
Orbix 3.0

Release Notes

March 2000

Copyright © 2000 IONA Technologies PLC. All rights reserved. 1

Contents

Introduction 5

Orbix 5

Development Environments 5
Solaris 2.5.1 5
HP-UX 10.20 7
HP-UX 11.00 7
NT 4.0 7
Win-95 and Win-98 7
Digital Unix 4.0E 7
AIX 4.3 8

Compatibility with Other IONA Products 8
Version of IIOP Supported 8
Version of CORBA 8
Storage of Configuration Variables 8
Inter-Orbix Version Interoperability 9

Functionality Removed from Orbix 3.0 14
IR 14
Static Bridge 15
Orbix 3.0 Libraries 15

New Features in Orbix 3.0 16
Documentation 16
Orbix Demos 16
Limiting Network Access Time 16
Service Contexts 18
Orbix Daemon 18
New IDL Types 18
New IDL Compiler Flags 18
IIOP 19
Dynamic Invocation Interface 19
CORBA::Any 19
New and Modified APIs 19
I/O Streams 21
Multi-Homed Hosts 21

Deprecated Features 21

Incidents Cleared in Orbix 3.0 22
IDL Compiler 22
DSI/DII 26
IFR 26
Runtime and Protocol Layer 29
Orbix Daemon 31

Orbix 3.0

Release Notes

March 2000

Copyright © 2000 IONA Technologies PLC. All rights reserved. 2

Orbix Utilities 32

Known Problems, Workarounds and Tips 32
Installing on HP 32
DII 32
Runtime and Protocol Layer 33
Utilities 33
Unsupported Types 33
Fixed Type 33
Signal Handling 34
Any 34

Orbix Code Generation Toolkit 35

Development Environments 35
Solaris 35
HP-UX 35
NT 35

Compatibility with Other IONA Products 35
Documentation 36
A Simple Code Generation Toolkit Example 36

Known Problems, Workarounds and Tips 37
Microsoft Windows NT 37

OrbixCOMet Desktop 39

Development Environments 39

Installation Issues 40

Knowledge Base and Support 40

New Features 40
Common Demonstrations 40
New Configuration Format 41
Support for Coclasses 42
Scoped Names to Avoid Clashes 42
Prefixing of Type Names 42
Extended OMG IDL Generation 42
-b Switch to ts2idl 43
Keyword Prefixing in Generated IDL 43
Extended Support for Directly Binding to DCOM Servers 43
Moniker Support 44
-t Switch with custsur.exe 44
Generation of IORs via custsur.exe 44
Support for CORBA Interfaces Using #pragma Prefix 45
Enhanced Debug/Trace Information 45
Support for Callbacks with Complex Types in Automation and COM 45

Orbix 3.0

Release Notes

March 2000

Copyright © 2000 IONA Technologies PLC. All rights reserved. 3

Servers Using DIOrbixServerAPI Dispatch Own Events 45
COMetIFR Integrated with Orbix IFR 45
Single Command for Reading IFR into Type Store 45
Read-Only Mode in Type Store 45
Using the Naming Service to Locate the IFR 45

Incidents Cleared in this Release 46

Documentation 48

Known Problems, Workarounds and Tips 49
Licensing Issues 49
Backwards Compatibility with the Orbix/ActiveX Integration 49
Supported Mappings 52
Usage Models 52

Known Issues 53
Installing OrbixCOMet over Existing Orbix/ActiveX Integration 55
Building/Running Demonstrations 55
Standalone Server Support 56
Stand-Alone IFR 57

OrbixNames 58

Development Environments 58

Compatibility with Other IONA Products 58

Functionality Removed from OrbixNames 3.0 58
Names Library 58

New Features in OrbixNames 3.0 58
Documentation 58
Orbix Demos 59
Configuration 59
Finding Unreachable Naming Contexts 59
Multi-threading 59

Incidents Cleared in OrbixNames 3.0 60

Orbix Wonderwall 61

Licensing 61

Development Environments 61

Compatibility 62

New Features in Orbix Wonderwall 3.0 62
Logging Connections 62

Incidents Cleared in Orbix Wonderwall 3.0 62

Known Problems, Workarounds and Tips 62

Orbix 3.0

Release Notes

March 2000

Copyright © 2000 IONA Technologies PLC. All rights reserved. 4

Fragmented IIOP 1.1 Headers 62
Fragmented Replies and HTTP Tunneling 62
Timing Out of Servers with Transformers 63
Host Names and Orbix 2.3c 63
Contacting an Unregistered Server 63

Further Information 63

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 5

Introduction
These release notes provide details of changes made in Orbix 3.0. This document is
divided into five main sections, each corresponding to one of the components of
Orbix 3.0:

• Orbix

• Orbix Code Generation Toolkit

• OrbixCOMet

• OrbixNames

• Orbix Wonderwall

Orbix
This section describes changes made in Orbix 3.0.

Development Environments
This section describes the compiler and operating system versions that Orbix 3.0
has been built and tested with. The following applies to both multi-threaded and
single-threaded variants of Orbix 3.0.

Solaris 2.5.1

Orbix 3.0 has been built on Solaris 2.5.1 using the SPARC C++ compiler version
4.2.

Patch 105568-11 or higher (libthread.so.1 patch) for Solaris 2.6 should be
installed on your system. This patch has a dependency on patch 105210
(libc.so.1 patch), that is patch 105210 must be installed.

Testing of Orbix 3.0 was carried out on Solaris 2.5.1 and 2.6 and SPARC compiler
version 4.2.

The Orbix 3.0 libraries contain RTTI information.

Year 2000 compliance

If you are using either Solaris 2.5.1 or 2.6, the Solaris recommended patch cluster
should be installed as well as the patches below. More information about the
recommended patch cluster is available at:

http://online.sunsolve.sun.co.uk/pub-cgi/
uk/pubpatchpage.pl

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 6

Solaris 2.5.1 Y2K Patches

103948-02 SunOS 5.5.1: accounting patch

103566-40 OpenWindows 3.5.1: Xsun patch

104463-03 SunOS 5.5.1: /usr/bin/date patch

104490-05 SunOS 5.5.1: ufsdump and ufsrestore patch

104816-01 SunOS 5.5.1: usr/sbin/sar patch

104818-01 SunOS 5.5.1: /usr/bin/passwd patch

104820-01 SunOS 5.5.1: /usr/lib/saf/listen patch

104822-01 SunOS 5.5.1: usr/lib/libadm.so.1 and usr/lib/libadm.a patch

104824-01 SunOS 5.5.1: usr/vmsys/bin/initial patch

104854-02 SunOS 5.5.1: troff macro patch

104873-04 SunOS 5.5.1: /usr/bin/uustat and other uucp fixes

105016-01 SunOS 5.5.1: usr/lib/libkrb.a and usr/lib/libkrb.so.1 patch

105675-01 SunOS 5.5.1: /usr/sbin/auditreduce patch

105701-02 SunOS 5.5.1: sysidsys unzip patch

104918-01 OpenWindows 3.5.1: y2000 filemgr patch

104995-01 OpenWindows 3.5.1: imagetool patch

104093-07 OpenWindows 3.5.1: mailtool patch

104977-01 OpenWindows 3.5.1: perfmeter patch

Solaris 2.6 Y2K Patches

105210-18 libc & watchmalloc patch

105393-07 at and cron utility patch

105464-01 OpenWindows 3.6: multiple xterm fixes

105621-09 libbsm patch

105800-05 /usr/bin/admintool patch

106193-03 sysid unzip patch

106828-01 /usr/bin/date patch

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 7

HP-UX 10.20

Orbix 3.0 has been built and tested on HP-UX10.20 using the Cfront compiler
version A.10.36 with patch phss-13124 installed. This product has also been built
and tested with ANSI compiler A.01.18.

Testing of Orbix 3.0 was carried out on HP-UX10.20 on 700 and 800 series
machines. Orbix has been compiled with +DAportable.

Orbix must now be compiled with the -ext flag to enable support for the long
long and unsigned long long data types. Failure to do this results in
compilation errors.

Threading Support on HP-UX

In order to use Orbix on HP-UX, the operating system threading support should
have been installed using is the 'install and core OS' for HP-UX 10.20 CD and the
subset DCE programming environment.

Year 2000 compliance

The following patch clusters should be installed on HP:

10.20 Series 700

Y2K1020S700

10.20 Series 800

Y2K1020S800

HP-UX 11.00

Orbix 3.0 has been built and tested on HP-UX 11.00 using the ANSI C++ A. 03.10
compiler.

NT 4.0

Orbix 3.0 has been built and tested on NT 4 with service pack 4 installed, using the
VC Compiler version 6 service pack 1.

Win-95 and Win-98

Orbix 3.0 has not been built or tested on these platforms.

Digital Unix 4.0E

Orbix 3.0 has been built and tested on Digital Unix version 4.0E using the Digital
Unix C++ Compiler version 6.1.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 8

AIX 4.3

Orbix 3.0 has been built and tested on IBM AIX 4.3 using the CSET C++ Compiler
version 3.6.4.

Compatibility with Other IONA Products
This section outlines the new Orbix 3.0 configuration mechanism and compatibility
with previous versions of Orbix.

Version of IIOP Supported

Orbix 3.0 uses IIOP 1.0 by default. IIOP 1.1 is also supported.

Code set negotiation is not supported.

Version of CORBA

Orbix 3.0 supports version 2.1 of the CORBA specification.

Storage of Configuration Variables

The Orbix 2.x configuration mechanism of storing configuration variables in the
Orbix.cfg file has changed in this release. In order to have a common
configuration mechanism across IONA products; Orbix 3.0 introduces new 'scoped'
configuration variables. These take the following form:

<IONA Product>.<variablename> = "<value>";

The previously used Orbix.cfg file has been replaced with a file named
iona.cfg located by default in the <iona_installation>/config
directory. This root configuration file contains links to all other IONA configuration
files. There is also a special common.cfg configuration file. This contains Orbix
configuration values that are used by multiple IONA products.

For backwards compatibility, Orbix uses any existing Orbix.cfg files; however,
you should move existing configuration files to this new scoped format. For a full list
of Orbix configuration variables, refer to the Orbix C++ Administrator’s Guide.

How Orbix Finds its Configuration

Orbix has a chain of configuration handlers that it looks in when asked for a
configuration parameter, these are (in order):

[Environment Handler ("IT_Environment")] à
[ScopedConfigFile Handler("IT_ScopedConfigFile")] à
[OldConfigFileHandler ("IT_ConfigFile")]

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 9

The Environment handler exists to allow any configuration variables defined in your
environment to supersede those defined in configuration files or other user-defined
configuration handlers.

To find the root configuration file (iona.cfg by default), the
ScopedConfigFile handler checks the following:

• The environment variable IT_IONA_CONFIG_FILE.

 The configuration file need not be called iona.cfg.

• The environment variable IT_CONFIG_PATH and append iona.cfg.

• Looks for iona.cfg in the same directory as the Orbix runtime libraries.

• On Windows NT, checks the NT registry to find where Orbix was installed
and appends config\iona.cfg to it.

• Tries the default installation locations (c:\iona on Windows NT, or
/opt/iona on UNIX systems).

The dumpconfig Utility:

A utility named dumpconfig is provided in the \iona\contrib\ directory.
When run, this reports what configuration variables Orbix is picking up, and exactly
where it finds the configuration files. It also reports if there are any syntax errors in
your configuration files that would normally be ignored by Orbix itself. Use
dumpconfig if you are in any doubt about how Orbix is being configured.

Changes to PlaceCVHandlerBefore() and
PlaceCVHandlerAfter() Code

If you are upgrading from Orbix 2.x and use the Orbix calls
CORBA::Orbix::PlaceCVHandlerBefore() or
CORBA::Orbix::PlaceCVHandlerAfter(), you need to change the code
to specify IT_ScopedConfigFile instead of the old IT_ConfigFile or
IT_Registry handlers.

Inter-Orbix Version Interoperability

This section details compatibility with previous versions of Orbix.

Repository IDs, Interface Markers, and Object Keys

This release of Orbix includes fixes or support for the following:

• Support for #pragma prefix.

• Support for #pragma ID.

