

Micro Focus
RM/COBOL

RM/COBOL
Language Reference Manual

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are trademarks or registered trademarks of
Micro Focus Development Limited or its subsidiaries or affiliated companies in the United States, United Kingdom,
and other countries. All other marks are the property of their respective owners.

Revised 2017-05-12 for version 12.14

 RM/COBOL Language Reference Manual iii

Contents

Preface .. 1

Organization of Information .. 1
Conventions and Symbols .. 2
Related Publications... 3

Chapter 1: Language Structure ... 5

Overview .. 5
Character Set .. 5
Separators .. 6
Character-Strings ... 7

COBOL Words ... 7
User-Defined Words .. 8
System-Names ... 11
Reserved Words ... 12
Context-Sensitive Words ... 21

Literals .. 21
Numeric Literals .. 21
Nonnumeric Literals .. 21
Figurative Constants .. 22
Concatenation Expressions .. 24

PICTURE Character-Strings ... 24
Comment-Entry .. 25

Program Structure .. 25
Source Format ... 25
Continuation of Lines ... 27
Blank Lines ... 27
Comment Lines ... 28
In-Line Comments .. 28
Debugging Lines ... 28
Pseudo-Text .. 29
Statements ... 29

Directive Statements .. 29
Conditional Statements .. 29

Conditional Phrases .. 30
Imperative Statements ... 30
Delimited Scope Statements .. 31

Scope of Statements ... 31
Sentences .. 31
Clauses and Entries ... 31
Paragraphs .. 32
Sections ... 32
Divisions ... 32
Source Program General Format .. 32

iv RM/COBOL Language Reference Manual

Inter-Program Communication .. 33
Nested Source Programs ... 33
File Connector .. 33
Global Names and Local Names... 34
External Objects and Internal Objects .. 34
Common Programs and Initial Programs .. 35
Sharing Data in a Run Unit ... 35
Sharing Files in a Run Unit ... 36
Scope of Names .. 36

Program-Names ... 37
Condition-Names, Constant-Names, Data-Names, File-Names, Record-Names and
Split-Key-Names ... 37
Index-Names .. 38

Initial State of a Program ... 38
End Program Header .. 39
COPY Statement .. 40
REPLACE Statement ... 44
Compiler Directives ... 46

IMP Directive ... 46
IMP MARGIN-R ... 46

LISTING Directive ... 47
PAGE Directive .. 47

Chapter 2: Identification Division .. 49

Identification Division Structure .. 49
Program Identification ... 50

PROGRAM-ID Paragraph .. 50
AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY, and REMARKS
Paragraphs .. 50
DATE-COMPILED Paragraph ... 51

Chapter 3: Environment Division .. 53

Environment Division Structure .. 53
Configuration Section .. 56

SOURCE-COMPUTER Paragraph .. 56
OBJECT-COMPUTER Paragraph.. 56
SPECIAL-NAMES Paragraph .. 57

ALPHABET Clause .. 59
Code Name Alphabets .. 61
Literal Alphabets .. 61
Indexed File Alphabets ... 62
EBCDIC Translation .. 62

CLASS Clause ... 63
CONSOLE IS CRT Clause .. 63
CRT STATUS Clause ... 63
CURRENCY SIGN Clause ... 64
CURSOR Clause ... 64
DECIMAL-POINT Clause .. 65
Mnemonic-Name Clause ... 65
NUMERIC SIGN Clause ... 66
SYMBOLIC CHARACTERS Clause ... 67

Input-Output Section .. 68
FILE-CONTROL Paragraph ... 68

File Control Entry .. 69

 RM/COBOL Language Reference Manual v

SELECT Clause ... 70
ACCESS MODE Clause .. 71
ASSIGN Clause .. 72
CODE-SET Clause ... 73
COLLATING SEQUENCE Clause .. 74
FILE STATUS Clause .. 74
LOCK MODE Clause... 75
ORGANIZATION Clause .. 76

Sequential .. 76
Relative ... 76
Indexed .. 76

PADDING CHARACTER Clause ... 76
RECORD DELIMITER Clause.. 77
RECORD KEY and ALTERNATE RECORD KEY Clauses 78
RESERVE Clause .. 79

Sort-Merge File Control Entry ... 80
SELECT Clause ... 80
ASSIGN Clause .. 80

I-O-CONTROL Paragraph ... 81
RERUN Clause .. 81
SAME Clause .. 82
MULTIPLE FILE TAPE Clause ... 83

Chapter 4: Data Division .. 85

Data Division Structure.. 85
File Section .. 87

File Description Entry ... 87
Sort-Merge File Description Entry ... 88

File Description Clauses .. 89
BLOCK CONTAINS Clause .. 89
CODE-SET Clause ... 89
DATA RECORDS Clause .. 90
EXTERNAL Clause ... 90
GLOBAL Clause .. 90
LABEL RECORDS Clause .. 91
LINAGE Clause.. 91
RECORD Clause .. 95
VALUE OF Clause ... 97

Working-Storage Section ... 97
Linkage Section ... 98
Communication Section ... 100
Screen Section.. 100
Record Description Entry .. 101

Level-Numbers ... 101
Elementary Items .. 101

77-Level Description Entry .. 102
Data Description Entry .. 102

Condition-Name Data Description Entry .. 105
Constant-Name Data Description Entry ... 105
BLANK WHEN ZERO Clause .. 105
Data-Name or FILLER Clause ... 106
EXTERNAL Clause ... 106
GLOBAL Clause .. 107
JUSTIFIED Clause ... 107
Level-Number ... 108

vi RM/COBOL Language Reference Manual

OCCURS Clause .. 108
PICTURE Clause .. 110

Implied PICTURE Clause ... 111
Nonnumeric Implied PICTURE Clause ... 111
Numeric Implied PICTURE Clause ... 112
Implied PICTURE Clause and Other Data Description Clauses 112

PICTURE Character-Strings (Data Categories) .. 112
Symbols Used in a PICTURE Character-String .. 113
Editing Rules ... 116

Simple Insertion Editing ... 117
Special Insertion Editing .. 117
Fixed Insertion Editing ... 117
Floating Insertion Editing ... 118
Zero Suppression Editing ... 119

PICTURE Symbols Precedence .. 120
REDEFINES Clause ... 121
RENAMES Clause ... 122
SAME AS Clause ... 123
SIGN Clause ... 124
SYNCHRONIZED Clause ... 126
USAGE Clause ... 127

COMPUTATIONAL Usage .. 128
COMPUTATIONAL-1 Usage ... 129
COMPUTATIONAL-3 or PACKED-DECIMAL Usage .. 129
COMPUTATIONAL-4 or BINARY Usage .. 129
COMPUTATIONAL-5 Usage ... 130
COMPUTATIONAL-6 Usage ... 131
DISPLAY Usage ... 131
INDEX Usage .. 131
POINTER Usage ... 132

VALUE Clause ... 132
Data Item Initialization Rules (Format 1 VALUE Clause) 134
Condition-Name Rules (Format 2 VALUE Clause) .. 135
Constant-Name Rules (Format 3 VALUE Clause) .. 135

Communication Description Entry .. 137
Input CD General Rules .. 139
Output CD General Rules ... 142
Input-Output CD General Rules ... 143
Status Key Conditions .. 146
Error Key Values .. 147

Screen Description Entry ... 148
AUTO Clause ... 151
BACKGROUND Clause .. 151
BELL Clause .. 152
BLANK LINE Clause ... 152
BLANK REMAINDER Clause .. 153
BLANK SCREEN Clause .. 153
BLANK WHEN ZERO Clause .. 153
BLINK Clause .. 154
COLUMN Clause ... 154
ERASE Clause .. 154
FOREGROUND Clause ... 155
FULL Clause .. 155
HIGHLIGHT and LOWLIGHT Clauses .. 156
JUSTIFIED Clause ... 156
LINE Clause ... 156

 RM/COBOL Language Reference Manual vii

PICTURE Clause .. 158
REQUIRED Clause .. 158
REVERSE Clause ... 159
SECURE Clause ... 159
SIGN Clause ... 159
UNDERLINE Clause .. 159
USAGE Clause ... 160
VALUE Clause ... 160

Data Structures ... 160
Classes of Data ... 160
Standard Alignment Rules .. 161

Uniqueness of Reference ... 161
Qualification ... 162
Subscripting .. 164
Reference Modification .. 165
Identifier ... 166
Condition-Name ... 166
Index-Name .. 167

Table Handling .. 167
Table Definition .. 168
References to Table Items ... 169

Chapter 5: Procedure Division .. 171

Procedure Division Header .. 171
Procedure Division Structure ... 174
Procedures .. 175
Execution ... 175
Procedure References... 175
Explicit and Implicit Transfers of Control ... 176
Segmentation ... 177

Segments ... 177
Fixed Portion ... 177
Independent Segments ... 178

Segmentation Classification ... 178
Segmentation Control ... 179
Restrictions on Program Flow .. 179

ALTER Statement Restrictions ... 179
PERFORM Statement Restrictions .. 179
MERGE Statement Restrictions .. 179
SORT Statement Restrictions .. 179

USE Statement ... 180
Common Rules .. 182

Subscript Evaluation ... 182
Arithmetic Statements .. 182

Modes of Operation ... 182
Composite Size .. 183
ROUNDED Phrase .. 183
Size Error Condition .. 183

Overlapping Operands .. 184
Incompatible Data ... 185

Arithmetic Expressions .. 185
Arithmetic Operators .. 186
Formation and Evaluation Rules ... 186

Conditional Expressions .. 187
Simple Conditions .. 187

viii RM/COBOL Language Reference Manual

Relation Condition ... 187
Comparison of Numeric Operands ... 189
Comparison of Nonnumeric Operands ... 189
Comparisons of Index-Names and Index Data Items 190
Comparison of Pointer Data Items ... 190
LIKE Condition (Special Case of Relation Condition) 190

Class Condition ... 198
Sign Condition ... 200
Condition-Name Condition (Conditional Variable) .. 200
Switch-Status Condition .. 200

Complex Conditions ... 201
Negated Conditions ... 201
Combined Conditions .. 201
Abbreviated Combined Relation Conditions ... 202

Condition Evaluation Rules .. 202
Sequential Organization Input-Output ... 203

Function .. 203
Organization ... 203
Access Mode ... 203
File Position Indicator ... 203
I-O Status .. 203
At End Condition .. 206

Relative Organization Input-Output ... 207
Function .. 207
Organization ... 208
Access Modes ... 208
File Position Indicator ... 208
I-O Status .. 208
Invalid Key Condition .. 211
At End Condition .. 212

Indexed Organization Input-Output ... 213
Function .. 214
Organization ... 214
Access Modes ... 214
File Position Indicator ... 214
I-O Status .. 215
Invalid Key Condition .. 218
At End Condition .. 219

File Locking ... 220
Record Locking .. 221

Record Locking Modes ... 222
Automatic Record Locking Modes .. 222
Manual Record Locking Modes .. 223
Single Record Locking Modes .. 223
Multiple Record Locking Modes ... 224

Interactive Terminal I-O .. 224
Sort-Merge ... 225
Communication Facility ... 225

Message Control System .. 225
Object Program ... 226
Relationship of the Object Program to the Message Control System and Communication
Devices ... 226
Invoking the Object Program .. 226
Scheduled Initiation of the Object Program .. 227
Invocation of the Object Program by the Message Control System 227
Determining the Method of Scheduling .. 227

 RM/COBOL Language Reference Manual ix

Concept of Messages and Message Segments .. 228
Concept of Queues .. 228
Independent Enqueueing and Dequeueing .. 228
Enabling and Disabling Queues .. 229
Queue Hierarchy ... 229

Chapter 6: Procedure Division Statements 231

ACCEPT . . . FROM Statement ... 231
ACCEPT Statement (Terminal I-O) .. 234

AUTO Phrase.. 237
BEEP or NO BEEP Phrase ... 237
BLINK Phrase .. 238
CONTROL Phrase .. 238
CONVERT Phrase .. 239
CURSOR Phrase ... 240
ECHO Phrase .. 241
ERASE Phrase .. 241
ON EXCEPTION and NOT ON EXCEPTION Phrases ... 241
HIGH, LOW and OFF Phrases ... 242
LINE and POSITION Phrases .. 243

Determining Line and Position .. 244
MODE IS BLOCK Phrase .. 244
PROMPT Phrase ... 244
REVERSE Phrase ... 245
SIZE Phrase .. 245
TAB Phrase ... 246
TIME Phrase ... 246
UNIT Phrase ... 247
UPDATE Phrase ... 247

ACCEPT MESSAGE COUNT Statement ... 248
ACCEPT Screen-Name Statement ... 249
ADD Statement .. 252

CORRESPONDING Phrase ... 253
ALTER Statement .. 254
CALL Statement .. 255

USING Phrase .. 258
GIVING Phrase .. 259
OVERFLOW, EXCEPTION, and NOT EXCEPTION Phrases 260

CALL PROGRAM Statement ... 261
CANCEL Statement... 262
CLOSE Statement .. 264

REEL and UNIT Phrases .. 264
NO REWIND Phrase .. 265
REMOVAL Phrase ... 265
LOCK Phrase .. 265

COMPUTE Statement ... 266
CONTINUE Statement .. 267
DELETE Statement (Relative and Indexed I-O).. 267
DELETE FILE Statement .. 269
DISABLE Statement .. 270

INPUT Phrase ... 271
I-O TERMINAL Phrase.. 271
OUTPUT Phrase ... 271
TERMINAL Phrase .. 271
WITH KEY Phrase ... 272

x RM/COBOL Language Reference Manual

DISPLAY . . . UPON Statement .. 272
DISPLAY Statement (Terminal I-O) ... 274

BEEP Phrase ... 275
BLINK Phrase .. 276
CONTROL Phrase .. 276
CONVERT Phrase .. 276
ERASE Phrase .. 277
HIGH and LOW Phrases .. 277
LINE and POSITION Phrases .. 278

Determining Line and Position .. 278
MODE IS BLOCK Phrase .. 279
REVERSE Phrase ... 279
SIZE Phrase .. 279
UNIT Phrase ... 280

DISPLAY Screen-Name Statement ... 280
DIVIDE Statement ... 282

REMAINDER Phrase ... 284
ENABLE Statement ... 285

INPUT Phrase ... 285
I-O TERMINAL Phrase.. 286
OUTPUT Phrase ... 286
TERMINAL Phrase .. 286
WITH KEY Phrase ... 286

ENTER Statement .. 287
EVALUATE Statement ... 288

General Rules for the EVALUATE Statement ... 289
EXIT Statement ... 291
GOBACK Statement .. 293
GO TO Statement .. 294

DEPENDING ON Phrase ... 294
IF Statement ... 295
INITIALIZE Statement .. 297

General Rules for the INITIALIZE Statement ... 297
INSPECT Statement .. 300

General Rules for the INSPECT Statement .. 301
MERGE Statement .. 307

General Rules for the MERGE Statement .. 308
MOVE Statement ... 311

CORRESPONDING Phrase ... 314
MULTIPLY Statement .. 315
OPEN Statement .. 316

INPUT Phrase ... 319
OUTPUT Phrase ... 319
I-O Phrase ... 319
EXTEND Phrase ... 320
NO REWIND Phrase .. 320

PERFORM Statement .. 321
PURGE Statement ... 332
READ Statement .. 333

KEY Phrase .. 336
LOCK Phrase .. 337
INTO Phrase ... 338
INVALID KEY and NOT INVALID KEY Phrases ... 338

RECEIVE Statement .. 339
NO DATA and WITH DATA Phrases ... 340
MESSAGE Phrase .. 340

 RM/COBOL Language Reference Manual xi

SEGMENT Phrase .. 341
RELEASE Statement ... 342

FROM Phrase ... 342
RETURN Statement... 343
REWRITE Statement ... 344

FROM Phrase ... 346
SEARCH Statement ... 347

General Rules for the SEARCH Statement... 348
SEND Statement .. 352

General Rules for the SEND Statement .. 353
ADVANCING Phrase .. 354

SET Statement ... 356
General Rules for the SET Statement ... 357

SORT Statement .. 360
General Rules for the SORT Statement .. 361

START Statement (Relative and Indexed I-O) .. 365
SIZE Phrase .. 368
WHILE Phrase .. 368
INVALID KEY and NOT INVALID KEY Phrases ... 370

STOP Statement ... 371
STRING Statement .. 372

DELIMITED Phrase ... 373
POINTER Phrase .. 374
OVERFLOW and NOT OVERFLOW Phrases .. 374

SUBTRACT Statement .. 375
CORRESPONDING Phrase ... 376

UNLOCK Statement .. 377
UNSTRING Statement .. 378
USE Statement ... 380
WRITE Statement .. 381

FROM Phrase ... 383
ADVANCING Phrase .. 383
END-OF-PAGE and NOT END-OF-PAGE Phrases .. 384
INVALID KEY and NOT INVALID KEY Phrases ... 385

Appendix A: Reserved Words ... 387

Reserved Words ... 387
Context-Sensitive Words ... 393
Special Symbols ... 395
Nonreserved System-Names .. 395

Appendix B: Compiler Messages .. 399

Compiler Messages .. 399
Compiler Messages 001—100 ... 400
Compiler Messages 101—200 ... 411
Compiler Messages 201—300 ... 423
Compiler Messages 301—400 ... 433
Compiler Messages 401—500 ... 444
Compiler Messages 501—600 ... 455
Compiler Messages 601—700 ... 459
Compiler Messages 701—800 ... 466
Compiler Messages 801—900 ... 479

Glossary ... 481

xii RM/COBOL Language Reference Manual

Terms and Definitions.. 481
66-Level-Description-Entry.. 481
77-Level-Description-Entry.. 481
78-Level-Description-Entry.. 481
88-Level-Description-Entry.. 481
Abbreviated Combined Relation Condition ... 481
Access Mode .. 482
Actual Argument .. 482
Actual Decimal Point ... 482
Alphabetic Character .. 482
Alphabet-Name .. 482
Alphanumeric Character ... 482
Alternate Record Key ... 482
ANSI ... 482
Area A .. 482
Area B .. 483
Arithmetic Expression .. 483
Arithmetic Operation .. 483
Arithmetic Operator.. 483
Arithmetic Statement .. 483
Ascending Key ... 483
Assumed Decimal Point ... 483
At End Condition .. 484
Automatic Multiple .. 484
Automatic Record Locking Modes ... 484
Automatic Single .. 484
Based Linkage Record .. 484
Binary Allocation Override .. 484
Binary Sequential ... 485
Block .. 485
Bottom Margin ... 485
Called Program ... 485
Calling Program ... 485
Cd-Name .. 485
Channel-Name .. 485
Character .. 485
Character Position .. 485
Character-String ... 485
Class Condition .. 486
Class-Name .. 486
Clause ... 486
COBOL Character Set .. 486
COBOL Word .. 487
Code-Name ... 487
Codepage .. 487
Collating Sequence ... 487
Column ... 487
Combined Condition .. 487
Comment Line .. 487
Comment Entry .. 487
Common Program .. 488
Communication Description Entry ... 488
Communication Device .. 488
Communication Section ... 488
Compile Time ... 488
Compiler Directing Statement .. 488

 RM/COBOL Language Reference Manual xiii

Compiler Directive ... 488
Complex Condition .. 488
Composite of Operands .. 488
Computer-Name ... 489
Concatenation Expression .. 489
Condition .. 489
Conditional Expression .. 489
Conditional Phrase ... 489
Conditional Statement .. 489
Conditional Variable .. 489
Condition-Name ... 489
Condition-Name Condition .. 490
Configuration Section ... 490
Constant-Expression ... 490
Constant-Name ... 490
Context-Sensitive Word ... 490
Contiguous Items .. 490
Counter ... 490
Currency Sign ... 491
Currency Symbol .. 491
Current Record ... 491
Current Volume Pointer ... 491
Data Clause... 491
Data Description Entry ... 491
Data Item .. 491
Data-Name.. 491
Debugging Line .. 491
Declarative Sentence .. 491
Declaratives .. 492
De-Edit ... 492
Delimited Scope Statement .. 492
Delimiter ... 492
Descending Key ... 492
Destination.. 492
Device Name .. 492
Digit Position .. 492
Directive ... 492
Division .. 493
Division Header .. 493
Dynamic Access ... 493
Editing Character .. 493
EGI ... 493
Elementary Item ... 493
EMI... 494
End of Group Indicator (EGI) .. 494
End of Message Indicator (EMI) .. 494
End of Procedure Division ... 494
End of Segment Indicator (ESI) ... 494
End Program Header .. 494
Entry ... 494
Environment Clause ... 494
ESI .. 494
Exclusive File ... 494
Exclusive Mode .. 495
Execution Time .. 495
Explicit Scope Terminator .. 495

xiv RM/COBOL Language Reference Manual

Expression .. 495
Extend Mode .. 495
External Attribute ... 495
External Data .. 495
External Data Item .. 495
External Data Record ... 495
External File Connector .. 495
External Switch .. 496
Feature-Name ... 496
Figurative Constant .. 496
File .. 496
File Access Name ... 496
File Attribute Conflict Condition ... 496
File Clause .. 496
File Connector .. 496
File Control Entry ... 496
File Description Entry .. 496
File Organization .. 497
File Position Indicator .. 497
File Section ... 497
FILE-CONTROL ... 497
File-Name ... 497
Fixed File Attributes ... 497
Fixed-Length Record .. 497
Fixed-Form Reference Format ... 497
Footing Area ... 497
Formal Argument ... 498
Format .. 498
Global Name... 498
Group Item ... 498
High Order End .. 498
Identification Area .. 498
Identifier ... 498
Imperative Statement .. 498
Implicit Scope Terminator .. 499
Index ... 499
Index Data Item .. 499
Indexed File .. 499
Indexed Organization ... 499
Index-Name .. 499
Indicator Area ... 499
Initial Program .. 499
Initial State ... 499
In-Line Comment ... 499
Input File .. 500
Input Mode ... 500
Input Procedure .. 500
Input-Output File .. 500
Input-Output Section .. 500
Input-Output Statement .. 500
Integer ... 500
Internal Data ... 500
Internal Data Item ... 500
Internal File Connector ... 501
Intra-Record Data Structure.. 501
Invalid Key Condition .. 501

 RM/COBOL Language Reference Manual xv

I-O Mode .. 501
I-O Status .. 501
I-O-CONTROL .. 501
I-O-CONTROL Entry .. 501
ISO ... 501
Key ... 501
Key of Reference .. 502
Keyword ... 502
Language-Name ... 502
Letter .. 502
Level Indicator ... 502
Level-Number .. 502
Library Text .. 502
Library-Name ... 502
LIKE Relation Condition ... 502
LINAGE-COUNTER ... 503
Line Sequential ... 503
Linkage Section .. 503
Literal ... 503
Lock Mode ... 503
Logical Operator ... 503
Logical Page ... 503
Logical Record ... 504
Low Order End ... 504
Low-Volume-I-O-Name ... 504
Manual Multiple ... 504
Manual Record Locking Modes ... 504
Manual Single ... 504
Margin R .. 504
Mass Storage .. 504
Mass Storage Control System (MSCS) .. 505
Mass Storage File ... 505
Maximum Source Record Length ... 505
MCS (Message Control System) .. 505
Merge File .. 505
Message .. 505
Message Control System (MCS) .. 505
Message Count ... 505
Message Indicators ... 505
Message Segment ... 506
Mnemonic-Name .. 506
MSCS (Mass Storage Control System) .. 506
Multiple Record Locking Modes .. 506
Native Character Set ... 506
Native Collating Sequence ... 506
Negated Combined Condition .. 506
Negated Simple Condition ... 506
Next Executable Sentence .. 506
Next Executable Statement ... 506
Next Record .. 507
Noncontiguous Item ... 507
Nonnumeric Item .. 507
Nonnumeric Literal .. 507
Null ... 507
Numeric Character.. 507
Numeric Item .. 507

xvi RM/COBOL Language Reference Manual

Numeric Literal .. 507
Object Computer Entry ... 507
Object of Entry ... 507
Object Program ... 508
Object Time .. 508
OBJECT-COMPUTER .. 508
Obsolete Element ... 508
OEM ... 508
Open Mode ... 508
Operand .. 508
Operational Sign ... 508
Optional File ... 509
Optional Word .. 509
Output File .. 509
Output Mode... 509
Output Procedure .. 509
Padding Character .. 509
Page Body... 509
Paragraph .. 509
Paragraph Header ... 509
Paragraph-Name ... 510
Pattern ... 510
Phrase ... 510
Physical Page .. 510
Physical Record .. 510
Pointer Data Item .. 510
Previous Record ... 510
Prime Record Key .. 510
Procedure .. 511
Procedure Branching Statement ... 511
Procedure-Name ... 511
Program Identification Entry .. 511
Program-Name ... 511
Program-Text .. 511
Program-Text Area ... 511
Pseudo-Text .. 511
Pseudo-Text Delimiter .. 511
Punctuation Character .. 511
Qualified Data-Name.. 512
Qualifier ... 512
Queue ... 512
Queue Name ... 512
Random Access .. 512
Record .. 513
Record Area .. 513
Record Delimiting Technique .. 513
Record Description ... 513
Record Description Entry ... 513
Record Key ... 513
Record Locking Mode .. 513
Record Number .. 513
Record-Name .. 514
Reel... 514
Reference Modifier ... 514
Regular Expression ... 514
Relation .. 514

 RM/COBOL Language Reference Manual xvii

Relation Character .. 514
Relation Condition ... 514
Relational Operator .. 514
Relative File ... 515
Relative Key ... 515
Relative Organization ... 515
Relative Record Number .. 515
Reserved Word ... 515
Resource ... 515
Resultant Identifier ... 515
Routine-Name .. 515
Run Unit ... 516
Screen Clause ... 516
Screen Description Entry .. 516
Screen Item ... 516
Screen Section .. 516
Screen-Name .. 516
Section .. 516
Section Header ... 516
Section-Name ... 517
Segment-Number .. 517
Sentence ... 517
Separately Compiled Program .. 517
Separator ... 517
Sequence Number Area .. 517
Sequential Access ... 517
Sequential File .. 517
Sequential Organization ... 518
Shared File .. 518
Shared File Environment .. 518
Shared Mode... 518
Sign Condition .. 518
Simple Condition .. 518
Single Record Locking Modes ... 518
Sort File .. 518
Sort-Merge File Description Entry ... 519
Source ... 519
Source Computer Entry .. 519
Source Format .. 519
Source Program .. 519
SOURCE-COMPUTER ... 519
Special Character .. 519
Special Character Word .. 520
Special Names Entry .. 520
Special Registers .. 520
SPECIAL-NAMES .. 520
Split Key ... 520
Split-Key-Name .. 520
Standard Data Format ... 520
Statement .. 521
Subject of Entry .. 521
Subprogram .. 521
Sub-Queue .. 521
Subscript ... 521
Subscripted Data-Name .. 521
Switch-Name .. 521

xviii RM/COBOL Language Reference Manual

Switch-Status Condition ... 521
Symbolic-Character .. 521
System-Name ... 521
Table ... 521
Table Element ... 522
Table-Name .. 522
Terminal ... 522
Text Word... 522
Text-Name .. 522
Top Margin ... 522
Truth Value... 522
Unary Operator ... 522
Unicode .. 522
Unit ... 523
Unsuccessful Execution .. 523
User-Defined Word .. 523
Variable .. 523
Variable-Length Group .. 523
Variable-Length Record ... 523
Variable-Occurrence Data Item .. 523
Verb .. 523
Volume ... 524
Word ... 524
Working-Storage Section ... 524
XML ... 524
XML Schema ... 524
Zero-Length Item ... 524

Index ... 525

List of Figures
Figure 1: Source Format ... 25
Figure 2: Example of Traditional Source Format ... 26
Figure 3: Logical Page Layout for a General LINAGE Clause .. 94
Figure 4: Logical Page Layout for a Specific LINAGE Clause .. 95
Figure 5: PERFORM . . . VARYING Statement .. 325
Figure 6: PERFORM . . . VARYING Statement .. 326
Figure 7: PERFORM . . . VARYING Statement .. 327
Figure 8: PERFORM . . . VARYING Statement .. 329
Figure 9: PERFORM Statement Examples ... 330
Figure 10: PERFORM Statement Examples ... 331
Figure 11: PERFORM Statement Examples ... 331
Figure 12: SEARCH Statement .. 351

List of Tables
Table 1: RM/COBOL Character Set ... 6
Table 2: System-Names .. 11
Table 3: Examples of Highest Value Versus Maximum Value .. 14
Table 4: Examples of Lowest Value Versus Minimum-Value ... 17
Table 5: Nonnumeric Literals and Their Values ... 22
Table 6: Imperative Verbs .. 30
Table 7: Explicit Scope Terminators .. 31

 RM/COBOL Language Reference Manual xix

Table 8: Examples of Implied PICTURE Characters-Strings ... 111
Table 9: PICTURE Clause Editing ... 117
Table 10: Editing Symbol Results .. 118
Table 11: Results of + and – Editing ... 119
Table 12: PICTURE Symbol Precedence ... 120
Table 13: Valid Data Item Encodings ... 125
Table 14: Communication Status Key Conditions .. 146
Table 15: Error Key Values .. 148
Table 16: Color Integers ... 152
Table 17: Interaction of LINE and COLUMN Clauses in a Screen Description Entry 157
Table 18: Data Item Relationships .. 161
Table 19: Example 2 Definitions .. 168
Table 20: Combination of Symbols in Arithmetic Expressions .. 185
Table 21: Arithmetic Operators .. 186
Table 22: Relational Operators ... 188
Table 23: XML Entity References .. 192
Table 24: Regular Expression Single-Character Escape Sequences 193
Table 25: Regular Expression Multi-Character Escape Sequences 193
Table 26: Unicode Valid Character Property Designators .. 194
Table 27: Logical Operators ... 201
Table 28: EXCEPTION STATUS Values .. 234
Table 29: ACCEPT Statement Phrases and Output and Screen Fields 236
Table 30: DISPLAY Statement Phrases for Output and Screen Fields 275
Table 31: Default Initialization Values ... 299
Table 32: Types of MOVE Statements and Their Legality ... 313
Table 33: Availability of a File ... 317
Table 34: Permissible Statements ... 318
Table 35: Data Item Contents ... 354
Table 36: SET Statement Operand Validity .. 358
Table 37: Context-Sensitive Words .. 393
Table 38: System-Names Used in the SPECIAL-NAMES Paragraph 396
Table 39: System-Names for Device Types .. 397
Table 40: System-Names for Record Delimiting Techniques ... 397
Table 41: System-Names for Labels ... 397
Table 42: System-Names for Colors ... 398

Preface

 RM/COBOL Language Reference Manual 1

Preface

RM/COBOL is a high implementation of the American National Standard COBOL
X3.23-1985, designed for optimum performance and wide portability across a broad diversity
of computers and operating systems. This manual provides comprehensive information about
the RM/COBOL language. It provides complete syntax for all statements and detailed
information on other aspects of the language.

Organization of Information
This manual is divided into the following parts:

Chapter 1—Language Structure presents detailed information on the structure of the
language. This includes the structure of program units, the valid character set, words and
types of statements.

Chapter 2—Identification Division details the structure and syntax of the Identification
Division.

Chapter 3—Environment Division details the structure and syntax of the Environment
Division.

Chapter 4—Data Division details the structure and syntax of the Data Division.

Chapter 5—Procedure Division provides general information on the Procedure Division.
This includes control transfers, program segmentation and a number of other general rules.
Procedure Division compiler directive statements are described in this chapter.

Chapter 6—Procedure Division Statements details the structure and syntax of all
imperative and conditional statements.

Appendix A—Reserved Words lists words that are reserved, and those that are removed
from the reserved word list when the RM/COBOL 2.n compatibility option is selected in the
Compile Command (as described Chapter 6: Compiling of the RM/COBOL User’s Guide).

Appendix B—Compiler Messages lists the informational, warning, and error messages that
may be generated during compilation.

The RM/COBOL Language Reference Manual also includes a Glossary (on page 481) and
an Index (on page 525).

Preface

2 RM/COBOL Language Reference Manual

Conventions and Symbols
The following conventions and symbols are used or followed throughout this guide.

1. The notation for hexadecimal values is the value followed by a lowercase h (for
example, 0Dh).

2. The separators comma and semicolon may be used anywhere the separator space is used
in the general formats. In the source program, these separators are interchangeable.

3. The separator period, when used in the formats, has the status of a required word.

4. The special character words +, –, >, <, =, >= and <=, when appearing in formats,
although not underlined, are required when such portions of the formats are used.

5. The symbols found in the syntax charts are used as follows:

italicized words Indicate items for which you substitute a specific value.

UPPERCASE WORDS Indicate optional items which—if you use them—you
enter exactly as shown (although not necessarily in
uppercase).

UPPERCASE WORDS Indicate required items which you enter exactly as
shown (although not necessarily in uppercase).

... Indicate indefinite repetition of the last item.

WORDS STACKED
STACKED WORDS

Indicate alternatives.

| Separate alternatives.

[] Surround optional items.

{ } Surround a set of alternatives, one of which is required.

{| |} Surround a set of unique alternatives, one or more of
which is required, but each alternative may be specified
only once; when multiple alternatives are specified,
they may be specified in any order.

6. If necessary, this symbol in the online PDF file represents a “note” that allows you to
view last-minute comments about a specific topic on the page in which it occurs. This
same information is also contained in the README text file under the section,
Documentation Changes. In Adobe Reader, you can open comments and review their
contents, although you cannot edit the comments. Notes do not print directly from the
comment that they annotate. You may, however, copy and paste the comment text into
another application, such as Microsoft Word, if you wish.

To review notes, do one of the following:

• To view a note, position the mouse over the note icon until the note description
pops up.

• To open a note, double-click the note icon.

• To close a note, click the Close box in the upper-left corner of the note window.

Preface

 RM/COBOL Language Reference Manual 3

Related Publications
For additional information, refer to the following publications:

RM/COBOL Syntax Summary Help File

RM/COBOL User’s Guide

CodeBridge User's Guide

CodeWatch User’s Guide

WOW Extensions Designer Help File and WOW Extensions Functions and
Messages Help File

Xcentrisity Business Information Server (BIS) User's Guide

XML Extensions User’s Guide

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 5

Chapter 1: Language Structure

Overview
This chapter presents detailed information on the structure of the language. This includes the
structure of program units, the valid character set, words and types of statements.

The smallest element in the language is the character. A character is a digit, a letter of the
alphabet, punctuation or a special mark. A word is one possible result obtained when one
or more characters are joined in a sequence of contiguous characters. Just as English words
are determined by rules of spelling, so COBOL words are formed by following a specific set
of rules.

Using syntactic and grammatical rules, words and punctuation characters are combined
into statements, sentences, paragraphs and sections. When using the English language, a
failure to follow the rules of grammar and sentence structure may cause misunderstanding:
the same is true when writing a COBOL source program. It must be emphasized that a
thorough knowledge of the rules of the language structure is a prerequisite to writing a
workable program.

Character Set
The RM/COBOL character set is shown in Table 1 (on page 6). Inside nonnumeric literals
and in comment-entries and comment lines, other characters may be used but have no
grammatical meaning.

Characters are combined to form either a separator or a character-string.

Lowercase letters are allowed anywhere and are treated as uppercase letters except in
nonnumeric literals and when used as the currency symbol in PICTURE character-strings.
Within hexadecimal, nonnumeric literals, the lowercase letters a, b, c, d, e, and f are
equivalent to the uppercase letters A, B, C, D, E, and F.

Chapter 1: Language Structure

6 RM/COBOL Language Reference Manual

Separators
A separator is a string of one or more of the characters marked with a 1 in Table 1.

Table 1: RM/COBOL Character Set

RM/COBOL Character Set

Type Representation Name

Digits 0 through 9

Letters
 A through Z

a through z

Punctuation ’ Apostrophe 1

 : Colon 1

 , Comma 1

 = Equal sign 1

 (Left parenthesis 1

 . Period 1

 ” Quotation mark 1

) Right parenthesis 1

 ; Semicolon 1

 Space 1

Special & Ampersand

 * Asterisk

 $ Currency

 > Greater than

 < Less than

 – Minus (or hyphen)

 + Plus

 / Slash (or solidus)

1 The character can be used as a separator.

Separators are formed according to the following rules:

1. A space is a separator. Anywhere a space is used as a separator or as part of a separator,
more than one space may be used.

2. Commas, semicolons, and periods are separators when they are immediately followed by
a space. At any point in the syntax where a space is allowed, a comma separator or
semicolon separator is also allowed.

3. Parentheses are separators that must appear only in balanced pairs of left and right
parentheses. They delimit subscripts, reference modifiers, binary allocation values,
arithmetic expressions, constant expressions, and conditions.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 7

4. Quotation marks are separators that delimit nonnumeric literals. They must always
appear in balanced pairs, except when the continuation of a nonnumeric literal is being
specified.

An opening quotation mark must be immediately preceded by a space or left parenthesis.

A closing quotation mark must be immediately followed by a space, comma separator,
semicolon separator, period separator, or right parenthesis.

Either the quotation mark or the apostrophe may be used to delimit nonnumeric literals.
The apostrophe has the same characteristics as the quotation mark, described above.

5. The punctuation character colon is a separator and is required when shown in the general
formats.

6. A pair of adjacent equal signs that are not split across a continuation forms a pseudo-text
delimiter. A pseudo-text delimiter is a separator.

Pseudo-text delimiters may be used only in balanced pairs to delimit pseudo-text in the
COPY Statement (on page 40) and REPLACE Statement (on page 44). An opening
pseudo-text delimiter must be immediately preceded by a space; a closing pseudo-text
delimiter must be immediately followed by one of the separators space, comma,
semicolon, or period.

7. A space may immediately precede all separators except:

a. If prohibited by specific statement syntax.

b. If the separator is a closing quotation mark. In this case, a preceding space is
considered part of the nonnumeric literal, not a separator.

c. The opening pseudo-text delimiter, where the preceding space is required.

d. A space may immediately follow any separator except an opening quotation mark.
In this case, the space is considered part of the nonnumeric literal, not a separator.

8. Any punctuation character that appears as part of the specification of a PICTURE
character-string or numeric literal is not considered a punctuation character; it is treated
as a symbol used in the specification of that PICTURE character-string or numeric literal.
PICTURE character-strings are delimited only by a space, comma, semicolon or period
separator. For more information, see the discussion of PICTURE Character-Strings (on
page 24).

These rules do not apply to characters within nonnumeric literals or comments.

Character-Strings
A character-string is a sequence of one or more characters that forms a COBOL word, literal,
PICTURE character-string, or comment-entry. A character-string is delimited by separators.

COBOL Words
A COBOL word is a character-string of not more than 240 characters which forms a user-
defined word, a system-name, a context-sensitive word, or a reserved word. Each character of
a COBOL word is selected from the set of letters, digits, and the hyphen. The hyphen may
not appear as the first or last character. Lowercase letters are considered equivalent to the
corresponding uppercase letters. Within a source program, reserved words and user-defined

Chapter 1: Language Structure

8 RM/COBOL Language Reference Manual

words form disjoint sets; reserved words and system-names form disjoint sets, system-names
and user-defined words form intersecting sets.

The same COBOL word may be used as a system-name and as a user-defined word within a
source program; the class of a specific occurrence of this COBOL word is determined by the
context of the clause or phrase in which it occurs.

User-Defined Words
User-defined words comprise alphabetic and numeric characters, and the hyphen. A
user-defined word can neither begin nor end with a hyphen. With the exception of
paragraph-names, section-names, level-numbers and segment-numbers, all user-defined
words must contain at least one alphabetic character.

Here are the types of user-defined words:

Alphabet-name Paragraph-name
Cd-name Program-name
Class-name Record-name
Condition-name Routine-name
Constant-name Screen-name
Data-name Section-name
File-name Segment-number
Index-name Split-key-name
Level-number Symbolic-character
Library-name Text-name
Mnemonic-name

Within a given source program, but excluding any contained program, the user-defined words
are grouped into the following disjoint sets:

Alphabet-names Mnemonic-names
Cd-names Paragraph-names
Class-names Program-names
Condition-names, data-names, index-names,
record-names, screen-names, and split-key-names

Routine-names

Constant-names Section-names
File-names Symbolic-characters
Library-names Text-names

All user-defined words, except segment-numbers and level-numbers, can belong to only one
of these disjoint sets. Further, all user-defined words within a given disjoint set must be
unique, except as specified in the rules for uniqueness of reference. Segment-numbers and
level-numbers need not be unique; a given specification of a segment-number or level-number
may be identical to any other segment-number or level-number.

The types of user-defined words are defined as follows:

1. Alphabet-name. An alphabet-name identifies a character code set. It must contain at
least one alphabetic character and must be unique.

2. Cd-name. A cd-name identifies a Message Control System (MCS) interface area, which
is described in a communication description entry within the Communication Section of

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 9

the Data Division. Cd-names must be unique and contain at least one alphabetic
character.

Note An MCS is application-specific and not supplied with RM/COBOL. For further
information, see Appendix D: Support Modules (Non-COBOL Add-Ons) of the
RM/COBOL User’s Guide.

3. Class-name. A class-name identifies a user-specified list of characters. A class-name
must be unique and it must contain at least one alphabetic character. A class-name is
defined in the SPECIAL-NAMES paragraph of the Environment Division. It may
then be used in a class condition test in the Procedure Division to determine if the
current contents of a data item consist entirely of characters in the list identified by the
class-name.

4. Condition-name. A condition-name may be defined in the SPECIAL-NAMES
paragraph within the Environment Division or in a level-number 88 description within
the Data Division. Condition-names must contain at least one alphabetic character.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or OFF STATUS of
one of eight system software switches.

A level-number 88 condition-name is assigned to a specific value, set of values, or range
of values within a complete set of values that a data item may assume. The data item
itself is called a conditional variable.

A condition-name may be used in conditions as an abbreviation for the relation condition
which tests whether the associated switch or conditional variable is equal to one of the set
of values to which that condition-name is assigned. A condition-name may also be used
in a SET statement, indicating that the associated value is to be moved to the conditional
variable.

5. Constant-name. A constant-name is defined in a level-number 78 data description entry
and names a literal value. A constant-name must be defined before any reference to the
constant-name. Constant-names must contain at least one alphabetic character and must
be unique. A constant-name is always global and thus may be referenced in any program
contained in the program that defines the constant-name.

An integer-valued constant-name may be defined using a constant-expression. The
constant-expression is evaluated at the time of the definition during compilation and any
reference to the constant-name is equivalent to a reference to the resultant integer value.
The constant-expression may refer to previously defined integer-valued constant-names.

References to constant-names may be used in any context where the assigned literal value
could be used unless otherwise prohibited. The effect of a constant-name reference is the
same as if the literal value assigned to the constant-name were written instead. Constant-
names that have an integer value may be used wherever integer is specified in the syntax
formats, for example, integers in BLOCK or RECORD clauses of a file control entry,
integer occurrence counts in an OCCURS clause, and in constant-expressions used to
define other integer-valued constant-names. An integer-valued constant-name may also
be used as the integer repeat count specification in PICTURE character-strings.

6. Data-name. A group of contiguous characters or a numeric value treated as a unit of
data is called a data item, and it is named by a data-name. A data-name must contain at
least one alphabetic character. References to data items must be made unique by
qualification, the appending of subscripts, or both.

Complete unique references to data items are called identifiers. When used in the general
formats, ‘data-name’ represents a word that must not be reference-modified, subscripted,
or qualified unless specifically permitted by the rules of the format.

7. File-name. File-names are the internal names for files accessed by the source program.
They are not necessarily the same as the external names by which the file is known to the

Chapter 1: Language Structure

10 RM/COBOL Language Reference Manual

runtime operating system. File-names must contain at least one alphabetic character and
must be unique.

8. Index-name. An index-name names an index associated with a specific table. It must
contain at least one alphabetic character. References to indexes must be made unique by
qualification.

9. Level-number. A level-number specifies the position of a data item within a data
hierarchy. A level-number is a one- or two-digit number in the range 01 – 49, 66, 77, 78,
or 88.

Level-numbers 66, 77, and 88 identify special properties of a data description entry.

10. Library-name. A library-name is a user-defined word that identifies a library to be used
by the compiler for a given COPY statement. Library-names must be unique.

11. Mnemonic-name. A mnemonic-name is a user-defined word that is associated in the
SPECIAL-NAMES paragraph with a switch-name, feature-name or low-volume-I-O-
name. Mnemonic-names must be unique and must contain at least one alphabetic
character.

12. Paragraph-name. A paragraph-name identifies the beginning of a set of COBOL
procedural sentences. A reference to a nonunique paragraph-name must be made unique
by qualification with a section-name.

Paragraph-names are equivalent only if they are composed of the same sequence of the
same number of digits or characters.

13. Program-name. The program-name identifies the source and object programs. The
name must contain at least one alphabetic character.

14. Record-name. Record-names name data records within a file. They must contain at
least one alphabetic character and, if not unique, must be made unique by qualification
with the file-name.

15. Routine-name. A routine-name is a user-defined word that identifies a procedure
written in a language other than COBOL.

16. Screen-name. A screen-name identifies a set of one or more entries; these entries define
fields within a region of a terminal screen. Screen-names must contain at least one
alphabetic character and, if not unique, must be made unique by qualification.

17. Section-name. A section-name identifies the beginning of a set of paragraphs.
Section-names must be unique and must contain at least one alphabetic character.

18. Segment-number. A segment-number specifies the segmentation classification of a
section. It is a one- to three-digit number in the range 00 – 127.

19. Split-key-name. A split-key-name is a user-defined word that names a concatenation
of one or more data items within a record associated with an indexed file. The
concatenation of the data items forms a single record key for that file. References to
split-key-names must be made unique by qualification. The only qualifier allowed for a
split-key-name is the file-name of the file with which the split-key-name is associated.

20. Symbolic-character. A symbolic-character is a user-defined word that identifies a
user-defined figurative constant. Symbolic-characters must be unique and must contain
at least one alphabetic character.

21. Text-name. A text-name is the name of a library text file. It must correspond exactly to
a valid file access name that is known to the compile-time operating system.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 11

System-Names
System-names identify certain hardware or software system components. System-names
consist of code-names, device-names, feature-names, label-names, low-volume-I-O-names,
record delimiting techniques, and switch-names. Most system-names are not reserved words,
but certain reserved words may be used as system-names. See Table 2 for a complete list of
system-names. See Appendix A: Reserved Words (on page 387) for a list of system-names
that are not reserved.

Table 2: System-Names

System-Names

Type System-Name Description

Code-name EBCDIC Extended Binary Coded Decimal Interchange
Code

Device-Name

CARD-PUNCH Output-only device or file

CARD-READER Input-only device or file

CASSETTE Input-output device or file

CONSOLE Input-output device or file

DISC Mass-storage device

DISK Mass-storage device

DISPLAY Output-only device or file

INPUT Input-only device or file

INPUT-OUTPUT Input-output device or file

KEYBOARD Input-only device or file

LISTING Print device or file

MAGNETIC-TAPE Input-output device or file

MERGE Sort-merge storage device

OUTPUT Output-only device or file

PRINT Print device or file

PRINTER Print device or file

PRINTER-1 Print device or file

RANDOM Mass-storage device

SORT Sort-merge storage device

SORT-MERGE Sort-merge storage device

SORT-WORK Sort-merge storage device

TAPE Input-output device or file

Feature-Name C01, C02, C03, . . . , C10, C11, C12 Channel 01 through 12, respectively

Label-Name

FILE-ID Declare file access name

LABEL Particularize label record contents

user-defined-word Commentary

Chapter 1: Language Structure

12 RM/COBOL Language Reference Manual

System-Names

Type System-Name Description

Low-Volume-I-O-Name

CONSOLE Operator communication (ACCEPT, DISPLAY)

SYSIN Standard input (ACCEPT)

SYSOUT Standard output (DISPLAY)

Record Delimiting
Technique

BINARY-SEQUENTIAL Binary sequential organization

LINE-SEQUENTIAL Line sequential organization

Switch-Name

SWITCH-1 or UPSI-0 Switch 1

SWITCH-2 or UPSI-1 Switch 2

SWITCH-3 or UPSI-2 Switch 3

SWITCH-4 or UPSI-3 Switch 4

SWITCH-5 or UPSI-4 Switch 5

SWITCH-6 or UPSI-5 Switch 6

SWITCH-7 or UPSI-6 Switch 7

SWITCH-8 or UPSI-7 Switch 8

Note Use the S Runtime Command Option to set (or reset) the initial state of switches
in an RM/COBOL run unit. For more information, see Chapter 7: Running of the
RM/COBOL User's Guide.

Reserved Words
Reserved words are those words reserved for use by the RM/COBOL compiler. A reserved
word must not appear as a user-defined word within a program. Appendix A: Reserved
Words (on page 387) contains a complete list of reserved words.

Five kinds of reserved words are recognized by the compiler:

1. Keywords. Keywords are required elements of the formats. Their presence indicates
specific compiler action.

2. Optional Words. Optional words are optional elements of the formats. Their presence
has no effect on the object program.

3. Connectives. OF and IN are used interchangeably to connect qualifiers to a user-defined
word. AND and OR are logical connectives, used in the formation of conditions.

4. Special Registers. Special registers are compiler-generated storage areas. They are used
to store information that is produced in conjunction with the use of specific features. The
format and description of the fifteen special registers are described below.

Note The special registers may be referenced only in Procedure Division statements with
the exception of the PROGRAM-ID special register.

The ADDRESS special register returns the address of identifier-1 as a pointer data item.
It may only be used in certain contexts of the Procedure Division where a pointer is

-1identifier

OF
INADDRESS

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 13

allowed, which are a relation condition with another pointer data item and the USING
phrase of a CALL statement. The ADDRESS special register is not allowed in the
GIVING phrase of a CALL statement even though a pointer data item is allowed there.
When specified in the USING phrase of a CALL statement, the ADDRESS special
register is always passed by content. When identifier-1 is a Linkage Section data item for
which the base address has not been set by being associated with an actual argument in a
calling program or by execution of a SET statement, the ADDRESS special register will
return a null pointer value. If identifier-1 were referenced in such a case without the
ADDRESS special register, the run unit would terminate with a data reference error.
Thus, the ADDRESS special register may be used in an IF statement to prevent a data
reference termination of the run unit by avoiding the reference when the ADDRESS OF
identifier-1 is equal to NULL.

The COUNT special register exists for each COBOL table data item, that is, data-name-1
must refer to a data item described with the OCCURS clause. For a fixed-occurrence
table, COUNT returns the fixed number of occurrences specified in the OCCURS clause.
For a variable-occurrence table, COUNT returns the value of the data-name specified by
the DEPENDING ON phrase of the OCCURS clause. It may be used wherever an
integer literal may be used in the Procedure Division.

The COUNT-MAX special register exists for each COBOL table data item, that is,
data-name-1 must refer to a data item described with the OCCURS clause. COUNT-
MAX always returns the maximum number of occurrences specified in the OCCURS
clause. For a fixed-occurrence table, COUNT, COUNT-MAX, and COUNT-MIN will
return the same value. It may be used wherever an integer literal may be used in the
Procedure Division.

The COUNT-MIN special register exists for each COBOL table data item, that is,
data-name-1 must refer to a data item described with the OCCURS clause. COUNT-
MIN always returns the minimum number of occurrences specified in the OCCURS
clause. For a fixed-occurrence table, COUNT, COUNT-MAX, and COUNT-MIN will
return the same value. It may be used wherever an integer literal may be used in the
Procedure Division.

The HIGHEST-VALUE special register exists for any data item. The special register
returns the highest value for the data item referenced by identifier-1. It may be used
wherever a literal of the resulting type may be used in the Procedure Division. The
resulting type of the literal returned by the HIGHEST-VALUE special register is one of
the following:

• nonnumeric if the referenced data item is alphanumeric, alphabetic, or
alphanumeric edited

1data-name-

OF
INCOUNT

1data-name-

OF
INMAX-COUNT

1data-name-

OF
INMIN-COUNT

-1identifier

OF
INVALUE-HIGHEST

Chapter 1: Language Structure

14 RM/COBOL Language Reference Manual

• pointer if the referenced data item is a pointer

• numeric if the referenced data item is numeric or numeric edited

For alphanumeric, alphabetic, and alphanumeric edited data items, the special register
returns the figurative constant HIGH-VALUES. For pointer data items, the special
register returns the figurative constant NULL. For numeric and numeric edited data
items, the special register returns a numeric literal with the highest algebraic value for the
given data item based on the decimal precision specified in the PICTURE character-
string, subject to special considerations for binary and packed-decimal data items, as
described below.

Binary and packed-decimal data items have special considerations for the highest value
because the underlying storage may be larger, and in the case of binary, smaller, than
required for the decimal precision specified by the PICTURE character-string. (For
further details on storage of data items, see Appendix C: Internal Data Formats of the
RM/COBOL User's Guide.)

• Binary (BINARY, COMP-1, COMP-4, and COMP-5 usage). The highest value
is based on the decimal precision specified by the PICTURE character-string unless
that value would be greater than the maximum value (on page 17) that can be stored
in the binary data item. In the latter case, the maximum value that can be stored is
also the highest value and this is the only case where the highest value and maximum
value are the same for a binary data item; this case occurs only when the binary
allocation override feature of RM/COBOL is used to force the allocation smaller
than required by the decimal precision. Otherwise, the highest value is less than the
maximum value because binary data items are necessarily allocated larger than
required by the decimal precision. For example, a data item described as PIC 9(3)
BINARY data item is allocated by default with two bytes of storage and thus has a
highest value of 999, but a maximum value of 65535.

• Packed-Decimal (PACKED-DECIMAL, COMP-3, and COMP-6 usage). The
highest value is based on the decimal precision specified by the PICTURE character-
string. This highest value may be less than the maximum value (on page 17) because
packed-decimal data items are allocated as an integral number of bytes that contain
two digits each or a digit and a sign. Unsigned COMP-6 items have a padding digit
when the decimal precision is odd because these formats have no sign nibble.
Signed or unsigned COMP-3 and PACKED-DECIMAL items have a padding digit
when the decimal precision is even because these formats have a sign nibble. When
the padding digit exists, the highest value is less than the maximum value. For
example, a data item described as PIC S9(2) PACKED-DECIMAL is allocated as
two bytes to accommodate the two digits of precision and a sign nibble; thus, the
data item has a highest value of 99 but a maximum value of 999.

Table 3 illustrates additional examples of the relationship between highest value and
maximum value for various descriptions of binary and packed-decimal data items
when these special considerations are taken into account.

Table 3: Examples of Highest Value Versus Maximum Value

Examples of Highest Value Versus Maximum Value

Data Item Description Highest Value Maximum Value

PIC 9(1) BINARY(1) 9 255

PIC 9(2) BINARY(1) 99 255

PIC 9(3) BINARY(1) 255 255

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 15

Examples of Highest Value Versus Maximum Value

Data Item Description Highest Value Maximum Value

PIC 9(4) BINARY(2) 9999 65535

PIC 9(5) BINARY(2) 65535 65535

PIC S9(4) BINARY(2) 9999 32767

PIC S9(5) BINARY(2) 32767 32767

PIC 9(9) BINARY(4) 999999999 4294967295

PIC 9(10) BINARY(4) 4294967295 4294967295

PIC 9(1) COMP-6 9 99

PIC 9(1) PACKED-DECIMAL 9 9

PIC 9(2) PACKED-DECIMAL 99 999

PIC S9(1) PACKED-DECIMAL 9 9

PIC S9(2) PACKED-DECIMAL 99 999

PIC S9(8) PACKED-DECIMAL 99999999 999999999

PIC S9(9) PACKED-DECIMAL 999999999 999999999

The INITIAL-VALUE special register exists for any data item. data-name-1 may be
qualified or subscripted, but must not be reference modified. The special register returns
the initial value of the data item referenced by data-name-1. It may be used wherever a
literal of the resulting type may be used in the Procedure Division. The resulting type of
the special register is numeric if the referenced data item is numeric, nonnumeric if the
referenced data item is nonnumeric, and pointer if the referenced data item is a pointer.
The initial value is defined as the value that would be placed in the data item referenced
by data-name-1 if it were initialized using the INITIALIZE statement with the VALUE
and DEFAULT phrases specified. That is, if there is a VALUE clause in the data
description entry for the referenced data item, the initial value is the same as the literal
specified in that VALUE clause. Otherwise, the initial value is ZERO for numeric items,
SPACES for nonnumeric items and NULL for pointer data items.

The LENGTH special register exists for any data item or literal. It returns the length of
the data item referenced by identifier-1 or value referenced by literal-1. It may be used
wherever an integer literal may be used in the Procedure Division. For a variable-length
group, the LENGTH special register returns the current length of the group. For a
reference modified identifier, the LENGTH special register returns the length of the
result of the reference modification, that is, the result of the evaluation of the length
modifier if it was specified or the remaining length of the data item after the offset has
been applied if the length modifier is not specified. For a literal, the LENGTH special
register returns the number of characters in the literal. If the literal is a numeric literal,
the number of characters is the same as the number of digits. That is, for a numeric
literal, the sign and decimal point characters, if specified, are not counted in the length of
the literal.

1data-name-

OF
INVALUE-INITIAL

literal-1
-1identifier

OF
INLENGTH

Chapter 1: Language Structure

16 RM/COBOL Language Reference Manual

The LINAGE-COUNTER special register is a line counter, generated by the presence of
a LINAGE clause in a file description entry.

