Liant Software Corporation

XML Toolkit for
RM/COBOL®

Version 1 for Windows®

LIANT

This manual isauser'sguide for Liant Software Corporation’s XML Toolkit, a system designed to
alow RM/COBOL applicationsto access XML documents. It is assumed that the reader has a basic
understanding of XML. It isalso assumed that the reader is familiar with programming concepts
and with the COBOL language in general.

The information contained herein applies to systems running under Microsoft 32-bit Windows
operating systems.

The information in this document is subject to change without prior notice. Liant Software
Corporation assumes no responsibility for any errors that may appear in this document. Liant
reserves the right to make improvements and/or changes in the products and programs described in
this guide at any time without notice. Companies, names, and data used in examples herein are
fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopied, recorded, or otherwise, without prior
written permission of Liant Software Corporation.

The software described in this document is furnished to the user under alicense for a specific
number of uses and may be copied (with inclusion of the copyright notice) only in accordance with
the terms of such license.

Copyright © 2002 by Liant Software Corporation. All rights reserved.
Printed in the United States of America.

Liant Software Corporation
8911 N. Capital of Texas Highway
Austin, TX 78759

U.SA.
Phone (512) 343-1010
(800) 762-6265
Fax (512) 343-9487
Web site http://www.liant.com/
Documentation History:
First Release XML Toolkit for RM/COBOL v1.0 (401217) December 2002 Rev 01/03

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress,
RM/Panels, VanGui Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, InstantSQL, Liant,
and the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000,
and Windows X P are trademarks or registered trademarks of Microsoft Corporation in the USA and
other countries.

All other products, brand, or trade names used in this publication are the trademarks or registered
trademarks of their respective trademark holders, and are used only for explanation purposes.

www.liant.com

Contents

PrEIACE .. ot 1
Welcome to XML Toolkit for RM/COBOL........cccccuviininieninieneeseseee s 1
ADOUL Y OUr DOCUMENTALTION ...ttt 1
Related PUDIiCELIONS........cceeieiereie e nes 3
SymbolS aNd CONVENLIONS.......c..ceiirieiriiieierieeee et 3
REGISITBION ...ttt sb et eb e e e b sne e 5
TECHNICAl SUPPOIT ...ttt e b e be e e e seesbesreeneas 5

SUPPOIt GUIAEIINES ...t et 6
L= 0= TP PR 6

Chapter 1: Installation and Introductionccoooeeevveeiiiinnnnnn. 9

Installing XML ToolKit for RM/COBOLccccotrinieinienenesienesie e 9
SYSEEM REQUITEMENES......c.ectiiieeeirteeet sttt e 9
XML Toolkit for RM/COBOL PaCkagecucueueueenininirereririeieieieieeese s 10
TS = = o] o [OSSPSR 11

Installing the XML Toolkit for RM/COBOL Development System.................. 12
Installing the XML Toolkit for RM/COBOL Deployment System.................... 13

Introducing XML Toolkit for RM/COBOLccccooveiiiineeeeeeeseese et 14
WAL IS XIML? ettt bbbt 15

Chapter 2: Getting Started with XML ToolKit......................... 21
L@ < VT PP 21
Typical Development Process EXample.........coooiiireriniiiine e 22

DeSign the Data SLIUCIUNEcoueieiieeieie et 23
CompPilethE Program.......cc.cce it ste ettt et sresre e sneas 23
Run the cobtoXml ULHHLY ...oc.ooeeicecce e s 23
Execute the COBOL Programccccceeieveiesesieeieeseesesesrestesseeseseesesssessessessessens 27
[D]= 011V U g TN o] o 1 Tr= 1 o] o 1 33

XML Toolkit for RM/COBOL iii

Chapter 3: COBOL Considerationscccvevvvveiiieeeeeeeennnnnnns 35

File ManagemMENT.......coi ettt e e e et st sr e tesaeeneennenean 35
AUtomMatic SEArCh fOr FIlESooveiiieece e 35
File Management CONVENLIONSccovviereienieseeceseeses e s e e sre e e 36

Data CONVENIONS.......c.eiuireeiriereeiise ettt st be bbbt 38
Data REPIESENTALION ..ottt e 38
[T I g T - SRS 39
Missing Intermediate Parent NamMEScooeieiiiinenieeee e 40
Sparse COBOL RECOIUS.......coiiieiiiriirie ittt st sbe st e e sne s 44

COPY FIES .. bbb e b e nes 44
Statement DEfiNITIONS.........ooi i e 45
Displaying Status INfOrMationcceeeeeeieiesese e eens 45
Application TEMINALION.........ccccveiiereese e sre e resne e 46

LiMITAEIONS ..ttt ettt st et b e et et e e b e nteneenens 47
Data 1tems (Data SEIUCLUIMES)ceeeeereeriesieseesteseeseeseeseesaesre e sae e seeseeneesreseesnessens 47
Edited Data [teMS......ccoeieeeee et e e 48
Wide and Narrow CharaCters..........ooee oo 48
Dala ltEBM SIZE.....ee ettt et e s b et re s 48
OCCURS RESIIICHONSeeiueiitietecre et etees ettt s sreesreesre s ee e e sreesreereenneens 48
Reading, Writing, and the INtErMEL.............coovvieeereee e 48

OPLIMIZBLIONS ...ttt ettt e e bbb bt e e e besbenbe e sbeenis 49
OCCUIS DEPENAING. ...ttt et bbb s se e neas 49
EMPLY OCCUITENCES......ueiivei ittt sttt st st sa e st nae e sage e nbe e s saeeenraeens 49
Cached XML DOCUMENLSccueeeiiriiieterieeeieseeesieseeestessesessessesessessenessesessessessesesss 50

Chapter 4: XML ConsSiderationsccooeevvveeeiviiinnieeeeeeeeeennnnns 51

CharaCter ENCOUINGoivreirieieeteeeeiesiestese st ste s eesee e see e sre e enseseenseseessesnes 51

SEYIE SHEELS ... bbb eb e 52

RS o 01 0 7= SRR 53

Chapter 5: cobtoxml Utility Reference........ccccccccvviiin. 55

What isthe cObtOXMI ULITITY?coveeeeirieeerereeree e 55

Command LiNe INLEIACE.oceiceecteecece et 56
CommaNd Lin€ OPLIONS.......ceiiiirisiereseeieeeeieseesee e see e se e eeseeseeseeseessesnens 57

Referencing XML MOGEl FIlEScooiiiiiiseiece e s 59
INternal SEYIE SNEEL.........ooeieeieee e e 60
TEMPIALE FIl.....eeeeee e e e 60
EXAMPIE FIIB... e e e 60
SCHEMAFII ...t en 60

Contents

Chapter 6: xmlif Library Referenceccccccvvviciiiiieeeevennnnnns 61

What iSthe XMl LiDrary? ... st snea 61
Document Processing StatemMENtS........ccvvvverereeeereereneeseseseesreseeseeseeseeeeseessessesnens 62
XML EXPORT FILE. ...ttt st 62
XML EXPORT TEXT ..ottt sttt seneas 64
XML IMPORT FILE ...ttt e 65
XML IMPORT TEXT .viitiictiitieeesteeee sttt st snenes 66
XML TEST WELLFORMED-FILE........ccoiitieiiiieeceee e e 67
XML TEST WELLFORMED-TEXT ...cvetiiieisieieesiesese et 68
XML TRANSFORM FILE......ciiiiiiieisiiei et 69
XML VALIDATE FILE ...ttt 70
XML VALIDATE TEXT oottt snenes 71
Document Management StaemMENTS........coicvvvrieniieeiien e 72
XML FREE TEXT ..oitiietiiiirieiesieneeieseeee sttt anessessensssessesessessenes 72
XML GET TEXT ottt sttt sttt st st sttt st 73
XML PUT TEXT ottt eas 73
XML REMOVE FILE ..ottt sttt st s 74
Directory Management SLALEMENEScocoreeririeerereee e ere s eenen 75
XML FIND FILE. ... ittt 76
XML GET UNIQUEIDovcviiiicieiieeee sttt 77
State Management SLEEEMENES.c.eruirierieree et ee e see e 78
XML INITIALIZE .ttt sttt sse e ssenes 80
XML TERMINATE ..ottt et snenes 80
XML DISABLE ALL-OCCURRENCES.........ccocoiriririniinieeseneeesienesesieeee s 81
XML ENABLE ALL-OCCURRENCES.........ccvotirtirieiriinieeseseeesieseseseeeseseenes 82
XML DISABLE ATTRIBUTES.cooi ittt s 82
XML ENABLE ATTRIBUTES........cot ettt 83
XML DISABLE CACHE ...ttt sttt s 83
XML ENABLE CACHE ..ottt 84
XML FLUSH CACHE ..ottt 84
XML GET STATUS TEXT ..ottt srens 85
XML SET FLAGS ..ottt sttt sttt sttt se st ssestesessesaenes 86
Appendix A: XML Toolkit Examples.........ccoooiiiiiiiiiiiiiiis 87
Example 1: Export Fileand Import Fil€.......ccccveieveiereiise e 88
(D1 Y o o007 0| SRS 88
2T [g 1 1= USSR 89
Program DESCIIPLIONcveeriireeierieseete ettt 20
(D= = W 1 1 USSR 90
Other DEfINITIONScoueiieiee e e e s 91
Program SHIUCLUIE.........ocuieieie ettt ettt e e s s e 91
EXECULION RESUITS ...ttt et s 94

XML Toolkit for RM/COBOL Y

Example 2: Export File and Import File with Style Sheets..........ccooevvireiieneeee 96

DEVEIOPIMENT ...ttt e bbbt 96
BaICN FIl....e e e et 97
Program DESCHPLIONcceiiieirieeeie ettt et e e et e sae 98
[= 1 (= 0 OSSR 98
Other DEfINITIONSc.ceviiiiieiirieee et es 99
Program SHTUCIUIE..........eeieie et s sane s 99
S Y= 1= 1S 102
EXECULION RESUILS ...t 103
Example 3; Export File and Import File with OCCURS DEPENDING................. 105
(D1 Y o o2 o1 S 105
[[1= ST 106
Program DESCIIPLIONc..eeeuerieieeerieeresees e 107
[- N 1 (= 0 S 107
Other DEfINITIONSoovieiieieeeee e e e 108
Program SHIUCLUE..........oouiieeieee ettt saeesreen 108
EXECULION RESUILS ...t 111
Example 4: Export File and Import File with Sparse Arrays.......ccccceevevesesveenenn, 113
(D1 Y= o o007 0| S 114
BalCh Fil@....oeieeeee e 115
Program DESCIHPLIONccviececeeece s st 116
(D e= Y LU= 0 R TP P USSP PR TRPRPP 116
Other DEfINITIONSveieieeieeeeree e sre e 117
Program SHUCLUIE.........cc.ooiii et 117
EXECULION RESUIS ...ttt st 121
Example 5: Export Text and IMport TEXL........ccoereririenenere e 127
DEVEIOPIMENL ..ottt ettt e b s aeeae e e et e b e e 127
S F (o = PRSP 128
Program DESCIHPLIONccvieceeieceee e st e e et sre s re s re s 129
(D= e 1 (< 0 RSP PR PSPPSR 130
Other DEfINITIONScciieeiiiesiee e 130
Program SHUCLUNE..........ocueee ettt see e e e sae e ae e esaesneenseens 131
EXECULION RESUILS ...t 134
Example 6: Export File and Import File with Directory Pollingcccccovevriennene. 135
DEVEIOPIMENL ..ottt bbb 136
[T [1= ST 137
Program DESCHPLIONcoueiireeieieeie ettt s se e s sb e 138
[- Y 1 (= 0 SRS 138
Other DEfINITIONSoivieiieiee e et s 139
Program SHTUCIUI..........viiiieecee ettt 140
EXECULION RESUILS ...t 143

Vi

Contents

Example 7: Export File, Test Well Formed File, and Validate File........................ 146

DEVEIOPIMENL ..ottt 146
S F (0 = USSR 147
Program DESCHPLIONccueiireeieieie ettt s e b 148
[- N 1 (= 0 S 149
Other DEfINITIONScciieeiiiesiee e 149
Program SHTUCIUIE..........viiiie ettt 150
EXECULION RESUILS ...t 152
Example 8: Export Text, Test Well Formed Text, and Validate Text................... 154
(1Y o o027 o S 154
BalCh Fil@....oeieeeee e 155
Program DESCIIPLIONcoueeeereiieierieeees et 156
(D= = 1 1 o R ST URRRRN 157
Other DEfINITIONSoovieiieieieee e e e 157
Program SHIUCLUE..........ooui ettt sae e 158
EXECULTON RESUITS ...ttt et 161
Example 9: Export File, Transform File, and Import File........ccccccoeveveievecienenn, 162
(D1 Y= o o027 0| TS 162
BalCh FilE....eiieciee e 163
Program DESCIHPLIONcceieeeceeeee st 164
(D ez LU= 0 TP PP TS PP TPTPRPRN 165
Other DEfINItIONScoereeiiiereeere e e 165
Program SHUCLUIE.........cc.oiiii e e 166
EXECULION RESUIS ...ttt s s 169
Example A: Well Formed and Validate Diagnostic MeSSages...........cccverveereennnn 173
DEVEIOPIMENL ...ttt ettt e e e bbb s s e e et see b b e 173
S F (0 = PSSR 174
Program DESCHPLIONcoueieieeeeieie et s e b 175
(D= e 1 (< 0 RSP UP PR PSPPSR 175
Other DEfINITIONScciieeiiieiiee et 176
Program SHTUCIUN.........viiiee ettt ae e 176
EXECULION RESUILS ... 179
Example B: Import File with Missing Intermediate Parent Names.............cc..o...... 181
DEVEIOPIMENL ..ottt bbb 182
[T [1= ST 183
Program DESCIIPLIONcoueieereiieierieeee et 184
[- Y 1 (= 0 SRS 184
Other DEfINITIONSoivieiieiee e et s 185
Program SHIUCLUE..........oouiieeieee ettt saeesreen 185
EXECULION RESUILS ...t 188
EXample BatCh FilES........ccviuiececeeses et 190
ClEANUP.DEAL ... e 190
Gz 0] = o S 191
EXAMPIES.DAL......ccveeeeeeeee e e 191

XML Toolkit for RM/COBOL vii

Appendix B: XML Toolkit Sample

Application Programs...........uoiiiiieiieieeiiiiiie e 193
Using the Sample Application Programs...........ccoeerereienenieiesesesesesese e 193
Appendix C: XML Toolkit Error Messages...........ccceeeeeennnnne 195
Error MeSSage FOMMIELccveieeieeie e e see e e e et sn e s e te e e neenneennees 195
TS o L= I SR 195
COBOL Tracehack INfOrmMationcooeerrreinnmeineserereseeees s 196
Filename or Data [tem in ErTOr.........coooveie e 196
Parser INFOrMELTONcoveiiie e 196
SUMMarY Of EFTOr MESSAgES......c.ciueiiieieeerie ettt e 197
GlOSSaAry Of TEIMS ..ouuiiiiiiiiiiiiiiieiiiiei ettt eeeees 203
N X i 205

viii

Contents

Preface

Welcome to XML Toolkit for RM/COBOL

The XML Toolkit for RM/COBOL is Liant Software Corporation’s facility that
allows RM/COBOL applications to access XML (Extensible Markup Language)
documents. XML isthe universal format for structured documents and data on
the Web.

The XML Toolkit has many capahilities. The major features support the ability
to import and export XML documents to and from COBOL working storage.
Specifically, the XML Toolkit allows data to be imported from an XML
document by converting data elements (as necessary) and storing the results into
amatching COBOL data structure. Similarly, datais exported from a COBOL
data structure by converting the COBOL data elements (as necessary) and
storing the resultsin an XML document.

Version 1.0 of the XML Toolkit for RM/COBOL runs on Microsoft Windows
32-hit operating systems, excluding Windows 95. A version is planned for
UNIX platforms.

About Your Documentation

The XML Toolkit for RM/COBOL documentation consists of a user’s guide,
which is distributed electronically in Portable Document Format (PDF) as part
of the XML Toolkit software distribution CD-ROM.

Note To view and print PDF files, you need to install Adobe Acrobat Reader, a
free program available from Adobe' s Web site or from the software CD-ROM.

XML Toolkit for RM/COBOL 1
Welcome to XML Toolkit for RM/COBOL

The XML Toolkit for RM/COBOL User’s Guide is designed to allow you to
quickly locate the information you need. The following lists the topics that you
will find in the manual and provides a brief description of each.

Chapter 1: Installation and Introduction. This chapter describes the installation
process and system requirements, and provides a general overview of the XML
Toolkit for RM/COBOL.

Chapter 2: Getting Started with XML Toolkit. This chapter presents the basic
concepts used in the XML Toolkit for RM/COBOL by creating an example
XML-enabled application.

Chapter 3: COBOL Considerations. This chapter provides information specific
to using RM/COBOL when developing an XML -enabled application.

Chapter 4: XML Considerations. This chapter provides information specific to
using XML when using the XML Toolkit with RM/COBOL to develop an
XML-enabled application.

Chapter 5: cobtoxml Utility Reference. This chapter describes the cobtoxml
utility used by the XML Toolkit and the XML document files, known as model
files, that are produced when the cobtoxml utility processes the symbol table of
apreviously compiled RM/COBOL object file.

Chapter 6: xmlif Library Reference. This chapter describes the xmlif dynamic
link library used by the XML Toolkit for RM/COBOL.

Appendix A: XML Toolkit Examples. This appendix contains descriptions of
programs or program fragments that illustrate how xmlif library statements are
used. These example programs are included with the development system in the
XML Toolkit examples directory, Examples.

Appendix B: XML Toolkit Sample Application Programs. This appendix
provides information about the self-contained XML Toolkit sample application
programs that are included with the development system in the XML Toolkit
samples directory, Samples. Note that the most complete and up-to-date
versions of the XML Toolkit sample programs can be found on the Liant Web
site at http://www.liant.com/xmltk/samples.

Appendix C: XML Toolkit Error Messages. This appendix lists and describes
the messages that can be generated during the use of the XML Toolkit for
RM/COBOL.

The XML Toolkit for RM/COBOL manua also includes an index.

2

Preface

About Your Documentation

Related Publications

For additional information, refer to the following publications:
e RM/COBOL User’s Guide

e RM/COBOL Language Reference Manual

e RM/COBOL Syntax Summary

Symbols and Conventions

The following typographic conventions are used throughout this manual to help
you understand the text material and to define syntax:

1. Wordsin all capital lettersindicate COBOL reserved words, such as
statements, phrases, and clauses; acronyms; configuration keywords;
environment variables, and RM/COBOL Compiler and Runtime Command
line options.

2. Text that isdisplayed in amonospaced font indicates user input or system
output (according to context as it appears on the screen). Thistype styleis
also used for sample command lines, program code and file listing
examples, and sample sessions.

3. Bold, lowercase letters represent filenames, directory names, programs, C
language keywords, and CodeBridge attributes.

Words you are instructed to type appear in bold. Bold type styleisaso
used for emphasis, generally in some types of lists.

4. Itdic typeidentifiesthe titles of other books and names of chaptersin this
guide, and it is also used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for
information you supply, as described below.

XML Toolkit for RM/COBOL 3
Related Publications

10.

The symbols found in the COBOL syntax charts are used as follows:

a. italicized wordsindicate items for which you substitute a specific
value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown
(although not necessarily in uppercase).

C. ... indicatesindefinite repetition of the last item.

d. | separates alternatives (an either/or choice).

e. [] enclose optional items or parameters.

f. {} encloseaset of aternatives, one of which isrequired.

0. {|I} surround aset of unique alternatives, one or more of whichis

required, but each alternative may be specified only once; when
multiple alternatives are specified, they may be specified in any order.

All punctuation must appear exactly as shown.

Key combinations are connected by a plus sign (+), for example, Ctrl+X.
This notation indicates that you press and hold down the first key while you
press the second key. For example, “press Ctrl+X” meansto press and hold
down the Ctrl key while pressing the X key. Then release both keys.

Theterm “Windows’ in this document refers to 32-bit Microsoft Windows
operating systems, excluding Windows 95.

RM/COBOL Compile and Runtime Command line options may be
preceded by a hyphen. If any option is preceded by a hyphen, then a
leading hyphen must precede all options. When assigning avalueto an
option, the equal signisoptiona if leading hyphens are used.

In the electronic PDF file, you may see this symbol displayed. It represents
a“post-it” note that allows you to view last-minute comments about a
specific topic on the page in which it occurs. This same information is also
contained in the readme text file under the section, Documentation
Changes.

Double-click on the note symbols to open them. Y ou can click the note
window’s Close box after you have reviewed the contents. These notes can
be viewed in the Adobe Acrobat Reader but will not print, although you can
copy and paste the text into another application, such as Microsoft Word, if
you wish.

4

Preface

Symbols and Conventions

Registration

Please take amoment to fill out and mail (or fax) the registration card you
received with RM/COBOL. Y ou can also complete this process by registering
your Liant product online at: http://www.liant.com.

Registering your product entitles you to the following benefits:

e Customer support. Free 30-day telephone support, including direct access
to support personnel and 24-hour message service.

e Special upgrades. Free media updates and upgrades within 60 days of
purchase.

e Product information. Notification of upgrades, revisions, and
enhancements as soon as they are released, as well as news about other
product developments.

Y ou can a'so receive up-to-date information about Liant and al its products via
our Web site. Check back often for updated content.

Technical Support

Liant Software Corporation is dedicated to helping you achieve the highest
possible performance from the RM/COBOL family of products. Thetechnical
support staff is committed to providing you prompt and professional service
when you have problems or questions about your Liant products.

These technical support services are subject to Liant’s prices, terms, and
conditions in place at the time the service is requested.

Whileit is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each
product. For customerswho elect not to upgrade to the most current rel ease of
the products, support is provided on alimited basis, as time and resources allow.

XML Toolkit for RM/COBOL 5
Registration

www.liant.com

Support Guidelines

When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1.
2.

N o gk~ W

Company name and contact information.

Liant product serial number (found on the media label, registration card, or
product banner message).

Product version number.

Operating system and version number.
Hardware, related equipment, and terminal type.
Exact message appearing on screen.

Concise explanation of the problem and process involved when the problem
occurred.

Test Cases

Y ou may be asked for an example (test case) that demonstrates the problem.
Please remember the following guidelines when submitting a test case:

The smaller the test caseis, the faster we will be able to isolate the cause of
the problem.

Do not send full applications.

Reduce the test case to one or two programs and as few data files as
possible.

If you have very large data files, write asmall program to read in your
current data files and to create new data files with as few records as
necessary to reproduce the problem.

Test the test case before sending it to us to ensure that you have included all
the necessary components to recompile and run the test case. Y ou may
need to include an RM/COBOL configuration file.

6

Preface

Technical Support

When submitting your test case, please include the following items:

1. README text filethat explainsthe problems. Thisfile must include
information regarding the hardware, operating system, and versions of all
relevant software (including the operating system and all Liant products). It
must also include step-by-step instructions to reproduce the behavior.

2. Program sourcefiles. Werequire source for any program that is called
during the course of the test case. Be sure to include any copy files
necessary for recompilation.

3. Datafilesrequired by the programs. These files should be as small as
possible to reproduce the problem described in the test case.

XML Toolkit for RM/COBOL 7
Technical Support

8 Preface
Technical Support

Chapter 1. Installation and
Introduction

This chapter describes the system requirements and installation process, and
provides a general overview of the XML Toolkit for RM/COBOL and the
benefits it offers to the COBOL programmer.

Note You should have a basic understanding of XML in order to use the XML
Toolkit for RM/COBOL. Depending on the complexity of your application, you
may & so need to know about XML style sheets.

Installing XML Toolkit for RM/COBOL

Before you install the XML Toolkit for RM/COBOL (installation instructions
begin on page 11), make sure that your computer configurations meets the
following minimum hardware and software requirements, and that your XML
Toolkit package contains the necessary items for devel opment and depl oyment.

System Requirements

The XML Toolkit hardware and software requirements are the same as
RM/COBOL version 7.5 for 32-bit Windows, with the exception that
Windows 95 is not supported by the XML Toolkit. Microsoft’'s XML parser
MSXML 4.0 or greater also is required. (Seethe RM/COBOL User’s Guide
for Windows, version 7.5 or later.)

Note Windows 95 is not supported because the underlying XML parser
(Microsoft' s MSXML 4.0) is not supported on Windows 95.

The XML Toolkit may also be used in conjunction with Terminal Server.

XML Toolkit for RM/COBOL 9
Installing XML Toolkit for RM/COBOL

Itis highly recommended that you use Microsoft’s Internet Explorer, version 6.0
or greater, as a convenient tool for viewing XML documents. (Seethe XML
Toolkit README file for further details.)

For development, both the XML Toolkit development system and Liant’s
RM/COBOL 7.5 development system are required. For deployment, both the
XML Toolkit deployment system and the RM/COBOL 7.5 runtime system
arerequired.

XML Toolkit for RM/COBOL Package

The XML Toolkit package contains the following items for development and
deployment.

Development
The XML Toolkit development system includes the following files:
o Deployment files. Thesefilesare listed in the next section.

e cobtoxml command line utility (cobtoxml.exe). See Chapter 5: cobtoxml
Utility Reference, for more information.

e XML documents used by the cobtoxml utility (toxdr.xdl, toxdrb.xsl,
toxsd.xdl, and toxsl.xdl).

o Copy files (lixmlall.cpy, lixmldef.cpy, lixmldsp.cpy, lixmlrpl.cpy, and
lixmltr m.cpy).

o Examplefiles. These programs or program fragments illustrate how xmlif
library statements are used. (For further information, see Appendix A:
XML Toolkit Examples. The example programs can be found in the XML
Toolkit example directory, Examples.)

o Samplefiles. These self-contained, working application programs, which
include the complete source, can be used in your own applications by
modifying or customizing them, as necessary. (See Appendix B: XML
Toolkit Sample Application Programs, for more details. The sample
application programs can be found in the XML Toolkit sample directory
Samples)

Note The most complete and up-to-date versions of the XML Toolkit
sample programs can be found on the Liant Web site at
http://mww.liant.com/xmlitk/samples.

10

Chapter 1: Installation and Introduction
Installing XML Toolkit for RM/COBOL

Deployment
The XML Toolkit deployment system consists of the following files:

o xmlif COBOL-callable subprogram library (xmlif.dll). See Chapter 6:
xmlif Library Reference, for more information.

e MSXML 4.0, the Microsoft XML parser (msxml4.dll, msxml4a.dll, and
msxml4r.dlil).

For deploying COBOL applications that use the XML Tooalkit, install the XML
Toolkit deployment system on each platform that runs the application. Y ou may
do thisusing the XML Toolkit installation disk.

The developer should deploy the model files that were generated by the
cobtoxml utility along with the COBOL program files. Normally these files are
stored in the same location as the COBOL program files. For more information,
see “Model Files’ onpage 24.

Installation

Note The XML Toolkit for RM/COBOL is available as a development system
and a deployment system. The development system is designed to operate in
conjunction with an RM/COBOL development system. The deployment system
is designed to operate in conjunction with an RM/COBOL runtime system.

The following sections describe how to install the XML Toolkit for
RM/COBOL development and deployment systems.

XML Toolkit for RM/COBOL 11
Installing XML Toolkit for RM/COBOL

Installing the XML Toolkit for RM/COBOL Development
System

Toinstall the XML Toolkit development system for Windows
(XMLTK10R.EXE):

1.
2.

10.

11.

Restart Windows, and do not start any other applications.