• Full backward compatibility of Orbix object keys, including cases that use
#pragma directives. This means that the #pragma directive has no effect
on the object key.

• Narrowing of Orbix object references from previous version of Orbix
clients and foreign ORBs.

• Remote _is_a operations from OrbixWeb and foreign ORBs in general.
This is the way that most other ORBs perform narrowing.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 10

CORBA Compliance

Orbix 3.0 can compile code with #pragma directives and publish IORs that both
previous versions of Orbix and foreign ORBs can understand because Orbix 3.0 can
service _is_a calls with OMG type IDs as parameters. Foreign ORBs can
therefore narrow Orbix3.0 IORs and pre-Orbix3.0 IORs successfully.

TypeCodes

TypeCode usage with Orbix has been extended to cover single-level recursive
definitions.

TypeCodes have also been modified so that they use correct repository IDs and
type names. This improves interoperability for the CORBA::Any and
CORBA::TypeCode types.

The IDL legacy flag -typeCode can be used to generate pre-3.0 TypeCodes. The
-typeCode flag facilitates interoperation between Orbix 3.0 and previous versions
of Orbix.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 11

Interface Repository (IFR)

This is a list of rules for interoperability between Orbix 3.0 IFR and pre-Orbix 3.0:

• The 3.0 IFR must not use a pre-3.0 repository directory. If upgrading to
Orbix 3.0, the Interface Repository directory must be cleared, or a new
directory should be created.

• The version of putidl must be the same as the IFR version. For example,
3.0 putidl with 3.0 IFR, 2.3 putidl with 2.3 IFR.

• Different versions of Orbix clients can read from other versions of Orbix
IFRs. For example, 3.0 readifr with 2.3 IFR.

Smart Proxy Factories

Const Correctness

The const correctness of the CORBA headers provided with Orbix has been
improved for this release. As a side effect of this, some signatures have changed
from char* to const char*. In most cases this is not a problem and is
transparent to users of Orbix.

However, existing programs that use smart proxy factories are affected. The
signature of the base ProxyFactory New() function has changed. Because the
author of a proxy factory is required to override this method in their derived class,
it is essential that the signature of the overriding method exactly match that of the
base virtual method. Otherwise, the derived function hides but does not override
the base method.

Because smart proxies have methods of the form New(char*), and the new base
method class has New(const char*), this means that the factory uses the base
(default) handling. In effect the proxy factory is disabled.

In order to correct this problem, add const to the New() methods that are being
overridden.

Constructor

The proxy Factory constructor must now be called with the _IR name of the class;
for example, a SmartProxy constructor for the grid would be as follows:

SmartProxyFactoryClass : CORBA::ProxyFactory (grid_IR) {}

In the past you could have used grid_IMPL in place of grid_IR.

Dynamic Allocation of Arrays

To allocate an array dynamically, a conforming program must use the functions,
which are defined, at the same scope as the array type. For array T, these functions
are defined as:

//C++

T_slice* T_alloc ();

void T_free (T_slice*);

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 12

Failure to use these functions can lead to undefined behaviour. Refer to the
chapter "The CORBA IDL to C++ Mapping" in the Orbix C++ Programmer's Guide
for a full description of these functions.

NamedValue and NVList

• NVList is now conforms to the CORBA 2.1 specification.

• Previously, when inserting items into a NamedValue the value component was
deep copied depending on the argument mode. This is no longer the case, that
is deep copying is not carried out.

CORBA Module Scoping

TypeCode, Principal, and NamedValue must now be explicitly scoped by
CORBA:: in the IDL code.

WinMode—the ITG Replacement in ITM

Writing GUI applications with Orbix presents certain problems to the programmer.
A GUI application is typically event driven, and so is an Orbix application.
Therefore, you must ensure that both types of events are dispatched to their
appropriate handlers.

There are essentially two ways of doing this. First, each event loop can be executed
in its own thread. However, this method introduces the usual problems of
multithreaded applications—thread-safety. Often, simple applications do not
warrant the introduction of this overhead.

The second method involves multiplexing the separate event loops. In the case of
GUI Orbix applications the simplest way is to keep the GUI message loop and
enable Orbix events to automatically trigger corresponding GUI messages. This has
the advantage of allowing the application programmer to choose whatever kind of
Windows message loop that they deem necessary.

Orbix WinMode enables the latter method of multiple event loop execution.
Therefore, it allows easy integration into GUI applications built with frameworks
such as MFC.

WinMode Availability

Orbix WinMode is only available with the multithreaded Orbix library (ITM.LIB).

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 13

Enabling WinMode

WINMODE.H must be included to access the new functions. An excerpt from this
header file follows:

class OrbixWinMode {

public:

bool BeginWinMode(HWND app_wnd, UINT
new_events_msg, UINT op_complete_msg);

static bool BeginWinMode();

static void EndWinMode();

protected:

virtual void ProcessWindowsEvents() = 0;

};

The simplest way of enabling WinMode is to call the static member function
BeginWinMode(). It is not necessary to instantiate the OrbixWinMode class.
You can disable WinMode later by calling EndWinMode(). While WinMode is
enabled in this way Orbix requires that a Windows message loop be executing to
respond to Orbix events.

WinMode can also be enabled in a more involved way. This alternative way allows
greater flexibility and improved integration into GUI application frameworks such as
MFC. To enable WinMode in this way perform the following steps:

1. Inherit from OrbixWinMode.

2. Provide an implementation for ProcessWindowsEvents().

3. Instantiate an object of your defined type.

4. Call the member function BeginWinMode(HWND,UINT,UINT).

5. You can disable WinMode by calling EndWinMode() as before.

You must provide values to BeginWinMode(HWND,UINT,UINT). The first
parameter is a window handle that receives messages sent by Orbix to inform the
application of relevant events. The next two parameters are message identifiers for
those messages. The second parameter is a message Orbix sends to the appointed
window when there are new Orbix events to be processed. The message handler
for this message should call CORBA::Orbix.processEvents(0). This
dispatches all pending Orbix events.

The third parameter specified to BeginWinMode(HWND,UINT,UINT) is related
to the ProcessWindowsEvents() virtual function. When Orbix makes a
remote invocation it calls ProcessWindowsEvents(). This allows the
application to process a Windows message loop that includes such features as
accelerators or one that is implemented in a GUI framework such as MFC. When
Orbix receives the reply for the operation, a message is sent to the appointed
window to notify the application. This message identifier is specified in the third
parameter to BeginWinMode(HWND,UINT,UINT). When this message is
handled the application should exit from the message loop and
ProcessWindowsEvents() should be allowed to return.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 14

IDL Compiler Errors

The following IDL extract contains an example of illegal IDL:

 module M {

1. typedef long Long; //Long clashes with long

typedef long TheThing;

interface I {

 typedef long Mylong;

2. mylong op1 (//miscapitalization of mylong

3. TheThing thething //thething clashes with
TheThing

);

 };

 };

This IDL is described as follows:

1. The compiler now emits an error of the form “Long clashes with keyword”.

2. A warning of the form “miscapitalization of mylong” is output.

3. The compiler will ouputs the warning “thething clashes with TheThing”.

Warnings 2 and 3 will be upgraded to error conditions in a future release.

It is now incorrect to forward declare an IDL interface without providing a
proper declaration of that interface at some other point in the IDL
specification being compiled. This is contrary to previous behavior, which
was non-compliant. See the CORBA Specification version 2.1, Section 3.5.2

OBJECT_NIL

OBJECT_NIL is in the CORBA namespace and must be qualified when used. It is
now properly type safe because it has the type const CORBA::Object_ptr.
Before, this was essentially zero and was compatible with all pointer and arithmetic
types (and those that accepted zero for construction).

Functionality Removed from Orbix 3.0
The following functionality has been removed from Orbix 3.0.

IR

The IR is no longer shipped with Orbix. This has been replaced by the IFR.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 15

Static Bridge

The files for the static COM/CORBA bridge (winidl compiler, demos, and so on)
are no longer shipped with Orbix. The OrbixCOMet product has replaced this
functionality.

Orbix 3.0 Libraries

The Orbix 3.0 libraries are now as follows:

Static Libraries

Static libraries are no longer shipped with Orbix on any platform.

Unix Libraries

liborbix now contains libITini and libDSI.

liborbixmt now contains libITinimt and libDSImt.

Windows NT Libraries

The libraries shipped with Windows NT on Orbix include the following two
libraries only:

ITCi.lib and ITMi.lib.

The following libraries are now part of the Orbix libraries:

libDSICi.lib libDSIMi.lib ifr.lib initsvr.lib

As mentioned previously, the static libraries are no longer shipped with Orbix. Thus
the following libraries are no longer shipped:

IRCLT.lib ITC.lib ITM.lib libDSI.lib

The GUI tools and static bridge libraries are no longer shipped with Orbix. The
following libraries have been removed:

ITG.lib ITGi.lib ITOLEi.lib LibDSIGi.lib

Refer to the section on WinMode on page 6 for details of the ITG replacement on
NT.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 16

New Features in Orbix 3.0
This section describes the new functionality and major changes added in Orbix 3.0.

Documentation

The Orbix user documentation has been updated for this release. New editions of
the following manuals are shipped with the product:

• Orbix C++ Programmer’s Guide

• Orbix C++ Programmer’s Reference

• Orbix C++ Administrator’s Guide

Orbix Demos

 A number of the demos shipped with Orbix have been redesigned. The
documentation has been updated to reflect the new demos.

Limiting Network Access Time

 Orbix 3.0 has incorporated new features which gives the application more control
over the low level behaviour of TCP network access.

 In previous versions of the product, it was possible to assign a time limit to the
duration of a full invocation including both the request and response. This was
achieved by using the following APIs:

• CORBA::ORB::defaultTxTimeout()

• CORBA::Environment::timeout()

 To ensure that attempted TCP connections did not overrun a set time limit the
following APIs were used:

• CORBA::ORB::abortSlowConnects()

• CORBA::ORB::setConnectionTimeout().

 In Orbix 3.0 the application timeouts have been extended to cover the network
access at a smaller granularity, thus ensuring that Orbix is sufficiently flexible and
responsive when dealing with the demands of large and complex TCP networks
under differing load characteristics. The API’s mentioned above still exist, and
operate in a similar manner to previously released versions of Orbix.

 The default behaviour of Orbix 3.0 is the same as in previous versions of Orbix:

• Default tx timeout is INFINITE_TIMEOUT.

• Default abortSlowConnects() is OFF.

• Default connectionTimeout is 30 seconds.

 The non-default behaviour is described below.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 17

 Aborting Slow Connections

 When an Orbix client or server attempts to access a server, it goes through an
initial TCP connection phase. The time spent in this activity can be quite large,
particularly if the target server is extremely busy, or the target server’s host is not
on a route accessible from the local host. This can cause unacceptable delays in
large network systems.

 To allow the application to avoid such delays, it is possible to reduce the time the
ORB will spend attempting to connect to a server by using the following API
invocation:

 CORBA::Orbix.abortSlowConnects(1)

 After this call, any connection attempts that have not succeeded or failed within 30
seconds will return failure. By default, the ORB will try 10 times to connect to the
target server, and each connection will apply this 30 second limit. Both the number
of retries and the connection time limit can be altered by using the
CORBA::ORB::maxConnectRetries() and
CORBA::ORB::setConnectionTimeout() APIs respectively.

 Previous versions of Orbix on UNIX platforms used the SIGALRM signal to effect
the connection time limit. This feature has been changed in Orbix 3.0 on UNIX
systems so that there is no use of signals.

 Timing Out Slow Message Sends and Receives

 In previous versions of Orbix, it was possible to cause a client to hang when the
operating system’s internal TCP message buffers became full. This situation could
arise, for example, when the client was sending a large number of messages rapidly,
in succession, and where the server processed the messages one or more orders of
magnitude more slowly.

 When a timeout for an invocation is set, either through the
CORBA::Orbix.defaultTxTimeout() or CORBA::Environment APIs,
that timeout now applies, separately, to both the sending and receiving part of the
invocation. The result is that, if an invocation is given a timeout of 400 milliseconds
and either the sending part or the receiving part of the invocation exceeds this
amount of time, a CORBA system exception will be returned to the caller, stating
that the operation has timed out.