The LOWEST-VALUE special register exists for any data item. The special register
returns the lowest value for the data item referenced by identifier-1. It may be used
wherever a literal of the resulting type may be used in the Procedure Division. The
resulting type of the literal returned by the LOWEST-VALUE special register is one of
the following:

• nonnumeric if the referenced data item is alphanumeric, alphabetic, or
alphanumeric edited

• pointer if the referenced data item is a pointer

• numeric if the referenced data item is numeric or numeric edited

For alphanumeric, alphabetic, and alphanumeric edited data items, the special register
returns the figurative constant LOW-VALUES. For pointer data items, the special
register returns the figurative constant NULL. For numeric and numeric edited data
items, the special register returns a numeric literal with the lowest algebraic value for the
given data item based on the decimal precision specified in the PICTURE character-
string, subject to special considerations for binary and packed-decimal data items, as
described below. For unsigned numeric data items, the lowest value is the figurative
constant ZERO.

Binary and packed-decimal data items have special considerations for the lowest value
because the underlying storage may be larger, and in the case of binary, smaller, than
required for the decimal precision specified by the PICTURE character-string. Since the
lowest value is zero for unsigned items, these considerations for the lowest value occur
only for signed items. (For further details on storage of data items, see Appendix C:
Internal Data Formats of the RM/COBOL User's Guide.)

• Binary (BINARY, COMP-1, COMP-4, and COMP-5 usage). The lowest value is
based on the decimal precision specified by the PICTURE character-string unless
that value would be less than the minimum value (on page 18) that can be stored in
the binary data item. In the latter case, the minimum value that can be stored is also
the lowest value and this is the only case where the lowest value and minimum value
are the same for a binary data item. Otherwise, the lowest value is greater than the
minimum value because binary data items are necessarily allocated larger than
required by the decimal precision. For example, a data item described as PIC S9(4)
BINARY data item is allocated by default with two bytes of storage and thus has a
lowest value of -9999, but a minimum value of -32768.

• Packed-Decimal (PACKED-DECIMAL, COMP-3, and COMP-6 usage). The
lowest value is based on the decimal precision specified by the PICTURE character-
string. This lowest value may be greater than the minimum value (on page 18)
because packed-decimal data items are allocated as an integral number of bytes that
contain two digits each or a digit and a sign. Signed COMP-3 and PACKED-
DECIMAL items have a padding digit when the decimal precision is even because
these formats have a sign nibble. When the padding digit exists, the lowest value is
greater than the minimum value. For example, a data item described as PIC S9(4)
PACKED-DECIMAL is allocated as three bytes to accommodate the four digits of

 1file-name-OF

INCOUNTER-LINAGE

-1identifier

OF
INVALUE-LOWEST

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 17

precision and a sign nibble; thus, the data item has a lowest value of -9999 but a
minimum value of -99999.

Table 4 illustrates additional examples of the relationship between lowest value and
minimum value for various descriptions of binary and packed-decimal data items
when these special considerations are taken into account.

Table 4: Examples of Lowest Value Versus Minimum-Value

Examples of Lowest Value Versus Minimum-Value

Data Item Description Lowest Value Minimum Value

PIC 9(1) BINARY(1) 0 0

PIC S9(4) BINARY(2) -9999 -32768

PIC S9(5) BINARY(2) -32768 -32768

PIC S9(9) BINARY(4) -999999999 -2147483648

PIC S9(10) BINARY(4) -2147483648 -2147483648

PIC 9(1) COMP-6 0 0

PIC 9(1) PACKED-DECIMAL 0 0

PIC S9(1) PACKED-DECIMAL -9 -9

PIC S9(2) PACKED-DECIMAL -99 -999

PIC S9(8) PACKED-DECIMAL -99999999 -999999999

PIC S9(9) PACKED-DECIMAL -999999999 -999999999

The MAX-VALUE special register exists for any data item. The special register returns
the maximum value for the data item referenced by identifier-1. It may be used wherever
a literal of the resulting type may be used in the Procedure Division. The resulting type
of the literal returned by the MAX-VALUE special register is one of the following:

• nonnumeric if the referenced data item is alphanumeric, alphabetic, or
alphanumeric edited

• pointer if the referenced data item is a pointer

• numeric if the referenced data item is numeric or numeric edited

For alphanumeric, alphabetic, and alphanumeric edited data items, the special register
returns the figurative constant HIGH-VALUES. For pointer data items, the special
register returns the figurative constant NULL. For numeric and numeric edited data
items, the special register returns a numeric literal with the maximum algebraic value for
the given data item based on the storage for the data item. (For further details on storage
of data items, see Appendix C: Internal Data Formats of the RM/COBOL User's Guide.)

The maximum value differs from the highest value (as returned by the HIGHEST-
VALUE special register) only for a numeric data item that uses binary or packed-decimal
storage, as explained in the description of the HIGHEST-VALUE special register (on
page 13) and illustrated in Table 3: Examples of Highest Value Versus Maximum Value

-1identifier

OF
INVALUE-MAX

Chapter 1: Language Structure

18 RM/COBOL Language Reference Manual

(on page 14). In those cases where the highest and maximum values differ, using the
MOVE statement to move the MAXIMUM-VALUE of a data item to the data item itself
will not result in the data item having its maximum value. This occurs because the
MOVE statement uses decimal truncation in the data transfer. For example, where
Data01 is described as PIC S9(4) BINARY(2), the statement

MOVE MAX-VALUE OF Data01 TO Data01

would result in Data01 having the value 2767 because of decimal truncation of the
maximum value 32767 for this data item. The COMPUTE statement without the SIZE
ERROR phrase must be used in this case to place the maximum value into Data01 as
follows:

COMPUTE Data01 = MAX-VALUE OF Data01

This same issue regarding decimal truncation in MOVE statements also occurs for
packed-decimal usage when the padding nibble is necessary in the data item.

The MIN-VALUE special register exists for any data item. The special register returns
the minimum value for the data item referenced by identifier-1. It may be used wherever
a literal of the resulting type may be used in the Procedure Division. The resulting type
of the literal returned by the MIN-VALUE special register is one of the following:

• nonnumeric if the referenced data item is alphanumeric, alphabetic, or
alphanumeric edited

• pointer if the referenced data item is a pointer

• numeric if the referenced data item is numeric or numeric edited

For alphanumeric, alphabetic, and alphanumeric edited data items, the special register
returns the figurative constant LOW-VALUES. For pointer data items, the special
register returns the figurative constant NULL. For numeric and numeric edited data
items, the special register returns a numeric literal with the minimum algebraic value for
the given data item based on the storage for the data item. (For further details on storage
of data items, see Appendix C: Internal Data Formats of the RM/COBOL User's Guide.)
For unsigned numeric and numeric edited data items, the minimum value is the figurative
constant ZERO.

The minimum value differs from the lowest value (as returned by the LOWEST-VALUE
special register) only for a numeric data item that uses binary or packed-decimal storage,
as explained in the description of the LOWEST-VALUE special register (on page 16)
and illustrated in Table 4: Examples of Lowest Value Versus Minimum-Value (on
page 17). In those cases where the lowest and minimum values differ, using the MOVE
statement to move the MIN-VALUE of a data item to the data item itself will not result in
the data item having its minimum value. This occurs because the MOVE statement uses
decimal truncation in the data transfer. For example, where Data01 is described as PIC
S9(4) BINARY(2), the statement

MOVE MIN-VALUE OF Data01 TO Data01

would result in Data01 having the value -2768 because of decimal truncation of the
minimum value -32768 for this data item. The COMPUTE statement without the SIZE
ERROR phrase must be used in this case to place the minimum value into Data01 as
follows:

-1identifier

OF
INVALUE-MIN

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 19

COMPUTE Data01 = MIN-VALUE OF Data01

This same issue regarding decimal truncation in MOVE statements also occurs for
packed-decimal usage when the padding nibble is necessary in the data item.

The PROCEDURE-NAME special register exists for any paragraph or section in the
Procedure Division of a program. The value is a nonnumeric literal determined as
follows:

• If PARAGRAPH is specified, this special register returns the name of the paragraph
in which it is specified. The paragraph-name is provided in uppercase regardless of
how it was written in the source program. If no paragraph has been established, the
value “<paragraph?>” is returned.

• If PROCEDURE is specified, this special register returns the qualified name of the
current paragraph in which it is specified. The qualified name includes the
paragraph-name and the section-name, if any, joined by the word string “ IN ”. The
paragraph-name and section-name are in uppercase regardless of how they were
written in the source program. If no paragraph has been established, the value
“<paragraph?>” is returned. If the paragraph is not contained in a section, only the
paragraph-name is returned, the same as if PARAGRAPH had been specified.

• If SECTION is specified, this special register returns the name of the section in
which it is specified. The section-name is provided in uppercase regardless of how it
was written in the source program. If no section has been established, the value
“<section?>” is returned.

The PROGRAM-ID special register exists for any program. It returns the program-name
of the program in which it is used. It may be used wherever a nonnumeric literal may be
used in the program, except for the END PROGRAM header. The PROGRAM-ID
special register is an exception to the rule that special registers may be referenced only in
Procedure Division statements. The PROGRAM-ID special register may be specified in
VALUE clauses of data description entries for nonnumeric data items or constant-name
definitions. If the program-name is specified as a nonnumeric literal in the PROGRAM-
ID paragraph, the value of the PROGRAM-ID special register will match that
nonnumeric literal, including its case; otherwise, the value of the PROGRAM-ID special
register will be in uppercase.

The RETURN-CODE special register has the implicit description PICTURE S9999
COMP-4, and can be set by the user to pass a return code (run unit exit code) to the
calling program or the operating system before executing a STOP RUN, EXIT
PROGRAM, or GOBACK statement. (That is, the RETURN-CODE special register sets
user-defined exit codes for the run unit.) When control is returned to a calling program,
the return code passed by the called program is available to the calling program in the
RETURN-CODE special register; the return code value can be tested by specifying
RETURN-CODE in a relation condition. When control is returned to the operating
system, the return code may be available to the command language in a system-
dependent manner; for specific information, see your OS documentation. The return
code is initialized to zero at the start of a run unit. This is the normal return code for

SECTION
PROCEDURE
PARAGRAPH

OF
INNAME-PROCEDURE

ID-PROGRAM

CODE-RETURN

Chapter 1: Language Structure

20 RM/COBOL Language Reference Manual

successful completion; other values returned are conventionally in multiples of four.
Some return code values, generally the higher values, are reserved for runtime-detected
errors; for further explanation, see “Program Exit Codes” in Chapter 7: Running of the
RM/COBOL User’s Guide.

The return code is implicitly set to the value specified in statements having the
following form:

This statement is equivalent to the statement sequence:

The WHEN-COMPILED special register exists for any program. It returns the date and
time of compilation for the program in which it is used. It may be used wherever a
nonnumeric literal may be used in the program, except in the PROGRAM-ID paragraph
and the END PROGRAM header. The WHEN-COMPILED special register is an
exception to the rule that special registers may be referenced only in Procedure Division
statements. The WHEN-COMPILED special register may be specified in VALUE
clauses of data description entries for nonnumeric data items or constant-name
definitions. The default format of the WHEN-COMPILED value is a 20-character string
"hh.mm.ssMMM DD, YYYY", which matches the IBM OSVS COBOL
implementation of this special register. The compiler can be configured to use the IBM
VSC2 COBOL implementation of this special register, which is a 16-character string
"MM/DD/YYhh.mm.ss". The compiler can also be configured to use a user-specified
format that produces a string of up to 80 characters. For details on formatting the value
of the WHEN-COMPILED special register, see the WHEN-COMPILED-FORMAT
keyword of the COMPILER-OPTIONS configuration record in Chapter 10:
Configuration of the RM/COBOL User’s Guide.

5. Special Characters. The special character reserved words are the arithmetic operators
(including the unary operators + and –), relational operators, and concatenation operator:

Addition +

Concatenation &

Division /

Equal to =

Exponentiation **

Greater than >

Greater than/equal to >=

Less than <

Less than/equal to <=

Multiplication *

Subtraction –

integer-1
-1identifier

RUNSTOP

 RUNSTOP;CODE-RETURNTOMOVE .

integer-1
-1identifier

COMPILED-WHEN

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 21

Context-Sensitive Words
The words listed in Table 37 (on page 393) of Appendix A: Reserved Words are
context-sensitive words and are reserved in the specified language construct or context. If a
context-sensitive word is used where the context-sensitive word is permitted in the general
format, the word is treated as a keyword; otherwise, it is treated as a user-defined word.

Literals
A literal is a character-string whose representation is identical to its value. Literals are either
numeric or nonnumeric.

Numeric Literals
A numeric literal represents a numeric value, not a character-string. Numeric literals are built
according to the following rules:

1. The literal must contain at least 1 but not more than 30 digits.

2. The literal may contain a single + or – as the first character.

3. The literal may contain a single decimal point if the decimal point is not the last
character. The decimal point must be represented with a comma if the DECIMAL-
POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph.

The word integer, when used in the syntax charts in this manual, designates an unsigned,
numeric literal without a decimal point. Its value cannot be zero unless specifically allowed
within a particular context.

Here are some examples:

1234
+1234
–1.234
.1234
+.1234

Nonnumeric Literals
A nonnumeric literal is a character-string enclosed in quotation delimiters. Delimiter
characters within the character-string are represented by two contiguous delimiter characters.
Either the quotation mark or the apostrophe may be used as a delimiter character, but within
one nonnumeric literal, the opening delimiter establishes the delimiter character for that
literal. The character-string may contain any character from the character set of the computer.
The value of the literal is the character-string itself excluding the opening and closing
delimiter characters and one of each contiguous pair of embedded delimiting characters. The
literal may contain from 1 to 65535 characters.

Hexadecimal literals of the form:

H"[h]...", H'[h]...', X"[h]..." or X'[h]...'

are also permitted as another form of nonnumeric literal, where h is any valid hexadecimal
digit. Valid hexadecimal digits are the decimal digits 0 through 9 and the letters A through F.
Two contiguous hexadecimal digits occupy one character position. If an odd number of
hexadecimal digits are specified, the compiler assumes an additional hexadecimal zero digit
on the right to complete the rightmost character position. The leading H or X character may

Chapter 1: Language Structure

22 RM/COBOL Language Reference Manual

be specified in lowercase, as well as any of the hexadecimal digits represented by the letters
A through F.

Table 5 lists some examples of nonnumeric literals and their associated values.

All nonnumeric literals are of category alphanumeric.

Table 5: Nonnumeric Literals and Their Values

Nonnumeric Literals and Their Values

Literal Value

"AGE" AGE

"""" "

'"' "

'''' '

"'" '

"""Twenty"" Some" "Twenty" Some

'TIME' TIME

'"TWENTY" ''SOME' "TWENTY" 'SOME

H"4C6F6E67" 4C6F6E67h 1

X'63B' 63B0h

H"0123456789ABCDEF" 0123456789ABCDEFh

x"0123456789abcdef" 0123456789ABCDEFh

1 In ASCII, this value is equivalent to "Long", without the quotation marks.

The following lists several syntactically incorrect nonnumeric literals with explanations as to
why their values are not valid.

Literal Reason Incorrect

""""" Odd number of quotation marks.

"ABC' Mismatched opening and closing delimiter.

X"43GA" Nonhexidecimal digit "G".

Figurative Constants
Figurative constants identify commonly used constant values. These constant values are
generated by the compiler according to the context in which the references occur. Note that
figurative constants represent values, not literal occurrences. Thus, QUOTE cannot delimit a
nonnumeric literal, SPACE is not a separator, and so forth. Singular and plural forms of
figurative constants may be used interchangeably.

The following constant represents the value 0 or one or more zero characters, depending on
context.

[ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 23

The following constant represents one or more space characters.

[ALL] SPACE, [ALL] SPACES

Except in the SPECIAL-NAMES paragraph, the following constant represents one or more
occurrences of the character that has the highest ordinal position in the program collating
sequence. The native HIGH-VALUE is FFh.

[ALL] HIGH-VALUE, [ALL] HIGH-VALUES

Except in the SPECIAL-NAMES paragraph, the following constant represents one or more
occurrences of the character that has the lowest ordinal position in the program collating
sequence. The native LOW-VALUE is 00h.

[ALL] LOW-VALUE, [ALL] LOW-VALUES

The following constant represents one or more quotation marks.

[ALL] QUOTE, [ALL] QUOTES

The following constant represents one or more null or unset pointer values. The usage of this
constant is POINTER. Thus, this constant may only be used in places where a pointer literal
is allowed, which are in the VALUE clause in the data description entry of a usage POINTER
data item, in relation conditions involving another pointer data item, in the USING phrase of
the CALL statement, and in Format 5 of the SET statement.

[ALL] NULL, [ALL] NULLS

The following constant represents all or part of the string generated by successive
concatenations of the characters comprising literal-1. literal-1 must be a nonnumeric literal
and may be a concatenation expression. literal-1 must not be a figurative constant.

The following constant represents one or more of the character specified as the value of
symbolic-character-1 in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES
paragraph.

When a figurative constant represents a string of one or more characters, the length of the
string is determined by the compiler from context according to the following rules:

1. When a figurative constant is associated with another data item, as when the figurative
constant is moved to or compared with another data item, the string of characters
specified by the figurative constant is repeated character-by-character on the right until
the size of the resultant string is equal to the size in characters of the associated data item.
This is done prior to and independent of the application of any JUSTIFIED clause that
may be associated with the data item. When the figurative constant is specified in a
concatenation expression, its length is determined as if the figurative constant were not
associated with any other data item per rules 2 and 3 below, regardless of the context in
which the concatenation expression is specified.

2. When a figurative constant, other than ALL literal, is not associated with another data
item, as when the figurative constant appears in a DISPLAY, STOP, STRING, or
UNSTRING statement, the length of the string is one character.

literal-1ALL

[] haracter-1symbolic-cALL

Chapter 1: Language Structure

24 RM/COBOL Language Reference Manual

3. When the figurative constant ALL literal is not associated with another data item, the
length of the string is the length of the literal.

A figurative constant may be used wherever literal appears in syntax, with the following
exceptions:

• If the literal is restricted to a numeric literal, the only figurative constant permitted is
ZERO (ZEROS, ZEROES).

• When a figurative constant other than ALL literal is used, the word ALL is redundant
and is used for readability only.

• If the literal is restricted to a pointer literal, the only figurative constant permitted is
NULL (NULLS). NULL (NULLS) may only be used in VALUE clauses associated with
a pointer data item, in relation conditions involving another pointer item, in the USING
phrase of the CALL statement, in the REPLACING phrase of the INITIALIZE statement,
and in Format 5 of the SET statement.

Each reserved word which refers to a figurative constant value is a distinct character-string
with the exception of constructs using the word ALL, such as ALL literal, ALL SPACES, and
so forth, which are composed of two distinct character-strings.

Concatenation Expressions
A concatenation expression consists of two nonnumeric literals separated by the
concatenation operator &:

Both literal-1 and literal-2 must be nonnumeric literals, but either may be specified with a
hexadecimal literal, a figurative constant (including a symbolic-character), or a constant-name
that refers to a nonnumeric value. When a figurative constant is specified in a concatenation
expression, its length is determined by the rules for a figurative constant that is not associated
with another data item regardless of the context in which the concatenation expression is used.

The value of a concatenation expression is the concatenation of the value of literal-1 and
literal-2.

A concatenation expression may be used anywhere a nonnumeric literal may be used unless
otherwise prohibited by specific rules of a given format. literal-1 of a concatenation
expression may be a concatenation expression, but, for formal reasons having to do with
termination of the syntax production, literal-2 cannot be a concatenation expression.
However, any number of nonnumeric literals may be concatenated by repeated application of
literal-1 being a concatenation expression.

PICTURE Character-Strings
A PICTURE character-string consists of certain combinations of characters used as symbols.
Any punctuation character appearing as part of a PICTURE character-string is considered a
symbol, not a punctuation character. If the punctuation character comma, period, or
semicolon is followed by a space, it is a separator that delimits the PICTURE character-string
and is not part of the PICTURE character-string.

literal-2literal-1 &

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 25

Comment-Entry
A comment-entry is an entry in the Identification Division that may contain any characters
from the character set of the computer. It terminates at the next nonblank area A.

Program Structure

Source Format
Source programs are accepted as a sequence of lines (or records). These records may vary in
length from 0 characters to the number of characters in the maximum record length for the
compilation. Records less than seven characters in length are space filled to seven characters.
Records longer than the maximum record length for the compilation are truncated to the
maximum record length and the compiler reports how many truncations occur, if any. The
maximum record length is established at the beginning of the compilation by the keyword
SOURCE-RECORD-MAX-LENGTH in the COMPILER-OPTIONS configuration record
and cannot be changed during the compilation (for further details, see Chapter 10:
Configuration of the RM/COBOL User's Guide). The default value for the maximum source
record length is 1024, but any value from 80 to 65000 may be configured.

Each line is divided into five areas, as illustrated in Figure 1.

Figure 1: Source Format

Program-text is the text that is compiled to produce an executable object program.
Program-text is written as character-strings (COBOL words) and separators. Program-text
may be placed in the program-text area, which is column 8 (subject to certain rules) through
the column preceding margin R (right margin). Margin R defines the end of the program-text
area and beginning of the Identification area. When margin R is defined after the maximum
source record length, there is no Identification area. The presence or absence of an
Identification area affects the trailing space treatment for continued nonnumeric literals, as
explained in continuation of lines (on page 27). Also, the absence of the Identification area
prevents conditional compilation using pattern matching with strings in the Identification
area.

Margin R can be modified at any time during the compilation with the IMP MARGIN-R
directive (on page 46) in the source program. The column after which margin R occurs at the
beginning of compilation may be specified with the INITIAL-MARGIN-R keyword of the
COMPILER-OPTIONS configuration record. The default initial margin R is after column 72.

Area A: Columns 8 - 11

Indicator Area: Column 7

Sequence Number: Columns 1 - 6

Area B: Columns 12 – (program-text end)

Identification Area: Columns (program-text end +1) – (maximum-record-length)

Margin R

Chapter 1: Language Structure

26 RM/COBOL Language Reference Manual

Figure 2 illustrates an example of traditional source format, where margin R is after column
72 and the maximum source record length is 80.

Figure 2: Example of Traditional Source Format

• The sequence number area is used for clerical and documentation purposes. It is ignored
by the compiler.

• The indicator area is used for denoting line continuation, comments and debugging.

• Areas A and B contain the actual program-text according to the following rules:

1. Division headers, section headers, paragraph headers, section-names and
paragraph-names must begin in area A.

2. The Data Division level indicators FD, SD, and CD, and level-numbers 01 and 77
must begin in area A. Other level-numbers may begin in area A or area B, although
B is most often used.

3. The keywords, DECLARATIVES and END DECLARATIVES, precede and follow,
respectively, the declaratives portion of the Procedure Division. Each must appear
on a line by itself and each must begin in area A, followed by a period and a space.

4. Any other language element must begin in area B unless it immediately follows, on
the same line, an element in area A.

• The Identification area, if present, is used for clerical and documentation purposes, but
the compiler can conditionally compile lines based on patterns found in this area. The
entire Identification area is searched for the case-sensitive patterns specified by the
SOURCE-PATTERN-INCLUDE and SOURCE-PATTERN-EXCLUDE keywords of the
COMPILER-OPTIONS configuration record. (For more information on these keywords,
see Chapter 10: Configuration of the RM/COBOL User's Guide.) If a pattern match
occurs, the line is conditionally included (even if it was a comment in the source file) or
excluded from the compilation based on which configuration keyword was used to define
the pattern. An exclamation point (!) preceding a matched string in the Identification
area reverses the meaning of the include or exclude keyword specification. The
Identification area is not present when margin R is set greater than or equal to the
maximum source record length. When the Identification area is not present for a source
line, conditional compilation of that source line does not occur, that is, the line is
processed by the compiler as it is in the input source file.

Area A: Columns 8 - 11

Indicator Area: Column 7

Sequence Number: Columns 1 - 6

Area B: Columns 12 - 72

Identification Area: Columns 73 - 80

Margin R

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 27

Continuation of Lines
Any sentence, entry, phrase, or clause may be continued by starting subsequent lines in
area B. These subsequent lines are called continuation lines.

The line being continued is called the continued line. Any word, literal, or PICTURE
character-string may be broken in such a way that part of it appears on a continuation line,
according to the following rules:

1. A hyphen in the indicator area of a line indicates that the first nonblank character in
area B of the current line is the successor of the last nonblank character of the preceding
line, excluding intervening comment lines or blank lines, without an intervening space.

However, if the continued line contains a nonnumeric literal without a closing quotation
mark, the first nonblank character in area B on the continuation line must be a quotation
mark, and the continuation line starts with the character immediately after that quotation
mark. All spaces at the end of the continued line are considered part of the literal. Area
A of a continuation line must be blank. The quotation mark used to continue a
nonnumeric literal must be the same quotation mark (that is, it must be a quotation mark
or an apostrophe) that began the nonnumeric literal.

Continuing a nonnumeric literal according to the previous paragraph is a deprecated
feature maintained only for compatibility with older programs. Concatenation
expressions are the recommended method of continuing nonnumeric literals in all new
RM/COBOL programs. See the description of Concatenation Expressions (on page 24).

Trailing space treatment for a continued line that contains a nonnumeric literal without a
closing quotation mark differs, depending on whether margin R is set to include or
exclude an Identification area. (For further information on margin R and the
Identification area, see source format (on page 25).

• When the Identification area is present, that is, when margin R is set less than the
maximum source record length, spaces are included from the last nonblank character
in the program-text area to margin R of the continued source record, regardless of the
length of the continued source record in the original source file.

• When the Identification area is not present, that is, when margin R is set greater than
or equal to the maximum source record length, only spaces actually present in the
continued record in the original source file are included. In this case, when the
source file is created by an editor or other program that strips trailing spaces from
records, no additional spaces will occur for the continued line. This behavior may be
modified if the SOURCE-ON-INPUT-DEVICE keyword of the COMPILER-
OPTIONS configuration record is configured for the compilation. (For further
information, see Chapter 10: Configuration of the RM/COBOL User's Guide.)

For hexadecimal nonnumeric literals, trailing spaces on a continued line are ignored and
the hexadecimal literal continues with the first character after the initial quote on the
continuation line.

2. If there is no hyphen in the indicator area of a line, it is assumed that the last character in
the preceding line is followed by a space.

3. When a continuation line is conditionally included because of a conditional pattern match
in the Identification area, the line remains a continuation line. If a continuation line is
conditionally excluded, the line becomes a comment line.

Blank Lines
A blank line is one that is blank in the indicator, A and B areas. A blank line can appear
anywhere in the source program.

Chapter 1: Language Structure

28 RM/COBOL Language Reference Manual

Comment Lines
A comment line is any line with an asterisk or a slash in the indicator area of the line. Also,
an in-line comment that is not preceded by any COBOL words or character-strings on the
same line is equivalent to a comment line.

A comment line may appear as any line after the Identification Division header of a source
program and as any line in library text referred to by a COPY statement. Any combination of
characters from the character set of the computer may be included in area A and area B of a
comment line. Comment lines are reproduced on the listing but serve as documentation only.
RM/COBOL also allows comment lines before the Identification Division header.

When a comment line is indicated with an asterisk, the comment is printed on the next
available line in the listing. When a comment line is indicated with a slash, page ejection
occurs before the comment line is printed.

In-Line Comments
An in-line comment begins with the two contiguous characters *> preceded by a separator
space, and ends with the last character position of the line. An in-line comment may be
placed anywhere a separator space may be placed in a COBOL source program or in library
text for a COBOL source program. For the purpose of evaluating library text, pseudo-text,
and source text, an in-line comment has the value of a single space character. An in-line
comment that is not preceded by any COBOL words or character-strings on the same line is
equivalent to a comment line.

Note An in-line comment is not recognized as such, if it occurs in the sequence area
(columns 1 to 6) or the Identification area of a source line. An in-line comment that begins
in the indicator area is indistinguishable from a comment line.

Debugging Lines
A debugging line is any line with a D in the indicator area of the line. Any debugging
line that consists solely of spaces from margin A to margin R is considered the same as a
blank line.

The content of a debugging line must be such that a syntactically correct program is formed
with or without the debugging lines being considered as comment lines.

A debugging line will be considered to have all the characteristics of a comment line if the D
Compile Command Option is not specified and the WITH DEBUGGING MODE clause is not
specified in the SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed.

A debugging line is only permitted in the separately compiled program after the
OBJECT-COMPUTER paragraph, or, if the OBJECT-COMPUTER paragraph is omitted,
after where the OBJECT-COMPUTER paragraph would be permitted if it were present.
Despite this COBOL language rule, RM/COBOL allows debugging lines anywhere;
debugging lines before the OBJECT-COMPUTER paragraph will be compiled only if the
D Compile Command Option or its configuration equivalent is specified.

Conditional compilation using pattern match with strings in the Identification area will change
a debugging line into a normal line when the line is conditionally include and into a comment
line when the line is conditionally excluded. The line remains a debugging line only if
conditional inclusion or exclusion does not apply, that is, when no conditional inclusion or
exclusion pattern is matched in the Identification area.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 29

Pseudo-Text
The character-strings and separators comprising pseudo-text in a COPY or REPLACE
statement may start in either area A or area B. If there is a hyphen in the indicator area of a
line that follows the opening pseudo-text delimiter, area A of the line must be blank and the
normal rules for continuation of lines apply to the formation of text words.

Statements
Source statements always begin with a keyword called a verb. There are four kinds
of statements:

1. Directive

2. Conditional

3. Imperative

4. Delimited Scope

Directive Statements
A directive statement specifies action to be taken by the compiler during compilation. The
directive statements are the COPY, REPLACE, and USE statements.

Conditional Statements
A conditional specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program is dependent on this truth value.

A conditional statement is one of the following:

• An EVALUATE, IF, SEARCH, or RETURN statement.

• A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or NOT
INVALID KEY phrase.

• A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY, END-OF-
PAGE, or NOT END-OF-PAGE phrase.

• A DELETE, REWRITE, or START statement that specifies the INVALID KEY or NOT
INVALID KEY phrase.

• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that
specifies the ON SIZE ERROR or NOT ON SIZE ERROR phrase.

• A RECEIVE statement that specifies the NO DATA or WITH DATA phrase.

• A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON
OVERFLOW phrase.

• A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or NOT ON
EXCEPTION phrase.

• An ACCEPT statement that specifies the ON EXCEPTION, ON ESCAPE, NOT ON
EXCEPTION, or NOT ON ESCAPE phrase.

Chapter 1: Language Structure

30 RM/COBOL Language Reference Manual

Conditional Phrases
A conditional phrase specifies the action to be taken upon determination of the truth value of
a condition resulting from execution of a conditional statement.

A conditional phrase is one of the following:

• The AT END or NOT AT END phrase in a READ statement.

• The INVALID KEY or NOT INVALID KEY phrase in a DELETE, READ, REWRITE,
START, or WRITE statement.

• The END-OF-PAGE or NOT END-OF-PAGE phrase in a WRITE statement.

• The ON SIZE ERROR or NOT ON SIZE ERROR phrase in an ADD, COMPUTE,
DIVIDE, MULTIPLY, or SUBTRACT statement.

• The NO DATA or WITH DATA phrase in a RECEIVE statement.

• The ON OVERFLOW or NOT ON OVERFLOW phrase in a STRING or UNSTRING
statement.

• The ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION phrase in a CALL
statement.

• The ON EXCEPTION, ON ESCAPE, NOT ON EXCEPTION, or NOT ON ESCAPE
phrase in an ACCEPT statement.

Imperative Statements
An imperative statement begins with an imperative verb and specifies an unconditional action
to be taken by the object program, or is a conditional statement that is delimited by its explicit
scope terminator (delimited scope statement). An imperative statement may consist of a
sequence of imperative statements, each possibly separated from the next by a separator or the
word THEN.

The imperative verbs are listed in Table 6.

Wherever imperative-statement appears in the general format of statements it refers to that
sequence of consecutive imperative statements that must be ended by a period or by any
phrase associated with a statement containing imperative-statement.

Table 6: Imperative Verbs

Imperative Verbs

ACCEPT 1 EXIT RELEASE
ADD 1 GO TO REWRITE 1
ALTER GOBACK SEND
CALL 1 INITIALIZE SET
CANCEL INSPECT SORT
CLOSE MERGE START 1
COMPUTE 1 MOVE STOP
CONTINUE MULTIPLY 1 STRING 1
DELETE 1 OPEN SUBTRACT 1
DISABLE PERFORM UNSTRING 1
DISPLAY PURGE UNLOCK
DIVIDE 1 READ 1 WRITE 1
ENABLE RECEIVE 1

1 Provided no conditional phrases are present.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 31

Delimited Scope Statements
A delimited scope statement is any statement that includes its explicit scope terminator. The
explicit scope terminators are listed in Table 7:

Table 7: Explicit Scope Terminators

Explicit Scope Terminators

END-ACCEPT END-IF END-SEARCH
END-ADD END-MULTIPLY END-START
END-CALL END-PERFORM END-STRING
END-COMPUTE END-READ END-SUBTRACT
END-COPY END-RECEIVE END-UNSTRING
END-DELETE END-REPLACE END-WRITE
END-DIVIDE END-RETURN
END-EVALUATE END-REWRITE

Scope of Statements
Scope terminators delimit the scope of certain Procedure Division statements. Statements that
include their explicit scope terminators are called delimited scope statements. The scope of
statements that are contained within statements (nested) may also be implicitly terminated.

When statements are nested within other statements, a separator period that ends the sentence
implicitly terminates all nested statements.

When any statement is contained within another statement, the next phrase of the containing
statement following the contained statement terminates the scope of any unterminated
contained statement.

When statements are nested within other statements that allow optional conditional phrases,
any optional conditional phrase encountered is considered to be the next phrase of the nearest
preceding unterminated statement with which that phrase is permitted to be associated but
with which no such phrase has already been associated. An unterminated statement is one
that has not been previously terminated either explicitly or implicitly.

When a delimited scope statement is nested within another delimited scope statement with the
same verb, each explicit scope terminator terminates the statement started by the most
recently preceding, and as yet unterminated, occurrence of that verb.

Sentences
A sentence is a sequence of one or more statements terminated by the period separator. There
are three kinds of sentences:

1. A directive sentence may contain only a single directive statement.

2. A conditional sentence is a conditional statement, optionally preceded by an imperative
statement, terminated by the separator period.

3. An imperative sentence is an imperative statement terminated by the separator period.

Clauses and Entries
An entry is an item of descriptive or declaratory nature made up of consecutive clauses. Each
clause specifies an attribute of the entry. Clauses are separated by space, comma, or
semicolon separators. The entry is terminated by a period separator.

Chapter 1: Language Structure

32 RM/COBOL Language Reference Manual

Paragraphs
A paragraph is a sequence of zero, one, or more sentences or entries. In the Identification
and Environment Divisions, each paragraph begins with a reserved word called a
paragraph header. In the Procedure Division, each paragraph begins with a user-defined
paragraph-name.

Sections
A section is a sequence of zero, one, or more paragraphs in the Environment and Procedure
Divisions and a sequence of zero, one, or more entries in the Data Division. In the
Environment and Data Divisions, each section begins with a section header that is made up
of reserved words. In the Procedure Division, each section begins with a user-defined
section-name.

Divisions
With the exception of COPY and REPLACE statements and the end program header, the
statements, entries, paragraphs, and sections of a source program are grouped into four
divisions which are sequenced in the following order:

1. Identification Division

2. Environment Division

3. Data Division

4. Procedure Division

The end of a source program is indicated either by the end program header, if specified, or by
the absence of additional source program lines.

Source Program General Format
The following gives the general format and order of presentation of the entries and
statements that constitute a source program. The generic terms identification-division,
environment-division, data-division, procedure-division, nested-source-program, and
end-program-header represent an Identification Division, an Environment Division, a Data
Division, a Procedure Division, a nested source program, and an end program header.

end-program-header must be present if either of the following circumstances exists:

• The source program contains one or more other source programs.

• The source program is contained within another source program.

[]
[]
[]
[]
[]m-headerend-progra

mrce-progranested-sou

divisionprocedure-

iondata-divis

t-divisionenvironmen

iontion-divisidentifica

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 33

General Rules

• The beginning of a division in a program is indicated by the appropriate division header.
The end of a division is indicated by one of the following:

− The division header of a succeeding division in that program.

− An Identification Division header that indicates the start of another source program.

− The end program header.

− That physical position after which no more source program lines occur.

• A source program directly or indirectly contained within another program is considered
in these specifications as a separate program that may additionally reference certain
resources defined in the containing program.

• The object code, resulting from compiling a source program contained within another
program, is considered in these specifications to be inseparable from the object code
resulting from compiling the containing program.

• All separately compiled source programs in a sequence of programs must be terminated
by an end program header except for the last program in the sequence.

Inter-Program Communication
The Inter-Program Communication module provides a facility by which a program can
communicate with one or more programs. This communication is provided by the following:

• The ability to transfer control from one program to another within a run unit.

• The ability to pass parameters between programs to make certain data values available
to a called program.

The Inter-Program Communication module also permits communication between two
programs by the sharing of data and the sharing of files.

Nested Source Programs
A source program is a syntactically correct set of COBOL statements. A source program may
contain other source programs; these contained programs may reference some of the resources
of the program within which they are contained.

A program may be directly or indirectly contained in another program. Program B is directly
contained in program A if there is no program contained in program A that also contains
program B. Program B is indirectly contained in program A if there exists a program
contained in program A that also contains program B.

File Connector
A file connector is a storage area that contains information about a file and is used as the
linkage between a file-name and a physical file and between a file-name and its associated
record area.

Chapter 1: Language Structure

34 RM/COBOL Language Reference Manual

Global Names and Local Names
A data-name names a data item. A file-name names a file connector. These names are
classified as either global or local.

A global name may be used to refer to the object with which it is associated either from
within the program in which the global name is declared or from within any other program
which is contained in the program which declares the global name.

A local name, however, may be used only to refer to the object with which it is associated
from within the program in which the local name is declared. Some names are always global;
some are always local; and some are either local or global, depending upon specifications in
the program in which the names are declared.

A record-name is global if the GLOBAL clause is specified in the record description entry by
which the record-name is declared or, in the case of record description entries in the File
Section, if the GLOBAL clause is specified in the file description entry for the file-name
associated with the record description entry. A data-name is global if the GLOBAL clause is
specified either in the data description entry by which the data-name is declared or in another
entry to which that data description entry is subordinate. A condition-name declared in a data
description entry is global if that entry is subordinate to another entry in which the GLOBAL
clause is specified. However, specific rules sometimes prohibit specification of the GLOBAL
clause for certain data description, file description or record description entries.

A file-name is global if the GLOBAL clause is specified in the file description entry for that
file-name.

A split-key-name is global if the GLOBAL clause is specified in the file description entry for
the file-name of the file with which the split-key-name is associated.

If a condition-name declared in a data description entry, a data-name, a file-name or a split-
key-name is not global, the name is local.

A constant-name is always global.

Global names are transitive across programs contained within other programs.

External Objects and Internal Objects
Accessible data items usually require that certain representations of data be stored. File
connectors usually require that certain information concerning files be stored. The storage
associated with a data item or a file connector may be external or internal to the program in
which the object is declared.

A data item or file connector is external if the storage associated with that object is associated
with the run unit rather than with any particular program within the run unit. An external
object may be referenced by any program in the run unit that describes the object. References
to an external object from different programs using separate descriptions of the object are
always to the same object. In a run unit, there is only one representative of an external object.

An object is internal if the storage associated with that object is associated only with the
program that describes the object.

External and internal objects may have global or local names.

A data record described in the Working-Storage Section is given the external attribute by the
presence of the EXTERNAL clause in its data description entry. Any data item described by
a data description entry subordinate to an entry describing an external record also attains the
external attribute. If a record or data item does not have the external attribute, it is part of the
internal data of the program in which it is described.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 35

A file connector is given the external attribute by the presence of the EXTERNAL clause in
the associated file description entry. A file connector without the external attribute is internal
to the program in which the associated file-name is described.

The data records described subordinate to a file description entry which does not contain the
EXTERNAL clause or a sort-merge file description entry, as well as any data items described
subordinate to the data description entries for such records, are always internal to the program
describing the file-name. If the EXTERNAL clause is included in the file description entry,
the data records and the data items attain the external attribute.

Data records, subordinate data items and various associated control information described in
the Linkage and Communication Sections of a program are always considered to be internal
to the program describing that data. Special considerations apply to data described in the
Linkage Section whereby an association is made between the data records described and other
data items accessible to other programs.

Common Programs and Initial Programs
All programs that form part of a run unit may possess neither, one, or both of the attributes
common and initial.

A common program is one which, even though it is directly contained within another
program, may be called by any program directly or indirectly contained in that other program.
The common attribute is attained by specifying the COMMON clause in the Identification
Division of the program. The COMMON clause facilitates the writing of subprograms that
are to be used by all the programs contained within a program.

An initial program is one whose program state is initialized when the program is called.
Thus, whenever an initial program is called, its program state is the same as when the
program was first called in that run unit. During the process of initializing an initial program
that program’s internal data is initialized; thus, an item of the program’s internal data whose
description contains a VALUE clause is initialized to that defined value, but an item whose
description does not contain a VALUE clause is initialized to an undefined value. Files with
internal file connectors associated with the program are not in the open mode. The control
mechanisms for all PERFORM statements contained in the program are set to their initial
states. The initial attribute is attained by specifying the INITIAL clause in the Identification
Division of the program.

Sharing Data in a Run Unit
Two programs in a run unit may reference common data under the following circumstances:

• The data content of an external data record may be referenced from any program,
provided that program has described that data record.

• If a program is contained within another program, both programs may refer to data
possessing the global attribute either in the containing program or in any program that
directly or indirectly contains the containing program.

• The mechanism whereby a parameter value is passed by reference from a calling program
to a called program establishes a common data item; the called program, which may use a
different identifier, may refer to a data item in the calling program.

Chapter 1: Language Structure

36 RM/COBOL Language Reference Manual

Sharing Files in a Run Unit
Two programs in a run unit may reference common file connectors under the following
circumstances:

• An external file connector may be referenced from any program that describes that file
connector.

• If a program is contained within another program, both programs may refer to a common
file connector by referring to an associated global file-name either in the containing
program or in any program that directly or indirectly contains the containing program.

Scope of Names
When programs are directly or indirectly contained within other programs, each program may
use identical user-defined words to name objects independent of the use of these user-defined
words by other programs. When identically named objects exist, a program’s reference to
such a name, even when it is a different type of user-defined word, is to the object which that
program describes rather than to the object possessing the same name but described in another
program.

The following types of user-defined words may be referenced only by statements and entries
in the program in which the user-defined word is declared:

cd-name
paragraph-name
screen-name
section-name

The following types of user-defined words may be referenced by a program, provided that the
compiler environment supports the associated library and the entities referenced are known to
that system:

library-name
text-name

The following types of user-defined words when they are declared in a Communication
Section may be referenced only by statements and entries in the program which contains
that section:

Condition-name
data-name
record-name

The following types of names, when they are declared within a Configuration Section, may be
referenced only by statements and entries either in the program that contains a Configuration
Section or in any program contained within the program:

alphabet-name
class-name
Condition-name
mnemonic-name
symbolic-character

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 37

Specific conventions for declarations and references apply to the following types of
user-defined words when the conditions listed above do not apply:

Condition-name index-name
constant-name program-name
data-name record-name
file-name split-key-name

Program-Names
A program-name of a program is declared in the PROGRAM-ID paragraph of the
Identification Division. A program-name may be referenced only by the CALL statement, the
CANCEL statement, and the end program header. The program-names allocated to programs
constituting a run unit are not necessarily unique but, when two programs in a run unit are
identically named, at least one of those two programs must be directly or indirectly contained
within another separately compiled program that does not contain the other of those two
programs.

The following rules regulate the scope of a program-name.

1. If the program-name is that of a program which does not possess the common attribute
and which is directly contained within another program, that program-name may be
referenced only by statements included in that containing program.

2. If the program-name is that of a program which does possess the common attribute and
which is directly contained within another program, that program-name may be
referenced only by statements included in that containing program and any programs
directly or indirectly contained within that containing program, except that program
possessing the common attribute and any programs contained within it.

3. If the program-name is that of a program which is separately compiled, that
program-name may be referenced by statements included in any other program in
the run unit, except programs it directly or indirectly contains.

Condition-Names, Constant-Names, Data-Names, File-Names,
Record-Names and Split-Key-Names
Condition-names, constant-names, data-names, file-names, record-names, and
split-key-names—when declared in a source program—may be referenced only by that
program except when one or more of the names are global and the program contains
other programs.

See the discussion of User-Defined Words (on page 8) for the requirements governing the
uniqueness of the names allocated by a single program to be condition-names, constant-
names, data-names, file-names, record-names, and split-key-names.

A program cannot reference any condition-name, constant-name, data-name, file-name,
record-name, or split-key-name declared in any program it contains.

A global name may be referenced in the program in which it is declared or in any programs
which are directly or indirectly contained within that program.

When a program, program B, is directly contained within another program, program A,
both programs may define a condition-name, constant-name, a data-name, a file-name, a
record-name, or a split-key-name using the same user-defined word. When such a duplicated
name is referenced in program B, the following rules are used to determine the referenced
object:

Chapter 1: Language Structure

38 RM/COBOL Language Reference Manual

1. The set of names to be used for determination of a referenced object consists of all names
which are defined in program B and all global names which are defined in program A and
in any programs which directly or indirectly contain program A. Using this set of names,
the normal rules for qualification and any other rules for uniqueness of reference are
applied until one or more objects are identified.

2. If only one object is identified, it is the referenced object.

3. If more than one object is identified, no more than one of them can have a name local to
program B. If zero or one of the objects has a name local to program B, the following
rules apply:

a. If the name is declared in program B, the object in program B is the
referenced object.

b. Otherwise, if program A is contained within another program, the referenced
object is:

1) The object in program A if the name is declared in program A.

2) The object in the containing program if the name is not declared in program A
and is declared in the program containing program A. This rule is applied to
further containing programs until a single valid name has been found.

Index-Names
If a data item possessing either or both the external or global attributes includes a table
accessed with an index, that index also possesses correspondingly either or both attributes.
Therefore, the scope of an index-name is identical to that of the data-name which names the
table whose index is named by that index-name and the scope of name rules for data-names
apply. Index-names may be qualified, but if duplicate index-names have the external
attribute, the duplicated index-names that would otherwise be external will cause a
compilation error and will not be external.

Note A later interpretation of the COBOL language standard stated that the rule regarding
external index-names was an editorial error and that index-names are never external.
RM/COBOL implemented the original rule as stated in the standard. The EXTERNAL-
INDEX-NAMES keyword of the COMPILER-OPTIONS configuration record can specify the
value NO to cause index-names not to inherit the external attribute; however, the default value
for this keyword is YES to preserve compatibility with the original RM/COBOL compiler
interpretation of index-names in an external record. (For further information, see Chapter 10:
Configuration of the RM/COBOL User's Guide.)

Initial State of a Program
The initial state of a program is the state of a program the first time it is called in a run unit.

The internal data of the program contained in the Working-Storage Section and the
Communication Section is initialized. If a VALUE clause is used in the description of the
data item, the data item is initialized to the defined value. If a VALUE clause is not
associated with a data item, the initial value of the data item is undefined.

Files with internal file connectors associated with the program are not in the open mode.

The control mechanisms for all PERFORM statements contained in the program are set to
their initial states.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 39

A GO TO statement referred to by an ALTER statement contained in the same program is set
to its initial state.

A program is in the initial state:

• The first time the program is called in a run unit.

• The first time the program is called after the execution of a CANCEL statement
referencing the program or a CANCEL statement referencing a program that directly
or indirectly contains the program.

• Every time the program is called, if it possesses the initial attribute.

• The first time the program is called after the execution of a CALL statement
referencing a program that possesses the initial attribute, and that directly or indirectly
contains the program.

End Program Header
The end program header indicates the end of the named source program.

program-name-1 must conform to the rules for forming a user-defined word. See User-
Defined Words (on page 8).

literal-1 must be a nonnumeric literal.

A constant-name may not be used for literal-1. A constant-name used in place of literal-1
will be treated as a program-name; the literal value assigned to the constant-name will not
be used.

program-name-1 or literal-1 must be identical to a program-name declared in a preceding
PROGRAM-ID paragraph.

If a PROGRAM-ID paragraph declaring a specific program-name is stated between the
PROGRAM-ID paragraph and the end program header declaring and referencing,
respectively, another program-name, the end program header referencing the former program-
name must precede that referencing the latter program-name.

General Rules

• The end program header must be present in every program that either contains or is
contained within another program.

• The end program header indicates the end of the specified source program. If program-
name-1 and literal-1 are omitted, it is assumed to be the same as the program-name
specified in the immediately preceding PROGRAM-ID paragraph not yet associated with
an end program header.

• If the program terminated by the end program header is contained within another
program, the next statement must either be an Identification Division header or another
end program header that terminates the containing program.

• If the program terminated by the end program header is not contained within another
program and if the next source statement is a COBOL statement, it must be the

.

literal-1

me-1program-na
PROGRAMEND

Chapter 1: Language Structure

40 RM/COBOL Language Reference Manual

Identification Division header of a program to be compiled separately from the program
terminated by the end program header.

COPY Statement
The COPY statement provides the facility for copying text from user-specified library files
into the source program. The effect of the interpretation of the COPY statement is to insert
text into the source program, where it is treated by the compiler as part of the source program.

Library text is placed in the library as a function independent of the compiler, using any
text-manipulation utilities that are available. Library text must conform to the same
formatting rules that apply to source text.

A constant-name may not be used for literal-1 or literal-2. A constant-name used in place of
literal-1 will be treated as a text-name; the literal value assigned to the constant-name will not
be used. A constant-name used in place of literal-2 will be treated as a library-name; the
literal value assigned to the constant-name will not be used.

literal-1, literal-2, literal-3, or literal-4 may not be a concatenation expression.

A COPY statement may appear anywhere in a source program that a character-string or
separator is allowed, except that a COPY statement may not be embedded within another
COPY statement. However, the COPY statement may be embedded in the library text
referenced by the COPY statement.

A COPY statement must always be immediately followed by either a period separator or the
END-COPY scope terminator (but not both). That separator functions solely as a part of the
COPY statement and does not terminate any sentence or entry in which the COPY statement
may be embedded.

The first (or only) operand of a COPY statement may be written as a text-name or as a
nonnumeric literal. If the file access name of the text file being referred to conforms to the
requirements of a valid COBOL word—and it is not a reserved word—it may be written as a
text-name; if it does not form a COBOL word and is made up of the following characters, it
may still be a text-name:

• Alphabetic characters

• Digits (0 through 9)

• The characters ! # $ % & () * – . / : ? @ \ ^ _ ‘ { }

In other words, writing the operand of a COPY statement as a nonnumeric literal is always
permissible, but is required when the file access name is a reserved word, is longer than 240
characters or contains special characters other than those listed above.

[]

[]COPY-END

BYREPLACING

PRINTINGSUPPRESSOF
INCOPY

 ====

 ====

word-2
literal-4

-2identifier
t-2pseudo-tex

word-1
literal-3

-1identifier
t-1pseudo-tex

literal-2
me-1library-na

literal-1
1text-name-

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 41

In environments in which the concept of file libraries or directories has meaning, the first
operand of a COPY statement may optionally be qualified by a library-name-1. Library-
names are treated as the leading part of a file access name; the concatenation of the two values
is used to locate the file to be copied. The interpretation of the concatenation of library-
name-1 and text-name-1 is system dependent. The library-name a COPY statement, when
present, may be written as a word or as a nonnumeric literal, subject to the same
considerations that apply to the text-name.

A COPY statement may be followed by additional text in area B of a source record. Multiple
COPY statements may occur on a single source record.

Copy files may be nested up to five levels deep; they may contain a COPY statement. This
nesting limit may be exceeded when a COPY statement appears as the last statement on the
last record in a source or copy file; in such cases, the nesting level limit is raised to nine. The
limit of five applies to open copy files; a COPY statement appearing at the end of a file allows
the compiler to close that source or copy file before opening the one referenced in the COPY
statement (that is, the compiler chains from one file to the next). The copy nesting level
indicator is incremented when a COPY statement appears at the end of a file to indicate the
logical nesting of the copied text. As a result, the copy level indicator does not always
indicate the number of open input files and may, therefore, exceed five.

In the discussion that follows, a text word is considered a character or sequence of contiguous
characters in columns 8 through 72 of records in a library, source program or in pseudo-text.
These characters may be:

• A separator, except for space, a pseudo-text delimiter, and the opening and closing
delimiters for nonnumeric literals. The right parenthesis and left parenthesis, regardless
of context within the library, source program or pseudo-text, are always considered
text words.

• A literal including, in the case of nonnumeric literals, the opening quotation mark and the
closing quotation mark which bound the literal.

• Any other sequence of contiguous characters except comment lines and the word COPY,
bounded by separators, which is neither a separator nor a literal.

The SUPPRESS phrase may be specified to suppress printing the copied source text in
the source listing file. If the SUPPRESS phrase is specified, it is transitive to any COPY
statements in the copied source text. That is, all source text copied when the SUPPRESS
phrase is specified will be suppressed even when there are nested COPY statements that
do not specify the SUPPRESS phrase. Regardless of the presence of the SUPPRESS
phrase, lines with errors will be included in the source listing preceding the associated
diagnostic messages.

Library text is copied into the source program without change unless a REPLACING phrase
is specified. When the REPLACING phrase is specified, the following rules apply:

1. pseudo-text-1 must contain one or more text words. It must not consist entirely of a
separator comma or a separator semicolon.

2. pseudo-text-2 may contain zero, one or more text words.

3. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

4. word-1 and word-2 may be any single COBOL word except COPY.

5. As text is being copied from the library into the source program, each properly matched
occurrence of pseudo-text-1, identifier-1, word-1, or literal-3 in the library text is
replaced by the corresponding pseudo-text-2, identifier-2, word-2, or literal-4.

6. For purposes of matching, identifier-1, word-1, and literal-3 are treated as pseudo-text
containing only identifier-1, word-1, or literal-4, respectively.

Chapter 1: Language Structure

42 RM/COBOL Language Reference Manual

7. The comparison operation that determines text replacement is done as follows:

a. The leftmost library text word that is not a separator comma or a separator semicolon
is the first text word used for comparison. Any text word or space preceding this text
word is copied into the source program. Starting with the first text word for
comparison and the first pseudo-text-1, identifier-1, word-1, or literal-3 that is
specified in the REPLACING phrase, the entire REPLACING phrase operand that
precedes the reserved word BY is compared with an equivalent number of
contiguous library text words.

b. pseudo-text-1, identifier-1, word-1, or literal-3 match the library text only if the
ordered sequence of text words that forms pseudo-text-1, identifier-1, word-1, or
literal-3 is equal, character for character, to the ordered sequence of library text
words. For purposes of matching, each occurrence of a separator comma, semicolon
or space in pseudo-text-1 or in the library text is considered to be a single space.
Each sequence of one or more space separators is considered to be a single space.

For purposes of matching, a quoted string nonnumeric literal matches any other
quoted string nonnumeric literal with the same value regardless of whether quotes or
apostrophes were used as the delimiter. For purposes of matching, any form of a
hexadecimal literal matches any other form of a hexadecimal literal that has the same
value, regardless of whether an X or H is used for the initial character, whether
quotes or apostrophes were used for delimiters and whether uppercase or lowercase
letters are used to specify the value. A hexadecimal literal does not match a quoted
string nonnumeric literal even if the actual values would be the same in the native
character set.

For purposes of matching, each operand and operator of a concatenation expression
is a separate text-word.

c. If no match occurs, the comparison is repeated with each following pseudo-text-1,
identifier-1, word-1, or literal-3, if any, in the REPLACING phrase until either a
match is found or there is no following REPLACING operand.

d. When all REPLACING phrase operands have been compared and no match has
occurred, the leftmost library text word is copied into the source program. The
following library text word is then considered as the leftmost library text word, and
the comparison cycle starts again with the first pseudo-text-1, identifier-1, word-1,
or literal-3 in the REPLACING phrase.

e. Whenever a match occurs between library text and pseudo-text-1, identifier-1,
word-1, or literal-3, the corresponding pseudo-text-2, identifier-2, word-2, or
literal-4 is placed into the source program. The library text word following the
rightmost text word that participated in the match then becomes the new leftmost text
word for subsequent cycles.

The comparison cycle starts again with the first pseudo-text-1, identifier-1, word-1,
or literal-3 specified in the REPLACING phrase.

f. The comparison cycles continue until the rightmost text word in the library text has
either participated in a match or has been considered as a leftmost library text word
and participated in a complete comparison cycle.

8. Comment lines and blank lines occurring in library text or pseudo-text-1 are ignored for
purposes of matching, and the sequence of text words in the library text (if any) and in
pseudo-text-1 is determined by the rules for source format (see Figure 1 on page 25).
Comment lines and blank lines appearing in pseudo-text-2 are copied into the source
program unchanged whenever pseudo-text-2 is placed into the source program as a result
of text replacement.

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 43

9. Comment lines and blank lines appearing in library text are copied into the source
program unchanged except that a comment line or a blank line in library text is not
copied if it appears within the sequence of text words that match pseudo-text-1.

10. Debugging lines may appear within library text and pseudo-text. Text words within a
debugging line participate in the matching rules as if the D did not appear in indicator
area. A debugging line is specified within pseudo-text if the debugging line begins in the
source program after the opening pseudo-text delimiter but before the matching closing
pseudo-text delimiter.

11. The source program that results from the resolution of all COPY and REPLACE
statements must form a syntactically correct source program, as defined in the rest of this
manual.

