivationPolicyValue value() = 0;

 static const IT_FWString _it_fw_type_id;
};

See page 5 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

ObjectDeactivationPolicy::~ObjectDeactivationPolicy()
Destructor

// C++
virtual ~ObjectDeactivationPolicy();

The destructor.

Enhancement This is an Orbix enhancement.

ObjectDeactivationPolicy::value()

// C++
virtual ObjectDeactivationPolicyValue value() = 0;

// Java
public ObjectDeactivationPolicyValue value()

Returns the value of this object deactivation policy.

Enhancement This is an Orbix enhancement.
 670

IT_PortableServer::
PersistenceModePolicy Class

This is an interface for a local policy object derived from CORBA::Policy. You
create instances of PersistenceModePolicy by calling CORBA::ORB::
create_policy().

// IDL
interface PersistenceModePolicy : CORBA::Policy {
 readonly attribute PersistenceModePolicyValue value;
};

// C++ in namespace IT_PortableServer
class IT_POA_API PersistenceModePolicy :
 public virtual ::CORBA::Policy {
 public:

 typedef IT_PortableServer::PersistenceModePolicy_ptr
_ptr_type;

 typedef IT_PortableServer::PersistenceModePolicy_var
_var_type;

 virtual ~PersistenceModePolicy();

 static PersistenceModePolicy_ptr _narrow(
 CORBA::Object_ptr obj
);
 static PersistenceModePolicy_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);
 inline static PersistenceModePolicy_ptr _duplicate(
 PersistenceModePolicy_ptr p
);
 inline static PersistenceModePolicy_ptr _nil();

 virtual PersistenceModePolicyValue value() = 0;

 static const IT_FWString
671

 _it_fw_type_id;
};

See page 5 for descriptions of the standard helper functions:

� _duplicate()
� _narrow()
� _nil()
� _unchecked_narrow()

PersistenceModePolicy::~PersistenceModePolicy() Destructor

virtual ~PersistenceModePolicy();

The destructor.

Enhancement This is an Orbix enhancement.

PersistenceModePolicy::value()

// C++
virtual PersistenceModePolicyValue value() = 0;

Returns the value of this persistent mode policy.

Enhancement This is an Orbix enhancement.
 672

IT_PortableServer::
DispatchWorkQueuePolicy Interface

This is policy used to specify a WorkQueue to process ORB requests. It is
derived from CORBA::Policy. You create instances of the policy by calling
CORBA::ORB::create_policy().

//IDL
local interface DispatchWorkQueuePolicy : CORBA::Policy
{
 readonly attribute IT_WorkQueue::WorkQueue workqueue;
}

673

 674

 WorkQueues

IT_WorkQueue Module
The IT_WorkQueue module defines the interfaces needed to create and
manage user defined work queues.

WorkItem Interface
// IDL
enum WorkItemStatus
 {
 STOP_WORKING,
 CONTINUE_WORKING
 };

interface WorkItem
 {
 WorkItemStatus execute();
 void destroy();
 };

The WorkItem interface defines requests placed on the work queue. For most
purposes, you do not need to implement this interface. The ORB will place
requests on the queue and execute them under the covers. You can
implement this interface if you want to have additional processing done by
the work queues thread pool.

WorkItem::execute()

WorkItemStatus execute();

Processes the request encapsulated in the WorkItem object. The only times
you need to call this method, is when using a ManualWorkQueue and removing
items from the queue using dequeue(). Also, if you have made a custom
WorkItem, you will need to implement this method.
677

WorkItem::Destroy

void destroy();

Releases the resources for the current WorkItem object.

WorkQueue Interface
// IDL
interface WorkQueue
 {
 readonly attribute long max_size;
 readonly attribute unsigned long count;

 boolean enqueue(in WorkItem work, in long timeout);
 boolean enqueue_immediate(in WorkItem work);
 boolean is_full();
 boolean is_empty();
 boolean activate();
 boolean deactivate();
 void flush();
 boolean owns_current_thread();
 };

The WorkQueue interface defines the base functionality for the
ManualWorkQueue interface and the AutomaticWorkQueue interface.

max_size attribute

readonly attribute long max_size;

Specifies the maximum number of WorkItems a queue can hold before it is full.

WorkQueue::enqueue()

boolean enqueue(in WorkItem work, in long timeout);

Places work items into the queue for processing. For CORBA requests, the ORB
takes care of placing items into the queue. For custom work items that you
wish to handle in the queue, you must explicitly place them on the queue.
 678

WorkQueue Interface
Parameters

WorkQueue::enqueue_immediate()

boolean enqueue_immediate()

Returns TRUE and places the work item onto the queue for processing if the
work queue is not full and the number of threads is below the high water mark.
Effectively, this causes the work item to be processed immediately with out
waiting for any current thread to complete. Returns FALSE if the work item
cannot immediately placed on the work queue.

Parameters

WorkQueue::is_full()

boolean is_full();

Returns TRUE if the WorkQueue has reached max_size. Returns FALSE otherwise.

WorkQueue::is_empty()

boolean is_empty();

Returns TRUE if the WorkQueue is empty. Returns FALSE otherwise.

WorkQueue::activate()

boolean activate();

Puts the queue into a state where it is ready to receive and process work
requests.

work The WorkItem to be placed into the queue.

timeout The time in seconds that the item will be valid on the queue.

work The WorkItem to be placed into the queue.
679

WorkQueue::deactivate()

boolean deactivate();

Puts the queue into a state where it will no longer process work requests.

WorkQueue::owns_current_thread()

boolean owns_current_thread();

Returns TRUE if the thread making the call is managed by the work queue.

WorkQueue::flush()

void flush();

Removes all of the items from the queue without processing them.

ManualWorkQueue Interface
// IDL
interface ManualWorkQueue : WorkQueue
 {
 boolean dequeue(out WorkItem work, in long timeout);
 boolean do_work(in long number_of_jobs, in long timeout);
 void shutdown(in boolean process_remaining_jobs);
 };

The ManualWorkQueue interface specifies the methods for managing a manual
work queue.

ManualWorkQueue::dequeue()

boolean dequeue(out WorkItem work, in long timeout);

Removes a single WorkItem from the head of the queue. You must explicitly
call execute() on the WorkItem to process the request using this method.
 680

ManualWorkQueueFactory Interface
Parameters

ManualWorkQueue::do_work()

boolean do_work(in long number_of_jobs, in long timeout);

Removes the specified number of requests from the queue and processes them.
If there are less than the specified number of items on the queue, do_work()
will block for a specified amount of time to wait for items to be queued.

Parameters

ManualWorkQueue::shutdown()

void shutdown(in boolean process_remaining_jobs);

Deactivates the queue and releases all resources associated with it.

Parameters

ManualWorkQueueFactory Interface
// IDL
local interface ManualWorkQueueFactory

work The WorkItem returned by dequeue(). If the call is unsucess-
full, work will be NULL.

timeout The maximum amount of time the call will block before
returning NULL.

number_of_jobsThe maximum number of items to process.

timeout The maximum amount of time the call will block before
returning.

process_remainig_jobsTRUE specifies that any items in the queue should be
processed before shutting down the queue.

FALSE specifies that any items in the queue should
be flushed.
681

 {
 ManualWorkQueue create_work_queue(in long max_size);
 };

Defines the method used to obtain a ManualWorkQueue. The
ManualWorkQueueFactory is obtained by calling
resolve_initial_references("IT_ManualWorkQueueFactory").

ManualWorkQueueFactory::create_work_queue()

ManualWorkQueue create_work_queue(in long max_size);

Creates a ManualWorkQueue object.

Parameters

AutomaticWorkQueue Interface
// IDL
interface AutomaticWorkQueue : WorkQueue
 {
 readonly attribute unsigned long threads_total;
 readonly attribute unsigned long threads_working;

 attribute long high_water_mark;
 attribute long low_water_mark;

 void shutdown(in boolean process_remaining_jobs);
 };

The AutomaticWorkQueue interface specifies the method used to shutdown
an automatic work queue. It also specifies the attributes that limit the size of
the queue�s thread pool and monitor thread usage.

max_size Specifies the maximum number of work items the queue can
hold.
 682

AutomaticWorkQueue Interface
threads_total Attribute

readonly attribute unsigned long threads_total;

The total number of threads in the AutomaticWorkqueue which can process
work items. This will indicate how many threads the workqueue currently has
if it has been configured to dynamically create and destroy threads as the
workload changes.

threads_working Attribute

readonly attribute unsigned long threads_working;

Indicates the total number of threads that are busy processing work items at
that point in time. This value will vary as the workload of the server changes.

high_water_mark Attribute

attribute long high_water_mark;

Specifies the maximum number of threads an AutomaticWorkQueue instance
can have in its active thread pool.

low_water_mark Attribute

attribute long low_water_mark;

Specifies the minimum number of threads available to an AutomaticWorkQueue
instance.

AutomaticWorkQueue::shutdown()

void shutdown(in boolean process_remaining_jobs);

Deactivates the queue and releases all resources associated with it.
683

Parameters

AutomaticWorkQueueFactory Interface
// IDL
local interface AutomaticWorkQueueFactory
 {
 AutomaticWorkQueue create_work_queue(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark);

 AutomaticWorkQueue create_work_queue_with_thread_stack_size(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark,
 in long thread_stack_size);
 };

The AutomaticWorkQueueFactory interface specifies two methods for
obtaining an AutomaticWorkQueue. The AutomaticWorkQueueFactory is
obtained by calling
resolve_initial_references("IT_AutomaticWorkQueueFactory").

AutomaticWorkQueueFactory::create_work_queue()

AutomaticWorkQueue create_work_queue(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark);

process_remainig_jobsTRUE specifies that any items in the queue should be
processed before shutting down the queue.

FALSE specifies that any items in the queue should
be flushed.
 684

AutomaticWorkQueueFactory Interface
Creates an AutomaticWorkQueue.

Parameters

AutomaticWorkQueueFactory::
create_work_queue_with_thread_stack_size()

AutomaticWorkQueue create_work_queue_with_thread_stack_size(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark,
 in long thread_stack_size);

Creates an AutomaticWorkQueue and specify the size of the thread stack.

Parameters

max_size The maximum number of items the queue can hold.

initial_thread_countThe initial number of threads the queue has available
for processing work items.

high_water_mark The maximum number of threads the queue can gen-
erate to process work items.

low_water_mark The minimum number of threads the queue can have
available to process work items.

max_size The maximum number of items the queue can hold.

initial_thread_countThe initial number of threads the queue has available
for processing work items.

high_water_mark The maximum number of threads the queue can gen-
erate to process work items.

low_water_mark The minimum number of threads the queue can have
available to process work items.

thread_stack_size The size, in bytes, of the thread stack used by the
queue.
685

WorkQueuePolicy Interface
// IDL
local interface WorkQueuePolicy : CORBA::Policy
 {
 readonly attribute WorkQueue work_queue;
 };

The WorkPolicy interface is the object you pass to create_policy() when
associating you WorkQueue with a POA.
 686

Threading and

Synchronization Toolkit

Threading and Synchronization
Toolkit Overview

The Threading and Synchronization (TS) toolkit provides an object-oriented
and platform-neutral abstraction that hides the diverse, lower-level, thread
packages. Table 18 shows the threading and synchronization (TS) classes
organized into some useful groups.

The rest of this overview covers these topics:

Table 18: TS Thread Classes

Thread Management IT_CurrentThread
IT_Thread
IT_ThreadBody
IT_ThreadFactory
IT_TerminationHandler
IT_TSVoidStar

Thread Errors and Exceptions IT_TSBadAlloc
IT_DefaultTSErrorHandler
IT_TSError
IT_TSErrorHandler
IT_TSLogic
IT_TSRuntime

Mutex Locks IT_Locker
IT_Mutex
IT_PODMutex
IT_RecursiveMutex
IT_RecursiveMutexLocker

Thread Synchronization IT_Condition
IT_Gateway
IT_Semaphore
IT_TimedCountByNSemaphore
IT_TimedOneshot
IT_TimedSemaphore
689

� �Timeouts�
� �Execution Modes�
� �Errors and Exceptions�

Timeouts
Timeouts are expressed in milliseconds. They represent the time period from
the invocation of the timed method until the expiration of the timer. This
time-out period is approximate because it is affected by the number and kind
of interrupts received and by the changes external sources may make to the
system�s time.

Execution Modes
The TS classes are designed to be efficient and to help you write code that is
correct and portable across various platforms. You can build TS applications
in either of the following modes:

The effect of a program that runs correctly (the program does not create any
TS error object) in the checked mode is identical to that of the unchecked
mode.

TS provides two kinds of classes in different sets of header files. These
include wrapper and inline classes.

Unchecked This is the normal production mode. Inexpensive
checks, such as checking values returned by the API,
are performed, but a minimum of memory, locking,
and system calls are used to implement TS features.

Checked In this mode, extra-checking is performed to detect
erroneous or non-portable situations. On platforms
that support exceptions, exceptions are raised to
report such errors. This mode may be less time or
space efficient than the unchecked mode.
 690

Execution Modes
Wrapper Classes

Wrapper classes are the recommended classes to use because you can
switch between checked and unchecked modes by simply re-linking without
recompiling your application. These clean, platform-neutral wrapper classes
simply delegate to the appropriate inlined classes for whichever mode you
are using.

The wrapper classes are in header files ending in .h.

Inlined Classes

To minimize the delegation overhead of wrapper classes, the TS toolkit also
provides C++ classes with only inlined member methods and
pre-preprocessor directives. These inline classes accommodate the
differences between the underlying thread packages.

Delegation overhead for a normal method call is generally negligible, but you
can save on this overhead by using these inlined classes directly. However by
using these header files, you will need to recompile your application
whenever you want to switch between checked and unchecked modes, and
each time even minor improvements are made to the TS implementation.

The inline classes are in header files ending in _i.h.

Setting an Execution Mode

Table 19 shows the default settings for each platform.

Table 19: Default Thread Settings

Platform Thread Primitives Default Mode

HPUX 11

Solaris 2.6

Posix unchecked

HPUX 10.20 DCE unchecked

Other Solaris UI unchecked

Win32 Win32 unchecked
691

To set a different mode, you reset the library by inserting the preferred lib
subdirectory at the beginning of your LD_LIBRARY_PATH or SHLIB_PATH. For
example, to reset to the checked mode, do the following for your respective
platform:

Errors and Exceptions
Table 20 summarizes the TS error classes:

The TS API allows you to use either error parameters or exceptions. The last
parameter of almost every TS method is a reference to an error handler object
of the class IT_TSErrorHandler. When a TS method detects an error, it
creates an IT_TSError object and passes it to IT_TSErrorHandler::
handle().

TS errors form the hierarchy shown in Figure 1. An IT_TSRuntime error
generally signals an error detected by the operating system or the underlying
thread package. An IT_TSLogic error reports a logic error in your program,
for example, when a thread tries to release a lock it does not own. Logic

Solaris Put the following at the beginning of your LD_LIBRARY_PATH:

/vob/common/ts/lib/posix/checked

HPUX 10.20 Put the following at the beginning of your SHLIB_PATH:

/vob/common/ts/lib/dce/checked

HPUX 11.00 Put the following at the beginning of your SHLIB_PATH:

/vob/common/ts/lib/posix/checked

NT Put the following at the beginning of your PATH:

/common/ts/lib/win32/checked

Table 20: Error and Exception Classes

Control Exceptions

IT_DefaultTSErrorHandler
IT_TSError
IT_TSErrorHandler

IT_TSBadAlloc
IT_TSLogic
IT_TSRuntime
 692

Errors and Exceptions
errors are either detected by the underlying thread package, or by extra
checking code in checked mode. An IT_TSBadAlloc error signals that the new
operator failed.

The TS API provides a default, static, and stateless error handler named
IT_DefaultTSErrorHandler. If you use exceptions, this error handler throws
IT_TSError objects. In environments that do not use exceptions this handler
aborts the process.

For most applications, the default error handler object provides the desired
behavior. In this situation, instead of passing an IT_DefaultTSErrorHandler
object each time you call a TS method, you can define in your build command
the environment variable IT_TS_DEFAULTED. This will instruct the TS API to
use the default error handler object for the error handler parameter. For
example:

#ifndef IT_TS_DEFAULT_ERROR_HANDLER
#ifdef IT_TS_DEFAULTED
#define IT_TS_DEFAULT_ERROR_HANDLER = IT_DefaultTSErrorHandler
#else
#define IT_TS_DEFAULT_ERROR_HANDLER
#endif
#endif

Figure 1: The TS Error Class Hierarchy

IT_TSError

IT_TSRuntime IT_TSLogic

IT_TSBadAlloc
693

C++ destructors do not have parameters, and as result, cannot be given an
error handler object parameter. In the checked mode, the TS API reports
errors in destructors to the default error handler object. In the unchecked
mode, the TS API does not report errors that occur in destructors.

Because default parameters are not part of the function-type in C++, the TS
library can be built with or without defining IT_TS_DEFAULTED. Also, the same
library can be used by modules that use the defaulted parameter and by
modules built without defining IT_TS_DEFAULTED.

If you intend to use your own error handler objects in your application, it is
strongly recommended that you do not define IT_TS_DEFAULTED to avoid
using the default error handler object by mistake. If you want to consistently
use the same error handler object, you can define
IT_TS_DEFAULT_ERROR_HANDLER in your command or in a non-exported file.
For example:

#define IT_TS_DEFAULT_ERROR_HANDLER = myErrorHandler;
 694

IT_Condition Class
The IT_Condition class provides a signalling mechanism that events use to
synchronize when sharing a mutex. In one atomic operation, a condition wait
both releases the mutex and waits until another thread signals or broadcasts
a change of state for the condition.

class IT_Condition {
public:
 IT_Condition(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 ~IT_Condition();
 void wait(
 IT_Mutex& app_mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void wait(
 IT_MutexLocker& locker,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void broadcast(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
};

IT_Condition::broadcast()

void broadcast(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Wakes up all waiting threads. One thread acquires the mutex and resumes
with the associated mutex lock. The rest of the threads continue waiting.
695

Parameters

Enhancement Orbix enhancement.

See Also IT_Mutex

IT_Condition::IT_Condition() Constructor

IT_Condition(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

The constructor for an IT_Condition object.

Parameters

Enhancement Orbix enhancement.

IT_Condition::~IT_Condition() Destructor

~IT_Condition();

The destructor for an IT_Condition object.

Enhancement Orbix enhancement.

IT_Condition::signal()

void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Wakes up a single waiting thread. The thread resumes with the associated
mutex locked.

Parameters

eh A reference to an error handler object.

eh A reference to an error handler object.

eh A reference to an error handler object.
 696

Enhancement Orbix enhancement.

IT_Condition::wait()

void wait(
 IT_Mutex& app_mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

void wait(
 IT_MutexLocker& locker,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Atomically releases the mutex, and waits until another thread calls signal()
or broadcast().

Parameters

The mutex must always be locked when wait() is called. When a condition
wakes up from a wait, it resumes with the mutex locked.

Enhancement Orbix enhancement.

app_mutex Use the mutex app_mutex.

locker Use the mutex in locker.

eh
697

 698

IT_CurrentThread Class
The IT_CurrentThread class gives access to the current thread. It has only
static member methods.

class IT_TS_API IT_CurrentThread {
public:
 static IT_Thread self(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 static int is_main_thread();

 static void cleanup();

 static void yield();

 static void sleep(
 unsigned long milliseconds
);

 static long id();
};

IT_CurrentThread::cleanup()

static void cleanup();

Cleans up thread-specific data. A thread typically calls cleanup() before
exiting. Threads created with an IT_ThreadFactory do this automatically.

Enhancement Orbix enhancement.

IT_CurrentThread::id()

static long id();

Returns a unique identifier for the current thread.
699

Enhancement Orbix enhancement.

IT_CurrentThread::is_main_thread()

static int is_main_thread();

Returns 1 if the caller is the main thread, but returns 0 if it is not.

Enhancement Orbix enhancement.

IT_CurrentThread::self()

static IT_Thread self(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Returns an IT_Thread object for the thread that calls this method.

Parameters

Enhancement Orbix enhancement.

IT_CurrentThread::sleep()

static void sleep(
 unsigned long milliseconds
);

Suspends the current thread for the approximate number of milliseconds input.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

milliseconds The length of time in milliseconds to suspend the thread.
 700

IT_CurrentThread::yield()

static void yield();

Yields the CPU to another thread of equal priority, if one is available.

Enhancement Orbix enhancement.
701

 702

IT_DefaultTSErrorHandler Class
The IT_DefaultTSErrorHandler class is the default TS error handler. If you
use exceptions, this error handler throws IT_TSError objects. In
environments that do not use exceptions this handler aborts the process.

class IT_DefaultTSErrorHandler : public IT_TSErrorHandler{
public:
 virtual ~IT_DefaultTSErrorHandler()
 virtual void handle(
 const IT_TSError& this_error
);
};

See page 692 for more on error handling.

IT_DefaultTSErrorHandler::handle()

void handle(
 const IT_TSError& this_error
);

Do appropriate processing for the given error.

Parameters

Enhancement Orbix enhancement.

IT_DefaultTSErrorHandler::~IT_DefaultTSErrorHandler()
Destructor

~IT_DefaultTSErrorHandler()

The destructor for the error handler object.

Enhancement Orbix enhancement.

this_error A reference to an error object.
703

 704

IT_Gateway Class
The IT_Gateway class provides a gate where a set of threads can only do
work if the gate is open.

class IT_Gateway {
public:
 IT_Gateway(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 ~IT_Gateway();

 void open(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void close(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
...

IT_Gateway::close()

void close(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Close the gateway so no threads can do any work.

Parameters

eh A reference to an error handler object.
705

Enhancement Orbix enhancement.

IT_Gateway::IT_Gateway() Constructor

IT_Gateway(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

The gateway constructor.

Parameters

Enhancement Orbix enhancement.

IT_Gateway::~IT_Gateway() Destructor

~IT_Gateway();

The destructor.

Enhancement Orbix enhancement.

IT_Gateway::open()

void open(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Open the gateway to allow threads to work.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

eh A reference to an error handler object.
 706

IT_Gateway::wait()

void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Wait for a thread to finish.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.
707

 708

IT_Locker Template Class
IT_Locker is a helper class for locking and unlocking non-recursive mutexes,
including IT_Mutex and IT_PODMutex objects. Typically a locker locks a
mutex in its constructor and releases it in its destructor. This is particularly
useful for writing clean code that behaves properly when an exception is
raised.

An IT_Locker object must be created on the stack of a particular thread, and
must never be shared by more than one thread.

The IT_Locker method definitions are inlined directly in the class
declaration, because these methods call each other. If a definition calls a
method that is not previously declared inlined, this method is generated out
of line, regardless of its definition (which can be provided later in the
translation unit with the inline keyword).

template<class T> class IT_Locker {
public:
 IT_Locker(
 T& mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
 {
 lock();
 }

 IT_Locker(
 T& mutex,
 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
 {
 if (wait)
709

 {
 lock();
 }
 else
 {
 trylock();
 }
 }

 ~IT_Locker()
 {
 cancel();
 }

 void cancel()
 {
 if (m_locked)
 {
 m_mutex.unlock(m_error_handler);
 m_locked = 0;
 }
 }

 int is_locked()
 {
 return m_locked;
 }

 void lock()
 {
 m_mutex.lock(m_error_handler);
 m_locked = 1;
 }

 int trylock()
 {
 return (m_locked = m_mutex.trylock(m_error_handler));
 }

 T& mutex()
 {
 return m_mutex;
 }
 710

private:
...

IT_Locker::cancel()

void cancel() {
 if (m_locked)
 {
 m_mutex.unlock(m_error_handler);
 m_locked = 0;
 }
}

Releases the mutex only if it is locked by this locker. You can call cancel()
safely even when the mutex is not locked.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic

IT_Locker::is_locked()

int is_locked() {
 return m_locked;
}

returns 1 if this mutex locker has the lock and returns 0 if it does not.

Enhancement Orbix enhancement.

IT_Locker::IT_Locker()

IT_Locker(
 T& mutex,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
711

 m_error_handler(eh)
{
 lock();
}

A constructor for a locker object that locks the given mutex.

IT_Locker(
 T& mutex,
 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_mutex(mutex),
 m_locked(0),
 m_error_handler(eh)
{
 if (wait)
 {
 lock();
 }
 else
 {
 trylock();
 }
}

A constructor for a locker object.

Parameters

Enhancement Orbix enhancement.

See Also IT_Locker::trylock()

mutex The mutex to which the locker applies.

wait If wait has a value of 1, this constructor waits to acquire the
lock. If wait has a value of 0, the constructor only tries to lock
the mutex.

eh A reference to an error handler object.
 712

IT_Locker::~IT_Locker()

~IT_Locker()
{
 cancel();
}

The destructor releases the mutex if it is locked by this locker.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_Locker::lock()

void lock()
{
 m_mutex.lock(m_error_handler);
 m_locked = 1;
}

Locks the mutex associated with the locker.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_Locker::mutex()

T& mutex()
{
 return m_mutex;
}

Returns direct access to the locker�s mutex.

Enhancement Orbix enhancement.
713

IT_Locker::trylock()

int trylock()
{
 return (m_locked = m_mutex.trylock(m_error_handler));
}

Tries to lock the mutex. Returns 1 if the mutex is successfully locked or 0 if it
is not locked.

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime
 714

IT_Mutex Class
An IT_Mutex object is a synchronization primitive for mutual exclusion locks.

When a thread has successfully locked, it is said to own the IT_Mutex.
IT_Mutex objects have scope only within a single process (they are not
shared by several processes) and they are not recursive. When a thread that
owns an IT_Mutex attempts to lock it again, a deadlock occurs.

You use an IT_Mutex in conjunction with an IT_Locker object to lock and
unlock your mutexes.

class IT_Mutex {
public:
 IT_Mutex(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_Mutex();

 void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
// …
};

See Also IT_Locker
IT_RecursiveMutex
715

IT_Mutex::IT_Mutex() Constructor

IT_Mutex(I
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Constructs an IT_Mutex object. It is initially unlocked.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_Mutex::~IT_Mutex() Destructor

IT_Mutex();

The destructor for the mutex.

Enhancement Orbix enhancement.

IT_Mutex::lock()

void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Blocks until the IT_Mutex can be acquired.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.

eh A reference to an error handler object.
 716

IT_Mutex::trylock()

int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Tries to acquire the lock. If successful, the method returns a 1 immediately,
otherwise it returns a 0 and does not block.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_Mutex::unlock()

void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Releases this IT_Mutex. Only the owner thread of an IT_Mutex is allowed to
release an IT_Mutex.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.

eh A reference to an error handler object.
717

 718

IT_PODMutex Structure
An IT_PODMutex is a mutex for a �plain old data� (POD) structure. Just as
with a standard C++ PODS, an IT_PODMutex can be fully initialized at
compile time without the overhead of an explicit constructor call. This is
particularly useful for static objects. Likewise, the object can be destroyed
without an explicit destructor call (in a manner similar to the C language).

You can use the built-in definition IT_POD_MUTEX_INIT to easily initialize an
IT_PODMutex to zero. For example:

static IT_PODMutex my_global_mutex = IT_POD_MUTEX_INIT;

You use an IT_PODMutex in conjunction with an IT_Locker object to lock and
unlock your mutexes. The structure members for an IT_PODMutex include the
following:

struct IT_TS_API IT_PODMutex {
 void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 // DO NOT USE and DO NOT MAKE PRIVATE
 unsigned char m_index;
};

See Also IT_Locker
IT_Mutex

IT_PODMutex::lock()

void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
719

Blocks until the mutex can be acquired.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

IT_PODMutex::m_index Data Type

unsigned char m_index;

Note: For internal use only.

IT_PODMutex::trylock()

int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Tries to acquire the mutex lock. If trylock() succeeds, it returns a 1
immediately. Otherwise it returns 0.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.

eh A reference to an error handler object.
 720

IT_PODMutex::unlock()

void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Releases the mutex lock. Only the owner of a mutex is allowed to release it.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

eh A reference to an error handler object.
721

 722

IT_RecursiveMutex Class
An IT_RecursiveMutex object is a synchronization primitive for mutual
exclusion. In general do not used it directly.

Note: It is strongly recommended that you use the
IT_RecursiveMutexLocker to lock and unlock your recursive mutexes.

In most respects an IT_RecursiveMutex object is similar to an IT_Mutex
object. However, it can be locked recursively, which means that a thread
that already owns a recursive mutex object can lock it again in a deeper
scope without creating a deadlock condition.

When a thread has successfully locked a recursive mutex, it is said to own it.
Recursive mutex objects have process-scope which means that they are not
shared by several processes.

To release an IT_RecursiveMutex, its owner thread must call unlock() the
same number of times that it called lock().

class IT_RecursiveMutex {
public:
 IT_RecursiveMutex(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_RecursiveMutex();

 void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
723

);
private:
...

See Also IT_Mutex
IT_RecursiveMutexLocker

IT_RecursiveMutex::IT_RecursiveMutex() Constructor

IT_RecursiveMutex(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Constructs an IT_RecursiveMutex object. It is initially unlocked.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_RecursiveMutex::~IT_RecursiveMutex() Destructor

~IT_RecursiveMutex();

Destructor for an IT_RecursiveMutex object.

Enhancement Orbix enhancement.

IT_RecursiveMutex::lock()

void lock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Blocks until the recursive mutex can be acquired.

Parameters

eh A reference to an error handler object.

eh A reference to an error handler object.
 724

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_RecursiveMutex::trylock()

int trylock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Tries to acquire the recursive mutex. If it succeeds, returns 1 immediately;
otherwise returns 0.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_RecursiveMutex::unlock()

void unlock(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Releases this recursive mutex (one count). Only the owner of a mutex is allowed
to release it.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic

eh A reference to an error handler object.

eh A reference to an error handler object.
725

 726

IT_RecursiveMutexLocker Class
The IT_RecursiveMutexLocker is a locker for recursive mutexes. The
IT_RecursiveMutexLocker methods are defined as inline in the class
declaration, because these methods call each other.

class IT_RecursiveMutexLocker {
public:
 IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
 {
 lock();
 }

 IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
 {
 if (wait)
 {
 lock();
 }
 else
 {
 trylock();
 }
 }

 ~IT_RecursiveMutexLocker()
727

 {
 cancel();
 }

 void cancel()
 {
 while (m_lock_count > 0)
 {
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
 }
 }

 void lock()
 {
 m_recursive_mutex.lock(m_error_handler);
 m_lock_count++;
 }

 unsigned int lock_count()
 {
 return m_lock_count;
 }

 int trylock()
 {
 if (m_recursive_mutex.trylock(m_error_handler) == 1)
 {
 m_lock_count++;
 return 1;
 }
 else
 {
 return 0;
 }
 }

 void unlock()
 {
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
 }
 728

 IT_RecursiveMutex& mutex()
 {
 return m_recursive_mutex;
 }

Private:
...

IT_RecursiveMutexLocker::cancel()

void cancel() {
 while (m_lock_count > 0)
 {
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
 }
}

Releases all locks held by this recursive mutex locker. The cancel() method
can be called safely even when the recursive mutex is not locked.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::IT_RecursiveMutexLocker()
Constructors

IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
{
 lock();
}

Constructs a recursive mutex locker object. This constructor locks the given
recursive mutex.

IT_RecursiveMutexLocker(
 IT_RecursiveMutex& m,
729

 int wait,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) :
 m_recursive_mutex(m),
 m_lock_count(0),
 m_error_handler(eh)
{
 if (wait)
 {
 lock();
 }
 else
 {
 trylock();
 }
}

Constructs a recursive mutex locker object.

Parameters

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::~IT_RecursiveMutexLocker()
Destructor

~IT_RecursiveMutexLocker()
{
 cancel();
}

The destructor releases all locks held by this recursive mutex locker.

Enhancement Orbix enhancement.

m The mutex to which the locker applies.

wait If wait has a value of 1, this constructor waits to acquire the
lock. If wait has a value of 0, it only tries to lock the recursive
mutex.

eh A reference to an error handler object.
 730

IT_RecursiveMutexLocker::lock()

void lock()
{
 m_recursive_mutex.lock(m_error_handler);
 m_lock_count++;
}

Acquires the lock.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::lock_count()

unsigned int lock_count()
{
 return m_lock_count;
}

Returns the number of locks held by this recursive mutex locker.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::mutex()

IT_RecursiveMutex& mutex()
{
 return m_recursive_mutex;
}

Returns direct access to the locker�s recursive mutex.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::trylock()

int trylock()
{
 if (m_recursive_mutex.trylock(m_error_handler) == 1)
 {
 m_lock_count++;
731

 return 1;
 }
 else
 {
 return 0;
 }
}

Tries to acquire one lock for the recursive mutex. Returns 1 if the mutex lock
is successfully acquired or 0 if it is not.

Enhancement Orbix enhancement.

IT_RecursiveMutexLocker::unlock()

void unlock()
{
 m_recursive_mutex.unlock(m_error_handler);
 m_lock_count--;
}

Releases one lock held by this recursive mutex.

Enhancement Orbix enhancement.
 732

IT_Semaphore Class
A semaphore is a non-negative counter, typically used to coordinate access
to some resources.

class IT_Semaphore {
public:
 IT_Semaphore(
 size_t initialCount,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_Semaphore();

 void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
// …
};

IT_Semaphore::IT_Semaphore() Constructor

IT_Semaphore(
 size_t initialCount,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
733

A semaphore constructor that initializes the semaphore�s counter with the value
initialCount.

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_Semaphore::~IT_Semaphore() Destructor

~IT_Semaphore();

Destroys the semaphore.

Enhancement Orbix enhancement.

IT_Semaphore::post()

void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Posts a resource thread with the semaphore. This method increments the
semaphore�s counter and wakes up a thread that might be blocked on wait().

Parameters

Enhancement Orbix enhancement.

Exceptions The IT_TSRuntime error can be reported.

IT_Semaphore::trywait()

int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

initialCount A positive integer value.

eh A reference to an error handler object.

eh A reference to an error handler object.
 734

Tries to get a resource thread. The method returns 1 if it succeeds, and 0 if it
fails.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_Semaphore::wait()

void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Waits for one resource. The wait() method blocks if the semaphore�s counter
value is 0 and decrements the counter if the counter�s value is greater than 0.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

See Also IT_TimedSemaphore
IT_TimedCountByNSemaphore

eh A reference to an error handler object.

eh A reference to an error handler object.
735

 736

IT_TerminationHandler Class
The IT_TerminationHandler class enables server applications to handle
delivery of CTRL_C and similar events in a portable manner. On UNIX, the
termination handler handles the following signals:

SIGINT
SIGTERM
SIGQUIT

On Windows, the termination handler is a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following control
events:

CTRL_C_EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOWN_EVENT
CTRL_LOGOFF_EVENT
CTRL_CLOSE_EVENT

You can create only one termination handler object in a program.

#include <it_ts/ts_error.h>

typedef void (*IT_TerminationHandlerFunctionPtr)(long);

class IT_IFC_API IT_TerminationHandler
{
 public:

 IT_TerminationHandler(
 IT_TerminationHandlerFunctionPtr f,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

 ~IT_TerminationHandler();
};
737

IT_TerminationHandler()

IT_TerminationHandler(
 IT_TerminationHandlerFunctionPtr f,
 IT_ExceptionHandler& eh = IT_EXCEPTION_HANDLER
);

Creates a termination handler object on the stack. On POSIX platforms, it is
critical to create this object in the main thread before creation of any other
thread, and especially before ORB initialization.

Parameters

~IT_TerminationHandler()

~IT_TerminationHandler();

Deregisters the callback, in order to avoid calling it during static destruction.

f The callback function registered by the application. The call-
back function takes a single long argument:

� On UNIX, the signal number on Unix/POSIX
� On Windows, the type of event caught
 738

IT_Thread Class
An IT_Thread object represents a thread of control. An IT_Thread object can
be associated with a running thread, associated with a thread that has
already terminated, or it can be null, which means it is not associated with
any thread.

The important class members are as follows:

class IT_Thread {
public:
 IT_Thread();

 ~IT_Thread();

 IT_Thread(
 const IT_Thread& other
);

 IT_Thread& operator=(
 const IT_Thread& other
);

 int operator==(
 const IT_Thread& x
) const;

 int operator!=(
 const IT_Thread& x
) const
 {
 return ! operator==(x);
 }

 int is_null() const;

 static void* const thread_failed;

 void* join(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
739

) const;

 long id() const;
...
};

IT_Thread::id()

long id() const;

Returns a unique thread identifier. This method is useful for debugging.

Enhancement Orbix enhancement.

IT_Thread::is_null()

int is_null() const;

Tests if this is a null IT_Thread object.

Enhancement Orbix enhancement.

IT_Thread::IT_Thread() Constructors

IT_Thread(
 IT_Thread_i* t=0
);

Constructs a null IT_Thread object.

IT_Thread (
 const IT_Thread& other
);

Copies the IT_Thread object. This constructor does not start a new thread.

Parameters

Enhancement Orbix enhancement.

other The original thread to copy.
 740

IT_Thread::~IT_Thread() Destructor

~IT_Thread();

Destructor for an IT_Thread object.

Enhancement Orbix enhancement.

IT_Thread::join()

void* join(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;

Waits until the thread has terminated and returns its exit status. At most one
thread can successfully join a given thread, and only Attached threads can be
joined. Note that even in the checked mode, join() does not always detect
that you tried to join a Detached thread, or that you joined the same thread
several times.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSLogic
IT_TSRuntime

See Also IT_CurrentThread
IT_ThreadBody

IT_Thread::operator=()

IT_Thread& operator=(
 const IT_Thread& other
);

Assignment operator that copies the IT_Thread object. This does not start a
new thread.

eh A reference to an error handler object.
741

Parameters

Enhancement Orbix enhancement.

IT_Thread::operator==()

int operator==(
 const IT_Thread& x
) const;

Operator that checks if two IT_Thread objects refer to the same thread. Returns
1 if the two objects refer to the same thread or it returns 0 if they do not refer
to the same thread.

Parameters

Enhancement Orbix enhancement.

IT_Thread::operator!=()

int operator!=(
 const IT_Thread& x
) const

Operator that checks if two IT_Thread objects refer to different threads. Returns
1 if the two objects refer to different threads or it returns 0 if they refer to the
same thread.

Parameters

Enhancement Orbix enhancement.

other The original thread that is copied.

x The thread to compare to this thread.

x The thread to compare to this thread.
 742

IT_Thread::thread_failed Constant

static void* const thread_failed;

The constant thread_failed is the return status of a thread to report a failure.
It is neither NULL nor does it denote a valid address.

Enhancement Orbix enhancement.
743

 744

IT_ThreadBody Class
IT_ThreadBody is the base class for thread execution methods. To start a
thread, derive a class from IT_ThreadBody, add any data members needed
by the thread, and provide a run() method which does the thread's work.
Then use an IT_ThreadFactory object to start a thread that will execute the
run() method of your IT_ThreadBody object.

If a derived IT_ThreadBody contains data, then it must not be destroyed
while threads are using it. One way to manage this is to allocate the
IT_ThreadBody with the new() operator and have the IT_ThreadBody delete
itself at the end of run(). Also, if multiple threads run the same
IT_ThreadBody, it is up to you to provide synchronization on shared data.

class IT_ThreadBody {
public:
 virtual ~IT_ThreadBody() {}

 virtual void* run() =0;
};

IT_ThreadBody::~IT_ThreadBody() Destructor

virtual ~IT_ThreadBody();

The destructor for the IT_ThreadBody object.

IT_ThreadBody::run()

virtual void* run() =0;

Does the work and returns a status, which is typically NULL or the address of
a static object.

Exceptions On platforms that support exceptions, if run() throws an exception while used
by an attached thread, this thread�s exit status will be IT_Thread::
thread_failed.
745

 746

IT_ThreadFactory Class
An IT_ThreadFactory object starts threads that share some common
properties. You can derive your own class from IT_ThreadFactory to control
other aspect of thread creation, such as the exact method used to create or
start the thread, or the priority of threads when they are created.

class IT_ThreadFactory {
public:
 enum DetachState { Detached, Attached };

 IT_ThreadFactory(
 DetachState detachState,
 size_t stackSize =0
);

 virtual ~IT_ThreadFactory();

 virtual IT_Thread start(
 IT_ThreadBody& body,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 static IT_Thread smf_start(
 IT_ThreadBody& body,
 DetachState detach_state,
 size_t stack_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

protected:
...
747

IT_ThreadFactory::DetachState Enumeration

enum DetachState { Detached, Attached };

A thread can be started in a detached or attached state. If a thread is detached,
you cannot join it (retrieve its exit status). If a thread is attached you must join
it to tell the operating system to forget about it.

Enhancement Orbix enhancement.

IT_ThreadFactory::IT_ThreadFactory() Constructor

IT_ThreadFactory(
 DetachState detachState,
 size_t stackSize = 0
);

Constructor for an IT_ThreadFactory object.

Parameters

Enhancement Orbix enhancement.

See Also IT_Thread::join()

IT_ThreadFactory::~IT_ThreadFactory() Destructor

virtual ~IT_ThreadFactory();

The destructor for a thread factory object.

Enhancement Orbix enhancement.

detachState Specify whether the manufactured threads are Detached or
Attached.

stackSize As an option, you can specify the stack size of your threads
(expressed in bytes). A value of 0 (the default) means that the
operating system will use a default.
 748

IT_ThreadFactory::smf_start()

static IT_Thread smf_start(
 IT_ThreadBody& body,
 DetachState detach_state,
 size_t stack_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

A static member method (smf) that starts a thread without creating a thread
factory explicitly. This method is useful for simple examples and prototyping
but is not as flexible for robust applications.

Enhancement Orbix enhancement.

See Also IT_ThreadFactory::start()

IT_ThreadFactory::start()

virtual IT_Thread start(
 IT_ThreadBody& body,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Starts a thread. This method creates an operating system thread that runs the
given body. The method returns an IT_Thread object that represents this
thread.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported includes IT_TSRuntime.

See Also IT_Thread
IT_ThreadBody

body The thread body to run.

eh A reference to an error handler object.
749

 750

IT_TimedCountByNSemaphore Class
This semaphore is a non-negative counter typically used to coordinate access
to a set of resources. Several resources can be posted or waited for
atomically. For example, if there are 5 resources available, a thread that asks
for 7 resources would wait but another thread that later asks for 3 resources
would succeed, taking 3 resources.

class IT_TimedCountByNSemaphore {
 public:
 enum { infinite_timeout = -1 };
 enum { infinite_size = 0 };

 IT_TimedCountByNSemaphore(
 size_t initial_count,
 size_t max_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TimedCountByNSemaphore();

 void post(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int wait(
 size_t n,
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 size_t n,
751

 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
...
};

IT_TimedCountByNSemaphore::infinite_size Constant

enum { infinite_size = 0 };

A constant used to indicate an infinite sized semaphore.

See Also IT_TimedCountByNSemaphore::wait()

IT_TimedCountByNSemaphore::infinite_timeout Constant

enum { infinite_timeout = -1 };

A constant used to indicate there is no time-out period for the semaphore.

See Also IT_TimedCountByNSemaphore::wait()

IT_TimedCountByNSemaphore::
IT_TimedCountByNSemaphore() Constructor

IT_TimedCountByNSemaphore(
 size_t initial_count,
 size_t max_size,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Initializes the semaphore with initial_count and sets its maximum size to
max_size.

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.
 752

IT_TimedCountByNSemaphore::
~IT_TimedCountByNSemaphore() Destructor

~IT_TimedCountByNSemaphore();

The destructor for the semaphore.

Enhancement Orbix enhancement.

IT_TimedCountByNSemaphore::post()

void post(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Posts the number of resources managed.

Parameters

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic

IT_TimedCountByNSemaphore::trywait()

int trywait(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Equivalent to a wait(n, 0, eh).

n The number of resources. If the value of n plus the previous
number of resources is greater than max_size, then the
number of resources remains unchanged and an IT_TSLogic
error is reported. Calling the method using a value of 0 does
nothing.

eh A reference to an error handler object.
753

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

See Also IT_TimedCountByNSemaphore::wait()

IT_TimedCountByNSemaphore::wait()

void wait(
 size_t n,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Attempts to take a set of resources atomically.

int wait(
 size_t n,
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Attempts to take a set of resources (n) atomically. Returns 1 upon success or
0 when the operation times out. Calling wait(0, timeout, eh) returns 1
immediately.

Parameters

IT_Semaphore and IT_TimedSemaphore can be more efficient than
IT_TimedCountByNSemaphore when resources are posted and waited for one
by one.

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

See Also IT_Semaphore
IT_TimedSemaphore

n The number of resources attempted. A value of 0 causes the
methods to return immediately.

timeout The number of milliseconds before the call gives up. You can
use the constant infinite_timeout.

eh A reference to an error handler object.
 754

IT_TimedOneshot Class
An IT_TimedOneshot class is a synchronization policy typically used to
establish a rendezvous between two threads. It can have three states:

� RESET
� SIGNALED
� WAIT

The key class members are as follows:

class IT_TimedOneshot {
public:
 enum { infinite_timeout = -1 };

 IT_TimedOneshot(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TimedOneshot();

 void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void reset(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
755

...
};

IT_TimedOneshot::infinite_timeout Constant

enum { infinite_timeout = -1 };

The IT_TimedOneshot class includes the symbolic constant
infinite_timeout. This constant has a value of -1.

Enhancement Orbix enhancement.

See Also IT_TimedOneshot::wait()

IT_TimedOneshot::IT_TimedOneshot() Constructor

IT_TimedOneshot(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Initializes the one-shot to the RESET state.

Parameters

Enhancement Orbix enhancement.

IT_TimedOneshot::~IT_TimedOneshot() Destructor

~IT_TimedOneshot();

Destroys the one-shot object.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

eh A reference to an error handler object.
 756

IT_TimedOneshot::reset()

void reset(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Resets the one-shot object.

� Resetting a one-shot while in the SIGNALED state changes its state to
RESET.

� Resetting a one-shot while in the RESET state has no effect.
� Resetting a one-shot in the WAIT state is an error. Note that this error is

not always detected, even in the checked mode.

Parameters

Enhancement Orbix enhancement.

IT_TimedOneshot::signal()

void signal(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Signals the one-shot.

� Signaling a one-shot while in the RESET state changes its state to
SIGNALED.

� Signaling a one-shot while in the WAIT state atomically releases the
waiting thread and changes the one-shot state to RESET.

� Signaling a one-shot while in the SIGNALED state is an error.

Parameters

Enhancement Orbix enhancement.

eh A reference to an error handler object.

eh A reference to an error handler object.
757

IT_TimedOneshot::trywait()

int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Equivalent to a call to wait(0, eh).

Parameters

Enhancement Orbix enhancement.

See Also IT_TimedOneshot::wait()

IT_TimedOneshot::wait()

void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Waits for the one-shot.

� Waiting for a one-shot while in the RESET state changes its state to WAIT.
the second method returns 1 when another thread signals the one-shot
within the time-out period. Otherwise it returns 0 and changes the state
back to RESET.

� Waiting for a one-shot while in the SIGNALED state changes its state to
RESET. The first method returns immediately and the second method
returns 1 immediately.

� Waiting for a one-shot while in the WAIT state is an error.

Parameters

eh A reference to an error handler object.

timeout The number of milliseconds before the call gives up. You can
use the constant infinite_timeout.

eh A reference to an error handler object.
 758

Enhancement Orbix enhancement.

See Also IT_Semaphore
IT_TimedSemaphore
759

 760

IT_TimedSemaphore Class
The IT_TimedSemaphore object is a counter with a timer for coordinating
access to some resources.

class IT_TS_API IT_TimedSemaphore
{
public:
 enum { infinite_timeout = -1 };

 IT_TimedSemaphore(
 size_t initial_count,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TimedSemaphore();

 void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 void wait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
 int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);
private:
...
};
761

IT_TimedSemaphore::infinite_timeout Constant

enum { infinite_timeout = -1 };

The IT_TimedSemaphore class includes the symbolic constant
infinite_timeout. This constant has a value of -1.

Enhancement Orbix enhancement.

See Also IT_TimedSemaphore::wait()

IT_TimedSemaphore::IT_TimedSemaphore() Constructor

IT_TimedSemaphore(
 size_t initial_count,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

A semaphore constructor.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_TimedSemaphore::~IT_TimedSemaphore() Destructor

~IT_TimedSemaphore();

The destructor.

Enhancement Orbix enhancement.

IT_TimedSemaphore::post()

void post(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

initial_count Initializes the semaphore�s counter with this value.

eh A reference to an error handler object.
 762

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_TimedSemaphore::trywait()

int trywait(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Returns 1 if a resource has been obtained, 0 otherwise.

Parameters

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

IT_TimedSemaphore::wait()

void wait(]
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

int wait(
 long timeout,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Waits for one resource. The wait() method blocks if the semaphore�s counter
value is 0 and decrements the counter if the counter�s value is greater than 0.

Parameters

eh A reference to an error handler object.

eh A reference to an error handler object.

timeout The number of milliseconds before the call gives up. You can
also use the constant infinite_timeout.

eh A reference to an error handler object.
763

Enhancement Orbix enhancement.

Exceptions Errors that can be reported include:

IT_TSRuntime
IT_TSLogic
 764

IT_TSBadAlloc Error Class
When new() returns 0 an IT_TSBadAlloc exception is reported.

class IT_TS_API IT_TSBadAlloc : public IT_TSRuntime
public:
 IT_TSBadAlloc();
 virtual ~IT_TSBadAlloc();
 virtual void raise() const;
};

See Also IT_TSRuntime
IT_TSError
765

 766

IT_TSError Error Class
All errors reported by the TS package are IT_TSError objects. The key
members of the class are as follows:

class IT_TS_API IT_TSError {
public:
 IT_TSError(
 unsigned long TS_errcode,
 long OS_errno = 0
);
 IT_TSError(
 const IT_TSError& other
);

 virtual ~IT_TSError();

 unsigned long TS_error_code() const;
 long OS_error_number() const;
 const char* what() const;
 virtual void raise() const;

protected:
...

See Also IT_DefaultTSErrorHandler

IT_TSError::IT_TSError() Constructors

IT_TSError(
 unsigned long TS_errcode,
 long OS_errno = 0
);

IT_TSError(
 const IT_TSError& other
);

Constructs an error with this TS error code and optionally an error number
given by the operating system. The second method is the copy constructor.
767

Enhancement Orbix enhancement.

IT_TSError::~IT_TSError() Destructor

virtual ~IT_TSError();

The destructor.

Enhancement Orbix enhancement.

IT_TSError::OS_error_number()

long OS_error_number() const;

Returns the operating system error number that represent the error. Returns 0
if the error is not reported by the operating system.

Enhancement Orbix enhancement.

IT_TSError::raise()

virtual void raise() const;

When exceptions are supported, this method throws *this, a pointer to this
IT_TSError object. If exceptions are not supported, it calls ::abort().

Enhancement Orbix enhancement.

IT_TSError::TS_error_code()

unsigned long TS_error_code() const;

Returns the TS error code that represents the error.

Enhancement Orbix enhancement.
 768

IT_TSError::what()

const char* what();

Returns a string describing the error. The caller must not de-allocate the
returned string.

Enhancement Orbix enhancement.

See Also IT_TSLogic
IT_TSRuntime
IT_TSBadAlloc
769

 770

IT_TSErrorHandler Class
The last parameter of almost every TS method is a reference to an object of
the class IT_TSErrorHandler. When a TS method detects an error, it creates
an IT_TSError object and passes it to IT_TSErrorHandler::handle().

class IT_TS_API IT_TSErrorHandler {
public:
 virtual ~IT_TSErrorHandler();

 virtual void handle(
 const IT_TSError& thisError
) = 0;
};

See Also IT_DefaultTSErrorHandler

IT_TSErrorHandler::handle()

virtual void handle(
 const IT_TSError& thisError
) = 0;

Handles the given TS error.

Parameters

Enhancement Orbix enhancement.

IT_TSErrorHandler::~IT_TSErrorHandler() Destructor

virtual ~IT_TSErrorHandler();

The destructor for the error handler object.

Enhancement Orbix enhancement.

thisError The error raised.
771

 772

IT_TSLogic Error Class
An IT_TSLogic error signals an error in the application�s logic, for example
when a thread attempts to join itself.

class IT_TS_API IT_TSLogic : public IT_TSError {
 public:
 IT_TSLogic(
 unsigned long code,
 long fromOS =0
);

 virtual ~IT_TSLogic();

 virtual void raise() const;

private:
// ...
};

See Also IT_TSError
IT_TSRuntime
773

 774

IT_TSRuntime Error Class
An IT_TSRuntime error is an error detected by the operating system or by the
underlying thread package.

class IT_TS_API IT_TSRuntime : public IT_TSError {
public:
 IT_TSRuntime(
 unsigned long code,
 long fromOS =0
);

 virtual ~IT_TSRuntime();

 virtual void raise() const;

private:
...

See Also IT_TSError
IT_TSRuntime
775

 776

IT_TSVoidStar Class
An IT_TSVoidStar object is a data entry point that can be shared by multiple
threads. Each thread can use this entry point to get and set a void* pointer
that refers to thread-specific (private) data.

class IT_TSVoidStar {
public:
 IT_TSVoidStar(
 void (*destructor)(void*) df,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

 ~IT_TSVoidStar();

 void* get(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;

 void set(
 void* newValue,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

private:
...
};

IT_TSVoidStar::IT_TSVoidStar() Constructor

IT_TSVoidStar(
 void (*destructor)(void*) df,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Constructs an IT_TSVoidStar object. Initially, all thread-specific pointers are
NULL.
777

Parameters

On some platforms, when threads are not started using an IT_ThreadBody,
the application might have to call explicitly IT_CurrentThread::cleanup()
upon thread exit to perform this cleanup.

Enhancement Orbix enhancement.

Exceptions An error that can be reported is IT_TSRuntime.

See Also IT_TSVoidStar::~IT_TSVoidStar()
IT_CurrentThread::cleanup()

IT_TSVoidStar::~IT_TSVoidStar() Destructor

~IT_TSVoidStar();

The destructor for an IT_TSVoidStar object.

If a non-NULL destructor method is associated with this IT_TSVoidStar object
(by way of the IT_TSVoidStar() constructor), and the thread-specific value
of this object is not NULL, the non-NULL destructor method is called with the
thread-specific value.

WARNING: If the IT_TSVoidStar object has a non-NULL destructor, do not
destroy the object while any other threads have a non-NULL thread-specific
pointer. This is because on some platforms, a newly allocated IT_TSVoidStar
object might reincarnate the destroyed IT_TSVoidStar object and its
thread-specific values. This can lead to unexpected results.

Enhancement Orbix enhancement.

See Also IT_TSVoidStar::IT_TSVoidStar()

df You can optionally associate a non-NULL destructor method
with an IT_TSVoidStar object. Before exiting, a thread will
call this destructor with its specific pointer value only when
its specific pointer value is not NULL.

eh A reference to an error handler object.
 778

IT_TSVoidStar::get()

void* get(
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
) const;

Gets the pointer associated with the calling thread. Returns NULL when the
calling thread did not explicitly set this value.

Exceptions An error that can be reported is IT_TSRuntime.

Enhancement Orbix enhancement.

IT_TSVoidStar::set()

void set(
 void* newValue,
 IT_TSErrorHandler& eh IT_TS_DEFAULT_ERROR_HANDLER
);

Sets the pointer associated with the calling thread to newValue.

Exceptions An error that can be reported is IT_TSRuntime.

Enhancement Orbix enhancement.
779

 780

 Event Service

Event Service Overview
This part lists the IDL definitions in the CORBA event service modules as
specified by the CORBA event service standard.

Orbix implements the IDL definitions in the CosEventComm and
CosEventChannelAdmin modules to support generic event communication.
These modules are listed in the files coseventcomm.idl and
coseventchanneladmin.idl in the idl directory of your Orbix installation.

The interfaces consist of:

� �CosEventComm::PullConsumer Interface�
� �CosEventComm::PushSupplier Interface�
� �CosEventComm::PullSupplier Interface�
� �CosEventComm::PushConsumer Interface�
� �CosEventChannelAdmin::EventChannel Interface�
� �CosEventChannelAdmin::ConsumerAdmin Interface�
� �CosEventChannelAdmin::SupplierAdmin Interface�
� �CosEventChannelAdmin::ProxyPullConsumer Interface�
� �CosEventChannelAdmin::ProxyPullSupplier Interface�
� �CosEventChannelAdmin::ProxyPushConsumer Interface�
� �CosEventChannelAdmin::ProxyPushSupplier Interface�

Orbix also implements the IDL definitions in the CosTyedEventComm and the
CosTypedEventChannelAdmin modules to support typed event
communication. These modules are listed in the files costypedeventcom.idl
and costypedeventchanneladmin.idl in the idl directory of your Orbix
installation.

The interfaces consist of:

� �CosTypedEventComm::TypedPushConsumer Interface�
� �CosTypedEventChannelAdmin::TypedEventChannel Interface�
� �CosTypedEventChannelAdmin::TypedConsumerAdmin Interface�
� �CosTypedEventChannelAdmin::TypedSupplierAdmin Interface�
� �CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface�
783

In addition the following IONA specific interfaces, listed in
event_channel_admin.idl, typed_event_channel_admin.idl, and
messaging_admin.idl, are provided for managing event channels:

� �IT_EventChannelAdmin::EventChannelFactory Interface�
� �IT_MessagingAdmin::Manager Interface�
� �IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface�
� �OrbixEventsAdmin::ChannelManager�

These interfaces support the event communication styles as described in the
CORBA Programmer�s Guide.
 784

OrbixEventsAdmin::ChannelManager
The previous IONA implementation of the CORBA event service, OrbixEvents,
provided the event channel administration interface, ChannelManager,
defined in the module OrbixEventsAdmin, to allow Orbix 3.x clients to create
and manipulate multiple event channels within an OrbixEvents server.

Orbix defines the ChannelManager interface for backwards compatibility with
OrbixEvents users. This interface is defined in the file orbixevents.idl in
the include/idl directory.

WARNING: The orbixevents.idl file is deprecated. All new clients using
the event service should be using the interfaces provided in the
IT_EventChannelAdmin module (defined in event_channel_admin.idl).

Existing clients can contact the event service by calling
resolve_initial_references("EventService") and narrowing the
reference from OrbixEventsAdmin::ChannelManager.

// IDL
module OrbixEventsAdmin
{
 exception duplicateChannel{ };
 exception noSuchChannel{ };

 interface ChannelManager
 {
 typedef sequence<string> stringSeq;

 CosEventChannelAdmin::EventChannel create(in string
channel_id)

 raises(duplicateChannel);

 CosEventChannelAdmin::EventChannel find(in string channel_id)
 raises (noSuchChannel);
785

 string findByRef(in CosEventChannelAdmin::EventChannel
channel_ref)

 raises (noSuchChannel);

 stringSeq list();

 CosTypedEventChannelAdmin::TypedEventChannel createTyped(
 in string channel_id)
 raises (duplicateChannel);

 CosTypedEventChannelAdmin::TypedEventChannel findTyped(
 in string channel_id)
 raises (noSuchChannel);

 string findByTypedRef(
 in CosTypedEventChannelAdmin::TypedEventChannel channel_ref)
 raises (noSuchChannel);

 stringSeq listTyped();
};

ChannelManager::create()

CosEventChannelAdmin::EventChannel create(in string channel_id)
raises(duplicateChannel);

Creates an event channel.

Parameters

channel_id The channel identifier for the event channel. The
exception duplicateChannel is raised if the channel
identifier specified in channel_id names an existing
channel.

�Assigning Identifiers to Event Channels� on
page 87 describes the format of channel identifiers.
 786

OrbixEventsAdmin::ChannelManager
ChannelManager::find()

CosEventChannelAdmin::EventChannel find(in string channel_id)
raises (noSuchChannel);

Finds the event channel associated with the channel identifier channel_id.

Parameters

ChannelManager::findByRef()

string findByRef(
 in CosEventChannelAdmin::EventChannel channel_ref)
raises (noSuchChannel);

Finds the channel identifier of the event channel specified in channel_ref.

Parameters

ChannelManager::list()

stringSeq list ();

Lists the generic event channels contained within the channel manager�s event
server.

channel_id The channel identifier for the event channel. The
exception noSuchChannel is raised if the channel
identifier specified in channel_id does not exist.

�Assigning Identifiers to Event Channels� on
page 87 describes the format of channel identifiers.

channel_ref The object reference for the event channel. If
channel_ref does not exist within the event server,
findByRef() raises the exception noSuchChannel.
787

ChannelManager::createTyped()

CosTypedEventChannelAdmin::TypedEventChannel createTyped(in string
channel_id)

raises(duplicateChannel);

Creates a typed event channel.

Parameters

ChannelManager::findTyped()

CosTypedEventChannelAdmin::TypedEventChannel findTyped(in string
channel_id)

raises (noSuchChannel);

Finds the typed event channel associated with the channel identifier
channel_id.

Parameters

ChannelManager::findTypedByRef()

string findTypedByRef(in CosTypedEventChannelAdmin::
TypedEventChannel channel_ref)

raises (noSuchChannel);

Finds the channel identifier of the typed event channel specified in
channel_ref.

channel_id The channel identifier for the typed event channel.
The exception duplicateChannel is raised if the
channel identifier specified in channel_id names an
existing typed event channel.

channel_id The channel identifier for the typed event channel.
The exception noSuchChannel is raised if the chan-
nel identifier specified in channel_id does not exist.
 788

OrbixEventsAdmin::ChannelManager
Parameters

ChannelManager::listTyped()

stringSeq listTyped();

Lists the typed event channels contained within the channel manager�s event
server.

Unsupported Operations

The Application Server Platform event service does not support finding
channels by reference. Therefore the ChannelManager reference will throw
NO_IMPLEMENT for the following operations:

� findByRef()

� findByTypedRef()

channel_ref The object reference for the typed event channel. If
channel_ref does not exist within the event server,
findByRef() raises the exception noSuchChannel.
789

 790

CosEventChannelAdmin Module
The CosEventChannelAdmin module specifies the interfaces and exceptions
for connecting suppliers and consumers to an event channel. It also provides
the methods for managing these connections.

It contains the following interfaces:

� CosEventChannelAdmin::ProxyPushConsumer Interface
� CosEventChannelAdmin::ProxyPullSupplier Interface
� CosEventChannelAdmin::ProxyPullConsumer Interface
� CosEventChannelAdmin::ProxyPushSupplier Interface
� CosEventChannelAdmin::ConsumerAdmin Interface
� CosEventChannelAdmin::SupplierAdmin Interface
� CosEventChannelAdmin::EventChannel Interface

CosEventChannelAdmin Exceptions

exception AlreadyConnected {};

An AlreadyConnected exception is raised when an attempt is made to connect
an object to the event channel when that object is already connected to the
channel.

exception TypeError {};

The TypeError exception is raised when a proxy object trys to connect an
object that does not support the proper typed interface.
791

CosEventChannelAdmin::
ProxyPushConsumer Interface

After a supplier has obtained a reference to a proxy consumer using the
SupplierAdmin interface, they use the ProxyPushConsumer interface to
connect to the event channel.

// IDL
interface ProxyPushConsumer : CosEventComm::PushConsumer
{
 void connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier)
 raises (AlreadyConnected);
};

ProxyPushConsumer::connect_push_supplier()

//IDL
void connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

This operation connects the supplier to the event channel. If the supplier passes
a nil object reference, the proxy push consumer will not notify the supplier
when it is about to be disconnected.

If the proxy push consumer is already connected to the PushSupplier, then
the AlreadyConnected exception is raised.

Parameters

push_supplier The supplier that is trying to connect to the event channel
 792

CosEventChannelAdmin::ProxyPullSupplier Interface
CosEventChannelAdmin::
ProxyPullSupplier Interface

After a consumer has obtained a proxy supplier using the ConsumerAdmin
interface, they use the ProxyPullSupplier interface to connect to the event
channel.

interface ProxyPullSupplier : CosEventComm::PullSupplier
{
 void connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer)
 raises (AlreadyConnected);
};

ProxyPullSupplier::connect_pull_consumer()

//IDL
void connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected);

This operation connects the consumer to the event channel. If the consumer
passes a nil object reference, the proxy pull supplier will not notify the consumer
when it is about to be disconnected.

If the proxy pull supplier is already connected to the PullConsumer, then the
AlreadyConnected exception is raised.

Parameters

pull_consumer The consumer that is trying to connect to the event channel
793

CosEventChannelAdmin::
ProxyPullConsumer Interface

After a supplier has obtained a reference to a proxy consumer using the
SupplierAdmin interface, they use the ProxyPullConsumer interface to
connect to the event channel.

interface ProxyPullConsumer : CosEventComm::PushConsumer
{
 void connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier)
 raises (AlreadyConnected, TypeError);
};

ProxyPullConsumer::connect_pull_supplier()

//IDL
void connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier)
raises (AlreadyConnected, TypeError);

This operation connects the supplier to the event channel.

If the proxy pull consumer is already connected to a PushSupplier, then the
AlreadyConnected exception is raised. The TypeError exception is raised when
supplier that is being connected does not support the proper typed event
structure.

Parameters

pull_supplier The supplier that is trying to connect to the event channel.
 794

CosEventChannelAdmin::ProxyPushSupplier Interface
CosEventChannelAdmin::
ProxyPushSupplier Interface

After a consumer has obtained a proxy supplier using the ConsumerAdmin
interface, they use the ProxyPushSupplier interface to connect to the event
channel.

interface ProxyPushSupplier : CosEventComm::PushSupplier
{
 void connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer)
 raises (AlreadyConnected, TypeError);
};

ProxyPushSupplier::connect_push_consumer()

//IDL
void connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

This operation connects the consumer to the event channel.

If the proxy push supplier is already connected to the PushConsumer, then the
AlreadyConnected exception is raised. The TypeError exception is when the
consumer that is being connected does not support the proper typed event
structure.

Parameters

push_consumer The consumer that is trying to connect to the event channel
795

CosEventChannelAdmin::
ConsumerAdmin Interface

Once a consumer has obtained a reference to a ConsumerAdmin object (by
calling EventChannel::for_consumers()), they can use this interface to
obtain a proxy supplier. This is necessary in order to connect to the event
channel.

interface ConsumerAdmin
{
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
};

ConsumerAdmin::obtain_push_supplier()

//IDL
ProxyPushSupplier obtain_push_supplier();

Returns a ProxyPushSupplier object. The consumer can then use this object
to connect to the event channel as a push-style consumer.

ConsumerAdmin::obtain_pull_supplier()

//IDL
ProxyPushSupplier obtain_pull_supplier();

Returns a ProxyPullSupplier object. The consumer can then use this object
to connect to the event channel as a pull-style consumer.
 796

CosEventChannelAdmin::SupplierAdmin Interface
CosEventChannelAdmin::
SupplierAdmin Interface

Once a supplier has obtained a reference to a SupplierAdmin object (by
calling EventChannel::for_suppliers()), they can use this interface to
obtain a proxy consumer. This is necessary in order to connect to the event
channel.

interface SupplierAdmin
{
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
};

SupplierAdmin::obtain_push_consumer()

//IDL
ProxyPushConsumer obtain_push_consumer();

Returns a ProxyPushConsumer object. The supplier can then use this object to
connect to the event channel as a push-style supplier.

SupplierAdmin::obtain_pull_consumer()

//IDL
ProxyPushConsumer obtain_pull_consumer();

Returns a ProxyPullConsumer object. The supplier can then use this object to
connect to the event channel as a pull-style supplier.
797

CosEventChannelAdmin::
EventChannel Interface

The EventChannel interface lets consumers and suppliers establish a logical
connection to the event channel.

interface EventChannel
{
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
 void destroy();
};

EventChannel::for_consumers()

//IDL
ConsumerAdmin for_consumers();

Used by a consumer to obtain an object reference that supports the
ConsumerAdmin interface.

EventChannel::for_suppliers()

//IDL
SupplierAdmin for_suppliers()

Used by a supplier to obtain an object reference that supports the
SupplierAdmin interface.

EventChannel::destroy()

//IDL
void destroy();

Destroys the event channel. All events that are not yet delivered, as well as all
administrative objects created by the channel, are also destroyed. Connected
pull consumers and push suppliers are notified when their channel is destroyed.
 798

CosEventComm Module
The CosEventComm module specifies the interfaces which define the event
service consumers and suppliers.

CosEventComm Exceptions

CosEventComm::Disconnected

exception Disconnected {};

Disconnected is raised when an attempt is made to contact a proxy that has
not been connected to an event channel.
799

CosEventComm::PushConsumer
Interface

A push-style consumer supports the PushConsumer interface to receive event
data.

interface PushConsumer
{
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
};

PushConsumer::push()

//IDL
void push(in any data) raises(Disconnected);

Used by a supplier to communicate event data to the consumer. The supplier
passes the event data as a parameter of type any. If the event communication
has already been disconnected, the OBJECT_NOT_EXIST exception is raised.

Parameters

PushConsumer::disconnect_push_consumer()

//IDL
void disconnect_push_consumer();

Lets the supplier terminate event communication. This operation releases
resources used at the consumer to support the event communication. The
PushConsumer object reference is discarded.

data The event data, of type any.
 800

CosEventComm::PushSupplier Interface
CosEventComm::PushSupplier
Interface

A push-style supplier supports the PushSupplier interface.

interface PushSupplier
{
 void disconnect_push_supplier();
};

PushSupplier::disconnect_push_supplier()

//IDL
void disconnect_push_supplier();

Lets the consumer terminate event communication. This operation releases
resources used at the supplier to support the event communication. The
PushSupplier object reference is discarded.
801

CosEventComm::PullSupplier
Interface

A pull-style supplier supports the PullSupplier interface to transmit event
data. A consumer requests event data from the supplier by invoking either
the pull() operation or the try_pull() operation.

interface PullSupplier
{
 any pull() raises (Disconnected);
 any try_pull(out boolean has_event) raises (Disconnected);
 void disconnect_pull_supplier();
};

PullSupplier::pull()

//IDL
any pull() raises (Disconnected);

The consumer requests event data by calling this operation. The operation
blocks until the event data is available, in which case it returns the event data
to the consumer. Otherwise an exception is raised. If the event communication
has already been disconnected, the OBJECT_NOT_EXIST exception is raised.

PullSupplier::try_pull()

//IDL
any try_pull(out boolean has_event) raises (Disconnected);

Unlike the try operation, this operation does not block. If the event data is
available, it returns the event data and sets the has_event parameter to true.
If the event is not available, it sets the has_event parameter to false and the
event data is returned with an undefined value. If the event communication
has already been disconnected, the OBJECT_NOT_EXIST exception is raised.
 802

CosEventComm::PullSupplier Interface
Parameters

PullSupplier::disconnect_pull_supplier()

//IDL
void disconnect_pull_supplier();

Lets the consumer terminate event communication. This operation releases
resources used at the supplier to support the event communication. The
PullSupplier object reference is discarded.

has_event Indicates whether event data is available to the try_pull
operation
803

CosEventComm::PullConsumer
Interface

A pull-style consumer supports the PullConsumer interface.

interface PullConsumer
{
 void disconnect_pull_consumer();
};

PullConsumer::disconnect_pull_consumer()

//IDL
void disconnect_pull_consumer();

Lets the supplier terminate event communication. This operation releases
resources used at the consumer to support the event communication. The
PullConsumer object reference is discarded.
 804

CosTypedEventChannelAdmin Module
The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or
typed communication. Its interfaces are specializations of the corresponding
interfaces in the CosEventChannel module.

Note: IONA�s implementation of typed events only supports the typed push
style of event communication. The TypedProxyPullSupplier interface, the
TypedSupplierAdmin::obtain_typed_pull_consumer() operation, and the
TypedConsumerAdmin::obtain_typed_pull_supplier() operation are not
implemented.

CosTypedEventChannelAdmin Exceptions

CosTypedEventChannelAdmin::InterfaceNotSupported

exception InterfaceNotSupported {};

InterfaceNotSupported is raised when an an attempt to obtain a
TypedProxyPushConsumer fails to find an implementation that supports the
strongly typed interface required by the client.

CosTypedEventChannelAdmin::NoSuchImplementation

exception NoSuchImplementation {};

NoSuchImplementation is raised when an attempt to obtain a
ProxyPushSupplier fails to find an implementation that supports the strongly
typed interface required by the client.
805

CosTypedEventChannelAdmin Data Types

CostTypedEventChannelAdmin::Key Type

typedef string Key;

A string that holds the interface repository ID of the strongly typed interface
used by a typed event client.
 806

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface
CosTypedEventChannelAdmin::
TypedProxyPushConsumer Interface

interface TypedProxyPushConsumer :
 CosEventChannelAdmin::ProxyPushConsumer,
 CosTypedEventComm::TypedPushConsumer
{
};

The TypedProxyPushConsumer interface extends the functionality of the
ProxyPushConsumer to support connecting push suppliers to a typed event
channel.

By inheriting from CosEventChannelAdmin::ProxyPushConsumer, this
interface supports:

� connection and disconnection of push suppliers.
� generic push operation.

By inheriting from CosTypedEventComm::TypedPushConsumer, it extends the
functionality of the generic ProxyPushConsumer to enable its associated
supplier to use typed push communication. When a reference to a
TypedProxyPushConsumer is returned by get_typed_consumer(), it has the
interface identified by the Key.

Unsupported Operations

The TypedProxyPushConsumer reference will throw NO_IMPLEMENT for the
push() operation. A supplier should instead call push() on the reference it
obtains from the get_typed_consumer() operation.
807

CosTypedEventChannelAdmin::
TypedSupplierAdmin Interface

interface TypedSupplierAdmin : CosEventChannelAdmin::SupplierAdmin
{
 TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)
 raises (InterfaceNotSupported);

 CosEventChannelAdmin::ProxyPullConsumer
obtain_typed_pull_consumer(in Key uses_interface)

 raises (NoSuchImplementation);
};

The TypedSupplierAdmin interface extends the functionality of the generic
SupplierAdmin to support connecting suppliers to a typed event channel.

TypedSupplierAdmin::obtain_typed_push_consumer()

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)
raises (InterfaceNotSupported);

The obtain_typed_push_consumer() operation returns a
TypedProxyPushConsumer that supports the specified interface.

Parameters

Exceptions

supported_interfaceSpecifies the interface that the returned
TypedProxyPushConsumer must support.

InterfaceNotSupportedRaised if no consumer implementation supporting
the specified interface is available.
 808

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface
TypedSupplierAdmin::obtain_typed_pull_consumer()

CosEventChannelAdmin::ProxyPullConsumer
 obtain_typed_pull_consumer(in Key uses_interface)
raises (NoSuchImplementation);

The obtain_typed_pull_consumer() operation returns a ProxyPullConsumer
that calls operations in the interface Pull<uses_interface>.

Parameters

Exceptions

Unsupported Operations

The Application Server Platform does not support the typed pull model or the
connection of generic suppliers to a typed event channel. Therefore, the
TypedSupplierAdmin reference will throw NO_IMPLEMENT for the following
operations:

� obtain_typed_pull_consumer()

� obtain_push_consumer()

� obtail_pull_consumer()

uses_interfaceSpecifies the interface which the returned
ProxyPullConsumer must support.

NoSuchImplementationRaised if no ProxyPullConsumer can be found that
supports the specified interface.
809

CosTypedEventChannelAdmin::
TypedConsumerAdmin Interface

interface TypedConsumerAdmin : CosEventChannelAdmin::ConsumerAdmin
{
 TypedProxyPullSupplier obtain_typed_pull_supplier(
 in Key supported_interface)
 raises (InterfaceNotSupported);

 CosEventChannelAdmin::ProxyPushSupplier
 obtain_typed_push_supplier(in Key uses_interface)
 raises (NoSuchImplementation);
};

The TypedConsumerAdmin interface extends the functionality of the generic
ConsumerAdmin to support connecting consumer to a typed event channel.

TypedConsumerAdmin::obtain_typed_pull_supplier()

TypedProxyPullSupplier obtain_typed_pull_supplier(
 in Key supported_interface)
raises (InterfaceNotSupported);

The obtain_typed_pull_supplier() operation returns a
TypedProxyPullSupplier that supports the interface
Pull<supported_interface>.

Parameters

Exceptions

supported_interfaceSpecifies the interface which the returned
TypedProxyPullSuplier must support.

InterfaceNotSupportedRaised if TypedProxyPullSupplier implementation
supporting the specified interface is available.
 810

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface
TypedConsumberAdmin::obtain_typed_push_supplier()

CosEventChannelAdmin::ProxyPushSupplier
 obtain_typed_push_supplier(in Key uses_interface)
raises (NoSuchImplementation);

The obtain_typed_push_supplier() operation returns a ProxyPushSupplier
that makes calls on interface uses_interface.

Parameters

Exceptions

Unsupported Opperations

The Application Server Platform does not support the typed pull model or the
connection of generic consumers to a typed event channel. Therefore, a
TypedConsumerAdmin object will throw NO_IMPLEMENT for the following
operations:

� obtain_typed_pull_supplier()

� obtain_push_supplier()

� obtain_pull_supplier()

uses_interfaceSpecifies the interface on which the returned
ProxyPushSuppler must make calls.

NoSuchImplementationRaised if no ProxyPushConsumer can be found that
supports the specified interface.
811

CosTypedEventChannelAdmin::
TypedEventChannel Interface

interface TypedEventChannel
{
 TypedConsumerAdmin for_consumers();

 TypedSupplierAdmin for_suppliers();

 void destroy();

};

This interface is the equivalent of CosEventChannelAdmin::EventChannel for
typed events. It provides a factory for TypedConsumerAdmin objects and
TypedSuppleriAdmin objects. Both of which are capable of providing proxies
for typed communication.
 812

CosTypedEventComm Module
This module specifies two interfaces used to support typed event
communication. TypedPushConsumer supports push style typed event
communication. Typed event clients retain the capability to use generic event
communication.

Note: IONA�s implementation of typed events only supports typed push
style events. The TypedPullSupplier interface is not implemented.
813

CosTypedEventComm::
TypedPushConsumer Interface

interface TypedPushConsumer : CosEventComm::PushConsumer
{
 Object get_typed_consumer();
};

The TypedPushConsumer interface is used to implement push-style consumers
that wish to participate in typed event communication. By inheriting from the
generic PushConsumer interface, this interface retains the ability to participate
in generic push-style event communication. This inheritance also requires
that TypedPushConsumer objects implement the generic push() operation.
However, if the consumer will be used solely for typed event communication,
the push() implementation can simply raise the standard CORBA exception
NO_IMPLEMENT.

TypedPushConsumer::get_typed_consumer()

Object get_typed_consumer();

get_typed_consumer() returns a reference to a typed push consumer. This
reference is returned as a reference to type Object and must be narrowed to
the appropriate interface. If the push supplier and the typed push consumer
do not support the same interface, the narrow() will fail.
 814

IT_EventChannelAdmin Module
Module IT_EventChannelAdmin describes extensions to the module
CosEventChannelAdmin. It defines an interface, EventChannelFactory, for
creating or discovering EventChannel objects.

IT_EventChannelAdmin Data Types

IT_EventChannelAdmin::ChannelID Type

typedef long ChannelID;

The ChannelID is used by the event service to track event channels. This
number is assigned by the service when a new event channel is created.

IT_EventChannelAdmin::EventChannelInfo Structure

struct EventChannelInfo
 {
 string name;
 ChannelID id;
 CosEventChannelAdmin::EventChannel reference;
 };

The EventChannelInfo is the unit of information managed by the
EventChannelFactory for a given EventChannel instance. name is used for
administrative purposes.

IT_EventChannelAdmin::EventChannelInfoList Sequence

typedef sequence<EventChannelInfo> EventChannelInfoList;

The EventChannelInfoList contains a sequence of EventChannelInfo and is
the unit returned by EventChannelFactory::list_channels().
815

IT_EventChannelAdmin Exceptions

IT_EventChannelAdmin::ChannelAlreadyExists

exception ChannelAlreadyExists {string name;};

ChannelAlreadyExists is raised when an attempt is made to create an event
channel with a name that is already in use. It returns with the name of the
channel.

IT_EventChannelAdmin::ChannelNotFound

exception ChannelNotFound {string name;};

ChannelNotFound is raised when a call to either EventChannelFactory::
find_channel() or EventChannelFactory::find_channel_by_id() cannot
find the specified channel. It returns with the name of the specified channel.
 816

IT_EventChannelAdmin::EventChannelFactory Interface
IT_EventChannelAdmin::
EventChannelFactory Interface

interface EventChannelFactory : IT_MessagingAdmin::Manager
{
 CosEventChannelAdmin::EventChannel create_channel(
 in string name,
 out ChannelID id)
 raises (ChannelAlreadyExists);

 CosEventChannelAdmin::EventChannel find_channel(
 in string name,
 out ChannelID id)
 raises (ChannelNotFound);

 CosEventChannelAdmin::EventChannel find_channel_by_id(
 in ChannelID id,
 out string name)
 raises (ChannelNotFound);

 EventChannelInfoList list_channels();
};

The EventChannelFactory interface defines operations for creating and
managing untyped event channels. By inheriting from the Manager interface,
it also has the ability to gracefully shut down the event service.

EventChannelFactory::create_channel()

//IDL
CosEventChannelAdmin::EventChannel create_channel(
 in string name,
 out ChannelID id)
raises (ChannelAlreadyExists);

Creates a new instance of the event service style event channel
817

Parameters

EventChannelFactory::find_channel()

//IDL
CosEventChannelAdmin::EventChannel find_channel(
 in string name,
 out ChannelID id)
raises (ChannelNotFound);

Returns an EventChannel instance specified by the provided name.

Parameters

EventChannelFactory::find_channel_by_id()

//IDL
CosEventChannelAdmin::EventChannel find_channel_by_id(
 in ChannelID id,
 out string name)
raises (ChannelNotFound);

Returns an EventChannel instance specified by the provided id.

Parameters

EventChannelFactory::list_channels()

//IDL
EventChannelInfoList list_channels();

name The name of the channel to be created

id The id of the created channel

name The name of the channel

id The channel id as returned from create_channel()

id The channel id as returned from create_channel()

name The name of the channel
 818

IT_EventChannelAdmin::EventChannelFactory Interface
Return a list of the EventChannel instances associated with the event service.
819

 820

IT_TypedEventChannelAdmin Module
Module IT_TypedEventChannelAdmin describes extensions to the module
CosTypedEventChannelAdmin. It defines an interface,
TypedEventChannelFactory, for creating or discovering TypedEventChannel
objects.

IT_TypedEventChannelAdmin Data Types

IT_TypedEventChannelAdmin::TypedEventChannelInfo
Structure

struct TypedEventChannelInfo
 {
 string name;
 IT_EventChannelAdmin::ChannelID id;
 string interface_id;
 CosTypedEventChannelAdmin::TypedEventChannel reference;
 };

The TypedEventChannelInfo is the unit of information managed by the
TypedEventChannelFactory for a given TypedEventChannel instance.

IT_TypedEventChannelAdmin::TypedEventChannelInfoList
Sequence

typedef sequence<TypedEventChannelInfo> TypedEventChannelInfoList;

The TypedEventChannelInfoList contains a sequence of
TypedEventChannelInfo and is the unit returned by
TypedEventChannelFactory::list_typed_channels().
821

IT_TypedEventChannelAdmin::
TypedEventChannelFactory Interface

interface TypedEventChannelFactory : IT_MessagingAdmin::Manager
{
 CosTypedEventChannelAdmin::TypedEventChannel
 create_typed_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
 raises (IT_EventChannelAddmin::ChannelAlreadyExists);

 CosTypedEventChannelAdmin::TypedEventChannel
 find_typed_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
 raises (IT_EventChannelAdmin::ChannelNotFound);

 CosTypeEventChannelAdmin::TypedEventChannel
 find_typed_channel_by_id(in IT_EventChannelAdmin::ChannelID id,
 out string name)
 raises (IT_EventChannelAdmin::ChannelNotFound);

 TypedEventChannelInfoList list_typed_channels();
};

The TypedEventChannelFactory interface defines operations for creating and
managing typed event channels. By inheriting from the IT_MessagingAdmin:
:Manager interface, it also has the ability to gracefully shut down the event
service.

TypedEventChannelFactory::create_typed_channel()

//IDL
CosTypedEventChannelAdmin::TypedEventChannel
 create_typed_channel(in string name,
 out ITEventChannelAdmin::ChannelID id)
raises (IT_EventChannelAdmin::ChannelAlreadyExists);

Creates a new instance of a typed event channel
 822

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface
Parameters

TypedEventChannelFactory::find_typed_channel()

//IDL
CosTypedEventChannelAdmin::TypedEventChannel
 find_type_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
raises (IT_EventChannelAdmin::ChannelNotFound);

Returns n TypedEventChannel instance specified by the provided name.

Parameters

TypedEventChannelFactory::find_typed_channel_by_id()

//IDL
CosTypedEventChannelAdmin::TypedEventChannel
 find_typed_channel_by_id(in IT_EventChannelAdmin::ChannelID id,
 out string name)
raises (IT_EventChannelAdmin::ChannelNotFound);

Returns an TypedEventChannel instance specified by the provided id.

Parameters

TypedEventChannelFactory::list_typed_channels()

//IDL
TypedEventChannelInfoList list_typed_channels();

name The name of the channel to be created

id The id of the created channel

name The name of the channel

id The channel id as returned from create_typed_channel()

id The channel id as returned from create_typed_channel()

name The name of the channel
823

Return a list of the TypedEventChannel instances associated with the event
service.
 824

IT_MessagingAdmin::Manager
Interface

Module IT_MessagingAdmin describes the administrative interface for the
Event service.

The Manager interface provides administrative operations on an event service.

//IDL
 interface Manager
 {
 readonly attribute string name;
 readonly attribute string host;
 void shutdown();
 };
};

Manager::shutdown()

//IDL
void shutdown();

Shuts down an event service.
825

 826

 Firewall Proxy Service

IT_FPS Module
The IT_FPS module defines the constants and interface for the
InterdictionPolicy.

const unsigned long FPS_POLICY_BASE =
IT_PolicyBase::IONA_POLICY_ID + 40;

const CORBA::PolicyType INTERDICTION_POLICY_ID = FPS_POLICY_BASE;

enum InterdictionPolicyValue
 {
 DISABLE,
 ENABLE
 };

local interface InterdictionPolicy : CORBA::Policy
 {
 readonly attribute InterdictionPolicyValue value;
 };

FPS_POLICY_BASE Constant

const unsigned long FPS_POLICY_BASE =
IT_PolicyBase::IONA_POLICY_ID + 40;

Specifies the offset used to identify the InterdictionPolicy.

INTERDICTION_POLICY_ID Constant

const CORBA::PolicyType INTERDICTION_POLICY_ID = FPS_POLICY_BASE;

Specifies the ID passed to create_policy() when creating an
InterdictionPolicy.
829

InterdictionPolicyValue Enum

enum InterdictionPolicyValue
 {
 DISABLE,
 ENABLE
 };

Specifies the possible values for the InterdictionPolicy. The values are
defined as follows:

IT_FPS::InterdictionPolicy Interface
This is an interface for a local policy object derived from CORBA::Policy. You
create instances of InterdictionPolicy by calling
CORBA::ORB::create_policy(). It is used to specify if a POA is to be
proxified by the firewall proxy service.

local interface InterdictionPolicy : CORBA::Policy
 {
 readonly attribute InterdictionPolicyValue value;
 };

ENABLE This is the default behavior of the firewall proxy service
plug-in. A POA with its InterdictionPolicy set to
ENABLE will be proxified.

DISABLE This setting tells the firewall proxy service plug-in to not
proxify the POA. A POA with its InterdictionPolicy set
to DISABLE will not use the firewall proxy service and
requests made on objects under its control will come
directly from the requesting clients.
 830

 Naming Service

CosNaming Overview
The CosNaming module contains all IDL definitions for the CORBA naming
service. The interfaces consist of:

� �CosNaming::BindingIterator Interface�
� �CosNaming::NamingContext Interface�
� �CosNaming::NamingContextExt Interface�

Use the NamingContext and BindingIterator interfaces to access standard
naming service functionality. Use the NamingContextExt interface to use
URLs and string representations of names.

The rest of this chapter describes data types common to the CosNaming
module that are defined directly within its scope.

CosNaming::Binding Structure

// IDL
struct Binding {
 Name binding_name;
 BindingType binding_type;
};

A Binding structure represents a single binding in a naming context. A Binding
structure indicates the name and type of the binding:

When browsing a naming graph in the naming service, an application can list
the contents of a given naming context, and determine the name and type of
each binding in it. To do this, the application calls the NamingContext::
list() method on the target NamingContext object. This method returns a
list of Binding structures.

See Also CosNaming::BindingList
CosNaming::BindingType

binding_name The full compound name of the binding.

binding_type The binding type, indicating whether the name is bound
to an application object or a naming context.
833

NamingContext::list()

CosNaming::BindingList Sequence

// IDL
typedef sequence<Binding> BindingList;

A sequence containing a set of Binding structures, each of which represents
a single name binding.

An application can list the bindings in a given naming context using the
NamingContext::list() method. An output parameter of this method
returns a value of type BindingList.