Insert the XML Toolkit for RM/COBOL Instalation CD into your
CD drive.

Theinstallation program starts automatically.
Click I Agreeto accept the license agreement.

In the Installation Options dialog box, select XML Examples (if desired),
and click Next to continue.

In the Installation Directory dialog box, accept the location presented or
click Browse to select another location.

Note Theinstallation automatically locates the RM/COBOL devel opment
system and selects this directory as the default location for the XML Toolkit
development system installation.

Click Install to continue.

When the Liant License File dialog box opens, insert the license diskette
that accompanied the installation CD in the diskette drive in your computer.

Enter the file name for the Liant license file. The default nameis
A:LIANT.LIC.

Note If you are using adrive other than A, be sure to correct the location
of thelicensefilein the Liant License File dialog box. If necessary, the
LIANT.LIC file can be copied to alocation on a hard drive and that
location can be specified during installation.

Click Next to continue.

When the installation compl etes, the Completion dialog box is displayed.
Click Close to dismissthis dialog box.

At the “ Setup has completed. View readme file now?’ prompt, do one of
the following:

e Select Yesto view the README file.
e Select No to open the Liant XML Toolkit window.

12

Chapter 1: Installation and Introduction
Installing XML Toolkit for RM/COBOL

Installing the XML Toolkit for RM/COBOL Deployment
System

The XML Toolkit for RM/COBOL deployment system, named
XMLTK10R.EXE, is provided as a self-extracting executable that installs
the deployment system components of the XML Toolkit.

The XML Toolkit deployment system is delivered on the XML Toolkit
Development Installation CD asredist\XMLTK10R.EXE and isaso available
on the Liant Web site at http://www.liant.com/xmitk/redist/.

Note Your license for this product does not alow you to redistribute the entire
XML Toolkit development system with your application. Y ou may only
redistribute the deployment system.

Provide thefile, XML TK 10R.EXE, to your end-users along with your
application. Either package thisfile in an installation process so that it is
executed on the target platform or instruct your end-users to execute the file
once on their system to install the necessary components as part of setting up
the application.

When the XML TK 10R.EXE file is executed, the Installation Directory dialog
box isdisplayed. Follow these steps:

1. Inthelnstallation Directory dialog box, accept the location presented or
click Browse to select another location.

Theinstallation program automatically locates and selects the RM/COBOL
runtime system directory as the default location for the XML Toolkit
deployment system installation.

2. Click Install to continue.

3. When theinstallation completes, the Completion dialog box is displayed.
Click Close to dismissthis dialog box.

XML Toolkit for RM/COBOL 13
Installing XML Toolkit for RM/COBOL

Introducing XML Toolkit for RM/COBOL

The XML Toolkit for RM/COBOL allows RM/COBOL applications to
interoperate freely and easily with other applications that use the eXtensible
Markup Language (XML) standard. To accomplish this, XML Toolkit
leverages the similarities between the COBOL data model and the XML data
model in order to turn RM/COBOL into an “XML Engine.” Of primary
importance to this goal is the ahility to import and export XML documents to
and from standard COBOL data structures.

Note A COBOL data structureisa COBOL dataitem. In generd, itisagroup
dataitem, but in some cases, it may be asingle elementary dataitem. The
cobtoxml utility, a component of the XML Toolkit (see Chapter 5: cobtoxml
Utility Reference), captures the COBOL data structure, including transformed
data-names of the data items and subordinate data items, if any, so that a
mapping between the COBOL data structure itself and an XML representation
of the COBOL data structure can be accomplished in either direction at runtime.

By allowing standard COBOL data structures to be imported from and exported
to XML documents, the XML Toolkit enables the direct processing and

mani pulation of XM L-based € ectronic documents by the RM/COBOL
application programmer. Furthermore, the XML Toolkit does this without
requiring the application programmer to become thoroughly familiar with the
numerous XML -related specifications and the extremely tedious process
required to emit and consume well-formed XML.

Specifically, an XML document may be imported into a COBOL data structure
under COBOL program control using asingle, ssimple COBOL statement, and,
similarly, the contents of a COBOL data structure may be used to generate an
XML document with equal simplicity. The XML Toolkit approach handles both
simple and extremely complex structures with ease. Individual data elements
are automatically converted as needed between their COBOL internal datatypes
and the external coding used by XML. Not only can the transition to and from
XML take place when this happens, but powerful transforms coded using the
XML Style Sheet Language for Transformation (XSLT) can be applied at the
sametime. This powerful mechanism gives the XML Toolkit the capabilities
needed to be useful in awide range of e-commerce and web applications.

In order to add this powerful document-handling capability to an application, the
programmer need only describe the information to be received or transmitted to
the external components as COBOL data definitions. In many cases, this
description will simply be the already-existing data area defined in the
application. Once the “document” content is described in thisway, asimple
command-line utility program (cobtoxml.exe), referenced throughout this
document as the cobtoxml utility, is run, specifying the data structures to be
“opened” to the XML world. This utility captures all the information needed in

14

Chapter 1: Installation and Introduction
Introducing XML Toolkit for RM/COBOL

aset of XML documents. At application execution time, a COBOL statement
(accessed viaalibrary of statements defined in copy files supplied with the
XML Toolkit) isused to call a subprogram (xmlif.dll), referenced throughout
this document as the xmlif library, which implements the compl ete runtime
functionality of the XML Toolkit. For more information, see Chapter 5:
cobtoxml Utility Reference, and Chapter 6: xmlif Library Reference.

What is XML?

In this document, XML refers to the entire set of specifications and products
related to a particular approach to representing structured information in
text-based form. Specifically, the World-Wide Web Consortium has specified a
markup-based language called XML. Asaclose cousin of HTML, it was
designed to build on what had been learned with that, now ten-year-old,
technology. Among other things, XML was designed to be much more
generally useful than HTML, while exhibiting the simplest possible expression.
Since XML’ s definition, a constellation of XML -related specifications has been
produced and isin progress to leverage the power of this new form of
information expression.

For the COBOL programmer, it is best to view XML not as a markup language
for text documents (which is probably not why the COBOL programmer cares
about it), but rather as a text-based encoding of a general abstract datamodel. It
isthis data model, and its similarity to COBOL's data model, that yieldsits
power as an adjunct to new and legacy COBOL applications needing to interact
with other applications and systems in the most modern way possible.

Most of all, XML should be viewed as extremely important to the COBOL
programmer for two key reasons. First, it israpidly becoming the standard way
of exchanging information on the web, and second, the nearly perfect alignment
of the COBOL way of manipulating data and the XML information model
resultsin COBOL being arguably the best possible language for expressing
business data processing functionsin an XML-connected world.

XML Toolkit for RM/COBOL 15
Introducing XML Toolkit for RM/COBOL

COBOL as XML

What does XML look like? Start with the assumption that it is a textual
encoding of COBOL data (although thisis not quite accurate, it is sufficient
for now). Suppose you have the following COBOL definition in the
Working-Storage Section:

01 contact.

10 firstname pic x(10) value "John'.

10 lastname pic x(10) value "Doe".

10 address.
20 streetaddress pic x(20) value "1234 Elm Street".
20 city pic x(20) value "Smallville".
20 state pic x(2) value "TX".
20 postalcode pic 9(5) value "78759".

10 email pic x(20) value "jd@aol.com™.

What does thisinformation look like if you ssimply WRITE it out to atext file?
It lookslike this:

Doe 1234 EIlm Street Smallville TX78759jd@aol .com

You can seethat all the “data” is here, but the “information” isnot. If you
received this, or tried to read the file and make sense out of it, you must know
more about the data. Specifically, you would have to know how it is structured,
and what the sizes of the fields are. 1t would be helpful to know how the author
named the variousfields as well, since that would probably give you a clue asto
the content.

Thisisnot anew problem; it is one that COBOL programmers (as well as other
application programmers) have had to deal with on an ad hoc basis since the
beginning of the computer age. But now, XML gives us away to encode all of
the information in a generally understandable way.

Hereis how thisinformation would be displayed in an XML document:

<contact>
<firstname>John</firstname>
<lastname>Doe</lastname>
<address>
<streetaddress>1234 EIlm Street</streetaddress>
<city>Smallville</city>
<state>TX</state>
<postalcode>78759</postalcode>
<email>jd@aol .com</email>
</contact>

16

Chapter 1: Installation and Introduction
Introducing XML Toolkit for RM/COBOL

In XML, the COBOL group-level item is coded aswhat is called an “element.”
Elements have names, and they contain both text and other elements. Asyou
can see, an XML element corresponds to a COBOL dataitem. In this case, the
01-level item “contact” becomes the <contact> element, coded as a beginning
“tag” (the“<contact>") and an ending tag (the “ </contact>") with everything in
between representing its “content.” In this case, the <contact> element has asits
content the elements <firstname>, <lastname>, <address>, and <email>. This
corresponds precisely to the COBOL Data Division declaration for “ contact.”
Similarly, the 10-level group item, “address’, becomes the element <address>,
made up of the elements <streetaddress>, <city>, <state>, and <postal code>.
Each of the COBOL elementary items is coded with text content alone. Notice
that in the XML form, much of the semantic information is missing from the
raw COBOL output form of the data. Asabonus, you no longer have the
extraneous trailing spaces in the COBOL elementary items, so they are
removed. In other words, the XML version of this record contains both the data
itself and the structure of the data.

Now, what if the COBOL data had looked like the following:

01 contact.
10 firstname pic x(10).
10 lastname pic x(10).
10 address.
20 streetaddresslines pic 9.
20 streetaddresses.
30 streetaddress occurs 1 to 9 times
depending on streetaddresslines pic x(20).
20 city pic x(20).
20 state pic x(2).
20 postalcode pic 9(5).
10 email pic x(20).

XML Toolkit for RM/COBOL 17
Introducing XML Toolkit for RM/COBOL

Two things have changed in this example: theinitial values have been removed
and there can now be up to nine “streetaddress” items. Thisis more like what
you might expect in areal application. After the application code sets the values
of the various items from the Procedure Division, the XML coding of the result
might look like this:

<contact>
<firstname>Betty</firstname>
<lastname>Smith</lastname>
<address>
<streetaddresslines>3</streetaddresslines>
<streetaddresses>
<streetaddress>Knox College</streetaddress>
<streetaddress>Campus Box 9999</streetaddress>
<streetaddress>2 E. South St.</streetaddress>
</streetaddresses>
<city>Galesburg</city>
<state>lL</state>
<postalcode>61401</postalcode>
<emai I>bs@aol .com</emai l>
</contact>

Notice the repeating item “ streetaddress’ has become three <streetaddress>
elements. In this example, COBOL acts as an XML programming language,
providing both the structure (schema) of the data and the data itself.

Even though these examples are very simple, they illustrate how powerful the
compatibility between the COBOL data model and the XML information model
can be. COBOL structures of arbitrary complexity have a straightforward XML
representation. There are, it turns out, some things that you can specify in a
COBOL data definition that cannot be coded as XML, but these can easily be
avoided if you are programming your application for XML.

18

Chapter 1: Installation and Introduction
Introducing XML Toolkit for RM/COBOL

XML as COBOL

In the previous cases, you saw how structured COBOL data could be coded as
an XML document. In this section, you will examine how an arbitrary XML
document can be represented as a COBOL structure. This requires that you look
at some other aspects of the XML information model that are not needed to
represent COBOL structures, but might be present in XML nonetheless.

So far, you have seen that XML has elements and text. Although, these are the
primary means of representing datain XML documents, there are some other
ways of representing and structuring datain XML. Suppose you have the
following XML document:

<contact type="student'>
<firstname>Betty</firstname>
<lastname>Smith</lastname>
<address form="US">
<streetaddresses>
<streetaddress>Knox College</streetaddress>
<streetaddress>Campus Box 9999</streetaddress>
<streetaddress>2 E. South St.</streetaddress>
</streetaddresses>
<city>Galesburg</city>
<state>lL</state>
<postalcode zipplus4="N">61401</postalcode>
<emai I>bs@aol .com</emai l>
</contact>

Thereisnow anew kind of data, known as an “attribute” in XML. Notice that
the <contact> element tag has what appears to be some kind of parameter called
“type.” Thisis, infact, an attribute whose value is set to the text string
“student.” In XML, attributes are another way of coding element content, but
in away that does not affect the text content of the element itself. In other
words, attributes are “out-of-band” data associated with an element. This
concept has no parallel in standard COBOL. In COBOL, all data associated
with adataitemis part of the record contents. This meansthat if you areto
capture all of the content of an XML document, you must have away to capture
and store attributes.

Y ou do thiswith help of an important XML tool called a*“style sheet.” For now,
assume that a style sheet can transform an XML document into any desired
alternative XML document. If thisistrue (and it is), you must code the
incoming attributes as something that has a direct COBOL counterpart. This
would be as adataitem.

XML Toolkit for RM/COBOL 19
Introducing XML Toolkit for RM/COBOL

The example document, after style sheet transformation, might look like this:

<contact>
<attr-type>student</attr-type>
<firstname>Betty</firstname>
<lastname>Smith</lastname>
<address>
<attr-form>US</attr-form>
<streetaddresslines>3</streetaddresslines>
<streetaddresses>
<streetaddress>Knox College</streetaddress>
<streetaddress>Campus Box 9999</streetaddress>
<streetaddress>2 E. South St.</streetaddress>
</streetaddresses>
<city>Galesburg</city>
<state>lL</state>
<postalcodegroup zipplus4="N">
<attr-zipplus4>N</attr-zipplus4>
<postalcode>61401</postalcode>
</postalcodegroup>
<emai I>bs@aol .com</emai l>
</contact>

Several things have been changed. The attributes have been turned into
elements, but with a special name prefixed by “attr-“ and a new element,
<streetaddresslines> has been added containing a count of the number of
<streetaddress> elements. In the case of <postalcode>, a new element has been
added to “wrap” both the real <postalcode> value, and the new attribute. All of
these changes are very easy to make using a simple style sheet, and you now
have a document with a direct equivalentin COBOL :

01 contact.
10 attr-type pic x(7).
10 firstname pic x(10).
10 lastname pic x(10).
10 address.
20 attr-form pic Xxx.
20 streetaddresslines pic 9.
20 streetaddresses.
30 streetaddress occurs 1 to 9 times
depending on streetaddresslines pic x(20).
20 city pic x(20).
20 state pic x(2).
20 postalcodegroup
30 attr-zipplus4 pic x.
30 postalcode pic 9(5).-
10 email pic x(20).

20 Chapter 1: Installation and Introduction
Introducing XML Toolkit for RM/COBOL

Chapter 2: Getting Started
with XML Toolkit

This chapter presents the basic concepts used in the XML Toolkit for
RM/COBOL hy creating an example XM L-enabled application.

Overview

Because the COBOL information model can largely be expressed by the XML
information model, there is anatural relationship between XML documents
and COBOL data structures. Both present similar views of the data; that is,
the entire datais visible. Y ou may view the contents of a COBOL data record
and you may view the text of an XML document. In XML, markup is used
both to name and to describe the text elements of adocument. In COBOL, the
data structure itself provides names and descriptions of the elements within

a document.

The XML Toolkit has many capahilities. The major features support the ability
to import and export XML documents to and from a COBOL program’s Data
Division. Notethat datamay be anywhere in the Data Division except for the
Linkage Section or externals. Specifically, the XML Toolkit allows datato be
imported from an XML document by converting data elements, as necessary,
and storing the results into a matching COBOL data structure. Similarly, datais
exported from a COBOL data structure by converting the COBOL data
elements, as necessary, and storing the resultsin an XML document.

The XML Toolkit consists of the following two main components:
e cobtoxml utility

o xmlif library

XML Toolkit for RM/COBOL 21
Overview

The cobtoxml utility, cobtoxml.exe, runs as a post-compile step. This program
creates a set of XML documents, called model files (see page 24), which
describe a selected COBOL data structure as a set of XML documents. The
xmlif library, xmlif.dll, isa COBOL-callable runtime library used to implement
aseries of COBOL statements that are available to the developer for directing
the importing and exporting of COBOL dataas XML.

Typical Development Process Example

This section provides an example of how to produce an XML -enabled
application. These instructions assume that both the XML Toolkit for
RM/COBOL development system and the RM/COBOL development system
(version 7.5 or later) areinstalled on your computer.

Note More examples and information about complete sample application
programs can be found in Appendix A: XML Toolkit Examples, Appendix B:
XML Toolkit Sample Application Programs, and in the XML Toolkit examples
and samples directories (Examples and Samples, respectively). The most
up-to-date versions of the XML Toolkit sample programs can be found on the
Liant Web site at http://www.liant.com/xmitk/samples.

There arefive basic steps to developing an XML -enabled application:

1. Design the Data Structure. Develop a COBOL program, or modify an
existing one, using statements that refer to the xmlif library.

2. Compilethe Program. Compile the COBOL program with the RM/COBOL
Compile Command Y Option enabled in order to place the symbol tablein
the object file.

3. Runthe cobtoxml Utility. Run the cobtoxml utility in order to generate a
set of XML model files that describe a data structure within the COBOL
program.

4. Executethe COBOL Program. Test the program and repeat steps 1 through
4 as necessary.

5. Deploy the Application. After stripping the symbol table information from
the COBOL aobject program, distribute the XML Toolkit deployable files.
Thesefiles consist of the xmlif library and the underlying XML parser that
thislibrary uses.

The sections that follow describe each of the basic stepsinvolved in the example
provided, and they include explanations of how more functionality is added to
the program.

22

Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

Design the Data Structure

Thefirst step isto design a COBOL data structure that describes the data to be
placed in a corresponding XML document. The following simple example
illustrates this step using typical mailing address information. An adequate
program skeleton has been included to allow the program to compile without
error.

Identification Division.
Program-1d. Getting-Started.
Data Division.
Working-Storage Section.

01 Customer-Address.

02 Name Pic X(128).
02 Address-1 Pic X(128).
02 Address-2 Pic X(128).
02 Address-3.
03 City Pic X(64).
03 State Pic X(2).
03 Zip Pic 9(5) Binary.

This structure contains only one numeric element: the zip code. For
demonstration purposes, it is represented as binary.

Compile the Program

In step 2, you compile the program with the following command line;

rmcobol getstarted y
This compilation usesthe Y Compile Command Option to provide a symbol

table in the COBOL object, which isrequired by the cobtoxml utility.

Run the cobtoxml Utility

The third step is to execute the cobtoxml utility from the command line by
entering:

cobtoxml getstarted customer-address

XML Toolkit for RM/COBOL 23
Typical Development Process Example

Thefirst parameter, getstarted, isthe name of the COBOL object file. An
extension of .cob is automatically assumed, if no extension is provided. The
second parameter is the name of the data structure that will be used by the
runtime components of the XML Toolkit.

When the cobtoxml utility isrun, it generates a set of XML model files that
describe a data structure within the COBOL program. The following section
describes each of these model files and provides examples.

Model Files

The cobtoxml utility creates a set of filesthat are XML documents, known as
model files. Model files have the same root name as the object file. Inthiscase,
the following files are created:

o Examplefile (getstarted.xml)
e Templatefile (getstarted.xtl)
e Schemafile (getstarted.xsd)
e Style sheet (getstarted.xsl)

Example File

The XML document, getstarted.xml, is an example file created primarily for
the COBOL developer’sreference. It illustrates the form that the COBOL data
structure will take when encoded as an XML document. No actual data content
isincluded and the xmlif library does not use thisfile. Y ou may use Microsoft’s
Internet Explorer to view this XML document, which looks like the following.
(Note that Internet Explorer will differentiate among the various syntactical
elements of XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<customer-address>
<name />
<address-1 />
<address-2 />
<address-3>
<city />
<state />
<zip />
</address-3>
</customer-address>
</root>

24 Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

Even if you are not familiar with XML, it is easy to see how the XML document
is derived. XML isamarkup language—a set of rules (you may also think of
them as guidelines or conventions) for designing text formats that let you
structure your data. In that way, it issimilar to HTML. Markup is descriptive
information inserted in the text of adocument. Like HTML, XML makes

use of tags (words bracketed by '<' and ">") and attributes (of the form
name="value").

Nesting of elementsis done by using a matched set of beginning (start-tags) and
ending (end-tags) markup. In our example, <root> marks abeginning and
</root> marksanending. Thetags <customer-address> and
<address-3> have both start-tags and end-tags aswell. XML also allowsa
shortcut notation that may be used when a start-tag isimmediately followed by
an end-tag (that is, when there is no intervening content). Thisisknown asan
“empty element.” The end-tag may be omitted by terminating the start-tag with
the®/>" sequence. Inthisexample, <name /> isshorthand for the
<name></name> sequence. The meaning of both formsisthe same, and they
can be used interchangeably. Microsoft Internet Explorer recognizes an end-tag
immediately following a start-tag and displays the shorthand instead of the
longer version. If you use atext editor (such as Notepad) instead of Internet
Explorer to view the document, you will note that the shorthand sequence is not
used by this example.

This document contains no text, only markup, asit isintended only asa
reference for the programmer. Thefirst lineisan XML header, which is always
generated. The <root> tag asoisaways generated. Nested inside the root
element isthe customer-address element. Thiswas generated from the
customer-address datanamein the COBOL program. Since namesin
XML are case-sensitive and namesin COBOL are case-insensitive, the namein
the COBOL program is converted to all lowercase for consistency.

Template File

The XML document, getstarted.xtl, is atemplate file that is used by the xmlif
library when exporting a document (converting from COBOL to XML). Itis
similar to the example file, but it includes much more information. This
document contains XML attributes in addition to elements. The attributes
provide the additional information the xmlif library needs to encode the COBOL
data properly as XML at runtime.

Attributes are associated with an element tag and contain information that

describes the element content. If you look at markup for the tag name (<name
type=""nonnumeric” kind="ANS" length="128" offset="4"

id="Q244" />), you are able to observe several attributes associated with
this element. An attribute hasthe form name="value. For example, the

XML Toolkit for RM/COBOL 25
Typical Development Process Example

type attribute for the name element has avalue of "nonnumeric’. This
information tells the xmlif library to obtain data from the COBOL data structure
and convert the data from COBOL data format to a text format for the XML
document.

<?xml version="1.0" encoding=""UTF-8" ?>
<I-- produced by cobtoxml version 1.0d.00 for RM/COBOL version 7.50 or greater on:
Wed Nov 20 12:34:19 2002 -->
<Il-- data item "customer-address' in program "GETTING-STARTED"™ in file
"C:\xmlexample\getstarted.cob" -->
<root type="nonnumeric' kind=""GRP'" compiledTimeStamp="2002-11-20T12:34:12"
cobtoxmlRevision="1.0">
<customer-address type="nonnumeric' kind="GRP" length="454" offset="4" uid="Q1">
<name type="‘nonnumeric" kind="ANS" length="128" offset="4" uid="Q2" />
<address-1 type="nonnumeric'" kind="ANS" length="128" offset=""132" uid=""'Q3" />
<address-2 type="nonnumeric" kind="ANS" length="128" offset="260" uid="Q4" />
<address-3 type=""nonnumeric" kind="GRP" length="70" offset="388" uid=""Q5">
<city type="nonnumeric" kind="ANS" length="'64" offset="388" uid="Q6" />
<state type="nonnumeric' kind="ANS" length="2" offset="452" uid="Q7" />
<zip type="numeric" kind="NBU" length="4" offset="454" scale="0"
precision="5" uid="Q8" />

</address-3>

</customer-address>

</root>

Style Sheet File

The XML document, getstarted.xdl, isan internal style sheet. Style sheets such
asthis are used to transform an XML document into some other data
representation (usually, but not necessarily, another XML document).
getstarted.xd is used by the xmlif library when importing an XML document
(converting from XML to COBOL). This style sheet transforms the imported
XML into anew, internal XML document that contains the attributes shown in
the template file. Thisallowsthe xmlif library to convert the text in an XML
document to an internal COBOL format and store the data in the appropriate
location in the COBOL program’s memory.

This style sheet is complex and performs many additional functions. It isnot
shown here since it is meaningful only to an experienced XML designer adept at
reading and writing style sheets.

26

Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

Schema File

The XML document, getstarted.xsd, is a schema file used to validate the
contents of an XML document. A schemafileis adescription of how datais
structured. Schema files are about the data rather than the dataitself. In XML,
the term “valid” meansthat a particular XML document is both well formed
(that is, it has correct XML syntax) and that it is structured and contains content
consistent with the constraints intended by the designer of the document. In this
case, the getstarted.xsd file provides a schema file that would catch errors, such
as the entry of anonnumeric value for azip code.

There are cases where validation by schemafilesis not appropriate. The
cobtoxml utility has an option to disable the generation of a schemafile (see
“Schema Options” on page 59 in Chapter 5: cobtoxml Utility Reference), and
the xmlif library has options to validate or not to validate the contents of an
XML document (see the descriptions of XML VALIDATE FILE on page 70 and
XML VALIDATE TEXT on page 71 in Chapter 6: xmlif Library Reference).

The schemafileis not presented here because it, too, is meaningful only to an
experienced XML designer adept at reading and writing schema files.

Note If the application wishes to use severa data structures as separate XML
documents within the same COBOL application, it is hecessary to run the
cobtoxml utility once for each data structure, using an optiona parameter to
provide a name for the model files.

Execute the COBOL Program

In step 4, you execute and test the program.

In the following sections, you are going to build upon the preceding steps by
adding more functionality to the COBOL data structure designed in step 1 of
this example. Then, steps 2 and 3 are repeated as necessary.

First, the original program fragment is devel oped into a working COBOL
program that calls the xmlif library. Next, the XML EXPORT FILE statement
is used to create an XML document from the contents of the data structure.
Finally, the XML document is fully populated with datavaues. With each
iteration, the program is recompiled and the cobtoxml utility is executed in
order to produce the necessary model files.

XML Toolkit for RM/COBOL 27
Typical Development Process Example

Making a Program Skeleton

Step 1 started with afragment of the program. It was just enough to show the
data structure and allow program compilation so that it would be possible to
examine the model files generated by the cobtoxml utility.

The xmlif library isa COBOL-callable subprogram. The interface to the library
is simplified by using some COBOL copy files that perform source text
replacement. This means that the developer may write XML commands, which
are much like COBOL statements, rather than writing CALL statements that
directly access entry pointsin the xmlif library. The COBOL copy files aso
define program variables that are used in conjunction with the XML commands.
The copy file, lixmlall.cpy, must be copied in the Working-Storage Section of
the program in order to use the XML Toolkit.

In order to call the xmlif library, the COBOL program fragment from step 1is
further developed by adding the following lines (shown in blue):

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.

01 Customer-Address.

02 Name Pic X(128).
02 Address-1 Pic X(128).
02 Address-2 Pic X(128).
02 Address-3.
03 City Pic X(64).
03 State Pic X(2).-
03 Zip Pic 9(5) Binary.

Copy "lixmlall.cpy".
Procedure Division.
A.

XML INITIALIZE.

If Not XML-OK Go To Z.

< insert COBOL PROCEDURE DIVISION logic here >

Z.
Copy "lixmltrm.cpy".
GoBack -
Copy "lixmldsp.cpy".
End Program Getting-Started.

The COPY statement is placed in the Working-Storage Section after the
data structure.

28 Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

The Procedure Division header is entered, followed by the paragraph-name, A..

The XML INITIALIZE statement produces a cal to the xmlif library. The
XML INITIALIZE statement may be thought of as similar to a COBOL OPEN
Statement.

Termination logic is placed at the end of the program. The paragraph-name, Z .,
isused asa GO TO target for error or other termination conditions.