12. Each text word copied from the library but not replaced is copied so as to start in the
same area of the line in the source program as it begins in the line within the library.
However, if a text word copied from the library begins in area A but follows another text
word that also begins in area A of the same line, and if replacement of a preceding text
word in the line by replacement text of greater length occurs, the following text word
begins in area B if it cannot begin in area A. Each text word in pseudo-text-2 that is to be
placed into the source program begins in the same area of the source program as it
appears in pseudo-text-2. Each identifier-2, literal-4, and word-2 that is to be placed into
the source program begins in the same area of the source program as the leftmost library
text word that participated in the match would appear had it not been replaced.

13. If additional lines are introduced into the source program as a result of a COPY
statement, each text word introduced appears on a debugging line if the COPY statement
begins on a debugging line or if the text word being introduced appears on a debugging
line in library text. When a text word specified in the BY phrase is introduced, it appears
on a debugging line if the first library text word being replaced is specified on a
debugging line. Except in the preceding cases, only those text words that are specified on
debugging lines where the debugging line is within pseudo-text-2 appear on debugging
lines in the source program. If any literal specified as literal-4 or within pseudo-text-2 or
library text is too long to be accommodated on a single line without continuation to
another line in the source program, and the literal is not being placed on a debugging line,
additional continuation lines are introduced to contain the remainder of the literal. A
replacement literal may not be continued onto a debugging line.

14. For purposes of compilation, text words after replacement are placed in the source
program according to the rules for source format (see Figure 1 on page 25). When
copying text words of pseudo-text-2 into the source program, additional spaces may be
introduced between text words where there is already a space, including the space that
implicitly falls between source lines.

15. If additional lines are introduced into the source program as a result of the processing of
COPY statements, the indicator area of the introduced lines contains the same character
as the line on which the text being replaced begins, unless that line contains a hyphen, in
which case the introduced line contains a space in the indicator area. In the case where a
literal is continued onto an introduced line that is not a debugging line, a hyphen is placed
in the indicator area.

COPY Statement Examples

 COPY FDFILE1.

 COPY "FDFILE2.CBL".

 COPY FDFILE3 OF TESTLIB.

Chapter 1: Language Structure

44 RM/COBOL Language Reference Manual

 COPY FDFILE4 IN PRODLIB.

REPLACE Statement
The REPLACE statement provides the ability to selectively replace source text within
specified regions of the source program.

Format 1: Begin or Change Replacement)

Format 2: End Replacement

A Format 1 REPLACE statement specifies that within its scope each occurrence of
pseudo-text-1 is to be replaced by the corresponding pseudo-text-2.

The scope of a Format 1 REPLACE statement begins with the first text word in the source
program following the REPLACE statement, and it continues up to the next REPLACE
statement or the end of the program.

A Format 2 REPLACE statement terminates the scope of any preceding Format 1 REPLACE
statement.

A REPLACE statement may appear anywhere in a source program that a character-string may
appear. It must be preceded by a separator period except when it is the first statement in a
separately compiled program. It must be terminated by either a period separator or the END-
REPLACE scope terminator (but not both). That separator functions solely as a part of the
REPLACE statement and does not terminate any sentence or entry in which the REPLACE
statement may be embedded.

REPLACE statements are processed after COPY statements. The text produced by the action
of a REPLACE statement must not contain a REPLACE statement. The source program that
results from resolution of all COPY and REPLACE statements must form a syntactically
correct source program, as defined in the rest of this manual.

The word REPLACE, appearing in a comment-entry or in a position where a comment-entry
may appear, is considered part of the comment-entry.

pseudo-text-1 must contain one or more text words. It must not consist entirely of a separator
comma or a separator semicolon.

pseudo-text-2 may contain zero, one, or more text words.

Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

The comparison operation that determines text replacement is done as follows:

1. Starting with the leftmost text word in the scope and the first pseudo-text-1,
pseudo-text-1 is compared with an equivalent number of contiguous source program
text words.

2. pseudo-text-1 matches the source program text only if the ordered sequence of text words
that forms pseudo-text-1 is equal, character for character, to the ordered sequence of
source program text words. For purposes of matching, each occurrence of a separator
comma, semicolon or space in pseudo-text-1 or in the source program text is considered

{ } []REPLACE-ENDBYREPLACE ======== t-2pseudo-text-1pseudo-tex

[]REPLACE-ENDOFFREPLACE

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 45

to be a single space. Each sequence of one or more space separators is considered to be
a single space.

For purposes of matching, a quoted string nonnumeric literal matches any other quoted
string nonnumeric literal with the same value regardless of whether quotes or apostrophes
were used as the delimiter. For purposes of matching, any form of a hexadecimal literal
matches any other form of a hexadecimal literal that has the same value, regardless of
whether an X or H is used for the initial character, whether quotes or apostrophes were
used for delimiters and whether uppercase or lowercase letters are used to specify the
value. A hexadecimal literal does not match a quoted string nonnumeric literal even if
the actual values would be the same in the native character set.

For purposes of matching, each operand and operator of a concatenation expression is a
separate text-word.

3. If no match occurs, the comparison is repeated with each subsequent pseudo-text-1 until
either a match is found or there is no following pseudo-text-1.

4. When all occurrences of pseudo-text-1 have been compared and no match has occurred,
the next source program text word in the scope is then considered as the leftmost source
program text word, and the comparison cycle starts again with the first occurrence of
pseudo-text-1.

5. Whenever a match occurs between pseudo-text-1 and the source program text, the
corresponding pseudo-text-2 replaces the matched text in the source program. The source
program text word following the rightmost text word that participated in the match then
becomes the new leftmost source program text word for subsequent cycles. The
comparison cycle starts again with the first occurrence of pseudo-text-1.

6. The comparison cycles continue until the rightmost text word in the scope of the
REPLACE statement either has participated in a match or has been considered as a
leftmost source program text word and participated in a complete comparison cycle.

Comment lines and blank lines occurring in the scope or in pseudo-text-1 are ignored for
purposes of matching, and the sequence of text words in the source program text and in
pseudo-text-1 is determined by the rules for source format (see Figure 1 on page 25).
Comment lines and blank lines appearing in pseudo-text-2 are copied into the source program
unchanged whenever pseudo-text-2 is placed into the source program as a result of text
replacement.

A comment or blank line in the scope is not replaced if it appears within the sequence of text
words that match pseudo-text-1.

Debugging lines may appear within pseudo-text. Text words within a debugging line
participate in the matching rules as if the D did not appear in the indicator area.

Text words inserted into the source program as a result of processing a REPLACE statement
are placed in the source program according to the rules for source format (see Figure 1 on
page 25). When copying text words of pseudo-text-2 into the source program, additional
spaces may be introduced between text words where there is already a space, including the
space that implicitly falls between source lines.

If additional lines are introduced into the source program as a result of the processing of
REPLACE statements, the indicator area of the introduced lines contains the same character
as the line on which the text being replaced begins unless that line contains a hyphen, in
which case the introduced line contains a space.

If any literal within pseudo-text-2 is too long to be accommodated on a single line without
continuation to another line in the source program and the literal is not being placed on a
debugging line, additional continuation lines are introduced to contain the remainder of the
literal. A replacement literal may not be continued onto a debugging line.

Chapter 1: Language Structure

46 RM/COBOL Language Reference Manual

REPLACE Statement Examples

 REPLACE == HEADING1 == BY == FOOTING1 ==
 == HEADING2 == BY == FOOTING2 ==
 == HEADING3 == BY == FOOTING3 ==.

 REPLACE == <EXEC SQL> == BY ==CALL "C$SQL" USING ==
 == <END EXEC> == BY ==GIVING SQL-STATUS. ==.

 REPLACE OFF.

Compiler Directives
Compiler directives specify options for use by the compiler. Compiler directives are
introduced by the floating indicator “>>”. One or more spaces may optionally follow the
indicator.

A compiler directive must be specified on a single source line.

A compiler directive must be written in the program-text area and cannot be preceded by any
characters other than spaces in the program-text area of the source line. The directive may be
followed only by spaces and an optional inline comment.

IMP Directive
The IMP directive introduces RM/COBOL-defined (implementor-defined) directives. The
RM/COBOL directive is the MARGIN-R directive.

IMP MARGIN-R
The IMP MARGIN-R directive can be used to modify the position of margin R (the right
margin for program-text) at any point in the source file.

The compiler starts with a margin R defined by the value specified in the INITIAL-
MARGIN-R keyword of the COMPILER-OPTIONS configuration record. The default value
when this keyword is not configured is after column 72, the traditional end of the program-
text area for COBOL source records.

When this directive appears in copied library text, the margin R setting reverts to its value
before the COPY statement when the end-of-file is reached on the copied file. That is, such a
directive in copied library text has no effect on the source that specifies the COPY statement.

If integer-1 is less than 72, it is changed to 72 with no error or warning diagnostic.

If integer-1 is greater than or equal to the maximum source record length, the directive is
equivalent to using the END OF RECORD format. In either of these cases, there is no
Identification area; that is, the program-text area of a record extends to the end of the record.
The presence or absence of an Identification area affects the trailing space treatment for
continued nonnumeric literals, as explained in continuation of lines (on page 27).

>>
 RECORD OF END

 COL
 COLUMN AFTERIS R-MARGIN IMP integer-1

Chapter 1: Language Structure

 RM/COBOL Language Reference Manual 47

The compiler updates the source column header for the listing file when the margin R setting
is changed, but does not automatically force a new page. If the new header is desired
immediately, a new listing page can be forced with the “/” comment indicator or by using the
PAGE directive on a line following the IMP MARGIN-R directive. For further information
on the compilation listing, see “Program Listing” in Chapter 6: Compiling of the RM/COBOL
User’s Guide.

LISTING Directive
The LISTING directive can be used to turn the listing of source records on or off at any point
in the source file.

The compiler starts with a default of listing source records in the on state. A LISTING
directive without either ON or OFF is equivalent to >>LISTING ON. LISTING directives are
listed, even if the listing state is off. When a LISTING directive occurs in copied library text,
the listing state reverts at the end of the copy file to what it was before the COPY statement.

Note The SUPPRESS phrase of the COPY statement, the C Compile Command Option, the
E Compile Command Option, and the LISTING-ATTRIBUTES configuration keyword
values that suppress certain lines from being printed override a LISTING ON directive and
the presence of LISTING directive lines in the listing.

PAGE Directive
The PAGE directive can be used to force a new listing page.

comment-text-1, if present, is printed with the PAGE directive on a new listing page if the
listing state is on.

Note The PAGE directive in fixed-form source format is redundant with the “/” comment
indicator. Use of the PAGE directive instead of the “/” comment indicator may ease
conversion to future forms of source formats that might not have an indicator column.

>> OFF

 ON LISTING

[] PAGE xt-1comment-te>>

Chapter 2: Identification Division

 RM/COBOL Language Reference Manual 49

Chapter 2: Identification
Division

The Identification Division must be included in every source program. This division
identifies both the source program and the resulting object program. In addition, the user may
include other commentary information.

This chapter details the structure and syntax of the Identification Division.

Identification Division Structure

comment-entry may be any combination of characters from the character set of the
computer. The continuation of comment-entry by the use of the hyphen in the indicator area
is not permitted; however, comment-entry may be contained on one or more lines. A
comment-entry must be contained in area B of a source line and is ended by source text in
area A of a source line. A COPY or REPLACE statement within a comment-entry is
considered part of the comment-entry and has no effect on the resultant source program.

.DIVISIONID
TIONIDENTIFICA

.. PROGRAMINITIAL
COMMONISID-PROGRAM

literal-1
me-1program-na

[][]try-1comment-en.AUTHOR

[][]try-2comment-en.ONINSTALLATI

[][]try-3comment-en.WRITTEN-DATE

[][]try-4comment-en.COMPILED-DATE

[][]try-5comment-en.SECURITY

[][]try-6comment-en.REMARKS

Chapter 2: Identification Division

50 RM/COBOL Language Reference Manual

Program Identification

The Identification Division must begin with the reserved words IDENTIFICATION
DIVISION or ID DIVISION followed by a separator period.

Paragraph headers identify the type of information contained in the paragraph. The name of
the program must be given in the first paragraph, which is the PROGRAM-ID paragraph. The
other paragraphs are optional and may be written in any order.

PROGRAM-ID Paragraph

A constant-name may not be used for literal-1. A constant-name used in place of literal-1
will be treated as a program-name; the literal value assigned to the constant-name will not
be used.

The PROGRAM-ID paragraph, containing the program-name, identifies the source program,
the object program, and all listings pertaining to a particular program. program-name-1 is a
user-defined word. Alternatively, program-name-1 may be specified as a nonnumeric literal,
in which case the value of program-name-1 may be a reserved word or may use any
characters in the character set of the computer. A program contained within another program
must not be assigned the same name as that of any other program contained within the
separately compiled program that contains this program.

program-name-1 may be 1 to 30 characters in length. All the characters of program-name-1,
except trailing spaces, are associated with the object program in order to identify the program
to be called or canceled by a CALL or CANCEL statement.

The PROGRAM-ID paragraph also assigns selected program attributes to the program that
it names.

The optional COMMON clause may be used only if the program is contained within another
program. It specifies that the program is common. A common program is contained within
another program, but may be called from programs other than that containing it. Such other
calling programs must be directly or indirectly contained in the same program that contains
the common program.

The INITIAL clause designates the program as the initial program. When an initial program
is called, it and any programs contained within it are placed in their initial state. When an
EXIT PROGRAM or GOBACK statement is executed in an initial program, the program is
implicitly canceled.

AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY,
and REMARKS Paragraphs

.DIVISIONID
TIONIDENTIFICA

.. PROGRAMINITIAL
COMMONISID-PROGRAM

literal-1
me-1program-na

[]try-1comment-en.AUTHOR

[]try-2comment-en.ONINSTALLATI

Chapter 2: Identification Division

 RM/COBOL Language Reference Manual 51

These paragraphs are optional; their order of presentation is immaterial. They document
information pertaining to the paragraph header. The paragraphs are reproduced in the listing
generated by the compiler, but have no effect on the compilation.

DATE-COMPILED Paragraph

If a DATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the form:

DATE-COMPILED. current-date.

where current-date is the date on which the compilation started. The format of current-date
is determined by the LISTING-DATE-FORMAT and LISTING-DATE-SEPARATOR
keywords of the COMPILER-OPTIONS configuration record. The default format is
“MM/DD/YYYY”, where MM is the month of the year, DD is the day of the month, and
YYYY is the year.

The entire comment-entry-4 is replaced, but comment and blank lines in the paragraph are not
replaced. Only the compilation listing file is affected; the compilation date is not inserted in
the source file. The inserted compilation date matches the date placed in the object file and
the date listed in the compilation listing page headers.

The DATE-COMPILED paragraph is optional and may appear in any order with respect to
the other optional paragraphs of the Identification Division.

The C Compile Command Option or keywords in the COMPILER-OPTIONS configuration
record can be used to control whether the replaced lines or replacement lines resulting from
processing of the DATE-COMPILED paragraph are included in the compilation listing.

[]try-3comment-en.WRITTEN-DATE

[]try-5comment-en.SECURITY

[]try-6comment-en.REMARKS

[]try-4comment-en.COMPILED-DATE

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 53

Chapter 3: Environment
Division

The Environment Division describes the hardware configuration of the compiling (or source)
computer and the computer on which the object program is run (the object computer). It also
describes the relationship between the files and the input-output media.

The Environment Division is an optional division in a source program. It is subdivided in to
two sections: Configuration and Input-Output.

Environment Division Structure
The two sections in the Environment Division are as follows:

1. Configuration Section (on page 56), which describes the overall specifications of source
and object programs.

2. Input-Output Section (on page 68), which names the files and external media required by
an object program and which provides information required for transmission and
handling of data during running of the object program.

.DIVISIONTENVIRONMEN

.SECTIONIONCONFIGURAT

ame-1computer-n

.COMPUTER-SOURCE

[]

.MODEDEBUGGINGWITH

ame-2computer-n

.COMPUTER-OBJECT

Chapter 3: Environment Division

54 RM/COBOL Language Reference Manual

MODULES
CHARACTERS
WORDS

SIZEMEMORY integer-1

[]ame-1alphabet-nISSEQUENCECOLLATINGPROGRAM

[]

.ISLIMIT-SEGMENT mber-1segment-nu

.NAMES-SPECIAL

ame-3mnemonic-n1-I-O-name-low-volume

ame-2mnemonic-nme-1feature-na

name-2condition-
name-1condition-

name-2condition-
name-1condition-ame-1mnemonic-n

e-1switch-nam

IS

IS

ISSTATUSOFF
ISSTATUSON

ISSTATUSOFF
ISSTATUSONIS

literal-4literal-3

literal-2literal-1

1code-name-

ame-1alphabet-n

THRU
THROUGHALSO

THRU
THROUGH

NATIVE
2-STANDARD
1-STANDARD

ISALPHABET

{ }

{ } []

ame-2alphabet-ninteger-1

haracter-1symbolic-c

IN

ARE
IS

CHARACTERS
CHARACTERSYMBOLIC

literal-6literal-5-1class-name THRU

THROUGHISCLASS

 literal-7ISSIGNCURRENCY

 COMMAISPOINT-DECIMAL

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 55

[]

 CHARACTERSEPARATETRAILING

LEADINGISSIGNNUMERIC

 CRTISCONSOLE

 1data-name-ISCURSOR

 .2data-name-ISSTATUSCRT

.SECTIONOUTPUT-INPUT

.CONTROL-FILE

{ }ol-entry-1file-contr

.CONTROL-O-I

[]

name-1condition-
integer-2

2file-name-
integer-1

-1rerun-name
1file-name-

UNITS-CLOCK

OF
RECORDS

UNIT
REEL

OFEND

EVERY

ONRERUN

{ }

4file-name-3file-name-FORAREA

MERGE-SORT
SORT
RECORD

SAME

[]{ }

.

integer-35file-name- ISPOSITION

CONTAINSTAPEFILEMULTIPLE

Chapter 3: Environment Division

56 RM/COBOL Language Reference Manual

Configuration Section
The Configuration Section deals with the characteristics of the source computer and the object
computer. This section is divided into three paragraphs:

1. SOURCE-COMPUTER Paragraph (on page 56), which describes the computer
configuration on which the source program is compiled.

2. OBJECT-COMPUTER Paragraph (on page 56), which describes the computer
configuration on which the object program produced by the compiler is to be run.

3. SPECIAL-NAMES Paragraph (on page 57), which relates names used by the compiler to
user-defined words in the source program.

The Configuration Section must not be stated in a program that is contained within another
program.

The entries explicitly or implicitly stated in the Configuration Section of a program that
contains other programs apply to each contained program.

SOURCE-COMPUTER Paragraph
The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to
be compiled.

computer-name-1 is a user-defined word and is only commentary.

All clauses of the SOURCE-COMPUTER paragraph apply to the program in which they are
explicitly or implicitly specified and to any program contained within that program.

If the WITH DEBUGGING MODE clause is used, all debugging lines (D in the indicator
area, column 7) are compiled as if there were a blank in the indicator area.

If the WITH DEBUGGING MODE clause is not specified, any debugging lines (D in the
indicator area, column 7) are compiled as if they were comment lines unless the Debug
compilation option is specified (for details, see the discussion of the D Compile Command
Option in Chapter 6: Compiling of the RM/COBOL User’s Guide).

When the Debug compilation option is specified, debugging lines are compiled as if there
were a blank in the indicator area whether or not the WITH DEBUGGING MODE phrase is
specified in the source programs.

When multiple programs are compiled with one invocation of the compiler without the Debug
option, the WITH DEBUGGING MODE phrase may be used in one or more of the source
programs without affecting other source programs compiled in the same group.

OBJECT-COMPUTER Paragraph
The OBJECT-COMPUTER paragraph identifies the computer on which the program is to be
executed.

[][].. MODEDEBUGGINGWITHCOMPUTER-SOURCE ame-1computer-n

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 57

computer-name-2 is a user-defined word and is only commentary.

All clauses of the OBJECT-COMPUTER paragraph apply to the program in which they are
explicitly or implicitly specified and to any program contained within that program.

The MEMORY SIZE clause is treated as commentary.

The PROGRAM COLLATING SEQUENCE clause specifies the program collating sequence
to be used in determining the truth value of any nonnumeric comparisons. If the PROGRAM
COLLATING SEQUENCE clause is specified, the program collating sequence is the
collating sequence associated with alphabet-name-1. If the PROGRAM COLLATING
SEQUENCE clause is not specified, the collating sequence is ASCII.

The program collating sequence established in the OBJECT-COMPUTER paragraph
determines the truth value of any nonnumeric comparisons that are as follows:

• Explicitly specified in relation conditions.

• Explicitly specified in condition-name conditions.

The program collating sequence established in the OBJECT-COMPUTER paragraph is
applied to any nonnumeric merge or sort keys unless the COLLATING SEQUENCE phrase is
specified in the respective SORT or MERGE statement.

The SEGMENT-LIMIT clause allows the user to reduce the number of permanent segments
in the program, while still retaining the logical properties of fixed portion segments
(segment-numbers 0 through 49). When the SEGMENT-LIMIT clause is specified, only
those segments having segment-numbers from 0 up to, but not including, the segment-number
designated as the segment-limit, are considered as permanent segments of the object program.
segment-number-1 must be an integer from 1 to 49.

If the SEGMENT-LIMIT clause is omitted, all segments having segment-numbers 0 through
49 are considered permanent segments of the object program.

The clauses of the OBJECT-COMPUTER paragraph may appear in any order.

SPECIAL-NAMES Paragraph
The SPECIAL-NAMES paragraph relates names used by the compiler to user-defined words
in the source program.

[]

[]

.

.

ISLIMIT-SEGMENT

ISSEQUENCECOLLATINGPROGRAM

MODULES
CHARACTERS
WORDS

SIZEMEMORY

COMPUTER-OBJECT

mber-1segment-nu

ame-1alphabet-n

integer-1

ame-2computer-n

.NAMES-SPECIAL

Chapter 3: Environment Division

58 RM/COBOL Language Reference Manual

ame-3mnemonic-n1-I-O-name-low-volume

ame-2mnemonic-nme-1feature-na

name-2condition-
name-1condition-

name-2condition-
name-1condition-ame-1mnemonic-n

e-1switch-nam

IS

IS

ISSTATUSOFF
ISSTATUSON

ISSTATUSOFF
ISSTATUSONIS

literal-4literal-3

literal-2literal-1

1code-name-

ame-1alphabet-n

THRU
THROUGHALSO

THRU
THROUGH

NATIVE
2-STANDARD
1-STANDARD

ISALPHABET

{ }

{ } []

ame-2alphabet-ninteger-1

haracter-1symbolic-c

IN

ARE
IS

CHARACTERS
CHARACTERSYMBOLIC

literal-6literal-5-1class-name THRU

THROUGHISCLASS

 literal-7ISSIGNCURRENCY

 COMMAISPOINT-DECIMAL

[]

 CHARACTERSEPARATETRAILING

LEADINGISSIGNNUMERIC

 CRTISCONSOLE

 1data-name-ISCURSOR

 .2data-name-ISSTATUSCRT

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 59

All clauses specified in the SPECIAL-NAMES paragraph for a program also apply to
programs contained within that program. The alphabet-names, class-names, condition-names,
and symbolic-characters specified in the SPECIAL-NAMES paragraph of the containing
program may be referenced from any contained program. The clauses in the SPECIAL-
NAMES paragraph may appear in any order.

ALPHABET Clause

The ALPHABET clause provides a means for relating a name to a specified character code set
or collating sequence. When the alphabet-name is referenced in the PROGRAM
COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph, the
COLLATING SEQUENCE clause of an Indexed File Control Entry or the COLLATING
SEQUENCE phrase of a SORT or MERGE statement, the ALPHABET clause specifies a
collating sequence. When the alphabet-name is referenced in a SYMBOLIC CHARACTERS
or CODE-SET clause, the ALPHABET clause specifies a character code set.

If the STANDARD-1 phrase is specified, the character code set or collating sequence
identified is that defined in American National Standard X3.4-1977, Code for Information
Interchange, usually referred to as ASCII. If the STANDARD-2 phrase is specified, the
character code set identified is the International Reference Version of the ISO 7-bit code
defined in International Standard 646, 7-bit Coded Character Set for Information Processing
Interchange. If the NATIVE phrase is specified, the native character set or collating sequence
is used. If the code-name phrase is specified with the code-name EBCDIC, the character code
or collating sequence is the extended binary coded decimal interchange code (8 bits, no
parity). See Appendix J: Code-Set Translation Tables in the RM/COBOL User’s Guide.

If the literal form of the ALPHABET clause is specified, the following rules apply:

1. A given character must not be specified more than once in an ALPHABET clause that is
referenced in the PROGRAM COLLATING SEQUENCE clause, the COLLATING
SEQUENCE clause in the File-Control entry, the COLLATING SEQUENCE phrase of
the SORT and MERGE statements, or that is associated with a code set for a file that is
opened in either the extend, I-O or output mode.

2. A given character may be specified more than once in an ALPHABET clause only if
alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause or is associated
with a code set for a file that is opened in the input mode.

literal-1, literal-2, literal-3, literal-4, literal-5 and literal-6 must not specify a
symbolic-character figurative constant. When a literal in an ALPHABET clause or CLASS
clause is numeric, it must be an unsigned integer and its value must be in the range 1 to 256,

literal-4literal-3

literal-2literal-1

1code-name-

ame-1alphabet-n

THRU
THROUGH

ALSO

THRU
THROUGH

NATIVE
2-STANDARD
1-STANDARD

ISALPHABET

Chapter 3: Environment Division

60 RM/COBOL Language Reference Manual

inclusive. When a literal in an ALPHABET clause or CLASS clause is nonnumeric and it is
in a THROUGH or ALSO phrase, it must be one character in length.

The character that has the highest ordinal position in the current program collating sequence is
associated with the figurative constant HIGH-VALUE, except when this figurative constant is
specified as a literal in the SPECIAL-NAMES paragraph. If more than one character has the
highest position in the program collating sequence, the last character specified is associated
with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the current program collating sequence is
associated with the figurative constant LOW-VALUE, except when this figurative constant is
specified as a literal in the SPECIAL-NAMES paragraph. If more than one character has the
lowest position in the program collating sequence, the first character specified is associated
with the figurative constant LOW-VALUE.

When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants
HIGH-VALUE and LOW-VALUE are associated with those characters having the highest
and lowest positions, respectively, in the native collating sequence.

The collating sequence identified is that defined according to the following rules:

1. If the literal is numeric, it specifies the ordinal number of a character within the native
character set. If the literal is single-character nonnumeric, it specifies the actual character
within the native character set. If the literal is multiple-character nonnumeric, each
character in the literal, starting with the leftmost character, is assigned successive
ascending positions in the collating sequence being specified.

2. The order in which the literals appear in the ALPHABET clause specifies, in ascending
sequence, the ordinal number of the character within the collating sequence being
specified.

3. Any characters within the native collating sequence that are not explicitly specified in the
literal phrase assume a position (in the collating sequence being specified) that is greater
than any of the explicitly specified characters. The relative order within the set of these
unspecified characters is the same as the native collating sequence order.

4. If the THROUGH (or THRU) phrase is specified outside of an ALSO phrase, the set of
contiguous characters in the native character set beginning with the character specified by
the value of literal-1 and ending with the character specified by the value of literal-2, is
assigned a successive ascending position in the collating sequence being specified.

5. If the ALSO phrase is specified, the characters of the native character set specified by the
values of literal-1, or literal-2 if the ALSO phrase follows a THROUGH (or THRU)
phrase, and literal-3 are assigned to the same position in the collating sequence being
specified. If the THROUGH (or THRU) phrase is specified in the ALSO phrase, the set
of contiguous characters in the native character set beginning with the character specified
by the value of literal-3 and ending with the character specified by the value of literal-4,
is assigned the same position as literal-1, or literal-2, in the collating sequence being
specified.

6. The set of contiguous characters specified by a given THROUGH phrase may specify
characters of the native character set in either ascending or descending sequence.

The ALPHABET clause of the SPECIAL-NAMES paragraph defines three different character
set mappings:

1. An output code set mapping of native characters to external characters.

2. An input code set mapping of external characters to native characters.

3. A collating sequence mapping of characters to character positions.

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 61

Which of these mappings is intended depends on the use made of the defined alphabet. The
input or output code set mapping is indicated by the CODE-SET clause of the SELECT or
FD entry; the input code set mapping is indicated by the SYMBOLIC CHARACTERS . . . IN
alphabet-name clause of the SPECIAL-NAMES paragraph. The collating sequence mapping
is indicated by the PROGRAM COLLATING SEQUENCE clause of the OBJECT-
COMPUTER paragraph, the COLLATING SEQUENCE clause of the SORT and MERGE
statements, and by the COLLATING SEQUENCE clause of the SELECT entry of an indexed
organization file.

Code Name Alphabets
RM/COBOL supports four code-names in the ALPHABET clause: NATIVE,
STANDARD-1, STANDARD-2 and EBCDIC.

The NATIVE alphabet always represents the 256 character code values possible in the
computer. The graphic equivalents of these character code values may be ASCII or
EBCDIC, depending on the source computer. The chosen native code set is recorded in the
object program.

The STANDARD-1 alphabet contains 128 characters in the range 00h to 7Fh. This alphabet
is defined in the document American National Standard X3.4-1977, Code for Information
Interchange and is commonly referred to as ASCII. If the native character set is ASCII, the
128 ASCII characters are represented by the identical values 00h to 7Fh in the native
character set, and native characters 80h to FFh have no STANDARD-1 equivalent. If the
native character set is EBCDIC, the 128 ASCII characters are represented by the
corresponding 128 native EBCDIC values, and the remaining 128 EBCDIC values have no
STANDARD-1 equivalent.

The STANDARD-2 alphabet is the same as the STANDARD-1 alphabet except for the
currency symbol character.

The EBCDIC alphabet contains 256 characters, 128 of which have widely accepted standard
ASCII equivalents. For the purpose of processing the SYMBOLIC CHARACTERS clause
when the native code set is based on ASCII, all 256 EBCDIC character codes are assigned
ASCII equivalents. For the exact mappings used to effect these conversions, see Appendix J:
Code-Set Translation Tables of the RM/COBOL User’s Guide.

Literal Alphabets
RM/COBOL supports user-defined literal alphabets for file code sets and for program, sort-
merge, and indexed file collating sequences. One use for a literal code set would be to map
all lowercase letters to uppercase on input or output to a file. Another would be to specify a
different ASCII to EBCDIC mapping than that built into RM/COBOL. A literal collating
sequence could be used to cause lowercase letters in indexed file keys to be treated as
uppercase, or to cause numbers to follow letters in indexed file keys. Europeans might use a
literal collating sequence to cause the correct ordering of keys that contain letters not in the
English alphabet.

The syntax for defining a literal alphabet is:

literal-4literal-3

literal-2literal-1ame-1alphabet-n

THRU
THROUGH

ALSO

THRU
THROUGH

ISALPHABET

Chapter 3: Environment Division

62 RM/COBOL Language Reference Manual

The value of literal-1 is the ordinal position or value of a native character. The ordinal
position of literal-1 in the list of literals is the collating position when the alphabet is used as a
collating sequence, and is one greater than the binary value of the external character code
when used as a code set. The ALSO phrase allows more than one native character to have the
same collating position or be translated to the same external character.

For example, the following alphabet causes lowercase and uppercase native characters to be
collated to the same position:

 ALPHABET OUT-UPPER IS 1 THRU 65,
 "A" ALSO "a", "B" ALSO "b", "C" ALSO "c", "D" ALSO "d",
 "E" ALSO "e", "F" ALSO "f", "G" ALSO "g", "H" ALSO "h",
 "I" ALSO "i", "J" ALSO "j", "K" ALSO "k", "L" ALSO "l",
 "M" ALSO "m", "N" ALSO "n", "O" ALSO "o", "P" ALSO "p",
 "Q" ALSO "q", "R" ALSO "r", "S" ALSO "s", "T" ALSO "t",
 "U" ALSO "u", "V" ALSO "v", "W" ALSO "w", "X" ALSO "x",
 "Y" ALSO "y", "Z" ALSO "z", 92 THRU 97, 124 THRU 128;

The alphabet OUT-UPPER, when used as a code set of a file opened for output, causes
lowercase characters in the records being written to be replaced by uppercase characters.

The final phrase—124 THRU 128—is redundant when the alphabet is used as a collating
sequence, since unspecified characters are collated in their natural order following the last
specified character. If any characters are omitted from the definition of the alphabet and the
characters occur in a record being written, a file status 97 will result. The following alphabet
causes lowercase external characters to be converted to uppercase native characters on file
input:

 ALPHABET IN-UPPER IS 1 THROUGH 65,
 "A" THROUGH "Z", 92 THROUGH 97,
 "a" THROUGH "z", 124 THROUGH 128;

An alphabet in which a native character occurs more than once may be used only on a file
opened for input or in the SYMBOLIC CHARACTERS clause. Such an alphabet is an illegal
collating sequence and is an illegal code set on a file opened for output, extend or I-O.

Indexed File Alphabets
RM/COBOL accepts both the CODE-SET and COLLATING SEQUENCE clauses when
defining an indexed organization file. The CODE-SET clause can be used on an ASCII
object computer to read an IBM EBCDIC ISAM file; the runtime system then performs
EBCDIC to ASCII translation of data read and ASCII to EBCDIC translation of data written.
The COLLATING SEQUENCE clause can be used to force lowercase and uppercase key
values to be treated identically, or to cause a more natural ordering of European characters
with diacritical marks.

When the CODE-SET clause is specified and the COLLATING SEQUENCE clause is
omitted, the natural collating sequence of the external character set is used. To put it
another way: if the COLLATING SEQUENCE is omitted, the alphabet referred to in the
CODE-SET clause is used, and the native collating sequence is used if the CODE-SET clause
is also omitted.

EBCDIC Translation
Appendix J: Code-Set Translation Tables in the RM/COBOL User’s Guide defines the
translation between the ASCII and EBCDIC character sets. The ASCII to EBCDIC
translation is identical to that described by IBM in the document Systems Network

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 63

Architecture Format and Protocol Reference Manual: Architecture Logic (SC30-3112-0,
March 1976). The EBCDIC to ASCII translation is the inverse of the ASCII to EBCDIC
mapping, with the addition that EBCDIC characters with no ASCII equivalent are assigned
values in the range 80h to FFh.

CLASS Clause

The CLASS clause provides a means of assigning a name to the specified set of characters
listed in that clause. class-name can be referenced only in a class condition in the Procedure
Division. The characters specified by the values of the literals in this clause define the
exclusive set of characters of which this class-name consists. The CLASS clause defines
class conditions other than those that are standard to the language.

For each numeric literal in the list, the value of the literal specifies the ordinal number of a
character within the native character set. This value must not exceed the value that represents
the number of characters in the native character set.

For each nonnumeric literal in the list, the value of the character or characters in the literal
specifies the actual character or characters within the native character set. When a
nonnumeric literal is used in a THROUGH phrase, it must be a single-character literal.

If the THROUGH phrase is specified, the contiguous characters in the native character set
beginning with the character specified by the value of literal-5, and ending with the character
specified by the value of literal-6, are included in the set of characters identified by
class-name. In addition, the contiguous characters specified by a given THROUGH phrase
may specify characters of the native character set in either ascending or descending order.

CONSOLE IS CRT Clause

The CONSOLE IS CRT clause causes any ACCEPT or DISPLAY statement whose operand
is not a screen-name and that has no phrases specific to a particular format of these statements
to be treated as a Format 3 (Accept Terminal I-O) or Format 2 (Display Terminal I-O)
statement, respectively. If the CONSOLE IS CRT clause is not specified, then such
statements are treated as described in the ISO 1989-1985 standard for the COBOL language
(also referred to as American National Standard X3.23-1985 COBOL in the United States).

CRT STATUS Clause

The CRT STATUS clause specifies a numeric data item into which the exception status value
is moved after a Format 3 (Accept Terminal I-O) or Format 5 (Accept Screen-Name)
ACCEPT statement is executed. For information on the exception status values and their
meanings, see the descriptions of these formats of the ACCEPT statement in ACCEPT
Statement (Terminal I-O) (on page 234) and ACCEPT Screen-Name Statement (on page 249).
For more information on configuring field termination keys and the associated exception

 literal-6literal-5-1class-name THRU

THROUGHISCLASS

CRTISCONSOLE

2data-name-ISSTATUSCRT

Chapter 3: Environment Division

64 RM/COBOL Language Reference Manual

status values, refer to “Field Termination Keys” in Chapter 8: RM/COBOL Features of the
RM/COBOL Users Guide.

data-name-2 should be described in the Working-Storage Section of the program as a numeric
integer data item. If data-name-2 is not qualified and is not defined in the Data Division, the
compiler assumes a Working-Storage Section data description entry of the following form:

01 data-name-2 PIC 9(9) BINARY(4).

data-name-2 may be qualified.

Note Use of this clause avoids the need to specify an identifier-9 in the ON EXCEPTION
phrase of each Format 3 ACCEPT statement for which the exception status value is needed
after the ACCEPT statement is executed. If both the CRT STATUS clause and identifier-9
are specified, the exception status value is moved to data-name-2 and identifier-9 after the
ACCEPT statement is executed. The exception status value can also be obtained with the
Format 2 (Accept from Implicit Definition) ACCEPT statement by specifying the ESCAPE
KEY phrase.

CURRENCY SIGN Clause

The literal that appears in the CURRENCY SIGN clause is used in the PICTURE clause to
represent the currency symbol. The literal must be nonnumeric and is limited to a single
character. The value of the literal must not be any of the following characters:

• Alphabetic characters A, B, C, D, P, R, S, V, X, Z or the space

• Digits 0 through 9

• Special characters: * + – , . ; () ” / =

If the CURRENCY SIGN clause is specified, then both the default currency sign ($) and the
currency symbol (cs) specified in the CURRENCY SIGN clause may be used in PICTURE
character-strings in that source program, although they are mutually exclusive in any one
PICTURE character-string. The values of the currency sign ($) and currency symbol may be
changed at execution time by runtime configuration (as explained in the discussion of the
EDIT-DOLLAR and EDIT-CURRENCY-SYMBOL keywords in “RUN-ATTR
Configuration Record” in Chapter 10: Configuration of the RM/COBOL User’s Guide). If
CURRENCY SIGN IS “$” is specified, then “$” is the currency symbol and there is no
currency sign.

If the CURRENCY SIGN clause is not specified, only the currency sign ($) is used in
PICTURE character-strings and there is no currency symbol.

CURSOR Clause

The CURSOR clause specifies the data item to use as the cursor address for a Format 5
(Accept Screen-Name) ACCEPT statement.

data-name-1 must refer to an unsigned numeric integer display data item with either four or
six digits. If the item has four digits, the first two are interpreted as a line number and the
second two as a column number. If the item has six digits, the first three are interpreted as a

literal-7ISSIGNCURRENCY

1data-name-ISCURSOR

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 65

line number and the second three as a column number. If data-name-1 is not qualified and is
not defined in the Data Division, the compiler assumes a Working-Storage Section data
description entry of the following form:

01 data-name-1 PIC 9(6) DISPLAY.

data-name-1 may be qualified.

The CURSOR clause has no effect if the data item referred to by data-name-1 contains a
nonnumeric value, zeroes, or a value that is beyond the end of the screen at the beginning of a
Format 5 ACCEPT statement. In this case, the cursor is positioned to the start of the first
input field on the screen as if the CURSOR clause had not been specified.

If data-name-1 refers to a data item that contains a valid screen position at the beginning of a
Format 5 ACCEPT statement, and that position corresponds to an input field, that position is
used as the initial position for the cursor. This position may be at the beginning of an input
field or at some offset within the input field. The offset may be reduced if the field contains a
value that does not fill the field to the specified offset.

If data-name-1 contains a valid screen position that does not correspond to an input field for
the executing Format 5 ACCEPT statement, the cursor is positioned to the next such field, or
if there is no succeeding input field, to the first input field. The ordering of input fields is the
order in which their descriptions appear in the Screen Section of the Data Division.

At the end of a Format 5 ACCEPT statement, if the cursor position was used in that statement
execution, the data item referred to by data-name-1 is updated with the position of the cursor
at the termination of that statement.

The CURSOR clause has no effect on the positioning of fields on the screen.

DECIMAL-POINT Clause

The DECIMAL-POINT IS COMMA clause declares that the function of the comma and
period are exchanged in the character-string of the PICTURE clause, in numeric literals, and
in conversion of numeric data for the ACCEPT and DISPLAY statements. The value of the
decimal point and comma characters may be changed at execution time by runtime
configuration regardless of the presence of this clause (as explained in the discussions of the
EDIT-DECIMAL and EDIT-COMMA keywords, in “RUN-ATTR Configuration Record” in
Chapter 10: Configuration of the RM/COBOL User’s Guide).

Mnemonic-Name Clause

COMMAISPOINT-DECIMAL

ame-3mnemonic-n1-I-O-name-low-volume

ame-2mnemonic-nme-1feature-na

name-2condition-
name-1condition-

name-2condition-
name-1condition-ame-1mnemonic-n

e-1switch-nam

IS

IS

ISSTATUSOFF
ISSTATUSON

ISSTATUSOFF
ISSTATUSONIS

Chapter 3: Environment Division

66 RM/COBOL Language Reference Manual

The mnemonic-name clause provides a means to relate names to switches, features, and
low-volume I-O devices available in the implementation.

switch-name may be SWITCH-1, SWITCH-2, . . ., SWITCH-8 or UPSI-0, UPSI-1, . . .,
UPSI-7. Switch-names UPSI-0 through UPSI-7 are synonymous with switch-names
SWITCH-1 through SWITCH-8.

The status of any switch may be altered by the execution of a Format 3 SET statement that
specifies as its operand the mnemonic-name associated with that switch.

Zero, one or two condition-names may be defined with each switch-name entry. Condition-
names defined in this way become associated with the ON or OFF status of a switch and may
be used in condition-name tests in the Procedure Division to interrogate the current setting of
the switch.

feature-name-1 may be any of the channel-names C01, C02, . . ., C12. The feature-name
entries may be used to associate mnemonic-names with specific channel-names. The
mnemonic-names may then be used in WRITE and SEND statements to control vertical
positioning on a hard-copy printing device. The actual effect of the various channel-names is
hardware-dependent and is, therefore, defined in the ADVANCING mnemonic-name phrase
(WRITE statement). For more details, see this topic in Chapter 8: RM/COBOL Features of
the RM/COBOL User’s Guide.

low-volume-I-O-name-1 may be CONSOLE, SYSIN, or SYSOUT. CONSOLE is the primary
terminal (keyboard and screen) associated with the run unit of which this program is a part.
SYSIN is the standard input file for the run unit that may be the keyboard of the primary
terminal. SYSOUT is the standard output file for the run unit, which may be the screen of the
primary terminal.

mnemonic-name-1, mnemonic-name-2, and mnemonic-name-3 are user-defined words. Their
meaning is defined in the SPECIAL-NAMES paragraph, as shown above. Once defined, they
may be used in certain contexts within the Procedure Division, as follows:

• mnemonic-name-1 becomes the name of a particular switch; it may be used only in
SET statements.

• mnemonic-name-2 becomes a reference to a feature-name. It may be used only in SEND
and WRITE statements.

• mnemonic-name-3 becomes a reference to the associated low-volume-I-O-name. It may
be used only in ACCEPT and DISPLAY statements.

NUMERIC SIGN Clause

The NUMERIC SIGN clause declares the default operational sign format for signed numeric
display data items described without a SIGN clause in their data description entry. If this
clause is not specified for a signed data item described with an explicit PICTURE clause, the
default is as if NUMERIC SIGN IS TRAILING were specified. However, if the S (Separate
Sign) Compile Command Option is specified, the default is modified to be as if SIGN IS
TRAILING SEPARATE were specified.

The NUMERIC SIGN clause does not apply to data items described with an implied
PICTURE character-string based on a signed numeric literal in the VALUE clause. In this
case, a SIGN IS LEADING SEPARATE clause is assumed if no explicit SIGN clause is
specified in the same data description entry. For additional information on implied PICTURE
character-strings, see the description of the VALUE clause (on page 132).

[]CHARACTERSEPARATETRAILING
LEADINGISSIGNNUMERIC

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 67

Note Specifying the NUMERIC SIGN IS TRAILING SEPARATE clause in the
Special-Names paragraph avoids having to remember to specify the S Compile Command
Option on each compile of a source program that requires this option.

SYMBOLIC CHARACTERS Clause

The SYMBOLIC CHARACTERS clause provides the ability to define named figurative
constants above and beyond those that are standard in the language. Such additional
figurative constants are named by the symbolic-character, which is a user-defined word. A
given symbolic-character may not be defined more than once in a program. In the
SYMBOLIC CHARACTERS clause, the relationship between each symbolic-character and
the corresponding integer is by position; that is, the first symbolic-character-1 is paired with
the first integer-1, the second symbolic-character-1 is paired with the second integer-1,
and so on. There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1.

If there is no IN alphabet-name-2 clause immediately following integer-1, integer-1 specifies
the ordinal position of symbolic-character-1 in the native character set; otherwise, integer-1
specifies the ordinal position of symbolic-character-1 in the character set identified by
alphabet-name-2.

The ordinal position specified by integer-1 must exist in the native character set. If the
IN phrase is specified, the ordinal position must exist in the character set named by
alphabet-name-2.

The internal representation of symbolic-character-1 is the internal representation of the
character represented in the native character set.

The SYMBOLIC CHARACTERS clause without the IN alphabet phrase associates an
identifier with a native character. integer-1 of the format is the position of the ASCII or
EBCDIC code rather than the code itself. Position has an offset of 1 from the value of the
code. Appendix J: Code-Set Translation Tables in the RM/COBOL User’s Guide shows the
ASCII and EBCDIC character positions.

For example:

 SYMBOLIC CHARACTERS NAK-CHARACTER IS 22;

This clause achieves its intended result only if the native character set is ASCII. If the native
character set is EBCDIC, NAK-CHARACTER still receives the value of position 22, but the
value is interpreted as a newline character.

The following clauses define an EBCDIC NAK character:

 ALPHABET EBCDIC-ALPHABET IS EBCDIC;
 SYMBOLIC CHARACTERS NAK-CHARACTER IS 62 IN EBCDIC-ALPHABET;

If the native character set is EBCDIC, the identifier EBCDIC-NAK is associated with the
value 62 (3Dh plus 1). If the native character set is ASCII, the identifier EBCDIC-NAK is
associated with the value 22.

{ }

{ } []ame-2alphabet-ninteger-1

haracter-1symbolic-c

IN

ARE
IS

CHARACTERS
CHARACTERSYMBOLIC

Chapter 3: Environment Division

68 RM/COBOL Language Reference Manual

Input-Output Section
The Input-Output section names the files and external media required by an object program
and provides information required for transmission and handling of data during execution of
the object program. This section is divided into two paragraphs:

1. FILE-CONTROL Paragraph (on page 68), which names and associates the files with
external media.

2. I-O-CONTROL Paragraph (on page 81), which defines special control techniques to be
used in the object program.

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph names each file and allows specification of other
file-related information.

The content of file-control-entry-1 depends on the organization of the file named. In addition,
there is a separate form for a sort-merge file.

.SECTIONOUTPUT-INPUT

.CONTROL-FILE

{ }ol-entry-1file-contr

.CONTROL-O-I

[]

name-1condition-
integer-2

2file-name-
integer-1

-1rerun-name
1file-name-

UNITS-CLOCK

OF
RECORDS

UNIT
REEL

OFEND

EVERY

ONRERUN

{ }

4file-name-3file-name-FORAREA

MERGE-SORT
SORT
RECORD

SAME

[]{ }

 .
integer-35file-name- ISPOSITION

CONTAINSTAPEFILEMULTIPLE

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 69

File Control Entry
The file control entry names a sequential, relative, or indexed organization file and provides
other file-related information.

[][] 1file-name-OPTIONALNOTSELECT

literal-1
1data-name-

e-1device-nam

literal-1
1data-name-

TAPE
RANDOM

OUTPUT-INPUT
OUTPUT
INPUT
DISPLAY

TOASSIGN

[]

AREAS
AREAALTERNATENORESERVE integer-1

[]

INDEXED

RELATIVE

SEQUENTIALLINE
BINARY

ISONORGANIZATI

literal-2
2data-name-ISCHARACTERPADDING

name-1delimiter-
1-STANDARDISDELIMITERRECORD

[]

3data-name-ISKEYRELATIVE
DYNAMIC
RANDOM
SEQUENTIAL

ISMODEACCESS

[]

EXCLUSIVE

RECORDS
RECORDMULTIPLEONLOCKWITHAUTOMATIC

MANUAL

ISMODELOCK

[]ame-1alphabet-nISSET-CODE

Chapter 3: Environment Division

70 RM/COBOL Language Reference Manual

SELECT Clause

The SELECT clause must be specified first in the file control entry. The clauses that follow
may appear in any order. (These other clauses are discussed in alphabetical order on the
following pages.)

If the file connector referenced by file-name-1 is an external file connector, all file control
entries in the run unit which reference this file connector must have:

• The same specification for the OPTIONAL phrase.

• A consistent specification for device-name-1 in the ASSIGN clause. The file access
name specified in the ASSIGN clause, literal-1 or data-name-1, or in the VALUE OF
clause should also be consistent, but the file access name specified by the program that
executes the OPEN statement for file-name-1 will be used.

• The same RECORD DELIMITER specification.

• The same value for integer-1 and the same presence or absence of the ALTERNATE
phrase in the RESERVE clause.

• The same organization.

• The same access mode.

• The same lock mode.

• The same character set for the CODE-SET clause.

• The same specification for the PADDING CHARACTER clause.

• The same external data item for data-name-3 in the RELATIVE KEY phrase.

• The same collating sequence for the COLLATING SEQUENCE clause.

• The same data description entry for data-name-4 or each data-name-5, the same number
of data-name-5 in the definition of split-key-name-1, the same relative location within the
associated record for data-name-4 or each data-name-5, and the same presence or
absence of the DUPLICATES phrase.

• The same data description entry for data-name-6 or each data-name-7, the same number
of data-name-7 in the definition of split-key-name-2, the same relative location within the

[]ame-2alphabet-nISSEQUENCECOLLATING

{ }

[]

=

DUPLICATESWITH

ISKEYRECORD 5data-name-name-1split-key-
4data-name-

{ }
[]

=

DUPLICATESWITH

ISKEYRECORDALTERNATE 7data-name-name-2split-key-
6data-name-

[] .ISSTATUSFILE 8data-name-

[][] 1file-name-OPTIONALNOTSELECT

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 71

associated record for data-name-6 or each data-name-7, the same presence or absence of
the DUPLICATES phrase, and the same number of alternate record keys.

The OPTIONAL phrase applies to files opened in input, I-O, or extend modes. Its
specification is required for files that may not be present each time they are opened for input,
I-O, or extend.

The NOT OPTIONAL phrase is redundant commentary because, by default, files are not
optional, that is, files are required to be present each time they are opened for input, I-O, or
extend. The phrase is supported only for compatibility with other COBOL dialects that
include this phrase.

Each file described in the Data Division must be named once and only once as file-name-1 in
the FILE-CONTROL paragraph. Each file specified in a file control entry must have a file
description entry in the Data Division of the same program.

ACCESS MODE Clause

The ACCESS MODE clause specifies the order in which records are to be accessed in the file.
If the ACCESS MODE clause is not specified, ACCESS MODE IS SEQUENTIAL
is implied.

If the access mode is sequential, records in the file are accessed in the sequence dictated by
the file organization:

• For sequential files, this sequence is specified by predecessor-successor record
relationships established by the execution of WRITE statements when the file is
created or extended.

• For relative files, this sequence is the order of ascending or descending relative record
numbers of existing records in the file.

• For indexed files, this sequence is ascending or descending within a given key of
reference according to the collating sequence of the file.

If the access mode is random, records in the file are accessed according to a key dictated by
the file organization:

• For sequential files, random access may not be specified.

• For relative files, this key is the value of the relative key data item specified by
data-name-3 in the RELATIVE KEY phrase. The RELATIVE KEY phrase is required
when RANDOM is specified in the ACCESS MODE clause for a relative file.

• For indexed files, this key is the value of a record key data item for the file. The random
access mode is not recommended for indexed files that are described with the
DUPLICATES phrase in the RECORD KEY clause. If the DUPLICATES phrase is
specified in the RECORD KEY clause of the file control entry, then DELETE and
REWRITE statements are not allowed in the random access mode, and READ statements
can only access the first of a set of records with the same prime record key value.

If the access mode is dynamic, records in the file may be accessed sequentially or randomly as
described in the rules for the input-output statements. Dynamic access may not be specified

[]

3data-name-ISKEYRELATIVE

DYNAMIC
RANDOM
SEQUENTIAL

ISMODEACCESS

Chapter 3: Environment Division

72 RM/COBOL Language Reference Manual

for sequential organization files. The RELATIVE KEY phrase is required when DYNAMIC
is specified in the ACCESS MODE clause for a relative file.

The RELATIVE KEY phrase may only be specified in the ACCESS MODE clause of a file
control entry that describes a relative organization file. If the access mode is random or
dynamic, the RELATIVE KEY phrase must be specified within the ACCESS MODE clause
for a relative file. Also, if a relative file is referenced in a START statement, the RELATIVE
KEY phrase within the ACCESS MODE clause must be specified for that file. The relative
key data item associated with the execution of an input-output statement for a relative file is
the data item referenced by data-name-3 in the RELATIVE KEY phrase of the ACCESS
MODE clause.

All records stored in a relative file are uniquely identified by relative record numbers. The
relative record number of a given record specifies the record’s logical ordinal position in the
file. The first logical record has a relative record number of 1, and subsequent logical records
have relative record numbers of 2, 3, 4, and so forth.

The data item specified by data-name-3 is used to communicate a relative record number
between the user and the mass storage control system (MSCS). data-name-3 may be
qualified. data-name-3 must reference an unsigned integer data item whose description does
not contain the PICTURE symbol ‘P’. data-name-3 must not be defined in a record
description entry associated with file-name-1. If data-name-3 is specified, is not qualified,
and is not defined in the Data Division, the compiler assumes a Working-Storage Section data
description entry of the following form:

01 data-name-3 PIC 9(9) BINARY(4).

If the associated file connector is an external file connector, every file control entry in the
run unit that is associated with that file connector must specify the same access mode. In
addition, for relative files, data-name-3 must reference an external data item and the
RELATIVE KEY phrase in each associated file control entry must reference that same
external data item in each case.

ASSIGN Clause

The ASSIGN clause specifies the association of the file referenced by file-name-1 with a class
of external storage devices as indicated by device-name-1. For sequential organization files,
there are 18 permissible selections for device-name-1. They are CARD-PUNCH, CARD-
READER, CASSETTE, CONSOLE, DISC, DISK, DISPLAY, INPUT, INPUT-OUTPUT,
KEYBOARD, LISTING, MAGNETIC-TAPE, OUTPUT, PRINT, PRINTER, PRINTER-1,
RANDOM, and TAPE. For relative and indexed organization files, one of the mass storage
device names (DISC, DISK, or RANDOM) must be specified or implied.

The contexts in which file-name-1 is used in the rest of the program establish these constraints
on the device-name-1 that may be assigned:

literal-1
1data-name-

e-1device-nam

literal-1
1data-name-

TAPE
RANDOM

OUTPUT-INPUT
OUTPUT
INPUT
DISPLAY

TOASSIGN

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 73

1. If the file is used in an OPEN I-O statement, or if a record of the file is used in a
REWRITE statement, device-name-1 must be DISC, DISK or RANDOM. In this context
these words are synonymous.

2. If the file is used in an OPEN INPUT or READ statement, or if it appears in the USING
list of a SORT or MERGE statement, device-name-1 must be CARD-READER,
CASSETTE, CONSOLE, DISC, DISK, INPUT, INPUT-OUTPUT, KEYBOARD,
MAGNETIC-TAPE, RANDOM or TAPE.

3. If the file is used in an OPEN EXTEND or OPEN OUTPUT statement, if it appears in the
GIVING list of a SORT or MERGE statement, if it is used in a RERUN ON phrase, or if
a record of the file is used in a WRITE statement, device-name-1 must be CARD-
PUNCH, CASSETTE, CONSOLE, DISC, DISK, DISPLAY, INPUT-OUTPUT,
MAGNETIC-TAPE, OUTPUT, PRINT, PRINTER, PRINTER-1, RANDOM or TAPE.

The ASSIGN clause may also specify the file access name with literal-1 or as the contents of
a data item identified by data-name-1. The file access name is the name used to identify the
physical file when the program is run. See the file description entry VALUE OF clause (on
page 97) for an alternative method of specifying the file access name. If neither the ASSIGN
clause nor the VALUE OF clause specifies a file access name, then file-name-1 is used for the
file access name. In any case, the value of the file access name must be valid according to
operating system dependent rules for identifying a file or device. If the file access name is
specified by a literal in the program, portability is more likely if the file access name is short
(eight or fewer characters) and contains only letters and digits. Most operating systems
provide a means to map such file access names to the longer names necessary to identify a
particular physical file. For information on mapping file access names at execution time, see
the descriptions of the CODE-SET clause for sequential, relative, and indexed files in “File
Types and Structure” in Chapter 8: RM/COBOL Features of the RM/COBOL User’s Guide.

If literal-1 is specified, it must be a nonnumeric literal.

When the file access name is specified by data-name-1 or literal-1, device-name-1 may be
omitted and the compiler will infer the storage device type from the organization of the file
and the I-O statements used in the program. If file-name-1 refers to an external file connector
for a sequential file, the compiler will assume a mass storage device when device-name-1 is
omitted.