 Judicious use of these API’s can permit an application to have more control over its
runtime behaviour.

 Cancelling of Bad Connections

 It is possible that dysfunctional or malicious clients may attempt to connect to
Orbix servers, especially the Orbix daemon, which usually has a well-known port
number. To forestall the chance of destructive behaviour, Orbix 3.0 still cancels any
unrecognised protocol access and adds a new feature—connection attempts to the
daemon or any Orbix server which take longer than a default of 30 seconds are
dropped by the daemon or server. This is the default behaviour. The value of this
timeout can be changed using the CORBA::ORB::setConnectionTimeout()
API.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 18

Service Contexts

 Service contexts are an IIOP-compliant way of implicitly passing service-specific
information with IIOP requests and replies. The interoperability specification defines
a mechanism for identifying and passing this service specific information as “hidden
parameters”.

 Refer to the “Service Contexts” chapter in the Orbix C++ Programmer's Guide for a
description of the Orbix APIs that provide the mechanism to supply and consume
context information.

Orbix Daemon

 The Orbix daemon is Java-enabled. This means the Orbix daemon can now launch
Java servers.

New NT Daemon Flags

 -j Install daemon as an NT service.

 This starts the daemon with <path>\orbixd -b.

 -w: Uninstall daemon as an NT service.

 -b: Run daemon as an NT service.

New IDL Types

 Support has been added for the following types: long long, unsigned long
long, and fixed.

 Note that there is a maximum allowed size for a fixed value. This is the maximum
of a double value.

New IDL Compiler Flags

 The following flags have been added to the IDL Compiler:

• -Bonly

 The same as -B flag, but also suppresses generation of TIE code.

• -C

 This flag has been removed. This means that comment filtering is no longer
supported.

• -typeCode

 This flag is used with the -A flag and indicates that pre-Orbix 3.0 TypeCodes
should be generated.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 19

IIOP

 A number of new configuration variables have been added for IIOP:

• IT_IIOP_VERSION

 This specifies the IIOP version of the IORs generated by Orbix servers, and
of IIOP messages understood by Orbix. Valid values are 10 and 11,
representing IIOP 1.0 and IIOP 1.1 respectively. The default value is 10.

• IT_ONEWAY_RESPONSE_REQUIRED

 This specifies if an IIOP reply is expected for an outgoing IIOP request
containing a oneway operation. A response to a oneway is desirable when
the user wishes to catch system exceptions, or to enable the client to
receive IIOP replies with LOCATION_FORWARD status. However there is a
performance overhead. Valid values for the variable are TRUE and FALSE,
the default is FALSE. Oneways that require a response are not compatible
with earlier versions of Orbix. Also, if the invocation is dynamic (made by
the user using the Dynamic Invocation Interface), this variable is ignored.

Dynamic Invocation Interface

The following changes have been made to the Dynamic Invocation Interface (DII):

• In previous versions of Orbix the DII required the client application to be
linked with the Client Stub code in order that User Defined Types code be
marshaled and unmarshaled. This is no longer the case.

• Opaque data types cannot be used with the DII.

• The operation CORBA::Request::assumeOrigArgsOwnership() has
been renamed CORBA::Request::assumeArgsOwnership().

CORBA::Any

• In previous versions of Orbix the client stub code was required to be linked
with the client application in order that user-defined types could be marshaled,
unmarshaled, copied, and released. This is no longer the case.

• Orbix now provides a non-copying version of the extraction operator used for
extracting an Any from within an Any:

 // C++

 Boolean operator >>=(Any *&) const;

New and Modified APIs

This section described new APIs added to Orbix 3.0 and existing APIs that have
been modified.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 20

Service Context APIs

 The Orbix C++ Programmer’s Guide explains the APIs provided for service contexts.

Proxy Server APIs

 Two APIs have been added to CORBA::Object to provide support for Orbix
Wonderwall:

• CORBA::Object::enableProxyServer ()

• CORBA::Object::setProxyServer ()

enableProxyServer ()

 Synopsis CORBA::Object::enableProxyServer (

 Boolean useProxy);

 Description This API is provided for supporting Orbix Wonderwall.

 If set to true, the object reference contains the host name and
port number of the proxy server, that is Orbix Wonderwall. If
set to false the object reference contains the actual server host
and port.

 This API may be called repeatedly for an object, and thus enables
you to selectively publish object references with or without the
proxy host name and port number.

 Parameters

 useProxy true means the object reference contains the
port and host of the proxy server.

 false means the object reference contains the
actual server host and port.

 Notes Orbix specific

setProxyServer ()

 Synopsis CORBA::Object::setProxyServer (

 const char * host, unsigned short port);

 Description This API is provided for supporting Orbix Wonderwall.

 It sets the values for the host name and port number for the
proxy server (Orbix Wonderwall).

 If CORBA::Object::enableProxyServer () is set to
true, the object reference will contain the host name and port
number as specified by this API.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 21

 Parameters

 host The name of the host on which your firewall
proxy server is running

 port The port number on which your firewall proxy
server is listening.

 Notes Orbix specific

I/O Streams

 Two new defines have been added to the public API for Orbix:
IT_NOIOSTREAM and IT_USE_STD_IOSTREAM.

 IT_NOIOSTREAM switches off all reference to 'iostreams’ in the Orbix external
headers. It is most likely that this will be used by customers developing GUI
applications.

 IT_USE_STD_IOSTREAM is only meaningful when IT_NOIOSTREAM is not
defined. It causes the external Orbix to use <iostream> instead of
<iostream.h> and to use std::cout instead of cout, and so on.

 This latter option is not present on platforms that do not have ISO standard
streams available.

 Multi-Homed Hosts

 Multi-homed support for machines with multiple IP addresses is provided in Orbix
3.0. You can enable multi-homed support by defining the configuration variable:

 Orbix.IT_ENABLE_MULTI_HOMED_SUPPORT = YES

 You can also define the environment variable:

 IT_ENABLE_MULTI_HOMED_SUPPORT = YES

 It is disabled by default and will impact performance when enabled.

 Check the IONA knowledge base for further information.

Deprecated Features
 The following features are still supported, however their use is deprecated:

• _bind()

 You should now use OrbixNames.

• Transformers (for modifying marshaled data).
You should now use Orbix SSL.

• Filters—using filters to piggy-back data.

 You should now use Service Contexts.

• Opaque data type.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 22

• The Orbix network protocol.

• IDL compiler flags -i and –f.

Incidents Cleared in Orbix 3.0
 This section describes the incidents cleared in this release. All incidents are cross
platform unless otherwise stated. The incidents are broken down by module and
described in terms of the following:

• Incident ID

 This is the reference number used by the development teams to track
incidents, which may in turn relate to one or more PRs (problem reports) as
reported by customers.

• PR Number

 Not all incidents fixed will have a PR number (the number assigned by IONA
support when a call is logged).

• Synopsis

This is a short description of the reported problem. A description of the fix
is included in the fix where necessary.

IDL Compiler

 Incident ID PR Number Synopsis

 176 Type check not performed in const assignment for non-basic
type.

 215 The compiler does not report an error if an interface is
referenced by a forward declaration but never defined.

 370 14907

 103316

 171604

 Generated code for sequences of types defined in modules does
not compile.

 385 13924

 17170

 17623

 18107

 21106

 23708

 142442

 Invalid sequence type in generated code for typedef of data type
defined in another module and contained in an included file.

 402 A combination of #include<orb.idl> and idl -N
generates code that will not compile.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 23

 559 Compiler does not check if scoped name resolves to a legal type
in union switch statement.

 587 13667 Problem with a series of sequence declarations such as the
following:

 typedef sequence<octet, 11> Octet11;

 typedef sequence<octet, 255> Octet255;

 typedef sequence<octet, 256> Octet256;

 605 115324 TypeCode in IDL should be scoped with CORBA::.

 607 Defining an enum as const and assigning it causes a core
dump.

 610 144336 Comment treated as a reserved word in Orbix 2.3.

 626 On Windows NT, the order of CALL_SPEC and DECL_SPEC
for VC5.0 breaks VC4.2.

 10883 Problem dealing with typedefed sequences of typedefed
sequences.

 11140 132437

 133986

 161655

 164326

 165740

 167998

 Arrays of typedef types produce generated code that does not
compile.

 11440 112195

 133663

 138364

 133709

 136980

 190421

 IDL compiler does not scope correctly within a module when
using multiple inheritance.

 12040 138367

 121788

 Incorrect server skeleton code generated by IDL compiler for
opaque types.

 12240

 133779

 148901

 Issues with module reopening.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 24

 150943

 166849

 187216

 117565

 12840 119643

 125514

 134854

 161901

 When using the -N switch on Windows NT, the Orbix 2.3 IDL
compiler fails to compile a large IDL specification consisting of a
#include directive within a module definition.

 12880 158526

 114309

 119032

 123818

 125172

 130927

 147779

 153558

 154950

 160639

 The -O switch causes a segmentation fault.

 13381 134250

 136054

 136918

 149057

 154345

 160336

 160782

 Issues with module reopening.

 13620 136217 A module defined across three files and containing a struct does
not compile.

 13820 126667 The C++ code generated by the IDL compiler is not scoped
correctly if base and derived class methods exist with the same
name.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 25

 14880 138279

 140493

 167305

 long long is silently mapped to CORBA::Long.

 long long support added for this release.

 15261 123673

 145321

 123167

 Iinserting a recursive union into an Any causes a 'bad TypeCode'
error.

 16180 126210 TypeCodes cause NPR and server core dumps.

 16840 131972

 145164

 197652

 The IDL compiler pre-processor does not insert a new line
after including a file.

 17140 143191 The following generated code does not compile:

 void B::IProxyFactoryClass::baseInterfaces
 (_IDL_SEQUENCE_string& seq) {

 add (seq, B_I_IR);

 (A::IProxyFactoryClass*) this)->
IProxyFactoryClass::baseInterfaces(seq);}

 17820 144778 The IDL compiler crashes with -N switch if include file contains
exception and is included inside a module.

 18420 123842 Incorrect code is generated for typedefs of arrays.

 18520 145890 ## preprocessor directive does not work.

 19320 147086 Arrays of typedefed types do not compile.

 20340 148121

 148464

 Problem with #pragma prefix and user exceptions.

 In the stub code, when strcmp() is called to find the ID of a
UserException raised, it fails and an unknown exception is
raised. The strcmp() now compares against the exception
name that includes the prefix information.

 25280 158772 The IDL compiler attempts to process # in an included file even
if it is commented out.

 28480 143205

 170931

 Problem with inheritance specification generated for BOAImpl
classes.

 28880 160600 Sequences of two-dimensional arrays fail to build properly when
defined within an interface.

 33660 185070 The -N option fails for exceptions and modules.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 26

 188434

 214860

 33820 185521 Any insertion operator <<= obj_ref _var Any does
not work in Orbix 2.3 MT on HP-UX with either the native or
ANSI compilers.

 35000 188687 IDL does not generate correctly scoped code with -S switch
when using modules and enum.

 37461 Generated code does not compile if a fixed size structure is
used in IDL.

 43200 206096 IDL containing reopened modules does not compile on NT

 46880 210779 Including modules from a separate IDL file causes compile
errors in generated code.

DSI/DII

 Incident ID PR Number Synopsis

 11780 111029

 112126

 136928

 When trying to set DII request parameters using the
encodeCharArray() API, the array values are not sent correctly.

 10701 130891 CORBA::Typecode::equal() causing memory leak.

IFR

 Incident ID PR Number Synopsis

 268 17667 readifr cannot distinguish between structures and exceptions.

 347 169199

 24809

 168078

 putidl does not have a way of including IDL fields from elsewhere
other than the current directory.

 545 204134 When putting IDL into the IFR, the putidl utility does not take into
account the IDL that already exists in the IFR.

 10222 118779 The IFR crashes when being reloaded by readifr when -I is used
with putidl.

 10680 137066

 144914

 146203

 148824

 Problem with null TypeCodes returned.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 27

 152703

 158500

 112424

 122744

 124676

 129764

 141670

 144221

 162955

 165268

 174499

 185959

 12105,18180 122554

 142576

 146380

 193362

 Cannot use putidl with a const typedef.