The copy file, lixmltrm.cpy, is used to generate a correct termination segquence.
A cal to XML TERMINATE (similar to a COBOL CLOSE statement) isin
this copy file. If errors are present, the logic in this copy file will perform a
procedure defined in the copy file, lixmldsp.cpy, which will display any error
messages.

The original program fragment is now aworking COBOL program that callsthe
xmlif library. Itsonly function isto open and close the interface to the library.

Note Whenever you recompile the source program, it is necessary that you run
the cobtoxml utility again, even if the data structure has not changed. Thisis
because the xmlif library must have access to model files that correctly describe
the COBOL data structures. In order to assure this, the xmlif library ascertains
that the model files were produced from the same object that is being run.

Compile and run the program from the command line as follows:
rmcobol getstarted y

cobtoxml getstarted customer-address
runcobol getstarted

Thefirst parameter is the name of the COBOL object program.

If you place the xmlif library in the rmautold directory, as this action assumes,
you do not have to specify the library name on the command line.

XML Toolkit for RM/COBOL 29
Typical Development Process Example

Making a Program that Exports an XML Document

The next stage isto create an XML document from the contents of a COBOL
data structure. To do this, morelogic is added to the original COBOL program.
The added text is shown in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.

01 Customer-Address.

02 Name Pic X(128).
02 Address-1 Pic X(128).
02 Address-2 Pic X(128).
02 Address-3.
03 City Pic X(64).
03 State Pic X(2).-
03 Zip Pic 9(5) Value O Binary.

Copy "lixmlall_.cpy".
Procedure Division.

A
XML INITIALIZE.
IT Not XML-OK Go To Z.
XML EXPORT FILE
Customer-Address
"Address"
""getstarted".
If Not XML-OK Go to Z.
Z.
Copy "lixmltrm.cpy".

GoBack -
Copy "lixmldsp.cpy".
End Program Getting-Started.

The XML EXPORT FILE statement is used to create an XML document from
the contents of adata structure. This statement has three arguments. the data
structure name, the desired filename, and the root name of the model files.

A value of zero is added to the zip code field so that the field has avalid
numeric value.

Asyou would expect, the data structure nameis customer-address. This
name must correspond to the name used when running the cobtoxml utility
(cobtoxml getstarted customer-address). Thedesired filenameis
specified as address, which will cause afile (containing the XML document)
with the name of address.xml to be generated. Almost al of the XML
statements may set an unsuccessful or warning status value; that is, a status
value for which the condition-name XML-OK isfalse following the execution

30

Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

of the XML statement. It isgood practice to follow every XML statement with
adtatustest, such as, I'f Not XML-OK Go to Z.

The program is again compiled and run from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address
runcobol getstarted

This time the program creates an XML document in the file, address.xml. You
may use Microsoft Internet Explorer to examine the document. The resulting
XML document is displayed as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<customer-address>
<name />
<address-1 />
<address-2 />
<address-3>
<city />
<state />
<zip>0</zip>
</address-3>
</customer-address>
</root>

Since the data structure contained only spaces (with the exception of the zip
field), the generated document is almost identical to the example file that was
generated by the cobtoxml utility.

XML Toolkit for RM/COBOL 31
Typical Development Process Example

Populating the XML Document with Data Values

The next stage is to populate the COBOL program with data values. Changes
are shown in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.

01 Customer-Address.

02 Name Pic X(128).
02 Address-1 Pic X(128).
02 Address-2 Pic X(128).
02 Address-3.
03 City Pic X(64).
03 State Pic X(2).-
03 Zip Pic 9(5) Value O Binary.

Copy "lixmlall_.cpy".
Procedure Division.
A.

XML INITIALIZE.

If Not XML-OK Go To Z.

Move "Liant Software Corporation”™ to Name.

Move ''8911 Capitol of Texas Highway, North"
to Address-1.

Move ''Suite 4300" to Address-2.

Move "Austin' to City.

Move "TX" to State.

Move 78759 to Zip.-

XML EXPORT FILE
Customer-Address
"Address"
"'getstarted".

If Not XML-OK Go to Z.

Z.
Copy "lixmltrm.cpy".
GoBack -
Copy "lixmldsp.cpy".
End Program Getting-Started.

A series of simple MOV E statements are used to provide content for the data
structure.

Again, the program is compiled and run from the command line as follows:
rmcobol getstarted y

cobtoxml getstarted customer-address
runcobol getstarted

32 Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

Thistime the XML document is fully populated with data values, as shown
below.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<customer-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capitol of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
</customer-address>
</root>

Deploy the Application

Use the RM/COBOL Combine Program Utility, rmpgmcom, which comes with
the RM/COBOL devel opment system, to strip symbol table information from
the COBOL object program. The rmpgmcom utility combines multiple
RM/COBOL object filesinto asingle program file library. This utility is used
primarily to reduce the size of the deployable application.

The following DOS commands illustrate how the rmpgmcom utility may be
used to strip symbol table information:

move /y myprogram.cob tmp.cob
start /w runcobol rmpgmcom A="STRIP,myprogram.cob,tmp.cob*

del tmp.cob

The model file documents contain atime stamp that reflects the compilation date
and time of the COBOL object file. If you recompile the COBOL source to
remove the symbol table, the time stamp of the model files will not match the
compilation date and time and the xmlif library will generate an error message.

Deploy the xmlif library and the underlying XML parser that it uses along with
the model files that were generated by the cobtoxml utility. Normally these
files are stored in the same location as the COBOL program files.

For deploying COBOL applications that use the XML Toolkit, install the XML
Toolkit deployment system on each platform that runs the application. Y ou may
do thisusing the XML Toolkit Installation disk.

XML Toolkit for RM/COBOL 33
Typical Development Process Example

34 Chapter 2: Getting Started with XML Toolkit
Typical Development Process Example

Chapter 3: COBOL
Considerations

This chapter provides information specific to using RM/COBOL when
developing an XML -enabled application. The primary topics discussed in this
chapter include:

File Management
Data Conventions
Copy Files
Limitations

Optimizations

File Management

The management of data files when using the XML Toolkit is similar, but not
identical, to other RM/COBOL data file management issues. The sections that
follow discuss these differences.

Automatic Search for Files

During development with the XML Toolkit, remember the following points
when searching for afile not found in the current working directory:

The RM/COBOL runtime support for resolving leading or subsequent
names in a pathname is not provided by the XML Toolkit when the xmlif
library locatesfiles. That is, the XML Toolkit does not honor the

XML Toolkit for RM/COBOL 35
File Management

RESOLVE-LEADING-NAME or RESOLVE-SUBSEQUENT-NAMES
keywords of the RUN-FILES-ATTR configuration record.

e The RUNPATH environment variable is searched to locate mode files and
style sheet files, as necessary.

File Management Conventions

File extensions are either used “asis’ or forced to be a predetermined value.
The conventions governing particular filename extensions when using the XML
Toolkit are described in the sections that follow.

Model File Naming Conventions

Model files, the XML documents generated by the cobtoxml utility, have
predetermined extensions. The cobtoxml utility generates a set of three or four
files from a single filename with different extensions (.xml, .xdl, .xtl, and
sometimes .xsd). For more information, see “Model Files’ on page 24 in
Chapter 2: Getting Sarted with XML Toolkit, and “ Referencing XML Model
Files” on page 59 in Chapter 5: cobtoxml Utility Reference.

The xmlif library uses the model filesonly asinput files. When the xmlif
library references amodel file, the appropriate predetermined extension is
added, regardless of the presence or lack of an extension on the model file
parameter supplied by the COBOL program.

The xmlif library uses the RUNPATH environment variable to locate a model
file (with the appropriate extension added) except when:

o themodel filename contains a directory separator character (such as“\” on
Windows);

e thefileexists; or

o thefilenameisaURL (that is, the name begins with “http:”).

36

Chapter 3: COBOL Considerations
File Management

External Style Sheet File Naming Conventions

In addition to the style sheet that is produced as part of the model files, other
style sheets may be referenced by the xmlif library. If the filename parameter
supplied by the COBOL program does not contain an extension, the value .xdl is
added to the filename.

The xmlif library uses the RUNPATH environment variable to locate the style
sheet file (with the .xdl extension added) except when:

e the style sheet filename parameter supplied by the COBOL program
contains a directory separator character (such as“\” on Windows);

e thefileexists; or

o thefilenameisaURL (the name beginswith “http:”).

Other Input File Naming Conventions

All other input files referenced by the xmlif library will have avalue of .xml
added if the filename parameter supplied by the COBOL program does not
contain an extension. No RUNPATH environment variable search is applied.

Other Output File Naming Conventions

All other output files referenced by the xmlif library will have avalue of .xml
added if the filename parameter supplied by the COBOL program does not
contain an extension. No RUNPATH environment variable search is applied.

If the filename supplied by the COBOL program isa URL, then an error is
returned because it is not possible to write directly to aURL.

XML Toolkit for RM/COBOL 37
File Management

Data Conventions

Inthe XML Toolkit, several suppositions were made about data transformations
between COBOL and XML, including those relating to the following items;

o Data Representation
e FILLER Data
e Missing Intermediate Parent Names

e Sparse COBOL Records

Data Representation

COBOL numeric dataitems are represented in XML as anumeric string. A
leading minus sign is added for negative values. Leading zeros (those appearing
to the | eft of the decimal point) are removed. Trailing zeros (those appearing to
the right of the decimal point) are likewise removed. If the valueis an integer,
no decimal point is present.

COBOL nonnumeric data items are represented as atext string and have trailing
spaces removed (or leading spaces, if the item is described with the JUSTIFIED
phrase). In addition, any embedded XML specia characters are represented by
escape sequences; the ampersand (&), less than (<), greater than (>), quote ("),
and apostrophe (') characters are examples of such XML special characters.

On Windows platforms, nonnumeric displayable data are encoded using
Microsoft’s OEM dataformat. On output, these data are converted to the
standard Unicode 8-bit transformation format, UTF-8. On input, datais
converted to the OEM data format.

38 Chapter 3: COBOL Considerations
Data Conventions

FILLER Data

Unnamed data description entries, referred to as FILLER datain this section,

may be used to generate XML text without starting a new XML element name.
Specifying named and unnamed elementary data items subordinate to a named
group generates XML mixed content for an element named by the group name.

Numeric FILLER datawill not reliably produce well-formed XML sequences.
For this reason, FILLER data should always be nonnumeric PIC X or PIC A.

For example, the following COBOL sequence:

01 A.
02 FILLER Value "ABC".
02 B Pic X(5) Value "DEF".

02 FILLER Value "GHI™.

generates the following well-formed XML sequence:

<a>ABCDEFCGHI

FILLER data, however, is treated differently than named data. All leading
and/or trailing spaces are preserved, so that the length of the datais the same as
the COBOL data length.

In addition, the dataiis treated as PCDATA. That is, embedded XML special
characters are preserved. This allows short XHTML sequences, such as “break”
to be represented as FILLER (for example,
). XHTML (Extensible
HyperText Markup Language) is based on HTML 4, but with restrictions such
that an XHTML document is also awell-formed XML document. For example,
the following COBOL sequence:

01 A.
02 FILLER Value "
".
02 B Pic X(5) Value "DEF".

02 FILLER Value "GHI™.

generates the following well-formed XML sequence:

<a>
DEFGHI

XML Toolkit for RM/COBOL 39
Data Conventions

Care must be taken in placing XML specia charactersin FILLER data, since the
resultant XML sequence might not be well formed. For example, the following
COBOL sequence:

01 A.
02 FILLER Value "<br™.
02 B Pic X(5) Value "DEF".

02 FILLER Value "GHI".

generates the following syntactically malformed XML sequence:

<a><brDEFGHI

Whenever FILLER data are present in a data item that is referenced by the XML
EXPORT statement, the resulting document is validated to ensure that the
resultant XML document iswell formed.

Missing Intermediate Parent Names

A capability for handling missing intermediate parent names has been included
to make programs that deal with “flattened” dataitems, such as web services,
less complicated.

Sometimesit is possible for the XML Toolkit to reconstruct missing
intermediate parent names in a COBOL data structure. There are two waysin
which these missing names may be generated:

¢ Onetechniqueisto determine whether the element nameis unique. If this
istrue, then the intermediate parent names are generated by the model file
style sheet.

e The other method is to determine whether the unique identifier (uid)
attributes of the element name are provided. If thisistrue, then the
intermediate parent names may also be generated.

The following sectionsiillustrate the two approaches.

40 Chapter 3: COBOL Considerations
Data Conventions

Unique Element Names

Consider the following COBOL data structure;

01 Liant-Address.

02 Name Pic
02 Address-1 Pic
02 Address-2 Pic
02 Address-3.
03 City Pic
03 State Pic
03 Zip Pic

02 Time-Stamp Pic

X(64) .
X(64).
X(64).

X(32).

X(2) -
9(5).
9(8).

A well-formed and valid XML document that could be imported into this

structure is shown below:

<?xml version="1.0" encoding="UTF-8" ?>

<root>
<liant-address>

<name>Liant Software Corporation</name>

<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>

<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>

</address-3>

<time-stamp>13263347</time-stamp>

</liant-address>
</root>

A well formed (but not valid) “flattened” version of an XML document that

could also be imported into this structure is displayed here:

<?xml version="1.0" encoding="UTF-8" ?>

<root>

<name>Wild Hair Corporation</name>

<address-1>8911 Hair Court</address-1>

<address-2>Sweet 4300</address-2>

<city>Lostin</city>
<state>TX</state>
<zip>70707</zip>

<time-stamp>99999999</time-stamp>

</root>

Note Thislast XML document may be used only if the cobtoxml utility does
not generate a schemato validate the document. To prevent the creation of a

XML Toolkit for RM/COBOL
Data Conventions

41

schemafile, you use the -sn (schema none) option on the cobtoxml utility.. You
may also delete an existing schema mode file (.xsd extension).

Unique Identifier (uid)

The unique identifier (uid) attribute is generated by an XML EXPORT FILE or
XML EXPORT TEXT statement if XML attributes are enabled. Attributes may
be enabled by using the XML ENABLE ATTRIBUTES (page 83) statement
before the XML EXPORT statement.

Using the same COBOL data structure illustrated on page 41 for unique element
names, awell-formed XML document (generated by XML EXPORT), which
contains attributes—including uids, that could be imported into this structure is
shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric' Kkind="GRP"
compi ledTimeStamp="2002-12-04T10:57:22"
cobtoxmlRevision="1.0">
<liant-address type="nonnumeric" kind="GRP" length="'239"
offset="4"
uid="Q1">
<name type="nonnumeric"” Kind="ANS" length="64" offset=""4"
uid="Q2">Liant Software Corporation</name>
<address-1 type="nonnumeric' kind="ANS" length="64"
offset="68"
uid="0Q3"">8911 Capital of Texas Highway North</address-1>
<address-2 type="nonnumeric" kind="ANS" length="64"
offset="132"
uid=""Q4">Suite 4300</address-2>
<address-3 type="nonnumeric" kind="GRP" length="39"
offset=""196"
uid="Q5">
<city type="nonnumeric" kind="ANS" length="'32"
offset="196"
uid=""Q6"">Austin</city>
<state type="‘nonnumeric' kind="ANS" length=""2"
offset="228"
uid=""Q7"">TX</state>
<zip type="numeric" kind="NSU" length="5" offset="230"
scale="0"
precision="5" uid="Q8">78759</zip>
</address-3>
<time-stamp type="numeric" kind="NSU" length="8"
offset="235"
scale="0" precision="8" uid="Q9'">10572765</time-stamp>
</liant-address>
</root>

42

Chapter 3: COBOL Considerations
Data Conventions

A well-formed “flattened” version of an XML document that could also be
imported into this structure is displayed here. The uid attributes were captured
from an XML document (such as the one shown previously) that was generated
by an XML EXPORT statement. These attributes may be captured by a style
sheet or other process and then added again before the XML IMPORT
statement. Thisis accomplished by combining the element name and the uid
attribute value to form a new element name. For example, <name uid="Q2">,
could be used to generate a new element name “ name.Q2".

<?xml version="1.0" encoding=""UTF-8" ?>
<root>
<name uid="Q2">>Wild Hair Corporation</name>
<address-1 uid="Q3">>8911 Hair Court</address-1>
<address-2 uid="Q4'">>Sweet 4300</address-2>
<city uid="Q6">Lostin</city>
<state uid="Q7'">TX</state>
<zip uid="Q8">70707</zip>
<time-stamp uid="Q9''>99999999</time-stamp>
</root>

Note Thislast XML document may be used only if the cobtoxml utility does
not generate a schema to validate the document. To prevent the creation of a
schemafile, you use the -sn (schema none) option on the cobtoxml utility. You
may also delete an existing schema model file (.xsd extension).

XML Toolkit for RM/COBOL 43
Data Conventions

Sparse COBOL Records

Aninput XML document need not contain all data items defined in the original
structure. This applies to both scalar and array elements. In order to place array
elements correctly, a subscript must be supplied when array elements are not in
canonical order.

For example, the following XML document uses the subscript attribute to
position the array to the second element and then to the fourth element.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<data-table>

<table-1 subscript="2">
<x>B</x>
<n>2</n>

</table-1>

<table-1 subscript="4">
<Xx>D</x>
<n>4</n>

</table-1>

1
</data-table>
</root>

If the input XML document might be sparse (that is, missing some elements),
then the schema generated by the cobtoxml utility will cause the document load
tofail. For thisreason, if you anticipate using sparse XML documents, you
should run the cobtoxml utility with the -sn (schema none) option. Y ou may
also delete an existing schemamodel file (.xsd extension).

Copy Files

Under most circumstances, you should make use of the copy filesthat are
provided in the XML Toolkit. This section describes the various points to
consider when using copy files with the XML Toolkit, including:

e Statement Definitions
e Displaying Status Information
o Application Termination

44

Chapter 3:
Copy Files

COBOL Considerations

Statement Definitions

The copy file, lixmlall.cpy, isrequired to define the XML statements and to
define some data-items that are referenced. This copy file should be copied in
the Working-Storage Section of the program. Do not modify the contents of this
copy file or the copy filesthat it copies (lixmdef.cpy and lixmlr pl.cpy).

Displaying Status Information

The copy file, lixmldsp.cpy, is provided as an aid in retrieving and presenting
status information. This copy file defines the Display-Status paragraph and
contains the following text:

Display-Status.
IT¥ Not XML-I1sSuccess
Perform With Test After Until XML-NoMore
XML GET STATUS-TEXT
Display XML-StatusText
End-Perform
End-I1f.

The DISPLAY statement (Display XML-StatusText) displays status
information on the terminal display. You may edit this statement as necessary
for your application.

While thislogic is normally used in the application termination logic, it may be
used at any time in the program flow. For example:

XML TRANSFORM FILE ™A™ "B' "C".
PERFORM Display-Status.

XML Toolkit for RM/COBOL 45
Copy Files

Application Termination

The copy file, lixmltrm.cpy, provides an orderly way to shut down an
application. This copy file contains the following text:

Display "Status: " XML-Status.
Perform Display-Status.

XML TERMINATE.

Perform Display-Status.

Thefirst line may be modified or removed as you choose. The first PERFORM
statement displays any pending status messages (from a previous XML
statement). The XML TERMINATE statement shuts down the XML Toolkit
and the second PERFORM statement displays any status from the XML
TERMINATE operation.

Thefollowing logic is sufficient to successfully terminate the XML Toolkit:

Z.

Copy "lixmltrm.cpy".
Stop Run.

Copy "lixmldsp.cpy'.

The Z. paragraph-nameiswhere the exit logic begins. The flow of execution
may reach here by falling through from the previous paragraph or as the result of
aprogram branch. The STOP RUN statement is used to prevent the application
from falling through to the Display-Status paragraph. An EXIT PROGRAM or
GOBACK statement also may be used, if appropriate.

46 Chapter 3: COBOL Considerations
Copy Files

Limitations

This section describes the limitations of the XML Toolkit and the way in which
those limitations affect the development of an XML-enabled application. The
topics discussed in this context include:

o Dataltems (Data Structures)

e Edited Dataltems

e Wideand Narrow Characters

e Dataltem Size

e OCCURS Resdtrictions

e Reading, Writing, and the Internet

Data Items (Data Structures)

Dataitems that are passed to the XML Toolkit must be in memory that is local
to the COBOL program. Therefore, EXTERNAL dataitems or dataitemsin the
Linkage Section may not be used for XML IMPORT or XML EXPORT
operations (see pages 62 through 66).

The XML IMPORT and XML EXPORT statements operate on a single COBOL
dataitem. Thisdataitem isthe second command line parameter when using the
cobtoxml utility. Asyou would expect, this dataitem may be (and usually will
be) agroup item. The COBOL program must move all necessary datato the
selected dataitem before using the XML EXPORT statement and retrieve data
from the data item after using the XML IMPORT statement.

The referenced data item—and any items contained within it, if it isagroup
item—nhas the following limitations:

1. REDEFINES and RENAMES clauses are not allowed.

2. FILLER items must be nonnumeric.

XML Toolkit for RM/COBOL 47
Limitations

Edited Data ltems

Numeric edited, alphabetic edited, and alphanumeric edited dataitems are
allowed. The dataitems are represented in an XML document in the same
format as the data items would exist in COBOL internal storage. That is, no
editing or de-editing operations are performed for edited data items during
import from XML or export to XML. Leading and trailing spaces are preserved.

Wide and Narrow Characters

XML was developed to use wide (16-bit) Unicode characters as its natural

mode. RM/COBOL uses narrow (8-bit) ASCII characters. All XML datathat is
generated by the XML Toolkit is represented in UTF-8 format, which is
essentially ASCII with extensions for representing 16-bit charactersand is
compatible with Unicode. (UTF-8 isaform of Unicode.)

Data Iltem Size

By its nature, XML has no limits on dataitem size. COBOL does have size
limitations for its dataitems. Many XML documents have been standardized
and such standards include limitations on data items, but the COBOL program
must still be written to deal with dataitem size constraints.

OCCURS Restrictions

Although, XML has no limits on the number of occurrences of adata item,
COBOL does have such occurrence limits. Aswith dataitem size, the COBOL
program must deal with this difference.

Reading, Writing, and the Internet

It is possible to read any XML document (including XML model files) from the
Internet viaaURL. However, it is not possible to directly write or export an
XML document to the Internet viaa URL.

48

Chapter 3:
Limitations

COBOL Considerations

Optimizations

Some optimizations have been added to the xmlif library to improve
performance and reduce the size of the generated documents.

Occurs Depending

As expected, on output, the XML EXPORT statement will limit the number of
occurrences of a group to the value of the DEPENDING variable. Additional
occurrences may be omitted if they contain no data (see “Empty Occurrences”).

Oninput, the XML IMPORT statement will store the value of the DEPENDING
variable. The XML IMPORT statement will also store all occurrencesin the
document (up to the maximum occurrence limit), regardless of the value of the
DEPENDING variable. However, if aschemais generated by the cobtoxml
utility, then the schemawill report an error if not al of the elements specified by
the DEPENDING variable are present.

Empty Occurrences

On output, the XML EXPORT statement recognizes occurrences within a
group that contain no information. Specifically, an empty dataitemisastring
that contains either all spaces or zero characters, or anumber that contains a
zero value.

If al of the elementary data items in an occurrence of a group are empty and if
the occurrence is not the first occurrence, then no datais generated for that
occurrence. This prevents the repetition of occurrences that contain no
information.

Oninput (XML IMPORT), aschemamay detect an error if not all expected
occurrences of an item are present. In order to prevent this, you may enable all
occurrences (use the XML DISABLE ALL-OCCURRENCES statement,
described on page 81) when generating the document with XML EXPORT.

XML Toolkit for RM/COBOL 49
Optimizations

Cached XML Documents

Since XML style sheets and template files are largely invariant, performance can
usually be improved by caching previously loaded style sheets and templatesin
memory.

For some applications, it may be useful to disable caching. If style sheets and
template files are generated or replaced in real time, then the cached files would
need to be replaced as well.

If system resource availability becomes critical because alarge number of
documents are occupying virtual memory, then caching may cause system
degradation.

The XML ENABLE CACHE, XML DISABLE CACHE, and XML FLUSH
CACHE statements may be used to enable or disable document caching. By
default, caching is enabled. For more information on these XML statements, see
pages 83 and 84 in Chapter 6: xmlif Library Reference.

50

Chapter 3: COBOL Considerations
Optimizations

Chapter 4. XML
Considerations

This chapter provides information specific to using XML when using the XML
Toolkit with RM/COBOL to develop an XML-enabled application. The
primary topics discussed in this chapter include:

e Character Encoding
e Style Sheets

e Schemas

Character Encoding

XML documents use the Unicode character encoding standard internally.
Unicode represents characters as 16-bit items. For external representation, most
XML documents are encoded using the standard Unicode transformation
formats, UTF-8 or UTF-16. XML documents created by the XML Toolkit are
always encoded for external presentation using the UTF-8 representation. UTF-
8 isamethod of encoding Unicode where most displayable characters are
represented in 8-bits. Charactersin the range of 0x20 to 0x7e (the normal
displayable character set) are indistinguishable from standard ASCII.

XML Toolkit for RM/COBOL 51
Character Encoding

Style Sheets

Style sheets are used to transform an XML document into another document
(not necessarily XML format, such asHTML, PDF, RTF, and so forth). A style
sheet isitself an XML document. The xmlif library has a specific statement for
performing style sheet transformations (XML TRANSFORM FILE). In
addition, the XML IMPORT and XML EXPORT statements allow a style sheet
to be specified as a parameter, making it possible to transform a document while
importing or exporting XML documents. For more information on these XML
statements, see Chapter 6: xmlif Library Reference.

The format of XML documents generated by the XML Toolkit matches the form
of the specified COBOL data structure. Often the COBOL developer must
process XML documents that are defined by an external source. Itislikely that
the format of the COBOL -generated XML document will not conform to the
document format that meets the external requirements.

The recommended course of action isto use an XML style sheet to transform
between the COBOL -generated XML document format and the expected
document format. XML style sheets are extremely powerful. You may wish to
use a style sheet editing tool to design your style sheets (for example,
Microsoft’s BizTalk Mapper, which is part of BizTalk Server 2000).

Keep in mind that style sheets are unidirectional. Therefore, it is possible that
you will have to design two style sheets for each COBOL data structure: one for
input, which converts the required document format to COBOL format, and one
for output, which converts COBOL format to the required format.

52

Chapter 4: XML Considerations
Style Sheets

Schemas

Schema files are used to assure that the data within an XML document conforms
to expected values. For example, an element that contains a zip code may be
restricted to a numeric integer. Schema files can aso limit the length or number
of occurrences of an element as well as guarantee that elements occur in the
expected order.

A schemafile may be applied to an XML document in any of the following
three ways:

e Theentire schema file may reside within the document (this situation is
rare);

e Alink to the schemafile may be placed in the document (thistechniqueis
more common); or

e A processthat loads a given XML document may also load a schemafile
that controls the document.

The third approach is used by the xmlif library. The cobtoxml utility optionally
generates a schema file as one of the model files. Thisschemafileisused to
validate XML documents that are loaded by the XML IMPORT FILE or XML
IMPORT TEXT statements. This validation can be skipped by not having the
cobtoxml utility generate a schema file by specifying the -sn (schema none)
option or by simply deleting the schema file.

XML Toolkit for RM/COBOL 53
Schemas

54 Chapter 4: XML Considerations
Schemas

Chapter 5: cobtoxml Utility
Reference

This chapter describes the cobtoxml utility used by the XML Toolkit and the
XML document files, known as model files, that are produced when the
cobtoxml utility processes the symbol table of apreviously compiled
RM/COBOL object file.