If data-name-1 is specified, it must be defined in the Data Division as a data item of the
category alphanumeric. The value of this data item is used as the file access name at the time
an OPEN statement is executed for the file. If data-name-1 refers to a variable-length group,
the maximum size of the group will be used to determine the file access name, independent of
the value of the DEPENDING ON data item. data-name-1 may be qualified. If data-name-1
is specified, is not qualified, and is not defined in the Data Division, the compiler assumes a
Working-Storage Section data description entry of the following form:

01 data-name-1 PIC X(256).

CODE-SET Clause

The CODE-SET clause specifies the character code convention used to represent data on the
external medium. That external character code convention may or may not be the same as the
internal native character code convention.

When there is a CODE-SET clause associated with a file, and its alphabet-name-1 specifies a
code-set other than the native code-set, then for each record of the file that is read from or

ame-1alphabet-nISSET-CODE

Chapter 3: Environment Division

74 RM/COBOL Language Reference Manual

written to the external medium a character-by-character translation is done to convert the text
of the record according to the mapping specified by alphabet-name-1.

If there is no CODE-SET clause associated with a file, or if there is a CODE-SET clause and
its alphabet-name-1 specifies the native code-set, the external character code convention for
the file is the same as the internal code convention, and no character translation is done.

A CODE-SET clause for a file may be specified either in the file control entry for the file (as
shown in the format), or in the file description entry for the file in the Data Division. It is
permissible to specify a CODE-SET clause in both places, but both alphabet-names must be
the same.

If the associated file connector is an external file connector, all CODE-SET clauses in the run
unit that are associated with that file connector must have the same character set.

In some runtime environments the identity of the code-set associated with a file at the time it
is created is preserved with the file as one of its fixed attributes. In such environments it may
be a requirement that each time the file is subsequently opened the code-set associated with
the file be the same as its original code-set. See Appendix J: Code-Set Translation Tables in
the RM/COBOL User’s Guide for more specific information.

COLLATING SEQUENCE Clause

The COLLATING SEQUENCE clause may be used to specify a character mapping to be
used on the values of the keys of an indexed file before determining their ordering. If no
COLLATING SEQUENCE clause is present, the keys are ordered according to the collating
sequence implied by the explicitly specified or default code-set of the file. When this clause
is used, alphabet-name-2 must have been defined as an alphabet-name in the SPECIAL-
NAMES paragraph of the Configuration Section in the Environment Division. The character
code set designated by alphabet-name-2 determines the ordering of the keys of the file.
Support for a specified collating sequence is system-dependent. On those systems that do not
support a specific collating sequence, the native collating sequence is used.

The COLLATING SEQUENCE clause may only be specified in a file control entry that
describes an indexed organization file.

In some runtime environments the specification of a COLLATING SEQUENCE clause has
no effect. In other runtime environments the identity of the collating sequence associated
with a file at the time it is created is preserved with the file as one of its fixed attributes. In
such environments it may be a requirement that each time the file is subsequently opened, the
collating sequence specified for the file be the same as its original collating sequence. For
more specific information on this point, see “COLLATING SEQUENCE Clause (Indexed
File Control Entry)” in Chapter 8: RM/COBOL Features of the RM/COBOL User’s Guide.

FILE STATUS Clause

When the FILE STATUS clause is specified, a value will be moved by the runtime system
into the data item specified by data-name-8 after the execution of every statement that
references the file either explicitly or implicitly. This value indicates the status of execution
of the statement. data-name-8 must be defined in the Data Division as a two-character data
item of the category alphanumeric and must not be defined in the File Section. data-name-8
may be qualified. The data item referenced by data-name-8 that is updated during the

ame-2alphabet-nISSEQUENCECOLLATING

8data-name-ISSTATUSFILE

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 75

execution of an input-output statement is the one specified in the file control entry associated
with that statement. If data-name-8 is specified, is not qualified, and is not defined in the
Data Division, the compiler assumes a Working-Storage Section data description entry of the
following form:

01 data-name-8 PIC X(2).

LOCK MODE Clause

The LOCK MODE clause specifies whether a file is to be opened in exclusive or shared lock
mode and, if shared, the record locking mode. If the LOCK MODE clause is omitted in the
file control entry, the file sharing lock mode for the file is determined by options in the OPEN
statement, the environment in which the file is opened and a configurable default. (In the
RM/COBOL User’s Guide, see “File Sharing” in Chapter 8: RM/COBOL Features and the
description of the FORCE-USER-MODE keyword in “RUN-FILES-ATTR Configuration
Record” in Chapter 10: Configuration.) The default record locking mode for shared files
opened for input-output (open I-O mode) is automatic single.

• The EXCLUSIVE phrase indicates that all OPEN statements that refer to file-name-1 are
to open the file in exclusive mode.

• The MANUAL phrase indicates that an OPEN statement without the EXCLUSIVE or an
applicable WITH LOCK phrase for file-name-1 is to open the file in shared mode and, if
the open mode is I-O, in one of the manual record locking modes.

• The AUTOMATIC phrase indicates that an OPEN statement without the EXCLUSIVE
or an applicable WITH LOCK phrase for file-name-1 is to open the file in shared mode
and, if the open mode is I-O, in one of the automatic record locking modes.

• The LOCK ON RECORD phrase specifies one of the single record locking modes.
Single record locking modes apply when AUTOMATIC or MANUAL is explicitly stated
without the MULTIPLE option.

• The LOCK ON MULTIPLE RECORDS phrase specifies one of the multiple record
locking modes.

For a description of file locking modes, see File Locking (on page 220). For a description of
record locking modes, see Record Locking (on page 221). If the associated file connector is
an external file connector, every file control entry in the run unit that is associated with that
file connector must specify the same lock mode.

[]

EXCLUSIVE

RECORDS
RECORDMULTIPLEONLOCKWITHAUTOMATIC

MANUAL

ISMODELOCK

Chapter 3: Environment Division

76 RM/COBOL Language Reference Manual

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of a file. The file organization is
established at the time a file is created and cannot subsequently be changed. When the
ORGANIZATION clause is not specified, ORGANIZATION IS SEQUENTIAL is implied.

Sequential
Sequential organization is a permanent logical file structure in which a record is identified by
a predecessor-successor relationship established when the record is placed into the file.

Sequential files may be further classified by the record delimiting technique used to determine
the length of records in the file. The ORGANIZATION clause may specify the record
delimiting technique to be binary sequential with the BINARY option or line sequential with
the LINE option. For additional information on record delimiting techniques, see the
description of the RECORD DELIMITER Clause on page 77.

Relative
Relative organization is a permanent logical file structure in which each record is uniquely
identified by an integer value greater than zero, which specifies the record’s logical ordinal
position in the file.

Indexed
Indexed organization is a permanent logical file structure in which each record is identified by
the value of one or more keys within that record. All records are uniquely identified by the
value of the prime record key, except when the DUPLICATES phrase is specified in the
RECORD KEY clause. Alternate record keys may be defined to provide alternate access
paths to records in an indexed file. Record keys may be split keys, which are a concatenation
of a sequence of data items that are not necessarily contiguous within the record.

PADDING CHARACTER Clause

The PADDING CHARACTER clause provides a way to specify the character that is used to
fill out or pad blocks for sequential files. If the padding character is defined with a data-
name, data-name-2 may be qualified. It must refer to a one-character data item of the
category alphanumeric defined in the Working-Storage or Linkage Section. If the padding
character is defined with a literal, literal-2 must be a one-character nonnumeric literal. If
data-name-2 is specified, is not qualified, and is not defined in the Data Division, the
compiler assumes a Working-Storage Section data description entry of the following form:

01 data-name-2 PIC X(1).

[]

INDEXED

RELATIVE

SEQUENTIALLINE
BINARY

ISONORGANIZATI

literal-2
2data-name-ISCHARACTERPADDING

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 77

The PADDING CHARACTER clause may only be specified in a file control entry that
describes a sequential organization file.

literal-2 or the value of the data item referenced by data-name-2 at the time the file is opened
for output is used as the value of the padding character, and this value becomes a fixed
attribute of the file.

During input operations on a file whose file control entry includes a PADDING
CHARACTER clause, any portion of a block that exists beyond the last logical record and
consists entirely of padding characters is bypassed, and a logical record that consists entirely
of padding characters is ignored. During output operations on such a file, any portion of a
block that exists beyond the last logical record is filled out with padding characters.

The use and recognition of padding characters occur only if such operations are compatible
with the supporting device type. See “DEFINE-DEVICE Configuration Record” in Chapter
10: Configuration of the RM/COBOL User’s Guide for more information on this point.

If the associated file connector is an external file connector, all PADDING CHARACTER
clauses in the run unit that are associated with that file connector must have the same
specifications. If data-name-2 is specified, it must reference an external data item.

RECORD DELIMITER Clause

The RECORD DELIMITER clause specifies the record delimiting technique for a sequential
file. The record delimiting technique determines how records are separated on the external
medium. An alternative method of specifying the record delimiting technique is the LINE or
BINARY option of the ORGANIZATION clause. The record delimiting technique is
established at the time a file is created and cannot subsequently be changed.

The RECORD DELIMITER clause may only be specified in a file control entry that describes
a sequential organization file.

The RECORD DELIMITER clause with the BINARY-SEQUENTIAL option specifies that
the file record delimiting technique is binary sequential. The binary sequential record
delimiting technique uses record length headers and trailers to delimit each variable-length
record on the external medium. This allows binary sequential files to contain data items with
usage other than DISPLAY. For fixed-length binary sequential records, no record delimiter is
needed or used. All characters in the records of a binary sequential file are treated as data, not
as control characters. When the BINARY-SEQUENTIAL option is specified, the
ORGANIZATION clause must not specify the LINE option.

The RECORD DELIMITER clause with the LINE-SEQUENTIAL option specifies that the
file record delimiting technique is line sequential. The line sequential record delimiting
technique is defined to be the same as that used by the standard system text editor. Typically,
this record delimiting technique uses special control characters to delimit each record, for
example, a carriage-return line-feed pair. Therefore, such files should contain only data items
that are explicitly or implicitly defined with USAGE IS DISPLAY. If there are data items
with usage other than DISPLAY in a line sequential file, their values may be interpreted as
control characters, for example, record separators or horizontal tabs. When the LINE-
SEQUENTIAL option is specified, the ORGANIZATION clause must not specify the
BINARY option.

The use of the RECORD DELIMITER clause with the STANDARD-1 option is meaningful
only when the supporting external medium is magnetic tape. When this is the case, the clause
may be used to indicate that the method of determining the length of a variable record on the

name-1delimiter-
1-STANDARDISDELIMITERRECORD

Chapter 3: Environment Division

78 RM/COBOL Language Reference Manual

external medium is as specified in American National Standard X3.27-1978, Magnetic Tape
Labels and File Structure for Information Interchange and International Standard 1001 1979,
Magnetic Tape Labels and File Structure for Information Interchange. The RECORD
DELIMITER clause with the STANDARD-1 option may not be specified if LINE or
BINARY is specified in the ORGANIZATION clause since they each specify a different
record delimiting technique.

If the RECORD DELIMITER clause is not specified and neither the LINE nor BINARY
option is specified in the ORGANIZATION clause, the record delimiting technique for
the file is determined by the presence of a Compile Command option or a keyword that
configures the runtime for unspecified files. For further information, see the B and V
Compile Command Options in Chapter 6: Compiling and the discussion of the
DEFAULT-TYPE keyword in “RUN-SEQ-FILES Configuration Record” in Chapter 10:
Configuration of the RM/COBOL User’s Guide.

If the associated file connector is an external file connector, all RECORD DELIMITER
clauses in the run unit that are associated with that file connector must have the same
specifications.

RECORD KEY and ALTERNATE RECORD KEY Clauses

The RECORD KEY clause specifies the record key that is the prime record key for an
indexed file. The values of the prime record key must be unique among records of the file,
except when the DUPLICATES phrase is specified in the RECORD KEY clause. This prime
record key provides an access path to records in an indexed file. split-key-name-1 names a
concatenation of one or more data items within a record associated with the file. The
concatenation of the data items, which need not be contiguous within the record, forms a
single record key. split-key-name-1 may be specified only in a READ or START statement.

An ALTERNATE RECORD KEY clause specifies a record key that is an alternate record key
for an indexed file. This alternate record key provides an alternate access path to records in
an indexed file. Up to 254 alternate record keys may be declared for an indexed organization
file. split-key-name-2 names a concatenation of one or more data items within a record
associated with the file. The concatenation of the data items, which need not be contiguous
within the record, forms a single record key. split-key-name-2 may be specified only in a
READ or START statement.

Note There is a limit of 255 key segments per indexed file. Thus, if split keys are used, the
limit of 254 alternate keys is reduced accordingly.

The RECORD KEY and ALTERNATE RECORD KEY clauses may only be specified in a
file control entry that describes an indexed organization file.

The RECORD KEY clause is required in a file control entry that describes an indexed
organization file.

If the associated file connector is an external file connector, every file control entry in the run
unit that is associated with that file connector must specify the same data description entry for
data-name-4, data-name-6 or each data-name-5, data-name-7, the same number of data-
name-5, data-name-7 in the definition of split-key-name-1, split-key-name-2, the same relative

{ } []DUPLICATESWITHISKEYRECORD

= 5data-name-name-1split-key-
4data-name-

{ }

[]DUPLICATESWITH

ISKEYRECORDALTERNATE

= 7data-name-name-2split-key-
6data-name-

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 79

location within the associated record for data-name-4, data-name-6 or each data-name-5,
data-name-7, the same presence or absence of the DUPLICATES phrase, and the same
number of alternate record keys.

The data descriptions of data-name-4, data-name-5, data-name-6, and data-name-7, as well
as their relative locations within a record, must be the same as those used when the file was
created. The number of alternate keys for the file, the sequence of data-name-5 or data-
name-7 for each key, and the presence or absence of the DUPLICATES phrase for each key
must also be the same as when the file was created.

The data items to which data-name-4, data-name-5, data-name-6, and data-name-7 refer
must each be defined within a record description entry associated with file-name-1. Each data
item must also be defined either as a category alphanumeric data item or as an unsigned
integer data item with DISPLAY usage.

None of data-name-4, data-name-5, data-name-6, and data-name-7 may be described as a
data item whose size is variable.

data-name-6 cannot refer to an item whose leftmost character position corresponds to the
leftmost character position of an item to which data-name-4 or any other data-name-6
associated with this file refers. split-key-name-2 cannot specify a list of data-names that
results in the same key as any other split-key-name-2 associated with this file. Two record
keys are considered the same if they have the same relative offset within the record for each
key segment, the same length for each key segment and the same number of key segments,
where a key segment corresponds to a single data item in the concatenation of data items that
form the split key.

Note The limitation on having no two keys with the same leftmost character position derives
from the standard COBOL implementation of the START statement and the method of
specifying a partial key reference. This limitation is relaxed for split keys, which are an
RM/COBOL extension to standard COBOL.

data-name-4, data-name-5, data-name-6, and data-name-7 may be qualified.

The DUPLICATES phrase specifies that the value of the associated record key may be
duplicated within any of the records in the file. If the DUPLICATES phrase is not specified,
the value of the associated record key must not be duplicated among any of the records in the
file. When the DUPLICATES phrase is specified in the RECORD KEY clause, the value of
the prime record key is not necessarily a unique identifier for a single record; therefore, in this
case, the DELETE and REWRITE statements are disallowed in the random access mode and
are sequential operations in the dynamic access mode.

Note The ALTERNATE RECORD KEY clauses may be specified in any order within the
file control entry. The compiler sorts the alternate keys into ascending order of offset within
the associated record and then ascending length of key segment. For two or more keys with
the same offset and length of key segment, the keys are sorted into ascending number of
segments. The compiler produces an error if two or more keys are the same, that is, they have
the same relative location of each segment, the same length for each segment, and the same
number of segments. This sorting of the alternate keys ensures that the associated indexed
file description is independent of the order in which ALTERNATE RECORD KEY clauses
are specified in the programs that refer to an indexed file.

RESERVE Clause

[]

AREAS
AREAALTERNATENORESERVE integer-1

Chapter 3: Environment Division

80 RM/COBOL Language Reference Manual

The RESERVE clause allows the user to specify the number of input-output areas allocated.
If the RESERVE clause is specified, the number of input-output areas allocated is equal to the
value of integer-1 if the ALTERNATE phrase is omitted or to the value of integer-1 plus one
if the ALTERNATE phrase is specified. The maximum number of input-output areas that can
be allocated for a file is 255. Therefore, the maximum value that integer-1 can have is 254
when the ALTERNATE phrase is specified, or 255 when the ALTERNATE phrase is
not specified.

Specifying RESERVE NO ALTERNATE AREAS is the same as specifying RESERVE 1
AREA. Specifying RESERVE NO AREAS is the same as omitting the RESERVE clause.
If the RESERVE clause is not specified, the number of input-output areas allocated defaults to
a number appropriate for the runtime operating system. For more specific information, see
the discussions of the RESERVE clause for the sequential, relative, and indexed file control
entry in “File Types and Structures” in Chapter 8: RM/COBOL Features of the RM/COBOL
User’s Guide.

Sort-Merge File Control Entry
The sort-merge file control entry names a sort or merge file and specifies the association of
the file to a storage-medium.

SELECT Clause
Each sort or merge file described in the Data Division must be described once and only once
as a file-name in the FILE-CONTROL paragraph. Each sort or merge file specified in a file
control entry must have a sort-merge file description entry in the Data Division. Since file-
name-1 represents a sort or merge file, only the ASSIGN clause is permitted to follow file-
name-1 in the FILE-CONTROL paragraph.

ASSIGN Clause
The ASSIGN clause specifies the association of the sort or merge file referenced by
file-name-1 to a storage medium (device-name-1), such as SORT, MERGE, SORT-MERGE
or SORT-WORK. The device-name may be omitted if a file access name is specified by
data-name-1 or literal-1.

The ASSIGN clause may also specify the file access name with literal-1 or as the contents of
a data item identified by data-name-1. If specified, the file access name must be correct both
syntactically and semantically. However, for a sort-merge file, the value of the file access
name is ignored by the object program.

If literal-1 is specified, it must be a nonnumeric literal.

1file-name-SELECT

.

MERGE
MERGE-SORT

SORT
TOASSIGN

literal-1
1data-name-

e-1device-nam

literal-1
1data-name-

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 81

If data-name-1 is specified, it must be defined in the Data Division as a data item of the
category alphanumeric. data-name-1 may be qualified. If data-name-1 is specified, is not
qualified, and is not defined in the Data Division, the compiler assumes a Working-Storage
Section data description entry of the following form:

01 data-name-1 PIC X(256).

I-O-CONTROL Paragraph
The I-O-CONTROL paragraph specifies the points at which rerun is to be established, the
memory area which is to be shared by different files, and the location of files on a multiple
file reel.

The I-O-CONTROL paragraph is optional. The clauses within the paragraph may appear in
any order.

Any file-name referenced in the I-O-CONTROL paragraph must be specified in the
FILE-CONTROL paragraph of the same program.

RERUN Clause

The RERUN clause specifies when and where the rerun information is recorded. The
RERUN clause, when specified, must satisfy the following rules:

1. file-name-1 must be a sequentially organized file.

2. The END OF REEL or END OF UNIT phrase may be used only if file-name-2 is a
sequentially organized file.

3. When the END OF REEL or END OF UNIT phrase is used and file-name-2 is not an
output file, the ON phrase is required.

4. When either the integer-1 RECORDS phrase or the integer-2 CLOCK-UNITS phrase is
specified, the ON phrase with rerun-name-1 must be specified in the RERUN clause.

5. When condition-name-1 is used, the ON phrase is required.

[]

[]

[]

.

ile-entrymultiple-f

same-entry

yrerun-entr

.CONTROL-O-I

[]

name-1condition-
integer-2

2file-name-
integer-1

-1rerun-name
1file-name-

UNITS-CLOCK

OF
RECORDS

UNIT
REEL

OFEND

EVERY

ONRERUN

Chapter 3: Environment Division

82 RM/COBOL Language Reference Manual

6. Only one RERUN clause containing the CLOCK-UNITS phrase may be specified.

7. rerun-name-1 may be any user-defined word.

When either the END OF REEL or END OF UNIT phrase is used without the ON phrase, the
rerun information is written on file-name-2, which must be an output file. When either the
END OF REEL or END OF UNIT phrase is used and file-name-1 is specified in the ON
phrase, the rerun information is written on file-name-1, which must be an output file. In this
case, file-name-2 may be either an input or output file.

When the integer-1 RECORDS phrase is used, the rerun information is written whenever
integer-1 records of file-name-2 have been processed. file-name-2 may be either an input or
output file with any organization or access.

When the integer-2 CLOCK-UNITS phrase is used, the rerun information is written whenever
an interval of time, calculated by an internal clock, has elapsed.

When condition-name is used and file-name-1 is specified in the ON phrase, the rerun
information is written on file-name-1, which must be an output file, whenever a switch
assumes a particular status as specified by the condition-name-1. The associated switch must
be defined in the SPECIAL-NAMES paragraph.

More than one RERUN clause may be specified for a given file-name-2, provided that:

• When multiple integer-1 RECORDS phrases are specified, no two of them may specify
the same file-name-2.

• When multiple END OF REEL or END OF UNIT phrases are specified, no two of them
may specify the same file-name-2.

SAME Clause

In the SAME clause, SORT and SORT-MERGE are equivalent.

If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of
the file-names must represent a sort or merge file. Files that do not represent sort or merge
files may also be named in the clause.

The file-names specified in a SAME clause may not reference an external file connector.

The four formats of the SAME clause (SAME AREA, SAME RECORD AREA, SAME
SORT AREA, and SAME SORT-MERGE AREA) are considered separately in the following.

More than one SAME clause may be included in a program. The following restrictions apply:

1. A file-name must not appear in more than one SAME AREA clause.

2. A file-name must not appear in more than one SAME RECORD AREA clause.

3. A file-name which represents a sort or merge file must not appear in more than one
SAME SORT AREA or SAME SORT-MERGE AREA clause.

4. If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA
clause, all the file-names in that SAME AREA clause must appear in the SAME
RECORD AREA clause. However, additional file-names not appearing in that SAME
AREA clause may also appear in that SAME RECORD AREA clause. The rule that only
one of the files mentioned in a SAME AREA clause can be open at any given time takes

{ }4file-name-3file-name-FORAREA
MERGE-SORT

SORT
RECORD

SAME

Chapter 3: Environment Division

 RM/COBOL Language Reference Manual 83

precedence over the rule that all files mentioned in a SAME RECORD AREA clause can
be open at any given time.

5. If a file-name that does not represent a sort or merge file appears in a SAME AREA
clause and one or more SAME SORT AREA or SAME SORT-MERGE AREA clauses,
all of the files named in that SAME AREA clause must be named in that SAME SORT
AREA or SAME SORT-MERGE area clause.

The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT AREA, or
SAME SORT-MERGE AREA clause need not all have the same organization or access.

The SAME AREA clause specifies that two or more files that do not represent sort or merge
files are to use the same memory area during processing. The area being shared includes all
storage areas assigned to the files specified; therefore, it is not valid to have more than one of
the files open at the same time.

The SAME RECORD AREA clause specifies that two or more files are to use the same
memory area for processing of the current logical record. All of the files may be open at the
same time. A logical record in the SAME RECORD AREA is considered a logical record of
each opened output file whose file-name appears in this SAME RECORD AREA clause and
of the most recently read input file whose file-name appears in this SAME RECORD AREA
clause. This is equivalent to an implicit redefinition of the area (that is, records are aligned on
the leftmost character position).

If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of
the file-names must represent a sort or merge file. Files that do not represent sort or merge
files may also be named in the clause. This clause specifies that storage is shared as follows:

1. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory
area which will be made available for use in sorting or merging each sort or merge file
named. Thus any memory area allocated for the sorting or merging of a sort or merge file
is available for reuse in sorting or merging any of the other sort or merge files.

2. In addition, storage areas assigned to files that do not represent sort or merge files may be
allocated as needed for sorting or merging the sort or merge files named in the SAME
SORT AREA or SAME SORT-MERGE AREA clause. In this implementation, no such
sharing occurs during execution.

3. Files other than sort or merge files do not share the same storage area with each other.
Users wishing these files to share the same storage area with each other must also include
in the program a SAME AREA or SAME RECORD AREA clause naming these files.

4. During the execution of a SORT or MERGE statement that refers to a sort or merge file
named in this clause, any non sort-merge files named in this clause must not be open.

MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause is required when more than one file shares the same
physical reel of tape and the operating system does not specify file positions. Regardless of
the number of files on a single reel, only those files that are used in the object program need
be specified. If all file-names have been listed in consecutive order, the POSITION clause
need not be given.

If any file in the sequence is not listed, the position—one-relative to the beginning of the
tape—must be specified in the POSITION clause. Whenever the POSITION clause is

[]{ }integer-35file-name- ISPOSITION

CONTAINSTAPEFILEMULTIPLE

Chapter 3: Environment Division

84 RM/COBOL Language Reference Manual

omitted, the position is assumed to be one greater than the position of the immediately
preceding file in the MULTIPLE FILE TAPE clause, except for the first file-name-5, which is
assumed to be in position 1 when the POSITION clause is omitted.

The file-names specified in a MULTIPLE FILE TAPE clause may not reference an external
file connector.

Not more than one file on the same tape reel may be open at one time.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 85

Chapter 4: Data Division

The Data Division describes the data that the object program is to accept as input, to
manipulate, to create, or to produce as output.

The Data Division is optional. It is subdivided into five subordinate sections, each of which is
optional. The entire Data Division may be omitted, but only when none of the subordinate
sections are present.

Data Division Structure
The five subordinate sections in the Data Division are as follows:

1. File Section (see page 87), which defines the structure of data files. Each file is defined
by a file description entry and one or more record descriptions. Record descriptions are
written immediately following the file description entry.

2. Working-Storage Section (see page 97), which describes records and noncontiguous data
items which are not part of external data files but are developed and processed internally.
It also describes data items whose values, assigned in the source program, do not change
during execution of the object program.

3. Linkage Section (see page 98), which describes formal arguments to be associated with
actual arguments passed in the USING or GIVING phrases of a CALL statement and
records to be based on a pointer value by use of the SET statement.

No space is allocated in the program for data items defined in the Linkage Section of that
program. Procedure Division references to these data items are resolved at runtime by
replacing the reference in the program with the location assigned by the calling program
for a formal argument associated with an actual argument or the location assigned by the
most recently executed SET statement that established the base address for a based
linkage record. In the case of index-names, no such correspondence is established.
Index-names in the called and calling program always refer to separate indexes for
indexes defined in the Linkage Section.

Data items defined in the Linkage Section of a program may be referenced within the
Procedure Division of that program only if they are specified as operands of the USING
or GIVING phrases of the Procedure Division header, or are subordinate to such
operands, and the object program is under the control of a CALL statement that specifies
a USING or GIVING phrase that includes a corresponding actual argument to associate

with the formal argument, or the SET statement has been used to associate an address

Chapter 4: Data Division

86 RM/COBOL Language Reference Manual

with the linkage record. An exception to this rule is that the ADDRESS OF special
register may reference the record-name and will return NULL if the reference
requirements have not been satisfied.

4. Communication Section (see page 100), which describes the data items that serve as the
interface between the Message Control System (MCS) and the program.

5. Screen Section (see page 100), which describes the layout and attributes of fields on a
terminal screen. It also provides for the automatic transfer of data between screen fields
and data items defined in the other sections of the Data Division.

.DIVISIONDATA

.SECTIONFILE

{ }
{ }

ntry-2cription-erecord-destry-1ription-en-file-descsort-merge

ntry-1cription-erecord-desry-1iption-entfile-descr

.SECTIONSTORAGE-WORKING

 ntry-3cription-erecord-des

-entry-1escription77-level-d

.SECTIONLINKAGE

 ntry-4cription-erecord-des

-entry-2escription77-level-d

.SECTIONIONCOMMUNICAT

{ }[]

ntry-5cription-erecord-desy-1ption-entrion-descricommunicat

.SECTIONSCREEN

[]

ntry-1cription-escreen-des

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 87

File Section
The File Section header is followed by file description entries or sort-merge file description
entries consisting of a level indicator (FD and SD, respectively), a file-name and a series of
independent clauses, terminated by a period. Each file description entry or sort-merge
description entry is followed by one or more record description entries.

The file description entry and sort-merge file description entry (FD and SD) are the highest
level of organization in the File Section.

A Format 1 (data item initialization) VALUE clause specified in the File Section is ignored
except in the execution of the INITIALIZE statement. The initial value of a data item in the
File Section is undefined.

File Description Entry
The file description entry furnishes information concerning the physical structure,
identification and record names pertaining to a given file.

{ }
{ }

ntry-2cription-erecord-destry-1ription-en-file-descsort-merge
ntry-1cription-erecord-desry-1iption-entfile-descr

.SECTIONFILE

1file-name-FD

[]EXTERNALIS

[]GLOBALIS

[]

CHARACTERS
RECORDSTOCONTAINSBLOCK integer-2integer-1

[]

[] [][]
[]

1data-name-
integer-6integer-5

integer-4integer-3

ONDEPENDING
CHARACTERSTOFROM

SIZEINVARYINGIS
CHARACTERSTOCONTAINS

RECORD

OMITTED
STANDARD

ARERECORDS
ISRECORD

LABEL

literal-1

2data-name-
-1label-name

IS
LABEL

OFVALUE

{ }

3data-name-
ARERECORDS

ISRECORD
DATA

Chapter 4: Data Division

88 RM/COBOL Language Reference Manual

The level indicator FD identifies the beginning of a file description and must precede the
file-name.

The clauses that follow the name of the file are optional and their order of appearance is
not significant.

The LINAGE clause may be used only if file-name-1 references a sequential file. If the file
description entry for a sequential file contains the LINAGE clause and the EXTERNAL
clause, the LINAGE-COUNTER data item is an external data item. If the file description
entry for a sequential file contains the LINAGE clause and the GLOBAL clause, the special
register LINAGE-COUNTER is a global name.

One or more record description entries must follow the file description entry.

A file description entry must end with a period separator.

Sort-Merge File Description Entry
The sort-merge file description entry furnishes information concerning the physical structure,
identification, and record-names of the file to be sorted or merged.

The level indicator SD identifies the beginning of the sort-merge file description and
must precede the file-name.

The clauses that follow the name of the file are optional and their order of appearance
is immaterial.

One or more record description entries must follow the sort-merge file description entry.
Within the Procedure Division, file-name-1 may not be used in OPEN, CLOSE, READ,
START, DELETE or UNLOCK statements, nor may subordinate record-names be used in
WRITE or REWRITE statements.

integer-10
7data-name-

integer-9
6data-name-

integer-8
5data-name-

integer-7
4data-name-

BOTTOMATLINESTOPATLINES

ATFOOTINGWITHLINESISLINAGE

[] .ISSET-CODE ame-1alphabet-n

1file-name-SD

[]

[] [][]
[]

1data-name-
integer-6integer-5

integer-4integer-3

ONDEPENDING
CHARACTERSTOFROM

SIZEINVARYINGIS
CHARACTERSTOCONTAINS

RECORD

{ } .ARERECORDS
ISRECORDDATA

 3data-name-

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 89

File Description Clauses
The file description clauses are placed between the FD or SD file-name-1 declaration and the
first of the subordinate record description entries. They serve to specify or document
characteristics that are relevant to the file as a whole rather than to particular records.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record.

This clause is required except when:

• A physical record contains only one complete logical record.

• The device assigned to the file has only one physical record size.

• The number of records contained in a block is specified in the runtime environment.

The size of the physical record may be stated in terms of RECORDS, unless one of the
following situations exists, in which case the RECORDS phrase must not be used:

• In mass storage files where logical records may extend across physical records.

• The physical record contains padding.

• If logical records are grouped in such a manner that an inaccurate physical record size
would be implied.

When the word CHARACTERS is specified, the physical record size is specified in terms of
the number of character positions required to store the physical record, regardless of the types
of characters used to represent the items within the physical record.

If only integer-2 is specified, it represents the exact size of the physical record. If integer-1
and integer-2 are specified, they refer to the minimum and maximum size of the physical
record, respectively.

If the associated file connector is an external file connector, all BLOCK CONTAINS clauses
in the run unit that are associated with that file connector must have the same value for
integer-1 and integer-2.

CODE-SET Clause

The CODE-SET clause specifies the character code convention used to represent data on the
external media.

When the CODE-SET clause is specified for a file, all data in that file must be described as
usage is DISPLAY and any signed numeric data must be described with the SIGN IS
SEPARATE clause.

If the CODE-SET clause is specified, alphabet-name-1 specifies the character code
convention used to represent data on the external media. It also specifies the algorithm for

[]

CHARACTERS
RECORDSTOCONTAINSBLOCK integer-2integer-1

ame-1alphabet-nISSET-CODE

Chapter 4: Data Division

90 RM/COBOL Language Reference Manual

converting the character codes on the external media to or from the native character codes.
This code conversion occurs during the execution of an input or output operation. See the
discussion of the SPECIAL-NAMES paragraph (on page 57).

If the CODE-SET clause is not specified, the native character code set is assumed for data on
the external media.

If the CODE-SET clause is specified in both the file control entry and the file description
entry for a file, the two alphabet-names must be the same.

If the associated file connector is an external file connector, all CODE-SET clauses in the run
unit, which are associated with that file connector, must have the same character set.

DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names of data records
with their associated file.

data-name-3 is the name of a data record and must have a 01 level-number record description,
with the same name, associated with it.

The presence of more than one data-name indicates that the file contains more than one type
of data record. These records may be of different sizes, different formats, and so forth. The
order in which they are listed is not significant.

All data records within a file share the same area, whether or not they are of the same type.

EXTERNAL Clause

The EXTERNAL clause specifies that a file connector is external.

Use of the EXTERNAL clause does not imply that the associated file-name is a global name.

The file connector associated with this description entry is an external file connector. The
data records described subordinate to this file description entry, as well as any data items
described subordinate to the data description entries for such records, attain the external
attribute.

If the file-name that is the subject of the EXTERNAL clause is more than 30 characters in
length, only the first 30 characters are used at runtime to match with external files declared in
this or any other program in the run unit.

GLOBAL Clause

The GLOBAL clause specifies that a file-name is a global name. A global name is available
to every program contained within the program which declares it.

{ }3data-name-

ARERECORDS
ISRECORDDATA

EXTERNALIS

GLOBALIS

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 91

A file-name described using a GLOBAL clause is a global name. All data-names subordinate
to a global name are global names. All condition-names and split-key-names associated with
a global name are global names.

A statement in a program contained directly or indirectly within a program which describes a
global name may reference that name without describing it again.

If the SAME RECORD AREA clause is specified for several files, the record description
entries or the file description entries for these files must not include the GLOBAL clause.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present.

The OMITTED option specifies that no explicit labels exist for the file or the device to which
the file is assigned. The STANDARD option specifies that labels exist for the file or the
device to which the file is assigned and that they conform to the conventions of the runtime
environment.

Omission of the LABEL RECORDS clause from a file description entry is equivalent to
specifying LABEL RECORDS OMITTED.

If a VALUE OF clause is present in a file description entry, a LABEL RECORDS OMITTED
clause is not allowed.

If the file connector associated with this file description entry is an external file connector, all
LABEL RECORDS clauses in the run unit that are associated with this file connector must
have the same specification.

LINAGE Clause

The LINAGE clause provides a means for specifying the depth of a logical page in number of
lines. It also allows for the specification of the top and bottom margins on the logical page
and the line number at which the footing area begins.

data-name-4, data-name-5, data-name-6, data-name-7 must reference unsigned numeric
integer data items.

data-name-4, data-name-5, data-name-6, data-name-7 may be qualified. If any of
data-name-4, data-name-5, data-name-6, or data-name-7 is specified, is not qualified, and is
not defined in the Data Division, the compiler assumes a Working-Storage Section data
description entry for that respective data-name of the following form:

01 data-name-n PIC 9(9) BINARY(4).

The LINAGE clause may only be used in a file description entry for a sequential
organization file.

OMITTED
STANDARD

ARERECORDS
ISRECORDLABEL

integer-10
7data-name-

integer-9
6data-name-

integer-8
5data-name-

integer-7
4data-name-

BOTTOMATLINESTOPATLINES

ATFOOTINGWITHLINESISLINAGE

Chapter 4: Data Division

92 RM/COBOL Language Reference Manual

The LINAGE clause provides a means for specifying the size of a logical page in terms of
number of lines. The logical page size is the sum of the values referenced by each phrase
except the FOOTING phrase. If the LINES AT TOP or LINES AT BOTTOM phrases are
not specified, the values of these items are zero. If the FOOTING phrase is not specified, no
end-of-page condition independent of the page overflow condition exists.

There is not necessarily any relationship between the size of the logical page and the size of
the physical page. Each logical page is contiguous to the next with no additional spacing
provided. When a LINAGE file is written, form feed characters are not used because they
cause the printer to advance to the next physical page. The LINAGE-PAGES-PER-
PHYSICAL-PAGE in the PRINT-ATTR runtime configuration record may be used to cause
form feeds to be generated between a specified number of logical pages, that is, the option
specifies the number of logical pages that fit on a physical page.

integer-7 or the value of the data item referenced by data-name-4 specifies the number of
lines that can be written, spaced, or both, on the logical page. The value must be greater than
zero. That part of the logical page in which these lines can be written or spaced is called the
page body.

integer-8 or the value of the data item referenced by data-name-5 specifies the line number
within the page body at which the footing area begins. The value must be greater than zero
and not greater than integer-7 or the value of the data item referenced by data-name-4.

The footing area comprises the area of the page body between the line represented by
integer-8 or the value of the data item referenced by data-name-5, and the line represented by
integer-7 or the value of the data item referenced by data-name-4, inclusive. When lines are
written or spaced in the footing area, an end-of-page condition occurs. The end-of-page
condition can be detected by the END-OF-PAGE (or EOP) phrase of the WRITE statement.

integer-9 or the value of the data item referenced by data-name-6 specifies the number of
lines that comprise the top margin on the logical page. The value may be zero.

integer-10 or the value of the data item referenced by data-name-7 specifies the number of
lines that comprise the bottom margin on the logical page. The value may be zero.

integer-7, integer-9, and integer-10, if specified, are used at the time the file is opened by the
execution of an OPEN statement with the OUTPUT phrase, to specify the number of lines
that make up each of the indicated sections of a logical page. integer-8, if specified, is used at
that time to define the footing area. These values are used for all logical pages written for that
file during an execution of the program.

The values of the data items referenced by data-name-4, data-name-6, and data-name-7, if
specified, are used as follows:

• The values of the data items, at the time an OPEN statement with the OUTPUT phrase is
executed for the file, are used to specify the number of lines that make up each of the
indicated sections for the first logical page.

• The values of the data items, at the time a WRITE statement with the ADVANCING
PAGE phrase is executed or a page overflow condition occurs, are used to specify the
number of lines that make up each of the indicated sections for the next logical page.

The value of the data item referenced by data-name-5, if specified, at the time an OPEN
statement with the OUTPUT phrase is executed for the file, is used to define the footing area
for the first logical page. At the time a WRITE statement with the ADVANCING PAGE
phrase is executed or a page overflow condition occurs, it is used to define the footing area for
the next logical page.

A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the
LINAGE-COUNTER at any given time represents the line number at which the device is

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 93

positioned within the current page body. The rules governing the LINAGE-COUNTER are as
follows:

1. A separate LINAGE-COUNTER is supplied for each file whose file description entry
contains a LINAGE clause.

2. LINAGE-COUNTER may be referenced only in Procedure Division statements;
however, only the runtime system may change the value of LINAGE-COUNTER. Since
more than one LINAGE-COUNTER may exist in a program, the user must qualify
LINAGE-COUNTER by file-name-1 when necessary.

3. The LINAGE-COUNTER special register behaves as if it were described as PIC 9(n)
BINARY, where n represents the number of 9's in the PICTURE character-string for
data-name-4 or the number of digits specified in integer-7. The number of character
positions (bytes) allocated for the LINAGE-COUNTER special register is determined by
the value of n and the configured binary allocation scheme.

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If the file
description entry for a sequential file contains the LINAGE clause and the GLOBAL clause,
the special register LINAGE-COUNTER is a global name.

LINAGE-COUNTER is automatically modified, according to the following rules, during the
execution of a WRITE statement to an associated file:

1. When the ADVANCING PAGE phrase of the WRITE statement is specified, the
LINAGE-COUNTER is automatically reset to one. During the resetting of the LINAGE-
COUNTER to the value one, the value of LINAGE-COUNTER is implicitly incremented
to exceed the value specified by integer-7 or the data item referenced by data-name-4.

2. When the ADVANCING identifier-2 or integer-1 phrase of the WRITE statement is
specified, the LINAGE-COUNTER is incremented by integer-1 or the value of the data
item referenced by identifier-2.

3. When the ADVANCING phrase of the WRITE statement is not specified, the
LINAGE-COUNTER is incremented by the value one.

4. The value of LINAGE-COUNTER is automatically reset to one when the device
is repositioned to the first line that can be written on for each of the succeeding
logical pages.

The value of LINAGE-COUNTER is automatically set to one at the time an OPEN
statement with the OUTPUT phrase is executed for the associated file.

If the file connector associated with this file description entry is an external file connector, all
file description entries in the run unit that are associated with this file connector must have:

1. A LINAGE clause, if any file description entry has a LINAGE clause.

2. The same corresponding values for integer-7, integer-8, integer-9, and integer-10, if
specified.

3. The same corresponding external data items referenced by data-name-4, data-name-5,
data-name-6, and data-name-7.

Figure 3 shows the logical page layout for a general LINAGE clause.

Chapter 4: Data Division

94 RM/COBOL Language Reference Manual

Figure 3: Logical Page Layout for a General LINAGE Clause

Figure 4 illustrates the logical page layout for a specific LINAGE clause that describes a
66-line logical page.

Bottom Margin:
These lines auto skipped

Top Margin:
These lines auto skipped

Page Body:

Lines may be written
or spaced here.

- -
Footing Area:

EOP occurs when lines
written or spaced here.

integer-9
6data-name-

integer-10
7data-name-

1

3

Line 1 ___
Line 2 ___
Line 3 ___

.

.

.

integer-8
5data-name-

 Line

integer-7
4data-name-

 Line

1 The LINES AT TOP phrase may be omitted or may specify a value of zero. In either of
these cases, there is no top margin.

2 The WITH FOOTING clause may be omitted in which case there is a no footing area.
3 The LINES AT BOTTOM phrase may be omitted or may specify a value of zero. In

either of these cases, there is no bottom margin.

2

integer-10
7data-name-

integer-9
6data-name-

integer-8
5data-name-

integer-7
4data-name-

BOTTOMATLINESTOPATLINES

ATFOOTINGWITHLINESISLINAGE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 95

Figure 4: Logical Page Layout for a Specific LINAGE Clause

RECORD Clause

The RECORD clause specifies the size of the data records.

Record descriptions for the file must not describe records which contain less character
positions than that specified by integer-3, integer-5 or records which contain more character
positions than that specified by integer-4 or integer-6.

integer-4 must be greater than or equal to integer-3.

integer-6 must be greater than integer-5.

data-name-1 must describe an elementary unsigned integer in the Working-Storage or
Linkage Section. data-name-1 may be qualified. If data-name-1 is specified, is not qualified,
and is not defined in the Data Division, the compiler assumes a Working-Storage Section data
description entry of the following form:

01 data-name-1 PIC 9(9) BINARY(4).

If the RECORD clause is not specified, the size of each data record is fully defined in the
record description entry. If all record description entries describe the same number of
character positions—and none contain Format 2 of the OCCURS clause—the file will be a
fixed-length record file; otherwise, the file will be a variable-length record file.

Bottom Margin:
(9 lines)

Top Margin:
(15 lines)

Page Body:
(42 lines)

- -
Footing Area: 2

1
2
3
.
.
.
.
.
.
.

37

38
39
40
41
42

LINAGE IS 42 LINES WITH FOOTING AT 38
 LINES AT TOP 15 LINES AT BOTTOM 9

[]

[] [][]
[]

1data-name-
integer-6integer-5

integer-4integer-3

ONDEPENDING
CHARACTERSTOFROM

SIZEINVARYINGIS
CHARACTERSTOCONTAINS

RECORD

Chapter 4: Data Division

96 RM/COBOL Language Reference Manual

If the associated file connector is an external file connector, all file description entries in the
run unit which are associated with that file connector must specify the same values for
integer-3 and integer-4, or integer-5 and integer-6. If the RECORD clause is not specified,
all record description entries associated with this file connector must be the same length.

1. integer-4, used by itself, indicates that all the data records in the file have the same size.
In this case, integer-4 represents the exact number of characters in the data record. The
file will be a fixed-length record file, even if varying length record descriptions are
associated with it.

2. If integer-3 and integer-4 are both shown, they refer to the minimum number of
characters in the smallest size data record and the maximum number of characters in the
largest size data record, respectively. If integer-3 is not equal to integer-4, the file will be
a variable-length record file, even if fixed-length record descriptions are associated with
it.

3. The size is specified in terms of the number of character positions required to store the
logical record, regardless of the types of characters used to represent the items within the
logical record.

The size of a record is determined by the sum of the number of characters in all fixed-length
elementary items, plus any filler characters generated between elementary items because of
explicit or implicit synchronization. If the record is variable length, the minimum number of
characters in a variable-occurrence data item is added to the fixed size to get the minimum
record size. The maximum number is added to the fixed size to get the maximum record size.

The IS VARYING IN SIZE phrase is used to specify variable-record lengths. integer-5
specifies the minimum number of character positions in any record of the file. integer-6
specifies the maximum number of character positions in any record in the file.

If data-name-1 is specified, the number of character positions in the record must be placed
into the data item referenced by data-name-1 before any RELEASE, REWRITE or WRITE
statement is executed for the file.

If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE, START or
WRITE statement or the unsuccessful execution of a READ or RETURN statement does not
alter the content of the data item referenced by data-name-1.

During the execution of a RELEASE, REWRITE or WRITE statement, the number of
character positions in the record is determined by one of the following conditions:

• If data-name-1 is specified, by the content of the data item referenced by data-name-1.

• If data-name-1 is not specified and the record does not contain a variable-occurrence data
item, by the number of the character positions in the record.

• If data-name-1 is not specified and the record contains a variable-occurrence data item,
by the sum of the fixed portion and that portion of the table described by the number of
occurrences at the time of the execution of the output statement.

If data-name-1 is specified, after the successful execution of a READ or RETURN statement
for the file, the contents of the data item referenced by data-name-1 will indicate the number
of character positions in the record just read or returned.

When an INTO phrase is specified in a READ or RETURN statement, the number of
character positions in the current record that participate as the sending data item in the implied
MOVE is the number of character positions in the record just read or returned.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 97

VALUE OF Clause

The VALUE OF clause particularizes the description of an item in the label records
associated with a file or specifies the file access name.

label-name-1 may be FILE-ID, LABEL or any user-defined word.

When label-name-1 is FILE-ID, data-name-2 or literal-1 specifies the file access name for the
file. VALUE OF FILE-ID provides an alternative to specifying the file access name in the
ASSIGN clause of the file control entry. If the file access name is specified in both
alternatives, the same data-name or literal must be specified in each; otherwise, the value
specified in the file control entry will take precedence. If the file access name is not specified
in either the file control entry or the file description entry, then file-name-1 is used as the file
access name. The value of the file access name, however specified, must be valid according
to the requirements of the runtime input-output system. If data-name-2 is specified for the
file access name, at the time of an OPEN statement execution for file-name-1, the value of the
data item to which data-name-2 refers will be used as the file access name.

When label-name-1 is LABEL, data-name-2 or literal-1 particularizes the description of an
item in the label records associated with the file. The value of this data item or literal is
available to the runtime input-output system, but is not currently used for any purpose.
LABEL must not be specified for label-name-1 when the OMITTED option is specified in the
LABEL RECORDS clause.

When label-name-1 is a user-defined, the phrase is treated as commentary. data-name-2 or
literal-1 must by syntactically correct, but have no effect on the object program.

data-name-2 may be qualified. data-name-2 must be defined in the Working-Storage Section
and must not be described with the USAGE IS INDEX clause. If data-name-2 is specified, is
not qualified, and is not defined in the Data Division, the compiler assumes a Working-
Storage Section data description entry of the following form:

01 data-name-2 PIC X(256).

A figurative constant may be substituted for literal-1.

If the associated file connector is an external file connector, all VALUE OF clauses in the run
unit, which are associated with that file connector, must be consistent.

Working-Storage Section
The Working-Storage Section is made up of the section header, followed by data description
entries for 77-level description entries, record description entries, or both.

A data-name defined at the 01 or 77 level in the Working-Storage Section must be unique
only if there is a reference to it elsewhere in the program. Subordinate data-names need not
be unique if they can be made unique by qualification or if there are no references to them
elsewhere in the program.

literal-1
2data-name-

-1label-name ISLABELOFVALUE

ntry-3cription-erecord-des
-entry-1escription77-level-d

.SECTIONSTORAGE-WORKING

Chapter 4: Data Division

98 RM/COBOL Language Reference Manual

Linkage Section
The structure of the Linkage Section is identical to the Working-Storage Section. That is, it
consists of a section header, followed by data description entries for noncontiguous data
items, record description entries, or both.

A data-name defined at the 01 or 77 level in the Linkage Section must be unique only if there
is a reference to it elsewhere in the program. Subordinate data-names need not be unique if
they can be made unique by qualification or if there are no references to them elsewhere in the
program.

Record description entries and 77-level-description-entries in the Linkage Section describe
record layouts for formal arguments of a program and for based linkage records. Linkage
Section data items are not allocated storage during compilation, but rather during the
execution of the run unit.

The formal arguments of a program are named in the USING and GIVING phrases of the
Procedure Division header and must be names defined as level 01 or level 77 entries in the
Linkage Section. Formal arguments receive their base address from the actual arguments
passed by a calling program. Formal arguments may also be treated as based linkage records;
this can be convenient to establish a default argument when the calling program does not pass
the corresponding actual argument.

Based linkage data records are any record-description-entries or 77-level-description-entries
in the Linkage Section that receive their base address by use of Formats 5 or 6 of the SET
statement in which the receiving item is an ADDRESS OF data-name-1. Based linkage
records may include formal arguments of a program. For example, it may be convenient to
set the base address of a formal argument when the corresponding actual argument is omitted.

When a program is placed into its initial state (either on its first CALL in the run unit or on its
first CALL since it has been canceled), the base addresses of all based linkage records are set
equal to NULL. A Format 5 SET statement must be executed to change the base address to a
value other than NULL. Once set, the base address of a based linkage record remains set until
changed by the execution of a Format 5 or Format 6 SET statement or the program that
describes the based linkage item is canceled. If the program refers to a data item with a
NULL base address, other than in an ADDRESS OF special register or in the USING or
GIVING phrases of a CALL statement, a runtime data reference error will terminate the run
unit. The ADDRESS OF special register may be used to test for a base address that is equal
to NULL.

If a based linkage item is also a formal argument, the actual argument base address in a
subsequent CALL statement in the calling program overrides any base address set or modified
by a Format 5 or Format 6 SET statement in the called program. The override occurs each
time that the program is called, unless the actual argument base address is equal to NULL.
When the actual argument base address is equal to NULL, the last set base address is used
instead. If there has been no Format 5 SET executed to set the base address, the NULL
address from the initial state of the program will be used for a reference and a data reference
error will occur except as described in the preceding paragraph. An actual argument has a
NULL base address in the following cases:

• The actual argument has been omitted from the CALL statement in the calling program,
either by specifying fewer arguments than the number of expected formal arguments in

ntry-4cription-erecord-des
-entry-2escription77-level-d

.SECTIONLINKAGE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 99

the called program or by specifying OMITTED for the actual argument in the calling
program.

• The actual argument was specified in the CALL statement in the calling program, but is a
formal argument or based linkage record that has a NULL base address. Note that a
pointer data item that has a NULL value is not the same as a based linkage item with a
NULL base address. That is, passing a pointer data item as an actual argument passes the
base address of the pointer data item and it is the data item value that is NULL, not the
base address.

The ENTRY-LINKAGE-SETTINGS keyword of the COMPILER-OPTIONS configuration
record may be used to control certain details of how base addresses for linkage records are
interpreted at runtime for a program compiled with a particular setting of this keyword. The
option controls what happens on each entry to a called program, including how the
correspondence of actual arguments to formal arguments and previous executions of Format 5
and 6 SET statements affect the base address used for a reference to a Linkage Section data
item during that invocation of the called program. For an explanation of this compiler
configuration option, see Chapter 10: Configuration of the RM/COBOL User's Guide.

A Format 1 (data item initialization) VALUE clause specified in the Linkage Section is
ignored except in the execution of the INITIALIZE statement. If the runtime element
containing the Linkage Section is activated by a COBOL runtime element, the initial value of
a data item in the Linkage Section is determined by the value of the corresponding formal
parameter in the activating runtime element, as described in the paragraphs above and the
general rules of the Procedure Division header (on page 171). If the runtime element
containing the Linkage Section is activated by the operating system, the initial value of a
Linkage Section data item is as described in Chapter 7: Running of the RM/COBOL User's
Guide.

The compiler handles as a special case the specification of a Linkage Section record-name as
an actual argument in a CALL statement or in a reference modified identifier. In these two
cases, the record-name is resolved according to the description of the actual data item on
which the record-name is based rather than using the Linkage Section description of the
record-name. The record-name is based on an actual argument if it represents a formal
argument, that is, is named in the Procedure Division header USING or GIVING argument
list, or may be based on some other data item through use of Formats 5 and 6 of the SET
statement. Other than when used as an actual argument or in a reference modified identifier, a
Linkage Section record-name is resolved according to its data description entry in the Linkage
Section of the program in which it is declared.

This special case means that a program that is just an intermediary between two programs
need not have a Linkage Section data description entry that accurately describes the size of
the actual argument being passed through it. For example, calling C$CARG with a formal
argument, which is described as longer than the corresponding actual argument, will no longer
result in a data reference error. Instead, C$CARG will return the correct length of the actual
argument, and because of the reference modification change described here, this length may
be successfully used to reference modify the formal argument in order to access the entire
contents of the actual argument. This also means that a program can call the supplied
subprogram C$CARG with an argument that the calling program omitted without getting a
data reference error. In this case, the call to C$CARG will succeed and return an argument
descriptor that includes a type of OMITTED and a length of zero. (The C$ routines are
described in Appendix F: Subprogram Library of the RM/COBOL User’s Guide.)

In the case of reference modification, an omitted actual argument would cause a data
reference error, but for an argument that is not omitted, the reference modification can use any
offset and length combination that is consistent with the actual argument. Previous to this
enhancement, reference modification that used variables implied a reference to the item as
described in the Linkage Section for the formal argument data item and this implied reference,

Chapter 4: Data Division

100 RM/COBOL Language Reference Manual

if larger than the corresponding actual argument, would cause a data reference error before the
reference modification was applied.

This special case also means that when the supplied subprogram, C$MemoryAllocate, is used
to allocate an area of memory and then the SET statement is used to base a Linkage Section
record on this allocated memory, the entire allocated memory area is passed as an actual
argument when the record-name is used in the USING or GIVING phrases of the CALL
statement. Also, the entire allocated memory area may be accessed by using reference
modification of the record-name.

Communication Section
The Communication Section is made up of the section header, followed by communication
description entries consisting of a level indicator (CD), a cd-name and a series of independent
clauses. The communication description entry is terminated by a period.

The record-description entry associated with the Communication Section may be implicitly
redefined by user-specified record description entries written immediately following the
communication description entry.

Screen Section
The syntactic structure of the Screen Section resembles that of the Working-Storage Section.
That is, it consists of a section header followed by zero, one, or more entries, each of which
consists of a required level-number followed by a series of optional clauses.

The entries specify the appearance of a rectangular display area called a screen. The
maximum meaningful horizontal and vertical dimensions of the screen are determined by the
hardware characteristics of the terminal associated with the run unit. The common limit for
the horizontal dimension is 80 character positions, and the common limit for the vertical
dimension is 25 lines.

Screen entries may be used to define all or any portion of the physical screen, and the entire
screen or any subregion of it may be redefined as many times as is needed by the program.

Level-numbers are used in the same way as in the other sections of the Data Division. That
is, level 77 entries are used to describe screen items not part of a larger structure, and not
subdivided into subordinate entries. Level-numbers 01 through 49 can be used to define
screen entries that are organized in a hierarchical structure: level 01 is the most inclusive.
Level-numbers 66 and 88 may not be used in the Screen Section.

Each entry in the Screen Section may define a screen-name. The rules regarding uniqueness
of screen-names are the same as the rules regarding uniqueness of data-names in the other
sections of the Data Division. That is, a screen-name defined at the 01 or 77 level in the
Screen Section must be unique only if there is a reference to it elsewhere in the program.
Subordinate screen-names (those at level-numbers 02 through 49) need not be unique if they
can be made unique by qualification or if there are no references to them elsewhere in the
program.

{ }[]ntry-5cription-erecord-desy-1ption-entrion-descricommunicat

.SECTIONIONCOMMUNICAT

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 101

Screen-names defined in the Screen Section do not represent data items, and they can be
referred to elsewhere in the program only in an ACCEPT . . . FROM statement (on page 231)
and a DISPLAY . . . UPON statement (on page 272).

Record Description Entry
A record description entry consists of a set of data description entries that describe the
characteristics of a particular record. Each data description entry consists of a level-number
followed by a data-name and a series of independent clauses, as required.