See Also CosNaming::Binding
CosNaming::BindingType
NamingContext::list()

�About Sequences�

CosNaming::BindingType Enumeration

// IDL
enum BindingType {nobject, ncontext};

The enumerated type BindingType represents these two forms of name
bindings:

There are two types of name binding in the CORBA naming service: names
bound to application objects, and names bound to naming contexts. Names
bound to application objects cannot be used in a compound name, except as
the last element in that name. Names bound to naming contexts can be used
as any component of a compound name and allow you to construct a naming
graph in the naming service.

Name bindings created using NamingContext::bind() or NamingContext::
rebind() are nobject bindings.

nobject Describes a name bound to an application object.

ncontext Describes a name bound to a naming context in the
naming service.
 834

Name bindings created using the operations NamingContext::
bind_context() or NamingContext::rebind_context() are ncontext
bindings.

See Also CosNaming::Binding
CosNaming::BindingList

CosNaming::Istring Data Type

// IDL
typedef string Istring;

Type Istring is a place holder for an internationalized string format.

CosNaming::Name Sequence

// IDL
typedef sequence<NameComponent> Name;

A Name represents the name of an object in the naming service. If the object
name is defined within the scope of one or more naming contexts, the name
is a compound name. For this reason, type Name is defined as a sequence of
name components.

Two names that differ only in the contents of the kind field of one
NameComponent structure are considered to be different names.

Names with no components, that is sequences of length zero, are illegal.

See Also CosNaming::NameComponent

�About Sequences�

CosNaming::NameComponent Structure

// IDL
struct NameComponent {
 Istring id;
 Istring kind;
};
835

A NameComponent structure represents a single component of a name that is
associated with an object in the naming service. The members consist of:

The id field is intended for use purely as an identifier. The semantics of the
kind field are application-specific and the naming service makes no attempt
to interpret this value.

A name component is uniquely identified by the combination of both id and
kind fields. Two name components that differ only in the contents of the
kind field are considered to be different components.

See Also CosNaming::Name

id The identifier that corresponds to the name of the component.

kind The element that adds secondary type information to the
component name.
 836

CosNaming::BindingIterator Interface
A CosNaming.BindingIterator object stores a list of name bindings and
allows application to access the elements of this list.

The NamingContext.list() method obtains a list of bindings in a naming
context. This method allows applications to specify a maximum number of
bindings to be returned. To provide access to all other bindings in the naming
context, the method returns an object of type CosNaming.BindingIterator.

// IDL
// In module CosNaming
interface BindingIterator {
 boolean next_one(
 out Binding b
);
 boolean next_n(
 in unsigned long how_many,
 out BindingList bl
);
 void destroy();
};

See Also CosNaming::NamingContext::list()

BindingIterator::destroy()

// IDL
void destroy();

Deletes the CosNaming::BindingIterator object on which it is called.

BindingIterator::next_n()

// IDL
boolean next_n(
 in unsigned long how_many,
 out BindingList bl
837

);

Gets the next how_many elements in the list of bindings, subsequent to the
last element obtained by a call to next_n() or next_one(). If the number of
elements in the list is less than the value of how_many, all the remaining
elements are obtained.

Returns true if one or more bindings are obtained, but returns false if no more
bindings remain.

Parameters

See Also CosNaming::BindingIterator::next_one()
CosNaming::BindingList

BindingIterator::next_one()

// IDL
boolean next_one(
 out Binding b
);

Gets the next element in the list of bindings, subsequent to the last element
obtained by a call to next_n() or next_one().

Returns true if a binding is obtained, but returns false if no more bindings
remain.

Parameters

See Also CosNaming::BindingIterator::next_n()
CosNaming::Binding

how_many The maximum number of bindings to be obtained in param-
eter bl.

bl The list of name bindings.

b The name binding.
 838

CosNaming::NamingContext Interface
The interface CosNaming::NamingContext provides operations to access the
main features of the CORBA naming service, such as binding and resolving
names. Name bindings are the associations the naming service maintains
between an object reference and a useful name for that reference.

// IDL
// In module CosNaming
interface NamingContext {
 enum NotFoundReason {missing_node, not_context, not_object};

 exception NotFound {
 NotFoundReason why;
 Name rest_of_name;
 };
 exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
 };
 exception InvalidName {};
 exception AlreadyBound {};
 exception NotEmpty {};

 void bind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

 void rebind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName);

 void bind_context(
 in Name n,
839

 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

 void rebind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName);

 Object resolve(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

 void unbind(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

 NamingContext new_context();

 NamingContext bind_new_context(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

 void destroy() raises (NotEmpty);

 void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi
);
};
 840

NamingContext::AlreadyBound Exception

// IDL
exception AlreadyBound {};

If an application calls a method that attempts to bind a name to an object or
naming context, but the specified name has already been bound, the method
throws an exception of type AlreadyBound.

The following methods can throw this exception:

bind()
bind_context()
bind_new_context()

NamingContext::bind()

// IDL
void bind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Creates a name binding, relative to the target naming context, between a name
and an object.

Parameters

If the name passed to this method is a compound name with more than one
component, all except the last component are used to find the sub-context in
which to add the name binding.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

n The name to be bound to the target object, relative to the
naming context on which the method is called.

obj The application object to be associated with the specified
name.
841

The contexts associated with the components must already exist, otherwise
the method throws a NotFound exception.

See Also CosNaming::NamingContext::rebind()
CosNaming::NamingContext::resolve()

NamingContext::bind_context()

// IDL
void bind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Creates a binding, relative to the target naming context, between a name and
another, specified naming context.

Parameters

This new binding can be used in any subsequent name resolutions. The
naming graph built using bind_context() is not restricted to being a tree: it
can be a general naming graph in which any naming context can appear in
any other naming context.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

n The name to be bound to the target naming context, relative
to the naming context on which the method is called. All but
the final naming context specified in parameter n must
already exist.

nc The NamingContext object to be associated with the specified
name. This object must already exist. To create a new
NamingContext object, call NamingContext::new_context().
The entries in naming context nc can be resolved using com-
pound names.
 842

This method throws an AlreadyBound exception if the name specified by n is
already in use.

See Also CosNaming.NamingContext.bind_new_context()
CosNaming.NamingContextnew_context()
CosNamingNamingContext.rebind_context()
CosNamingNamingContextresolve()

NamingContext::bind_new_context()

// IDL
NamingContext bind_new_context(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Creates a new NamingContext object in the naming service and binds the
specified name to it, relative to the naming context on which the method is
called. The method returns a reference to the newly created NamingContext
object.

Parameters

This method has the same effect as a call to NamingContext::
new_context() followed by a call to NamingContext::bind_context().

The new name binding created by this method can be used in any
subsequent name resolutions: the entries in the returned naming context can
be resolved using compound names.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

This method throws an AlreadyBound exception if the name specified by n is
already in use.

n The name to be bound to the newly created naming context,
relative to the naming context on which the method is called.
All but the final naming context specified in parameter n must
already exist.
843

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::new_context()

NamingContext::CannotProceed Exception

// IDL
exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
};

If a naming service method fails due to an internal error, the method throws a
CannotProceed exception.

A CannotProceed exception consists of two member fields:

The application might be able to use the information returned in this
exception to complete the method later. For example, if you use a naming
service federated across several hosts and one of these hosts is currently
unavailable, a naming service method might fail until that host is available
again.

The following methods can throw this exception:

bind()
bind_context()
bind_new_context()
rebind()
rebind_context()
resolve()
unbind()

See Also CosNaming::Name
CosNaming::NamingContext

cxt The NamingContext object associated with the com-
ponent at which the method failed.

rest_of_name The remainder of the compound name, after the bind-
ing for the component at which the method failed.
 844

NamingContext::destroy()

// IDL
void destroy()
 raises (NotEmpty);

Deletes the NamingContext object on which it is called. Before deleting a
NamingContext in this way, ensure that it contains no bindings.

To avoid leaving name bindings with no associated objects in the naming
service, call NamingContext.unbind() to unbind the context name before
calling destroy(). See resolve() for information about the result of
resolving names of context objects that no longer exist.

Exceptions

See Also CosNaming::NamingContext::resolve()
CosNaming::NamingContext::unbind()

NamingContext::InvalidName Exception

// IDL
exception InvalidName {};

If a method receives an in parameter of type CosNaming.Name for which the
sequence length is zero, the method throws an InvalidName exception.

The following methods can throw this exception:

bind()
bind_context()
bind_new_context()
rebind()
rebind_context()
resolve()
unbind()

NamingContext:
:NotEmpty

destroy() is called on a NamingContext that contains exist-
ing bindings.
845

NamingContext::list()

// IDL
void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi
);

Gets a list of the name bindings in the naming context on which the method
is called.

Parameters

See Also CosNaming::BindingIterator
CosNaming::BindingList

NamingContext::new_context()

// IDL
NamingContext new_context();

Creates a new NamingContext object in the naming service, without binding a
name to it. The method returns a reference to the newly created NamingContext
object.

After creating a naming context with this method, your application can bind a
name to it by calling NamingContext::bind_context(). There is no
relationship between this object and the NamingContext object on which the
application call the method.

how_many The maximum number of bindings to be obtained in the
BindingList parameter, bl.

bl The list of bindings contained in the naming context on which
the method is called.

bi A BindingIterator object that provides access to all remain-
ing bindings contained in the naming context on which the
method is called.

If the naming context contains more than the requested num-
ber of bindings, the BindingIterator contains the remaining
bindings. If the naming context does not contain any addi-
tional bindings, the parameter bi is a nil object reference.
 846

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()

NamingContext::NotEmpty Exception

// IDL
exception NotEmpty {};

An application can call the NamingContext::destroy() method to delete a
naming context object in the naming service. For this method to succeed, the
naming context must contain no bindings. If bindings exist in the naming
context, the method throws a NotEmpty exception.

NamingContext::NotFound Exception

// IDL
exception NotFound {
 NotFoundReason why;
 Name rest_of_name;
};

Several methods in the interface CosNaming::NamingContext require an exist-
ing name binding to be passed as an input parameter. If such an method
receives a name binding that it determines is invalid, the method throws a
NotFound exception. This exception contains two member fields:

The following methods can throw this exception:

bind()
bind_context()
bind_new_context()
rebind()
rebind_context()
resolve()
unbind()

why The reason why the name binding is invalid.

rest_of_name The remainder of the compound name following the invalid
portion of the name that the method determined to be
invalid.
847

See Also CosNaming::NamingContext::NotFoundReason

NamingContext::NotFoundReason Enumeration

// IDL
enum NotFoundReason {missing_node, not_context, not_object};

If an method throws a NotFound exception, a value of enumerated type
NotFoundReason indicates the reason why the exception was thrown. The
reasons consists of:

See Also CosNaming::NamingContext::NotFound

NamingContext::rebind()

// IDL
void rebind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName);

Creates a binding between an object and a name that is already bound in the
target naming context. The previous name is unbound and the new binding is
created in its place.

missing_node The component of the name passed to the method
did not exist in the naming service.

not_context The method expected to receive a name that is bound
to a naming context, for example using
NamingContext::bind_context(), but the name
received did not satisfy this requirement.

not_object The method expected to receive a name that is bound
to an application object, for example using
NamingContext::bind(), but the name received did
not satisfy this requirement.
 848

Parameters

As is the case with NamingContext::bind(), all but the last component of a
compound name must exist, relative to the naming context on which you call
the method.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

See Also CosNaming::NamingContext::bind()
CosNaming::NamingContext::resolve()

NamingContext::rebind_context()

// IDL
void rebind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName);

The rebind_context() method creates a binding between a naming context
and a name that is already bound in the context on which the method is called.
The previous name is unbound and the new binding is made in its place.

Parameters

As is the case for NamingContext::bind_context(), all but the last
component of a compound name must name an existing NamingContext.

Exceptions The method can throw these exceptions:

n The name to be bound to the specified object, relative to the
naming context on which the method is called.

obj The application object to be associated with the specified
name.

n The name to be bound to the specified naming context, rela-
tive to the naming context on which the method is called.

nc The naming context to be associated with the specified name.
849

NotFound
CannotProceed
InvalidName

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::resolve()

NamingContext::resolve()

// IDL
Object resolve(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

Returns the object reference that is bound to the specified name, relative to
the naming context on which the method was called. The first component of
the specified name is resolved in the target naming context.

Parameters

An IDL Object maps to the type CORBA::Object_ptr in C++. You must
narrow the result to the appropriate type before using it in your application.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

If the name n refers to a naming context, it is possible that the corresponding
NamingContext object no longer exists in the naming service. For example,
this could happen if you call NamingContext::destroy() to destroy a context
without first unbinding the context name. In this case, resolve() throws a
CORBA system exception.

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound

n The name to be resolved, relative to the naming context on
which the method is called.
 850

NamingContext::unbind()

// IDL
void unbind(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

Removes the binding between a specified name and the object associated with
it.

Parameters

Unbinding a name does not delete the application object or naming context
object associated with the name. For example, if you want to remove a
naming context completely from the naming service, you should first unbind
the corresponding name, then delete the NamingContext object by calling
NamingContext::destroy().

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::destroy()
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound

n The name to be unbound in the naming service, relative to
the naming context on which the method is called.
851

 852

CosNaming::NamingContextExt
Interface

The NamingContextExt interface, derived from NamingContext, provides the
capability for applications to use strings and Uniform Resource Locator
(URL) strings to access names in the naming service.

// IDL
// In module CosNaming
interface NamingContextExt: NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;

 StringName to_string(
 in Name n
)
 raises(InvalidName);

 Name to_name(
 in StringName sn
)
 raises(InvalidName);

 exception InvalidAddress {};

 URLString to_url(
 in Address addr,
 in StringName sn
)
 raises(InvalidAddress, InvalidName);

 Object resolve_str(
 in StringName n
)
 raises(NotFound, CannotProceed, InvalidName,

AlreadyBound);
};
853

NameContextExt::Address Data Type

// IDL
typedef string Address;

A URL address component is a host name optionally followed by a port
number (delimited by a colon). Examples include the following:

my_backup_host.555xyz.com:900
myhost.xyz.com
myhost.555xyz.com

NameContextExt::InvalidAddress Exception

// IDL
exception InvalidAddress {};

The to_url() method throws an InvalidAddress exception when an invalid
URL address component is passed to it.

See Also CosNaming::NamingContextExt::to_url()

NameContextExt::resolve_str()

// IDL
Object resolve_str(
 in StringName sn
)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

Resolves a naming service name to the object it represents in the same manner
as NamingContext::resolve(). This method accepts a string representation
of a name as an argument instead of a Name data type.

Parameters

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

sn String representation of a name to be resolved to an object
reference.
 854

AlreadyBound

NameContextExt::StringName Data Type

// IDL
typedef string StringName;

A string representation of an object�s name in the naming service.

See Also CosNaming::Name

NameContextExt::to_name()

// IDL
Name to_name(
 in StringName sn
)
 raises(InvalidName);

Returns a naming service Name given a string representation of it.

Parameters

Exceptions

NameContextExt::to_string()

// IDL
StringName to_string(
 in Name n
)
 raises(InvalidName);

Returns a string representation of a naming service Name data type.

sn String representation of a name in the naming service to be
converted to a Name data type.

InvalidName The string name is syntactically malformed or violates an
implementation limit.
855

Parameters

Exceptions

NameContextExt::to_url()

// IDL
URLString to_url(
 in Address addr,
 in StringName sn
)
 raises(InvalidAddress, InvalidName);

Returns a fully formed URL string, given a URL address component and a string
representation of a name. It adds the necessary escape sequences to create a
valid URLString.

Parameters

Exceptions The method can throw these exceptions:

InvalidAddress
InvalidName

NameContextExt::URLString Data Type

// IDL
typedef string URLString;

A valid Uniform Resource Locator (URL) string. URL strings describe the
location of a resource that is accessible via the Internet.

n The naming service Name to be converted to a string.

InvalidName Name is invalid.

addr The URL address component. An empty address means the
local host.

sn The string representation of a naming service name. An
empty string is allowed.
 856

IT_Naming Module
The IT_Naming module contains a single interface, IT_NamingContextExt,
which provides the method used to bind an object group into the naming
service.

IT_NamingContextExt extends CosNaming::NamingContextExt and provides
the method bind_object_group which binds an object group to an Iona
proprietary naming service.

IT_Naming::IT_NamingContextExt Interface

The complete IT_NamingContextExt is as follows:

// IDL in Module IT_Naming
Interface IT_NamingContextExt : CosNaming::NamingContextExt
{
 readonly attribute IT_LoadBalancing::ObjectGroupFactory

og_factory;
 readonly attribute IT_NamingAdmin::NamingAdmin admin;

 void bind_object_group(
 in CosNaming::Name n,
 in IT_LoadBalancing::ObjectGroup obj_gp)
 raises (CosNaming::NamingContext::NotFound,
 CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName,
 CosNaming::NamingContext::AlreadyBound);
};

IT_Naming::IT_NamingCotextExt::bind_object_group() Method

Binds an object group to an entry in the naming service.
857

Parameters

Enhancement Orbix enhancement to CORBA.

Exceptions

n A CosNaming::Name specifying the naming service node to
bind the object group to.

obj_gp The object group to bind into the naming service.

NamingContext::NotFound n did not point to a valid entry in the naming
service.

NamingContext::CannotProceedThe call failed due an internal error.

NamingContext::InvalidName n has a sequence length of zero.

NamingContext::AlreadyBound obj_gp is already bound into the naming ser-
vice
 858

IT_LoadBalancing Overview
The IT_LoadBalancing module provides operations that allow you to
organize object references in the naming service into object groups. Object
groups provide a means of controlling object load balancing by distributing
work across a pool of objects.

� The ObjectGroup interface provides operations to update object group
members.

� The ObjectGroupFactory interface provides operations to create or
locate object groups.

The IT_LoadBalancing module also uses the following common data types
and exceptions.

IT_LoadBalancing::MemberId Data Type

//IDL
typedef string MemberId;

An identifying string representing an object group member.

When adding a member to an object group, you must specify a string
representing the object. The format of the string is left to the developer. Orbix
does not interpret them. The only restriction is that member ids must be unique
within each object group.

Table 21: IT_LoadBalancing Common Data Types and Exceptions

Common Data Types Exceptions

MemberId
MemberIdList
SelectionMethod
Member
GroupId
GroupList

NoSuchMember
DuplicateMember
DuplicateGroup
NoSuchGroup
859

IT_LoadBalancing::MemberIdList Data Type

//IDL
typedef sequence<MemberId> MemberIdList;

A list of member ids that belong to an object group.

IT_LoadBalancing::SelectionMethod Data Type

//IDL
enum SelectionMethod { ROUND_ROBIN_METHOD, RANDOM_METHOD,

ACTIVE_METHOD };

Specifies the algorithm for mapping a name to a member of an object group.

IT_LoadBalancing::Member Data Type

//IDL
struct Member
{
 Object obj;
 MemberId id;
};

Specifies an object group member.

IT_LoadBalancing::GroupId Data Type

// IDL
typedef string GroupId;

ROUND_ROBIN_METHODSequentially selects objects from the object group to
resolve client requests.

RANDOM_METHOD Randomly selects objects from the object group to
resolve client requests.

ACTIVE_METHOD Uses load information supplied by the server or the sys-
tem administrator to select the object with the lightest
load from the object group to resolve client requests.
 860

A string representing an object group.

When creating an object group, you must specify a string representing the
object. The format of the string is left to the developer. Orbix does not interpret
them. The only restriction is that group ids must be unique among object
groups.

IT_LoadBalancing::GroupList Data Type

//IDL
typedef sequence<GroupId> GroupList;

A list of object group ids.

IT_LoadBalancing::NoSuchMember Exception

// IDL
exception NoSuchMember{};

Raised when the member id passed to an operation does not specify a member
in the current object group.

IT_LoadBalancing::DuplicateMember Exception

// IDL
exception DupliccateMember{};

Raised by IT_LoadBalancing::ObjectGroup::add_member when the member
id identifies a member that is already part of the group.

IT_LoadBalancing::DuplicateGroup Exception

Raised by IT_LoadBalancing::ObjectGroupFactory::create_round_robin,
IT_LoadBalancing::ObjectGroupFactory::create_random, and
IT_LoadBalancing::ObjectGroupFactory::create_active when the group
id identifies a preexisting group.
861

IT_LoadBalancing::NoSuchGroup Exception

Raised when the specified group id does not match any registered group.
 862

IT_LoadBalancing::ObjectGroup
Interface

Object groups are controlled by the ObjectGroup interface, which defines the
operations for manipulating the members of the object group. An
ObjectGroup is obtained from an ObjectGroupFactory.

The ObjectGroup interface has the following attributes:

� id contains the group�s id string specified when the group is created.
� selection_method specifies which algorithm is used to resolve client

requests

The ObjectGroup interface has the following operations:

� pick is called by the naming service to map a client request to an active
object.

� add_member() adds an object�s reference to an object group.
� remove_member() removes an object�s reference from the object group.
� get_member() returns the object by its member id.
� members() returns a list of all members in the object group.
� update_member_load() updates the object�s load status.
� get_member_load() returns an object�s load status.
� set_member_timeout() specifies the amount of time between load

updates for a specific member. After this time the object will be
removed from the group�s pool of available objects.

� get_member_timeout() returns the member�s timeout value.
� destroy() removes the object group from the naming service.

The complete ObjectGroup interface is as follows:

interface ObjectGroup {
 readonly attribute string id;
 attribute SelectionMethod selection_method;
 Object pick();
 void add_member (in Member mem)
 raises (DuplicateMember);
863

 void remove_member (in MemberId id)
 raises (NoSuchMember);
 Object get_member (in MemberId id)
 raises (NoSuchMember);
 MemberIdList members();
 void update_member_load(in MemberIdList ids, in double curr_load)
 raises (NoSuchMember);
 double get_member_load(in MemberId id)
 raises (NoSuchMember);
 void set_member_timeout(in MemberIdList ids, in long timeout_sec)
 raises (NoSuchMember);
 long get_member_timeout(in MemberId id)
 raises (NoSuchMember);
 void destroy();
};

ObjectGroup::pick()

// IDL
Object pick();

Returns an object from the group using the selection algorithm specified when
the group was created.

See Also IT_LoadBalancing::SelectionMethod,
IT_LoadBalancing::ObjectGroupFactory::create_round_robin(),
IT_LoadBalancing::ObjectGroupFactory::create_random(),
IT_LoadBalancing::ObjectGroupFactory::create_active()

ObjectGroup::add_member()

// IDL
void add_member(in Member mem)
raises (DuplicateMember);

Adds a reference to an object to the object group and makes it available for
picking.
 864

Parameters

Exceptions

ObjectGroup::remove_member()

// IDL
void remove_member(in MemberId id)
 raises (NoSuchMember);

Removes the specified object�s reference from the object group. It does not
effect any other references to the object stored in the naming service.

Parameters

Exceptions

ObjectGroup::get_member()

// IDL
Object get_member(in MemberId id)

Returns the object specified by id.

Parameters

mem Specifies the object to be added to the object group. It is
made up of a CORBA::Object and a MemberId.

IT_LoadBalanci
ng::
DuplicateMe
mber

A member with the same MemberId is already associated with
the object group.

id A string that identifies the object within the object group

IT_LoadBalanci
ng::
NoSuchMembe
r

The specified member does not exist in the object group.

id A string that identifies the object within the object group
865

Exceptions

ObjectGroup::members()

// IDL
MemberIdList members();

Returns a list containing the ids of all members in the object group.

ObjectGroup::update_member_load()

// IDL
 void update_member_load(in MemberIdList ids, in double curr_load)
 raises (NoSuchMember);

Specifies the load value used in the ACTIVE_METHOD selection algorithm.

Parameters

Exceptions

See Also IT_LoadBalancing::SelectionMethod,
IT_LoadBalancing::ObjectGroupFactory::create_active(),
IT_LoadBalancing::ObjectGroup::set_member_timeout()

IT_LoadBalanci
ng::
NoSuchMembe
r

The specified member does not exist in the object group.

ids A sequence of MemberId values that specify the objects whose
load value is being updated.

curr_load A double that specifies the load on the specified objects. The
higher the value, the higher the load. Using the
ACTIVE_METHOD members of the group with the lowest load
values are picked first.

IT_LoadBalanci
ng::
NoSuchMembe
r

One or more of the specified members do not exist in the
object group.
 866

ObjectGroup::get_member_load()

// IDL
double get_member_load(in MemberId id)
raises (NoSuchMember);

Returns the load value for a specified object.

Parameters

Exceptions

See Also IT_LoadBalancing::ObjectGroup::update_member_load()

ObjectGroup::set_member_timeout()

void set_member_timeout(in MemberIdList ids, in long timeout_sec)
raises (NoSuchMember);

Specifies the amount of time, in seconds, that a member has between updates
of its load value before it is removed from the list of available objects.

Parameters

Exceptions

id A string that identifies the object within the object group

IT_LoadBalanci
ng::
NoSuchMembe
r

The specified member does not exist in the object group.

ids A sequence of MemberIds that specify the members whose
timeout values are being set.

timeout_sec A long specifying the number of seconds that an object has
between load value updates. After this amount of time has
expired the object will be taken off the object groups list of
available objects.

IT_LoadBalanci
ng::
NoSuchMembe
r

One or more of the specified members do not exist in the
object group.
867

See Also IT_LoadBalancing::ObjectGroup::update_member_load()

ObjectGroup::get_member_timeout()

\\ IDL
long get_member_timeout(in MemberId id)
raises (NoSuchMember);

Returns the timeout value for the specified object group member.

Parameters

Exceptions

See Also IT_LoadBalancing::ObjectGroup::set_member_timeout()

ObjectGroup::destroy()

// IDL
void destroy()

Removes the object group from the naming service. Before calling destroy() on
an object group, you must first unbind it.

Exceptions

See Also CosNaming::NamingContext::unbind()

id A string that identifies the object within the object group

IT_LoadBalanci
ng::
NoSuchMembe
r

One or more of the specified members do not exist in the
object group.

CosNamimg::
NamingConte
xt::
NotEmpty

The object group is not unbound from the naming service.
 868

IT_LoadBalancing::
ObjectGroupFactory Interface

The ObjectGroupFactory interface provides methods for creating and
locating object groups in the naming service.

The ObjectGroupFactory interface has the following methods to create
object groups:

� create_round_robin() creates an object group that uses the
ROUND_ROBIN_METHOD selction algorithm for picking objects.

� create_random() creates an object group that uses the RANDOM_METHOD
selection algorithm for picking objects.

� create_active() creates an object group that uses the ACTIVE_METHOD
seletion algorithm for picking objects.

The ObjectGroupFactory interface has the following methods for locating
object groups in the naming service:

� find_group returns a specific object group.
� rr_groups returns a list of all object groups using the

ROUND_ROBIN_METHOD selection algorithm.
� random_groups returns a list of all object groups using the

RANDOM_METHOD selection algorithm.
� active_groups returns a list of all object groups using the

ACTIVE_METHOD selection algorithm.

The complete ObjectGroupFactory interface is as follows:

interface ObjectGroupFactory {
 ObjectGroup create_round_robin (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup create_random (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup create_active (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup find_group (in GroupId id)
 raises (NoSuchGroup);
869

 GroupList rr_groups();
 GroupList random_groups();
 GroupList active_groups();
};

ObjectGroupFactory::create_round_robin()

// IDL
ObjectGroup create_round_robin (in GroupId id)
 raises (DuplicateGroup);

Creates an object group in the naming service. The new group uses the
ROUND_ROBIN_METHOD selection algorithm for picking objects.

Parameters

Exceptions

See Also IT_LoadBalancing::ROUND_ROBIN_METHOD

ObjectGroupFactory::create_random()

ObjectGroup create_random (in GroupId id)
 raises (DuplicateGroup);

Creates an object group in the naming service. The new group uses the
RANDOM_METHOD selection algorithm for picking objects.

Parameters

id A string identifying the object group. The string must be
unique among object groups.

IT_LoadBalanci
ng::
DuplicateGr
oup

The id specified is already in use by another object group.

id A string identifying the object group. The string must be
unique among object groups.
 870

Exceptions

See Also IT_LoadBalancing::RANDOM_METHOD

ObjectGroupFactory::create_active()

ObjectGroup create_active (in GroupId id)
 raises (DuplicateGroup);

Creates an object group in the naming service. The new group uses the
ACTIVE_METHOD selection algorithm for picking objects.

Parameters

Exceptions

See Also IT_LoadBalancing::ACTIVE_METHOD

ObjectGroupFactory::find_group()

//IDL
ObjectGroup find_group (in GroupId id)
 raises (NoSuchGroup);

Returns the specified object group.

Parameters

IT_LoadBalanci
ng::
DuplicateGr
oup

The id specified is already in use by another object group.

id A string identifying the object group. The string must be
unique among object groups.

IT_LoadBalanci
ng::
DuplicateGr
oup

The id specified is already in use by another object group.

id A string identifying the object group. The string must be
unique among object groups.
871

Exceptions

ObjectGroupFactory::rr_groups()

// IDL
GroupList rr_groups();

Returns a sequence of GroupId that identify all objects groups in the naming
service that use ROUND_ROBIN_METHOD.

ObjectGroupFactory::random_groups()

// IDL
GroupList random_groups();

Returns a sequence of GroupId that identify all objects groups in the naming
service that use RANDOM_METHOD.

ObjectGroupFactory::active_groups()

// IDL
GroupList random_groups();

Returns a sequence of GroupId that identify all objects groups in the naming
service that use ACTIVE_METHOD.

IT_LoadBalanci
ng::
NoSuchGroup

The group specified does not exist.
 872

 Notification Service

Notification Service Interfaces
The Notification Service is defined in terms of the following IDL modules:

Table 22: Notification IDL Modules

IDL Module Contents

CosNotification Defines the structured event data type, quality
of service and administrative properties, and
interfaces used to administer these properties.

CosNotifyFilter Defines interfaces to support filter objects. Two
different filter objects are defined:

Forwarding filters: These are instantiated with
the Filter interface and make decisions about
which events to forward, and which to discard.

Mapping filters: These are instantiated with
the MappingFilter interface. They determine
whether a proxy object alters the properties of
an event.

In addition to the two types of filter object inter-
faces defined in this module, the
CosNotifyFilter module also defines the
FilterFactory interface that supports opera-
tions required to create filter objects, and the
FilterAdmin interface that supports operations
enabling a proxy or admin to manage a list of
Filter instances.
875

The following chapters describe these modules in detail.

CosNotifyComm Defines interfaces supporting Notification Ser-
vice clients using structured events or
sequences of structured events.

This module also defines the interfaces that
enable:

� Event suppliers to be informed when the
types of events being subscribed to
change.

� Event consumers to be informed whenever
there is a change in the types of events
being produced.

CosNotifyChannelAdmin Defines interfaces to create, configure, and
administer instances of a Notification Service
event channel. It defines the proxy interfaces
that support connections from clients, the
admin interfaces, the EventChannel interface,
and a factory interface for instantiating chan-
nels.

IT_NotifyComm Extends the CosNotifyComm module by defining
interfaces to support consumers in endpoint
groups.

The module also defines the interface enabling
consumers in an endpoint group to be notified
when there is a change in the types of events
being offered.

IT_NotifyChannelAdmin Extends the CosNotifyAdmin channel to sup-
port consumers in endpoint groups. It defines
interfaces to support the connection of
end-point groups to an event channel.

Table 22: Notification IDL Modules

IDL Module Contents
 876

CosNotifyChannelAdmin Module
The CosNotifyChannelAdmin module specifies the interfaces, exceptions,
and data types for connecting suppliers and consumers to an event channel.
It also provides the methods for managing these connections.

CosNotifyChannelAdmin Data Types
CosNotifyChannelAdmin specifies data types that facilitate the connection of
clients to an event channel. The data types specify the proxy type used by a
client, the type of events a client can send or recieve, and how the clients
recieve subscription information. Several data types identify the client and
the event channel objets responsible for managing it.

CosNotifyChannelAdmin::ProxyType Enum

// IDL in CosNotifyChannelAdmin
enum ProxyType
{
 PUSH_ANY,
 PULL_ANY,
 PUSH_STRUCTURED,
 PULL_STRUCTURED,
 PUSH_SEQUENCE,
 PULL_SEQUENCE,
 PUSH_TYPED,
 PULL_TYPED
}

Specifies the type of proxy used by a client to connect to an event channel.
The type of proxy must match the type of client it connects to the channel. For
example, a structured push consumer must use a PUSH_STRUCTURED proxy.
877

CosNotifyChannelAdmin::ObtainInfoMode Enum

// IDL in CosNotifyChannelAdmin Module
enum ObtainInfoMode
{
 ALL_NOW_UPDATES_ON,
 ALL_NOW_UPDATES_OFF,
 NONE_NOW_UPDATES_ON,
 NONE_NOW_UPDATES_OFF
}

Specifies how the client wishes to be notified of changes in subscription/
publication information. The values have the following meanings:

CosNotifyChannelAdmin::ProxyID Type

typedef long ProxyID;

Specifies the ID of a proxy in an event channel.

CosNotifyChannelAdmin::ProxyIDSeq Type

typedef sequence <ProxyID> ProxyIDSeq

Contains a list of ProxyID values.

CosNotifyChannelAdmin::ClientType Enum

// IDL in CosNotifyChannelAdmin

ALL_NOW_UPDATES_ON Returns the current subscription/publication informa-
tion and enables automatic updates.

ALL_NOW_UPDATES_OFFReturns the current subscription/publication informa-
tion and disables automatic updates.

NONE_NOW_UPDATES_ONEnables automatic updates of subscription/publication
information without returning the current information.

NON_NOW_UPDATES_OFFDisables automatic updates of subscription/publication
information without returning the current information.
 878

CosNotifyChannelAdmin Data Types
enum ClientType
{
 ANY_EVENT,
 STRUCTURED_EVENT,
 SEQUENCE_EVENT
}

Specifies the type of messages a client handles. The values have the following
meanings:

CosNotifyChannelAdmin::InterFilterGroupOperator Enum

// IDL in CosNotifyChannelAdmin
enum InterFilterGroupOperator
{
 AND_OP,
 OR_OP
}

Specifies the relationship between filters set on an admin object and the filters
set on its associated filter objects. The values have the following meanings:

CosNotifyChannelAdmin::AdminID Type

typedef long AdminID;

ANY_EVENT The client sends or receives messages as an Any. Con-
sumers set with ANY_EVENT can receive structured mes-
sages, but the consumer is responsible for decoding it.

STRUCTURED_EVENT The client sends or receives messages as a
CosNotification::StructuredEvent.

SEQUENCE_EVENT The client sends or receives messages as a
CosNotification::EventBatch.

AND_OP Events must pass at least one filter in both the proxy and the
admin in order to be forwarded along the delivery path.

OR_OP Events must pass at least one filter in either the proxy or the
admin in order to be forwarded along the delivery path.
879

Specifies the ID of an admin object in an event channel.

CosNotifyChannelAdmin::AdminIDSeq

typedef sequence <AdminID> AdminIDSeq;

Contains a list of IDs for admin objects in an event channel.

CosNotifyChannelAdmin::AdminLimit Type

//IDL in CosNotifyChannelAdmin
struct AdminLimit
{
 CosNotification::PropertyName name;
 CosNotification::PropertyValue value;
}

Specifies the administration property whose limit is exceeded and the value of
that property. It is returned by an CosNotifyChannelAdmin::
AdminLimitExceeded exception.

Members

CosNotifyChannelAdmin::ChannelID Type

typedef long ChannelID;

Specifies an event channel in the notification service.

CosNotifyChannelAdmin::ChannelIDSeq Type

typedef sequence <ChannelID> ChannelIDSeq;

Contains a list of IDs for event channels in the notification service.

name Name of the admin property that caused the exception.

value The current value of the property.
 880

CosNotifyChannelAdmin Exceptions
CosNotifyChannelAdmin Exceptions
The CosNotifyChannelAdmin module defines exceptions to handle errors
generated while managing client connections to an event channel.

CosNotifyChannelAdmin::ConnectionAlreadyActive Exception

exception ConnectionAlreadyActive{};

Raised when attempting to resume an already active connection between a
client and an event channel.

CosNotifyChannelAdmin::ConnetionAlreadyInactive Exception

exception ConnectionAlreadyInactive{};

Raised when attempting to suspend a connection between a client and an
event channel while it is suspended.

CosNotifyChannelAdmin::NotConnected Exception

exception NotCennected{};

Raised when attempting to suspend or resume a connection between a client
and an event channel when the client is not connected to the channel.

CosNotifyChannelAdmin::AdminNotFound Exception

exception AdminNotFound{};

Raised when the specified Admin ID cannot be resolved.

CosNotifyChannelAdmin::ProxyNotFound Exception

exception ProxyNotFound{};
881

Raised when the specified proxy ID cannot be resolved.

CosNotifyChannelAdmin::AdminLimitExceeded Exception

exception AdminLimitExceeded{ AdminLimit admin_property_err };

Raised when an attempt to obtain a proxy and the new connection will put the
event channel over the limit set by its MaxConsumers or MaxSuppliers setting.

The returned AdminLimit specifies which property caused the exception and
the current setting of the property.

CosNotifyChannelAdmin::ChannelNotFound Exception

exception ChannelNotFound{};

Raised when the specified channel ID cannot be resolved.
 882

CosNotifyChannelAdmin Exceptions
CosNotifyChannelAdmin::
ProxyConsumer Interface

//IDL in CosNotifyChannelAdmin
interface ProxyConsumer:
 CosNotification::QoSAdmin,
 CosNotifyFilter::FilterAdmin
{
 readonly attribute ProxyType MyType;
 readonly attribute SupplierAdmin MyAdmin;

 CosNotification::EventTypeSeq obtain_subscription_types(
 in ObtainInfoMode mode);

 void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)
 raises(CosNotification::UnsupportedQoS);
};

The ProxyConsumer interface is an abstract interface that is inherited by the
different proxy consumers that can be instantiated within an event channel. It
encapsulates the behaviors common to all notification service proxy
consumers. In particular, the ProxyConsumer interface inherits the QoSAdmin
interface defined within the CosNotification module, and the FilterAdmin
interface defined within the CosNotifyFilter module. The former
inheritance enables proxy consumers to administer a list of associated QoS
properties. The latter inheritance enables proxy consumers to administer a
list of associated filter objects. Locally, the ProxyConsumer interface defines
a read-only attribute that contains a reference to the SupplierAdmin object
that created it. The ProxyConsumer interface also defines an operation to
return the list of event types a given proxy consumer instance can forward,
and an operation to determine which QoS properties can be set on a
per-event basis.
883

ProxyConsumer::obtain_subscription_types()

CosNotification::EventTypeSeq obtain_subscription_types(
 in ObtainInfoMode mode);

Returns a list of event type names that consumers connected to the channel
are interested in receiving.

Parameters

ProxyConsumer::validate_event_qos()

void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)
 raises (CosNotification::UnsupportedQoS);

Checks whether the target proxy object will honor the setting of the specified
QoS properties on a per-event basis. If all requested QoS property value settings
can be satisfied by the target object, the operation returns successfully with
an output parameter that contains a sequence of NamedPropertyRange data
structures.

Parameters

mode Specifies whether to automatically notify the supplier of
changes to the subsrciption list.

required_qos A sequence of QoS property name-value pairs that specify a
set of QoS settings that a client is interested in setting on an
event.

Note: The QoS property settings contained in the optional
header fields of a structured event may differ from those that
are configured on a given proxy object.

available_qosA sequence of NamedPropertyRange. Each element includes
the name of a an additional QoS property whose setting is
supported by the target object on a per-event basis. Each ele-
ment also includes the range of values that are acceptable for
each property.
 884

CosNotifyChannelAdmin Exceptions
Exceptions

UnsupportedQoSRaised if any of the requested settings cannot be honored by
the target object. This exception contains as data a sequence
of data structures identifying the name of a QoS property in
the input list whose requested setting could not be satisfied,
along with an error code and a range of valid settings for the
property.
885

CosNotifyChannelAdmin::
ProxySupplier Interface

//IDL
interface ProxySupplier :
 CosNotification::QoSAdmin,
 CosNotifyFilter::FilterAdmin
{
 readonly attribute ConsumerAdmin MyAdmin;
 readonly attribute ProxyType MyType;
 attribute CosNotifyFilter::MappingFilter priority_filter;
 attribute CosNotifyFilter::MappingFilter lifetime_filter;

 CosNotification::EventTypeSeq obtain_offered_types(
 in ObtainInfoMode mode);

 void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)
 raises (CosNotification::UnsupportedQoS);
};

The ProxySupplier interface is an abstract interface that is inherited by the
different proxy suppliers that can be instantiated within an event channel. It
encapsulates the behaviors common to all notification service proxy
suppliers. In particular, the ProxySupplier interface inherits the QoSAdmin
interface defined within the CosNotification module, and the FilterAdmin
interface defined within the CosNotifyFilter module. The former
inheritance enables proxy suppliers to administer a list of associated QoS
properties. The latter inheritance enables proxy suppliers to administer a list
of associated filter objects.

Locally, the ProxySupplier interface defines a read-only attribute that
contains a reference to the ConsumerAdmin object that created it. In addition,
the ProxySupplier interface defines attributes that associate two mapping
filter objects with each proxy supplier, one for priority and one for lifetime.
For more information on mapping filters refer to the CORBA Notification
Service Guide.
 886

CosNotifyChannelAdmin Exceptions
Lastly, the ProxySupplier interface defines an operation to return the list of
event types that a given proxy supplier can forward to its associated
consumer, and an operation to determine which QoS properties can be set on
a per-event basis.

ProxySupplier::priority_filter

attribute CosNotifyFilter::MappingFilter priority_filter;

Contains a reference to an object supporting the MappingFilter interface
defined in the CosNotifyFilter module. Such an object encapsulates a list
of constraint-value pairs, where each constraint is a boolean expression based
on the type and contents of an event, and the value is a possible priority setting
for the event.

Upon receipt of an event by a proxy supplier object whose priority_filter
attribute contains a non-zero reference, the proxy supplier invokes the match
operation supported by the mapping filter object. The mapping filter object
then applies its encapsulated constraints to the event.

If the match operation returns TRUE, the proxy supplier changes the events
priority to the value specified in the constraint-value pair that matched the
event.

If the match operation returns FALSE, the proxy supplier checks if the events
priority property is already set. If so, the filter does nothing. If the priority
property is not set, the filter sets the priority property to its default value.

ProxySupplier::lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime_filter;

Contains a reference to an object supporting the MappingFilter interface
defined in the CosNotifyFilter module. Such an object encapsulates a list
of constraint-value pairs, where each constraint is a boolean expression based
on the type and contents of an event, and the value is a possible lifetime setting
for the event.

Upon receipt of each event by a proxy supplier object whose
lifetime_filter attribute contains a non-zero reference, the proxy supplier
invokes the match operation supported by the mapping filter object. The
887

mapping filter object then proceeds to apply its encapsulated constraints to
the event.

If the match operation returns TRUE, the proxy supplier changes the events
lifetime to the value specified in the constraint-value pair that matched the
event.

If the match operation returns FALSE, the proxy supplier checks if the events
lifetime property is already set. If so, the filter does nothing. If the lifetime
property is not set, the filter sets the lifetime property to its default value.

ProxySupplier::obtain_offered_types()

CosNotification::EventTypeSeq obtain_offered_types(
 in ObtainInfoMode mode);

Returns a list names of event types that the target proxy supplier can forward
to its associated consumer.

This mechanism relies on event suppliers keeping the channel informed of
the types of events they plan to supply by invoking the offer_change
operation on their associated proxy consumer objects. The proxy consumers
automatically share the information about supplied event types with the
proxy suppliers associated with the channel. This enables consumers to
discover the types of events that can be supplied to them by the channel by
invoking the obtain_offered_types operation on their associated proxy
supplier.

Parameters

ProxySupplier::validate_event_qos()

void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)
 raises (CosNotification::UnsupportedQoS);

mode Specifies how to notify consumers of changes to the publica-
tion list.
 888

CosNotifyChannelAdmin Exceptions
Checks whether the target proxy object will honor the setting of the specified
QoS properties on a per-event basis. If all requested QoS property value settings
can be satisfied by the target object, the operation returns successfully with
an output parameter that contains a sequence of NamedPropertyRange data
structures.

Parameters

Exceptions

required_qos A sequence of QoS property name-value pairs that specify a
set of QoS settings that a client is interested in setting on an
event

Note: The QoS property settings contained in the optional
header fields of a structured event may differ from those that
are configured on a given proxy object.

available_qosA sequence of NamedPropertyRange. Each element includes
the name of a an additional QoS property whose setting is
supported by the target object on a per-event basis. Each ele-
ment also includes the range of values that are acceptable for
each such property.

UnsupportedQoSRaised if any of the requested settings cannot be honored by
the target object. This exception contains as data a
sequence of data structures, each of which identifies the
name of a QoS property in the input list whose requested
setting could not be satisfied, along with an error code and a
range of settings for the property that could be satisfied.
889

CosNotifyChannelAdmin::
ProxyPushConsumer Interface

//IDL
interface ProxyPushConsumer :
 ProxyConsumer,
 CosEventComm::PushConsumer
{
 void connect_any_push_supplier (
 in CosEventComm::PushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The ProxyPushConsumer interface supports connections to the channel by
suppliers that push events to the channel as Anys.

The ProxyPushConsumer extends the OMG event service push consumer
interface by supporting event filtering and the configuration of various QoS
properties. This interface enables OMG event service style untyped event
suppliers to take advantage of these new features offered by the notification
service.

Through inheritance of the ProxyConsumer interface, the ProxyPushConsumer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the SupplierAdmin object that created it. In addition, this inheritance means
that a ProxyPushConsumer instance supports an operation that returns the
list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance�s ability to accept a QoS request.

The ProxyPushConsumer interface also inherits from the PushConsumer
interface defined within the CosEventComm module of the OMG event service.
This interface supports the push operation which the supplier connected to a
ProxyPushConsumer instance invokes to send an event to the channel in the
form of an Any, and the operation to disconnect the ProxyPushConsumer from
its associated supplier.

Finally, the ProxyPushConsumer interface defines the operation to establish
the connection over which the push supplier sends events to the channel.
 890

CosNotifyChannelAdmin Exceptions
ProxyPushConsumer::connect_any_push_supplier()

void connect_any_push_supplier (
 in CosEventComm::PushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a push-style supplier of events in the form
of an any and an event channel. Once established, the supplier can send events
to the channel by invoking the push operation supported by the target
ProxyPushConsumer instance.

Parameters

Exceptions

push_supplierThe reference to an object supporting the PushSupplier inter-
face defined within the CosEventComm module.

AlreadyConnected The target object of this operation is already connected
to a push supplier object.
891

CosNotifyChannelAdmin::
StructuredProxyPushConsumer
Interface

//IDL
interface StructuredProxyPushConsumer :
 ProxyConsumer,
 CosNotifyComm::StructuredPushConsumer
{
 void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The StructuredProxyPushConsumer interface supports connections to the
channel by suppliers that push events to the channel as structured events.

Through inheritance of the ProxyConsumer interface, the interface supports
administration of QoS properties, administration of a list of associated filter
objects, and a read-only attribute containing a reference to the
SupplierAdmin object that created it. In addition, this inheritance means that
a StructuredProxyPushConsumer instance supports an operation that returns
the list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance�s ability to accept a QoS request.

The StructuredProxyPushConsumer interface also inherits from the
StructuredPushConsumer interface defined in the CosNotifyComm module.
This interface supports the operation that enables a supplier of structured
events to push them to the StructuredProxyPushConumer, and also an
operation to close down the connection from the supplier to the
StructuredProxyPushConsumer. Since the StructuredPushConsumer
interface inherits from the NotifyPublish interface, a supplier can inform the
StructuredProxyPushConsumer to which it is connected whenever the list of
event types it plans to supply to the channel changes.

Lastly, the StructuredProxyPushConsumer interface defines a method to
establish a connection between the supplier and an event channel.
 892

CosNotifyChannelAdmin Exceptions
StructuredProxyPushConsumer::
connect_structured_push_supplier()

void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a push-style supplier of structured events
and the event channel. Once the connection is established, the supplier can
send events to the channel by invoking push_structured_event on its asso-
ciated StructuredProxyPushConsumer instance.

Parameters

Exceptions

push_supplierA reference to an object supporting the
StructuredPushSupplier interface defined within the
CosNotifyComm module.

AlreadyConnectedThe proxy object is already connected to a push supplier
object.
893

CosNotifyChannelAdmin::
SequenceProxyPushConsumer
Interface

//IDL
interface SequenceProxyPushConsumer :
 ProxyConsumer,
 CosNotifyComm::SequencePushConsumer
{
 void connect_sequence_push_supplier (
 in CosNotifyComm::SequencePushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The SequenceProxyPushConsumer interface supports connections to the
channel by suppliers that push events to the channel as sequences of
structured events.

Through inheritance of the ProxyConsumer interface, the interface supports
administration of QoS properties, administration of a list of associated filter
objects, and a read-only attribute containing a reference to the
SupplierAdmin object that created it. In addition, this inheritance means that
a SequenceProxyPushConsumer instance supports an operation that returns
the list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance�s ability to accept a QoS request.

The SequenceProxyPushConsumer interface also inherits from the
SequencePushConsumer interface defined in the CosNotifyComm module. This
interface supports the operation that enables a supplier of sequences of
structured events to push them to a SequenceProxyPushConsumer, and also
the operation to close down the connection from the supplier to the
SequenceProxyPushConsumer. Since the SequencePushConsumer interface
inherits from the NotifyPublish interface, a supplier can inform its
associated SequenceProxyPushConsumer when the list of event types it
supplies to the channel changes.
 894

CosNotifyChannelAdmin Exceptions
Lastly, the SequenceProxyPushConsumer interface defines a method to
establish a connection between a supplier and an event channel.

SequenceProxyPushConsumer::
connect_sequence_push_supplier()

void connect_sequence_push_supplier (
 in CosNotifyComm::SequencePushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a push-style supplier of sequences of
structured events and an event channel. Once the connection is established,
the supplier can send events to the channel by invoking
push_structured_events on its associated SequenceProxyPushConsumer.

Parameters

Exceptions

push_supplier A reference to an object supporting the
SequencePushSupplier interface defined within the
CosNotifyComm module.

AlreadyConnectedThe proxy is already connected to a push supplier object.
895

CosNotifyChannelAdmin::
ProxyPullSupplier Interface

//IDL
interface ProxyPullSupplier :
 ProxySupplier,
 CosEventComm::PullSupplier
{
 void connect_any_pull_consumer (
 in CosEventComm::PullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The ProxyPullSupplier interface supports connections to the channel by
consumers that pull events from the channel as Anys.

The ProxyPullSupplier interface extends the OMG event service pull-style
consumers of untyped events by supporting event filtering and the
configuration of QoS properties. This interface enables OMG event service
style untyped event consumers to take advantage of the features offered by
the notification service.

Through inheritance of the ProxySupplier interface, the ProxyPullSupplier
interface supports administration of QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a
read-only attribute containing a reference to the ConsumerAdmin object that
created it. This inheritance also means that a ProxyPullSupplier instance
supports an operation that returns the list of event types that the proxy
supplier will potentially supply, and an operation that returns information
about the instance�s ability to accept a QoS request.

The ProxyPullSupplier interface also inherits from the PullSupplier
interface defined within the CosEventComm module of the OMG event service.
This interface supports the pull and try_pull operations that the consumer
connected to a ProxyPullSupplier instance invokes to receive an event from
the channel in the form of an Any, and the operation to disconnect the
ProxyPullSupplier from its associated consumer.

Finally, the ProxyPullSupplier interface defines the operation to establish a
connection over which the pull consumer receives events from the channel.
 896

CosNotifyChannelAdmin Exceptions
ProxyPullSupplier::connect_any_pull_consumer()

void connect_any_pull_consumer (
 in CosEventComm::PullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a pull consumer of events in the form of
Anys and an event channel. Once established, the consumer can receive events
from the channel by invoking pull or try_pull on its associated
ProxyPullSupplier.

Parameters

Exceptions

pull_consumer A reference to an object supporting the PullConsumer
interface defined within the CosEventComm module of the
OMG event service.

AlreadyConnectedThe target object of this operation is already connected to
a pull consumer object.
897

CosNotifyChannelAdmin::
StructuredProxyPullSupplier Interface

//IDL
interface StructuredProxyPullSupplier :
 ProxySupplier,
 CosNotifyComm::StructuredPullSupplier
{
 void connect_structured_pull_consumer (
 in CosNotifyComm::StructuredPullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The StructuredProxyPullSupplier interface supports connections to the
channel by consumers that pull structured events from the channel.

Through inheritance of ProxySupplier, the StructuredProxyPullSupplier
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the ConsumerAdmin object that created it. In addition, this inheritance means
that a StructuredProxyPullSupplier instance supports an operation that
returns the list of event types that the proxy supplier can supply, and an
operation that returns information about the instance�s ability to accept a
QoS request.

The StructuredProxyPullSupplier interface also inherits from the
StructuredPullSupplier interface defined in CosNotifyComm. This interface
supports the operations enabling a consumer of structured events to pull
them from a StructuredProxyPullSupplier, and the operation to close the
connection from the consumer to the StructuredProxyPullSupplier. Since
the StructuredPullSupplier interface inherits from NotifySubscribe, a
StructuredProxyPullSupplier can be notified whenever the list of event
types that its associated consumer is interested in receiving changes.

Lastly, the StructuredProxyPullSupplier interface defines a method to
establish a connection between the consumer and an event channel.
 898

CosNotifyChannelAdmin Exceptions
StructuredProxyPullSupplier::
connect_structured_pull_consumer()

void connect_structured_pull_consumer (
 in CosNotifyComm::StructuredPullSupplier pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a pull consumer of structured events and
the event channel. Once established, the consumer can receive events from
the channel by invoking pull_structured_event or
try_pull_structured_event on its associated
StructuredProxyPullSupplier.

Parameters

Exceptions

pull_consumer A reference to an object supporting the
StructuredPullSupplier interface defined in
CosNotifyComm.

AlreadyConnectedThe proxy is already connected to a pull consumer.
899

CosNotifyChannelAdmin::
SequenceProxyPullSupplier Interface

//IDL
interface SequenceProxyPullSupplier :
 ProxySupplier,
 CosNotifyComm::SequencePullSupplier
{
 void connect_sequence_pull_consumer (
 in CosNotifyComm::SequencePullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The SequenceProxyPullSupplier interface supports connections to the
channel by consumers who pull sequences of structured events from an event
channel.

Through inheritance of the ProxySupplier interface, the
SequenceProxyPullSupplier interface supports administration of QoS
properties, administration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin object that created it.
In addition, this inheritance implies that a SequenceProxyPullSupplier
instance supports an operation that returns the list of event types that the
proxy supplier can supply, and an operation that returns information about
the instance�s ability to accept a QoS request.

The SequenceProxyPullSupplier interface also inherits from the
SequencePullSupplier interface defined in CosNotifyComm. This interface
supports the operations enabling a consumer of sequences of structured
events to pull them from the SequenceProxyPullSupplier, and also the
operation to close the connection from the consumer to its associated
SequenceProxyPullSupplier. Since the SequencePullSupplier interface
inherits from the NotifySubscribe interface, a SequenceProxyPullSupplier
can be notified whenever the list of event types that its associated consumer
is interested in receiving changes.

The SequenceProxyPullSupplier interface also defines a method to
establish a connection between the consumer and an event channel.
 900

CosNotifyChannelAdmin Exceptions
SequenceProxyPullSupplier::
connect_sequence_pull_consumer()

void connect_sequence_pull_consumer (
 in CosNotifyComm::SequencePullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a pull-style consumer of sequences of
structured events and the event channel. Once the connection is established,
the consumer can proceed to receive events from the channel by invoking
pull_structured_events or try_pull_structured_events on its associated
SequenceProxyPullSupplier.

Parameters

Exceptions

pull_consumer A reference to an object supporting the
SequencePullConsumer interface defined in
CosNotifyComm.

AlreadyConnectedThe proxy is already connected to a pull consumer.
901

CosNotifyChannelAdmin::
ProxyPullConsumer Interface

//IDL
interface ProxyPullConsumer :
 ProxyConsumer,
 CosEventComm::PullConsumer
{
 void connect_any_pull_supplier (
 in CosEventComm::PullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

The ProxyPullConsumer interface supports connections to the channel by
suppliers who make events, packaged as Anys, available to the channel
using the pull model.

The ProxyPullConsumer interface extends the OMG event service pull-style
suppliers of untyped events by supporting event filtering and the
configuration of QoS properties. This interface enables OMG event service
style untyped event suppliers to take advantage of the features offered by the
notification service.

Through inheritance of the ProxyConsumer interface, the ProxyPullConsumer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the SupplierAdmin object that created it. In addition, this inheritance implies
that a ProxyPullConsumer instance supports an operation that returns the list
of event types that consumers connected to the same channel are interested
in receiving, and an operation that returns information about the instance�s
ability to accept a QoS request.

The ProxyPullConsumer interface also inherits from the PullConsumer
interface defined within CosEventComm. This interface supports the operation
to disconnect the ProxyPullConsumer from its associated supplier. Finally,
the ProxyPullConsumer interface defines the operation to establish the
connection over which the pull supplier can send events to the channel.
 902

CosNotifyChannelAdmin Exceptions
ProxyPullConsumer::connect_any_pull_supplier()

void connect_any_pull_supplier (
 in CosEventComm::PullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a pull-style supplier of events in the form of
Anys, and the event channel. Once the connection is established, the proxy
can proceed to receive events from the supplier by invoking pull or try_pull
on the supplier (whether the proxy invokes pull or try_pull, and the frequency
with which it performs such invocations, is a detail that is specific to the
implementation of the channel).

Parameters

Exceptions

pull_supplier A reference to an object supporting the PullSupplier
interface defined within CosEventComm.

AlreadyConnected Raised if the proxy is already connected to a pull supplier.

TypeError An implementation of the ProxyPullConsumer interface
may impose additional requirements on the interface sup-
ported by a pull supplier (for example, it may be designed
to invoke some operation other than pull or try_pull in
order to receive events). If the pull supplier being con-
nected does not meet those requirements, this operation
raises the TypeError exception.
903

CosNotifyChannelAdmin::
StructuredProxyPullConsumer
Interface

//IDL
interface StructuredProxyPullConsumer :
 ProxyConsumer,
 CosNotifyComm::StructuredPullConsumer
{
 void connect_structured_pull_supplier (
 in CosNotifyComm::StructuredPullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

The StructuredProxyPullConsumer interface supports connections to the
channel by suppliers that make structured events available to the channel
using the pull model.

Through inheritance of ProxyConsumer, the StructuredProxyPullConsumer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the SupplierAdmin object that created it. This inheritance also implies that a
StructuredProxyPullConsumer instance supports an operation that returns
the list of event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information about the
instance�s ability to accept a QoS request.

The StructuredProxyPullConsumer interface also inherits from the
StructuredPullConsumer interface defined in CosNotifyComm. This interface
supports the operation to close the connection from the supplier to the
StructuredProxyPullConsumer. Since the StructuredPullConsumer
interface inherits from NotifyPublish, a supplier can inform the
StructuredProxyPullConsumer to which it is connected whenever the list of
event types it plans to supply to the channel changes.

Lastly, the StructuredProxyPullConsumer interface defines a method to
establish a connection between the supplier and an event channel.
 904

CosNotifyChannelAdmin Exceptions
StructuredProxyPullConsumer::
connect_structured_pull_supplier()

void connect_structured_pull_supplier (
 in CosNotifyComm::StructuredPullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a pull-style supplier of structured events and
the event channel. Once the connection is established, the proxy can receive
events from the supplier by invoking pull_structured_event or
try_pull_structured_event on the supplier (whether the proxy invokes
pull_structured_event or try_pull_structured_event, and the frequency
with which it performs such invocations, is a detail specific to the implemen-
tation of the channel).

Parameters

Exceptions

pull_supplier A reference to an object supporting the
StructuredPullSupplier interface defined within
CosNotifyComm.

AlreadyConnected Raised if the proxy is already connected to a pull supplier.

TypeError An implementation of the StructuredProxyPullConsumer
interface may impose additional requirements on the inter-
face supported by a pull supplier (for example, it may be
designed to invoke some operation other than
pull_structured_event or try_pull_structured_event
in order to receive events). If the pull supplier being con-
nected does not meet those requirements, this operation
raises the TypeError exception.
905

CosNotifyChannelAdmin::
SequenceProxyPullConsumer
Interface

//IDL
interface SequenceProxyPullConsumer :
 ProxyConsumer,
 CosNotifyComm::SequencePullConsumer
{
 void connect_sequence_pull_supplier (
 in CosNotifyComm::SequencePullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

The SequenceProxyPullConsumer interface supports connections to the
channel by suppliers who make sequences of structured events available to
the channel using the pull model.

Through inheritance of ProxyConsumer, the SequenceProxyPullConsumer
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the SupplierAdmin that created it. This inheritance also implies that a
SequenceProxyPullConsumer supports an operation that returns the list of
event types that consumers connected to the same channel are interested in
receiving, and an operation that returns information about the instance�s
ability to accept a QoS request.

The SequenceProxyPullConsumer interface also inherits from the
SequencePullConsumer interface defined in the CosNotifyComm module. This
interface supports the operation to close the connection from the supplier to
the SequenceProxyPullConsumer. Since the SequencePullConsumer interface
inherits from NotifyPublish, a supplier can inform its associated
SequenceProxyPullConsumer whenever the list of event types it plans to
supply to the channel changes.

The SequenceProxyPullConsumer interface also defines a method to
establish a connection between the supplier and an event channel.
 906

CosNotifyChannelAdmin Exceptions
SequenceProxyPullConsumer::
connect_sequence_pull_supplier()

void connect_sequence_pull_supplier (
 in CosNotifyComm::SequencePullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a pull-style supplier of sequences of struc-
tured events and the event channel. Once the connection is established, the
proxy can receive events from the supplier by invoking
pull_structured_events or try_pull_structured_events on the supplier
(whether the proxy invokes pull_structured_events or
try_pull_structured_events, and the frequency with which it performs such
invocations, is a detail specific to the implementation of the channel).

Parameters

Exceptions

pull_supplier A reference to an object supporting the
SequencePullSupplier interface defined within
CosNotifyComm.

AlreadyConnected Raised if the proxy is already connected to a pull supplier.

TypeError An implementation of the SequenceProxyPullConsumer
interface may impose additional requirements on the inter-
face supported by a pull supplier (for example, it may be
designed to invoke some operation other than
pull_structured_events or
try_pull_structured_events in order to receive events).
If the pull supplier being connected does not meet those
requirements, this operation raises the TypeError excep-
tion.
907

CosNotifyChannelAdmin::
ProxyPushSupplier Interface

//IDL
interface ProxyPushSupplier :
 ProxySupplier,
 CosEventComm::PushSupplier
{
 void connect_any_push_consumer (
 in CosEventComm::PushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

 void suspend_connection()
 raises(CosEventChannel::ConnectionAlreadyInactive);

 void resume_connection()
 raises(CosEventChannelAdmin::ConnectionAlreadyActive);
};

The ProxyPushSupplier interface supports connections to the channel by
consumers that receive events from the channel as untyped Anys.

The ProxyPushSupplier interface extends the OMG event service push-style
consumers of untyped events by supporting event filtering and the
configuration of QoS properties. Thus, this interface enables OMG event
service push-style untyped event consumers to take advantage of the features
offered by the notification service.

Through inheritance of ProxySupplier, the ProxyPushSupplier interface
supports administration of QoS properties, administration of a list of
associated filter objects, mapping filters for event priority and lifetime, and a
read-only attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a ProxyPushSupplier instance supports
an operation that returns the list of event types that the proxy supplier can
supply, and an operation that returns information about the instance�s ability
to accept a QoS request.

The ProxyPushSupplier interface also inherits from the PushSupplier
interface defined within CosEventComm. This interface supports the operation
 908

CosNotifyChannelAdmin Exceptions
to disconnect a ProxyPushSupplier from its associated consumer.

The ProxyPushSupplier interface defines the operation to establish the
connection over which the push consumer can receive events from the
channel. The ProxyPushSupplier interface also defines a pair of operations
that can suspend and resume the connection between a ProxyPushSupplier
and its associated PushConsumer. During the time a connection is suspended,
the ProxyPushSupplier accumulates events destined for the consumer but
does not transmit them until the connection is resumed.

ProxyPushSupplier::connect_any_push_consumer()

void connect_any_push_consumer (
 in CosEventComm::PushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a push-style consumer of events in the form
of Anys, and the event channel. Once the connection is established, the
ProxyPushSupplier sends events to its associated consumer by invoking push
on the consumer.

Parameters

Exceptions

push_consumer A reference to an object supporting the PushConsumer
interface defined within CosEventComm

AlreadyConnected Raised if the proxy is already connected to a push con-
sumer.

TypeError An implementation of the ProxyPushSupplier interface
may impose additional requirements on the interface sup-
ported by a push consumer (for example, it may be
designed to invoke some operation other than push in
order to transmit events). If the push consumer being con-
nected does not meet those requirements, this operation
raises the TypeError exception.
909

ProxyPushSupplier::suspend_connection()

void suspend_connection()
 raises(ConnectionAlreadyInactive);

Causes the ProxyPushSupplier to stop sending events to the PushConsumer
instance connected to it. The ProxyPushSupplier does not forward events to
its associated PushConsumer until resume_connection() is invoked. During
this time, the ProxyPushSupplier continues to queue events destined for the
PushConsumer; however, events that time out prior to resumption of the
connection are discarded. Upon resumption of the connection, all queued
events are forwarded to the PushConsumer.

Exceptions The ConnectionAlreadyInactive exception is raised if the connection is
currently in a suspended state.

ProxyPushSupplier::resume_connection()

void resume_connection()
 raises(ConnectionAlreadyActive);

Causes the ProxyPushSupplier interface to resume sending events to the
PushConsumer instance connected to it, including those events that have been
queued while the connection was suspended and have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not in a suspended state.
 910

CosNotifyChannelAdmin Exceptions
CosNotifyChannelAdmin::
StructuredProxyPushSupplier
Interface

//IDL
interface StructuredProxyPushSupplier :
 ProxySupplier,
 CosNotifyComm::StructuredPushSupplier
{

 void connect_structured_push_consumer (
 in CosNotifyComm::StructuredPushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

 void suspend_connection()
 raises(ConnectionAlreadyInactive);

 void resume_connection()
 raises(ConnectionAlreadyActive);
};

The StructuredProxyPushSupplier interface supports connections to the
channel by consumers that receive structured events from the channel.

Through inheritance of ProxySupplier, the StructuredProxyPushSupplier
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the ConsumerAdmin that created it. This inheritance also implies that a
StructuredProxyPushSupplier instance supports an operation that returns
the list of event types that the proxy supplier can supply, and an operation
that returns information about the instance�s ability to accept a QoS request.

The StructuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in CosNotifyComm. This interface
supports the operation that to close the connection from the consumer to the
StructuredProxyPushSupplier. Since StructuredPushSupplier inherits
911

from NotifySubscribe, a StructuredProxyPushSupplier can be notified
whenever the list of event types that its associated consumer is interested in
receiving changes.

Lastly, the StructuredProxyPushSupplier interface defines the operation to
establish the connection over which the push consumer can receive events
from the channel. The StructuredProxyPushSupplier interface also defines
a pair of operations to suspend and resume the connection between a
StructuredProxyPushSupplier and its associated StructuredPushConsumer.
During the time such a connection is suspended, the
StructuredProxyPushSupplier accumulates events destined for the
consumer but does not transmit them until the connection is resumed.

StructuredProxyPushSupplier::
connect_structured_push_consumer()

void connect_structured_push_consumer (
 in CosNotifyComm::StructuredPushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a push-style consumer of structured events
and the event channel. Once the connection is established, the Structured-
ProxyPushSupplier sends events to the consumer by invoking
push_structured_event.

Parameters

Exceptions

push_consumer A reference to an object supporting the
StructuredPushConsumer interface defined within
CosNotifyComm

AlreadyConnected Raised if the proxy is already connected to a push con-
sumer.
 912

CosNotifyChannelAdmin Exceptions
StructuredProxyPushSupplier::suspend_connection()

void suspend_connection()
 raises(ConnectionAlreadyInactive);

Causes the StructuredProxyPushSupplier to stop sending events to the
PushConsumer connected to it. The StructuredProxyPushSupplier does not
forward events to its StructuredPushConsumer until resume_connection() is
invoked. During this time, the StructuredProxyPushSupplier queues events
destined for the StructuredPushConsumer; however, events that time out prior
to resumption of the connection are discarded. Upon resumption of the
connection, all queued events are forwarded to the StructuredPushConsumer.

Exceptions

StructuredProxyPushSupplier::resume_connection()

void resume_connection()
 raises(ConnectionAlreadyActive);

Causes causes the StructuredProxyPushSupplier to resume sending events to
the StructuredPushConsumer connected to it, including those that have been
queued while the connection was suspended and have not yet timed out.

Exceptions

TypeError An implementation of the StructuredProxyPushSupplier
interface may impose additional requirements on the inter-
face supported by a push consumer (for example, it may
be designed to invoke some operation other than
push_structured_event to transmit events). If the push
consumer being connected does not meet those require-
ments, this operation raises the TypeError exception.

ConnectionAlreadyInactiveThe connection is already suspended.

ConnectionAlreadyActiveThe connection is not currently suspended.
913

CosNotifyChannelAdmin::
SequenceProxyPushSupplier Interface

//IDL
interface SequenceProxyPushSupplier :
 ProxySupplier,
 CosNotifyComm::SequencePushSupplier
{
 void connect_sequence_push_consumer (
 in CosNotifyComm::SequencePushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

 void suspend_connection()
 raises(ConnectionAlreadyInactive);

 void resume_connection()
 raises(ConnectionAlreadyActive);
};

The SequenceProxyPushSupplier interface supports connections to the
channel by consumers that receive sequences of structured events from the
channel.

Through inheritance of ProxySupplier, the SequenceProxyPushSupplier
interface supports administration of QoS properties, administration of a list of
associated filter objects, and a read-only attribute containing a reference to
the ConsumerAdmin that created it. This inheritance also implies that a
SequenceProxyPushSupplier instance supports an operation that returns the
list of event types that the proxy supplier can supply, and an operation that
returns information about the instance�s ability to accept a QoS request.

The SequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in CosNotifyComm. This interface
supports the operation to close the connection from the consumer to the
SequenceProxyPushSupplier. Since the SequencePushSupplier interface
inherits from the NotifySubscribe interface, a SequenceProxyPushSupplier
can be notified whenever the list of event types that its associated consumer
is interested in receiving changes.
 914

CosNotifyChannelAdmin Exceptions
Lastly, the SequenceProxyPushSupplier interface defines the operation to
establish the connection over which the push consumer receives events from
the channel. The SequenceProxyPushSupplier interface also defines a pair of
operations to suspend and resume the connection between a
SequenceProxyPushSupplier instance and its associated
SequencePushConsumer. While a connection is suspended, the
SequenceProxyPushSupplier accumulates events destined for the consumer
but does not transmit them until the connection is resumed.

SequenceProxyPushSupplier::
connect_sequence_push_consumer()

void connect_sequence_push_consumer (
 in CosNotifyComm::SequencePushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a push-style consumer of sequences of
structured events and the event channel. Once the connection is established,
the SequenceProxyPushSupplier sends events to its associated consumer by
invoking push_structured_events.

Parameters

Exceptions

push_consumer A reference to a SequencePushConsumer.

AlreadyConnected Raised if the proxy is already connected to a push con-
sumer.

TypeError An implementation of the SequenceProxyPushSupplier
interface may impose additional requirements on the inter-
face supported by a push consumer (for example, it may
be designed to invoke some operation other than
push_structured_events in order to transmit events). If
the push consumer being connected does not meet those
requirements, this operation raises the TypeError excep-
tion.
915

SequenceProxyPushSupplier::suspend_connection()

void suspend_connection()
 raises(ConnectionAlreadyInactive);

Causes the SequenceProxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The StructuredProxyPushSupplier
does not forward events to its SequencePushConsumer until
resume_connection() is invoked. During this time, the
SequenceProxyPushSupplier continues to queue events destined for the
SequencePushConsumer; however, events that time out prior to resumption of
the connection are discarded. Upon resumption of the connection, all queued
events are forwarded to the SequencePushConsumer.

Exceptions

SequenceProxyPushSupplier::resume_connection()

void resume_connection()
 raises(ConnectionAlreadyActive);

Causes the SequenceProxyPushSupplier to resume sending events to the
SequencePushConsumer instance connected to it, including those that have
been queued while the connection was suspended and have not yet timed out.

Exceptions

ConnectionAlreadyInactiveThe connection is already suspended.

ConnectionAlreadyActiveThe connection is not suspended.
 916

CosNotifyChannelAdmin Exceptions
CosNotifyChannelAdmin::
ConsumerAdmin Interface

//IDL
interface ConsumerAdmin :
 CosNotification::QoSAdmin,
 CosNotifyComm::NotifySubscribe,
 CosNotifyFilter::FilterAdmin,
 CosEventChannelAdmin::ConsumerAdmin
{
 readonly attribute AdminID MyID;
 readonly attribute EventChannel MyChannel;

 readonly attribute InterFilterGroupOperator MyOperator;

 attribute CosNotifyFilter::MappingFilter priority_filter;
 attribute CosNotifyFilter::MappingFilter lifetime_filter;

 readonly attribute ProxyIDSeq pull_suppliers;
 readonly attribute ProxyIDSeq push_suppliers;

 ProxySupplier get_proxy_supplier (in ProxyID proxy_id)
 raises (ProxyNotFound);

 ProxySupplier obtain_notification_pull_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxySupplier obtain_notification_push_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxySupplier obtain_txn_notification_pull_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);
917

 void destroy();
};

The ConsumerAdmin interface defines the behavior of objects that create and
manage lists of proxy supplier objects within an event channel. A event
channel can have any number of ConsumerAdmin instances associated with it.
Each instance is responsible for creating and managing a list of proxy
supplier objects that share a common set of QoS property settings, and a
common set of filter objects. This feature enables clients to group proxy
suppliers within a channel into groupings that each support a set of
consumers with a common set of QoS requirements and event subscriptions.

The ConsumerAdmin interface inherits the QoSAdmin interface defined within
CosNotification, enabling each ConsumerAdmin to manage a set of QoS
property settings. These QoS property settings are assigned as the default
QoS property settings for any proxy supplier object created by a
ConsumerAdmin.The ConsumerAdmin interface also inherits from the
FilterAdmin interface defined within CosNotifyFilter. This enables each
ConsumerAdmin to maintain a list of filters. These filters encapsulate
subscriptions that apply to all proxy supplier objects that have been created
by a given ConsumerAdmin.

The ConsumerAdmin interface also inherits from the NotifySubscribe
interface defined in CosNotifyComm. This inheritance enables a
ConsumerAdmin to be registered as the callback object for notification of
subscription changes made on filters. This optimizes the notification of a
group of proxy suppliers that have been created by the same ConsumerAdmin
of changes to these shared filters.

The ConsumerAdmin interface also inherits from CosEventChannelAdmin::
ConsumerAdmin. This inheritance enables clients to use the ConsumerAdmin
interface to create pure OMG event service style proxy supplier objects. Proxy
supplier objects created in this manner do not support configuration of QoS
properties, and do not have associated filters. Proxy suppliers created
through the inherited CosEventChannelAdmin::ConsumerAdmin interface do
not have unique identifiers associated with them, whereas proxy suppliers
created by operations supported by the ConsumerAdmin interface do have
unique identifiers.

The ConsumerAdmin interface supports a read-only attribute that maintains a
reference to the EventChannel instance that created it. The ConsumerAdmin
interface also supports a read-only attribute that contains a unique numeric
 918

CosNotifyChannelAdmin Exceptions
identifier which is assigned event channel upon creation of a ConsumerAdmin
instance. This identifier is unique among all ConsumerAdmin instances
created by a given channel.

As described above, a ConsumerAdmin can maintain a list of filters that are
applied to all proxy suppliers it creates. Each proxy supplier can also support
a list of filters that apply only to the proxy. When combining these two lists
during the evaluation of a given event, either AND or OR semantics may be
applied. The choice is determined by an input flag when creating of the
ConsumerAdmin, and the operator that is used for this purpose by a given
ConsumerAdmin is maintained in a read-only attribute.

The ConsumerAdmin interface also supports attributes that maintain
references to priority and lifetime mapping filter objects. These mapping filter
objects are applied to all proxy supplier objects created by a given
ConsumerAdmin.

Each ConsumerAdmin assigns a unique numeric identifier to each proxy
supplier it maintains. The ConsumerAdmin interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and
the proxy push suppliers created by a given ConsumerAdmin. The
ConsumerAdmin interface also supports an operation that, given the unique
identifier of a proxy supplier, returns the object reference of that proxy
supplier. Finally, the ConsumerAdmin interface supports operations that create
the various styles of proxy supplier objects supported by the event channel.

ConsumerAdmin::MyID

readonly attribute AdminID MyID;

Maintains the unique identifier of the target ConsumerAdmin instance that is
assigned to it upon creation by the event channel.

ConsumerAdmin::MyChannel

readonly attribute EventChannel MyChannel

Maintains the object reference of the event channel that created a given
ConsumerAdmin instance.
919

ConsumerAdmin::MyOperator

readonly attribute InterFilterGroupOperator MyOperator;

Maintains the information regarding whether AND or OR semantics are used
during the evaluation of a given event when combining the filter objects
associated with the target ConsumerAdmin and those defined locally on a given
proxy supplier.

ConsumerAdmin::priority_filter

attribute CosNotifyFilter::MappingFilter priority_filter;

Maintains a reference to a mapping filter object that affects how each proxy
supplier created by the target ConsumerAdmin treats events with respect to
priority.

Each proxy supplier also has an associated attribute which maintains a
reference to a mapping filter object for the priority property. This local
mapping filter object is only used by the proxy supplier in the event that the
priority_filter attribute of the ConsumerAdmin instance that created it is
set to OBJECT_NIL.

ConsumerAdmin::lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime_filter;

Maintains a reference to a mapping filter that affects how each proxy supplier
created by the target ConsumerAdmin treats events with respect to lifetime.

Each proxy supplier object also has an associated attribute that maintains a
reference to a mapping filter object for the lifetime property. This local
mapping filter object is only used by the proxy supplier in the event that the
lifetime_filter attribute of the ConsumerAdmin instance that created it is
set to OBJECT_NIL.

ConsumerAdmin::pull_suppliers

readonly attribute ProxyIDSeq pull_suppliers;
 920

CosNotifyChannelAdmin Exceptions
Contains the list of unique identifiers that have been assigned by a Consumer-
Admin instance to each pull-style proxy supplier it has created.

ConsumerAdmin::push_suppliers

readonly attribute ProxyIDSeq push_suppliers;

Contains the list of unique identifiers that have been assigned by a Consumer-
Admin instance to each push-style proxy supplier it has created.

ConsumerAdmin::get_proxy_supplier()

ProxySupplier get_proxy_supplier (in ProxyID proxy_id)
 raises (ProxyNotFound);

Returns an object reference to the proxy supplier whose unique id was passed
to the method.

Parameters

Exceptions

ConsumerAdmin::obtain_notification_pull_supplier()

ProxySupplier obtain_notification_pull_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates instances of the pull-style proxy suppliers defined in
CosNotifyChannelAdmin and returns an object reference to the new proxy.

Three varieties of pull-style proxy suppliers are defined in this module:

proxy_id A numeric identifier associated with one of the proxy sup-
pliers that created by the target ConsumerAdmin.

ProxyNotFound The input parameter does not correspond to the unique
identifier of a proxy supplier object created by the target
ConsumerAdmin.
921

� The ProxyPullSupplier interface supports connections to pull
consumers that receive events as Anys.

� The StructuredProxyPullSupplier interface supports connections to
pull consumers that receive structured events.

� The SequenceProxyPullSupplier interface support connections to pull
consumers that receive sequences of structured events.

The input parameter flag indicates which type of pull style proxy instance to
create.

The target ConsumerAdmin creates the new pull-style proxy supplier and
assigns a numeric identifier to it that is unique among all proxy suppliers the
ConsumerAdmin has created.

Parameters

Exceptions

ConsumerAdmin::obtain_notification_push_supplier()

ProxySupplier obtain_notification_push_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates instances of the push-style proxy supplier objects defined in
CosNotifyChannelAdmin and returns an object reference to the new proxy.

Three varieties of push-style proxy suppliers are defined in this module:

� The ProxyPushSupplier interface supports connections to push
consumers that receive events as Anys.

ctype A flag that indicates which style of pull-style proxy sup-
plier to create.

proxy_id The unique identifier of the new proxy supplier.

AdminLimitExceededThe number of consumers currently connected to the
channel with which the target ConsumerAdmin is associ-
ated exceeds the value of the MaxConsumers administra-
tive property.
 922

CosNotifyChannelAdmin Exceptions
� The StructuredProxyPushSupplier interface supports connections to
push consumers that receive structured events.

� The SequenceProxyPushSupplier interface supports connections to
push consumers that receive sequences of structured events.

The input parameter flag indicates which type of push-style proxy to create.

The target ConsumerAdmin creates the new push-style proxy supplier and
assigns a numeric identifier to it that is unique among all proxy suppliers the
ConsumerAdmin has created.

Parameters

Exceptions

ConsumerAdmin::destroy()

void destroy();

Destroys all proxies under the administration of the target object, and then
destroys the target object itself. When destroying each object, it frees any
storage associated with the object in question, and then invalidates the object's
IOR.

ctype A flag indicating which style of push-style proxy supplier
to create.

proxy_id The unique identifier of the new proxy supplier.

AdminLimitExceededThe number of consumers currently connected to the
channel with which the target ConsumerAdmin is associ-
ated exceeds the value of the MaxConsumers administra-
tive property.
923

CosNotifyChannelAdmin::
SupplierAdmin Interface

//IDL
interface SupplierAdmin :
 CosNotification::QoSAdmin,
 CosNotifyComm::NotifyPublish,
 CosNotifyFilter::FilterAdmin,
 CosEventChannelAdmin::SupplierAdmin
{
 readonly attribute AdminID MyID;
 readonly attribute EventChannel MyChannel;

 readonly attribute InterFilterGroupOperator MyOperator;

 readonly attribute ProxyIDSeq pull_consumers;
 readonly attribute ProxyIDSeq push_consumers;

 ProxyConsumer get_proxy_consumer(in ProxyID proxy_id)
 raises (ProxyNotFound);

 ProxyConsumer obtain_notification_pull_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxyConsumer obtain_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxyConsumer obtain_txn_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

void destroy();
};
 924

CosNotifyChannelAdmin Exceptions
The SupplierAdmin interface defines the behavior of objects that create and
manage lists of proxy consumers within an event channel. A event channel
can have any number of SupplierAdmin instances associated with it. Each
instance is responsible for creating and managing a list of proxy consumers
that share a common set of QoS property settings, and a common set of
filters. This feature enables clients to group proxy consumer objects within a
channel into groupings that each support a set of suppliers with a common
set of QoS requirements, and that make event forwarding decisions using a
common set of filters.

The SupplierAdmin interface inherits QoSAdmin. This enables each
SupplierAdmin to manage a set of QoS property settings. These QoS property
settings are assigned as the default QoS property settings for any proxy
consumer created by a SupplierAdmin.

The SupplierAdmin interface inherits from the FilterAdmin interface defined
in CosNotifyFilter, enabling each SupplierAdmin to maintain a list of
filters. These filters encapsulate subscriptions that apply to all proxy
consumer objects that have been created by a given SupplierAdmin instance.

The SupplierAdmin interface also inherits from the NotifyPublish interface
defined in CosNotifyComm. This inheritance enables a SupplierAdmin to be
the target of an offer_change request made by a supplier, and for the
change in event types being offered to be shared by all proxy consumer that
were created by the target SupplierAdmin. This optimizes the notification of
a group of proxy consumers that have been created by the same
SupplierAdmin of changes to the types of events being offered by suppliers.

The SupplierAdmin interface also inherits from CosEventChannelAdmin::
SupplierAdmin. This inheritance enables clients to use the SupplierAdmin
interface to create pure OMG event service style proxy consumer objects.
Proxy consumer objects created in this manner do not support configuration
of QoS properties, and do not have associated filters. Proxy consumer objects
created through the inherited CosEventChannelAdmin::SupplierAdmin
interface do not have unique identifiers associated with them, whereas proxy
consumers created by invoking the operations supported by the
SupplierAdmin interface do.

The SupplierAdmin interface supports a read-only attribute that maintains a
reference to the EventChannel that created a given SupplierAdmin. The
SupplierAdmin interface also supports a read-only attribute that contains a
925

numeric identifier that is assigned to a SupplierAdmin the event channel that
creates it. This identifier is unique among all SupplierAdmins created by a
given channel.

A SupplierAdmin maintains a list of filters that are applied to all proxy
consumers it creates. Each proxy consumer also supports a list of filters that
apply only that proxy. When combining these two lists during the evaluation
of an event, either AND or OR semantics can be applied. The choice is
determined by an input flag upon creation of the SupplierAdmin, and the
operator that is used for this purpose by a given SupplierAdmin is
maintained in a read-only attribute.

Each SupplierAdmin assigns a unique numeric identifier to each proxy
consumer it maintains. The SupplierAdmin interface supports attributes that
maintain the list of these unique identifiers associated with the proxy pull and
the proxy push consumers created by a given SupplierAdmin. The
SupplierAdmin interface also supports an operation which, when provided
with the unique identifier of a proxy consumer, returns the object reference of
that proxy consumer object. Finally, the SupplierAdmin interface supports
operations that can create the various styles of proxy consumers supported by
the event channel.

SupplierAdmin::MyID

readonly attribute AdminID MyID;

Maintains the unique identifier of the target SupplierAdmin. This ID is assigned
to it upon creation by the event channel.

SupplierAdmin::MyChannel

readonly attribute EventChannel MyChannel;

Maintains an object reference to the event channel that created the
SupplierAdmin.
 926

CosNotifyChannelAdmin Exceptions
SupplierAdmin::MyOperator

readonly attribute InterFilterGroupOperator MyOperator;;

Maintains the information regarding whether AND or OR semantics are used
during the evaluation of events when combining the filters associated with the
target SupplierAdmin and those defined on a given proxy consumer.

SupplierAdmin::pull_consumers

readonly attribute ProxyIDSeq pull_consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin to each
pull-style proxy consumer it has created.

SupplierAdmin::push_consumers

readonly attribute ProxyIDSeq push_consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin to each
push-style proxy consumer it has created.

SupplierAdmin::get_proxy_consumer()

ProxyConsumer get_proxy_consumer (in ProxyID proxy_id)
raises (ProxyNotFound);

Returns an object reference to the proxy consumer whose unique identifier was
specified.

Parameters

Exceptions

proxy_id The numeric identifier associated with one of the proxy
consumers created by the target SupplierAdmin.

ProxyNotFound The input parameter does not correspond to the unique
identifier of a proxy consumer created by the target
SupplierAdmin.
927

SupplierAdmin::obtain_notification_pull_consumer()

ProxyConsumer obtain_notification_pull_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates an instances of a pull-style proxy consumers and returns an object
reference to the new proxy.

Three varieties of pull-style proxy consumers are defined:

� The ProxyPullConsumer interface supports connections to pull suppliers
that send events as Anys.

� The StructuredProxyPullConsumer interface supports connections to
pull suppliers that send structured events.

� The SequenceProxyPullConsumer interface supports connections to pull
suppliers that send sequences of structured events.

The input parameter flag indicates which type of pull style proxy to create.

The target SupplierAdmin creates the new pull-style proxy consumer and
assigns it a numeric identifier that is unique among all proxy consumers it
has created.

Parameters

Exceptions

SupplierAdmin::obtain_notification_push_consumer()

ProxyConsumer obtain_notification_push_consumer (
 in ClientType ctype,

ctype A flag indicating which style of pull-style proxy consumer
to create.

proxy_id The unique identifier of the new proxy consumer.

AdminLimitExceededThe number of consumers currently connected to the
channel that the target SupplierAdmin is associated
with exceeds the value of the MaxSuppliers administra-
tive property.
 928

CosNotifyChannelAdmin Exceptions
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates an instance of a push-style proxy supplier and returns an object
reference to the new proxy.

Three varieties of push-style proxy consumer are defined:

� The ProxyPushConsumer interface supports connections to push
consumers that receive events as Anys.

� The StructuredProxyPushConsumer interface supports connections to
push consumers that receive structured events.

� The SequenceProxyPushConsumer interface supports connections to
push consumers that receive sequences of structured events.

The input parameter flag indicates which type of push-style proxy to create.

The target SupplierAdmin creates the new push-style proxy consumer and
assigns it a numeric identifier that is unique among all proxy suppliers it has
created.

Parameters

Exceptions

SupplierAdmin::destroy()

void destroy();

Iteratively destroys each proxy under the administration of the target object,
and finally destroys the target object itself. When destroying each object, it
frees any storage associated with the object, and then invalidates the object's
IOR.

ctype A flag that indicates the type of push-style proxy consumer
to create.

proxy_id The unique identifier of the new proxy consumer.