What is the cobtoxml Utility?

The cobtoxml utility is a 32-bit console application. It processes the symbol
table of apreviously compiled RM/COBOL object file and produces a set of
XML documents. These documents are often called XML model files and are
described in the “Referencing XML Model Files’ topic that begins on page 59.
(Seedso “Model Files’ on page 24 in Chapter 2: Getting Started with XML
Toolkit.)

To use the cobtoxml utility, you specify (at a minimum) the name of a COBOL
object file and the name of a COBOL data item within that file. Y ou may use
the cobtoxml utility multiple times against the same object file to process
different data items.

The cobtoxml utility requires that the COBOL object program be compiled with
the RM/COBOL Compile Command Y Option enabled in order to place symbol
table information in the object file. However, since there are no runtime
requirements for the symbol table, the symbol table may be removed once
applications are ready to be deployed.

XML Toolkit for RM/COBOL 55
What is the cobtoxml Utility?

Command Line Interface

The cobtoxml utility is executed with the following command:

cobtoxml cob-file-name data-item-name [xml-file-name] [options]

cob-file-name, the first positional parameter, is the name of the RM/COBOL
object file. The RM/COBOL source program must have been compiled with the
symbol table option specified by the RM/COBOL Compile Command Y Option.
The value of thisname is treated as case-sensitive. If this parameter contains an
extension, it will be used as entered. If the extension is omitted, .cob will be
added. No directory search (on the PATH or RMPATH environment variables)
is performed.

data-item-name, the second positional parameter, is the name of the selected
dataitem within a COBOL program. While the most common use may be asthe
name of a group, the data item need not be arecord name (01 level). The value
entered is not case-sensitive. The data-name must be defined exactly once in the
program file. In the case of program libraries, all programs are searched.

xml-file-name, the optional third parameter, is the base name used to create a set
of XML documents, called model files, having a single filename with different,
predetermined extensions (.xml, .xd, .xtl, and .xsd). The value of thisnameis
treated as case-sensitive. If this parameter already contains an extension, it will
be ignored.

options represents command line options, which are described beginning on
page 57. Although this parameter is shown as the last parameter, it may occur
anywhere after cobtoxml on the command line. Additionally, options may be
specified multiple times. Option letters are case-insensitive; that is, the
following combinations are equivalent: “-bc”, “-bC”, “-Bc” and “-BC". The
options parameter is divided into three categories: banner, name, and schema.

Note When no command line parameters are entered, the following cobtoxml
usage message is displayed (including the error) as follows:

Error: 33[0] - parameter - COBOL object file name missing

RM/COBOL cobtoxml utility - Version 1.00.00 for 32-Bit Windows.
Copyright (c) 2001-2002 by Liant Software Corp. All rights reserved.

Usage: cobtoxml cob-file-name data-item-name xml-file-name
cob-file-name: case-sensitive name of the RM/COBOL object file
data-item-name: case-insensitive name of the COBOL data item
xml-File-name: optional case-sensitive name for the XML File(s)
options: a sequence of option letters preceded by a hyphen

56

Chapter 5: cobtoxml Utility Reference
Command Line Interface

Command Line Options

The following options are available on the cobtoxml command line.

Banner Options

Banner options control the amount of information displayed during the
execution of the cobtoxml utility and are created by entering a hyphen character
followed by the letter “b” and then either the letter “c”, “n”, or “v".

The following table lists several examples of supported banner option
combinations:

Option Description
-bc Displaysthe Liant copyright message only (thisis the default).
-bn Displays no banner information.
-bv Displays verbose banner.

Banner options do not affect the display of any error or status messages.

Name Options

Name options control the format of tag namesin XML documents. An XML
tag is generated for each data-name in the specified COBOL data structure.
Since COBOL data-names are case-insensitive and XML tag names are case-
sensitive, it is necessary to have rules for generating XML tag names. By
default, the cobtoxml utility generates XML tag namesin lowercase.

Name options are generated by entering a hyphen character (-) followed by the
letter “n” and then one or more of the following letters (in any order): “&’, “f”,

“h", 1T fme, p",and “ur.

XML Toolkit for RM/COBOL 57
Command Line Interface

Option letters that follow after “-n” have the following meaning:

Option

Description

a (After parent)

f (First)
h (Hyphen out)

| (Lowercase)

m (Mixed case)

p (Prefix out)

u (Uppercase)

This option is used to ensure that each tag name is
unique. If aCOBOL data-name within the specified
group item is not unique in the COBOL program file, the
tag name is formed by recursively adding the sequence
“.of.” and the parent name after the data-name. Thisis
done until the tag name becomes unique.

Thefirst letter of the tag name s capitalized.

Hyphen charactersin the COBOL data-name are
removed from the tag name.

Unless overridden by the options “f” or “m”, al
charactersin the tag name are lowercase.

Thefirst letter after a hyphen character in the COBOL
data-name is represented as uppercase in the generated
tag name.

All charactersin the COBOL data-name up to and
including the first hyphen are removed. Thisoptionis
useful where all dataitemsin a structure begin with the
same sequence. However, this option should be used
with care. If the item name contains no hyphen
characters then the generated tag name will be empty.

All charactersin the COBOL data-name are represented
as uppercase in the generated tag name.

58

Chapter 5: cobtoxml Utility Reference
Command Line Interface

Schema Options

By default, a schemafileis generated that will be used to validate an XML
document. The schema file has the same base name as the other XML model
files and has an extension of .xsd. Four formats of schema files are defined:
XDR (BizTalk), XDR, Schema, and None.

Schema options are generated by entering a hyphen character followed by one of
thefollowing letters: “b”, “d”, “s’, or “n”.

Supported schema options include the following:

Option Description

-sb The generated schema file complies with the older XDR (XML
Data Reduced) schema format, with additions that make it
compatible with BizTalk Mapper.

-sd The generated schema file complies with the older XDR (XML
Data Reduced) schema format.

-SS The generated schema file complies with the current schema
definition (thisis the default).

-sn No schemafileis generated.

Referencing XML Model Files

XML model files may be referenced by the COBOL application viaatraditional
path name or by an Internet address. More information about model files can
be found in the section, “Model Files’ in Chapter 2: Getting Started with XML
Toolkit. Examples of referencesto XML modél files are shown in the
following table:

Filename Type of Referencing
c:\myfiles\myapp.xml Simple pathname.
\\mysystem\myfiles\myapp.xml UNC. Universal Naming Convention.

http://myserver/myfiles'myapp.xml URL. Universal Resource Locator.

The cobtoxml utility generates up to four XML documents for each data
structure that is specified. These XML documents are the internal style sheet,
the template file, the example file, and the schemafile. The examplefileis
generated as areference for the developer. Theinternal style sheet, the template
file, and the optional schema file are used internally by the COBOL application.

XML Toolkit for RM/COBOL 59
Referencing XML Model Files

http://myserver/myfiles/myapp.xml

Internal Style sheet

Theinterna style sheet (afile having the .xgl extension) isan XML style sheet.
It adds COBOL-like attributes to an existing XML document. The xmlif library
usestheinterna style sheet when importing an XML document.

Template File

The template file (afile having the xtl extension) isan XML document that
does not contain any text values. Each element contains several COBOL -like
attributes that describe the data. The xmlif library uses the template file to
generate an XML document.

Example File

The examplefile (afile having the .xml extension) is an XML document that
does not contain any text values. Itisidentical to the template file, except that
the COBOL attributes have been removed. The xmlif library does not use the
examplefile. The examplefileis provided as areference to assist the devel oper
in designing any style sheets that may be needed.

Schema File

The xmlif library uses the schemafile (afile having the .xsd extension) if
present, to validate the content of an imported XML data document. If the
schemafileis absent, no validation is performed.

60

Chapter 5: cobtoxml Utility Reference
Referencing XML Model Files

Chapter 6: xmlif Library
Reference

This chapter describes the xmlif dynamic link library, which is used by the
XML Toolkit for RM/COBOL at runtime.

What is the xmlif Library?

The xmlif library (xmlif.dll) is a32-bit dynamic link library that is callable from
RM/COBOL object programs and provides facilities to process, manipulate and
validate XML documents.

The xmlif library uses the Microsoft MSXML 4.0 parser.

The following sections describe the various types of statements used by the
xmlif library:

e Document Processing Statements (see page 62). These statements are used
to process, manipulate, or validate XML documents.

e Document Management Statements (see page 72). These statements are
used to copy an XML document from an external fileto an internal text
string and vice versa.

e Directory Management Statements (see page 75). These statements are
useful when implementing directory-polling schemes.

e State Management Statements (see page 78). These statements are used to
control the state or condition of the xmlif library.

Note Each statement contains zero or more positional parameters. These
parameters are used to specify such items as the source or destination data item,
source or destination XML document, model files produced by the cobtoxml
utility, and flags. In some statements, trailing positional parameters are optional
and may be omitted, as specified in the statement descriptions in this chapter.

XML Toolkit for RM/COBOL 61
What is the xmlif Library?

Document Processing Statements

Several types of statements are used to process, manipulate, or validate XML
documents:

o Export statements (XML EXPORT FILE and XML EXPORT TEXT) are
available to convert the content of a COBOL dataitem to an XML
document that may be represented as an external file or an internal text
string.

e |mport statements (XML IMPORT FILE and XML IMPORT TEXT) are
available to convert the content of an XML document—either an external
file or aninternal text string—to a COBOL dataitem.

e Test and validation statements (XML TEST WELLFORMED-FILE,
XML TEST WELLFORMED-TEXT, XML VALIDATE FILE, and
XML VALIDATE TEXT) are available to verify that an XML document—
either an external file or an internal text string—iswell formed or valid.

e Inaddition, the XML TRANSFORM FILE statement is provided to create
an XML document (as an external file) using a style sheet (also an external
file). Thisstatement also may be used to generate files that are not XML
documents, such asHTML, PDF, RTF files, and so forth.

XML EXPORT FILE

This statement has the following parameters:

Parameter Description
Dataltem The name of a COBOL dataitem that contains data to be
exported.
DocumentName The name of afile that will receive the exported XML
document.
ModelFileName The name of the set of XML files produced by the

cobtoxml utility that describe the COBOL dataitem. For
more information, see “Model Files’ on page 24 in
Chapter 2: Getting Started with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the generated XML document beforeit is
stored.

62 Chapter 6: xmlif Library Reference
Document Processing Statements

Description

The XML EXPORT FILE statement exports the content of the COBOL data
item indicated by the Dataltem parameter. The content of the dataitemis
converted to an XML document using one or more files indicated by the

Model FileName parameter and then output to the file specified by the
DocumentName parameter. If the optional StyleSheetName parameter is present,
the style sheet is used to transform the document after it has been generated but
beforeit is stored in the data file.

A statusvalueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Examples
Without a Style Sheet:

XML EXPORT FILE
MY-DATA-ITEM
""MY-DOCUMENT""
""MY-MODEL-FILE™.

IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML EXPORT FILE
MY-DATA-ITEM
""MY-DOCUMENT . XML"*
""MY-MODEL-FILE"
"MY-STYLE-SHEET""

IF NOT XML-OK GO TO Z.

XML Toolkit for RM/COBOL 63
Document Processing Statements

XML EXPORT TEXT

This statement has the following parameters:

Parameter Description
Dataltem The name of the COBOL data item that contains data to
be exported.
DocumentPointer The name of a COBOL pointer data item that will point

to the generated XML document as atext string after
successful completion of the statement.

ModelFileName The name of the set of XML files produced by the
cobtoxml utility that describe the COBOL dataitem. For
more information, see “Model Files’ on page 24 in
Chapter 2: Getting Sarted with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the generated XML document before it is
stored.

Description

The XML EXPORT TEXT statement exports the content of the COBOL data
item indicated by the Dataltem parameter. The content of the dataitemis
converted to an XML document using one or more files indicated by the

Model FileName parameter and then output as atext string. The address of the
text string is placed in the COBOL pointer dataitem parameter specified by
DocumentPointer. If the optional StyleSheetName parameter is present, the style
sheet is used to transform the document after it has been generated but before it
is stored as atext string.

A block of memory is allocated to hold the generated XML document. The
descriptor of this memory block overrides any existing address descriptor in the
COBOL pointer dataitem. The COBOL application isresponsible for releasing
this memory when it is no longer needed by using the XML FREE TEXT
statement (see page 72).

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

64

Chapter 6: xmlif Library Reference
Document Processing Statements

Examples
Without a Style Sheet:

XML EXPORT TEXT
MY-DATA-ITEM
MY-DOCUMENT-POINTER
""MY-MODEL-FILE™.

IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML EXPORT TEXT
MY-DATA-ITEM
MY-DOCUMENT-POINTER
""MY-MODEL-FILE""
"MY-STYLE-SHEET""

IF NOT XML-OK GO TO Z.

XML IMPORT FILE

This statement has the following parameters.%

Parameter Description
Dataltem The name of the COBOL dataitem that isto receive the
imported data.
DocumentName The name of the file that contains the XML document to
be imported.
ModelFileName The name of the set of XML files produced by the

cobtoxml utility that describe the COBOL dataitem. For
more information, see “Model Files’ on page 24 in
Chapter 2: Getting Started with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the imported XML document before it is stored
in the dataitem.

Description

The XML IMPORT FILE statement imports the content of the file indicated by
the DocumentName parameter. If the optional StyleSheetName is present, the
style sheet isfirst used to transform the document. The content of the XML
document is converted to COBOL format using one or more files specified by
the ModelFileName parameter and stored in the data item specified by the
Dataltem parameter.

XML Toolkit for RM/COBOL 65
Document Processing Statements

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Examples

Without a Style Sheet:

XML IMPORT FILE
MY-DATA-ITEM

""MY-DOCUMENT""
""MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML IMPORT FILE
MY-DATA-ITEM

""MY-DOCUMENT . XML"*

""MY-MODEL-FILE"

"MY-STYLE-SHEET""
IF NOT XML-OK GO TO Z.

XML IMPORT TEXT

This statement has the following parameters:

Parameter

Dataltem
DocumentPointer

ModelFileName

[StyleSheetName]

Description

The name of the COBOL dataitem that is to receive the
imported data.

The name of a COBOL pointer dataitem that pointsto an
XML document that is stored in memory as atext string.

The name of the set of XML files produced by the
cobtoxml utility that describe the COBOL dataitem. For
more information, see “Model Files’ on page 24 in
Chapter 2: Getting Started with XML Toolkit.

Optional. The name of a style sheet that will be used to
transform the imported XML document before it is stored
in the dataitem.

66

Chapter 6: xmlif Library Reference
Document Processing Statements

Description

The XML IMPORT TEXT statement imports the content of the text string
indicated by the DocumentPointer parameter. If the optional StyleSheetName is
present, the style sheet is used to transform the document before being converted
to COBOL dataformat. The content of the XML document is converted to
COBOL format using one or more files specified by the Model FileName
parameter and stored in the data item specified by the Dataltem parameter.

A status valueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Examples
Without a Style Sheet:

XML IMPORT TEXT
MY-DATA-ITEM
MY-DOCUMENT-POINTER
""MY-MODEL-FILE™.

IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML IMPORT TEXT
MY-DATA-ITEM
MY-DOCUMENT-POINTER
""MY-MODEL-FILE""
"MY-STYLE-SHEET""

IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-FILE

This statement has the following parameters:

Parameter Description
DocumentName The name of the file that contains the XML document to
be tested.

XML Toolkit for RM/COBOL 67
Document Processing Statements

Description

The XML TEST WELLFORMED-FILE statement tests the XML document
specified by the DocumentName parameter to seeif it iswell formed. However,
the content of the document may or may not be valid.

A well-formed XML document is one that conformsto XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schemafile.

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML TEST WELLFORMED-FILE
""MY-DOCUMENT"".
IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-TEXT

This statement has the following parameters:

Parameter Description

DocumentPointer The name of a COBOL pointer dataitem that pointsto an
XML document that is stored in memory as atext string.

Description

The XML TEST WELLFORMED-TEXT statement tests the XML document
specified by the DocumentPointer parameter to seeif it iswell formed.
However, the content of the document may or may not be valid.

A well-formed XML document is one that conformsto XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schemafile.

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

68

Chapter 6: xmlif Library Reference
Document Processing Statements

Example

XML TEST WELLFORMED-TEXT
""MY-DOCUMENT"" .
IF NOT XML-OK GO TO Z.

XML TRANSFORM FILE

This statement has the following parameters:

Parameter Description

InputDocumentName The filename of the document to transform (the input
document).

StyleSheetName The filename of the style sheet used for the
transformation.

OutputDocumentName The filename of the transformed document (the output
document).

Description

The XML TRANSFORM FILE statement transforms the XML document
specified by the InputDocumentName parameter using the style sheet specified
by the StyleSheetName parameter into a new document specified by the
OutputDocumentName parameter. The new document may or may not be an
XML document depending on the style shest.

A statusvalueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML TRANSFORM FILE
""MY-IN-DOCUMENT"*
“"MY-STYLESHEET"
""MY-OUT-DOCUMENT.

IF NOT XML-OK GO TO Z.

XML Toolkit for RM/COBOL
Document Processing Statements

69

XML VALIDATE FILE

This statement has the following parameters:

Parameter Description
DocumentName The name of the file that contains the XML document to
be tested.
SchemaName The name of the schema file that will be used to validate

the XML document specified in DocumentName.

Description

The XML VALIDATE FILE statement tests the XML document specified by
the DocumentName parameter to seeif it iswell formed and valid.

A well-formed XML document is onethat conformsto XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schemafile.

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML VALIDATE FILE
""MY-DOCUMENT""
""MY-SCHEMA™ .

IF NOT XML-OK GO TO Z.

70

Chapter 6: xmlif Library Reference
Document Processing Statements

XML VALIDATE TEXT

This statement has the following parameters:

Parameter Description
DocumentPointer The name of a COBOL pointer dataitem that pointsto an
XML document that is stored in memory as atext string.
SchemaName The name of the schemafile that will be used to validate

the XML document specified in DocumentPointer.

Description

The XML VALIDATE TEXT statement tests the XML document specified by
the DocumentPointer parameter to seeif it iswell formed and valid.

A well-formed XML document is onethat conformsto XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schema.

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML VALIDATE TEXT
""MY-DOCUMENT""
""MY-SCHEMA™ .

IF NOT XML-OK GO TO Z.

XML Toolkit for RM/COBOL 71
Document Processing Statements

Document Management Statements

A number of statements are available to copy an XML document from an
externa fileto an internal text string and vice versa. These statements
include XML FREE TEXT, XML GET TEXT, XML PUT TEXT, and XML
REMOVE FILE.

XML FREE TEXT

This statement has the following parameter:

Parameter Description

DocumentPointer The name of a COBOL pointer dataitem that pointsto an
XML document.

Description

The XML FREE TEXT statement rel eases the COBOL memory referred to by
the COBOL pointer data item specified by the DocumentPointer parameter.

Example

XML FREE TEXT
MY-POINTER
IF NOT XML-OK GO TO Z.

72 Chapter 6: xmlif Library Reference
Document Management Statements

XML GET TEXT

This statement has the following parameters:

Parameter Description
DocumentPointer The COBOL pointer dataitem that will point to the in-
memory text after successful completion of the
Statement.
DocumentName The filename of XML document containing the text to

load into memory.

Description

The XML GET TEXT statement copies the content of an XML document from
the file specified by the DocumentName parameter to COBOL memory. A
block of memory is allocated to contain the document. The address and size of
the memory block are returned in the DocumentPointer parameter.

When the program has finished using the in-memory document, a call to XML
FREE TEXT (see page 72) should be made to release the allocated memory.

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML GET TEXT
MY-POINTER
""MY-DOCUMENT"".

IF NOT XML-OK GO TO Z.

XML PUT TEXT

This statement has the following parameters:

Parameter Description
DocumentPointer The COBOL pointer data item that points to the in-
memory text.
DocumentName The filename that will contain the XML document upon

successful completion of the statement.

XML Toolkit for RM/COBOL 73
Document Management Statements

Description

The XML PUT TEXT statement copies the content of the in-memory XML
document specified by the DocumentPointer parameter to the externa file
specified by the DocumentName parameter.

A statusvaueisreturned in the XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML PUT TEXT
MY-POINTER
""MY-DOCUMENT"".

IF NOT XML-OK GO TO Z.

XML REMOVE FILE

This statement has the following parameter.

Parameter Description
FileName The name of file to be removed.
Description

The XML REMOVE FILE statement deletes the file specified by the FileName
parameter. |f the specified filename does not contain an extension, then .xml is
appended to the name. If the file does not exist, no error is returned.

A statusvaueisreturned in the XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

Example

XML REMOVE FILE
MY-FILE-NAME.
IF NOT XML-OK GO TO Z.

74

Chapter 6: xmlif Library Reference
Document Management Statements

Directory Management Statements

This section describes the statements that are useful when implementing
directory-polling schemes. XML FIND FILE and XML GET UNIQUEID.

Directory polling (as related to XML documents) is a technique that two or
more independent processes can use to pass XML documents between

processes. One or more writer processes may place XML documentsin awell-
known directory (awell-known directory is a directory name that is known to all
of the interested processes). Each XML document must be given a unique
name. A reader process finds, processes and removes XML documents from the
same well-known directory.

Directory polling is atechnique that may be used to communicate with
Microsoft's BizTalk server and other message-driven communications systems.
It is atechnique that also may be used between various RM/COBOL
applications.

The RM/COBOL runtime is not scalable in the traditional sense; however,
scalability can be achieved by using multiple RM/COBOL runtime systems
(preferably running on separate hardware platforms) on the same local area
network (LAN). Each of these separate runtime systems can use directory
polling (to adirectory that is available on the network) as a means of improving
throughput.

It is not feasible to use multiple reader processes on the same directory because
the XML FIND FILE statement, invoked from separate processes, could find the
samefile. A sample C language program (Dir Split) is provided that will poll a
single directory and distribute files to subdirectories as they arrive. Thiswill
allow separate COBOL programs each to process a separate subdirectory.

Note Problems have been encountered on Windows systems running the older
FAT32 file system. These systems include Windows 98 and Windows Me.

When a program is adding XML document files to a directory
concurrently with another program that is moving XML document filesto
different directory using the C library function rename or the Windows API
function MoveFile, it is possible for the wrong file to be moved or for the file to
be moved to the wrong location. Thisfailure can occur without the participation
of the XML Toolkit.

When alarge number of XML document files are written to a directory
by the XML Toolkit (using the XML EXPORT FILE statement described on
page 62), it is possible that files will not be placed in the directory and no error
will be returned by the operating system either to the XML Toolkit or to the
program issuing the statement. It appears that the FAT32 file system may be

XML Toolkit for RM/COBOL 75
Directory Management Statements

limited to 65,535 files per directory (at least under certain conditions).
Furthermore, if long filenames are used, multiple directory entries may be
needed for each filename, further reducing the number of files per directory.

For these reasons, Liant recommends that directory polling be used only
on Windows NT-based systems (that is, those running NTFS). These NT-based
systems include Windows NT, Windows 2000, and Windows XP. However,
these NT-based systems also could be configured to run the older FAT32 file
system.

XML FIND FILE

This statement has the following parameters:

Parameter Description
DirectoryName The name of the directory to check for XML documents
(files ending with the .xml extension).
FileName The name of one XML document (file ending with the

xml extension) that was found in the specified directory.

Description

The XML FIND FILE statement looks in the directory specified by the
DirectoryName parameter for an XML document (a file with the .xml
extension). If there are one or more XML documents in the specified directory,
the name of one of the fileswill be returned in the filename parameter.

If the statement succeeds (the condition XML-IsSuccess istrue), the XML
document specified by the FileName parameter may be processed by using the
XML IMPORT FILE statement (see page 65).

Before calling the XML FIND FILE statement again (to process the next file),
the statement XML REMOVE FILE (see page 74) should be called to delete the
XML document that was just processed. Otherwise, the next call to the XML
FIND FILE statement may return the samefile.

A statusvalueisreturned in the XML-data-group dataitem, which
is defined in the copy file, lixmldef.cpy. The condition XML-
IsDirectoryEmpty will betrueif the directory is empty.

76

Chapter 6: xmlif Library Reference
Directory Management Statements

Example

FIND-DOCUMENT.
PERFORM WITH TEST AFTER UNTIL 0 > 1
XML FIND FILE
""MY-DIRECTORY"
MY -FILE-NAME
IF XML-1sSuccess
EXIT PERFORM
END-IF
IF XML-1sDirectoryEmpty
CALL "C$DELAY'™ USING 0.1
END-IF
IF NOT XML-OK GO TO Z.
END-PERFORM
*> Process found document

XML GET UNIQUEID

This statement has the following parameter:

Parameter Description

Uniquel D The unique value returned by this statement isa string
representation of a UUID (Universal Unique Identifier).
The string is a series of hexadecimal digits with
embedded hyphen characters. The string isenclosed in
brace characters ({ and }). Theentire stringis 38
charactersin length.

Description

The XML GET UNIQUEID statement generates a unique identifier that may be
used to form a unique filename. Please note that the return value might not
contain any alphabetic characters. Therefore, it would be a good programming
practice to add an alphabetic character to the name for those systems where
filenames require at |least one al phabetic character (see the following example).

This statement may be used in conjunction with the COBOL STRING statement
to generate a unique filename.

A statusvaueisreturned inthe XML-data-group dataitem, whichis
defined in the copy file, lixmldef.cpy.

XML Toolkit for RM/COBOL 77
Directory Management Statements

Example

MOVE SPACES TO MY-FILE-NAME.
XML GET UNIQUEID
MY-UNIQUEID.

IF NOT XML-OK GO TO Z.

STRING "mydir\a" DELIMITED BY SIZE
MY-UNIQUEID DELIMITED BY SPACE
toxml DELIMITED BY SIZE

INTO MY-FILE-NAME.

State Management Statements

Several states or conditions of the xmlif library are controlled by callsto the
following XML statements:

Initialization and termination. Before issuing a call to any other xmlif
library statement, the XML INITIALIZE statement (see page 80) must be
caled. Similarly, the XML TERMINATE statement (see page 80) must be
called when the COBOL application is finished using the xmlif library.

Empty array occurrences. Asan optimization, trailing “empty” occurrences
of arrays are normally not generated by the statements, XML EXPORT
FILE or XML EXPORT TEXT (see pages 62 and 64, respectively).

An empty occurrence of an array is defined to be one where the numeric
items have a zero value and the nonnumeric items have a value equivalent
to all spaces. Thisisthe default state and is equivalent to calling the XML
DISABLE ALL-OCCURRENCES statement (see page 81). It ispossible
to force al occurrences to be output by calling the XML ENABLE ALL-
OCCURRENCES statement (see page 82).

COBOL attributes. For each element generated by the statements, XML
EXPORT FILE or XML EXPORT TEXT (see pages 62 and 64,
respectively), thereis a series of COBOL attributes that describe that
element.

The default state is not to output these attributes. However, it is sometimes
necessary for afollowing activity (such as a style sheet transformation) to
have access to these attributes (specifically, length and subscript are often
interesting to a follow-on activity). Using the XML DISABLE
ATTRIBUTES statement (see page 82) does not allow attributesto be
written (thisisthe default). Using the XML ENABLE ATTRIBUTES
statement (see page 83) forces these attributes to be written.

78

Chapter 6: xmlif Library Reference
State Management Statements

Document caching. Some XML documents such as style sheets and the
model files (the XML template file, internal style sheet, and schemafiles)
are normally considered to be static. That is, they are generated when the
application is developed and are not modified until the application is
modified.