Level-Numbers
The first data description of a record must have a level-number of 01 or 1, and must start in
area A of a source line.

Any data item whose description specifies a level-number in the range 01 through 48 may be
subdivided into one or more subordinate data items. When this is done, the subdivided data
item becomes a group item. The subdivision is accomplished by following the data
description of the group item by one or more further data item descriptions, each having the
same level-number. The common level-number selected for these immediately subordinate
data items must be larger (by one or more) than the level-number of the group data item but
less than 50.

Each subordinate data item may in turn be subdivided by the same process, and the nesting of
subordinates within subordinates is limited only by the availability of increasing level-
numbers that are less than 50. This arrangement of data definitions results in a hierarchical
data structure. The rank of the constituent data items is determined by the numerical value of
its level-number: the smaller the level-number, the more inclusive the data item and the
higher its rank.

Elementary Items
Any data description entry that is not further subdivided is called an elementary item. A
record itself may be an elementary item, consisting of a single level-01 data description entry.
A subdivided data description entry with its subdivisions is called a group and is
nonelementary. Therefore, a group includes all group and elementary items following it until
a level-number less than or equal to the level-number of that group is encountered.

Note that certain clauses of the data description entry may occur only in elementary items.
They may not occur in a nonelementary entry as they may affect the subdivisions of that
entry. The description of an elementary item must have either a PICTURE clause or INDEX
usage; it may not have both.

[]ntry-1cription-escreen-des

.SECTIONSCREEN

{ }ry-1iption-entdata-descr

Chapter 4: Data Division

102 RM/COBOL Language Reference Manual

77-Level Description Entry
In the Working-Storage and Linkage Sections, a special level-number of 77 can be used in
data description entries that are not subdivisions of other items, and are not themselves
subdivided. These data description entries specify noncontiguous data items. Such a data
description entry is elementary.

A 77-level data description entry must contain a data-name and either the PICTURE clause or
the USAGE IS INDEX clause, but can contain an OCCURS clause only in the Working-
Storage Section. Other clauses are optional and can be used to complete the description of the
item if necessary.

Data Description Entry
A data description entry specifies data item characteristics.

Format 1: Data-Name Full Declaration

ry-2iption-entdata-descr

FILLER

1data-name-
er-1level-numb

[]2data-name-REDEFINES

[]EXTERNALIS

[]GLOBALIS

 string-1character-ISPIC

PICTURE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 103

[]

[]

[]
[]

[]
[]

POINTER
DECIMAL-PACKED

INDEX
DISPLAY

6-COMP
6-NALCOMPUTATIO

5-COMP
5-NALCOMPUTATIO

4-COMP
4-NALCOMPUTATIO

3-COMP
3-NALCOMPUTATIO

1-COMP
1-NALCOMPUTATIO

COMP
NALCOMPUTATIO

BINARY

ISUSAGE

)(
)(

)(
)(

)(

integer-3
integer-3

integer-3
integer-3

integer-3

[] []

 CHARACTERSEPARATETRAILING

LEADINGISSIGN

[]

{ }

{ }[]

-1index-name

4data-name-

3data-name-integer-2integer-1
integer-2

BYINDEXED

ISKEY
DESCENDING
ASCENDING

ONDEPENDINGTIMESTO
TIMES

OCCURS

RIGHT
LEFT

SYNC
EDSYNCHRONIZ

 RIGHTJUST

JUSTIFIED

[]ZEROWHENBLANK

[]5data-name-ASSAME

[] .literal-1ISVALUE

Chapter 4: Data Division

104 RM/COBOL Language Reference Manual

Format 2: Data-Name Renames

Format 3: Condition-Name Declaration

Format 4: Constant-Name Declaration

The clauses may be written in any order except that data-name-1 or the FILLER clause, if
specified, must immediately follow level-number.

The PICTURE clause must not be specified for the subject of a RENAMES clause or for an
item whose usage is index or pointer. For any other entry describing an elementary item, a
PICTURE clause must be specified except that the PICTURE clause may be omitted for an
elementary item when the VALUE clause is specified. In the latter case, a PICTURE clause
is implied from the literal specified in the VALUE clause, as described in Implied PICTURE
Clause on page 111.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must
not be specified except for an elementary data item.

The EXTERNAL clause may be specified only in data description entries in the Working-
Storage Section whose level-number is 01.

The EXTERNAL clause and the REDEFINES clause must not be specified in the same data
description entry.

The GLOBAL clause may be specified only in data description entries whose level-number
is 01.

The SAME AS clause shall not be specified in the same data description entry with any
clauses except entry-name, EXTERNAL, GLOBAL, level-number, OCCURS, and
REDEFINES.

1data-name-66

.THRU
THROUGHRENAMES

 3data-name-2data-name-

name-1condition-88

[] .ISFALSETOSETWHEN

THRU
THROUGH

AREVALUES
ISVALUE

literal-3

literal-1-operatorrelational

literal-2literal-1

ame-1constant-n78

.ISVALUE

1xpression-constant-e
literal-1

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 105

data-name-1 must be specified for any entry containing the GLOBAL or EXTERNAL clause,
or for record descriptions associated with a file description entry that contains the
EXTERNAL or GLOBAL clause.

Each data description entry must end with a period separator.

Condition-Name Data Description Entry
Format 3 is used to define 88-level condition-names. Each condition-name requires a
separate entry with level-number 88. Format 3 contains the name of the condition and the
value, values or range of values associated with the condition-name. The condition-name
entries for a particular conditional variable must follow the entry describing the item with
which the condition-name is associated. A condition-name can be associated with any data
description entry that contains a level-number except the following:

• Another 88-level condition-name

• A level 66 item (RENAMES)

• A level 78 item (constant-name)

• A group containing items with descriptions including JUSTIFIED, SYNCHRONIZED or
USAGE (other than USAGE IS DISPLAY)

• An index data item

Constant-Name Data Description Entry
Format 4 is used to define constant-names. Each constant-name requires a separate entry with
level-number 78. Format 4 contains the name of the constant and the value associated with
the constant-name. The constant-name may be used wherever a literal is specified in a
format, unless otherwise forbidden. The effect of specifying a constant-name is as if the
literal value associated with the constant-name had been specified instead of the constant-
name. A constant-name with an integer value may also be used wherever an integer value is
specified in a format or as the repeat count in a PICTURE character-string. A constant-name
with an integer value may also be used as a level-number or segment-number.

A constant-name may only be used after it has been declared in a data description entry. That
is, a constant-name must not be the object of a forward reference.

A constant-name may not be used for a literal text-name or literal library-name in a COPY
statement, or a literal program-name in a PROGRAM-ID paragraph or END PROGRAM
header.

Constant-names are implicitly global.

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

The BLANK WHEN ZERO clause can be used only for an elementary item whose PICTURE
is specified as numeric or numeric edited and whose usage is explicitly or implicitly
DISPLAY.

ZEROWHENBLANK

Chapter 4: Data Division

106 RM/COBOL Language Reference Manual

The BLANK WHEN ZERO clause must not be specified in the same entry with a PICTURE
clause having an asterisk as the zero suppression symbol.

The BLANK WHEN ZERO clause must not be specified in the same entry with a PICTURE
clause that specifies an operational sign with the symbol S. However, if the separate sign
option is specified in the Compile Command, then the BLANK WHEN ZERO clause may be
specified in the same entry with a PICTURE clause that specifies an operational sign; in this
case, the operational sign symbol S is ignored and a trailing symbol + assumed in the
PICTURE character-string.

When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if
the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the
category of the item is considered to be numeric edited.

Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The keyword FILLER specifies
an item of the logical record that cannot be referred to explicitly.

If either data-name-1 or the keyword FILLER is specified, it must be the first word following
the level-number in each data description entry. If this clause is omitted, the data item being
described is treated as though FILLER had been specified.

The keyword FILLER may be used to name a data item. Under no circumstances can a
FILLER item be referred to explicitly. However, the keyword FILLER may be used to name
a conditional variable: such use does not require explicit reference to the FILLER item, but to
its value.

EXTERNAL Clause

The EXTERNAL clause specifies that a data item is external. The constituent data items and
group data items of an external data record are available to every program in the run unit
which describes that record.

The EXTERNAL clause may be specified in record description entries in the
Working-Storage Section.

In the same program, the data-name specified as the subject of the entry whose level-number
is 01 that includes the EXTERNAL clause must not be the same data-name specified for any
other data description entry which includes the EXTERNAL clause.

The VALUE clause must not be used in any data description entry that includes, or is
subordinate to, an entry which includes the EXTERNAL clause. The VALUE clause may be
specified for condition-name entries associated with such data description entries.

The data contained in the record named by the data-name clause is external and may be
accessed and processed by any program in the run unit which describes and, optionally,
redefines it subject to the rules set forth in the paragraphs that follow.

FILLER
1data-name-

EXTERNALIS

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 107

Within a run unit, if two or more programs describe the same external data record, each
record-name of the associated record description entries must be the same and the records
must define the same number of standard data format characters. However, a program that
describes an external record may contain a data description entry including the REDEFINES
clause that redefines the complete external record, and this complete redefinition need not
occur identically in other programs in the run unit.

Use of the EXTERNAL clause does not imply that the associated data-name is a global name.

If the data-name that is the subject of the EXTERNAL clause is more than 30 characters in
length, only the first 30 characters are used at runtime to match with external data declared in
this or any other program in the run unit.

GLOBAL Clause

The GLOBAL clause specifies that a data-name is a global name. A global name is available
to every program contained within the program that declares it.

The GLOBAL clause may be specified in record description entries in the File Section or the
Working-Storage Section.

In the same Data Division, the data description entries for any two data items for which the
same data-name is specified must not include the GLOBAL clause.

A data-name described using a GLOBAL clause is a global name. All data-names
subordinate to a global name are global names. All condition-names associated with a global
name are global names.

A statement in a program contained directly or indirectly within a program which describes a
global name may reference that name without describing it again.

If the GLOBAL clause is used in a data description entry that contains the REDEFINES
clause, it is only the subject of that REDEFINES clause which possesses the global attribute.

JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data item.

When a receiving data item is described with the JUSTIFIED clause and the sending data item
is larger than the receiving data item, the leftmost characters are truncated. When a receiving
data item is described with the JUSTIFIED clause and it is larger than the sending data item,
the data is aligned at the rightmost character position in the data item with space-fill for the
leftmost character positions. When the sending and receiving data items are the same size, the
JUSTIFIED clause has no effect. The size of a data item is not affected by trailing spaces;
however, see Reference Modification (on page 165) for a means to ignore trailing spaces in a
sending data item.

When the JUSTIFIED clause is omitted, the standard rules for aligning data within an
elementary item apply.

The JUSTIFIED clause cannot be specified for an index data item or for any data item
described as numeric or for which editing is specified.

GLOBALIS

RIGHTJUST
JUSTIFIED

Chapter 4: Data Division

108 RM/COBOL Language Reference Manual

The JUSTIFIED clause can be specified only at the elementary item level.

JUST is an abbreviation for JUSTIFIED.

Level-Number

The level-number shows the hierarchy of data within a logical record. In addition, it identifies
entries for working storage items, linkage items, condition-names, constant-names, and the
RENAMES clause.

level-number-1 is required as the first element in each data description entry.

Data description entries subordinate to a CD, FD or SD entry must have level-numbers with
values 01 through 49, 66, 78, or 88.

Data description entries in the Working-Storage Section and Linkage Section must have level-
numbers with the values 01 through 49, 66, 77, 78, or 88.

The level-number 01 identifies the first entry in each record description.

Level-number 66 is assigned to identify RENAMES entries.

Level-number 77 is assigned to identify noncontiguous working storage data items and
noncontiguous linkage data items.

Level-number 78 is assigned to identify constant-names.

Level-number 88 is assigned to identify condition-names associated with a conditional
variable.

Multiple level 01 entries subordinate to any given level indicator CD, FD or SD, represent
implicit redefinitions of the same area.

OCCURS Clause

Format 1: Fixed Number of Occurrences

Format 2: Variable Number of Occurrences

er-1level-numb

{ }

{ }[]

-1index-name

4data-name-

integer-2

BYINDEXED

ISKEYDESCENDING
ASCENDING

TIMESOCCURS

[]

{ }

{ }[]

-1index-name

4data-name-

3data-name-integer-2integer-1

BYINDEXED

ISKEYDESCENDING
ASCENDING

ONDEPENDINGTIMESTOOCCURS

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 109

The OCCURS clause eliminates the need for separate entries for repeated data items and
supplies information required for the application of subscripts.

The OCCURS clause is used in defining tables and other homogeneous sets of repeated data
items. Whenever the OCCURS clause is used, the data-name which is the subject of this
entry must be subscripted whenever it is referred to in a statement other than SEARCH.
Further, if the subject of this entry is a group item, all data-names belonging to the group must
be subscripted whenever they are used as operands, except as the object of a REDEFINES
clause.

The OCCURS clause cannot be specified in a data description entry that:

• Has a 01, 66, 77, 78, or 88 level-number. However, in the Working-Storage Section,
the OCCURS clause may be specified in a data description entry with a 01 or 77
level-number.

• Has a variable-occurrence data item subordinate to it. However, in version 12 and later,
this restriction has been eliminated; the data item described with the OCCURS clause that
contains a variable-occurrence data item will not be a variable-length group,
but subordinate groups that contain variable-occurrence data items can be variable
length groups.

Except for the OCCURS clause itself, all data description clauses associated with an item
whose description includes an OCCURS clause apply to each occurrence of the item
described.

The number of occurrences of the subject entry is defined as follows:

• In Format 1, the value of integer-2 represents the exact number of occurrences.

• In Format 2, the current value of the data item referenced by data-name-3 represents the
number of occurrences.

This format specifies that the subject of this entry has a variable number of occurrences.
The value of integer-2 represents the maximum number of occurrences and the value
of integer-1 represents the minimum number of occurrences. This does not imply
that the length of the subject of the entry is variable, but that the number of occurrences is
variable.

At the time of reference to the subject of this entry or to any containing or subordinate
data item, the value of the data item referenced by data-name-3 must fall within the range
integer-1 through integer-2. The contents of the data items whose occurrence numbers
exceed the value of the data item referenced by data-name-3 are undefined.

When both integer-1 and integer-2 are used, the value of integer-1 must be less than the
value of integer-2. The value of integer-1 may be zero. If integer-1 is omitted, it is
assumed to be zero.

The data description of data-name-3 must describe an integer. data-name-3 may be
qualified. If data-name-3 is specified, is not qualified, and is not defined in the Data
Division, the compiler assumes a Working-Storage Section data description entry of the
following form:

01 data-name-3 PIC 9(9) BINARY(4).

A data description entry that contains Format 2 of the OCCURS clause may be followed,
within that record description, only by data description entries that are subordinate to it.
However, in version 12 and later, this restriction has been eliminated; when data
description entries not subordinate to a data description entry with OCCURS clause with
the DEPENDING ON phrase are present, groups containing those data items will not be
variable-length groups even though they contain variable-occurrence data items.

Chapter 4: Data Division

110 RM/COBOL Language Reference Manual

When a group data item having subordinate to it an entry that specifies Format 2 of the
OCCURS clause is referenced, the part of the table area used in the operation is determined as
follows:

1. If the data item referenced by data-name-3 is outside the group, only that part of the table
area that is specified by the value of the data item referenced by data-name-3 at the start
of the operation is used.

2. If the data item referenced by data-name-3 is included in the same group and the group
data item is referenced as a sending item, only that part of the table area that is specified
by the value of the data item referenced by data-name-3 at the start of the operation is
used in the operation. If the group is a receiving item, the maximum length of the group
is used.

If Format 2 is specified in a record description entry and the associated file description or
sort-merge description entry contains the VARYING phrase of the RECORD clause, the
records are variable length. If the DEPENDING ON phrase of the RECORD clause is not
specified, the content of the data item referenced by data-name-3 of the OCCURS clause
must be set to the number of occurrences to be written before the execution of any RELEASE,
REWRITE or WRITE statement.

In the KEY IS phrase, the first specification of data-name-4 must be the name of either the
entry containing the OCCURS clause or an entry subordinate to it. Subsequent specifications
of data-name-4 must be subordinate to the entry containing the OCCURS clause. Each data-
name-4 may be qualified, but must not be subscripted, as is normally required. For each data-
name-4, the associated data description must not include an OCCURS clause, except when the
first data-name-4 is the same as the entry containing the OCCURS clause. There may not be
any OCCURS clauses between this OCCURS clause and the descriptions of any data-name-4.

When the KEY IS phrase is specified, the repeated data must be arranged in ascending or
descending order according to the values contained in data-name-4. The ascending or
descending order is determined according to the rules for comparison of operands. The data-
names are listed in their descending order of significance.

An INDEXED BY phrase may be used to define one or more index-names to be associated
with the subject of this entry. Index-names are not data-names, and they may be used only in
contexts where the formats explicitly mention them. An index-name is a user-defined word.
Index-name need not be unique within the program, but references to nonunique index-names
must be made unique with qualification. Index-names are used principally in subscripts, and
their use in this context can result in more efficient access to the elements of a table.

PICTURE Clause

The PICTURE clause describes the general characteristics and editing requirements of an
elementary item.

A PICTURE clause can be specified only at the elementary item level.

character-string-1 consists of certain allowable combinations of characters in the COBOL
character set used as symbols. The allowable combinations determine the category of the
elementary item. The maximum number of characters allowed in the character-string is 240.

The lowercase letters corresponding to the uppercase letters representing the PICTURE
symbols A, B, P, S, V, X, Z, CR and DB are equivalent to their uppercase representations in a
PICTURE character-string. Other lowercase letters are not equivalent to their corresponding

string-1character-ISPIC
PICTURE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 111

uppercase representations. This means that if a lowercase q, for example, has been designated
as the currency symbol the uppercase Q may not be substituted for it, and vice versa.

The PICTURE clause must not be specified for the subject of a RENAMES clause or for an
item whose usage is index or pointer. For any other entry describing an elementary item, a
PICTURE clause must be specified except that the PICTURE clause may be omitted for an
elementary item when the VALUE clause is specified. In the latter case, a PICTURE clause
is implied from the literal specified in the VALUE clause, as described in Implied PICTURE
Clause on page 111.

PIC and PICTURE are synonymous.

The asterisk when used as the zero suppression symbol and the BLANK WHEN ZERO clause
may not appear in the same entry.

Implied PICTURE Clause
The PICTURE clause may be implied from a literal specified in the VALUE clause. The
implied PICTURE character-string for this clause differs, depending on whether the literal is
numeric or nonnumeric. Table 8 provides a few specific examples of numeric and
nonnumeric implied PICTURE character-strings. The table is followed by the rules used to
determine the implied PICTURE character-strings for nonnumeric and numeric literals in the
VALUE clause.

Table 8: Examples of Implied PICTURE Characters-Strings

Examples of Implied PICTURE Characters-Strings

Literal Implied PICTURE Character-String

"Some text" X(9)

SPACES X(1)

"00" X(2)

00 9(2)

ZEROES Not applicable, as described below.

123 9(3)

12345.123456 9(5)V9(6)

00000.2400 9(5)V9(4)

+456 S9(3)

-0832.150 S9(4)V9(3)

Note The figurative constants ZERO, ZEROS, and ZEROES are not considered numeric or
nonnumeric for purposes of implying the PICTURE clause. One or more 0 or "0" characters
must be used instead to clearly indicate the desired intent. This is necessary because these
figurative constants are either numeric or nonnumeric, depending on context. There is
insufficient context for the compiler to make the determination in this case, since there is no
associated data item as, for example, there would be in a MOVE statement.

Nonnumeric Implied PICTURE Clause
When the VALUE clause specifies a nonnumeric literal and the PICTURE clause is
not specified for an elementary item, the implied PICTURE clause is of the form

Chapter 4: Data Division

112 RM/COBOL Language Reference Manual

‘PICTURE X(length)’, where length is the length of the nonnumeric literal specified in the
VALUE clause.

Numeric Implied PICTURE Clause
When the VALUE clause specifies a numeric literal and the PICTURE clause is not specified
for an elementary item, the implied PICTURE clause character-string is derived from the
numeric literal specified in the VALUE clause, according to the following rules:

1. The character-string has an S if and only if the numeric literal has a sign.

2. The character-string has as many of the symbols 9 as there are digits specified in the
numeric literal. The numeric literal may specify leading or trailing zero digits, which will
be counted in determining the number of symbols 9 in the implied PICTURE character-
string.

3. The character-string has a symbol V if and only if the numeric literal contains a decimal
point. The symbol V is in the same position relative to the symbols 9 as the decimal
point is relative to the digits in the numeric literal.

Implied PICTURE Clause and Other Data Description Clauses
When a signed numeric literal in a VALUE clause implies the PICTURE character-string, the
default sign convention for DISPLAY usage is a leading separate character as if a SIGN IS
LEADING SEPARATE CHARACTER clause had been specified. If an explicit SIGN clause
is specified in the same data description entry, the given SIGN clause specification is applied
instead. The NUMERIC SIGN clause, if specified in the Special-Names paragraph, does not
apply to data items described with an implied PICTURE character-string.

The SIGN, USAGE and BLANK WHEN ZERO clauses may be used in the same data
description entry for an implied PICTURE character-string as long as they do not conflict
with the implied PICTURE character-string or each other.

PICTURE Character-Strings (Data Categories)
The five categories of data that can be described with the character-string in a PICTURE
clause are defined as follows:

1. Alphabetic. Its PICTURE character-string can contain only the symbol A. The contents
of an alphabetic data item when represented in standard data format must be one or more
alphabetic characters (“a” through “z”, “A” through “Z”, and space).

2. Numeric. Its PICTURE character-string can contain only the symbols 9, P, S, and V. Its
PICTURE character-string must contain at least one symbol 9 and not more than thirty
symbols 9. Each symbol 9 specifies a digit position. If unsigned, the contents of a
numeric data item when represented in standard data format must be one or more numeric
characters. If signed, a numeric data item may also contain a “+”, “–“, or other
representation of an operational sign. The actual in-memory contents of a numeric data
item are not standard data format when the usage is other than DISPLAY as specified by
a USAGE clause applicable to the data description entry or when the data item is signed
and the SEPARATE CHARACTER phrase is not specified in a SIGN clause applicable
to the data description entry.

3. Alphanumeric. Its PICTURE character-string is restricted to certain combinations of the
symbols A, X, and 9, and the item is treated as if the character-string contained all
symbols X. The PICTURE character-string must contain at least one symbol X or a
combination of the symbols A and 9. A PICTURE character-string that contains all

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 113

symbols A or all symbols 9 does not define an alphanumeric data item, since such
character-strings define an alphabetic or numeric data item, respectively. The contents of
an alphanumeric data item when represented in standard data format must be two or more
characters in the character set of the computer.

4. Alphanumeric edited. Its PICTURE character-string is restricted to certain
combinations of the following symbols: A, X, 9, B, 0, and slash (/). The PICTURE
character-string must contain at least one symbol A or X and at least one symbol B, 0, or
slash (/). The contents of an alphanumeric edited date item when represented in standard
data format must be two or more characters in the character set of the computer.

5. Numeric edited. Its PICTURE character-string is restricted to certain combinations of
the following symbols: B, slash (/), P, V, Z, 0, 9, comma (,), period (.), asterisk (*),
minus (–), plus (+), CR, DB, and the currency symbol (the symbol $ or the symbol
specified in the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph). The
allowable combinations are determined from the order of precedence of symbols (see
Table 12 on page 120) and the Editing Rules (see page 116). The number of digit
positions that can be represented in the PICTURE character-string must range from one
to thirty, inclusive. The character-string must contain at least one symbol 0, B, slash, Z,
asterisk, plus, minus, comma, period, CR, DB, or the currency symbol. The contents of
each of the character positions in a numeric edited data item must be consistent with the
corresponding PICTURE symbol.

Note The additional data categories, index data and data pointer, also exist, but do not use a
PICTURE clause in their data description entry. An index data item is described with the
USAGE IS INDEX clause. A data pointer data item is described with the USAGE IS
POINTER clause.

The size of an elementary item, where size means the number of character positions occupied
by the elementary item in standard data format, is determined by the number of allowable
symbols that represent character positions. An unsigned nonzero integer which is enclosed in
parentheses following the symbol A, comma (,), X, 9, P, Z, asterisk (*), B, slash (/), 0, plus
(+), minus (–), or the currency symbol indicates the number of consecutive occurrences of the
symbol. Note that the following symbols may appear only once in a given PICTURE: S, V,
period (.), CR, and DB.

Symbols Used in a PICTURE Character-String
The functions of the symbols used in a PICTURE character-string to describe an elementary
item are as follows:

A Each symbol A in the character-string represents a character position that can
contain only an alphabetic character (“a” through “z”, “A” through “Z”, and
space). Each symbol A is counted in the size of the data item described by the
PICTURE character-string.

B Each symbol B in the character-string represents a character position into which
the character space will be inserted when the data item is the receiving item of
an elementary MOVE statement. Each symbol B is counted in the size of the
data item described by the PICTURE character-string.

P Each symbol P in the character-string indicates an assumed decimal scaling
position and is used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data item. The scaling
position symbol P is not counted in the size of the data item described by the
PICTURE character-string, but each symbol P is counted in determining the

Chapter 4: Data Division

114 RM/COBOL Language Reference Manual

maximum number (30) of digit positions in numeric or numeric edited data
items. The symbol P may appear only as a continuous string in the leftmost or
rightmost digit positions within a PICTURE character-string. Since the scaling
position symbol P implies an assumed decimal point (to the left of the symbols
P if they are the leftmost digit positions and to the right of the symbols P if they
are the rightmost digit positions), the assumed decimal point symbol V is
redundant either to the left or right of the symbols P, respectively, within such a
PICTURE character-string. The symbol P and the insertion symbol period (.)
cannot both occur in the same PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string
contains the symbol P, the algebraic value of the data item is used rather than the
actual character representation of the data item. This algebraic value assumes the
decimal point in the prescribed location and zero in place of the digit positions
specified by the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations are any of the
following:

• Any operation requiring a numeric sending operand.

• A MOVE statement where the sending operand is numeric and its PICTURE
character-string contains the symbol P.

• A MOVE statement where the sending operand is a numeric edited data item
and its PICTURE character-string contains the symbol P and the receiving
operand is numeric or numeric edited.

• A comparison operation where both operands are numeric.

• In all other operations the digit positions specified with the symbol P are
ignored and are not counted in the size of the operand.

S The symbol S is used in a character-string to indicate the presence, but neither
the representation nor, necessarily, the position of an operational sign. The
symbol S must be written as the leftmost character in the PICTURE character-
string. The symbol S is not counted in determining the size (in terms of standard
data format characters) of the data item described by the PICTURE character-
string unless the entry contains or is subject to a SIGN clause that specifies the
SEPARATE CHARACTER phrase. The symbol S in the PICTURE character-
string and the BLANK WHEN ZERO clause may not occur in the same data
description entry.

V The symbol V is used in a character-string to indicate the location of the
assumed decimal point and may appear only once in any single PICTURE
character-string. The symbol V does not represent a character position and,
therefore, is not counted in the size of the data item described by the PICTURE
character-string. When the assumed decimal point is to the right of the
rightmost symbol in the string representing a digit position or scaling position,
or is to the left of scaling positions that represent the leftmost digit positions, the
V is redundant. The symbol V and the insertion symbol period (.) cannot both
occur in the same PICTURE character-string.

X Each symbol X in the character-string is used to represent a character position
that contains any allowable character from the character set of the computer.
Each symbol X is counted in the size of the data item described by the
PICTURE character-string.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 115

Z Each symbol Z in a character-string may only be used to represent the leftmost
leading numeric character positions that will be replaced by space characters
when the contents of those character positions are leading zeroes and the data
item is the receiving item of an elementary MOVE statement. Each symbol Z is
counted in the size of the item described by the PICTURE character-string and
in determining the maximum number (30) of digit positions allowed in a
numeric edited data item. If the symbol Z is used to the right of the decimal
point in a character-string, then all digit positions in that character-string must
be described with the symbol Z. If the symbol Z represents all the digit-
positions in the character-string, then the described data item is blank when zero,
even if the BLANK WHEN ZERO clause is not specified.

9 Each symbol 9 in the character-string represents a character position that
contains a numeric character. Each symbol 9 is counted in the size of the item
described by the PICTURE character-string and in determining the maximum
number (30) of digit positions in a numeric or numeric edited data item.

0 Each symbol 0 in the character-string represents a character position into which
the character zero (“0”) will be inserted when the data item is the receiving item
of an elementary MOVE statement and removed when a numeric edited data
item is the sending item in an elementary MOVE statement with a numeric or
numeric edited receiving data item. Each symbol 0 is counted in the size of the
data item described by the PICTURE character-string. The symbol 0 does not
represent a digit position in a numeric edited data item.

/ Each symbol slash (/) in the character-string represents a character position into
which a character slash (“/”) will be inserted when the data item is the receiving
item of an elementary MOVE statement. Each symbol slash (/) is counted in the
size of the data item described by the PICTURE character-string.

, Each symbol comma (,) in the character-string represents a character position
into which a character comma (“,”) will be inserted when the data item is the
receiving item of an elementary MOVE statement. Each symbol comma (,) is
counted in the size of the data item described by the PICTURE character-string.

. When the symbol period (.) appears in the character-string, it is an editing
symbol that represents the decimal point for alignment purposes and, in
addition, represents a character position into which the character period (“.”)
will be inserted. The symbol period (.) is counted in the size of the data item
described by the PICTURE character-string.

Note For a given program the functions of the period and comma are exchanged if
the DECIMAL-POINT IS COMMA clause is stated in the SPECIAL-NAMES
paragraph. In this exchange, the rules for the period apply to the comma and the
rules for the comma apply to the period wherever they appear in a PICTURE clause.

+, –, CR, DB
These symbols are used as editing sign control symbols. When used, they
represent the character position into which the editing sign control symbol will
be placed. The symbols are mutually exclusive in any one PICTURE character-
string and each character used in the symbol is counted in determining the size
of the data item described by the PICTURE character-string. If the symbols plus
or minus occur more than once (a floating sign control symbol), then one less
than the total number of these symbols is counted in determining the maximum
number (30) of digit positions allowed in a numeric edited data item. If a
floating symbol plus or minus is used to the right of the decimal point in a

Chapter 4: Data Division

116 RM/COBOL Language Reference Manual

character-string, then all digit positions in that character-string must be
described with the symbol plus or minus, respectively. If a floating plus or
minus symbol string represents all the digit-positions in the character-string,
then the described data item is blank when zero, even if the BLANK WHEN
ZERO clause is not specified.

* Each symbol asterisk (*) in the character-string represents a leading numeric
character position into which a character asterisk (“*”) will be placed when that
position contains a leading zero and the data item is the receiving item of an
elementary MOVE statement. Each symbol asterisk (*) is counted in the size of
the data item described by the PICTURE character-string and in determining the
maximum number (30) of digit positions allowed in a numeric edited data item.
If the symbol asterisk (*) is used to the right of the decimal point in a character-
string, then all digit positions in that character-string must be described with the
symbol asterisk (*). The symbol asterisk in the PICTURE character-string and
the BLANK WHEN ZERO clause may not occur in the same data description
entry. If the symbol asterisk represents all the digit-positions in the character-
string, then, when zero, the described data item is all asterisks (ALL “*”), except
that, if the character-string contains the symbol period (.), a character period
(“.”) will occur at the specified location in the data item.

cs The currency symbol in a character-string is represented either by the currency
sign (the symbol $) or by the single character specified in the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph. The currency symbol in the
character-string represents a character position into which a currency symbol is
to be placed when the data item is the receiving item of an elementary MOVE
statement. Each currency symbol is counted in the size of the data item
described by the PICTURE character-string. If the currency symbol occurs
more than once (a floating currency symbol), then one less than the total number
of currency symbols is counted in determining the maximum number (30) of
digit positions allowed in a numeric edited data item. If the currency symbol is
used to the right of the decimal point in a character-string, then all digit
positions in that character-string must be described with the currency symbol. If
a floating currency symbol string represents all the digit-positions in the
character-string, then the described data item is blank when zero, even if the
BLANK WHEN ZERO clause is not specified.

Editing Rules
There are two general methods of performing editing in the PICTURE clause, either by
insertion or by suppression and replacement. There are four types of insertion editing
available:

1. Simple insertion

2. Special insertion

3. Fixed insertion

4. Floating insertion

There are two types of suppression and replacement editing:

1. Zero suppression and replacement with spaces.

2. Zero suppression and replacement with asterisks.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 117

The type of editing which may be performed upon a data item depends on the category to
which the data item belongs. Table 9 specifies which type of editing may be performed upon
a given category.

Table 9: PICTURE Clause Editing

PICTURE Clause Editing

Category Type of Editing

Alphabetic None.

Numeric None.

Alphanumeric None.

Alphanumeric Edited Simple insertion using symbols 0, B, and slash (/).

Numeric Edited All, subject to the following rules.

Floating insertion editing and editing by zero suppression and replacement are mutually
exclusive in a PICTURE clause. Only one type of replacement may be used with zero
suppression in a PICTURE clause.

Simple Insertion Editing
The symbols comma (,), B, 0, and slash (/) are used as the insertion characters. The insertion
characters are counted in the size of the item and represent the position in the item into which
the character will be inserted.

Special Insertion Editing
The symbol period (.) is used as the insertion character. It also represents the decimal point
for alignment purposes. The insertion character used for the actual decimal point is counted
in the size of the item. The use of the assumed decimal point—represented by the symbol
V—and the actual decimal point, represented by the insertion symbol period (.), in the same
PICTURE character-string is disallowed. The result of special insertion editing is the
appearance of the insertion character in the item in the same position as shown in the
character-string.

Fixed Insertion Editing
The currency symbol and the editing sign control symbols plus (+), minus (–), CR, and DB
are the insertion characters. Only one currency symbol and only one of the editing sign
control symbols can be used in a given PICTURE character-string. When the symbols CR
and DB are used, they represent two character positions in determining the size of the item,
and they must represent the rightmost character positions that are counted in the size of the
item. If these character positions contain the symbols CR or DB, the uppercase letters are the
insertion characters.

A plus (+) or minus (–) symbol, when used, must be either the leftmost or rightmost character
position to be counted in the size of the item.

The currency symbol must be the leftmost character position to be counted in the size of the
item except that it can be preceded by either a plus (+) or a minus (–) symbol.

Fixed insertion editing results in the insertion character occupying the same character position
in the edited item as it occupied in the PICTURE character-string.

Chapter 4: Data Division

118 RM/COBOL Language Reference Manual

Editing sign control symbols produce the results shown in Table 10, depending upon the value
of the data item.

Table 10: Editing Symbol Results

Editing Symbol Results

 Result

Editing Symbol Data Item (Positive or Zero) Data Item (Negative)

+ + –

– space –

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing
The currency symbol and editing sign control symbols plus (+) and minus (–) are the floating
insertion characters and as such are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at
least two of the floating insertion characters. The string may contain any of the simple
insertion symbols or have simple insertion characters immediately to its right. Such simple
insertion characters are part of the floating string. When the floating insertion character is the
currency symbol, the string of floating insertion characters may have the fixed insertion
characters CR and DB immediately to the right of the string.

The leftmost character of the floating insertion string represents the leftmost limit of the
floating symbols in the data item. The rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the numeric data
that can be stored in the data item. Nonzero numeric data may replace all the characters at or
to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating insertion
editing. One way is to represent any or all of the leading numeric character positions on the
left of the decimal point by the insertion character. The other way is to represent all of the
numeric character positions in the PICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal point in the PICTURE
character-string, the result is that a single floating insertion character will be placed into the
character position immediately preceding either the decimal point or the first nonzero digit in
the data represented by the insertion symbol string, whichever is farther to the left in the
PICTURE character-string. The character positions preceding the insertion character are
replaced with spaces.

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, at least one of the insertion characters must be to the left of the
decimal point.

When the floating character is the editing control symbol plus (+) or minus (–), the character
inserted depends upon the value of the data item; see Table 11.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 119

Table 11: Results of + and – Editing

Results of + and – Editing

 Result

Editing Symbol Data Item (Positive or Zero) Data Item (Negative)

+ + –

– space –

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, the result depends upon the value of the data. If the value is zero, the
entire data item will contain spaces. If the value is not zero, the result is the same as when the
insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving
data item must be the number of characters in the sending data item, plus the number of
nonfloating insertion characters being edited into the receiving data item, plus one for the
floating insertion character.

Zero Suppression Editing
The suppression of leading zeroes in numeric character positions is indicated by the use
of the symbol Z or by the symbol asterisk (*) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given PICTURE character-string.
Each suppression symbol is counted in determining the size of the item. If Z is used, the
replacement character will be the space; if the asterisk is used, the replacement character
will be *.

Zero suppression and replacement are indicated in a PICTURE character-string by using a
string of one or more of the allowable symbols to represent leading numeric character
positions which are to be replaced when the associated character position in the data contains
a leading zero. Any of the simple insertion characters embedded in the string of symbols or to
the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero suppression.
One way is to represent any or all of the leading numeric character positions to the left of the
decimal point by suppression symbols. The other way is to represent all of the numeric
character positions in the PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in the
data, which corresponds to a symbol in the string, is replaced by the replacement character.

Suppression terminates at the first nonzero digit in the data represented by the suppression
symbol string or at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented by
suppression symbols and the value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal point. If the value is zero and the
suppression symbol is Z, the entire data item, including any editing characters, is spaces. If
the value is zero and the suppression symbol is asterisk (*), the entire data item, including any
insertion editing symbols except the actual decimal point, is “*”. In this case, the actual
decimal point will appear in the data item.

The symbols plus (+), minus (–), asterisk (*), Z, and the currency symbol, when used as
floating replacement characters, are mutually exclusive within a given character-string.

Chapter 4: Data Division

120 RM/COBOL Language Reference Manual

PICTURE Symbols Precedence
Table 12 shows the order of precedence when using characters as symbols in a PICTURE
character-string. An “X” at an intersection indicates that the symbol (or symbols) at the top of
the column may precede (but not necessarily immediately), in a given character-string, the
symbol (or symbols) at the left of the row. Arguments listed as one or another, for instance,
plus (+) or minus (–), indicate mutually exclusive symbols. The currency symbol is indicated
by the symbol cs.

At least one of the symbols A, X, Z, 9 or asterisk (*), or at least two occurrences of one of the
symbols plus (+), minus (–), or cs must be present in a PICTURE character-string.

The nonfloating insertion symbols plus (+) and minus (–), the floating insertion symbols Z,
asterisk (*), plus (+), minus (–), and cs, and the symbol P appear twice in Table 12. The first
appearance of the symbol in the FIRST SYMBOL column and SECOND SYMBOL row
represents its use to the left of the decimal point position. The second appearance of the
symbol represents its use to the right of the decimal point position.

Table 12: PICTURE Symbol Precedence

PICTURE Symbol Precedence

 First
Symbol

Non-floating
Insertion Symbols

Floating
Insertion Symbols

Other Symbols

Second
Symbol B 0 / , . CS CS CS 9 A

X S V P P

N
on

-fl
oa

tin
g

In

se
rt

io
n

Sy
m

bo
ls

B X X X X X X X X X X X X X X X X X

0 X X X X X X X X X X X X X X X X X

/ X X X X X X X X X X X X X X X X X

, X X X X X X X X X X X X X X X X

. X X X X X X X X X X

 X X X X X X X X X X X X X X

 X X X X X X X X X X X X X X

CS X

Fl
oa

tin
g

In

se
rt

io
n

Sy
m

bo
ls

 X X X X X X X

 X X X X X X X X X X X

 X X X X X X

 X X X X X X X X X

CS X X X X X X

CS X X X X X X X X X

O
th

er

Sy
m

bo
ls

 9 X X X X X X X X X X X X X X X

A
X

X X X X X

−
+

−
+

DB
CR

*
z

*
z

−
+

−
+

−
+

−
+

DB
CR

*
z

*
z

−
+

−
+

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 121

PICTURE Symbol Precedence

 First
Symbol

Non-floating
Insertion Symbols

Floating
Insertion Symbols

Other Symbols

Second
Symbol B 0 / , . CS CS CS 9 A

X S V P P

S

V X X X X X X X X X X X X

P X X X X X X X X X X X X

P X X X X X

REDEFINES Clause

The REDEFINES clause allows a computer storage area to be described by different data
description entries.

Note level-number-1, data-name-1 and FILLER are shown in the above format (gray
highlight) to improve clarity. They are not part of the REDEFINES clause.

The level-numbers of data-name-1 and data-name-2 must be identical but must not
be 66 or 88.

This clause must not be used in level 01 entries in the File Section or Communication Section.

The data description entry for data-name-2 cannot contain an OCCURS clause. However,
data-name-2 may be subordinate to an item whose data description contains an OCCURS
clause. In this case, the reference to data-name-2 in the REDEFINES clause may not be
subscripted. Neither the original definition nor the redefinition can include a variable-
occurrence data item. However, in version 12 and later, the restrictions on the REDEFINES
clause respective to variable-occurrence data items have been eliminated.

data-name-2 must not be qualified; if it is not a unique data-name, the necessary qualification
is implicitly provided by the position of the REDEFINES clause within the hierarchical
structure of the Data Division.

No entry having a level-number numerically lower than the level-number of data-name-2 and
the subject of the entry may occur between the data description entries of data-name-2 and the
subject of the entry.

Redefinition starts at data-name-2 and ends when a level-number less than or equal to that of
data-name-2 is encountered.

When the level-number of data-name-1 is other than 01, it must not specify more character
positions than the data item referenced by data-name-2 contains. It is important to observe
that the REDEFINES clause specifies the redefinition of a storage area, not of the data items
occupying the area.

Multiple redefinitions of the same character positions are permitted. When multiple
redefinitions are used, either the first or the most recently defined name on the same level
within the current hierarchy may be used as data-name-2.

−
+

−
+

DB
CR

*
z

*
z

−
+

−
+

FILLER

1data-name-
er-1level-numb

[]2data-name-REDEFINES

Chapter 4: Data Division

122 RM/COBOL Language Reference Manual

The entries giving the new description of the character positions must not contain any
VALUE clauses except in condition-name entries.

Multiple level 01 entries subordinate to any given level indicator represent implicit
redefinitions of the same area.

RENAMES Clause

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary
items.

Note Level-number 66 and data-name-1, and the period space separator are shown in the
above format (gray highlight) to improve clarity. They are not part of the RENAMES clause.

All RENAMES entries referring to data items within a given logical record must immediately
follow the last data description entry of the associated record description entry.

data-name-2 and data-name-3 must be names of elementary items or groups of elementary
items in the same logical record, and cannot be the same data-name. A 66 level entry cannot
rename another 66 level entry nor can it rename a 77, 88 or 01 level entry.

data-name-1 cannot be used as a qualifier, and can only be qualified by the names of the
associated level 01, FD, CD, or SD entry. Neither data-name-2 nor data-name-3 may have an
OCCURS clause in its data description entry nor be subordinate to an item that has an
OCCURS clause in its data description entry.

The beginning of the area described by data-name-3 must not be to the left of the beginning
of the area described by data-name-2. The end of the area described by data-name-3 must be
to the right of the end of the area described by data-name-2. data-name-3, therefore, cannot
be subordinate to data-name-2.

data-name-2 and data-name-3 may be qualified.

None of the items within the range, including data-name-2 and data-name-3, if specified, can
be variable-occurrence data items. However, in version 12 and later, the restrictions on the
RENAMES clause respective to variable-occurrence data items have been eliminated.

One or more RENAMES entries can be written for a logical record.

When data-name-3 is not specified, all of the data attributes of data-name-2 become the data
attributes for data-name-1, and data-name-1 may be used as a synonym for data-name-2. If
data-name-2 references a variable-length group, data-name-1 is defined as a variable-length
group also.

When data-name-3 is specified, data-name-1 is defined as a group item that includes all
elementary items starting with data-name-2 (if data-name-2 is an elementary item) or the
first elementary item in data-name-2 (if data-name-2 is a group item), and concluding
with data-name-3 (if data-name-3 is an elementary item) or the last elementary item in
data-name-3 (if data-name-3 is a group item). If data-name-3 references a variable-length
group, data-name-1 is defined as a fixed-length group that includes the maximum length of
the group referenced by data-name-3.

The words THRU and THROUGH are synonymous.

1data-name-66

.THRU
THROUGHRENAMES

 3data-name-2data-name-

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 123

SAME AS Clause

The SAME AS clause specifies that a data-name has the same description as that specified by
another data description entry.

data-name-5 may be qualified. data-name-5 must be defined by a data description entry that
lexically precedes the data description entry containing the SAME AS clause.

A data description entry that specifies the SAME AS clause shall not be immediately
followed by a subordinate data description entry or level 88 entry.

The description of data-name-5, including its subordinate data items, shall not contain a
SAME AS clause that references the subject of the entry or any group item to which this entry
is subordinate.

The description of data-name-5 shall not contain an OCCURS clause. However, items
subordinate to data-name-5 may contain OCCURS clauses.

data-name-5 shall reference an elementary item or a group item described in the File,
Working-Storage, or Linkage sections, except that a level-number 66 group data item may not
be referenced.

If the subject of the entry is a level 77 item, data-name-5 shall reference an elementary item.

A group item to which the subject of the entry is subordinate shall not contain a SIGN or
USAGE clause.

The effect of the SAME AS clause is as though the data description identified by
data-name-5 had been coded in place of the SAME AS clause, excluding the level-number,
name, and the EXTERNAL, GLOBAL, and REDEFINES clauses specified for data-name-5.
Level-numbers of subordinate items may be adjusted, as described in the following rule
regarding a group reference.

If data-name-5 describes a group item:

• The subject of the entry is a group whose subordinate items have the same names,
descriptions, and hierarchy as the subordinate items of data-name-5.

• The level-numbers of items subordinate to that group are adjusted, if necessary, to
preserve the hierarchy of data-name-5. The level-numbers are incremented by 100
whenever the level-number of the object of the entry is less than the level-number of the
subject of the entry. This preserves the original level-number in the two-low order
decimal digits of the new level-number. Condition-names are copied without adjusting
the level-number, which remains 88. Level-number 78 constant-name entries are not
copied.

• Level-numbers in the resulting hierarchy may exceed 49.

• If an OCCURS clause with the DEPENDING ON phrase is specified for a subordinate
item of data-name-5, the depending on data item in the replicated structure is determined
by the following rules:

1) If the depending on item for an OCCURS clause entry subordinate to data-name-5 is
defined subordinate to data-name-5, then the corresponding replicated item is the
depending on item for the replicated OCCURS clause entry.

2) If the depending on item for an OCCURS clause entry subordinate to data-name-5 is
defined subordinate to the record description that contains data-name-5 and a
similarly named item, not including any qualifiers specified, is uniquely defined as a
numeric integer subordinate to the record containing the SAME AS clause, the

5data-name-ASSAME

Chapter 4: Data Division

124 RM/COBOL Language Reference Manual

similarly named item in the latter record is the depending on item for the replicated
OCCURS clause entry.

3) Otherwise, the depending on item for the replicated OCCURS clause entry is the
same item as the depending on item for the OCCURS clause entry in data-name-5.
That is, both OCCURS clause entries depend on the same variable. This will always
be the case when the depending on item is not contained in the record description
containing data-name-5. When the depending on item is contained in the same
record as data-name-5, but the record containing the SAME AS clause does not
contain a unique numeric integer data item with the same name, the replicated
OCCURS clause entry will depend on the same item in the record containing data-
name-5; that is, the records will share the same depending on item even though the
item is in the original record.

Note If data alignment (synchronization) inserts implicit fillers in either data-name-5 or the
subject of the entry, the alignment of the corresponding data items may differ.

If an alphanumeric group item to which data-name-5 is subordinate contains a USAGE
clause, the effect is as though that USAGE clause had been specified for the subject of
the entry.

If an alphanumeric group item to which data-name-5 is subordinate contains a SIGN clause,
the effect is as though that SIGN clause had been specified for the subject of the entry.

If the VALUE clause is specified for a group containing data-name-5, that VALUE clause has
no effect on the replicated data item created by the SAME AS clause.

If the VALUE clause is specified for a group containing a data description entry with the
SAME AS clause and there are VALUE clauses for the data items specified by data-name-5,
the VALUE clauses specified by data-name-5 are ignored for purposes of data initialization in
the Working-Storage Section. However, those VALUE clauses will be used if the
INITIALIZE statement with the TO VALUE phrase references those data items directly
or indirectly.

SIGN Clause

The SIGN clause specifies the position and the mode of representation of the operational sign
when it is necessary to describe these properties explicitly.

The SIGN clause may be used to specify the position and mode of representation of the
operational sign for signed numeric data items. It may be specified either at the elementary
level or at the group level. When it is specified at the elementary level, it applies only to that
item. When it is specified at the group level, it applies to each subordinate signed numeric
data item.

If a SIGN clause is specified in a group item subordinate to another group item that also has a
SIGN clause, the SIGN clause specified in the subordinate group item takes precedence for
that subordinate group item.

If a SIGN clause is specified in an elementary numeric data description entry subordinate to
a group item for which a SIGN clause is specified, the SIGN clause specified in the
subordinate elementary numeric data description entry takes precedence for that elementary
numeric data item.

[] []CHARACTERSEPARATETRAILING
LEADINGISSIGN

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 125

The SIGN clause is applicable only to numeric data description entries whose PICTURE
character-string contains the symbol S and whose explicit or implicit usage is DISPLAY.

If the CODE-SET clause is specified, any signed numeric data description entries associated
with that file description entry must be described with the SIGN IS SEPARATE clause.

A numeric data description entry whose PICTURE character-string contains the character S,
but to which no optional SIGN clause applies, has an operational sign whose representation
depends on the presence of the optional NUMERIC SIGN clause in the Special-Names
paragraph. If the NUMERIC SIGN clause is specified in the Special-Names paragraph, the
operational sign representation is as if the corresponding SIGN clause had been specified in
the data description entry. If the NUMERIC SIGN clause is not specified in the Special-
Names paragraph, the operational sign representation depends on the setting of the S
(Separate Sign) Compile Command Option:

• If the Separate Sign Default option is not in effect, the operational sign will be the same
as if SIGN IS TRAILING (without the optional SEPARATE CHARACTER phrase) had
been specified.

• If the Separate Sign Default option is in effect, the operational sign will be the same as if
SIGN IS TRAILING SEPARATE CHARACTER had been specified.

For a full discussion of the S (Separate Sign) Compile Command Option, see Chapter 6:
Compiling of the RM/COBOL User’s Guide.

If the optional SEPARATE CHARACTER phrase is not present:

• The operational sign will be associated with the leading (or, respectively, trailing) digit
position of the elementary numeric data item.

• The letter S in a PICTURE character-string is not counted in determining the size of the
item (in terms of standard data format characters).

• The valid signs for combined sign data items depend on the value of the leading (or,
respectively, trailing) digit with which the sign is associated and whether the value is
positive or negative; see Table 13.

Table 13: Valid Data Item Encodings

Valid Data Item Encodings

Digit

Positive Value
Valid Encodings

Negative Value
Valid Encodings

0 { }

1 A J

2 B K

3 C L

4 D M

5 E N

6 F O

7 G P

8 H Q

9 I R

Chapter 4: Data Division

126 RM/COBOL Language Reference Manual

See the USAGE Clause (on page 127) for the valid sign values on other data types.

If the optional SEPARATE CHARACTER phrase is present, then:

• The operational sign will be the leading (or, respectively, trailing) character position of
the elementary numeric data item; this character position is not a digit position.

• The letter S in a PICTURE character-string is counted in determining the size of the item
(in terms of standard data format characters).

• The operational signs for positive and negative are the standard data format characters +
and –, respectively.

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on an even byte
boundary.

This clause specifies that the subject data item is to be aligned in the computer such that no
other data item occupies any of the character positions between the leftmost and rightmost
natural boundaries delimiting this data item. If the number of character positions required to
store this data item is less than the number of character positions between those natural
boundaries, the unused character positions (or portions thereof) are not used for any other data
item. Such unused character positions, however, are included in:

• The size of any group item (or items) to which the elementary item belongs.

• The character positions redefined when this data item is the object of a
REDEFINES clause.

The words SYNC and SYNCHRONIZED are synonymous.

This clause may appear only with an elementary item or with the USAGE IS INDEX clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be positioned such that it
will begin at the next available even byte boundary. If the data item contains an odd number
of character positions, one trailing character position of FILLER is supplied.

SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to a
SYNCHRONIZED LEFT clause.

SYNCHRONIZED RIGHT specifies that the elementary item is to be positioned such that it
will terminate on an even byte boundary. If the data item contains an odd number of
character positions, a leading character position of FILLER is supplied.

Whenever a SYNCHRONIZED item is referenced in the source program, the original size of
the item, as determined by the PICTURE clause, the USAGE clause and the SIGN clause, is
used in determining any action that depends on size, such as justification, truncation or
overflow.

If the data description of an item contains the SYNCHRONIZED clause and an operational
sign, the sign of the item appears in the normal operational sign position, without respect to
whether the item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data description entry of a data item that
also contains an OCCURS clause, or in a data description entry of a data item subordinate to a
data description entry that contains an OCCURS clause, then:

RIGHT
LEFT

SYNC
EDSYNCHRONIZ

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 127

• Each occurrence of the data item is SYNCHRONIZED.

• Any implicit FILLER generated for other data items within that same table are generated
for each occurrence of those data items.

Records of a file and index data items are automatically synchronized left. Records and
noncontiguous data items in working storage are implicitly synchronized left unless explicitly
synchronized right.

The format on external media of records or groups containing elementary items described
with the SYNCHRONIZED clause includes any implied FILLER bytes.

When the data item preceding a data item described with the SYNCHRONIZED clause does
not terminate on a byte whose address is even, one implied character position of FILLER is
generated. Such automatically generated FILLER positions are included in:

• The size of any group to which the FILLER item belongs.

• The number of character positions allocated when the group item of which the FILLER
item is a part appears as the object of a REDEFINES clause.

USAGE Clause

The USAGE clause specifies the format of a data item in the computer storage.

integer-3 must be in the range 1 through 16 and represents the number of bytes to allocate as a
binary allocation override. The binary allocation override may also be specified following
COMPUTATIONAL or COMP usage if the compiler has been configured to treat this usage
type as binary by use of the COMPUTATIONAL-TYPE keyword of the COMPILER-
OPTIONS configuration record.

This clause specifies the manner in which a data item is represented in the storage of a
computer. It does not affect the use of the data item, although the specifications for some
statements in the Procedure Division may restrict the USAGE clause of the operands
referenced.

[]

[]

[]
[]

[]
[]

POINTER
DECIMAL-PACKED

INDEX
DISPLAY

6-COMP
6-NALCOMPUTATIO

5-COMP
5-NALCOMPUTATIO

4-COMP
4-NALCOMPUTATIO

3-COMP
3-NALCOMPUTATIO

1-COMP
1-NALCOMPUTATIO

COMP
NALCOMPUTATIO

BINARY

ISUSAGE

)(
)(

)(
)(

)(

integer-3
integer-3

integer-3
integer-3

integer-3

Chapter 4: Data Division

128 RM/COBOL Language Reference Manual

The USAGE clause may be written at any level. If the USAGE clause is written at a group
level, it applies to each elementary item in the group. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs. When the
usage is COMPUTATIONAL-4, COMP-4, COMPUTATIONAL-5, COMP-5 or BINARY,
the binary allocation override may also be included or omitted at any level as part of a
USAGE clause at that level. If included, the binary allocation override may specify a
different value than that specified in the USAGE clause for a containing group. The rules for
the binary allocation override within group structure are as follows:

• If the USAGE clause is written at a group level and specifies COMPUTATIONAL-4,
COMP-4, COMPUTATIONAL-5, COMP-5, or BINARY usage with the allocation
override integer-3 specified in parentheses following the usage type, the allocation
override integer-3 applies to each elementary item in the group that does not specify a
USAGE clause and is not subordinate to another group with a higher level-number that
specifies a USAGE clause.

• If the USAGE clause is written at a group level and specifies COMPUTATIONAL-4,
COMP-4, COMPUTATIONAL-5, COMP-5, or BINARY usage without the allocation
override integer-3, the configured binary allocation scheme applies to each elementary
item in the group that does not specify a USAGE clause and is not subordinate to another
group with a higher level-number that specifies a USAGE clause.

If the USAGE clause is not specified for an elementary item, or for any group to which the
item belongs, the usage is implicitly DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL-1, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, COMPUTATIONAL-6) item represents a
value to be used in computations and must be numeric. If a group is described as
COMPUTATIONAL, the elementary items in the group are COMPUTATIONAL. The group
itself is not COMPUTATIONAL (cannot be used in computations).

The PICTURE character-string of a COMPUTATIONAL, BINARY, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, or PACKED-DECIMAL item can contain
only 9’s, the operational sign character S, the implied decimal point character V and one or
more P’s. A COMPUTATIONAL-1 item must be an integer. Therefore, its PICTURE
character-string may not contain any P’s; if V is used it must be the rightmost character in the
PICTURE character-string. The PICTURE character-string of a COMPUTATIONAL-6 item
can contain only V, 9, and P.

COMPUTATIONAL Usage
The format of a COMPUTATIONAL (abbreviated COMP) item is one decimal digit per
character position for each 9 in the PICTURE character-string. If an S appears in the
PICTURE character-string, an additional trailing character contains the sign. Hexadecimal
values 0 through 9 are used to represent the numeric digits zero through nine. The
hexadecimal value D is used for negative sign representation. Depending on configured sign
representation, the hexadecimal value C or F is used for positive sign representation. Any
value other than the correct values for numeric digit or sign representation will be treated as
invalid for purposes of the NUMERIC class condition.