AdminLimitExceededThe number of consumers currently connected to the
channel that the target SupplierAdmin is associated
with exceeds the value of the MaxSuppliers administra-
tive property.
929

CosNotifyChannelAdmin::
EventChannel Interface

//IDL
interface EventChannel :
 CosNotification::QoSAdmin,
 CosNotification::AdminPropertiesAdmin,
 CosEventChannelAdmin::EventChannel
{
 readonly attribute EventChannelFactory MyFactory;
 readonly attribute ConsumerAdmin default_consumer_admin;
 readonly attribute SupplierAdmin default_supplier_admin;
 readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;

 ConsumerAdmin new_for_consumers(
 in InterFilterGroupOperator op,
 out AdminID id);

 SupplierAdmin new_for_suppliers(
 in InterFilterGroupOperator op,
 out AdminID id);

 ConsumerAdmin get_consumeradmin (in AdminID id)
 raises (AdminNotFound);

 SupplierAdmin get_supplieradmin (in AdminID id)
 raises (AdminNotFound);

 AdminIDSeq get_all_consumeradmins();
 AdminIDSeq get_all_supplieradmins();
};

The EventChannel interface defines the behavior of an event channel. This
interface inherits from CosEventChannelAdmin::EventChannel; this makes
an instance of the notification service EventChannel interface fully
compatible with an OMG event service style untyped event channel.
 930

CosNotifyChannelAdmin Exceptions
Inheritance of CosEventChannelAdmin::EventChannel enables an instance of
the EventChannel interface to create event service style ConsumerAdmin and
SupplierAdmin instances. These instances can subsequently be used to
create pure event service style proxies, which support connections to pure
event service style suppliers and consumers.

While notification service style proxies and admin objects have unique
identifiers associated with them, enabling their references to be obtained by
invoking operations on the notification service style admin and event channel
interfaces, event service style proxies and admin objects do not have
associated unique identifiers, and cannot be returned by invoking an
operation on the notification service style admin or event channel interfaces.

The EventChannel interface also inherits from the QoSAdmin and the
AdminPropertiesAdmin interfaces defined in CosNotification. Inheritance
of these interfaces enables a notification service style event channel to
manage lists of QoS and administrative properties.

The EventChannel interface supports a read-only attribute that maintains a
reference to the EventChannelFactory that created it. Each instance of the
EventChannel interface has an associated default ConsumerAdmin and an
associated default SupplierAdmin, both of which exist upon creation of the
channel and that have the unique identifier of zero. Admin object identifiers
must only be unique among a given type of admin, which means that the
identifiers assigned to ConsumerAdmin objects can overlap those assigned to
SupplierAdmin objects. The EventChannel interface supports read-only
attributes that maintain references to these default admin objects.

The EventChannel interface supports operations that create new
ConsumerAdmin and SupplierAdmin instances. The EventChannel interface
also supports operations that, when provided with the unique identifier of an
admin object, can return references to the ConsumerAdmin and
SupplierAdmin instances associated with a given EventChannel. Finally, the
EventChannel interface supports operations that return the sequence of
unique identifiers of all ConsumerAdmin and SupplierAdmin instances
associated with a given EventChannel.

EventChannel::MyFactory

readonly attribute EventChannelFactory MyFactory;
931

Maintains the object reference of the event channel factory that created a given
EventChannel.

EventChannel::default_consumer_admin

readonly attribute ConsumerAdmin default_consumer_admin;

Maintains a reference to the default ConsumerAdmin associated with the target
EventChannel. Each EventChannel instance has an associated default
ConsumerAdmin, that exists upon creation of the channel and is assigned the
unique identifier of zero. Clients can create additional event service style
ConsumerAdmin by invoking the inherited for_consumers operation, and addi-
tional notification service style ConsumerAdmin by invoking the
new_for_consumers operation defined by the EventChannel interface.

EventChannel::default_supplier_admin

readonly attribute SupplierAdmin default_supplier_admin;

Maintains a reference to the default SupplierAdmin associated with the target
EventChannel. Each EventChannel has an associated default SupplierAdmin,
that exists upon creation of the channel and is assigned the unique identifier
of zero. Clients can create additional event service style SupplierAdmin by
invoking the inherited for_suppliers operation, and additional notification
service style SupplierAdmin by invoking the new_for_suppliers operation
defined by the EventChannel interface.

EventChannel::default_filter_factory

readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;

Maintains an object reference to the default factory to be used by its associated
EventChannel for creating filters. If the target channel does not support a
default filter factory, the attribute maintains the value of OBJECT_NIL.
 932

CosNotifyChannelAdmin Exceptions
EventChannel::new_for_consumers()

ConsumerAdmin new_for_consumers(
 in InterFilterGroupOperator op,
 out AdminID id);

Creates a notification service style ConsumerAdmin. The new instance is
assigned a unique identifier by the target EventChannel that is unique among
all ConsumerAdmins currently associated with the channel. Upon completion,
the operation returns the reference to the new ConsumerAdmin, and the unique
identifier assigned to the new ConsumerAdmin as the output parameter.

Parameters

EventChannel::new_for_suppliers()

SupplierAdmin new_for_suppliers(
 in InterFilterGroupOperator op,
 out AdminID id);

Creates a notification service style SupplierAdmin. The new SupplierAdmin is
assigned an identifier by the target EventChannel that is unique among all
SupplierAdmins currently associated with the channel. Upon completion, the
operation returns the reference to the new SupplierAdmin, and the unique
identifier assigned to the new SupplierAdmin as the output parameter.

Parameters

op A boolean flag indicating whether to use AND or OR seman-
tics when the ConsumerAdmin’s filters are combined with
the filters associated with any supplier proxies the
ConsumerAdmin creates.

id The unique identifier assigned to the new ConsumerAdmin.

op A boolean flag indicating whether to use AND or OR seman-
tics when the SupplierAdmin’s filters are combined with
the filters associated with any supplier proxies the
SupplierAdmin creates.

id The unique identifier assigned to the new SupplierAdmin.
933

EventChannel::get_consumeradmin()

ConsumerAdmin get_consumeradmin (in AdminID id)
 raises (AdminNotFound);

Returns a reference to one of the ConsumerAdmins associated with the target
EventChannel.

Note: While a notification service event channel can support both event
service and notification service style ConsumerAdmins, only notification
service style ConsumerAdmins have unique identifiers.

Parameters

Exceptions

EventChannel::get_supplieradmin()

SupplierAdmin get_supplieradmin (in AdminID id)
 raises (AdminNotFound);

Returns a reference to one of the SupplierAdmins associated with the target
EventChannel.

Note: While a notification service style event channel can support both
Event service and notification service style SupplierAdmins, only notification
service style SupplierAdmins have unique identifiers.

Parameters

id A numeric value that is the unique identifier of one of the
ConsumerAdmins associated with the target EventChannel.

AdminNotFound The id is not the identifier of one of the ConsumerAdmins
associated with the target EventChannel.

id A numeric value that is the unique identifier of one of the
SupplierAdmins associated with the target EventChannel.
 934

CosNotifyChannelAdmin Exceptions
Exceptions

EventChannel::get_all_consumeradmins()

AdminIDSeq get_all_consumeradmins();

Returns a sequence of unique identifiers assigned to all notification service
style ConsumerAdmins created by the target EventChannel.

EventChannel::get_all_supplieradmins()

AdminIDSeq get_all_supplieradmins();

Returns a sequence of unique identifiers assigned to all notification service
style SupplierAdmins created by the target EventChannel.

AdminNotFound The id is not the unique identifier of one of the SupplierAd-
mins associated with the target EventChannel.
935

CosNotifyChannelAdmin::
EventChannelFactory Interface

//IDL
interface EventChannelFactory
{
 EventChannel create_channel (
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out ChannelID id)
 raises(CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

 ChannelIDSeq get_all_channels();

 EventChannel get_event_channel (in ChannelID id)
 raises (ChannelNotFound);
};

The EventChannelFactory interface defines operations for creating and
managing event channels. It supports a routine that creates new instances of
event channels and assigns unique numeric identifiers to them.

The EventChannelFactory interface supports a routine that returns the
unique identifiers assigned to all event channels created by a given
EventChannelFactory, and another routine that, given the unique identifier
of an event channel, returns the object reference of that event channel.

EventChannelFactory::create_channel()

EventChannel create_channel (
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out ChannelID id)
 raises(CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates an instance of an event channel and returns an object reference to the
new channel.
 936

CosNotifyChannelAdmin Exceptions
Parameters

Exceptions

EventChannelFactory::get_all_channels()

ChannelIDSeq get_all_channels();

Returns a sequence containing all of the unique numeric identifiers for the
event channels which have been created by the target object.

initial_qos A list of name-value pairs specifying the initial QoS prop-
erty settings for the new channel.

initial_admin A list of name-value pairs specifying the initial administra-
tive property settings for the new channel.

id A numeric identifier that is assigned to the new event
channel and which is unique among all event channels
created by the target object.

UnsupportedQoS Raised if no implementation of the EventChannel interface
exists that can support all of the requested QoS property
settings. This exception contains a sequence of data struc-
tures which identifies the name of a QoS property in the
input list whose requested setting could not be satisfied,
along with an error code and a range of settings for the
property that could be satisfied.

UnsupportedAdminRaised if no implementation of the EventChannel interface
exists that can support all of the requested administrative
property settings.This exception contains a sequence of
data structures that identifies the name of an administra-
tive property in the input list whose requested setting
could not be satisfied, along with an error code and a
range of settings for the property that could be satisfied.
937

EventChannelFactory::get_event_channel()

EventChannel get_event_channel (in ChannelID id)
 raises (ChannelNotFound);

Returns the object reference of the event channel corresponding to the input
identifier.

Parameters

Exceptions

id A numeric value that is the unique identifier of an event
channel that has been created by the target object.

ChannelNotFound The id does not correspond to he unique identifier of an
event channel that has been created by the target object.
 938

IT_NotifyChannelAdmin::
GroupProxyPushSupplier Interface

interface GroupProxyPushSupplier :
 CosNotifyChannelAdmin::ProxyPushSupplier
 {
 void connect_group_any_push_consumer(
 in IT_NotifyComm::GroupPushConsumer group_push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };

The GroupProxyPushSupplier interface supports connections to the channel
by endpoint groups receiving events from the channel as untyped Anys. Note
that such endpoint groups are functionally similar to OMG Event Service
push-style consumers of untyped events. The GroupProxyPushSupplier
interface defined here, however, supports event filtering and configuration of
QoS properties in addition to taking advantage of the IP/Multicast message
transport.

Through inheritance of the ProxyPushSupplier interface, the
GroupProxyPushSupplier interface supports administration of QoS
properties, administration of a list of associated filter, mapping filters for
event priority and lifetime, and a read-only attribute containing a reference to
the ConsumerAdmin that created it. This inheritance implies that a
GroupProxyPushSupplier instance supports an operation that returns the list
of event types that the proxy supplier can supply, and an operation that
returns information about the group�s ability to accept a QoS request. The
GroupProxyPushSupplier interface also inherits a pair of operations that
suspend and resume the connection between a GroupProxyPushSupplier
instance and its associated endpoint group. During the time a connection is
suspended, the GroupProxyPushSupplier accumulates events destined for
the endpoint group but does not transmit them until the connection is
resumed.
939

The GroupProxyPushSupplier interface inherits the NotifySubscribe
interface defined in CosNotifyComm, enabling it to be notified whenever its
associated endpoint group changes the list of event types it is interested in
receiving.

The GroupProxyPushSupplier interface also inherits from the PushSupplier
interface defined in CosEventComm. This interface supports the operation to
disconnect the GroupProxyPushSupplier from its associated endpoint group.

The GroupProxyPushSupplier interface defines the operation to establish the
connection over which the consumer�s endpoint group receives events from
the channel.

GroupProxyPushSupplier::
connect_group_any_push_consumer()

void connect_group_any_push_consumer(
 in IT_NotifyComm::GroupPushConsumer group_push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between an endpoint group of consumers expecting
events in the form of Anys, and an event. Once the connection is established,
the GroupProxyPushSupplier sends events to the endpoint group by invoking
push() on the connected consumer.

Parameters

group_push_consumer The reference to an object supporting the
GroupPushConsumer interface defined in
IT_NotifyComm. This reference is that of a consumer
connecting to the channel for the members of an end-
point group.
 940

Exceptions

AlreadyConnected Raised if the target object of this operation is already
connected to a push consumer object.

TypeError An implementation of the GroupProxyPushSupplier
interface may impose additional requirements on the
interface supported by the push consumers in a group
(for example, it may be designed to invoke some
operation other than push in order to transmit
events). If the consumers in the group being con-
nected do not meet those requirements, this opera-
tion raises the TypeError exception.
941

IT_NotifyChannelAdmin::
GroupStructuredProxyPushSupplier
Interface

interface GroupStructuredProxyPushSupplier :
 CosNotifyChannelAdmin::StructuredProxyPushSupplier
 {
 void connect_group_structured_push_consumer(
 in IT_NotifyComm::GroupStructuredPushConsumer
 group_push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };

The GroupStructuredProxyPushSupplier interface supports connections to
the channel by endpoint groups that receive structured events from the
channel.

Through inheritance of StructuredProxyPushSupplier, the
GroupStructuredProxyPushSupplier interface supports administration of
QoS properties, administration of a list of associated filters, mapping filters
for event priority and lifetime, and a read-only attribute containing a reference
to the ConsumerAdmin that created it. This inheritance implies that a
GroupStructuredProxyPushSupplier instance supports an operation that
returns the list of event types that the proxy supplier can supply, and an
operation that returns information about the group�s ability to accept a QoS
request. The GroupStructuredProxyPushSupplier interface also inherits a
pair of operations to suspend and resume the connection between a
GroupStructuredProxyPushSupplier instance and its associated endpoint
group. During the time a connection is suspended, the
GroupStructuredProxyPushSupplier accumulates events destined for the
endpoint group but does not transmit them until the connection is resumed.

The GroupStructuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in CosNotifyComm. This interface
defines the operation to disconnect the GroupStructuredProxyPushSupplier
from its associated endpoint group. In addition, the
 942

GroupStructuredProxySupplier interface inherits from NotifySubscribe,
enabling it to be notified whenever its associated endpoint group changes the
list of event types it is interested in receiving.

The GroupStructuredProxyPushSupplier interface defines the operation to
establish the connection over which the consumer�s endpoint group receives
events from the channel.

GroupStructuredProxyPushSupplier::
connect_group_structured_push_consumer()

void connect_group_group_structured_push_consumer(
 in IT_NotifyComm::GroupStructuredPushConsumer
 group_push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between an endpoint group of consumers expecting
structured events and an event channel. Once the connection is established,
the GroupStructuredProxyPushSupplier sends events to the endpoint group
invoking push_structured_event() on the connected consumer.

Parameters

Exceptions

group_push_consumer A reference to an object supporting the
GroupStructuredPushConsumer interface defined in
IT_NotifyComm. This reference is that of a consumer
connecting to the channel for the members of an end-
point group.

AlreadyConnected Raised if the target object of this operation is already
connected to a push consumer.
943

TypeError An implementation of the
GroupStructuredProxyPushSupplier interface may
impose additional requirements on the interface sup-
ported by an endpoint group (for example, it may be
designed to invoke some operation other than
push_structured_event to transmit events). If the
members of the endpoint group being connected do
not meet those requirements, this operation raises the
TypeError exception.
 944

IT_NotifyChannelAdmin:
GroupSequenceProxyPushSupplier
Interface

interface GroupSequenceProxyPushSupplier :
 CosNotifyChannelAdmin::SequenceProxyPushSupplier
 {
 void connect_group_sequence_push_consumer(
 in IT_NotifyComm::GroupSequencePushConsumer
 group_push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };

The GroupSequenceProxyPushSupplier interface supports connections to the
channel by endpoint groups that receive sequences of structured events from
the channel.

Through inheritance of SequenceProxyPushSupplier, the
GroupSequenceProxyPushSupplier interface supports administration of QoS
properties, administration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created it. This
inheritance also implies that a GroupSequenceProxyPushSupplier instance
supports an operation that returns the list of event types that the proxy
supplier can supply, and an operation that returns information about the
endpoint group�s ability to accept a QoS request. The
GroupSequenceProxyPushSupplier interface also inherits a pair of operations
which suspend and resume the connection between a
GroupSequenceProxyPushSupplier instance and its associated endpoint
group. During the time a connection is suspended, the
GroupSequenceProxyPushSupplier accumulates events destined for the
endpoint group but does not transmit them until the connection is resumed.

The GroupSequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in CosNotifyComm. This interface
supports the operation to close the connection from the endpoint group to the
GroupSequenceProxyPushSupplier. Since the SequencePushSupplier
945

interface inherits from NotifySubscribe, a
GroupSequenceProxyPushSupplier can be notified whenever the list of event
types that its associated endpoint group is interested in receiving changes.

The GroupSequenceProxyPushSupplier interface defines the operation to
establish the connection over which the endpoint group receives events from
the channel.

GroupSequenceProxyPushSupplier::
connect_group_sequence_push_consumer()

void connect_group_sequence_push_consumer(
 in IT_NotifyComm::GroupSequencePushConsumer
 group_push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between an endpoint group of consumers expecting
sequences of structured events and an event channel. Once the connection is
established, the GroupSequenceProxyPushSupplier sends events to its end-
point group by invoking push_structured_events() on the connected con-
sumer.

Parameters

Exceptions

group_push_consumer A reference to an object supporting the
GroupSequencePushConsumer interface defined in
IT_NotifyComm. This reference is that of a consumer
connecting to the channel for the members of an end-
point group.

AlreadyConnected Raised if the target object of this operation is already
connected to a push consumer.
 946

TypeError An implementation of the
GroupSequenceProxyPushSupplier interface may
impose additional requirements on the interface sup-
ported by an endpoint group (for example, it may be
designed to invoke some operation other than
push_structured_events in order to transmit
events). If the members of the endpoint group being
connected do not meet those requirements, this oper-
ation raises the TypeError exception.
947

 948

CosNotifyComm Module
CosNotifyComm specifies the following interfaces to instantiate notification
service clients:

The module also specifies the NotifyPublish and NotifySubscribe
interfaces to facilitate informing notification clients about subscription and
publication changes.

CosNotifyComm Exceptions

CosNotifyComm::InvalidEventType Exception

exception InvalidEventType{ CosNotification::EventType type };

Raised when the specified EventType is not syntactically correct. It returns the
name of the invalid event type.

Note: The Orbix notification service does not throw this exception.

PushConsumer PushSupplier

PullConsumer PullSupplier

StructuredPushConsumer StructuredPushSupplier

StructuredPullConsumer StructuredPullSupplier

SequencePushConsumer SequencePushSupplier

SequencePullConsumer SequencePullSupplier
949

CosNotifyComm::NotifyPublish
Interface

interface NotifyPublish {
 void offer_change (
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
};

The NotifyPublish interface supports an operation that allows a supplier to
announce, or publish, the names of the event types it supplies. It is an
abstract interface which is inherited by all notification service consumer
interfaces, and it enables suppliers to inform consumers supporting this
interface of the types of events they intend to supply.

NotifyPublish::offer_change()

void offer_change (
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);

Allows a supplier of notifications to announce, or publish, the names of the
types of events it supplies.

Note: Each event type name consists of two components: the name of the
domain in which the event type has meaning, and the name of the actual
event type. Either component of a type name may specify a complete
domain/event type name, a domain/event type name containing the wildcard
�*� character, or the special event type name �%ALL�.
 950

CosNotifyComm Exceptions
Parameters

Exceptions

added A sequence of event type names specifying those event
types which the event supplier plans to supply.

removed Sequence of event type names specifying those event
types which the client no longer plans to supply.

InvalidEventType One of the event type names supplied in either input
parameter is syntactically invalid. In this case, the invalid
name is returned in the type field of the exception.
951

CosNotifyComm::NotifySubscribe
Interface

interface NotifySubscribe {
 void subscription_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
};

The NotifySubscribe interface supports an operation allowing a consumer to
inform suppliers of the event types it wishes to receive. It is an abstract
interface that is inherited by all notification service supplier interfaces. Its
main purpose is to enable consumers to inform suppliers of the event types
they are interested in, ultimately enabling the suppliers to avoid supplying
events that are not of interest to any consumer.

NotifySubscribe::subscription_change()

void subscription_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);

Allows a consumer to inform suppliers of the event types it wishes to receive.

Note: Each event type name is comprised of two components: the name of
the domain in which the event type has meaning, and the name of the actual
event type. Also note that either component of a type name may specify a
complete domain/event type name, a domain/event type name containing the
wildcard �*� character, or the special event type name �%ALL�.
 952

CosNotifyComm Exceptions
Parameters

Exceptions

added A sequence of event type names specifying the event types
the consumer wants to add to its subscription list.

removed A sequence of event type names specifying the event types
the consumer wants to remove from its subscription list.

InvalidEventType One of the event type names supplied in either input
parameter is syntactically invalid. The invalid name is
returned in the type field of the exception.
953

CosNotifyComm::PushConsumer
Interface

interface PushConsumer :
 NotifyPublish,
 CosEventComm::PushConsumer
{
};

The PushConsumer interface inherits all the operations of CosEventComm::
PushConsumer. In addition, the PushConsumer interface inherits the
NotifyPublish interface described above, which enables a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting PushConsumer can receive all events that were
supplied to its associated channel. How events supplied to the channel in
other forms are internally mapped for delivery to a PushConsumer is
summarized in the CORBA Notification Service Guide.
 954

CosNotifyComm Exceptions
CosNotifyComm::PullConsumer
Interface

interface PullConsumer :
 NotifyPublish,
 CosEventComm::PullConsumer
{
};

The PullConsumer interface inherits all the operations of CosEventComm::
PullConsumer. In addition, the PullConsumer interface inherits the
NotifyPublish interface described above, which enables a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting PullConsumer can receive all events that were
supplied to its associated channel. How events supplied to the channel in
other forms are internally mapped for delivery to a PullConsumer is
summarized in the CORBA Notification Service Guide.
955

CosNotifyComm::PullSupplier
Interface

interface PullSupplier :
 NotifySubscribe,
 CosEventComm::PullSupplier
{
};

The PullSupplier interface inherits all the operations of CosEventComm::
PullSupplier. In addition, the PullSupplier interface inherits the
NotifySubscribe interface described above, which enables a consumer to
inform an instance supporting this interface whenever there is a change to
the types of events it wishes to receive.

Note: An object supporting the PullSupplier interface can transmit events
that can potentially be received by any consumer connected to the channel.
How events supplied to the channel in other forms are translated is
summarized in the CORBA Notification Service Guide
 956

CosNotifyComm Exceptions
CosNotifyComm::PushSupplier
Interface

interface PushSupplier :
 NotifySubscribe,
 CosEventComm::PushSupplier
{
};

The PushSupplier interface inherits all the operations of CosEventComm::
PushSupplier. In addition, the PushSupplier interface inherits the
NotifySubscribe interface described above, which enables a consumer to
inform an instance supporting this interface whenever there is a change to
the types of events it wishes to receive.

Note: An object supporting the PushSupplier interface can transmit events
that can potentially be received by any consumer connected to the channel.
How events supplied to the channel in other forms are translated is
summarized in the CORBA Notification Service Guide
957

CosNotifyComm::
StructuredPushConsumer Interface

interface StructuredPushConsumer : NotifyPublish {
 void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);
 void disconnect_structured_push_consumer();
};

The StructuredPushConsumer interface supports an operation enabling
consumers to receive structured events by the push model. It also defines an
operation to disconnect the push consumer from its associated proxy
supplier. In addition, the StructuredPushConsumer interface inherits the
NotifyPublish interface described above, which enables a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting the StructuredPushConsumer interface can
receive all events that were supplied to its associated channel, including
events supplied in a form other than a structured event. How events supplied
to the channel in other forms are internally mapped into a structured event
for delivery to a StructuredPushConsumer is summarized in the CORBA
Notification Service Guide.

StructuredPushConsumer::push_structured_event()

void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);

Enables consumers to receive structured events by the push model.
 958

CosNotifyComm Exceptions
Parameters

Exceptions

StructuredPushConsumer::
disconnect_structured_push_consumer()

void disconnect_structured_push_consumer();

Terminates a connection between the target StructuredPushConsumer and its
associated proxy supplier. That the target StructuredPushConsumer releases
all resources allocated to support the connection, and disposes of its own object
reference.

notification A parameter of type StructuredEvent as defined in the
CosNotification module. When the method returns this
parameter contains a structured event being delivered to
the consumer by its proxy supplier.

Disconnected This operation was invoked on a StructuredPushConsumer
instance that is not currently connected to a proxy supplier.
959

CosNotifyComm::
StructuredPullConsumer Interface

interface StructuredPullConsumer : NotifyPublish
{
 void disconnect_structured_pull_consumer();
};

The StructuredPullConsumer defines an operation that can be invoked to
disconnect the pull consumer from its associated supplier. In addition, the
StructuredPullConsumer interface inherits the NotifyPublish interface,
which enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to produce.

Note: An object supporting the StructuredPullConsumer interface can
receive all events that were supplied to its associated channel, including
events supplied in a form other than a structured event. How events supplied
to the channel in other forms are internally mapped into a structured event
for delivery to a StructuredPullConsumer is summarized in the CORBA
Notification Service Guide.

StructuredPullConsumer::
disconnect_structured_pull_consumer()

void disconnect_structured_pull_consumer();

Terminates a connection between the target StructuredPullConsumer, and its
associated supplier proxy. The target StructuredPullConsumer releases all
resources allocated to support the connection, and disposes of its own object
reference.
 960

CosNotifyComm Exceptions
CosNotifyComm::
StructuredPullSupplier Interface

interface StructuredPullSupplier : NotifySubscribe
{
 CosNotification::StructuredEvent pull_structured_event()
 raises(CosEventComm::Disconnected);

 CosNotification::StructuredEvent try_pull_structured_event(
 out boolean has_event)
 raises(CosEventComm::Disconnected);

 void disconnect_structured_pull_supplier();
};

The StructuredPullSupplier interface supports operations that enable
suppliers to transmit structured events by the pull model. It also defines an
operation to disconnect the pull supplier from its associated consumer proxy.
In addition, the StructuredPullSupplier interface inherits the
NotifySubscribe interface, which enables a consumer to inform an instance
supporting this interface whenever there is a change to the types of events it
is interested in receiving.

Note: An object supporting the StructuredPullSupplier interface can
transmit events that can potentially be received by any consumer connected
to the channel, including those which consume events in a form other than a
structured event. How events supplied to the channel in other forms are
translated is summarized in the CORBA Notification Service Guide

StructuredPullSupplier::pull_structured_event()

CosNotification::StructuredEvent pull_structured_event()
 raises(CosEventComm::Disconnected);
961

Blocks until an event is available for transmission, at which time it returns an
instance of a structured event containing the event being delivered to its
connected consumer proxy.

Exceptions

StructuredPullSupplier::try_pull_structured_event()

CosNotification::StructuredEvent try_pull_structured_event(
 out boolean has_event)
 raises(CosEventComm::Disconnected);

If an event is available for delivery at the time the operation was invoked, the
method returns a structured event that contains the event being delivered to
its connected consumer and the output parameter of the operation is set to
TRUE. If no event is available to return upon invocation, the operation returns
immediately with the value of the output parameter set to FALSE. In this case,
the return value does not contain a valid event.

Parameters

Exceptions

StructuredPullSupplier::disconnect_structured_pull_supplier()

void disconnect_structured_pull_supplier();

Terminates a connection between the target StructuredPullSupplier and its
associated consumer. The target StructuredPullSupplier releases all re-
sources allocated to support the connection, and disposes of its own object
reference.

Disconnected The operation was invoked on a StructuredPullSupplier
that is not currently connected to a consumer proxy.

has_event An output parameter of type boolean that indicates
whether or not the return value actually contains an event.

Disconnected The operation was invoked on a StructuredPullSupplier
that is not currently connected to a consumer proxy.
 962

CosNotifyComm Exceptions
CosNotifyComm::
StructuredPushSupplier Interface

interface StructuredPushSupplier : NotifySubscribe {
 void disconnect_structured_push_supplier();
};

The StructuredPushSupplier interface supports the behavior of objects that
transmit structured events using push-style communication. It defines an
operation that can be invoked to disconnect the push supplier from its
associated consumer proxy. In addition, the StructuredPushSupplier
interface inherits NotifySubscribe, which enables a consumer to inform an
instance supporting this interface whenever there is a change to the types of
events it is interested in receiving.

Note: An object supporting the StructuredPushSupplier interface can
transmit events which can potentially be received by any consumer
connected to the channel, including those which consume events in a form
other than a structured event. How events supplied to the channel are
translated is summarized in the CORBA Notification Service Guide.

StructuredPushSupplier::
disconnect_structured_push_supplier()

void disconnect_structured_push_supplier();

Terminates a connection between the target StructuredPushSupplier, and
its associated consumer. The target StructuredPushSupplier releases all
resources allocated to support the connection, and disposes of its own object
reference.
963

CosNotifyComm::
SequencePushConsumer Interface

interface SequencePushConsumer : NotifyPublish {
 void push_structured_events(
 in CosNotification::EventBatch notifications)
 raises(CosEventComm::Disconnected);
 void disconnect_sequence_push_consumer();
};

The SequencePushConsumer interface supports an operation that enables
consumers to receive sequences of structured events using the push model. It
also defines an operation to disconnect the push consumer from its
associated supplier. The SequencePushConsumer interface inherits
NotifyPublish, which enables a supplier to inform an instance supporting
this interface whenever there is a change to the types of events it intends to
produce.

Note: An object supporting the SequencePushConsumer interface can
receive all events which are supplied to its associated channel, including
events supplied in a form other than a sequence of structured events. How
events supplied to the channel in other forms are internally mapped into a
sequence of structured events for delivery to a SequencePushConsumer is
summarized in the CORBA Notification Service Guide.

SequencePushConsumer::push_structured_events()

void push_structured_events(
 in CosNotification::EventBatch notifications)
 raises(CosEventComm::Disconnected);

Enables consumers to receive sequences of structured events by the push
model.
 964

CosNotifyComm Exceptions
The maximum number of events that are transmitted within a single
invocation of this operation, along with the amount of time a supplier of
sequences of structured events packs individual events into the sequence
before invoking this operation, are controlled by QoS property settings as
described in the CORBA Notification Service Guide.

Parameters

Exceptions

SequencePushConsumer::
disconnect_sequence_push_consumer()

void disconnect_sequence_push_consumer();

Terminates a connection between the target SequencePushConsumer and its
associated supplier proxy. The target SequencePushConsumer releases all
resources allocated to support the connection, and disposes of its own object
reference.

notifications A parameter of type EventBatch as defined in the
CosNotification module. Upon invocation, this parame-
ter contains a sequence of structured events being deliv-
ered to the consumer by its associated supplier proxy.

Disconnected The operation was invoked on a SequencePushConsumer
instance that is not currently connected to a supplier proxy.
965

CosNotifyComm::
SequencePullConsumer Interface

interface SequencePullConsumer : NotifyPublish {
 void disconnect_sequence_pull_consumer();
};

The SequencePullConsumer interface defines an operation to disconnect the
pull consumer from its associated supplier. The SequencePullConsumer
interface inherits NotifyPublish, which enables a supplier to inform an
instance supporting this interface whenever there is a change to the types of
events it intends to produce.

Note: An object supporting the SequencePullConsumer interface can receive
all events that were supplied to its associated channel, including events
supplied in a form other than a sequence of structured events. How events
supplied to the channel in other forms are internally mapped into a sequence
of structured events for delivery to a SequencePullConsumer is summarized in
the CORBA Notification Service Guide.

SequencePullConsumer::
disconnect_sequence_pull_consumer()

void disconnect_sequence_pull_consumer();

Terminates a connection between the target SequencePullConsumer and its
associated supplier. The target SequencePullConsumer releases all resources
allocated to support the connection, and disposes of its own object reference.
 966

CosNotifyComm Exceptions
CosNotifyComm::
SequencePullSupplier Interface

interface SequencePullSupplier : NotifySubscribe
{
 CosNotification::EventBatch pull_structured_events(
 in long max_number)
 raises(CosEventComm::Disconnected);

 CosNotification::StructuredEvent try_pull_structured_events(
 in long max_number,
 out boolean has_event)
 raises(CosEventComm::Disconnected);

 void disconnect_sequence_pull_supplier();
};

The SequencePullSupplier interface supports operations that enable
suppliers to transmit sequences of structured events using the pull model. It
also defines an operation to disconnect the pull supplier from its associated
consumer. The SequencePullSupplier interface inherits NotifySubscribe,
which enables a consumer to inform an instance supporting this interface
whenever there is a change to the types of events it is interested in receiving.

Note: An object supporting the SequencePullSupplier interface can
transmit events that can be received by any consumer connected to the
channel, including those which consume events in a form other than a
sequence of structured events. How events supplied to the channel in the
form of a sequence of structured events are internally mapped into different
forms for delivery to consumers that receive events in a form other than the a
sequence of structured events is summarized in the CORBA Notification
Service Guide.
967

SequencePullSupplier::pull_structured_events()

CosNotification::EventBatch pull_structured_events(
 in long max_number)
 raises(CosEventComm::Disconnected);

Blocks until a sequence of structured events is available for transmission, at
which time it returns the sequence containing events to be delivered to its
connected consumer proxy.

The amount of time the supplier packs events into the sequence before
transmitting it, along with the maximum size of any sequence it transmits
(regardless of the input parameter), are controlled by QoS property settings as
described in the CORBA Notification Service Guide.

Parameters

Exceptions

SequencePullSupplier::try_pull_structured_events()

CosNotification::StructuredEvent try_pull_structured_events(
 in long max_number,
 out boolean has_event)
 raises(CosEventComm::Disconnected);

Returns a sequence of a structured events that contains events being delivered
to its connected consumer, if such a sequence is available for delivery at the
time the operation was invoked:

� If an event sequence is available for delivery and is returned as the
result, the output parameter has_event is set to TRUE.

� If no event sequence is available to return upon invocation, the operation
returns immediately with the value of the output parameter set to FALSE.
In this case, the return value does not contain a valid event sequence.

max_number The maximum length of the sequence returned.

Disconnected The operation was invoked on a SequencePullSupplier
that is not currently connected to a consumer proxy.
 968

CosNotifyComm Exceptions
Parameters

Exceptions

SequencePullSupplier::disconnect_sequence_pull_supplier()

void disconnect_sequence_pull_supplier();

Terminates a connection between the target SequencePullSupplier and its
associated consumer. The target SequencePullSupplier releases all resources
allocated to support the connection, and disposes of its own object reference.

max_number The maximum length of the sequence returned.

has_event An output parameter of type boolean that indicates
whether or not the return value actually contains a
sequence of events.

Disconnected This operation was invoked on a SequencePullSupplier
that is not currently connected to a consumer proxy.
969

CosNotifyComm::
SequencePushSupplier Interface

interface SequencePushSupplier : NotifySubscribe
{
 void disconnect_sequence_push_supplier();
};

The SequencePushSupplier interface defines an operation that to disconnect
the push supplier from its associated consumer proxy. In addition, the
SequencePushSupplier interface inherits NotifySubscribe, which enables a
consumer to inform an instance supporting this interface whenever there is a
change to the types of events it is interested in receiving.

Note: An object supporting the SequencePushSupplier interface can
transmit events that can be received by any consumer connected to the
channel, including those which consume events in a form other than a
sequence of structured events. How events supplied to the channel in the
form of a sequence of structured events are internally mapped into different
forms for delivery to consumers which receive events in a form other than a
sequence of structured events is summarized in the CORBA Notification
Service Guide.

SequencePushSupplier::disconnect_sequence_push_supplier()

void disconnect_sequence_push_supplier();

Terminates a connection between the target SequencePushSupplier and its
associated consumer. The target SequencePushSupplier releases all resources
allocated to support the connection, and disposes of its own object reference.
 970

IT_NotifyComm::GroupNotifyPublish
Interface

interface GroupNotifyPublish
 {
 oneway void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed);
 };

The GroupNotifyPublish interface supports an operation allowing a supplier
to announce, or publish, the names of the types of events it supplies. It is an
abstract interface which is inherited by all group consumer interfaces, and
enables suppliers to inform consumers supporting this interface of the types
of events they intend to supply.

When implemented by a group consumer, it allows the consumer to modify
its subscription list accordingly.

GroupNotifyPublish::offer_change()

oneway void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed);

Allows a supplier of notifications to announce, or publish, the names of the
types of events it supplies to consumers using IP/Multicast.

Note: Each event type name consists of two components: the name of the
domain in which the event type has meaning, and the name of the actual
event type. Either component of a type name may specify a complete
domain/event type name, a domain/event type name containing the wildcard
�*� character, or the special event type name �%ALL�.
971

Parameters

added Sequence of event type names specifying the event types
the supplier is adding to the list of event types it plans to
supply.

removed Sequence of event type names specifying the event types
which the supplier no longer plans to supply.
 972

IT_NotifyComm::GroupPushConsumer
Interface

interface GroupPushConsumer : GroupNotifyPublish
 {
 oneway void push(in any data);
 oneway void disconnect_push_consumer();
 };

The GroupPushConsumer interface supports an operation enabling group con-
sumers to receive unstructured events by the push model. It also defines an
operation to disconnect the consumer�s endpoint group from its associated
proxy supplier. In addition, the GroupPushConsumer interface inherits
GroupNotifyPublish which enables a supplier to inform an instance support-
ing this interface whenever there is a change to the types of events it intends
to produce.

Note: An object supporting the GroupPushConsumer interface can receive all
events that are supplied to its associated channel. How events supplied to
the channel in other forms are internally mapped into an unstructured event
for delivery to a GroupPushConsumer is summarized in the CORBA
Notification Service Guide.

GroupPushConsumer::push()

oneway void push(in any data);

Receives unstructured events by the push model. The implementation of
push() is application specific, and is supplied by application developers.

Parameters

data A parameter of type CORBA::Any. Upon invocation, this
parameter contains an unstructured event being delivered
to the group.
973

GroupPushConsumer::disconnect_push_consumer()

oneway void disconnect_push_consumer();

Terminates a connection between the target GroupPushConsumer and its
associated group proxy supplier. The result of this operation is that the target
GroupPushConsumer releases all resources allocated to support the connection
and disposes of the groups object reference. It also disconnects all other
members of the target GroupPushConsumer�s endpoint group.
 974

IT_NotifyComm::
GroupStructuredPushConsumer
Interface

interface GroupStructuredPushConsumer : GroupNotifyPublish
 {
 oneway void push_structured_event(
 in CosNotification::StructuredEvent notification);
 oneway void disconnect_structured_push_consumer();
 };

The GroupStructuredPushConsumer interface supports an operation enabling
group consumers to receive structured events by the push model. It also
defines an operation to disconnect the push consumer�s endpoint group from
its associated proxy supplier. In addition, the GroupStructuredPushConsumer
interface inherits GroupNotifyPublish which enables a supplier to inform an
instance supporting this interface whenever there is a change to the types of
events it intends to produce.

Note: An object supporting the GroupStructuredPushConsumer interface
can receive all events that were supplied to its associated channel, including
events supplied in a form other than a structured event. How events supplied
to the channel in other forms are internally mapped into a structured event
for delivery to a GroupStructuredPushConsumer is summarized in the CORBA
Notification Service Guide.

GroupStructuredPushConsumer::push_structured_event();

oneway void push_structured_event(
 in CosNotification::StructuredEvent notification);

Receives structured events by the push model. The implementation of
push_structured_event() is application specific, and is supplied by applica-
tion developers.
975

Parameters

GroupStructuredPushConsumer::
disconnect_structured_push_consumer()

oneway void disconnect_structured_push_consumer();

Terminates a connection between the target GroupStructuredPushConsumer
and its associated group proxy supplier. The result of this operation is that the
target GroupStructuredPushConsumer releases all resources allocated to sup-
port the connection and disposes of the groups object reference. This also
disconnects all other members of the target GroupStructuredPushConsumer�s
endpoint group.

notification A parameter of type StructuredEvent as defined in
CosNotification. Upon invocation, this parameter con-
tains a structured event being delivered to the group.
 976

IT_NotifyComm::
GroupSequencePushConsumer
Interface

interface GroupSequencePushConsumer : GroupNotifyPublish
 {
 oneway void push_structured_events(
 in CosNotification::EventBatch notifications);

 oneway void disconnect_sequence_push_consumer();
 };

The GroupSequencePushConsumer interface supports an operation enabling
group consumers to receive sequences of structured events using the push
model. It also defines an operation to disconnect the consumer�s endpoint
group from its associated proxy supplier. The GroupSequencePushConsumer
interface inherits GroupNotifyPublish which enabling a supplier to inform
an instance supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting the GroupSequencePushConsumer interface can
receive all events which were supplied to its associated channel, including
events supplied in a form other than a sequence of structured events. How
events supplied to the channel in other forms are internally mapped into a
sequence of structured events for delivery to a GroupSequencePushConsumer
is summarized in the CORBA Notification Service Guide.

GroupSequencePushConsumer::push_structured_events()

oneway void push_structured_events(
 in CosNotification::EventBatch notifications);
977

Receive sequences of structured events by the push model. The implementa-
tion of push_structured_events is application specific, and is supplied by
application developers.

The maximum number of events that are transmitted within a single
invocation of this operation, along with the amount of time a supplier of a
sequence of structured events accumulates individual events into the
sequence before invoking this operation are controlled by QoS property
settings as described in the CORBA Notification Service Guide.

Parameters

GroupSequencePushConsumer::
disconnect_sequence_push_consumer()

oneway void disconnect_sequence_push_consumer();

Terminates a connection between the target GroupSequencePushConsumer and
its associated group proxy supplier. The result of this operation is that the target
GroupSequencePushConsumer releases all resources allocated to support the
connection and disposes of the groups object reference. This also disconnects
all other members of the target GroupSequencesPushConsumer�s endpoint
group.

notifications A parameter of type EventBatch as defined in
CosNotification. Upon invocation, this parameter con-
tains a sequence of structured events being delivered to
the group.
 978

CosNotifyFilter Module
The CosNotifyFilterModule specifies the following interfaces to support
event filtering:

Filter
FilterFactory
MappingFilter
FilterAdmin

In addition to these interfaces the module specifies several data types and
exceptions related to event filtering.

CosNotifyFilter Data Types

CosNotifyFilter::ConstraintID Data Type

typedef long ConstraintID;

Identifies a constraint.

CosNotifyFilter::ConstraintExp Data Structure

struct ConstraintExp
{
 CosNotification::EventTypeSeq event_types;
 string constraint_expr;
};

Contains a constraint expression and a list of events to check against. The
constraint_expr member is a string that conforms to the Trader constraint
grammar. For more information on the constraint grammar, see the CORBA
Notification Service Guide.
979

CosNotifyFilter::ContsraintIDSeq Data Type

typedef <ConstraintID> ConstraintIDSeq;

Contains a list of constraint ID.

CosNotifyFilter::ConstraintExpSeq Data Type

typedef sequence<ConstraintExp> ContsraintExpSeq;

Contains a list of constraint expressions.

CosNotifyFilter::ConstraintInfo Data Structure

struct ConstraintInfo
{
 ConstraintExp constraint_expression;
 ConstraintID constraint_id;
}

Specifies an instantiated constraint.

CosNotifyFilter::ConstraintInfoSeq Data Type

typedef sequence<ConstraintInfo> ConstraintInfoSeq;

Contains a list of instantiated constraints.

CosNotifyFilter::FilterID Data Type

typedef long FilterID;

Identifies an instantiated filter. It is unique to the object to which it is attached.

CosNotifyFilter::FilterIDSeq Data Type

typedef sequence<FilterID> FilterIDSeq;
 980

CosNotifyFilter Data Types
Contains a list of FilterIds.

CosNotifyFilter::MappingConstraintPair Data Structure

struct MappingConstraintPair
{
 ConstraintExp constraint_expression;
 any result_to_set;
}

Specifies a constraint expression and the value to set if the event matches the
constraint expression.

CosNotifyFilter::MappingConstraintPairSeq Data Type

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq

Contains a list of mapping filter constraint/value pairs.

CosNotifyFilter::MappingConstraintInfo Data Structure

struct MappingConstraintInfo
{
 ConstraintExp constraint_expression;
 ConstraintID constraint_id;
 any value;
}

Specifies a mapping constraint that has been instantiated.

CosNotifyFilter::MappingConstraintInfoSeq Data Types

typedef sequence<MappingConstraintInfo> MappingConstraintInfoSeq;

Contains a list of instantiated mapping filter constraint/value pairs.
981

CosNotifyFilter::CallbackID Data Type

typedef long CallbackID;

Holds an identifier for a callback registered with attach_callback.

CosNotifyFilter::CallbackIDSeq Data Type

typedef sequence<CallbackID> CallbackIDSeq;

Contains a list of callback IDs.

CosNotifyFilter Exceptions

CosNotifyFilter::UnsupportedFilterableData Exception

exception UnsupportedFilterableData {};

Raised if the input parameter contains data that the match operation is not
designed to handle. For example, the filterable data contains a field whose
name corresponds to a standard event field that has a numeric value, but the
actual value associated with this field name within the event is a string.

CosNotifyFilter::InvalidGrammar Exception

exception InvalidGrammar {};

Raised when creating a filter. If the string passed to the filter factory specifies
a grammar that is not supported, the factory will throw InvalidGrammar.

Note: Orbix notification service supports the EXTENDED_TCL grammar.
 982

CosNotifyFilter Exceptions
CosNotifyFilter::InvalidConstraint Exception

exception InvalidConstraint {ConstraintExp constr};

Raised during the creation of constraints. If the string specifying the constraint
is syntactically incorrect, InvalidConstraint is thrown. It returns the invalid
constraint.

CosNotifyFilter::ConstraintNotFound Exception

exception ConstraintNotFound {ConstraintID id};

Raised when a specified constraint ID cannot be resolved to a constraint
attached to the target filter object. It returns the ID that cannot be resolved.

CosNotifyFilterFilter::CallbackNotFound Exception

exception CallbackNotFound {};

Raised when the specified callback ID cannot be resolved to a callback object
attached to the target filter object.

CosNotifyFilter::InvalidValue Exception

exception InvalidValue {ConstraintExp constr; any value};

Raised when the type_code of the value associated with the mapping filter
constraint does not match the value_type of the target mapping filter object.

CosNotifyFilter::FilterNotFound Exception

exception FilterNotFound {};

Raised if the specified filter ID cannot be resolved to a filter associated with
the target object.
983

CosNotifyFilter::Filter Interface
interface Filter
{
 readonly attribute string constraint_grammar;

 ConstraintInfoSeq add_constraints(
 in ConstraintExpSeq constraint_list)
 raises (InvalidConstraint);

 void modify_constraints(
 in ConstraintIDSeq del_list,
 in ConstraintInfoSeq modify_list)
 raises (InvalidConstraint, ConstraintNotFound);

 ConstraintInfoSeq get_constraints(
 in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

 ConstraintInfoSeq get_all_constraints();

 void remove_all_constraints();

 void destroy();

 boolean match(in any filterable_data)
 raises (UnsupportedFilterableData);

 boolean match_structured(
 in CosNotification::StructuredEvent filterable_data)
 raises (UnsupportedFilterableData);

 boolean match_typed (
 in CosTrading::PropertySeq filterable_data)
 raises (UnsupportedFilterableData);

 CallbackID attach_callback (
 in CosNotifyComm::NotifySubscribe callback);

 void detach_callback (in CallbackID callback)
 raises (CallbackNotFound);
 984

CosNotifyFilter Exceptions
 CallbackIDSeq get_callbacks();
}; // Filter

The Filter interface defines the behaviors supported by filter objects. These
objects encapsulate constraints that are used by the proxies and admins
associated with an event channel. The proxies and admins use the constraint
definitions to determine which events are forwarded, and which are
discarded.

For more information on filters and the constraint language, see the CORBA
Notification Service Guide.

The Filter interface supports operations to manage the constraints
associated with a Filter instance, along with a read-only attribute to identify
the constraint grammar used to evaluate the constraints associated with the
instance. In addition, the Filter interface supports three variants of the
match operation which are invoked by a proxy object upon receipt of an
event�the specific variant selected depends upon whether the event is
received as an Any or a structured event�to evaluate the object using the
constraints associated with the filter object.

The Filter interface also supports operations enabling a client to associate
any number of callbacks with the target filter object. The callbacks are
notified each time there is a change to the list of event types the filer
forwards through the event channel. Operations are also defined to support
administration of this callback list by unique identifier.

Filter::constraint_grammar

readonly attribute string constraint_grammar;

constraint_grammar is a readonly attribute specifiying the particular grammar
used to parse the constraint expressions encapsulated by the target filter. The
value of this attribute is set upon creation of a filter object.

A filter�s constraints must be expressed using a particular constraint grammar
because its member match operations must be able to parse the constraints
to determine whether or not a particular event satisfies one of them.
985

Orbix supports an implementation of the Filter interface which supports the
default constraint grammar described in the CORBA Notification Service
Guide. The constraint_grammar attribute is set to the value EXTENDED_TCL
when the target filter object supports this default grammar.

Other implementations can provide additional implementations of the Filter
interface that support different constraint grammars, and thus the
constraint_grammar attribute must be set to a different value upon creation
of such a filter object.

Filter::add_constraints()

ConstraintInfoSeq add_constraints(
 in ConstraintExpSeq constraint_list)
 raises (InvalidConstraint);

Associates one or more new constraints with the target filter object. Upon
successful processing of all input constraint expressions, add_constraints()
returns a ConstraintInfoSeq containing all of the constraints and the identi-
fiers assigned to them by the filter.

If one or more of the constraints passed into add_constraints() is invalid,
none of the constraints are added to the target filter.

Note: Once add_constraints() is invoked by a client, the target filter is
temporarily disabled from usage by any proxy or admin it may be associated
with. Upon completion of the operation, the target filter is re-enabled and can
once again be used by associated proxies and admins to make event
forwarding decisions.

Parameters

Exceptions If any of the constraints in the input sequence is not a valid expression within
the supported constraint grammar, the InvalidConstraint exception is raised.
This exception contains as data the specific constraint expression that was
determined to be invalid.

constraint_list A sequence of constraint data structures
using the constraint grammar supported by
the target object.
 986

CosNotifyFilter Exceptions
Filter::modify_constraints()

void modify_constraints (
 in ConstraintIDSeq del_list,
 in ConstraintInfoSeq modify_list)
 raises (InvalidConstraint, ConstraintNotFound);

Modifies the constraints associated with the target filter object. This operation
can be used both to remove constraints currently associated with the target
filter, and to modify the constraint expressions of constraints currently associ-
ated with the filter.

If an exception is raised during the operation, no changes are made to the
filter�s constraints.

Note: Once modify_constraints is invoked by a client, the target filter is
temporarily disabled from use by any proxy or admin. Upon completion of the
operation, the target filter is re-enabled and can once again be used by
associated proxies and admins to make event forwarding decisions.

Parameters

Exceptions

del_list A sequence of numeric identifiers each of which should be
associated with one of the constraints currently encapsu-
lated by the target filter object.

modify_list A sequence containing constraint structures and an asso-
ciated numeric value. The numeric value in each element
of the sequence is the unique identifier of one of the con-
straints encapsulated by the target filter.

ConstraintNotFound Raised if any of the numeric values in either input
sequences does not correspond to the unique identifier
associated with any constraint encapsulated by the tar-
get filter. This exception contains the specific identifier
that did not correspond to the identifier of some con-
straint encapsulated by the target filter.
987

Filter::get_constraints()

ConstraintInfoSeq get_constraints(in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

Returns a sequence of data structures containing the input identifiers along
with their associated constraint.

Parameters

Exceptions

Filter::get_all_constraints()

ConstraintInfoSeq get_all_constraints();

Returns all of the constraints currently encapsulated by the target filter object.

Filter::remove_all_constraints()

void remove_all_constraints();

Removes all of the constraints currently encapsulated by the target filter. Upon
completion, the target filter still exists but no constraints are associated with it.

InvalidConstraint Raised if any of the constraint expressions supplied in
the second input sequence is not a valid expression in
terms of the constraint grammar supported by the tar-
get object. This exception contains the specific con-
straint that was determined to be invalid.

id_list A sequence of numeric values corresponding to the unique
identifiers of constraints encapsulated by the target object.

ConstraintNotFoundOne of the input values does not correspond to the iden-
tifier of some encapsulated constraint. The exception
contains that input value.
 988

CosNotifyFilter Exceptions
Filter::destroy()

void destroy();

Destroys the target filter and invalidates its object reference.

Filter::match()

boolean match (in any filterable_data)
 raises (UnsupportedFilterableData);

Evaluates the filter constraints associated with the target filter against an
event supplied to the channel in the form of a CORBA::Any. The operation
returns TRUE if the input event satisfies one of the filter constraints, and FALSE
otherwise.

The act of determining whether or not a given event passes a given filter
constraint is specific to the type of grammar in which the filter constraint is
specified.

Parameters

Exceptions

Filter::match_structured()

boolean match_structured(
 in CosNotification::StructuredEvent filterable_data)
 raises (UnsupportedFilterableData);

Evaluates the filter constraints associated with the target filter against a
structured event. The operation returns TRUE if the input event satisfies one of
the filter constraints, and FALSE otherwise.

The act of determining whether or not a given event passes a given filter
constraint is specific to the type of grammar in which the filter constraint is
specified.

filterable_data A CORBA::Any which contains an event to be evaluated.

UnsupportedFilterableDataThe input parameter contains data that the
match operation is not designed to handle.
989

Parameters

Exceptions

Filter::attach_callback()

CallbackID attach_callback (
 in CosNotifyComm::NotifySubscribe callback);

Associates an object supporting the CosNotifyComm::NotifySubscribe
interface with the target filter. This operation returns a numeric value
assigned to this callback that is unique to all such callbacks currently
associated with the target filter.

After this operation has been successfully invoked on a filter, the filter
invokes the subscription_change() method of all its associated callbacks
each time the set of constraints associated with the filter is modified. This
process informs suppliers in the filter�s callback list of the change in the set of
event types to which the filter�s clients subscribe. With this information,
suppliers can make intelligent decisions about which event types to produce.

Parameters

Filter::detach_callback()

void detach_callback(in CallbackID callback)
raises (CallbackNotFound);

Removes a callback object from the filter�s callback list. Subsequent changes
to the event type subscription list encapsulated by the target filter are no longer
propagated to that callback object.

filterable_data A CosNotification::StructuredEvent containing an
event to be evaluated,

UnsupportedFilterableDataThe input parameter contains data that the
match operation is not designed to handle.

callback The reference to an object supporting the CosNotifyComm:
:NotifySubscribe interface.
 990

CosNotifyFilter Exceptions
Parameters

Exceptions

Filter::get_callbacks()

CallbackIDSeq get_callbacks();

Returns all the unique identifiers for the callback objects attached to the target
filter.

callback A unique identifiers associated with one of the callback
objects attached to the target filter.

CallbackNotFound The input value does not correspond to the unique identi-
fier of a callback object currently attached to the target fil-
ter object.
991

CosNotifyFilter::MappingFilter
Interface

interface MappingFilter
{
 readonly attribute string constraint_grammar;
 readonly attribute CORBA::TypeCode value_type;
 readonly attribute any default_value;

 MappingConstraintInfoSeq add_mapping_constraints (
 in MappingConstraintPairSeq pair_list)
 raises (InvalidConstraint, InvalidValue);

 void modify_mapping_constraints (
 in ConstraintIDSeq del_list,
 in MappingConstraintInfoSeq modify_list)
 raises (InvalidConstraint, InvalidValue, ConstraintNotFound);

 MappingConstraintInfoSeq get_mapping_constraints (
 in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

 MappingConstraintInfoSeq get_all_mapping_constraints();

 void remove_all_mapping_constraints();

 void destroy();

 boolean match (in any filterable_data, out any result_to_set)
 raises (UnsupportedFilterableData);

 boolean match_structured (
 in CosNotification::StructuredEvent filterable_data,
 out any result_to_set)
 raises (UnsupportedFilterableData);

 boolean match_typed (
 in CosTrading::PropertySeq filterable_data,
 out any result_to_set)
 992

CosNotifyFilter Exceptions
 raises (UnsupportedFilterableData);
}; // MappingFilter

The MappingFilter interface defines the behaviors of objects that
encapsulate a sequence of constraint-value pairs (see the description of the
Default Filter Constraint Language in the CORBA Notification Service
Guide). These constraint-value pairs are used to evaluate events and adjust
their lifetime/priority values according to the result. An object supporting the
MappingFilter interface can effect either an events lifetime property or its
priority property, but not both.

The MappingFilter interface supports the operations required to manage the
constraint-value pairs associated with an object instance supporting the
interface. In addition, the MappingFilter interface supports a read-only
attribute that identifies the constraint grammar used to parse the constraints
encapsulated by this object. The MappingFilter interface supports a
read-only attribute that identifies the typecode associated with the datatype
of the specific property value it is intended to affect. It also supports another
read-only attribute which holds the default value which is returned as the
result of a match operation in cases when the event in question is found to
satisfy none of the constraints encapsulated by the mapping filter. Lastly, the
MappingFilter interface supports three variants of the operation which are
invoked by an associated proxy object upon receipt of an event, to determine
how the property of the event which the target mapping filter object was
designed to affect should be modified.

MappingFilter::constraint_grammar

readonly attribute string constraint_grammar;

Identifies the grammar used to parse the constraint expressions encapsulated
by the target mapping filter. The value of this attribute is set upon creation of
a mapping filter.

A filter object�s constraints must be expressed using a particular constraint
grammar because its member match operations must be able to parse the
constraints to determine whether or not a particular event satisfies one of
them.
993

Orbix supports an implementation of the MappingFilter object which
supports the default constraint grammar described in the CORBA
Notification Service Guide. constraint_grammar is set to the value
EXTENDED_TCL when the target mapping filter supports this default grammar.

Users may provide additional implementations of the MappingFilter
interface which support different constraint grammars, and thus set the
constraint_grammar attribute to a different value when creating such a
mapping filter.

MappingFilter::value_type

readonly attribute CORBA::TypeCode value_type;

Identifies the datatype of the property value that the target mapping filter is
designed to affect. Note that the factory creation operation for mapping filters
accepts as an input parameter the default_value to associate with the
mapping filter instance. This default_value is a CORBA::Any. Upon creation
of a mapping filter, the typecode associated with the default_value is
abstracted from the CORBA::Any, and its value is assigned to this attribute.

MappingFilter::default_value

readonly attribute any default_value;

The value returned as the result of any match operation during which the input
event does not satisfy any of the constraints encapsulated by the mapping filter.
The value of this attribute is set upon creation of a mapping filter object
instance.

MappingFilter::add_mapping_constraints()

MappingConstraintInfoSeq add_mapping_constraints (
 in MappingConstraintPairSeq pair_list)
 raises (InvalidConstraint, InvalidValue);

Returns a sequence of structures which contain one of the input constraint
expressions, its corresponding value, and the unique identifier assigned to
this constraint-value pair by the target filter.
 994

CosNotifyFilter Exceptions
If one or more of the constraints passed into add_mapping_constraints() is
invalid, none of the constraints are added to the target mapping filter.

Note: Once add_mapping_constraints is invoked by a client, the target
filter is temporarily disabled from use by any proxy it may be associated with.
Upon completion of the operation, the target filter is re-enabled and can once
again be used by associated proxies to make event property mapping
decisions.

Parameters

Exceptions

MappingFilter::modify_mapping_constraints()

void modify_mapping_constraints (
 in ConstraintIDSeq del_list,
 in MappingConstraintInfoSeq modify_list)
 raises(InvalidConstraint,
 InvalidValue,
 ConstraintNotFound);

pair_list A sequence of constraint-value pairs. Each constraint in
this sequence must be expressed in the constraint gram-
mar supported by the target object, and each associated
value must be of the data type indicated by the
value_type attribute of the target object.

InvalidConstraintRaised if any of the constraint expressions in the input
sequence is not a valid expression. This exception con-
tains the constraint that was determined to be invalid.

InvalidValue Raised if any of the values supplied in the input
sequence are not of the same datatype as that indicated
by the target object�s value_type attribute. This excep-
tion contains the invalid value and its corresponding con-
straint.
995

Modifies the constraint-value pairs associated with the target mapping filter.
This operation can remove constraint-value pairs currently associated with the
target mapping filter, and to modify the constraints and/or values of con-
straint-value pairs currently associated with the target mapping filter.

If an exception is raised during the operation, no changes are made to the
filter�s constraints.

Note: Once modify_mapping_constraints() is invoked by a client, the
target mapping filter is temporarily disabled from use by any proxy it may be
associated with. Upon completion of the operation, the target mapping filter
is re-enabled and can be used by associated proxies to make event property
mapping decisions.

Parameters

Exceptions

del_list A sequence of unique identifiers associated with one of the
constraint-value pairs currently encapsulated by the target
mapping filter. If all input values are valid, the specific
constraint-value pairs identified by the values contained in
this parameter are deleted from the mapping filter�s list of
constraint-value-pairs.

modify_list A sequence of structures containing a constraint structure,
an Any value, and a numeric identifier. The numeric iden-
tifier of each element is the unique identifier associated
with one of the constraint-value pairs currently encapsu-
lated by the target filter object. The constraint-value pairs
identified are modified to the values specified in the input
list.

ConstraintNotFoundRaised if any of the identifiers in either of the input
sequences does not correspond to the unique identifier
associated with a constraint-value pair encapsulated by
the target mapping filter. This exception contains the
identifier which did not correspond to a constraint-value
pair encapsulated by the target object.
 996

CosNotifyFilter Exceptions
MappingFilter::get_mapping_constraints()

MappingConstraintInfoSeq get_mapping_constraints (
 in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

Returns a sequence of constraint-value pairs associated with the target
mapping filter.

Parameters

Exceptions

MappingFilter::get_all_mapping_constraints()

MappingConstraintInfoSeq get_all_mapping_constraints();

Returns all of the constraint-value pairs encapsulated by the target mapping
filter.

InvalidConstraint Raised if any of the constraint expressions supplied in
an element of the second input sequence is not valid.
This exception contains the constraint that was deter-
mined to be invalid.

InvalidValue Raised if any of the values in the second input sequence
is not of the same datatype as that indicated by the
mapping filter�s value_type attribute. This exception
contains the invalid value and its corresponding con-
straint expression.

id_list A sequence of unique identifiers for constraint-value pairs
encapsulated by the target object.

ConstraintNotFoundOne of the input values does not correspond to the
identifier of an encapsulated constraint-value pair. The
exception contains the identifier that did not correspond
to a constraint-value pair.
997

MappingFilter::remove_all_mapping_constraints

void remove_all_mapping_constraints();

Removes all of the constraint-value pairs currently encapsulated by the target
mapping filter. Upon completion, the target mapping filter still exists but has
no constraint-value pairs associated with it.

MappingFilter::destroy()

void destroy();

Destroys the target mapping filter, and invalidates its object reference.

MappingFilter::match()

boolean match(in any filterable_data, out any result_to_set)
 raises (UnsupportedFilterableData);

Determines how to modify some property value of an event in the form of a
CORBA::Any.

The target mapping filter begins applying the its constraints according to
each constraint�s associated value, starting with the constraint with the best
associated value for the specific property the mapping filter is designed to
affect (for example, the highest priority, the longest lifetime, and so on), and
ending with the constraint with the worst associated value.

Upon encountering a constraint which the event matches, the operation sets
result_to_set to the value associated with the matched constraint, and
returns with a value of TRUE. If the event does not satisfy any of the target
mapping filter�s constraints, the operation sets result_to_set to the value of
the target mapping filter�s default_value attribute and returns with a value
of FALSE.

The act of determining whether or not a given event passes a given filter
constraint is specific to the grammar used to parse the filter constraints.

Parameters

filterable_data An Any containing the event being evaluated
 998

CosNotifyFilter Exceptions
Exceptions

MappingFilter::match_structured()

boolean match_structured (
 in CosNotification::StructuredEvent filterable_data,
 out any result_to_set)
 raises (UnsupportedFilterableData);

Determines how to modify some property value of a structured event.

The target mapping filter begins applying the its constraints according to
each constraints associated value, starting with the constraint with the best
associated value for the specific property the mapping filter is designed to
affect (for example, the highest priority, the longest lifetime, and so on), and
ending with the constraint with the worst associated value.

Upon encountering a constraint which the event matches, the operation sets
result_to_set to the value associated with the matched constraint, and
returns with a value of TRUE. If the event does not satisfy any of the target
mapping filter�s constraints, the operation sets result_to_set to the value of
the target mapping filter�s default_value attribute and returns with a value
of FALSE.

The act of determining whether or not a given event passes a given filter
constraint is specific to the grammar used to parse the filter constraints.

Parameters

result_to_set An Any containing the value and the property name to set
when an event evaluates to TRUE.

UnsupportedFilterableDataThe input parameter contains data that the
match operation is not designed to handle.

filterable_data A CosNotification::StructuredEvent containing the
event being evaluated.

result_to_set An Any containing the value and the property name to set
when an event evaluates to TRUE.
999

Exceptions

UnsupportedFilterableDatThe input parameter contains data that
match_structured() is not designed to handle.
 1000

CosNotifyFilter Exceptions
CosNotifyFilter::FilterFactory
Interface

interface FilterFactory {
 Filter create_filter (
 in string constraint_grammar)
 raises (InvalidGrammar);

 MappingFilter create_mapping_filter (
 in string constraint_grammar,
 in any default_value)
 raises(InvalidGrammar);
};

The FilterFactory interface defines operations for creating filter.

FilterFactory::create_filter()

Filter create_filter (in string constraint_grammar)
 raises (InvalidGrammar);

Creates a forwarding filter object and returns a reference to the new filter.

Parameters

Exceptions

FilterFactory::create_mapping_filter()

MappingFilter create_mapping_filter (
 in string constraint_grammar,

constraint_grammarA string identifying the grammar used to parse con-
straints associated with this filter.

InvalidGrammarThe client invoking this operation supplied the name of a
grammar that is not supported by any forwarding filter
implementation this factory is capable of creating.
1001

 in any default_value)
 raises(InvalidGrammar);

Creates a mapping filter object and returns a reference to the new mapping
filter.

Parameters

Exceptions

constraint_grammarA string parameter identifying the grammar used to
parse constraints associated with this filter.

default_value An Any specifying the default_value of the new map-
ping filter.

InvalidGrammarThe client invoking this operation supplied the name of a
grammar that is not supported by any mapping filter imple-
mentation this factory is capable of creating.
 1002

CosNotifyFilter Exceptions
CosNotifyFilter::FilterAdmin Interface
interface FilterAdmin {
 FilterID add_filter (in Filter new_filter);

 void remove_filter (in FilterID filter)
 raises (FilterNotFound);

 Filter get_filter (in FilterID filter)
 raises (FilterNotFound);

 FilterIDSeq get_all_filters();

 void remove_all_filters();
};

The FilterAdmin interface defines operations enabling an object supporting
this interface to manage a list of filters, each of which supports the Filter
interface. This interface is an abstract interface which is inherited by all of
the proxy and admin interfaces defined by the notification service.

FilterAdmin::add_filter()

FilterID add_filter(in Filter new_filter);

Appends a filter to the list of filters associated with the target object upon which
the operation was invoked and returns an identifier for the filter.

Parameters

FilterAdmin::remove_filter()

void remove_filter(in FilterID filter)
 raises (FilterNotFound);

Removes the specified filter from the target object�s list of filters.

new_filter A reference to an object supporting the Filter interface.
1003

Parameters

Exceptions

FilterAdmin::get_filter()

Filter get_filter (in FilterID filter)
 raises (FilterNotFound);

Returns the object reference to the specified filter.

Parameters

Exceptions

FilterAdmin::get_all_filters()

FilterIDSeq get_all_filters();

Returns the list of unique identifiers corresponding to all of the filters associated
with the target object.

FilterAdmin::remove_all_filters()

void remove_all_filters();

Removes all filters from the filter list of the target object.

filter A numeric value identifying a filter associated with the tar-
get object

FilterNotFoundThe identifier does not correspond to a filter associated with
the target object.

filter A numeric value identifying a filter associated with the tar-
get object

FilterNotFoundThe identifier does not correspond to a filter associated with
the target object.
 1004

CosNotification Module
The CosNotification module defines the structured event data type, and a
data type used for transmitting sequences of structured events. In addition,
this module provides constant declarations for each of the standard quality of
service (QoS) and administrative properties supported by the notification
service. Some properties also have associated constant declarations to
indicate their possible settings. Finally, administrative interfaces are defined
for managing sets of QoS and administrative properties.

CosNotification Data Types

CosNotification::StructuredEvent Data Structure

//IDL
struct EventType {
 string domain_name;
 string type_name;
};

struct FixedEventHeader {
 EventType event_type;
 string event_name;
};

struct EventHeader {
 FixedEventHeader fixed_header;
 OptionalHeaderFields variable_header;
};

struct StructuredEvent {

 EventHeader header;
 FilterableEventBody filterable_data;
 any remainder_of_body;
1005

}; // StructuredEvent

The StructuredEvent data structure defines the fields which make up a
structured event. A detailed description of structured events is provided in the
CORBA Notification Service Guide.

CosNotification::EventTypeSeq Type

//IDL
struct EventType {
 string domain_name;
 string type_name;
};
typedef sequence <EventType> EventTypeSeq

CosNotification::EventBatch Type

The CosNotification module defines the EventBatch data type as a
sequence of structured events. The CosNotifyComm module defines interfaces
supporting the transmission and receipt the EventBatch data type.

QoS and Administrative Constant Declarations
The CosNotification module declares several constants related to QoS
properties, and the administrative properties of event channels.

// IDL in CosNotification module
const string EventReliability = "EventReliability";
const short BestEffort = 0;
const short Persistent = 1;

const string ConnectionReliability = "ConnectionReliability";
// Can take on the same values as EventReliability

const string Priority = "Priority";
const short LowestPriority = -32767;
const short HighestPriority = 32767;
const short DefaultPriority = 0;
 1006

QoS and Admin Data Types
const string StartTime = "StartTime";
// StartTime takes a value of type TimeBase::UtcT

const string StopTime = "StopTime";
// StopTime takes a value of type TimeBase::UtcT

const string Timeout = "Timeout";
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = "OrderPolicy";
const short AnyOrder = 0;
const short FifoOrder = 1;
const short PriorityOrder = 2;
const short DeadlineOrder = 3;

const string DiscardPolicy = "DiscardPolicy";
// DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = "MaximumBatchSize";
// MaximumBatchSize takes on a value of type long

const string PacingInterval = "PacingInterval";
/ PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = "StartTimeSupported";
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = "StopTimeSupported";
// StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = "MaxEventsPerConsumer";
// MaxEventsPerConsumer takes on a value of type long

QoS and Admin Data Types
The CosNotification module defines several data types related to QoS
properties, and the administrative properties of event channels.
1007

CosNotification::PropertyName Type

typedef string PropertyName;

PropertyName is a string holding the name of a QoS or an Admin property.

CosNotification::PropertyValue Type

typedef any PropertyValue;

PropertyValue is an any holding the setting of QoS or Admin properties.

CosNotification::PropertySeq Type

//IDL in CosNotification module
struct Property
 {
 PropertyName name;
 PropertyValue value;
 };
typedef sequence <Property> PropertySeq;

PropertySeq is a set of name-value pairs that encapsulate QoS or Admin
properties and their values.

Members

CosNotification::QoSProperties Type

typedef PropertySeq QoSProperties;

QoSProperties is a name-value pair of PropertySeq used to specify QoS
properties.

name A string identifying the QoS or Admin property.

value An Any containing the setting of the QoS or Admin property.
 1008

QoS and Admin Data Types
CosNotification::AdminProperties Type

typedef PropertySeq AdminProperties;

AdminProperties is a name-value pair of PropertySeq used to specify Admin
properties.

CosNotification::QoSError_code Enum

enum QoSError_code
{
 UNSUPPORTED_PROPERTY,
 UNAVAILABLE_PROPERTY,
 UNSUPPORTED_VALUE,
 UNAVAILABLE_VALUE,
 BAD_PROPERTY,
 BAD_TYPE,
 BAD_VALUE
};

QoSError_code specifies the error codes for UnsupportedQoS and
UnsupportedAdmin exceptions. The return codes are:

UNSUPPORTED_PROPERTYOrbix does not support the property for this type of
object

UNAVAILABLE_PROPERTYThis property cannot be combined with existing QoS
properties.

UNSUPPORTED_VALUE The value specified for this property is invalid for the
target object.

UNAVAILABLE_VALUE The value specified for this property is invalid in the
context of other QoS properties currently in force.

BAD_PROPERTY The property name is unknown.

BAD_TYPE The type supplied for the value of this property is
incorrect.

BAD_VALUE The value specified for this property is illegal.
1009

CosNotification::PropertyErrorSeq Type

// IDL from CosNotification module
 struct PropertyRange
 {
 PropertyValue low_val;
 PropertyValue high_val;
 };

 struct PropertyError
 {
 QoSError_code code;
 PropertyName name;
 PropertyRange available_range;
 };
 typedef sequence <PropertyError> PropertyErrorSeq;

A PropertyErrorSeq is returned when UnsupportedQoS or UnsupportedAdmin
is raised. It specifies a sequence containing the reason for the exception, the
property that caused it, and a range of valid settings for the property.

CosNotification::NamedPropertyRangeSeq Type

struct NamedPropertyRange
 {
 PropertyName name;
 PropertyRange range;
 };
typedef sequence <NamedPropertyRange> NamedPropertyRangeSeq;

Specifies a range of values for the named property.

QoS and Admin Exceptions
The CosNotification module defines two exceptions related to QoS
properties, and the administrative properties of event channels.
 1010

QoS and Admin Exceptions
CosNotification::UnsupprtedQoS

exception UnsupportedQoS { PropertyErrorSeq qos_err; };

Raised when setting QoS properties on notification channel objects, or when
validating QoS properties. It returns with a PropertyErrorSeq specifying the
reason for the exception, which property was invalid, and a list of valid settings
for the QoS property.

CosNotification::UnsupportedAdmin

exception UnsupportedAdmin { PropertyErrorSeq admin_err; };

Raised when setting Admin properties on notification channels. It returns with
a PropertyErrorSeq specifying the reason for the exception, which property
was invalid, and a list of valid settings for the property.
1011

CosNotification::QoSAdmin Interface
//IDL
interface QoSAdmin {
 QoSProperties get_qos();
 void set_qos (in QoSProperties qos)
 raises (UnsupportedQoS);
 void validate_qos (
 in QoSProperites required_qos,
 out NamedPropertyRangeSeq available_qos)
 raises (UnsupportedQoS);

The QoSAdmin interface defines operations enabling clients to manage the
values of QoS properties. It also defines an operation to verify whether or not
a set of requested QoS property settings can be satisfied, along with returning
information about the range of possible settings for additional QoS properties.
QoSAdmin is an abstract interface which is inherited by the proxy, admin, and
event channel interfaces defined in the CosNotifyChannelAdmin module.

QoSAdmin::get_qos()

QoSProperites get_qos();

Returns a sequence of name-value pairs encapsulating the current quality of
service settings for the target object (which could be an event channel,
admin, or proxy object).

QoSAdmin::set_qos()

void set_qos (in QoSProperites qos)
 raises (UnsupportedQoS);

Sets the specified QoS properties on the target object (which could be an
event channel, admin, or proxy object).

Parameters

qos A sequence of name-value pairs encapsu-
lating quality of service property settings
 1012

QoS and Admin Exceptions
Exceptions

QoSAdmin::validate_qos()

void validate_qos (
 in QoSProperites required_qos,
 out NamedPropertyRangeSeq available_qos)
 raises (UnsupportedQoS);

Enables a client to discover if the target object is capable of supporting a set
of QoS settings. If all requested QoS property value settings can be satisfied
by the target object, the operation returns successfully (without actually
setting the QoS properties on the target object).

Parameters

Exceptions

UnsupportedQoSThe implementation of the target object is incapable of sup-
porting some of the requested quality of service settings, or
one of the requested settings are in conflict with a QoS prop-
erty defined at a higher level of the object hierarchy.

required_qos A sequence of QoS property name-value
pairs specifying a set of QoS settings.

available_qos An output parameter that contains a
sequence of NamedPropertyRange. Each
element in this sequence includes the name
of a an additional QoS property supported
by the target object which could have been
included on the input list and resulted in a
successful return from the operation, along
with the range of values that would have
been acceptable for each such property.

UnsupportedQoSRaised if If any of the requested settings cannot be satisfied
by the target object.
1013

CosNotification::
AdminPropertiesAdmin Interface

//IDL
interface AdminPropertiesAdmin {
 AdminProperites get_admin();
 void set_admin (in AdminProperites admin)
 raises (UnsupportedAdmin);
};

The AdminPropertiesAdmin interface defines operations enabling clients to
manage the values of administrative properties. This interface is an abstract
interface which is inherited by the Event Channel interfaces defined in the
CosNotifyChannelAdmin module.

AdminPropertiesAdmin::get_admin()

AdminProperites get_admin();

Returns a sequence of name-value pairs encapsulating the current
administrative settings for the target channel.

AdminPropertiesAdmin::set_admin()

void set_admin (in AdminProperites admin)
 raises (UnsupportedAdmin);

Sets the specified administrative properties on the target object.

Parameters

Exceptions

admin A sequence of name-value pairs encapsu-
lating administrative property settings.

UnsupportedAdmin Raised if If any of the requested settings cannot be satis-
fied by the target object.
 1014

 JMS-Notification

Bridge Service

JMS-Notification Bridge Service
Overview

This part lists the IDL definitions in the Application Server Platform�s
JMS-Notification bridge service�s modules.

The bridge service is composed of the following IONA specific interfaces,
listed in messaging_bridge.idl, messaging_bridge_admin.idl, and
notify_bridge.idl:

� �IT_MessagingBridge::Endpoint Interface�
� �IT_MessagingBridge::SinkEndpoint Interface�
� �IT_MessagingBridge::SourceEndpoint Interface�
� �IT_MessagingBridge::EndpointAdmin Interface�
� �IT_MessagingBridgeAdmin::Bridge Interface�
� �IT_MessagingBridgeAdmin::BridgeAdmin Interface�
� �IT_NotifyBridge::SinkEndpoint Interface�

These interfaces support the bridging of enterprise messaging services as
described in the Applicaiton Server Platform Enterprise Messaging Guide.
1017

 1018

IT_MessagingBridge Module
IT_MessagingBridge defines the data types, exceptions, and interfaces used
to establish and manage the endpoints of a bridge. The following interfaces
are defined in IT_MessagingBridge:

� IT_MessagingBridge::Endpoint Interface
� IT_MessagingBridge::SinkEndpoint Interface
� IT_MessagingBridge::SourceEndpoint Interface
� IT_MessagingBridge::EndpointAdmin Interface

IT_MessagingBridge Data Types

IT_MessagingBridge::BridgeName

typedef string BridgeName;

BridgeName specifies the unique identifier of a bridge.

IT_MessagingBridge::BridgeNameSeq

typedef sequence<BridgeName> BridgeNameSeq;

BridgeNameSeq contains a list of bridge names and is the type returned by
IT_MessagingBridgeAdmin::BridgeAdmin::list_all_bridges().

IT_MessagingBridge::EndpointName

typedef string EndpointName;

EndpointName uniquely identifies the name of the messaging object with which
the endpoint is associated. For example, the EndpointName could be the name
of a notification channel, a JMS topis, or a JMS queue.
1019

IT_MessagingBridge::EndpointType

typedef short EndpointType;

const EndpointType JMS_TOPIC = 1;
const EndpointType JMS_QUEUE = 2;
const EndpointType NOTIFY_CHANNEL = 3;

EndpointType specifys what type of messaging object to which the endpoint
is going to connect. It can take one of three constant values:

IT_MessagingBridge::EndpointTypeSeq

typedef sequeunce<EndpointType> EndpointTypeSeq;

EndpointTypeSeq specifies a list of endpoint types.

IT_MessagingBridge::EndpointAdminName

typedef string EndpointAdminName;

EndpointAdminName specifies the unique identifier assigned to an endpoint
admin object.

IT_MessagingBridge::InvalidEndpointCode

typedef short InvalidEndpointCode;

const InvalidEndpointCode INVALID_TYPE = 1;
const InvalidEndpointCode INVALID_NAME = 2;

Table 23: EndpointTypes and the associated messaging objects

EndpointType Messaging Object

JMS_TOPIC JMS Topic

JMS_QUEUE JMS Queue

NOTIFY_CHANNEL Notification Channel
 1020

IT_MessagingBridge Module
const InvalidEndpointCode UNSUPPORTED_TYPE = 3;
const InvalidEndpointCode INCOMPATIBLE_TYPE = 4;
const InvalidEndpointCode SAME_AS_PEER = 5;
const InvalidEndpointCode DOES_NOT_EXIST = 6;

InvalidEndpointCode specifies the return code of the InvalidEndpoint ex-
ception.

IT_MessagingBridge Exceptions

IT_MessaingBridge::InvalidEndpoint

exception InvalidEndpoint {InvalidEndpointCode code;};

InvalidEndpoint is raised when an endpoint is incorrectly specified. Its return
code specifies the reason the endpoint is invalid. The return code will be one
of the following:

Table 24: InvalidEndpoint return codes and their explanation

InvalidEndpointCode Explanation

INVALID_TYPE The EndpointType was not recognized.

INVALID_NAME The EndpointName is not valid for the specified
EndpointType.

UNSUPPORYED_TYPE The EndpointAdmin does not support the speci-
fied type of endpoint.

INCOMPATIBLE_TYPE The EndpointType of the endpoints being con-
nected are incompatible. For example a
JMS_TOPIC cannot be connected to a JMS_QUEUE.

SAME_AS_PEER The EndpointType of the endpoint being con-
nected to is the same as the current endpoint.

DOES_NOT_EXIST The endpoint specified by EndpointName does not
exist.
1021

IT_MessagingBridge::EndpointAlreadyConnected

exception EndpointAlreadyConnected {};

EndpointAlreadyConnected is raised when an attempt is made to connect an
endpoint that is already connected to a peer.

IT_MessagingBridge::BridgeNameNotFound

exception BridgeNameNotFound {};

BridgeNameNotFound is raised when the bridge with the specified name is not
found.

IT_MessagingBridge::BridgeNameAlreadyExists

exception BridgeNameAlreadyExists {};

BridgeNameAlreadyExists is raised when an attempt to create a bridge with
a name already in use is made.
 1022

IT_MessagingBridge::Endpoint Interface
IT_MessagingBridge::Endpoint
Interface

interface Endpoint
{
 readonly attribute BridgeName bridge_name;
 readonly attribute EndpointType type;
 readonly attribute EndpointName name;
 readonly attribute EndpointAdmin admin;
 readonly attribute Endpoint peer;
 readonly attribute boolean connected;

 void connect(in Endpoint peer)
 raises (InvalidEndpoint, EndpointAlreadyConnected);

 void destroy();
};

Endpoint is a generic interface used to specify a bridge endpoint. This is
recomended interface for developers to use when working with bridge
endpoints. Defines the attributes used to specify the type of endpoint, the
bridge is is associated with, and if the endpoint is actively in use by a bridge.
The interface also specifies an operation for connecting an endpoint to a peer
endpoint and an operation for releasing the resources used by an endpoint. In
general, the connection of endpoints to peers and the destructions of specific
endpoints is handled by the bridge service when a bridge is created or
detoryed.

Endpoint::bridge_name

readonly attribute BridgeName bridge_name;

bridge_name specifies the name of the bridge with which the bridge is
associated.
1023

Endpoint::type

readonly attribute EndpointType type;

type specifies the type of messaging object to which the endpoint is connected.

Endpoint::name

readonly attribute EndpointName name;

name specifies the unique identifier of the endpoint.

Endpoint::admin

readonly attribute EndpointAdmin admin;

admin is a reference to the EndpointAdmin associated with the endpoint.

Endpoint::peer

readonly attribute Endpoint peer;

peer is a reference to the endpoint on the other end of the bridge. If the endpoint
is not connected to a peer, this reference is nul.

Endpoint::connected

readonly attribute boolean connected;

connected specifies if the endpoint is actively connected to a peer endpoint.

Endpoint::connect()

void connect(in Endpoint peer)
raises (InvalidEndpoint, EndpointAlreadyConnected);

connect() creates a connection between the current endpoint and the endpoint
passed into the operation. This operation is called by the bridge service when
a bridge is create.
 1024

IT_MessagingBridge::Endpoint Interface
Parameters

Exceptions

Endpoint::destroy()

void destroy();

Destroys the endpoint and releases all resources used to support it.

peer Specifies the endpoint that is being connected to.

InvalidEndpoint The specified endpoint is invalid. The return
code provides the details explaining the rea-
son.

EndpointAlreadyConnected One of the endpoints is already connected to a
peer endpoint.
1025

IT_MessagingBridge::SinkEndpoint
Interface

interface SinkEndpoint : Endpoint
{
};

SinkEndpoint is a specialization of the generic IT_MessagingBridge::
Endpoint interface. Ii is used to specify an endpoint that recieves messages
from the bridge and foward the messages onto the recieving service. It
defines no specific operations.
 1026

IT_MessagingBridge::SourceEndpoint Interface
IT_MessagingBridge::SourceEndpoint
Interface

interface SourceEndpoint : Endpoint
{
 void start();

 void suspend();

 void stop();
};

SourceEndpoint is a specialization of the generic IT_MessagingBridge::
Endpoint interface. It is used to specify an endpoint that takes messages
from the forwarding service and passes the messages into the bridge. It
defines three operations for controling the flow of messages through the
endpoint.

SourceEndpoint::start()

void start();

start() begins the flow of messages to the bridge.

SourceEndpoint::suspend()

void suspend();

susspend() stops the flow of messages to the bridge, but causes the endpoint
to queue any incomming messages for delivery. Once the flow of messages is
restarted, the queued messages will be pass to the bridge.

SourceEndpoint::stop()

void stop();

stop() completely stops the flow of messages to the bridge.
1027

IT_MessagingBridge::EndpointAdmin
Interface

interface EndpointAdmin
{
 readonly attribute EndpointAdminName name;
 readonly attribute EndpointTypeSeq supported_types;

 SinkEndpoint create_sink_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
 raises (InvalidEndpoint, BridgeNameAlreadyExists);

 SourceEndpoint create_source_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
 raises (InvalidEndpoint, BridgeNameAlreadyExists);

 SinkEndpoint get_sink_endpoint(in BridgeName bridge_name)
 raises (BridgeNameNotFound);

 SourceEndpoint get_source_endpoint(in BridgeName bridge_name)
 raises (BridgeNameNotFound);

 BridgeNameSeq get_all_sink_endpoints();

 BridgeNameSeq get_all_source_endpoints();
};

EndpointAdmin defines the factory operations to create and discover
endpoints. There is one EndpointAdmin object for each messaging service
that can participate in bridging.

EndpointAdmin::name

readonly attribute EndpointAdminName name;

name specifies the unique identifier of the endpoint admin object.
 1028

IT_MessagingBridge::EndpointAdmin Interface
EndpointAdmin::supported_types

readonly attribute EndpointTypeSeq supported_types;

supported_types specifies the types of endpoint that the admin object can
support. For example, the EndpointAdmin for JMS can support endpoints of
type JMS_TOPIC and JMS_QUEUE.

EndpointAdmin::create_sink_endpoint()

SinkEndpoint create_sink_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
raises (InvalidEndpoint, BridgeNameAlreadyExists);

create_sink_endpoint() creates a new SinkEndpoint of the specified type
and associates it with the specified bridge name.

Parameters

Exceptions

EndpointAdmin::create_source_endpoint()

SourceEndpoint create_source_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
raises (InvalidEndpoint, BridgeNameAlreadyExists);

create_source_endpoint() creates a new SourceEndpoint of the specified
type and associates it with the specified bridge name.

bridge_name The name of the bridge with which to associate the end-
point.

type The EndpointType of the new endpoint.

name The unique identifier to use for the endpoint.

InvalidEndpoint The type or the name specified are incorrect.
The return code will contain the details.

BridgeNameAlreadyExists
1029

Parameters

Exceptions

EndpointAdmin::get_sink_endpoint()

SinkEndpoint get_sink_endpoint(in BridgeName bridge_name)
raises (BridgeNameNotFound);

get_sink_endpoint() returns a reference to the sink endpoint of the specified
bridge.

Parameters

Exceptions

EndpointAdmin::get_source_endpoint()

SourceEndpoint get_source_endpoint(in BridgeName bridge_name)
raises (BridgeNameNotFound);

get_source_endpoint() returns a reference to the source endpoint of the
specified bridge.

Parameters

bridge_name The name of the bridge with which to associate the end-
point.

type The EndpointType of the new endpoint.

name The unique identifier to use for the endpoint.

InvalidEndpoint The type or the name specified are incorrect.
The return code will contain the details.

BridgeNameAlreadyExists

bridge_name The name of the bridge from which to get the sink endpoint.

BridgeNameNotFound No bridges with the specified name exist.

bridge_name The name of the bridge from which to get the source end-
point.
 1030

IT_MessagingBridge::EndpointAdmin Interface
Exceptions

EndpointAdmin::get_all_sink_endpoints()

BridgeNameSeq get_all_sink_endpoints();

get_all_sink_endpoints() returns a list of the names of all bridges that have
sink endpoints associated with them.

EndpointAdmin::get_all_source_endpoints()

BridgeNameSeq get_all_source_endpoints();

get_all_source_endpoints() returns a list of the names of all the bridges that
have source endpoints associated with them.