As a performance optimization, when the xmlif library loads a style sheet or
model fileit is cached (retained in memory) for an indefinite period of time.
Thisisthe default behavior. Filesin the cache may be flushed from
memory if the cacheisfull and an additional style sheet or model fileis
required for the current operation.

If style sheets are being generated dynamically, caching may be selectively
enabled or disabled. Executing the XML ENABLE CACHE statement
(see page 84), which is the default behavior, enables caching of style sheets
and model files. Executing the XML DISABLE CACHE statement (see
page 83) forces style sheets and model filesto be loaded each time they are
referenced. Executing the XML FLUSH CACHE statement (see page 84)
flushes all style sheets and model files from memory without changing the
state of caching (that is, if caching was enabled it remains enabled).
Executing any of the following statements causes the contents of the cache
to be flushed: XML INITIALIZE, XML ENABLE CACHE, XML
DISABLE CACHE, XML FLUSH CACHE, and XML TERMINATE.

CodeBridge flags. The data conversions performed by the statements,
XML EXPORT FILE, XML EXPORT TEXT, XML IMPORT FILE, and
XML IMPORT TEXT (see pages 62 through 66), use the CodeBridge
library (which is built into the RM/COBOL runtime) to perform these
conversions. By default, the following CodeBridge flags are set:

PF TRAILING_SPACES, PF_ LEADING_SPACES,

PF LEADING_MINUS, and PF_ ROUNDED.

The XML SET FLAGS statement (see page 86) is available to alter these
defaults. Refer to the CodeBridge manual for a more complete presentation
of the CodeBridge conversion library.

XML Toolkit for RM/COBOL 79
State Management Statements

XML INITIALIZE

This statement has no parameters.

Description

The XML INITIALIZE statement opens a session with the xmlif library. It
ensures that the RM/COBOL runtime isthe required version (7.5 or greater) and
retrieves required information from the runtime system. RM/COBOL runtime
version 7.5 or greater is required because information needed by the xmlif
library is not available in prior runtime versions. The underlying XML parser is
initialized.

A status valueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy. Errorscan occur if the library is already
initialized, the RM/COBOL runtime version is not 7.5 or greater, or the
underlying XML parser initidization fails.

Example

XML INITIALIZE.
IF NOT XML-OK GO TO Z.

XML TERMINATE

This statement has no parameters.

Description

The XML TERMINATE statement closes a session with the xmlif library. The
interface to the underlying XML parser isclosed. Any memory blocks that were
allocated by the xmlif library are freed.

A statusvalueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy. Errors can occur if the library is not
currently initialized, the calls to free memory fail, or the underlying XML parser
termination fails.

80

Chapter 6: xmlif Library Reference
State Management Statements

Example

XML TERMINATE.
IF NOT XML-OK GO TO Z.

XML DISABLE ALL-OCCURRENCES

This statement has no parameters.

Description

The XML DISABLE ALL-OCCURRENCES statement causes unnecessary
empty array occurrences not to be generated by the statements, XML EXPORT
FILE and XML EXPORT TEXT (see pages 62 and 64, respectively). An empty
array is onein which all numeric elements have a zero value and all nonnumeric
elements have a value of al spaces.

There is some interoperation with the statements, XML DISABLE
ATTRIBUTES and XML ENABLE ATTRIBUTES (see pages 82 and 83,
respectively). If attributes are enabled (XML ENABLE ATTRIBUTES has
been called), then all empty occurrences are not generated. |If attributes are
disabled (the default state or if the XML DISABLE ATTRIBUTES statement
has been used), then all trailing empty occurrences are not generated. |If
attributes are enabled, then the subscript is present and so leading, or
intermediate, empty occurrences are not needed as placehol ders to ensure that
the correct subscript is cal culated.

A status valueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML DISABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

XML Toolkit for RM/COBOL 81
State Management Statements

XML ENABLE ALL-OCCURRENCES

This statement has no parameters.

Description

The XML ENABLE ALL-OCCURRENCES statement causes all occurrence of
an array to be generated by the statements, XML EXPORT FILE and XML
EXPORT TEXT (see pages 62 and 64, respectively), regardless of the content of
the array.

All occurrences of an array are generated regardless of whether attributes are
enabled or disabled.

A status valueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML ENABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

XML DISABLE ATTRIBUTES

This statement has no parameters.

Description

The XML DISABLE ATTRIBUTES statement causes the COBOL attributes of
an XML element to be omitted from an exported XML document. Thisisthe
default state.

A statusvalueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML DISABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

82

Chapter 6: xmlif Library Reference
State Management Statements

XML ENABLE ATTRIBUTES

This statement has no parameters.

Description

The XML ENABLE ATTRIBUTES statement causes the COBOL attributes of
an XML element to be generated in an exported XML document

Some of the COBOL attributes (such as length and subscript) may be useful to
an external style sheet.

A statusvalueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML ENABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

XML DISABLE CACHE

This statement has no parameters.

Description

The XML DISABLE CACHE statement disables the caching of XML style
sheets and model files.

A status value isreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML DISABLE CACHE.
IF NOT XML-OK GO TO Z.

XML Toolkit for RM/COBOL 83
State Management Statements

XML ENABLE CACHE

This statement has no parameters.

Description

The XML ENABLE CACHE statement enables the caching of XML style
sheets and model files.

A statusvalueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML ENABLE CACHE.
IF NOT XML-OK GO TO Z.

XML FLUSH CACHE

This statement has no parameters.

Description

The XML FLUSH CACHE statement flushes the cache of XML style sheets and
model files.

A status valueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML FLUSH CACHE.
IF NOT XML-OK GO TO Z.

84

Chapter 6: xmlif Library Reference
State Management Statements

XML GET STATUS-TEXT

This statement has no named parameters.

Description

A non-successful termination of an XML statement may cause one or more lines
of descriptive text to be placed in aqueue. The XML GET STATUS TEXT
statement fetches the next line of descriptive text.

A statusvalueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy. The following condition names are also
described in this copy file:

e XML-IsSuccess. A successful completion occurred (no informative,
warning, or error messages).

e XML-OK. AnOK (or satisfactory) completion occurred, including
informative or warning messages.

e XML-IsDirectoryEmpty. Aninformative statusindicating that the
XML FIND FILE statement found no XML documents in the indicated
directory.

An example of processing the status information in this item is found below and
in the copy file, lixmldsp.cpy.

Example

Display-Status.
I Not XML-IsSuccess
Perform With Test After Until XML-NoMore
XML GET STATUS-TEXT
Display XML-StatusText
End-Perform
End-IF.

XML Toolkit for RM/COBOL 85
State Management Statements

XML SET FLAGS

The statement has the following parameter:

Parameter Description

Flags A numeric value that represents one or more flags.
These flags are a subset of the flags defined for
CodeBridge.

Description

The XML SET FLAGS statement sets some flag values that are used for internal
data conversion. Valid flag values are specified in the copy file, lixmldef.cpy.
The default flag setting is the OR of the following values: PF-L eading-Spaces,
PF-Trailing-Spaces, PF-L eading-Minus and PF-Rounded.

A statusvalueisreturned in the dataitem XML-data-group, whichis
defined in the copy file, lixmldef.cpy.

Example

XML SET FLAGS
MY-FLAGS.
IF NOT XML-OK GO TO Z.

86

Chapter 6: xmlif Library Reference
State Management Statements

Appendix A: XML Toolkit
Examples

This appendix contains a collection of programs or program fragments that
illustrate how xmlif library statements are used. These examples are tutorial in
nature and offer useful techniques to help you become familiar with the basics
of using the XML Toolkit for RM/COBOL. More examples can be found in the
XML Toolkit examples directory (Examples).

Note You will find it instructive to examine these examples first before
referring to Appendix B: XML Toolkit Sample Application Programs, which
describes how to use and access the more complete sample application programs
that are included with the XML Toolkit development system.

The following example programs are provided in this appendix. Additionally,
three batch files are provided to facilitate use of the example programs (see
page 190).

e Example 1: Export File and Import File

o Example2: Export File and Import File with Style Sheets

o Example 3: Export File and Import File with OCCURS DEPENDING
o Example4: Export File and Import File with Sparse Arrays

o Example5: Export Text and Import Text

e Example6: Export File and Import File with Directory Polling

e Example7: Export File, Test Well Formed File, and Validate File

e Example8: Export Text, Test Well Formed Text, and Validate Text

o Example9: Export File, Transform File, and Import File

o ExampleA: Well Formed and Validate Diagnostic Messages

e ExampleB: Import File with Missing Intermediate Parent Names

XML Toolkit for RM/COBOL 87
State Management Statements

Example 1: Export File and Import File

This program first writes (or exports) an XML document file from the contents
of aCOBOL dataitem. Then the program reads (or imports) the same XML
document and places the contents in the same COBOL data item.

This example uses the following XML statements (for more information about
the xmlif library, see Chapter 6: xmlif Library Reference):

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML IMPORT FILE(page 65). The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements. For more information on model files, see “Model
Files’ in Chapter 2: Getting Sarted with XML Toolkit. For more information
on the cobtoxml utility, see Chapter 5: cobtoxml Utility Reference.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog I=" somé\path\xmlif") or by
placing the xmlif library in thermautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

88

Appendix A: XML Toolkit Examples
Example 1: Export File and Import File

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute examplel.cob.

Line Statement
1 rmcobol examplel y
2 cobtoxml examplel Liant-Address
3 move /y examplel.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,examplel.cob,tmp.cob*
5 del tmp.cob
6 start /w runcobol examplel k

Line 1 compiles the examplel.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 1 object
filename is examplel.cob, and the model filenames are examplel.xml,
examplel.xtl, examplel.xsl, and examplel.xsd).

Lines3, 4, and 5 are optional. They strip the symbol table from the example 1
object file, examplel.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes examplel.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application that opens a separate window when executed from DOS. The
start /w part of the DOS command in line 4 instructs Windows to start the
runtime and then wait (the /w Option) for its completion. If this step were
omitted, line 5 could execute before the runtime completed, which could cause
theinput file (tmp.cob) passed to rmpgmcom to be deleted before it had been
completely read.

XML Toolkit for RM/COBOL 89
Example 1: Export File and Import File

Program Description

This COBOL program illustrates how an XML document is generated from a
COBOL dataitem, and then how the contents of an XML document may be
converted into COBOL dataformat and stored in a COBOL dataitem.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document with the filename of liant1.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file, liant1.xml,
and placed in the same data item using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.
02 Name Pic X(64) Value "Liant Software Corporation™.
02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North™".
02 Address-2 Pic X(64) Value "Suite 4300".
02 Address-3.
03 City Pic X(32) Value "Austin".
03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is atime stamp containing the time that the program was
executed. Thisitem isincluded to assure the person observing the execution of
the exampl e that the results are current. The time element in the generated XML
document should change each time the example is run and should aso contain
the current time.

90 Appendix A: XML Toolkit Examples
Example 1: Export File and Import File

01

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines adata
item named XML-data-group. The contents of this dataitem are as follows:

XML-data-group.

03 XML-Status PIC 9(4).-
88 XML-IsSuccess VALUE XML-Success.
88 XML-0OK VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE O.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returnsavaluein the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,
examplel.chbl.

XML Toolkit for RM/COBOL 91
Example 1: Export File and Import File

Initialization

COBOL Statement Description
XML I NITI ALI ZE. Execute the XML INITIALIZE statement (no parameters).
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the dataitem address,
“Liantl™ the XML document filename,
"Examplel™. and the model filename.

IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document
COBOL Statement Description

Move Spaces to Liant-Address. Ensurethat the Liant-Addressitem contains no data.

XML IMPORT FILE Execute the XML IMPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liantl" the XML document filename,
"Examplel™. and the model filename.

IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

92 Appendix A: XML Toolkit Examples
Example 1: Export File and Import File

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is a target of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description
Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).
Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.
XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

XML Toolkit for RM/COBOL 93
Example 1: Export File and Import File

Status Display Logic

This codeisfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display thelinethat was just obtained.
End-Perform End of the perform loop.
End-1f. End of the If statement and the paragraph.

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

94 Appendix A: XML Toolkit Examples
Example 1: Export File and Import File

COBOL Display

Running the program (runcobol examplel) produces the following display.
Note that pressing a key will terminate the program.

Example-1 - Illustrate EXPORT FILE and IMPORT FILE
Liantl.xml exported by XML EXPORT FILE
Liant Software Corporation

8911 Capital of Texas Highway North
Suite 4300

Austin TX78759
16273191

Liantl.xml imported by XML IMPORT FILE
Liant Software Corporation

8911 Capital of Texas Highway North
Suite 4300

Austin TX78759
16273191

You may use IE to inspect "Liantl.xml*

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant1.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>16273191</time-stamp>
</liant-address>
</root>

XML Toolkit for RM/COBOL 95
Example 1: Export File and Import File

Example 2: Export File and Import File with
Style Sheets

This program first writes (or exports) an XML document file from the contents
of aCOBOL dataitem. Then the program reads (or imports) the same XML
document and places the contents in the same COBOL data item.

This exampleis almost identical to “Example 1: Export File and Import File’
(see page 88). However, an XSLT style sheet is used to transform the exported
document into a different format. Similarly, when the document isimported, a
different style sheet is used to reformat the document into the form that is
expected by COBOL. (See page 102 for more information on style sheets.)

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Note The XML EXPORT FILE and XML IMPORT FILE statements each
contain an additional parameter: the name of the style sheet being used for the
transform.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog [=" somé\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisis normally a
subdirectory of the RM/COBOL installation directory).

96 Appendix A: XML Toolkit Examples
Example 2: Export File and Import File with Style Sheets

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example2.cab.

Line Statement
1 rmcobol example2 y
2 cobtoxml example2 Liant-Address
3 move /y example2.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example2.cob,tmp.cob”
5 del tmp.cob
6 start /w runcobol example2 k

Line 1 compiles the example2.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML modél files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 2 object
filename is example2.cob, and the model filenames are example2.xml,
example2.xtl, example2.xsl and example2.xsd).

Lines3, 4, and 5 are optional. They strip the symbol table from the example 2
object file, example2.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL devel opment
system, is used for this purpose.

Line 6 executes example2.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only asgood programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application that opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. Thisstep is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,

XML Toolkit for RM/COBOL 97
Example 2: Export File and Import File with Style Sheets

which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description

This COBOL program illustrates how an XML document is generated from a
COBOL dataitem, and then how the contents of an XML document may be
converted into COBOL dataformat and stored in a COBOL dataitem.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. Itispossible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document with the filename of liant2.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file, liant2.xml,
and placed in the same data item using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
Statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

Data Item

The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
02 Name Pic X(64) Value "Liant Software Corporation.
02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North'.
02 Address-2 Pic X(64) Value "Suite 4300".
02 Address-3.
03 City Pic X(32) Value "Austin™.
03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the structure is atime stamp containing the time that the program
was executed. Thisitemisincluded to assure the person observing the
execution of the example that the results are current. The time element in the

98 Appendix A: XML Toolkit Examples
Example 2: Export File and Import File with Style Sheets

generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

01

XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-OK VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE O.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returns avaluein the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,
example2.chbl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

XML Toolkit for RM/COBOL 99
Example 2: Export File and Import File with Style Sheets

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the data item address,
“Liant2" the XML document filename,
"Example2" the model filename,
toEXt. and the style sheet name.
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document
COBOL Statement Description

Move Spaces to Liant-Address. Ensurethat the Liant-Address structure contains no data.

XML IMPORT FILE Execute the XML IMPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liant2" the XML document filename,
"Example2" the model filename,
tolnt. and the style sheet name.
IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is atarget of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “ Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

100 Appendix A: XML Toolkit Examples
Example 2: Export File and Import File with Style Sheets

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code isfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-1sSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display thelinethat wasjust obtained.

End-Perform End of the perform loop.
End-I1F. End of the If statement and the paragraph.

XML Toolkit for RM/COBOL 101
Example 2: Export File and Import File with Style Sheets

Style Sheets

The two style sheets used in this example are for reference only (atutorial on
style sheet development is outside the scope of this document). Thefirst is
contained in the file, toExt.xd. It isused by the XML EXPORT FILE statement
to transform the generated XML document to an external format. The second is
contained in the file, tol nt.xdl, and is used by the XML IMPORT FILE
statement to transform the input XML document to the COBOL internal format.

These style sheets are manually generated using atext editor program. Other
tools, such as Microsoft’s BizTalk Mapper, may be used to generate style sheets.

toExt.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmIns:xsl="http://www._.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" encoding="UTF-8" />
<xsl:template match="/">
<xsl:apply-templates select="root/liant-address" />
</xsl:template>
<xsl:template match="liant-address">
<LiantAddress>
<Information>
<xsl:attribute name="Name">
<xsl:value-of select="name/text()" />
</xsl:attribute>
<xsl:attribute name="Addressl'>
<xsl:value-of select="address-1/text()" />
</xsl:attribute>
<xsl:attribute name="Address2">
<xsl:value-of select="address-2/text()" />
</xsl:attribute>
<xsl:attribute name="City">
<xsl:value-of select="address-3/city/text()" />
</xsl:attribute>
<xsl:attribute name="State">
<xsl:value-of select="address-3/state/text()" />
</xsl:attribute>
<xsl:attribute name="Zip">
<xsl:value-of select="address-3/zip/text()" />
</xsl:attribute>
</Information>
<TimeStamp>
<xsl:attribute name="Value">
<xsl:value-of select=""time-stamp/text()" />
</xsl:attribute>
</TimeStamp>
</LiantAddress>
</xsl:template>
</xsl:stylesheet>

102 Appendix A: XML Toolkit Examples
Example 2: Export File and Import File with Style Sheets

tolnt.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" encoding="UTF-8" />
<xsl:template match="/">
<xsl:apply-templates select="LiantAddress" />
</xsl:template>
<xsl:template match="LiantAddress">
<root>
<liant-address>
<name>
<xsl:value-of select="Information/@Name" />
</name>
<address-1>
<xsl:value-of select="Information/@Address1" />
</address-1>
<address-2>
<xsl:value-of select="Information/@Address2" />
</address-2>
<address-3>
<city>
<xsl:value-of select="Information/@City" />
</city>
<state>
<xsl:value-of select="Information/@State" />
</state>
<zip>
<xsl:value-of select=""Information/@zip" />
</zip>
</address-3>
<time-stamp>
<xsl:value-of select="TimeStamp/@Value" />
</time-stamp>
</liant-address>
</root>
</xsl:template>
</xsl:stylesheet>

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

XML Toolkit for RM/COBOL 103
Example 2: Export File and Import File with Style Sheets

COBOL Display

Running the program (runcobol example2) produces the following display.
Note that pressing a key will terminate the program.

Example-2 - Illustrate EXPORT FILE and IMPORT FILE with style sheets
Liant2.xml exported by XML EXPORT FILE
Liant Software Corporation

8911 Capital of Texas Highway North
Suite 4300

Austin TX78759
10415057

Liant2.xml imported by XML IMPORT FILE
Liant Software Corporation

8911 Capital of Texas Highway North
Suite 4300

Austin TX78759
10415057

You may use IE to inspect "Liant2.xml"

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant2.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>

<LiantAddress>
<Information Name="Liant Software Corporation’ Address1="8911 Capital of
Texas Highway North' Address2="Suite 4300" City="Austin" State=""TX"
Zip="78759" />
<TimeStamp Value="10415057" />

</LiantAddress>

This XML document differs from the document generated in “Example 1:
Export File and Import File”. Items that were shown asindividual data
elementsin Example 1 are now shown as attributes of higher-level elements.
Notice that this document contains no text. All of the information is contained
in the markup.

104 Appendix A: XML Toolkit Examples
Example 2: Export File and Import File with Style Sheets

Example 3: Export File and Import File with
OCCURS DEPENDING

This program first writes (or exports) an XML document file from the contents
of aCOBOL dataitem. Then the program reads (or imports) the same XML
document and places the contents in the same COBOL data item.

Thisprogramisvery similar to “Example 1. Export File and Import File” (see
page 88). However, the data item has been modified so that an OCCURS
DEPENDING clauseis present.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML IMPORT FILE (page 65) The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog |=" somé\path\xmlif”) or by
placing the xmlif library in the rmautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

XML Toolkit for RM/COBOL 105
Example 3: Export File and Import File with OCCURS DEPENDING

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example3.cob.

Line Statement

rmcobol example3 y

cobtoxml example3 Liant-Address

move /y example3.cob tmp.cob

start /w runcobol rmpgmcom A="STRIP,example3.cob,tmp.cob*
del tmp.cob

oo W NP

start /w runcobol example3 k

Line 1 compiles the example3.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 3 object
filename is example3.cob, and the model filenames are example3.xml,
example3.xtl, example3.xsl, and example3.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 3
object file, example3.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example3.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application that opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. Thisstep is necessary in line
4. If this step were omitted, line 5 could execute before the runtime compl eted,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

106 Appendix A: XML Toolkit Examples
Example 3: Export File and Import File with OCCURS DEPENDING

Program Description

This COBOL program illustrates how an XML document is generated from a
COBOL dataitem, and then how the contents of an XML document may be
converted into COBOL dataformat and stored in a COBOL dataitem.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document with the filename of liant3.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file, liant3.xml,
and placed in the same data structure using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

Data Item

The contents of the data item defined in the copy file, liant3.cpy, are asfollows:

01 Liant-Address.
02 Time-Stamp Pic 9(8).

02 Name Pic X(64)

Value "Liant Software Corporation'.
02 City Pic X(32) Value "Austin™.
02 State Pic X(2) Value "TX".
02 Zip Pic 9(5) Value 78759.

02 Address-Lines Pic 9.

02 Address-Line Pic X(64)
Occurs 1 to 5 times
Depending on Address-Lines.

This data item stores company address information (in this case, Liant’s). This
structure differs from “Example 1: Export File and Import File” (see page 88) in
that an OCCURS DEPENDING phrase has been added to the structure. Instead
of having separate datanamesfor Address-1 and Address-2, avariable
length array named Address-Line hasbeen defined. Since Address-Line
isvariable length, it must be the last dataitem in the structure. A new dataitem

XML Toolkit for RM/COBOL 107
Example 3: Export File and Import File with OCCURS DEPENDING

named Address-Lines hasbeen added just prior to the Address-Line
array. Address-Linesisthe depending variable for the array Address-Line.

Thefirst field of the structure is a time stamp containing the time that the
program was executed. Thisitem isincluded to assure the person observing the
execution of the example that the results are current. Thetime element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
Include the copy file, lixmlall.cpy, in the Working-Storage Section of the
COBOL program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

01 XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE O.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returns avaluein the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,
example3.chbl.

108 Appendix A: XML Toolkit Examples
Example 3: Export File and Import File with OCCURS DEPENDING

Initialization

COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liant3" the XML document filename,
"Example3". and the model filename.

IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document
COBOL Statement Description

Move Spaces to Liant-Address. Ensurethat the Liant-Address structure contains no data.

XML IMPORT FILE Execute the XML IMPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liant3" the XML document filename,
"Example3'. and the model filename.

IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

XML Toolkit for RM/COBOL 109
Example 3: Export File and Import File with OCCURS DEPENDING

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is a target of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description
Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).
Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.
XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

110 Appendix A: XML Toolkit Examples
Example 3: Export File and Import File with OCCURS DEPENDING

Status Display Logic

This codeisfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display thelinethat was just obtained.
End-Perform End of the perform loop.
End-1f. End of the If statement and the paragraph.

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

XML Toolkit for RM/COBOL 111
Example 3: Export File and Import File with OCCURS DEPENDING

COBOL Display

Running the program (runcobol example3) produces the following display.
Note that pressing a key will terminate the program.

Example-3 - Illustrate EXPORT FILE and IMPORT FILE with OCCURS DEPENDING
Liant3.xml exported by XML EXPORT FILE
Liant Software Corporation

8911 Capital of Texas Highway North
Suite 4300

Austin TX78759
13313414

Liant3.xml imported by XML IMPORT FILE
Liant Software Corporation

8911 Capital of Texas Highway North
Suite 4300

Austin TX78759
13313414

You may use IE to inspect "Liant3.xml"

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
Liant3.xml. The contents of this document should appear as follows. (Note
that Internet Explorer will differentiate among the various syntactical elements
of XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<liant-address>
<time-stamp>13313414</time-stamp>
<name>Liant Software Corporation</name>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
<address-lines>2</address-1lines>
<address-1ine>8911 Capital of Texas Highway
North</address-line>
<address-line>Suite 4300</address-line>
</liant-address>
</root>

112 Appendix A: XML Toolkit Examples
Example 3: Export File and Import File with OCCURS DEPENDING

Example 4: Export File and Import File with
Sparse Arrays

This example illustrates how the xmlif library may work with sparse arrays.
The xmlif library distinguishes between an empty occurrence and a non-empty
occurrence. An occurrence is an empty occurrence when all of its numeric
elementary dataitems have a zero value and all of its nonnumeric elementary
data items contain spaces; otherwise, the occurrence is a non-empty occurrence.
A sparse array is an array that contains a combination of empty and non-empty
occurrences. Empty occurrences need not be exported unless they are needed to
locate (determine the subscript) of a subsequent non-empty occurrence.
Normally, this means that trailing empty occurrences, that is, a contiguous series
of empty occurrences at the end of the array, are not exported. Sparse arrays
may also be imported.

The program first writes (or exports) several XML document files from the
contents of a COBOL data item (using various combinations of the XML
ENABLE ATTRIBUTES, XML DISABLE ATTRIBUTES, XML ENABLE
ALL-OCCURRENCES, and XML DISABLE ALL-OCCURRENCES
statements). Then the program reads (or imports) the same XML documents
(plus a couple of pre-existing documents) and places the contents in the same
COBOL dataitem.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

e XML ENABLE ATTRIBUTES (page 83). The XML ENABLE
ATTRIBUTES statement causes exported XML document to contain
descriptive (COBOL -oriented) attributes.

Note Although the default is not to add descriptive attributes to an XML
document (see XML DISABLE ATTRIBUTES below), among the
attributes that may be added is the “subscript” attribute. This attribute
contains the one-relative index of the occurrence within the array. When an
XML document isimported, this subscript attribute is used (if present) to
place the occurrence correctly within the array. If the subscript attributeis
not present, then occurrences are assumed to occur sequentially.

XML Toolkit for RM/COBOL 113
Example 4: Export File and Import File with Sparse Arrays

e XML DISABLE ATTRIBUTES (page 82). The XML DISABLE
ATTRIBUTES causes exported XML documents not to contain descriptive
attributes.

Note The default is not to add descriptive attributes to an XML document.

e XML ENABLE ALL-OCCURRENCES (page 82). The XML ENABLE
ALL-OCCURRENCES statement causes all occurrences of adataitem to
be exported to an XML document.

e XML DISABLE ALL-OCCURRENCES (page 81). The XML DISABLE
ALL-OCCURRENCES statement causes only certain occurrences to be
exported to the XML document.

Note Thedefault isto export only certain occurrences to the XML
document.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog [=" somé\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisis normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

114 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example4.cob.

Line Statement
1 rmcobol exampled y
2 cobtoxml example4 Data-Table -sn
3 move /y example4._cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example4.cob,tmp.cob”
5 del tmp.cob
6 start /w runcobol example4 k

Line 1 compiles the exampled.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 4 object
filename is exampled.cob, and the model filenames are exampled.xml,
exampled.xtl, and example4.xsl). The-sn (schema none) option on the
cobtoxml utility disables the generation of a schemafile, which is normally
used to validate the content of an XML document.