Note The compiler may be configured to treat COMPUTATIONAL (COMP) usage as if it
were BINARY or PACKED-DECIMAL usage by use of the COMPUTATIONAL-TYPE
keyword of the COMPILER-OPTIONS configuration record.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 129

COMPUTATIONAL-1 Usage
The format of a COMPUTATIONAL-1 item (abbreviated COMP-1) is 16-bit two’s
complement signed binary integer, independent of the number of 9’s or the appearance of S in
the PICTURE character-string. The number of 9’s is significant when the value is converted
to decimal during data manipulation and for the size error condition. The value of a
COMPUTATIONAL-1 item ranges between –32768 and 32767.

When a COMP-1 data item is specified as a receiving operand in an arithmetic statement, the
size error condition can be caused by either of the following:

• The PICTURE character-string specifies fewer than five 9’s, and the decimal
representation of the value to be stored into the COMP-1 data item requires more 9’s than
are specified.

• The PICTURE character-string specifies five or more 9’s, and the value to be stored into
the COMP-1 data item falls outside the range –32768 through 32767, inclusive.

COMPUTATIONAL-3 or PACKED-DECIMAL Usage
The format of a COMPUTATIONAL-3 (abbreviated COMP-3) and PACKED-DECIMAL
item is two decimal digits per character position. All COMPUTATIONAL-3 and
PACKED-DECIMAL items are allocated a field for an operational sign whether or not an S
appears in the PICTURE character-string. The operational sign field occupies the rightmost
four bits (half of a character position) of the item. The digits of the data item occupy half-
character positions immediately to the left of the operational sign field, one for each 9 in the
PICTURE character-string. If an even number of 9’s is in the PICTURE character-string of
the data item, an additional half-character is allocated at the left end of the item, to complete
an integral number of character positions. This extra position is not available for storage of a
digit when the data item is used as a receiving field. Nor is it used when determining the size
error condition or when validating VALUE IS literals.

If the PICTURE character-string of a COMPUTATIONAL-3 or PACKED-DECIMAL item
contains an S, the value of the operational sign field is used to indicate the sign of the data
item. Hexadecimal values 0 through 9 are used to represent numeric digits. The hexadecimal
value D is used for negative sign representation. Depending on configured sign
representation, the hexadecimal value C, B or F is used for positive sign representation. Any
value other than the correct values for numeric digit or sign representation will be treated as
invalid for purposes of the NUMERIC class condition.

If the PICTURE character-string of a COMPUTATIONAL-3 or PACKED-DECIMAL item
does not contain an S, the data item is treated as nonnegative regardless of the contents of the
operational sign field.

COMPUTATIONAL-4 or BINARY Usage
The format of a COMPUTATIONAL-4 (abbreviated COMP-4) or BINARY item is binary
with the high order bytes at lower addresses than the low-order bytes. Twos-complement
binary is used to represent signed data items, that is, when the PICTURE character-string of a
COMPUTATIONAL-4 or BINARY item contains an S. If an allocation override integer-3 is
specified in parentheses following the usage type, then integer-3 bytes will be allocated.
Otherwise, the number of bytes allocated depends on the number of 9's in the PICTURE
character-string and the BINARY-ALLOCATION and BINARY-ALLOCATION-SIGNED
keywords of the COMPILER-OPTIONS configuration record. The default configured binary
allocation scheme is two bytes for one to four 9's, four bytes for five to nine 9's, eight bytes
for ten to eighteen 9's, and sixteen bytes for nineteen to thirty 9's.

Chapter 4: Data Division

130 RM/COBOL Language Reference Manual

The value of integer-3 in a binary allocation override may be less than the number of bytes
required to support the decimal precision specified in the PICTURE character-string by the
number of 9's included in that character-string. In this case, the size error condition will be
detected if the value to be stored is outside the range of values supported by the number of
bytes indicated by integer-3. For example, an item described as PIC S9(3) BINARY (1) can
store values in the range -128 to +127; a size error condition would exist on an attempt to
store values less than -128 or greater than +127 into such an item. As another example, an
item described as PIC 99V9 BINARY (1) can store values in the range 0 to 25.5; a size error
condition would exist on an attempt to store a value less than -25.5 or greater than +25.5 into
such an item. Note that in this latter example, when a negative value is the sending value, its
absolute value is stored into the data item because the item is unsigned.

The binary allocation override does not increase the precision specified by the PICTURE
character-string. For example, the specification PIC 9 BINARY(1) describes a data item that
will cause the size error condition (in arithmetic statements) or truncation (in MOVE
statements) for numbers greater than 9, except in those cases where truncation does not apply
(as in a group move or an arithmetic statement that does not specify the SIZE ERROR
phrase). Thus, while it is possible to have numbers with values from 0 to 255 in this data
item, the programmer should only plan on being able to put values from 0 to 9 in this
data item.

COMPUTATIONAL-5 Usage
The format of a COMPUTATIONAL-5 (abbreviated COMP-5) item is binary with native
machine byte ordering. Twos-complement binary is used to represent signed data items, that
is, when the PICTURE character-string of a COMPUTATIONAL-4 or BINARY item
contains an S. If an allocation override integer-3 is specified in parentheses following the
usage type, then integer-3 bytes will be allocated. Otherwise, the number of bytes allocated
depends on the number of 9’s in the PICTURE character-string and the BINARY-
ALLOCATION and BINARY-ALLOCATION-SIGNED keywords of the COMPILER-
OPTIONS configuration record. The default configured binary allocation scheme is two
bytes for one to four 9’s, four bytes for five to nine 9’s, eight bytes for ten to eighteen 9’s, and
sixteen bytes for nineteen to thirty 9’s.

The value of integer-3 in a binary allocation override may be less than the number of bytes
required to support the decimal precision specified in the PICTURE character-string by the
number of 9’s included in that character-string. In this case, the size error condition will be
detected if the value to be stored is outside the range of values supported by the number of
bytes indicated by integer-3. For example, an item described as PIC S9(3) BINARY (1) can
store values in the range -128 to +127; a size error condition would exist on an attempt to
store values less than -128 or greater than +127 into such an item. As another example, an
item described as PIC 99V9 BINARY (1) can store values in the range 0 to 25.5; a size error
condition would exist on an attempt to store a value less than -25.5 or greater than +25.5 into
such an item. Note that in this latter example, when a negative value is the sending value, its
absolute value is stored into the data item because the item is unsigned.

The binary allocation override does not increase the precision specified by the PICTURE
character-string. For example, the specification PIC 9 BINARY(1) describes a data item that
will cause the size error condition (in arithmetic statements) or truncation (in MOVE
statements) for numbers greater than 9, except in those cases where truncation does not apply
(as in a group move or an arithmetic statement that does not specify the SIZE ERROR
phrase). Thus, while it is possible to have numbers with values from 0 to 255 in this data
item, the programmer should only plan on being able to put values from 0 to 9 in this data
item.

On “little-endian” machines (for example, Intel machines), COMPUTATIONAL-5 data is
stored with higher order bytes stored in higher addresses that lower order bytes. Thus, on

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 131

“little-endian” machines, COMPUTATIONAL-5 data is stored in a format that differs from
BINARY or COMPUTATIONAL-4 data.

On “big-endian” machines (for example, most RISC-based machines), COMPUTATIONAL-5
data is stored with higher order bytes stored in lower addresses than lower order bytes. Thus,
on “big-endian” machines, BINARY, COMPUTATIONAL-4, and COMPUTATIONAL-5
data are stored in the same format.

Note COMPUTATIONAL-5 usage is intended for interfacing with non-COBOL programs,
particularly in cases where the non-COBOL program stores binary data in a bound COBOL
data item. The format of COMPUTATIONAL-5 binary items is machine-dependent and thus
is not portable between machines unless they are of the same memory architecture. For this
reason, COMPUTATIONAL-5 usage data items should not be specified in the record
descriptions for files. However, the compiler does not disallow COMPUTATIONAL-5 usage
in file record description entries so that files with COMPUTATIONAL-5 data, for example
legacy files written from another COBOL dialect, can be read. However, if the data is read on
a machine with a memory architecture that differs from that of the machine on which it was
written, incorrect results will be obtained without warning. It is highly recommended that
COMPUTATIONAL-5 data not be used except in those rare circumstances where it is
required to interface with a non-COBOL program used as part of a run unit.

COMPUTATIONAL-6 Usage
The COMPUTATIONAL-6 type (abbreviated COMP-6) is used for describing unsigned
packed decimal internal representation of numeric data. The format of a
COMPUTATIONAL-6 data item is two decimal digits per character position. All
COMPUTATIONAL-6 items are unsigned and must not contain an S in the PICTURE
character-string; the format does not reserve any space for an operational sign. If an
odd number of 9’s are in the PICTURE character-string of the data item, an additional
half-character is allocated at the left end of the item, to complete an integral number of
character positions. This extra position is not available for storage of a digit when the data
item is used as a receiving field. Nor is it used when determining the size error condition or
when validating VALUE IS literals. Any value other than the correct values for numeric
digit representation will be treated as invalid for purposes of the NUMERIC class condition.

DISPLAY Usage
The USAGE IS DISPLAY clause indicates that the format of the data is the standard data
format and that the data is aligned on a character boundary. The operational sign of a signed
DISPLAY item is determined by whether the data item has a separate or combined sign. If
the data item has a separate sign, a + in the sign field indicates a positive value and a –
indicates a negative value. Any other value is considered invalid for purposes of the
NUMERIC class condition. If the data item has a combined sign, refer to Table 13 (on
page 125) for valid sign encoding.

INDEX Usage
An elementary item described with the USAGE IS INDEX clause is called an index data item
and contains a value that must correspond to an occurrence number of a table element. If a
group item is described with the USAGE IS INDEX clause the elementary items in the group
are all index data but the group item name cannot be used in the SET statement or in a relation
condition.

Chapter 4: Data Division

132 RM/COBOL Language Reference Manual

An index data item can be referenced explicitly only in a SEARCH or SET statement, a
relation condition, the USING phrase of a Procedure Division header, or the USING phrase of
a CALL statement. An index data item may not be a conditional variable.

Index data items are implicitly synchronized left.

The JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses cannot be used to
describe group or elementary items described with the USAGE IS INDEX clause.

An index data item can be part of a group that is referred to in a MOVE statement or in an
Input-Output statement, in which case, no conversion will take place.

POINTER Usage
The USAGE IS POINTER clause indicates that the data item is to contain a pointer to another
data item. A pointer is a 24-byte structure that includes address, offset, and length fields.
This structure is implementation-dependent, and the individual fields are not meant to be
manipulated except with Formats 5 and 6 of the SET statement. POINTER usage data items
have no PICTURE clause and thus are not numeric operands.

The effective address of a pointer is the sum of its address and offset fields. A pointer covers
an area of memory from the value of the address field to the sum of the values of the address
and length fields.

Pointer data items should never be described in record description entries in the File Section
since their value is only valid during a particular run unit.

Pointer data items should not be the subject or object of a redefinition and should only be
manipulated with the INITIALIZE statement, Formats 5 and 6 of the SET statement, or set to
a valid value by use of the C$MemoryAllocate subprogram in the supplied subprogram
library. If a group containing pointer data items is moved to another group, the receiving
group should have pointer data items in the same locations within the group as in the sending
group. Failure to follow these rules will result in a severely misbehaving program that may
terminate the run unit with a memory access violation exception, may change the code
memory for the COBOL program or the runtime system, or may inadvertently change data
values other than those intended to be changed.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses may not be used to describe
group or elementary items described with the USAGE IS POINTER clause.

The VALUE clause may be used with the USAGE IS POINTER clause, but the only literal
that may be specified in such a VALUE clause is the figurative constant NULL (NULLS).

Pointer data items may only be used in relation conditions involving another pointer data
item, the USING and GIVING phrases of the Procedure Division header, the INITIALIZE
statement, the CALL statement, and Formats 5 and 6 of the SET statement.

VALUE Clause

Format 1: Data Item Initialization

 literal-1ISVALUE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 133

Format 2: Condition-Name Values

Format 3: Constant-Name Value

The VALUE clause defines the initial values of Working-Storage Section and
Communication Section data items, the values used by the VALUE phrase of the
INITIALIZE statement, the values associated with condition-names, the values of Screen
Section displayable items, and the values assigned to constant-names.

A signed numeric literal must have associated with it a signed numeric PICTURE
character-string.

All numeric literals in a VALUE clause of an item must have a value which is within the
range of values indicated by the PICTURE clause, and must not have a value which would
require truncation of nonzero digits. Nonnumeric literals in a VALUE clause of an item must
not exceed the size indicated by the PICTURE clause.

The words THRU and THROUGH are synonymous.

The WHEN SET TO FALSE phrase has meaning only if the associated condition-name is
referenced in a SET condition-name-1 TO FALSE statement. This phrase declares the false
value to be used in a SET condition-name-1 TO FALSE statement.

When the VALUE clause specifies a literal for an elementary data item, the PICTURE clause
may be omitted. In this case, a PICTURE clause is implied as described in Implied PICTURE
Clause (on page 111).

The VALUE clause must not conflict with other clauses in the data description of the item or
in the data description within the hierarchy of the item. The following rules apply:

1. If the category of the item is numeric, all literals in the VALUE clause must be numeric.
If the literal defines the value of a working storage item, the literal is aligned in the data
item according to the Standard Alignment Rules (see page 161).

2. If the category of the item is alphabetic, alphanumeric, alphanumeric edited or numeric
edited, all literals in the VALUE clause must be nonnumeric literals. The literal is
aligned in the data item as if the data item had been described as alphanumeric. Editing
characters in the PICTURE clause are included in determining the size of the data item
but have no effect on initialization of the data item. Therefore, the value of an edited
item is presented in an edited form.

3. As an exception to the rules in item 2, RM/COBOL allows specification of a numeric
literal in the VALUE clause for an item of category numeric edited. In this case, the
compiler performs the logical equivalent of a MOVE of the numeric literal to the numeric
edited data item to form a nonnumeric literal that is used to initialize the numeric edited
data item (Format 1) or as the relation literal value for a condition-name (Format 2). If

[]literal-3

literal-1-operatorrelational

literal-2literal-1

ISFALSETOSETWHEN

THRU
THROUGH

AREVALUES
ISVALUE

1xpression-constant-e
literal-1ISVALUE

Chapter 4: Data Division

134 RM/COBOL Language Reference Manual

the numeric literal value is zero and a BLANK WHEN ZERO clause applies to the data
item, then the resultant nonnumeric literal will be space filled.

4. If the category of the item is data pointer, all literals in the VALUE clause must be
pointers. The only pointer literal is NULL (NULLS).

Initialization takes place independent of any BLANK WHEN ZERO or JUSTIFIED clause
that may be specified, except as noted in item 3 above.

A figurative constant may be substituted in both Format 1 and Format 2 wherever a literal
is specified.

Data Item Initialization Rules (Format 1 VALUE Clause)
Rules governing the use of the VALUE clause differ with the respective sections of the Data
Division:

1. In the File Section, the VALUE clause takes effect only during the execution of an
INITIALIZE statement. The initial values of the data items in the File Section are
undefined.

2. In the Working-Storage Section and Communication Section, the VALUE clause
specifies the initial value of data items, other than those data items in an external record.
In this case, the VALUE clause causes the data item to assume the specified value when
the program is placed into its initial state. For all data items, including data items in an
external record, the VALUE clause also takes effect during the execution of an
INITIALIZE statement. If the VALUE clause is not used in the description of a data
item, the initial value is undefined.

3. In the Linkage Section, the VALUE clause takes effect only during the execution of an
INITIALIZE statement. The initial values of the data items in the Linkage Section are
specified in the rules for the Linkage Section (on page 98) and the Procedure Division
header (on page 171).

The VALUE clause must not be stated in a data description entry that contains a REDEFINES
clause, or in an entry that is subordinate to an entry containing a REDEFINES clause. This
rule does not apply to condition-name entries.

If the VALUE clause is used in an entry at the group level, the literal must be a figurative
constant or a nonnumeric literal, and the group area is initialized without consideration for the
individual elementary or group items contained within this group. The VALUE clause cannot
be stated at the subordinate levels within this group. The VALUE clause must not be written
for a group containing items with descriptions including JUSTIFIED, SYNCHRONIZED or
USAGE (other than USAGE IS DISPLAY).

If a Format 1 VALUE clause is specified in a data description entry that contains an
OCCURS clause or in an entry that is subordinate to an OCCURS clause, each occurrence of
the data item is initialized to the specified value.

A data item is said to be associated with a variable-occurrence data item in any of the
following circumstances:

• It is a group data item that contains a variable-occurrence data item.

• It is a variable-occurrence data item.

• It is a data item that is subordinate to a variable-occurrence data item.

If a VALUE clause is specified in the data description entry of a data item that is associated
with a variable-occurrence data item, the initialization of the data item behaves as if the value

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 135

of the data item referenced by the DEPENDING ON phrase in the OCCURS clause specified
for the variable-occurrence data item had been set to the maximum number of occurrences as
specified by that OCCURS clause.

If a VALUE clause is associated with the data item referenced by a DEPENDING ON phrase,
that value is considered to be placed into the data item after the variable-occurrence data item
is initialized.

Condition-Name Rules (Format 2 VALUE Clause)
In a condition-name entry, the VALUE clause is required. The VALUE clause and the
condition-name itself are the only two clauses permitted in the entry. The characteristics of a
condition-name are implicitly those of its conditional variable.

Format 2 can be used only in connection with condition-names. Wherever the THROUGH
phrase is used, literal-1 must be less than literal-2.

When a relational operator is specified, the truth-value of the condition-name is determined
by a relation condition that uses the conditional variable as the subject, relational-operator as
the relational operator, and literal-1 as the object of the relation. If a relational operator is
specified with the first, or only, literal-1, a true value for the purposes of the SET … TO
TRUE statement is not defined unless that relational operator includes equality, in which case,
literal-1 is the true value for the SET statement. The relational operators GREATER THAN,
>, LESS THAN, <, NOT EQUAL, NOT =, LIKE, and NOT LIKE do not include equality; if
the SET … TO TRUE statement is to be used with a condition-name defined with one of
these relational operators, the Format 2 VALUE clause must first specify a literal-1 without a
relational operator or with a relational operator that includes equality.

Note The relational-operator may be any of the relational operators for the relation condition
(on page 187).

Constant-Name Rules (Format 3 VALUE Clause)
A Format 3 VALUE clause may be used only in a level-number 78 constant-name data
description entry.

If literal-1 is specified, the constant-name has the same characteristics as literal-1.

If constant-expression-1 is specified, the constant-name has the characteristics of an unsigned
integer literal.

A constant-expression has the following format.

literal-1 or integer-1 may be specified by a constant-name previously declared.

[]

()

[]

()

−
+

3xpression-constant-e

7data-name-

literal-5
5data-name-

integer-2

2xpression-constant-e

6data-name-

literal-4
4data-name-

integer-1

COMPILED-DATE

OFSTART

OFSIZE
LENGTH

NEXT

NOT

OREXCLUSIVE
OR
AND

COMPILED-DATE

OFSTART

OFSIZE
LENGTH

NEXT

NOT **
/
*

Chapter 4: Data Division

136 RM/COBOL Language Reference Manual

integer-1 may be signed or zero, but must be nonnegative and less than 4,294,967,296.

data-name-4, data-name-5, data-name-6, and data-name-7 may be qualified.

data-name-4, data-name-5, data-name-6, and data-name-7 must have been defined before the
declaration of the level-number 78 constant-name. Further, if data-name-4 or
data-name-5 refers to a group data item, that group must have been completed before the
declaration of the level-number 78 constant-name. The group is completed by the
specification of another data item at the same or lower level-number than the level-number
of the group referenced by data-name-4, or data-name-5, respectively.

In constant-expression-1, any number of arithmetic or logical operators may be used. The
result is evaluated using 32-bit integer arithmetic in strict left to right order with all operators
having the same precedence. Parentheses may be used to force a desired precedence since
constant-expressions in parentheses are evaluated first. If any intermediate result is less than
zero, the final value is undefined. Overflow is ignored when evaluating arithmetic operations.
The value assigned to a constant-name is included in the compiler listing allocation map,
which may be used to verify the results of a constant-expression evaluation as well as simple
literal assignments to constant-names.

The logical operators AND, OR, EXCLUSIVE OR, and NOT operate on the binary
representation in a bit-wise manner. The binary representation is a 32-bit integer quantity.

LENGTH OF data-name-4 or SIZE OF data-name-4 gives the integer value representing the
number of character positions allocated for the data item referenced by data-name-4. If
data-name-4 is a group item, the length includes all subordinate data items and any filler
generated because of SYNCHRONIZED clauses.

LENGTH OF literal-4 or SIZE OF literal-4 gives the integer value representing the number
of character positions required for literal-4. If the literal is a numeric literal, the number of
characters is the same as the number of digits. That is, for a numeric literal, the sign and
decimal point characters, if specified, are not counted in the length of the literal.

NEXT gives the integer value representing the offset at which the next byte of storage
that follows the previous data declaration. If that data description specifies the OCCURS
clause and describes an elementary data item, the value given by NEXT is the offset
following the maximum number of occurrences specified by the OCCURS clause. If NEXT
is used in a level-number 78 entry that is embedded in a group or at the end of a group and
that group data description specifies the OCCURS clause, the value given by NEXT is the
offset following a single occurrence of the group up to the point the level-number 78 entry
is specified.

START OF data-name-6 gives the integer value representing the offset at which the data item
referenced by data-name-6 begins.

Offsets given by NEXT and START OF are defined as follows:

• If the data item is part of an EXTERNAL record or a LINKAGE record, the offset is
calculated from the start of the associated 01-level data item.

• If the data item is part of a FILE record, the offset is calculated from the start of the
associated 01-level data item for NEXT or for a START OF specified before the end of
the File Section. For a START OF specified after the end of the File Section, the offset is
calculated from the beginning of the Data Division. (This difference is caused by the
need to handle SAME clauses specified in the I-O-CONTROL paragraph at the end of the
File Section.)

• Otherwise, the offset is calculated from the start of the Data Division.

Offsets are not portable across different COBOL implementations, and no reliance should be
placed on particular values outside this compilation unit.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 137

DATE-COMPILED gives the integer value representing the date the compilation started as
YYYYMMDD, where YYYY is the year, MM is the month of the year, and DD is the day of
the month.

Communication Description Entry
The communication description entry specifies the interface area between the Message
Control System (MCS) and a COBOL program.

Format 1: Input CD

Format 2: Output CD

[]

.

11data-name-10data-name-9data-name-
8data-name-7data-name-6data-name-5data-name-

4data-name-3data-name-2data-name-1data-name-

11data-name-
10data-name-

9data-name-
8data-name-

7data-name-
6data-name-
5data-name-

4data-name-
3data-name-
2data-name-

1data-name-

cd-name-1

ISCOUNTMESSAGE
ISKEYSTATUS

ISKEYEND
ISLENGTHTEXT

ISSOURCESYMBOLIC
ISTIMEMESSAGE
ISDATEMESSAGE

IS3-QUEUE-SUBSYMBOLIC
IS2-QUEUE-SUBSYMBOLIC
IS1-QUEUE-SUBSYMBOLIC

ISQUEUESYMBOLIC

INPUTINITIALFORCD

[]
[]
[]

{ }[]
[]
[] .5data-name-

4data-name-
-1index-name

integer-1
3data-name-

2data-name-
1data-name-

cd-name-1

ISNDESTINATIOSYMBOLIC
ISKEYERROR

BYINDEXED
TIMESOCCURSTABLENDESTINATIO

ISKEYSTATUS
ISLENGTHTEXT

ISCOUNTNDESTINATIO
OUTPUTFORCD

Chapter 4: Data Division

138 RM/COBOL Language Reference Manual

Format 3: Input-Output CD

A CD entry may appear only in the Communication Section.

Within a single program, the INITIAL clause may be specified in only one CD. The INITIAL
clause must not be used in a program that specifies the USING phrase of the Procedure
Division header.

For Format 1 (Input CD):

• If the INITIAL clause is present, it must appear in the position shown; the other optional
clauses may be specified in any order.

• If neither option for specifying the interface area is used, a level 01 data description entry
must follow the CD entry. Either option may be followed by a level 01 data description
entry.

• Record description entries following an input CD entry implicitly redefine the record area
established by the input CD entry and must describe a record of exactly 87 standard data
format characters. Multiple redefinitions of this record are permitted. VALUE clauses
for data items not in the first redefinition do not cause those data items to have an initial
value when the program is placed into its initial state, but will be used for the
INITIALIZE statement with the VALUE phrase. The MCS always references the record
according to the data description defined in item 2k of the general rules for Format 1,
which begin in Input CD General Rules (on page 139).

• data-name-1, data-name-2, data-name-3, data-name-4, data-name-5, data-name-6,
data-name-7, data-name-8, data-name-9, data-name-10 and data-name-11 must be
unique within the CD entry. Within this series any data-name may be replaced by the
reserved word FILLER.

For Format 2 (Output CD):

• If none of the optional clauses of the CD entry is specified, a level 01 data description
entry must follow the CD entry.

• Record description entries subordinate to an output CD entry implicitly redefine the
record area established by the output CD entry. Multiple redefinitions of this record are
permitted. VALUE clauses for data items not in the first redefinition do not cause those
data items to have an initial value when the program is placed into its initial state, but will
be used for the INITIALIZE statement with the VALUE phrase. The MCS always
references the record according to the data description defined in item 2d of the general
rules for Format 2, which begin in Output CD General Rules (on page 142).

• data-name-1, data-name-2, data-name-3, data-name-4 and data-name-5 must be unique
within a CD entry.

[]

.

6data-name-5data-name-
4data-name-3data-name-2data-name-1data-name-

6data-name-
5data-name-

4data-name-
3data-name-

2data-name-
1data-name-

cd-name-1

ISKEYSTATUS
ISKEYEND

ISLENGTHTEXT
ISTERMINALSYMBOLIC

ISTIMEMESSAGE
ISDATEMESSAGE

O-IINITIALFORCD

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 139

• If both the DESTINATION TABLE OCCURS clause and the ERROR KEY clause are
present, the ERROR KEY clause must not precede the DESTINATION TABLE
OCCURS clause. If both the DESTINATION TABLE OCCURS clause and the
SYMBOLIC DESTINATION clause are present, the SYMBOLIC DESTINATION
clause must not precede the DESTINATION TABLE OCCURS clause. Except for these
restrictions, the optional clauses of an output CD entry may appear in any order.

• If the DESTINATION TABLE OCCURS clause is not specified, one error key and one
symbolic destination area are assumed. In this case, subscripting is not permitted when
referencing these data items.

• If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may be referenced only by subscripting.

For Format 3 (Input-Output CD):

• If the INITIAL clause is present, it must appear in the position shown; the other optional
clauses may be specified in any order.

• If neither option for specifying the interface area is used, a level 01 data description entry
must follow the CD entry. Either option may be followed by a level 01 data description
entry.

• Record description entries following an input-output CD entry implicitly redefine the
record area established by the input-output CD entry and must describe a record of
exactly 33 standard data format characters. Multiple redefinitions of this record are
permitted. VALUE clauses for data items not in the first redefinition do not cause those
data items to have an initial value when the program is placed into its initial state, but will
be used for the INITIALIZE statement with the VALUE phrase. The MCS always
references the record according to the data description defined in item 2f of the general
rules for Format 3, which begin in Input-Output CD General Rules (on page 143).

• data-name-1, data-name-2, data-name-3, data-name-4, data-name-5 and data-name-6
must be unique within the CD entry. Within this series, any data-name may be replaced
by the reserved word FILLER.

Input CD General Rules
The following general rules apply to Format 1:

1. The input CD information constitutes the communication between the MCS and the
program about the message being handled. This information does not come from the
terminal as part of the message.

2. For each input CD entry, a record area of 87 contiguous character positions is allocated.
This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an elementary
alphanumeric data item of 12 characters occupying positions 1 through 12 in the
record.

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 13 through
24 in the record.

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 25 through
36 in the record.

Chapter 4: Data Division

140 RM/COBOL Language Reference Manual

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 37 through
48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data item whose
implicit description is that of an integer of six digits, without an operational sign,
occupying character positions 49 through 54 in the record.

f. The MESSAGE TIME clause defines data-name-6 as the name of a data item whose
implicit description is that of an integer of eight digits, without an operational sign,
occupying character positions 55 through 62 in the record.

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 63 through
74 in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an elementary data
item whose implicit description is that of an integer of four digits, without an
operational sign, occupying character positions 75 through 78 in the record.

i. The END KEY clause defines data-name-9 as the name of an elementary
alphanumeric data item of one character occupying position 79 in the record.

j. The STATUS KEY clause defines data-name-10 as the name of an elementary
alphanumeric data item of two characters occupying positions 80 and 81 in the
record.

k. The MESSAGE COUNT clause defines data-name-11 as the name of an elementary
data item whose implicit description is that of an integer of six digits, without an
operational sign, occupying character positions 82 through 87 in the record.

The second option (data-name-1, data-name-2, . . ., data-name-11) may be used to
replace the above clauses by a series of data-names which, taken in order, correspond
to the data-names defined by these clauses.

Use of either option results in a record whose implicit description is equivalent to the
following:

01 FILLER.
 02 data-name-1 PICTURE X(12).
 02 data-name-2 PICTURE X(12).
 02 data-name-3 PICTURE X(12).
 02 data-name-4 PICTURE X(12).
 02 data-name-5 PICTURE 9(6).
 02 data-name-6 PICTURE 9(8).
 02 data-name-7 PICTURE X(12).
 02 data-name-8 PICTURE 9(4).
 02 data-name-9 PICTURE X.
 02 data-name-10 PICTURE XX.
 02 data-name-11 PICTURE 9(6).

3. The contents of data items referenced by data-name-2, data-name-3 and data-name-4,
when not being used must contain spaces.

4. The data items referenced by data-name-1, data-name-2, data-name-3 and
data-name-4 contain symbolic names designating queues, sub-queues, . . ., respectively.
These symbolic names must follow the rules for the formation of system-names, and
must have been previously defined to the MCS.

5. A RECEIVE statement causes the serial return of the next message or a portion of a
message from the queue as specified by the entries in the CD. At the time of execution of
a RECEIVE statement, the data-name-1 field in the input CD area must contain the name
of a symbolic queue. The data items specified by data-name-2, data-name-3 and data-

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 141

name-4 may contain symbolic sub-queue names or spaces. When a given level of the
queue structure is specified, all higher levels must also be specified. If less than all the
levels of the queue hierarchy are specified, the MCS determines the next message or
portion of a message to be accessed within the queue or sub-queue specified in the input
CD. After the execution of a RECEIVE statement, the contents of the data items
referenced by data-name-1 through data-name-4 will contain the symbolic names of all
the levels of the queue structure.

6. Whenever a program is scheduled by the MCS to process a message, that program
establishes a run unit and the symbolic names of the queue structure that demanded this
activity will be placed in the data items referenced by data-name-1 through data-name-4
of the CD associated with the INITIAL clause as applicable. In all other cases, the
contents of the data items referenced by data-name-1 through data-name-4 of the CD
associated with the INITIAL clause are initialized to spaces.

The symbolic names are inserted, or the initialization to spaces is completed, prior to the
execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same contents of the data
items referenced by data-name-1 through data-name-4 will return the actual message that
caused the program to be scheduled. Only at that time will the remainder of the CD be
updated.

7. If the MCS attempts to schedule a program lacking an INITIAL clause, the results are
undefined.

8. During the execution of a RECEIVE statement, the MCS provides, in the data item
referenced by data-name-5, the date on which it recognized that the message was
complete in the form YYMMDD (year, month, day). The contents of the data item
referenced by data-name-5 are not updated by the MCS other than as part of the
execution of a RECEIVE statement.

9. During the execution of a RECEIVE statement, the MCS provides, in the data item
referenced by data-name-6, the time at which it recognized that the message was
complete in the form HHMMSShh (hours, minutes, seconds, hundredths of a second).
The contents of the data item referenced by data-name-6 are not updated by the MCS
other than as part of the execution of a RECEIVE statement.

10. During the execution of a RECEIVE statement, the MCS provides, in the data item
referenced by data-name-7, the symbolic name of the communication terminal that is
the source of the message being transferred. If the symbolic name of the communication
terminal is not known to the MCS, the contents of the data item referenced by
data-name-7 will contain spaces.

11. The MCS indicates through the contents of the data item referenced by data-name-8
the number of character positions filled as a result of the execution of the
RECEIVE statement.

12. The contents of the data item referenced by data-name-9 are set by the MCS only as part
of the execution of a RECEIVE statement according to the following rules:

• When the RECEIVE MESSAGE phrase is specified:

a. If an end of group has been detected, the contents of the data item referenced by
data-name-9 are set to 3.

b. If an end of message has been detected, the contents of the data item referenced
by data-name-9 are set to 2.

c. If less than a message is transferred, the contents of the data item referenced by
data-name-9 are set to 0.

Chapter 4: Data Division

142 RM/COBOL Language Reference Manual

• When the RECEIVE SEGMENT phrase is specified:

a. If an end of group has been detected, the contents of the data item referenced by
data-name-9 are set to 3.

b. If an end of message has been detected, the contents of the data item referenced
by data-name-9 are set to 2.

c. If an end of segment has been detected, the contents of the data item referenced
by data-name-9 are set to 1.

d. If less than a message is transferred, the contents of the data item referenced by
data-name-9 are set to 0.

When more than one of the above conditions is satisfied simultaneously, the rule
first satisfied in the order listed determines the contents of the data item referenced by
data-name-9.

13. The contents of the data item referenced by data-name-10 indicate the status condition of
the previously executed RECEIVE, ACCEPT . . . MESSAGE COUNT, ENABLE
INPUT or DISABLE INPUT statement. (See Table 14 on page 146.)

14. The contents of the data item referenced by data-name-11 indicate the number of
messages that exist in a queue, sub-queue-1, and so on. The MCS updates the contents of
the data item referenced by data-name-11 only as part of the execution of an
ACCEPT . . . MESSAGE COUNT statement.

Output CD General Rules
The following general rules apply to Format 2:

1. The nature of the output CD information is such that it is not sent to the terminal, but
constitutes the communication between the program and the MCS about the message
being handled.

2. A record area of contiguous character positions is allocated for each output CD. If the
CD entry does not contain a DESTINATION TABLE OCCURS clause, the length of the
allocated record area is 23 characters. If the CD entry does contain a DESTINATION
TABLE OCCURS clause, the length of the allocated record area is 10 plus 13 times the
value of integer-1.

The implicit description of the allocated record area is:

a. The DESTINATION COUNT clause defines data-name-1 as the name of a data item
whose implicit description is that of an integer, without an operational sign,
occupying character positions 1 through 4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an elementary data
item whose implicit description is that of an integer of four digits, without an
operational sign, occupying character positions 5 through 8 in the record.

c. The STATUS KEY clause defines data-name-3 to be an elementary alphanumeric
data item of two characters occupying positions 9 and 10 in the record.

d. Character positions 11 through 23 and every set of 13 characters thereafter will form
table items of the following description:

1) The ERROR KEY clause defines data-name-4 as the name of an elementary
alphanumeric data item of one character.

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the name of an
elementary alphanumeric data item of 12 characters.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 143

Use of the above clauses results in a record whose implicit description is equivalent
to the following:

01 FILLER.
 02 data-name-1 PICTURE 9(4).
 02 data-name-2 PICTURE 9(4).
 02 data-name-3 PICTURE XX.
 02 FILLER OCCURS integer-1 TIMES.
 03 data-name-4 PICTURE X.
 03 data-name-5 PICTURE X(12).

3. During the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE OUTPUT
statement, the content of the data item referenced by data-name-1 will indicate to the
MCS the number of symbolic destinations that are to be used from the area referenced by
data-name-5. The MCS finds the first symbolic destination in the first occurrence of the
area referenced by data-name-5, the second symbolic destination in the second
occurrence of the area referenced by data-name-5, and so forth, up to and including the
occurrence of the area referenced by data-name-5 that is indicated by the contents of
data-name-1. If during the execution of a SEND, PURGE, ENABLE OUTPUT or
DISABLE OUTPUT statement, the value of the data item referenced by data-name-1 is
outside the range of 1 through integer-1, inclusive, an error condition is indicated, no
action is taken for any destination, and the execution of the SEND, PURGE, ENABLE
OUTPUT or DISABLE OUTPUT statement is terminated. The user must ensure that the
value of the data item referenced by data-name-1 is valid at the time of the execution of
the SEND, PURGE, ENABLE OUTPUT or DISABLE OUTPUT statement.

4. As part of the execution of a SEND statement, the MCS will interpret the content of the
data item referenced by data-name-2 to be the user’s indication of the number of leftmost
character positions of the data item referenced by the identifier in the SEND statement
from which data is to be transferred. See the discussion of the SEND statement (on
page 352).

5. Each occurrence of the data item referenced by data-name-5 contains a symbolic
destination name previously known to the MCS. These symbolic destination names must
follow the rules for the formation of system-names.

6. The content of the data item referenced by data-name-3 indicates the status condition of
the previously executed SEND, PURGE, ENABLE OUTPUT or DISABLE OUTPUT
statement. (See Table 14 on page 146.)

7. If, during the execution of a SEND, PURGE, ENABLE OUTPUT or DISABLE
OUTPUT statement the MCS determines that an error has occurred, the content of the
data item referenced by data-name-3 and all occurrences of the data items referenced
by data-name-4 are updated. The content of the error key data item referenced by
data-name-4, when nonzero, indicates that an error has occurred for the destination
specified by the associated value in the symbolic destination data item referenced by
data-name-5. Otherwise, the content of the error key data item referenced by
data-name-4 is set to zero. See Table 15 on page 148 for the meanings of the various
error key values.

Input-Output CD General Rules
The following general rules apply to Format 3:

1. The input-output CD information constitutes the communication between the MCS and
the program about the message being handled. This information does not come from the
terminal as part of the message.

Chapter 4: Data Division

144 RM/COBOL Language Reference Manual

2. For each input-output CD, a record area of 33 contiguous character positions is allocated.
This record area is defined to the MCS as follows:

a. The MESSAGE DATE clause defines data-name-1 as the name of a data item whose
implicit description is that of an integer of six digits, without an operational sign,
occupying character positions 1 through 6 in the record.

b. The MESSAGE TIME clause defines data-name-2 as the name of a data item whose
implicit description is that of an integer of eight digits, without an operational sign,
occupying character positions 7 through 14 in the record.

c. The SYMBOLIC TERMINAL clause defines data-name-3 as the name of an
elementary alphanumeric data item of 12 characters occupying positions 15 through
26 in the record.

d. The TEXT LENGTH clause defines data-name-4 as the name of an elementary data
item whose implicit description is that of an integer of four digits, without an
operational sign, occupying character positions 27 through 30 in the record.

e. The END KEY clause defines data-name-5 as the name of an elementary
alphanumeric data item of one character occupying position 31 in the record.

f. The STATUS KEY clause defines data-name-6 as the name of an elementary
alphanumeric data item of two characters occupying positions 32 and 33 in
the record.

The second option (data-name-1, data-name-2, . . ., data-name-6) may be used to
replace the above clauses which, taken in order, correspond to the data-names
defined by these clauses.

Use of either option results in a record whose implicit description is equivalent to the
following:

01 FILLER.
 02 data-name-1 PICTURE 9(6).
 02 data-name-2 PICTURE 9(8).
 02 data-name-3 PICTURE X(12).
 02 data-name-4 PICTURE 9(4).
 02 data-name-5 PICTURE X.
 02 data-name-6 PICTURE XX.

3. When a program is scheduled by the MCS to process a message, the first RECEIVE
statement referencing the input-output CD with the INITIAL clause returns the actual
message that caused the program to be scheduled.

4. data-name-1 has the format YYMMDD (year, month, day). Its contents represent the
date on which the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-1 are updated only by the MCS as
part of the execution of a RECEIVE statement.

5. data-name-2 has the format HHMMSShh (hours, minutes, seconds, hundredths of a
second) and its contents represent the time at which the MCS recognizes that the message
is complete.

The contents of the data item referenced by data-name-2 are updated only by the MCS as
part of the execution of a RECEIVE statement.

6. Whenever a program is scheduled by the MCS to process a message, that program
establishes a run unit and the symbolic name of the communication terminal that is the
source of the message that invoked this program is placed in the data item referenced by
data-name-3 of the input-output CD associated with the INITIAL clause as applicable.
This symbolic name must follow the rules for the formation of system-names.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 145

In all other cases, the contents of the data item referenced by data-name-3 of the
input-output CD associated with the INITIAL clause are initialized to spaces.

The symbolic name is inserted, or the initialization to spaces is completed, prior to the
execution of the first Procedure Division statement.

7. If the MCS attempts to schedule a program lacking an INITIAL clause, the results are
undefined.

8. When the INITIAL clause is specified for an input-output CD and the program is
scheduled by the MCS, the contents of the data item referenced by data-name-3 must not
be changed by the program. If the contents are changed, the execution of any statement
referencing cd-name is unsuccessful, and the data item referenced by data-name-6 is set
to indicate unknown source or destination, as applicable.

9. For an input-output CD without the INITIAL clause, or for an input-output CD with the
INITIAL clause when the program is not scheduled by the MCS, the program must
specify the symbolic name of the source or destination in data-name-3 prior to the
execution of the first statement referencing cd-name.

After executing the first statement referencing cd-name, the contents of the data item
referenced by data-name-3 must not be changed by the program. If the contents are
changed, the execution of any statement referencing cd-name is unsuccessful, and the
data item referenced by data-name-6 is set to indicate unknown source or destination, as
applicable.

10. The MCS indicates, through the contents of the data item referenced by data-name-4, the
number of character positions filled as a result of the execution of the RECEIVE
statement.

As part of the execution of a SEND statement, the MCS interprets the contents of the data
item referenced by data-name-4 as the user’s indication of the number of leftmost
character positions of the data item referenced by the associated SEND identifier from
which data is transferred.

11. The contents of the data item referenced by data-name-5 are set only by the MCS as part
of the execution of a RECEIVE statement according to the following rules:

When the RECEIVE MESSAGE phrase is specified:

a. If an end of group has been detected, the contents of the data item referenced by
data-name-5 are set to 3.

b. If an end of message has been detected, the contents of the data item referenced by
data-name-5 are set to 2.

c. If less than a message is transferred, the contents of the data item referenced by
data-name-5 are set to 0.

d. When the RECEIVE SEGMENT phrase is specified:

e. If an end of group has been detected, the contents of the data item referenced by
data-name-5 are set to 3.

f. If an end of message has been detected, the contents of the data item referenced by
data-name-5 are set to 2.

g. If an end of segment has been detected, the contents of the data item referenced by
data-name-5 are set to 1.

h. If less than a message is transferred, the contents of the data item referenced by
data-name-5 are set to 0.

Chapter 4: Data Division

146 RM/COBOL Language Reference Manual

When more than one of the conditions is satisfied simultaneously, the rule first satisfied
in the order listed determines the contents of the data item referenced by data-name-5.

12. The contents of the data item referenced by data-name-6 indicate the status condition of
the previously executed PURGE, RECEIVE or SEND statement. (See Table 14 on
page 146.)

Status Key Conditions
Table 14 indicates the possible content of the data item referenced by data-name-10
(Format 1), data-name-3 (Format 2), or data-name-6 (Format 3) at the completion of each
statement shown. A symbol on a line in a statement column indicates that the associated
code shown for that line is possible for that statement.

Table 14: Communication Status Key Conditions

Communication Status Key Conditions

Description St

at
us

 K
ey

 V
al

ue

R
EC

EI
VE

SE
N

D
 in

pu
t-o

ut
pu

t-c
d

SE
N

D
 o

ut
pu

t-c
d

PU
R

G
E

A
C

C
EP

T
M

ES
SA

G
E

C
O

U
N

T
EN

A
B

LE
 IN

PU
T

EN
A

B
LE

 IN
PU

T/
I-O

TE

R
M

IN
A

L
EN

A
B

LE
 O

U
TP

U
T

D
IS

A
B

LE
 IN

PU
T

D
IS

A
B

LE
 IN

PU
T/

I-O

TE
R

M
IN

A
L

D
IS

A
B

LE
 O

U
TP

U
T

No error detected. Action
completed.

00

One or more destinations
disabled. Action completed.

10

Destination disabled. No
action taken.

10

Symbolic source, or one or
more queues or destinations
already disabled/enabled. 15

One or more destinations
unknown. Action completed
for known destinations. 20

One or more queues or
sub-queues unknown. No
action taken. 20

Symbolic source is unknown.
No action taken.

21

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 147

Communication Status Key Conditions

Description St

at
us

 K
ey

 V
al

ue

R
EC

EI
VE

SE
N

D
 in

pu
t-o

ut
pu

t-c
d

SE
N

D
 o

ut
pu

t-c
d

PU
R

G
E

A
C

C
EP

T
M

ES
SA

G
E

C
O

U
N

T
EN

A
B

LE
 IN

PU
T

EN
A

B
LE

 IN
PU

T/
I-O

TE

R
M

IN
A

L
EN

A
B

LE
 O

U
TP

U
T

D
IS

A
B

LE
 IN

PU
T

D
IS

A
B

LE
 IN

PU
T/

I-O

TE
R

M
IN

A
L

D
IS

A
B

LE
 O

U
TP

U
T

Destination count invalid. No
action taken.

30

Password invalid. No
enabling/disabling action
taken. 40

Text length exceeds size of
identifier-1.

50

Portion requested to be sent
has text length of zero or
identifier-1 absent. No action
taken.

60

Output queue capacity
exceeded.

65

One or more destinations do
not have portions associated
with them. Action completed
for other destinations.

70

A combination of at least two
status key conditions 10, 15,
and 20 has occurred. 80

 The status is allowed.

 The status is not allowed.

Error Key Values
Table 15 indicates the possible content of the data item referenced by data-name-4 (Format 2)
at the completion of each statement shown. A symbol on a line in a statement column
indicates that the associated error key value shown for that line is possible for that statement.

Chapter 4: Data Division

148 RM/COBOL Language Reference Manual

Table 15: Error Key Values

Error Key Values

Description Er

ro
r K

ey
 V

al
ue

SE
N

D

PU
R

G
E

EN
A

B
LE

 O
U

TP
U

T

D
IS

A
B

LE
 O

U
TP

U
T

No error. 0

Symbolic destination unknown. 1

Symbolic destination disabled. 2

No partial message with referenced symbolic
destination. 4

Symbolic destination already enabled/disabled. 5

Output queue capacity exceeded. 6

Reserved for future use. 7–9

 The status is allowed.

 The status is not allowed.

Screen Description Entry

Format 1: Screen Group

FILLER
e-1screen-namer-1level-numb

integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND

integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND

[][]DISPLAYISUSAGE

[] []

 CHARACTERSEPARATETRAILING

LEADINGISSIGN

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 149

Format 2: Screen Literal

SKIP-AUTO
AUTO

[]SECURE

[]REQUIRED

[] .FULL

{ }ntry-1cription-escreen-des

FILLER
e-1screen-namer-1level-numb

BEEP
BELL

REMAINDER
LINE
SCREEN

BLANK

[]BLINK

SCREEN
EOL
EOS

ERASE

[]

LOWLIGHT
HIGHLIGHTNO

VIDEO-REVERSE
REVERSED
REVERSE

[]UNDERLINE

integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND

integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND

+

-1identifier

integer-3PLUS
ISNUMBERLINE

+

-2identifier

integer-4PLUS
ISNUMBERCOL

COLUMN

[][] .literal-1ISVALUE

Chapter 4: Data Division

150 RM/COBOL Language Reference Manual

Format 3: Screen Field

FILLER
e-1screen-namer-1level-numb

BEEP
BELL

REMAINDER
LINE
SCREEN

BLANK

[]BLINK

SCREEN
EOL
EOS

ERASE

[]

LOWLIGHT
HIGHLIGHTNO

VIDEO-REVERSE
REVERSED
REVERSE

[]UNDERLINE

integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND

integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND

+

-1identifier

integer-3PLUS
ISNUMBERLINE

+

-2identifier

integer-4PLUS
ISNUMBERCOL

COLUMN

-9identifier
-8identifier

literal-1
-7identifier

string-1character-

USING
TO

FROM
ISPIC

PICTURE

[][]DISPLAYISUSAGE

[]ZEROWHENBLANK

 RIGHTJUST

JUSTIFIED

[] []

 CHARACTERSEPARATETRAILING

LEADINGISSIGN

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 151

level-number-1 must be in the range 01 to 49, or 77. Level-numbers 66 and 88 are not
allowed. Level-numbers in the range 01 through 49 are used to define group and elementary
fields in the same way as in the other sections of the Data Division.

A screen description entry that contains a screen-name following the level-number defines
that screen-name. Screen-names may be used only in ACCEPT and DISPLAY statements.
A screen-name is not a data-name, and the two types of names are not interchangeable.

A particular screen-attribute may not be specified more than once in a given screen
description entry. The possible screen-attributes are defined in the following subsections.
Note that a number of the clauses that can be used in other sections of the Data Division are
not available in the Screen Section. These include OCCURS, REDEFINES, RENAMES,
SIGN, SYNC and USAGE.

AUTO Clause

The AUTO clause may be used either at the group level or at the elementary level. When
used at the group level the effect is as if it were specified in each subordinate elementary entry
that specifies a PICTURE clause with a TO or USING option.

When an elementary field that has the AUTO attribute is functioning as an input field during
the course of an ACCEPT operation, the field is considered to be complete as soon as
sufficient characters have been entered to fill the field. If the field is not the last input field in
the group to which it belongs, the cursor moves to the next field and the ACCEPT operation
continues. If the field is the last input field in the group to which it belongs, the ACCEPT
operation terminates.

In the absence of the AUTO attribute, the operator must explicitly terminate each field before
the cursor moves to the next input field.

AUTO and AUTO-SKIP are synonymous.

BACKGROUND Clause

color-name-1 may be any properly formed user-defined word that names a color known to the
runtime system. The default names known to all RM/COBOL runtime systems are provided
in Table 16. color-name-1 is not a data-name, that is, color-name-1 must be the color-name
itself and does not refer to a data item that contains the color-name.

SKIP-AUTO
AUTO

[]SECURE

[]REQUIRED

[] .FULL

SKIP-AUTO
AUTO

integer-1
-1color-name

ISCOLOR-BACKGROUND
ISBACKGROUND

Chapter 4: Data Division

152 RM/COBOL Language Reference Manual

The BACKGROUND clause may be used either at the group level or at the elementary level.
When used at the group level the effect is as if it were specified in each subordinate
elementary entry that is not controlled by an intervening nested BACKGROUND clause.

The BACKGROUND clause causes the background of the screen field to be shown in the
specified color provided the terminal supports color operations and provided the appropriate
configuration operations have been performed. The specification is effective for both input
and output fields.

The BACKGROUND-COLOR clause is an alternative method of specifying the background
color for the screen item. It is provided for compatibility with other common dialects of
COBOL. The value of integer-1 must be in the range 0 through 7 and specifies a color-name
according to Table 16.

Table 16: Color Integers

Color Integers

Value COLOR-NAME

0 BLACK

1 BLUE

2 GREEN

3 CYAN

4 RED

5 MAGENTA

6 BROWN

7 WHITE

The BACKGROUND-COLOR clause may be used either at the group level or at the
elementary level with the same result as a BACKGROUND clause that specifies a color-name
corresponding to the value of integer-1.

BELL Clause

During the course of a DISPLAY operation, the terminal’s audible alert signal is sounded
when the cursor encounters an elementary input field that has the BELL attribute.

The BELL clause may be used only at the elementary level.

The words BELL and BEEP are synonymous.

BLANK LINE Clause

BEEP
BELL

LINEBLANK

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 153

During the course of a DISPLAY operation, when the cursor encounters an elementary field
that has the BLANK LINE attribute, the line from the position of the cursor to the right end of
the line is cleared to spaces. The position of the cursor remains unchanged.

The BLANK LINE clause may be used only at the elementary level.

BLANK REMAINDER Clause

During the course of a DISPLAY operation, when the cursor encounters an elementary field
that has the BLANK REMAINDER attribute, the line from the position of the cursor to the
right end of the line and all lines below the cursor are cleared to spaces. The position of the
cursor remains unchanged.

The BLANK REMAINDER clause may be used only at the elementary level.

BLANK SCREEN Clause

During the course of a DISPLAY operation, when the cursor encounters an elementary field
that has the BLANK SCREEN attribute, the entire screen is cleared to spaces. The position of
the cursor remains unchanged.

The BLANK SCREEN clause may be used only at the elementary level.

Regardless of the order in which they appear in the screen description entry, the following
screen attributes are always acted on in the following order:

1. BLANK SCREEN or ERASE SCREEN

2. LINE or COLUMN positioning

3. BLANK REMAINDER or ERASE EOS

4. BLANK LINE or ERASE EOL

Therefore, it is redundant to specify BLANK LINE in the same entry with BLANK
REMAINDER, and it is redundant to specify either of those attributes in the same entry with
BLANK SCREEN.

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause has the same effect in the Screen Section as it does in the
other sections of the Data Division. It causes the screen field to be filled with spaces if the
value of the associated item is zero. It is effective only during an output operation.

The BLANK WHEN ZERO clause can be used only at the elementary level for a screen item
whose category is numeric or numeric edited.

The BLANK WHEN ZERO clause must not be specified in the same entry with a PICTURE
clause having an asterisk as the zero suppression symbol.

REMAINDERBLANK

SCREENBLANK

ZEROWHENBLANK

Chapter 4: Data Division

154 RM/COBOL Language Reference Manual

The BLANK WHEN ZERO clause must not be specified in the same entry with a PICTURE
clause that specifies an operational sign with the symbol S.

BLINK Clause

During both ACCEPT and DISPLAY operations, the BLINK clause causes the screen field to
be shown in the flashing mode if such a mode is available on the terminal.

The BLINK clause may be used only at the elementary level.

COLUMN Clause

The COLUMN clause may be used to specify an absolute or relative horizontal position for
the cursor. It may be specified only at the elementary level. The words COLUMN and COL
are synonymous.

If identifier-2 is used, it must be defined in one of the other sections of the Data Division as
an elementary numeric integer. It may be qualified or subscripted, but reference modification
is not permitted.

If identifier-2 is used or if integer-4 is used without the PLUS option, the current value of the
data item referred to by identifier-2 or the value of integer-4 is interpreted as an absolute 1-
relative column position. That is, a value of 1 specifies the leftmost column position in the
current line. Behavior of the cursor is undefined if the value is less than 1 or greater than the
width of the screen.

If the PLUS option is used, the value of integer-4 is interpreted as an increment to the current
position of the cursor, and the cursor is advanced to the right the specified number of
positions. Behavior of the cursor is undefined if such advancement moves the cursor beyond
the right edge of the screen.

If the COLUMN clause is omitted in an elementary screen description entry, the horizontal
cursor position is:

• 1 if the LINE clause is used in the same screen description entry.

• The current cursor position if the LINE clause is also omitted.

See Table 17 (on page 157) for a summary of the interaction of the LINE and COLUMN
clauses.

A COLUMN clause with no operand is equivalent to a COLUMN PLUS 1 clause.

ERASE Clause

BLINK

+

-2identifier

integer-4PLUS
ISNUMBERCOL

COLUMN

SCREEN
EOL
EOS

ERASE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 155

The ERASE clause may be specified only for elementary screen description entries.

During a display operation, when displaying an elementary field described with the ERASE
clause that specifies the EOS option, the line from the position of the cursor to the right end of
the line and all lines below the cursor are cleared to spaces. The position of the cursor
remains unchanged at the beginning of the screen field.

During a display operation, when displaying an elementary field described with the ERASE
clause that specifies the EOL option, the line from the position of the cursor to the right end of
the line is cleared to spaces. The position of the cursor remains unchanged at the beginning of
the screen field.

During a display operation, when displaying an elementary field described with the ERASE
clause that explicitly or implicitly specifies the SCREEN option, the line from the position of
the cursor to the right end of the line is cleared to spaces. The position of the cursor remains
unchanged at the beginning of the screen field.

See BLANK SCREEN Clause on page 153 for additional information on blanking (erasing)
the screen and portions of the screen.

FOREGROUND Clause

color-name-2 may be any properly formed user-defined word that names a color known to the
runtime system. The default names known to all RM/COBOL runtime systems are provided
in Table 16 (see page 152). color-name-2 is not a data-name, that is, color-name-2 must be
the color-name itself and does not refer to a data item that contains the color-name.

The FOREGROUND clause may be used either at the group level or at the elementary level.
When used at the group level the effect is as if it were specified in each subordinate
elementary entry that is not controlled by an intervening nested FOREGROUND clause.

The FOREGROUND clause causes the foreground of the screen field to be shown in the
specified color provided the terminal supports color operations and provided the appropriate
configuration operations have been performed. The specification is effective for both input
and output fields.

The FOREGROUND-COLOR clause is an alternative method of specifying the foreground
color for the screen item. It is provided for compatibility with other common dialects of
COBOL. The value of integer-2 must be in the range 0 through 7 and specifies a color-name
according to Table 16.

The FOREGROUND-COLOR clause may be used either at the group level or at the
elementary level with the same result as a FOREGROUND clause that specifies a color-name
corresponding to the value of integer-2.