 12180 127405

 116042

 129191

 143033

 147998

 155829

 Union causes putidl to core dump if the discriminator is an enum.

 15342 136930 IFR does not return typedefs correctly.

 19821 121851 Two enumerated types with the same elements, but with different
type names and scoped differently, do not work.

 27541 Interface with union as in parameter cannot be placed in IFR.

 28721 170897 Cannot have 'identifier' as an attribute when using putidl.

 38220 203214

 196286

 The IDL compiler generates a different TypeCode to the Interface
Repository.

 39465 199305 Cannot use putidl with an IDL file that assigns a const value to a
typedef type.

 47320 211249 readifr on UNIX gives a BusError after successfully reading the
IFR.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 28

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 29

Runtime and Protocol Layer

 Incident ID PR Number Synopsis

 125 108680 _bind() core dumps if no daemon is present.

 479 24102

 153350

 175890

 175938

 179851

 Incorrect type IDs occurring in generated IORs for
LOCATION_FORWARD message.

 625 113847

 121375

 139390

 Use of _marker() does not affect the string IOR returned from
object_to_string().

 10122 30154

 119658

 146763

 111224

 116862

 135727

 141076

 2014898

 Using _bind(), capitals or aliases in the host parameter hang the
first server that communicates using IIOP.

 10460 148067

 163419

 130726

 132681

 Using Orbix 2.3 on Windows NT, a struct in an Any leaks memory.

 13600 102561

 107905

 190438

 An infinite loop is caused by re-use of a bogus channel.

 13601 128057

 142071

 137878

 139464

 Memory leak with Any type.

 13621 114310 Client stubs compiled into a DLL hang when application exits.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 30

 117050

 117865

 119392

 127517

 136226

 134903

 143372

 146646

 13800 125128

 154122

 A user exception with an object reference member causes the client
to crash.

 14001 111059

 140131

 186421

 187306

 A memory leak occurs when an Any is inserted into an Any.

 14200 27583 Anys in exceptions are not marshaled correctly.

 14201 111256 There is an interoperability issue with HP OrbPlus because OrbPlus
uses : in object keys.

 11800 116851 CORBA::TypeCode::equal() only does a structural comparison
of structs.

 12340 130419

 140701

 144060

 152303

 197538

 Cannot pass an object reference in a structure.

 15261 123673

 145321

 123167

 Inserting a recursive union into an Any causes a bad TypeCode error.

 19460 147328

 167489

 A client receives the old marker name in IOR even if the marker
name has been changed.

 19800 148195 If an OrbixWeb client uses _is_a() C++ server does not call
inRequestPostMarshal() filter point.

 21360 146245 Anys leak memory when using IIOP and complex types.

 22440 149863 Foreign IORs are handled incorrectly by Orbix 2.2 and 2.3.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 31

 181413

 23980 156691 The IOCallback close operation on the client side is not called when
using Orbix 2.3c single-threaded.

 26860 159384

 186711

 204422

 205939

 Unmarshaling a sequence of structs on the client side over IIOP fails.

 27620 159149 The client of an unshared server is unable to bind to a second object
using markers.

 28800 157851 Anys cause memory leaks on HP-UX and Windows NT.

 29480 106398

 122722

 172791

 183155

 Catching CORBA::COMM_FAILURE does not catch
COMM_FAILURE 10081 exception.

 29960 162944 On receiving an error some channels may not be shut down
correctly.

 30060 136540 narrow() and release() of the same object reference is not
thread-safe.

 33680 174210

 177854

 181394

 186810

 187275

 195541

 204580

 214707

 Orbix Wonderwall and Orbix2.3 must be on same machine.

 Orbix 2.3 will not use the hostname in an IOR (object reference).
Instead it uses the hostname contained in the object key. This means
that if you intend to use Orbix clients to contact Orbix or OrbixWeb
servers behind Orbix Wonderwall, with proxified IORs, you must run
the Wonderwall and server on the same host, using different ports.

 35500 213572 Server hangs when client uses method referring to previously deleted
object reference instead of raising an exception.

Orbix Daemon

 Incident ID PR Number Synopsis

 72 15510

 24207

 The well-known port for a server is not used by the Orbix daemon.

 487 rmit –marker causes the daemon to core dump.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 32

 502 21781

 23566

 25340

 Daemon crashes with rmit -marker and cores the daemon.

 11741 129002 orbixd daemon crashes when there are more than 512 entries in
the top level of the Implementation Repository.

 13161 135655

 166139

 rmit –marker corrupts the Implementation Repository.

 13500 145850

 145877

 125046

 126132

 145740

 Method IT_daemon::removeUnsharedMarker() is corrupting
the Implementation Repository file.

 18760 143842 Orbix2.3c daemon can not recognize manually launched server
process.

 29180 169714 -per-method activation mode does not work.

 31580 Daemon slow when overloaded. This causes clients to hang and get
exceptions.

Orbix Utilities

 Incident ID PR Number Synopsis

 26480 161500 lsit -R causes segmentation fault on HP-UX.

 30080 Orbix daemon problem with mkdirit.

Known Problems, Workarounds and Tips
 The known problems, workarounds and tips for Orbix 3.0 are as follows:

Installing on HP

 In order to change the location of Orbix, you must use Change Product
Location in the Action menu and not Change Target, to insure that the
configuration steps are implemented correctly.

DII

The DII does not handle user exceptions.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 33

Runtime and Protocol Layer

Unshared activation mode does not work with IIOP.

Throwing exceptions with object references causes a core dump.

Utilities

 putit -marker is not implemented for IIOP.

Unsupported Types

 Orbix does not support long double, wstring or wchar.

Fixed Type

 HP-UX cfront compile error occurs when template-based destructors are being
called. Reproduction can be seen in cases of IDL arrays and sequences of fixed
types.

 The generated code does not compile on HP-UX cfront due to the explicit call to
the fixed type's destructor, which is based on a template class. HP-UX cfront
cannot compile calls to template-based class destructors. This is a bug in the
compiler itself.

Overview

 Consider the following template class:

 template<short, short> class X {

 X () {};

 ~X () {};

 }

 An instance of this class could be:

 X<10,5> myX;

 There are three valid ways of calling the destructor, outlined as follows:

• myX.X<10,5>::~X<10,5> ();

• myX.~X<10,5> ();

• myX.X<10,5>::~X ();

The standard generated code currently uses first choice. This works fine but cfront
can not compile it. The only compilable option for cfront is myX.~X(); which is
actually illegal code.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 34

Signal Handling

Orbix does not include a signal handler for SIGPIPE.

Any

Unions with discriminators of type long long and unsigned long long do
not work within CORBA::Any.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 35

Orbix Code Generation Toolkit
The Orbix Code Generation Toolkit is a powerful, new component of Orbix. It
speeds up application development by automating many coding tasks.

The Orbix Code Generation Toolkit consists of the following:

• An executable, called IDLgen, which is a code generation engine.

• Bundled code generation scripts, called genies. These genies instruct IDLgen
what kind of code to generate. For example:

The C++ genie (cpp_genie.tcl) can generate a C++ client/server
application for a specified IDL file.

The HTML genie (idl2html.tcl) translates an IDL file into its HTML
equivalent.

• Standard libraries for use with IDLgen. For example, there is a library that
maps IDL constructs into their C++ equivalents. You can use these standard
libraries to help you write your own genies.

Development Environments
This section describes the compiler and operating system versions with which the
Code Generation Toolkit has been built and tested.

Solaris

The Orbix Code Generation Toolkit has been built on Solaris 2.5.1 using the
SPARC C++ compiler version 4.2.

NOTE: Patch 105568-11 or higher (libthread.so.1 patch) for Solaris 2.6
should be installed on your system. This patch has a dependency on patch 105210
(libc.so.1 patch), that is, patch 105210 must be installed.

HP-UX

The Orbix Code Generation Toolkit has been built and tested on HP-UX10.20
using the cfront compiler version A.10.36 with patch phss-13124 installed.

NT

The Orbix Code Generation Toolkit has been built and tested on NT 4 with
service pack 4 installed, using the VC compiler version 6, service pack 1.

Compatibility with Other IONA Products
The Code Generation Toolkit is new to Orbix 3. However, an effort has been
made to make it work with previous versions of Orbix, notably versions 2.2 and
2.3. If you wish to use the Code Generation Toolkit with Orbix 2.2 or 2.3, edit the

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 36

configuration file for IDLgen (its default location is
<IONA-ROOT>/config/idlgen.cfg) and change the following entries:

1. Set the default.orbix.version_number entry to the value 2.2, or
2.3.

2. Set the default.orbix.install_root entry to the directory in
which Orbix 2.2 or 2.3 is installed.

Recursive structs and recursive unions are structs/unions that have an
embedded sequence of themselves; the following is an example of a recursive
struct:

struct node {
long data;

 sequence<node> children;
};

Some patches for Orbix 2.3 on some platforms introduced a change in the way that
recursive structs/unions are implemented. The C++ genie must generate
slightly different code for recursive types, depending on whether or not you are
using a version of Orbix with an affected patch.

If the C++ genie generates code for recursive types that does not compile with a
C++ compiler then it is likely that you have a version of Orbix 2.3 with the affected
patch. In this case, add the following line o the IDLgen configuration file:

default.cpp.nest_recursive_type_seq_inside_type = "1";

You can do this easily by going to the end of the IDLgen configuration file, and
uncommenting the line that contains this setting.

This change to the IDLgen configuration file needs to be performed only if:

1. You are using a patched version of Orbix 2.3.

2. You use recursive types in your IDL files.

3. The C++ code produced by the C++ genie for these recursive types does
not compile.

You do not need to make this change if you are using Orbix 2.2 or 3.0, or if you are
using 2.3 and are not experiencing any problems compiling code generated by the
C++ genie.

Documentation

The Orbix user documentation has been updated for this release. A new edition of
the following manual is included with the product:

• Orbix Code Generation Toolkit Programmer’s Guide

A Simple Code Generation Toolkit Example

To see an example of the power of the Code Generation Toolkit:

1. Create a new directory and copy any IDL file into it. For example, consider
an IDL file called foo.idl.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 37

2. Open a command window for the directory which contains the IDL file and
type in the following commands:

 idlgen cpp_genie.tcl foo.idl -all
 nmake
 nmake putit
 client localhost

The first line runs the C++ genie on your IDL file. It generates the source code for
a complete client/server application together with a Makefile.

The second line uses the generated Makefile to compile your client/server
application.

The third line uses the putit target in the generated Makefile to register the
server with Orbix (make sure that the Orbix daemon is running before executing
this command).

The final line runs the client application. It takes one command-line parameter that
is the name of the host where the server is running.

You can find more information about the C++ genie in the Orbix Code Generation
Toolkit Programmer’s Guide.

Known Problems, Workarounds and Tips
This section summarizes known problems, workarounds and tips with the Orbix
Code Generation Toolkit. A list of the known limitations of IDLgen is provided in
Chapter 1 of the Orbix Code Generation Toolkit Programmer’s Guide.

Microsoft Windows NT

The following issues are relevant to the use of the Code Generation Toolkit on
Windows NT.

Compiler Version

This product has been designed to work with Microsoft Visual C++ v6.0, Service
Pack 2. This is the only compiler environment supported for this product.

Orbix C++ Client/Server Wizard v1.0

The Orbix C++ Client/Server Wizard is a graphical tool for Microsoft Visual C++.
It is intended for use with Visual C++ version 6.0.

The Orbix Code Generation Toolkit install procedure copies the wizard into your
Developer Studio installation. To run this Wizard:

1. Launch Developer Studio.

2. Select File→New.

3. Select the Projects tab.

4. Select the IONA Orbix C++ Client/Server Wizard option.

The wizard generates full client or server code for you, based on your OMG IDL
definitions. At present you cannot create both a client and a server simultaneously.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 38

If you want both client and server code, simply run the wizard twice.

You can access context-sensitive help at any time while using the wizard by pressing
the F1 key or by selecting the Help buttons.