Lines3, 4, and 5 are optional. They strip the symbol table from the example 4
object file, exampled.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL devel opment
system, is used for this purpose.

Line 6 executes exampled.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. Thisstep is necessary inline 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

XML Toolkit for RM/COBOL 115
Example 4: Export File and Import File with Sparse Arrays

Program Description

This COBOL program illustrates how severa similar XML documents are
generated from asingle COBOL dataitem. It also illustrates how the contents
of several similar XML documents may be converted into COBOL data format
and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Data-Table to several XML documents
with the filenames of tablel.xml, table2.xml, table3.xml, and table4.xml using
the XML EXPORT FILE statement. Various combinations of the XML
ENABLE ATTRIBUTES, XML DISABLE ATTRIBUTES, XML ENABLE
ALL-OCCURRENCES, and XML DISABLE ALL-OCCURRENCES
statements are used to alter the content of the generated XML documents.

Next, the contents of these four XML documents (plus two additional “pre-
created” XML documents, table5.xml and table6.xml) are imported and placed
in the same dataitem using the XML IMPORT FILE statement. This example
does not use aschemafile to validate the input because the array isfixed size
and not al of the XML documents that will be input contain al of the
occurrences of the array. These XML documents and their contents are
described beginning on page 121.

Finally, the XML interface isterminated with the XML TERMINATE
Statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Data-Table.

02 Value "[".
02 Table-1 Occurs 6.
03 X Pic X.

03 N Pic 9.

02 Value "]".

This dataitem contains an array with six occurrences. Each occurrence consists
of aone-character, nonnumeric data item followed by a one-digit numeric data
item. Note that the structure aso contains two filler dataitems: the left brace

116 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

() character at the beginning and the right brace(]) character at theend. The
values of the filler items are output as text in the XML document without
associated tags.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

01

XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1)-
88 XML-NoMore VALUE 0.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returns avaluein the
XML-Status field. The XML GET STATUS TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,
exampled.cbl.

XML Toolkit for RM/COBOL 117
Example 4: Export File and Import File with Sparse Arrays

Initialization

COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description
XML ENABLE ATTRIBUTES Selectively ENABLE or DISABLE ATTRIBUTES and
I Not XML-OK Go to Z. ALL-OCCURRENCES.

XML ENABLE AlI-OCCURRENCES
IT Not XML-OK Go to Z.

Initialize Data-Table. Initialize the Data-Table structure to the preferred values.
Move "B"™ to X (2).
Move 2 to N (2).
Move "D" to X (4).
Move 4 to N (4).

XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Data-Table the data item address,
“"Tablel™ the XML document filename (Tablel — Tabled),
"Example4'. and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document

COBOL Statement Description
Initialize Data-Table. Ensure that the data item contains no data.
XML IMPORT FILE Execute the XML IMPORT FILE statement specifying:
Data-Table the dataitem address,
"Tablel™ the XML document filename (Tablel — Tableb),
"Exampled™. and the model filename.
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

118 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is atarget of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description
Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).
Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.
XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

XML Toolkit for RM/COBOL 119
Example 4: Export File and Import File with Sparse Arrays

Status Display Logic

This codeisfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display thelinethat was just obtained.

End-Perform End of the perform loop.
End-1f. End of the If statement and the paragraph.

120 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

Example-4 - Illustrate EXPORT FILE and IMPORT FILE with sparse arrays
Tablel.xml exported by XML EXPORT FILE: [OB2 0D4 0 0]
Table2.xml exported by XML EXPORT FILE: [OB2 0D4 0 O]
Table3.xml exported by XML EXPORT FILE: [OB2 0D4 0 O]
Table4._xml exported by XML EXPORT FILE: [OB2 0D4 O O]
Tablel.xml imported by XML IMPORT FILE: [OB2 0D4 0 O]
Table2._.xml imported by XML IMPORT FILE: [OB2 0D4 0 O]
Table3.xml imported by XML IMPORT FILE: [OB2 0D4 0 0]
Table4._.xml imported by XML IMPORT FILE: [OB2 0D4 0 0]
Table5.xml imported by XML IMPORT FILE: [OB2 0D4 0 0]
Table6.xml imported by XML IMPORT FILE: [OB2 0D4 0 0]

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display

Running the program (runcobol exampled) produces the following display.

Note that pressing a key will terminate the program.

You may use IE to inspect "Tablel.xml®™ - "Table6.xml"

Status: 0000
Press a key to terminate:

XML Documents

Microsoft Internet Explorer may be used to view the XML documents that are
associated with this example. (Note that Internet Explorer will differentiate
among the various syntactical elements of XML by displaying them in different
colors.)

Thefilestablel.xml, table2.xml, table3.xml, and table4.xml are generated
with XML EXPORT FILE statements. All of these documents were generated
from the same COBOL content. The filestable5.xml and table6.xml are
supplied with the example, and they also describe the same COBOL content.

The only non-empty occurrences are for the second and fourth elements of the
array. The contents of the six files should appear as follows.

Tablel.xml

The XML DISABLEATTRIBUTES and XML DISABLE ALL-
OCCURRENCES statements are used to determine the contents of thisfile.

XML Toolkit for RM/COBOL 121
Example 4: Export File and Import File with Sparse Arrays

Trailing empty occurrences are deleted. However, some empty occurrences
were generated so that the two non-empty occurrences are positioned correctly.

This example also usesfiller data. The left brace ([) and right brace(])
characters were defined within the dataitem asfiller. The text associated with
thefiller is placed in the XML document without any tags.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<data-table>

L
<table-1>
<X />

<n>0</n>
</table-1>
<table-1>
<X>B</x>
<n>2</n>
</table-1>
<table-1>
<x />
<n>0</n>
</table-1>
<table-1>
<xX>D</x>
<n>4</n>
</table-1>

1
</data-table>
</root>

122 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

Table2.xml

The XML ENABLE ATTRIBUTES and XML DISABLE ALL-
OCCURRENCES statements are used to determine the contents of thisfile.
Since each non-empty occurrence now contains a subscript attribute, none of the
empty occurrences are generated.

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP"'>
<data-table type="nonnumeric" kind="GRP'" length="14" offset="4" i1d="1514">

<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span=""2" subscript="2" i1d="1558">
<x type="nonnumeric’ kind="ANS" length="1" offset="5" subscript="2"
1d=""1580"">B</x>
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="2" 1d="1602">2</n>
</table-1>
<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span="'2" subscript="4" 1d="1558">
<x type="nonnumeric’ kind="ANS" length="1" offset="5" subscript="4"
1d=""1580"">D</x>
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="4" i1d="1602">4</n>
</table-1>
1
</data-table>
</root>

XML Toolkit for RM/COBOL 123
Example 4: Export File and Import File with Sparse Arrays

Table3.xml

The XML DISABLE ATTRIBUTES and XML ENABLE ALL-
OCCURRENCES statements are used to determine the contents of thisfile.
These statements cause all occurrences, whether empty or non-empty, to be
generated.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<data-table>

L
<table-1>
<X />

<n>0</n>
</table-1>
<table-1>
<X>B</x>
<n>2</n>
</table-1>
<table-1>
<x />
<n>0</n>
</table-1>
<table-1>
<xX>D</x>
<n>4</n>
</table-1>
<table-1>
<x />
<n>0</n>
</table-1>
<table-1>
<X />
<n>0</n>
</table-1>

1
</data-table>
</root>

Table4.xml

The XML ENABLE ATTRIBUTES and XML ENABLE ALL-
OCCURRENCES statements are used to determine the contents of thisfile.
These statements produce the most verbose listing of occurrences possible.
Every occurrenceis listed with its attributes.

124 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP''>
<data-table type="nonnumeric'" kind="GRP" length="14" offset="4" i1d="1514">

<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span="'2" subscript="1" 1d="1558">
<x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="1"
1d="1580" />
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="1" i1d="1602">0</n>
</table-1>
<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span="2" subscript="2" i1d="1558">
<x type="nonnumeric” kind="ANS" length="1" offset="5" subscript="2"
1d=""1580"">B</x>
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="2" 1d="1602">2</n>
</table-1>
<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span="'2" subscript="3" i1d="1558">
<x type="nonnumeric’ kind="ANS" length="1" offset="5" subscript="3"
1d=""1580" />
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="3" 1d="1602">0</n>
</table-1>
<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span=""2" subscript="4" i1d="1558">
<x type="nonnumeric’ kind="ANS" length="1" offset="5" subscript="4"
1d=""1580"">D</x>
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="4" 1d="1602">4</n>
</table-1>
<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6"" span="2" subscript="5" 1d="1558">
<x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="5"
id="1580" />
<n type="numeric" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="5" i1d="1602">0</n>
</table-1>
<table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
maxOccurs="6" span="'2" subscript="6" 1d="1558">
<x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="6"
1d="1580" />
<n type="numeric'" kind="NSU" length="1" offset="6" scale="0"
precision="1" subscript="6" 1d="1602">0</n>
</table-1>

1
</data-table>
</root>

XML Toolkit for RM/COBOL 125
Example 4: Export File and Import File with Sparse Arrays

Table5.xml

Thisfile was manually generated using atext editor program in order to contain
the minimum amount of information possible. Of al the attributes, only the
subscript attribute isincluded. Thisallows all empty occurrencesto be
suppressed. In practice, a style sheet or other software could generate this kind
of document.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<data-table>

<table-1 subscript="2">
<xX>B</x>
<n>2</n>

</table-1>

<table-1 subscript="4">
<x>D</X>
<n>4</n>

</table-1>

1
</data-table>
</root>

Table6.xml

The only difference between thisfile and table5.xml is that the subscript
reference has been moved from the occurrence level down to an element within
the occurrence.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<data-table>

<table-1>
<X subscript="2">B</x>
<n>2</n>

</table-1>

<table-1>
<X subscript="4">D</x>
<n>4</n>

</table-1>

1
</data-table>
</root>

126 Appendix A: XML Toolkit Examples
Example 4: Export File and Import File with Sparse Arrays

Example 5: Export Text and Import Text

The program first writes (or exports) an XML document as atext string from the
contents of a COBOL dataitem. Then the program reads (or imports) the same
XML document and places the contents in the sasme COBOL dataitem. Finaly,
the text string representation of the XML document is copied to adisk fileand
the memory block that it occupied is released.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT TEXT (page 64). The XML EXPORT TEXT statement
constructs an XML document (as atext string) from the contents of a
COBOL dataitem.

e XML IMPORT TEXT (page 66). The XML IMPORT TEXT statement
reads an XML document (from atext string) into a COBOL dataitem.

e XML PUT TEXT (page 73). The XML PUT TEXT statement copies an
XML document from atext string to adatafile.

e XML FREE TEXT (page 72). The XML FREE TEXT statement releases
the memory that was allocated by XML EXPORT TEXT to hold the XML
document as atext string.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog [=" somé\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

XML Toolkit for RM/COBOL 127
Example 5: Export Text and Import Text

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example5.cab.

Line Statement
1 rmcobol example5 y
2 cobtoxml example5 Liant-Address
3 move /y example5.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example5.cob,tmp.cob*
5 del tmp.cob
6 start /w runcobol example5 k

Line 1 compiles the exampleb.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML modél files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 5 object
filename is exampleb.cob, and the model filenames are exampleb.xml,
exampleb.xtl, exampleb.xd, and exampleb.xsd).

Lines3, 4, and 5 are optional. They strip the symbol table from the example 5
object file, example5.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL devel opment
system, is used for this purpose.

Line 6 executes examples.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only asgood programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. Thisstep is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,

128

Appendix A: XML Toolkit Examples
Example 5: Export Text and Import Text

which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description

This COBOL program illustrates how an XML document is generated from a
COBOL dataitem, and then how the contents of an XML document may be
converted into COBOL dataformat and stored in a COBOL dataitem. This
programis similar to “Example 1: Export File and Import File” (see page 88),
except that the XML document is stored as atext string instead of adisk file.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. Itispossible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document as defined by the variable Document-
Pointer usingthe XML EXPORT TEXT statement.

Next, the contents of the XML document are imported from the file, liant5.xml,
and placed in the same dataitem using the XML IMPORT TEXT statement.

Then, the contents of the text string are written to adisk file using the XML
PUT TEXT statement. The memory block is deallocated using the XML FREE
TEXT statement. The sole reason for using the XML PUT TEXT statement is
to make the contents of the XML document available as an externa file for
viewing.

Finally, the XML interface isterminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

XML Toolkit for RM/COBOL 129
Example 5: Export Text and Import Text

Data Item

The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.
02 Name Pic X(64) Value "Liant Software Corporation.
02 Address-1 Pic X(64) Value 8911 Capital of Texas Highway North'.
02 Address-2 Pic X(64) Value "Suite 4300".
02 Address-3.
03 City Pic X(32) Value "Austin™.
03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant's). The
last field of the structure is atime stamp containing the time that the program
was executed. The reason for thisitem isto assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines adata
item named XML-data-group. The contents of this dataitem are as follows:

01 XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE 0.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.
For example, the XML EXPORT TEXT statement returns avalue in the

130 Appendix A: XML Toolkit Examples
Example 5: Export Text and Import Text

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

exampleb.chbl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document
COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT TEXT Execute the XML EXPORT TEXT statement specifying:
Liant-Address the dataitem address,
“"Document-Pointer" the XML document pointer name,
"Example5". and the model filename.

If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensurethat the Liant-Address structure contains no data.

XML IMPORT TEXT Execute the XML IMPORT TEXT statement specifying:
Liant-Address the data item address,
""Document-Pointer™ the XML document pointer name,
"Example5". and the model filename.

IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

XML Toolkit for RM/COBOL 131
Example 5: Export Text and Import Text

Copying an XML Document to a File

COBOL Statement

XML PUT TEXT
Document-Pointer
“"Liant5".

IT Not XML-OK Go to Z.

Description

Execute the XML PUT TEXT statement specifying:
the XML document pointer name
and the XML document filename.

If the statement terminates unsuccessfully, go to the
termination logic.

Releasing the XML Document Memory

COBOL Statement

XML FREE TEXT
Document-Pointer.

If Not XML-OK Go to Z.

Description

Execute the XML FREE TEXT statement specifying
the XML document pointer name.

If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement
Z.

Copy "lixmltrm.cpy".

Stop Run.
Copy "lixmldsp.cpy".

Description

Paragraph-name that is a target of error condition GO TO
statements.

Copy in the termination test logic (see the “Termination Test
Logic” table).

Terminate the COBOL program.

Copy in the status display logic (see the “ Status Display
Logic” table).

132 Appendix A: XML Toolkit Examples

Example 5: Export Text and Import Text

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code isfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-1sSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display the linethat was just obtained.

End-Perform End of the perform loop.
End-I1F. End of the If statement and the paragraph.

XML Toolkit for RM/COBOL 133
Example 5: Export Text and Import Text

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display

Running the program (runcobol example5) produces the following display.
Note that pressing a key will terminate the program.

Example-5 - Illustrate EXPORT TEXT and IMPORT TEXT
Document exported by XML EXPORT TEXT
Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759
11232232

Document imported by XML IMPORT TEXT
Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759
11232232

Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may use IE to inspect "Liant5.xml*"

Status: 0000
Press a key to terminate:

134 Appendix A: XML Toolkit Examples
Example 5: Export Text and Import Text

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant5.xml. The contents of this document should appear asfollows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding=""UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>11232232</time-stamp>
</liant-address>
</root>

Example 6: Export File and Import File with
Directory Polling

This COBOL program illustrates how a series of XML documents may be
placed in a specific directory and how directory polling may be used to process
XML documents as they arrivein that specified directory.

The program first writes (or exports) five XML document files from the contents
of aCOBOL dataitem. Each document has a unique name and is written to the
same directory. Then the program polls the directory looking for an XML
document. When one is found, the program reads (or imports) each XML
document and places the contentsin the COBOL data item.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

XML Toolkit for RM/COBOL 135
Example 6: Export File and Import File with Directory Polling

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

e XML GET UNIQUEID (page 77). The XML GET-UNIQUEID statement
is used to generate a unique identifier that can be used to form a filename.

e XML FIND FILE (page 76). The XML FIND FILE statement finds a XML
document file in the specified directory (if oneis available).

e XML REMOVE FILE (page 74). The XML REMOVE FILE statement
deletes afile.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog I=" somé\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisis normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

136

Appendix A: XML Toolkit Examples
Example 6: Export File and Import File with Directory Polling

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example6.cob.

Line Statement
1 rmcobol example6 y
2 cobtoxml example6 Time-Stamp
3 move /y example6.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example6.cob,tmp.cob*
5 del tmp.cob
6 start /w runcobol example6 k

Line 1 compiles the exampleb.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 6 object
filename is example6.cob, and the model filenames are example6.xml,
exampleb.xtl, exampleb.xsl, and example6.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 6
object file, example6.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example6.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime compl eted,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

XML Toolkit for RM/COBOL 137
Example 6: Export File and Import File with Directory Polling

Program Description

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. Itispossible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

The current time, which will become the contents of an XML document, is
recorded in a COBOL dataitem. Note that for this example, an elementary data
item is used instead of adataitem.

Because the name of each file within adirectory must be unique, a unique
filename is generated using the XML GET UNIQUEID statement. The returned
value is combined with other text strings to form a pathname using the STRING
statement. The current timeis placed inthe Time-Stamp dataitem using the
ACCEPT FROM TIME statement. The XML EXPORT FILE statement is used
to output the data item as an XML document. This sequenceis repeated until
five XML documents have been placed in the specified directory.

Next, the program goes into aloop polling the specified directory. The XML
FIND FILE statement isused. If thereturn statusis XML-I1sSuccess, then a
file has been found and the program proceeds to process thefile. If the return
statusis XML-IsDirectoryEmpty, then the directory is empty and the
program issues a slight delay and then re-issues the XML FIND FILE statement.
Any other status indicates an error.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

Data Item

The contents of the dataitem defined in the example, which in this case, isa
single dataitem, is as follows:

01 Time-Stamp Pic 9(8).

This data item stores a time stamp acquired by using the ACCEPT FROM
TIME statement.

138 Appendix A: XML Toolkit Examples
Example 6: Export File and Import File with Directory Polling

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines adata
item named XML-data-group. The contents of this dataitem are as follows:

01 XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-OK VALUE XML-Success

THROUGH XML-StatusNonFatal .

88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).-
88 XML-NoMore VALUE O.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returnsavaluein the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

XML Toolkit for RM/COBOL 139
Example 6: Export File and Import File with Directory Polling

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

exampleb.cbl.
Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.
Exporting XML Documents with Unigue Names
COBOL Statement Description
XML GET UNIQUEID Generate a unique identifier.
Unique-Name)
I¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Move Spaces to Unique-File-Name Convert the unique identifier into a pathname.
String "Stamp\A" delimited by size

Unique-Name delimited by SPACE

“.oxml* delimited by size
into Unique-File-Name.

Accept Time-Stamp From Time. Populate the Time-Stamp field.

XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the data item address,
"Liant6" the XML document filename,
“"Example6™. and the model filename.

IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

140

Appendix A: XML Toolkit Examples
Example 6: Export File and Import File with Directory Polling

Importing XML Documents by Directory Polling

COBOL Statement

Perform Until 0 > 1
Perform Compute-Curr-Time

Compute Stop-Time
= Curr-Time + 100

Perform Until 0 > 1

XML FIND FILE
"'Stamp*’
Unique-File-Name

IT XML-1sSuccess
Exit Perform

End-1f

I XML-IsDirectoryEmpty
Perform Compute-Curr-

Time
If Curr-Time > Stop-
Time
Exit Perform
End-I1f
Call "C$DELAY" Using
0.1
End-I1f
If Not XML-OK
Go to Z
End-I1f

End-Perform

If Curr-Time > Stop-Time
Exit Perform
End-I1f

XML IMPORT FILE
Time-Stamp
Unique-File-Name
"Example6"
If Not XML-OK Go to Z End-
If

XML REMOVE FILE
Unique-File-Name
I Not XML-OK Go to Z End-
If

End-Perform

Description

Outer perform loop. Iterate until Exit Perform.

The paragraph Compute-Curr-Time ACCEPT s the current
time and convertsit to an integer value.
Compute Stop-Time to be 1 second after current time.

Inner perform loop. Iterate until Exit Perform
Execute XML FIND FILE parameters:
directory name
and filename
If the statement returned success,
exit the paragraph
If the statement returns directory empty,
compute new current time, and
if the current-time is greater than the stop time,
exit the perform.

Otherwise, do ashort time delay.
If the statement terminates unsuccessfully,
go to the termination logic.

The end of the inner perform loop.

Check to see if the outer perform loop should terminate.

Import the file that was found using:

the dataitem,

the filename,

and the model filename.
If the statement terminates unsuccessfully, go to the
termination logic.
Remove the file that has just been processed;
otherwise, find it again.
If the statement terminates unsuccessfully, go to the
termination logic.

The end of the outer perform loop.

XML Toolkit for RM/COBOL

Example 6: Export File and Import File with Directory Polling

141

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is atarget of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description
Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).
Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.
XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

142 Appendix A: XML Toolkit Examples
Example 6: Export File and Import File with Directory Polling

Status Display Logic

This codeisfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore
XML GET STATUS-TEXT Get the next line of status information from the XML

interface.

Display XML-St at usText Display the linethat was just obtained.

End-Perform End of the perform loop.

End-IF.

End of the If statement and the paragraph.

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display

Running the program (runcobol example6) produces two displays. Thefirstis
after exporting five documents to the Stamp directory. The second display is
after polling the Stamp directory and importing the five documents.

XML Toolkit for RM/COBOL 143
Example 6: Export File and Import File with Directory Polling

First Display

Note that pressing a key will cause the program to continue.

Example-6 - Illustrate EXPORT FILE and IMPORT FILE with directory polling
Stamp\A{b8a405c0-d552-11d6-adbf-00a0cc274748} .xml exported by XMLExport
Contents: 15303258

Stamp\A{b8a405c2-d552-11d6-adbf-00a0cc274748%} .xml exported by XMLExport
Contents: 15303264

Stamp\A{b8a405c4-d552-11d6-adbf-00a0cc274748} .xml exported by XMLExport
Contents: 15303264

Stamp\A{b8a405c6-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264

Stamp\A{b8a405c8-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264

You may use IE to display the "Stamp® directory

Press a key to continue:

Second Display

Note that pressing a key will terminate the program.

E:\xmlexample\Stamp\A{b8a405c0-d552-11d6-adbf-00a0cc274748} .xml imported

by XMLImport

Contents: 15303258
E:\xmlexample\Stamp\A{b8a405c2-d552-11d6-adbf-00a0cc274748} .xml imported

by XMLImport

Contents: 15303264
E:\xmlexample\Stamp\A{b8a405c4-d552-11d6-adbf-00a0cc274748} .xml imported

by XMLImport

Contents: 15303264
E:\xmlexample\Stamp\A{b8a405c6-d552-11d6-adbf-00a0cc274748} .xml imported
by XMLImport

Contents: 15303264
E:\xmlexample\Stamp\A{b8a405c8-d552-11d6-adbf-00a0cc274748} .xml imported
by XMLImport

Contents: 15303264

You may now use IE to verify that the "Stamp”™ directory has been emptied

Status: 0001

Informative: 1[0] - indicated directory contains no documents

Called from line 426 in EXAMPLEG6(E:\xmlexample\EXAMPLE6.COB), compiled
2002/10/\

01 15:26:04.

E:\xmlexample\Stamp*.xml

Press a key to terminate.

144 Appendix A: XML Toolkit Examples
Example 6: Export File and Import File with Directory Polling

XML Document

Microsoft Internet Explorer (or Windows Explorer) may be used to view the
Stamp directory that contains the five generated XML documents. You can
click on any document to see its contents.

0 Simgp - Micrsssft Inbernet Explorer

Fie Edi ®ew Go Fyeoaies Help

Harsn | Sim| Typm - | Awkates |
DY A b OS50 -1 -kl ST AT 1B WML Docurssnt 0102 330 P A
FiY A RS-0 1 -k Dlalec 2T T4 1B WML Docursant 101402 330 P A
Fitd] A bR DE ko550 116k [lallce 2T HT4E WEE WML Docursesd 107102 330 P A
Pt A s A Bl 1] 5 ol a2 T AT WEE WML Decursesd 1071402 330 P A
] A B DS B2 106 el (e 2T T4 WEE ML Docursssd 101/02 330 PM B
4] I=]

After continuing the program, the Stamp directory should empty out as shown.

B Sty - Micreseft Inbernet Explorer

XML Toolkit for RM/COBOL 145
Example 6: Export File and Import File with Directory Polling

Example 7: Export File, Test Well Formed
File, and Validate File

This COBOL program illustrates how an XML document is generated from a
COBOL data item and then how the syntax and contents of an XML document
may be verified.

The program first writes (or exports) an XML document file from the contents
of aCOBOL dataitem. Then the program verifies that the generated document
iswell formed. Finally, the program verifies that the contents of the document
conform to the schema file that was generated by the cobtoxml utility.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML TEST WELLFORMED-FILE (page 67). The XML TEST
WELLFORMED-FILE statement verifies that an XML document conforms
to XML syntax rules.

e XML VALIDATE FILE (page 70). The XML VALIDATE FILE statement
verifies that the content of an XML document conforms to rules specified
by an XML schemafile.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog I=" somé\path\xmlif") or by
placing the xmlif library in thermautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

146 Appendix A: XML Toolkit Examples
Example 7: Export File, Test Well Formed File, and Validate File

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example?.cab.

Line Statement
1 rmcobol example7 y
2 cobtoxml example7 Liant-Address
3 move /y example7.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example7.cob,tmp.cob”
5 del tmp.cob
6 start /w runcobol example7 k

Line 1 compiles the example7.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML modél files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 7 object
filename is example7.cob, and the model filenames are example7.xml,
example7.xtl, example7.xd, and example7.xsd).

Lines3, 4, and 5 are optional. They strip the symbol table from the example 7
object file, example7.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL devel opment
system, is used for this purpose.

Line 6 executes example7.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only asgood programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. Thisstep is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,

XML Toolkit for RM/COBOL 147
Example 7: Export File, Test Well Formed File, and Validate File

which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported fromthe dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document with the filename of liant7.xml using the
XML EXPORT FILE statement.

Next, the syntax of liant7.xml is verified using the XML TEST
WELLFORMED-FILE statement.

Following this, the contents of liant7.xml are verified using the XML
VALIDATE FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

For the purposes of this example, both the XML TEST WELLFORMED-FILE
and XML VALIDATE FILE statements were used. However, the XML
VALIDATE FILE statement also tests an XML document for well-formed
syntax.

148

Appendix A: XML Toolkit Examples
Example 7: Export File, Test Well Formed File, and Validate File

Data Item

The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.

02

Name

Address-1

Pic X(64) Value "Liant Software Corporation.
ic X(64) Value '"8911 Capital of Texas Highway North'.

P
Address-2 Pic X(64) Value "Suite 4300".
Address-3.

03 City Pic X(32) Value "Austin".

03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
Time-Stamp Pic 9(8).