BridgeNameNotFound No bridges with the specified name exist.
1031

 1032

IT_MessagingBridgeAdmin Module
IT_MessagingBridgeAdmin defines the data, exceptions, and interfaces to
create and manage bridges. It defines the following interfaces:

� IT_MessagingBridgeAdmin::Bridge Interface
� IT_MessagingBridgeAdmin::BridgeAdmin Interface

IT_MessagingBridgeAdmin Data Types

IT_MessagingBridgeAdmin::BridgeName

typedef IT_MessagingBridge::BridgeName BridgeName;

BridgeName specifiys the uniqe identifier for a bridge object.

IT_MessagingBridgeAdmin::BridgeNameSeq

typedef IT_MessagingBridge::BridgeNameSeq BridgeNameSeq;

BridgeNameSeq contains a list of BridgeName. It is returned by
IT_MessagingBridgeAdmin::BridgeAdmin::get_all_bridges().

IT_MessagingBridgeAdmin::InvalidEndpoitCode

typedef IT_MessagingBridge::InvalidEndpointCode
InvalidEndpointCode;

InvalidEndpointCode specifies the reason for an InvalidEndpoint exception.

IT_MessagingBridgeAdmin::EndpointInfo

struct EndpointInfo
{

1033

 IT_MessagingBridge::EndpointAdmin admin;
 IT_MessagingBridge::EndpointType type;
 IT_MessagingBridge::EndpointName name;
};

EndpointInfo encapsulated the information needed to specify and endpoint
to a bridge. It has the following fields:

IT_MessagingBridgeAdmin Exceptions

IT_MessagingBridgeAdmin::CannotCreateBridge

exception CannotCreateBridge {};

CannotCreateBridge is raised when there is an error creating a bridge.

IT_MessagingBridgeAdmin::BridgeNotFound

exception BridgeNotFound {};

BridgeNotFound is raised when the bridge specified in either get_bridge() or
find_bridge() does not exist.

IT_MessagingBridgeAdmin::BridgeAlreadyExists

exception BridgeAlreadyExists {BridgeName bridge_name;};

BridgeAlreadyExists if the endpoints specified in create_bridge() are
already connected to form a bridge. It returns the name of the bridge connecting
the endpoints.

admin A reference to the EndpointAdmin associated with the endpoint. For
more information, see �IT_MessagingBridge::EndpointAdmin Inter-
face� on page 1028.

type Specifies the endpoint�s type. This correlates to the messaging ser-
vice to which the endpoint is attached. For more information, see
�IT_MessagingBridge::EndpointType� on page 1020.

name Specifies the unique identifier of the endpoint.
 1034

IT_MessagingBridgeAdmin Module
IT_MessagingBridgeAdmin::BridgeNameAlreadyExists

exception BridgeNameAlreadyExists {};

BridgeNameAlreadyExists is raised when the bridge name specified in
create_bridge() is already in use.

IT_MessagingBridgeAdmin::InvalidEndpoint

exception InvalidEndpoint
{
 EndpointInfo endpoint;
 InvalidEndpointCode code;
};

InvalidEndpoint is raised when one of the endpoints specified in
create_bridge() is invalid. The first return value is a reference to the invalid
endpoint and the second return value specifies why the endpoint is invalid.
1035

IT_MessagingBridgeAdmin::Bridge
Interface

interface Bridge
{
 readonly attribute BridgeName name;
 readonly attribute EndpointInfo source;
 readonly attribute EndpointInfo sink;

 void start();
 void suspend();
 void stop();
 void destroy();
};

Bridge specifies the attributes and operations of a uni-directional bridge
between two endpoints. The bridge maintains a reference for each of its
endpoints and provides the operations that control the flow of messages
accross the bridge. It is recomended that developers use the operation
defined on the bridge object as opposed to the operations specified by the
IT_MessagingBridge::SourceEndpoint Interface.

Bridge::name

readonly attribute BridgeName name;

name specifies the identifyer for the bridge.

Bridge::source

readonly attribute EndpointInfo source;

source specifies the endpoint from which the bridge recieves messages.
 1036

IT_MessagingBridgeAdmin::Bridge Interface
Bridge::sink

readonly attribute EndpointInfo sink;

sink specifies the endpoint to which the bridge forwards messages.

Bridge::start()

void start();

start() signals the source endpoint to begin delivering messages to the bridge.
Once the bridge begins recieving messages it fowards them the the sink
endpoint.

Bridge::suspend()

void suspend();

suspend() signals the source endpoint to suspend the flow of messages. The
bridge will not forward any messages while it is suspended, but the source
endpoint will continue to queue messages for delievery to the bridge. Once
start() has been called, the queued messages are forwarded.

Bridge::stop()

void stop();

stop() signals the source endpoint to completly halt the delivery of messages.
No messages are queued for later delivery.

Bridge::destory()

void destroy();

destroy() destroys the bridge and cleans up all the resources associated with
it, including the bridges endpoints.
1037

IT_MessagingBridgeAdmin::
BridgeAdmin Interface

interface BridgeAdmin
{
 Bridge create_bridge(in BridgeName bridge_name,
 in EndpointInfo source,
 in EndpointInfo sink)
 raises (InvalidEndpoint, BridgeAlreadyExists,
 BridgeNameAlreadyExists, CannotCreateBridge);

 Bridge get_bridge(in BridgeName bridge_name)
 raises (BridgeNotFound);

 Bridge find_bridge(in EndpointInfo source,
 in EndpointInfo sink,
 out BridgeName bridge_name)
 raises (BridgeNotFound);

 BridgeNameSeq get_all_bridges();
};

BridgeAdmin defines the factory operation for Bridge objects. It also defines
two operations to discover active bridges and one operation to list the bridges
in the service. Developers get a reference to the BridgeAdmin by using the
initial reference key "IT_Messaging".

BridgeAdmin::create_bridge()

Bridge create_bridge(in BridgeName bridge_name,
 in EndpointInfo source,
 in EndpointInfo sink)
raises (InvalidEndpoint, BridgeAlreadyExists,
 BridgeNameAlreadyExists, CannotCreateBridge);

create_bridge() creates a new uni-directional bridge between two endpoints
and returns a reference to the bridge.
 1038

IT_MessagingBridgeAdmin::BridgeAdmin Interface
Parameters

Exceptions

BridgeAdmin::get_bridge()

Bridge get_bridge(in BridgeName bridge_name)
raises (BridgeNotFound);

get_bridge() returns a reference to the specified bridge.

Parameters

Exceptions

BridgeAdmin::find_bridge()

Bridge find_bridge(in EndpointInfo source,
 in EndpointInfo sink,
 out BridgeName bridge_name)

bridge_name Specifies the unique identifier for the bridge.

source Specifies the endpoint from which the bridge will receive
messages.

sink Specifies the endpoint to which the bridge will forward mes-
sages.

InvalidEndpoint One of the specified endpoints is not a valid end-
point for the new bridge.

BridgeAlreadyExists A bridge connecting the two endpoints already
exists.

BridgeNameAlreadyExists The name specified for the bridge is already in
use.

CannotCreateBridge An unspecified error occurred while creating the
bridge.

bridge_name Specifies the name of the bridge to get.

BridgeNotFound The specified bridge does not exist.
1039

raises (BridgeNotFound);

find_bridge() returns a reference to the bridge linking the specified endpoints.
The name of the bridge is returned as a parameter to the operation.

Parameters

Exceptions

BridgeAdmin::get_all_bridges()

BridgeNameSeq get_all_bridges();

get_all_bridges() returns a list containing the names of all existing bridges.

source Specifies the endpoint from which the bridge receives mes-
sages.

sink Specifies the endpoint to which the bridge forwards mes-
sages.

bridge_name Specifies the name of the returned bridge.

BridgeNotFound The specified bridge does not exist.
 1040

IT_NotifyBridge Module
IT_NotifyBridge defines an extenstion of IT_MessagingBridge::
SinkEndpoint. This extension provides the method used by a bridge to
forward notification events.

IT_NotifyBridge Exceptions

IT_NotifyBridge::MappingFailure

exception MappingFailure {};

MappingFailure is raised when the bridge is unable to properly map messages
to a notification event.

IT_NotifyBridge::EndpointNotConnected

exception EndpointNotConnected {};

EndpointNotConnected is raised when an attempt to recieve messages through
a SinkEndpoint that is not connected to a SourceEndpoint is made.
1041

IT_NotifyBridge::SinkEndpoint
Interface

interface SinkEndpoint : IT_MessagingBridge::SinkEndpoint
{
 void send_events(in CosNotification::EventBatch events)
 raises (MappingFailure, EndpointNotConnected);
};

IT_NotifyBridge::SinkEndPoint extends the functionality of
IT_MessagingBridge::SinkEndpoint to include the ability to recieve
notification style events. Due to the inheritance from IT_MessagingBridge::
SinkEndpoint, it retains all of the functionality of a generic endpoint.
IT_NotifyBridge::SinkEndpoint recieves a batch of notification events
using the CosNotificaiton::EventBatch structure.

SinkEndpoint::send_events()

void send_events(in CosNotification::EventBatch events)
raises (MappingFailure, EndpointNotConnected);

send_events() revieves a batch of notification events from a bridge and passes
them into the recieving messaging service.

Parameters

Exceptions

events A group of notification events packaged into a
CosNotification::EventBatch.

MappingFailure The bridge encountered an error mapping the JMS
messages to notification events.

EndpointNotConnected The SinkEndpoint is not connected to a
SourceEndpoint.
 1042

 Object Transaction

Service

CosTransactions Overview
The Object Management Group�s (OMG) object transaction service (OTS)
defines interfaces that integrate transactions into the distributed object
paradigm. The OTS interface enables developers to manage transactions
under two different models of transaction propagation, implicit and explicit:

� In the implicit model, the transaction context is associated with the
client thread; when client requests are made on transactional objects,
the transaction context associated with the thread is propagated to the
object implicitly.

� In the explicit model, the transaction context must be passed explicitly
when client requests are made on transactional objects in order to
propagate the transaction context to the object.

Keep the following in mind:

� Applications must include the header file CosTransactions.hh.
� All of the OTS classes are nested within the CosTransactions

namespace. Therefore, you must prefix CosTransactions to the OTS
class and function names when using them in your application.

� All of the OTS class methods can throw the CORBA::SystemException
exception if an object request broker (ORB) error occurs.

Overview of Classes
The OTS classes provide the following functionality:

� Managing transactions under the implicit model:
Current

� Managing transactions under the explicit model:
TransactionFactory
Control
Coordinator
Terminator

� Managing resources in the CORBA environment:
1045

RecoveryCoordinator
Resource
SubtransactionAwareResource
Synchronization

� Defining transactional interfaces in the CORBA environment:
TransactionalObject

� Reporting system errors:
HeuristicCommit
HeuristicHazard
HeuristicMixed
HeuristicRollback
Inactive
InvalidControl
INVALID_TRANSACTION
NoTransaction
NotPrepared
NotSubtransaction
SubtransactionsUnavailable
TRANSACTION_MODE
TRANSACTION_REQUIRED
TRANSACTION_ROLLEDBACK
TRANSACTION_UNAVAILABLE
Unavailable

General Data Types
OTS defines enumerated data types to represent the status of a transaction
object during its lifetime and to indicate a participant�s vote on the outcome
of a transaction.

Status Enumeration Type

enum Status{
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
 1046

General Data Types
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

The Status enumerated type defines values that are used to indicate the
status of a transaction. Status values are used in both the implicit and
explicit models of transaction demarcation defined by OTS. The Current::
get_status() operation can be called to return the transaction status if the
implicit model is used. The Coordinator:: get_status() operation can be
called to return the transaction status if the explicit model is used.

The Status values indicate the following:

See Also CosTransactions::Coordinator::get_status()
CosTransactions::Current::get_status()

StatusActive Processing of a transaction is still in
progress.

StatusMarkedRollback A transaction is marked to be rolled
back.

StatusPrepared A transaction has been prepared but not
completed.

StatusCommitted A transaction has been committed and
the effects of the transaction have been
made permanent.

StatusRolledBack A transaction has been rolled back.

StatusUnknown The status of a transaction is unknown.

StatusNoTransaction A transaction does not exist in the
current transaction context.

StatusPreparing A transaction is preparing to commit.

StatusCommitting A transaction is in the process of
committing.

StatusRollingBack A transaction is in the process of rolling
back.
1047

Vote Enumeration Type

enum Vote{
VoteCommit,
VoteRollback,
VoteReadOnly

};

The Vote enumerated type defines values for the voting status of transaction
participants. The participants in a transaction each vote on the outcome of a
transaction during the two-phase commit process. In the prepare phase, a
Resource object can vote whether to commit or abort a transaction. If a
Resource has not modified any data as part of the transaction, it can vote
VoteReadOnly to indicate that its participation does not affect the outcome of
the transaction. The Vote values specify the following:

See Also CosTransactions::Resource

OTSPolicyValue Data Type

typedef unsigned short OTSPolicyValue;
const OTSPolicyValue REQUIRES = 1;
const OTSPolicyValue FORBIDS = 2;
const OTSPolicyValue ADAPTS = 3;
const CORBA::PolicyType OTS_POLICY_TYPE = 56;

The OTSPolicyValue data type is used to create POA policy objects that
define behavior of objects during invocations, both with and without a current
transaction.

The CORBA::ORB::create_policy() operation is used to create the policy
objects (passing in the appropriate OTSPolicyValue value). The policy object
is passed in the list of policy objects passed to PortableServer::POA::
create_POA().

VoteCommit The value used to indicate a vote to commit a
transaction.

VoteRollback The value used to indicate a vote to abort (rollback) a
transaction.

VoteReadOnly The value used to indicate no vote on the outcome of a
transaction.
 1048

General Data Types
The OTSPolicyValue values indicate the following:

You cannot create a POA that mixes the OTSPolicyValue FORBIDS or ADAPTS
values with the InvocationPolicyValue EITHER or UNSHARED values.
Attempting to do so raises PortableServer::InvalidPolicy exception.

Examples The following example shows the ADAPTS value:

//C++
CORBA::ORB_var orb = ...
CORBA::Any policy_val;
policy_val <<= CosTransactions::ADAPTS;
CORBA::Policy_var policy =
 orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_val);

See Also CosTransactions::NonTxTargetPolicyValue
CosTransactions::TransactionalObject

InvocationPolicyValue Data Type

typedef unsigned short InvocationPolicyValue;
const InvocationPolicyValue EITHER = 0;
const InvocationPolicyValue SHARED = 1;
const InvocationPolicyValue UNSHARED = 2;
const CORBA::PolicyType INVOCATION_POLICY_TYPE = 55;

The InvocationPolicyValue data type is used to create POA policy objects
that define the behavior of objects with respect to the shared and unshared
transaction models.

REQUIRES The target object depends on the presence of a
transaction. If there is no current transaction, a
TRANSACTION_REQUIRED system exception is raised.

FORBIDS The target object depends on the absence of a transaction.
If there is a current transaction, the INVALID_TRANSACTION
system exception is raised. When there is no current
transaction, the behavior of the FORBIDS policy is also
affected by the NonTxTargetPolicy.

ADAPTS The target object is invoked within the current transaction,
whether there is one or not.
1049

The shared transaction model represents a standard end-to-end transaction
that is shared between the client and the target object. The unshared
transaction model uses asynchronous messaging where separate transactions
are used along the invocation path. Hence, the client and the target object do
not share the same transaction.

The CORBA::ORB::create_policy() operation is used to create the policy
objects (passing in the appropriate InvocationPolicyValue). The policy
object is passed in the list of policy objects passed to PortableServer::POA:
:create_POA().

The InvocationPolicyValue data type values indicate the following:

You cannot create a POA that mixes the InvocationPolicyValue EITHER or
UNSHARED values with the OTSPolicyValue FORBIDS or ADAPTS values.
Attempting to do this raises a PortableServer::InvalidPolicy exception.

If no InvocationPolicy object is passed to create_POA(), the
InvocationPolicy defaults to SHARED.

Note: The unshared transaction model is not supported in this release.

Examples The following example shows the SHARED value:

//C++
CORBA::ORB_var orb = ...
CORBA::Any policy_val;
policy_val <<= CosTransactions::SHARED;
CORBA::Policy_var policy =
 orb->create_policy(CosTransactions::INVOCATION_POLICY_TYPE,
 policy_val);

See Also CosTransactions::OTSPolicyValue
CosTransactions::NonTxTargetPolicyValue

EITHER The target object supports both shared and unshared
invocations.

SHARED The target object supports synchronous invocations and
asynchronous includes that do not involve a routing
element.

UNSHARED The target object.
 1050

General Data Types
NonTxTargetPolicyValue Data Type

typedef unsigned short NonTxTargetPolicyValue;
const NonTxTargetPolicyValue PREVENT = 0;
const NonTxTargetPolicyValue PERMIT = 1;
const CORBA::PolicyType NON_TX_TARGET_POLICY_TYPE = 57;

The NonTxTargetPolicyValue data type is used to create policy objects used
by clients to affect the behavior of invocations on objects with an OTSPolicy
of FORBIDS.

The CORBA::ORB::create_policy() operation creates the policy objects
(passing the appropriate NonTxTargetPolicyValue). The policy object is
passed in the list of policy objects passed to CORBA::PolicyManager::
set_policy_overrides() and CORBA::PolicyCurrent::
set_policy_overrides().

See the CORBA::PolicyCurrent and CORBA::PolicyManager classes for more
details on setting policies.

The behavior of the NonTxTargetPolicy values apply to invocations where
there is a current transaction and the target object has the OTSPolicyValue
of FORBIDS. The NonTxTargetPolicy values indicate the following:

The default NonTxTargetPolicy is PREVENT.

Examples The following example shows the PERMIT value:

//C++
CORBA::ORB_var orb = ...
CORBA::Any policy_val;
policy_val <<= CosTransactions::PERMIT;
CORBA::Policy_var policy =
 orb->create_policy(CosTransactions::NON_TX_TARGET_POLICY_TYPE,
 policy_val);

See Also CosTransactions::OTSPolicyValue
CosTransactions::InvocationPolicyValue

PREVENT The invocation is prevented from proceeding and the
system exception INVALID_TRANSACTION is raised.

PERMIT The invocation proceeds but not in the context of the
current transaction.
1051

TransactionPolicyValue Data Type

typedef unsigned short TransactionPolicyValue;
const TransactionPolicyValue Allows_shared = 0;
const TransactionPolicyValue Allows_none = 1;
const TransactionPolicyValue Requires_shared = 2;
const TransactionPolicyValue Allows_unshared = 3;
const TransactionPolicyValue Allows_either = 4;
const TransactionPolicyValue Requires_unshared = 5;
const TransactionPolicyValue Requires_either = 6;
const CORBA::PolicyType TRANSACTION_POLICY_TYPE = 36;

The TransactionalPolicyValue data type has been deprecated and replaced
with the OTSPolicyValue and InvocationPolicyValue types.

The TransactionalPolicyValue data type has been retained in this release
for backward compatibility. See the CORBA Programmer�s Guide for details
of interoperability with previous Orbix releases.

General Exceptions
Errors are handled in OTS by using exceptions. Exceptions provide a way of
returning error information back through multiple levels of procedure or
method calls, propagating this information until a method or procedure is
reached that can respond appropriately to the error.

Each of the following exceptions are implemented as classes. The exceptions
are shown here in two tables: one for the OTS exceptions and another for the
system exceptions.

Table 25: OTS Exceptions

Exception Description

HeuristicCommit This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that all updates have been committed.
See Also:

Resource class
 1052

General Exceptions
HeuristicHazard This exception is thrown to report that a heuristic
decision has possibly been made by one or more
participants in a transaction and the outcome of all
participants in the transaction is unknown. See Also:

Current::commit()
Resource class
Terminator::commit()

HeuristicMixed This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that some updates have been committed
and others rolled back. See Also:

Current::commit()
Resource class
Terminator::commit()

HeuristicRollback This exception is thrown to report that a heuristic
decision was made by one or more participants in a
transaction and that all updates have been rolled back.
See Also:

Resource class

Inactive This exception is thrown when a transactional operation
is requested for a transaction, but that transaction is
already prepared. See Also:

Coordinator::create_subtransaction()
Coordinator::register_resource()
Coordinator::register_subtran_aware()
Coordinator::rollback_only()

InvalidControl This exception is thrown when an invalid Control object
is used in an attempt to resume a suspended transaction.
See Also:

Control class
Current::resume()

Table 25: OTS Exceptions

Exception Description
1053

NotPrepared This exception is thrown when an operation (such as a
commit()) is requested for a resource, but that resource
is not prepared. See Also:

RecoveryCoordinator::replay_completion()
Resource class

NoTransaction This exception is thrown when an operation is requested
for the current transaction, but no transaction is
associated with the client thread. See Also:

Current::commit()
Current::rollback()
Current::rollback_only()

NotSubtransaction This exception is thrown when an operation that requires
a subtransaction is requested for a transaction that is not
a subtransaction. See Also:

Coordinator::register_subtran_aware()

SubtransactionsUnavailable This exception is thrown when an attempt is made to
create a subtransaction. See Also:

Coordinator::create_subtransaction()
Current::begin()

Unavailable This exception is thrown when a Terminator or
Coordinator object cannot be provided by a Control
object due to environment restrictions. See Also:

Control::get_coordinator()
Control::get_terminator()

Table 25: OTS Exceptions

Exception Description
 1054

General Exceptions
The following table shows the system exceptions that can be thrown:

Table 26: System Exceptions

Exception Description

INVALID_TRANSACTION This exception is raised when the transaction context is
invalid for a request.

TRANSACTION_MODE This exception is raised when there is a mismatch
between the transaction policy in the target object's IOR
and the current transaction mode (see Table 1).

TRANSACTION_REQUIRED This exception is raised when an invocation on an object
expecting a transaction is performed with no transaction
(see Table 1).

TRANSACTION_ROLLEDBACK This exception is raised when a transactional operation
(such as commit()) is requested for a transaction that
has been rolled back or marked for rollback. See Also:

Current::commit()
Terminator::commit()

TRANSACTION_UNAVAILABLE This exception is raised when a transaction invocation is
requested but the transaction service is not available.
1055

 1056

CosTransactions::Control Class
The Control class enables explicit control of a factory-created transaction;
the factory creates a transaction and returns a Control instance associated
with the transaction. The Control object provides access to the Coordinator
and Terminator objects used to manage and complete the transaction.

A Control object can be used to propagate a transaction context explicitly.
By passing a Control object as an argument in a request, the transaction
context can be propagated. TransactionFactory::create() can be used to
create a transaction and return the Control object associated with it.

// C++
class Control {
public:

Terminator_ptr get_terminator();
Coordinator_ptr get_coordinator();

};
typedef Control *Control_ptr;
class Control_var;

See Also CosTransactions::Coordinator
CosTransactions::Current::get_control()
CosTransactions::Coordinator::get_status()
CosTransactions::Terminator
CosTransactions::TransactionFactory::create()
NoTransaction
NotSubtransaction

Control::get_coordinator()

// C++
Coordinator_ptr get_coordinator()
 throw(CORBA::SystemException, Unavailable);

get_coordinator() returns the Coordinator object for the transaction with
which the Control object is associated. The returned Coordinator object can
be used to determine the status of the transaction, the relationship between
1057

the associated transaction and other transactions, to create subtransactions,
and so on.

Exceptions

See Also CosTransactions::Coordinator

Control::get_terminator()

// C++
Terminator_ptr get_terminator()
 throw(CORBA::SystemException, Unavailable);

get_terminator() returns the Terminator object for the transaction with
which the Control object is associated. The returned Terminator object can
be used to either commit or roll back the transaction.

Exceptions

See Also CosTransactions::Terminator

Unavailable The Coordinator associated with the Control object is not
available.

Unavailable The Terminator associated with the Control object is not
available.
 1058

CosTransactions::Coordinator Class
The Coordinator class enables explicit control of a factory-created
transaction; the factory creates a transaction and returns a Control instance
associated with the transaction. Control::get_coordinator() returns the
Coordinator object used to manage the transaction.

The operations defined by the Coordinator class can be used by the
participants in a transaction to determine the status of the transaction,
determine the relationship of the transaction to other transactions, mark the
transaction for rollback, and create subtransactions.

The Coordinator class also defines operations for registering resources as
participants in a transaction and registering subtransaction-aware resources
with a subtransaction.

// C++
class Coordinator {

public:
char *get_transaction_name();
Status get_status();
Status get_parent_status();
Status get_top_level_status();
CORBA::Boolean is_same_transaction(Coordinator_ptr);
CORBA::Boolean is_related_transaction(Coordinator_ptr);
CORBA::Boolean is_ancestor_transaction(Coordinator_ptr);
CORBA::Boolean is_descendant_transaction(Coordinator_ptr);
CORBA::Boolean is_top_level_transaction();
unsigned long hash_transaction();
unsigned long hash_top_level_tran();
RecoveryCoordinator register_resource(Resource);
void register_subtran_aware(SubtransactionAwareResource);
Control_ptr create_subtransaction();
void rollback_only();
PropagationContext* get_txcontext()

};
typedef Coordinator *Coordinator_ptr;
class Coordinator_var;

See Also CosTransactions::Control
1059

CosTransactions::Control::get_coordinator()
CosTransactions::Terminator

Coordinator::create_subtransaction()

// C++
Control_ptr create_subtransaction()

throw(CORBA::SystemException, Inactive,
SubtransactionsUnavailable);

create_subtransaction() returns the Control object associated with the new
subtransaction.

create_subtransaction() creates a new subtransaction for the transaction
associated with the Coordinator object. A subtransaction is one that is
embedded within another transaction; the transaction within which the
subtransaction is embedded is referred to as its parent. A transaction that
has no parent is a top-level transaction. A subtransaction executes within the
scope of its parent transaction and can be used to isolate failures; if a
subtransaction fails, only the subtransaction is rolled back. If a
subtransaction commits, the effects of the commit are not permanent until
the parent transaction commits. If the parent transaction rolls back, the
subtransaction is also rolled back.

Exceptions

See Also CosTransactions::Control

Coordinator::get_parent_status()

// C++
Status get_parent_status()

throw(CORBA::SystemException);

Subtransaction
sUnavailabl
e

Subtransactions are not supported.

Inactive The transaction is already prepared.
 1060

get_parent_status() returns the status of the parent of the transaction
associated with the Coordinator object. For more information, see
create_subtransaction().

The status returned indicates which phase of processing the transaction is in.
See the reference page for the Status type for information about the possible
status values. If the transaction associated with the Coordinator object is a
subtransaction, the status of its parent transaction is returned. If there is no
parent transaction, the status of the transaction associated with the
Coordinator object itself is returned.

See Also CosTransactions::Coordinator::create_subtransaction()
CosTransactions::Coordinator::get_status()
CosTransactions::Coordinator::get_top_level_status()
CosTransactions::Status

Coordinator::get_status()

// C++
Status get_status()

throw(CORBA::SystemException);

get_status() returns the status of the transaction associated with the
Coordinator object. The status returned indicates which phase of processing
the transaction is in. See the reference page for the Status type for information
about the possible status values.

See Also CosTransactions::Coordinator::get_parent_status()
CosTransactions::Coordinator::get_top_level_status()
CosTransactions::Status

Coordinator::get_top_level_status()

// C++
Status get_top_level_status()

throw(CORBA::SystemException);

get_top_level_status() returns the status of the top-level ancestor of the
transaction associated with the Coordinator object. See Coordinator::
create_subtransaction() for more information.
1061

The status returned indicates which phase of processing the transaction is in.
See the reference page for the Status type for information about the possible
status values. If the transaction associated with the Coordinator object is
the top-level transaction, its status is returned.

See Also CosTransactions::Coordinator::create_subtransaction()
CosTransactions::Coordinator::get_status()
CosTransactions::Coordinator::get_parent_status()
CosTransactions::Status

Coordinator::get_transaction_name()

// C++
char *get_transaction_name();

get_transaction_name() returns the name of the transaction associated with
the Coordinator object.

Coordinator::get_txcontext()

// C++
PropagationContext* Coordinator::get_txcontext()

throw (CORBA::SystemException, Unavailable);

Returns the propagation context object which is used to export the current
transaction to a new transaction service domain.

Exceptions

See Also CosTransactions::TransactionFactory::recreate()

Coordinator::hash_top_level_tran()

// C++
unsigned long hash_top_level_tran()

throw(CORBA::SystemException);

hash_top_level_tran() returns a hash code for the top-level ancestor of the
transaction associated with the Coordinator object. If the transaction associ-

Unavailable The propagation context is unavailable.
 1062

ated with the Coordinator object is the top-level transaction, its hash code is
returned. See create_subtransaction() for more information. The returned
hash code is typically used as an index into a table of Coordinator objects.
The low-order bits of the hash code can be used to hash into a table with a
size that is a power of two.

See Also CosTransactions::Coordinator::create_subtransaction()
CosTransactions::Coordinator::hash_transaction()

Coordinator::hash_transaction()

// C++
unsigned long hash_transaction()

throw(CORBA::SystemException);

hash_transaction() returns a hash code for the transaction associated with
the Coordinator object.

See Also CosTransactions::Coordinator::hash_top_level_tran()

Coordinator::is_ancestor_transaction()

// C++
CORBA::Boolean is_ancestor_transaction(

Coordinator_ptr tc
)

throw(CORBA::SystemException);

is_ancestor_transaction() returns true if the transaction is an ancestor or
if the two transactions are the same; otherwise, the method returns false.

Parameters

is_ancestor_transaction() determines whether the transaction associated
with the Coordinator object is an ancestor of the transaction associated with
the coordinator specified in the tc parameter. See create_subtransaction()
for more information.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()

tc Specifies the coordinator of another transaction to compare
with the Coordinator object.
1063

CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::is_descendant_transaction()

// C++
CORBA::Boolean is_descendant_transaction(Coordinator_ptr tc)

throw(CORBA::SystemException);

is_descendant_transaction() returns true if the transaction is a
descendant or if the two transactions are the same; otherwise, the method
returns false.

Parameters

is_descendant_transaction() determines whether the transaction
associated with the Coordinator object is a descendant of the transaction
associated with the coordinator specified in the tc parameter. See
Coordinator::create_subtransaction() for more information.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::is_top_level_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::is_related_transaction()

// C++
CORBA::Boolean is_related_transaction(
 Coordinator_ptr tc
)

throw(CORBA::SystemException);

is_related_transaction() returns true if both transactions are descendants
of the same transaction; otherwise, the method returns false.

tc Specifies the coordinator of another transaction to compare
with the Coordinator object.
 1064

Parameters

is_related_transaction() determines whether the transaction associated
with the Coordinator object and the transaction associated with the
coordinator specified in the tc parameter have a common ancestor. See
create_subtransaction() for more information.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_ancestor_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::is_top_level_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::is_same_transaction()

// C++
CORBA::Boolean is_same_transaction(

Coordinator_ptr tc
)

throw(CORBA::SystemException);

is_same_transaction() returns true if the transactions associated with the
two Coordinator objects are the same transaction; otherwise, the method
returns false.

Parameters

is_same_transaction() determines whether the transaction associated with
the Coordinator object and the transaction associated with the coordinator
specified in the tc parameter are the same transaction.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_ancestor_transaction()
CosTransactions::Coordinator::is_top_level_transaction()

tc Specifies the coordinator of another transaction to compare
with the Coordinator object.

tc Specifies the coordinator of another transaction to compare
with the Coordinator object.
1065

Coordinator::is_top_level_transaction()

// C++
CORBA::Boolean is_top_level_transaction()

throw(CORBA::SystemException);

is_top_level_transaction() returns true if the transaction is a top-level
transaction; otherwise, the method returns false.
is_top_level_transaction() determines whether the transaction associated
with a Coordinator object is a top-level transaction. See
create_subtransaction() for more information.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::is_ancestor_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::register_resource()

// C++
RecoveryCoordinator register_resource(

Resource resource
)

throw(CORBA::SystemException, Inactive);

register_resource() registers a specified resource as a participant in the
transaction associated with a Coordinator object. When the transaction ends,
the registered resource must commit or roll back changes made as part of the
transaction. Only server applications can register resources. See Resource class
for more information. register_resource() returns a RecoveryCoordinator
object that the registered Resource object can use during recovery.

Parameters

Exceptions

See Also CosTransactions::RecoveryCoordinator
CosTransactions::Resource

resource The resource to register as a participant.

CORBA::
TRANSACTION
_ROLLEDBACK

The transaction is marked for rollback only.
 1066

Coordinator::register_subtran_aware()

// C++
void register_subtran_aware(

SubtransactionAwareResource resource
)

throw(CORBA::SystemException, NotSubtransaction, Inactive);

register_subtran_aware() registers a specified resource with the subtrans-
action associated with a Coordinator object. The resource is registered with
the subtransaction only, not as a participant in the top-level transaction.
(register_resource() can be used to register the resource as a participant in
the top-level transaction.) Only server applications can register resources.

Parameters

When the transaction ends, the registered resource must commit or roll back
changes made as part of the subtransaction. See the reference page for the
SubtransactionAwareResource class for more information.

Exceptions

See Also CosTransactions::RecoveryCoordinator
CosTransactions::SubtransactionAwareResource

Coordinator::register_synchronization()

// C++
void register_synchronization(
 Synchronization sync
);

throw(CORBA::SystemException, Inactive);

resource The resource to register.

NotSubtransact
ion

The transaction associated with the Coordinator object is not
a subtransaction

Inactive The subtransaction or any ancestor of the subtransaction has
ended.

CORBA::
TRANSACTION
_ROLLEDBACK

The transaction is marked for rollback only.
1067

register_synchronization() registers a specified synchronization object for
the transaction associated with a Coordinator object. See the reference page
for the Synchronization class for more information.

Parameters

Exceptions

See Also CosTransactions::RecoveryCoordinator
CosTransactions::Synchronization

Coordinator::rollback_only()

// C++
void rollback_only()

throw(CORBA::SystemException, Inactive);

rollback_only() marks the transaction associated with the Coordinator
object so that the only possible outcome for the transaction is to roll back. The
transaction is not rolled back until the participant that created the transaction
either commits or aborts the transaction.

OTS allows Terminator::rollback() to be called instead of
rollback_only(). Calling Terminator::rollback() rolls back the
transaction immediately, preventing unnecessary work from being done
between the time the transaction is marked for rollback and the time the
transaction is actually rolled back.

Exceptions

See Also CosTransactions::Terminator::rollback()

sync The synchronization object to register.

Inactive The transaction is already prepared.

CORBA::
TRANSACTION
_ROLLEDBACK

The transaction is marked for rollback only.

Inactive The transaction is already prepared.
 1068

CosTransactions::Current Class
The Current class represents a transaction that is associated with the calling
thread; the thread defines the transaction context. The transaction context is
propagated implicitly when the client issues requests.

This class defines member methods for beginning, committing, and aborting
a transaction using the implicit model of transaction control. It also defines
member methods for suspending and resuming a transaction and retrieving
information about a transaction.

// C++
class Current {
public:
void begin();
void commit(CORBA::Boolean);
void rollback();
void rollback_only();
Status get_status();
char *get_transaction_name();
void set_timeout(unsigned long);
unsigned long get_timeout();
Control_ptr get_control();
Control_ptr suspend();
void resume(Control_ptr);

};
typedef Current *Current_ptr;
class Current_var;

See Also CosTransactions::Control
CosTransactions::Status

Current::begin()

// C++
void begin()

throw(CORBA::SystemException,SubtransactionsUnavailable);
1069

begin() creates a new transaction and modifies the transaction context of the
calling thread to associate the thread with the new transaction. If subtransac-
tions are not available, an attempt to create a nested transaction throws the
SubtransactionsUnavailable exception.

See Also CosTransactions::Current::commit()
CosTransactions::Current::rollback()
CosTransactions::Current::rollback_only()

Current::commit()

// C++
void commit(
 CORBA::Boolean report_heuristics
)

throw(CORBA::SystemException,
NoTransaction,
HeuristicHazard,
TRANSACTION_ROLLEDBACK);

commit() attempts to commit the transaction associated with the calling
thread.

Parameters

Exceptions

See Also CosTransactions::Current::begin()
CosTransactions::Current::rollback()
CosTransactions::Current::rollback_only()

report_heurist
ics

specifies whether to report heuristic decisions for the transac-
tion associated with the calling thread.

NoTransaction
exception

No transaction is associated with the calling thread.

HeuristicMixed The report_heuristics parameter is true and a heuristic
decision causes inconsistent outcomes

HeuristicHazar
d

The report_heuristics parameter is true and a heuristic
decision might have caused inconsistent outcomes.

TRANSACTION_RO
LLEDBACK

Not all the transaction participants commit.
 1070

Current::get_control()

// C++
Control_ptr get_control()

throw(CORBA::SystemException);

get_control() returns the Control object for the transaction associated with
the calling thread. If no transaction is associated with the calling thread, a null
object reference is returned.

See Also CosTransactions::Current::resume()

Current::get_status()

// C++
Status get_status()

throw(CORBA::SystemException);

get_status() returns the status of the transaction associated with the calling
thread. If no transaction is associated with the calling thread, the
StatusNoTransaction value is returned.

The status returned indicates the processing phase of the transaction. See
the Status type for information about the possible status values.

See Also CosTransactions::Status Enumeration Type

Current::get_timeout()

// C++
unsigned long get_timeout()
 throw(CORBA::SystemException)

Returns the timeout in seconds for transactions created using the begin()
operation.

See Also CosTransactions::Current
CosTransactions::Current::begin()
CosTransactions::Current::set_timeout()
1071

Current::get_transaction_name()

// C++
char *get_transaction_name();

get_transaction_name() returns the name of the transaction associated with
the calling thread. If no transaction is associated with the calling thread, a null
string is returned.

See Also CosTransactions::Current

Current::resume()

// C++
void resume(
 Control_ptr which
)

throw(CORBA::SystemException, InvalidControl);

resume() resumes the suspended transaction identified by the which param-
eter and associated with the calling thread. If the value of the which parameter
is a null object reference, the calling thread disassociates from the transaction.
If the control object is invalid, the InvalidControl exception is thrown.

Parameters

See Also CosTransactions::Current
CosTransactions::Current::get_control()
CosTransactions::Current::suspend()

Current::rollback()

// C++
void rollback()

throw(CORBA::SystemException, NoTransaction);

rollback() rolls back the transaction associated with the calling thread. If the
transaction was started with begin(), the transaction context for the thread is
restored to its state before the transaction was started; otherwise, the trans-
action context is set to null.

which Specifies a Control object that represents the transaction
context associated with the calling thread.
 1072

Exceptions

See Also CosTransactions::Current
CosTransactions::Current::begin()
CosTransactions::Current::rollback_only()

Current::rollback_only()

// C++
void rollback_only()

throw(CORBA::SystemException, NoTransaction);

rollback_only() marks the transaction associated with the calling thread for
rollback. The transaction is modified so that the only possible outcome is to
roll back the transaction. Any participant in the transaction can mark the
transaction for rollback. The transaction is not rolled back until the participant
that created the transaction either commits or aborts the transaction.

OTS allows Current::rollback() to be called instead of rollback_only().
Calling Current::rollback() rolls back the transaction immediately,
preventing unnecessary work from being done between the time the
transaction is marked for rollback and the time the transaction is actually
rolled back.

Exceptions

See Also CosTransactions::Current
CosTransactions::Current::rollback()

Current::set_timeout()

// C++
void set_timeout(
 unsigned long seconds
)

throw(CORBA::SystemException);

NoTransaction No transaction is associated with the calling thread.

NoTransaction No transaction is associated with the calling thread.
1073

set_timeout() sets a timeout period for the transaction associated with the
calling thread. The timeout affects only those transactions begun with
begin() after the timeout is set. The seconds parameter sets the number of
seconds from the time the transaction is begun that it waits for completion
before being rolled back; if the seconds parameter is zero, no timeout is set
for the transaction.

Parameters

See Also CosTransactions::Current
CosTransactions::Current::begin()
CosTransactions::Current::get_timeout()

Current::suspend()

// C++
Control_ptr suspend()

throw(CORBA::SystemException);

suspend() suspends the transaction associated with the calling thread. An
identifier for the suspended transaction is returned by the method. This
identifier can be passed to resume() to resume the suspended transaction.

See Also CosTransactions::Current
CosTransactions::Current::resume()

seconds The number of seconds that the transaction waits for comple-
tion before rolling back.
 1074

CosTransactions::
RecoveryCoordinator Class

The RecoveryCoordinator class enables a recoverable object to control the
recovery process for an associated resource. A RecoveryCoordinator object
can be obtained for a recoverable object via the Coordinator object
associated with the recoverable object. Coordinator::register_resource()
returns a RecoveryCoordinator object.

// C++
class RecoveryCoordinator {

public:
Status replay_completion(Resource_ptr);

};
typedef RecoveryCoordinator *RecoveryCoordinator_ptr;
class RecoveryCoordinator_var;

See Also CosTransactions::Resource

RecoveryCoordinator::replay_completion()

// C++
Status replay_completion(
 Resource_ptr resource
)

throw(CORBA::SystemException, NotPrepared);

replay_completion() notifies the recovery coordinator that the commit() or
rollback() operations have not been performed for the associated resource.
Notifying the coordinator that the resource has not completed causes
completion to be retried, which is useful in certain failure cases. The method
returns the current status of the transaction.
1075

Parameters

Exceptions

See Also CosTransactions::Resource
CosTransactions::Status

resource The resource associated with the recovery coordinator.

NotPrepared The resource is not in the prepared state.
 1076

CosTransactions::Resource Class
The Resource class represents a recoverable resource, that is, a transaction
participant that manages data subject to change within a transaction. The
Resource class specifies the protocol that must be defined for a recoverable
resource. Interfaces that inherit from this class must implement each of the
member methods to manage the data appropriately for the recoverable object
based on the outcome of the transaction. These methods are invoked by the
Transaction Service to execute two-phase commit; the requirements of these
methods are described in the following sections.

To become a participant in a transaction, a Resource object must be
registered with that transaction. Coordinator::register_resource() can
be used to register a resource for the transaction associated with the
Coordinator object.

The full name for the class is CosTransactions::Resource.

// C++
class Resource {

public:
virtual Vote prepare();
virtual void rollback();
virtual void commit();
virtual void commit_one_phase();
virtual void forget();

};
typedef Resource *Resource_ptr;
class Resource_var;

See Also CosTransactions::Synchronization
CosTransactions::RecoveryCoordinator
CosTransactions::Vote

Two-phase Commit
The two-phase commit requires methods prepare() and commit().
1077

prepare() must be defined to vote on the outcome of the transaction with
which the resource is registered. The transaction service invokes this method
as the first phase of a two-phase commit; the return value controls the
second phase:

� Returns VoteReadOnly if the resource�s data is not modified by the
transaction. The transaction service does not invoke any other methods
on the resource, and the resource can forget all knowledge of the
transaction.

� Returns VoteCommit if the resource�s data is written to stable storage by
the transaction and the transaction is prepared. Based on the outcome
of other participants in the transaction, the transaction service calls
either commit() or rollback() for the resource. The resource should
store a reference to the RecoveryCoordinator object in stable storage to
support recovery of the resource.

� Returns VoteRollback for all other situations. The transaction service
calls rollback() for the resource, and the resource can forget all
knowledge of the transaction.

commit() must be defined to commit all changes made to the resource as
part of the transaction. If forget() has already been called, no changes need
to be committed. If the resource has not been prepared, the NotPrepared
exception must be thrown.

Use the heuristic outcome exceptions to report heuristic decisions related to
the resource. The resource must remember heuristic outcomes until
forget() is called, so that the same outcome can be returned if the
transaction service calls commit() again.

One-phase Commit
commit_one_phase() must be defined to commit all changes made to the
resource as part of the transaction. The transaction service may invoke this
method if the resource is the only participant in the transaction. Unlike
commit(), commit_one_phase() does not require that the resource be
prepared first. Use the heuristic outcome exceptions to report heuristic
decisions related to the resource. The resource must remember heuristic
outcomes until forget() is called, so that the same outcome can be returned
if the transaction service calls commit_one_phase() again.
 1078

Rollback Transaction
rollback() must be defined to undo all changes made to the resource as
part of the transaction. If forget() has been called, no changes need to be
undone. Use the heuristic outcome exceptions to report heuristic decisions
related to the resource. The resource must remember heuristic outcomes
until forget() is called, so that the same outcome can be returned if the
transaction service calls rollback() again.

Forget Transaction
forget() must be defined to cause the resource to forget all knowledge of
the transaction. The transaction service invokes this method if the resource
throws a heuristic outcome exception in response to commit() or
rollback().
1079

 1080

CosTransactions::
SubtransactionAwareResource Class

Note: This class is not supported in this release of OTS for Orbix. The
information in this section therefore does not apply to this release.

The SubtransactionAwareResource class represents a recoverable resource
that makes use of nested transactions. This specialized resource object
allows the resource to be notified when a subtransaction for which it is
registered either commits or rolls back.

The SubtransactionAwareResource class specifies the protocol that must be
defined for this type of recoverable resource. Interfaces that inherit from this
class must implement each of the member methods to manage the
recoverable object�s data appropriately based on the outcome of the
subtransaction. These methods are invoked by the transaction service; the
requirements of these methods are described below.

Coordinator::register_subtran_aware() can be used to register a
resource with the subtransaction associated with the Coordinator object.
The resource can also register with the top-level transaction by using
Coordinator::register_resource() as well. In this case, the protocol for
the Resource class must be defined in addition to the protocol for
SubtransactionAwareResource. See the reference page for the Resource
class for more information.

// C++
class SubtransactionAwareResource : Resource {

public:
virtual void commit_subtransaction(Coordinator);
virtual void rollback_subtransaction();

};
typedef SubtransactionAwareResource

*SubtransactionAwareResource_ptr;
class SubtransactionAwareResource_var;
1081

See Also CosTransactions::Coordinator
CosTransactions::Resource
CosTransactions::Status

Commit Subtransaction
commit_subtransaction() must be defined to commit all changes made to
the resource as part of the subtransaction. If an ancestor transaction rolls
back, the subtransaction�s changes are rolled back. The transaction service
invokes this method if the resource is registered with a subtransaction and it
is committed.

The method must be defined to take a Coordinator object as its only
argument. When the transaction service invokes this method, it passes the
Coordinator object associated with the parent transaction.

Rollback Subtransaction
rollback_subtransaction() must be defined to undo all changes made to
the resource as part of the subtransaction. The transaction service invokes
this method if the resource is registered with a subtransaction and it is rolled
back.
 1082

CosTransactions::Synchronization
Class

The Synchronization class represents a non-recoverable object that
maintains transient state data and is dependent on a recoverable object to
ensure that the data is persistent. To make data persistent, a synchronization
object moves its data to one or more resources before the transaction
completes.

The Synchronization class specifies a protocol that must be defined for this
type of object. A synchronization object must be implemented as a class
derived from the Synchronization class. The derived class must implement
each of the member methods to ensure that the data maintained by the
nonrecoverable object is made recoverable. The transaction service invokes
these methods before and after the registered resources commit; the specific
requirements of these methods are described in the following sections.

Coordinator::register_synchronization() can be used to register a
synchronization object with the transaction associated with the Coordinator
object.

// C++
class Synchronization : TransactionalObject {

public:
virtual void before_completion();
virtual void after_completion(Status);

};

Before Completion
before_completion() must be defined to move the synchronization object�s
data to a recoverable object. The transaction service invokes this method
prior to the prepare phase of the transaction. The method is invoked only if
the synchronization object is registered with a transaction and the
transaction attempts to commit.
1083

The only exceptions this method can throw are CORBA::SystemException
exceptions. Throwing other exceptions can cause the transaction to be
marked for rollback only.

After Completion
after_completion() must be defined to do any necessary processing
required by the synchronization object; for example, the method could be
used to release locks held by the transaction. The transaction service invokes
this method after the outcome of the transaction is complete. The method is
invoked only if the synchronization object is registered with a transaction and
the transaction has either committed or rolled back.

The method must be defined to take a Status value as its only argument.
When the transaction service invokes this method, it passes the status of the
transaction with which the synchronization object is registered.

The only exceptions this method can throw are CORBA::SystemException
exceptions. Any exceptions that are thrown have no effect on the
commitment of the transaction.

See Also CosTransactions::Coordinator
CosTransactions::Coordinator::register_synchronization()
CosTransactions::Resource
CosTransactions::Status
 1084

CosTransactions::Terminator Class
The Terminator class enables explicit termination of a factory-created
transaction. The transaction with which the Terminator object is associated
can be either committed or rolled back. Control::get_terminator() can be
used to return the Terminator object associated with a transaction.

// C++
class Terminator {
public:

void commit(CORBA::Boolean);
void rollback();

};
typedef Terminator *Terminator_ptr;
class Terminator_var;

See Also CosTransactions::Coordinator
CosTransactions::Control::get_terminator()
CosTransactions::Control
CosTransactions::Status

Terminator::commit()

// C++
void commit(
 CORBA::Boolean report_heuristics
)

throw(CORBA::SystemException,
HeuristicHazard,
TRANSACTION_ROLLEDBACK);

commit() attempts to commit the transaction associated with the Terminator
object. If the report_heuristics parameter is true, the HeuristicHazard
exception is thrown when the participants report that a heuristic decision has
possibly been made.
1085

Parameters

Exceptions

See Also CosTransactions::Coordinator
CosTransactions::Terminator
CosTransactions::Terminator::rollback()
CosTransactions::Control

Terminator::rollback()

// C++
void rollback();

rollback() rolls back the transaction associated with the Terminator object.

See Also CosTransactions::Coordinator
CosTransactions::Terminator
CosTransactions::Terminator::commit()

report_heurist
ics

Specifies whether to report heuristic decisions for the commit.

CORBA::
TRANSACTION
_ROLLEDBACK

The transaction has been marked as rollback-only, or all par-
ticipants in the transaction do not agree to commit.
 1086

CosTransactions::TransactionalObject
Class

The TransactionalObject interface has been deprecated and replaced with
transactional policies (see �OTSPolicyValue Data Type� on page 1048).
Backward compatibility with existing OTS implementations is provided for
outbound requests only and only if the target object does not have a
transactional policy in its IOR.

See the CORBA Programmer�s Guide for details of interoperability with
existing OTS implementations.

// C++
class TransactionalObject {};
typedef TransactionalObject *TransactionalObject_ptr;
class TransactionalObject_var;
1087

 1088

CosTransactions::TransactionFactory
Class

The TransactionFactory class represents a transaction factory that allows
the originator of transactions to begin a new transaction for use with the
explicit model of transaction demarcation. Servers provide a default instance
of this class. Clients can bind to the default instance by using the standard
binding mechanism for the object request broker.

// C++
class TransactionFactory {

public:
Control_ptr create(unsigned long timeout);
Control_ptr recreate(const PropagationContext& ctx);

};
typedef TransactionFactory *TransactionFactory_ptr;
class TransactionFactory_var;

See Also CosTransactions::Control

TransactionFactory::create()

// C++
Control_ptr create(unsigned long timeout)

throw(CORBA::SystemException);

create() creates a new top-level transaction for use with the explicit model
of transaction demarcation. A Control object is returned for the transaction.
The Control object can be used to propagate the transaction context. See the
reference page for the Control class for more information.

Parameters

timeout Specifies the number of seconds that the transaction waits to
complete before rolling back. If the timeout parameter is
zero, no timeout is set for the transaction.
1089

See Also CosTransactions::TransactionFactory

CosTransactions::Control

TransactionFactory::recreate()

// C++
Control_ptr TransactionFactory::recreate(

const PropagationContext& ctx);

Creates a new representation for an existing transaction defined in the
propagation context ctx. This is used to import a transaction from another
domain. The method returns a control object for the new transaction represen-
tation.

See Also CosTransactions::Coordinator::get_txcontext()
 1090

 Persistent State Service

CosPersistentState Overview
The persistent state service (PSS) is a CORBA-friendly object-oriented
database. PSS storage objects can hold any kind of IDL type. The Orbix
implementation of PSS is organized into three modules and an object factory
class:

� �CosPersistentState Overview�

The CosPersistentState module is the standard OMG service for
persistent objects.

� �IT_PSS Overview�

The IT_PSS module provides various proprietary useful features such as
queries.

� The IT_PSS_DB Module Overview

The Orbix implementation of PSS is targeted at relational and
relational-like database back-ends. It is not restricted to any particular
database system.
1093

The CosPersistentState module�s features are listed in Table 27:

The rest of this chapter describes the common data types for the module.

CosPersistentState::AccessMode Type

// PSDL Code
typedef short AccessMode;

The mode of access for a storage object. Valid values include:

READ_ONLY
READ_WRITE

The AccessMode READ_WRITE is higher than READ_ONLY.

CosPersistentState::ForUpdate Enumeration

// PSDL Code
enum ForUpdate { FOR_UPDATE };

Used in the language mapping to define an overloaded accessor method that
can update the state member.

Table 27: The CosPersistentState Module

Common Data Types Interfaces

AccessMode Type
ForUpdate Enumeration
IsolationLevel Type
NotFound Exception
Parameter Structure
ParameterList Sequence
Pid Type
ShortPid Type
TransactionalSessionList Sequence
TypeId Type
YieldRef Enumeration

CatalogBase
Connector
EndOfAssociationCallback
Session
StorageHomeBase
TransactionalSession

Native Types and Helper Classes

CosPersistentState_Factory
StorageHomeFactory
StorageObjectBase
StorageObjectFactory
StorageObjectRef
 1094

Examples For example, a state member whose type is an abstract storagetype is mapped
to a read-only accessor, a read-write (update) accessor, and a modifier:

// PSDL
abstract storagetype A {};
abstract storagetype B {
 state A embedded;
};

This PSDL code maps to:

// C++
class B : public virtual StorageObject {
public:
 virtual const A& embedded() const = 0;
 virtual A& embedded(CosPersistentState::ForUpdate) = 0;
 virtual void embedded(const A&) = 0; // copies
};

CosPersistentState::IsolationLevel Type

// PSDL Code
typedef short IsolationLevel;
const IsolationLevel READ_UNCOMMITTED = 0;
const IsolationLevel READ_COMMITTED = 1;
const IsolationLevel REPEATABLE_READ = 2;
const IsolationLevel SERIALIZABLE = 3;

When data is accessed through a transactional session actively associated with
a resource, undesirable phenomena such as dirty reads or non-repeatable reads
may occur. An isolation level controls user access to these kinds of phenome-
non during a transactional session.

Valid IsolationLevel values include the following:

READ_UNCOMMITTED When a resource has this isolation level, its user may
experience the dirty reads and the non-repeatable
reads phenomena.

READ_COMMITTED When a resource has this isolation level, its user may
experience the non-repeatable reads phenomenon,
but not the dirty reads phenomenon.
1095

A dirty read occurs when a resource is used to read the uncommitted state of
a storage object. For example, suppose a storage object is updated using
resource 1. The updated storage object�s state is read using resource 2 before
resource 1 is committed. If resource 1 is rolled back, the data read with
resource 2 is considered never to have existed.

A non-repeatable read occurs when a resource is used to read the same data
twice but different data is returned by each read. For example, suppose
resource 1 is used to read the state of a storage object. Resource 2 is used to
update the state of this storage object and resource 2 is committed. If
resource 1 is used to reread the storage object�s state, different data is
returned.

See Also CosPersistentState::TransactionalSession

CosPersistentState::NotFound Exception

// PSDL Code
exception NotFound {};

An exception that indicates that a storage object or registry connector cannot
be found.

CosPersistentState::Parameter Structure

// PSDL Code
struct Parameter {
 string name;
 any val;
};

A parameter in a list of parameters when creating a session.

SERIALIZABLE When a resource has this isolation level, its user is
protected from both the dirty reads and the
non-repeatable reads phenomena

REPEATABLE_READ This isolation level is reserved for future use.
 1096

Parameters

See Also CosPersistentState::ParameterList
CosPersistentState::Connector::create_basic_session()
CosPersistentState::Connector::create_transactional_session()

CosPersistentState::ParameterList Sequence

// PSDL Code
typedef sequence<Parameter> ParameterList;

A sequence of Parameter structures.

See Also CosPersistentState::Parameter

CosPersistentState::Pid Type

// PSDL Code
typedef CORBA::OctetSeq Pid;

A global persistent object identifier that storage objects use. The scope of the
Pid is all storage objects that can be accessed through the same catalog.

See Also CosPersistentState::ShortPid

CosPersistentState::ShortPid Type

// PSDL Code
typedef CORBA::OctetSeq ShortPid;

A storage object identifier that is unique within a storage home family.

See Also CosPersistentState::Pid

CosPersistentState::TransactionalSessionList Sequence

// PSDL Code

name The parameter�s name.

val The value in the parameter.
1097

typedef sequence<TransactionalSession> TransactionalSessionList;

A list of transactional sessions.

See Also CosPersistentState::TransactionalSession
CosPersistentState::Connector::sessions()

CosPersistentState::TypeId Type

// PSDL Code
typedef string TypeId;

A string that identifies a PSDL type. The format of a PSDL type id is the same
as the IDL format of repository ids, except that the prefix is PSDL, not IDL.

See Also CORBA::RepositoryId
CosPersistentState::Connector

CosPersistentState::YieldRef Enumeration

// PSDL Code
enum YieldRef { YIELD_REF };

Used in the language mapping to define overloaded methods that yield
incarnations and references as parameters.

Examples For example, a state member whose type is a reference to an abstract
storagetype is mapped to two accessors and two modifier methods:

// PSDL
abstract storagetype Bank;
abstract storagetype Account {
 state ref<Bank> my_bank;
};

The mapping shows that one of the accessor methods takes no parameter
and returns a storage object incarnation, and the other takes a YieldRef
parameter and returns a reference:

// C++
class Account : public virtual StorageObject {
public:
 virtual Bank* my_bank() const= 0;
 virtual const BankRef* my_bank(
 1098

 CosPersistentState::Yield-Ref yr
) const = 0;

 virtual void my_bank(Bank* b) = 0;
 virtual void my_bank(const BankRef* b) = 0;
};
1099

 1100

CosPersistentState::CatalogBase
Interface

The CatalogBase interface is the base interface for the implementation of a
local catalog object.

// PSDL in module CosPersistentState
local interface CatalogBase {

 readonly attribute AccessMode access_mode;

 StorageHomeBase find_storage_home(
 in string storage_home_type_id
)
 raises (NotFound);

 StorageObjectBase find_by_pid(
 in Pid the_pid
)
 raises (NotFound);

 void flush();
 void refresh();
 void free_all();
 void close();
};

CatalogBase::access_mode Attribute

// PSDL code
readonly attribute AccessMode access_mode;

Returns the access mode of this catalog. When the access mode is READ_ONLY,
the storage object incarnations obtained through storage home instances
provided by this catalog are read-only.
1101

CatalogBase::close()

// PSDL code
void close();

Terminates the catalog. If the catalog is associated with one or more transac-
tions when close() is called, these transactions are marked as roll-back only.
When closed, the catalog is also flushed for a non-transactional session.

CatalogBase::find_by_pid()

// PSDL code
StorageObjectBase find_by_pid(
 in Pid the_pid
)
 raises (NotFound);

Attempts to locate a storage object and returns an incarnation of it.

Parameters

Exceptions

CatalogBase::find_storage_home()

// PSDL code
StorageHomeBase find_storage_home(
 in string storage_home_type_id
)
 raises (NotFound);

Returns a storage home instance.

the_pid The operation uses the given Pid to find the storage object in
the storage homes provided by the target catalog.

NotFound
exception

The operation cannot find a storage object with this Pid.
 1102

Parameters

Exceptions

CatalogBase::flush()

// PSDL code
void flush();

Writes to disk any cached modifications of storage object incarnations managed
by this catalog. PSS can cache some dirty data, thus, when an application
creates a new storage object or updates a storage object, the modification is
not written directly to disk.

CatalogBase::free_all()

// PSDL code
void free_all();

Instructs the catalog implementation to set the reference count of all its PSDL
storage object instances to 0.

storage_home_type_id The operation looks up a PSDL-defined storage
home with this Id in the catalog�s default
data-store.

The format of this parameter is mostly
implementation-defined. In the case of
type-specific catalogs (declared in PSDL), the
provided declarations define valid values for this
parameter.

The operation can also interpret Ids that have the
form of a PSDL type Id. For example:

PSDL:com/acme/PersonStoreImpl:1.0

NotFound The operation cannot find a storage home that matches the
given storage home Id.
1103

CatalogBase::refresh()

// PSDL code
void refresh();

Refreshes any cached storage object incarnations accessed (read) by this
catalog. In addition to caching write data, PSS can cache data read from
datastores.

Note: This operation can invalidate any direct reference to a storage object
incarnation�s data member. Most applications do not use refresh(), so
calling it is unusual.
 1104

CosPersistentState::Connector
Interface

A connector is a local object that represents a given PSS implementation.
Sessions are created by connectors. You obtain a connector of a given ORB
by calling CORBA::ORB::resolve_initial_references() with the ObjectId
of PSS.

// PSDL code in module CosPersistentState
local interface Connector {

 readonly attribute string implementation_id;

 Pid get_pid(
 in StorageObjectBase obj
);

 ShortPid get_short_pid(
 in StorageObjectBase obj
);

 Session create_basic_session(
 in AccessMode access_mode,
 in TypeId catalog_type_name,
 in ParameterList additional_parameters
);

 TransactionalSession create_transactional_session(
 in AccessMode access_mode,
 in IsolationLevel default_isolation_level,
 in EndOfAssociationCallback callback,
 in TypeId catalog_type_name,
 in ParameterList additional_parameters
);

 TransactionalSession current_session();

 TransactionalSessionList sessions(
1105

 in CosTransactions::Coordinator transaction
);

 StorageObjectFactory register_storage_object_factory(
 in TypeId storage_type_name,
 in StorageObjectFactory storage_object_factory
);

 StorageHomeFactory register_storage_home_factory(
 in TypeId storage_home_type_name,
 in StorageHomeFactory storage_home_factory
);

 SessionFactory register_session_factory(
 in TypeId catalog_type_name,
 in SessionFactory session_factory
);

 SessionPoolFactory register_session_pool_factory(
 in TypeId catalog_type_name,
 in SessionPoolFactory session_pool_factory
);

};

Connector::create_basic_session()

// PSDL code
Session create_basic_session(
 in AccessMode access_mode,
 in TypeId catalog_type_name,
 in ParameterList additional_parameters
);

Creates a basic, non-transactional session and returns a reference to the
session.
 1106

Parameters

access_mode The access can be read-only or both read and
write.

catalog_type_name The value is either an empty string or the PSDL
type id of a catalog. For example:

PSDL:com/acme/People:1.0.

additional_parameters See Table 28.

Table 28: Additional PSS Session Creation Parameters

Parameter
Name

 Type Description

to string This is a required parameter. Some string that identifies
what you connect to. For example with PSS/DB, it will be
an environment name; with PSS/ODBC a datasource name;
with PSS/Oracle, an Oracle database name.

concurrent boolean Will this session be used by multiple concurrent threads?
This parameter is not required. The default value is false.

single writer boolean Is this session the only session that writes to this database?
When true, there is no risk of deadlock and the cache can
be kept as-is after a commit. This parameter is not required.
The default value is false.

Additional Relational Parameters

pessimistic
locking

boolean Does this session acquire a write lock before updating an
object in its cache? The default value is true. This parameter
is not required.

incarnation
map size

long The size of the per-session hash map in which PSS/R keeps
incarnations. The given value is rounded up to the closest
power of 2. The default value is 1024. This parameter is not
required.
1107

Exceptions

See Also CosPersistentState::Connector::create_transactional_session()

Connector::create_transactional_session()

// PSDL code
TransactionalSession create_transactional_session(
 in AccessMode access_mode,
 in IsolationLevel default_isolation_level,
 in EndOfAssociationCallback callback,
 in TypeId catalog_type_name,
 in ParameterList additional_parameters
);

Creates a new transactional session and returns a reference to the session.

Parameters

PERSIST_STORE A session cannot be provided with the desired (or higher)
access mode.

access_mode The access can be read-only or both read and
write.

default_isolation_level The isolation level of resources created by this
transactional session.

callback Your application can be notified when a session is
released by PSS by passing in an
EndOfAssociationCallback local object.

catalog_type_name The value is either an empty string or the PSDL
type id of a catalog. For example:

PSDL:com/acme/People:1.0.

additional_parameters See Table 29.
 1108

Exceptions

See Also CosPersistentState::Connector::create_basic_session()

Connector::current_session()

// PSDL code
TransactionalSession current_session();

Returns the current transactional session. The operation logically calls
sessions() with the transaction associated with the calling thread.

Exceptions

Table 29: Additional PSS TransactionalSession Creation Parameters

Parameter
Name

 Type Description

to string This is a required parameter. Some string that identifies
what you connect to. For example with PSS/DB, it will be
an environment name; with PSS/ODBC a datasource name;
with PSS/Oracle, an Oracle database name.

concurrent boolean Will this session be used by multiple concurrent threads?
This parameter is not required. The default value is false.

single writer boolean Is this session the only session that writes to this database?
When true, there is no risk of deadlock and the cache can
be kept as-is after a commit. This parameter is not required.
The default value is false.

PERSIST_STORE Raised if:

� The session cannot be provided with the desired (or
higher) access mode.

� The implementation cannot provide the desired default
isolation level.

PERSIST_STORE A single session cannot be returned.
1109

See Also CosPersistentState::Connector::sessions()

Connector::get_pid()

// PSDL code
Pid get_pid(
 in StorageObjectBase obj
);

Returns the Pid of the given storage object.

See Also CosPersistentState::Connector::get_short_pid()

Connector::get_short_pid()

// PSDL code
ShortPid get_short_pid(
 in StorageObjectBase obj
);

Returns the ShortPid of the given storage object.

See Also CosPersistentState::Connector::get_pid()

Connector::implementation_id Attribute

// PSDL code
readonly attribute string implementation_id;

Returns the Id of this implementation.

Connector::register_session_factory()

// PSDL code
SessionFactory register_session_factory(
 in TypeId catalog_type_name,
 in SessionFactory session_factory
);
 1110

Registers a session factory and returns the factory previously registered with
the given name. The operation returns NULL when there is no previously
registered factory.

See Also CosPersistentState::Connector::register_storage_object_factory()
CosPersistentState::Connector::register_storage_home_factory()
CosPersistentState::Connector::register_session_pool_factory()

Connector::register_session_pool_factory()

// PSDL code
SessionPoolFactory register_session_pool_factory(
 in TypeId catalog_type_name,
 in SessionPoolFactory session_pool_factory
);

Registers session pool factories and returns the factory previously registered
with the given name. The operation returns NULL when there is no previously
registered factory.

See Also CosPersistentState::Connector::register_storage_object_factory()
CosPersistentState::Connector::register_storage_home_factory()
CosPersistentState::Connector::register_session_factory()

Connector::register_storage_home_factory()

// PSDL code
StorageHomeFactory register_storage_home_factory(
 in TypeId storage_home_type_name,
 in StorageHomeFactory storage_home_factory
);

Registers storage home factories and returns the factory previously registered
with the given name. The operation returns NULL when there is no previously
registered factory.

See Also CosPersistentState::Connector::register_storage_object_factory()
CosPersistentState::Connector::register_session_factory()
CosPersistentState::Connector::register_session_pool_factory()
1111

Connector::register_storage_object_factory()

// PSDL code
StorageObjectFactory register_storage_object_factory(
 in TypeId storage_type_name,
 in StorageObjectFactory storage_object_factory
);

Registers storage object factories and returns the factory previously registered
with the given name. The operation returns NULL when there is no previously
registered factory.

See Also CosPersistentState::Connector::register_storage_home_factory()
CosPersistentState::Connector::register_session_factory()
CosPersistentState::Connector::register_session_pool_factory()

Connector::sessions()

// PSDL code
TransactionalSessionList sessions(
 in CosTransactions::Coordinator transaction
);

Returns all the transactional sessions created by this connector that are
associated with resources registered with the given transaction. Very often
sessions() returns a single session.

See Also CosPersistentState::Connector::current_session()
 1112

CosPersistentState::
EndOfAssociationCallback Interface

The EndOfAssociationCallback interface is implemented by the developer
of the application. When a session-resource association has ended, the
session may not become available immediately. For example, if the session is
implemented using an ODBC or JDBC connection, PSS needs this connection
until the resource (ODBC/JDBC transaction) is committed or rolled back.

// PSDL code in module CosPersistentState
local interface EndOfAssociationCallback {
 void released(in TransactionalSession session);
};

See Also CosPersistentState::Connector::create_transactional_session()
1113

 1114

CosPersistentState_Factory Template
The CosPersistentState_Factory class is a helper template you use to
build StorageHomeFactory and StorageObjectFactory objects. The class
contains the following virtual methods.

template <class T>
class CosPersistentState_Factory {
 public:

 virtual T* create()
 throw(CORBA::SystemException) = 0;

 virtual void _add_ref() {}

 virtual void _remove_ref() {}

 virtual ~CosPersistentState_Factory() {}
};
1115

 1116

CosPersistentState::Session Interface
A PSS session is a logical connection between a process and one or more
datastores. There are two kinds of sessions:

� Basic sessions for file-like access.
� Transactional sessions for transactional access. (See the

TransactionalSession interface.)

You create a basic session by calling Connector::create_basic_session().
A basic session is a local object that supports the following interface:

// PSDL Code in module CosPersistentState
local interface Session : CatalogBase {};

See Also IT_PSS::Session
1117

 1118

CosPersistentState::
StorageHomeBase Interface

A storage home can have behavior that is described by operations on its
abstract storage home(s). An abstract storage home can also define any
number of keys; each key declaration implicitly declares a pair of finder
operations. All storage home instances implement the local interface
StorageHomeBase:

// PSDL in module CosPersistentState
local interface StorageHomeBase {

 StorageObjectBase find_by_short_pid(
 in ShortPid short_pid
)
 raises (NotFound);

 CatalogBase get_catalog();
};

StorageHomeBase::find_by_short_pid()

// PSDL code
StorageObjectBase find_by_short_pid(
 in ShortPid short_pid
)
 raises (NotFound);

Returns a storage object for the given short pid.

Parameters

short_pid The short pid in the target storage home.
1119

Exceptions

StorageHomeBase::get_catalog()

// PSDL code
 CatalogBase get_catalog();

Returns the catalog that manages the target storage home instance.

CosPersistentS
tate::
NotFound

The object is not found.
 1120

CosPersistentState::
StorageHomeFactory Native Type

The StorageHomeFactory is a native PSDL type.

// PSDL in module CosPersistentState
native StorageHomeFactory;

The C++ mapping of this native type is as follows:

// C++
typedef CosPersistentState_Factory<StorageHomeBase>

StorageHomeFactory;

The application developer derives a class from this StorageHomeFactory type
to provide an implementation.

See Also IT_PSS_StorageHomeFactory
CosPersistentState::CosPersistentState_Factory
1121

 1122

CosPersistentState::StorageObject
Interface

The StorageObject interface supports a PSS storage object.

// PSDL in module CosPersistentState
abstract storagetype StorageObject {
 void destroy_object();
 boolean object_exists();
 Pid get_pid();
 ShortPid get_short_pid();
 StorageHomeBase get_storage_home();
};

StorageObject::destroy_object()

// PSDL code
void destroy_object();

When called on an incarnation, the operation destroys the associated storage
object (but does not destroy any of its incarnation).

Exceptions

StorageObject::get_pid()

// PSDL code
Pid get_pid();

Returns the Pid of the associated storage object when called on an incarnation.

PERSIST_STORE The operation is called on the instance of an embedded stor-
age object.
1123

Exceptions

See Also CosPersistentState::StorageObject::get_short_pid()

StorageObject::get_short_pid()

// PSDL code
ShortPid get_short_pid();

Returns the ShortPid of the associated storage object when called on an
incarnation.

Exceptions

See Also CosPersistentState::StorageObject::get_pid()

StorageObject::get_storage_home()

// PSDL code
StorageHomeBase get_storage_home();

Returns the storage home instance that manages the target storage object
instance.

StorageObject::object_exists()

// PSDL code
boolean object_exists();

Returns true if the target incarnation represents an actual storage object and
false if it does not.

PERSIST_STORE The operation is called on the instance of an embedded stor-
age object.

PERSIST_STORE The operation is called on the instance of an embedded stor-
age object.
 1124

CosPersistentState::
StorageObjectBase Native Type

A storage object can have both state and behavior. The visible part of its
state is described by state members on its abstract storage type(s). Similarly,
its behavior is described by operations on its abstract storage type(s).

All storage object instances are derived from this common base,
StorageObjectBase:

// PSDL in module CosPersistentState
 native StorageObjectBase;

The C++ mapping of this native type is as follows:

class StorageObjectBase {
protected:
 virtual ~StorageObjectBase() {}
};
1125

 1126

CosPersistentState::
StorageObjectFactory Native Type

StorageObjectFactory is a native type.

// in module CosPersistentState
native StorageObjectFactory;

The C++ mapping of this native type is as follows:

// C++
typedef CosPersistentState_Factory<StorageObject>

StorageObjectFactory;

The application developer derives a class from this StorageObjectFactory
type to provide an implementation.

See Also IT_PSS_StorageObjectFactory
CosPersistentState::CosPersistentState_Factory
1127

 1128

CosPersistentState::StorageObjectRef
Class

The StorageObjectRef class is a standard C++ base class mapping for a
StorageObject reference.

class StorageObjectRef {
 public:
 typedef StorageObject _target_type;

 static CORBA::TypeCode_ptr _static_type();

 StorageObjectRef(
 StorageObject* obj = 0,
 CatalogBase_ptr catalog = 0,
 void* impl_data = 0
);
 StorageObjectRef(
 const StorageObjectRef& ref
);

 StorageObjectRef& operator=(
 const StorageObjectRef& ref
);

 StorageObjectRef& operator=(
 StorageObject* obj
);

 void release();

 StorageObject* operator->(); // not const!

 CORBA::Boolean same_ref(
 StorageObjectRef
) const;

 void destroy_object() const;
1129

 Pid* get_pid() const;

 ShortPid* get_short_pid() const;

 CORBA::Boolean is_null() const;

 StorageHomeBase_ptr get_storage_home() const;

 // read-only access to data members

 void* _impl_data() const;

 CosPersistentState::CatalogBase_ptr _catalog() const;

 StorageObject* _target() const;

 protected:
 CosPersistentState::CatalogBase_ptr m_catalog;
 void* m_impl_data;
 StorageObject* m_target;
};

StorageObjectRef::_catalog()

CosPersistentState::CatalogBase_ptr _catalog() const;

Returns the catalog of the object.

StorageObjectRef::destroy_object()

void destroy_object() const;

Destroys the target object.
 1130

StorageObjectRef::get_pid()

Pid* get_pid() const;

Returns the Pid of the target object.

StorageObjectRef::get_short_pid()

ShortPid* get_short_pid() const;

Returns the short pid of the target object.

StorageObjectRef::get_storage_home()

StorageHomeBase_ptr get_storage_home() const;

Returns the storage home of the target object.

StorageObjectRef::_impl_data()

void* _impl_data() const;

StorageObjectRef::is_null()

CORBA::Boolean is_null() const;

Returns true if and only if this reference is null.

StorageObjectRef::operator=()

StorageObjectRef& operator=(
 const StorageObjectRef& ref
);

An assignment operator that takes an incarnation of the target abstract storage
type.
1131

StorageObjectRef& operator=(
 StorageObject* obj
);

An assignment operator.

StorageObjectRef::operator->()

StorageObject* operator->(); // not const!

A de-reference operator that de-references this reference and returns the target
object. The caller is not supposed to release this incarnation.

StorageObjectRef::release()

void release();

Releases the reference.

StorageObjectRef::same_ref()

CORBA::Boolean same_ref(
 StorageObjectRef
) const;

Returns true if the input storage object reference is the same as this one.

StorageObjectRef::_static_type()

static CORBA::TypeCode_ptr _static_type();

Returns a TypeCode reference.

StorageObjectRef::StorageObjectRef() Constructors

StorageObjectRef(
 StorageObject* obj = 0,
 CatalogBase_ptr catalog = 0,
 1132

 void* impl_data = 0
);

The default constructor creates a null reference.

StorageObjectRef(
 const StorageObjectRef& ref
);

A non-explicit constructor that takes an incarnation of the target abstract
storage type.

StorageObjectRef::_target_type

typedef StorageObject _target_type;

A type definition to the target type. This is useful for programming with
templates.

StorageObjectRef::_target()

StorageObject* _target() const;

Returns the target object.
1133

 1134

CosPersistentState::
TransactionalSession Interface

A transactional session is a specialized session that provides transactional
access to storage objects. A transactional session supports the local interface
TransactionalSession.

At a given time, a transactional session can be associated with one resource
object (a datastore transaction), or with no resource at all. The
session-resource association can be active, suspended, or ending. The state
members of an incarnation managed by a transactional session can be used
only when this session has an active association with a resource.

Typically, a resource is associated with a single session for its entire lifetime.
However, with some advanced database products, the same resource may be
associated with several sessions, possibly at the same time.

You create a transaction session by calling
create_transactional_session().

// PSDL Code in module CosPersistentState
local interface TransactionalSession : Session {

 readonly attribute IsolationLevel default_isolation_level;

 typedef short AssociationStatus;
 const AssociationStatus NO_ASSOCIATION = 0;
 const AssociationStatus ACTIVE = 1;
 const AssociationStatus SUSPENDED = 2;
 const AssociationStatus ENDING = 3;

 void start(in CosTransactions::Coordinator transaction);
 void suspend(in CosTransactions::Coordinator transaction);
 void end(
 in CosTransactions::Coordinator transaction,
 in boolean success
);
1135

 AssociationStatus get_association_status();

 CosTransactions::Coordinator transaction();
 };

See Also IT_PSS::TransactionalSession
CosPersistentState::Session

TransactionalSession::AssociationStatus Type

// PSDL Code
typedef short AssociationStatus;
const AssociationStatus NO_ASSOCIATION = 0;
const AssociationStatus ACTIVE = 1;
const AssociationStatus SUSPENDED = 2;
const AssociationStatus ENDING = 3;

The association status of a resource with a session. Valid values include:

NO_ASSOCIATION
ACTIVE
SUSPENDED
ENDING

See Also CosPersistentState::TransactionalSession::
get_association_status()

TransactionalSession::default_isolation_level Attribute

// PSDL Code
readonly attribute IsolationLevel default_isolation_level;

Returns the default isolation level of resources created for this transactional
session.

TransactionalSession::end()

// PSDL Code
void end(
 in CosTransactions::Coordinator transaction,
 in boolean success
 1136

);

Terminates a session-transaction association.

Parameters

A resource can be prepared or committed in one phase only when it is not
actively associated with any session. The resource will rollback if it is asked
to prepare or commit in one phase when still in use. A resource ends any
session-resource association in which it is involved when it is prepared,
committed in one phase, or rolled back.

Exceptions

The standard exception is raised if

See Also CosPersistentState::TransactionalSession::start()
CosPersistentState::TransactionalSession::suspend()

TransactionalSession::get_association_status()

// PSDL Code
AssociationStatus get_association_status();

Returns the status of the association (if any) with this session.

TransactionalSession::start()

// PSDL Code
void start(
 in CosTransactions::Coordinator transaction
);

transaction The transaction of the resource.

success If the success parameter is FALSE, the resource is rolled back
immediately. Like refresh(), end() invalidates direct
references to incarnations� data members.

PERSIST_STORE No associated resource.

INVALID_TRANSA
CTION

The given transaction does not match the transaction of the
resource associated with this session.
1137

Starts the transaction.

Parameters

This operation does one of three things depending on the association of the
transaction:

1. When transaction matches the transaction of the suspended (or
ending) association, start() re-activates a suspended (or ending)
session-resource association.

2. If a resource compatible with this session is already associated with the
given transaction, start() associates this resource with this session,
and makes the association active.

3. If the session creates a new resource and registers it with the given
transaction. The session also associates itself with this resource and
makes the association active.

Exceptions

See Also CosPersistentState::TransactionalSession::suspend()
CosPersistentState::TransactionalSession::end()

TransactionalSession::suspend()

// PSDL Code
void suspend(
 in CosTransactions::Coordinator transaction
);

Suspends a session-resource association.

Parameters

Exceptions

transaction The transaction to start.

INVALID_TRANSA
CTION

There is a suspended (or ending) association but the transac-
tions do not match.

transaction The transaction to suspend.

PERSIST_STORE No active association.
 1138

The standard exception INVALID_TRANSACTION is raised if the given
transaction does not match the transaction of the resource actively
associated with this session.

See Also CosPersistentState::TransactionalSession::start()
CosPersistentState::TransactionalSession::end()

TransactionalSession::transaction()

// PSDL Code
CosTransactions::Coordinator transaction();

Returns the coordinator of the transaction with which the resource associated
with this session is registered. The operation returns a nil object reference when
the session is not associated with a resource.
1139

 1140

IT_PSS Overview
The IT_PSS interfaces consist of:

CatalogBase
Connector
PreparedStatement
Master
Replica
ResultSet
Session
SessionManager
Statement
StorageObject
TransactionalSession

This module also has the following helper classes:

IT_PSS_StorageHomeFactory
IT_PSS_StorageObjectFactory
TxSessionAssociation
1141

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1142

IT_PSS::CatalogBase Interface
PSS provides simple JDBC-like queries. You use CatalogBase to create a
Statement or PreparedStatement.The query language is a subset of SQL that
currently only supports the following form of select query:

select ref(h) from home_type_id h

The PSDL code is as follows:

// PSDL Code in Module IT_PSS
local interface CatalogBase :
CosPersistentState::CatalogBase {

 Statement it_create_statement();

 Statement it_create_statement_with_type_and_concurrency(
 in ResultSet::Type type,
 in ResultSet::Concurrency concurrency
);

 PreparedStatement it_prepare_statement(
 in string pssql
);

 PreparedStatement
 it_prepare_statement_with_type_and_concurrency(
 in string pssql,
 in ResultSet::Type type,
 in ResultSet::Concurrency concurrency
);

 void it_discard_flush_list();

 void it_discard_all(
 in boolean clear_non_id_refs
);
};

Enhancement This is an Orbix enhancement.
1143

Orbix 2000 Programmer�s Reference Guide C++ Edition
See Also CosPersistentState::CatalogBase
IT_PSS::PreparedStatement
IT_PSS::Statement
IT_PSS::ResultSet

CatalogBase::it_create_statement()

// PSDL Code
Statement it_create_statement();

Creates and returns a JDBC-like Statement.

Enhancement This is an Orbix enhancement.

CatalogBase::
it_create_statement_with_type_and_concurrency()

// PSDL Code
Statement it_create_statement_with_type_and_concurrency(
 in ResultSet::Type type,
 in ResultSet::Concurrency concurrency
);

Creates and returns a JDBC-like Statement with a specific ResultSet type.
The concurrency setting can be either read-only or updateable. Only one
ResultSet per Statement can be open at any point in time. All statement
execute methods implicitly close a statement's current ResultSet if an open
one exists.

Enhancement This is an Orbix enhancement.

CatalogBase::it_discard_all()

// PSDL Code
void it_discard_all(
 in boolean clear_non_id_refs
);

Discards all cached objects.
 1144

Parameters

Enhancement This is an Orbix enhancement.

CatalogBase::it_discard_flush_list()

// PSDL Code
void it_discard_flush_list();

Discards all modified objects in the catalog.

Enhancement This is an Orbix enhancement.

CatalogBase::it_prepare_statement()

// PSDL Code
PreparedStatement it_prepare_statement(
 in string pssql
);

Creates and returns a JDBC-like PreparedStatement with the given query.

Enhancement This is an Orbix enhancement.

CatalogBase::
it_prepare_statement_with_type_and_concurrency()

// PSDL Code
PreparedStatement it_prepare_statement_with_type_and_concurrency(
 in string pssql,
 in ResultSet::Type type,
 in ResultSet::Concurrency concurrency
);

clear_non_id_refs If this parameter is set to true, any references that an
object might have to another object are removed. This
removes the possibility of circular references between
objects.
1145

Orbix 2000 Programmer�s Reference Guide C++ Edition
Creates and returns a JDBC-like PreparedStatement with a given query and
specific ResutSet type. The concurrency setting can be either read-only or
updateable.

Enhancement This is an Orbix enhancement.
 1146

IT_PSS::Connector Interface
This is an Orbix-enhancement interface that lets you create a session man-
ager.

// PSDL Code in module IT_PSS
/* local */ interface Connector : CosPersistentState::Connector {
 SessionManager it_create_session_manager(
 in CosPersistentState::ParameterList parameters
);
};

Enhancement This is an Orbix enhancement.

See Also CosPersistentState::Connector

Connector::it_create_session_manager()

// PSDL Code
SessionManager it_create_session_manager(
 in CosPersistentState::ParameterList parameters
);

Creates and returns a session manager.

Parameters

parameters See Table 30 for details about possible parameters. Other
parameters are passed in each session creation call. You can-
not, however, pass a parameter named concurrent when
creating a session manager. The session manager's read-only
read-committed session is created with concurrent set to true,
whereas the session manager's read-write serializable ses-
sions are created with concurrent set to false.
1147

Orbix 2000 Programmer�s Reference Guide C++ Edition
Enhancement This is an Orbix enhancement.

See Also IT_PSS::SessionManager

Table 30: Additional PSS SessionManager Creation Parameters

Parameter
Name

 Type Description

to string This parameter is required. Some string that identifies what
you connect to. For example with PSS/DB, it will be an envi-
ronment name; with PSS/ODBC a datasource name; with
PSS/Oracle, an Oracle database name.

rw pool size long Initial size of the pool of read-write transactional sessions
managed by the session manager. Must be between 1 and
1000. This parameter is not required. The default value is
1.

grow pool boolean Create a new session to process a new request when all the
read-write transactional sessions are busy? If false, wait
until a read-write transactional session becomes available.
This parameter is not required. The default value is false.

single writer boolean Can be true only when rw pool size is 1, in which case the
read-write transactional session will be created with the sin-
gle writer parameter set to true. This parameter is not
required. The default value is false.
 1148

IT_PSS::PreparedStatement Interface
The PreparedStatement interface is a JDBC-like prepared statement which
is an object that represents a pre-compiled SQL statement. An SQL state-
ment is pre-compiled and stored in the PreparedStatement object so your
application can then efficiently execute the statement multiple times.

// PSDL Code in module IT_PSS
local interface PreparedStatement : Statement {

 void execute_prepared();

 ResultSet execute_prepared_query();

 unsigned long execute_prepared_update();

 void define_parameter(
 in unsigned short parameter_index,
 in any parameter_value
);

 void clear_parameters();
};

Enhancement This is an Orbix enhancement.

See Also IT_PSS::CatalogBase
IT_PSS::Statement

PreparedStatement::clear_parameters()

// PSDL Code
void clear_parameters();

Clears the current parameter values immediately.

Enhancement This is an Orbix enhancement.
1149

Orbix 2000 Programmer�s Reference Guide C++ Edition
PreparedStatement::define_parameter()

// PSDL Code
void define_parameter(
 in unsigned short parameter_index,
 in any parameter_value
);

Defines an SQL parameter value for the designated parameter index.

Enhancement This is an Orbix enhancement.

PreparedStatement::execute_prepared()

// PSDL Code
void execute_prepared();

Executes the prepared SQL statement.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::PreparedStatement::execute_prepared_query()
IT_PSS::PreparedStatement::execute_prepared_update()

PreparedStatement::execute_prepared_query()

// PSDL Code
ResultSet execute_prepared_query();

Executes the SQL query in this PreparedStatement object and returns
the result set generated by the query.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::PreparedStatement::execute_prepared()
IT_PSS::PreparedStatement::execute_prepared_update()

PreparedStatement::execute_prepared_update()

// PSDL Code
unsigned long execute_prepared_update();
 1150

Executes the SQL INSERT, UPDATE or DELETE statement in this
PreparedStatement object.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::PreparedStatement::execute_prepared()
IT_PSS::PreparedStatement::execute_prepared_query()
1151

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1152

IT_PSS:Master Interface
The Master interface provides functionality for master instances of replicated
persistent objects using the persistent state service.

interface Master
{};
1153

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1154

IT_PSS:Replica Interface
The Replica interface provides functionality for replicated databases. The
persistent state service supports two styles of replicas: a push-style replica
and a pull-style replcia. A push-style replica is updated by the master
instance of the object. A pull-style replica requests updates periodically from
the master instance of the object.

interface Replica
{
 boolean set_master(in Master new_master);

 readonly attribute unsigned long long last_successful_refresh;

 // Pull refresh now
 void refresh();
};

IT_PSS::Replica::set_master

boolean set_master(in Master new_master)

Registers the replica with a master instance of the object. It returns TRUE if the
registration is successful.

Parameters This function takes an object of Master containing an object reference to the
master instance of the object.

IT_PSS::Replica::last_successful_refresh

readonly attribute unsigned long long last_successful_refresh

Returns the amount of time that has passed since the last time the replica was
successfully refreshed by the master instance of the object.
1155

Orbix 2000 Programmer�s Reference Guide C++ Edition
IT_PSS:Replica:refresh

void refresh()

Requests an update from the master instance of the object. The master will
completely sync the replica as a result of this call.
 1156

IT_PSS::ResultSet Interface
The ResultSet interface provides access to a table of data similar to a JDBC
result set. A ResultSet object is usually generated by executing a Statement
or a PreparedStatement. A ResultSet maintains a cursor pointing to its cur-
rent row of data. Initially the cursor is positioned before the first row.