The wizard makes use of two Tcl files, supplied with your installation of the Orbix
Code Generation Toolkit. They are called cppwpre.tcl and cppwfull.tcl
and are placed in this directory:

<IONA-ROOT>\IDLgen3.0\genies\wizards

Do not modify these files in any way, as they are used internally by the wizard.
IONA cannot support the wizard if these files are changed in any way.

Also note that your include and library directories in Visual Studio must be set up
to point to your Orbix 3.0 installation. To do this:

1. In Developer Studio, select Tools→Options.

2. Select the Directories tab.

3. Add your Orbix 3.0 include and lib directories to the appropriate lists.

Manually Installing the Orbix C++ Client/Server Wizard v1.0

If you did not install Visual C++ 6 before installing Orbix 3 then the installation of
the Orbix C++ Client/Server Wizard is incomplete. Two wizard files –
it_cppwiz.awx and it_cppwiz.hlp will have been placed in the
<IONA>\IDLgen3.0 directory.

Once you have installed Visual C++ 6, you can complete the installation of the
wizard by copying these two files into the correct directory within your Visual C++
installation. The correct directory is:

<DevStudio>\Common\MsDev98\Template

The wizard should now appear in the New Projects listing of the Visual C++ IDE.

Licensing

You must install the license key supplied to you in order to use the Orbix Code
Generation Toolkit. You can install the key with the executable licence.exe,
which is in the bin subdirectory of the Orbix installation directory (default
C:\IONA\bin).

The executable file to be licensed is named idlgen.exe, and can be found in the
same <IONA-ROOT>/bin directory.

Using the Microsoft VC++ Command Line Compiler

The Orbix Code Generation Toolkit makes use of the Microsoft Visual C++
Command Line Compiler. In order for this compiler to run correctly, certain
environment variables must be set.

A batch file, named VCVARS32.BAT is provided with the VC++ compiler, in the
directory DevStudio\Vc\bin. You must execute this batch file to set the
necessary environment variables for operation of the command line compiler.
Please refer to the Microsoft VC++ documentation for further information.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 39

OrbixCOMet Desktop
This document describes the changes made to the OrbixCOMet Desktop product
in the 3.0 release.

Development Environments
OrbixCOMet Desktop 3.0 is available for the following platforms:

Product Code Operating System

s1481 Windows NT 4.0 with SP3.

s1481 Windows 98.

s1481 Windows 95 with the DCOM service pack and the winsock2
update.

OrbixCOMet Desktop 3.0 is built and tested on Windows NT 4.0, service pack 4,
using Microsoft Visual C++ 6.0, with Visual Studio Service Pack 2 applied.

OrbixCOMet Desktop is not supported on versions of Windows NT earlier than
4.0. This is because DCOM is not available on those versions.

OrbixCOMet Desktop supports both the Automation/CORBA mapping and the
COM/CORBA mapping as specified in the COM/CORBA Interworking Document
(ORBOS-97-09-01).

OrbixCOMet Desktop 3.0 has been tested with Automation client applications built
with the following:

• PowerSoft PowerBuilder Version 6.0

• Borland Delphi 3/4

When using Delphi4, Inprise recommend that you make a call to
Application.Initialise(); before making any COM calls. This
includes any calls to OrbixCOMet.

• Microsoft Visual Basic Version 5.0 (SP3)

• Microsoft Visual Basic Version 6.0

• Microsoft Visual C++ 6.0 (SP2)

• Microsoft Excel97

• Microsoft Internet Explorer 4.0 or higher with VBScript

OrbixCOMet Desktop 3.0 has been tested with COM client applications built with
the following:

• Microsoft Visual C++ 6.0 (SP2), MIDL Compiler Version 5.01.0164

OrbixCOMet Desktop 3.0 has been tested with CORBA server applications built
with the following:

• Orbix3.0

• OrbixWeb3.1c, (using JDK 1.1.x)

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 40

OrbixCOMet Desktop 3.0 has been tested with CORBA client applications built
with the following:

• Orbix3.0

• OrbixWeb3.1c, (using JDK 1.1.x)

Installation Issues
You should uninstall any previous version of OrbixCOMet before installing this
version. If you are installing OrbixCOMet as part of the Orbix 3.0 package, you
must first install Orbix 3.0 and reboot your machine before running the
OrbixCOMet setup program. If you have purchased OrbixCOMet as a stand-
alone component, the Orbix runtime DLLs required by OrbixCOMet will be
installed by the OrbixCOMet setup program if necessary.

OrbixCOMet shipped within the Orbix 3.0 package does not install the Orbix
runtime.

If you have a licence code for a full release of OrbixCOMet, you must supply it
during the installation process. If you are currently using an evaluation version, you
can leave the licence code field blank and this installation will default to an
evaluation that is valid for 21 days from the date of installation.

If the installation program crashes during the DLL registration, or it reports that
various DLLs cannot be found, you can manually register the OrbixCOMet runtime
using the batch file regCOMet.bat located in <COMetROOT>\bin.

Knowledge Base and Support
OrbixCOMet support is provided in the form of a Knowledge Base located at:

http://www.iona.com/online/support/kb/OrbixCOMet/index.html

You can also purchase a separate support contract that entitles you to email-based
support queries. (Contact sales@iona.com for more details.) In addition, you can
subscribe to a peer mailing list, comet-users@iona.com, by sending an e-mail to
comet-users-request@iona.com with the word “subscribe” in the body of the
message. If you want to unsubscribe, do the same but use the word “unsubscribe”.
If you encounter any problems, you should report them to users@iona.com.

New Features
This section describes the new functionality and major changes added in the
OrbixCOMet Desktop 3.0 release.

Common Demonstrations

Common demonstrations are included to illustrate out-of-the-box interoperability
with Orbix 3.0. You can find the common OrbixCOMet client demonstrations in:

\iona\demos\AnyDemo\COMet\VB6
\iona\demos\BankExceptions\COMet\VB6
\iona\demos\Bankinherit\COMet\VB6
\iona\demos\banksimple\COMet\VB6

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 41

\iona\demos\banksmartproxy\COMet\VB6
\iona\demos\callback\COMet\VB6
\iona\demos\Grid\COMet\VB6

Each .exe file in the \VB6 directory is an OrbixCOMet client of the corba server
found in the <demoname>\cxx directory.

Before you run any of the OrbixCOMet common demonstrations, ensure that the
IFR is registered with the Orbix daemon. You should also ensure that the
necessary OMG IDL files are registered in the Interface Repository. You can do this
by running the PutAllIDL.bat file in the iona\demos directory.

New Configuration Format

In keeping with Orbix 3.0, OrbixCOMet 3.0 uses a new configuration format.
OrbixCOMet no longer stores any configuration information in the Windows
registry. Instead, all configuration values are contained in orbixcomet30.cfg
located in \iona\config. All configuration values now use scoped names (for
example, COMet.Mapping.UseSAFEARRAYMapping). All new code should use
this scoped format when setting/getting configuration values. For the purposes of
backwards compatibility, OrbixCOMet 3.0 will accept the following set of unscoped
names:

// COMet.Config
"COMET_HANDLER_LOCATION" ,
"COMET_DEFAULT_PROTOCOL" ,
"COMET_DAEMON_HOST" ,
"COMET_ROOT" ,
"COMET_SHUTDOWN_POLICY" ,
"COMET_UPDATE_LEVEL" ,
"COMET_SMART_STACK" ,
"COMET_PRE30_FORMAT" ,

// COMet.Mapping
"UseSAFEARRAYMapping" ,
"SAFEARRAYS_CONTAIN_VARIANTS”,

// COMet.Debug
"MessageLevel" ,

// COMet.TypeStore
"TYPEMAN_CACHE_FILE" ,
"TYPEMAN_DISK_CACHE_SIZE" ,
"TYPEMAN_MEM_CACHE_SIZE" ,
"TYPEMAN_IFR_HOST" ,
"TYPEMAN_IFR_IOR_FILENAME" ,
"TYPEMAN_IFR_NS_NAME" ,
"LOG_CACHE_HITS" ,
"LOG_DELETES" ,
"TYPEMAN_LOGGING" ,
"TYPEMAN_LOG_FILE" ,
"LOG_TYPEMAN" ,
"TYPEMAN_READONLY" ,

// COMet.Licensing
"IT_KEY" ,
// Common
"IT_INT_REP_PATH" ,
"IT_DAEMON_PORT" ,
"IT_DAEMON_PROTOCOL" ,

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 42

"IT_DAEMON_SERVER_BASE" ,
"IT_LOCAL_DOMAIN"

You should ensure that all new code adopts the new scoped configuration format.
You can browse/set configuration values by using the common configuration tool
\iona\bin\ConfigurationExplorer.bat.

Support for Coclasses

The OrbixCOMet type store now includes support for coclasses in type libraries.

Scoped Names to Avoid Clashes

When the type store is primed from a type library, all types are scoped with the
type library name (for example, Excel::Application). This avoids clashes where
multiple type libraries contain interfaces or types that share the same name. For
example, both the MS Excel and MS Word libraries contain a type called
Application. When the type store is primed with these libraries, the two are
distinguished by using the scoped names Excel::Application and
Word::Application.

Prefixing of Type Names

When priming the type store from a type library, any types whose names begin with
a leading underscore will be prefixed with IT_. This feature is used by ts2idl
when generating OMG IDL based on type library information, because leading
underscores are illegal in OMG IDL. Interfaces whose names start with leading
underscores are commonplace in type libraries, and denote interfaces that are
"hidden" (that is, interfaces that should not be displayed by a type library browser
such as OleView.exe). Repository IDs of these types also contain IT_ to mask
the leading underscore.

Extended OMG IDL Generation

OMG IDL generation by ts2idl based on type library information has been
extended to ensure that:

1. All mapped OMG IDL interfaces inherit from
CosLifeCycle::LifeCycleObject to allow CORBA views of COM
objects to be destroyed from a client application. Hence all such OMG IDL
files will include lifecycle.idl. OrbixCOMet implements part of the life-
cycle service as mandated by the COM/CORBA specification. However, the
only CosLifeCycle::LifeCycleObject method that can be called is
remove(). If you call copy() or move(), it will result in a NO_IMPLEMENT
exception, which is a valid response.

2. All mapped OMG IDL interfaces also inherit from
CORBA_COM::Composable to allow navigation between the different
interfaces exposed by DCOM objects.

3. Pseudo coclass interfaces are generated for all coclasses. These provide an
alternative, OrbixCOMet-specific way to navigate between the different
interfaces exposed by DCOM objects.

For examples of the preceding points 2 and 3 you can refer to the fortune

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 43

demonstration in <COMET_ROOT>\demos\corbaclient\fortune.

-b Switch to ts2idl

The -b switch can be used when generating OMG IDL based on type library
information stored in the type store. Its purpose is to attempt to keep the number
of generated lines of OMG IDL to a minimum by reducing the set of OMG IDL
types that need to be produced.

It specifies that interface pointers that are passed as parameters to operations
described in the type library are mapped as type CORBA::Object in the generated
OMG IDL, rather than as their "dynamic type". Use this switch in conjunction with
the -r switch. This can dramatically reduce the amount of IDL that is generated.
For example, if you generate full OMG IDL for Excel 97, you will get tens of
thousands of lines of output that can take a long time for the IDL compiler and
C++ compiler to process. In the case of Excel, there are normally only about five
interfaces you really use, such as WorkBook, Worksheet, and so on. This means
use of the -b option reduces the output to about 3000 lines of IDL.

For an example of its use, refer to the Excel CORBA client in the
demos\corbaclient\excel directory.

Keyword Prefixing in Generated IDL

To prevent possible compilation errors in IDL compiler-generated code, ts2idl
now checks the COMet.Mapping.KEYWORDS configuration value for a list of
keywords that should be prefixed with IT_clash. For example:

COMet {
Mapping {

KEYWORDS = "DialogBox, remove, move, copy";
};

};

In the preceding code, DialogBox is included because the MS Excel type library
contains a method called DialogBox. This causes errors when compiling the C++
code generated by the Orbix IDL compiler, because DialogBox is also a macro in
a Windows include file. Similarly, remove, move and copy are treated as keywords
in case the MIDL interface to be mapped contains methods of these names. Recall
that all mapped OMG IDL interfaces will inherit from CosLifeCycleObject, and
redefinition of OMG IDL operations in derived classes is illegal.