01

This data item stores company address information (in this case, Liant's). The
last field of the item is atime stamp containing the time that the program was
executed. The reason for thisitem is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE 0.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.
For example, the XML EXPORT FILE statement returnsavaluein the

XML Toolkit for RM/COBOL 149
Example 7: Export File, Test Well Formed File, and Validate File

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

example?.cbl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description
Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liant7" the XML document filename,
"Example7". and the model filename.
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Verifying Syntax

COBOL Statement Description
XML TEST WELLFORMED-FILE Execute the XML TEST WELLFORMED-FILE statement
“Liant7". specifying the XML document filename.
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

150 Appendix A: XML Toolkit Examples
Example 7: Export File, Test Well Formed File, and Validate File

Verifying Content

COBOL Statement Description
XML VALIDATE FILE Execute the XML VALIDATE FILE statement specifying:
“Liant7" the XML document filename
“"Example7'. and the model filename
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is a target of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “ Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here viaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

XML Toolkit for RM/COBOL 151
Example 7: Export File, Test Well Formed File, and Validate File

Status Display Logic

This codeisfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML- St at usText Display the linethat was just obtained.
End-Perform End of the perform loop.
End-1f. End of the If statement and the paragraph.

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

152 Appendix A: XML Toolkit Examples
Example 7: Export File, Test Well Formed File, and Validate File

COBOL Display

Running the program (runcobol example7) produces the following display.
Note that pressing a key will terminate the program.

Example-7 - Illustrate TEST WELLFORMED-FILE and VALIDATE FILE
Liant7.xml exported by XML EXPORT FILE

Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759

11205270

Liant7.xml checked by XML TEST WELLFORMED-FILE

Liant7.xml validated by XML VALIDATE FILE

You may use IE to inspect "Liant7.xml*"

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant7.xml. The contents of this document should appear asfollows. (Note that

Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>11205270</time-stamp>
</liant-address>
</root>

XML Toolkit for RM/COBOL
Example 7: Export File, Test Well Formed File, and Validate File

153

Example 8: Export Text, Test Well Formed
Text, and Validate Text

This COBOL program illustrates how an XML document is generated from a
COBOL data item and then how the syntax and contents of an XML document
may be verified. Next, the program verifies that the generated document is well
formed. Finally, the program verifies that the contents of the document conform
to the schema file that was generated by the cobtoxml utility.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT TEXT (page 64). The XML EXPORT TEXT statement
constructs an XML document (as atext string) from the contents of a
COBOL dataitem.

e XML TEST WELLFORMED-TEXT (page 68). The XML TEST
WELLFORMED-TEXT statement verifies that an XML document
conformsto XML syntax rules.

e XML VALIDATE TEXT (page 71). The XML VALIDATE TEXT
statement verifies that the content of an XML document conforms to rules
specified by an XML schemafile.

e XML PUT TEXT (page 73). The XML PUT TEXT statement copies an
XML document from atext string to adatafile.

e XML FREE TEXT (page 72). The XML FREE TEXT statement releases
the memory that was allocated by XML EXPORT TEXT to hold the XML
document as atext string.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

154 Appendix A: XML Toolkit Examples
Example 8: Export Text, Test Well Formed Text, and Validate Text

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog |=" somée\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisis normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example8.cob.

Line Statement
1 rmcobol example8 y
2 cobtoxml example8 Liant-Address
3 move /y example8.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example8.cob,tmp.cob”
5 del tmp.cob
6 start /w runcobol example8 k

Line 1 compiles the example8.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML modél files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 8 object
filename is example8.cob, and the model filenames are example8.xml,
example8.xtl, example8.xdl, and example8.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 8
object file, example8.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes exampleB.cob. The K Option “kills" the runtime banner.
Online6, the start /w sequenceisincluded only as good programming
practice.

XML Toolkit for RM/COBOL 155
Example 8: Export Text, Test Well Formed Text, and Validate Text

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime compl eted,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. Itispossible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported fromthe dataitem Liant-Address (asdefined inthe copy
filg, liant.cpy) to an XML document as defined by the variable, Document-
Pointer, using the XML EXPORT TEXT statement.

Next, the syntax of the generated XML document is verified using the XML
TEST WELLFORMED-TEXT statement.

Following this, the contents of the generated XML document are verified using
the XML VALIDATE TEXT statement.

Next, the contents of the text string are written to adisk file using the XML PUT
TEXT statement. The memory block is deallocated using the XML FREE
TEXT statement. The sole reason for using the XML PUT TEXT statement is
to make the contents of the XML document available as an externa file for
viewing.

Finally, the XML interface is terminated with the XML TERMINATE
Statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

For the purposes of this example, both the XML TEST WELLFORMED-TEXT
and XML VALIDATE TEXT statements were used. However, the XML
VALIDATE TEXT statement also tests an XML document for well-formed
syntax.

156 Appendix A: XML Toolkit Examples
Example 8: Export Text, Test Well Formed Text, and Validate Text

Data Item

The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.

02

Name

Address-1

Pic X(64) Value "Liant Software Corporation.
ic X(64) Value '"8911 Capital of Texas Highway North'.

P
Address-2 Pic X(64) Value "Suite 4300".
Address-3.

03 City Pic X(32) Value "Austin".

03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
Time-Stamp Pic 9(8).

01

This data item stores company address information (in this case, Liant's). The
last field of the item is atime stamp containing the time that the program was
executed. The reason for thisitem is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE 0.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.
For example, the XML EXPORT TEXT statement returns avalue in the

XML Toolkit for RM/COBOL 157
Example 8: Export Text, Test Well Formed Text, and Validate Text

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

example8.chbl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description
Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT TEXT Execute the XML EXPORT TEXT statement specifying:
Liant-Address the dataitem address,
“"Document-Pointer" the XML document text name,
"Example8". and the model filename.
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Verifying Syntax

COBOL Statement Description
XML TEST WELLFORMED-TEXT Execute the XML TEST WELLFORMED-TEXT statement
"Document-Pointer™. specifying the XML document text name.
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

158 Appendix A: XML Toolkit Examples
Example 8: Export Text, Test Well Formed Text, and Validate Text

Verifying Content

COBOL Statement Description
XML VALIDATE TEXT Execute the XML VALIDATE TEXT statement specifying:
"'Document-Pointer™ the XML document text name
"Example8™. and the model filename.
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Copying an XML Document to a File

COBOL Statement Description
XML PUT TEXT Execute the XML PUT TEXT statement specifying:
"Document-Pointer" the XML document text name
"Liant8". and the document filename.
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Releasing the XML Document Memory

COBOL Statement Description
XML FREE TEXT Execute the XML FREE TEXT statement specifying
"Document-Pointer". the XML document text name.
IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is atarget of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

XML Toolkit for RM/COBOL 159
Example 8: Export Text, Test Well Formed Text, and Validate Text

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code isfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-1sSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display the linethat was just obtained.

End-Perform End of the perform loop.
End-I1F. End of the If statement and the paragraph.

160 Appendix A: XML Toolkit Examples
Example 8: Export Text, Test Well Formed Text, and Validate Text

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display

Running the program (runcobol example8) produces the following display.
Note that pressing a key will terminate the program.

Example-8 - Illustrate TEST-WELLFORMED TEXT and VALIDATE TEXT
Document exported by XML EXPORT TEXT

Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759
12545201

Document checked by XML TEST WELLFORMED-TEXT
Document validated by XML VALIDATE TEXT
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may use IE to inspect "Liant8.xml*"

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant8.xml. The contents of this document should appear asfollows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding=""UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>12545201</time-stamp>
</liant-address>
</root>

XML Toolkit for RM/COBOL 161
Example 8: Export Text, Test Well Formed Text, and Validate Text

Example 9: Export File, Transform File, and
Import File

This COBOL program illustrates how an XML document is generated from a
COBOL dataitem, and then how the contents of an XML document may be
converted into COBOL dataformat and stored in a COBOL data item.

The program first writes (or exports) an XML document file from the contents
of aCOBOL dataitem. Next, the document is transformed into another format
(the same format asin “Example 2: Export File and Import File with Style
Sheets” described on page 96) and then transformed back into the original
output format. Then the program reads (or imports) the same XML document
and places the contents in the same COBOL dataitem. One additional
transform is applied to add in the COBOL éttributes to the input document.

This example uses the following XML statements:

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL data
item.

e XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

e XML TRANSFORM FILE (page 69). The XML TRANSFORM FILE
statement uses a style sheet to modify (transform) an XML document into
another format.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog [=" somé\path\xmlif") or by

162 Appendix A: XML Toolkit Examples
Example 9: Export File, Transform File, and Import File

placing the xmlif library in the rmautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute example9.cab.

Line Statement
1 rmcobol example9 y
2 cobtoxml example9 Liant-Address
3 move /y example9.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,example9.cob,tmp.cob”
5 del tmp.cob
6 start /w runcobol example9 k

Line 1 compiles the example9.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 9 object
filename is example9.cob, and the model filenames are example9.xml,
example9.xtl, example9.xd, and example9.xsd).

Lines3, 4, and 5 are optional. They strip the symbol table from the example 9
object file, example9.cab. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example9.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only asgood programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.

XML Toolkit for RM/COBOL 163
Example 9: Export File, Transform File, and Import File

If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document with the filename of liant9a.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are transformed from the format that
was used in Example 2 with an XML TRANSFORM FILE statement producing
thefile, Liant9b.xml, and then transformed back into the original output format.

Next, the contents of the XML document are imported from the file,
liant9c.xml, and placed in the same dataitem using the XML IMPORT FILE
Statement.

Subsequently, the contents of the XML document, liant9c.xml, are transformed
using the style sheet from the set of model files creating thefile, liant9d.xml.
This adds all of the COBOL attributesto liant9d.xml.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS
TEXT statement is called.

164

Appendix A: XML Toolkit Examples
Example 9: Export File, Transform File, and Import File

Data Item

The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.

02

Name

Address-1

Pic X(64) Value "Liant Software Corporation.
ic X(64) Value '"8911 Capital of Texas Highway North'.

P
Address-2 Pic X(64) Value "Suite 4300".
Address-3.

03 City Pic X(32) Value "Austin".

03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
Time-Stamp Pic 9(8).

01

This data item stores company address information (in this case, Liant's). The
last field of the item is atime stamp containing the time that the program was
executed. The reason for thisitem is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines adata
item named XML-data-group. The contents of this dataitem are as follows:

XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE 0.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.
For example, the XML EXPORT FILE statement returnsavaluein the

XML Toolkit for RM/COBOL 165
Example 9: Export File, Transform File, and Import File

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

example9.chbl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description
Accept Time-Stamp From Time. Populate the Time-Stamp field
XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liant9a" the XML document filename,
"Example9". and the model filename.
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Transforming to External XML Format

COBOL Statement Description
XML TRANSFORM FILE Execute the XML TRANSFORM FILE statement specifying:
"Liant9a" theinput XML document filename
"toExt" the style sheet filename,
"Liant9b™. and the output XML document filename.
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

166 Appendix A: XML Toolkit Examples
Example 9: Export File, Transform File, and Import File

Transforming to Internal XML Format

COBOL Statement Description

XML TRANSFORM FILE Execute the XML TRANSFORM FILE statement specifying:
"Liant9b" theinput XML document filename,
"tolnt” the style sheet filename,
"Liant9c™. and the output XML document filename.

IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document

COBOL Statement Description
Move Spaces to Liant-Address. Ensurethat the Liant-Addressitem contains no data.
XML IMPORT FILE Execute the XML IMPORT FILE statement specifying:
Liant-Address the dataitem address,
"Liant9c" the XML document filename,
"Example9". and the model filename.
IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Transforming to Include COBOL Attributes

COBOL Statement Description
XML TRANSFORM FILE Execute the XML TRANSFORM FILE statement
"Liant9c" specifying:
"Example9™ theinput XML document filename,
"Liantodf". the style sheet filename,
and the output XML document filename.
IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

XML Toolkit for RM/COBOL 167
Example 9: Export File, Transform File, and Import File

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is atarget of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description
Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).
Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.
XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

168 Appendix A: XML Toolkit Examples
Example 9: Export File, Transform File, and Import File

Status Display Logic

This codeisfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display the linethat was just obtained.
End-Perform End of the perform loop.
End-1f. End of the If statement and the paragraph.

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

XML Toolkit for RM/COBOL 169
Example 9: Export File, Transform File, and Import File

COBOL Display

Running the program (runcobol example9) produces the following display.
Note that pressing a key will terminate the program.

Example-9 - Illustrate TRANSFORM FILE

Liant9a.xml exported by XML EXPORT FILE

Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759

14103001

Liant9a.xml transformed into Liant9b.xml by XML TRANSFORM FILE
Liant9b.xml transformed into Liant9c.xml by XML TRANSFORM FILE
Liant9c.xml imported by XML IMPORT FILE

Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759

14103001

Liant9c.xml transformed into Liant9d.xml by XML TRANSFORM FILE

You may use IE to inspect "Liant9a.xml® - "Liant9d.xml*"

Status: 0000
Press a key to terminate:

XML Documents

Microsoft Internet Explorer may be used to view the generated XML
documents, liant9a.xml, liant9b.xml, liant9c.xml, and liant9d.xml. Their
contents of these documents should appear as follows. (Note that Internet
Explorer will differentiate among the various syntactical elements of XML by
displaying them in different colors.)

170

Appendix A: XML Toolkit Examples
Example 9: Export File, Transform File, and Import File

Liant9a.xml — Internal Format (similar to Liant1l.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>14103001</time-stamp>
</liant-address>
</root>

Liant9b.xml — External Format (similar to Liant2.xml)

<?xml version="1.0" encoding="UTF-8" ?>

<LiantAddress>
<Information Name="Liant Software Corporation"
Address1="8911 Capital of Texas Highway North"
Address2="Suite 4300" City="Austin” State="TX" Zip="78759" />
<TimeStamp Value='"14103001" />

</LiantAddress>

Liant9c.xml — Internal Format Restored

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>14103001</time-stamp>
</liant-address>
</root>

XML Toolkit for RM/COBOL 171
Example 9: Export File, Transform File, and Import File

Liant9d.xml — Internal Format plus COBOL Attributes

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric' kind="GRP'" dateTime="2002-10-07T14:10:24">
<liant-address type="nonnumeric' kind="GRP" length="239" offset="4"
1d=""Q01568">
<name type="nonnumeric" Kind="ANS" length="64" offset=""4"
1d="Q1590"">Liant Software Corporation</name>
<address-1 type="nonnumeric" kind="ANS" length="64" offset="'68"
1d=""Q1612">8911 Capital of Texas Highway North</address-1>
<address-2 type="nonnumeric" kind="ANS" length="64" offset="132"
1d=""Q1634">Suite 4300</address-2>
<address-3 type="nonnumeric' kind="GRP" length=""39" offset="'196"
1d="Q1656">
<city type="nonnumeric" kind="ANS" length="32" offset=""196"
1d=""Q1678">Austin</city>
<state type="‘nonnumeric' kind="ANS" length="2" offset="228"
id="Q1700"">TX</state>
<zip type="numeric" kind="NSU" length="5" offset="230" scale="0"
precision="5" 1d="Q1722">78759</zip>
</address-3>

<time-stamp type="numeric' kind="NSU" length="8" offset="235" scale="0"

precision="8" 1d="Q1744">14103001</time-stamp>
</liant-address>
</root>

172 Appendix A: XML Toolkit Examples
Example 9: Export File, Transform File, and Import File

Example A: Well Formed and Validate
Diagnostic Messages

This program illustrates the diagnostic messages that may be displayed for XML
documents that are not well formed or valid. The program used the XML TEST
WELLFORMED-FILE and XML VALIDATE FILE statements to test and
validate a series of XML documents.

This example uses the following XML statements:;

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML TEST WELLFORMED-FILE (page 67). The XML TEST
WELLFORMED-FILE statement verifies that an XML document conforms
to XML syntax rules.

e XML VALIDATE FILE (page 70). The XML VALIDATE FILE statement
verifies that the content of an XML document conforms to rules specified
by an XML schemafile.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog |=" somé\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

XML Toolkit for RM/COBOL 173
Example A: Well Formed and Validate Diagnostic Messages

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute exampleA.cob.

Line Statement

rmcobol exampleA y

cobtoxml exampleA Liant-Address

move /y exampleA.cob tmp.cob

start /w runcobol rmpgmcom A="STRIP,exampleA.cob,tmp.cob*
del tmp.cob

oo W NP

start /w runcobol exampleA k

Line 1 compiles the exampleA.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example A object
filename is exampleA.cab, and the model filenames are exampleA.xml,
exampleA xtl, exampleA.xs, and exampleA .xsd).

Lines3, 4, and 5 are optional. They strip the symbol table from the example A
object file, exampleA.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes exampleA.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequenceisincluded only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime compl eted,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

174 Appendix A: XML Toolkit Examples
Example A: Well Formed and Validate Diagnostic Messages

Program Description

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. Itispossible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Three different predefined XML documents are processed:

e TheXLiantAl.xml fileis not well formed and will cause the XML TEST
WELLFORMED-FILE statement to return with an error status. Since this
function fails, the XML VALIDATE FILE statement is not used to process
thisfile.

e TheXLiantA2.xml fileiswell formed but not valid. The XML TEST
WELLFORMED-FILE statement will return success. The XML
VALIDATE FILE statement will return with an error status.

e TheXLiantA3.xml fileis both well formed and valid. Both the XML
TEST-WELLFORMED-FILE statement and the XML VALIDATE FILE
statement will return a successful status.

Finally, the XML interface is terminated with the XML TERMINATE
Statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item

The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.

02

Name

Address-1
Address-2

Pic X(64) Value "Liant Software Corporation®.
ic X(64) Value '8911 Capital of Texas Highway North'.
ic X(64) Value "Suite 4300".

Address-3.
03 City Pic X(32) Value "Austin".

03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is atime stamp containing the time that the program was
executed. Thereason for thisitem is to assure the person observing the
execution of the example that the results are current. The time element in the

XML Toolkit for RM/COBOL 175
Example A: Well Formed and Validate Diagnostic Messages

generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

01 XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE O.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returns avaluein the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

exampleA.cbl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

176 Appendix A: XML Toolkit Examples
Example A: Well Formed and Validate Diagnostic Messages

Testing for a Well-Formed Document

COBOL Statement Description
XML TEST WELLFORMED-FILE Execute the XML TEST WELLFORMED-FILE statement
"Xliantl™. specifying the XML document filename.
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Testing for a Valid Document

COBOL Statement Description
XML VALIDATE FILE Execute the XML VALIDATE FILE statement specifying:
"XLiantA2" the XML document filename
"ExampleA™. and the model filename.
IT¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is a target of error condition GO TO
Statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

XML Toolkit for RM/COBOL 177
Example A: Well Formed and Validate Diagnostic Messages

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code isfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-1sSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display the linethat was just obtained.

End-Perform End of the perform loop.
End-I1F. End of the If statement and the paragraph.

178 Appendix A: XML Toolkit Examples
Example A: Well Formed and Validate Diagnostic Messages

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display

Running the program (runcobol exampleA) produces three displays: thefirstis
after the first diagnostic message, the second is after the second diagnostic
message, and the third is after some successful tests.

First Display

Note that pressing a key will cause the program to continue.

Example-A - lllustrate diagnostics for invalid documents and documents that are
not well formed

XML TEST WELLFORMED-FILE - not well formed

Error: 28[10] - in function: LoadDocument

Called from line 398 in EXAMPLEA(E:\xmlexample\EXAMPLEA.COB), compiled 2002/10/\
08 13:05:56.

E:\xmlexample\XLiantAl.xml

End tag "rm-address® does not match the start tag "liant-address”.

line 2, position 262

<root><liant-address><name>Liant Software Corporation</name><address-1>8911 Cap\

ital of Texas Highway North</address-1><address-2>Suite 4300</address-

2><address\

s-3><city>Austin</city><state>TX</state><zip>78759</zip></address-3><time-stamp\

>14525751</time-stamp></rm-address></root>

Press a key to continue:

XML Toolkit for RM/COBOL 179
Example A: Well Formed and Validate Diagnostic Messages

Second Display

Note that pressing a key will cause the program to continue.

XML TEST WELLFORMED-FILE - well-formed — invalid

XML VALIDATE FILE - well-formed — invalid

Error: 28[10] - in function: LoadDocument

Called from line 411 in EXAMPLEA(E:\xmlexample\EXAMPLEA.COB), compiled 2002/10/\

08 13:05:56.

E:\xmlexample\XLiantA2.xml

The value of "ABCDE" is invalid according to its data type. The element: "zip®\
has an invalid value according to its data type.

line 2, position 211

<root><liant-address><name>Liant Software Corporation</name><address-1>8911 Cap\

ital of Texas Highway North</address-1><address-2>Suite 4300</address-

2><address\

s-3><city>Austin</city><state>TX</state><zip>ABCDE</zip></address-3><time-stamp\

>14525751</time-stamp></liant-address></root>

Press a key to continue:

Third Display

Note that pressing a key will terminate the program.

XML TEST WELLFORMED-FILE - well-formed — valid
XML VALIDATE FILE - well-formed — valid
Status: 0000

Press a key to terminate:

180 Appendix A: XML Toolkit Examples
Example A: Well Formed and Validate Diagnostic Messages

Example B: Import File with Missing
Intermediate Parent Names

This COBOL program illustrates how an XML document with some missing
intermediate parent names may be converted into COBOL data format and
stored in aCOBOL dataitem. A COBOL program and an XML document file
may contain the same elementary items, but may not have the identical structure.
The XML Toolkit offers away to handle such cases where there is not a one-to-
one match between the COBOL data item and the XML document structure.
Consider the following situation, in which the COBOL program imports a
predefined XML document that has some missing intermediate parent names.
(This capability of handling missing intermediate parent names has been
included to make programs that deal with “flattened” dataitems, such asweb
services, less complicated.)

A missing intermediate parent nameis an XML element name that corresponds
to an intermediate-level COBOL group name. For example, in the following
COBOL dataitem, the XML element name, address-3, isan intermediate
parent name.

01 MY-ADDRESS.

02 ADDRESS-1 PIC X(64) VALUE 101 Main St.".
02 ADDRESS-2 PIC X(64) VALUE "Apt 2B".
02 ADDRESS-3.
03 CITY PIC X(32) VALUE "Smallville".
03 STATE PIC X(2) VALUE "KS™".

The structure of the corresponding XML document would be:

<root>
<my-address>
<address-1>101 Main St.</address-1>
<address-2>Apt 2B</address-2>
<address-3>
<city>Smallville</city>
<state>KS</state>
</address-3>
<my-address>
<root>

In cases where the intermediate parent name is not needed to resolve ambiguity,
the XML Toolkit will attempt to reconstruct the document structure on input .
For example, if the input XML document contained the following information,
then the intermediate parent names of address-3 and my-address

XML Toolkit for RM/COBOL 181
Example B: Import File with Missing Intermediate Parent Names

would be added to produce an XML document compatible with the above
document.

<root>
<address-1>101 Main St.</address-1>
<address-2>Apt 2B</address-2>
<city>Smallville</city>
<state>KS</state>

<root>

Example B illustrates this situation more fully.
This example uses the following XML statements:;

e XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

e XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as afile) from the contents of a COBOL
dataitem.

e XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from afile) into a COBOL dataitem.

e XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog |=" somée\path\xmlif") or by
placing the xmlif library in the rmautold directory (thisisnormally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

182 Appendix A: XML Toolkit Examples
Example B: Import File with Missing Intermediate Parent Names

Batch File

The following DOS commands may be entered into a batch file. These
commands build and execute exampleB.cob.

Line Statement
1 rmcobol exampleB y
2 cobtoxml exampleB Liant-Address -sn
3 move /y exampleB.cob tmp.cob
4 start /w runcobol rmpgmcom A="STRIP,exampleB.cob,tmp.cob*
5 del tmp.cob
6 start /w runcobol exampleB k

Line 1 compiles the exampleB.cbl source file with the symbol table option (Y)
enabled.

Line 2 buildsthe XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example B object
filename is exampleB.cob, and the model filenames are exampleB.xml,
exampleB.xtl, and exampleB.xd). The-sn (schemanone) option on the
cobtoxml utility disables the generation of a schemafile, which is normally
used to validate the content of an XML document.

Lines3, 4, and 5 are optional. They strip the symbol table from the example B
object file, exampleB.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL devel opment
system, is used for this purpose.

Line 6 executes exampleB.cob. The K Option “kills’ the runtime banner. On
line 6, the start /w sequenceisincluded only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. Thisstep is necessary inline 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

XML Toolkit for RM/COBOL 183
Example B: Import File with Missing Intermediate Parent Names

Program Description

This COBOL program illustrates how an XML document with some missing
intermediate parent names may be converted into COBOL data format and
stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Datais exported from the dataitem Liant-Address (asdefined inthe copy
file, liant.cpy) to an XML document with the filename of LiantB.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file,
LiantB.xml, and placed in the same data item using the XML IMPORT FILE
Statement.

Additionally, the contents of the predefined XML document named
XLiantB.xml, which has some missing intermediate parent names, is also
imported using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
Statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item

The contents of the data item defined in the copy file, liant.cpy, are asfollows:

01 Liant-Address.

02

Name

Address-1

Pic X(64) Value "Liant Software Corporation.
ic X(64) Value '8911 Capital of Texas Highway North'.

P
Address-2 Pic X(64) Value "Suite 4300".
Address-3.
03 City Pic X(32) Value "Austin".

03 State Pic X(2) Value "TX".
03 Zip Pic 9(5) Value 78759.
Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is atime stamp containing the time that the program was
executed. Thereason for thisitem is to assure the person observing the
execution of the example that the results are current. The time element in the

184

Appendix A: XML Toolkit Examples
Example B: Import File with Missing Intermediate Parent Names

generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this dataitem are as follows:

01 XML-data-group.

03 XML-Status PIC 9(4).
88 XML-IsSuccess VALUE XML-Success.
88 XML-0K VALUE XML-Success

THROUGH XML-StatusNonFatal .
88 XML-IsDirectoryEmpty
VALUE XML-InformDirectoryEmpty.

03 XML-StatusText PIC X(80).
03 XML-MoreFlag PIC 9 BINARY(1).
88 XML-NoMore VALUE O.
03 XML-UniquelD PIC X(40).
03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of thisitem.

For example, the XML EXPORT FILE statement returns avaluein the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this exampleisin thefile,

exampleB.chl.

Initialization
COBOL Statement Description
XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If¥ Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

XML Toolkit for RM/COBOL 185
Example B: Import File with Missing Intermediate Parent Names

Exporting an XML Document

COBOL Statement Description
Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE Execute the XML EXPORT FILE statement specifying:
Liant-Address the data item address,
"LiantB" the XML document filename,
"ExampleB'. and the model filename.
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Importing an XML Document
COBOL Statement Description

Move Spaces to Liant-Address. Ensurethat the Liant-Address item contains no data.

XML IMPORT FILE Execute the XML IMPORT FILE statement specifying:
Liant-Address the data item address,
“LiantB" the XML document filename,
"ExampleB" . and the model filename.

IT Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Program Exit Logic

COBOL Statement Description
Z. Paragraph-name that is atarget of error condition GO TO
statements.
Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).
Stop Run. Terminate the COBOL program.
Copy "lixmldsp.cpy". Copy in the status display logic (see the “ Status Display
Logic” table).

186 Appendix A: XML Toolkit Examples
Example B: Import File with Missing Intermediate Parent Names

Termination Test Logic
This codeisfound in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained hereviaa GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no

errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.

Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code isfound in the copy file, lixmldsp.cpy.

This codeis called twice by the termination test logic: the first timeto report
any error condition that exists, and the second time to report an error (if one

occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-1sSuccess istrue), this paragraph displays no information.

COBOL Statement Description
Display-Status. Thisisthe paragraph-name.
IT Not XML-IsSuccess Do nothing if XML-IsSuccessistrue.
Perform Perform as long as there are status lines available to be
With Test After displayed (until XML-NoMore istrue).