Data types include:

Concurrency Type
FetchDirection Type
Type

Operations include:

Enhancement This interface is an Orbix enhancement.

See Also IT_PSS::CatalogBase

// PSDL Code in module IT_PSS
local interface ResultSet {

 typedef unsigned short Type;
 const Type TYPE_FORWARD_ONLY = 1;
 const Type TYPE_SCROLL_INSENSITIVE = 2;
 const Type TYPE_SCROLL_SENSITIVE = 3;

absolute()
after_last()
before_first()
cancel_row_updates()
close()
delete_row()
find_state_member()
first()
get()
get_by_name()
get_concurrency()
get_fetch_direction()

get_fetch_size()
get_row()
get_statement()
get_type()
insert_row()
is_after_last()
is_before_first()
is_first()
is_last()
last()
move_to_current_row()
move_to_insert_row()

next()
previous()
refresh_row()
relative()
row_deleted()
row_inserted()
row_updated()
set()
set_by_name()
set_fetch_direction()
set_fetch_size()
update_row()
1157

Orbix 2000 Programmer�s Reference Guide C++ Edition
 typedef unsigned short Concurrency;
 const Concurrency CONCUR_READ_ONLY = 1;
 const Concurrency CONCUR_UPDATABLE = 2;

 typedef unsigned short FetchDirection;
 const FetchDirection FETCH_FORWARD = 1;
 const FetchDirection FETCH_REVERSE = 2;
 const FetchDirection FETCH_UNKNOWN = 3;

 Statement get_statement();

 // Basic operations
 //
 boolean next();
 void close();

 any get(
 in unsigned short index
);

 any get_by_name(
 in string state_member_name
);

 // Find state_member
 //
 unsigned short find_state_member(
 in string state_member_name
);

 // Getting/setting the current row
 //
 boolean is_after_last();
 boolean is_before_first();
 boolean is_first();
 boolean is_last();
 void after_last();
 void before_first();
 boolean first();
 boolean last();
 unsigned short get_row();

 boolean absolute(
 1158

 in short row
);

 boolean relative(
 in short rows
);

 boolean previous();
 void move_to_insert_row();
 void move_to_current_row();

 // Fetch direction and size
 //
 void set_fetch_direction(
 in FetchDirection direction
);

 FetchDirection get_fetch_direction();

 void set_fetch_size(
 in unsigned short fetch_size
);

 unsigned short get_fetch_size();

 // Type and Concurrency
 //
 Type get_type();
 Concurrency get_concurrency();

 // Was row modified?
 //
 boolean row_updated();
 boolean row_inserted();
 boolean row_deleted();

 // Write operations
 //
 void set(
 in unsigned short index,
 in any value
);
1159

Orbix 2000 Programmer�s Reference Guide C++ Edition
 void set_by_name(
 in string state_member_name,
 in any value
);

 void insert_row();
 void update_row();
 void delete_row();
 void refresh_row();
 void cancel_row_updates();
};

ResultSet::absolute()

// PSDL Code
boolean absolute(
 in short row
);

Moves the cursor to the given row number in the result set.

Parameters

Enhancement This is an Orbix enhancement.

ResultSet::after_last()

// PSDL Code
void after_last();

row If the row number is positive, the cursor moves to the given
row number with respect to the beginning of the result set.
The first row is row 1, the second is row 2, and so on.

If the given row number is negative, the cursor moves to an
absolute row position with respect to the end of the result set.
For example, calling absolute(-1) positions the cursor on the
last row, absolute(-2) indicates the next-to-last row, and so on.

An attempt to position the cursor beyond the first/last row in
the result set leaves the cursor before/after the first/last row,
respectively.
 1160

Moves the cursor to the end of the result set, just after the last row. Has no
effect if the result set contains no rows.

Enhancement This is an Orbix enhancement.

ResultSet::before_first()

// PSDL Code
void before_first();

Moves the cursor to the front of the result set, just before the first row. Has no
effect if the result set contains no rows.

Enhancement This is an Orbix enhancement.

ResultSet::cancel_row_updates()

// PSDL Code
void cancel_row_updates();

Cancels the updates made to a row in the table.

Enhancement This is an Orbix enhancement.

ResultSet::close()

// PSDL Code
void close();

Releases this ResultSet object's database and JDBC resources immediately
instead of waiting for this to happen when it is automatically closed.

Enhancement This is an Orbix enhancement.

ResultSet::Concurrency Type

// PSDL Code
typedef unsigned short Concurrency;
const Concurrency CONCUR_READ_ONLY = 1;
const Concurrency CONCUR_UPDATABLE = 2;
1161

Orbix 2000 Programmer�s Reference Guide C++ Edition
The concurrency mode of the table. It can be read-only or updated.

Enhancement This is an Orbix enhancement.

ResultSet::delete_row()

// PSDL Code
void delete_row();

Deletes the current row from the table.

Enhancement This is an Orbix enhancement.

ResultSet::FetchDirection Type

// PSDL Code
typedef unsigned short FetchDirection;
const FetchDirection FETCH_FORWARD = 1;
const FetchDirection FETCH_REVERSE = 2;
const FetchDirection FETCH_UNKNOWN = 3;

Defines the direction of table row processing.

Enhancement This is an Orbix enhancement.

ResultSet::find_state_member()

// PSDL Code
unsigned short find_state_member(
 in string state_member_name
);

FETCH_FORWARD The rows in a result set will be processed in a forward
direction; first-to-last.

FETCH_REVERSE The rows in a result set will be processed in a reverse
direction; last-to-first.

FETCH_UNKNOWN The order in which rows in a result set will be pro-
cessed is unknown.
 1162

Returns the index for the given result set�s state member name.

Enhancement This is an Orbix enhancement.

ResultSet::first()

// PSDL Code
boolean first();

Moves the cursor to the first row in the result set. Returns true if the cursor is
on a valid row; false if there are no rows in the result set

Enhancement This is an Orbix enhancement.

ResultSet::get()

// PSDL Code
any get(
 in unsigned short index
);

Returns the value for the given parameter index.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::set()

ResultSet::get_by_name()

// PSDL Code
any get_by_name(
 in string state_member_name
);

Returns the value for a state member given the member name.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::set_by_name()
1163

Orbix 2000 Programmer�s Reference Guide C++ Edition
ResultSet::get_concurrency()

// PSDL Code
Concurrency get_concurrency();

Returns the concurrency value.

Enhancement This is an Orbix enhancement.

ResultSet::get_fetch_direction()

// PSDL Code
FetchDirection get_fetch_direction();

Returns the direction of table row processing.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::set_fetch_direction()

ResultSet::get_fetch_size()

// PSDL Code
unsigned short get_fetch_size();

Returns the number of rows that are fetched from the database when more
rows are needed for this result set.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::set_fetch_size()

ResultSet::get_row()

// PSDL Code
unsigned short get_row();

Returns the current row number. The first row is number 1, the second number
is 2, and so on.

Enhancement This is an Orbix enhancement.
 1164

ResultSet::get_statement()

// PSDL Code
Statement get_statement();

Returns the Statement that produced this ResultSet object.

Enhancement This is an Orbix enhancement.

ResultSet::get_type()

// PSDL Code
Type get_type();

Returns the type of this result set. The type is determined by the Statement
that created the result set.

Enhancement This is an Orbix enhancement.

ResultSet::insert_row()

// PSDL Code
void insert_row();

Inserts a row.

Enhancement This is an Orbix enhancement.

ResultSet::is_after_last()

// PSDL Code
boolean is_after_last();

Returns true if the cursor is after the last row in the result set, false if it is not.

Enhancement This is an Orbix enhancement.

ResultSet::is_before_first()

// PSDL Code
boolean is_before_first();
1165

Orbix 2000 Programmer�s Reference Guide C++ Edition
Returns true if the cursor is before the first row in the result set, false if it is not.

Enhancement This is an Orbix enhancement.

ResultSet::is_first()

// PSDL Code
boolean is_first();

Returns true if the cursor is on the first row of the result set, false if it is not.

Enhancement This is an Orbix enhancement.

ResultSet::is_last()

// PSDL Code
boolean is_last();

Returns true if the cursor is on the last row of the result set, false if it is not.

Enhancement This is an Orbix enhancement.

ResultSet::last()

// PSDL Code
boolean last();

Moves the cursor to the last row in the result set and returns true if the cursor
is on a valid row; false if there are no rows in the result set.

Enhancement This is an Orbix enhancement.

ResultSet::move_to_current_row()

// PSDL Code
void move_to_current_row();

Moves the cursor to the remembered cursor position, usually the current row.
This operation has no effect if the cursor is not on the insert row.

Enhancement This is an Orbix enhancement.
 1166

ResultSet::move_to_insert_row()

// PSDL Code
void move_to_insert_row();

Moves the cursor to the insert row.

Enhancement This is an Orbix enhancement.

ResultSet::next()

// PSDL Code
boolean next();

Moves the cursor down one row from its current position. A ResultSet cursor
is initially positioned before the first row; the first call to next makes the first
row the current row; the second call makes the second row the current row,
and so on.

Enhancement This is an Orbix enhancement.

ResultSet::previous()

// PSDL Code
boolean previous();

Moves the cursor to the previous row in the result set.

Enhancement This is an Orbix enhancement.

ResultSet::refresh_row()

// PSDL Code
void refresh_row();

Refreshes the current row with its most recent value in the database. This
cannot be called when the cursor is on the insert row.

Enhancement This is an Orbix enhancement.
1167

Orbix 2000 Programmer�s Reference Guide C++ Edition
ResultSet::relative()

// PSDL Code
boolean relative(
 in short rows
);

Moves the cursor a relative number of rows, either positive or negative.
Attempting to move beyond the first/last row in the result set positions the
cursor before/after the first/last row. Calling relative(0) is valid, but does
not change the cursor position.

Enhancement This is an Orbix enhancement.

ResultSet::row_deleted()

// PSDL Code
boolean row_deleted();

Indicates whether a row has been deleted. A deleted row may leave a visible
�hole� in a result set. This operation can be used to detect holes in a result
set. The value returned depends on whether or not the result set can detect
deletions.

Enhancement This is an Orbix enhancement.

ResultSet::row_inserted()

// PSDL Code
boolean row_inserted();

Indicates whether the current row has had an insertion. The value returned
depends on whether or not the result set can detect visible inserts. The
operation returns true if a row has had an insertion and insertions are detected.

Enhancement This is an Orbix enhancement.

ResultSet::row_updated()

// PSDL Code
boolean row_updated();
 1168

Indicates whether the current row has been updated. The value returned
depends on whether or not the result set can detect updates. If the set can
detect updates, the operation returns true if the row has been visibly updated
by the owner or another.

Enhancement This is an Orbix enhancement.

ResultSet::set()

// PSDL Code
void set(
 in unsigned short index,
 in any value
);

Sets the value and parameter index.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::get()

ResultSet::set_by_name()

// PSDL Code
void set_by_name(
 in string state_member_name,
 in any value
);

Sets the value for an object�s member given the name of the member.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::get_by_name()

ResultSet::set_fetch_direction()

// PSDL Code
void set_fetch_direction(
 in FetchDirection direction
);
1169

Orbix 2000 Programmer�s Reference Guide C++ Edition
Sets a hint as to the direction in which the rows in this result set will be
processed. The initial value is determined by the statement that produced the
result set. The fetch direction may be changed at any time.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::get_fetch_direction()

ResultSet::set_fetch_size()

// PSDL Code
void set_fetch_size(
 in unsigned short fetch_size
);

The fetch size is a hint as to the number of rows that should be fetched from
the database when more rows are needed for this result set. The default value
is set by the Statement that created the result set. The fetch size may be
changed at any time.

Parameters

Enhancement This is an Orbix enhancement.

See Also IT_PSS::ResultSet::get_fetch_size()

ResultSet::Type

// PSDL Code
typedef unsigned short Type;
const Type TYPE_FORWARD_ONLY = 1;
const Type TYPE_SCROLL_INSENSITIVE = 2;
const Type TYPE_SCROLL_SENSITIVE = 3;

The type of this result set. The type is determined by the Statement that created
the result set.

Enhancement This is an Orbix enhancement.

fetch_size If the fetch size is zero, a best guess is used.
 1170

ResultSet::update_row()

// PSDL Code
void update_row();

Updates the underlying database with the new contents of the current row.
Cannot be called when the cursor is on the insert row.

Enhancement This is an Orbix enhancement.
1171

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1172

IT_PSS::Session Interface
When you create a session with an IONA PSS implementation, you get an
IT_PSS::Session.

// PSDL Code in module IT_PSS
local interface Session : CatalogBase, CosPersistentState::Session
 {};

Enhancement This interface is an Orbix enhancement.

See Also IT_PSS::CatalogBase
CosPersistentState::Session
1173

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1174

IT_PSS::SessionManager Interface
PSS fully support transactions, and works with any compliant transaction
service implementation. Unless you are developing a trivial demonstration
program, you should use transactions when developing applications with
PSS.

You can use a SessionManager object to manage transactional sessions. A
common pattern when developing a transactional server using PSS is to use
a shared read-only read-committed transactional session for simple read-only
non-transactional requests. Of course, you can also create and manage your
transactional sessions directly with the standard lower level PSS APIs from
the CosPersistentState module.

//PSDL in module IT_PSS
local interface SessionManager {
 TransactionalSession get_shared_read_only_session_nc();
 void block_readers_until_idle();
};

Enhancement This interface is an Orbix enhancement.

See Also IT_PSS::Connector::it_create_session_manager()

SessionManager::get_shared_read_only_session_nc()

//PSDL code
TransactionalSession get_shared_read_only_session_nc();

Returns a shared, read-only transactional session. In this context, shared
means the transactional session is usable by multiple threads.

Enhancement This is an Orbix enhancement.

SessionManager::block_readers_until_idle()

//PSDL code
void block_readers_until_idle();
1175

Orbix 2000 Programmer�s Reference Guide C++ Edition
Blocks new threads from using the shared, read-only transactional session until
no thread is using the session.

Enhancement This is an Orbix enhancement.
 1176

IT_PSS::Statement Interface
The Statement interface provides operations for a JDBC-like statement, an
object used for executing a static SQL statement and obtaining the results
produced by it.

// PSDL Code in module IT_PSS
local interface Statement {
 void execute(
 in string pssql
);

 ResultSet execute_query(
 in string pssql
);

 unsigned long execute_update(
 in string pssql
);

 ResultSet get_result_set();

 void close();

 // Default fetch direction and size
 //
 void set_fetch_direction(
 in ResultSet::FetchDirection direction
);

 ResultSet::FetchDirection get_fetch_direction();

 void set_fetch_size(
 in unsigned short fetch_size
);

 unsigned short get_fetch_size();

 // Type and Concurrency
1177

Orbix 2000 Programmer�s Reference Guide C++ Edition
 //
 ResultSet::Type get_result_set_type();
 ResultSet::Concurrency get_result_set_concurrency();
 CatalogBase get_catalog();
};

Enhancement This interface is an Orbix enhancement.

See Also IT_PSS::CatalogBase
IT_PSS::PreparedStatement

Statement::close()

// PSDL Code
void close();

Releases this Statement object's database and resources immediately instead
of waiting for this to happen when it is automatically closed.

Enhancement This is an Orbix enhancement.

Statement::execute()

// PSDL Code
void execute(
 in string pssql
);

Executes an SQL statement that may obtain multiple results.

Enhancement This is an Orbix enhancement.

Statement::execute_query()

// PSDL Code
ResultSet execute_query(
 in string pssql
);

Executes an SQL statement that returns a single ResultSet.

Enhancement This is an Orbix enhancement.
 1178

Statement::execute_update()

// PSDL Code
unsigned long execute_update(
 in string pssql
);

Executes an SQL INSERT, UPDATE or DELETE statement.

Enhancement This is an Orbix enhancement.

Statement::get_catalog()

// PSDL Code
CatalogBase get_catalog();

Returns the catalog for this Statement.

Enhancement This is an Orbix enhancement.

Statement::get_fetch_direction()

// PSDL Code
ResultSet::FetchDirection get_fetch_direction();

Returns the direction for fetching rows from database tables that is the default
for result sets generated from this Statement object.

Enhancement This is an Orbix enhancement.

Statement::get_fetch_size()

// PSDL Code
unsigned short get_fetch_size();

Returns the number of result set rows that is the default fetch size for result
sets generated from this Statement object.

Enhancement This is an Orbix enhancement.
1179

Orbix 2000 Programmer�s Reference Guide C++ Edition
Statement::get_result_set()

// PSDL Code
ResultSet get_result_set();

Returns the current result as a ResultSet object.

Enhancement This is an Orbix enhancement.

Statement::get_result_set_concurrency()

// PSDL Code
ResultSet::Concurrency get_result_set_concurrency();

Returns the result set concurrency.

Enhancement This is an Orbix enhancement.

Statement::get_result_set_type()

// PSDL Code
ResultSet::Type get_result_set_type();

Returns the type of the ResultSet.

Enhancement This is an Orbix enhancement.

Statement::set_fetch_direction()

// PSDL Code
void set_fetch_direction(
 in ResultSet::FetchDirection direction
);

Sets a hint as to the direction in which the rows in a result set should be
processed.

Enhancement This is an Orbix enhancement.
 1180

Statement::set_fetch_size()

// PSDL Code
void set_fetch_size(
 in unsigned short fetch_size
);

Gives a hint as to the number of rows that should be fetched from the database
when more rows are needed.

Enhancement This is an Orbix enhancement.
1181

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1182

IT_PSS_StorageHomeFactory
Template

Use this template class to help implement your StorageHomeFactory.

template<class T>
class IT_PSS_StorageHomeFactory :
public CosPersistentState::StorageHomeFactory {
 public:

 IT_PSS_StorageHomeFactory();

 virtual void _add_ref();

 virtual void _remove_ref();

 virtual CosPersistentState::StorageHomeBase_ptr create()
 throw(CORBA::SystemException);

 private:
 ...
};

Enhancement This is an Orbix enhancement.

IT_PSS_StorageHomeFactory::_add_ref()

virtual void _add_ref();

Increases the reference count by one.

Enhancement This is an Orbix enhancement.
1183

Orbix 2000 Programmer�s Reference Guide C++ Edition
IT_PSS_StorageHomeFactory::create()

virtual CosPersistentState::StorageHomeBase_ptr create()
 throw(CORBA::SystemException);

Creates and returns a new StorageHomeBase object.

IT_PSS_StorageHomeFactory::IT_PSS_StorageHomeFactory()

IT_PSS_StorageHomeFactory();

The constructor.

Enhancement This is an Orbix enhancement.

IT_PSS_StorageHomeFactory::_remove_ref()

virtual void _remove_ref();

Decreases the reference count by one.

Enhancement This is an Orbix enhancement.
 1184

IT_PSS::StorageObject Interface
PSS presents persistent information as storage objects. Each storage object
has a type that defines its members and operations. When you create a stor-
age object with an IONA PSS implementation, you get an IT_PSS::
StorageObject.

// PSDL Code in module IT_PSS
abstract storagetype StorageObject {
 void it_lock();

 };

Enhancement This interface is an Orbix enhancement.

See Also CosPersistentState::StorageObject

StorageObject::it_lock()

// PSDL Code
void it_lock();

This operation acquires an exclusive lock on behalf of a basic session or
transactional session.

Enhancement This is an Orbix enhancement.
1185

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1186

IT_PSS_StorageObjectFactory
Template

Use this template class to help implement your StorageObjectFactory.

// c++
template<class T>
class IT_PSS_StorageObjectFactory :
public CosPersistentState::StorageObjectFactory {
 public:

 IT_PSS_StorageObjectFactory();

 virtual void _add_ref();

 virtual void _remove_ref();

 virtual CosPersistentState::StorageObject* create()
 throw(CORBA::SystemException);

 private:
 ...
};

Enhancement This is an Orbix enhancement.

IT_PSS_StorageObjectFactory::_add_ref()

virtual void _add_ref();

Increases the reference count by one.

IT_PSS_StorageObjectFactory::create()

virtual CosPersistentState::StorageObject* create()
 throw(CORBA::SystemException);
1187

Orbix 2000 Programmer�s Reference Guide C++ Edition
Creates and returns a new StorageObject object.

Enhancement This is an Orbix enhancement.

IT_PSS_StorageObjectFactory::
IT_PSS_StorageObjectFactory()

IT_PSS_StorageObjectFactory();

The constructor.

Enhancement This is an Orbix enhancement.

IT_PSS_StorageObjectFactory::_remove_ref()

virtual void _remove_ref();

Decreases the reference count by one.

Enhancement This is an Orbix enhancement.
 1188

IT_PSS::TransactionalSession
Interface

When you create a transactional session with an IONA PSS implementation,
you get an IT_PSS::TransactionalSession object.

// PSDL Code in module IT_PSS
local interface TransactionalSession :
Session, CosPersistentState::TransactionalSession
{
Master get_master();
boolean is_replica();
Replica get_replica();
};

This interface provides propriatary enhancements to the OGM
TransactionalSession interface. It consists of functions to manage repli-
cated persistent objects.

IT_PSS::TransactionalSession::get_master

Master get_master();

Returns an object reference to a replica�s master instance. If the session is
associated with a master, then it will return an object reference to itself. If the
master instance was not set or is unreachable, the function will return NIL.

IT_PSS::TransactionalSession:is_replica

boolean is_replica();

Returns TRUE if the object is a replica of a datastore and FALSE if it is not.
1189

Orbix 2000 Programmer�s Reference Guide C++ Edition
IT_PSS::TransactionalSession:get_replica

Replica get_replica();

If the session is associated with a replica of a datastore, it will return an object
reference to its Replica object. If the session is associated with a master
instance, it will return NIL.
 1190

IT_PSS::TxSessionAssociation Class
You can use stack-allocated TxSessionAssociation objects to create associ-
ations between OTS transactions and PSS transactional sessions managed by
a SessionManager.

class TxSessionAssociation {
 public:
 TxSessionAssociation(
 IT_PSS::SessionManager_ptr session_mgr,
 CosPersistentState::AccessMode access_mode
) throw(CORBA::SystemException);

 TxSessionAssociation(
 IT_PSS::SessionManager_ptr session_mgr,
 CosPersistentState::AccessMode access_mode,
 CosTransactions::Coordinator_ptr tx_coordinator
) throw(CORBA::SystemException);

 ~TxSessionAssociation()
 throw(CORBA::SystemException);

 IT_PSS::TransactionalSession_ptr get_session_nc()
 const throw();

 CosTransactions::Coordinator_ptr get_tx_coordinator_nc()
 const throw();

 void suspend()
 throw(CORBA::SystemException);

 void end(
 CORBA::Boolean success = IT_TRUE
) throw(CORBA::SystemException);

 private:
 ...
};

Enhancement This class is an Orbix enhancement.
1191

Orbix 2000 Programmer�s Reference Guide C++ Edition
TxSessionAssociation::end()

void end(
 CORBA::Boolean success = IT_TRUE
) throw(CORBA::SystemException);

Ends the association only if this object started or resumed the association.This
method has no effect if the association already ended.

Parameters

Enhancement This is an Orbix enhancement.

See Also IT_PSS::TxSessionAssociation::suspend()

TxSessionAssociation::get_session_nc()

IT_PSS::TransactionalSession_ptr get_session_nc()
 const IT_THROW_DECL(());

Returns a non-copied reference to the session. This mean that the caller must
not release the returned reference.

Enhancement This is an Orbix enhancement.

TxSessionAssociation::get_tx_coordinator_nc()

CosTransactions::Coordinator_ptr get_tx_coordinator_nc()
 const IT_THROW_DECL(());

Returns a non-copied reference to the association's transaction coordinator.
This mean that the caller must not release the returned reference. After a
transaction-session association object is constructed,
get_tx_coordinator_nc() returns nil when and only when the object repre-
sents an association between the session manager's read-only transaction and
the session manager's shared read-only session.

Enhancement This is an Orbix enhancement.

success Determines if the method was successful.
 1192

TxSessionAssociation::TxSessionAssociation() Constructors

TxSessionAssociation(
 IT_PSS::SessionManager_ptr session_mgr,
 CosPersistentState::AccessMode access_mode
) throw(CORBA::SystemException);

A constructor without a supplied transaction.

TxSessionAssociation(
 IT_PSS::SessionManager_ptr session_mgr,
 CosPersistentState::AccessMode access_mode,
 CosTransactions::Coordinator_ptr tx_coordinator
) throw(CORBA::SystemException);

A constructor with a transaction.

Parameters

session_mgr The session manager.

access_mode Access mode for the association. If tx_coordinator is
not provided, the constructor's behavior is as follows:

� If access mode is READ_ONLY, then start or use an
association between the session manager's
read-only transaction and the session manager's
shared read-only session.

� If access mode is READ_WRITE, then raise the
CORBA::TRANSACTION_REQUIRED.

tx_coordinator A transaction coordinator.
1193

Orbix 2000 Programmer�s Reference Guide C++ Edition
If a transaction is provided, the behavior depends on the number of associa-
tions between this transaction and sessions created by the session's manager
connector:

Enhancement This is an Orbix enhancement.

TxSessionAssociation::~TxSessionAssociation() Destructor

~TxSessionAssociation()
 throw(CORBA::SystemException);

If there is still an association when the destructor is called, and this object
started the association, the association is suspended. If the suspend fails, the
association ends with the success flag set to FALSE.

Enhancement This is an Orbix enhancement.

TxSessionAssociation::suspend()

void suspend()
 throw(CORBA::SystemException);

Suspends the association only when this object started or resumed the
association. This method has no effect if the association has already suspended
or ended.

Enhancement This is an Orbix enhancement.

See Also IT_PSS::TxSessionAssociation::end()

Table 31: Associations Between a Transaction and Sessions

Number of Associations Behavior

Greater than 1 Raises the CORBA::IMPL_LIMIT exception.

1 Does nothing if it is ACTIVE, otherwise it starts
it.

none Creates a new association between this trans-
action and a read-write transactional session
managed by the session manager.
 1194

The IT_PSS_DB Module Overview
This module contains the single interface Env.
1195

Orbix 2000 Programmer�s Reference Guide C++ Edition
 1196

IT_PSS_DB::Env Interface

// IDL
module IT_PSS_DB {
 interface Env {
 readonly attribute string name;

 void pre_backup();
 void post_backup();
 void checkpoint();
 };
};

Enhancement This interface is an Orbix enhancement.

Env::checkpoint()

// IDL
void checkpoint();

Enhancement This is an Orbix enhancement.

Env::name Attribute

// IDL
readonly attribute string name;

Enhancement This is an Orbix enhancement.
1197

Orbix 2000 Programmer�s Reference Guide C++ Edition
Env::post_backup()

// IDL
void post_backup();

Enhancement This is an Orbix enhancement.

Env::pre_backup()

// IDL
void pre_backup();

Enhancement This is an Orbix enhancement.
 1198

 Security

IT_Certificate Overview
The IT_Certificate module provides data types and interfaces that are
used to manage and describe X.509 certificates. The following interfaces are
provided in this module:

� AVA
� AVAList
� Extension
� ExtensionList
� Certificate
� X509Cert
� X509CertificateFactory

IT_Certificate::ASN_OID Structure

// IDL
struct ASN_OID
{
 OIDTag tag;
 ASN1oid asn1_oid;
 string tag_name;
};

Holds an ASN.1 object ID (OID).

The ASN.1 OID can be specified by setting either the tag or asn1_oid
structure members.

An ASN_OID structure returned by Orbix SSL/TLS normally sets both the tag
and asn1_oid members in the structure. The returned tag value will be
IT_OIDT_UNKNOWN, however, if Orbix SSL/TLS does not recognize the OID
from its internal table of known OIDs.
1201

The structure has the following members:

IT_Certificate::ASN1oid Sequence

typedef sequence<UShort> ASN1oid;

Holds an ASN.1 OID in the standard format, which is a sequence of integers.
For example, the sequence 2.5.4.3 identifies the Common Name AVA.

IT_Certificate::Bytes Sequence

typedef sequence<octet> Bytes;

Holds raw binary data.

IT_Certificate::CertError Exception

// IDL
exception CertError
{
 Error e;
};

A certificate-related error.

tag An Orbix-specific tag to identify an AVA. For example, the
IT_Certificate::IT_OIDT_COMMON_NAME tag identifies the
Common Name AVA.

If you set tag equal to the special value
IT_Certificate::IT_OIDT_UNKNOWN, it will be ignored and
the asn1_oid member will be used instead.

asn1_oid An ASN.1 OID to identify an AVA, specified in the standard
way as a sequence of integers. For example, the sequence
2.5.4.3 identifies the Common Name AVA.

tag_name Reserved for future use by Orbix SSL/TLS.
 1202

IT_Certificate::DERData Sequence

typedef sequence<octet> DERData;

Holds data in distinguished encoding rules (DER) format.

IT_Certificate::Error Structure

struct Error
{
 Error_code err_code;
 string error_message;
};

Holds certificate-related error information.

IT_Certificate::Error_code Type

typedef short Error_code;

Holds the certificate-related error codes.

Values This type can have one of the following integer constant values:

IT_TLS_FAILURE
IT_TLS_UNSUPPORTED_FORMAT
IT_TLS_BAD_CERTIFICATE_DATA
IT_TLS_ERROR_READING_DATA

IT_Certificate::Format Structure

//IDL
typedef short Format;

Specifies a specific format for X.509 certificate data.

Values This type can have one of the following integer constant values:

IT_FMT_DER This format corresponds to the DER encoding of the
AVA. This option is usually only used by applications
that require special processing of the DER data.
1203

IT_Certificate::OIDTag Type

typedef UShort OIDTag;

An Orbix-specific tag type that represents an ASN.1 OID. Tags are defined for
most of the commonly used AVAs in an X.509 certificate. These tags are
provided as a convenient alternative to the standard OID format,
IT_Certificate::ASN1oid.

Values This type can have one of the following integer constant values:

IT_OIDT_UNKNOWN
IT_OIDT_RSADSI
IT_OIDT_PKCS
IT_OIDT_MD2
IT_OIDT_MD5
IT_OIDT_RC4
IT_OIDT_RSA_ENCRYPTION
IT_OIDT_MD2_WITH_RSA_ENCRYPTION
IT_OIDT_MD5_WITH_RSA_ENCRYPTION
IT_OIDT_PBE_WITH_MD2_AND_DES_CBC
IT_OIDT_PBE_WITH_MD5_AND_DES_CBC
IT_OIDT_X500
IT_OIDT_X509
IT_OIDT_COMMON_NAME
IT_OIDT_COUNTRY_NAME
IT_OIDT_LOCALITY_NAME
IT_OIDT_STATE_OR_PROVINCE_NAME
IT_OIDT_ORGANIZATION_NAME

IT_FMT_PEM Privacy enhanced mail (PEM) format certificate format.
In this format, the certificate consists of standard ASCII
characters that can be safely transmitted as text.

IT_FMT_STRING This format corresponds to a null-terminated sequence
of characters containing the actual data of the AVA.
The data is not modified in any way, and can include
non-printable characters if present in the actual AVA
data. This is a string for normal printable string fields.

IT_FMT_HEX_STRING This format corresponds to a formatted hexadecimal
dump of the DER data of the AVA.
 1204

IT_OIDT_ORGANIZATIONAL_UNIT_NAME
IT_OIDT_RSA
IT_OIDT_PKCS7
IT_OIDT_PKCS7_DATA
IT_OIDT_PKCS7_SIGNED
IT_OIDT_PKCS7_ENVELOPED
IT_OIDT_PKCS7_SIGNED_AND_ENVELOPED
IT_OIDT_PKCS7_DIGEST
IT_OIDT_PKCS7_ENCRYPTED
IT_OIDT_PKCS3
IT_OIDT_DHKEY_AGREEMENT
IT_OIDT_DES_ECB
IT_OIDT_DES_CFB64
IT_OIDT_DES_CBC
IT_OIDT_DES_EDE
IT_OIDT_DES_EDE3
IT_OIDT_IDEA_CBC
IT_OIDT_IDEA_CFB64
IT_OIDT_IDEA_ECB
IT_OIDT_RC2_CBC
IT_OIDT_RC2_ECB
IT_OIDT_RC2_CFB64
IT_OIDT_RC2_OFB64
IT_OIDT_SHA
IT_OIDT_SHA_WITH_RSA_ENCRYPTION
IT_OIDT_DES_EDE_CBC
IT_OIDT_DES_EDE3_CBC
IT_OIDT_DES_OFB64
IT_OIDT_IDEA_OFB64
IT_OIDT_PKCS9
IT_OIDT_PKCS9_EMAIL_ADDRESS
IT_OIDT_PKCS9_UNSTRUCTURED_NAME
IT_OIDT_PKCS9_CONTENTTYPE
IT_OIDT_PKCS9_MESSAGE_DIGEST
IT_OIDT_PKCS9_SIGNING_TIME
IT_OIDT_PKCS9_COUNTER_SIGNATURE
IT_OIDT_PKCS9_CHALLENGE_PASSWORD
IT_OIDT_PKCS9_UNSTRUCTURED_ADDRESS
IT_OIDT_PKCS9_EXTCERT_ATTRIBUTES
IT_OIDT_NETSCAPE
IT_OIDT_NETSCAPE_CERT_EXTENSION
IT_OIDT_NETSCAPE_DATA_TYPE
IT_OIDT_DES_EDE_CFB64
1205

IT_OIDT_DES_EDE3_CFB64
IT_OIDT_DES_EDE_OFB64
IT_OIDT_DES_EDE3_OFB64
IT_OIDT_SHA1
IT_OIDT_SHA1_WITH_RSA_ENCRYPTION
IT_OIDT_DSA_WITH_SHA
IT_OIDT_DSA_2
IT_OIDT_PBE_WITH_SHA1_AND_RC2_CBC
IT_OIDT_ID_PBKDF2
IT_OIDT_DSA_WITH_SHA1_2
IT_OIDT_NETSCAPE_CERT_TYPE
IT_OIDT_NETSCAPE_BASE_URL
IT_OIDT_NETSCAPE_REVOCATION_URL
IT_OIDT_NETSCAPE_CA_REVOCATION_URL
IT_OIDT_NETSCAPE_RENEWAL_URL
IT_OIDT_NETSCAPE_CA_POLICY_URL
IT_OIDT_NETSCAPE_SSL_SERVER_NAME
IT_OIDT_NETSCAPE_COMMENT
IT_OIDT_NETSCAPE_CERT_SEQUENCE
IT_OIDT_DESX_CBC
IT_OIDT_LD_CE
IT_OIDT_SUBJECT_KEY_IDENTIFIER
IT_OIDT_KEY_USAGE
IT_OIDT_PRIVATE_KEY_USAGE_PERIOD
IT_OIDT_SUBJECT_ALT_NAME
IT_OIDT_ISSUER_ALT_NAME
IT_OIDT_BASIC_CONSTRAINTS
IT_OIDT_CRL_NUMBER
IT_OIDT_CERTIFICATE_POLICIES
IT_OIDT_AUTHORITY_KEY_IDENTIFIER
IT_OIDT_BF_CBC
IT_OIDT_BF_ECB
IT_OIDT_BF_CFB64
IT_OIDT_BF_OFB64
IT_OIDT_MDC2
IT_OIDT_MDC2_WITH_RSA
IT_OIDT_RC4_40
IT_OIDT_RC2_40_CBC
IT_OIDT_GIVEN_NAME
IT_OIDT_SURNAME
IT_OIDT_INITIALS
IT_OIDT_UNIQUEIDENTIFIER
IT_OIDT_CRL_DISTRIBUTION_POINTS
 1206

IT_OIDT_MD5_WITH_RSA
IT_OIDT_SERIALNUMBER
IT_OIDT_TITLE
IT_OIDT_DESCRIPTION
IT_OIDT_CAST5_CBC
IT_OIDT_CAST5_ECB
IT_OIDT_CAST5_CFB64
IT_OIDT_CAST5_OFB64
IT_OIDT_PBE_WITH_MD5_AND_CAST5_CBC
IT_OIDT_DSA_WITH_SHA1
IT_OIDT_MD5_SHA1
IT_OIDT_SHA1_WITH_RSA
IT_OIDT_DSA
IT_OIDT_RIPEMD160
IT_OIDT_UNDEF
IT_OIDT_RIPEMD160_WITH_RSA
IT_OIDT_RC5_CBC
IT_OIDT_RC5_ECB
IT_OIDT_RC5_CFB64
IT_OIDT_RC5_OFB64
IT_OIDT_RLE_COMPRESSION
IT_OIDT_ZLIB_COMPRESSION
IT_OIDT_EXT_KEY_USAGE
IT_OIDT_ID_PKIX
IT_OIDT_ID_KP
IT_OIDT_SERVER_AUTH
IT_OIDT_CLIENT_AUTH
IT_OIDT_CODE_SIGN
IT_OIDT_EMAIL_PROTECT
IT_OIDT_TIME_STAMP
IT_OIDT_MS_CODE_IND
IT_OIDT_MS_CODE_COM
IT_OIDT_MS_CTL_SIGN
IT_OIDT_MS_SGC
IT_OIDT_MS_EFS
IT_OIDT_NS_SGC
IT_OIDT_DELTA_CRL
IT_OIDT_CRL_REASON
IT_OIDT_INVALIDITY_DATE
IT_OIDT_SXNET
IT_OIDT_PBE_WITH_SHA1_AND_128BITRC4
IT_OIDT_PBE_WITH_SHA1_AND_40BITRC4
IT_OIDT_PBE_WITH_SHA1_AND_3_KEY_TRIPLEDES_CBC
1207

IT_OIDT_PBE_WITH_SHA1_AND_2_KEY_TRIPLEDES_CBC
IT_OIDT_PBE_WITH_SHA1_AND_128BITRC2_CBC
IT_OIDT_PBE_WITH_SHA1_AND_40BITRC2_CBC
IT_OIDT_KEY_BAG
IT_OIDT_PKCS8SHROUDEDKEY_BAG
IT_OIDT_CERT_BAG
IT_OIDT_CRL_BAG
IT_OIDT_SECRET_BAG
IT_OIDT_SAFECONTENTS_BAG
IT_OIDT_FRIENDLY_NAME
IT_OIDT_LOCALKEYID
IT_OIDT_X509CERTIFICATE
IT_OIDT_SDSICERTIFICATE
IT_OIDT_X509CRL
IT_OIDT_PBES2
IT_OIDT_PBMAC1
IT_OIDT_HMAC_WITH_SHA1
IT_OIDT_ID_QT_CPS
IT_OIDT_ID_QT_UNOTICE
IT_OIDT_RC2_64_CBC
IT_OIDT_SMIMECAPABILITIES
IT_OIDT_PBE_WITH_MD2_AND_RC2_CBC
IT_OIDT_PBE_WITH_MD5_AND_RC2_CBC
IT_OIDT_PBE_WITH_SHA1_AND_DES_CBC

IT_Certificate::ReplyStatus Type

typedef short ReplyStatus;

Gives the reply status of certain operations in the IT_Certificate module.

Values This type can have the following integer constant values:

SUCCESSFUL
AVA_NOT_PRESENT
EXTENSION_NOT_PRESENT
NO_EXTENSIONS_PRESENT

See Also IT_Certificate::AVAList
IT_Certificate::ExtensionList
IT_Certificate::X509Cert
 1208

IT_Certificate::ULong Type

typedef unsigned long ULong;

An unsigned long integer.

IT_Certificate::UShort Type

typedef unsigned short UShort;

An unsigned short integer.

IT_Certificate::UTCTime Type

typedef sequence<string> UTCTime;

A type used to hold time (and date) information in a certificate.

IT_Certificate::X509CertChain Sequence

typedef sequence<X509Cert> X509CertChain;

A list of X509Cert object references.

IT_Certificate::X509CertList Sequence

typedef sequence<X509Cert> X509CertList;

A list of X509Cert object references.
1209

 1210

IT_Certificate::AVA Interface
IDL // IDL in module IT_Certificate

interface AVA
{
 readonly attribute UShort set;
 readonly attribute ASN_OID oid;

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Individual AVA objects represent an element of the distinguished name such
as the common name field (CN) or organization unit (OU). You can retrieve a
desired AVA object can using the AVAList class.

AVA objects can be converted to a number of different forms such as string
format or DER format.

AVA::convert()

// IDL
Bytes convert(in Format f) raises(CertError);

Description This operation returns the contents of the AVA object in the requested data
format.
1211

Parameters This operation takes the following parameter

Exceptions

AVA::oid

// IDL
readonly attribute ASN_OID oid;

Description Return the ASN.1 OID tag for this AVA object, in the form of an ASN_OID
structure.

AVA::set

// IDL
readonly attribute UShort set;

f The format of the required conversion. The following Format values
are supported:

IT_FMT_DER. This format corresponds to the DER encoding of the
AVA. This option is usually only used by applications that require
special processing of the DER data.

IT_FMT_STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the AVA. The
data is not modified in any way, and can include non-printable
characters if present in the actual AVA data. This is a string for nor-
mal printable string fields.

IT_FMT_HEX_STRING. This format corresponds to a formatted hexa-
decimal dump of the DER data of the AVA.

 CertError with
error code
IT_TLS_UNSUPPO

RTED_FORMAT

An unknown format is specified.
 1212

Description A number that identifies the set to which the AVA belongs. Because a set
normally contains just a single AVA, the number returned by the set attribute
is usually distinct for each AVA.

Theoretically, more than one AVA could belong to the same set, in which
case two or more AVAs could share the same set number. In practice, this
rarely ever happens.
1213

 1214

IT_Certificate::AVAList Interface
IDL // IDL in module IT_Certificate

interface AVAList
{
 typedef sequence<AVA> ListOfAVAs;
 readonly attribute ListOfAVAs ava_list;

 UShort get_num_avas();

 // Returns SUCCESSFUL or AVA_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_ava_by_oid_tag(
 in OIDTag t,
 out AVA a
) raises(CertError);

 // Returns SUCCESSFUL or AVA_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_ava_by_oid(
 in ASN_OID seq,
 in UShort n,
 out AVA a
) raises(CertError);

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(
 in Format f
) raises(CertError);
};

Description An AVAList is an abstraction of a distinguished name from a certificate. An
AVAList consists of a number of AVA objects.

Individual AVA objects represent an element of the distinguished name such
as the common name field (CN) or organization unit (OU). You can retrieve a
desired AVA object using the AVAList.

AVA objects can be converted to a number of different forms such as string
format or DER format.
1215

AVAList::ava_list

IDL readonly attribute ListOfAVAs ava_list;

Description Returns the AVA list as a sequence of AVA object references.

AVAList::convert()

IDL Bytes convert(in Format f) raises (CertError);

Description This operation converts the AVAList to a specified format.

Parameters This operation takes the following parameter:

Exceptions

f The format of the required conversion. The following Format values
are supported:

IT_FMT_DER. This format corresponds to the DER encoding of the
AVA. This option is usually only used by applications that require
special processing of the DER data.

IT_FMT_STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the AVA. The
data is not modified in any way, and can include non-printable char-
acters if present in the actual AVA data. This is a string for normal
printable string fields.

IT_FMT_HEX_STRING. This format corresponds to a formatted hexa-
decimal dump of the DER data of the AVA.

 CertError,
error code
IT_TLS_UNSUPPO

RTED_FORMAT

An unknown format is specified.
 1216

AVAList::get_ava_by_oid_tag()

IDL // Returns SUCCESSFUL or AVA_NOT_PRESENT
IT_Certificate::ReplyStatus
get_ava_by_oid_tag(
 in OIDTag t,
 out AVA a
) raises(CertError);

Description This operation retrieves an AVA object from an AVAList according to its OID
tag.

Parameters

AVAList::get_ava_by_oid()

IDL // Returns SUCCESSFUL or AVA_NOT_PRESENT
IT_Certificate::ReplyStatus
get_ava_by_oid(
 in ASN_OID seq,
 in UShort n,
 out AVA a
) raises(CertError);

Description This operation retrieves an AVA object from an AVAList, selected by the
specified ASN_OID structure.

Parameters

AVAList::get_num_avas()

IDL UShort get_num_avas()

t An OID tag

a The returned AVA object reference.

seq An ASN OID.

n

a The returned AVA object reference.
1217

Description This operation retrieves the number of AVA objects in a AVAList.
 1218

IT_Certificate::Certificate Interface
IDL // IDL in module IT_Certificate

interface Certificate
{
 readonly attribute DERData encoded_form;
};

Description This is the base interface for security certificate objects.

Certificate::encoded_form

IDL readonly attribute DERData encoded_form;

Description This attribute returns the certificate data encoded in DER format.
1219

 1220

IT_Certificate::Extension Interface
IDL // IDL in module IT_Certificate

interface Extension
{
 readonly attribute UShort critical;
 readonly attribute ASN_OID oid;

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Description The Extension interface provides the developer with an interface to any
X.509 version 3.0 extensions that an X.509 certificate can contain.

The Extension interface enables you to access the data for one particular
extension. Using the Extension::convert() operations, the data can be
converted into a number of representations.

Extension::convert()

IDL Bytes convert(in Format f) raises(CertError);

Description This operation returns data that corresponds to the contents of the
Extension object converted to the requested format. The data is converted to
the requested format and returned as an array of bytes.
1221

Parameters This operation takes the following parameter:

Extension::critical

IDL readonly attribute UShort critical;

Description This attribute returns a non-zero value if the extension is critical; zero if the
extension is not critical. A critical extension is an extension that should not be
ignored by the authentication code.

Extension::oid

IDL readonly attribute ASN_OID oid;

Description This attribute returns the ASN.1 OID for the extension. Extensions are
identified by an ASN.1 OID, just like regular AVAs.

f The format of the required conversion. The following Format val-
ues are supported:

IT_FMT_DER. This format corresponds to the DER encoding of
the extension. This option is usually only used by applications
that require special processing of the DER data.

IT_FMT_STRING. This format corresponds to a null terminated
sequence of characters containing the actual data contained in
the extension. This data has not been modified in any way, and
may include non printable characters if present in the actual
extension data. This is a regular 'C' string for printable string
fields.

IT_FMT_HEX_STRING. This format contains a formatted hexadec-
imal dump of the DER data of the extension.
 1222

IT_Certificate::ExtensionList Interface
IDL // IDL in module IT_Certificate

interface ExtensionList
{
 typedef sequence<Extension> ListOfExtensions;
 readonly attribute ListOfExtensions ext_list;

 UShort get_num_extensions();

 // Returns SUCCESSFUL or EXTENSION_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_extension_by_oid_tag(
 in OIDTag t,
 out Extension e
) raises(CertError);

 // Returns SUCCESSFUL or EXTENSION_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_extension_by_oid(
 in ASN_OID seq,
 in UShort n,
 out Extension e
) raises(CertError);

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Description The Extension and ExtensionList interfaces provide you with access to any
X.509 version three extensions.

The Extension interface provides an interface to accessing the data for one
particular extension.

ExtensionList::convert()

IDL Bytes convert(in Format f) raises(CertError);
1223

Description convert() returns data in the requested format corresponding to the contents
of the ExtensionList object. The operation returns this data as an array of
bytes, or NULL if the the required conversion is not supported.

Note: Generally convert() is called on the individual extensions. This
operation is not commonly used.

Parameters This operation takes the following parameter:

Exceptions

ExtensionList::ext_list

IDL readonly attribute ListOfExtensions ext_list;

Description This attribute returns the complete list of extensions as a sequence of
Extension objects.

f The format of the required conversion. The following Format value is
supported:

IT_FMT_DER. This format corresponds to the DER encoding of the
AVA. This option is usually only used by applications that require
special processing of the DER data.

IT_FMT_STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the AVA. The
data is not modified in any way, and can include non-printable char-
acters if present in the actual AVA data. This is a string for normal
printable string fields.

IT_FMT_HEX_STRING. This format corresponds to a formatted hexa-
decimal dump of the DER data of the AVA.

 CertError,
error code
IT_TLS_UNSUPPO

RTED_FORMAT

An unknown format is specified.
 1224

ExtensionList::get_extension_by_oid()

IDL IT_Certificate::ReplyStatus
get_extension_by_oid(
 in ASN_OID seq,
 in UShort n,
 out Extension e
) raises(CertError);

Description Obtains the Extension element of the ExtensionList that has the requested
object identifier, seq.

f the extension is found, a SUCCESSFUL reply status is returned; otherwise an
EXTENSION_NOT_PRESENT reply status is returned.

Parameters This operation takes the following parameters

ExtensionList::get_extension_by_oid_tag()

IDL IT_Certificate::ReplyStatus
get_extension_by_oid_tag(
 in OIDTag t,
 out Extension e
) raises(CertError);

Description Obtains the Extension element of the ExtensionList that corresponds to the
supplied OIDTag value, t.

If the extension is found, a SUCCESSFUL reply status is returned; otherwise an
EXTENSION_NOT_PRESENT reply status is returned.

Parameters

seq An array of integers representing the ASN.1 object identifier.

n The number of elements in the array.

e The returned Extension object.

t The OIDTag variable that identifies the extension to retrieve.

e The returned Extension object.
1225

ExtensionList::get_num_extensions();

IDL UShort get_num_extensions();

Description This operation returns the number of extensions in the list.
 1226

IT_Certificate::X509Cert Interface
IDL // IDL in module IT_Certificate

interface X509Cert : IT_Certificate::Certificate
{
 exception IntegerTooLarge { };

 long get_version();
 UTCTime get_not_before();
 UTCTime get_not_after();
 ASN_OID get_signature_algorithm_id();

 ULong get_serial_number()
 raises(
 CertError,
 IntegerTooLarge
);

 DERData get_der_serial_number() raises (CertError);
 string get_subject_dn_string() raises (CertError);
 string get_issuer_dn_string() raises (CertError);
 string
 get_subject_ava_string(in OIDTag t) raises (CertError);
 string
 get_issuer_ava_string(in OIDTag t) raises (CertError);
 AVAList get_issuer_avalist() raises (CertError);
 AVAList get_subject_avalist() raises(CertError);

 // Returns SUCCESSFUL or NO_EXTENSIONS_PRESENT
 IT_Certificate::ReplyStatus
 get_extensions(out ExtensionList el) raises (CertError);

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Description The X509Cert interface provides a high-level interface to an X.509 certificate.
A number of operations are provided to obtain information contained in the
certificate. This interface, along with other certificate interfaces, shields the
1227

developer from having to know about low-level details such as the encoding
of X.509 certificates. Access to low-level DER information is, however, also
provided.

For example, the get_issuer_dn_string(), get_issuer_ava_string(),
get_subject_dn_string(), and get_subject_ava_string() provide easy
access to the issuer and subject entries in a certificate. Typical issuer and
subject entries have the following form:

issuer :/C=IE/ST=Co. Dublin/L=Dublin/O=IONA Technologies/OU=IDD/
CN=IssuerName/Email=IssuerName@iona.com

subject:/C=IE/ST=Co. Dublin/O=IONA Technologies/OU=IDD/
CN=SubjectName/Email=SubjectName@iona.com

X509Cert::convert()

IDL Bytes
convert(in Format f) raises (CertError);

Description Converts the certificate to the specified format.

Parameters This operation takes the following parameter:

f The format of the required conversion. The following Format
values are supported:

IT_FMT_DER. This format corresponds to the DER encoding of
the extension. This option is usually only used by applications
that require special processing of the DER data.

IT_FMT_STRING. This format corresponds to a null terminated
sequence of characters containing the actual data contained in
the extension. This data has not been modified in any way, and
may include non printable characters if present in the actual
extension data. This is a regular 'C' string for printable string
fields.

IT_FMT_HEX_STRING. This format contains a formatted
hexadecimal dump of the DER data of the extension.
 1228

X509Cert::get_der_serial_number()

IDL DERData
get_der_serial_number() raises (CertError);

Description Obtains the serial number of the certificate and returns it as DERData object.

X509Cert::get_extensions()

IDL IT_Certificate::ReplyStatus
get_extensions(out ExtensionList el) raises (CertError);

Description Obtains the complete extension list, el, for this certificate.

If the extensions are found, a SUCCESSFUL reply status is returned; otherwise
an NO_EXTENSIONS_PRESENT reply status is returned.

Parameters

X509Cert::get_issuer_avalist()

IDL AVAList
get_issuer_avalist() raises (CertError);

Description Retrieves the distinguished name of the certificate issuer as an AVAList
instance. Individual components of the distinguished name (for example, the
common name or the organization name) can be retrieved from the AVAList
instance.

X509Cert::get_issuer_ava_string()

IDL string
get_issuer_ava_string(in OIDTag t) raises (CertError);

Description Returns a string representing the AVA field selected by the OIDTag, t, from
the certificate issuer AVA list.

el An out parameter containing the extension list as a sequence
of Extension objects.
1229

X509Cert::get_issuer_dn_string()

IDL string
get_issuer_dn_string() raises (CertError);

Description Returns a string representing the certificate issuer�s distinguished name (DN).

X509Cert::get_not_after()

IDL UTCTime get_not_after();

Description Extracts the notAfter field from an X.509 certificate. This field is used to
determine the date validity of a certificate in conjunction with the notBefore
field. A certificate can be specified as not valid until after some point in the
future.

X509Cert::get_not_before()

IDL UTCTime get_not_before();

Description Extracts the notBefore field from an X.509 certificate. This field is used in
determining the date validity of a certificate in conjunction with the notAfter
field. A certificate can be specified as not valid until some point in the future.

X509Cert::get_serial_number()

IDL DERData
get_der_serial_number() raises (CertError);

Description Returns the serial number of the certificate.

X509Cert::get_signature_algorithm_id()

IDL ASN_OID
get_signature_algorithm_id();

Description This operation returns the ASN.1 OID of the signature algorithm that was
used to sign the certificate. For example, MD2, MD5, or SHA.
 1230

See Also IT_Certificate::OIDTag
IT_Certificate::IT_OIDT_MD2
IT_Certificate::IT_OIDT_MD5
IT_Certificate::IT_OIDT_SHA

X509Cert::get_subject_avalist()

IDL AVAList
get_subject_avalist() raises(CertError);

Description Returns the subject of the certificate in the form of an AVAList.

X509Cert::get_subject_ava_string()

IDL string
get_subject_ava_string(in OIDTag t) raises (CertError);

Description Returns a string representing the AVA field selected by the OIDTag, t, from
the certificate subject AVA list.

X509Cert::get_subject_dn_string()

IDL string
get_subject_dn_string() raises (CertError);

Description Returns a string representing the certificate subject�s distinguished name
(DN).

X509Cert::get_version()

IDL long get_version();

Description Returns the version minus one for the X.509 standard to which the certificate
conforms. Hence, this operation returns 0 for v1, 1 for v2, and 2 for v3 in
accordance with ASN.1 conventions. Most certificates conform to v3, which
has support for AVA extensions.
1231

X509Cert::IntegerTooLarge Exception

IDL exception IntegerTooLarge

Description Exception thrown in the unlikely case that an attempt to convert a DER
encoded integer to the CORBA::ULong type fails because the specified DER
encoded integer corresponds to a value that is too large to be represented by
the DER encoded integer. In this unlikely case, the DER data form of the
integer would have to be examined directly by the application.
 1232

IT_Certificate::X509CertificateFactory
Interface
IDL // IDL in module IT_Certificate

interface X509CertificateFactory
{
 // Following function creates x509Cert from DER data.
 // where DERData is a sequence of octets
 //
 // raises minor code IT_TLS_BAD_CERTIFICATE_DATA
 //
 X509Cert
 create_x509_certificate_from_der(
 in DERData der
) raises(CertError);

 //
 // Read CertList from a file.
 // raises minor code IT_TLS_BAD_CERTIFICATE_DATA.
 // raises minor code IT_TLS_ERROR_READING_DATA.
 //
 X509CertList
 load_x509_cert_list(
 in string location
) raises(CertError);
};

Description This interface is a factory that generates X.509 certificates of
IT_Certificate::X509Cert type.

This interface contains one operation, create_x509_cert(), that generates
an X.509 certificate on receiving data in the form of DER.

X509CertificateFactory::create_x509_certificate_from_der()

IDL X509Cert
1233

create_x509_certificate_from_der(
 in DERData der
) raises(CertError);

Description Generates an X.509 certificate based on a parameter supplied in DER
format, der.

Parameters This operation takes the following parameter:

Exceptions

X509CertificateFactory::load_x509_cert_list()

IDL X509CertList
load_x509_cert_list(in string location) raises(CertError);

Description Generates a list of X.509 certificates based on data read from the file
specified by location. The file must contain a chain of certificates in PEM
format.

Parameters This operation takes the following parameter:

der The certificate data in DER format (of DERData type).

 CertError,
error code
IT_TLS_BAD_CER

TIFICATE_DATA

The der parameter is inconsistent or incorrectly formatted

location The absolute path name of the file containing the PEM
certificate chain.
 1234

Exceptions

CertError,
error code
IT_TLS_ERRO
R_READING_D
ATA

Orbix cannot read the specified certificate file

CertError,
error code
IT_TLS_BAD_
CERTIFICATE
_DATA

The content of the certificate file is inconsistent or incorrectly
formatted.
1235

 1236

Security Overview
The standard Security module defines data types and constants that are
used throughout the CORBA security specification. This section documents
only the definitions relevant to Orbix SSL/TLS.

There is also a reference in Javadoc format.

Security::AssociationOptions Type

// IDL
typedef unsigned short AssociationOptions;

A data type that holds a set of association options in its bit fields.

See Also Security::NoProtection
Security::Integrity
Security::Confidentiality
Security::DetectReplay
Security::DetectMisordering
Security::EstablishTrustInTarget
Security::EstablishTrustInClient
Security::NoDelegation
Security::SimpleDelegation
Security::CompositeDelegation

Security::AttributeList Sequence

// IDL
typedef sequence <SecAttribute> AttributeList;

1237

../../tls/javadoc/index.html

Security::AuthenticationMethod Type

// IDL
typedef unsigned long AuthenticationMethod;

Constants of this type are used by the
SecurityLevel2::PrincipalAuthenticator::authenticate() operation to
identify an authentication method. Orbix SSL/TLS defines a range of
AuthenticationMethod constants in the IT_TLS_API module�for example,
IT_TLS_API::IT_TLS_AUTH_METH_PKSC12_FILE.

Security::AuthenticationMethodList Sequence

// IDL
typedef sequence<AuthenticationMethod> AuthenticationMethodList;

A list of authentication methods.

Security::AuthenticationStatus Enumeration

// IDL
enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
};

Used by the SecurityLevel2::PrincipalAuthenticator::authenticate()
operation to give the status of the returned credentials.

Values The status of a newly-generated Credentials object, creds, is indicated as
follows:

SecAuthSuccess A valid Credentials object is available in the creds
parameter.

SecAuthFailure Authentication was in some way inconsistent or
erroneous. Credentials have therefore not been
created.
 1238

Security::CommunicationDirection Enumeration

// IDL
enum CommunicationDirection {
 SecDirectionBoth,
 SecDirectionRequest,
 SecDirectionReply
};

Indicates a particular communication direction along a secure association.

See Also SecurityLevel2::Credentials::get_security_feature()

Security::CompositeDelegation Constant

// IDL
const AssociationOptions CompositeDelegation = 512;

Not supported in Orbix SSL/TLS.

Security::Confidentiality Constant

// IDL
const AssociationOptions Confidentiality = 4;

Specifies that an object supports or requires confidentiality-protected
invocations.

SecAuthContinue The authentication procedure uses a challenge and
response mechanism. The creds parameter references
a partially initialized Credentials object and the
continuation_data indicates details of the challenge.
Not supported by Orbix SSL/TLS.

SecAuthExpired The authentication data, auth_data, has expired.
Credentials have therefore not been created.
1239

Security::DetectMisordering Constant

// IDL
const AssociationOptions DetectMisordering = 16;

Specifies that an object supports or requires error detection on fragments of
invocation messages. In Orbix SSL/TLS this option can be set only through
configuration.

Security::DetectReplay Constant

// IDL
const AssociationOptions DetectReplay = 8;

Specifies that an object supports or requires replay detection on invocation
messages. In Orbix SSL/TLS this option can be set only through configuration.

Security::EstablishTrust Structure

// IDL
struct EstablishTrust {
 boolean trust_in_client;
 boolean trust_in_target;
};

Parameters This structure is used to hold the data associated with the
SecurityLevel2::EstablishTrustPolicy.

The elements of the structure are, as follows:

trust_in_client Specifies whether or not an invocation must select
credentials and a mechanism that allow the client to
be authenticated to the target. (Some mechanisms
might not support client authentication).

trust_in_target Specifies whether or not an invocation must establish
trust in the target.
 1240

Security::EstablishTrustInClient Constant

// IDL
const AssociationOptions EstablishTrustInClient = 64;

Specifies that a client supports or requires that the target authenticate its
identity to the client.

See Also SecurityLevel2::EstablishTrustPolicy

Security::EstablishTrustInTarget Constant

// IDL
const AssociationOptions EstablishTrustInTarget = 32;

Specifies that a target object requires the client to authenticate its privileges
to the target.

See Also SecurityLevel2::EstablishTrustPolicy

Security::Integrity Constant

// IDL
const AssociationOptions Integrity = 2;

Specifies that an object supports integrity-protected invocations.

Security::InvocationCredentialsType Enumeration

// IDL
enum InvocationCredentialsType {
 SecOwnCredentials,
 SecReceivedCredentials,
 SecTargetCredentials
};

Identifies the underlying type of a SecurityLevel2::Credentials object, as
follows:

SecOwnCredentials The underlying type is
SecurityLevel2::Credentials.
1241

Security::MechanismType Type

// IDL
typedef string MechanismType;

Identifies a security mechanism.

See Also SecurityLevel2::MechanismPolicy

Security::MechanismTypeList Sequence

// IDL
typedef sequence<MechanismType> MechanismTypeList;

A list of security mechanisms.

See Also SecurityLevel2::MechanismPolicy

Security::NoDelegation Constant

// IDL
const AssociationOptions NoDelegation = 128;

Not supported in Orbix SSL/TLS.

Security::NoProtection Constant

// IDL
const AssociationOptions NoProtection = 1;

When used with the target secure invocation policy, indicates that the target
can accept insecure connections.

SecReceivedCredentials The underlying type is
SecurityLevel2::ReceivedCredentials.

SecTargetCredentials The underlying type is
SecurityLevel2::TargetCredentials.
 1242

When used with the client secure invocation policy, indicates that the client
can open insecure connections.

Security::Opaque Type

// IDL
typedef sequence <octet> Opaque;

A general purpose type that is used to hold binary data.

Security::QOP Enumeration

// IDL
enum QOP {
 SecQOPNoProtection,
 SecQOPIntegrity,
 SecQOPConfidentiality,
 SecQOPIntegrityAndConfidentiality
};

Identifies the range of security features that can be associated with an
individual object reference (quality of protection).

Values

SecQOPNoProtection The Security::NoProtection
association option.

SecQOPIntegrity The Security::Integrity association
option.

SecQOPConfidentiality The Security::Confidentiality
association option.

SecQOPIntegrityAndConfidentialityBoth the Security::Integrity and
Security::Confidentiality
association options.
1243

Security::SecApplicationAccess Constant

// IDL
const CORBA::PolicyType SecApplicationAccess = 3;

Not supported in Orbix SSL/TLS.

Security::SecAttribute Structure

// IDL
struct SecAttribute {
 AttributeType attribute_type;
 OID defining_authority;
 Opaque value;
};

Security::SecClientInvocationAccess Constant

// IDL
const CORBA::PolicyType SecClientInvocationAccess = 1;

Not supported in Orbix SSL/TLS.

Security::SecClientSecureInvocation Constant

// IDL
const CORBA::PolicyType SecClientSecureInvocation = 8;

Defines one of the policy types for the
SecurityAdmin::SecureInvocationPolicy interface. This policy can only be
set through configuration.

Security::SecEstablishTrustPolicy Constant

// IDL
const CORBA::PolicyType SecEstablishTrustPolicy = 39;
 1244

Defines the policy type for the SecurityLevel2::EstablishTrustPolicy
interface.

Security::SecInvocationCredentialsPolicy Constant

// IDL
const CORBA::PolicyType SecInvocationCredentialsPolicy = 13;

Defines the policy type for the
SecurityLevel2::InvocationCredentialsPolicy interface.

Security::SecMechanismsPolicy Constant

// IDL
const CORBA::PolicyType SecMechanismsPolicy = 12;

Defines the policy type for the SecurityLevel2::MechanismsPolicy interface.

See Also IT_TLS_API::TLS::create_mechanism_policy()

Security::SecQOPPolicy Constant

// IDL
const CORBA::PolicyType SecQOPPolicy = 15;

Defines the policy type for the SecurityLevel2::QOPPolicy interface.

Security::SecTargetInvocationAccess Constant

// IDL
const CORBA::PolicyType SecTargetInvocationAccess = 2;

Not supported in Orbix SSL/TLS.

Security::SecTargetSecureInvocation Constant

// IDL
const CORBA::PolicyType SecTargetSecureInvocation = 9;
1245

Defines one of the policy types for the
SecurityAdmin::SecureInvocationPolicy interface. This policy can only be
set through configuration.

Security::SecurityFeature Enumeration

// IDL
enum SecurityFeature {
 SecNoDelegation,
 SecSimpleDelegation,
 SecCompositeDelegation,
 SecNoProtection,
 SecIntegrity,
 SecConfidentiality,
 SecIntegrityAndConfidentiality,
 SecDetectReplay,
 SecDetectMisordering,
 SecEstablishTrustInTarget,
 SecEstablishTrustInClient
};

Identifies the range of security features that can be associated with a
Credentials object, including association options.

Values This enumeration can have the following values:

SecNoDelegation The Security::NoDelegation
association option.

SecSimpleDelegation The Security::SimpleDelegation
association option.

Not supported in Orbix SSL/TLS.

SecCompositeDelegation The Security::CompositeDelegation
association option.

Not supported in Orbix SSL/TLS.

SecNoProtection The Security::NoProtection
association option.

SecIntegrity The Security::Integrity association
option.
 1246

See Also SecurityLevel2::Credentials::get_security_feature()
Security::AssociationOptions

Security::SecurityName Type

// IDL
typedef string SecurityName;

A string that identifies a principal (for example, a login name).

Not used by Orbix SSL/TLS.

Security::SimpleDelegation Constant

// IDL
const AssociationOptions SimpleDelegation = 256;

Not supported in Orbix SSL/TLS.

SecConfidentiality The Security::Confidentiality
association option.

SecIntegrityAndConfidentiality Both the Security::Integrity and
Security::Confidentiality association
options.

SecDetectReplay The Security::DetectReplay
association option.

SecDetectMisordering The Security::DetectMisordering
association option.

SecEstablishTrustInTarget The
Security::EstablishTrustInTarget
association option.

SecEstablishTrustInClient The
Security::EstablishTrustInClient
association option.
1247

 1248

SecurityLevel1 Overview
Because security level 1 is aimed at security-unaware applications, there is
little IDL defined at this level�most of the security features are controlled by
an administrator. Currently, there is one IDL interface defined at level 1:

� SecurityLevel1::Current
1249

 1250

SecurityLevel1::Current Interface
IDL // IDL in module SecurityLevel1

local interface Current : CORBA::Current { // Locality Constrained
 // thread specific operations
 Security::AttributeList get_attributes (
 in Security::AttributeTypeList attributes
);
};

Description The Current object enables you to access information about the execution
context. In Orbix SSL/TLS, it enables a server object to access a client�s
credentials.

Current::get_attributes()

IDL Security::AttributeList get_attributes (
 in Security::AttributeTypeList attributes
);

Description Not implemented in Orbix SSL/TLS.

You can use the Credentials::get_attributes() operation instead.

See Also SecurityLevel2::Current::received_credentials
SecurityLevel2::Credentials::get_attributes()
1251

 1252

SecurityLevel2 Overview
At security level 2, IDL interfaces are defined to enable security-aware
application to access security information and specify security policies. Orbix
SSL/TLS implements the following IDL interfaces from the SecurityLevel2
IDL module:

� PrincipalAuthenticator interface.
� Credentials inteface.
� ReceivedCredentials interface.
� TargetCredentials interface.
� QOPPolicy interface.
� MechanismPolicy interface.
� InvocationCredentialsPolicy interface.
� EstablishTrustPolicy interface.
� SecurityManager interface.
� Current interface.

SecurityLevel2::CredentialsList Sequence

// IDL
typedef sequence <Credentials> CredentialsList;

A sequence to hold a list of Credentials objects.
1253

 1254

SecurityLevel2::Credentials Interface
IDL // IDL in module SecurityLevel2

interface Credentials { // Locality Constrained
pragma version Credentials 1.7
 Credentials copy();

 void destroy();

 readonly attribute Security::InvocationCredentialsType
 credentials_type;
 readonly attribute Security::AuthenticationStatus
 authentication_state;
 readonly attribute Security::MechanismType
 mechanism;

 attribute Security::AssociationOptions
 accepting_options_supported;
 attribute Security::AssociationOptions
 accepting_options_required;
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
 invocation_options_required;

 boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

 boolean set_attributes (
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

 Security::AttributeList get_attributes (
 in Security::AttributeTypeList attributes
);
1255

 boolean is_valid (out Security::UtcT expiry_time);

 boolean refresh(in any refresh_data);
};

Description The Credentials interface is used either as a base interface or as a concrete
interface (most derived type is Credentials). An object of Credentials type
can represent one of the following kinds of credential:

� Own credentials�when the most derived type of the Credentials
object is Credentials.

� Received credentials�when the most derived type of the Credentials
object is ReceivedCredentials.

� Target credentials�when the most derived type of the Credentials
object is TargetCredentials.

A Credentials object holds the security attributes of a principal.

See Also IT_TLS_API::TLSCredentials
IT_TLS_API::TLSReceivedCredentials
IT_TLS_API::TLSTargetCredentials

Credentials::accepting_options_required Attribute

IDL attribute Security::AssociationOptions accepting_options_required;

Description Not implemented in Orbix SSL/TLS.

Credentials::accepting_options_supported Attribute

IDL attribute Security::AssociationOptions
accepting_options_supported;

Description Not implemented in Orbix SSL/TLS.

Credentials::authentication_state Attribute

IDL readonly attribute Security::AuthenticationStatus
authentication_state;
 1256

Description Specifies how a Credentials object is initialized (authentication state) at the
time it is created by the PrincipalAuthenticator object.

Values The authentication state can have one of the following values:

Credentials::copy()

IDL Credentials copy();

Description Returns a reference to a deep copy of the target Credentials object.

Not implemented in Orbix SSL/TLS.

Credentials::credentials_type Attribute

IDL readonly attribute Security::InvocationCredentialsType
 credentials_type;

Description Indicates whether the Credentials object represents an application�s own
credentials (of Credentials type), or received credentials (of
ReceivedCredentials type), or target credentials (of TargetCredentials
type).

Values This attribute can have one of the following values:

SecAuthSuccess The Credentials object is fully initialized and valid.

SecAuthExpired The credentials initialization has expired and the
credentials are invalid.

Security::SecOwnCredentials Indicates own credentials

Security::SecReceivedCredentials Indicates received credentials.

Security::SecTargetCredentials indicates target credentials
1257

Credentials::destroy()

IDL void destroy();

Description Destroys the Credentials object.

Not implemented in Orbix SSL/TLS.

Credentials::get_attributes()

IDL Security::AttributeList get_attributes(
 in AttributeTypeList attributes
);

Description Returns the security attributes from a Credentials object.

Parameters This operation takes the following parameter:

Credentials::get_security_feature()

IDL boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

Description Not implemented in Orbix SSL/TLS.

Credentials:invocation_options_required Attribute

IDL attribute Security::AssociationOptions
 invocation_options_required;

Description Not implemented in Orbix SSL/TLS.

Use SecurityLevel2::QOPPolicy programmatically or secure invocation
policies in the configuration file instead.

attributes The set of security attributes (attributes and
identities) whose values are desired. If this list is
empty, all attributes are returned.
 1258

Credentials::invocation_options_supported Attribute

IDL attribute Security::AssociationOptions
 invocation_options_supported;

Description Not implemented in Orbix SSL/TLS.

Use SecurityLevel2::QOPPolicy programmatically or secure invocation
policies in the configuration file instead.

Credentials::is_valid()

IDL boolean is_valid(out Security::UtcT expiry_time);

Description Returns TRUE if the Credentials object is valid and FALSE otherwise.

Not implemented in Orbix SSL/TLS.

Credentials::mechanism Attribute

IDL readonly attribute Security::MechanismType mechanism;

Description A string, of Security::MechanismType type, that identifies the underlying
security mechanism.

Values Orbix SSL/TLS returns the string 20 which represents SSL/TLS.

See Also IT_TLS_API::TLS::create_mechanism_policy()

Credentials::refresh()

IDL boolean refresh(in any refresh_data);

Description Not implemented in Orbix SSL/TLS.

Some security mechanisms allow you to extend the expiry time of a
Credentials object by refreshing the credentials.
1259

Credentials::set_attributes()

IDL boolean set_attributes (
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

Description Not implemented in Orbix SSL/TLS.
 1260

SecurityLevel2::Current Interface
IDL // IDL in module SecurityLevel2

local interface Current : SecurityLevel1::Current {
pragma version Current 1.7
 // Thread specific
 readonly attribute ReceivedCredentials received_credentials;
};

Description The Current object accesses information about the execution context. In
Orbix SSL/TLS, the level 2 Current interface provides received credentials
(originating from a client) to a target object�s execution context.

Current::received_credentials Attribute

IDL readonly attribute ReceivedCredentials received_credentials;

At a target object, this thread-specific attribute is the credentials received
from a client. They are the credentials of the authenticated principal that
made the invocation.

If you have enabled Common Secure Interoperability (CSIv2), the
SecurityLevel2::Current::received_credentials() operation returns the
following credentials type:

� Propagated identity credentials, if present
� Authenticated credentials over the transport, if present and propagated

identity credentials are not.
� Transport TLS credentials, if present and the above two are not.

See IT_CSI::CSIReceivedCredentials for more details.

Exceptions In the case of a pure client, that is, an application that is not servicing an
invocation on one of its objects, accessing the received_credentials attribute
causes a CORBA::BAD_OPERATION exception to be raised.
1261

 1262

SecurityLevel2::EstablishTrustPolicy
Interface
IDL // IDL in module SecurityLevel2

interface EstablishTrustPolicy : CORBA::Policy {
 readonly attribute EstablishTrust trust;
};

Description A policy of this type can be passed to the set_policy_overrides()
operation to obtain an object reference that obeys the given trust policy.

The EstablishTrustPolicy object has a policy type of
Security::SecEstablishTrustPolicy and is locality constrained.

EstablishTrustPolicy::trust Attribute

IDL readonly attribute EstablishTrust trust;

Description The trust attribute is a structure that contains two members, each
stipulating whether trust in the client and trust in the target is enabled.
1263

 1264

SecurityLevel2::InvocationCredentials
Policy Interface
IDL // IDL in module SecurityLevel2

interface InvocationCredentialsPolicy : CORBA::Policy {
 readonly attribute CredentialsList creds;
};

Description A policy of this type can be passed to the set_policy_overrides()
operation to obtain an object reference that uses the given credentials list,
creds, for operation and attribute invocations.

The InvocationCredentialsPolicy object has a policy type of
Security::SecInvocationCredentialsPolicy and is locality constrained.

InvocationCredentialsPolicy::creds

IDL readonly attribute CredentialsList creds;

Description The list of Credentials objects associated with the
InvocationCredentialsPolicy object.
1265

 1266

SecurityLevel2::MechanismPolicy
Interface
IDL // IDL in module SecurityLevel2

interface MechanismPolicy : CORBA::Policy {
 readonly attribute Security::MechanismTypeList mechanisms;
};

Description A policy of this type can be passed to the set_policy_overrides()
operation to obtain an object reference that uses the specified security
mechanisms.

The MechanismPolicy object has a policy type of
Security::SecMechanismsPolicy and is locality constrained.

See Also IT_TLS_API::TLS::create_mechanism_policy()

MechanismPolicy::mechanisms

IDL readonly attribute Security::MechanismTypeList mechanisms;

Description The mechanisms, in the form of a Security::MechanismTypeList,
associated with the MechanismPolicy object.
1267

 1268

SecurityLevel2::PrincipalAuthenticato
r Interface
IDL // IDL in module SecurityLevel2

interface PrincipalAuthenticator { // Locality Constrained
pragma version PrincipalAuthenticator 1.5

 Security::AuthenticationMethodList
 get_supported_authen_methods(
 in Security::MechanismType mechanism
);

 Security::AuthenticationStatus authenticate (
 in Security::AuthenticationMethod method,
 in Security::MechanismType mechanism,
 in Security::SecurityName security_name,
 in any auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);

 Security::AuthenticationStatus continue_authentication (
 in any response_data,
 in Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);
};

Description This interface provides operations to authenticate a principal and provide it
with credentials. For example, the authenticate() operation is typically
called when a user logs on to an application.
1269

PrincipalAuthenticator::authenticate()

IDL Security::AuthenticationStatus authenticate (
 in Security::AuthenticationMethod method,
 in Security::MechanismType mechanism,
 in Security::SecurityName security_name,
 in any auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);

Description This operation is called to authenticate the principal. It can also request
privilege attributes that the principal requires during its capsule-specific
session with the system.

It creates a capsule-specific Credentials object including the required
attributes and is placed on the SecurityManager object�s own_credentials
list according to the credential�s mechanism type.

In Orbix SSL/TLS, a capsule is effectively identified with an ORB object. The
main consequence of this is that credentials are not shared between ORB
objects. If you create more than one ORB object in your application, you
must call authenticate() for each ORB object to make credentials available
to both ORBs.

Return Value The return value indicates the status of the creds parameter:

SecAuthSuccess A valid Credentials object is available in the creds
parameter.

SecAuthFailure Authentication was in some way inconsistent or
erroneous. Credentials have therefore not been
created.

SecAuthContinue The authentication procedure uses a challenge and
response mechanism. The creds parameter references
a partially initialized Credentials object and the
continuation_data indicates details of the challenge.

Not supported by Orbix SSL/TLS.

SecAuthExpired The authentication data, auth_data, has expired.
Credentials have therefore not been created.
 1270

Parameters

PrincipalAuthenticator::continue_authentication()

IDL Security::AuthenticationStatus continue_authentication (
 in any response_data,
 in Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);

Description Not supported by Orbix SSL/TLS.

method The authentication method to use. For example,
IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE.

See the IT_TLS_API module for the complete list of
authentication methods supported by Orbix SSL/TLS.

mechanism The security mechanism for creating the returned
Credentials object. Leave this parameter blank. It
defaults to SSL/TLS.

security_name The principal�s identification information (such as login
name). Not used by Orbix SSL/TLS.

auth_data The principal�s authentication information, typically
consisting of a certificate, private key and pass phrase.
The data inserted into the auth_data parameter
depends on the specified authentication method,
method.

privileges The requested privilege attributes. Not supported by
Orbix SSL/TLS.

creds This parameter contains the locality constrained object
reference of the newly created Credentials object. It is
usable and placed on the Current object�s
own_credentials list only if the return value is
SecAuthSuccess.

continuation_data Not supported by Orbix SSL/TLS.

auth_specific_data Not supported by Orbix SSL/TLS.
1271

PrincipalAuthenticator::get_supported_authen_methods()

IDL Security::AuthenticationMethodList
get_supported_authen_methods(
 in Security::MechanismType mechanism
);

Description Not implemented in Orbix SSL/TLS.
 1272

SecurityLevel2::QOPPolicy Interface
IDL // IDL in module SecurityLevel2

interface QOPPolicy : CORBA::Policy {
 readonly attribute Security::QOP qop;
};

Description A QOP policy object can be passed to the set_policy_overrides()
operation to obtain an object reference that uses the specified quality of
protection policy.

See Also Security::SecQOPPolicy

QOPPolicy::qop Attribute

IDL readonly attribute Security::QOP qop;

Description The quality of protection, of Security::QOP enumeration type, associated
with the QOPPolicy object.
1273

 1274

SecurityLevel2::ReceivedCredentials
Interface
IDL // IDL in module SecurityLevel2

interface ReceivedCredentials : Credentials {
pragma version ReceivedCredentials 1.5
 readonly attribute Credentials accepting_credentials;

 readonly attribute Security::AssociationOptions
 association_options_used;

 readonly attribute Security::DelegationState delegation_state;

 readonly attribute Security::DelegationMode delegation_mode;
};

Description A ReceivedCredentials object stores the security attributes of a remote
client. It is made available in an execution context on the server side and can
be obtained from a SecurityLevel2::Current object.

See Also SecurityLevel2::Current
IT_TLS_API::TLSReceivedCredentials

ReceivedCredentials::accepting_credentials Attribute

IDL readonly attribute Credentials accepting_credentials;

Description Not implemented in Orbix SSL/TLS.

ReceivedCredentials::association_options_used Attribute

IDL readonly attribute Security::AssociationOptions
 association_options_used;

Description Not implemented in Orbix SSL/TLS.
1275

 ReceivedCredentials::delegation_mode Attribute

IDL readonly attribute Security::DelegationMode delegation_mode;

Description Not implemented in Orbix SSL/TLS.

 ReceivedCredentials::delegation_state Attribute

IDL readonly attribute Security::DelegationState delegation_state;

Description Not implemented in Orbix SSL/TLS.

 1276

SecurityLevel2::SecurityManager
Interface
IDL // IDL in module SecurityLevel2

interface SecurityManager {
 readonly attribute Security::MechandOptionsList
 supported_mechanisms;
 readonly attribute CredentialsList own_credentials;
 readonly attribute RequiredRights required_rights_object;
 readonly attribute PrincipalAuthenticator
 principal_authenticator;

 readonly attribute AccessDecision access_decision;
 readonly attribute AuditDecision audit_decision;

 TargetCredentials get_target_credentials (in Object obj_ref);

 void remove_own_credentials(in Credentials creds);

 CORBA::Policy get_security_policy (
 in CORBA::PolicyType policy_type
);
};

Description In Orbix SSL/TLS, this class is used to access ORB-specific information.

SecurityManager::access_decision Attribute

IDL readonly attribute AccessDecision access_decision;

Description Not implemented in Orbix SSL/TLS.

SecurityManager::audit_decision Attribute

IDL readonly attribute AuditDecision audit_decision;
1277

Description Not implemented in Orbix SSL/TLS.

SecurityManager::get_security_policy()

IDL CORBA::Policy get_security_policy (
 in CORBA::PolicyType policy_type
);

Description Not implemented in Orbix SSL/TLS.

SecurityManager::get_target_credentials()

IDL TargetCredentials get_target_credentials(
 in Object target;
};

Description Returns the target credentials for an object referenced by the specified object
reference, target. For example, this operation is typically used on the client
side to obtain the target credentials for a remote object.

Parameters

SecurityManager::own_credentials Attribute

IDL readonly attribute CredentialsList own_credentials;

Description Holds an application�s own credentials, which are established by calling
authenticate() on the application�s own PrincipalAuthenticator object.

SecurityManager::principal_authenticator Attribute

IDL readonly attribute PrincipalAuthenticator principal_authenticator;

Description Holds a reference to the PrincipalAuthenticator object that can be used by
the application to authenticate principals and obtain credentials.

target An object reference.
 1278

SecurityManager::remove_own_credentials()

IDL void remove_own_credentials(
 in Credentials creds
);

Description Removes credentials that were put on the own_credentials list using the
PrincipalAuthenticator. This operation does not manipulate or destroy the
objects in any way.

Parameters

SecurityManager::required_rights_object Attribute

IDL readonly attribute RequiredRights required_rights_object;

Description Not implemented in Orbix SSL/TLS.

SecurityManager::supported_mechanisms Attribute

IDL readonly attribute Security::MechandOptionsList
 supported_mechanisms;

Description Not implemented in Orbix SSL/TLS.

creds The Credentials object to be removed from the list.
1279

 1280

SecurityLevel2::TargetCredentials
Interface
IDL // IDL in module SecurityLevel2

interface TargetCredentials : Credentials {
 readonly attribute Credentials
 initiating_credentials;

 readonly attribute Security::AssociationOptions
 association_options_used;
};

Description A TargetCredentials object holds the security attributes of an authenticated
target object. To obtain the target credentials for a remote object, call the
SecurityManager::get_target_credentials() operation.

See Also IT_TLS_API::TLSTargetCredentials

TargetCredentials::association_options_used Attribute

IDL readonly attribute Security::AssociationOptions
 association_options_used;

Description Not implemented in Orbix SSL/TLS.

 TargetCredentials::initiating_credentials Attribute

IDL readonly attribute Credentials initiating_credentials;

Description Not implemented in Orbix SSL/TLS.

1281

 1282

IT_TLS Overview
The IT_TLS module defines a single IDL interface, as follows:

� IT_TLS::CertValidator

The following data types are defined in the scope of IT_TLS to describe
certificate validation errors:

� IT_TLS::CertChainErrorCode enumeration
� IT_TLS::CertChainErrorInfo structure.

IT_TLS::CACHE_NONE Constant

const SessionCachingMode CACHE_NONE = 0;

A flag that specifies no caching.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CACHE_SERVER Constant

const SessionCachingMode CACHE_SERVER = 0x01;

A flag that specifies server-side caching only.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CACHE_CLIENT Constant

const SessionCachingMode CACHE_CLIENT = 0x02;

A flag that specifies client-side caching only.

See Also IT_TLS_API::SessionCachingPolicy
1283

IT_TLS::CACHE_SERVER_AND_CLIENT Constant

const SessionCachingMode CACHE_SERVER_AND_CLIENT = 0x04;

A flag that specifies both server-side and client-side caching.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CertChainErrorCode Enumeration

//IDL
enum CertChainErrorCode
{
 CERTIFICATE_UNKNOWN,
 CERTIFICATE_DECODE_ERROR,
 CERTIFICATE_SIGNED_BY_UNKNOWN_CA,
 UNSUPPORTED_CERTIFICATE,
 CERTIFICATE_EXPIRED,
 CERTIFICATE_NOT_YET_VALID,
 CERTIFICATE_REVOKED,
 BAD_CERTIFICATE,
 CERTIFICATE_SIGNED_BY_NON_CA_CERTIFICATE,
 CERTIFICATE_CHAIN_TOO_LONG,
 CERTIFICATE_FAILED_CONSTRAINTS_VALIDATION,
 CERTIFICATE_FAILED_APPLICATION_VALIDATION,
 CERTIFICATE_SUBJECT_ISSUER_MISMATCH
};

An Orbix-specific error code that gives the reason why a certificate failed to
validate.

IT_TLS::CertChainErrorInfo Structure

//IDL
struct CertChainErrorInfo
{
 short error_depth;
 string error_message;

 CertChainErrorCode error_reason;

 // If this field is true then the two subsequent field may be
 1284

 // examined to get more detail from the underlying toolkit if
 // required. These are non portable values and are only ever
 // likely to be used for diagnostic purposes.
 boolean external_error_set;
 short external_error_depth;
 long external_error;
 string external_error_string;
};

This structure is initialized with error information if a certificate chain fails the
validation checks made by Orbix SSL/TLS. Two different levels of error
information are generated by the Orbix SSL/TLS runtime:

� Error information generated by Orbix SSL/TLS�provided by the
error_depth, error_message, and error_reason members.

� Error information generated by an underlying third-party toolkit�
provided by the external_error_depth, external_error, and
external_error_string members.

The structure contains the following elements:

error_depth A positive integer that indexes the chain depth of
the certificate causing the error. Zero indicates the
peer certificate.

error_message A descriptive error string (possibly from the lower
level toolkit).

error_reason An Orbix-specific error code.

external_error_set If TRUE, external error details are provided by the
underlying toolkit in the member variables following
this one.

external_error_depth The index of the certificate that caused the error, as
counted by the underlying toolkit.

external_error The error code from the underlying toolkit.

external_error_string A descriptive error string from the underlying toolkit.
1285

IT_TLS::CipherSuite Type

typedef unsigned long CipherSuite;

A type that identifies a cipher suite.

Values The following constants of IT_TLS::CipherSuite type are defined in IT_TLS:

TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_WITH_IDEA_CBC_SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_DSS_WITH_DES_CBC_SHA
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_RSA_WITH_DES_CBC_SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_ANON_EXPORT_WITH_RC4_40_MD5
TLS_DH_ANON_WITH_RC4_128_MD5
TLS_DH_ANON_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_ANON_WITH_DES_CBC_SHA
TLS_DH_ANON_WITH_3DES_EDE_CBC_SHA
TLS_FORTEZZA_DMS_WITH_NULL_SHA
TLS_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA

IT_TLS::CipherSuiteList Sequence

typedef sequence<CipherSuite> CipherSuiteList;

A list of cipher suites.
 1286

IT_TLS::SessionCachingMode Type

typedef unsigned short SessionCachingMode;

A type that holds a session caching mode flag.

See Also IT_TLS_API::SessionCachingPolicy
1287

 1288

IT_TLS::CertValidator Interface
IDL // IDL in module IT_TLS

interface CertValidator
{
 boolean
 validate_cert_chain(
 in boolean chain_is_valid,
 in IT_Certificate::X509CertChain cert_chain,
 in CertChainErrorInfo error_info
);
};

Description The CertValidator interface is a callback interface that can be used to
check the validity of a certificate chain. A developer can provide custom
validation for secure associations by implementing the CertValidator
interface, defining the validate_cert_chain() operation to do the checking.
The developer then creates an instance of the custom CertValidator and
registers the callback by setting an
IT_TLS_API::TLS_CERT_VALIDATOR_POLICY policy.