Extended Support for Directly Binding to DCOM Servers

Support for directly binding to DCOM servers has been extended over COMet 1.0
UR2. A new set of demonstrations in the \iona\comet3.0\demo\corbaclient
directory illustrate the usage of this feature. Included are Orbix C++ clients of
MicroSoft Excel 97, Microsoft Word 97, an OrbixWeb client of the simple
fortune DCOM server, and Orbix/OrbixWeb clients of the mfccalc
demonstration. The mfccalc demonstration is an Automation server written using
MFC that implements a simple calculator interface. The server code is not shipped
(it is a Microsoft demonstration available with the SDK) to prove that it is possible
to interoperate with existing DCOM servers without the need to write one line of
code (using DIOrbixServerAPI) or any broker generation (via a static bridge).

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 44

Moniker Support

When talking to a DCOM server that supports file monikers, a UNC filename can
be supplied as a marker to denote a particular instance of a DCOM object that
should be activated. For example, to retrieve a CORBA view of an Excel
Workbook called salaries.xls, shared out \\advice\root\misc, you would
issue a call to _bind() as follows:

char * hostName = argv[1];

Excel::Workbook_var wbVar =
Excel::Workbook::_bind("\\\\advice\\root\\misc\\salaries.xls:

ExcelSrv”, hostName);

In this case, the hostName denotes the name of the machine where custsur.exe
has been registered with the Orbix daemon. The filename must be in UNC format,
and cannot contain colons (that is, :). This is because colons are special characters
as far as the preceding _bind() call is concerned (used as a separator in the
marker/server pair).

-t Switch with custsur.exe

custsur.exe now takes a [-t <timeout>] switch that can be used when
registering it as a CORBA server. It specifies the timeout in milliseconds after which
the server can terminate if both of the following conditions apply:

• It has not received an invocation from a client in the previous <timeout>
milliseconds.

• There are no outstanding references to CORBA views held by clients. In
other words, if the CORBA client has not called
CosLifeCycle::LifeCycleObject::remove() on all object references
after it is finished with them, the server will not shut down. If one client calls
remove(), a separate client that also holds a reference to that object will
receive a system exception. This is because the CORBA specification of
remove() mandates the destruction of the target object on the server side.

The default timeout (that is, if the -t switch is not used) is
CORBA::Orbix.INFINITE_TIMEOUT. This means the server will never be timed
out and it should be killed using killit.exe.

Use the -t switch as follows:

putit excelSrv "d:\iona\comet3.0\bin\custsur.exe -t 10000"

Note the use of quotes around the server launch command. The preceding example
specifies a timeout of 10 seconds (10,000 milliseconds) for the server excelSrv.

Generation of IORs via custsur.exe

When exposing DCOM servers to CORBA clients written using other ORBs,
custsur.exe can be used to generate an IOR for (for example) registration in a
Naming Service. For example:

custsur -g -s Calculator -i mfccalc::CCCalcDlg -f c:\temp\ior.log

This generates an IOR for an object whose interface is mfccalc::CCCalcDlg and
which resides in the server Calculator. In this case, the IOR is dumped in
c:\temp\ior.log.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 45

Support for CORBA Interfaces Using #pragma Prefix

There is now support for CORBA interfaces that use the #pragma prefix.
Repository IDs are now supported internally throughout OrbixCOMet.

Enhanced Debug/Trace Information

All logging is now subdivided into various categories (for example, error logs,
marshalling logs, and so on).

Support for Callbacks with Complex Types in Automation and
COM

There is now support for callbacks with complex types in Automation and COM.

Servers Using DIOrbixServerAPI Dispatch Own Events

Servers that use DIOrbixServerAPI must now dispatch their own events.

COMetIFR Integrated with Orbix IFR

There is now only one IFR because the COMetIFR has been integrated with the
Orbix IFR. Refer to “Stand-Alone IFR” in this document for more details.

Single Command for Reading IFR into Type Store

This simplifies priming of the type store. The following command:

typeman –e *

will read the entire IFR into the OrbixCOMet type store cache. If the IFR is not too
large, this will not take too long, and it obviates the need to keep everything in
modules (for example, miscellaneous global typedefs and constants).

Read-Only Mode in Type Store

If OrbixCOMet is to be deployed in an environment where there might be multiple
clients to the type store (for example, with DCOM-on-the-wire), for safe operation
the type store must be fully primed and then made read-only via the following
configuration file setting:

COMet.TypeMan.TYPEMAN_READONLY = "yes"

Using the Naming Service to Locate the IFR

Support has been added for location of the IFR via the Naming Service. This means
load balancing of IFRs is now possible, along with interoperability with the Interface
Repositories of other vendors.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 46

To use this feature:

1. Ensure that the Naming Service is correctly installed. For example:
 putit NS c:\iona\bin\NS.exe

2. Add configuration file entries as follows:
COMet.TypeMan.TYPEMAN_IFR_NS_NAME = "config.ifr"
COMet.TypeMan.TYPEMAN_IFR_IOR_FILENAME = "c:\temp\typeman.ior"
COMet.Services.NameService = "c:\temp\names.ior"

3. Start the Orbix daemon required by the Naming Service. For example:
c:\>start orbixd

4. Start the IFR using startIFR.bat. For example:
c:\>startIFR 1234

 This writes out a valid IOR for the currently running instance of the IFR.

5. Start the Naming Service and get it to write out its IOR. For example:
c:\>start NS –I c:\temp\names.ior

6. Run FirstPutName.bat. For example:
c:\iona\comet_3.0c\bin>FirstPutName

 This gets the IOR to the IFR and puts it in the Naming Service, making it
available to OrbixCOMet’s TypeMan component. If OrbixCOMet is not
installed in c:\iona\comet_3.0c\bin, you should run
FirstPutName.bat from the \bin directory wherever OrbixCOMet is
installed.

To use the Naming Service subsequently, use PutName.bat instead of
FirstPutName.bat. For example:

c:\iona\comet_3.0c\bin>PutName

If OrbixCOMet is not installed in c:\iona\comet_3.0c\bin, you should run
PutName.bat from the \bin directory wherever OrbixCOMet is installed.

IORs to CORBA servers are only valid if generated by the currently running
instance of the server. This means if the IFR is closed down, its IOR must be
regenerated the next time it is started up using startIFR.bat and then added to
the Naming Service using PutName.bat. PutName.bat assumes that the Naming
Service is already running.

Incidents Cleared in this Release
 This section describes the incidents cleared in this release. All incidents are cross
platform unless otherwise stated. The incidents are described in terms of Incident
ID, PR Number, and Synopsis, as described on page 22.

Incident ID PR Number Synopsis

14080 OrbixCOMet uses NS as tag, but this is normally used as a server
name. This tag has been changed to NAME_SERVICE.

27266 Some of the CORBA servers throw an exception on exiting
demonstrations.

27280 Demos - VB - bank client - Windows 95 - COMet Bridge location
fails.

29582 Mapping for Automation unions not implemented.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 47

Incident ID PR Number Synopsis

33520 Problem using return, out, inout (in some cases) parameters and
all complex types with CORBA client against COM servers.

35060 Passing a sequence of structs in an any does not work. Also applies
to an any contained within a struct.

38800 A complete example should be used when showing exception
handling.

39080 Exception handling does not work with COMet and Delphi3.

41700 Bounded sequences in COM mapping.

47680 Callback using complex types are broken in Update Release 2
(UR2).

47702 Marshalling error message with the bank server demo.

51366 Incomplete COMet deregistration.

51436 Problems with sequences of sequence of strings

47660 Marshalling error message with the bankserver demo shipped with
OrbixCOMet UR2.

48000 VB client cannot bind to a DCOM server using GetObject().
Fixed for **IDispatch-based** clients.

48640 There are problems with SafeArray mapping and OrbixCOMet
UR2.

50840 Marshalling error occurs when it_default is called in a C++
CORBA client of a DCOM server.

51160 The wrong exception is created when the objectName
parameter of GetObject is invalid.

51409 ts2tlb generates error in OrbixCOMet UR2 but not in UR1.

51437 ts2idl generates rubbish characters.

51451 README.txt is incorrect for the VB standalone demo.

27221 Demos - VB5 - banksrv - No explanation what it does or how it
works.

27261 Demos - COM - cocreate compiles but aliassrv fails.

27263 README.txt errors in demos.

27267 Problem with sequences in demos on Windows 95 and NT.

29560 Cannot pass a sequence of object references.

29562 Reference counting error in collection objects.

29580 Reference counting error.

29584 Crash on exit caused by DSI timer.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 48

Incident ID PR Number Synopsis

33640 Callbacks do not work with OrbixCOMet.

40960 ts2tlb causes error when IDL operations pass type Object.

40961 ts2idl does not handle coclasses.

40981 You cannot easily _bind() to a COM server without using
ITServerAPI.

41000 typeman command line utility crashes occasionally with -c
(contents) option.

41021 Typestore doesn't handle COM CoClasses.

41022 No scoping is available to differentiate between objects in different
(imported) type libraries.

41042 Imported type libraries must be added to type store individually,
and in correct order—this is now done automatically.

41043 Multi-parameter attributes in COM are not represented correctly.

41044 Hidden attributes and methods in COM are not represented
correctly.

41060 Inheritance in type libraries is not correctly reflected in generated
OMG IDL.

41061 Type libraries cannot be located by their guids instead of their
paths.

41062 Some objects in typelibs cannot be located by typeman lookup.

41300 You cannot use scoped interfaces names with the IOR tagged
format string to GetObject.

41301 You cannot lookup services using the '.' format version of the
GetObject string.

41500 The const values for EXCEPTION_USER and
EXCEPTION_SYSTEM are reversed.

44260 typeman crashes when reading a union from the COMetIFR.

51640 OC* files created in temp directory when using duals/or watch
window in VB.

Documentation
The OrbixCOMet 3.0 documentation consists of the following:

• OrbixCOMet Desktop Getting Started

• OrbixCOMet Desktop Programmer's Guide and Reference

• COMetIntro.exe (a multimedia OrbixCOMet presentation)

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 49

Known Problems, Workarounds and Tips
This section summarizes known issues and tips relating to the OrbixCOMet 3.0
release.

Licensing Issues

OrbixCOMet Desktop 3.0 requires a valid license to function correctly. During
installation you are given the opportunity to enter a license key. If you choose not
to do so, you are granted an evaluation license that is valid for 21 days from the
date of installation.

During that time you will be notified periodically that you are using an evaluation
copy. If you receive such a reminder, simply re-run your application to continue.

The following messages mean the license key has been corrupted/deleted. The
workaround is to reinstall OrbixCOMet:

"COMet Licensing error: Invalid License Key format"
"COMet Licensing error: Missing License Key"

The following message means the product has deactivated itself until a valid, up-to-
date licence has been obtained from IONA (via sales@iona.com):

"COMet Licensing error: License Key has expired"

The following message means the OrbixCOMet licensing server could not be found:

"COMet Licensing error: Missing License DLL \ (Have you registered
ITLicense.DLL?)"

The workaround to the preceding message is to ensure that ITLicense.dll and
it_licps.dll are both registered as follows using regsvr32.exe:

regsvr32 ITLicense.dll
regsvr32 it_licps.dll

If any of these errors occur, you should try to either:

• Re-license the product with a valid licence obtained from IONA.

• Re-register the two license DLLs already described.

The following message appears approximately every 50 runs of an OrbixCOMet
application and it provides information about how to purchase a full licensed version
of OrbixCOMet if you so desire:

"COMet Eval-License Reminder : "

If you subsequently receive a full OrbixCOMet license from IONA, you should
enter the license code in the "COMet.Licensing.IT_KEY" entry within the
orbixcomet30.cfg file.

Backwards Compatibility with the Orbix/ActiveX Integration

This section documents some differences between OrbixCOMet and the
Orbix/ActiveX Integration.

Compliance Issues

OrbixCOMet Desktop is designed to be backwards compatible with IONA's
previous Automation/CORBA bridge. This is subject to changes to the standard

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 50

interfaces/mappings as laid down in the COM/CORBA Interworking RTF. This gives
rise to the following issues:

• DICORBAObject

Return values are now VARIANT_BOOLs rather than BOOLEANs for
appropriate methods.