FULL Clause

The FULL clause may be used either at the group level or at the elementary level. When used
at the group level the effect is as if it were specified in each subordinate elementary entry that
specifies a PICTURE clause with a TO or USING option.

integer-2
-2color-name

ISCOLOR-FOREGROUND
ISFOREGROUND

FULL

Chapter 4: Data Division

156 RM/COBOL Language Reference Manual

When an elementary field that has the FULL attribute is functioning as an input field during
the course of an ACCEPT operation, the user is required to enter either a field terminator by
itself, in which case the field is bypassed and the value of the associated item remains
unchanged, or a sufficient number of characters to fill the entire screen field. Partially filling
the screen field is not allowed. If the REQUIRED attribute is also specified, the option of
entering a field terminator by itself is not available.

HIGHLIGHT and LOWLIGHT Clauses

An elementary field that is described with the HIGHLIGHT clause is shown at high intensity
during both ACCEPT and DISPLAY operations.

An elementary field that is described with the LOWLIGHT clause or NO HIGHLIGHT clause
is shown at low intensity during both ACCEPT and DISPLAY operations.

The default intensity is high for ACCEPT operations and low for DISPLAY operations.

The HIGHLIGHT, LOWLIGHT and NO HIGHLIGHT clauses may be specified only in
elementary screen description entries.

JUSTIFIED Clause

The JUSTIFIED clause has the same effect in the Screen Section as it does in the other
sections of the Data Division. That is, it specifies nonstandard positioning of nonnumeric
data within the screen field when the screen field is acting as a receiving field. If the
associated item is longer than the screen field, the leftmost characters of the associated item
are truncated and the remaining characters from the associated item are moved into the screen
field. If the associated item is shorter than the screen field, the remaining leftmost positions
are space-filled. In either case, the rightmost character from the associated item falls in the
rightmost position of the screen field.

The JUSTIFIED clause may be used only at the elementary level and only with screen fields
whose category is alphanumeric or alphabetic. It is effective only during ACCEPT
operations.

JUSTIFIED and JUST are synonymous.

LINE Clause

The LINE clause may be used to specify an absolute or relative vertical position for the
cursor. It may be specified only at the elementary level.

[]

LOWLIGHT

HIGHLIGHTNO

RIGHT
JUST
JUSTIFIED

+

-1identifier

integer-3PLUS
ISNUMBERLINE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 157

If identifier-1 is used, it must be defined in one of the other sections of the Data Division as
an elementary numeric integer. It may be qualified or subscripted, but reference modification
is not permitted.

If identifier-1 is used or if integer-3 is used without the PLUS option the current value of the
data item referred to by identifier-1 or the value of integer-3 is interpreted as an absolute 1-
relative line position. That is, a value of 1 specifies the topmost line on the screen. Behavior
of the cursor is undefined if the value is less than 1 or greater than the number of lines
available on the screen.

If the PLUS option is used, the value of integer-3 is interpreted as an increment to the current
position of the cursor, and the cursor is undefined if such advancement moves the cursor
below the bottom edge of the screen.

If the LINE clause is omitted in an elementary screen description entry, the cursor position
remains on the current line.

If the LINE clause is used without the COLUMN clause, the cursor is moved to the leftmost
position of the specified line. Table 17 shows the interaction of LINE and COLUMN clauses
in a screen description entry.

A LINE clause with no operand is equivalent to a LINE PLUS 1 clause.

Table 17: Interaction of LINE and COLUMN Clauses in a Screen Description Entry

Interaction of LINE and COLUMN Clauses in a Screen Description Entry

LINE Clause

COLUMN Clause

Field Position
(line 1, column 2)

omitted

omitted (Curline, Curcol)

COLUMN (Curline, Curcol + 1)

COLUMN n (Curline, n)

COLUMN PLUS n (Curline, Curcol + n)

LINE

omitted (Curline + 1, 1)

COLUMN (Curline + 1, Curcol + 1)

COLUMN n (Curline + 1, n)

COLUMN PLUS n (Curline + 1, Curcol + n)

LINE m omitted (m, 1)

COLUMN (m, Curcol + 1)

COLUMN n (m, n)

COLUMN PLUS n (m, Curcol + n)

LINE PLUS m omitted (Curline + m, 1)

COLUMN (Curline + m, Curcol + 1)

COLUMN n (Curline + m, n)

COLUMN PLUS n (Curline + m, Curcol + n)

1 Curline is 1 for the first elementary entry in a screen record and is the line number of the
immediately preceding elementary entry for each subsequent entry in the screen record.

2 Curcol is 1 for the first elementary entry in a screen record and is the column number plus
field width of the immediately preceding elementary entry for each subsequent entry in the
screen record.

Chapter 4: Data Division

158 RM/COBOL Language Reference Manual

PICTURE Clause

The PICTURE clause may be specified only at the elementary level; it may not be specified in
the same screen description entry as a VALUE clause.

PICTURE and PIC are synonymous.

character-string-1 is defined in the same way and has the same interpretation as in the other
sections of the Data Division.

As indicated by the format, a PICTURE clause in the Screen Section must contain either one
or two associated items specified in the FROM, TO or USING phrases. Two associated items
may be specified only if both a FROM and TO phrase are specified. The USING phrase is
equivalent to specifying both a FROM and TO phrase, each of which specify the same
identifier-9.

When identifier-7, identifier-8, or identifier-9 is specified, they must have been defined as
data items in one of the other sections of the Data Division. They may not be reference
modified, but qualification and subscripting may be used.

When an identifier is specified as an associated data item, the compiler allocates a unique
memory area for that screen item to serve as an intermediate storage area for the transmission
of data between the screen field and the associated data item. The size of the intermediate
storage area is determined by the PICTURE character-string in the same way as for the other
sections of the Data Division.

The presence of a FROM or USING phrase in the description of a screen item marks that
screen item as an output item that is active during DISPLAY operations. The execution of a
DISPLAY statement causes an implicit MOVE from the associated data item to the screen
item prior to displaying the screen field.

The presence of a TO or USING phrase in the description of a screen item marks that screen
item as an input item that is active during ACCEPT operations. The execution of an
ACCEPT statement causes an implicit MOVE from the screen item to the associated data
item after accepting the screen field.

REQUIRED Clause

The REQUIRED clause may be used either at the group level or at the elementary level.
When used at the group level the effect is as if it were specified in each subordinate
elementary entry that specifies a PICTURE clause with a TO or USING option.

When an elementary field that has the REQUIRED attribute is functioning as an input field
during the course of an ACCEPT operation, the user is required to enter at least one character
in the field.

-9identifier
-8identifier

literal-1
-7identifier

string-1character-

USING
TO

FROM
IS

PIC
PICTURE

REQUIRED

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 159

REVERSE Clause

An elementary field that has the REVERSE attribute is shown in reverse video during both
ACCEPT and DISPLAY operations.

The REVERSE clause may be used only at the elementary level.

The words REVERSE, REVERSED, and REVERSE-VIDEO are synonymous.

SECURE Clause

The SECURE clause may be used either at the group level or at the elementary level. When
used at the group level the effect is as if it were specified in each subordinate elementary entry
that specifies a PICTURE clause with a TO or USING option.

When an elementary field that has the SECURE attribute is functioning as an input field
during the course of an ACCEPT operation, the characters entered by the user are moved to
the intermediate area but are not shown on the screen. Instead, asterisks are placed in the
screen field for each character entered by the user.

SIGN Clause

The SIGN clause in a screen description entry has the same function and rules as in other
sections of the Data Division, except that for screen items, the operational sign is always
separate. The SIGN clause may be specified in either a group screen description entry or an
elementary field screen description entry. When used at the group level it applies to all
elementary items subordinate to that group that are not subordinate to an intervening nested
SIGN clause.

UNDERLINE Clause

An elementary field that has the UNDERLINE attribute is shown in underline mode during
both ACCEPT and DISPLAY operations, provided the terminal supports that mode.

The UNDERLINE clause may be used only at the elementary level in a screen literal
description entry or a screen field description entry.

VIDEO-REVERSE
REVERSED
REVERSE

SECURE

[] []CHARACTERSEPARATETRAILING
LEADINGISSIGN

UNDERLINE

Chapter 4: Data Division

160 RM/COBOL Language Reference Manual

USAGE Clause

The USAGE clause may be used in either a screen group description entry or an elementary
screen field description entry. When used at the group level, it applies to all elementary items
subordinate to that group.

The USAGE clause in the Screen Section can specify only DISPLAY usage. DISPLAY usage
indicates that the format of the data is a standard data format. If the USAGE clause is not
specified for an elementary item, or for any group to which the item belongs, the usage is
implicitly DISPLAY.

VALUE Clause

literal-1 must be a nonnumeric literal.

The VALUE clause may be used only at the elementary level. It may not be specified in the
same screen description entry as a PICTURE, BLANK WHEN ZERO, JUSTIFIED, SIGN,
USAGE, SECURE, AUTO, REQUIRED or FULL clause.

Screen fields whose description includes a VALUE clause are active during DISPLAY
operations.

Data Structures

Classes of Data
The five categories of data items, as discussed in PICTURE Character-Strings (Data
Categories) on page 112, are grouped into three classes:

1. Alphabetic

2. Numeric

3. Alphanumeric

For alphabetic and numeric, the classes and categories are synonymous.

The alphanumeric class includes the categories of alphanumeric edited, numeric edited and
alphanumeric (without editing).

Every elementary item except for an index data item belongs both to one of the classes and to
one of the categories. The class of a group item is treated at object time as alphanumeric
regardless of the class of elementary items subordinate to that group item.

Table 18 depicts the relationship of the class and categories of data items.

[] DISPLAYISUSAGE

[] literal-1ISVALUE

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 161

Table 18: Data Item Relationships

Data Item Relationships

Level of Item Class Category

Elementary

Alphabetic Alphabetic

Numeric Numeric

Alphanumeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

Nonelementary (Group) Alphanumeric

Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

Standard Alignment Rules
The standard rules of positioning data within an elementary item depend on the category of
the receiving item.

If the receiving data item is described as numeric:

• The data is aligned by decimal point and is moved to the receiving character positions
with zero fill or truncation on either end as required.

• When an assumed decimal point is not explicitly specified, the data item is treated as if it
had an assumed decimal point immediately following its rightmost character and is
aligned as described above.

If the receiving data item is a numeric edited data item, the data moved to the edited data item
is aligned by decimal point with zero-fill or truncation at either end as required within the
receiving character positions of the data item, except where editing requirements cause
replacement of the leading zeroes.

If the receiving data item is alphanumeric (other than a numeric edited data item),
alphanumeric edited or alphabetic, the sending data is moved to the receiving character
positions and aligned at the leftmost character position in the data item with space-fill or
truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified
as described in the JUSTIFIED clause.

Uniqueness of Reference
Every user-defined name in a COBOL program is assigned, by the user, to name a resource
that is to be used in solving a data processing problem. In order to use a resource, a statement
in a COBOL program must contain a reference that uniquely identifies that resource. In order
to ensure uniqueness of reference, a user-defined name may be qualified, subscripted or
reference-modified as described in the following paragraphs.

Chapter 4: Data Division

162 RM/COBOL Language Reference Manual

When the same name has been assigned in separate programs to two or more occurrences of a
resource of a given type, and when qualification by itself does not allow the reference in one
of those programs to differentiate between the two identically named resources, then certain
conventions which limit the scope of names apply. These conventions ensure that the
resource identified is that described in the program containing the reference.

Unless otherwise specified by the rules for a statement, any subscripting and reference
modification are evaluated only once as the first operation of the execution of that statement.

Qualification
Every user-defined name explicitly referenced in a COBOL source program must be uniquely
referenced because either:

• No other name has the identical spelling and hyphenation.

• It is unique within the context of a REDEFINES clause.

• The name exists within a hierarchy of names such that reference to the name can be made
unique by mentioning one or more of the higher level names in the hierarchy.

These higher level names are called qualifiers and the process that specifies uniqueness is
called qualification. Identical user-defined names may appear in a source program;
however, uniqueness must then be established through qualification for each user-defined
name explicitly referenced, except in the case of redefinition. All available qualifiers
need not be specified so long as uniqueness is established. Reserved words naming the
special registers require qualification to provide uniqueness of reference whenever a
source program would result in more than one occurrence of any of these special
registers. A paragraph-name or section-name appearing in a program may not be
referenced from any other program.

• A program is contained within a program or contains another program.

Regardless of the above, the same data-name must not be used as the name of an external
record and as the name of any other external data item described in any program contained
within or containing the program which describes that external data record. The same data-
name must not be used as the name of an item possessing the global attribute and as the name
of any other data item described in the program which describes that global data item.

An exception regarding the qualification requirement is made with respect to the operand of a
REDEFINES clause because its position within the hierarchical structure of the Data Division
implicitly supplies any qualification that might be needed.

In the hierarchy of qualification, names associated with a level indicator are the most
significant, followed by names associated with level-number 01, followed by names
associated with level-numbers 02, . . ., 49. The name of a conditional variable may be used as
a qualifier for any of its condition-names.

Qualification is performed by following a data-name, condition-name, LINAGE-COUNTER,
screen-name, split-key-name, or by one or more phrases made up of a qualifier preceded by
IN or OF. IN and OF are logically equivalent.

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 163

Format 1: Qualification for Data-Names, Index-Names and Condition-
Names

Format 2: Qualification for LINAGE-COUNTER

Format 3: Qualification for Screen-Names

Format 4: Qualification for Split-Key-Names

The rules for qualification are as follows:

1. Each reference in the Environment Division, the Data Division, or the Procedure Division
to a nonunique user-defined word must be made unique by supplying a sequence of
qualifiers that precludes any ambiguity of reference. An exception exists for paragraph-
names referenced from the section in which they are defined within the Procedure
Division as explained in Procedure References (on page 175).

2. data-name-1 and data-name-2 may be record-names.

3. Each qualifier must be a name associated with a level indicator (FD, SD or CD), a record-
name (level 01), the name of a group item to which the item being qualified is
subordinate, or the name of the conditional variable with which the condition-name is
associated. All qualifiers must be within the same hierarchy as the name being qualified,
and they must be specified in the order of successively more inclusive (higher) levels in
the hierarchy.

4. The same name must not appear at two levels in a hierarchy.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. In a program that contains more than one LINAGE clause, each reference to LINAGE-
COUNTER must be qualified by the associated file-name.

7. Each reference to a split-key-name, defined in a RECORD KEY or ALTERNATE
RECORD KEY clause, must be qualified by the file-name of the file with which the split-
key-name is associated if the split-key-name is not unique within the program.

8. A name can be qualified even though it does not need qualification: if there is more than
one combination of qualifiers that ensures uniqueness, any such set can be used.
Qualified data-names may have any number of qualifiers up to a limit of 49.

cd-name-1
1file-name-

cd-name-1
1file-name-data-name-

name-1condition-
-1index-name
1data-name-

OF
IN

OF
IN

OF
IN 2

2file-name-

OF
INCOUNTER-LINAGE

 e-2screen-name-1screen-nam OF

IN

3file-name-name-1split-key-

OF
IN

Chapter 4: Data Division

164 RM/COBOL Language Reference Manual

Subscripting
Subscripts are used when reference is made to an individual element within a table of like
elements that have not been assigned individual data-names.

Except as the subject of a SEARCH statement, in a REDEFINES clause, or in a KEY IS
phrase of an OCCURS clause, every reference to a table element must be subscripted, and
there must be within the parentheses exactly as many subscripts as there are controlling
OCCURS clauses for the data item referred to by data-name-1 or the conditional variable
associated with condition-name-1.

A data item is controlled by an OCCURS clause if the OCCURS clause is in the data
description of the data item or in the data description of a higher-level data item to which the
data item is subordinate. A table element is a data item that has at least one controlling
OCCURS clause.

Each subscript in the list is associated with a specific OCCURS clause that appears either in
the data description of data-name-1 itself or at a higher level within the same hierarchy.
When there is more than one subscript in the parenthesized list, the subscripts are written in
the order of successively less inclusive dimensions of the table. That is, the rightmost
subscript in the list is associated with the OCCURS clause that appears in the data description
of data-name-1 itself, or the nearest preceding OCCURS clause, if the data description of
data-name-1 does not contain an OCCURS clause.

The value of each subscript is an occurrence number. The lowest possible occurrence number
is 1, and an occurrence number of 1 refers to the first element of the table. Higher occurrence
numbers (2, 3, . . .) refer in sequence to the following elements of the table. The highest
permissible occurrence number for any given dimension of the table is the maximum number
of occurrences of the item as specified in the associated OCCURS clause.

The syntax for each individual subscript is:

integer-1 may be signed, but only with a plus sign. When the integer-1 form of a subscript is
used, the occurrence number is the value of integer-1.

When the data-name-2 form of a subscript is used, data-name-2 may be qualified but not
subscripted. It must be defined in the Data Division as a numeric integer data item. The
value of the occurrence number of the subscript is the current value of the data item referred
to by data-name-2 optionally incremented (when the + is used) or decremented (when the – is
used) by the value of integer-2. The value of integer-2 may be zero. Note that when the
integer-2 option is present, the sum (or difference) of the current value of the data item and
integer-2 must be a valid occurrence number. The user is responsible for ensuring that the
current value of the data item referred to by data-name-2 is appropriate for this use of
data-name-2. The value of the data item can be modified by a number of different statements
such as the MOVE statement, arithmetic statements, and so forth.

When the index-name-1 form of a subscript is used, the OCCURS clause that is associated
with the subscript must specify an INDEXED BY phrase, and index-name-1 must be defined
in the list of that INDEXED BY phrase. If index-name-1 is not unique within the program,
the reference must be made unique with qualification.

{ })(1subscript-name-1condition-
1data-name-

−
+

 integer-2-1index-name

2data-name-
integer-1

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 165

The value of the occurrence number of the subscript is the occurrence number contained in
the index referred to by index-name-1 optionally incremented (when the + is used) or
decremented (when the – is used) by the value of integer-2. The value of integer-2 may be
zero. Note that when the integer-2 option is present, the sum (or difference) of the current
value of the index and integer-2 must be a valid occurrence number. The user is responsible
for ensuring that the current value of the index referred to by index-name-1 is appropriate for
this use of index-name-1. The value of an index can be modified only by the SET statement
and by certain forms of the PERFORM and SEARCH statements.

When it is convenient to do so, the integer-1 or index-name-1 form of a subscript should be
used in preference to the data-name form, for efficiency.

Reference Modification
Reference modification permits reference to a subfield of a data item. It may be used
anywhere an identifier referencing an alphanumeric data item is allowed, unless explicitly
disallowed by the rules for a specific statement.

data-name-1 must refer to a data item whose usage is DISPLAY (called “the operand” in this
discussion). It may be qualified, subscripted or both.

Note RM/COBOL does not enforce the COBOL rule regarding usage DISPLAY. Data items
with usages other than DISPLAY may be reference modified.

leftmost-character-position-1 and length-1 are both arithmetic expressions as defined in the
discussion of Arithmetic Expressions (on page 185). The value of leftmost-character-
position-1 specifies the leftmost character position of the subfield within the operand. The
value of length-1 specifies the character length of the subfield. The subfield selected in this
way is treated as an elementary data item without the JUSTIFIED clause. It has the same
class and category as the operand, except that the categories numeric, numeric edited and
alphanumeric edited are treated as class and category alphanumeric.

If the operand is described as numeric, numeric edited, alphabetic or alphanumeric edited, it is
operated on for purposes of reference modification as if it were redefined as an alphanumeric
data item of the same size as the operand.

Each character position of the operand is assigned an ordinal number starting with one at the
leftmost character position and incrementing by one for each subsequent character position up
to and including the rightmost character position. If the data description for the operand
contains or is subject to a SIGN IS SEPARATE clause, the sign position is assigned an
ordinal number in the same way as for the digit positions of the data item.

The value of leftmost-character-position-1 specifies the ordinal position of the leftmost
character of the subfield with respect to the leftmost position of the operand. The evaluation
must result in a positive integer not greater than the number of characters in the operand.

When length-1 is omitted, the subfield extends from the position specified by
leftmost-character-position-1 up to and including the rightmost character position
of the operand.

When length-1 is present, its value specifies the length in characters of the subfield. The
evaluation must result in a positive integer. The sum of the values of the two expressions
minus 1 must not be greater than the number of characters in the operand.

RM/COBOL relaxes the preceding rules regarding the values of leftmost-character-position-1
and length-1. The relaxed rules allow leftmost-character-position-1 to exceed the number of

[]):(

 RIGHTJUST

JUSTIFIEDlength-1osition-1haracter-pleftmost-c1data-name-

Chapter 4: Data Division

166 RM/COBOL Language Reference Manual

characters in the operand; in this case, the subfield will be zero length. Also, the sum of the
two expressions minus 1 may be greater than the number of characters in the operand. In this
case, the length of the subfield is reduced until the sum of leftmost-character-position-1 and
the reduced length minus 1 is equal to the number of characters in the operand, but not less
than zero. The relaxed rules apply to both sending and receiving operands. The relaxed rules
do not allow negative or zero values for either leftmost-character-position-1 or length-1. The
strict ISO Standard 1989-1985 compliant rules can be enforced by specifying the value YES
for the STRICT-REFERENCE-MODIFICATION keyword of the COMPILER-OPTIONS
configuration record, as explained in Chapter 10: Configuration of the RM/COBOL User’s
Guide.

For a sending data item, the JUSTIFIED phrase causes the length to be reduced to ignore any
spaces on the right end of the data item after applying the leftmost-character-position-1 and
length-1 as described in the preceding rules.

For a receiving data item, the JUSTIFIED phrase is ignored, except that in a MOVE
statement, the receiving data item defined by application of the reference modification is
treated as if the JUSTIFIED RIGHT clause had been specified in an implied data description
entry defining that data item.

JUST is an abbreviation for JUSTIFIED.

If subscripting is specified for the operand, the reference modification expressions are
evaluated immediately after evaluation of the subscripts. If subscripting is not specified for
the operand, the reference modification expressions are evaluated at the time subscripts would
have been evaluated had they been specified.

When an identifier that refers to a level-number 01 or 77 Linkage Section data item formal
argument is reference modified, the data item is resolved according to its description in the
calling program. This is an exception to the rule that formal arguments are resolved
according to their description in the Linkage Section of the called program. How the data
item is resolved mainly affects the length of the data item as seen in the called program. For
additional information on this special case of resolving Linkage Section record-names, see
Linkage Section on page 98.

Identifier
An identifier is a term used to reflect that a data-name may be followed by a syntactically
correct combination of qualifiers, subscripts or reference modifiers to ensure uniqueness.

Condition-Name
Each reference to a condition-name must be unique, or be made unique through qualification,
subscripting, or both.

{ }[]

[]

):(

)(

RIGHTJUST
JUSTIFIED

OF
IN

OF
IN

length-1osition-1haracter-pleftmost-c

1subscript-

cd-name-1
1file-name-2data-name-1data-name-

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 167

If qualification is used to make a condition-name unique, the associated conditional variable
may be used as the first qualifier. If qualification is used, the hierarchy of names associated
with the conditional variable or the conditional variable itself must be used to make the
condition-name unique.

If references to a conditional variable require subscripting, references to any of its condition-
names also require the same subscripting.

The restrictions on the combined use of qualification and subscripting of condition-names are
the same as those that apply to an identifier.

In the general formats, condition-name-1 refers to a condition-name qualified or subscripted,
as necessary for unique reference.

Index-Name
Each reference to an index-name must be unique, or be made unique through qualification.

If qualification is used to make an index-name unique, the data-name of the associated table
may be used as the first qualifier. If qualification is used, the hierarchy of names associated
with the data-name of the associated table or the data-name of the associated table itself must
be used to make the index-name unique.

In the general formats, index-name-1 refers to an index-name qualified, as necessary, for
unique reference.

Table Handling
Tables of data are common components of business data processing problems. Although the
repeating items that make up a table could be otherwise described as a series of separate data
description entries all having the same level-number and all subordinate to the same group
item, there are two reasons why this approach is not satisfactory.

First, from a documentation standpoint, the underlying homogeneity of the items would not be
readily apparent; second, the problem of making available an individual element of such a
table would be severe when there is a decision as to which element is to be made available at
object time.

Tables of data items are defined by including the OCCURS clause in their data description
entries. This clause specifies that the item is to be repeated as many times as stated. The item
is considered to be a table element and its name and description apply to each repetition or
occurrence. Since each occurrence of a table element does not have assigned to it a unique
data-name, reference to a desired occurrence may be made only by specifying the identifier of
the table element together with the occurrence number of the desired table element. The
occurrence number is specified by a subscript.

{ }[])(

1subscript-

cd-name-1
1file-name-1data-name-name-1condition-

OF
IN

OF
IN

cd-name-1
1file-name-1data-name--1index-name OF

IN
OF
IN

Chapter 4: Data Division

168 RM/COBOL Language Reference Manual

The number of occurrences of a table element may be specified to be fixed or variable,
depending on the value of another data item.

Table Definition
To define a one-dimensional table, use an OCCURS clause as part of the data description of
the table element, but the OCCURS clause must not appear in the description of group items
which contain the table element.

Example 1

 01 TABLE-1.
 02 TABLE-ELEMENT OCCURS 20 TIMES.
 03 NAME PICTURE X(40).
 03 SSN PICTURE 9(9) PACKED-DECIMAL.

Defining a one-dimensional table within each occurrence of an element of another
one-dimensional table gives rise to a two-dimensional table. To define a two-dimensional
table, then, an OCCURS clause must appear in the data description of the element of the table,
and in the description of only one group item which contains that table. In the description of a
three-dimensional table, the OCCURS clause should appear in the data description of two
nested group items which contain the element. The process of nesting table definitions may
be continued to any depth, but the size of the outermost group increases geometrically with
each dimension.

The following example shows how a three-dimensional table may be defined.

Example 2

 01 CENSUS-TABLE.
 05 STATE-TABLE OCCURS 50 TIMES.
 10 STATE-CODE PIC X(02).
 10 COUNTY-TABLE OCCURS 50 TIMES.
 15 COUNTY-CODE PIC X(02).
 15 CITY-TABLE OCCURS 30 TIMES.
 20 CITY-CODE PIC X(02).
 20 CITY-POPULATION PIC 9(07).

The data item named STATE-TABLE is a one-dimensional table. The data item named
COUNTY-TABLE, which is subordinate to STATE-TABLE, is a two-dimensional table. The
data item named CITY-TABLE, which is subordinate to COUNTY-TABLE, is a
three-dimensional table.

Example 2 defines 230,101 data items having a total size of 680,100 characters. See the
definitions in Table 19.

Table 19: Example 2 Definitions

Example 2 Definitions

Name Number Size

CENSUS-TABLE 1 680100

STATE-TABLE 50 680100

STATE-CODE 50 2

Chapter 4: Data Division

 RM/COBOL Language Reference Manual 169

Example 2 Definitions

Name Number Size

COUNTY-TABLE 2500 13600

COUNTY-CODE 2500 2

CITY-TABLE 75000 270

CITY-CODE 75000 2

CITY-POPULATION 75000 7

References to Table Items
Whenever the user refers to a table element or a condition-name associated with a table
element, the reference must indicate which occurrence of the element is intended. For
access to a one-dimensional table, the occurrence number of the desired element provides
complete information. For access to tables of more than one dimension, an occurrence
number must be supplied for each dimension of the table. In Example 2 then, a reference
to the fourth STATE-CODE would be complete, whereas a reference to the fourth
COUNTY-CODE would not. To refer to COUNTY-CODE, which is an element of a
two-dimensional table, the user must refer to, for example, the fourth COUNTY-CODE
within the sixth STATE-TABLE.

Occurrence numbers are specified by appending one or more subscripts to the data-name.

The subscript can be represented by an integer, a data-name that references an integer numeric
elementary item, or an index-name associated with the table. A data-name or index-name
may be followed by either the operator + or the operator – and an integer, which is used as
an increment or decrement, respectively. It is permissible to mix integers, data-names, and
index-names.

The subscripts, enclosed in parentheses, are written immediately following any qualification
for the name of the table element. The number of subscripts in such a reference must equal
the number of dimensions in the table whose element is being referenced. That is, there must
be a subscript for each OCCURS clause in the hierarchy containing the data-name including
the data-name itself.

When more than one subscript is required, they are written in the order of successively less
inclusive dimensions of the data organization. If a multidimensional table is thought of as a
series of nested tables and the most inclusive or outermost table in the nest is considered to be
the major table with the innermost or least inclusive table being the minor table, the subscripts
are written from left to right in the order major, intermediate and minor.

A reference to an item must not be subscripted if the item is not a table element or an item or
condition-name within a table element.

The lowest permissible occurrence number is 1. The highest permissible occurrence number
in any particular case is the maximum number of occurrences of the item as specified in the
OCCURS clause.

When an integer or data-name is used to represent a subscript, it may be used to reference
items within different tables. These tables need not have elements of the same size. The
same integer or data-name may appear as the only subscript with one item and as one of two
or more subscripts with another item.

In order to facilitate such operations as table searching and manipulating specific items, a
technique called indexing is available. To use this technique, the programmer assigns one or

Chapter 4: Data Division

170 RM/COBOL Language Reference Manual

more index-names to an item whose data description entry contains an OCCURS clause. An
index associated with an index-name acts as a subscript, and its value corresponds to an
occurrence number for the item with which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its
table, is an optional part of the OCCURS clause. There is no separate entry to describe the
index associated with index-name since its definition is completely hardware oriented. At
object time, the contents of the index correspond to an occurrence number for that specific
dimension of the table with which the index is associated. The initial value of an index at
object time is undefined, and the index must be initialized before use. The initial value of an
index is assigned with the PERFORM statement with the VARYING phrase, the SEARCH
statement with the ALL phrase, or the SET statement.

The use of an integer or data-name as a subscript referencing a table element does not cause
the alteration of any index associated with that table.

An index-name can be used to reference only the table with which it is associated through the
INDEXED BY phrase.

Data that is arranged in the form of a table is often searched. The SEARCH statement
provides facilities for producing serial or binary searches. It is used to search a table for a
table element that satisfies a specific condition and to adjust the value of the associated index
to indicate that table element.

Relative indexing is an additional option for making references to a table element or to an
item within a table element. When the name of a table element is followed by a subscript of
the form (index-name + or – integer), the occurrence number required to complete the
reference is the same as if index-name were set up or down by integer using the SET
statement before the reference. The use of relative indexing does not cause the object
program to alter the value of the index.

The value of an index can be made accessible to an object program by storing the value in an
index data item. Index data items are described in the program by a data description entry
containing a USAGE IS INDEX clause. The index value is moved to the index data item by
the execution of a SET statement.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 171

Chapter 5: Procedure Division

The Procedure Division contains the procedures to be executed by the object program. It is an
optional division within a source program, and it may be omitted if there are no procedures to
be executed. The procedures within the Procedure Division may be subdivided into
declarative and nondeclarative procedures.

Procedure Division Header
When it is present, the Procedure Division is identified by and must begin with the following
header:

The USING phrase of the Procedure Division header identifies the names used by the
program for any parameters passed to it by a calling program or from the RM/COBOL
Runtime Command. It is required only in one of the following circumstances:

• If the object program is to be invoked by a CALL statement and that statement includes a
USING phrase.

• If the object program is to function as the first program in its run unit and it requires
access to the text of the runtime command that invokes the object program.

In the first case, the parameters passed to the called program are identified in the USING
phrase of the calling program’s CALL statement. The correspondence between the two
lists of names is established on a positional basis. That is, the first data-name-1 in the
USING list of the CALL statement in the calling program corresponds to the first
data-name-1 in the USING list of the Procedure Division header in the called program, the
second data-name-1 in the USING list of the CALL statement in the calling program
corresponds to the second data-name-1 in the USING list of the Procedure Division header
in the called program, and so forth. The two lists need not have the same number of operands,
but operands for which there is no corresponding operand in the other list may not be referred
to, nor may any of their subordinate data items, condition-names, or index-names be referred
to in the called program.

In the second case, there is only a single parameter, and it must be defined in the Linkage
Section with entries similar to the following:

{ }

.

 2data-name-

1data-name-

RETURNING
GIVING

USING

DIVISIONPROCEDURE

Chapter 5: Procedure Division

172 RM/COBOL Language Reference Manual

 01 MAIN-PARAMETER.
 02 PARAMETER-LENGTH PIC S9(4) BINARY (2).
 02 PARAMETER-TEXT.
 03 PARAMETER-CHAR PIC X OCCURS 0 TO 2048 TIMES
 DEPENDING ON PARAMETER-LENGTH.

The Procedure Division header should have the following form:

 PROCEDURE DIVISION USING MAIN-PARAMETER.

Subscripted references to PARAMETER-CHAR can then be used to access the characters
within the invocation line. Further information describing the technique for passing a
character-string to the first program in a run unit is discussed in the A Runtime Command
Option in Chapter 7: Running of the RM/COBOL User’s Guide.

In either case, each data-name-1 and data-name-2 must be defined as a level 01 entry or a
level 77 entry in the Linkage Section of the Data Division. A particular user-defined word
may not appear more than once as data-name-1 or data-name-2. The data description
entry for data-name-1 or data-name-2 must not contain a REDEFINES clause. However,
data-name-1 or data-name-2 may be the object of a REDEFINES clause elsewhere in the
Linkage Section.

If the reference to the corresponding data item in the CALL statement declares the parameter
to be passed by content, the value of the item is moved when the CALL statement is executed
and placed into a system-defined storage item possessing the attributes declared in the
Linkage Section for data-name-1. The data description of each parameter in the BY
CONTENT phrase of the CALL statement must be congruent to the data description of the
corresponding parameter in the USING phrase of the Procedure Division header. Two data
descriptions are congruent if they specify the same size and, for numeric items, the same
usage, scale and sign convention. For binary data items, congruency also depends on both
items being allocated with the same number of bytes, which depends on specification of the
same binary allocation override in the USAGE clause or matching configuration of the
compiler with the BINARY-ALLOCATION and BINARY-ALLOCATION-SIGNED
keywords of the COMPILER-OPTIONS configuration record when compiling each of the
possibly separately compiled programs.

If the reference to the corresponding data item in the CALL statement declares the parameter
to be passed by reference, the object program operates as if the data item in the called
program occupies the same storage area as the corresponding data item in the calling program.
If data-name-1 or any of its subordinate elements is referred to in the Procedure Division, it
must not be defined as being longer than its corresponding data item in the calling program.

RETURNING is a synonym for GIVING.

The GIVING phrase identifies the name used by the program for a result value. It is required
only when the calling program specifies a GIVING phrase in the CALL statement and the
design of that calling program depends on a result being placed in its GIVING argument.
That is, it is not an error if the calling program specifies a GIVING operand and the called
program does not; in this case, the called program ignores and cannot affect the GIVING
operand in the calling program. However, it is a data reference error to refer to data-name-2,
or any of its subordinate data-names or condition-names, redefined data-names, or renamed

data-names if the calling program does not have a GIVING phrase, except in certain contexts.
When the calling program does not have a GIVING phrase, the contexts where an error will
not occur are:

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 173

• The ADDRESS OF special register, which will be equal to NULL in this case.

• The USING or GIVING phrase of a CALL statement. In this case, the called program
will receive an actual argument with a NULL base address. The called program would
cause a data reference error if that program referred to the corresponding formal
argument other than in the contexts described here.

Each reference to data-name-1 or data-name-2 in the called program is resolved in
accordance with the description of data-name-1 or data-name-2 as given in the Linkage
Section of the called program, except when they name a level 01 or level 77 entry and they
are specified in the USING or GIVING phrase of a CALL statement, or when they are
reference modified. In these two exception cases, the reference to data-name-1 or
data-name-2 is resolved according to the description in the calling program.

A data item defined in the Linkage Section of the called program may be referred to within
the Procedure Division of that program only if it satisfies one of the following conditions:

• It is an operand in the USING phrase of the Procedure Division header and there is a
corresponding operand in the USING phrase of the CALL statement of the calling
program.

• It is an operand in the GIVING phrase of the Procedure Division header and there is a
corresponding operand in the GIVING phrase of the CALL statement of the calling
program.

• It is the target of a Format 5 SET statement using the SET ADDRESS OF data-name-1
format, where data-name-1 is the name of the data item and the sending pointer value is
not a null pointer value.

• It is subordinate to a data item that satisfies one of the preceding conditions.

• It is defined with a REDEFINES or RENAMES clause, the object of which satisfies one
of the preceding conditions.

• It is an item subordinate to an item that satisfies the preceding condition.

• It is a condition-name or index-name associated with a data item that satisfies any of the
preceding conditions.

• It is the operand of an ADDRESS special register. In this case, if none of the preceding
conditions are satisfied, the ADDRESS special register will have a null pointer value.
Thus, an IF statement may be used to verify that one of the preceding conditions has been
satisfied by verifying that the ADDRESS of the data item is not equal to NULL.

• It is the operand of a USING or GIVING phrase in a CALL statement. In this case, if
none of the preceding conditions are satisfied, the program called by the CALL statement
receives an omitted argument for its corresponding formal argument.

Chapter 5: Procedure Division

174 RM/COBOL Language Reference Manual

Procedure Division Structure
The Procedure Division must conform to one of the following formats.

Format 1: Declaratives or Sections

Format 2: Paragraphs

segment-number-1 must be an integer ranging in value from 0 through 49.

segment-number-2 must be an integer ranging in value from 0 through 127.

{ }

.

2data-name-

1data-name-

RETURNING
GIVING

USING

DIVISIONPROCEDURE

.ESDECLARATIV

{ [].mber-1segment-nume-1section-na SECTION

.ent-1USE-statem

[.name-1paragraph-

[]] }sentence-1

.ESDECLARATIVEND

{ [].mber-2segment-nume-2section-na SECTION

[.name-2paragraph-

[]] }

sentence-2

{ }

.

2data-name-

1data-name-

RETURNING
GIVING

USING

DIVISIONPROCEDURE

{ .name-3paragraph-

[] }

sentence-3

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 175

If a segment-number is omitted from the section header, the segment-number is assumed
to be 0.

All sections that have the same segment-number constitute a program segment. Sections that
have the same segment-numbers need not be physically contiguous in the source program.

Segments with segment-number 0 through 49 belong to the fixed portion of the object
program.

Segments with segment-number 50 through 127 are independent segments. A program
without declaratives may consist solely of independent segments.

Declarative sections must be grouped at the beginning of the Procedure Division, preceded by
the keyword DECLARATIVES and followed by the keywords END DECLARATIVES.

Procedures
A procedure comprises a paragraph, a group of successive paragraphs, a section or a group of
successive sections within the Procedure Division. If one paragraph is in a section, all
paragraphs must be in sections. A procedure-name is a word used to refer to a paragraph or
section. It consists of a section-name, a paragraph-name, or a paragraph-name qualified by a
section-name.

A section consists of a section header followed by zero or more paragraphs. A section ends
immediately before the next section or at the end of the Procedure Division or, in the
declaratives portion of the Procedure Division, at the keywords END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by zero or
more sentences. A paragraph ends immediately before the next paragraph-name or section-
name or at the end of the Procedure Division or, in the declaratives portion of the Procedure
Division, at the keywords END DECLARATIVES.

In a Procedure Division that is not divided into sections, a paragraph-name may be defined
more than once. In a Procedure Division that is divided into sections, a paragraph-name may
be defined more than once in the same section. Such nonunique paragraph-names may not be
referenced.

A statement is a syntactically valid combination of words and symbols beginning with a verb.
The word THEN may be used as a statement separator within the Procedure Division. It has
no effect on the meaning of the statements.

Execution
Execution begins with the first statement of the Procedure Division, excluding declaratives.

Statements are then executed in the order in which they appear in the source program, except
where the rules indicate some other order.

Procedure References
A procedure is referred to by its paragraph-name or section-name. Paragraph-names may be
qualified by the section-name of the section containing the paragraph, whether or not it needs
qualification. When referring to a section-name or when using a section-name as a qualifier,
the word SECTION must not appear. Qualification is performed by following a paragraph-

Chapter 5: Procedure Division

176 RM/COBOL Language Reference Manual

name with a section-name preceded by IN or OF. IN and OF are synonymous in this context.
The general format for paragraph qualification is:

paragraph-name-1 need not be qualified when referred to within the section in which it is
defined or when it is unique.

Explicit and Implicit Transfers of Control
The mechanism that controls program flow transfers control from statement to statement in
the sequence in which they were written in the source program unless an explicit transfer of
control overrides this sequence or there is no next executable statement to which control can
be passed. The transfer of control from statement to statement occurs without the writing of
an explicit Procedure Division statement, and, therefore, is an implicit transfer of control.

RM/COBOL provides both explicit and implicit means of altering the implicit control transfer
mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer
of control also occurs when the normal flow is altered without the execution of a procedure
branching statement.

RM/COBOL provides the following types of implicit control flow alterations that override the
statement-to-statement transfers of control:

• If a paragraph is being executed under control of another statement (PERFORM, USE,
SORT or MERGE), and the paragraph is the last paragraph in the range of the controlling
statement, an implied transfer of control occurs from the last statement in the paragraph
to the control mechanism of the last-executed controlling statement.

• If a paragraph is being executed under the control of a PERFORM statement that causes
iterative execution, and that paragraph is the first paragraph in the range of that
PERFORM statement, an implicit transfer of control occurs between the control
mechanism associated with that PERFORM statement and the first statement in that
paragraph for each iterative execution of the paragraph.

• When a SORT or MERGE statement is executed, an implicit transfer of control occurs to
any associated input or output procedures.

• When any statement is executed that results in the execution of a declarative section, an
implicit transfer of control to the declarative section occurs. Note that another implicit
transfer of control occurs after execution of the declarative back to the statement that
caused the execution of the declarative.

An explicit transfer of control consists of an alteration of the implicit control transfer
mechanism by the execution of a procedure branching or conditional statement. An explicit
transfer of control can be caused only by the execution of a procedure branching or
conditional statement. The execution of the procedure branching ALTER statement does not
in itself constitute an explicit transfer of control, but affects the explicit transfer of control that
occurs when the associated GO TO statement is executed. The procedure branching
statement EXIT PROGRAM causes an explicit transfer of control only when the statement is
executed in a called program.

me-1section-naname-1paragraph-

OF
IN

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 177

The term “next executable statement” refers to the next statement to which control is
transferred according to the rules above and the rules associated with each language element
in the Procedure Division.

There is no next executable statement following:

• The last statement in a declarative section when the paragraph in which it appears is not
being executed under the control of some other statement.

• The last statement in a declarative section when the statement is in the range of an active
PERFORM statement executed in a different section and this last statement of the
declarative section is not also the last statement of the procedure that is the exit of the
active PERFORM statement.

• The last statement in a program when the paragraph in which it appears is not being
executed under the control of some other statement in that program.

• A STOP RUN statement or EXIT PROGRAM statement that transfers control outside the
program.

• The end program header.

There is also no next executable statement when the program contains no Procedure Division.

When there is no next executable statement and control is not transferred outside the program,
the program flow of control is undefined unless the program execution is in the
nondeclarative portion of a program under control of a CALL statement, in which case an
implicit EXIT PROGRAM statement is executed.

Segmentation
Segmentation allows the user to segment the Procedure Division of a program, and to specify
overlays among the segments. Thus, less runtime memory is required to execute the program.
There is no provision for segmenting the data regions of a program.

Segments
When segmentation is used, the Procedure Division must be written as a series of sections. In
addition, each section must be classified as belonging either to the fixed portion or to one of
the independent segments of the object program as determined by the assignment of segment-
numbers. All paragraphs that contain the same segment-number in their section headers are
considered at object time to be one segment. Since segment-numbers can range from 0
through 127, it is possible to subdivide the object program into a maximum of 128 segments.
Segmentation has no effect on the need to qualify procedure-names to ensure uniqueness.

Fixed Portion
The fixed portion of the object program is logically treated as if it were always in memory.
All sections whose segment-number is less than 50 belong to the fixed portion. The fixed
portion of the program is made up of two types of segments: fixed permanent segments and
fixed overlayable segments.

A fixed permanent segment is a segment in the fixed portion that cannot be overlaid by any
other part of the program. A fixed overlayable segment is a segment in the fixed portion that,
although logically treated as if it were always in memory, can be overlaid by another segment

Chapter 5: Procedure Division

178 RM/COBOL Language Reference Manual

so as to reduce memory utilization. Such a segment, if called for by the program, is always
made available in its last-used state. Variation of the number of fixed permanent segments in
the fixed portion can be accomplished by using the SEGMENT-LIMIT clause.

Independent Segments
An independent segment is defined as part of the object program that can overlay, and can be
overlaid by, a fixed overlayable segment or another independent segment. An independent
segment has a segment-number of 50 through 127.

An independent segment is in its initial state whenever control is transferred (either implicitly
or explicitly) to that segment for the first time during the execution of the program.

On subsequent transfers of control to the segment, an independent segment is also in its initial
state when:

• Control is transferred to that segment as a result of the implicit transfer of control
between consecutive statements from a segment with a different segment-number.

• Control is transferred to that segment as the result of the implicit transfer of control
between a SORT and MERGE statement, in a segment with a different segment-number,
and an associated input or output procedure in that independent segment.

• Control is transferred explicitly to that segment from a segment with a different
segment-number.

On subsequent transfers of control to the segment, an independent segment is in its last-used
state when:

• Control is transferred implicitly to that segment from a segment with a different
segment-number (except as noted previously).

• Control is transferred to that segment as the result of the implicit transfer of control
between a SORT and MERGE statement, in a segment with a different segment-number,
and an associated input or output procedure in that independent segment.

• Control is transferred explicitly to that segment as the result of the execution of an EXIT
PROGRAM statement.

Segmentation Classification
Sections that are to be segmented are classified using a system of segment-numbers and the
following criteria:

• Logic Requirements. Sections that must be available for reference at all times, or are
referred to very frequently, are normally classified as belonging to one of the permanent
segments; sections that are used less frequently are normally classified as belonging
either to one of the overlayable fixed segments or to one of the independent segments,
depending on logic requirements.

• Frequency of Use. Generally, the more frequently a section is referred to, the lower its
segment-number; the less frequently it is referred to, the higher its segment-number.

• Relationship to Other Sections. Sections that frequently communicate with one another
should be given the same segment-numbers.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 179

Segmentation Control
The logical sequence of the program is the same as the physical sequence except for specific
transfers of control. Control may be transferred within a source program to any paragraph in
a section; that is, it is not mandatory to transfer control to the beginning of a section.

Restrictions on Program Flow
When segmentation is used, the following restrictions are placed on the ALTER, PERFORM,
MERGE and SORT statements.

ALTER Statement Restrictions
A GO TO statement in a section whose segment-number is greater than or equal to 50 must
not be referred to by an ALTER statement in a section with a different segment-number.

PERFORM Statement Restrictions
A PERFORM statement in the fixed portion can have within its range, in addition to any
declarative sections whose execution is caused within that range, only one of the following:

• Sections or paragraphs wholly contained in the fixed portion.

• Sections or paragraphs wholly contained in a single independent segment.

A PERFORM statement in an independent segment can have within its range, in addition to
any declarative sections whose execution is caused within that range, only one of the
following:

• Sections or paragraphs wholly contained in the fixed portion.

• Sections or paragraphs wholly contained in the same independent segment as that
PERFORM statement.

MERGE Statement Restrictions
If a MERGE statement appears in the fixed portion, any output procedure referenced by that
MERGE statement must be entirely within the fixed portion, or entirely within a single
independent segment.

If a MERGE statement appears in an independent segment, any output procedure referenced
by that MERGE statement must be entirely within the fixed portion, or entirely within the
same independent segment as that MERGE statement.

SORT Statement Restrictions
If a SORT statement appears in the fixed portion, any input or output procedures referenced
by that SORT statement must be entirely within the fixed portion, or entirely within a single
independent segment.

If a SORT statement appears in an independent segment, any input or output procedures
referenced by that SORT statement must be entirely within the fixed portion, or entirely
within the same independent segment as that SORT statement.

Chapter 5: Procedure Division

180 RM/COBOL Language Reference Manual

USE Statement
The USE statement specifies procedures for input-output error handling beyond the standard
procedures provided by the runtime system. It is a compiler directing statement required in
each declarative section.

A USE statement must immediately follow a section header in the declaratives portion of the
Procedure Division and must be followed by a separator period. The remainder of the section
must consist of zero or more paragraphs that define the procedures to be used.

The USE statement itself is not executed; it defines the conditions calling for the execution of
the USE procedure.

A file-name may not be listed in more than one USE statement, nor may it appear more than
once in the list of any USE statement. File-names that appear in a USE statement list may not
be SORT or MERGE files.

The appearance of a file-name in a USE statement must not cause the simultaneous request
for execution of more than one USE procedure.

The INPUT, OUTPUT, I-O and EXTEND phrases may each be specified only once in the
declaratives portion of a given Procedure Division.

The words ERROR and EXCEPTION are synonymous in this context.

Declarative procedures may be included in any source program irrespective of whether the
program contains or is contained within another program. A declarative is invoked when any
of the conditions described in the USE statement that prefaces the declarative occurs while the
program is being executed. Only a declarative within the separately compiled program that
contains the statement, which caused the qualifying condition, is invoked when any of the
conditions described in the USE statement which prefaces the declarative occurs while that
separately compiled program is being executed. If no qualifying declarative exists in the
separately compiled program, no declarative is executed.

During the execution of an input-output statement, the runtime system executes the section
associated with a USE statement under these conditions:

• An invalid key condition occurs and there is no INVALID KEY phrase in the input-
output statement.

• An at end condition occurs and there is no AT END phrase in the input-output statement.

• Some other exception or error condition arises.

The USE section is executed as if it were the operand of a Format 1 PERFORM statement,
after having stored the I-O status value into the associated file status data item if there is one.

In circumstances where it is appropriate to do so, the system standard input-output error
recovery procedures are also performed.

[]

{ }

EXTEND
O-I

OUTPUT
INPUT

ONPROCEDURE

ERROR
EXCEPTION

STANDARDAFTERGLOBALUSE

1file-name-

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 181

The rules that determine which USE procedure is to be executed are as follows:

1. If file-name-1 is specified in the USE statement, the associated procedure is executed
when the situation defined above arises during the execution of an input-output statement
that refers to file-name-1.

2. If the INPUT phrase is specified in the USE statement, the associated procedure is
executed when the situation defined above arises during the execution of an input-output
statement that refers to any file that is open in the input mode or is in the process of being
opened in the input mode, provided the file is not referenced explicitly by name in
another USE statement.

3. If the OUTPUT phrase is specified in the USE statement, the associated procedure is
executed when the situation defined above arises during the execution of an input-output
statement that refers to any file that is open in the output mode or is in the process of
being opened in the output mode, provided the file is not referenced explicitly by name in
another USE statement.

4. If the I-O phrase is specified in the USE statement, the associated procedure is executed
when the situation defined above arises during the execution of an input-output statement
that refers to any file that is open in the I-O mode or is in the process of being opened in
the I-O mode, provided the file is not referenced explicitly by name in another USE
statement.

5. If the EXTEND phrase is specified in the USE statement, the associated procedure is
executed when the situation defined above arises during the execution of an input-output
statement that refers to any file that is open in the extend mode or is in the process of
being opened in the extend mode, provided the file is not referenced explicitly by name in
another USE statement.

When the execution of the USE procedure is complete, control returns to the runtime
system. The runtime system then resumes execution of the COBOL program at the next
executable statement following the input-output statement whose execution caused the
exception or error.

When there is no applicable USE procedure and a critical error occurs for an input-output
statement, the runtime system produces an error message and terminates execution of the run
unit. This behavior can be configured to allow the program to continue as if a default empty
USE procedure were applicable. For information on configuring this behavior, see the
DEFAULT-USE-PROCEDURE keyword of the RUN-FILES-ATTR record in Chapter 10:
Configuration of the RM/COBOL User’s Guide.

Within a USE procedure there must be no reference to any nondeclarative procedure.
Conversely, in the nondeclarative portion there must be no reference to procedure-names that
appear in the declarative portion, except that PERFORM statements may refer to the
procedures associated with a USE statement.

Within a USE procedure, there must not be the execution of any statement that would cause
the execution of a USE procedure that had previously been invoked and had not yet returned
control to the invoking routine.

Special precedence rules are followed when programs are contained within other programs.
In applying these rules, only the first qualifying declarative will be selected for execution.
The declarative that is selected for execution must satisfy the rules for execution of that
declarative. The order of precedence for selecting a declarative is:

1. The declarative within the program that contains the statement which caused the
qualifying condition.

Chapter 5: Procedure Division

182 RM/COBOL Language Reference Manual

2. The declarative in which the GLOBAL phrase is specified and which is within the
program directly containing the program that was last examined for a qualifying
declarative.

3. Any declarative selected by applying rule 2 to each more inclusive containing program
until rule 2 is applied to the outermost program. If no qualifying declarative is found,
none is executed.

USE Statement Example

 PROCEDURE DIVISION.
 DECLARATIVES.
 I-O-ERROR SECTION.
 USE AFTER STANDARD EXCEPTION PROCEDURE ON I-O.
 I-O-ERROR-ROUTINE.
 DISPLAY "Error for file in I-O open mode.".
 ACCEPT CONTINUE-FLAG POSITION 0 PROMPT.
 IF CONTINUE-FLAG = "NO" STOP RUN.
 END DECLARATIVES.

Common Rules

Subscript Evaluation
Unless otherwise specified by the rules for a specific statement, any subscripts that appear
in an individual statement are evaluated only once as the first operation of the execution of
that statement.

Arithmetic Statements
The arithmetic statements are ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.
They have several features in common that are discussed in this section.

Modes of Operation
The data descriptions of the operands in an arithmetic statement need not be the same;
any necessary mode conversion and decimal point alignment is supplied throughout
the calculation.

Arithmetic operations are done in binary, packed decimal or unpacked decimal mode
depending on the operation and on the usage of the operands. If the operation is division or
exponentiation, it is done in unpacked decimal mode, first converting the values of one or
both operands to that mode as necessary. When both operands of an addition or subtraction
operation are binary, and they do not have the same number of positions to the right of the
decimal point, the operation is done in unpacked decimal mode, first converting the values of
both operands to that mode. Other operations are done in the higher mode of the two
operands, with binary being treated as the lowest mode and unpacked decimal the highest.
If the two operands are of the same mode the operation is done in that common mode;
otherwise, the value of the operand having the lower mode is converted to the higher mode,
and the operation is done using the converted value.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 183

Composite Size
The composite size of specified operands in an arithmetic statement other than COMPUTE
must not be greater than 30 digits. The specified operands in an ADD or SUBTRACT
statement are those operands that contribute values to the final result; operands that serve only
as receiving operands are not contributing operands. For example, in the statement ADD A B
GIVING C, A and B are contributing operands, but C is not. In the statement ADD P TO Q,
both P and Q are contributing operands. In the statement SUBTRACT X FROM Y GIVING
Z, X and Y are contributing operands but Z is not.

The specified operands in a MULTIPLY or DIVIDE statement are all the receiving operands
except for the operand of the REMAINDER phrase.

The composite size of a set of operands is the size that results when the operands are aligned
on their decimal points and the maximum number of positions to the left of the common
decimal point position is added to the maximum number of positions to the right of the
common decimal point position. For example, if A is defined as PIC 9(8)V9(4) and B is
defined as PIC 9(3)V9(6), the composite size of A and B is 8 + 6 = 14. The “phantom”
positions resulting from the use of P in the PICTURE character-string are counted in
determining the composite size. For example, if X is defined as PIC P(8)9(6) and Y is
defined as PIC 9(8)P(10), the composite size of X and Y is 14 + 18 = 32, which exceeds the
limit of 30.

ROUNDED Phrase
If, after decimal point alignment, the number of places in the fractional part of the result of an
arithmetic operation is greater than the number of places provided for the fractional part of the
resultant identifier, truncation is relative to the size provided for the resultant identifier.
When the ROUNDED phrase is specified in the arithmetic statement, the absolute value of the
resultant identifier is increased by one in the low-order digit position whenever the most
significant digit of the excess is greater than or equal to five.

When the low-order integer positions in a resultant identifier are represented by the symbol P
in the PICTURE character-string for that resultant identifier, rounding or truncation occurs
relative to the rightmost integer position for which storage is allocated.

Size Error Condition
The size error condition occurs under any of the following circumstances:

• Violation of the rules for evaluation of exponentiation always terminates the arithmetic
operation and always causes a size error condition.

• Division by zero always terminates the arithmetic operation and always causes a size
error condition.

• If, after decimal point alignment and rounding (if specified), the absolute value of a result
exceeds the largest value that can be contained in a resultant identifier, a size error
condition exists. If the usage of a resultant identifier is binary, the largest value that can
be contained in it is the maximum value implied by its PICTURE character-string.
However, if a binary allocation override was specified that forced allocation of fewer
bytes than needed to support the maximum value implied by its PICTURE character-
string, then the maximum value is determined by the maximum value supported by the
number of bytes specified in the binary allocation override and, for signed numbers the
maximum for the absolute value of negative values is one greater than the maximum for
positive numbers. For example, a one-byte signed binary data item can contain the

Chapter 5: Procedure Division

184 RM/COBOL Language Reference Manual

values -128 to +127; the size error condition will exist on an attempt to store a value less
than -128 or greater than +127 into a an item described as PIC S9(3) BINARY(1).

If the SIZE ERROR phrase is specified and a size error condition exists after the execution of
the arithmetic operations specified by an arithmetic statement:

• The values of resultant identifiers for which a size error condition exists remain
unchanged from the values they had before execution of the arithmetic statement.

• The values of resultant identifiers for which no size error condition exists are the same as
they would have been if the size error condition had not resulted for any of the resultant
identifiers.

• After completion of the arithmetic operations, control is transferred to
imperative-statement-1 in the SIZE ERROR phrase and execution continues according
to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement; otherwise, upon
completion of execution of imperative-statement-1, control is transferred to the end of the
arithmetic statement and the NOT SIZE ERROR phrase, if specified, is ignored.