CertValidator::validate_cert_chain()

IDL boolean
validate_cert_chain(
 in boolean chain_is_valid,
 in IT_Certificate::X509CertChain cert_chain,
 in CertChainErrorInfo error_info
);

Description Returns TRUE if the implementation of validate_cert_chain() considers
the certificate chain to be valid; otherwise returns FALSE.
1289

Parameters

chain_is_valid TRUE if the certificate chain has passed the validity checks
made automatically by the Orbix SSL/TLS toolkit;
otherwise FALSE.

cert_chain The X.509 certificate chain to be checked.

error_info If the certificate chain has failed the validity checks made
by Orbix SSL/TLS, this parameter provides details of the
error in the certificate chain.
 1290

IT_TLS_API Overview
The IT_TLS_API module defines Orbix-specific security policies and an
interface, TLS, that acts as a factory for certain kinds of security policy. This
module contains the following IDL interfaces:

� CertConstraintsPolicy Interface
� CertValidatorPolicy Interface
� MaxChainLengthPolicy Interface
� SessionCachingPolicy Interface
� TrustedCAListPolicy Interface
� TLS Interface
� TLSCredentials Interface
� TLSReceivedCredentials Interface
� TLSTargetCredentials Interface

Associated with each of the security policies, the IT_TLS_API module defines
the following policy type constants (of CORBA::PolicyType type):

IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY
IT_TLS_API::TLS_CERT_VALIDATOR_POLICY
IT_TLS_API::TLS_MAX_CHAIN_LENGTH_POLICY
IT_TLS_API::TLS_SESSION_CACHING_POLICY
IT_TLS_API::TLS_TRUSTED_CA_LIST_POLICY

The IT_TLS_API module also defines IDL structures that are used to supply
authentication information to the
PrincipalAuthenticator::authenticate() operation, depending on the
authentication method used. The following structures are defined:

� PasswordAuthData
� PEMCertChainFileAuthData
� PKCS12DERAuthData
� PKCS12FileAuthData
� X509CertChainAuthData
� PKCS11AuthData
1291

Associated with each of the authentication structures, the IT_TLS_API
module defines the following authentication method constants (of
Security::AuthenticationMethod type):

IT_TLS_API::CertConstraints Sequence

IDL typedef sequence<string> CertConstraints;

Holds a list of certificate constraints for a certificate constraints policy.

See Also IT_TLS_API::CertConstraintsPolicy

IT_TLS_API::PasswordAuthData

IDL struct PasswordAuthData {
 string password;
};

Supplies only a password as authentication data.

Notes Reserved for future use.

Table 32: Authentication Method Constants and Authentication Structures

Authentication Method Constant Authentication Structure

IT_TLS_AUTH_METH_PASSWORD PasswordAuthData

IT_TLS_AUTH_METH_CERT_CHAIN_FILE PEMCertChainFileAuthData

IT_TLS_AUTH_METH_PKCS12_DER PKCS12DERAuthData

IT_TLS_AUTH_METH_PKCS12_FILE PKCS12FileAuthData

IT_TLS_AUTH_METH_CERT_CHAIN X509CertChainAuthData

IT_TLS_AUTH_METH_PKCS11 PKCS11AuthData
 1292

IT_TLS_API::PEMCertChainFileAuthData

IDL struct PEMCertChainFileAuthData {
 string password;
 string filename;
};

Supplies a password and the file name of a privacy-enhanced mail (PEM)
encrypted X.509 certificate chain.

Notes Reserved for future use.

IT_TLS_API::PKCS12DERAuthData

IDL struct PKCS12DERAuthData {
 string password;
 IT_Certificate::DERData cert_chain;
};

Supplies a password and a certificate chain in DER format.

Notes Reserved for future use.

IT_TLS_API::PKCS12FileAuthData

IDL struct PKCS12FileAuthData {
 string password;
 string filename;
};

Supplies a password and the file name of a PKCS#12 encrypted X.509
certificate chain. The file name should be an absolute path name.
1293

IT_TLS_API::X509CertChainAuthData

IDL struct X509CertChainAuthData {
 IT_Certificate::DERData private_key;
 IT_Certificate::X509CertChain cert_chain;
};

Supplies an asymmetric private key and an X.509 certificate chain.

IT_TLS_API::PKCS11AuthData

IDL struct PKCS11AuthData {
 string provider;
 string slot;
 string pin;
};

Supplies the provider name, slot number, and PIN for a smart card that is
accessed through a PKCS #11 interface. In this case, the user�s private key
and certificate chain are stored on the smart card. The PIN is used to gain
access to the smart card.
 1294

IT_TLS_API::CertConstraintsPolicy
Interface
IDL // IDL in module IT_TLS_API

local interface CertConstraintsPolicy : CORBA::Policy
{
 readonly attribute CertConstraints cert_constraints;
};

Description This policy defines a list of constraints to be applied to certificates. This
policy type is identified by the IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY
policy type constant.

CertConstraintsPolicy::cert_constraints Attribute

IDL readonly attribute CertConstraints cert_constraints;

Description Holds the list of certificate constraints as a sequence of strings, of
IT_TLS_API::CertConstraints type.
1295

 1296

IT_TLS_API::CertValidatorPolicy
Interface
IDL // IDL in module IT_TLS_API

local interface CertValidatorPolicy : CORBA::Policy
{
 readonly attribute IT_TLS::CertValidator cert_validator;
};

Description This policy can be used to register a customized certificate callback object, of
IT_TLS::CertValidator type. This policy type is identified by the
IT_TLS_API::TLS_CERT_VALIDATOR_POLICY policy type constant.

CertValidatorPolicy::cert_validator Attribute

IDL readonly attribute IT_TLS::CertValidator cert_validator;

Description Holds the customized certificate callback object, of IT_TLS::CertValidator
type
1297

 1298

IT_TLS_API::MaxChainLengthPolicy
Interface
IDL // IDL in module IT_TLS_API

local interface MaxChainLengthPolicy : CORBA::Policy
{
 readonly attribute unsigned short max_chain_length;
};

Description This is a simple integer-based policy that controls the maximum certificate
chain length permitted. The policy is applicable to servers and clients. This
policy type is identified by the IT_TLS_API::TLS_MAX_CHAIN_LENGTH_POLICY
policy type constant.

Notes Default is 2.

MaxChainLengthPolicy::max_chain_length Attribute

IDL readonly attribute unsigned short max_chain_length;

Description Holds the maximum chain length value.
1299

 1300

IT_TLS_API::SessionCachingPolicy Interface
IDL // IDL in module IT_TLS_API

local interface SessionCachingPolicy : CORBA::Policy{
 readonly attribute unsigned short cache_mode;
};

Description An Orbix-specific policy to specify the caching mode. This policy applies to
clients and servers. This policy type is identified by the
IT_TLS_API::TLS_SESSION_CACHING_POLICY policy type constant.

Session caching is an Orbix-specific feature that enables secure associations
(for example, over TCP/IP connections) to be re-established more quickly
after being closed.

To enable session caching for a client-server connection, the client must
support client-side caching (CACHE_CLIENT or CACHE_SERVER_AND_CLIENT
policy) and the server must support server-side caching (CACHE_SERVER or
CACHE_SERVER_AND_CLIENT policy). The first time a secure association is
established between the client and the server, session information is cached
at both ends of the association. If the association is subsequently closed and
re-established (as can happen when Automatic Connection Management is
enabled), the reconnection occurs more rapidly because some of the steps in
the security handshake can be skipped.

The caching optimization is effective only if both client and server are running
continuously between the closing and the re-establishment of the connection.
Session caching data is not stored persistently and is, therefore, not available
to restarted applications.

Each TLS listener uses a separate session cache. For example, if you have
two POAs with different InvocationCredentialsPolicy values, Orbix SSL/
TLS creates a TLS listener and session cache for each POA.

A client will not offer a cached session for reuse to a server if the session was
initially created with different effective security policies.
1301

SessionCachingPolicy::cache_mode Attribute

IDL readonly attribute unsigned short cache_mode;

Description Holds the client caching mode. The default value is IT_TLS::CACHE_NONE.

Values The values for this policy are as follows:

IT_TLS::CACHE_NONE No caching.

IT_TLS::CACHE_SERVER Perform server-side caching only.

IT_TLS::CACHE_CLIENT Perform client-side caching only.

IT_TLS::CACHE_SERVER_AND_CLIENT Perform both server-side and client-side
caching.
 1302

IT_TLS_API::TLS Interface
IDL // IDL in module IT_TLS_API

local interface TLS {
 SecurityLevel2::MechanismPolicy
 create_mechanism_policy(
 in IT_TLS::CipherSuiteList ciphersuite_list
);
};

Description This interface provides helper operations for the TSL module.

TLS::create_mechanism_policy()

IDL SecurityLevel2::MechanismPolicy
create_mechanism_policy(
 in IT_TLS::CipherSuiteList ciphersuite_list
);

Description Creates a SecurityLevel2::MechanismPolicy object from a list of
ciphersuites, ciphersuite_list.

See Also IT_TLS::CipherSuite
1303

 1304

IT_TLS_API::TLSCredentials Interface
// IDL
local interface TLSCredentials : SecurityLevel2::Credentials
{
 IT_Certificate::X509Cert get_x509_cert();

 IT_Certificate::X509CertChain get_x509_cert_chain_nc();

 IT_Certificate::X509CertChain get_x509_cert_chain();
};

Description This interface is the base interface for the
IT_TLS_API::TLSReceivedCredentials and the
IT_TLS_API::TLSTargetCredentials interfaces. The interface defines
operations to retrieve an X.509 certificate chain from the credentials.

TLSCredentials::get_x509_cert()

// IDL
IT_Certificate::X509Cert get_x509_cert();

Description Returns a reference to the X.509 peer certificate (first certificate in the chain)
contained in the credentials.

TLSCredentials::get_x509_cert_chain()

// IDL
IT_Certificate::X509CertChain get_x509_cert_chain();

Description Returns a copy of the X.509 certificate chain contained in the credentials. In
C++ applications it is preferable to use the non-copying operation
get_x509_cert_chain_nc() for greater efficiency.
1305

TLSCredentials::get_x509_cert_chain_nc()

// IDL
IT_Certificate::X509CertChain get_x509_cert_chain_nc();

Description Returns a reference to the X.509 certificate chain contained in the
credentials. In C++, the mapped function, get_x509_cert_chain_nc(),
does not make a deep copy of the certificate sequence. The returned X.509
certificate chain can only be used while the credential from which it was
obtained remains in memory.
 1306

IT_TLS_API::TLSReceivedCredentials Interface
IDL local interface TLSReceivedCredentials :

 TLSCredentials,
 SecurityLevel2::ReceivedCredentials
{
};

Description The interface of an Orbix-specific received credentials object, which inherits
from the standard SecurityLevel2::ReceivedCredentials interface.
TLSReceivedCredentials provides extra operations (inherited from
IT_TLS_API::TLSCredentials) to extract the X.509 certificate chain from
the credentials.

An instance of a TLSReceivedCredentials object can be obtained by
narrowing the SecurityLevel2::ReceivedCredentials object reference
obtained from the SecurityLevel2::Current::received_credentials
attribute.
1307

 1308

IT_TLS_API::TLSTargetCredentials Interface
IDL local interface TLSTargetCredentials :

 TLSCredentials,
 SecurityLevel2::TargetCredentials
{
};

Description The interface of an Orbix-specific target credentials object, which inherits
from the standard SecurityLevel2::TargetCredentials interface.
TLSTargetCredentials provides extra operations (inherited from
IT_TLS_API::TLSCredentials) to extract the X.509 certificate chain from
the credentials.

An instance of a TLSTargetCredentials object can be obtained by narrowing
the SecurityLevel2::TargetCredentials object reference returned from the
SecurityLevel2::SecurityManager::get_target_credentials()
operation.
1309

 1310

IT_TLS_API::TrustedCAListPolicy
Interface
IDL local interface TrustedCAListPolicy : CORBA::Policy

{
 readonly attribute IT_Certificate::X509CertList
 trusted_ca_list;
};

Description This policy specifies a list of trusted CA certificates. The policy is applicable
to both servers and clients. This policy type is identified by the
IT_TLS_API::TLS_TRUSTED_CA_LIST_POLICY policy type constant.

TrustedCAListPolicy::trusted_ca_list Attribute

IDL readonly attribute IT_Certificate::X509CertList trusted_ca_list;

Description Holds the list of trusted CA certificates.
1311

 1312

 Telecom Logging

Service

Telecom Logging Service Interfaces
The Telecom Logging Service is defined in terms of the following IDL
modules:

The following chapters describe these modules in detail.

Table 33: Notification IDL Modules

IDL Module Contents

DsLogAdmin Defines the exceptions, datatypes, and the
base interfaces that implement the telecom
logging service.

DsEventLogAdmin Defines the EventLog and EventLogFactory
interfaces.

DsNotifyLogAdmin Defines the NotifyLog and NotifyLogFactory
interfaces.

DsLogNotification Defines the data sturctures to support log gen-
erated evetns.

IT_LogAdmin Provides additional configuration defaults and
management interfaces specific to IONA�s tele-
com logging service implementation.

IT_NotifyLogAdmin Extends the OMG specified NotifyLog and
NotifyLogFactory interfaces to support event
subsrciption and publication. Also provides
access to a default filter factory.
1315

 1316

DsLogAdmin Module
DsLogAdmin specifies the Log interfaces which forms the basis for the
BasicLog interface, EventLog interface, and the NotifyLog interface.
DsLogAdmin also specifies the BasicLog and BasicLogFactory to support the
basic logging service. In addtion, this module specifys the Iterator interface
to support the iterators returned when retrieving records from a log.

This module also specifies all of the exceptions and major datatypes used by
the telecom logging service.

DsLogAdmin Exceptions

DsLogAdmin::InvalidParam Exception

exception InvalidParam {string details;};

Raised when an illegal value is used to set a log�s properties. It contains the
name of the property being set and the illegal value.

DsLogAdmin::InvalidThreshold Exception

exception InvalidThreshold {};

Raised when an attempt is made to set a threshold alarm at a value outside
the range of 0%-99%.

DsLogAdmin::InvalidTime Exception

exception InvalidTime{};

Raised by set_week_mask() when one of the values specified for a start or
stop time is not within the valid range.
1317

DsLogAdmin::InvalidTimeInterval Exception

exception InvalidTimeInterval{};

Raised by set_week_mask() when one of the time intervals used to set a log�s
schedule is improperly formed. For example, the stop time is before the start.
Also raised if the intervals overlap.

DsLogAdmin::InvalidMask Exception

exception InvalidMask{};

Raised by set_week_mask() when the days parameter used in setting a log�s
schedule is malformed.

DsLogAdmin::LogIdAlreadyExists Exception

exception LogIdAlreadyExists{};

Raised by create_with_id() if an attempt is made to create a log with an id
that is already in use.

DsLogAdmin::InvalidGrammar Exception

exception InvalidGrammar{};

Raised by query() and delete_records() if an unsupported constraint
grammar is specified. The grammar implemented in Iona�s telecom logging
service is EXTENDED_TCL.

DsLogAdmin::InvalidConstraint Exception

exception InvalidConstraint{};

Raised by query() and delete_records() if a constraint expression is not
syntactically correct according to the specified grammar.
 1318

DsLogAdmin Exceptions
DsLogAdmin::LogFull Exception

exception LogFull{short n_records_written;};

Raised when an attempt is made to log records in a log that is full and has its
full_action set to halt. It returns the number of records that were successfully
written to the log.

DsLogAdmin::LogOffDuty Exception

exception LogOffDuty{};

Raised when an attempt is made to log records in a log whose availability
status is off duty.

DsLogAdmin::LogLocked Exception

exception LogLocked{};

Raised when an attempt is made to log records in a log whose administrative
state is locked.

DsLogAdmin::LogDisabled Exception

exception LogDisabled{};

Raised when an attempt is made to log records in a log whose operational
state is disabled.

DsLogAdmin::InvalidRecordId Exception

exception InvalidRecordId{};

Raised when the record id specified does not exist in the log.
1319

DsLogAdmin::InvalidAttribute Exception

exception InvalidAttribute{string attr_name; any value;};

Raised when one of the attributes set on a record is invalid. It returns the name
of the invalid attribute and the value specified for it.

DsLogAdmin::InvalidLogFullAction Exception

exception InvalidLogFullAction{};

Raised if an attempt is made to set a log�s full_action to a value other than
wrap or halt.

DsLogAdmin::UnsupportedQoS Exception

exception UnsupportedQoS{QoSList denied};

DsLogAdmin Constants
DsLogAdmin defines the majority of the constant values used when developing
a telecom logging service application.

Querying Constants

DsLogAdmin defines one constant to support queries:

const string default_grammar = "EXTENDED_TCL";

Full Action Constants

Two constants are defined to support a log�s full_action:

const LogFullActionType wrap = 0;
const LogFullActionType halt = 1;
 1320

DsLogAdmin Datatypes
Scheduling Constants

DsLogAdmin defines the following constants to support log scheduling:

const unsigned short Sunday = 1;
const unsigned short Monday = 2;
const unsigned short Tuesday = 4;
const unsigned short Wednesday = 8;
const unsigned short Thursday = 16;
const unsigned short Friday = 32;
const unsigned short Saturday = 64;

QoS Constants

DsLogAdmin defines the following constants to support log QoS properties:

const QoSType QoSNone = 0;
const QoSType QoSFlush = 1;
const QoSType QoSReliable = 2;

DsLogAdmin Datatypes

DsLogAdmin::LogId Type

typedef unsigned long LogId;

Specifies a log�s unique id. The id is used by several methods for specifying
which log to use or to locate a specific log.

DsLogAdmin::RecordId Type

typedef unsigned long long RecordId;

Specifies a record�s id. A record�s id is unique within the log storing it.
1321

DsLogAdmin::RecordIdList Sequence

typedef sequence<RecordId> RecordIdList;

Specifies a list of record ids. The list does not need to be in any particular order.

DsLogAdmin::Constraint Type

typedef string Constraint;

Specifies the constraints used for querying a log�s records.

DsLogAdmin::TimeT Type

typedef TimeBase::TimeT TimeT;

Used to record logging times and for setting a log�s duration.

DsLogAdmin::NVPair Structure

struct NVPair
 {
 string name;
 any value;
 };

Specifies a name/value pair used to construct attributes for records.

Members

DsLogAdmin::NVList Sequence

typedef sequence<NVPair> NVList;

A list of name/value record attributes.

name The name of the attribute. The value can be any string.

value An any containing the setting for the attribute.
 1322

DsLogAdmin Datatypes
DsLogAdmin::TimeInterval Structure

struct TimeInterval
{
 TimeT start;
 TimeT stop;
};

Specifies the start and stop times for a logging session.

Members

DsLogAdmin::LogRecord Structure

struct LogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list;
 any info;
};

The data stored when a new record is logged.

Members

DsLogAdmin::RecordList Sequence

typedef sequence<LogRecord> RecordList;

A list of records.

start The start time for the current logging session.

stop The end time for the current logging session.

id The unique identifier for the record

time The time at which the record was logged.

attr_list An optional list of attributes specified by the client

info The data contained in the record.
1323

DsLogAdmin::Anys Sequence

typedef sequence<any> Anys;

A sequence of data stored in individual any packages.

DsLogAdmin::AvailabilityStatus Structure

struct AvailabilityStatus
{
 boolean off_duty;
 boolean log_full;
};

Represents the availability of a log.

Members

DsLogAdmin::LogFullActionType Type

typedef unsigned short LogFullActionType;

Specifies a log�s full_action. It can either be halt or wrap.

DsLogAdmin::Time24 Structure

struct Time24
{
 unsigned short hour; // 0-23
 unsigned short minute; // 0-59
};

Specifies the fine grained times for a log�s schedule

off_duty true means the log is not scheduled to accept new events.
false means it is schedualed to recieve new events.

log_full If the log is full this member will be true.
 1324

DsLogAdmin Datatypes
Members

DsLogAdmin::Time24Interval Structure

struct Time24Interval
{
 Time24 start;
 Time24 stop;
};

A fine grained interval during which a log is scheduled to log new records.

Members

DsLogAdmin::IntervalsOfDay Sequence

typedef sequence<Time24Interval> IntervalsOfDay;

A list of fine grained logging intervals.

DsLogAdmin::DaysOfWeek Type

typedef unsigned short DaysOfWeek;

A bit mask specifying the days of the week a fine grained logging interval is
valid. It is constructed using the scheduling constants listed in �Scheduling
Constants� on page 1321.

DsLogAdmin::WeekMaskItem Structure

struct WeekMaskItem
{

hour An hour specified in 24 hour format

minute The minute within an hour. Can be a value from 0-59.

start The time at which a log will begin logging new records.

stop The time at which a log will stop logging new records.
1325

 DaysOfWeek days;
 IntervalsOfDay intervals;
};

Specifies a fined grain log schedule.

Members

DsLogAdmin::WeekMask Sequence

typedef sequence<WeekMaskItem> WeekMask;

Specifies a log�s fine grained logging schedule.

DsLogAdmin::Threshold Type

typedef unsigned short Threshold;

Specifies a threshold point, in terms of a percentage of how full a log is, at
which to generate an alarm. Valid values are from 0-100.

DsLogAdmin::CapacityAlarmThresholdList Sequence

typedef sequence<Threshold> CapacityAlarmThresholdList;

A list of thresholds at which alarms are generated.

days A bitmask specifying the days of the week for which the
specified intervals are valid.

intervals The fine grained logging intervals.
 1326

DsLogAdmin Datatypes
DsLogAdmin::OperationalState Enum

enum OperationalState {disabled, enabled};

Specifies if a log is ready to log new records.

DsLogAdmin::AdministrativeState Enum

enum AdministrativeState {locked, unlocked};

Specifies if a log can accept new records.

DsLogAdmin::ForwardingState Enum

enum ForwardingState {on, off}

Specifies if a log will forward events or not.

DsLogAdmin::LogList Sequence

typedef sequence<Log> LogList;

A sequence of log object references.

Table 34: Log operational states

Operational
State

Reason

enabled The log is healthy and its full functionality is avail-
able for use.

disabled The log has encountered a runtime error and is
unavailable. The log will not accept any new
records and it may not be able to retrieve valid
records. The log will still attempt to forward events
if its ForwardingState is set to on.
1327

DsLogAdmin::LogIdList Sequence

typedef sequence<LogId> LogIdList;

A sequence of log ids.

DsLogAdmin::QoSType Type

typedef unsigned short QoSType;

Specifies the log�s QoS level. Valid values are QoSNone, QoSFlush, and
QoSReliable.

DsLogAdmin::QoSList Sequence

typedef sequence<QoSType> QoSList;

A list of QoSType.
 1328

DsLogAdmin Datatypes
DsLogAdmin::Iterator Interface
The Iterator interface provides the methods for accessing records returned
by the iterator when querying a log. It also provides the method used to
release the resources consumed by the returned iterator.

interface Iterator
{
 RecordList get(in unsigned long position,
 in unsigned long how_many)
 raises(InvalidParam);

 void destroy();
};

Iterator::get()

 RecordList get(in unsigned long position,
 in unsigned long how_many)
 raises(InvalidParam);

Retrieves the specified number of records from the iterator object and returns
them as a RecordList.

Parameters

Exceptions

Iterator::destroy()

void destroy();

Releases the resources used by the iterator object. If an iterator object is
returned, you must explicitly destroy it.

position The number of the record from which to start retrieving
records.

how_many The number of records to return.

InvalidParam Raised if the position is negative or past the end of the list.
1329

DsLogAdmin::Log Interface
The Log interface provides all of the basic functionality for log objects. All
other log interfaces inherit from this interface. The Log interface provides the
methods for managing a log�s functional properties including its full_action
and maximum size. It also defines the methods for querying the log for
records, retrieving records from the log, and deleting records from the log. In
addition, it defines the flush() method and two methods for copying logs.

interface Log
{
 LogMgr my_factory();
 LogId id();

 unsigned long get_max_record_life();
 void set_max_record_life(in unsigned long life);

 unsigned long long get_max_size();
 void set_max_size(in unsigned long long size)
 raises (InvalidParam);
 unsigned long long get_current_size();
 unsigned long long get_n_records();

 LogFullActionType get_log_full_action();
 void set_log_full_action(in LogFullActionType action)
 raises(InvalidLogFullAction);

 AdministrativeState get_administrative_state();
 void set_administrative_state(in AdministrativeState state);

 ForwardingState get_forwarding_state();
 void set_forwarding_state(in ForwardingState state);

 OperationalState get_operational_state();
 AvailabilityStatus get_availability_status();

 TimeInterval get_interval();
 void set_interval(in TimeInterval interval)
 raises (InvalidTime, InvalidTimeInterval);

 CapacityAlarmThresholdList get_capacity_alarm_thresholds();
 1330

DsLogAdmin Datatypes
 void set_capacity_alarm_thresholds(in CapacityAlarmThresholdList
threshs)

 raises (InvalidThreshold);

 WeekMask get_week_mask();
 void set_week_mask(in WeekMask masks)
 raises (InvalidTime, InvalidTimeInterval, InvalidMask);

 QoSList get_log_qos();
 void set_log_qos(in QoSList qos) raises (UnsupportedQoS)

 RecordList query(in string grammar, in Constraint c,
 out Iterator i)
 raises(InvalidGrammar, InvalidConstraint);

 RecordList retrieve(in TimeT from_time, in long how_many,
 out Iterator i);

 unsigned long match(in string grammar, in Constraint c)
 raises(InvalidGrammar, InvalidConstraint);

 unsigned long delete_records(in string grammar, in Constraint c)
 raises(InvalidGrammar, InvalidConstraint);
 unsigned long delete_records_by_id(in RecordIdList ids);

 void write_records(in Anys records)
 raises(LogFull, LogOffDuty, LogLocked, LogDisabled);
 void write_recordlist(in RecordList list)
 raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

 void set_record_attribute(in RecordId id, in NVList attr_list)
 raises(InvalidRecordId, InvalidAttribute);
 unsigned long set_records_attribute(in string grammar,
 in Constraint c,
 in NVList attr_list)
 raises(InvalidGrammar, InvalidConstraint, InvalidAttribute);

 NVList get_record_attribute(in RecordId id)
 raises(InvalidRecordId);

 Log copy(out LogId id);
 Log copy_with_id(in LogId id) raises(LogIdAlreadyExists);
1331

 void flush() raises(UnsupportedQoS);
};

Log::my_factory()

LogMgr my_factory();

Returns an object reference to the log object�s log factory.

Log::id()

LogId id();

Returns the id of the log.

Log::get_max_record_life()

unsigned long get_max_record_life();

Returns the maximum amount of time, in seconds, that a record stays valid in
the log.

Log::set_max_record_life()

void set_max_record_life(in unsigned long life);

Sets the maximum amount of time, in seconds, that a record stays valid in the
log. After a record has become stale, it will automatically be removed from the
log.

Parameters

life The number of seconds for which records will remain valid.
Zero specifies an infinite life span.
 1332

DsLogAdmin Datatypes
Log::get_max_size()

unsigned long long get_max_size();

Returns the maximum size, in bytes, of the log.

Log::set_max_size()

void set_max_size(in unsigned long long size)
 raises(InvalidParam);

Set the maximum size, in bytes, of the log.

Parameters

Exceptions

Log::get_current_size()

unsigned long long get_current_size();

Returns the current size of the log in octets.

Log::get_n_records()

unsigned long long get_n_records();

Returns the current number of records in the log.

Log::get_log_full_action()

LogFullActionType get_log_full_action();

Returns the log�s full_action setting.

size The maximum size of the log object in bytes.

InvalidParam The size specified is smaller than the current size of the log.
1333

Log::set_log_full_action()

void set_log_full_action(in LogFullActionType action)
raises(InvalidLogFullAction);

Sets the log�s full_action.

Parameters

Exceptions

Log::get_administrative_state()

AdministrativeState get_administrative_state();

Returns the log�s administrative state.

Log::set_administrative_state()

void set_administrative_state(in AdministrativeState state);

Sets the log�s administrative state.

Parameters

Log::get_forwarding_state()

ForwardingState get_forwarding_state();

Returns the log�s forwarding state. If the log�s forwarding state is on, the log
will forward events.

action The log�s full_action. Valid values are wrap and halt.

InvalidLogFullActionThe full_action specified is not a supported.

state The new administrative state for the log. Valid states are
locked and unlocked.
 1334

DsLogAdmin Datatypes
Log::set_forwarding_state()

void set_forwarding_state(in ForwardingState state);

Changes the log�s forwarding state.

Parameters

Log::get_operational_state()

OperationalState get_operational_state();

Returns the log�s operational state. The log can either be enabled or disabled.

Log::get_interval()

TimeInterval get_interval();

Returns the log�s coarse grained logging interval.

Log::set_interval()

void set_interval(in TimeInterval interval)
raises (InvalidTime, InvalidTimeInterval);

Changes the log�s coarse grained logging interval.

Parameters

state The new forwarding state. The valid values are:

on specifies that the log will forward events.

off specifies that the log will not forward events.

interval The log�s new coarse grained logging interval. Zero sets the
log to an infinite duration.
1335

Exceptions

Log::get_availability_status()

AvailabilityStatus get_availability_status();

Returns the log�s availability. The log can be on duty, off duty, full, or both off
duty and full.

Log::get_capacity_alarm_thresholds()

CapacityAlarmThresholdList get_capacity_alarm_thresholds();

Returns a list of the log�s alarm thresholds.

Log::set_capacity_alarm_thresholds()

void set_capacity_alarm_thresholds(in CapacityAlarmThresholdList
threshs)
raises (InvalidThreshold);

Sets threshold alarms in the log.

Parameters

Exceptions

InvalidTime One of the times specified is not a legal time.

InvalidTimeIntervalThe start time of the interval is after the stop time.
Also, the stop time is prior to the current time.

threshs A sequence of Threshold specifying at what points thresh-
old alarm events are to be generated.

InvalidThresholdRaised if one of the thresholds is not in the valid range.
 1336

DsLogAdmin Datatypes
Log::get_week_mask()

WeekMask get_week_mask();

Returns the log�s weekly schedule.

Log::set_week_mask()

void set_week_mask(in WeekMask masks)
raises (InvalidTime, InvalidTimeInterval, InvalidMask);

Changes the log�s weekly schedule.

Parameters

Exceptions

Log::get_log_qos()

QoSList get_log_qos();

Returns the log�s QoS settings.

Log::set_log_qos()

void set_log_qos(in QoSList qos) raises (UnsupportedQoS);

Sets the log�s QoS type. Valid settings are QoSNone, QoSFlush, and
QosReliable.

Parameters

masks The new schedule to set on the log.

InvalidTime One of the times set on the log is not a valid time.

InvalidTimeIntervalOne of the stop times specified is before its associated
start time. Also, one of the time intervals overlaps
another time interval.

InvalidMask The WeekMask is malformed.

qos The QoS properties to set on the log.
1337

Exceptions

Log::query()

RecordList query(in string grammar, in Constraint c, out Iterator i)
raises(InvalidGrammar, InvalidConstraint);

Retreives records from the log based on a constraint.

Parameters

Exceptions

Log::retrieve()

RecordList retrieve(in TimeT from_time, in long how_many,
 out Iterator i);

Returns the specified number of records starting at the specified time. If the
number of records is larger than can be stored in the return parameter, the
remaining records are accessible through the Iterator.

UnsupportedQoSOne of the QoS properties specified for the log is invalid. The
invalid setting is returned.

grammar The grammar used to consruct the contraint. The telecom
logging service support the EXTENDED_TCL grammar

c The contraint string against which records are matched.

i Used when a large number of records are retreived. If it not
used it will be nil.

InvalidGrammar The telecom logging service does not support the speci-
fied grammar.

InvalidConstraintThe constraint does not conform to the specified gram-
mar.
 1338

DsLogAdmin Datatypes
Parameters

Log::match()

unsigned long match(in string grammar, in Constraint c)
raises(InvalidGrammar, InvalidConstraint);

Returns the number of records that match the specified constraint.

Parameters

Exceptions

Log::delete_records()

unsigned long delete_records(in string grammar, in Constraint c)
raises(InvalidGrammar, InvalidConstraint);

Deletes all of the records that match the specified constraint and returns the
number of records deleted.

from_time The time at which the first record to retrieve was logged.

how_many The number of records to retrieve. A negative value causes
the method to retireve records prior to the specified time.

i The Iterator object reference.

grammar The grammar used to specify the constraint. The telecom
logging service supports the EXTENDED_TCL grammar.

c The constraint string.

InvalidGrammar The telecom logging service does not support the speci-
fied grammar.

InvalidConstraintThe constraint does not conform to the specified gram-
mar.
1339

Parameters

Exceptions

Log::delete_records_by_id()

unsigned long delete_records_by_id(in RecordIdList ids);

Deletes the specified records and returns the number of deleted records.

Parameters

Log::write_records()

void write_records(in Anys records)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

Writes a series of records to a log. The you cannot specifiy any optional
attributes and cannot discover the records id.

Parameters

Exceptions

grammar The grammar used to specify the constraint. The telecom
logging service supports the EXTENDED_TCL grammar.

c The constraint string.

InvalidGrammar The telecom logging service does not support the speci-
fied grammar.

InvalidConstraintThe constraint does not conform to the specified gram-
mar.

ids A sequence of record ids specifying the records to delete.

records A sequence of any that contains the data for a group of
records.

LogFull The log is full and its full_action is set to halt.

LogOffDuty The log is not currently scheduled to accept new records.
 1340

DsLogAdmin Datatypes
Log::write_recordlist()

void write_recordlist(in RecordList list)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

Writes a series of records to the log. You can construct records that include an
optional attribute list and each record in the list will be updated to include the
time it was logged and its record id.

Parameters

Exceptions

Log::set_record_attribute()

void set_record_attribute(in RecordId id, in NVList attr_list)
raises(InvalidRecordId, InvalidAttribute);

Sets attributes for a single record which is specified by its record id.

Parameters

LogLocked The log�s administrative state is set to not accept new
records.

LogDisabled The log has encountered a processing error and is unable to
accept new records.

list A sequence of LogRecord that contains the data for a group
of records.

LogFull The log is full and its full_action is set to halt.

LogOffDuty The log is not currently scheduled to accept new records.

LogLocked The log�s administrative state is set to not accept new
records.

LogDisabled The log has encountered a processing error and is unable to
accept new records.

id The id of the record on which you wish to set attributes.

attr_list The list of attributes that you want to set on the record.
1341

Exceptions

Log::set_records_attribute()

unsigned long set_records_attribute(in string grammar,
 in Constraint c,
 in NVList attr_list)
raises(InvalidGrammar, InvalidConstraint, InvalidAttribute);

Sets attributes for all records that match the constraint. It returns the numbers
of records whose attributes were changed.

Parameters

Exceptions

Log::get_record_attribute()

NVList get_record_attribute(in RecordId id)
raises(InvalidRecordId);

Returns the list of attributes that are set on the specified record.

InvalidRecordId The record specified dose not exist.

InvalidAttributeOne of the attributes is illegal.

grammar The grammar used to specify the constraint. The telecom
logging service supports the EXTENDED_TCL grammar.

c The constraint string.

attr_list The list of attributes that you want to set on the record.

InvalidGrammar The telecom logging service does not support the speci-
fied grammar.

InvalidConstraintThe constraint does not conform to the specified gram-
mar.

InvalidAttribute One of the attributes is illegal.
 1342

DsLogAdmin Datatypes
Parameters

Exceptions

Log::copy()

Log copy(out LogId id);

Copies the log object and returns a reference to the new log object.

Parameters

Log::copy_with_id()

Log copy_with_id(in LogId id)
raises (LogIdAlreadyExists);

Copies the log and returns a reference to the newly created log. This method
allows you to specifiy the logs id.

Parameters

Exceptions

Log::flush()

void flush()
raises(UnsupportedQoS);

Cuases the log to flush its memory buffer to its associated permanent store.

id The id of the record whose attributes you want to retrieve.

InvalidRecordId The record specified does not exist.

id The id assigned to the newly created log.

id The new log�s id.

LogIdAlreadyExistsThe user assigned id is already in use.
1343

Exceptions

UnsupportedQoSThe log does not support QoSFlush.
 1344

DsLogAdmin Datatypes
DsLogAdmin::BasicLog Interface
The BasicLog interface extend the Log interface to support the loggging by
event-unaware CORBA objects. It defines only one method, destroy(),
which is used to destroy a BasicLog object.

interface BasicLog : Log
{
 void destroy();
};
1345

DsLogAdmin::LogMgr Interface
The LogMgr interface is inherited by all the log factory interfaces. It defines
three methods of discovering deployed log objects.

interface LogMgr
{
 LogList list_logs();
 Log find_log(in LogId id);
 LogIdList list_logs_by_id();
};

LogMgr::list_logs()

LogList list_logs();

Returns a list of object references, one for each log object associated with the
factroy.

LogMgr::find_log()

Log find_log(in LogId id);

Returns an object reference to the specified log. If the log does not exist, it
returns a nil reference.

LogMgr::list_logs_by_id()

LogIdList list_logs_by_id();

Returns a list containing the ids of all logs associated with the factory.
 1346

DsLogAdmin Datatypes
DsLogAdmin::BasicLogFactory
Interface

The BasicLogFactory interface provides the functionality to instantiate a
BasicLog object.

interface BasicLogFactory : LogMgr
{
 BasicLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 out LogId id)
 raises (InvalidLogFullAction);

 BasicLog create_with_id(in LogId id,
 in LogFullActionType full_action,
 in unsigned long long max_size)
 raises (LogIdAlreadyExists, InvalidLogFullAction);
};

BasicLogFactory::create()

BasicLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 out LogId id);
 raises (InvalidLogFullAction);

Returns an instantiated BasicLog object. The LogId returned is assigned by
the service and can be used to access the returned BasicLog object.

Parameters

full_action Specifies what the log object will do when it fills up.

max_size Specifies the maximum amount of data, in bytes, the log
can hold.

id The LogId assigned to the BasicLog object by the service.
1347

Exceptions

BasicLogFactory::create_with_id()

BasicLog create_with_id(in LogId id,
 in LogFullActionType full_action,
 in unsigned long long max_size)
 raises (LogIdAlreadyExists, InvalidLogFullAction);

Returns an instantiated BasicLog object with a user supplied id.

Parameters

Exceptions

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

id Specifies the LogId to assign the BasicLog.

full_action Specifies what the log object will do when it fills up.

max_size Specifies the maximum amount of data, in bytes, the log
can hold.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

LogIdAlreadyExists A log with the specified id already exists.
 1348

DsEventLogAdmin Module
The DsEventLogAdmin module defines the EventLog interface which provides
logging capabilities for event service clients. This module also defines the
EventLogFactory interface which is used to instantiate EventLog objects.
1349

DsEventLogAdmin::EventLog
Interface

The EventLog interface extends the functionality of the Log interface by also
inheriting from CosEventChannelAdmin::EventChannel. This inheritence
provides EventLog objects the ability to log events as they are passed through
an event channel. The EventLog interface does not define any operations.

interface EventLog : DsLogAdmin::Log,
 CosEventChannelAdmin::EventChannel
{
};
 1350

DsEventLogAdmin::EventLogFactory
Interface

The EventLogFactory interface defines two operations for instatiating
EventLog objects.

interface EventLogFactory : DsLogAdmin::LogMgr,
 CosEventChannelAdmin::ConsumerAdmin
{
 EventLog create(
 in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 out DsLogAdmin::LogId id)
 raises(DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold);

 EventLog create_with_id(
 in DsLogAdmin::LogId id,
 in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold);
};

EventLogFactory::create()

EventLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 out LogId id);
 raises (InvalidLogFullAction
 InvalidThreshold);

Returns an instantiated EventLog object. The LogId returned is assigned by
the service and can be used to access the returned EventLog object.
1351

Parameters

Exceptions

EventLogFactory::create_with_id()

EventLog create_with_id(in LogId id,
 in LogFullActionType full_action,
 in unsigned long long max_size)
 in DsLogAdmin::CapacityAlarmThresholdList thresholds)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold);

Returns an instantiated EventLog object with a user supplied id.

Parameters

full_action Specifies what the log object will do when it fills up.

max_size Specifies the maximum amount of data, in bytes, the log
can hold.

thresholds Specifies , as a percentage of max log size, the points at
which an ThresholdAlarm event will be generated.

id The LogId assigned to the EventLog object by the service.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

InvalidThreshold One of the thresholds specified is invalid.

id Specifies the LogId to assign the EventLog.

full_action Specifies what the log object will do when it fills up.

max_size Specifies the maximum amount of data, in bytes, the log
can hold.

thresholds Specifies , as a percentage of max log size, the points at
which an ThresholdAlarm event will be generated.
 1352

Exceptions

LogIdAlreadyExists A log with the specified id already exists.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

InvalidThreshold One of the thresholds specified is invalid.
1353

 1354

DsLogNotification Module
The DsLogNotification module defines the data types used to transmit log
generated events to logging clients.

module DsLogNotification
{
typedef DsLogAdmin::Log Log;
typedef DsLogAdmin::LogId LogId;
typedef DsLogAdmin::Threshold Threshold;
typedef TimeBase::TimeT TimeT;

typedef unsigned short PerceivedSeverityType;
const PerceivedSeverityType critical = 0;
const PerceivedSeverityType minor = 1;
const PerceivedSeverityType cleared = 2;
struct ThresholdAlarm
{
 Log logref;
 LogId id;
 TimeT time;
 Threshold crossed_value;
 Threshold observed_value;
 PerceivedSeverityType perceived_severity;
};

struct ObjectCreation
{
 LogId id;
 TimeT time;
};

struct ObjectDeletion
{
 LogId id;
 TimeT time;
};

typedef unsigned short AttributeType;
1355

const AttributeType capacityAlarmThreshold = 0;
const AttributeType logFullAction = 1;
const AttributeType maxLogSize = 2;
const AttributeType startTime = 3;
const AttributeType stopTime = 4;
const AttributeType weekMask = 5;
const AttributeType filter = 6;
const AttributeType maxRecordLife = 7;
const AttributeType qualityOfService = 8;
struct AttributeValueChange
{
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 any old_value;
 any new_value;
};

typedef unsigned short StateType;
const StateType administrativeState = 0;
const StateType operationalState = 1;
const StateType forwardingState = 2;
struct StateChange
{
 Log logref;
 LogId id;
 TimeT time;
 StateType type;
 any new_value;
};

struct ProcessingErrorAlarm
{
 long error_num;
 string error_string;
};

};
 1356

DsLogNotification::PerceivedSeverityType Type

typedef unsigned short PerceivedSeverityType;
const PerceivedSeverityType critical = 0;
const PerceivedSeverityType minor = 1;
const PerceivedSeverityType cleared = 2;

Defines the severity of a threshold alarm. A threshold alarm�s severity is
considered minor unless the log is full.

DsLogNotification::ThresholdAlarm Structure

struct ThresholdAlarm
{
 Log logref;
 LogId id;
 TimeT time;
 Threshold crossed_value;
 Threshold observed_value;
 PerceivedSeverityType perceived_severity;
};

The data type passed in a threshold alarm event.

Members

logref An object reference to the log object which caused the
event.

id The id of the log object which caused the event.

time The time the event was generated.

crossed_value The capacity threshold which was passed to trigger the
event.

observed_value The actual percentage of the log that is full.

perceived_severityThe severity of the alarm. If the severity is critical then
the log object is full.
1357

DsLogNotification::ObjectCreation Structure

struct ObjectCreation
{
 LogId id;
 TimeT time;
};

The data type passed in an object creation event.

Members

DsLogNotification::ObjectDeletion Structure

struct ObjectDeletion
{
 LogId id;
 TimeT time;
};

The data type passed in an object deletion event.

Members

DsLogNotification::AttributeType Type

typedef unsigned short AttributeType;
const AttributeType capacityAlarmThreshold = 0;
const AttributeType logFullAction = 1;
const AttributeType maxLogSize = 2;
const AttributeType startTime = 3;
const AttributeType stopTime = 4;
const AttributeType weekMask = 5;
const AttributeType filter = 6;

id The id of the newly created log object.

time The time the log object was generated.

id The id of the deleted log object.

time The time the log object was deleted.
 1358

const AttributeType maxRecordLife = 7;
const AttributeType qualityOfService = 8;

The data type and constants used to represent the type of attribute changed
in an attribute change event.

DsLogNotification::AttributeValueChange Structure

struct AttributeValueChange

{
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 any old_value;
 any new_value;
};

Members

DsLogNotification::StateType Type

typedef unsigned short StateType;
const StateType administrativeState = 0;
const StateType operationalState = 1;
const StateType forwardingState = 2;

The data type and constants used to represent which type of state was changed
in a state change event.

logref An object reference to the log object which caused the event.

id The id of the log object which caused the event.

time The time the event was generated.

type The attribute that was changed.

old_valueThe previous value of the attribute.

new_valueThe attribute�s new value.
1359

DsLogNotification::StateChange Structure

struct StateChange
{
 Log logref;
 LogId id;
 TimeT time;
 StateType type;
 any new_value;
};

The data type passed in a state change event.

Members

DsLogNotification::ProcessingErrorAlarm Structure

struct ProcessingErrorAlarm
{
 long error_num;
 string error_string;
};

The data type passed when a processing error event occurs.

Members

logref An object reference to the log object which caused the event.

id The id of the log object which caused the event.

time The time the event was generated.

type The type of state that was changed.

new_valueThe new state.

error_num The error number.

error_string A string explaining the error.
 1360

DsNotifyLogAdmin Module
The DsNotifyLogAdmin module extends the functionality of the interfaces
specified in the DsLogAdmin module to support notification style push and
pull communication and forwarding of structured and sequenced events. The
extended functionality also includes notification style event filtering and
subscription/publication functionality.
1361

DsNotifyLogAdmin::NotifyLog
Interface

The NotifyLog interface extends the functionality of the Log interface to
support notification style filters. It inherits from the EventChannel interface of
module CosNotifyChannelAdmin.

interface NotifyLog : DsEventLogAdmin::EventLog,
 CosNotifyChannelAdmin::EventChannel
{
 CosNotifyFilter::Filter get_filter();
 void set_filter(in CosNotifyFilter::Filter filter);
};

NotifyLog::get_filter()

CosNotifyFilter::Filter get_filter();

Returns a reference to the filter object associated with the log.

NotifyLog::set_filter()

void set_filter(in CosNotifyFilter::Filter filter);

Associates a filter with the log. The filter will determine which events will be
logged.

Parameters

filter The filter you want to set on the log.
 1362

DsNotifyLogAdmin::NotifyLogFactory
Interface

The NotifyLogFactory extends the functionality of the LogMgr interface to
support the creation of NotifyLog objects. It also inherits from the
CosNotifyChannelAdmin::ConsumerAdmin interface. This inheritance allows it
to forward events to the clients of its associated NotifyLog objects.

interface NotifyLogFactory : DsLogAdmin::LogMgr,
 CosNotifyChannelAdmin::ConsumerAdmin
{
 NotifyLog create(in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out DsLogAdmin::LogId id)
 raises(DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

 NotifyLog create_with_id(in DsLogAdmin::LogId id,
 in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);
};
1363

NotifyLog::create()

NotifyLog create(in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out DsLogAdmin::LogId id)
 raises(DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates a new NotifyLog object, assigns the new log a unique id, and returns
a reference to the newly instantiated log object.

Parameters

Exceptions

full_action The log�s behavior when it reaches its maximum size. Valid
values are wrap and halt.

max_size The maximum size of the log in bytes.

thresholds The thresholds when alarm events will be generated. Speci-
fied as a percentage of the log�s size.

initial_qos The initial notification style QoS properties to set on the log
object�s associated notification channel.

initial_admin The initial administrative properties to set on the log object�s
associated notification channel.

id Returns the log object�s factory assigned id.

InvalidLogFullActionThe value for the log�s full_action was not a valid
full_action.

InvalidThreshold One of the threshold alarm values was not within the
valid range

UnsupportedQoS One of the QoS properties is invalid or does not sup-
port the value you are trying to set for it.

UnsupportedAdmin One of the administrative properties is invalid or does
not support the value you are trying to set for it.
 1364

NotifyLog::create_with_id()

NotifyLog create_with_id(in DsLogAdmin::LogId id,
 in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates a new NotifyLog object using a user assigned id and returns a reference
to the newly instantiated log object.

Parameters

Exceptions

id The log object�s id.

full_action The log�s behavior when it reaches its maximum size. Valid
values are wrap and halt.

max_size The maximum size of the log in bytes.

thresholds The thresholds when alarm events will be generated. Speci-
fied as a percentage of the log�s size.

initial_qos The initial notification style QoS properties to set on the log
object�s associated notification channel.

initial_admin The initial administrative properties to set on the log object�s
associated notification channel.

LogIdAlreadyExists A log already exists with the specified id.

InvalidLogFullActionThe value for the log�s full_action was not a valid
full_action.

InvalidThreshold One of the threshold alarm values was not within the
valid range

UnsupportedQoS One of the QoS properties is invalid or does not sup-
port the value you are trying to set for it.
1365

UnsupportedAdmin One of the administrative properties is invalid or does
not support the value you are trying to set for it.
 1366

IT_NotifyLogAdmin Module
This module extends the OMG specified NotifyLog and NotifyLogFactory
interfaces to support event subscription and publication. Also provides
access to a default filter factory.

module IT_NotifyLogAdmin
{
 interface NotifyLog :DsNotifyLogAdmin::NotifyLog
 {
 CosNotification::EventTypeSeq obtain_offered_types();
 CosNotification::EventTypeSeq obtain_subscribed_types();
 };

 interface NotifyLogFactory :DsNotifyLogAdmin::NotifyLogFactory
 {
 readonly attribute CosNotifyFilter::FilterFactory

default_filter_factory;
 readonly attribute IT_LogAdmin::Manager manager;
 };
};
1367

IT_NotifyLogAdmin::NotifyLog
Interface

This interface provides IONA specific extensions to DsNotifyLogAdmin::
NotifyLog to support notification style event publication and subscription.

interface NotifyLog :DsNotifyLogAdmin::NotifyLog
 {
 CosNotification::EventTypeSeq obtain_offered_types();
 CosNotification::EventTypeSeq obtain_subscribed_types();
 };

NotifyLog::obtain_offered_types()

CosNotification::EventTypeSeq obtain_offered_types();

Allows event consumers to ascertain what events are being advertised by event
suppliers.

NotifyLog::obtain_subscribed_types()

CosNotification::EventTypeSeq obtain_subscribed_types();

Allows event suppliers to ascertain which events the event consumers in the
channel are interested in receiving.
 1368

IT_NotifyLogAdmin::NotifyLogFactory
Interface

Extends DsNotifyLogAdmin::NotifyLogFactory to include a link to the
notification channel�s default filter factory and a link to the telecom logging
service�s manager.

interface NotifyLogFactory :DsNotifyLogAdmin::NotifyLogFactory
 {
 readonly attribute CosNotifyFilter::FilterFactory

default_filter_factory;
 readonly attribute IT_LogAdmin::Manager manager;
 };

NotifyLogFactory::default_filter_factory Attribute

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

Provides a reference to the notification channel�s default filter factory, which
is used to create new filter objects for NotifyLog objects.

NotifyLogFactory::manager Attribute

readonly attribute IT_LogAdmin::Manager manager;

Provides a link to the telecom logging service�s manager.
1369

 1370

 Trader Service

CosTrading Module
Contains the major functional interfaces of a trading service.

CosTrading Data Types

CosTrading::Constraint Data Type

typedef Istring Constraint;

A query constraint expression. The constraint is used to filter offers during a
query, and must evaluate to a boolean expression.

The constraint language consists of the following elements:

� comparative functions: ==, !=, >, >=,
� boolean connectives: and, or, not
� property existence: exist
� property names
� numeric, boolean and string constants
� mathematical operators: +, -, *, /
� grouping operators: (,)

The following property value types can be manipulated using the constraint
language:

� boolean, short, unsigned short, long, unsigned long, float, double, char,
Ichar, string, Istring

� sequences of the above types

Only the exist operator can be used on properties of other types.

Notes The constraint language keywords are case-sensitive

Literal strings should be enclosed in single quotes

The boolean literals are TRUE and FALSE
1373

CosTrading::Istring Data Type

typedef string Istring;

When internationalized strings are widely supported, this definition will be
changed.

CosTrading::LinkName Data Type

typedef Istring LinkName;

The name of a unidirectional link from one trader to another. The only
restriction on the format of a link name is it cannot be an empty string.

CosTrading::LinkNameSeq Data Type

typedef sequence<LinkName> LinkNameSeq;

CosTrading::OfferId Data Type

typedef string OfferId;

An offer identifier is an opaque string whose format is determined entirely by
the trading service from which the offer identifier was obtained, and can only
be used with that trading service.

CosTrading::OfferIdSeq Data Type

typedef sequence<OfferId> OfferIdSeq;

CosTrading::OfferSeq Data Type

typedef sequence<Offer> OfferSeq;
 1374

CosTrading Data Types
CosTrading::PolicyName Data Type

typedef string PolicyName;

The name of a policy used to control the trader's behavior. The only
restriction on the format of a policy name is it cannot be an empty string.

CosTrading::PolicyNameSeq Data Type

typedef sequence<PolicyName> PolicyNameSeq;

CosTrading::PolicySeq Data Type

typedef sequence<Policy> PolicySeq;

CosTrading::PolicyValue Data Type

typedef any PolicyValue;

CosTrading::PropertyName Data Type

typedef Istring PropertyName;

Although not explicitly defined in the specification, a property name should
start with a letter, may contain digits and underscores, and should not
contain spaces.

CosTrading::PropertyNameSeq DataType

typedef sequence<PropertyName> PropertyNameSeq;

CosTrading::PropertySeq Data Type

typedef sequence<Property> PropertySeq;
1375

CosTrading::PropertyValue Data Type

typedef any PropertyValue;

A CORBA::Any containing the value of the property. Orbix Trader allows
arbitrarily complex user-defined types to be used as property values.

CosTrading::ServiceTypeName Data Type

typedef Istring ServiceTypeName;

A service type name can have one of two formats, both representing formats
that appear in the Interface Repository.

� Scoped Name - A scoped name has the form ::One::Two. Other
supported variations are Three::Four and Five.

� Interface Repository Identifier - An interface repository identifier has the
form IDL:[prefix/][module/]name:X.Y. For example, IDL:omg.org/
CosTrading/Lookup:1.0 is a valid interface repository identifier, and you
can use the same format for your service type names.

Note: Although a service type name can appear similar to names used in
the interface repository, the trading service never uses servicetype names to
look up information in the interface repository.

CosTrader::TraderName Data Type

typedef LinkNameSeq TraderName;

A TraderName represents a path from one trader to the desired trader by
following a sequence of links. The starting_trader importer policy, if
specified for a query operation, should contain a value of this type.

Cos:Trading::TypeRepository Data Type

typedef Object TypeRepository;
 1376

CosTrading Data Types
TypeRepository represents an object reference for a CosTradingRepos::
ServiceTypeRepository object. You will need to narrow this reference before
you can interact with the service type repository.

CosTrading::FollowOption Enum

enum FollowOption
{
 local_only,
 if_no_local,
 always
};

Determines the follow behavior for linked traders.

The member values are defined as follows:

CosTrading::Offer Struct

struct Offer
{
 Object reference;
 PropertySeq properties;
};

The description of a service offer. The data members contains the following
data:

local_only The trader will not follow a link.

if_no_local The trader will only follow a link if no offers
were found locally.

always The trader will always follow a link.

reference The object reference associated with this
offer. Depending on the configuration of the
server, this reference may be nil.

properties A sequence of properties associated with this
offer.
1377

CosTrading::Policy Struct

struct Policy
{
 PolicyName name;
 PolicyValue value;
};

CosTrading::Property Struct

struct Property
{
 PropertyName name;
 PropertyValue value;
};

A name-value pair associated with a service offer or proxy offer. If the
property name matches the name of a property in the offer's service type,
then the TypeCode of the value must match the property definition in the
service type.

Note: Orbix Trader allows properties to be associated with an offer even if
the property name does not match any property in the service type. These
properties can also be used in query constraint and preference expressions.

CosTrading Exceptions

CosTrading::DuplicatePolicyName

exception DuplicatePolicyName {PolicyName name};

More than one value was supplied for a policy. The policy name that caused
the exception is returned.
 1378

CosTrading Exceptions
CosTrading::DuplicatePropertyName

exception DuplicatePropertyName {PropertyName name};

The property name has already appeared once. The duplicated property
name is returned.

CosTrading::IllegalConstraint

exception IllegalConstraint{Constraint constr};

An error occurred while parsing the constraint expression. The invalid
constraint is passed back.

CosTrading::IllegalOfferId

exception IllegalOfferId {OfferId id};

The offer identifier is empty or malformed. The invalid id is returned.

CosTrading::IllegalPropertyName

exception IllegalPropertyName {PropertyName name};

The property name is empty or does not conform the format supported by the
trader. The property name that caused the exception is returned.

CosTrading::IllegalServiceType

exception IllegalServiceType {ServiceTypeName type};

A service type name does not conform to the formats supported by the trader.
The name that caused the exception is returned.

CosTrading::InvalidLookupRef

exception InvalidLookupRef {Lookup target};
1379

The Lookup object reference cannot be nil.

CosTrading::MissingMandatoryProperty

exception MissingMandatoryProperty
{
 ServiceTypeName type;
 PropertyName name;
};

No value was supplied for a property defined as mandatory by the service
type.

CosTrading::NotImplemented

exception NotImplemented {};

The requested operation is not supported by this trading service.

CosTrading::PropertyTypeMismatch

exception PropertyTypeMismatch
{
 ServiceTypeName type;
 Property prop;
};

The property value type conflicts with the property's definition in the service
type.

CosTrading::ReadonlyDynamicProperty

exception ReadonlyDynamicProperty
{
 ServiceTypeName type;
 PropertyName name;
};
 1380

CosTrading Exceptions
A property that is defined as read-only by the service type cannot have a
dynamic value.

CosTrading::UnknownMaxLeft

exception UnknownMaxLeft {};

The iterator does not know how many items are left.

CosTrading::UnknownOfferId

exception UnknownOfferId {OfferId id};

The trader does not contain an offer with the given identifier. The unresolved
ID is returned.

CosTrading::UnknownServiceType

exception UnknownServiceType {ServiceTypeName type};

The service type repository used by the trader does not have the requested
service type. The unresolved name is returned.
1381

 1382

CosTrading::Admin Interface
// IDL in CosTrading
interface Admin :
 TraderComponents, SupportAttributes,
 ImportAttributes, LinkAttributes
{
 typedef sequence OctetSeq;

 readonly attribute OctetSeq request_id_stem;

 unsigned long set_def_search_card (in unsigned long value);

 unsigned long set_max_search_card (in unsigned long value);

 unsigned long set_def_match_card (in unsigned long value);

 unsigned long set_max_match_card (in unsigned long value);

 unsigned long set_def_return_card (in unsigned long value);

 unsigned long set_max_return_card (in unsigned long value);

 unsigned long set_max_list (in unsigned long value);

 boolean set_supports_modifiable_properties (in boolean value);

 boolean set_supports_dynamic_properties (in boolean value);

 boolean set_supports_proxy_offers (in boolean value);

 unsigned long set_def_hop_count (in unsigned long value);

 unsigned long set_max_hop_count (in unsigned long value);

 FollowOption set_def_follow_policy (in FollowOption policy);

 FollowOption set_max_follow_policy (in FollowOption policy);
1383

 FollowOption set_max_link_follow_policy (
 in FollowOption policy);

 TypeRepository set_type_repos (in TypeRepository repository);

 OctetSeq set_request_id_stem (in OctetSeq stem);

 void list_offers(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
 raises (NotImplemented);

 void list_proxies(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
 raises (NotImplemented);
};

Interface Admin provides attributes and operations for administrative control
of the trading service.

Admin::request_id_stem Attribute

readonly attribute OctetSeq request_id_stem;

The request identifier �stem� is a sequence of octets that comprise the prefix
for a request identifier. The trader will append additional octets to ensure the
uniqueness of each request identifier it generates.

Admin::list_offers()

void list_offers(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
raises(NotImplemented);

Obtains the identifiers for the service offers in this trader.
 1384

Parameters

Admin::list_proxies()

void list_proxies(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
raises(NotImplemented);

Obtains the identifiers for the proxy offers in this trader.

Parameters

Admin::set_def_follow_policy()

FollowOption set_def_follow_policy(in FollowOption policy);

how_namy Indicates how many identifiers to return in ids.

ids Contains at most how_many identifiers. If the number of identi-
fiers exceeds how_many, the id_itr parameter will hold a ref-
erence to an iterator object through which the remaining
identifiers can be obtained.

id_itr Will hold nil if no identifiers were found or if all of the identifi-
ers were returned in ids. Otherwise, holds a reference to an
iterator object through which the remaining identifiers can be
obtained.

how_many Indicates how many identifiers to return in ids.

ids Contains at most how_many identifiers. If the number of identi-
fiers exceeds how_many, the id_itr parameter will hold a ref-
erence to an iterator object through which the remaining
identifiers can be obtained.

id_itr Will hold nil if no identifiers were found or if all of the identifi-
ers were returned in ids. Otherwise, holds a reference to an
iterator object through which the remaining identifiers can be
obtained.
1385

Changes the value of the default link follow attribute and returns the previous
value.

Parameters

Admin::set_def_hop_count()

unsigned long set_def_hop_count(in unsigned long value);

Changes the value of the default hop count attribute and returns the previous
value.

Parameters

Admin::set_def_match_card()

unsigned long set_def_match_card(in unsigned long value);

Changes the value of the default match cardinality attribute and returns the
previous value.

Parameters

Admin::set_def_return_card()

unsigned long set_def_return_card(in unsigned long value);

Changes the value of the default return cardinality attribute and returns the
previous value.

Parameters

policy The new value

value The new value

value The new value

value The new value
 1386

Admin::set_def_search_card()

unsigned long set_def_search_card(in unsigned long value);

Changes the value of the default search cardinality attribute and returns the
previous value.

Parameters

See Also CosTrading::ImportAttributes

Admin::set_max_follow_policy()

FollowOption set_max_follow_policy(in FollowOption policy);

Changes the value of the maximum link follow attribute and returns the
previous value.

Parameters

Admin::set_max_hop_count()

unsigned long set_max_hop_count(in unsigned long value);

Changes the value of the maximum hop count attribute and returns the
previous value.

Parameters

Admin::set_max_link_follow_policy()

FollowOption set_max_link_follow_policy(in FollowOption policy);

Changes the value of the maximum link follow policy and returns the
previous value.

value The new value

policy The new value

value The new value
1387

Parameters

Admin::set_max_list()

unsigned long set_max_list(in unsigned long value);

Changes the value of the maximum list attributes and returns the previous
value.

Parameters

Admin::set_max_match_card()

unsigned long set_max_match_card(in unsigned long value);

Changes the value of the maximum match cardinality attribute and returns
the previous value.

Parameters

Admin::set_max_return_card()

unsigned long set_max_return_card(in unsigned long value);

Changes the value of the maximum return cardinality attribute and returns
the previous value.

Parameters

policy The new value

value The new value

value The new value

value The new value
 1388

Admin::set_max_search_card()

unsigned long set_max_search_card(in unsigned long value);

Changes the value of the maximum search cardinality attribute and returns
the previous value.

Parameters

Admin::set_request_id_stem()

OctetSeq set_request_id_stem(in OctetSeq stem);

Changes the value of the request identifier stem and returns the previous
value.

Parameters

Admin::set_supports_dynamic_properties()

boolean set_supports_dynamic_properties(in boolean value);

Establishes whether the trader considers offers with dynamic properties
during a query and returns the previous setting.

Parameters

Admin::set_supports_modifiable_properties()

boolean set_supports_modifiable_properties(in boolean value);

Establishes whether the trader supports property modification and returns the
previous setting.

value The new value

stem The new value

value The new value
1389

Parameters

Admin::set_supports_proxy_offers()

boolean set_supports_proxy_offers(in boolean value);

Establishes whether the trader supports proxy offers and returns the previous
setting.

Parameters

Admin:set_type_repos()

TypeRepository set_type_repos(in TypeRepository repository);

Establishes the service type repository to be used by the trader and returns a
reference to the previous type repository.

Parameters

value � TRUE activates property modification support.
� FALSE deactives property modification support.

value � TRUE turns on proxy support.
� FALSE turns off proxy support.

repository A reference to a type repository.
 1390

CosTrading::SupportAttributes
Interface

interface SupportAttributes

The read-only attributes in this interface determine what additional
functionality a trader supports, and also provide access to the service type
repository used by the trader.

SupportAttributes::supports_dynamic_properties Attribute

readonly attribute boolean supports_dynamic_properties;

If FALSE, offers with dynamic properties will not be considered during a
query.

SupportAttributes::supports_modifiable_properties Attribute

readonly attribute boolean supports_modifiable_properties;

If FALSE, the modify operation of the Register interface will raise
NotImplemented.

SupportAttributes::supports_proxy_offers Attribute

readonly attribute boolean supports_proxy_offers;

If FALSE, the proxy_if attribute of the TraderComponents interface will return
nil, and proxy offers will not be considered during a query.

SupportAttributes::type_repos Attribute

readonly attribute TypeRepository type_repos;
1391

Returns the object reference of the service type repository used by the trader.
 1392

CosTrading::Register Interface
interface Register
inherits from CosTrading::TraderComponents, CosTrading::

SupportAttributes

Provides operations for managing service offers.

Register::OfferInfo Structure

struct OfferInfo
{
 Object reference;
 ServiceTypeName type;
 PropertySeq properties;
};

A complete description of a service offer.

Register::IllegalTraderName Exception

exception IllegalTraderName
{
 TraderName name;
};

The trader name was empty, or a component of the name was not a valid
link name.

reference The object reference associated with this
offer. Depending on the configuration of the
server, this reference may be nil.

type The service type for which this offer was
exported

properties A sequence of properties associated with this
offer.
1393

Register::InterfaceTypeMismatch Exception

exception InterfaceTypeMismatch
{
 ServiceTypeName type;
 Object reference;
};

If the trader is configured to use the interface repository, then it will attempt
to confirm that the interface of the object reference conforms to the interface
of the service type. If the trader is able to determine that there is a mismatch,
this exception is thrown.

Register::InvalidObjectRef Exception

exception InvalidObjectRef
{
 Object ref;
};

The object reference is nil, and the trader is is configured to reject offers
with nil references.

Register::MandatoryProperty Exception

exception MandatoryProperty
{
 ServiceTypeName type;
 PropertyName name;
};

A mandatory property cannot be removed.

Register::NoMatchingOffers Exception

exception NoMatchingOffers
{
 Constraint constr;
};
 1394

No matching offers were found matching the constraint expression.

Register::ProxyOfferId Exception

exception ProxyOfferId
{
 OfferId id;
};

The offer identifier actually refers to a proxy offer.

Register::ReadonlyProperty Exception

exception ReadonlyProperty
{
 ServiceTypeName type;
 PropertyName name;
};

A read-only property cannot be modified.

Register::RegisterNotSupported Exception

exception RegisterNotSupported
{
 TraderName name;
};

The resolve operation is not supported by this trader.

Register::UnknownPropertyName Exception

exception UnknownPropertyName
{
 PropertyName name;
};

A property was identified for removal that does not exist in the offer.
1395

Register::UnknownTraderName Exception

exception UnknownTraderName
{
 TraderName name;
};

The trader name could not be correctly resolved to a trader.

Register::describe()

OfferInfo describe(in OfferId id)
 raises(IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId);

Obtains the description of a service offer and and returns it in an OfferInfo
structure.

Parameters

Exceptions

Register::export()

OfferId export(in Object reference,
 in ServiceTypeName type,
 in PropertySeq properties)
 raises(InvalidObjectRef,
 IllegalServiceType,
 UnknownServiceType,
 InterfaceTypeMismatch,
 IllegalPropertyName,

id Identifier of the offer of interest

IllegalOfferIdOffer identifier is empty or has an invalid format

UnknownOfferIdNo offer was found with the given identifier

ProxyOfferId Offer identifier refers to a proxy offer. Proxy offers must be
described using the Proxy interface.
 1396

 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 DuplicatePropertyName);

Creates a new service offer and returns an identifer object for the new service.
A client wishing to advertise a new offer is called an exporter.

Parameters

Exceptions

reference Reference to an object that enables a client to interact with a
remote server.

type Identifies the service type for which this offer is advertised.

properties List of named values that describe the service being offered.

InvalidObjectRef Object reference is nil and the trader has been
configured to reject nil references

IllegalServiceType Service type name is empty or has an invalid for-
mat

UnknownServiceType Service type was not found in service type repos-
itory

InterfaceTypeMismatch Trader was able to determine that the interface
of the object reference does not conform to the
the interface of the service type

IllegalPropertyName Property name is empty or has an invalid format

PropertyTypeMismatch Property value type does not match the property
definition of the service type

ReadonlyDynamicProperty Read-only properties cannot have dynamic val-
ues

MissingMandatoryPropertyNo value was supplied for a mandatory property

DuplicatePropertyName Property name appeared more than once in list
of properties
1397

Register::modify()

void modify(in OfferId id,
 in PropertyNameSeq del_list,
 in PropertySeq modify_list)
 raises(NotImplemented,
 IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId,
 IllegalPropertyName,
 UnknownPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MandatoryProperty,
 ReadonlyProperty,
 DuplicatePropertyName);

Modifies an existing service offer to add new properties, and change or delete
existing properties.

Parameters

Exceptions

id Identifier of the offer to be modified

del_list Names of properties to be removed

modify_list Properties to be added or modified

NotImplemented Trader does not support modification of proper-
ties

IllegalOfferId Offer identifier is empty or has an invalid format

UnknownOfferId No offer was found with the given identifier

ProxyOfferId Offer identifier refers to a proxy offer. Proxy offers
must be described using the Proxy interface.

IllegalPropertyName Property name is empty or has an invalid format

UnknownPropertyName Property to be removed does not exist in offer

PropertyTypeMismatch Property value type does not match the property
definition of the service type

ReadonlyDynamicPropertyRead-only properties cannot have dynamic values
 1398

Register::resolve()

Register resolve(in TraderName name)
 raises(IllegalTraderName,
 UnknownTraderName,
 RegisterNotSupported);

Resolves a context-relative name for another trader and returns a Register
object for the resolved trader.

Parameters

Exceptions

Register::withdraw()

void withdraw(in OfferId id)
 raises(IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId);

Removes a service offer.

Parameters

MandatoryProperty Mandatory properties cannot be removed

ReadonlyProperty Read-only properties cannot be modified

DuplicatePropertyName Property name appeared more than once in list of
properties

name Identifies the trader to be resolved

IllegalTraderName Trader name was empty, or a component of the name
was not a valid link name

UnknownTraderName Trader name could not be correctly resolved to a
trader

RegisterNotSupportedTrader does not support this operation

id Identifier of the offer to be withdrawn
1399

Exceptions

Register::withdraw_using_constraint()

void withdraw_using_constraint(in ServiceTypeName type,
 in Constraint constr)
 raises(IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 NoMatchingOffers);

Withdraws all offers for a particular service type that match a constraint
expression. Only offers that exactly match the given service type are
considered. Proxy offers are not considered, and links are not followed.

Parameters

Exceptions

IllegalOfferIdOffer identifier is empty or has an invalid format

UnknownOfferIdNo offer was found with the given identifier

ProxyOfferId Offer identifier refers to a proxy offer. Proxy offers must be
removed using the Proxy interface.

type Identifies the service type for which offers are to be
removed.

constr Limits the search to only those offers for which this expres-
sion is true. The simplest constraint expression is TRUE,
which matches any offer and is an efficient way to withdraw
all offers for a service type.

IllegalServiceTypeService type name is empty or has an invalid format

UnknownServiceTypeService type was not found in service type repository

IllegalConstraint An error occurred while parsing the constraint expres-
sion

NoMatchingOffers No matching offers were found
 1400

CosTrading::Proxy Interface
interface Proxy :
 TraderComponents,
 SupportAttributes
{
 typedef Istring ConstraintRecipe;

 struct ProxyInfo
 {
 ServiceTypeName type;
 Lookup target;
 PropertySeq properties;
 boolean if_match_all;
 ConstraintRecipe recipe;
 PolicySeq policies_to_pass_on;
};

 exception IllegalRecipe {ConstraintRecipe recipe};
 exception NotProxyOfferId {OfferId id};

 OfferId export_proxy(in Lookup target, in ServiceTypeName type,
 in PropertySeq properties,
 in boolean if_match_all,
 in ConstraintRecipe recipe,
 in PolicySeq policies_to_pass_on)
 raises (IllegalServiceType, UnknownServiceType,
 InvalidLookupRef, IllegalPropertyName,
 PropertyTypeMismatch, ReadonlyDynamicProperty,
 MissingMandatoryProperty, IllegalRecipe,
 DuplicatePropertyName, DuplicatePolicyName);

 void withdraw_proxy(in OfferId id)
 raises (IllegalOfferId, UnknownOfferId, NotProxyOfferId);

 ProxyInfo describe_proxy(in OfferId id)
 raises (IllegalOfferId, UnknownOfferId, NotProxyOfferId);
};
1401

Provides datatypes, exceptions and methods for managing proxy offers.

Proxy::ConstraintRecipe Data Type

typedef Istring ConstraintRecipe;

A constraint recipe specifies how the trader should rewrite a constraint before
invoking the query operation of the proxy offer's Lookup interface. Using a
constraint recipe, the exporter can have the trader rewrite a constraint into a
completely different constraint language (one that is understood by the proxy
offer's Lookup target).

The constraint recipe can include the value of properties using the expression
"$(property-name)". The recipe can also include the entire text of the original
constraint using the special syntax "$*".

For example, assume the property name has the value "Joe", and the
property age has the value 33. The constraint recipe "Name == $(name)
and Age" would be rewritten as "Name == 'Joe' and Age".

Proxy::ProxyInfo Data Structure

struct ProxyInfo
{
 ServiceTypeName type;
 Lookup target;
 PropertySeq properties;
 boolean if_match_all;
 ConstraintRecipe recipe;
 PolicySeq policies_to_pass_on;
};

A complete description of a proxy offer which contains the following
members:

type The service type for which tis offer was exported.

target The target Lookup object.

properties A sequence of properties associated with this offer.
 1402

Proxy::IllegalRecipe Exception

exception IllegalRecipe{ConstraintRecipe recipe};

An error occurred while parsing the recipe.

Proxy::NotProxyOfferId Exception

exception NotProxyOfferId{OfferId id};

The offer identifier does not refer to a proxy offer.

Proxy::describe_proxy()

ProxyInfo describe_proxy(in OfferId id)
raises(IllegalOfferId,
 UnknownOfferId,
 NotProxyOfferId);

Obtains the description of a proxy offer.

Parameters

Exceptions

if_match_all If TRUE, type conformance is all that is necessary for
this offer to match. If FALSE, the offer must also match
the constraint expression.

recipe The recipe for rewriting the constraint

policies_to_pass_onPolicies to be appended to the importer�s policies and
passed along to the target.

id Identifier of the proxy offer of interest

IllegalOfferId Offer Identifier is empty or has an invalid format.

UnknownOfferId No offer was found with the given identifier

NotProxyOfferIdOffer identifier does not refer to a proxy offer
1403

Proxy::export_proxy()

OfferId export_proxy(in Lookup target,
 in ServiceTypeName type,
 in PropertySeq properties,
 in boolean if_match_all,
 in ConstraintRecipe recipe,
 in PolicySeq policies_to_pass_on)
raises(IllegalServiceType,
 UnknownServiceType,
 InvalidLookupRef,
 IllegalPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 IllegalRecipe,
 DuplicatePropertyName,
 DuplicatePolicyName);

Creates a new proxy offer.

Parameters

Exceptions

target The target Lookup interface

type The service type for which this offer was exported

properties A sequence of properties associated with this offer.

if_match_all If TRUE, type conformance is all that is necessary for
this offer to match. If FALSE, the offer must also match
the constraint expression.

recipe The recipe for rewriting the constraint.

policies_to_pass_onPolicies to be appended to teh importer�s policies and
passed along to the target.

IllegalServiceType Service type name is empty or has invalid for-
mat.

UnknownServiceType Service type was not found in the service type
repository.

InvalidLookupRef Target object reference is nil.
 1404

Proxy::withdraw_proxy()

void withdraw_proxy(in OfferId id)
 raises(IllegalOfferId,
 UnknownOfferId,
 NotProxyOfferId);

Removes a proxy offer.

Parameters

Exceptions

IllegalPropertyName Property name is empty or has an invalid format.

PropertyTypeMismatch Property value type does not match the property
definition of the service type.

ReadonlyDynamicProperty Read-only properties cannot have dynamic val-
ues.

MissingMandatoryPropertyNo value was given for a mandatory property.

IllegalRecipe An error occurred while parsing the constraint
recipe.

DuplicatePropertyname A property name appeared more than once in the
list of properties.

DuplicatePolicyName A policy name appeared more than once in the
list of policies to pass on.

id Identifier of the proxy offer to be withdrawn

IllegalOfferId Offer identifier is empty or has an invalid format

UnknownOfferId No offer was found with the given identifier.

NotProxyOfferIdOffer identifier does not refer to a proxy offer
1405

 1406

CosTrading::OfferIterator Interface
interface OfferIterator
{
 unsigned long max_left()
 raises (UnknownMaxLeft);

 boolean next_n(in unsigned long n, out OfferSeq offers);

 void destroy();
};

Specifies methods to iterate through a list of offers.

OfferIterator::destroy()

void destroy();

Destroys the iterator object.

OfferInterator::max_left()

unsigned long max_left()
raises(UnknownMaxLeft);

Returns the number of offers remaining in the iterator.

Exceptions

OfferIterator::next_n()

boolean next_n(in unsigned long n,
 out OfferSeq offers);

UnknownMaxLeftcannot determine the number of remaining offers
1407

Returns TRUE if offers contains more offer identifiers, and returns FALSE if
offers is nil.

Parameters

n Number of offers to return

ids List of offers containing at most n elements
 1408

CosTrading::OfferIdIterator Interface
interface OfferIdIterator
{
 unsigned long max_left()
 raises (UnknownMaxLeft);

 boolean next_n(in unsigned long n, out OfferIdSeq ids);

 void destroy();
};

Specifies methods to iterate through a list of offer identifiers.

OfferIdInterator::destroy()

void destroy();

Destroys the iterator object.

OfferIdIterator::max_left()

unsigned long max_left()
raises(UnknownMaxLeft);

Returns the number of offer identifiers remaining in the iterator.

Exceptions

OfferIdIterator::next_n()

boolean next_n(in unsigned long n,
 out OfferIdSeq ids);

UnknownMaxLeftCannot determine the number of remaining offer identifiers
1409

Returns TRUE if ids contains more offer identifiers, and returns FALSE if ids is
nil.

Parameters

n Number of offer identifiers to return

ids List of offer identifiers containing at most n elements
 1410

CosTrading::Lookup Interface
interface Lookup :
 TraderComponents, SupportAttributes, ImportAttributes
{
 typedef Istring Preference;

 enum HowManyProps
 {
 none,
 some,
 all
 };

 union SpecifiedProps switch (HowManyProps)
 {
 case some: PropertyNameSeq prop_names;
 };

 exception IllegalPreference {Preference pref};
 exception IllegalPolicyName {PolicyName name};
 exception PolicyTypeMismatch {Policy the_policy};
 exception InvalidPolicyValue {Policy the_policy};

 void query(in ServiceTypeName type,
 in Constraint constr,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_itr,
 out PolicyNameSeq limits_applied)
 raises (IllegalServiceType, UnknownServiceType,
 IllegalConstraint, IllegalPreference,
 IllegalPolicyName, PolicyTypeMismatch,
 InvalidPolicyValue, IllegalPropertyName,
 DuplicatePropertyName, DuplicatePolicyName);
};
1411

Provides a single operation, query, for use by importers.

Lookup::Preference DataType

typedef Istring Preference;

A query preference expression. The preference is used to order the offers
found by a query. The valid forms of a preference expression are:

min numeric-expression orders the offers in ascending order based on the
numeric expression. Offers for which the expression cannot be evaluated (for
example, if the offer does not contain a property that is used in the
expression) are placed at the end of the sequence.

max numeric-expression orders the offers in descending order based on the
numeric expression. Offers for which the expression cannot be evaluated (for
example, if the offer does not contain a property that is used in the
expression) are placed at the end of the sequence.

with boolean-expression orders the offers such that those for which the
boolean expression are TRUE are included before any of those for which the
expression is false, which are placed before any of those that cannot be
evaluated.

random orders the offers in random order.

first orders the offers as they are encountered by the server.

If an empty preference expression is supplied, it is equivalent to a preference
of first.

Lookup::HowManyProps Enum

enum HowManyProps
{
 none,
 some,
 all
 1412

};

The choices for indicating how many properties are returned with each offer.
The members are defined as follows:

Lookup::SpecifiedProps Union

union SpecifiedProps switch(HowManyProps)
{
case some: PropertyNameSeq prop_names;
};

Determines which properties are to be returned for each matching offer found
by the query operation. The union's discriminator can meaningfully be set to
the other enumerated values none and all. If set to none, you are indicating
that no properties should be returned. If set to all, then all properties will be
returned. Set the value for some with a sequence of property names indicating
which properties should be returned

Lookup::IllegalPolicyName Exception

exception IllegalPolicyName {PolicyName name};

The policy name is empty or does not conform the format supported by the
trader. The invalid name is returned.

Lookup::IllegalPreference Exception

exception IllegalPreference {Preference pref};

An error occurred while parsing the preference expression. The invalid
preference is returned.

none No properties should be returned.

some Some properties should be returned.

all All properties should be returned.
1413

Lookup::InvalidPolicyValue Exception

exception InvalidPolicyValue {Policy the_policy};

The policy has an invalid value.

Lookup::PolicyTypeMismatch Exception

exception PolicyTypeMismatch {Policy the_policy};

The policy value type specified does not match the type expected by the
trader. The type expected by the trader is returned.

Lookup::query()

void query(in ServiceTypeName type,
 in Constraint constr,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_itr,
 out PolicyNameSeq limits_applied)
raises(IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 IllegalPreference,
 IllegalPolicyName,
 PolicyTypeMismatch,
 InvalidPolicyValue,
 IllegalPropertyName,
 DuplicatePropertyName,
 DuplicatePolicyName);

Allows an importer to obtain references to objects that provide services
meeting its requirements.

The importer can control the behavior of the search by supplying values for
certain policies. The trader may override some or all of the values supplied by
the importer. The following policies are known by the trader:
 1414

exact_type_match (boolean) if TRUE, only offers of exactly the service type
specified by the importer are considered; if FALSE, offers of any service type
that conforms to the importer's service type are considered

hop_count (unsigned long) indicates maximum number of hops across
federation links that should be tolerated in the resolution of this query

link_follow_rule (FollowOption) indicates how the client wishes links to be
followed in the resolution of this query

match_card (unsigned long) indicates the maximum number of matching
offers to which the preference specification should be applied

return_card (unsigned long) indicates the maximum number of matching
offers to return as a result of this query

search_card (unsigned long) indicates the maximum number of offers to be
considered when looking for type conformance and constraint expression
match

starting_trader (TraderName) specifies the remote trader at which the query
starts

use_dynamic_properties (boolean) specifies whether to consider offers with
dynamic properties

use_modifiable_properties (boolean) specifies whether to consider offers
with modifiable properties

use_proxy_offers (boolean) specifies whether to consider proxy offers
1415

Parameters

Exceptions

type Specifies the service type that interests the importer. The
service type limits the scope of the search to only those
offers exported for this type, and optionally any subtype of
this type.

constr Limits the search to only those offers for which this expre-
sion is TRUE. The simplest constraint expression is "TRUE",
which matches any offer.

pref Specifies how the matched offers are t be ordered.

policies Specifies the policies that govern the behavior of the query.

desired_props Determines the properties that are to be included with each
offer returned by the query. This parameter does not affect
whether or not a service offer is returned. To exclude an offer
that does not contain a desired property, include "exist
property-name" in the constraint.

how_many Indicates how many offers are to be returned in the offers
parameter.

offers Holds at most how_many offers. If the number of matching
offers exceeds how_many, the offer_itr parameter will hold
a reference to an iterator object through which the remaining
offers can be obtained.

offer_itr Will hold nil if no matching offers were found or if all of the
matching offers were returned in offers; otherwise, holds a
reference to an iterator. The object's destroy operation
should be invoked when the object is no longer needed.

limits_appliedHolds the names of any policies that were overridden by the
trader's maximum allowable settings.

IllegalServiceType Service type name is empty or has an invalid format

UnknownServiceType Service type was not found in service type repository

IllegalConstraint An error occurred while parsing the constraint
expression
 1416

IllegalPreference An error occurred while parsing the preference
expression

IllegalPolicyName A policy name is empty or has an invalid format

PolicyTypeMismatch A policy value type did not match the type expected
by the trader

InvalidPolicyValue A policy has an invalid value

IllegalPropertyName A property name is empty or has an invalid format

DuplicatePropertyNameA property name appeared more than once in the
list of desired properties

DuplicatePolicyName A policy name appeared more than once in the list
of policies
1417

 1418

CosTrading::LinkAttributes Interface

LinkAttributes::max_link_follow_policy Attribute

readonly attribute FollowOption max_link_follow_policy;

Determines the most permissive behavior that will be allowed for any link.
1419

 1420

CosTrading::Link Interface
interface Link :
 TraderComponents, SupportAttributes, LinkAttributes
{
 struct LinkInfo
 {
 Lookup target;
 Register target_reg;
 FollowOption def_pass_on_follow_rule;
 FollowOption limiting_follow_rule;
 };

 exception IllegalLinkName { LinkName name; };
 exception UnknownLinkName { LinkName name; };
 exception DuplicateLinkName { LinkName name; };

 exception DefaultFollowTooPermissive {
 FollowOption default_follow_rule;
 FollowOption limiting_follow_rule; };
 exception LimitingFollowTooPermissive {
 FollowOption limiting_follow_rule;
 FollowOption max_link_follow_policy; };

 void add_link(in LinkName name, in Lookup target,
 in FollowOption default_follow_rule,
 in FollowOption limiting_follow_rule)
 raises (IllegalLinkName, DuplicateLinkName, InvalidLookupRef,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);

 void remove_link(in LinkName name)
 raises (IllegalLinkName, UnknownLinkName);

 LinkInfo describe_link(in LinkName name)
 raises (IllegalLinkName, UnknownLinkName);

 LinkNameSeq list_links();
1421

 void modify_link(in LinkName name,
 in FollowOption default_follow_rule,
 in FollowOption limiting_follow_rule)
 raises (IllegalLinkName, UnknownLinkName,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);
};

Provides structures, exceptions, and operations for managing links between
traders.

Link::LinkInfo Data Structure

struct LinkInfo
{
 Lookup target;
 Register target_reg;
 FollowOption def_pass_on_follow_rule;
 FollowOption limiting_follow_rule;
};

A complete description of a link. The members hold the following
information:

CosTrading::Link Exceptions

Link::DefaultFollowTooPermissive Exception

exception DefaultFollowTooPermissive
{

target Lookup interface if link target

target_reg Register interface of link

def_pass_on_follow_ruleDefault link behavior for the link if no link-follow
policy is specified by an importer durring a query

limiting_follow_rule Most permisive link-follow behavior that the link is
willing to tolerate
 1422

CosTrading::Link Exceptions
 FollowOption def_pass_on_follow_rule;
 FollowOption limiting_follow_rule;
};

Raised when the value for def_pass_on_follow_rule exceeds the value for
limiting_follow_rule. Both values are passed back to the caller.

Link::DuplicateLinkName Exception

exception DuplicateLinkName {LinkName name};

Raised when a link already exists with the given name. The duplicated link
name is passed back to the caller.

Link::IllegalLinkName Exception

exception IllegalLinkName {LinkName name};

Raised when the link name is empty or does not conform the format
supported by the trader. The invalid link name is passed back to the caller.

Link::LimitingFollowTooPermissive Exception

exception LimitingFollowTooPermissive
{
 FollowOption limiting_follow_rule;
 FollowOption max_link_follow_policy;
};

The value for limiting_follow_rule exceeds the trader's
max_link_follow_policy attribute.

Link::UnknownLinkName Exception

exception UnknownLinkName {LinkName name};

Raised when trader does not have a link with the given name. The invalid
name is returned.
1423

Link::add_link()

void add_link(in LinkName name, in Lookup target,
 in FollowOption def_pass_on_follow_rule,
 in FollowOption limiting_follow_rule)
raises(IllegalLinkName,
 DuplicateLinkName,
 InvalidLookupRef,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);

Adds a new, unidirectional link from this trader to another trader.

Parameters

Exceptions

name Specifies the name of the new link.

target Holds a reference to the Lookup interface of the
target trader

def_pass_on_follow_ruleSpecifies the default link behavior for the link if
not link-follow policy is specified by an importer
durring a query.

limiting_follow_rule Specifies the most permisive link-follow behavior
the the link is willing to follow.

IllegalLinkName Link name is empty of has an invalid for-
mat.

DuplicateLinkName Another link exists with the same name.

InvalidLookupRef Targer object reference in nil.

DefaultFollowTooPermisive The value for def_pass_on_follow_rule
exceeds the value for
limiting_follow_rule.