Until XML-NoMore

XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

Display XML-St at usText Display the linethat was just obtained.

End-Perform End of the perform loop.
End-I1F. End of the If statement and the paragraph.

XML Toolkit for RM/COBOL 187
Example B: Import File with Missing Intermediate Parent Names

Execution Results

The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display

Running the program (runcobol exampleB) produces the following display.
Note that pressing a key will terminate the program.

Example-B - Illustrate IMPORT with missing intermediate names
LiantB.xml exported by XML EXPORT FILE

Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759

16480895

LiantB.xml imported by XML IMPORT FILE:

Liant Software Corporation

8911 Capital of Texas Highway North

Suite 4300

Austin TX78759

16480895

XLiantB.xml imported by XML IMPORT FILE:

Wild Hair Corporation

8911 Hair Court

Sweet 4300

Lostin TX70707

99999999

You may use IE to inspect "LiantB.xml" and "XLiantB.xml"

Status: 0000
Press a key to terminate:

188 Appendix A: XML Toolkit Examples
Example B: Import File with Missing Intermediate Parent Names

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
LiantB.xml, and the predefined XML document, XLiantB.xml. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

LiantB.xml

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<liant-address>
<name>Liant Software Corporation</name>
<address-1>8911 Capital of Texas Highway North</address-1>
<address-2>Suite 4300</address-2>
<address-3>
<city>Austin</city>
<state>TX</state>
<zip>78759</zip>
</address-3>
<time-stamp>16480895</time-stamp>
</liant-address>
</root>

XLiantB.xml

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<name>Wild Hair Corporation</name>
<address-1>8911 Hair Court</address-1>
<address-2>Sweet 4300</address-2>
<city>Lostin</city>
<state>TX</state>
<zip>70707</zip>
<time-stamp>0</time-stamp>
</root>

XML Toolkit for RM/COBOL 189
Example B: Import File with Missing Intermediate Parent Names

Example Batch Files

Three batch files are provided to facilitate use of the example programs:
cleanup.bat, example.bat, and examples.bat.

Cleanup.bat

This batch file will remove variousfiles that were created by executing the
example programs. This file contains a series of delete file commands similar to
the following:

@echo off

@echo cleanup

if exist liant*.xml del liant*.xml
if exist tablel.xml del tablel.xml
if exist table2.xml del table2.xml
if exist table3.xml del table3.xml
if exist table4.xml del table4.xml
if exist example*.cob del example*._cob
if exist tmp.cob del tmp.cob

if exist *.Ist del *.lIst

if exist example*.x* del example*.x*
if exist Stamp*.xml del Stamp*_xml
if exist Stamp rmdir Stamp

This batch file has no parameters. Run it by entering the following on the
command line:

Cleanup

190 Appendix A: XML Toolkit Examples
Example Batch Files

Example.bat

This batch file will compile a COBOL source program, run the cobtoxml utility
against the compiled object code, delete the symbol table from the object code,
and, finally, execute the COBOL program. The contents of thisfile are as
follows:

rmcobol %1 y k

cobtoxml %1 %2 %3 —bn

if exist tmp.cob del tmp.cob

rename %l.cob tmp.cob
start /w runcobol rmpgmcom A="STRIP,%1.cob,tmp.cob"
start /w runcobol %1 k

This batch file uses parameters that are specified by the caller of the batch file.
Thefirst parameter is the filename of the COBOL program (without the .cbl
extension). The second parameter is the name of a data-item within the COBOL
program, from which the cobtoxml utility will construct model files. The third
parameter is used for passing options to the cobtoxml utility.

To build and run “Example 1. Export File and Import File” (see page 88) using
this batch file, enter the following on the command line:

example Examplel Liant-Address

Examples.bat

This batch file will clean up files that were created from a previous run and
then compile and run each example. The contents of thisfile are similar to
the following:

XML Toolkit for RM/COBOL 191
Example Batch Files

@echo off
call cleanup

@echo Examplel - Export / Import File.
call example examplel Liant-Address

@echo Example2 - Export / Import with style sheets.
call example example2 Liant-Address

@echo Example3 - Export / Import with Occurs Depending.
call example example3 Liant-Address

@echo Example4 - Export / Import with sparse arrays.
call example example4 Data-Table —sn

@echo Example5 - Export 7/ Import Text.
call example example5 Liant-Address

@echo Example6 - Export / Import with directory polling.
mkdir Stamp
call example example6 Time-Stamp

@echo Example7 - Export / Well-Formed File / Validate
File.
call example example7 Liant-Address

@echo Example8 - Export / Well-Formed Text / Validate
Text.
call example example8 Liant-Address

@echo Example9 - Export / Transform / Import.
call example example9 Liant-Address

@echo ExampleA - Well-Formed / Validate diagnostics.
call example exampleA Liant-Address

@echo ExampleB - Import with missing intermediate names.
call example exampleB Liant-Address -sn

This batch file has no parameters. Run it by entering the following on the
command line:

Examples

192

Appendix A: XML Toolkit Examples
Example Batch Files

Appendix B: XML Toolkit
Sample Application
Programs

The XML Toolkit for RM/COBOL provides several complete and useful sample
application programs. The purpose of these self-contained programsisto
demonstrate and explain how to perform typical application-building tasksin the
XML Toolkit within arealistic context so that you can better see how to
integrate them into your own applications. This appendix describes how to use
and access these sample application programs.

Using the Sample Application Programs

The sample application programs are included in the XML Toolkit samples
directory, Samples. As shipped from Liant, this directory contains only asingle
HTML file. Viewing thisfile with your Web browser will direct you to an XML
Toolkit samples page on the Liant Web site at:

http://ww.liant.com/xmltk/samples

This page contains a list of links to the various sample applications. Selecting a
sample will cause that sample to be downloaded and installed on your computer.
For example, selecting the Directory Split (DirSplit) sample will download this
application in the Dir Split subdirectory of the Samples directory.

Note The most complete and up-to-date versions of the XML Toolkit
sample programs can be found on the Liant Web site shown above.

XML Toolkit for RM/COBOL 193
Using the Sample Application Programs

194 Appendix B: XML Toolkit Sample Application Programs
Using the Sample Application Programs

Appendix C: XML Toolkit
Error Messages

This appendix lists and describes the messages that can be generated during the
use of the XML Toolkit for RM/COBOL.

Error Message Format

XML Toolkit error messages may be several lineslong. The general format of
an error message includes the text of the message, and, if available, the COBOL
traceback information, the name of the file or dataitem, and the parser
information.

Note A table listing the error messages begins on page 197.

Message Text

Thefirst line of the error message has the following format:

<severity> - <message number> <message text>

severity indicates the gravity and type of message: Informative, Warning,
or Error.

message humber is the documented message number followed by an internal
message number in bracket characters. Theinternal number provides
information for Liant Technical Support to use in diagnosing problems.

message text is a brief explanation for the cause of the error.

XML Toolkit for RM/COBOL 195
Error Message Format

The following illustrates an example of thefirst line of an error message:

Error: 28[12] - in function: LoadDocument

COBOL Traceback Information

The second line of the error message, present if the information is available,
contains COBOL traceback information such as the following:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB),
compiled 2002/08/29 09:42:06.

The error-reporting facility will try to break up lines that are too long for the
line buffer provided in the COBOL program. This preventslong lines from
being truncated. A backward slash character (\) is placed in the last position
of the buffer and the line is continued on the subsequent line. For example,
the traceback line shown above may be broken up asfollows:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB), co\
mpiled 2002/08/29 09:42:06.

Filename or Data Item in Error

The third line of the error message, present if the information is available,
normally contains the name of thefile or dataitem in error being referenced.

Parser Information

Additional lines may be present that contain parser or schema diagnostics from
the underlying XML parser, such as:

Error parsing "a9" as number datatype.
line 5, position 16
<ltemCount>a9</ItemCount>

Thefirst line of parser or schema diagnostic information contains an error
message. The second line contains the line number and column position within
the XML document. The third line containsthe line of XML text in error. The
fourth line contains an indicator that draws attention to the column position.

196

Appendix C: XML Toolkit Error Messages
Error Message Format

Summary of Error Messages

Tablel: XML Toolkit for RM/COBOL Error Messages

Message
Number Message Text Description

0 Success A normal completion occurred, no informative

message, warning or error was detected.

1 Informative- indicated An XML FIND FILE statement did not find any
directory contains no XML documents (fileswith a.xml extension) in
documents the specified directory.

2 Informative- document file - An XML EXPORT FILE or XML EXPORT
no data TEXT statement generated a document that

contained no element values.

3 Warning - internal logic - During process cleanup, memory blocks that
memory not deallocated should have aready been deallocated were still

allocated.

4 Warning - invalid option - The cobtoxml utility has detected an invalid
ignored command line option. The option isignored and

processing continues.

5 Error - COBOL object file - The cobtoxml utility has detected that the
invalid Format specified COBOL object fileis not valid. This

usually means that the header checksum is
invalid.

6 Error - COBOL object file - The cobtoxml utility detected an error while
open failure attempting to open the specified COBOL object

file

7 Error - COBOL object file - The cobtoxml utility detected an error while
read failure attempting to read data from the specified

COBOL object file.

8 Error - COBOL object file - The cobtoxml utility detected an error while
seek failure attempting to seek to alocation within the

specified COBOL object file.

9 Error - in function: The underlying XML parser detected an error

CreateDocument

while trying to create an XML document. This
error may occur in the cobtoxml utility or the
xmlif library.

XML Toolkit for RM/COBOL
Summary of Error Messages

197

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number Message Text Description
10 Error - cannot create URL The Xmlif library detected that a URL (astring
beginning with the sequence "http://") was used
as an output document name.
11 Error — dataitem — duplicate The cobtoxml utility has detected that there is
found more than one occurrence of the specified data
item namein the COBOL aobject file or library.
12 Error — data item — not found The cobtoxml utility has detected that there are
no occurrences of the specified data item namein
the COBOL object file or library.
13 Error — document file — An attempt to create an XML document file has
create failure failed. Thiserror may occur in the Xmlif library
or the cobtoxml utility.
14 Error — document file—file The Xmlif library detected an error while
open failure attempting to open an XML document file.
15 Error — extraneous element The Xmlif library has detected an extra
occurrence of a scalar data element.
16 Error — examplefile — create The cobtoxml utility detected an error while
failure attempting to create an examplefile.
17 Error —in function: The xmlif library detected an error in the
GetFirstChild function GetFirstChild while parsing an XML
document.
18 Error —in function: The xmlif library detected an error in the
GetNextSibling function GetNextSibling while parsing an XML
document.
19 Error —in function: The xmlif library detected an error in the
GetNodeData function GetNodeData while parsing an XML
document.
20 Error —in function: The xmlif library detected an error in the
GetRootNode function GetRootNode while parsing an XML
document.
21 Error —internal logic — An attempt to allocate a block of memory failed.
memory allocation This error may occur in either the cobtoxml
utility or the xmlif library.
22 Error —interna logic — An attempt to deallocate (free) a block of

memory corruption

memory failed either because the block header or
trailer was corrupted or because the free memory
call returned an error. This error may occur in
either the cobtoxml utility or the xmlif library.

198 Appendix C: XML Toolkit Error Messages
Summary of Error Messages

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

23

24

25

26

27

28

Message Text
Error —internal logic — node
not found

Error —in function:
Initialization

Error —invalid data address

Error —invalid object time
stamp

Error — license management

Error —in function:
L oadDocument

Description

The xmlif library has detected an inconsi stency
initsinternal tables. Specifically an expected
entry in the Document Object Model is missing.

Either an XML statement (other than XML
INITIALIZE) was executed without first
executing the XML INITIALIZE statement or
the XML INITIALIZE statement failed. This
error may occur in the xmlif library. In addition,
improper installation of the underlying XML
parser could cause the cobtoxml utility to fail
with this error while attempting to generate a
style sheet or schema.

The xmlif library has detected that the data
structure address specified in an XML IMPORT
or XML EXPORT statement does not match the
data address specified in the template file. This
normally means that the COBOL program has
been re-compiled but that the cobtoxml utility
was hot re-executed to regenerate the model files.

The xmlif library while attempting to execute an
XML IMPORT OR XML EXPORT statement
has detected that the time stamp of the COBOL
object used in generating the model files does not
match the time stamp of the COBOL object
being executed. This normally means that the
COBOL program has been re-compiled but that
the cobtoxml utility was not re-executed to
regenerate the model files.

The license verification logic in the cobtoxml
utility detected an error.

An error was detected while trying to load an
XML document. This normally means that there
was a problem locating the document (either the
document does not exist or thereis a problem
with permissions). Thiserror may occur in either
the xmlif library or the cobtoxml utility.

XML Toolkit for RM/COBOL
Summary of Error Messages

199

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

29

30

31

32

33

35

Message Text

Error —in function:
LoadSchema

Error - in function:
L oadStyleSheet

Error - in function:
L oadStyleSheetFromText

Error - in function:
LoadTemplate

Error - parameter - COBOL
object file name missing

Error - parameter - dataitem
name missing

Error - subscript out of range

Description

An error was detected while trying to load an
XML schemafile. Thisnormally means that
there was a problem |ocating the document
(either the document does not exist or thereisa
problem with permissions). This error may occur
in either the xmlif library or the cobtoxml utility.

An error was detected while trying to load an

XML style sheet. This normally means that there
was a problem locating the document (either the
document does not exist or thereis a problem
with permissions). Thiserror may occur in either
the xmlif library or the cobtoxml utility.

An error was detected while trying to load an
XML style sheet. This normally means that there
was a problem locating the document (either the
document does not exist or there is a problem
with permissions). Thiserror may occur in the
cobtoxml utility.

An error was detected while trying to load an
XML templatefile. This normally means that
there was a problem locating the document
(either the document does not exist or thereisa
problem with permissions). This error may occur
in the xmlif library.

The cobtoxml utility has detected that the
COBOL object file name command-line
parameter is missing.

The cobtoxml utility has detected that the data
name command-line parameter is missing.

The xmlif library while executing an XML
IMPORT statement has detected that a subscript
referenceis out of range (the subscript valueis
greater than the maximum for the array). This
may occur either when the subscript is explicitly
supplied in an attribute or when the subscript is
generated implicitly (when an extra occurrence is
present).

200

Appendix C: XML Toolkit Error Messages

Summary of Error Messages

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

36

37

38

39

41

42

Message Text

Error - temporary file access
error

Error - in function:
TransformDOM

Error - in function:
TransformText

Error - symbol table - not
found

Error - old runtime version

Error - in function:
WriteDocument

Description

The xmlif library uncounted error while
attempting to access atemporary intermediate
file. Thiserror can occur during the XML
IMPORT TEXT, XML EXPORT TEXT, XML
VALIDATE TEXT, or XML TEST
WELLFORMED-TEXT statements.

An unexpected error occurred while performing
an XSLT transform of an XML document. This
ismost likely an internal error. This error may
occur in either the xmlif library or the cobtoxml
utility.

An error occurred while performing an XSLT
transform of an XML document using an external
(user-supplied) style sheet. Thiserror may occur
in the xmlif library.

This cobtoxml utility could not find the symbol
table information in the COBOL object. This
normally indicates that the COBOL program
needs to be recompiled using the Y option.

The cobtoxml utility has detected that the current
COBOL runtime version is not supported. An
RM/COBOL version 7.5 or newer runtimeis
required.

An error occurred while attempting to write an
XML document from the internal Document
Object Model representation. This error may
occur in either the xmlif library or the cobtoxml
utility.

Wrong COBOL object
version

Wrong cobtoxml revision

The cobtoxml utility has determined that the
COBOL object version being used is newer than
was available when this XML Toolkit version
was released and, therefore, may contain features
that are not supported by the XML Toolkit.
Check with Liant Software for updates to the
XML Toolkit.

The xmlif library has determined that the format
of the model files may be incompatible with the
xmlif library. This normally indicates that a new
version of the XML Toolkit is being used but that
the model files were generated with an older
cobtoxml utility.

XML Toolkit for RM/COBOL
Summary of Error Messages

201

202 Appendix C: XML Toolkit Error Messages
Summary of Error Messages

Glossary of Terms

COBOL data structure. A COBOL data structure isa COBOL dataitem. In
genera, it isagroup dataitem, but in some cases, it may be a single elementary
dataitem. The cobtoxml utility, a component of the XML Toolkit, captures the
COBOL data structure, including transformed data-names of the data items and
subordinate dataitems, if any, so that a mapping between the COBOL data
structure itself and an XML representation of the COBOL data structure can be
accomplished in either direction at runtime.

XHTML. Extensible HyperText Markup Language.

Schemavalid XML document. An XML document that conformsto a
particular XML schema.

UNC. Universal Naming Convention.

URL. Universal Resource Locator.

Valid XML document. See Schemavalid XML document.

Weéll-formed XML document. An XML document that conforms to the syntax
requirements of XML. A well-formed XML document may or may not be a
valid document with respect to aparticular XML schema.

XML. Extensible Markup Language.

XML schema. An XML document that specifies the structure and allowed
content for another XML document.

XSLT. XML Style Sheet Language for Transformation.

XML Toolkit for RM/COBOL 203

204 Glossary of Terms

Index

A

All caps, as adocument convention, 3
Arrays, sparse, 113
ASCII characters, 48, 51
Attributes, 19
unique identifier (uid), 42

B

Banner options (cobtoxml utility), 57
Bold type, use of as a document convention, 3
Brackets ([]), use of in COBOL syntax, 4

C

Caching XML documents, 50, 83-84
Character encoding, 51
COBOL
and XML, 16
considerations
copy files, 44
data conventions, 38
file management, 35
limitations, 47
optimizations, 49
data structure, defined, 14, 203
importing from and exporting to XML
documents, 14
symbol table information, 22, 33
cobtoxml utility, 10, 21, 55
command line interface, 56
command line options, 57
described, 10, 21, 55
model files, 24, 59
Conventions and symbols, 3

Copy files, 10, 15
display status information, 45
statement definitions, 45
terminate application, 46

D

Data conventions

data representation, 38

FILLER data, 39

intermediate parent names, 40

sparse COBOL records, 44
Dataitems, 47

edited, 48

OCCURS restrictions, 48

size, 48

wide and narrow characters, 48
DEPENDING variable, 49
Directory polling example, 135
Display status, 45
Documentation overview, 2

E

Elements, 17
unique names, 41
Error messages, 195
list of, 197
Examplefiles, 24, 60
Examples, 10, 87
batch files, 190
development process, typical, 22
export file and import file, 88
export file and import file with directory
polling, 135
export file and import file with OCCURS
DEPENDING, 105
export file and import file with sparse arrays,
113
export file and import file with style sheets, 96
export file, test well formed file, and validate
file, 146
export file, test well formed text, and validate
text, 154
export file, transform file, and import file, 162
export text and import text, 127
import file with missing intermediate parent
names, 181
well formed and validate diagnostic messages,
173

XML Toolkit for RM/COBOL 205

F

File management

automatic search for files, 35

filename conventions, 36
Filenames, conventions for, 3
Flags, 86

CodeBridge, 79

G
Glossary definitions, 203

H

Hyphen (-), use of, optional, RM/COBOL
compilation and runtime options, 4

Input and output files
file naming conventions, 37
Installing
system requirements, 9
deployment system, 13
development system, 12
Intermediate parent names, 40, 58
example, 181
Italic, use of as a document convention, 3

K

Key combinations, document convention for, 4

M

Messages, 195
list of, 197
Model files, 24
example, 24, 60
file naming conventions, 36
referencing, 59
schema, 27, 60
style sheet, 26, 60
template, 25, 60
MSXML parser, 11, 61

N

Name options (cobtoxml utility), 57

O

Occurrences

empty, 49

limiting, 49
OCCURS restrictions, 48
Online services, 5
Organization of this manual, 2
Output and input files

file naming conventions, 37

P

Parent names. See | ntermediate parent names
PATH environment variable, 56

R

Registration, 5

Related publications, 3

RMPATH environment variable, 56
rmpgmcom utility, 33

RUNPATH environment variable, 35-37

S

Sample programs, 10, 193
Schemafiles, 27, 53, 60
Schema options (cobtoxml utility), 59
Schemavalid XML document, 27, 203
Sparse arrays, 113
Statements, xmlif library, 61
XML DISABLE ALL-OCCURRENCES, 49,
81
XML DISABLE ATTRIBUTES, 82
XML DISABLE CACHE, 83
XML ENABLE ALL-OCCURRENCES, 82
XML ENABLE ATTRIBUTES, 83
XML ENABLE CACHE, 84
XML EXPORT FILE, 62
XML EXPORT TEXT, 64
XML FIND FILE, 76
XML FLUSH CACHE, 84
XML FREE TEXT, 72
XML GET STATUSTEXT, 85
XML GET TEXT, 73
XML GET UNIQUEID, 77
XML IMPORT FILE, 65
XML IMPORT TEXT, 66
XML INITIALIZE, 80

206 Index

XML PUT TEXT, 73
XML REMOVE FILE, 74
XML SET FLAGS, 86
XML TERMINATE, 80
XML TEST WELLFORMED-FILE, 67
XML TEST WELLFORMED-TEXT, 68
XML TRANSFORM FILE, 69
XML VALIDATE FILE, 70
XML VALIDATE TEXT, 71
Status information display, 45
Style sheets, 19, 26, 52, 60
example program, 96
externdl, file naming conventions, 37
Support services, technical, 5
Symbol table information, 22, 33
Symbols and conventions, 3
System requirements, 9

T
Tags, 17, 25, 57

Technical support services, 5
Templatefiles, 25, 60

U

Unicode characters, 48, 51
Unique identifier (uid), 42
UTF-8 format, 48, 51

\Y

Validating, 27

w

Web site, Liant, 5
Well-formed XML document, 27, 203

XML

and COBOL, 19

considerations, 51
character encoding, 51
schemafiles, 53
style sheets, 52

defined, 15, 203

style sheets, 19

validating, 27

well-formed XML document, 27, 203

XML Toolkit

COBOL considerations, 35
cobtoxml utility, 55
deployment, 11
development, 10

error messages, 195
example, development process, 22
examples, 87

getting started, 21

model files, 24, 59
overview, 14

sample programs, 193
system requirements, 9
XML considerations, 51
xmlif library, 61

xmlif library, 11, 21, 61

copy files, 15, 44
described, 11, 21, 61
examples, 87
schemafiles, 53
statements, 61
XML DISABLE ALL-OCCURRENCES,
49, 81
XML DISABLE ATTRIBUTES, 82
XML DISABLE CACHE, 83
XML ENABLE ALL-OCCURRENCES, 82
XML ENABLE ATTRIBUTES, 83
XML ENABLE CACHE, 84
XML EXPORT FILE, 62
XML EXPORT TEXT, 64
XML FIND FILE, 76
XML FLUSH CACHE, 84
XML FREE TEXT, 72
XML GET STATUS-TEXT, 85
XML GET TEXT, 73
XML GET UNIQUEID, 77
XML IMPORT FILE, 65
XML IMPORT TEXT, 66

XML Toolkit for RM/COBOL 207

XML INITIALIZE, 80

XML PUT TEXT, 73

XML REMOVE FILE, 74

XML SET FLAGS, 86

XML TERMINATE, 80

XML TEST WELLFORMED-FILE, 67
XML TEST WELLFORMED-TEXT, 68
XML TRANSFORM FILE, 69

XML VALIDATEFILE, 70

XML VALIDATE TEXT, 71

style sheet files, 26
template files, 25

208

Index

	XML Toolkit for RM/COBOL v1 for Windows
	Copyright
	Contents
	Preface
	Welcome to XML Toolkit for RM/COBOL
	About Your Documentation
	Related Publications
	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Installation and Introduction
	Installing XML Toolkit for RM/COBOL
	System Requirements
	XML Toolkit for RM/COBOL Package
	Development
	Deployment

	Installation
	Installing the XML Toolkit for RM/COBOL Development System
	Installing the XML Toolkit for RM/COBOL Deployment System

	Introducing XML Toolkit for RM/COBOL
	What is XML?
	COBOL as XML
	XML as COBOL

	Chapter 2: Getting Started with XML Toolkit
	Overview
	Typical Development Process Example
	Design the Data Structure
	Compile the Program
	Run the cobtoxml Utility
	Model Files

	Execute the COBOL Program
	Making a Program Skeleton
	Making a Program that Exports an XML Document
	Populating the XML Document with Data Values

	Deploy the Application

	Chapter 3: COBOL Considerations
	File Management
	Automatic Search for Files
	File Management Conventions
	Model File Naming Conventions
	External Style Sheet File Naming Conventions
	Other Input File Naming Conventions
	Other Output File Naming Conventions

	Data Conventions
	Data Representation
	FILLER Data
	Missing Intermediate Parent Names
	Unique Element Names
	Unique Identifier (uid)

	Sparse COBOL Records

	Copy Files
	Statement Definitions
	Displaying Status Information
	Application Termination

	Limitations
	Data Items (Data Structures)
	Edited Data Items
	Wide and Narrow Characters
	Data Item Size
	OCCURS Restrictions
	Reading, Writing, and the Internet

	Optimizations
	Occurs Depending
	Empty Occurrences
	Cached XML Documents

	Chapter 4: XML Considerations
	Character Encoding
	Style Sheets
	Schemas

	Chapter 5: cobtoxml Utility Reference
	What is the cobtoxml Utility?
	Command Line Interface
	Command Line Options
	Banner Options
	Name Options
	Schema Options

	Referencing XML Model Files
	Internal Style sheet
	Template File
	Example File
	Schema File

	Chapter 6: xmlif Library Reference
	What is the xmlif Library?
	Document Processing Statements
	XML EXPORT FILE
	XML EXPORT TEXT
	XML IMPORT FILE
	XML IMPORT TEXT
	XML TEST WELLFORMED-FILE
	XML TEST WELLFORMED-TEXT
	XML TRANSFORM FILE
	XML VALIDATE FILE
	XML VALIDATE TEXT

	Document Management Statements
	XML FREE TEXT
	XML GET TEXT
	XML PUT TEXT
	XML REMOVE FILE

	Directory Management Statements
	XML FIND FILE
	XML GET UNIQUEID

	State Management Statements
	XML INITIALIZE
	XML TERMINATE
	XML DISABLE ALL-OCCURRENCES
	XML ENABLE ALL-OCCURRENCES
	XML DISABLE ATTRIBUTES
	XML ENABLE ATTRIBUTES
	XML DISABLE CACHE
	XML ENABLE CACHE
	XML FLUSH CACHE
	XML GET STATUS-TEXT
	XML SET FLAGS

	Appendix A: XML Toolkit Examples
	Example 1: Export File and Import File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 2: Export File and Import File with Style Sheets
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Style Sheets
	Execution Results

	Example 3: Export File and Import File with OCCURS DEPENDING
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 4: Export File and Import File with Sparse Arrays
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 5: Export Text and Import Text
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 6: Export File and Import File with Directory Polling
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 7: Export File, Test Well Formed File, and Validate File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 8: Export Text, Test Well Formed Text, and Validate Text
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 9: Export File, Transform File, and Import File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example A: Well Formed and Validate Diagnostic Messages
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example B: Import File with Missing Intermediate Parent Names
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example Batch Files
	Cleanup.bat
	Example.bat
	Examples.bat

	Appendix B: XML Toolkit Sample Application Programs
	Using the Sample Application Programs

	Appendix C: XML Toolkit Error Messages
	Error Message Format
	Message Text
	COBOL Traceback Information
	Filename or Data Item in Error
	Parser Information

	Summary of Error Messages

	Glossary of Terms
	Index