• DIForeignObject

GetRepositoryId method has been renamed to GetUniqueId.

• CORBA::Boolean in OMG IDL maps to VARIANT_BOOL in Automation.

• ITstdInterfaces.tlb replaces itole.tlb as the type library containing
Automation/CORBA standard types.

• Addition of new standard interfaces.

• Some methods and properties on standard interfaces have been deprecated.

Sequences

OrbixCOMet supports two Automation mappings for sequences and arrays. These
are to Automation SAFEARRAYs and Automation Collections. Two mappings are
required because not all Automation controllers support Automation SAFEARRAYs.
(for example, PROGRESS Software tools, PowerBuilder, and so on).

You can select which mapping is active in your application by making a call to
orb.SetConfigValue("COMet.Mapping.UseSAFEARRAYMapping",
<value>) where <value> is either set to "yes" or "no". Refer to the OrbixCOMet
Desktop Programmer’s Guide and Reference for details about this and other
OrbixCOMet configuration settings.

You can alter the default mapping in effect for your machine by modifying the
configuration entries found in \iona\config\orbixcomet30.cfg.

In the case of sequences, the old Orbix static bridge mapping assumed that the
sequence names would be in the following format:

_IDL_SEQUENCE_long
_IDL_SEQUENCE_15_MOD1_IFACE1_STRUC

for the following OMG IDL:

module MOD1
{
interface IFACE1 {

struct STRUC {
long l;

};
typedef sequence<long> longSeq;

typedef sequence<STRUC,15> STRUC15Seq;
void op1(in longSeq LS, in STRUC15Seq SS);

};
};

Orbix Desktop was unable to create types based on their typedef names and it
required the _IDL_SEQUENCE_xxx version to be passed to CreateType().
These _IDL_SEQUENCE_xxx names are artifacts of the IDL C++ mapping. They
are therefore not considered real type names by either OrbixCOMet or the
Interface Repository.

OrbixCOMet does not have this typedef restriction.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 51

If you have problems using older static bridge code with references to
_IDL_SEQUENCE_xxx names, you can manually prime the type store with
information for the required sequence typedef name (that is, the real name of the
_IDL_SEQUENCE_xxx name that is passed to CreateType()).

The typeman.exe utility supplied with the bridge will do this for you. To prime
the cache with information about a type, use the following command:

typeman -e <type name>

This looks up the cache to see if there is an available entry for <type name>. If
there is none, it contacts the Interface Repository (default local machine) and
retrieve the type information.

Note: If the Interface Repository is located on a remote machine, its remote
machine name can be specified via the configuration entry
COMet.TypeMan.TYPEMAN_IFR_HOST located in the registry under
HKEY_LOCAL_MACHINE\Software\IONA Technologies\DCOM
bridge\1.0c\Config.

The process of priming the cache with the sequence typedef name will have the
affect of generating the necessary backward compatible alias names. For example, an
entry for MOD1::IFACE1::STRUC15Seq will create the correct alias
_IDL_SEQUENCE_15_MOD1_IFACE1_STRUC in the type store.

If you supply a top-level module name such as the following:

typeman -e MOD1

it will be sufficient to resolve all backwards compatibility sequence issues for all
types in the MOD1 module. This is only an issue for sequences in use by existing
static bridge applications. The cache is normally self-managing.

Any new code being developed should use the correct typedef names when making
calls to CreateType(). Existing code can be migrated to the new format names
over time. Support for the older _IDL_SEQUENCE_xxx names might be deprecated
with a future release of OrbixCOMet.

Another alternative would be to manually change calls to CreateType() to use
the correct name as specified in the IDL file. For example, rather than the following:

objFactory.CreateType(Nothing,
"_IDL_SEQUENCE_15_MOD1_IFACE1_STRUC")

use the following:

objFactory.CreateType(Nothing,"MOD1/IFACE1/STRUC15Seq")

The scope separator is indicated by a forward slash (that is, '/').

Winidl/Brokers

OrbixCOMet does not support the Winidl wizard previously available with Orbix
Desktop. Neither does it generate brokers of any kind. Such issues are related to
the implementation of IONA's COM/CORBA bridging technology. They will not
affect Visual Basic, PowerBuilder and other client code. Any issues that do arise are
bugs in the OrbixCOMet compatibility support and should be reported as such.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 52

Protocol

OrbixCOMet supports both the Orbix protocol (POOP) and OMG IIOP. The
choice of protocol is determined by the configuration entry:

COMet.Config.COMET_DEFAULT_PROTOCOL=“IIOP”

in the orbixcomet30.cfg file.

Valid values for the entry are “POOP” and “IIOP”. One example of why you might
wish to use POOP is if you are using a pre-Orbix2.3 version of the Orbix daemon.

If you experience intermittent problems connecting to the Orbix 2.3c daemon, set
the default daemon protocol to IIOP. You can do this by adding a configuration
setting as follows in the orbixcomet30.cfg file:

COMet.Config.IT_DAEMON_PROTOCOL=“IIOP”

Supported Mappings

The following mappings are supported by this release of OrbixCOMet:

• Bi-directional Automation/CORBA as per the COM/CORBA Interworking
Specification, OMG Document ORBOS/98-02-01, (February 01 1998).

• Bi-directional COM/CORBA as per the COM/CORBA Interworking
Specification, OMG Document ORBOS/98-02-01, (February 01 1998).

Usage Models

The following usage models are supported for Automation by this release of
OrbixCOMet:

• In-process dispatch

• Out-of-process dispatch

? Local machine (IIOP-on-the-wire)

? Remote machine (DCOM-on-the-wire)

• In-process dual interface

• Out-of-process dual interface (local/remote machine)

? Local machine (IIOP-on-the-wire)

? Remote machine (DCOM-on-the-wire)

The following usage models are supported for COM by this release of
OrbixCOMet:

• In-process COM custom interfaces

• Out-of-process COM custom interfaces (local/remote machine)

? Local machine (IIOP-on-the-wire)

? Remote machine (DCOM-on-the-wire)

OrbixCOMet Desktop is a bidirectional dynamic bridge. This means it supports:

• COM/Automation clients of CORBA servers.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 53

• Callbacks (that is, invocation from a CORBA server upon a
COM/Automation client).

• Implementing CORBA servers in Visual Basic, PowerBuilder, and so on, using
the IT_ServerAPI interface. For an example of how to do this, refer to
the sample application in the <COMET ROOT>\demo\vb6\bankSrv
directory.

• CORBA clients of native DCOM servers (for example, MS Excel, MS Word,
and so on). For examples of this, refer to the sample applications in the
<COMET ROOT>\demo\corbaclient directory.

Known Issues
The following are known issues:

• If using OrbixCOMet on Windows 95, the Orbix 3.0 runtime used by
OrbixCOMet requires Winsock 2 DLLs that are not, by default, installed on
Windows 95 machines. (Winsock 2 is supported on Windows 98 and NT 4.)
Windows 95 users must download an update. (Winsock 2 was not in Win95,
Win95 SP1, or Win95 OEM SR2). The download plus installation instructions
are available from:
http://www.microsoft.com/windows95/downloads/contents/
wuadmintools/s_wunetworkingtools/w95sockets2/default.asp

• Marshalling interface pointers across apartment boundaries when using the
bridge in-process. Using the bridge out-of-process is fine.

This is only relevant if the bridge objects are instantiated in a COM single-
threaded apartment. Using OrbixCOMet objects in a free-threaded
apartment is fine.

When using OrbixCOMet in C++, you should create a multithreaded
apartment. For example:
CoInitializeEx(0, COINIT_MULTITHREADED);

• There is a problem with Visual Basic keeping DLLs loaded in memory even
after the application has terminated. This causes OrbixCOMet to
prematurely execute its shutdown procedures in response to a positive
result to CoFreeUnusedLibraries(). This results in an application crash
the next time the application is executed in the Visual Basic environment.

The workaround to this problem is to programmatically set the
OrbixCOMet configuration setting COMET_SHUTDOWN_POLICY to
“atexit”.

• Certain versions of regsvr32 have been known to crash when registering a
handler DLL. If this occurs, you should use the OrbixCOMet
oleregit.exe tool located in the <COMET ROOT>\bin directory instead.

For example, to register foo.dll, type:
oleregit foo.dll /REGSERVER

To unregister foo.dll, type:
oleregit foo.dll /UNREGSERVER

• When uninstalling OrbixCOMet, you might need to unregister COMet DLLs
from the OLE registry by running the unregCOmet.bat batch file located in
the COMet\bin directory.

• When using bounded sequences from a COM client that has OrbixCOMet
loaded in-process, you should memset any unused elements in the sequence
to '0'. OrbixCOMet will attempt to skip these unused elements, but you

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 54

might receive a marshalling error if the element types are complex.

• aliassrv.exe does not work on Window 95.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 55

Installing OrbixCOMet over Existing Orbix/ActiveX Integration

OrbixCOMet and the Orbix Desktop static Active/X integration are incompatible
and cannot co-exist on the same machine. This is due to the fact that the
Automation ProgIDs are the same. (These ProgIDs are specified by the OMG
Interworking specification). The installation program will detect, and at your
prompting attempt to automatically disable, the Orbix Active\X integration.

Any existing installation of Orbix/ActiveX Integration must be disabled before
installing OrbixCOMet. To do this:

1. CD $(ORBIX_ROOT)\bin

2. regsvr32 /u IOLEM23C.DLL

Note: You can use oleregit.exe IOLEM23C.DLL /UNREGSERVER to
unregister the original OLE support library.

If, at a later date, you wish to revert to using Orbix/ActiveX, you can deactivate
OrbixCOMet using the unregCOMet.bat batch file in the OrbixCOMet \bin
directory, and reactivate the Orbix Desktop bridge as follows:

1. CD $(ORBIX_ROOT)\bin

2. regsvr32 IOLEM23C.DLL

If regsvr32 is not available, or it causes problems, you can use
$(ORBIX_ROOT)\bin\oleregit.exe as follows to re-register the original OLE
support library:

oleregit.exe IOLEM23C.DLL /REGSERVER

Similarly, to reactivate the OrbixCOMet bridge, use the batch file regCOMet.bat
in the OrbixCOMet \bin directory.

Building/Running Demonstrations

Run-time libraries for PowerBuilder are not included with OrbixCOMet. You will
need this runtime installed if you wish to run these demonstrations.

Furthermore, in order to build the C++ CORBA servers in <COMet
Install>\demo\corbasrv, a valid installation of Orbix3.0 is required. If you
have existing CORBA servers for some of these (for example, grid, idl_demo,
and so on) that are standard Orbix demonstrations shipped on all platforms, you
can use those. To build the C++ COM client demonstrations, you need Microsoft
Visual C++ 6.0 or compatible C++ compiler.

The makefiles for the CORBA servers will call putidl to insert the IDL into the
IFR. They will also call putit to register the server in the Orbix Implementation
Repository.

Note: C++ COM applications should not be compiled with the /Og or the /Ox
switch (which implies the /Og switch). Instead you should use /Oityb1
/Gs for release builds. Refer to the COM demonstration makefiles in
<COMet Install>\demos\com for more details. (This is due to a bug in
the code optimiser in the Visual C++ compiler.)

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 56

Standalone Server Support

OrbixCOMet allows developers, via the DIOrbixServerAPI interface, to
implement CORBA server objects using languages like Visual Basic, PowerScript,
and so on.