LimitingFollowTooPermissive The value for limiting_follow_rule
exceeds the trader�s
max_link_follow_policy.
 1424

CosTrading::Link Exceptions
Link::describe_link()

LinkInfo describe_link(in LinkName name)
raises(IllegalLinkName, UnknownLinkName);

Obtains a description of a link and returns it in a LinkInfo object.

Parameters

Exceptions

Link::list_links()

LinkNameSeq list_links();

Reurns the names of all trading links within the trader.

Link::modify_link()

void modify_link(in LinkName name,
 in FollowOption def_pass_on_follow_rule,
 in FollowOption limiting_follow_rule)
raises(IllegalLinkName,
 UnknownLinkName,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);

Modifies the follow behavior of an existing link.

Parameters

name Name of the link of interest

IllegalLinkName The link name is empty or has an invalid format.

UnknownLinkName No link with the specified name exists.

name Specifies the name of the link to be modified.
1425

Exceptions

Link::remove_link()

void remove_link(in LinkName name)
 raises(IllegalLinkName, UnknownLinkName);

Removes an existing link.

Parameters

Exceptions

def_pass_on_follow_ruleSpecifies the default link behavior for the link if no
link-follow policy is specifed by an importer dur-
ring a query.

limiting_follow_rule Describes the most permisive link-follow behavior
that the link is willing to follow.

IllegalLinkName Link name is empty of has an invalid for-
mat.

UnknownLinkName The specified link name does not exist.

DefaultFollowTooPermisive The value for def_pass_on_follow_rule
exceeds the value for
limiting_follow_rule.

LimitingFollowTooPermissive The value for limiting_follow_rule
exceeds the trader�s
max_link_follow_policy.

name Name of the link to be removed

IllegalLinkName The link name is empty or has an invalid format.

UnknownLinkName No link exists witht the specified name.
 1426

CosTrading::ImportAttributes
Interface

The read-only attributes of this interface provide the default and maximum
values for policies that govern query operations.

Note: Performing a query is also known as importing service offers,
therefore these attributes are called import attributes.

ImportAttributes::def_follow_policy Attribute

readonly attribute FollowOption def_follow_policy;

The default value for the follow_policy policy if it is not supplied.

ImportAttributes::def_hop_count Attribute

readonly attribute unsigned long def_hop_count;

The default value for the hop_count policy if it is not supplied.

ImportAttributes::def_match_card Attribute

readonly attribute unsigned long def_match_card;

The default value for the match_card policy if it is not supplied.

ImportAttributes::def_return_card Attribute

readonly attribute unsigned long def_return_card;
1427

The default value for the return_card policy if it is not supplied.

ImportAttributes::def_search_card Attribute

readonly attribute unsigned long def_search_card;

The default value for the search_card policy if it is not supplied.

ImportAttributes::max_follow_policy Attribute

readonly attribute FollowOption max_follow_policy;

The maximum value for the follow_policy policy, which may override the
value supplied by an importer.

ImportAttributes::max_hop_count Attribute

readonly attribute unsigned long max_hop_count;

The maximum value for the hop_count policy, which may override the value
supplied by an importer.

ImportAttributes::max_list Attribute

readonly attribute unsigned long max_list;

The maximum size of any list returned by the trader. This may override the
value supplied by a client to operations such as query and next_n.

ImportAttributes::max_match_card Attribute

readonly attribute unsigned long max_match_card;

The maximum value for the match_card policy, which may override the value
supplied by an importer.
 1428

ImportAttributes::max_return_card Attribute

readonly attribute unsigned long max_return_card;

The maximum value for the return_card policy, which may override the
value supplied by an importer.

ImportAttributes::max_search_card Attribute

readonly attribute unsigned long max_search_card;

The maximum value for the search_card policy, which may override the
value supplied by an importer.
1429

 1430

CosTrading::TraderComponents
Interface

interface TraderComponents

Each of the five major interfaces of the CosTrading module inherit from this
interface. By doing so, any of the trader components can be obtained using a
reference to any of the other components.

A nil value will be returned by an attribute if the trader does not support that
interface.

TraderComponents::admin_if Attribute

readonly attribute Admin admin_if;

TraderComponents::link_if Attribute

readonly attribute Link link_if;

TraderComponents::lookup_if Attribute

readonly attribute Lookup lookup_if;

TraderComponents::proxy_if Attribute

readonly attribute Proxy proxy_if;
1431

TraderComponents::register_if Attribute

readonly attribute Register register_if;
 1432

CosTrading::Dynamic Module
Defines interfaces and types necessary to support dynamic properties.
Dynamic properties allow an exporter to delegate a property's value to a third
party. For example, rather than exporting an offer with a value of 54 for the
property weight, you can provide a reference to an object that will
dynamically compute the value for weight.

Naturally, there are performance issues when using dynamic properties, and
therefore an importer may elect to exclude any offers containing dynamic
properties.

To export an offer (or a proxy offer) with a dynamic property, you need to do
the following:

� Define an object that implements the DynamicPropEval interface.
� Create an instance of the DynamicProp struct and insert that into the

property's CORBA::Any value.
� Ensure that the lifetime of the DynamicPropEval object is such that it

will be available whenever dynamic property evaluation is necessary.

CosTradingDynamic::DynamicProp Struct

struct DynamicProp
{
 DynamicPropEval eval_if;
 TypeCode returned_type;
 any extra_info;
};

Describes a dynamic property. This struct is inserted into a property's CORBA:
:Any value and provides all of the information necessary for the trader to
accomplish dynamic property evaluation.

eval_if Object reference for evaluation interface
1433

CosTradingDynamic::DPEvalFailure Exception

exception DPEvalFailure
{
 CosTrading::PropertyName name;
 TypeCode returned_type;
 any extra_info;
};

Evaluation of a dynamic property failed.

returned_type Value type expected for the property. The
value of returned_type must match the value
type of the property as defined by the service
type.

extra_info Additional information used for property eval-
uation. Orbix Trader supports primitive and
user-defined types as values for extra_info.

name Name of the property to be evaluated

returned_type Value type expected for the property

extra_info Additional information used for property eval-
uation
 1434

CosTradingDynamic::
DynamicPropEval Interface

interface DynamicPropEval

Defines a single operation for evaluating a dynamic property.

DynamicPropEval::evalDP()

any evalDP(in CosTrading::PropertyName name,
 in TypeCode returned_type,
 in any extra_info)
 raises(DPEvalFailure);

Evaluates a dynamic property and returns the objects properties.

Parameters

Exceptions

name Name of the property to be evaluated

returned_type Value type expected for the property

extra_info Additional information used for property evaluation

DPEvalFailure Evaluation of the property failed
1435

 1436

CosTradingRepos Module
Contains the ServiceTypeRepository interface, which manages information
about service types for the trading service.

A service type represents the information needed to describe a service,
including an interface type defining the computational signature of the
service, and zero or more properties that augment the interface. Each traded
service, or service offer, is associated with a service type.

There are several components of a service type:

Interface: The interface repository identifier for an interface determines the
computational signature of a service. If the trading service is configured to
use the interface repository, and this identifier resolves to an InterfaceDef
object in the interface repository, then the trading service will ensure that an
object in an exported offer conforms to this interface.

Properties: Any number of properties can be defined for a service type.
Properties typically represent behavioral, non-functional and
non-computational aspects of the service.

Super types: Service types can be related in a hierarchy that reflects
interface type inheritance and property type aggregation. This hierarchy
provides the basis for deciding if a service of one type may be substituted for
a service of another type.

When a new service type is added that has one or more super types, the
service type repository performs a number of consistency checks. First, the
repository ensures (if possible) that the interface of the new type conforms to
the interface of the super type. Second, the repository checks for any
property that has been redefined in the new service type to ensure that it has
the same type as that of the super type, and that its mode is at least as
strong as its mode in the super type.
1437

 1438

CosTradingRepos::
ServiceTypeRepository Interface

interface ServiceTypeRepository

Contains types and operations for managing the repository.

ServiceTypeRepository::Identifier Alias

typedef CosTrading::Istring Identifier;

The interface repository identifier of an interface. For example, the identifier
of this interface is IDL:omg.org/CosTradingRepos/ServiceTypeRepository:
1.0.

ServiceTypeRepository::PropStructSeq Sequence

typedef sequence<PropStruct> PropStructSeq;

ServiceTypeRepository::ServiceTypeNameSeq Sequence

typedef sequence<CosTrading::ServiceTypeName> ServiceTypeNameSeq;

ServiceTypeRepository::ListOption Enum

enum ListOption
{
 all,
 since
};
1439

Indicates which service types are of interest.

ServiceTypeRepository::PropertyMode Enum

enum PropertyMode
{
 PROP_NORMAL,
 PROP_READONLY,
 PROP_MANDATORY,
 PROP_MANDATORY_READONLY
};

Each property has a mode associated with it. The property mode places
restrictions on an exporter when exporting and modifying service offers.

ServiceType:Repository::IncarnationNumber Structure

struct IncarnationNumber
{
 unsigned long high;
 unsigned long low;
};

Represents a unique, 64-bit identifier that is assigned to each service type.
This will be replaced by long long when that type is widely supported.

all All service types

since All service types since a particular incarnation

PROP_NORMAL Property is optional

PROP_READONLY Property is optional, but once a value has
been supplied, it cannot be changed

PROP_MANDATORY A value for this property must be supplied
when the offer is exported, but can also be
changed at some later time

PROP_MANDATORY_READONLYA value for this property must be supplied
when the offer is exported, and cannot be
changed
 1440

ServiceTypeRepository::PropStruct Structure

struct PropStruct
{
 CosTrading::PropertyName name;
 TypeCode value_type;
 PropertyMode mode;
};

A complete description of a property.

ServiceTypeRepository::TypeStruct Structure

struct TypeStruct
{
 Identifier if_name;
 PropStructSeq props;
 ServiceTypeNameSeq super_types;
 boolean masked;
 IncarnationNumber incarnation;
};

A complete description of a service type.

name Name of the property

value_type CORBA::TypeCode describing the type of val-
ues allowed for the property

mode Determines whether a property is mandatory,
and whether the property can be modified

if_name Interface repository identifier for an interface

props Defines the properties associated with this
type

super_types Service types from which this type inherits
property definitions

masked If TRUE, no new offers can be exported for this
type

incarnation Unique, 64-bit identifier for this type
1441

ServiceTypeRepository::SpecifiedServiceTypes Union

union SpecifiedServiceTypes switch(ListOption)
{
case since: IncarnationNumber incarnation;
};

Provides two ways of retrieving the names of the service types managed by
the repository. The union's discriminator can be set to all if you want to
obtain all of the service type names.

ServiceTypeRepository::AlreadyMasked Exception

exception AlreadyMasked {CosTrading::ServiceTypeName name};

The service type cannot be masked if it is already masked.

ServiceTypeRepository::DuplicateServiceTypeName Exception

exception DuplicateServiceTypeName
{
CosTrading::ServiceTypeName name;
};

The same service type appeared more than once in the list of super types.

ServiceTypeRepository::HasSubTypes Exception

exception HasSubTypes
{
 CosTrading::ServiceTypeName the_type;
 CosTrading::ServiceTypeName sub_type;
};

since Set this value with an incarnation number;
only the names of those types whose incarna-
tion numbers are greater than or equal to this
value will be returned
 1442

A service type cannot be removed if it is the super type of any other type.

ServiceTypeRepository::InterfaceTypeMismatch Exception

exception InterfaceTypeMismatch
{
 CosTrading::ServiceTypeName base_service;
 Identifier base_if;
 CosTrading::ServiceTypeName derived_service;
 Identifier derived_if;
};

The interface of the new (derived) service type does not conform to the
interface of a super type (base service).

ServiceTypeRepository::NotMasked Exception

exception NotMasked {CosTrading::ServiceTypeName name};

The service type cannot be unmasked if it is not currently masked.

ServiceTypeRepository::ServiceTypeExists Exception

exception ServiceTypeExists {CosTrading::ServiceTypeName name};

Another service type exists with the given name.

ServiceTypeRepository::ValueTypeRedefinition Exception

exception ValueTypeRedefinition
{
 CosTrading::ServiceTypeName type_1;
 PropStruct definition_1;
 CosTrading::ServiceTypeName type_2;
 PropStruct definition_2;
};
1443

The definition of a property in the new service type (type_1) conflicts with the
definition in a super type (type_2). This error can result if the value_type
members do not match, or if the mode of the property is weaker than in the
super type.

ServiceTypeRepository::incarnation Attribute

readonly attribute IncarnationNumber incarnation;

Determines the next incarnation number that will be assigned to a new
service type. This could be used to synchronize two or more service type
repositories, for example.

ServiceTypeRepository::add_type()

IncarnationNumber add_type(in CosTrading::ServiceTypeName name,
 in Identifier if_name,
 in PropStructSeq props,
 in ServiceTypeNameSeq super_types)
raises(CosTrading::IllegalServiceType,
 ServiceTypeExists,
 InterfaceTypeMismatch,
 CosTrading::IllegalPropertyName,
 CosTrading::DuplicatePropertyName,
 ValueTypeRedefinition,
 CosTrading::UnknownServiceType,
 DuplicateServiceTypeName);

Adds a new service type and returns a unique identifier for the new type.

Parameters

name Name to be used for the new type

if_name Interface repository identifier for an interface

props Properties defined for this interface interface

super_types Zero or more super types from which this type will inherit
interface and property definitions
 1444

Exceptions

ServiceTypeRepository::describe_type()

TypeStruct describe_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType);

Gets the description of a service type and returns a TypeStruct with the
description.

Parameters

Exceptions

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid for-
mat

ServiceTypeExists Service type already exists with the same name

InterfaceTypeMismatch Interface of the new type does not conform to the
interface of a super type

CosTrading::
IllegalPropertyName

Property name is empty or has an invalid format

CosTrading::
DuplicatePropertyName

Same property name appears more than once in
props

ValueTypeRedefinition Property definition in props conflicts with a defi-
nition in a super type

CosTrading::
UnknownServiceType

Super type does not exist

DuplicateServiceTypeNameSame super type name appears more than once
in super_types

name Name of the type of interest

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid format

CosTrading::
UnknownServiceType

Service type does not exist
1445

ServiceTypeRepository::fully_describe_type()

TypeStruct fully_describe_type(in CosTrading::ServiceTypeName
 name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType);

Obtains the full description of a service type. The super_types member of a
full description contains the names of the types in the transitive closure of the
super type relation. The props member includes all properties inherited from
the transitive closure of the super types. A TypeStruct containing the full
description is returned.

Parameters

Exceptions

ServiceTypeRepository::list_types()

ServiceTypeNameSeq list_types(in SpecifiedServiceTypes
 which_types);

Lists the names of some or all of the service types in the repository.

Parameters

ServiceTypeRepository::mask_type()

void mask_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 AlreadyMasked);

name Name of the type of interest

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid format

CosTrading::
UnknownServiceType

Service type does not exist

which_types Specifies which types are of interest
 1446

Masks a service type so that offers can no longer be exported for it. Masking
a service type is useful when the type is considered deprecated; in other
words, no new offers should be allowed, but existing offers are still
supported.

Parameters

Exceptions

ServiceTypeRepository::remove_type()

void remove_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 HasSubTypes);

Removes an existing service type.

Parameters

Exceptions

name Name of the type to be masked

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid format

CosTrading::
UnknownServiceType

Service type does not exist

AlreadyMasked Service type is already masked

name Name of the type to be removed

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid format

CosTrading::
UnknownServiceType

Service type does not exist

HasSubTypes Service type cannot be removed if it is the super type of
any other type
1447

ServiceTypeRepository::unmask_type()

void unmask_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 NotMasked);

Unmasks a masked service type so that offers can be exported for it.

Parameters

Exceptions

name Name of the type to be unmasked

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid format

CosTrading::
UnknownServiceType

Service type does not exist

NotMasked Service type is not currently masked
 1448

Appendix A
System Exceptions

This appendix defines the system exceptions returned by Orbix.

BAD_CONTEXT This exception is raised if a client invokes an
operation but the passed context does not contain
the context values required by the operation.

BAD_INV_ORDER This exception indicates that the caller has
invoked operations in the wrong order. For
example, it can be raised by an ORB if an
application makes an ORB-related call without
having correctly initialized the ORB first.

BAD_OPERATION This exception indicates that an object reference
denotes an existing object, but that the object
does not support the operation that was invoked.

BAD_PARAM This exception is raised if a parameter passed to a
call is out of range or otherwise considered illegal.
For example, an ORB may raise this exception if
null values or null pointers are passed to an
operation (for language mappings where the
concept of a null pointers or null values applies).

BAD_PARAM can also be raised as a result of client
generating requests with incorrect parameters
using the DII.

BAD_TYPECODE This exception is raised if the ORB encounters a
malformed type code (for example, a type code
with an invalid TCKind value).

COMM_FAILURE This exception is raised if communication is lost
while an operation is in progress, after the request
was sent by the client, but before the reply from
the server has been returned to the client.
1449

Appendix A
DATA_CONVERSION This exception is raised if an ORB cannot convert
the representation of data as marshaled into its
native representation or vice-versa. For example,
DATA_CONVERSION can be raised if wide character
codeset conversion fails, or if an ORB cannot
convert floating point values between different
representations.

FREE_MEM This exceptioon is raised if the ORB failed in an
attempt to free dynamic memory. For example, it
is raised because of heap corruption or memory
segments being locked.

IMP_LIMIT This exception indicates that an implementation
limit was exceeded in the ORB run time. For
example, an ORB may reach the maximum
number of references it can can hold
simultaneously in an address space, the size of a
parameter may have exceeded the allowed
maximum, or an ORB may impose a maximum on
the number of clients or servers that can run
simultaneously.

INITIALIZE This exception is raised if an ORB encounters a
failure during its initialization, such as failure to
acquire networking resources or detection of a
configuration error.

INTERNAL This exception indicates an interal failure in an
ORB. For example, it is raised if an ORB detected
corruption of its internal data structures.

INTF_REPOS This exception is raised if an ORB cannot reach
the interface repository, or some other failure
relating to the interface repository is detected.

INV_FLAG This exception indicates that an invalid flag was
passed to an operation. For example, it is raised
when creating a DII request.
 1450

INV_IDENT This exception indicates that an IDL identifier is
syntactically invalid. For example it may be raised
if an identifier passed to the interface repository
does not conform to IDL identifier syntax, or if an
illegal operation name is used with the DII.

INV_OBJREF This exception indicates that an object reference is
internally malformed. For example, the repository
ID may have incorrect syntax or the addressing
information may be invalid. This exception is
raised by ORB::string_to_object if the passed
string does not decode correctly.

An ORB implementation might detect calls via nil
references (although it is not obliged to detect
them). INV_OBJREF is used to indicate this.

INV_POLICY This exception is raised when an invocation
cannot be made due to an incompatibility between
policy overrides that apply to the particular
invocation.

INVALID_TRANSACTION This exception indicates that the request carried
an invalid transaction context. For example, this
exception could be raised if an error occurred
when trying to register a resource.

MARSHAL This exception is raised if a request or reply from
the network is structurally invalid. This error
typically indicates a bug in either the client-side or
server-side run time. For example, if a reply from
the server indicates that the message contains
1000 bytes, but the actual message is shorter or
longer than 1000 bytes, the ORB raises this
exception.

MARSHAL can also be caused by using the DII or
DSI incorrectly. For example, it is raised if the type
of the actual parameters sent does not agree with
IDL signature of an operation.
1451

Appendix A
NO_IMPLEMENT This exception is raised if the operation that was
invoked exists (it has an IDL definition) but no
implementation for that operation exists. For
example, NO_IMPLEMENT can be raised by an ORB
if a client asks for an object�s type definition from
the interface repository, but no interface repository
is provided by the ORB.

NO_MEMORY This exception indicates that the ORB run time
has run out of memory.

NO_PERMISSION This exception is raised if an invocation fails
because the caller has insufficient privileges.

NO_RESOURCES This exception indicates that the ORB has
encountered some general resource limitation. For
example, the run time may have reached the
maximum permissible number of open
connections.

NO_RESPONSE This exception is raised if a client attempts to
retrieve the result of a deferred synchronous call
but the response for the request is not yet
available.

OBJ_ADAPTER This exception typically indicates an
administrative mismatch. For example, a server
may have made an attempt to register itself with
an implementation repository under a name that is
already in use, or a name that is unknown to the
repository. OBJ_ADAPTER is also raised by the POA
to indicate problems with application-supplied
servant managers.
 1452

OBJECT_NOT_EXIST This exception is raised whenever an invocation on
a deleted object is performed. It is an authoritative
�hard� fault report. Anyone receiving it is allowed
(even expected) to delete all copies of this object
reference and to perform other appropriate �final
recovery� style procedures.

Bridges forward this exception to clients, also
destroying any records they may hold (for
example, proxy objects used in reference
translation). The clients could in turn purge any of
their own data structures.

PERSIST_STORE This exception indicates a persistent storage
failure. For example, it is raised if there is a failure
to establish a database connection or corruption of
a database.

REBIND This exception is raised when the current effective
RebindPolicy has a value of NO_REBIND or
NO_RECONNECT and an invocation on a bound
object reference results in a LocateReply message
with status OBJECT_FORWARD or a Reply message
with status LOCATION_FORWARD. This exception is
also raised if the current effective RebindPolicy
has a value of NO_RECONNECT and a connection
must be re-opened. The invocation can be retried
once the effective RebindPolicy is changed to
TRANSPARENT or binding is re-established through
an invocation of CORBA::Object::
validate_connection().

TIMEOUT This system exception is raised when no delivery
has been made and the specified time-to-live
period has been exceeded. It is a standard system
exception because time-to-live QoS can be applied
to any invocation.
1453

Appendix A
TRANSACTION_MODE The CosTransactions module adds the
TRANSACTION_MODE exception that can be
raised by the ORB when it detects a mismatch
between the TransactionPolicy in the IOR and
the current transaction mode.

TRANSACTION_REQUIRED This exception indicates that the request carried a
null transaction context, but an active transaction
is required.

TRANSACTION_ROLLEDBACK This exception indicates that the transaction
associated with the request has already been
rolled back or marked to roll back. The requested
operation either could not be performed or was not
performed because further computation on behalf
of the transaction would be fruitless.

TRANSACTION_UNAVAILABLE The CosTransactions module adds the
TRANSACTION_UNAVAILABLE exception that can be
raised by the ORB when it cannot process a
transaction service context because its connection
to the transaction service has been abnormally
terminated.

TRANSIENT This exception indicates that the ORB attempted
to reach an object and failed. It is not an
indication that an object does not exist. Instead, it
simply means that no further determination of an
object�s status was possible because it could not
be reached. For example, this exception is raised if
an attempt to establish a connection fails because
the server or the implementation repository is
down.
 1454

UNKNOWN This exception is raised if an operation
implementation throws a non-CORBA exception
(such as an exception specific to the
implementation�s programming language), or if an
operation raises a user exception that does not
appear in the operation�s raises expression.

UNKNOWN is also raised if the server returns a
system exception that is unknown to the client.
(This can happen if the server uses a later version
of CORBA than the client and new system
exceptions have been added to the later version.)
1455

Appendix A
 1456

Index
Symbols
() Subscript Operators 319, 367

A
absolute() 1160
absolute_name Attribute 108
abstract_base_values Attribute 346
access Attribute 361
access_mode attribute 1101
AccessMode type 1094
activate() 640
activate_object() 617
activate_object_with_id() 617
active_groups() method 872
AdapterActivator class 597
adapter_id attribute 576
AdapterInactive exception 640
ADAPTS 1049
add() 140, 191, 214
add_client_request_interceptor() 558
add_consume() 140, 192
add_contraints() 986
add_filter() 1003
add_in_arg() 300
add_inout_arg() 300
add_ior_component() 549
add_ior_component_to_profile() 550
add_ior_interceptor() 558
add_item() 215
add_item_consume() 215
add_link() 1424
add_listener() 26
add_mapping_contraints() 994
add_member method 864
add_out_arg() 301
_add_ref() 339, 359, 373, 375, 1183, 1187
add_ref() 38
add_reply_service_context() 576
add_request_service_context() 534
Address data type 854
add_server_request_interceptor() 559
add_type() 1444
add_value() 216
add_value_consume() 217
admin_if attribute 1431
AdminLimitExceeded exception 882
AdminNotFound exception 881
AdminPropertiesAdmin

get_admin() 1014
after_last() 1160
AliasDef Interface 83
allocate_slot_id() 559
AlreadyMasked exception 1442
Any Class 85
any IDL type 85
AnySeq Sequence 47, 382
ApplicationId data type 471
arguments attribute 559, 568
arguments() 301
ArrayDef Interface 99
assign() 394
AssociationStatus type 1136
attach_callback() 990
AttrDescriptionSeq Sequence 47
AttributeDef Interface 101
AttributeDescription Structure 48
AttributeMode Enumeration 49
audience xxix
authenticate() 1270
authentication_state 1256
AutomaticWorkQueue 682

high_water_mark 683
low_water_mark 683
shutdown() 683

AutomaticWorkQueueFactory 684
create_work_queue() 684
create_work_queue_with_thread_stack_size()

685
AVA

convert() 1211
AVA interface 1211
AVAList

convert() 1216
get_ava_by_oid() 1217
get_ava_by_oidtag() 1217
get_num_avas() 1217
interface 1215
1457

Index
B
BAD_CONTEXT exception 1449
BAD_INV_ORDER exception 1449
BadKind Exception 325
BAD_OPERATION exception 1449
BAD_PARAM exception 1449
BAD_TYPECODE exception 1449
base_interfaces Attribute 200
base_value Attribute 347
before_completion() 1083
before_first() 1161
begin() 1069
bind_context() 842
Binding structure 833
BindingIterator interface 837
BindingList sequence 834
BindingType enumeration 834
bind_object_group() method 857
block_readers_until_idle() 1175
boolean_changed() 32
BooleanSeq Sequence 49
bound Attribute 309, 315, 363
Bounds Exception 325
Bridge::destory() 1037
Bridge::name 1036
Bridge::sink 1037
Bridge::source 1036
Bridge::start() 1037
Bridge::stop() 1037
Bridge::suspend() 1037
BridgeAdmin::create_bridge() 1038
BridgeAdmin::find_bridge() 1039
BridgeAdmin::get_all_bridges() 1033, 1040
BridgeAdmin::get_bridge() 1039
BridgeAdmin::list_all_bridges() 1019
broadcast() 695
byte_order() 501

C
CallbackNotFound exception 983
cancel() 711, 729
cancel_row_updates() 1161
CannotProceed exception 844
_catalog() 1130
CatalogBase interface 1101, 1143
CertConstraintsPolicy 1295
CertValidatorPolicy 1297
channel manager 785
ChannelManager::create() 786
ChannelManager::createTyped() 788
 1458
ChannelManager::find() 787
ChannelManager::findByRef() 787
ChannelManager::findTyped() 788
ChannelManager::findTypedByRef() 788
ChannelManager::list() 787
ChannelManager::listTyped() 789
char*() 317, 365
CharSeq Sequence 49
checkpoint() 1197
cleanup() 699
clear() 183
clear_filter() 482
clear_parameters() 1149
ClientRequestInfo interface 531
ClientRequestInterceptor interface 539
close() 705, 1102, 1161, 1178
codec_factory attribute 560
COMM_FAILURE exception 1449
commit() 1070, 1078, 1085
commit_one_phase() 1078
commit_subtransaction() 1082
Common CORBA Data Types 45
Common CORBA Functions 37
CompletionStatus Enumeration 50
component_count() 395
concrete_base_type() 326
Concurrency Type 1161
ConfigList sequence 22
config_scope() 378
configuration context 22
configuration domain 21
Configuration interface 25
configuration scope 21
connect_any_pull_consumer() 897
connect_any_pull_supplier() 903
connect_any_push_consumer() 909
connect_any_push_supplier() 891
connect_group_any_push_consumer() 939,

940
connect_group_sequence_push_consumer() 94

5
connect_group_structured_push_consumer() 94

2
ConnectionAlreadyActive exception 881
ConnectionAlreadyInactive exception 881
Connector interface 1105, 1147
connect_sequence_pull_consumer() 901
connect_sequence_pull_supplier() 907
connect_sequence_push_consumer() 915, 946
connect_sequence_push_supplier() 895

Index
connect_structured_pull_consumer() 899
connect_structured_pull_supplier() 905
connect_structured_push_consumer() 912,

943
connect_structured_push_supplier() 893
ConstantDef Interface 103
ConstantDescription Structure 50
Constraint 1373
constraint_grammar 985
ConstraintRecipe 1402
ConstructionPolicy Interface 105
ConsumerAdmin interface 796, 917
Contained Interface 107
ContainedSeq Sequence 51
Container Interface 113
containing_repository Attribute 108
contents() 116, 347
content_type() 326
Context Class 133
context in configuration 22
ContextIdentifier Type 51
ContextIdSeq Sequence 52
ContextList Class 139
context_name() 134
contexts Attribute 235
contexts attribute 568
contexts() 301
Control class 1057
conventions in document xxx
convert() 1211, 1216, 1221, 1223, 1228
Cookie Native Type 653
Coordinator class 1059
copy() 276, 396
_copy_value() 340
CORBA 2.3 specification xxix
CosEventChannelAdmin module 783, 791,

1017
CosEventChannelAdmin::EventChannel

Interface 798
CosEventChannelAdmin::SupplierAdmin

interface 797
CosEventCom module 799
CosEventComm module 783, 1017
CosEventComm::Disconnected 799
CosEventComm::PushConsumer Interface 800
CosEventComm::PushSupplier Interface 801
CosNaming module 833
CosNotificaiton::EventBatch 1042
CosNotification
 1459
AdminProperties 1009
AdminPropertiesAdmin Interface 1014
EventBatch 1006
EventTypeSeq 1006
NamedPropertyRangeSeq 1010
PropertyErrorSeq 1010
PropertyName 1008
PropertySeq 1008
PropertyValue 1008
QoSAdmin Interface 1012
QoSProperties 1008
StructuredEvent 1005
UnsupportedAdmin 1011
UnsupprtedQoS 1011

CosNotifyChannelAdmin

AdminID 879
AdminIDSeq 880
ChannelID 880
ChannelIDSeq 880
ObtainInfoMode 878
ProxyID 878
ProxyIDSeq 878
ProxyType 877

AdminLimit 880
ChannelNotFound exception 882
ClientType 878

CosNotifyFilter

CallbackID 982
CallbackIDSeq 982
ConstraintExp 979
ConstraintExpSeq 980
ConstraintID 979
ConstraintIDSeq 980
ConstraintInfo 980
ConstraintInfoSeq 980
InterFilterGroupOperator 879
InvalidValue exception 983
MapingConstraintPair 981
MappingConstraintInfo 981
MappingConstraintInfoSeq 981
MappingConstraintPairSeq 981

CosPersistentState module 1093
CosPersistentState_Factory template

class 1115
CosTrading 1373

Admin 1383
LinkAttributes 1419

Index
Lookup 1411
CosTradingDynamic

DPEvalFailure exception 1434
DynamicProp Struct 1433

CosTradingDynamic Module 1433
CosTradingRepos Module 1437
CosTransactions module 1045
CosTransactions, data types 1046
CostTypedEventChannelAdmin::Key Type 806
CosTypedEventChannelAdmin module 805
CosTypedEventChannelAdmin::

InterfaceNotSupported 805
CosTypedEventChannelAdmin::

NoSuchImplementation 805
CosTypedEventChannelAdmin::

TypedConsumerAdmin Interface 810
CosTypedEventChannelAdmin::

TypedEventChannel Interface 812
CosTypedEventChannelAdmin::

TypedProxyPushConsumer Interface 807
CosTypedEventChannelAdmin::

TypedSupplierAdmin Interface 808
CosTypedEventComm module 813
CosTypedEventComm::TypedPushConsumer

Interface 814
count() 140, 214, 218
create() 1089, 1184, 1187
create_active() method 871
create_alias() 117
create_alias_tc() 245
create_array() 292
create_array_tc() 245
create_attribute() 201, 348
create_basic_session() 1106
create_channel() 936
create_child() 134
create_constant() 117
create_context_list() 246
create_dyn_any() 428
create_dyn_any_from_type_code() 429
create_enum() 118
create_enum_tc() 246
create_environment() 247
create_exception() 119
create_exception_list() 247
create_exception_tc() 247
create_filter() 1001
create_fixed() 293
create_fixed_tc() 248
 1460
create_id_assignment_policy() 618
create_id_uniqueness_policy() 619
create_implicit_activation_policy() 620
create_interface() 120
create_interface_tc() 248
create_lifespan_policy() 621
create_list() 249
create_mapping_filter() 1001
create_module() 121
create_named_value() 249
create_native() 122
create_native_tc() 250
create_operation() 201, 349
create_operation_list() 250
create_POA() 622
create_policy() 251, 565
create_random() method 870
create_recursive_tc() 252
create_reference() 624
create_reference_with_id() 624
_create_request() 224
create_request_processing_policy() 625
create_round_robin() method 870
create_sequence() 293
create_sequence_tc() 253
create_servant_retention_policy() 626
create_string() 294
create_string_tc() 253
create_struct() 123
create_struct_tc() 254
create_subtransaction() 1060
create_thread_policy() 627
create_transactional_session() 1108
create_union() 124
create_union_tc() 254
create_value() 125
create_value_box() 127
create_value_box_tc() 255
create_value_member() 350
create_value_tc() 255
create_wstring() 295
create_wstring_tc() 256
Credentials

authentication_state 1256
destroy() 1256, 1257, 1258, 1259, 1260,

1275, 1276, 1281
get_attributes() 1258

Credentials interface 1255, 1275, 1281
ctx() 302, 312
Current

Index
received_credentials 1251, 1261, 1277,
1278, 1279

received_credentials attribute 1251, 1261
Current Class 601
Current class 1069
Current Interface 143, 1278, 1279
Current interface 545, 1251, 1261
current_component() 396
current_member_kind() 452, 464
current_member_name() 453, 465
current_session() 1109
CustomMarshal Value Type 145

D
DATA_CONVERSION exception 1450
DataInputStream Value Type 149
DataOutputStream Value Type 163
deactivate() 641
deactivate_object() 628
_DEFAULT in logging 474
DefaultFollowTooPermissive exception 1422
default_index() 326
default_isolation_level attribute 1136
default_value 994
def_follow_policy attribute 1427
def_hop_count attribute 1427
defined_in Attribute 108
define_parameter() 1150
DefinitionKind Enumeration 52
def_kind Attribute 205
def_match_card attribute 1427
def_return_card attribute 1427
def_search_card attribute 1428
delete_row() 1162
delete_values() 135
describe() 83, 101, 103, 109, 181, 189, 202,

207, 236, 321, 335, 337, 351, 1396
describe_contents() 127, 295
describe_interface() 203
describe_link() 1425
describe_type() 1445
describe_value() 352
Description Structure 109, 128
DescriptionSeq Sequence 129
destroy() 205, 257, 276, 397, 629, 837,

845, 923, 929, 989, 998, 1256, 1257,
1258, 1259, 1260, 1275, 1276, 1281,
1409

destroy() method 868
destroy_object() 1123, 1130
 1461
_destroy_this() 374, 376
DetachState enumeration 748
digits Attribute 195
DII and DSI Quick Reference 4
discard_requests() 641
disconnect_push_consumer() 973, 974
disconnect_sequence_pull_consumer() 966
disconnect_sequence_pull_supplier() 969
disconnect_sequence_push_consumer() 965,

977, 978
disconnect_sequence_push_supplier() 970
disconnect_structured_pull_consumer() 960
disconnect_structured_pull_supplier() 962
disconnect_structured_push_consumer() 959,

975, 976
disconnect_structured_push_supplier() 963
discriminator_kind() 458
discriminator_type Attribute 337
discriminator_type() 327
discriminator_type_def Attribute 338
documentation, other xxx
domain, configuration 21
DomainManager Interface 179
DomainManagersList Sequence 53
double_changed() 32
DoubleSeq Sequence 53
_downcast() 340, 359, 501
DsEventLog Module 1349
DsLogAdmin

TimeT 1322
:LogFullActionType 1324

DsLogAdmin Module 1317
DsLogAdmin::AdministrativeState 1327
DsLogAdmin::Anys 1324
DsLogAdmin::AvailabilityStatus 1324
DsLogAdmin::BasicLog 1345
DsLogAdmin::BasicLogFactory 1347
DsLogAdmin::

CapacityAlarmThresholdList 1326
DsLogAdmin::Constraint 1322
DsLogAdmin::DaysOfWeek 1325
DsLogAdmin::ForwardingState 1327
DsLogAdmin::IntervalsOfDay 1325
DsLogAdmin::InvalidAttribute 1320
DsLogAdmin::InvalidConstraint 1318
DsLogAdmin::InvalidGrammar 1318
DsLogAdmin::InvalidLogFullAction 1320
DsLogAdmin::InvalidMask 1318
DslogAdmin::InvalidParam 1317

Index
DsLogAdmin::InvalidRecordId 1319
DsLogAdmin::InvalidThreshold 1317
DsLogAdmin::InvalidTime 1317
DsLogAdmin::InvalidTimeInterval 1318
DsLogAdmin::Iterator 1329
DsLogAdmin::Log 1330
DsLogAdmin::LogDisabled 1319
DsLogAdmin::LogFull 1319
DsLogAdmin::LogId 1321
DsLogAdmin::LogIdList 1328
DsLogAdmin::LogList 1327
DsLogAdmin::LogLocked 1319
DsLogAdmin::LogMgr 1346
DsLogAdmin::LogOffDuty 1319
DsLogAdmin::LogRecord 1323
DsLogAdmin::NVList 1322
DsLogAdmin::NVPair 1322
DsLogAdmin::OperationalState 1327
DsLogAdmin::QoSList 1328
DsLogAdmin::QoSType 1328
DsLogAdmin::RecordId 1321
DsLogAdmin::RecordIdList 1322
DsLogAdmin::RecordList 1323
DsLogAdmin::Threshold 1326
DsLogAdmin::Time24 1324
DsLogAdmin::Time24Interval 1325
DsLogAdmin::TimeInterval 1323
DsLogAdmin::UnsupportedQoS 1320
DsLogAdmin::WeekMask 1326
DsLogAdmin::WeekMaskItem 1325
DsLogNotification::AttributeType 1358
DsLogNotification::AttributeValueChange 1359
DsLogNotification::ObjectCreation 1358
DsLogNotification::ObjectDeletion 1358
DsLogNotification::PercievedSeverityType 1357
DsLogNotification::ProcessingErrorAlarm 1360
DsLogNotification::StateChange 1360
DsLogNotification::StateType 1359
DsLogNotification::ThresholdAlarm 1357
DsNotifyLogAdmin Module 1355, 1361
DsNotifyLogAdmin::NotifyLog Interface 1362
DsNotifyLogAdmin::NotifyLogFactory

Interface 1363
_duplicate() 5, 38, 184, 209, 218, 226, 257,

280, 284, 327
DuplicateGroup exception 861
DuplicateLinkName exception 1423
DuplicateMember exception 861
DuplicateName exception 560
DuplicatePolicyName exception 1378
 1462
DuplicatePropertyName 1379
DuplicateServiceTypeName exception 1442
DynamicImplementation class 603
DynamicPropEval 1435
DynAny Class 389
~DynAny() Destructor 398
DynAnyFactory Class 427
~DynAnyFactory() Destructor 431
DynAnySeq Sequence 383
DynArray Class 433
~DynArray() Destructor 434
DynEnum Class 437
~DynEnum() Destructor 438
DynFixed Class 441
~DynFixed() Destructor 442
DynSequence Class 445
~DynSequence() 446
DynStruct Class 451
~DynStruct() 453
DynUnion Class 457
~DynUnion() 458
DynValue Class 463
~DynValue() 465

E
effective_profile attribute 534
effective_target attribute 534
EITHER 1050
element_type Attribute 99, 309
element_type_def Attribute 99, 310
end() 1136, 1192
EndOfAssociationCallback interface 1113
Endpoint::admin 1024
Endpoint::bridge_name 1023
Endpoint::connect() 1024
Endpoint::connected 1024
Endpoint::destroy() 1025
Endpoint::name 1024
Endpoint::peer 1024
Endpoint::type 1024
EndpointAdmin::create_sink_endpoint() 1029
EndpointAdmin::

create_source_endpoint() 1029
EndpointAdmin::get_all_sink_endpoints() 1031
EndpointAdmin::

get_all_source_endpoints() 1031
EndpointAdmin::get_sink_endpoint() 1030
EndpointAdmin::get_source_endpoint() 1030
EndpointAdmin::name 1028
EndpointAdmin::supported_types 1029

Index
EnumDef Interface 181
EnumMemberSeq Sequence 54
Env interface 1197
env() 302
Environment Class 183
equal() 327, 398
equivalent() 328
establish_components() 553
EstablishTrus Policy 1263
etherealize() 649
evalDP() 1435
EventChannel interface 798, 930
EventChannel::destroy() 798
EventChannel::for_consumers() 798
EventChannel::for_suppliers() 798
EventChannelFactory interface 936
EventChannelFactory::create_channel() 817
EventChannelFactory::find_channel() 818
EventChannelFactory::

find_channel_by_id() 818
EventChannelFactory::list_channels() 818
EventId data type 472
EventLog 1350
EventLog Interface 481
EventLogFactory 1351
EventLogFactory::create() 1351
EventLogFactory::create_with_id() 1352
EventParameters data type 472
EventPriority data type 472
ExcDescriptionSeq Sequence 54
Exception Class 187
exception() 184
ExceptionDef Interface 189
ExceptionDefSeq Sequence 54
ExceptionDescription Structure 55
ExceptionHolder value type 499
~ExceptionHolder() 502
ExceptionHolder() constructors 502
exceptions 1052
exceptions Attribute 235
exceptions attribute 568
exceptions() 302
exceptions, system 1449
execute() 1178
execute_prepared() 1150
execute_prepared_query() 1150
execute_prepared_update() 1150
execute_query() 1178
execute_update() 1179
expand_filter() 483
 1463
export() 1396
export_proxy() 1404
Extension

convert() 1221
get_extension_by_oid() 1225
get_extension_by_oidtag() 1225

Extension interface 1221
ExtensionList

convert() 1223
get_num_extensions() 1226

ExtensionList interface 1223

F
FetchDirection Type 1162
FieldName Type 385
FilterAdmin interface 1003
FilterFactory interface 1001
FilterID Data Type 980
FilterIDSeq Data Type 980
FilterNotFound exception 983
filters

IDL 984
find_by_pid() 1102
find_by_short_pid() 1119
find_group() method 871
find_POA() 630
find_state_member() 1162
find_storage_home() 1102
first() 1163
FixedDef Interface 195
fixed_digits() 328
fixed_scale() 328
Flags Type 56
flags() 210
FloatSeq Sequence 57
flush() 1103
FollowOption 1377
FORBIDS 1049
forget() 1079
format_message() 473
ForUpdate enumeration 1094
forward_reference attribute 569
ForwardRequest exception 529, 589
FPS_POLICY_BASE 829
free_all() 1103
FREE_MEM exception 1450
from_any() 398
FullInterfaceDescription Structure 203
FullValueDescription Structure 352
fully_describe_type() 1446

Index
Functions, all interfaces 5

G
get() 779, 1163
get_all_channels() 937
get_all_constraints() 988
get_all_consumeradmins() 935
get_all_filters() 1004
get_all_mapping_constraints 997
get_all_supplieradmins() 935
get_association_status() 1137
get_as_string() 438
get_as_ulong() 438
get_attributes() 1258
get_ava_by_oid() 1217
get_ava_by_oidtag() 1217
get_boolean() 27, 399
get_by_name() 1163
get_callbacks() 991
get_canonical_typecode() 296
get_catalog() 1120, 1179
get_char() 400
_get_client_policy() 227
get_compact_typecode() 329
get_concurrency() 1164
get_constraints() 988
get_consumeradmin() 934
get_control() 1071
get_coordinator() 1057
get_default_context() 258
get_der_serial_number() 1229, 1234
get_discriminator() 459
_get_domain_managers() 227
get_domain_policy() 180
get_double() 28, 400
get_dyn_any() 401
get_effective_component() 535
get_effective_components() 535
get_effective_policy() 550
get_elements() 434, 446
get_elements_as_dyn_any() 434, 446
get_event_channel() 938
get_exception() 502
get_exception_with_list() 502
get_extension_by_oid() 1225
get_extension_by_oidtag() 1225
get_extension_string 1229
get_fetch_direction() 1164, 1179
get_fetch_size() 1164, 1179
get_filter() 483, 1004
 1464
get_float() 401
_get_interface() 228
get_issuer() 1229
get_issuer_dn() 1229, 1230
get_length() 447
get_list() 28
get_long() 29, 402
get_longdouble() 402
get_longlong() 403
get_mapping_constraints() 997
get_master() 1189
get_member() method 865
get_member_load() method 867
get_members() 453, 465
get_members_as_dyn_any() 454, 466
get_member_timeout() method 868
get_next_response() 258
get_not_after() 1230
get_not_before() 1230
get_num_avas() 1217
get_num_extensions() 1226
get_object_id() 601
get_octet() 403
get_parent_status() 1060
get_pid() 1110, 1123, 1131
get_POA() 602
_get_policy() 228
_get_policy_overrides() 229
get_policy_overrides() 284
get_primitive() 297
get_proxy_consumer() 927
get_proxy_supplier() 921
get_reference() 404
get_replica() 1190
get_reply_service_context() 569
get_request_policy() 536
get_request_service_context() 570
get_response() 303
get_result_set() 1180
get_result_set_concurrency() 1180
get_result_set_type() 1180
get_row() 1164
get_serial_number() 1230
get_servant() 630
get_servant_manager() 631
get_server_policy() 576
get_service_information() 259
get_session_nc() 1192
get_shared_read_only_session_nc() 1175
get_short() 404

Index
get_short_pid() 1110, 1124, 1131
get_slot() 545, 570
get_state() 642
get_statement() 1165
get_status() 1061, 1071
get_storage_home() 1124, 1131
get_string() 29, 405
get_subject() 1231
get_subject_dn() 1231
get_supplieradmin() 934
get_target_credentials() 1277, 1278, 1279
get_terminator() 1058
get_timeout() 1071
get_top_level_status() 1061
get_transaction_name() 1062, 1072
get_txcontext() 1062
get_tx_coordinator_nc() 1192
get_type() 1165
get_typecode() 405
get_ulong() 406
get_ulonglong() 406
get_ushort() 407
get_val() 407
get_value() 442
get_values() 135
get_wchar() 408
get_wstring() 408
GroupId data type 860
GroupList data type 861
GroupNotifyPublish 971
GroupProxyPushSupplier 939
GroupPushConsumer 973
GroupSequenceProxyPushSupplier 945
GroupSequencePushConsumer 977
GroupStructuredProxyPushSupplier 942
GroupStructuredPushConsumer 975

H
handle() 703, 771
hash_top_level_tran() 1062
hash_transaction() 1063
has_no_active_member() 459
HasSubTypes exception 1442
HeuristicCommit exception 1052
HeuristicHazard exception 1053
HeuristicMixed exception 1053
HeuristicRollback exception 1053
hold_requests() 643
HowManyProps 1412
 1465
I
id Attribute 110
id() 329, 699, 740
IdAssignmentPolicy class 605
ID_ASSIGNMENT_POLICY_ID constant 590
IdAssignmentPolicyValue enumeration 590
Identifier Alias 1439
Identifier Type 57
IDL modules 875, 1315
IDLType Interface 197
id_to_reference() 631
id_to_servant() 632
IdUniquenessPolicy class 607
ID_UNIQUENESS_POLICY_ID constant 590
IdUniquenessPolicyValue enumeration 590
IllegalConstraint exception 1379
IllegalLinkName exception 1423
IllegalOfferId exception 1379
IllegalPolicyName 1413
IllegalPreference 1413
IllegalPropertyName exception 1379
IllegalRecipie exception 1403
IllegalServiceType exception 1379
IllegalTraderName exception 1393
_impl_data() 1131
implementation_id attribute 1110
IMPLICIT_ACTIVATION 591
ImplicitActivationPolicy class 609
IMPLICIT_ACTIVATION_POLICY_ID

constant 591
ImplicitActivationPolicyValue enumeration 591
IMP_LIMIT exception 1450
in() 318, 366
Inactive exception 1053
incarnate() 650
incarnation 1444
IncarnationNumber 1440
InconsistentTypeCode User Exception

Class 431
infinite_size constant 752
infinite_timeout constant 752, 756, 762
INITIALIZE exception 1450
Initializer Structure 58
initializers Attribute 353
InitializerSeq Sequence 58
inout() 318, 366
insert_any() 409
insert_boolean() 410
insert_char() 410
insert_double() 411

Index
insert_dyn_any() 411
insert_float() 412
insert_long() 413
insert_longdouble() 413
insert_longlong() 414
insert_octet() 415
insert_reference() 415
insert_row() 1165
insert_short() 416
insert_string() 416
insert_typecode() 417
insert_ulong() 418
insert_ulonglong() 418
insert_ushort() 419
insert_val() 420
insert_wchar() 420
insert_wstring() 421
IntegerTooLarge exception 1219, 1232
Interceptor interface 547
INTERDICTION_POLICY_ID 829
InterdictionPolicyValue 830
Interface Repository Quick Reference 2
InterfaceDef Interface 199
InterfaceDefSeq Sequence 58
InterfaceDescription Structure 59
interfaces 875
InterfaceTypeMismatch exception 1394, 1443
INTERNAL exception 1450
INTF_REPOS exception 1450
Introduction 1
InvalidAddress exception 854
InvalidConstraint exception 983
InvalidControl exception 1053
InvalidEndpoint exception 1021
InvalidEventType exception 949
InvalidGrammar exception 982
InvalidLookupRef exception 1379
InvalidName exception 560, 845
InvalidObjectRef exception 1394
InvalidPolicies exception 60
InvalidPolicyValue 1414
InvalidSlot exception 530
INVALID_TRANSACTION exception 1055,

1451
InvalidValue User Exception 422
INV_FLAG exception 1450
INV_IDENT exception 1451
INV_OBJREF exception 1451
InvocationCredentialsPolicy 1265
INVOCATION_POLICIES constant 494
 1466
InvocationPolicyValue data type 1049
invoke() 303, 603
INV_POLICY exception 1451
IONA_POLICY_ID 525
IORInfo interface 549
IORInterceptor interface 553
IRObject Interface 205
_is_a() 230
is_a() 204, 353
is_abstract Attribute 354
is_after_last() 1165
is_ancestor_transaction() 1063
is_before_first() 1165
is_custom Attribute 354
is_descendant_transaction() 1064
_is_equivalent() 230
is_first() 1166
is_last() 1166
is_locked() 711
is_main_thread() 700
is_nil() 39
is_null() 740, 1131
IsolationLevel type 1095
is_related_transaction() 1064
is_replica() 1189
is_same_transaction() 1065
is_system_exception() 503
is_top_level_transaction() 1066
Istring 1374
Istring data type 835
is_truncatable Attribute 354
IT_Certificate

AVA interface 1211
AVAList interface 1215
Extension interface 1221
ExtensionList interface 1223
IT_X509CertFactory interface 1233
X509Certificate interface 1219, 1227

IT_Condition class 695
~IT_Condition() 696
IT_Condition() constructor 696
IT_Config module 21
it_create_session_manager() 1147
it_create_statement() 1144
it_create_statement_with_type_and_concurrenc

y() 1144
IT_CurrentThread class 699
IT_DefaultTSErrorHandler class 703
~IT_DefaultTSErrorHandler() 703
_it_demarshal_value() 503

Index
it_discard_all() 1144
it_discard_flush_list() 1145
item() 141, 219
Iterator::destroy() 1329
Iterator::get() 1329
IT_EventChannelAdmin Module 815
IT_EventChannelAdmin::

ChannelAlreadyExists 816
IT_EventChannelAdmin::ChannelID Type 815
IT_EventChannelAdmin::ChannelNotFound 816
IT_EventChannelAdmin::EventChannelFactory

Interface 817
IT_EventChannelAdmin::EventChannelInfo

Structure 815
IT_EventChannelAdmin::EventChannelInfoList

Sequence 815
IT_FPS Module 829
IT_FPS::InterdictionPolicy Interface 830
IT_Gateway class 705
~IT_Gateway() 706
IT_Gateway() constructor 706
_it_get_fw_type_id() 503
_it_get_orb() 231
_it_get_safe_bases() 504
_it_get_type_id() 231
it_lock() 1185
IT_Locker Template class 709
~IT_Locker() 713
IT_Locker() 711
IT_LOG_MESSAGE() macro 474
IT_LOG_MESSAGE_1() macro 475
IT_LOG_MESSAGE_2() macro 476
IT_LOG_MESSAGE_3() macro 477
IT_LOG_MESSAGE_4() macro 477
IT_LOG_MESSAGE_5() macro 478
_it_marshal() 232
_it_marshal_value() 504
IT_MessagingBridge Module 1019
IT_MessagingBridge::BridgeName 1019
IT_MessagingBridge::

BridgeNameAlreadyExists 1022
IT_MessagingBridge::

BridgeNameNotFound 1022
IT_MessagingBridge::BridgeNameSeq 1019
IT_MessagingBridge::Endpoint Interface 1023
IT_MessagingBridge::EndpointAdmin

Interface 1028
IT_MessagingBridge::

EndpointAdminName 1020
IT_MessagingBridge::
EndpointAlreadyConnected 1022
IT_MessagingBridge::EndpointName 1019
IT_MessagingBridge::EndpointType 1020
IT_MessagingBridge::EndpointTypeSeq 1020
IT_MessagingBridge::

InvalidEndpointCode 1020
IT_MessagingBridge::SinkEndpoint 1041,

1042
IT_MessagingBridge::SinkEndpoint

Interface 1026
IT_MessagingBridge::SourceEndpoint

Interface 1027
IT_MessagingBridgeAdmin Module 1033
IT_MessagingBridgeAdmin::Bridge

Interface 1036
IT_MessagingBridgeAdmin::BridgeAdmin

Interface 1038
IT_MessagingBridgeAdmin::

BridgeAlreadyExists 1034
IT_MessagingBridgeAdmin::BridgeName 1033
IT_MessagingBridgeAdmin::

BridgeNameAlreadyExists 1035
IT_MessagingBridgeAdmin::

BridgeNameSeq 1033
IT_MessagingBridgeAdmin::

BridgeNotFound 1034
IT_MessagingBridgeAdmin::

CannotCreateBridge 1034
IT_MessagingBridgeAdmin::EndpointInfo 1033
IT_MessagingBridgeAdmin::

InvalidEndpoint 1035
IT_MessagingBridgeAdmin::

InvalidEndpoitCode 1033
IT_MessaingBridge::InvalidEndpoint

exception 1021
IT_Mutex class 715
~IT_Mutex() 716
IT_Mutex() constructor 716
IT_NamingContextExt Interface 857
IT_NotifyBridge

SinkEndpoint Interface 1042
IT_NotifyBridge Module 1041
IT_NotifyBridge::EndpointNotConnected 1041
IT_NotifyBridge::MappingFailure 1041
IT_NotifyBridge::SinkEndpoint::

send_events() 1042
IT_NotifyLogAdmin 1367
IT_NotifyLogAdmin::NotifyLog 1368
IT_NotifyLogAdmin::NotifyLog::
1467

Index
obtain_offered_types() 1368
IT_NotifyLogAdmin::NotifyLog::

obtain_subscribed_types() 1368
IT_NotifyLogAdmin::NotifyLogFactory 1369
IT_NotifyLogAdmin::NotifyLogFactory::

default_filter_factory 1369
IT_NotifyLogAdmin::NotifyLogFactory::

manager 1369
IT_PODMutex Structure 719
IT_PolicyBase module 525
IT_PortableServer module 665
IT_PortableServer::DispatchWorkQueuePolicy

Interface 673
IT_PortableServer::

DISPATCH_WORKQUEUE_POLICY_ID 66
7

it_prepare_statement() 1145
it_prepare_statement_with_type_and_concurren

cy() 1145
_it_proxy_for() 232
IT_PSS module 1141
IT_PSS_DB module 1195
IT_PSS_StorageHomeFactory class 1121
IT_PSS_StorageHomeFactory template 1183
IT_PSS_StorageHomeFactory()

constructor 1184
IT_PSS_StorageObjectFactory template 1187
IT_PSS_StorageObjectFactory()

constructor 1188
IT_RecursiveMutex class 723
~IT_RecursiveMutex() 724
IT_RecursiveMutex() constructor 724
IT_RecursiveMutexLocker class 727
~IT_RecursiveMutexLocker() 730
IT_RecursiveMutexLocker() constructors 729
IT_Semaphore class 733
~IT_Semaphore() 734
IT_Semaphore() constructor 733
IT_TerminationHandler class 737
IT_Thread class 739
~IT_Thread() 741
IT_Thread() constructors 740
IT_ThreadBody class 745
~IT_ThreadBody() 745
IT_ThreadFactory class 747
~IT_ThreadFactory() 748
IT_ThreadFactory() constructor 748
IT_TimedCountByNSemaphore class 751
~IT_TimedCountByNSemaphore() 753
IT_TimedCountByNSemaphore()
 1468
constructor 752
IT_TimedOneshot class 755
~IT_TimedOneshot() 756
IT_TimedOneshot() constructor 756
IT_TimedSemaphore class 761
~IT_TimedSemaphore() 762
IT_TimedSemaphore() constructor 762
IT_TSBadAlloc error class 765
IT_TSError error class 767
~IT_TSError() 768
IT_TSError() constructors 767
IT_TSErrorHandler class 771
~IT_TSErrorHandler() 771
IT_TSLogic error class 773
IT_TSRuntime error class 775
IT_TSVoidStar class 777
~IT_TSVoidStar() 778
IT_TSVoidStar() constructor 777
_it_type() 504
IT_TypedEventChannelAdmin Module 821
IT_TypedEventChannelAdmin::

TypedEventChannelFactory Interface 822
IT_TypedEventChannelAdmin::

TypedEventChannelInfo Structure 821
IT_TypedEventChannelAdmin::

TypedEventChannelInfoList Sequence 821
IT_WorkQueue 677
IT_X509CertFactory interface 1233

J
join() 741

K
kind Attribute 289
kind() 330

L
last() 1166
last_successful_refresh 1155
length Attribute 100
length() 330
LifespanPolicy class 611
LIFESPAN_POLICY_ID constant 591
LifespanPolicyValue enumeration 592
lifetime_filter attribute 887, 920
LimitingFollowTooPermissive exception 1423
link_if attribute 1431
LinkInfo 1422
LinkName 1374

Index
LinkNameSeq 1374
list_changed() 33
Listener interface 31
list_initial_services() 259
list_links() 1425
list_offers() 1384
ListOption 1439
list_proxies() 1385
list_types() 1446
_local_narrow() 504, 508, 513, 516, 520
lock() 713, 716, 719, 724, 731
lock_count() 731
Log::copy() 1343
Log::copy_with_id() 1343
Log::delete_records() 1339
Log::delete_records_by_id() 1340
Log::flush() 1343
Log::get_administrative_state() 1334
Log::get_availability_status() 1336
Log::get_capacity_alarm_thresholds() 1336
Log::get_current_size() 1333
Log::get_forwarding_state() 1334
Log::get_interval() 1335
Log::get_log_full_action() 1333
Log::get_log_qos() 1337
Log::get_max_record_life() 1332
Log::get_max_size() 1333
Log::get_n_records() 1333
Log::get_operational_state() 1335
Log::get_record_attribute() 1342
Log::get_week_mask() 1337
Log::id() 1332
Log::match() 1339
Log::my_factory() 1332
Log::query() 1338
Log::retieve() 1338
Log::set_administrative_state() 1334
Log::set_capacity_alarm_thresholds() 1336
Log::set_forwarding_state() 1335
Log::set_interval() 1335
Log::set_log_full_action() 1334
Log::set_log_qos() 1337
Log::set_max_record_life() 1332
Log::set_max_size() 1333
Log::set_record_attribute() 1341
Log::set_records_attribute() 1342
Log::set_week_mask() 1337
Log::write_recordlist() 1341
Log::write_records() 1340
LOG_ALL_EVENTS 473
LOG_ALL_INFO 473
LOG_ERROR 473
LOG_FATAL_ERROR 473
LOG_INFO 473
LOG_INFO_HIGH 473
LOG_INFO_LOW 473
LOG_INFO_MED 473
LogMgr::find_log() 1346
LogMgr::list_logs() 1346
LogMgr::list_logs_by_id() 1346
LOG_NO_EVENTS 473
LogStream Interface 487
LOG_WARNING 473
long_changed() 33
lookup() 129
lookup_id() 297
lookup_if attribute 1431
lookup_name() 130
lookup_value_factory() 260

M
make_domain_manager() 105
Manager interface 825
MandatoryProperty exception 1394
ManualWorkQueue 680

dequeue() 680
do_work() 681
shutdown() 681

ManualWorkQueueFactory 681
create_work_queue() 682

MappingFilter interface 992
MARSHAL exception 1451
marshal() 146
marshaled_exception() 505
marshaled_exception_seq sequence 505
mask_type() 1446
Master interface 1153
match() 989, 998
match_structured() 989, 999
MaxChainLengthPolicy 1299
max_follow_policy attribute 1428
max_hop_count attribute 1428
max_left() 1407, 1409
max_link_follow_policy 1419
max_list attribute 1428
max_match_card attribute 1428
max_return_card attribute 1429
max_search_card attribute 1429
Mechanism Policy 1267
Member data type 860
1469

Index
member() 459
member_count() 330
MemberId data type 859
MemberIdList data type 860
member_kind() 460
member_label() 331
member_name() 331, 460
members Attribute 181, 189, 321, 338
members() method 866
member_type() 332
member_visibility() 332
Messaging 493
m_index data type 720
MissingMandatoryProperty exception 1380
mode Attribute 101, 236
modify_constraints() 987
modify_link() 1425
modify_mapping_constraints() 995
ModuleDef Interface 207
ModuleDescription Structure 60
move() 110
move_to_current_row() 1166
move_to_insert_row() 1167
MULTIPLE_ID 591
mutex() 713, 731
MyChannel attribute 919
MyID attribute 919, 926
MyOperator attribute 920

N
name Attribute 111
name attribute 547, 1197
Name sequence 835
name() 210, 333
NameComponent structure 835
NamedValue Class 209
NameDynAnyPair Structure 385
NameDynAnyPairSeq Sequence 386
NameValuePair Structure 387
NameValuePairSeq Sequence 387
NamingContextExt interface 853
_narrow() 6, 280, 285
narrowing, defined 6
NativeDef Interface 211
nested transactions 1081
new_context() 846
new_for_consumers() 933
new_for_suppliers() 933
next() 422, 1167
next_n() 837, 1407, 1409
 1470
next_one() 838
_nil() 7, 40, 185, 210, 219, 232, 260, 280,

285, 334
NoContext Exception 602
NO_IMPLEMENT exception 1452
NO_IMPLICIT_ACTIVATION 591
NoMatchingOffers exception 1394
NO_MEMORY exception 1452
_non_existent() 232
NON_RETAIN 595
NonTxTargetPolicyValue data type 1051
NO_PERMISSION exception 1452
NO_RESOURCES exception 1452
NO_RESPONSE exception 1452
NoSuchGroup exception 862
NoSuchMember exception 861
NotConnected exception 881
NotEmpty exception 847
NotFound exception 847, 1096
NotFoundReason enumeration 848
NotifyLog::create() 1364
NotifyLog::get_filter() 1362
NotifyLog::set_filter() 1362
NotifyPublish interface 950
NotifySubscribe interface 952
NotImplemented exception 1380
NotMasked exception 1443
NotPrepared exception 1054
NotProxyOfferId exception 1403
NoTransaction exception 1054
NotSubtransaction exception 1054
NVList Class 213

O
OBJ_ADAPTER exception 1452
Object Class 221
ObjectDeactivationPolicy class 669
~ObjectDeactivationPolicy() 670
OBJECT_DEACTIVATION_POLICY_ID

constant 665
ObjectDeactivationPolicyValue

enumeration 665
object_exists() 1124
ObjectGroup Interface 863
ObjectGroupFactory Interface 869
ObjectId 260
object_id Attribute 577
ObjectId sequence 592
ObjectId type 561
ObjectIdList Sequence Class 261

Index
ObjectId_to_string() 588
ObjectId_to_wstring() 588
OBJECT_NOT_EXIST exception 1453
object_to_string() 262
obtain_notification_pull_consumer() 928
obtain_notification_pull_supplier() 921
obtain_notification_push_consumer() 928
obtain_notification_push_supplier() 922
obtain_offered_types() 888
obtain_subscription_types() 884
OctetSeq Sequence 61
Offer 1377
offer_change() 950, 971
OfferId 1374
OfferIdIterator 1409
OfferIdSeq 1374
OfferInfo structure 1393
OfferIterator 1407

destroy() 1407
OfferSeq 1374
one-phase commit 1078
OpDescriptionSeq Sequence 61
open() 706
operation attribute 571
operation() 303, 312
operation_context attribute 571
OperationDef Interface 235
OperationDescription Structure 61
OperationMode Enumeration 63
operator!=() 742
operator=() 741, 1131
operator=() Assignment Operators 318, 366
operator==() 742
operator->() 1132
ORB Class 239
ORB_CTRL_MODEL 595
orb_id attribute 561
ORBid Type 63
ORB_init() 40
ORBInitializer interface 555
ORBInitInfo interface 557
OrbixEventsAdmin::ChannelManager 785
Ordering type 494
original_type_def Attribute 83, 343
OS_error_number() 768
OTSPolicyValue data type 1048
_out types 8
out() 319, 367
own_credentials 1279
P
Parameter structure 1096
ParameterDescription Structure 63
ParameterList sequence 1097
ParameterMode Enumeration 64
params Attribute 236
ParDescriptionSeq Sequence 64
parent() 136
perform_work() 263
PERMIT 1051
PersistenceModePolicy class 671
~PersistenceModePolicy() 672
PERSISTENCE_MODE_POLICY_ID

constant 666
PersistenceModePolicyValue enumeration 666
PERSISTENT 592
PERSIST_STORE exception 1453
pick() method 864
Pid type 1097
POA Class 613
POAList sequence 593
POAManager class 639
Policy 1378
Policy Interface 273
PolicyCurrent class 279
~PolicyCurrent() 281
PolicyError Exception 65
PolicyErrorCode Type 65
PolicyFactory interface 565
PolicyList Sequence 66
PolicyManager class 283
~PolicyManager() 285
PolicyName 1375
PolicyNameSeq 1375
PolicySeq 1375
policy_type Attribute 276
PolicyType Type 66
PolicyTypeMismatch 1414
PolicyTypeSeq 67
PolicyValue 1375
PolicyValue structure 494
PolicyValueSeq sequence 494
poll_next_response() 264
poll_response() 303
PortableInterceptor module 529
PortableServer module 587
post() 734, 753, 762
post_backup() 1198
post_init() 555
postinvoke() 654
1471

Index
pre_backup() 1198
preface xxix
Preference 1412
pre_init() 556
preinvoke() 655
prepare() 304, 1078
PreparedStatement interface 1149
PREVENT 1051
previous() 1167
_primary_interface() 604
PrimitiveDef Interface 289
PrimitiveKind Enumeration 67
PrincipalAuthenticator

authenticate() 1270
principal_authenticator 1278
Priority Type 494
priority_filter 887
priority_filter attribute 920
PriorityRange structure 494
PropertNameSeq 1375
Property 1378
PropertyMode 1440
PropertyName 1375
PropertySeq 1375
PropertyTypeMismatch exception 1380
PropertyValue 1376
PropStruct 1441
PropStructSeq 1439
Proxy 1401
ProxyConsumer interface 883
proxy_if attribute 1431
ProxyInfo 1402
ProxyNotFound exception 881
ProxyOfferId exception 1395
ProxyPullConsumer interface 794, 902
ProxyPullSupplier interface 793, 896
ProxyPushConsumer interface 890
ProxyPushSupplier interface 795, 908
ProxySupplier interface 886
_ptr types 8
PullConsumer interface 804
PullConsumer::

disconnect_pull_consumer() 804
pull_structured_event() 961
PullSupplier interface 802
pull_suppliers attribute 920
push() 973
PushConsumer interface 800
PushConsumer::

disconnect_push_consumer() 800
 1472
PushConsumer::push() 800
push_structured_event() 958, 975
push_structured_events() 964, 977
PushSupplier interface 801
PushSupplier::disconnect_push_supplier() 801
push_suppliers attribute 921

Q
QOPPolicy 1273
QoSAdmin

get_qos() 1012
set_qos() 1012
validate_qos() 1013

query() 1414

R
raise() 768
random_groups() method 872
read_Abstract() 151
read_any() 151
read_any_array() 151
read_boolean() 152
read_boolean_array() 152
read_char() 153
read_char_array() 153
read_double() 153
read_double_array() 153
read_float() 154
read_float_array() 154
read_long() 155
read_long_array() 155
read_longdouble() 155
read_longlong_array() 155
read_Object() 156
read_octet() 156
read_octet_array() 156
ReadonlyDynamicProperty exception 1380
ReadonlyProperty exception 1395
read_short() 157
read_short_array() 157
read_string () 157
read_TypeCode() 158
read_ulong() 158
read_ulong_array() 158
read_ulonglong() 158
read_ulonglong_array() 159
read_ushort() 159
read_ushort_array() 159

Index
read_Value() 160
read_wchar() 160
read_wchar_array() 160
read_wstring() 161
REBIND exception 1453
rebind() 848
rebind_context() 849
RebindMode type 494
rebind_mode() 509
RebindPolicy Class 507
~RebindPolicy() 509
received_credentials 1251, 1261, 1277,

1278, 1279
received_exception attribute 536
received_exception_id attribute 537
receive_exception() 540
receive_other() 541
receive_reply() 542
receive_request() 580
receive_request_service_contexts() 580
RecoveryCoordinator class 1075
recreate() 1090
RefCountedLocalObject class 373
RefCountedLocalObject() constructor 374
RefCountedLocalObjectNC class 375
RefCountedLocalObjectNC() constructor 376
_refcount_value() 340
Reference Types 8
reference_to_id() 632
reference_to_servant() 633
refresh() 1104, 1156
refresh_row() 1167
Register

modify() 1398
Register interface 1393
register_if attribute 1432
register_initial_reference() 561
RegisterNotSupported exception 1395
register_policy_factory() 562
register_resource() 1066
register_session_factory() 1110
register_session_pool_factory() 1111
register_storage_home_factory() 1111
register_storage_object_factory() 1112
register_stream() 483
register_subtran_aware() 1067
register_synchronization() 1067
register_value_factory() 264
related documentation xxx
relative() 1168
_release() 233
release() 42, 1132
remove() 141, 219
remove_all_constraints() 988
remove_all_filters() 1004
remove_all_mapping_constraints() 998
remove_filter() 1003
remove_link() 1426
remove_listener() 30
remove_member() method 865
remove_own_credentials() 1278
_remove_ref() 341, 359, 374, 376, 1184,

1188
remove_ref() 43
remove_type() 1447
replay_completion() 1075
Replica interface 1155
ReplyHandler Base class 511
~ReplyHandler() 513
reply_status attribute 571
ReplyStatus type 530
report_event() 484, 487
report_message() 485, 488
Repository Interface 291
RepositoryId Type 68
RepositoryIdSeq Sequence 69
Request Class 299
request_id attribute 572
request_id_stem attribute 1384
RequestInfo interface 567
RequestProcessingPolicy class 645
REQUEST_PROCESSING_POLICY_ID

constant 593
RequestProcessingPolicyValue

enumeration 593
RequestSeq Sequence 265
REQUIRES 1049
reset() 757
resolve() 850
resolve_initial_references() 266, 563
resolve_str() 854
Resource class 1077
response_expected attribute 572
result Attribute 237
result attribute 573
result() 305
result_def Attribute 237
ResultSet interface 1157
resume() 1072
1473

Index
resume_connection() 916
RETAIN 595
_retn() 320, 368
return_value() 305
rewind() 423
rollback() 1072, 1079, 1086
rollback_only() 1068, 1073
rollback_subtransaction() 1082
RoutingPolicy class 515
~RoutingPolicy() 516
routing_range() 517
RoutingType type 495
RoutingTypeRange structure 496
row_deleted() 1168
row_inserted() 1168
row_updated() 1168
rr_groups() method 872
run() 267, 745

S
same_ref() 1132
scale Attribute 195
scope, configuration 21
ScopedName Type 69
SecurityLevel2

Current interface 1251, 1261
SecurityManager

get_target_credentials() 1277, 1278, 1279
own_credentials 1279
principal_authenticator 1278
remove_own_credentials() 1278

seek() 423
SelectionMethod data type 860
self() 700
sendc() 305
send_deferred() 306
send_exception() 581
sending_exception attribute 577
send_multiple_requests_deferred() 268
send_multiple_requests_oneway() 268
send_oneway() 306
send_other() 582
sendp() 306
send_poll() 542
send_reply() 583
send_request() 543
SequenceDef Interface 309
SequenceProxyPullConsumer interface 906
SequenceProxyPullSupplier interface 900
SequenceProxyPushConsumer interface 894
 1474
SequenceProxyPushSupplier interface 914
SequencePullConsumer interface 966
SequencePullSupplier interface 967
SequencePushConsumer interface 964
SequencePushSupplier interface 970
Sequences 10
Servant native type 594
ServantActivator class 649
ServantLocator Class 653
ServantManager Interface 657
ServantRetentionPolicy class 659
SERVANT_RETENTION_POLICY_ID

constant 594
ServantRetentionPolicyValue enumeration 595
servant_to_id() 633
servant_to_reference() 634
ServerRequest Class 311
ServerRequestInfo interface 575
ServerRequestInterceptor interface 579
ServiceDetail Structure 69
ServiceDetailType Type 70
ServiceInformation Structure 70
ServiceOption Type 70
ServiceType Type 71
ServiceTypeExists exception 1443
ServiceTypeName 1376
ServiceTypeNameSeq 1439
ServiceTypeRepository Interface 1439
Session interface 1117, 1173
SessionCachingPolicy 1301
SessionManager interface 1175
sessions() 1112
set() 779, 1169
set_as_string() 439
set_as_ulong() 439
set_by_name() 1169
set_def_follow_policy() 1385
set_def_hop_count() 1386
set_def_match_card() 1386
set_def_return_card() 1386
set_def_search_card() 1387
set_discriminator() 460
set_elements() 435, 447
set_elements_as_dyn_any() 435, 448
set_exception() 312
set_fetch_direction() 1169, 1180
set_fetch_size() 1170, 1181
set_filter() 485
set_length() 449
set_master() 1155

Index
set_max_follow_policy() 1387
set_max_hop_count() 1387
set_max_link_follow_policy() 1387
set_max_list() 1388
set_max_match_card() 1388
set_max_return_card() 1388
set_max_search_card() 1389
set_members() 454, 466
set_members_as_dyn_any() 455, 467
set_member_timoeout() method 867
set_one_value() 136
SetOverrideType Enumeration 71
_set_policy_overrides() 233
set_policy_overrides() 285
set_request_id_stem() 1389
set_return_type() 307
set_servant() 635
set_servant_manager() 636
set_slot() 546, 577
set_supports_dynamic_properties() 1389
set_supports_modifiable_properties() 1389
set_supports_proxy_offers() 1390
set_timeout() 1073
set_to_default_member() 461
set_to_no_active_member() 462
set_type_repos() 1390
set_value() 442
set_values() 137
SHARED 1050
ShortPid type 1097
ShortSeq Sequence 71
shutdown() 30
signal() 696, 757
SINGLE_THREAD_MODEL 596
sleep() 700
SlotId type 530
smf_start() 749
SourceEndpoint::start() 1027
SourceEndpoint::stop() 1027
SourceEndpoint::suspend() 1027
SpecifiedProps 1413
SpecifiedServiceTypes 1442
Standard Functions, all interfaces 5
start() 749, 1137
State enumeration 643
Statement interface 1177
_static_type() 1132
Status enumeration type 1046
StatusActive 1047
StatusCommitted 1047
StatusCommitting 1047
StatusMarkedRollback 1047
StatusNoTransaction 1047
StatusPrepared 1047
StatusPreparing 1047
StatusRolledBack 1047
StatusRollingBack 1047
StatusUnknown 1047
StorageHomeBase interface 1119
StorageHomeFactory native type 1121
StorageObject interface 1123, 1185
StorageObjectBase native type 1125
StorageObjectFactory native type 1127
StorageObjectRef class 1129
StorageObjectRef() 1132
string_alloc() 43
string_changed() 34
StringDef Interface 315
string_dup() 44
string_free() 44
StringName data type 855
string_to_object() 270
string_to_ObjectId() 588
StringValue Value Box 72
String_var Class 317
String_var() Constructors 319
~String_var() Destructor 320
StructDef Interface 321
StructMember Structure 73
StructMemberSeq Sequence 73
StructuredProxyPullConsumer interface 904
StructuredProxyPullSupplier interface 898
StructuredProxyPushConsumer interface 892
StructuredProxyPushSupplier interface 911
StructuredPullConsumer interface 960
StructuredPullSupplier interface 961
StructuredPushConsumer interface 958
StructuredPushSupplier interface 963
subscription_change() 952
SubsystemId data type 474
SubtransactionAwareResource class 1081
SubtransactionsUnavailable exception 1054
supend() 1194
SupplierAdmin interface 924
SupplierAdmin::obtain_pull_consumer() 797
SupplierAdmin::obtain_push_consumer() 797
SupportAttributes interface 1391
supported_interfaces Attribute 354
supports_dynamic_properties attribute 1391
supports_modifiable_properties attribute 1391
1475

Index
supports_proxy_offers attribute 1391
suspend() 1074, 1138
suspend_connection() 910, 913, 916
Synchronization class 1083
synchronization toolkit 689
synchronization() 521
sync_scope attribute 573
SyncScope type 496
SyncScopePolicy class 519
~SyncScopePolicy() 521
system exceptions 1449
SYSTEM_ID 590

T
TAG_POLICIES constant 498
target attribute 537
_target() 1133
target() 307
target_is_a() 578
target_most_derived_interface attribute 578
TargetScope enumeration 22
_target_type 1133
TCKind Enumeration 74
Terminator class 1085
The DynamicAny Module 381
The IT_CORBA Module 371
The IT_LoadBalancing module 859
The IT_Logging module 471
The IT_Naming module 857
the_activator() 637
the_name() 636
the_parent() 636
the_POAManager() 637
_this() 604
thread

errors and exceptions 692
execution modes 690
Inlined classes 691
setting an execution mode 691
Timeouts 690
wrapper classes 691

thread_failed constant 743
threading toolkit 689
ThreadPolicy class 661
THREAD_POLICY_ID constant 595
ThreadPolicyValue enumeration 595
threads_total Attribute 683
TIMEOUT exception 1453
Timestamp data type 474
to_any() 424
 1476
to_name() 855
to_string() 855
to_url() 856
TraderComponents 1431
TraderName 1376
transaction() 1139
TransactionalObject class 1087
TransactionalSession interface 1135, 1189
TransactionalSessionList sequence 1097
TransactionFactory class 1089
TRANSACTION_MODE exception 1454
TransactionPolicyValue data type 1052
TRANSACTION_REQUIRED exception 1055,

1454
TRANSACTION_ROLLEDBACK

exception 1055, 1454
TRANSACTION_UNAVAILABLE

exception 1454
TRANSIENT 592
TRANSIENT exception 1454
TrustedCAGroupPolicy 1305, 1307, 1309,

1311
trylock() 714, 717, 720, 725, 731
try_pull_structured_events() 968
trywait() 734, 753, 758, 763
TS, threading and synchronization 689
TS_error_code() 768
two-phase commit 1077
TxSessionAssociation class 1191
TxSessionAssociation() constructors 1193
Type 1170
type Attribute 102, 103, 190, 198, 310, 315,

343, 361, 363
type() 424
TypeCode Class 323
TypedConsumberAdmin::

obtain_typed_push_supplier() 811
TypedConsumerAdmin::

obtain_typed_pull_supplier() 810
type_def Attribute 102, 104, 361
TypedefDef Interface 335
TypeDescription Structure 74
TypedEventChannelFactory::

create_typed_channel() 822
TypedEventChannelFactory::

find_typed_channel() 823
TypedEventChannelFactory::

find_typed_channel_by_id() 823
TypedEventChannelFactory::

list_typed_channels() 823

Index
TypedPushConsumer::
get_typed_consumer() 814

TypedSupplierAdmin::
obtain_typed_pull_consumer() 809

TypedSupplierAdmin::
obtain_typed_push_consumer() 808

TypeId type 1098
TypeMismatch exception 30
TypeMismatch User Exception 424
type_modifier() 334
type_repos attribute 1391
TypeRepository 1376
TypeStruct 1441
typographic conventions xxx

U
ULongLongSeq Sequence 75
ULongSeq Sequence 75
Unavailable exception 1054
unbind() 851
_unchecked_narrow() 7, 281, 286
UnionDef Interface 337
UnionMember Structure 76
UnionMemberSeq Sequence 76
UNIQUE_ID 591
UNKNOWN exception 1455
unknown_adapter() 597
UnknownLinkName exception 1423
UnknownMaxLeft exception 1381
UnknownOfferId exception 1381
UnknownPropertyName exception 1395
UnknownServiceType exception 1381
UnknownTraderName exception 1396
unlock() 717, 721, 725, 732
unmarshal() 146
unmask_type() 1448
unregister_value_factory() 270
UNSHARED 1050
UnsupportedFilterableData exception 982
update_member_load() method 866
update_row() 1171
URLString data type 856
USE_ACTIVE_OBJECT_MAP_ONLY 593
USE_DEFAULT_SERVANT 594
USER_ID 590
USE_SERVANT_MANAGER 594
UShortSeq Sequence 77
V
_validate_connection() 234
validate_event_qos() 884, 888
value Attribute 104
Value Boxes 14
Value Type Quick Reference 4
value() 210, 606, 608, 610, 612, 647, 660,

662, 670, 672
ValueBase Class 339
ValueBase() Constructors 341
~ValueBase() Destructor 341
ValueBoxDef Interface 343
ValueDef Interface 345
ValueDefSeq Sequence 77
ValueDescription Structure 77
ValueFactory 357
ValueFactory Type 357
ValueFactoryBase Class 358
ValueFactoryBase() Constructor 360
~ValueFactoryBase() Destructor 360
ValueMember Structure 78
ValueMemberDef Interface 361
ValueMemberSeq Sequence 79
ValueModifier Type 80
value_type 994
ValueTypeRedefinition exception 1443
_var types 8
version Attribute 111
VersionSpec Type 80
Visibility Type 81
Vote enumeration type 1048
VoteCommit 1048, 1078
VoteReadOnly 1048, 1078
VoteRollback 1048, 1078

W
wait() 697, 707, 735, 754, 758, 763
WCharSeq Sequence 81
WellKnownAddressingPolicy class 377
~WellKnownAddressingPolicy() destructor 378
WELL_KNOWN_ADDRESSING_POLICY_ID

Constant 371
what() 769
widening, defined 6
withdraw() 1399
withdraw_proxy() 1405
withdraw_using_constraint() 1400
WorkItem 677

Destroy 678
execute() 677
1477

Index
work_pending() 270
WorkQueue 678

activate() 679
deactivate() 680
enqueue() 678
flush() 680
is_empty() 679
is_full() 679

WorkQueue::enqueue_immediate() 679
WorkQueue::owns_current_thread() 680
WorkQueuePolicy 686
write_Abstract() 165
write_any() 165
write_any_array() 166
write_boolean() 166
write_boolean_array() 166
write_char() 167
write_char_array() 167
write_double() 168
write_double_array() 168
write_float() 168
write_float_array() 169
write_long() 169
write_long_array() 169
write_longdouble() 170
write_longlong() 170
write_longlong_array() 170
write_Object() 171
write_octet() 171
write_octet_array() 171
write_short() 172
write_short_array() 172
write_string() 173
write_TypeCode() 173
write_ulong() 173
write_ulong_array() 174
write_ulonglong() 174
write_ulonglong_array() 174
write_ushort() 175
write_ushort_array() 175
write_Value() 176
write_wchar() 176
write_wchar_array() 176
write_wstring() 177
WstringDef Interface 363
wstring_to_ObjectId() 589
WStringValue Value Box 81
WString_var Class 365
WString_var() Constructors 367
~WString_var() Destructor 368
 1478
X
X509Certificate interface

convert() 1228
get_der_serial_number() 1229, 1234
get_extension_string 1229
get_issuer() 1229
get_issuer_dn() 1229, 1230
get_not_after() 1230
get_not_before() 1230
get_serial_number() 1230
get_subject() 1231
get_subject_dn() 1231
IntegerTooLarge exception 1219, 1232

Y
yield() 701
YieldRef enumeration 1098

	List of Tables
	Preface
	Audience
	Organization of this Reference
	Related Documentation
	Document Conventions

	Introduction
	Interface Repository Quick Reference
	DII and DSI Quick Reference
	Value Type Quick Reference
	About Standard Functions for all Interfaces
	_duplicate()
	_narrow()
	_nil()
	_unchecked_narrow()

	About Reference Types _ptr, _var, and _out
	About Sequences
	About Value Boxes

	IT_Config Module
	IT_Config Overview
	IT_Config::ConfigList Sequence
	IT_Config::TargetScope Enumeration

	IT_Config::Configuration Interface
	Configuration::add_listener()
	Configuration::get_boolean()
	Configuration::get_double()
	Configuration::get_list()
	Configuration::get_long()
	Configuration::get_string()
	Configuration::remove_listener()
	Configuration::shutdown()
	Configuration::TypeMismatch Exception

	IT_Config::Listener Interface
	Listener::boolean_changed()
	Listener::double_changed()
	Listener::list_changed()
	Listener::long_changed()
	Listener::string_changed()

	CORBA Module
	CORBA Overview
	Common CORBA Methods
	CORBA::add_ref()
	CORBA::_duplicate()
	CORBA::is_nil()
	CORBA::_nil()
	CORBA::ORB_init()
	CORBA::release()
	CORBA::remove_ref()
	CORBA::string_alloc()
	CORBA::string_dup()
	CORBA::string_free()

	Common CORBA Data Types
	CORBA::AnySeq Sequence
	CORBA::AttrDescriptionSeq Sequence
	CORBA::AttributeDescription Structure
	CORBA::AttributeMode Enumeration
	CORBA::BooleanSeq Sequence
	CORBA::CharSeq Sequence
	CORBA::CompletionStatus Enumeration
	CORBA::ConstantDescription Structure
	CORBA::ContainedSeq Sequence
	CORBA::ContextIdentifier Type
	CORBA::ContextIdSeq Sequence
	CORBA::DefinitionKind Enumeration
	CORBA::DomainManagersList Sequence
	CORBA::DoubleSeq Sequence
	CORBA::EnumMemberSeq Sequence
	CORBA::ExcDescriptionSeq Sequence
	CORBA::ExceptionDefSeq Sequence
	CORBA::ExceptionDescription
	CORBA::ExceptionType Enumeration
	CORBA::Flags Type
	CORBA::FloatSeq Sequence
	CORBA::Identifier Type
	CORBA::Initializer Structure
	CORBA::InitializerSeq Sequence
	CORBA::InterfaceDefSeq Sequence
	CORBA::InterfaceDescription Structure
	CORBA::InvalidPolicies Exception
	CORBA::ModuleDescription Structure
	CORBA::OctetSeq Sequence
	CORBA::OpDescriptionSeq Sequence
	CORBA::OperationDescription Structure
	CORBA::OperationMode Enumeration
	CORBA::ORBid Type
	CORBA::ParameterDescription Structure
	CORBA::ParameterMode Enumeration
	CORBA::ParDescriptionSeq Sequence
	CORBA::PolicyError Exception
	CORBA::PolicyErrorCode Type
	CORBA::PolicyList Sequence
	CORBA::PolicyType Type
	CORBA::PolicyTypeSeq Sequence
	CORBA::PrimitiveKind Enumeration
	CORBA::RepositoryId Type
	CORBA::RepositoryIdSeq Sequence
	CORBA::ScopedName Type
	CORBA::ServiceDetail Structure
	CORBA::ServiceDetailType Type
	CORBA::ServiceInformation Structure
	CORBA::ServiceOption Type
	CORBA::ServiceType Type
	CORBA::SetOverrideType Enumeration
	CORBA::ShortSeq Sequence
	CORBA::StringValue Value Box
	CORBA::StructMember Structure
	CORBA::StructMemberSeq Sequence
	CORBA::TCKind Enumeration
	CORBA::TypeDescription Structure
	CORBA::ULongLongSeq Sequence
	CORBA::ULongSeq Sequence
	CORBA::UnionMember Structure
	CORBA::UnionMemberSeq Sequence
	CORBA::UShortSeq Sequence
	CORBA::ValueDefSeq Sequence
	CORBA::ValueDescription Structure
	CORBA::ValueMember Structure
	CORBA::ValueMemberSeq Sequence
	CORBA::ValueModifier Type
	CORBA::VersionSpec Type
	CORBA::Visibility Type
	CORBA::WCharSeq Sequence
	CORBA::WStringValue Value Box

	CORBA::AliasDef Interface
	AliasDef::describe()
	AliasDef::original_type_def Attribute

	CORBA::Any Class
	Any::Any() Constructors
	Any::~Any() Destructor
	Any::from_type Structure
	Any::it_get_streamable()
	Any::it_set_streamable()
	Any::it_take_streamable()
	Any::operator=()
	Any::to_type Structure
	Any::type()

	CORBA::ArrayDef Interface
	ArrayDef::element_type Attribute
	ArrayDef::element_type_def Attribute
	ArrayDef::length Attribute

	CORBA::AttributeDef Interface
	AttributeDef::describe()
	AttributeDef::mode Attribute
	AttributeDef::type Attribute
	AttributeDef::type_def Attribute

	CORBA::ConstantDef Interface
	ConstantDef::describe()
	ConstantDef::type Attribute
	ConstantDef::type_def Attribute
	ConstantDef::value Attribute

	CORBA::ConstructionPolicy Interface
	ConstructionPolicy::make_domain_manager()

	CORBA::Contained Interface
	Contained::absolute_name Attribute
	Contained::containing_repository Attribute
	Contained::defined_in Attribute
	Contained::describe()
	Contained::Description Structure
	Contained::id Attribute
	Contained::move()
	Contained::name Attribute
	Contained::version Attribute

	CORBA::Container Interface
	Container::contents()
	Container::create_alias()
	Container::create_constant()
	Container::create_enum()
	Container::create_exception()
	Container::create_interface()
	Container::create_module()
	Container::create_native()
	Container::create_struct()
	Container::create_union()
	Container::create_value()
	Container::create_value_box()
	Container::describe_contents()
	Container::Description Structure
	Container::DescriptionSeq Sequence
	Container::lookup()
	Container::lookup_name()

	CORBA::Context Class
	Context::context_name()
	Context::create_child()
	Context::delete_values()
	Context::get_values()
	Context::parent()
	Context::set_one_value()
	Context::set_values()

	CORBA::ContextList Class
	ContextList::add()
	ContextList::add_consume()
	ContextList::count()
	ContextList::item()
	ContextList::remove()

	CORBA::Current Interface
	CORBA::CustomMarshal Value Type
	CustomMarshal::marshal()
	CustomMarshal::unmarshal()

	CORBA::DataInputStream Value Type
	DataInputStreamread_Abstract()
	DataInputStream::read_any()
	DataInputStream::read_any_array()
	DataInputStream::read_boolean()
	DataInputStream::read_boolean_array()
	DataInputStream::read_char()
	DataInputStream::read_char_array()
	DataInputStream::read_double()
	DataInputStream::read_double_array()
	DataInputStream::read_float()
	DataInputStream::read_float_array()
	DataInputStream::read_long()
	DataInputStream::read_long_array()
	DataInputStream::read_longdouble()
	DataInputStream::read_longlong_array()
	DataInputStream::read_Object()
	DataInputStream::read_octet()
	DataInputStream::read_octet_array()
	DataInputStream::read_short()
	DataInputStream::read_short_array()
	DataInputStream::read_string()
	DataInputStream::read_TypeCode()
	DataInputStream::read_ulong()
	DataInputStream::read_ulong_array()
	DataInputStream::read_ulonglong()
	DataInputStream::read_ulonglong_array()
	DataInputStream::read_ushort()
	DataInputStream::read_ushort_array()
	DataInputStream::read_Value()
	DataInputStream::read_wchar()
	DataInputStream::read_wchar_array()
	DataInputStream::read_wstring()

	CORBA::DataOutputStream Value Type
	DataOutputStream::write_Abstract()
	DataOutputStream::write_any()
	DataOutputStream::write_any_array()
	DataOutputStream::write_boolean()
	DataOutputStream::write_boolean_array()
	DataOutputStream::write_char()
	DataOutputStream::write_char_array()
	DataOutputStream::write_double()
	DataOutputStream::write_double_array()
	DataOutputStream::write_float()
	DataOutputStream::write_float_array()
	DataOutputStream::write_long()
	DataOutputStream::write_long_array()
	DataOutputStream::write_longdouble()
	DataOutputStream::write_longlong()
	DataOutputStream::write_longlong_array()
	DataOutputStream::write_Object()
	DataOutputStream::write_octet()
	DataOutputStream::write_octet_array()
	DataOutputStream::write_short()
	DataOutputStream::write_short_array()
	DataOutputStream::write_string()
	DataOutputStream::write_TypeCode()
	DataOutputStream::write_ulong()
	DataOutputStream::write_ulong_array()
	DataOutputStream::write_ulonglong()
	DataOutputStream::write_ulonglong_array()
	DataOutputStream::write_ushort()
	DataOutputStream::write_ushort_array()
	DataOutputStream::write_Value()
	DataOutputStream::write_wchar()
	DataOutputStream::write_wchar_array()
	DataOutputStream::write_wstring()

	CORBA::DomainManager Interface
	DomainManager::get_domain_policy()

	CORBA::EnumDef Interface
	EnumDef::describe()
	EnumDef::members Attribute

	CORBA::Environment Class
	Environment::clear()
	Environment::_duplicate()
	Environment::exception()
	Environment::_nil()

	CORBA::Exception Class
	CORBA::ExceptionDef Interface
	ExceptionDef::describe()
	ExceptionDef::members Attribute
	ExceptionDef::type Attribute

	CORBA::ExceptionList Class
	ExceptionList::add()
	ExceptionList::add_consume()
	ExceptionList::count()
	ExceptionList::item()
	ExceptionList::remove()

	CORBA::FixedDef Interface
	FixedDef::digits Attribute
	FixedDef::scale Attribute

	CORBA::IDLType Interface
	IDLType::type Attribute

	CORBA::InterfaceDef Interface
	InterfaceDef::base_interfaces Attribute
	InterfaceDef::create_attribute()
	InterfaceDef::create_operation()
	InterfaceDef::describe()
	InterfaceDef::describe_interface()
	InterfaceDef::FullInterfaceDescription Structure
	InterfaceDef::is_a()

	CORBA::AbstractInterfaceDef Interface
	CORBA::IRObject Interface
	IRObject::def_kind Attribute
	IRObject::destroy()

	CORBA::ModuleDef Interface
	ModuleDef::describe()

	CORBA::NamedValue Class
	NamedValue::_duplicate()
	NamedValue::flags()
	NamedValue::name()
	NamedValue:: _nil()
	NamedValue::value()

	CORBA::NativeDef Interface
	CORBA::NVList Class
	NVList::count()
	NVList::add()
	NVList::add_item()
	NVList::add_item_consume()
	NVList::add_value()
	NVList::add_value_consume()
	NVList::count()
	NVList::_duplicate()
	NVList::item()
	NVList::_nil()
	NVList::remove()

	CORBA::Object Class
	Object::_create_request()
	Object::_duplicate()
	Object::_get_client_policy()
	Object::_get_domain_managers()
	Object::_get_interface()
	Object::_get_policy()
	Object::_get_policy_overrides()
	Object::_hash()
	Object::_is_a()
	Object::_is_equivalent()
	Object::_it_get_orb()
	Object::_it_get_type_id()
	Object::_it_marshal()
	Object::_it_proxy_for()
	Object::_nil()
	Object::_non_existent()
	Object::_request()
	Object::_set_policy_overrides()
	Object::_validate_connection()

	CORBA::OperationDef Interface
	OperationDef::contexts Attribute
	OperationDef::exceptions Attribute
	OperationDef::describe()
	OperationDef::mode Attribute
	OperationDef::params Attribute
	OperationDef::result Attribute
	OperationDef::result_def Attribute

	CORBA::ORB Class
	ORB::create_abstract_interface_tc()
	ORB::create_alias_tc()
	ORB::create_array_tc()
	ORB::create_context_list()
	ORB::create_enum_tc()
	ORB::create_environment()
	ORB::create_exception_list()
	ORB::create_exception_tc()
	ORB::create_fixed_tc()
	ORB::create_interface_tc()
	ORB::create_list()
	ORB::create_named_value()
	ORB::create_native_tc()
	ORB::create_operation_list()
	ORB::create_policy()
	ORB::create_recursive_tc()
	ORB::create_sequence_tc()
	ORB::create_string_tc()
	ORB::create_struct_tc()
	ORB::create_union_tc()
	ORB::create_value_box_tc()
	ORB::create_value_tc()
	ORB::create_wstring_tc()
	ORB::destroy()
	ORB::_duplicate()
	ORB::get_default_context()
	ORB::get_next_response()
	ORB::get_service_information()
	ORB::list_initial_services()
	ORB::lookup_value_factory()
	Object::_nil()
	ORB::ObjectId
	ORB::ObjectIdList Sequence Class
	ORB::object_to_string()
	ORB::perform_work()
	ORB::poll_next_response()
	ORB::register_value_factory()
	ORB::RequestSeq Sequence
	ORB::resolve_initial_references()
	ORB::run()
	ORB::send_multiple_requests_deferred()
	ORB::send_multiple_requests_oneway()
	ORB::shutdown()
	ORB::string_to_object()
	ORB::unregister_value_factory()
	ORB::work_pending()

	CORBA::Policy Interface
	Quality of Service Framework
	POA Policies for Servers
	ORB-level Policies for Clients
	Thread-level Policies for Clients
	Object-level Policies for Clients

	Policy Methods
	Policy::policy_type Attribute
	Policy::copy()
	Policy::destroy()

	CORBA::PolicyCurrent Class
	PolicyCurrent::_duplicate()
	PolicyCurrent::_narrow()
	PolicyCurrent::_nil()
	PolicyCurrent::~PolicyCurrent() Destructor
	PolicyCurrent::_unchecked_narrow()

	CORBA::PolicyManager Class
	PolicyManager::_duplicate()
	PolicyManager::get_policy_overrides()
	PolicyManager::_narrow()
	PolicyManager::_nil()
	PolicyManager::~PolicyManager() Destructor
	PolicyManager::set_policy_overrides()
	PolicyManager::_unchecked_narrow()

	CORBA::PrimitiveDef Interface
	PrimitiveDef::kind Attribute

	CORBA::Repository Interface
	Repository::create_array()
	Repository::create_fixed()
	Repository::create_sequence()
	Repository::create_string()
	Repository::create_wstring()
	Repository::describe_contents()
	Repository::get_canonical_typecode()
	Repository::get_primitive()
	Repository::lookup_id()

	CORBA::Request Class
	Request::add_in_arg()
	Request::add_inout_arg()
	Request::add_out_arg()
	Request::arguments()
	Request::contexts()
	Request::ctx()
	Request::env()
	Request::exceptions()
	Request::get_response()
	Request::invoke()
	Request::operation()
	Request::poll_response()
	Request::prepare()
	Request::result()
	Request::return_value()
	Request::sendc()
	Request::send_deferred()
	Request::send_oneway()
	Request::sendp()
	Request::set_return_type()
	Request::target()

	CORBA::SequenceDef Interface
	SequenceDef::bound Attribute
	SequenceDef::element_type Attribute
	SequenceDef::element_type_def Attribute
	SequenceDef::type Attribute

	CORBA::ServerRequest Class
	ServerRequest::arguments()
	ServerRequest::ctx()
	ServerRequest::operation()
	ServerRequest::set_exception()
	ServerRequest::set_result()

	CORBA::StringDef Interface
	StringDef::bound Attribute
	StringDef::type Attribute

	CORBA::String_var Class
	String_var::char*()
	String_var::in()
	String_var::inout()
	String_var::operator=() Assignment Operators
	String_var::operator[]() Subscript Operators
	String_var::out()
	String_var::String_var() Constructors
	String_var::~String_var() Destructor
	String_var::_retn()

	CORBA::StructDef Interface
	StructDef::describe()
	StructDef::members Attribute

	CORBA::TypeCode Class
	TypeCode::BadKind Exception
	TypeCode::Bounds Exception
	TypeCode::concrete_base_type()
	TypeCode::content_type()
	TypeCode::default_index()
	TypeCode::discriminator_type()
	TypeCode::_duplicate()
	TypeCode::equal()
	TypeCode::equivalent()
	TypeCode::fixed_digits()
	TypeCode::fixed_scale()
	TypeCode::get_compact_typecode()
	TypeCode::id()
	TypeCode::kind()
	TypeCode::length()
	TypeCode::member_count()
	TypeCode::member_label()
	TypeCode::member_name()
	TypeCode::member_type()
	TypeCode::member_visibility()
	CORBA::TypeCode::member_count()TypeCode::name()
	TypeCode::_nil()
	TypeCode::type_modifier()

	CORBA::TypedefDef Interface
	TypedefDef::describe()

	CORBA::UnionDef Interface
	UnionDef::describe()
	UnionDef::discriminator_type Attribute
	UnionDef::discriminator_type_def Attribute
	UnionDef::members Attribute

	CORBA::ValueBase Class
	ValueBase::_add_ref()
	ValueBase::_copy_value()
	ValueBase::_downcast()
	ValueBase::_refcount_value()
	ValueBase::_remove_ref()
	ValueBase::~ValueBase() Destructor
	ValueBase::ValueBase() Constructors

	CORBA::ValueBoxDef Interface
	ValueBoxDef::original_type_def Attribute
	ValueBoxDef::type Attribute

	CORBA::ValueDef Interface
	ValueDef::abstract_base_values Attribute
	ValueDef::base_value Attribute
	ValueDef::contents()
	ValueDef::create_attribute()
	ValueDef::create_operation()
	ValueDef::create_value_member()
	ValueDef::describe()
	ValueDef::describe_value()
	ValueDef::FullValueDescription Structure
	ValueDef::initializers Attribute
	ValueDef::is_a()
	ValueDef::is_abstract Attribute
	ValueDef::is_custom Attribute
	ValueDef::is_truncatable Attribute
	ValueDef::supported_interfaces Attribute

	CORBA::ValueFactory
	CORBA::ValueFactory Type
	CORBA::ValueFactoryBase Class
	ValueFactoryBase::_add_ref()
	ValueFactoryBase::_downcast()
	ValueFactoryBase::_remove_ref()
	ValueFactoryBase::~ValueFactoryBase() Destructor
	ValueFactoryBase::ValueFactoryBase() Constructor

	CORBA::ValueMemberDef Interface
	ValueMemberDef::access Attribute
	ValueMemberDef::type Attribute
	ValueMemberDef::type_def Attribute

	CORBA::WstringDef Interface
	WstringDef::bound Attribute
	WstringDef::type Attribute

	CORBA::WString_var Class
	WString_var::char*()
	WString_var::in()
	WString_var::inout()
	WString_var::operator=() Assignment Operators
	WString_var::operator[]() Subscript Operators
	WString_var::out()
	WString_var::WString_var() Constructors
	WString_var::~WString_var() Destructor
	WString_var::_retn()

	IT_CORBA Module
	IT_CORBA Overview
	IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID Constant

	IT_CORBA::RefCountedLocalObject Class
	RefCountedLocalObject::_add_ref()
	RefCountedLocalObject::_destroy_this()
	RefCountedLocalObject::RefCountedLocalObject() Constructor
	RefCountedLocalObject::_remove_ref()

	IT_CORBA:: RefCountedLocalObjectNC Class
	RefCountedLocalObjectNC::_add_ref()
	RefCountedLocalObjectNC::_destroy_this()
	RefCountedLocalObjectNC::RefCountedLocalObjectNC() Constructor
	RefCountedLocalObjectNC::_remove_ref()

	IT_CORBA:: WellKnownAddressingPolicy Class
	WellKnownAddressingPolicy::config_scope()
	WellKnownAddressingPolicy::~WellKnownAddressingPolicy() Destructor

	DynamicAny Module
	DynamicAny Overview
	DynamicAny::AnySeq Sequence
	DynamicAny::DynAnySeq Sequence
	DynamicAny::FieldName Type
	DynamicAny::NameDynAnyPair Structure
	DynamicAny::NameDynAnyPairSeq Sequence
	DynamicAny::NameValuePair Structure
	DynamicAny::NameValuePairSeq Sequence

	DynamicAny::DynAny Class
	DynAny::assign()
	DynAny::component_count()
	DynAny::copy()
	DynAny::current_component()
	DynAny::destroy()
	DynAny::~DynAny() Destructor
	DynAny::equal()
	DynAny::from_any()
	DynAny::get_any()
	DynAny::get_boolean()
	DynAny::get_char()
	DynAny::get_double()
	DynAny::get_dyn_any()
	DynAny::get_float()
	DynAny::get_long()
	DynAny::get_longdouble()
	DynAny::get_longlong()
	DynAny::get_octet()
	DynAny::get_reference()
	DynAny::get_short()
	DynAny::get_string()
	DynAny::get_typecode()
	DynAny::get_ulong()
	DynAny::get_ulonglong()
	DynAny::get_ushort()
	DynAny::get_val()
	DynAny::get_wchar()
	DynAny::get_wstring()
	DynAny::insert_any()
	DynAny::insert_boolean()
	DynAny::insert_char()
	DynAny::insert_double()
	DynAny::insert_dyn_any()
	DynAny::insert_float()
	DynAny::insert_long()
	DynAny::insert_longdouble()
	DynAny::insert_long long()
	DynAny::insert_octet()
	DynAny::insert_reference()
	DynAny::insert_short()
	DynAny::insert_string()
	DynAny::insert_typecode()
	DynAny::insert_ulong()
	DynAny::insert_ulonglong()
	DynAny::insert_ushort()
	DynAny::insert_val()
	DynAny::insert_wchar()
	DynAny::insert_wstring()
	DynAny::InvalidValue User Exception
	DynAny::next()
	DynAny::rewind()
	DynAny::seek()
	DynAny::to_any()
	DynAny::type()
	DynAny::TypeMismatch User Exception

	DynamicAny::DynAnyFactory Class
	DynAnyFactory::create_dyn_any()
	DynAnyFactory::create_dyn_any_from_type_code()
	DynAnyFactory::~DynAnyFactory() Destructor
	DynAnyFactory::InconsistentTypeCode User Exception Class

	DynamicAny::DynArray Class
	DynArray::~DynArray() Destructor
	DynArray::get_elements()
	DynArray::get_elements_as_dyn_any()
	DynArray::set_elements()
	DynArray::set_elements_as_dyn_any()

	DynamicAny::DynEnum Class
	DynEnum::~DynEnum() Destructor
	DynEnum::get_as_string()
	DynEnum::get_as_ulong()
	DynEnum::set_as_string()
	DynEnum::set_as_ulong()

	DynamicAny::DynFixed Class
	DynFixed::~DynFixed() Destructor
	DynFixed::get_value()
	DynFixed::set_value()

	DynamicAny::DynSequence Class
	DynSequence::~DynSequence()
	DynSequence::get_elements()
	DynSequence::get_elements_as_dyn_any()
	DynSequence::get_length()
	DynSequence::set_elements()
	DynSequence::set_elements_as_dyn_any()
	DynSequence::set_length()

	DynamicAny::DynStruct Class
	DynStruct::current_member_kind()
	DynStruct::current_member_name()
	DynStruct::~DynStruct()
	DynStruct::get_members()
	DynStruct::get_members_as_dyn_any()
	DynStruct::set_members()
	DynStruct::set_members_as_dyn_any()

	DynamicAny::DynUnion Class
	DynUnion::discriminator_kind()
	DynUnion::~DynUnion()
	DynUnion::get_discriminator()
	DynUnion::has_no_active_member()
	DynUnion::member()
	DynUnion::member_kind()
	DynUnion::member_name()
	DynUnion::set_discriminator()
	DynUnion::set_to_default_member()
	DynUnion::set_to_no_active_member()

	DynamicAny::DynValue Class
	DynValue::current_member_kind()
	DynValue::current_member_name()
	DynValue:: ~DynValue()
	DynValue::get_members()
	DynValue::get_members_as_dyn_any()
	DynValue::set_members()
	DynValue::set_members_as_dyn_any()

	IT_Logging Module
	IT_Logging Overview
	IT_Logging::ApplicationId Data Type
	IT_Logging::EventId Data Type
	IT_Logging::EventParameters Data Type
	IT_Logging::EventPriority Data Type
	IT_Logging::format_message()
	IT_Logging::SubsystemId Data Type
	IT_Logging::Timestamp Data Type
	IT_LOG_MESSAGE() Macro
	IT_LOG_MESSAGE_1() Macro
	IT_LOG_MESSAGE_2() Macro
	IT_LOG_MESSAGE_3() Macro
	IT_LOG_MESSAGE_4() Macro
	IT_LOG_MESSAGE_5() Macro

	IT_Logging::EventLog Interface
	EventLog::clear_filter()
	EventLog::expand_filter()
	EventLog::get_filter()
	EventLog::register_stream()
	EventLog::report_event()
	EventLog::report_message()
	EventLog::set_filter()

	IT_Logging::LogStream Interface
	LogStream::report_event()
	LogStream::report_message()

	Messaging Module
	Messaging Overview
	Messaging::INVOCATION_POLICIES Constant
	Messaging::RebindMode Type
	Messaging::RoutingType Type
	Messaging::RoutingTypeRange Structure
	Messaging::SyncScope Type
	Messaging::TAG_POLICIES Constant

	Messaging::ExceptionHolder Value Type
	ExceptionHolder::byte_order()
	ExceptionHolder::_downcast()
	ExceptionHolder::ExceptionHolder() Constructors
	ExceptionHolder::~ExceptionHolder() Destructor
	ExceptionHolder::get_exception()
	ExceptionHolder::get_exception_with_list()
	ExceptionHolder::is_system_exception()
	ExceptionHolder::_it_demarshal_value()
	ExceptionHolder::_it_get_fw_type_id()
	ExceptionHolder::_it_get_safe_bases()
	ExceptionHolder::_it_marshal_value()
	ExceptionHolder::_it_type()
	ExceptionHolder::_local_narrow()
	ExceptionHolder::marshaled_exception()
	ExceptionHolder::marshaled_exception_seq Sequence

	Messaging::RebindPolicy Class
	RebindPolicy::_local_narrow()
	RebindPolicy::rebind_mode()
	RebindPolicy::~RebindPolicy() Destructor

	Messaging::ReplyHandler Base Class
	ReplyHandler::_local_narrow()
	ReplyHandler::~ReplyHandler() Destructor

	Messaging::RoutingPolicy Class
	RoutingPolicy::_local_narrow()
	RoutingPolicy::~RoutingPolicy() Destructor
	RoutingPolicy::routing_range()

	Messaging::SyncScopePolicy Class
	SyncScopePolicy::_local_narrow()
	SyncScopePolicy::synchronization()
	SyncScopePolicy::~SyncScopePolicy() Destructor

	IT_PolicyBase Module
	IT_PolicyBase Overview
	IT_PolicyBase::IONA_POLICY_ID

	PortableInterceptor Module
	PortableInterceptor Module
	PortableInterceptor::ForwardRequest Exception
	PortableInterceptor::InvalidSlot Exception
	PortableInterceptor::ReplyStatus Type
	PortableInterceptor::SlotId Type

	PortableInterceptor:: ClientRequestInfo Interface
	ClientRequestInfo::add_request_service_context()
	ClientRequestInfo::effective_profile Attribute
	ClientRequestInfo::effective_target Attribute
	ClientRequestInfo::get_effective_component()
	ClientRequestInfo::get_effective_components()
	ClientRequestInfo::get_request_policy()
	ClientRequestInfo::received_exception Attribute
	ClientRequestInfo::received_exception_id Attribute
	ClientRequestInfo::target Attribute

	PortableInterceptor:: ClientRequestInterceptor Interface
	ClientRequestInterceptor::receive_exception()
	ClientRequestInterceptor::receive_other()
	ClientRequestInterceptor::receive_reply()
	ClientRequestInterceptor::send_poll()
	ClientRequestInterceptor::send_request()

	PortableInterceptor::Current Interface
	Current::get_slot()
	Current::set_slot()

	PortableInterceptor::Interceptor Interface
	Interceptor::name Attribute

	PortableInterceptor::IORInfo Interface
	IORInfo::add_ior_component()
	IORInfo::add_ior_component_to_profile()
	.IORInfo::get_effective_policy()

	PortableInterceptor::IORInterceptor Interface
	IORInterceptor::establish_components()

	PortableInterceptor::ORBInitializer Interface
	ORBInitializer::post_init()
	ORBInitializer::pre_init()

	PortableInterceptor::ORBInitInfo Interface
	ORBInitInfo::add_client_request_interceptor()
	ORBInitInfo::add_ior_interceptor()
	ORBInitInfo:add_server_request_interceptor()
	ORBInitInfo::allocate_slot_id()
	ORBInitInfo::arguments Attribute
	ORBInitInfo::codec_factory Attribute
	ORBInitInfo::DuplicateName Exception
	ORBInitInfo::InvalidName Exception
	ORBInitInfo::ObjectId Type
	ORBInitInfo::orb_id Attribute
	ORBInitInfo::register_initial_reference()
	ORBInitInfo::register_policy_factory()
	ORBInitInfo::resolve_initial_references()

	PortableInterceptor::PolicyFactory Interface
	PolicyFactory::create_policy()

	PortableInterceptor::RequestInfo Interface
	RequestInfo::arguments Attribute
	RequestInfo::contexts Attribute
	RequestInfo::exceptions Attribute
	RequestInfo::forward_reference Attribute
	RequestInfo::get_reply_service_context()
	RequestInfo::get_request_service_context()
	RequestInfo::get_slot()
	RequestInfo::operation Attribute
	RequestInfo::operation_context Attribute
	RequestInfo::reply_status Attribute
	RequestInfo::request_id Attribute
	RequestInfo::response_expected Attribute
	RequestInfo::result Attribute
	RequestInfo::sync_scope Attribute

	PortableInterceptor:: ServerRequestInfo Interface
	ServerRequestInfo::adapter_id Attribute
	ServerRequestInfo::add_reply_service_context()
	ServerRequestInfo::get_server_policy()
	ServerRequestInfo::object_id Attribute
	ServerRequestInfo::sending_exception Attribute
	ServerRequestInfo::set_slot()
	ServerRequestInfo::target_is_a()
	ServerRequestInfo::target_most_derived_interface Attribute

	PortableInterceptor:: ServerRequestInterceptor Interface
	ServerRequestInterceptor::receive_request()
	ServerRequestInterceptor::receive_request_service_contexts()
	ServerRequestInterceptor::send_exception()
	ServerRequestInterceptor::send_other()
	ServerRequestInterceptor::send_reply()

	PortableServer Module
	PortableServer Overview
	PortableServer Conversion Functions
	ObjectId_to_string()
	ObjectId_to_wstring()
	string_to_ObjectId()
	wstring_to_ObjectId()

	PortableServer Data Types, Constants, and Exceptions
	PortableServer::ForwardRequest Exception
	PortableServer::ID_ASSIGNMENT_POLICY_ID Constant
	PortableServer::IdAssignmentPolicyValue Enumeration
	PortableServer::ID_UNIQUENESS_POLICY_ID Constant
	PortableServer::IdUniquenessPolicyValue Enumeration
	PortableServer::IMPLICIT_ACTIVATION_POLICY_ID Constant
	PortableServer::ImplicitActivationPolicyValue Enumeration
	PortableServer::LIFESPAN_POLICY_ID Constant
	PortableServer::LifespanPolicyValue Enumeration
	PortableServer::ObjectId Sequence
	PortableServer::POAList Sequence
	PortableServer::REQUEST_PROCESSING_POLICY_ID Constant
	PortableServer::RequestProcessingPolicyValue Enumeration
	PortableServer::Servant Native Type
	PortableServer::SERVANT_RETENTION_POLICY_ID Constant
	PortableServer::ServantRetentionPolicyValue Enumeration
	PortableServer::THREAD_POLICY_ID Constant
	PortableServer::ThreadPolicyValue Enumeration

	PortableServer::AdapterActivator Interface
	AdapterActivator::unknown_adapter()

	PortableServer::Current Interface
	Current::get_object_id()
	Current::get_POA()
	Current::NoContext Exception

	PortableServer:: DynamicImplementation Class
	DynamicImplementation::invoke()
	DynamicImplementation::_primary_interface()
	DynamicImplementation::_this()

	PortableServer::IdAssignmentPolicy Interface
	IdAssignmentPolicy::value()

	PortableServer::IdUniquenessPolicy Interface
	IdUniquenessPolicy::value()

	PortableServer:: ImplicitActivationPolicy Interface
	ImplicitActivationPolicy::value()

	PortableServer::LifespanPolicy Interface
	LifespanPolicy::value()

	PortableServer::POA Interface
	POA::activate_object()
	POA::activate_object_with_id()
	POA::create_id_assignment_policy()
	POA::create_id_uniqueness_policy()
	POA::create_implicit_activation_policy()
	POA::create_lifespan_policy()
	POA::create_POA()
	POA::create_reference()
	POA::create_reference_with_id()
	POA::create_request_processing_policy()
	POA::create_servant_retention_policy()
	POA::create_thread_policy()
	POA::deactivate_object()
	POA::destroy()
	POA::find_POA()
	POA::get_servant()
	POA::get_servant_manager()
	POA::id_to_reference()
	POA::id_to_servant()
	POA::reference_to_id()
	POA::reference_to_servant()
	POA::servant_to_id()
	POA::servant_to_reference()
	POA::set_servant()
	POA::set_servant_manager()
	POA::the_name()
	POA::the_parent()
	POA::the_POAManager()
	POA::the_activator()

	PortableServer::POAManager Interface
	POAManager::activate()
	POAManager::AdapterInactive Exception
	POAManager::deactivate()
	POAManager::discard_requests()
	POAManager::get_state()
	POAManager::hold_requests()
	POAManager::State Enumeration

	PortableServer:: RequestProcessingPolicy Interface
	RequestProcessingPolicy::value()

	PortableServer::ServantActivator Interface
	ServantActivator::etherealize()
	ServantActivator::incarnate()

	PortableServer::ServantLocator Interface
	ServantLocator::Cookie Native Type
	ServantLocator::postinvoke()
	ServantLocator::preinvoke()

	PortableServer::ServantManager Interface
	PortableServer:: ServantRetentionPolicy Interface
	ServantRetentionPolicy::value()

	PortableServer::ThreadPolicy Interface
	ThreadPolicy::value()

	IT_PortableServer Module
	IT_PortableServer Overview
	IT_PortableServer::OBJECT_DEACTIVATION_POLICY_ID Constant
	IT_PortableServer::ObjectDeactivationPolicyValue Enumeration
	IT_PortableServer::PERSISTENCE_MODE_POLICY_ID Constant
	IT_PortableServer::PersistenceModePolicyValue Enumeration
	IT_PortableServer::DISPATCH_WORKQUEUE_POLICY_ID Constant

	IT_PortableServer:: ObjectDeactivationPolicy Class
	ObjectDeactivationPolicy::~ObjectDeactivationPolicy() Destructor
	ObjectDeactivationPolicy::value()

	IT_PortableServer:: PersistenceModePolicy Class
	PersistenceModePolicy::~PersistenceModePolicy() Destructor
	PersistenceModePolicy::value()

	IT_PortableServer:: DispatchWorkQueuePolicy Interface

	WorkQueues
	IT_WorkQueue Module
	WorkItem Interface
	WorkItem::execute()
	WorkItem::Destroy

	WorkQueue Interface
	max_size attribute
	WorkQueue::enqueue()
	WorkQueue::enqueue_immediate()
	WorkQueue::is_full()
	WorkQueue::is_empty()
	WorkQueue::activate()
	WorkQueue::deactivate()
	WorkQueue::owns_current_thread()
	WorkQueue::flush()

	ManualWorkQueue Interface
	ManualWorkQueue::dequeue()
	ManualWorkQueue::do_work()
	ManualWorkQueue::shutdown()

	ManualWorkQueueFactory Interface
	ManualWorkQueueFactory::create_work_queue()

	AutomaticWorkQueue Interface
	threads_total Attribute
	threads_working Attribute
	high_water_mark Attribute
	low_water_mark Attribute
	AutomaticWorkQueue::shutdown()

	AutomaticWorkQueueFactory Interface
	AutomaticWorkQueueFactory::create_work_queue()
	AutomaticWorkQueueFactory:: create_work_queue_with_thread_stack_size()

	WorkQueuePolicy Interface

	Threading and Synchronization Toolkit
	Threading and Synchronization Toolkit Overview
	Timeouts
	Execution Modes
	Wrapper Classes
	Inlined Classes
	Setting an Execution Mode

	Errors and Exceptions

	IT_Condition Class
	IT_Condition::broadcast()
	IT_Condition::IT_Condition() Constructor
	IT_Condition::~IT_Condition() Destructor
	IT_Condition::signal()
	IT_Condition::wait()

	IT_CurrentThread Class
	IT_CurrentThread::cleanup()
	IT_CurrentThread::id()
	IT_CurrentThread::is_main_thread()
	IT_CurrentThread::self()
	IT_CurrentThread::sleep()
	IT_CurrentThread::yield()

	IT_DefaultTSErrorHandler Class
	IT_DefaultTSErrorHandler::handle()
	IT_DefaultTSErrorHandler::~IT_DefaultTSErrorHandler() Destructor

	IT_Gateway Class
	IT_Gateway::close()
	IT_Gateway::IT_Gateway() Constructor
	IT_Gateway::~IT_Gateway() Destructor
	IT_Gateway::open()
	IT_Gateway::wait()

	IT_Locker Template Class
	IT_Locker::cancel()
	IT_Locker::is_locked()
	IT_Locker::IT_Locker()
	IT_Locker::~IT_Locker()
	IT_Locker::lock()
	IT_Locker::mutex()
	IT_Locker::trylock()

	IT_Mutex Class
	IT_Mutex::IT_Mutex() Constructor
	IT_Mutex::~IT_Mutex() Destructor
	IT_Mutex::lock()
	IT_Mutex::trylock()
	IT_Mutex::unlock()

	IT_PODMutex Structure
	IT_PODMutex::lock()
	IT_PODMutex::m_index Data Type
	IT_PODMutex::trylock()
	IT_PODMutex::unlock()

	IT_RecursiveMutex Class
	IT_RecursiveMutex::IT_RecursiveMutex() Constructor
	IT_RecursiveMutex::~IT_RecursiveMutex() Destructor
	IT_RecursiveMutex::lock()
	IT_RecursiveMutex::trylock()
	IT_RecursiveMutex::unlock()

	IT_RecursiveMutexLocker Class
	IT_RecursiveMutexLocker::cancel()
	IT_RecursiveMutexLocker::IT_RecursiveMutexLocker() Constructors
	IT_RecursiveMutexLocker::~IT_RecursiveMutexLocker() Destructor
	IT_RecursiveMutexLocker::lock()
	IT_RecursiveMutexLocker::lock_count()
	IT_RecursiveMutexLocker::mutex()
	IT_RecursiveMutexLocker::trylock()
	IT_RecursiveMutexLocker::unlock()

	IT_Semaphore Class
	IT_Semaphore::IT_Semaphore() Constructor
	IT_Semaphore::~IT_Semaphore() Destructor
	IT_Semaphore::post()
	IT_Semaphore::trywait()
	IT_Semaphore::wait()

	IT_TerminationHandler Class
	IT_TerminationHandler()
	~IT_TerminationHandler()

	IT_Thread Class
	IT_Thread::id()
	IT_Thread::is_null()
	IT_Thread::IT_Thread() Constructors
	IT_Thread::~IT_Thread() Destructor
	IT_Thread::join()
	IT_Thread::operator=()
	IT_Thread::operator==()
	IT_Thread::operator!=()
	IT_Thread::thread_failed Constant

	IT_ThreadBody Class
	IT_ThreadBody::~IT_ThreadBody() Destructor
	IT_ThreadBody::run()

	IT_ThreadFactory Class
	IT_ThreadFactory::DetachState Enumeration
	IT_ThreadFactory::IT_ThreadFactory() Constructor
	IT_ThreadFactory::~IT_ThreadFactory() Destructor
	IT_ThreadFactory::smf_start()
	IT_ThreadFactory::start()

	IT_TimedCountByNSemaphore Class
	IT_TimedCountByNSemaphore::infinite_size Constant
	IT_TimedCountByNSemaphore::infinite_timeout Constant
	IT_TimedCountByNSemaphore:: IT_TimedCountByNSemaphore() Constructor
	IT_TimedCountByNSemaphore:: ~IT_TimedCountByNSemaphore() Destructor
	IT_TimedCountByNSemaphore::post()
	IT_TimedCountByNSemaphore::trywait()
	IT_TimedCountByNSemaphore::wait()

	IT_TimedOneshot Class
	IT_TimedOneshot::infinite_timeout Constant
	IT_TimedOneshot::IT_TimedOneshot() Constructor
	IT_TimedOneshot::~IT_TimedOneshot() Destructor
	IT_TimedOneshot::reset()
	IT_TimedOneshot::signal()
	IT_TimedOneshot::trywait()
	IT_TimedOneshot::wait()

	IT_TimedSemaphore Class
	IT_TimedSemaphore::infinite_timeout Constant
	IT_TimedSemaphore::IT_TimedSemaphore() Constructor
	IT_TimedSemaphore::~IT_TimedSemaphore() Destructor
	IT_TimedSemaphore::post()
	IT_TimedSemaphore::trywait()
	IT_TimedSemaphore::wait()

	IT_TSBadAlloc Error Class
	IT_TSError Error Class
	IT_TSError::IT_TSError() Constructors
	IT_TSError::~IT_TSError() Destructor
	IT_TSError::OS_error_number()
	IT_TSError::raise()
	IT_TSError::TS_error_code()
	IT_TSError::what()

	IT_TSErrorHandler Class
	IT_TSErrorHandler::handle()
	IT_TSErrorHandler::~IT_TSErrorHandler() Destructor

	IT_TSLogic Error Class
	IT_TSRuntime Error Class
	IT_TSVoidStar Class
	IT_TSVoidStar::IT_TSVoidStar() Constructor
	IT_TSVoidStar::~IT_TSVoidStar() Destructor
	IT_TSVoidStar::get()
	IT_TSVoidStar::set()

	Event Service
	Event Service Overview
	OrbixEventsAdmin::ChannelManager
	ChannelManager::create()
	ChannelManager::find()
	ChannelManager::findByRef()
	ChannelManager::list()
	ChannelManager::createTyped()
	ChannelManager::findTyped()
	ChannelManager::findTypedByRef()
	ChannelManager::listTyped()
	Unsupported Operations

	CosEventChannelAdmin Module
	CosEventChannelAdmin Exceptions
	exception AlreadyConnected {};
	exception TypeError {};

	CosEventChannelAdmin:: ProxyPushConsumer Interface
	ProxyPushConsumer::connect_push_supplier()

	CosEventChannelAdmin:: ProxyPullSupplier Interface
	ProxyPullSupplier::connect_pull_consumer()

	CosEventChannelAdmin:: ProxyPullConsumer Interface
	ProxyPullConsumer::connect_pull_supplier()

	CosEventChannelAdmin:: ProxyPushSupplier Interface
	ProxyPushSupplier::connect_push_consumer()

	CosEventChannelAdmin:: ConsumerAdmin Interface
	ConsumerAdmin::obtain_push_supplier()
	ConsumerAdmin::obtain_pull_supplier()

	CosEventChannelAdmin:: SupplierAdmin Interface
	SupplierAdmin::obtain_push_consumer()
	SupplierAdmin::obtain_pull_consumer()

	CosEventChannelAdmin:: EventChannel Interface
	EventChannel::for_consumers()
	EventChannel::for_suppliers()
	EventChannel::destroy()

	CosEventComm Module
	CosEventComm Exceptions
	CosEventComm::Disconnected

	CosEventComm::PushConsumer Interface
	PushConsumer::push()
	PushConsumer::disconnect_push_consumer()

	CosEventComm::PushSupplier Interface
	PushSupplier::disconnect_push_supplier()

	CosEventComm::PullSupplier Interface
	PullSupplier::pull()
	PullSupplier::try_pull()
	PullSupplier::disconnect_pull_supplier()

	CosEventComm::PullConsumer Interface
	PullConsumer::disconnect_pull_consumer()

	CosTypedEventChannelAdmin Module
	CosTypedEventChannelAdmin Exceptions
	CosTypedEventChannelAdmin::InterfaceNotSupported
	CosTypedEventChannelAdmin::NoSuchImplementation

	CosTypedEventChannelAdmin Data Types
	CostTypedEventChannelAdmin::Key Type

	CosTypedEventChannelAdmin:: TypedProxyPushConsumer Interface
	Unsupported Operations

	CosTypedEventChannelAdmin:: TypedSupplierAdmin Interface
	TypedSupplierAdmin::obtain_typed_push_consumer()
	TypedSupplierAdmin::obtain_typed_pull_consumer()
	Unsupported Operations

	CosTypedEventChannelAdmin:: TypedConsumerAdmin Interface
	TypedConsumerAdmin::obtain_typed_pull_supplier()
	TypedConsumberAdmin::obtain_typed_push_supplier()
	Unsupported Opperations

	CosTypedEventChannelAdmin:: TypedEventChannel Interface
	CosTypedEventComm Module
	CosTypedEventComm:: TypedPushConsumer Interface
	TypedPushConsumer::get_typed_consumer()

	IT_EventChannelAdmin Module
	IT_EventChannelAdmin Data Types
	IT_EventChannelAdmin::ChannelID Type
	IT_EventChannelAdmin::EventChannelInfo Structure
	IT_EventChannelAdmin::EventChannelInfoList Sequence

	IT_EventChannelAdmin Exceptions
	IT_EventChannelAdmin::ChannelAlreadyExists
	IT_EventChannelAdmin::ChannelNotFound

	IT_EventChannelAdmin:: EventChannelFactory Interface
	EventChannelFactory::create_channel()
	EventChannelFactory::find_channel()
	EventChannelFactory::find_channel_by_id()
	EventChannelFactory::list_channels()

	IT_TypedEventChannelAdmin Module
	IT_TypedEventChannelAdmin Data Types
	IT_TypedEventChannelAdmin::TypedEventChannelInfo Structure
	IT_TypedEventChannelAdmin::TypedEventChannelInfoList Sequence

	IT_TypedEventChannelAdmin:: TypedEventChannelFactory Interface
	TypedEventChannelFactory::create_typed_channel()
	TypedEventChannelFactory::find_typed_channel()
	TypedEventChannelFactory::find_typed_channel_by_id()
	TypedEventChannelFactory::list_typed_channels()

	IT_MessagingAdmin::Manager Interface
	Manager::shutdown()

	Firewall Proxy Service
	IT_FPS Module
	FPS_POLICY_BASE Constant
	INTERDICTION_POLICY_ID Constant
	InterdictionPolicyValue Enum

	IT_FPS::InterdictionPolicy Interface

	Naming Service
	CosNaming Overview
	CosNaming::Binding Structure
	CosNaming::BindingList Sequence
	CosNaming::BindingType Enumeration
	CosNaming::Istring Data Type
	CosNaming::Name Sequence
	CosNaming::NameComponent Structure

	CosNaming::BindingIterator Interface
	BindingIterator::destroy()
	BindingIterator::next_n()
	BindingIterator::next_one()

	CosNaming::NamingContext Interface
	NamingContext::AlreadyBound Exception
	NamingContext::bind()
	NamingContext::bind_context()
	NamingContext::bind_new_context()
	NamingContext::CannotProceed Exception
	NamingContext::destroy()
	NamingContext::InvalidName Exception
	NamingContext::list()
	NamingContext::new_context()
	NamingContext::NotEmpty Exception
	NamingContext::NotFound Exception
	NamingContext::NotFoundReason Enumeration
	NamingContext::rebind()
	NamingContext::rebind_context()
	NamingContext::resolve()
	NamingContext::unbind()

	CosNaming::NamingContextExt Interface
	NameContextExt::Address Data Type
	NameContextExt::InvalidAddress Exception
	NameContextExt::resolve_str()
	NameContextExt::StringName Data Type
	NameContextExt::to_name()
	NameContextExt::to_string()
	NameContextExt::to_url()
	NameContextExt::URLString Data Type

	IT_Naming Module
	IT_Naming::IT_NamingContextExt Interface
	IT_Naming::IT_NamingCotextExt::bind_object_group() Method

	IT_LoadBalancing Overview
	IT_LoadBalancing::MemberId Data Type
	IT_LoadBalancing::MemberIdList Data Type
	IT_LoadBalancing::SelectionMethod Data Type
	IT_LoadBalancing::Member Data Type
	IT_LoadBalancing::GroupId Data Type
	IT_LoadBalancing::GroupList Data Type
	IT_LoadBalancing::NoSuchMember Exception
	IT_LoadBalancing::DuplicateMember Exception
	IT_LoadBalancing::DuplicateGroup Exception
	IT_LoadBalancing::NoSuchGroup Exception

	IT_LoadBalancing::ObjectGroup Interface
	ObjectGroup::pick()
	ObjectGroup::add_member()
	ObjectGroup::remove_member()
	ObjectGroup::get_member()
	ObjectGroup::members()
	ObjectGroup::update_member_load()
	ObjectGroup::get_member_load()
	ObjectGroup::set_member_timeout()
	ObjectGroup::get_member_timeout()
	ObjectGroup::destroy()

	IT_LoadBalancing:: ObjectGroupFactory Interface
	ObjectGroupFactory::create_round_robin()
	ObjectGroupFactory::create_random()
	ObjectGroupFactory::create_active()
	ObjectGroupFactory::find_group()
	ObjectGroupFactory::rr_groups()
	ObjectGroupFactory::random_groups()
	ObjectGroupFactory::active_groups()

	Notification Service
	Notification Service Interfaces
	CosNotifyChannelAdmin Module
	CosNotifyChannelAdmin Data Types
	CosNotifyChannelAdmin::ProxyType Enum
	CosNotifyChannelAdmin::ObtainInfoMode Enum
	CosNotifyChannelAdmin::ProxyID Type
	CosNotifyChannelAdmin::ProxyIDSeq Type
	CosNotifyChannelAdmin::ClientType Enum
	CosNotifyChannelAdmin::InterFilterGroupOperator Enum
	CosNotifyChannelAdmin::AdminID Type
	CosNotifyChannelAdmin::AdminIDSeq
	CosNotifyChannelAdmin::AdminLimit Type
	CosNotifyChannelAdmin::ChannelID Type
	CosNotifyChannelAdmin::ChannelIDSeq Type

	CosNotifyChannelAdmin Exceptions
	CosNotifyChannelAdmin::ConnectionAlreadyActive Exception
	CosNotifyChannelAdmin::ConnetionAlreadyInactive Exception
	CosNotifyChannelAdmin::NotConnected Exception
	CosNotifyChannelAdmin::AdminNotFound Exception
	CosNotifyChannelAdmin::ProxyNotFound Exception
	CosNotifyChannelAdmin::AdminLimitExceeded Exception
	CosNotifyChannelAdmin::ChannelNotFound Exception

	CosNotifyChannelAdmin:: ProxyConsumer Interface
	ProxyConsumer::obtain_subscription_types()
	ProxyConsumer::validate_event_qos()

	CosNotifyChannelAdmin:: ProxySupplier Interface
	ProxySupplier::priority_filter
	ProxySupplier::lifetime_filter
	ProxySupplier::obtain_offered_types()
	ProxySupplier::validate_event_qos()

	CosNotifyChannelAdmin:: ProxyPushConsumer Interface
	ProxyPushConsumer::connect_any_push_supplier()

	CosNotifyChannelAdmin:: StructuredProxyPushConsumer Interface
	StructuredProxyPushConsumer:: connect_structured_push_supplier()

	CosNotifyChannelAdmin:: SequenceProxyPushConsumer Interface
	SequenceProxyPushConsumer:: connect_sequence_push_supplier()

	CosNotifyChannelAdmin:: ProxyPullSupplier Interface
	ProxyPullSupplier::connect_any_pull_consumer()

	CosNotifyChannelAdmin:: StructuredProxyPullSupplier Interface
	StructuredProxyPullSupplier:: connect_structured_pull_consumer()

	CosNotifyChannelAdmin:: SequenceProxyPullSupplier Interface
	SequenceProxyPullSupplier:: connect_sequence_pull_consumer()

	CosNotifyChannelAdmin:: ProxyPullConsumer Interface
	ProxyPullConsumer::connect_any_pull_supplier()

	CosNotifyChannelAdmin:: StructuredProxyPullConsumer Interface
	StructuredProxyPullConsumer:: connect_structured_pull_supplier()

	CosNotifyChannelAdmin:: SequenceProxyPullConsumer Interface
	SequenceProxyPullConsumer:: connect_sequence_pull_supplier()

	CosNotifyChannelAdmin:: ProxyPushSupplier Interface
	ProxyPushSupplier::connect_any_push_consumer()
	ProxyPushSupplier::suspend_connection()
	ProxyPushSupplier::resume_connection()

	CosNotifyChannelAdmin:: StructuredProxyPushSupplier Interface
	StructuredProxyPushSupplier:: connect_structured_push_consumer()
	StructuredProxyPushSupplier::suspend_connection()
	StructuredProxyPushSupplier::resume_connection()

	CosNotifyChannelAdmin:: SequenceProxyPushSupplier Interface
	SequenceProxyPushSupplier:: connect_sequence_push_consumer()
	SequenceProxyPushSupplier::suspend_connection()
	SequenceProxyPushSupplier::resume_connection()

	CosNotifyChannelAdmin:: ConsumerAdmin Interface
	ConsumerAdmin::MyID
	ConsumerAdmin::MyChannel
	ConsumerAdmin::MyOperator
	ConsumerAdmin::priority_filter
	ConsumerAdmin::lifetime_filter
	ConsumerAdmin::pull_suppliers
	ConsumerAdmin::push_suppliers
	ConsumerAdmin::get_proxy_supplier()
	ConsumerAdmin::obtain_notification_pull_supplier()
	ConsumerAdmin::obtain_notification_push_supplier()
	ConsumerAdmin::destroy()

	CosNotifyChannelAdmin:: SupplierAdmin Interface
	SupplierAdmin::MyID
	SupplierAdmin::MyChannel
	SupplierAdmin::MyOperator
	SupplierAdmin::pull_consumers
	SupplierAdmin::push_consumers
	SupplierAdmin::get_proxy_consumer()
	SupplierAdmin::obtain_notification_pull_consumer()
	SupplierAdmin::obtain_notification_push_consumer()
	SupplierAdmin::destroy()

	CosNotifyChannelAdmin:: EventChannel Interface
	EventChannel::MyFactory
	EventChannel::default_consumer_admin
	EventChannel::default_supplier_admin
	EventChannel::default_filter_factory
	EventChannel::new_for_consumers()
	EventChannel::new_for_suppliers()
	EventChannel::get_consumeradmin()
	EventChannel::get_supplieradmin()
	EventChannel::get_all_consumeradmins()
	EventChannel::get_all_supplieradmins()

	CosNotifyChannelAdmin:: EventChannelFactory Interface
	EventChannelFactory::create_channel()
	EventChannelFactory::get_all_channels()
	EventChannelFactory::get_event_channel()

	IT_NotifyChannelAdmin:: GroupProxyPushSupplier Interface
	GroupProxyPushSupplier:: connect_group_any_push_consumer()

	IT_NotifyChannelAdmin:: GroupStructuredProxyPushSupplier Interface
	GroupStructuredProxyPushSupplier:: connect_group_structured_push_consumer()

	IT_NotifyChannelAdmin: GroupSequenceProxyPushSupplier Interface
	GroupSequenceProxyPushSupplier:: connect_group_sequence_push_consumer()

	CosNotifyComm Module
	CosNotifyComm Exceptions
	CosNotifyComm::InvalidEventType Exception

	CosNotifyComm::NotifyPublish Interface
	NotifyPublish::offer_change()

	CosNotifyComm::NotifySubscribe Interface
	NotifySubscribe::subscription_change()

	CosNotifyComm::PushConsumer Interface
	CosNotifyComm::PullConsumer Interface
	CosNotifyComm::PullSupplier Interface
	CosNotifyComm::PushSupplier Interface
	CosNotifyComm:: StructuredPushConsumer Interface
	StructuredPushConsumer::push_structured_event()
	StructuredPushConsumer:: disconnect_structured_push_consumer()

	CosNotifyComm:: StructuredPullConsumer Interface
	StructuredPullConsumer:: disconnect_structured_pull_consumer()

	CosNotifyComm:: StructuredPullSupplier Interface
	StructuredPullSupplier::pull_structured_event()
	StructuredPullSupplier::try_pull_structured_event()
	StructuredPullSupplier::disconnect_structured_pull_supplier()

	CosNotifyComm:: StructuredPushSupplier Interface
	StructuredPushSupplier:: disconnect_structured_push_supplier()

	CosNotifyComm:: SequencePushConsumer Interface
	SequencePushConsumer::push_structured_events()
	SequencePushConsumer:: disconnect_sequence_push_consumer()

	CosNotifyComm:: SequencePullConsumer Interface
	SequencePullConsumer:: disconnect_sequence_pull_consumer()

	CosNotifyComm:: SequencePullSupplier Interface
	SequencePullSupplier::pull_structured_events()
	SequencePullSupplier::try_pull_structured_events()
	SequencePullSupplier::disconnect_sequence_pull_supplier()

	CosNotifyComm:: SequencePushSupplier Interface
	SequencePushSupplier::disconnect_sequence_push_supplier()

	IT_NotifyComm::GroupNotifyPublish Interface
	GroupNotifyPublish::offer_change()

	IT_NotifyComm::GroupPushConsumer Interface
	GroupPushConsumer::push()
	GroupPushConsumer::disconnect_push_consumer()

	IT_NotifyComm:: GroupStructuredPushConsumer Interface
	GroupStructuredPushConsumer::push_structured_event();
	GroupStructuredPushConsumer:: disconnect_structured_push_consumer()

	IT_NotifyComm:: GroupSequencePushConsumer Interface
	GroupSequencePushConsumer::push_structured_events()
	GroupSequencePushConsumer:: disconnect_sequence_push_consumer()

	CosNotifyFilter Module
	CosNotifyFilter Data Types
	CosNotifyFilter::ConstraintID Data Type
	CosNotifyFilter::ConstraintExp Data Structure
	CosNotifyFilter::ContsraintIDSeq Data Type
	CosNotifyFilter::ConstraintExpSeq Data Type
	CosNotifyFilter::ConstraintInfo Data Structure
	CosNotifyFilter::ConstraintInfoSeq Data Type
	CosNotifyFilter::FilterID Data Type
	CosNotifyFilter::FilterIDSeq Data Type
	CosNotifyFilter::MappingConstraintPair Data Structure
	CosNotifyFilter::MappingConstraintPairSeq Data Type
	CosNotifyFilter::MappingConstraintInfo Data Structure
	CosNotifyFilter::MappingConstraintInfoSeq Data Types
	CosNotifyFilter::CallbackID Data Type
	CosNotifyFilter::CallbackIDSeq Data Type

	CosNotifyFilter Exceptions
	CosNotifyFilter::UnsupportedFilterableData Exception
	CosNotifyFilter::InvalidGrammar Exception
	CosNotifyFilter::InvalidConstraint Exception
	CosNotifyFilter::ConstraintNotFound Exception
	CosNotifyFilterFilter::CallbackNotFound Exception
	CosNotifyFilter::InvalidValue Exception
	CosNotifyFilter::FilterNotFound Exception

	CosNotifyFilter::Filter Interface
	Filter::constraint_grammar
	Filter::add_constraints()
	Filter::modify_constraints()
	Filter::get_constraints()
	Filter::get_all_constraints()
	Filter::remove_all_constraints()
	Filter::destroy()
	Filter::match()
	Filter::match_structured()
	Filter::attach_callback()
	Filter::detach_callback()
	Filter::get_callbacks()

	CosNotifyFilter::MappingFilter Interface
	MappingFilter::constraint_grammar
	MappingFilter::value_type
	MappingFilter::default_value
	MappingFilter::add_mapping_constraints()
	MappingFilter::modify_mapping_constraints()
	MappingFilter::get_mapping_constraints()
	MappingFilter::get_all_mapping_constraints()
	MappingFilter::remove_all_mapping_constraints
	MappingFilter::destroy()
	MappingFilter::match()
	MappingFilter::match_structured()

	CosNotifyFilter::FilterFactory Interface
	FilterFactory::create_filter()
	FilterFactory::create_mapping_filter()

	CosNotifyFilter::FilterAdmin Interface
	FilterAdmin::add_filter()
	FilterAdmin::remove_filter()
	FilterAdmin::get_filter()
	FilterAdmin::get_all_filters()
	FilterAdmin::remove_all_filters()

	CosNotification Module
	CosNotification Data Types
	CosNotification::StructuredEvent Data Structure
	CosNotification::EventTypeSeq Type
	CosNotification::EventBatch Type

	QoS and Administrative Constant Declarations
	QoS and Admin Data Types
	CosNotification::PropertyName Type
	CosNotification::PropertyValue Type
	CosNotification::PropertySeq Type
	CosNotification::QoSProperties Type
	CosNotification::AdminProperties Type
	CosNotification::QoSError_code Enum
	CosNotification::PropertyErrorSeq Type
	CosNotification::NamedPropertyRangeSeq Type

	QoS and Admin Exceptions
	CosNotification::UnsupprtedQoS
	CosNotification::UnsupportedAdmin

	CosNotification::QoSAdmin Interface
	QoSAdmin::get_qos()
	QoSAdmin::set_qos()
	QoSAdmin::validate_qos()

	CosNotification:: AdminPropertiesAdmin Interface
	AdminPropertiesAdmin::get_admin()
	AdminPropertiesAdmin::set_admin()

	JMS-Notification Bridge Service
	JMS-Notification Bridge Service Overview
	IT_MessagingBridge Module
	IT_MessagingBridge Data Types
	IT_MessagingBridge::BridgeName
	IT_MessagingBridge::BridgeNameSeq
	IT_MessagingBridge::EndpointName
	IT_MessagingBridge::EndpointType
	IT_MessagingBridge::EndpointTypeSeq
	IT_MessagingBridge::EndpointAdminName
	IT_MessagingBridge::InvalidEndpointCode
	IT_MessagingBridge Exceptions
	IT_MessaingBridge::InvalidEndpoint
	IT_MessagingBridge::EndpointAlreadyConnected
	IT_MessagingBridge::BridgeNameNotFound
	IT_MessagingBridge::BridgeNameAlreadyExists

	IT_MessagingBridge::Endpoint Interface
	Endpoint::bridge_name
	Endpoint::type
	Endpoint::name
	Endpoint::admin
	Endpoint::peer
	Endpoint::connected
	Endpoint::connect()
	Endpoint::destroy()

	IT_MessagingBridge::SinkEndpoint Interface
	IT_MessagingBridge::SourceEndpoint Interface
	SourceEndpoint::start()
	SourceEndpoint::suspend()
	SourceEndpoint::stop()

	IT_MessagingBridge::EndpointAdmin Interface
	EndpointAdmin::name
	EndpointAdmin::supported_types
	EndpointAdmin::create_sink_endpoint()
	EndpointAdmin::create_source_endpoint()
	EndpointAdmin::get_sink_endpoint()
	EndpointAdmin::get_source_endpoint()
	EndpointAdmin::get_all_sink_endpoints()
	EndpointAdmin::get_all_source_endpoints()

	IT_MessagingBridgeAdmin Module
	IT_MessagingBridgeAdmin Data Types
	IT_MessagingBridgeAdmin::BridgeName
	IT_MessagingBridgeAdmin::BridgeNameSeq
	IT_MessagingBridgeAdmin::InvalidEndpoitCode
	IT_MessagingBridgeAdmin::EndpointInfo
	IT_MessagingBridgeAdmin Exceptions
	IT_MessagingBridgeAdmin::CannotCreateBridge
	IT_MessagingBridgeAdmin::BridgeNotFound
	IT_MessagingBridgeAdmin::BridgeAlreadyExists
	IT_MessagingBridgeAdmin::BridgeNameAlreadyExists
	IT_MessagingBridgeAdmin::InvalidEndpoint

	IT_MessagingBridgeAdmin::Bridge Interface
	Bridge::name
	Bridge::source
	Bridge::sink
	Bridge::start()
	Bridge::suspend()
	Bridge::stop()
	Bridge::destory()

	IT_MessagingBridgeAdmin:: BridgeAdmin Interface
	BridgeAdmin::create_bridge()
	BridgeAdmin::get_bridge()
	BridgeAdmin::find_bridge()
	BridgeAdmin::get_all_bridges()

	IT_NotifyBridge Module
	IT_NotifyBridge Exceptions
	IT_NotifyBridge::MappingFailure
	IT_NotifyBridge::EndpointNotConnected

	IT_NotifyBridge::SinkEndpoint Interface
	SinkEndpoint::send_events()

	Object Transaction Service
	CosTransactions Overview
	Overview of Classes
	General Data Types
	Status Enumeration Type
	Vote Enumeration Type
	OTSPolicyValue Data Type
	InvocationPolicyValue Data Type
	NonTxTargetPolicyValue Data Type
	TransactionPolicyValue Data Type

	General Exceptions

	CosTransactions::Control Class
	Control::get_coordinator()
	Control::get_terminator()

	CosTransactions::Coordinator Class
	Coordinator::create_subtransaction()
	Coordinator::get_parent_status()
	Coordinator::get_status()
	Coordinator::get_top_level_status()
	Coordinator::get_transaction_name()
	Coordinator::get_txcontext()
	Coordinator::hash_top_level_tran()
	Coordinator::hash_transaction()
	Coordinator::is_ancestor_transaction()
	Coordinator::is_descendant_transaction()
	Coordinator::is_related_transaction()
	Coordinator::is_same_transaction()
	Coordinator::is_top_level_transaction()
	Coordinator::register_resource()
	Coordinator::register_subtran_aware()
	Coordinator::register_synchronization()
	Coordinator::rollback_only()

	CosTransactions::Current Class
	Current::begin()
	Current::commit()
	Current::get_control()
	Current::get_status()
	Current::get_timeout()
	Current::get_transaction_name()
	Current::resume()
	Current::rollback()
	Current::rollback_only()
	Current::set_timeout()
	Current::suspend()

	CosTransactions:: RecoveryCoordinator Class
	RecoveryCoordinator::replay_completion()

	CosTransactions::Resource Class
	CosTransactions:: SubtransactionAwareResource Class
	CosTransactions::Synchronization Class
	CosTransactions::Terminator Class
	Terminator::commit()
	Terminator::rollback()

	CosTransactions::TransactionalObject Class
	CosTransactions::TransactionFactory Class
	TransactionFactory::create()
	TransactionFactory::recreate()

	Persistent State Service
	CosPersistentState Overview
	CosPersistentState::AccessMode Type
	CosPersistentState::ForUpdate Enumeration
	CosPersistentState::IsolationLevel Type
	CosPersistentState::NotFound Exception
	CosPersistentState::Parameter Structure
	CosPersistentState::ParameterList Sequence
	CosPersistentState::Pid Type
	CosPersistentState::ShortPid Type
	CosPersistentState::TransactionalSessionList Sequence
	CosPersistentState::TypeId Type
	CosPersistentState::YieldRef Enumeration

	CosPersistentState::CatalogBase Interface
	CatalogBase::access_mode Attribute
	CatalogBase::close()
	CatalogBase::find_by_pid()
	CatalogBase::find_storage_home()
	CatalogBase::flush()
	CatalogBase::free_all()
	CatalogBase::refresh()

	CosPersistentState::Connector Interface
	Connector::create_basic_session()
	Connector::create_transactional_session()
	Connector::current_session()
	Connector::get_pid()
	Connector::get_short_pid()
	Connector::implementation_id Attribute
	Connector::register_session_factory()
	Connector::register_session_pool_factory()
	Connector::register_storage_home_factory()
	Connector::register_storage_object_factory()
	Connector::sessions()

	CosPersistentState:: EndOfAssociationCallback Interface
	CosPersistentState_Factory Template
	CosPersistentState::Session Interface
	CosPersistentState:: StorageHomeBase Interface
	StorageHomeBase::find_by_short_pid()
	StorageHomeBase::get_catalog()

	CosPersistentState:: StorageHomeFactory Native Type
	CosPersistentState::StorageObject Interface
	StorageObject::destroy_object()
	StorageObject::get_pid()
	StorageObject::get_short_pid()
	StorageObject::get_storage_home()
	StorageObject::object_exists()

	CosPersistentState:: StorageObjectBase Native Type
	CosPersistentState:: StorageObjectFactory Native Type
	CosPersistentState::StorageObjectRef Class
	StorageObjectRef::_catalog()
	StorageObjectRef::destroy_object()
	StorageObjectRef::get_pid()
	StorageObjectRef::get_short_pid()
	StorageObjectRef::get_storage_home()
	StorageObjectRef::_impl_data()
	StorageObjectRef::is_null()
	StorageObjectRef::operator=()
	StorageObjectRef::operator->()
	StorageObjectRef::release()
	StorageObjectRef::same_ref()
	StorageObjectRef::_static_type()
	StorageObjectRef::StorageObjectRef() Constructors
	StorageObjectRef::_target_type
	StorageObjectRef::_target()

	CosPersistentState:: TransactionalSession Interface
	TransactionalSession::AssociationStatus Type
	TransactionalSession::default_isolation_level Attribute
	TransactionalSession::end()
	TransactionalSession::get_association_status()
	TransactionalSession::start()
	TransactionalSession::suspend()
	TransactionalSession::transaction()

	IT_PSS Overview
	IT_PSS::CatalogBase Interface
	CatalogBase::it_create_statement()
	CatalogBase:: it_create_statement_with_type_and_concurrency()
	CatalogBase::it_discard_all()
	CatalogBase::it_discard_flush_list()
	CatalogBase::it_prepare_statement()
	CatalogBase:: it_prepare_statement_with_type_and_concurrency()

	IT_PSS::Connector Interface
	Connector::it_create_session_manager()

	IT_PSS::PreparedStatement Interface
	PreparedStatement::clear_parameters()
	PreparedStatement::define_parameter()
	PreparedStatement::execute_prepared()
	PreparedStatement::execute_prepared_query()
	PreparedStatement::execute_prepared_update()

	IT_PSS:Master Interface
	IT_PSS:Replica Interface
	IT_PSS::Replica::set_master
	IT_PSS::Replica::last_successful_refresh
	IT_PSS:Replica:refresh

	IT_PSS::ResultSet Interface
	ResultSet::absolute()
	ResultSet::after_last()
	ResultSet::before_first()
	ResultSet::cancel_row_updates()
	ResultSet::close()
	ResultSet::Concurrency Type
	ResultSet::delete_row()
	ResultSet::FetchDirection Type
	ResultSet::find_state_member()
	ResultSet::first()
	ResultSet::get()
	ResultSet::get_by_name()
	ResultSet::get_concurrency()
	ResultSet::get_fetch_direction()
	ResultSet::get_fetch_size()
	ResultSet::get_row()
	ResultSet::get_statement()
	ResultSet::get_type()
	ResultSet::insert_row()
	ResultSet::is_after_last()
	ResultSet::is_before_first()
	ResultSet::is_first()
	ResultSet::is_last()
	ResultSet::last()
	ResultSet::move_to_current_row()
	ResultSet::move_to_insert_row()
	ResultSet::next()
	ResultSet::previous()
	ResultSet::refresh_row()
	ResultSet::relative()
	ResultSet::row_deleted()
	ResultSet::row_inserted()
	ResultSet::row_updated()
	ResultSet::set()
	ResultSet::set_by_name()
	ResultSet::set_fetch_direction()
	ResultSet::set_fetch_size()
	ResultSet::Type
	ResultSet::update_row()

	IT_PSS::Session Interface
	IT_PSS::SessionManager Interface
	SessionManager::get_shared_read_only_session_nc()
	SessionManager::block_readers_until_idle()

	IT_PSS::Statement Interface
	Statement::close()
	Statement::execute()
	Statement::execute_query()
	Statement::execute_update()
	Statement::get_catalog()
	Statement::get_fetch_direction()
	Statement::get_fetch_size()
	Statement::get_result_set()
	Statement::get_result_set_concurrency()
	Statement::get_result_set_type()
	Statement::set_fetch_direction()
	Statement::set_fetch_size()

	IT_PSS_StorageHomeFactory Template
	IT_PSS_StorageHomeFactory::_add_ref()
	IT_PSS_StorageHomeFactory::create()
	IT_PSS_StorageHomeFactory::IT_PSS_StorageHomeFactory()
	IT_PSS_StorageHomeFactory::_remove_ref()

	IT_PSS::StorageObject Interface
	StorageObject::it_lock()

	IT_PSS_StorageObjectFactory Template
	IT_PSS_StorageObjectFactory::_add_ref()
	IT_PSS_StorageObjectFactory::create()
	IT_PSS_StorageObjectFactory:: IT_PSS_StorageObjectFactory()
	IT_PSS_StorageObjectFactory::_remove_ref()

	IT_PSS::TransactionalSession Interface
	IT_PSS::TransactionalSession::get_master
	IT_PSS::TransactionalSession:is_replica
	IT_PSS::TransactionalSession:get_replica

	IT_PSS::TxSessionAssociation Class
	TxSessionAssociation::end()
	TxSessionAssociation::get_session_nc()
	TxSessionAssociation::get_tx_coordinator_nc()
	TxSessionAssociation::TxSessionAssociation() Constructors
	TxSessionAssociation::~TxSessionAssociation() Destructor
	TxSessionAssociation::suspend()

	The IT_PSS_DB Module Overview
	IT_PSS_DB::Env Interface
	Env::checkpoint()
	Env::name Attribute
	Env::post_backup()
	Env::pre_backup()

	Security
	IT_Certificate Overview
	IT_Certificate::ASN_OID Structure
	IT_Certificate::ASN1oid Sequence
	IT_Certificate::Bytes Sequence
	IT_Certificate::CertError Exception
	IT_Certificate::DERData Sequence
	IT_Certificate::Error Structure
	IT_Certificate::Error_code Type
	IT_Certificate::Format Structure
	IT_Certificate::OIDTag Type
	IT_Certificate::ReplyStatus Type
	IT_Certificate::ULong Type
	IT_Certificate::UShort Type
	IT_Certificate::UTCTime Type
	IT_Certificate::X509CertChain Sequence
	IT_Certificate::X509CertList Sequence

	IT_Certificate::AVA Interface
	AVA::convert()
	AVA::oid
	AVA::set

	IT_Certificate::AVAList Interface
	AVAList::ava_list
	AVAList::convert()
	AVAList::get_ava_by_oid_tag()
	AVAList::get_ava_by_oid()
	AVAList::get_num_avas()

	IT_Certificate::Certificate Interface
	Certificate::encoded_form

	IT_Certificate::Extension Interface
	Extension::convert()
	Extension::critical
	Extension::oid

	IT_Certificate::ExtensionList Interface
	ExtensionList::convert()
	ExtensionList::ext_list
	ExtensionList::get_extension_by_oid()
	ExtensionList::get_extension_by_oid_tag()
	ExtensionList::get_num_extensions();

	IT_Certificate::X509Cert Interface
	X509Cert::convert()
	X509Cert::get_der_serial_number()
	X509Cert::get_extensions()
	X509Cert::get_issuer_avalist()
	X509Cert::get_issuer_ava_string()
	X509Cert::get_issuer_dn_string()
	X509Cert::get_not_after()
	X509Cert::get_not_before()
	X509Cert::get_serial_number()
	X509Cert::get_signature_algorithm_id()
	X509Cert::get_subject_avalist()
	X509Cert::get_subject_ava_string()
	X509Cert::get_subject_dn_string()
	X509Cert::get_version()
	X509Cert::IntegerTooLarge Exception

	IT_Certificate::X509CertificateFactory Interface
	X509CertificateFactory::create_x509_certificate_from_der()
	X509CertificateFactory::load_x509_cert_list()

	Security Overview
	Security::AssociationOptions Type
	Security::AttributeList Sequence
	Security::AuthenticationMethod Type
	Security::AuthenticationMethodList Sequence
	Security::AuthenticationStatus Enumeration
	Security::CommunicationDirection Enumeration
	Security::CompositeDelegation Constant
	Security::Confidentiality Constant
	Security::DetectMisordering Constant
	Security::DetectReplay Constant
	Security::EstablishTrust Structure
	Security::EstablishTrustInClient Constant
	Security::EstablishTrustInTarget Constant
	Security::Integrity Constant
	Security::InvocationCredentialsType Enumeration
	Security::MechanismType Type
	Security::MechanismTypeList Sequence
	Security::NoDelegation Constant
	Security::NoProtection Constant
	Security::Opaque Type
	Security::QOP Enumeration
	Security::SecApplicationAccess Constant
	Security::SecAttribute Structure
	Security::SecClientInvocationAccess Constant
	Security::SecClientSecureInvocation Constant
	Security::SecEstablishTrustPolicy Constant
	Security::SecInvocationCredentialsPolicy Constant
	Security::SecMechanismsPolicy Constant
	Security::SecQOPPolicy Constant
	Security::SecTargetInvocationAccess Constant
	Security::SecTargetSecureInvocation Constant
	Security::SecurityFeature Enumeration
	Security::SecurityName Type
	Security::SimpleDelegation Constant

	SecurityLevel1 Overview
	SecurityLevel1::Current Interface
	Current::get_attributes()

	SecurityLevel2 Overview
	SecurityLevel2::CredentialsList Sequence

	SecurityLevel2::Credentials Interface
	Credentials::accepting_options_required Attribute
	Credentials::accepting_options_supported Attribute
	Credentials::authentication_state Attribute
	Credentials::copy()
	Credentials::credentials_type Attribute
	Credentials::destroy()
	Credentials::get_attributes()
	Credentials::get_security_feature()
	Credentials:invocation_options_required Attribute
	Credentials::invocation_options_supported Attribute
	Credentials::is_valid()
	Credentials::mechanism Attribute
	Credentials::refresh()
	Credentials::set_attributes()

	SecurityLevel2::Current Interface
	Current::received_credentials Attribute

	SecurityLevel2::EstablishTrustPolicy Interface
	EstablishTrustPolicy::trust Attribute

	SecurityLevel2::InvocationCredentials Policy Interface
	InvocationCredentialsPolicy::creds

	SecurityLevel2::MechanismPolicy Interface
	MechanismPolicy::mechanisms

	SecurityLevel2::PrincipalAuthenticato r Interface
	PrincipalAuthenticator::authenticate()
	PrincipalAuthenticator::continue_authentication()
	PrincipalAuthenticator::get_supported_authen_methods()

	SecurityLevel2::QOPPolicy Interface
	QOPPolicy::qop Attribute

	SecurityLevel2::ReceivedCredentials Interface
	ReceivedCredentials::accepting_credentials Attribute
	ReceivedCredentials::association_options_used Attribute
	ReceivedCredentials::delegation_mode Attribute
	ReceivedCredentials::delegation_state Attribute

	SecurityLevel2::SecurityManager Interface
	SecurityManager::access_decision Attribute
	SecurityManager::audit_decision Attribute
	SecurityManager::get_security_policy()
	SecurityManager::get_target_credentials()
	SecurityManager::own_credentials Attribute
	SecurityManager::principal_authenticator Attribute
	SecurityManager::remove_own_credentials()
	SecurityManager::required_rights_object Attribute
	SecurityManager::supported_mechanisms Attribute

	SecurityLevel2::TargetCredentials Interface
	TargetCredentials::association_options_used Attribute
	TargetCredentials::initiating_credentials Attribute

	IT_TLS Overview
	IT_TLS::CACHE_NONE Constant
	IT_TLS::CACHE_SERVER Constant
	IT_TLS::CACHE_CLIENT Constant
	IT_TLS::CACHE_SERVER_AND_CLIENT Constant
	IT_TLS::CertChainErrorCode Enumeration
	IT_TLS::CertChainErrorInfo Structure
	IT_TLS::CipherSuite Type
	IT_TLS::CipherSuiteList Sequence
	IT_TLS::SessionCachingMode Type

	IT_TLS::CertValidator Interface
	CertValidator::validate_cert_chain()

	IT_TLS_API Overview
	IT_TLS_API::CertConstraints Sequence
	IT_TLS_API::PasswordAuthData
	IT_TLS_API::PEMCertChainFileAuthData
	IT_TLS_API::PKCS12DERAuthData
	IT_TLS_API::PKCS12FileAuthData
	IT_TLS_API::X509CertChainAuthData
	IT_TLS_API::PKCS11AuthData

	IT_TLS_API::CertConstraintsPolicy Interface
	CertConstraintsPolicy::cert_constraints Attribute

	IT_TLS_API::CertValidatorPolicy Interface
	CertValidatorPolicy::cert_validator Attribute

	IT_TLS_API::MaxChainLengthPolicy Interface
	MaxChainLengthPolicy::max_chain_length Attribute
	IT_TLS_API::SessionCachingPolicy Interface
	SessionCachingPolicy::cache_mode Attribute

	IT_TLS_API::TLS Interface
	TLS::create_mechanism_policy()
	IT_TLS_API::TLSCredentials Interface
	TLSCredentials::get_x509_cert()
	TLSCredentials::get_x509_cert_chain()
	TLSCredentials::get_x509_cert_chain_nc()

	IT_TLS_API::TLSReceivedCredentials Interface
	IT_TLS_API::TLSTargetCredentials Interface

	IT_TLS_API::TrustedCAListPolicy Interface
	TrustedCAListPolicy::trusted_ca_list Attribute

	Telecom Logging Service
	Telecom Logging Service Interfaces
	DsLogAdmin Module
	DsLogAdmin Exceptions
	DsLogAdmin::InvalidParam Exception
	DsLogAdmin::InvalidThreshold Exception
	DsLogAdmin::InvalidTime Exception
	DsLogAdmin::InvalidTimeInterval Exception
	DsLogAdmin::InvalidMask Exception
	DsLogAdmin::LogIdAlreadyExists Exception
	DsLogAdmin::InvalidGrammar Exception
	DsLogAdmin::InvalidConstraint Exception
	DsLogAdmin::LogFull Exception
	DsLogAdmin::LogOffDuty Exception
	DsLogAdmin::LogLocked Exception
	DsLogAdmin::LogDisabled Exception
	DsLogAdmin::InvalidRecordId Exception
	DsLogAdmin::InvalidAttribute Exception
	DsLogAdmin::InvalidLogFullAction Exception
	DsLogAdmin::UnsupportedQoS Exception

	DsLogAdmin Constants
	Querying Constants
	Full Action Constants
	Scheduling Constants
	QoS Constants

	DsLogAdmin Datatypes
	DsLogAdmin::LogId Type
	DsLogAdmin::RecordId Type
	DsLogAdmin::RecordIdList Sequence
	DsLogAdmin::Constraint Type
	DsLogAdmin::TimeT Type
	DsLogAdmin::NVPair Structure
	DsLogAdmin::NVList Sequence
	DsLogAdmin::TimeInterval Structure
	DsLogAdmin::LogRecord Structure
	DsLogAdmin::RecordList Sequence
	DsLogAdmin::Anys Sequence
	DsLogAdmin::AvailabilityStatus Structure
	DsLogAdmin::LogFullActionType Type
	DsLogAdmin::Time24 Structure
	DsLogAdmin::Time24Interval Structure
	DsLogAdmin::IntervalsOfDay Sequence
	DsLogAdmin::DaysOfWeek Type
	DsLogAdmin::WeekMaskItem Structure
	DsLogAdmin::WeekMask Sequence
	DsLogAdmin::Threshold Type
	DsLogAdmin::CapacityAlarmThresholdList Sequence
	DsLogAdmin::OperationalState Enum
	DsLogAdmin::AdministrativeState Enum
	DsLogAdmin::ForwardingState Enum
	DsLogAdmin::LogList Sequence
	DsLogAdmin::LogIdList Sequence
	DsLogAdmin::QoSType Type
	DsLogAdmin::QoSList Sequence

	DsLogAdmin::Iterator Interface
	Iterator::get()
	Iterator::destroy()

	DsLogAdmin::Log Interface
	Log::my_factory()
	Log::id()
	Log::get_max_record_life()
	Log::set_max_record_life()
	Log::get_max_size()
	Log::set_max_size()
	Log::get_current_size()
	Log::get_n_records()
	Log::get_log_full_action()
	Log::set_log_full_action()
	Log::get_administrative_state()
	Log::set_administrative_state()
	Log::get_forwarding_state()
	Log::set_forwarding_state()
	Log::get_operational_state()
	Log::get_interval()
	Log::set_interval()
	Log::get_availability_status()
	Log::get_capacity_alarm_thresholds()
	Log::set_capacity_alarm_thresholds()
	Log::get_week_mask()
	Log::set_week_mask()
	Log::get_log_qos()
	Log::set_log_qos()
	Log::query()
	Log::retrieve()
	Log::match()
	Log::delete_records()
	Log::delete_records_by_id()
	Log::write_records()
	Log::write_recordlist()
	Log::set_record_attribute()
	Log::set_records_attribute()
	Log::get_record_attribute()
	Log::copy()
	Log::copy_with_id()
	Log::flush()

	DsLogAdmin::BasicLog Interface
	DsLogAdmin::LogMgr Interface
	LogMgr::list_logs()
	LogMgr::find_log()
	LogMgr::list_logs_by_id()

	DsLogAdmin::BasicLogFactory Interface
	BasicLogFactory::create()
	BasicLogFactory::create_with_id()

	DsEventLogAdmin Module
	DsEventLogAdmin::EventLog Interface
	DsEventLogAdmin::EventLogFactory Interface
	EventLogFactory::create()
	EventLogFactory::create_with_id()

	DsLogNotification Module
	DsLogNotification::PerceivedSeverityType Type
	DsLogNotification::ThresholdAlarm Structure
	DsLogNotification::ObjectCreation Structure
	DsLogNotification::ObjectDeletion Structure
	DsLogNotification::AttributeType Type
	DsLogNotification::AttributeValueChange Structure
	DsLogNotification::StateType Type
	DsLogNotification::StateChange Structure
	DsLogNotification::ProcessingErrorAlarm Structure

	DsNotifyLogAdmin Module
	DsNotifyLogAdmin::NotifyLog Interface
	NotifyLog::get_filter()
	NotifyLog::set_filter()

	DsNotifyLogAdmin::NotifyLogFactory Interface
	NotifyLog::create()
	NotifyLog::create_with_id()

	IT_NotifyLogAdmin Module
	IT_NotifyLogAdmin::NotifyLog Interface
	NotifyLog::obtain_offered_types()
	NotifyLog::obtain_subscribed_types()

	IT_NotifyLogAdmin::NotifyLogFactory Interface
	NotifyLogFactory::default_filter_factory Attribute
	NotifyLogFactory::manager Attribute

	Trader Service
	CosTrading Module
	CosTrading Data Types
	CosTrading::Constraint Data Type
	CosTrading::Istring Data Type
	CosTrading::LinkName Data Type
	CosTrading::LinkNameSeq Data Type
	CosTrading::OfferId Data Type
	CosTrading::OfferIdSeq Data Type
	CosTrading::OfferSeq Data Type
	CosTrading::PolicyName Data Type
	CosTrading::PolicyNameSeq Data Type
	CosTrading::PolicySeq Data Type
	CosTrading::PolicyValue Data Type
	CosTrading::PropertyName Data Type
	CosTrading::PropertyNameSeq DataType
	CosTrading::PropertySeq Data Type
	CosTrading::PropertyValue Data Type
	CosTrading::ServiceTypeName Data Type
	CosTrader::TraderName Data Type
	Cos:Trading::TypeRepository Data Type
	CosTrading::FollowOption Enum
	CosTrading::Offer Struct
	CosTrading::Policy Struct
	CosTrading::Property Struct

	CosTrading Exceptions
	CosTrading::DuplicatePolicyName
	CosTrading::DuplicatePropertyName
	CosTrading::IllegalConstraint
	CosTrading::IllegalOfferId
	CosTrading::IllegalPropertyName
	CosTrading::IllegalServiceType
	CosTrading::InvalidLookupRef
	CosTrading::MissingMandatoryProperty
	CosTrading::NotImplemented
	CosTrading::PropertyTypeMismatch
	CosTrading::ReadonlyDynamicProperty
	CosTrading::UnknownMaxLeft
	CosTrading::UnknownOfferId
	CosTrading::UnknownServiceType

	CosTrading::Admin Interface
	Admin::request_id_stem Attribute
	Admin::list_offers()
	Admin::list_proxies()
	Admin::set_def_follow_policy()
	Admin::set_def_hop_count()
	Admin::set_def_match_card()
	Admin::set_def_return_card()
	Admin::set_def_search_card()
	Admin::set_max_follow_policy()
	Admin::set_max_hop_count()
	Admin::set_max_link_follow_policy()
	Admin::set_max_list()
	Admin::set_max_match_card()
	Admin::set_max_return_card()
	Admin::set_max_search_card()
	Admin::set_request_id_stem()
	Admin::set_supports_dynamic_properties()
	Admin::set_supports_modifiable_properties()
	Admin::set_supports_proxy_offers()
	Admin:set_type_repos()

	CosTrading::SupportAttributes Interface
	SupportAttributes::supports_dynamic_properties Attribute
	SupportAttributes::supports_modifiable_properties Attribute
	SupportAttributes::supports_proxy_offers Attribute
	SupportAttributes::type_repos Attribute

	CosTrading::Register Interface
	Register::OfferInfo Structure
	Register::IllegalTraderName Exception
	Register::InterfaceTypeMismatch Exception
	Register::InvalidObjectRef Exception
	Register::MandatoryProperty Exception
	Register::NoMatchingOffers Exception
	Register::ProxyOfferId Exception
	Register::ReadonlyProperty Exception
	Register::RegisterNotSupported Exception
	Register::UnknownPropertyName Exception
	Register::UnknownTraderName Exception
	Register::describe()
	Register::export()
	Register::modify()
	Register::resolve()
	Register::withdraw()
	Register::withdraw_using_constraint()

	CosTrading::Proxy Interface
	Proxy::ConstraintRecipe Data Type
	Proxy::ProxyInfo Data Structure
	Proxy::IllegalRecipe Exception
	Proxy::NotProxyOfferId Exception
	Proxy::describe_proxy()
	Proxy::export_proxy()
	Proxy::withdraw_proxy()

	CosTrading::OfferIterator Interface
	OfferIterator::destroy()
	OfferInterator::max_left()
	OfferIterator::next_n()

	CosTrading::OfferIdIterator Interface
	OfferIdInterator::destroy()
	OfferIdIterator::max_left()
	OfferIdIterator::next_n()

	CosTrading::Lookup Interface
	Lookup::Preference DataType
	Lookup::HowManyProps Enum
	Lookup::SpecifiedProps Union
	Lookup::IllegalPolicyName Exception
	Lookup::IllegalPreference Exception
	Lookup::InvalidPolicyValue Exception
	Lookup::PolicyTypeMismatch Exception
	Lookup::query()

	CosTrading::LinkAttributes Interface
	LinkAttributes::max_link_follow_policy Attribute

	CosTrading::Link Interface
	Link::LinkInfo Data Structure
	CosTrading::Link Exceptions
	Link::DefaultFollowTooPermissive Exception
	Link::DuplicateLinkName Exception
	Link::IllegalLinkName Exception
	Link::LimitingFollowTooPermissive Exception
	Link::UnknownLinkName Exception
	Link::add_link()
	Link::describe_link()
	Link::list_links()
	Link::modify_link()
	Link::remove_link()

	CosTrading::ImportAttributes Interface
	ImportAttributes::def_follow_policy Attribute
	ImportAttributes::def_hop_count Attribute
	ImportAttributes::def_match_card Attribute
	ImportAttributes::def_return_card Attribute
	ImportAttributes::def_search_card Attribute
	ImportAttributes::max_follow_policy Attribute
	ImportAttributes::max_hop_count Attribute
	ImportAttributes::max_list Attribute
	ImportAttributes::max_match_card Attribute
	ImportAttributes::max_return_card Attribute
	ImportAttributes::max_search_card Attribute

	CosTrading::TraderComponents Interface
	TraderComponents::admin_if Attribute
	TraderComponents::link_if Attribute
	TraderComponents::lookup_if Attribute
	TraderComponents::proxy_if Attribute
	TraderComponents::register_if Attribute

	CosTrading::Dynamic Module
	CosTradingDynamic::DynamicProp Struct
	CosTradingDynamic::DPEvalFailure Exception

	CosTradingDynamic:: DynamicPropEval Interface
	DynamicPropEval::evalDP()

	CosTradingRepos Module
	CosTradingRepos:: ServiceTypeRepository Interface
	ServiceTypeRepository::Identifier Alias
	ServiceTypeRepository::PropStructSeq Sequence
	ServiceTypeRepository::ServiceTypeNameSeq Sequence
	ServiceTypeRepository::ListOption Enum
	ServiceTypeRepository::PropertyMode Enum
	ServiceType:Repository::IncarnationNumber Structure
	ServiceTypeRepository::PropStruct Structure
	ServiceTypeRepository::TypeStruct Structure
	ServiceTypeRepository::SpecifiedServiceTypes Union
	ServiceTypeRepository::AlreadyMasked Exception
	ServiceTypeRepository::DuplicateServiceTypeName Exception
	ServiceTypeRepository::HasSubTypes Exception
	ServiceTypeRepository::InterfaceTypeMismatch Exception
	ServiceTypeRepository::NotMasked Exception
	ServiceTypeRepository::ServiceTypeExists Exception
	ServiceTypeRepository::ValueTypeRedefinition Exception
	ServiceTypeRepository::incarnation Attribute
	ServiceTypeRepository::add_type()
	ServiceTypeRepository::describe_type()
	ServiceTypeRepository::fully_describe_type()
	ServiceTypeRepository::list_types()
	ServiceTypeRepository::mask_type()
	ServiceTypeRepository::remove_type()
	ServiceTypeRepository::unmask_type()

	Appendix A System Exceptions
	Index