An example of how to use this to write a CORBA server called bank in Visual
Basic is shown in the following example that can be found in the <COMET
ROOT>\demo\vb6\bankSrv demonstration:

Dim orb As Object
Set orb = CreateObject(“CORBA.ORB.2”)
Set serverAPI = orb.GetServerAPI
Set orb = Nothing
' bankObj created earlier (not shown) and is our
' implementation object
Call serverAPI.SetObjectImpl(“bank”, “”, bankObj)
Call serverAPI.Activate(“bank”)

The call to Activate in the preceding example calls impl_is_ready() internally.
This signifies the server's availability to the network. As a result, an Orbix daemon
is required on the machine where this application runs. However, this might not
always be the case, so there is also support for writing servers that can run without
an Orbix daemon. An example of one such server is shown in the following
example that can be found in the <COMET ROOT>\demo\vb6\standAlone
demonstration:

Dim orb As Object
Set orb = CreateObject(“CORBA.ORB.2”)
Set serverAPI = orb.GetServerAPI
Set orb = Nothing
' SetObjectImplPersistent(interface, marker, server, object,

filename)
Call serverAPI.SetObjectImplPersistent(“bank”, “”, “bank”,

_bankObj, “c:\temp\bank.ior”)
Call serverAPI.ActivatePersistent

As well as specifying the interface / marker / server name, the call to
SetObjectImplPersistent specifies a file to which the IOR for the object
should be written. Prospective clients should then call
CORBA::ORB::string_to_object() on the IOR. (If you are using the CORBA
Factory, you can take advantage of the build in support for IORs in the GetObject
call. Refer to <COMET ROOT>\demo\vb6\standAlone\vbClient for an
example of this). A server written in this manner can be started persistently,
without the need for a daemon on the local machine.

Servers that use the DIOrbixServerAPI must now dispatch their own Orbix
events (that is, call serverAPI.dispatchEvents from within (for example) a
Visual Basic timer). Such applications must also set the
COMet.Config.AUTO_EVENTS configuration value to "no". For example:

Set orb = CreateObject(“CORBA.ORB.2”)
orb.SetConfigValue “COMet.Config.AUTO_EVENTS”, “no”
Timer1.Enabled = False

// use server API

Set serverAPI = orb.GetServerAPI
Set orb = Nothing
Call serverAPI.SetObjectImpl(“bank”, “”, bankObj)
Call serverAPI.Activate(“bank”)

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 57

Timer1.Interval = 500
Timer1.Enabled = True

The timer function should look something like the following:

Private Sub Timer1_Timer()
Timer1.Enabled = False
serverAPI.DispatchEvents
Timer1.Enabled = True

End Sub

Failure to follow this approach might result in marshalling errors. (Such behavior
was noticeable in OrbixCOMet 1.0 UR2.)

Stand-Alone IFR

The Orbix IFR can now be run as a stand-alone server (that is, in a configuration
without a running Orbix daemon). The COMetIFR.exe that was in previous
releases of OrbixCOMet has now been merged with the Orbix IFR.

When running the IFR as a stand-alone CORBA server, you must tell it which port
to listen on. You should do this from a DOS command prompt.

To use:

1. Set the environment variable IT_SERVER_PORT to a port number that will
be used by IFR.exe when it is saving its IOR. (This must be an environment
variable.)

2. Set the value for COMet.TypeMan.TYPEMAN_IFR_IOR_FILENAME in the
configuration file to the name of a file in which you want to store the IOR
for the COMetIFR. This setting is used by the IFR utilities and OrbixCOMet
utilities to retrieve the IOR.

 For example, this can be in a batch file such as \bin\startcometifr.bat:
Set IT_SERVER_PORT=2334
rem -n : run as persistent server
rem -O : Output the IOR
rem -t 1 : Timeout after 1 sec
IFR -n -O -t 1
start IFR.exe -n

When using the IFR as a stand-alone server, the IFR utilities (readifr.exe,
putidl.exe, and rmidl.exe) should all be used with the -n switch.

You can also install this Interface Repository as the default Orbix Interface
Repository by registering it with the Orbix daemon via the putit.exe tool or the
Orbix GUI Server Manager. The following is an example of using the putit
command:

c:\> putit IFR c:\iona\COMet_1.0c\bin\COMetIFR.EXE

If you have set the TYPEMAN_IFR_IOR_FILENAME entry in your registry, you
cannot have the IFR auto-launched by the daemon as well. You should use one
approach or the other on any single machine.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 58

OrbixNames
This section describes changes in OrbixNames 3.0.

Development Environments
Development environment information for OrbixNames 3.0 is the same as that
described for Orbix 3.0 on page 5.

Compatibility with Other IONA Products
OrbixNames 3.0 has been tested with Orbix 3.0 and OrbixWeb versions 3.1 and
3.1.1.

Note: It is not possible for OrbixNames 3.0 and the Java naming service supplied
with OrbixWeb to share the same Bindings Repository.

Functionality Removed from
OrbixNames 3.0

The following functionality has been removed from OrbixNames 3.0.

Names Library

The Names library, which contained the IDL pseudo-interface types
LNameComponent and LName, has been removed from OrbixNames.

New Features in OrbixNames 3.0
This section describes the new functionality and major changes added in
OrbixNames 3.0.

Documentation

The OrbixNames user documentation has been updated for this release. The
OrbixNames user documentation is a single volume, called the OrbixNames
Programmer's and Administrator's Guide.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 59

Orbix Demos

 A load balancing demonstration is provided and resides in the OrbixNames demos
directory of your Orbix 3.0 installation. This is an elementary demonstration,
described in the OrbixNames Programmer's and Administrator's Guide.

Configuration

 As highlighted for the Orbix 3.0 release notes, there has been a significant overhaul
of how an Orbix installation is now configured. Each Orbix 3.0 service now has its
own configuration file. The OrbixNames configuration variables are now scoped
and defined in the file orbixnames3.cfg.

 The main configuration variable set is described in OrbixNames Programmer's and
Administrator's Guide. In addition to these variables, it is now possible when using
OrbixNames to configure the format of an IOR, with respect to its host address
part. The IOR can contain either the IP address or a host name. The
OrbixNames.IT_USE_HOSTNAME_IN_IOR variable determines this
characteristic. The default value is true. With this value, a host name appears in an
IOR. Setting the value to false causes the IOR to contain an IP address.

Finding Unreachable Naming Contexts

 If a naming context exists in the Naming Service but has no associated name that
allows it to be retrieved, OrbixNames puts it in a new naming context, called the
lost+found context. Refer to the OrbixNames Programmer's and Administrator's
Guide for more details.

Multi-threading

The OrbixNames server is now a multi-threaded application.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 60

Incidents Cleared in OrbixNames 3.0
 This section describes the incidents cleared in this release. All incidents are cross
platform unless otherwise stated. The incidents are described in terms of Incident
ID, PR Number, and Synopsis, as described on page 22.

 Incident ID PR Number Synopsis

 38000 192357 The command putnewncns crashes when a name of more
than 600 bytes is specified.

 28400 162529 The command putncns core dumps if incorrect parameters
are specified.

 24780 160367 The command del_group, when used with the -n switch,
core dumps if the name exists but the group has already been
deleted.

 34560 187359 The operation resolve() returns object references that
were previously removed from the Naming Service.

 26960 163477 A port number 0 appears in the Naming Service IOR when the
OrbixNames server is automatically launched.

 26180 163401 The operation CosNaming::NamingContext::
OBfactory() is not described in the documentation.

 30940 176192 The lsns command, when used with the -h switch, hangs the
OrbixNames server if the case of the host name is incorrect.

 36580 189815 OrbixNames 1.1 does not work with proxified IORs created by
Orbix Wonderwall iortool.

 51475 216644 The marker in the ObjectKey in a string format IOR should
be in the form module/interface. OrbixNames 1.1 formatted
this as module_interface.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 61

Orbix Wonderwall
This section describes changes made in Orbix Wonderwall 3.0.

Licensing
This release of Orbix Wonderwall requires that you license the IIOP proxy with
your Orbix 3.0 license key. The installation script attempts to do this. However, if
you enter an invalid license key, the proxy will fail at start-up. To enter a new
license key, run the following command on UNIX platforms:

<Orbix Wonderwall dir>/bin/install_licence
 <Orbix Wonderwall dir>/iiopproxy <key>

The equivalent command on Windows NT is:

<Orbix Wonderwall dir>\bin\licence.exe
 <Orbix Wonderwall dir>\bin\iiopproxy.exe <key>

Development Environments
Orbix Wonderwall 3.0 is available for the following environments:

 Operating
System

 Hardware

 Solaris 2.x SPARC

 HP-UX 10.20 HP 9000/800. Requires that either the ANSI C++ compiler (aCC)
or the HP-UX patch PHSS_15043 (the aCC runtime) is installed
before Orbix Wonderwall binaries can be used.

 Specifically, the version of the runtime support library required is:

 /usr/lib/libCsup.1:
HP aC++ B3910B A.01.09 Language Support Library

 This can be determined using the command:

 what /usr/lib/libCsup.1

 Windows NT 4 Intel x86

To use the Orbix Wonderwall GUI utilities, you must have either Sun
Microsystems' Java Development Kit (JDK) or Java Runtime Environment (JRE)
installed, or have installed Orbix 3.0. During Orbix Wonderwall installation you are
asked for the location of the JDK. If you do not specify a location, the utilities
attempt to use the JRE installed with Orbix 3.0. If you do not specify a JDK or JRE,
and you have not installed Orbix 3.0, the GUI utilities will not work.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 62

Compatibility
Orbix Wonderwall is designed to interoperate with any CORBA ORB that
implements version 1.0 or 1.1 of the CORBA Internet Inter-ORB Protocol (IIOP).

New Features in Orbix Wonderwall 3.0
This section describes the new functionality and major changes added in
OrbixWonderwall 3.0.

Logging Connections

This release includes the ability to turn off logging of connections. To do this, add
the following line to the Orbix Wonderwall configuration file:

no-log connections

Incidents Cleared in Orbix Wonderwall 3.0
 This section describes the incidents cleared in this release. All incidents are cross
platform unless otherwise stated. The incidents are described in terms of Incident
ID, PR Number, and Synopsis, as described on page 22.

 Incident ID PR Number Synopsis

42700 203791 Orbix Wonderwall fails to handle IORs with multiple
component profiles correctly.

Known Problems, Workarounds and Tips
 The known problems, workarounds and tips for Orbix Wonderwall 3.0 are as
follows:

Fragmented IIOP 1.1 Headers

 Fragmented IIOP 1.1 Request and Reply headers are not yet supported.

Fragmented Replies and HTTP Tunneling

Sending fragmented Reply messages from IIOP 1.1 servers over a HTTP-tunneled
connection is not yet supported.

O r b i x 3 . 0 R e l e a s e N o t e s

support@iona.com 63

Timing Out of Servers with Transformers

If an activated server that requires use of a server transformer times out or is
stopped, Orbix Wonderwall attempts to send a transformed message to the
server's activation port. This port is associated with the orbixd or orbixdj
process and causes the daemon to fail with an unmarshalling error. This in turn
causes the server to be unavailable to the client.

Host Names and Orbix 2.3c

Orbix 2.3c does not use the host name in an IOR, but uses the host name
contained in the object key instead. If you intend to use Orbix 2.3c clients to
contact Orbix or OrbixWeb servers behind Orbix Wonderwall, with proxified
IORs, you must run the Wonderwall and server on the same host, but using
different ports. This problem is fixed in Orbix 3.0.

Contacting an Unregistered Server

The OrbixWeb 3.0 activator, orbixdj, produces the following stack trace if
Orbix Wonderwall tries to bind to a server that is not registered in the
Implementation Repository:

java.lang.NullPointerException
 at IE.Iona.OrbixWeb.CORBA.ServerRequest.target(ServerRequest.java)
 at IE.Iona.OrbixWeb.Activator.DJAuthenticationFilter.
 inRequestPreMarshal(DJAuthenticationFilter.java)
 at IE.Iona.OrbixWeb.CORBA.ServerRequest.
 inRequestPreMarshal(ServerRequest.java)
 at IE.Iona.OrbixWeb.CORBA.ServerDispatcher.
 dispatchSpecial(ServerDispatcher.java)
 at IE.Iona.OrbixWeb.CORBA.BOA.processRequest(BOA.java)
 at IE.Iona.OrbixWeb.CORBA.BOA.processOneEvent(BOA.java)
 at IE.Iona.OrbixWeb.CORBA.BOA.processEvents(BOA.java)
 at IE.Iona.OrbixWeb.CORBA.EventHandler.run(EventHandler.java)
 at java.lang.Thread.run(Thread.java)

This is fixed in OrbixWeb 3.0 patch 2 and later releases of OrbixWeb.

Further Information
For further information about updates to Orbix, including the latest patches, visit
the Orbix Update Center at:

http://www.iona.com/online/support/update/index.html