If the SIZE ERROR phrase is not specified and a size error condition exists after the
execution of the arithmetic operations specified by an arithmetic statement:

• The values of resultant identifiers for which a size error condition exists are undefined.

• The values of resultant identifiers for which no size error condition exists are the same as
they would have been if the size error condition had not resulted for any of the resultant
identifiers.

• After completion of the arithmetic operations, control is transferred to the end of the
arithmetic statement and the NOT SIZE ERROR phrase, if specified, is ignored.

If the size error condition does not exist after the execution of the arithmetic operations
specified by an arithmetic statement, the SIZE ERROR phrase, if specified, is ignored and
control is transferred to the end of the arithmetic statement or to imperative-statement-2 in the
NOT SIZE ERROR phrase if it is specified. In the latter case, execution continues according
to the rules for each statement specified in imperative-statement-2. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion of
execution of imperative-statement-2, control is transferred to the end of the arithmetic
statement.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT statement
with the CORRESPONDING phrase, if any of the individual operations produces a size error
condition, imperative-statement-1 in the SIZE ERROR phrase is not executed until all of the
individual additions or subtractions are completed.

Overlapping Operands
When a sending and a receiving data item in any statement share a part or all of their storage
areas, yet are not defined by the same data description entry, the result of the execution of
such a statement is undefined. For statements in which the sending and receiving data items
are defined by the same data description entry, the results of the execution of the statement
may be defined or undefined depending on the general rules associated with the applicable
statement. If there are no specific rules addressing such overlapping operands, the results are
undefined.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 185

In the case of reference modification, the unique data item produced by reference
modification is not considered to be the same data description entry as any other data
description entry. Therefore, if an overlapping situation exists, the results of the operation are
undefined.

Incompatible Data
During the execution of the object program, the actual content of a data item is presumed to
agree with the class of the data item as specified by its PICTURE clause. No checking is
done by the runtime system to detect violations of this requirement, and results are undefined
when violations occur. It is particularly important to ensure that the content of a data item
described as numeric is in fact numeric when it is used in an arithmetic context.

This rule is suspended for a data item used as the operand of a class condition. Thus, in
circumstances in which it is necessary to refer to a data item in an arithmetic context, and it is
not certain that the content of the data item is compatible with that type of reference, an IF
NUMERIC test should be applied.

Arithmetic Expressions
An arithmetic expression can be an identifier of a numeric elementary item, a numeric literal,
such identifiers and literals separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression enclosed in parentheses. Any
arithmetic expression may be preceded by a unary operator. The permissible combinations of
variables, numeric literals, arithmetic operators and parentheses are given in Table 20.

Table 20: Combination of Symbols in Arithmetic Expressions

Combination of Symbols in Arithmetic Expressions

 Second Symbol

First Symbol

Operand

* / – + **

Unary
+ or –

(

)

Operand(an identifier
or literal)

* / + – **

Unary + or –

(

)

Chapter 5: Procedure Division

186 RM/COBOL Language Reference Manual

Combination of Symbols in Arithmetic Expressions

 Second Symbol

First Symbol

Operand

* / – + **

Unary
+ or –

(

)

 A permissible pair of symbols.

 An invalid pair of symbols.

Those identifiers and literals appearing in an arithmetic expression must represent either
numeric elementary items or numeric literals on which arithmetic may be performed.

Arithmetic Operators
There are five binary arithmetic operators and two unary arithmetic operators that may be
used in arithmetic expressions. They are represented by specific characters that must be
preceded by a space and followed by a space. See Table 21.

Table 21: Arithmetic Operators

Arithmetic Operators

Type Operator Meaning

BINARY

+ Addition.

– Subtraction.

* Multiplication.

/ Division.

** Exponentiation.

UNARY
+ The effect of multiplication by the numeric literal +1.

– The effect of multiplication by the numeric literal –1.

Formation and Evaluation Rules
Parentheses may be used in arithmetic expressions to specify the order in which elements are
to be evaluated. Expressions within parentheses are evaluated first; within nested
parentheses, evaluation proceeds from the least inclusive set to the most inclusive set. When
parentheses are not used, or parenthesized expressions are at the same level of inclusiveness,
the following hierarchical order of execution is implied:

1. Unary plus and minus

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction

Parentheses are used either to eliminate ambiguities in logic where consecutive operations of
the same hierarchical level appear, or to modify the normal hierarchical sequence of execution
in expressions where it is necessary to have some deviation from the normal precedence.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 187

When the sequence of execution is not specified by parentheses, the order of execution of
consecutive operations of the same hierarchical level is from left to right.

The ways in which operands, operators and parentheses may be combined in an arithmetic
expression are summarized in Table 20 on page 185.

An arithmetic expression may begin only with one of the following symbols: (+ – or an
operand. An arithmetic expression may end only with a) or an operand. There must be a
one-to-one correspondence between left and right parentheses in an arithmetic expression
such that each left parenthesis is to the left of its corresponding right parenthesis.

The following rules apply to evaluation of exponentiation in the following arithmetic
expression:

arithmetic-expression-1 ** arithmetic-expression-2

arithmetic-expression-1 provides the base value and arithmetic-expression-2 provides the
exponent value.

1. If the value of the base is zero, the exponent value must be greater than zero; otherwise,
the size error condition exists.

2. If the value of the base is negative, the exponent value must be an integer; otherwise, the
size error condition exists.

Arithmetic expressions allow the user to combine arithmetic operations without the
restrictions on composite of operands, receiving data items, or both.

Conditional Expressions
Conditional expressions identify conditions that are tested to enable the object program to
select between alternate paths of control depending upon the truth value of the condition.
Conditional expressions may be used in the EVALUATE, IF, PERFORM, and SEARCH
statements. There are two categories of conditions associated with conditional expressions:
simple conditions and complex conditions. Each may be enclosed within any number of
paired parentheses, in which case its category is not changed.

Simple Conditions
The simple conditions are relation, class, sign, condition-name and switch-status. A simple
condition has a truth value of true or false. A simple condition enclosed in parentheses has
the same truth value as the simple condition standing alone.

Relation Condition
A relation condition causes a comparison of two operands, each of which may be the data
item referenced by an identifier, a literal, an arithmetic expression or an index-name. A
relation condition has the truth value of true if the relation exists between the operands;
otherwise, the relation condition has the truth value of false.

The general format of a relation condition is:

Chapter 5: Procedure Division

188 RM/COBOL Language Reference Manual

The operand to the left of the relational-operator is called the subject of the condition; the
operand to the right is called the object of the condition, or, in the case of the LIKE relational
operator, the pattern of the condition. See the discussion of the LIKE Condition (Special Case
of Relation Condition) on page 190.

The general format for the relational-operator is:

The relational operator specifies the type of comparison to be made in a relation condition. A
space must precede and follow each reserved word that makes up the relational operator.
When used, NOT and the next keyword or relation character are one relational operator that
defines the comparison to be executed for truth value; for example, NOT EQUAL is a truth
test for an unequal comparison; NOT GREATER is a truth test for an equal or less than
comparison. The relational operator IS NOT GREATER THAN is equivalent to IS LESS
THAN OR EQUAL TO, and the relational operator IS NOT LESS THAN is equivalent to IS
GREATER THAN OR EQUAL TO.

Comparison of two numeric operands is permitted regardless of the formats specified in their
respective USAGE clauses. However, for all other comparisons the operands must have the
same usage. If either of the operands is a group item, the nonnumeric comparison rules apply.
POINTER usage in RM/COBOL is not a numeric usage; pointer operands may only be
compared to other pointer operands, which include the figurative constant NULL (NULLS)
and the ADDRESS special register.

The meanings of the relational operators are given in Table 22.

Table 22: Relational Operators

Relational Operators

Relational Operator Meaning

IS [NOT] GREATER THAN
Greater than or not greater than.

IS [NOT] >

-2index-name
n-2-expressioarithmetic

literal-2
-2identifier

-operatorrelational

-1index-name
n-1-expressioarithmetic

literal-1
-1identifier

[]
[]
[]
[]
[]
[]

[]

=<

=>

=

<

>

SENSITIVE-CASE
EINSENSITIV-CASE

LEFT
RIGHT

TRIMMED
LIKENOTIS

IS
TOEQUALORTHANLESSIS

IS
TOEQUALORTHANGREATERIS

NOTIS
TOEQUALNOTIS

NOTIS
THANLESSNOTIS

NOTIS
THANGREATERNOTIS

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 189

Relational Operators

Relational Operator Meaning

IS [NOT] LESS THAN
Less than or not less than.

IS [NOT] <

IS [NOT] EQUAL TO
Equal to or not equal to.

IS [NOT] =

IS GREATER THAN OR EQUAL TO
Greater than or equal to.

IS >=

IS LESS THAN OR EQUAL TO
Less than or equal to.

IS <=

IS [NOT] LIKE Pattern matches or not matches subject.

Note The required relational characters >, < and = are not underlined to avoid confusion with
other symbols such as ≥ (greater than or equal to).

Comparison of Numeric Operands
For operands whose class is numeric, a comparison is made with respect to the algebraic
value of the operands, aligned by their decimal points. The lengths of the operands, in terms
of number of digits represented, are not significant. Zero is considered a unique value
regardless of the sign.

Comparison of numeric operands is permitted regardless of their usage. Unsigned numeric
operands are considered positive for purposes of comparison.

Comparison of Nonnumeric Operands
For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is
made with respect to a specified collating sequence of characters. When a numeric operand is
compared with a nonnumeric operand, the following rules apply:

1. If the nonnumeric operand is an elementary data item or a nonnumeric literal, the
numeric operand is treated as though it were moved to an elementary alphanumeric data
item of the same size as the numeric data item (in terms of standard data format
characters), and the contents of this alphanumeric data item were then compared to the
nonnumeric operand.

2. If the nonnumeric operand is a group item, the numeric operand is treated as though it
were moved to a group item of the same size as the numeric data item (in terms of
standard data format characters), and the contents of this group item were then compared
to the nonnumeric operand.

The size of an operand is the total number of standard data format characters in the operand.
Numeric and nonnumeric operands may be compared only when the numeric operand is an
integer and its usage is DISPLAY.

There are two cases to consider: operands of equal size and operands of unequal size.

• Operands of equal size:

Chapter 5: Procedure Division

190 RM/COBOL Language Reference Manual

− If the operands are of equal size, comparison effectively proceeds by comparing
characters in corresponding character positions starting from the high order end and
continuing until either a pair of unequal characters is encountered or the low order
end of the operand is reached, whichever comes first. The operands are determined
to be equal if all pairs of corresponding characters are equal.

− The first encountered pair of unequal characters is compared to determine their
relative position in the collating sequence. The operand that contains the character
that is positioned higher in the collating sequence is considered to be the greater
operand.

• Operands of unequal size:

− If the operands are of unequal size, comparison proceeds as though the shorter
operand were extended on the right by sufficient spaces to make the operands of
equal size.

Comparisons of Index-Names and Index Data Items
If two index-names are compared, the result is the same as if the corresponding occurrence
numbers were compared.

For an index-name and a data item (other than an index data item) or literal, the comparison is
made between the occurrence number that corresponds to the value of the index-name and the
data item or literal.

When a comparison is made between an index data item and an index-name or another index
data item, the actual values are compared without conversion to the occurrence number.

Comparison of an index data item with any data item or literal not specified above is not
permitted.

Comparison of Pointer Data Items
For operands that are pointers, a comparison is made with respect to the effective address of
the operands. The effective address of a pointer is the sum of the address and offset values for
the pointer. A null pointer value (for example, the figurative constant NULL) has an effective
address of zero. Thus, a pointer data item is always either equal to or greater than a null
pointer value.

LIKE Condition (Special Case of Relation Condition)
The general format for the LIKE condition is:

identifier-1 must refer to an alphanumeric data item.

literal-1 and literal-2 must be nonnumeric literals.

identifier-2 must refer to an alphanumeric data item or a pointer data item.

The data item referenced by identifier-1 or the value of literal-1 is the subject of
the condition.

[]

literal-2
-2identifier

literal-1
-1identifier

SENSITIVE-CASE
EINSENSITIV-CASE

LEFT
RIGHTTRIMMED

LIKENOTIS

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 191

The data item referenced by identifier-2 or the value of literal-2 is the pattern of the condition.
If identifier-2 refers to an alphanumeric data item, the value of that data item specifies the
pattern as a regular expression. If identifier-2 refers to a pointer data item, then the value of
that data item points to a compiled pattern.

The LIKE condition returns true if the subject value of the condition matches the pattern value
of the condition and false otherwise.

Unless otherwise specified by use of the TRIMMED phrase, the entire contents of the subject
value must match the pattern value. If the TRIMMED LEFT phrase is specified, leading
spaces are ignored. If the TRIMMED RIGHT phrase is specified, trailing spaces are ignored.
If the TRIMMED phrase is specified without either the LEFT or RIGHT modifiers, leading
and trailing spaces are ignored. The TRIMMED phrase must not be used if the subject data
may contain significant spaces that would be ignored as a result of its specification; reference
modification of the subject may be necessary to select the significant portion of the data to be
matched in this case.

Case is significant for the LIKE condition if the CASE-SENSITIVE phrase is specified or
implied, that is, a case-sensitive match of the subject value to the pattern value is done. Case
is not significant for the LIKE condition if the CASE-INSENSITIVE phrase is specified, that
is, a case-insensitive match of the subject value to the pattern value is done.

The pattern may be specified as a literal, an alphanumeric data item, or a pointer data item,
with the following interpretations:

• Literal pattern. The RM/COBOL compiler automatically compiles the pattern specified
as literal-2 during source program compilation. Errors in the pattern, if any, are reported
in the compilation listing, including an indication of where in the pattern the problem
occurred. All spaces included in the literal pattern value are considered significant.

• Alphanumeric data item pattern. The RM/COBOL compiler generates code to compile at
runtime a pattern specified as identifier-2, where identifier-2 refers to an alphanumeric
data item that contains the pattern. If the data item contains leading spaces that are not
part of the pattern value, reference modification must be used to exclude the spaces.
Trailing spaces in the pattern are stripped by default unless the RUN-ATTR configuration
record specifies STRIP-LIKE-PATTERN-TRAILING-SPACES=NO. (Tailing spaces
that should be matched can be specified in a pattern by using a space followed by a
quantifier operator even when trailing space stripping is in effect.) If the pattern contains
an error, the LIKE condition will return a false (non-matching) result without any
indication that an error occurred. The pattern will be re-compiled each time the condition
is executed, regardless of whether the pattern value has changed.

• Pointer data item pattern. If a pattern must be variable at runtime, but is used multiple
times for a given pattern value, compiling the pattern once and specifying a pointer to the
compiled result can enhance performance. In this case, the data item referenced by
identifier-2 must be a pointer data item, the value of which has been previously set by
using the subprogram library routine, C$CompilePattern, as described in Appendix F:
Subprogram Library of the RM/COBOL User’s Guide. When called, this routine
indicates whether the pattern contains an error and provides an easy method of stripping
trailing spaces in the pattern value. Therefore, this method is preferable to using an
alphanumeric data item directly in the LIKE condition regardless of performance issues.
The LIKE condition returns a false (non-matching) result if the pattern is specified as a
null valued pointer or if the pointer does not point to a compiled pattern.

A pattern is specified by a regular expression. A regular expression is a string that uses
expressions similar to arithmetic expressions to specify the rules for matching. Various
operators are used to combine smaller expressions. The formal grammar for regular
expressions is provided on page 197. The regular expressions used in the LIKE condition are

Chapter 5: Procedure Division

192 RM/COBOL Language Reference Manual

the same as those specified for XML (eXtensible Markup Language) schema. A regular
expression is composed as follows:

1. Characters other than the special characters specified in item 2 are considered ordinary
characters. An ordinary character is a one-character regular expression that matches
itself. For example, "A" matches the string "A" and "3" matches the string "3".
Characters may be specified using XML character references as “&#d;”, where d is one
or more decimal digits that provide the decimal representation of the Unicode code-point
for the character, or as “&#xh;”, where h is one or more hexadecimal digits that provide
the hexadecimal representation of the Unicode code-point for the character. Also, the
recognized XML entity references are illustrated in Table 23.

Table 23: XML Entity References

XML Entity References

Entity Reference Character

& &

' '

< <

> >

" "

Recognition and conversion of XML character references and XML entity references
occur before a character is interpreted within the regular expression. Incomplete
sequences are treated as the literal sequence of characters. For example, “&”, which
is missing the required semicolon, represents the character sequence ‘&’, ‘a’, ‘m’ and ‘p’.
Such incomplete sequences do not cause an error because of the incompleteness, but may
cause an error if the literal sequence is not valid in the context in which it appears. For
example, “\.” is equivalent to “\.’, which is a valid escaped period, but “\.”
includes the sequence “\&”, which is not a valid escape sequence and would, therefore,
cause an error. No part of the XML character reference or XML entity reference
sequence may be represented using an XML character reference or XML entity reference.
For example, the sequence “&amp;” is recognized as literally “&” and is not
further converted to “&”.

2. The characters “.” (period), “\” (back slash), “*” (asterisk), “+” (plus sign), “?” (question
mark), “|” (vertical bar), “(” (left parenthesis), “)” right parenthesis, “[” (left bracket), “]”
(right bracket), “{” (left brace), and “}” right brace are special characters that act as
operators, which are explained individually in the items that follow.

3. The special character “.” (period) matches any character other than newline (0Ah) or
return (0Dh). For example, "." matches any of the strings "A" or "B" or "9".

4. The special character “\” (backslash) begins an escape sequence. Escape sequences may
be single-character escapes (as shown in the following table), multi-character escapes
(see Table 25 on page 193), or category escapes (see Table 26 on page 194).

Single-character escapes match a single character and exist because that character is
usually difficult or impossible to write directly into a regular expression. The valid
single-character escapes are shown in Table 24.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 193

Table 24: Regular Expression Single-Character Escape Sequences

Regular Expression Single-Character Escape Sequences

Escape Sequence Character

\n newline (
)

\r return ()

\t horizontal tab ()

\\ \

\| |

\. .

\- -

\^ ^

\? ?

* *

\+ +

\{ {

\} }

\((

\))

\[[

\]]

Multi-character escapes match commonly used sets of characters without having to write
a character class expression to describe the set of characters to be matched. Table 25 lists
and describes the valid multi-character escapes.

Table 25: Regular Expression Multi-Character Escape Sequences

Regular Expression Multi-Character Escape Sequences

Escape Sequence Equivalent Character Class Meaning

. [^\n\r] Any character except newline
or return.

\s [\t\n\r] White space.

\S [^\s] Not white space.

\i [\p{L}_:] Initial name characters (of XML).

\I [^\i] Not initial name characters (of
XML).

\c [\i\d\.·-] Name characters (of XML). (See
Note 2.)

\C [^\c] Not name characters (of XML).

\d \p{Nd} Numeric digits.

\D [^\d] Not numeric digits.

Chapter 5: Procedure Division

194 RM/COBOL Language Reference Manual

Regular Expression Multi-Character Escape Sequences

Escape Sequence Equivalent Character Class Meaning

\w [�-ÿ-
 [\p{P}\p{Z}\p{S}\p{C}]]

All characters except punctuation,
separator, symbol and other
characters. (See the first item in
the Notes below and property
definitions in Table 26 on
page 194.)

\W [^\w] Punctuation, separator, symbol and
other characters. (See Note 1
below.)

Notes

• The definitions of the “\w” and “\W” sequences are subject to change, so these
sequences should be avoided until they are clarified. The XML schema definition
of “\w” is unclear because it is described as “all characters except the set of
‘punctuation’, ‘separator’, and ‘control’ characters”. This informal description
differs from its formal definition of [�-]-[\p{P}\p{S}\p{C}],
which is all characters except the set of punctuation, symbol and other characters.
This could mean that the formal definition should be [�-]-
[\p{P}\p{Z}\p{C}], [�-]-[\p{P}\p{Z}\p{Cc}] or [�-
]-[\p{P}\p{Z}\p{S}\p{C}]. Since “\w” probably stands for “the word
class of characters”, the latter may be the correct interpretation and is the one
currently implemented in RM/COBOL. In the regular expressions of the Perl
language, “\w” matches alphanumeric characters including “_”, which strictly
interpreted would be [\p{L}\p{N}_]. Unicode classifies “_” in the “Pc” category, so
excluding punctuation characters excludes the “_” character. The definition of “\W”,
the characters not in “\w”, depends on the definition of “\w” and is, therefore,
similarly unclear.

• The B7h code point in Unicode is the “MIDDLE DOT” extender character and
is classified as a name character. Therefore, XML name characters include this code
point value.

Category escapes match sets of characters based on their Unicode category. The set of
characters that have Unicode property X is designated with “\p{X}”. The complement of
this set, that is, all characters that do not have Unicode property X, is specified as “P{X}”.
Unicode property designators are an uppercase letter optionally followed by a lowercase
letter. The valid character property designators from the Unicode standard are shown in
Table 26.

Table 26: Unicode Valid Character Property Designators

Unicode Valid Character Property Designators

Category Property Designator Character Class

Letters

L All letters.

Lu Uppercase letters.

Ll Lowercase letters.

Lt Title case letters.

Lm Modifier letters.

Lo Other letters.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 195

Unicode Valid Character Property Designators

Category Property Designator Character Class

Marks

M All marks.

Mn Non-spacing marks.

Mc Spacing combining marks.

Me Enclosing marks.

Numbers

N All numbers.

Nd Decimal digit numbers.

Nl Letter numbers.

No Other numbers.

Punctuation

P All punctuation.

Pc Connector punctuation.

Pd Dash punctuation.

Ps Open punctuation.

Pe Close punctuation.

Pi Initial quote punctuation.

Pf Final quote punctuation.

Po Other punctuation.

Separators

Z All separators.

Zs Space separators.

Zl Line separators.

Zp Paragraph separators.

Symbols

S All symbols.

Sm Math symbols.

Sc Currency symbols.

Sk Modifier symbols.

So Other symbols.

Other

C All others.

Cc Control others.

Cf Format others.

Co Private use others.

Cn Not assigned others.

For example, the pattern value “\p{Nd}” matches any decimal digit character and the
pattern value “\P{Nd}” matches any character other than a decimal digit character.

In addition to specifying any of the character property designators above, the character
category escape can also specify any of the Unicode character blocks. In this case, the
property is specified as IsBlockName, where BlockName is the Unicode block name
with all white space stripped out. Since this implementation only supports 8-bit
characters, only the character blocks IsBasicLatin (characters 00h through 7Fh) and

Chapter 5: Procedure Division

196 RM/COBOL Language Reference Manual

IsLatin-1Supplement (characters 80h through FFh) are non-empty. For example, the
pattern value “\p{IsBasicLatin}” matches any character in the range 00h through 7Fh,
and the pattern value “\P{IsBasicLatin}” matches any character that is not 00h through
7Fh.

5. The special characters, “[” (left bracket) and “]” (right bracket), are used to define a one-
character character class regular expression. The character class matches any of the
characters specified between the brackets, except that, when the “^” (caret) character is
the first character after the left bracket the class matches any character not specified
between the brackets. Special characters (listed in item 2), other than “\”, “[”, and “]”,
lose their special meaning when contained in brackets (that is, they represent themselves
in the character class). A range of characters may be specified with the “-” (hyphen)
character separating two other characters. To include a “^” in the character class, include
it anywhere except as the first character after the left bracket (if the “^” is the only
character in the class, omit the brackets). To include a “-” in the character class, include
it as the first (or second if the first character is a “^”) or last character between the
brackets or use the escape sequence “\-” to specify the character. To include a “\”, “[”, or
“]” in the character class, use the escape sequences “\\”, “\[”, or “\]”, respectively. For
example, "[0-9]" matches a decimal digit character and "[^0-9]" matches any character
except a decimal digit character. The second character in a hyphenated character range
must not be less than the first character.

6. Within a character class expression, a character class may be subtracted by using the “-”
followed by another character class expression. For example, “[\p{P}-[;:]]” defines a
character class that includes all the punctuation characters except for semicolon and
colon. A character class subtraction must be the last portion of a character class
expression before the closing “]” for the containing character class expression, but may
contain character class subtractions within itself. When a character class is negated,
that is, begins with the “^” character, the negation takes place before the subtraction, that
is, the negation has higher precedence than the class subtraction. For example,
“[^A-F-[U-Z]]”, the characters not in [A-F] less the characters in [U-Z], is equivalent to
“[^A-FU-Z]”, the characters not in [A-FU-Z].

7. Subexpressions may be concatenated by juxtaposition in left to right order. For example,
“AB.” matches “ABC” or “ABD” or “AB3” or any other three-character string that
begins with “AB”. As another example, “A[BC]D” matches “ABD” or "ACD".

8. Two subexpressions may be combined with the “|” infix operator to specify alternatives.
If either of the subexpressions matches the current position in the subject string, the
regular expression formed in this way matches. For example, “PRE|PER” matches
“PRE” or “PER”.

9. The special character “*” causes the preceding subexpression to be matched zero or more
times. For example, the string “AB*C” matches “AC” or “ABC” or “ABBBBC”.

10. The special character “+” causes the preceding subexpression to be matched one or more
times. For example, the pattern “$[0-9]+\.00” matches the strings “$0.00” or “$1.00” or
“$392.00”, but does not match the string “$.00” since there are no digits before the
decimal point.

11. The special character “?” causes the preceding subexpression to be matched zero or one
times, that is, the preceding subexpression is optional in matching. For example, the
string “-$?123” matches the string “-$123” or “-123”.

12. The special characters “{” and “}” are used to define repetition of the preceding
subexpression by a specified range. “{n}” or “{n,n}” matches exactly n occurrences.
“{n,}” matches n or more occurrences. “{n,m}” matches from n to m occurrences. n and
m must be decimal integers in the range 0 to 65535, and n must be less than or equal to m.
When a choice is allowed, the longest matching string in the subject is matched. For
example “(A{2})*” matches zero or more pairs of “A” characters in the subject string,

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 197

“A{3,}” matches three or more successive “A” characters in the subject string, and
“A{3,5}” matches from 3 to 5 successive “A” characters in the subject string.

Note “{0}” or “{0,0}” cause the previous subexpression to be ignored. “{1}” or “{1,1}”
are redundant since they are equivalent to the default. “{0,}” is equivalent to “*”, “{1,}”
is equivalent to “+”, and “{0,1}” is equivalent to “?”.

13. The order of precedence for operators from highest to lowest is escape (with “\”), class
definition (with “[” and “]”), repetition (with “*”, “+”, “?”, or “{}”), concatenation, and
alternation (with “|”). The order of precedence for repetition, concatenation, and
alternation can be overridden by use of parentheses. For example:

• “AB|CD” matches “AB” or “CD”, because concatenation has higher precedence
than alternation;

• “A(B|C)D” matches “ABD” or “ACD”, because the parentheses override the
precedence order;

• “ABC*” matches “ABCCCC”, because repetition has higher precedence than
concatenation; and

• “(ABC)*” matches zero or more occurrences of “ABC” in the subject string, because
parentheses override the precedence order.

When the TRIMMED phrase is not specified in the LIKE condition, matching is done on the
entire contents of the subject value. In this case, the pattern must specify whether trailing
spaces are to be included in the match. If the pattern does not allow for trailing spaces and the
subject value contains trailing spaces, the LIKE condition result will be false (non-matching).
To allow for trailing spaces, the pattern should end with “ *”, that is, a space followed by the
“*” repetition operator. This is not necessary if, for example, the pattern ends with “.*”, that
is, a period followed by the “*” repetition operator, since this allows any number of any
trailing character, including trailing spaces.

Regular expression grammar summary:

 [1] regExp ::= branch ('|' branch)*
 [2] branch ::= piece*

 [3] piece ::= atom quantifier?

 [4] quantifier ::= [?*+] | ('{' quantity '}')

 [5] quantity ::= quantRange | quantMin | QuantExact

 [6] quantRange ::= QuantExact ',' QuantExact

 [7] quantMin ::= QuantExact ','

 [8] QuantExact ::= [0-9]+

 [9] atom ::= Char | charClass | ('(' regExp ')')

[10] Char ::= [^.\?*+()|#x5B#x5D]

[11] charClass ::= charClassEsc | charClassExpr

[12] charClassExpr ::= '[' charGroup ']'

[13] charGroup ::= posCharGroup | negCharGroup |charClassSub

[14] posCharGroup ::= (charRange | charClassEsc)+

[15] negCharGroup ::= '^' posCharGroup

[16] charClassSub ::= (posCharGroupND | negCharGroupND)

 '-' charClassExpr

[17] negCharGroupND ::= '^' posCharGroupND

[18] posCharGroupND ::= (XmlCharRef | XmlChar | charClassEsc)+

[19] XmlCharRef ::= ('&#' [0-9]+ ';') |

 ('&#x' [0-9a-fA-F]+ ';')

Chapter 5: Procedure Division

198 RM/COBOL Language Reference Manual

[20] XmlChar ::= [^\#x2D#x5B#x5D]

[21] charRange ::= seRange | XmlCharRef | XmlCharIncDash

[22] seRange ::= charOrEsc '-' charOrEsc

[23] charOrEsc ::= XmlChar | SingleCharEsc

[24] XmlCharIncDash ::= [^\#x5B#x5D]

[25] charClassEsc ::= (SingleCharEsc | MultiCharEsc |

 catEsc | complEsc)

[26] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]

[27] catEsc ::= '\p{' charProp '}'

[28] complEsc ::= '\P{' charProp '}'

[29] charProp ::= IsCategory | IsBlock

[30] IsCategory ::= Letters | Marks | Numbers |

 Punctuation | Separators |

 Symbols | Others

[31] Letters ::= 'L' [ultmo]?

[32] Marks ::= 'M' [nce]?

[33] Numbers ::= 'N' [dlo]?

[34] Punctuation ::= 'P' [cdseifo]?

[35] Separators ::= 'Z' [slp]?

[36] Symbols ::= 'S' [mcko]?

[37] Others ::= 'C' [cfon]?

[38] IsBlock ::= 'Is' [a-zA-Z [0-9a-zA-Z#x2D]*

[39] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])

Class Condition
The general format for the class condition is:

The class condition determines whether the current contents of an operand are numeric,
alphabetic, alphabetic-lower, alphabetic-upper, or consist only of the characters in the set of
characters specified by a CLASS clause defined in the SPECIAL-NAMES paragraph of the
Environment Division. The class of an operand is determined as follows:

• An operand is numeric if its contents consist entirely of the characters 0, 1, 2, 3, . . ., 9,
with or without an operational sign. The specified usage of the operand and its explicit or
implicit SIGN clause are taken into account in determining the validity of the digit and
sign representation.

• An operand is alphabetic if its contents consist entirely of any combination of the
uppercase letters A, B, C, . . ., Z, the lowercase letters a, b, c, . . ., z, or space. It should
be noted that this definition of the alphabetic test is not the same as the definition of the
alphabetic test in previous versions of COBOL. In order to achieve compatibility with
the earlier versions of COBOL, two courses of action are possible: either change the
source program to use the alphabetic-upper test in place of the alphabetic test, or make
use of the Compile Command option that causes the RM/COBOL compiler to treat
alphabetic tests as if they were alphabetic-upper tests. Further information on this topic

[]

-1class-name

-1identifier
UPPER-ALPHABETIC
LOWER-ALPHABETIC

ALPHABETIC
NUMERIC

NOTIS

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 199

is contained in the discussion of the 7 Compile Command Option in Chapter 6:
Compiling of the RM/COBOL User’s Guide.

• An operand is alphabetic-lower if its contents consist entirely of the lowercase letters
a, b, c, . . ., z, or space.

• An operand is alphabetic-upper if its contents consist entirely of the uppercase letters
A, B, C, . . ., Z, or space.

• An operand fulfills a class-name test if its contents consist entirely of the characters listed
in the definition of class-name-1 in the SPECIAL-NAMES paragraph.

When used, NOT and the next keyword specify one class condition that defines the class test
to be executed for truth value, for example, NOT NUMERIC is a truth test for determining
that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes the item as
alphabetic.

In the NUMERIC test, the usage of the operand being tested may be DISPLAY,
COMPUTATIONAL, COMPUTATIONAL-3 or COMPUTATIONAL-6.

If the usage of the operand being tested is DISPLAY, then:

1. If the data description of the item being tested indicates the presence of an operational
sign, the item being tested is determined to be numeric only if the contents are numeric
and a valid operational sign is present. The valid operational signs for numeric
DISPLAY data items are defined in the discussions of the SIGN clause (on page 124)
and USAGE clause (on page 127).

2. If the data description of the item being tested does not indicate the presence of an
operational sign, the item being tested is determined to be numeric only if the contents
are numeric and an operational sign is not present.

If the usage of the operand being tested is COMPUTATIONAL, the item being tested is
determined to be numeric only if each character position contains an unpacked decimal digit,
except that, if the data description of the item being tested indicates the presence of an
operational sign, the rightmost character position must contain a valid sign. The
representation for a negative sign is hexadecimal D. Depending on configured sign
representation, the representation for a positive sign may be hexadecimal C, B, or F.

If the usage of the operand being tested is COMPUTATIONAL-3, the item being tested is
determined to be numeric only if each character position, except the rightmost, contains two
packed decimal digits. The rightmost character position must contain a packed decimal digit
in the high order half-byte and a valid sign in the low order half-byte. The representation for
a negative sign is hexadecimal D. Depending on configured sign representation, the
representation for a positive sign may be hexadecimal C, B, or F.

If the usage of the operand being tested is COMPUTATIONAL-6, the item being tested is
determined to be numeric only if each character position contains two packed decimal digits.

The ALPHABETIC test cannot be used with an item whose data description describes the
item as numeric. The item being tested is determined to be alphabetic only if the contents
consist of any combination of the alphabetic characters and the space.

The ALPHABETIC-LOWER test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic-lower
only if its contents consist of any combination of the lowercase alphabetic characters a
through z and space.

The ALPHABETIC-UPPER test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic-upper

Chapter 5: Procedure Division

200 RM/COBOL Language Reference Manual

only if its contents consist of any combination of the uppercase alphabetic characters A
through Z and space.

The class-name test must not be used with an item whose data description describes the item
as numeric.

Sign Condition
The sign condition determines whether the algebraic value of an arithmetic expression is less
than, greater than, or equal to zero. The general format for a sign condition is:

When used, NOT and the next keyword specify one sign condition that defines the algebraic
test to be executed for truth value; for example, NOT ZERO is a truth test for a nonzero value.
A value is positive only if it is greater than zero. A value is negative only if it is less than
zero. The value zero is neither positive nor negative.

Condition-Name Condition (Conditional Variable)
In a condition-name condition, a conditional variable is tested to determine whether its value
is equal to one of the values associated with a condition-name declared in a level-number 88
data description entry subordinate to the conditional variable. The general format for the
condition-name condition is:

If condition-name-1 is associated with a range of values, the conditional variable is tested to
determine if its value falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as
those specified for relation conditions.

The result of the test is true if one of the values corresponding to the condition-name equals
the value of its associated conditional variable.

Switch-Status Condition
A switch-status condition determines the on or off status of a software switch. The switch-
name and the on or off value associated with the condition must be named in the SPECIAL-
NAMES paragraph of the Environment Division. The general format for the switch-status
condition is:

The result of the test is true if the switch is set to the specified position corresponding to
condition-name-2.

[]

ZERO
NEGATIVE
POSITIVE

NOTISn-1-expressioarithmetic

name-1condition-

name-2condition-

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 201

Complex Conditions
A complex condition is formed by combining simple conditions, combined conditions and
complex conditions with logical connectors (logical operators AND and OR) or by negating
these conditions with logical negation (the logical operator NOT). The truth value of a
complex condition, whether parenthesized or not, is the truth value that results from the
interaction of the stated logical operators on the individual truth values of the constituent
simple conditions.

The logical operators and their meanings are shown in Table 27.

Table 27: Logical Operators

Logical Operators

Logical Operator Meaning

AND Logical conjunction; the truth value is true if both of the conjoined
conditions are true; false if one or both of the conjoined conditions
is false.

OR Logical inclusive OR; the truth value is true if one or both of the
included conditions is true; false if both included conditions are
false.

NOT Logical negation or reversal of truth value; the truth value is true if
the condition is false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

Negated Conditions
A condition is negated by the use of the logical operator NOT, which reverses the truth value
of the condition to which it is applied. Thus, the truth value of a negated condition is true
only if the truth value of the condition is false; the truth value of a negated condition is false
only if the truth value of the condition is true. The inclusion in parentheses of a negated
condition does not change the truth value.

The general format for a negated condition is:

Combined Conditions
A combined condition results from connecting conditions with one of the logical operators
AND or OR. The general format of a combined condition is:

condition-2 and condition-3 may be one of the following:

• Simple condition.

• Negated condition.

• Combined condition.

1condition-NOT

 3condition-2condition- OR

AND

Chapter 5: Procedure Division

202 RM/COBOL Language Reference Manual

• Negated combined condition; that is, the NOT logical operator followed by a combined
condition enclosed within parentheses.

• Combinations of the above.

Although parentheses need never be used when AND or OR (but not both) is used exclusively
in a combined condition, parentheses may be used to affect the final truth value when a
mixture of AND, OR and NOT is used.

Abbreviated Combined Relation Conditions
When simple or negated simple relation conditions are combined with logical connectives
such that a succeeding relation condition contains a subject or subject and relational operator
that is common with the preceding relation condition, and no parentheses are used within such
a consecutive sequence, any relation condition except the first may be abbreviated by:

• The omission of the subject of the relation condition

• The omission of the subject and relational operator of the relation condition

The format for an abbreviated combined relation condition is:

The effect of using such abbreviations is as if the last preceding stated subject were inserted in
place of the omitted subject, and the last stated relational operator were inserted in place of
the omitted relational operator.

The interpretation applied to the use of the word NOT in an abbreviated combined relation
condition is:

• If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, or =, the
NOT participates as part of the relational operator.

• In all other circumstances, the NOT is interpreted as a logical operator and, therefore, the
implied insertion of subject or relational operator results in a negated relation condition.

Condition Evaluation Rules
Condition evaluation rules indicate the ways in which conditions and logical operators may be
combined and parenthesized. There must be a one-to-one correspondence between left and
right parentheses such that each left parenthesis is to the left of its corresponding right
parenthesis.

Parentheses may be used to specify the order in which individual conditions of complex
conditions are to be evaluated when it is necessary to depart from the implied evaluation
precedence. Conditions within parentheses are evaluated first; within nested parentheses
evaluation proceeds from the least inclusive condition to the most inclusive condition. When
parentheses are not used, or parenthesized conditions are at the same level of inclusiveness,
the following hierarchical order of logical evaluation is implied until the final truth value is
determined:

• Truth values for simple conditions are established.

• Truth values for negated simple conditions are established.

[] []

 object-1-operatorrelationalondition-1relation-c NOTOR

AND

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 203

• Truth values for combined conditions are established: AND logical operators followed
by OR logical operators.

• Truth values for negated combined conditions are established.

• When the sequence of evaluation is not completely specified by parentheses, the order of
evaluation of consecutive operations of the same hierarchical level is from left to right.

Sequential Organization Input-Output
The sequential organization input-output statements in the Procedure Division are the
CLOSE, DELETE FILE, OPEN, READ, REWRITE, UNLOCK and WRITE statements.

Function
Sequential organization input-output provides a capability to access records of a file in an
established sequence. The sequence is established as a result of writing the records to the file.

Organization
Sequential files are organized such that each record in the file except the first has a unique
predecessor record, and each record except the last has a unique successor record. These
predecessor-successor relationships are established by the order of WRITE statements when
the file is created. Once established, these relationships do not change except when records
are added to the end of the file.

Access Mode
Only the sequential access mode is available for files whose organization is sequential. In the
sequential access mode, the sequence in which records are accessed is the order in which the
records were originally written.

File Position Indicator
The file position indicator is a concept used to facilitate specification of the next record to be
accessed within a given file during certain sequences of input-output operations. The concept
of the file position indicator has no meaning for a file opened in the output or extend mode.
The setting of the file position indicator is affected only by the CLOSE, OPEN and READ
statements.

I-O Status
If the FILE STATUS clause is included in a file control entry, it defines a two-character file
status data item for that file. During the execution of each input-output statement that refers
to such a file, the runtime system stores a value into the file status data item. Storage of the
value is done before the execution of any associated imperative statement and before any
applicable USE procedure is executed. The value can be used by the program to determine
the status of that input-output operation. The value that is stored into the file status data item
is called the I-O status value.

Chapter 5: Procedure Division

204 RM/COBOL Language Reference Manual

The I-O status value indicates the status of an input-output operation. It also determines
whether an applicable USE procedure should be executed: if one of the conditions listed
under the heading “Successful Completion” results, an applicable USE procedure is not
executed; if any other condition results, such a procedure may be executed depending on rules
stated the USE Statement (see page 180).

Certain classes of I-O status values indicate critical error conditions. They are the ones that
begin with the digits 3, 4 and 9. When such conditions arise, certain system-standard error
correction procedures may be tried first, depending on the nature of the problem. If they are
not successful in clearing the problem, either a user-specified USE procedure is executed (if
one is applicable) and execution of the program continues, or a runtime error message is
produced and execution of the run unit terminates.

Upon completion of the input-output operation, the I-O status value expresses one of the
following conditions:

• Successful Completion. The input-output statement was executed successfully and no
exceptional conditions arose. The left character of the I-O status value is 0 for these
cases.

• At End. A sequential READ statement was not executed successfully because of an at
end condition. The left character of the I-O status value is 1 for this case.

• Permanent Error. The input-output statement was not executed successfully because of
an error that precludes further processing of the file. The problem could be a violation of
an external boundary, or a hardware input-output error such as a data check, parity error,
transmission error, and so forth. The left character of the I-O status value is 3 for these
cases.

• Logic Error. The input-output statement was not executed successfully because an
improper sequence of input-output statements was performed on the file, or because of a
violation of a user-defined limit. The left character of the I-O status value is 4 for these
cases.

• General Error. The input-output statement was not executed successfully because of a
condition that is specified by the right character of the I-O status value. The left
character of the I-O status value is 9 for these cases.

It should be noted that the I-O status values specified here differ in many respects from the
ones defined in earlier versions of RM/COBOL. The new values comply with the American
National Standard COBOL 1985 whereas the old values comply with ANSI COBOL 1974.
In the following list, the old values are shown in square brackets following the new values
when the two values are not the same. In situations where it is necessary to preserve
compatibility with earlier versions of RM/COBOL in this respect, two courses of action are
possible: either modify the text of the source program to use the new set of status values, or
make use of the Compile Command option that causes the compiler to treat the entire program
as an ANSI COBOL 1974 program. That option and the language features it controls are
detailed in the discussion of the 7 Compile Command Option in Chapter 6: Compiling of the
RM/COBOL User’s Guide.

The following list shows the possible I-O status values that can arise as a result of executing
an input-output statement that refers to a sequential file:

• Successful Completion

− I-O Status Value=00. The input-output statement is successfully executed and no
further information is available concerning the operation.

− I-O Status Value=04 [97]. A READ statement executed successfully but the length
of the record being processed does not conform to the fixed file attributes for the file.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 205

− I-O Status Value=05. The input-output statement is successfully executed but the
file is not present at the time the input-output statement is executed.

• For a DELETE FILE statement, the referenced file is not available.

• For an OPEN statement, the referenced optional file is not present. If the open
mode is I-O or extend, the file has been created.

− I-O Status Value=07. The input-output statement executed successfully. However,
for a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR REMOVAL
phrase or for an OPEN statement with the NO REWIND phrase, the referenced file
is on a non-reel/unit medium.

• At End Condition with Unsuccessful Completion

− I-O Status Value=10. A sequential READ statement is attempted and no next logical
record exists in the file because the end of the file has been reached, or a sequential
READ statement is attempted for the first time on an optional input file that is not
present.

• Permanent Error Condition with Unsuccessful Completion

− I-O Status Value=30. A permanent error exists and no further information is
available concerning the input-output operation.

− I-O Status Value=34. A permanent error exists because of an attempt to write
beyond the externally defined boundaries of a sequential file.

− I-O Status Value=35 [94]. A permanent error exists because an OPEN statement
with the INPUT, I-O, or EXTEND phrase is attempted on a nonoptional file that is
not present.

− I-O Status Value=37 [90, 95]. A permanent error exists because an OPEN statement
is attempted on a file that does not support the open mode specified in the OPEN
statement, or a DELETE FILE statement refers to a protected file. For OPEN
statements, the possible violations are as follows:

• The EXTEND or OUTPUT phrase is specified but the file does not support
write operations.

• The I-O phrase is specified but the file does not support the input and output
operations that are permitted for a sequential file when opened in the I-O mode.

• The INPUT phrase is specified but the file does not support read operations.

− I-O Status Value=38 [93]. A permanent error exists because an OPEN or DELETE
FILE statement is attempted on a file previously closed with lock.

− I-O Status Value=39 [94]. An OPEN or DELETE FILE statement is unsuccessful
because of an incompatibility between the fixed file attributes and the attributes
specified for the file in the program.

• Logic Error Condition with Unsuccessful Completion

− I-O Status Value=41 [92]. An OPEN statement is attempted for a file that is already
open, or a DELETE FILE statement is attempted for an open file.

− I-O Status Value=42 [91]. A CLOSE statement is attempted for a file that is not
open.

− I-O Status Value=43 [90]. A REWRITE statement is attempted for a mass storage
file, and the last input-output statement executed for the file was not a successfully
executed READ statement.

Chapter 5: Procedure Division

206 RM/COBOL Language Reference Manual

− I-O Status Value=44 [97]. A boundary violation exists either because of an attempt
to write or rewrite a record whose length is longer or shorter than the limits
established by the RECORD IS VARYING clause, or because of an attempt to
rewrite a record that is not the same size as the record being replaced.

− I-O Status Value=46 [96]. A sequential READ statement is attempted on a file open
in the input or I-O mode and no valid next record has been established either because
the preceding READ statement caused an at end condition, or because the preceding
READ statement was unsuccessful for some other reason.

− I-O Status Value=47 [90, 91]. A READ statement is attempted on a file not open in
the input or I-O mode.

− I-O Status Value=48 [90, 91]. A WRITE statement is attempted on a file not open in
the output or extend mode.

− I-O Status Value=49 [90, 91]. A REWRITE statement is attempted on a file not
open in the I-O mode.

• General Error

− I-O Status Value=93. An OPEN statement is attempted on a file that is not available.
The availability of a file is determined by several factors, including the lock mode.
For details on the availability of a file, see “File Sharing” in Chapter 8: RM/COBOL
Features of the RM/COBOL User’s Guide.

− I-O Status Value=94. An OPEN statement is attempted at a time when there is
insufficient available memory to provide the required supplementary input-output
areas and control structures, or an OPEN statement is attempted for a file that has an
attribute that is not supported, or an OPEN statement is attempted for a file that has
file attributes that are inconsistent among themselves.

− I-O Status Value=97. A REWRITE or WRITE statement is attempted while the
record area contains one or more characters that are not legal for a line sequential file
after mapping through the applicable code set.

− I-O Status Value=98. Defective record structure has been found in the file.

− I-O Status Value=99. A READ or REWRITE statement is attempted that refers to a
record locked by another concurrent user. This I-O status value is returned only
when the referenced file has an associated file status data item and there is an
applicable USE procedure; when this is not the case, the program waits for the record
to become available.

At End Condition
The at end condition can occur as a result of the execution of a Format 1 READ statement.
Details regarding the circumstances that cause an at end condition are presented in the
discussion of the Format 1 READ statement (on page 333).

If the at end condition arises, execution of the READ statement is unsuccessful and the
positioning of the file is not changed. The NOT AT END phrase and its imperative statement,
if present, are ignored, and the following actions occur:

1. If there is a file status data item associated with the file, the appropriate I-O status value
(10) is stored into it.

2. If the AT END phrase is specified in the READ statement, any USE procedure associated
with the file is not executed. Control is transferred to the imperative statement specified
in the AT END phrase. The imperative statement is executed according to the rules for

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 207

each statement encountered in that imperative statement. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement. If control reaches the end of
the imperative statement in the AT END phrase, control is transferred to the end of the
READ statement.

3. If the AT END phrase is not specified in the READ statement, but an applicable USE
procedure is specified either explicitly or implicitly, that procedure is performed and
control is transferred to the end of the READ statement.

4. If the AT END phrase is not specified in the READ statement and no applicable USE
procedure is specified, a runtime error message is produced and execution of the run unit
terminates. The runtime can be configured, as described for the DEFAULT-USE-
PROCEDURE keyword of the RUN-FILES-ATTR record in Chapter 10: Configuration
of the RM/COBOL User’s Guide, to assume that a default empty USE procedure is
applicable, thus causing execution to continue at the next executable statement after the
READ statement.

If the at end condition does not arise for the execution of a READ statement, the AT END
phrase and its associated imperative statement, if present, are ignored, and the following
actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If there is an error or exception condition and an applicable USE procedure is specified,
either explicitly or implicitly, that procedure is performed and control is transferred to the
end of the READ statement.

3. If there is an error or exception condition and no applicable USE procedure is specified, a
runtime error message is produced and execution of the run unit terminates. The runtime
can be configured, as described for the DEFAULT-USE-PROCEDURE keyword of the
RUN-FILES-ATTR record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus causing
execution to continue at the next executable statement after the READ statement.

4. If no error or exception condition exists and a NOT AT END phrase is present, the
imperative statement in the phrase is executed according to the rules for each statement
encountered in that imperative statement. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, control is transferred to the end of
the READ statement.

Relative Organization Input-Output
The relative organization input-output statements in the Procedure Division are the CLOSE,
DELETE, DELETE FILE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Function
Relative organization input-output provides the capability to access records of a mass storage
file in either a random or sequential manner. Each record in a relative file is uniquely
identified by an integer value greater than zero that specifies the logical position of the record
in the file.

Chapter 5: Procedure Division

208 RM/COBOL Language Reference Manual

Organization
Relative file organization is permitted only on mass storage devices (RANDOM, DISK or
DISC device in an ASSIGN TO clause).

A relative file consists of records that are identified by relative record numbers. The file may
be thought of as comprising a serial string of areas, each capable of holding a logical record.
Each of these areas is denominated by a relative record number, an integer value greater than
zero. Records are stored and retrieved based on this number. For example, the 10th record is
the one addressed by relative record number 10 and is the 10th record area, whether or not
records have been written in the first through the ninth record areas.

Access Modes
In the sequential access mode, the sequence in which records are accessed is the ascending
order of the relative record numbers of all records that currently exist within the file.

In the random access mode, the sequence in which records are accessed is controlled by the
programmer. The desired record is accessed by placing its relative record number in the
relative key data item.

In the dynamic access mode, the programmer may change at will from sequential access to
random access using appropriate forms of input-output statements.

File Position Indicator
The file position indicator is a concept used to facilitate specification of the next record to be
accessed within a given file during certain sequences of input-output operations. The concept
of the file position indicator has no meaning for a file opened in the output or extend mode.
The setting of the file position indicator is affected only by the CLOSE, OPEN, READ and
START statements.

I-O Status
If the FILE STATUS clause is included in a file control entry, it defines a two-character file
status data item for that file. During the execution of each input-output statement that refers
to such a file, the runtime system stores a value into the file status data item. Storage of the
value is done before the execution of any associated imperative statement and before any
applicable USE procedure is executed. The value can be used by the program to determine
the status of that input-output operation. The value that is stored into the file status data item
is called the I-O status value.

The I-O status value indicates the status of an input-output operation. It also determines
whether an applicable USE procedure should be executed: if one of the conditions listed
under the heading “Successful Completion” results, an applicable USE procedure is not
executed; if any other condition results, such a procedure may be executed depending on rules
stated in the discussion of the USE Statement on page 180.

Certain classes of I-O status values indicate critical error conditions. They are the ones that
begin with the digits 3, 4 and 9. When such conditions arise, certain system-standard error
correction procedures may be tried first, depending on the nature of the problem. If they are
not successful in clearing the problem, either a user-specified USE procedure is executed (if
one is applicable) and execution of the program continues, or a runtime error message is
produced and execution of the run unit terminates.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 209

Upon completion of the input-output operation, the I-O status value expresses one of the
following conditions:

• Successful Completion. The input-output statement was executed successfully and no
exceptional conditions arose. The left character of the I-O status value is 0 for these
cases.

• At End. A sequential READ statement was not executed successfully because of an at
end condition. The left character of the I-O status value is 1 for these cases.

• Invalid Key. The input-output statement was not executed successfully because of an
invalid key condition. The left character of the I-O status value is 2 for these cases.

• Permanent Error. The input-output statement was not executed successfully because of
an error that precludes further processing of the file. The problem could be a violation of
an external boundary, or a hardware input-output error such as a data check, parity error,
transmission error, and so forth. The left character of the I-O status value is 3 for these
cases.

• Logic Error. The input-output statement was not executed successfully because an
improper sequence of input-output statements was performed on the file, or because of a
violation of a user-defined limit. The left character of the I-O status value is 4 for these
cases.

• General Error. The input-output statement was not executed successfully because of a
condition that is specified by the right character of the I-O status value. The left
character of the I-O status value is 9 for these cases.

It should be noted that the I-O status values specified here differ in many respects from the
ones defined in earlier versions of RM/COBOL. The new values comply with ANSI COBOL
1985 whereas the old values comply with ANSI COBOL 1974. In the following list, the old
values are shown in square brackets following the new values when the two values are not the
same. In situations where it is necessary to preserve compatibility with earlier versions of
RM/COBOL in this respect, two courses of action are possible: either modify the text of the
source program to use the new set of status values, or make use of the 2 Compile Command
Option, which causes the compiler to treat the entire program as an ANSI COBOL 1974
program. That option and the language features it controls are detailed in the discussion of
the 7 Compile Command Option in Chapter 6: Compiling of the RM/COBOL User’s Guide.

The following list shows the possible I-O status values that can arise as a result of executing
an input-output statement that refers to a relative file:

• Successful Completion

− I-O Status Value=00. The input-output statement is successfully executed and no
further information is available concerning the operation.

− I-O Status Value=04 [97]. A READ statement executed successfully but the length
of the record being processed does not conform to the fixed file attributes for the file.

− I-O Status Value=05. The input-output statement is successfully executed but the
file is not present at the time the input-output statement is executed.

• For a DELETE FILE statement, the referenced file is not available.

• For an OPEN statement, the referenced optional file is not present. If the open
mode is I-O or extend, the file has been created.

• At End Condition with Unsuccessful Completion

− I-O Status Value=10. A sequential READ statement is attempted and no next (or
previous) logical record exists in the file because the end (or beginning) of the file

Chapter 5: Procedure Division

210 RM/COBOL Language Reference Manual

has been reached, or a sequential READ statement is attempted for the first time on
an optional input file that is not present.

− I-O Status Value=14. A sequential READ statement is attempted for a relative file
and the number of significant digits in the relative record number is larger than the
size of the relative key data item specified for the file.

• Invalid Key Condition with Unsuccessful Completion

− I-O Status Value=22. An attempt is made to write a record that would create a
duplicate key in a relative file.

− I-O Status Value=23. Either an attempt is made to randomly access a record that
does not exist in the file, or a START or random READ statement is attempted on an
optional input file that is not present. For indexed files, this value may also occur if
the WHILE phrase specifies a non-literal filter pattern that has a syntax error or other
problem. A subcode in the extended I-O status value provides additional information
about the problem with the pattern specification (for further details on the subcode
for this case, see Appendix A: Runtime Messages of the RM/COBOL User’s Guide).
A filter pattern that does not successfully match any records does not cause an
invalid key condition on the START statement, but rather causes an at end condition
on a subsequent sequential READ statement.

− I-O Status Value=24. Either an attempt is made to write beyond the externally
defined boundaries of a relative file, or a sequential WRITE statement is attempted
for a relative file and the number of significant digits in the relative record number is
larger than the size of the relative key data item specified for the file.

• Permanent Error Condition with Unsuccessful Completion

− I-O Status Value=30. A permanent error exists and no further information is
available concerning the input-output operation.

− I-O Status Value=35 [94]. A permanent error exists because an OPEN statement
with the INPUT, I-O, or EXTEND phrase is attempted on a nonoptional file that is
not present.

− I-O Status Value=37 [90, 95]. A permanent error exists because an OPEN statement
is attempted on a file that does not support the open mode specified in the OPEN
statement, or a DELETE FILE statement refers to a protected file. For OPEN
statements, the possible violations are as follows:

• The EXTEND or OUTPUT phrase is specified but the file does not support
write operations.

• The I-O phrase is specified but the file does not support the input and output
operations that are permitted for a relative file when opened in the I-O mode.

• The INPUT phrase is specified but the file does not support read operations.

− I-O Status Value=38 [93]. A permanent error exists because an OPEN or DELETE
FILE statement is attempted on a file previously closed with lock.

− I-O Status Value=39 [94]. An OPEN or DELETE FILE statement is unsuccessful
because of an incompatibility between the fixed file attributes and the attributes
specified for the file in the program.

• Logic Error Condition with Unsuccessful Completion

− I-O Status Value=41 [92]. An OPEN statement is attempted for a file that is already
open, or a DELETE FILE statement is attempted for an open file.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 211

− I-O Status Value=42 [91]. A CLOSE statement is attempted for a file that is not
open.

− I-O Status Value=43 [90]. A DELETE or REWRITE statement in the sequential
access mode is attempted for a file, and the last input-output statement executed for
the file was not a successfully executed READ statement.

− I-O Status Value=44 [97]. A boundary violation exists because of an attempt to
write or rewrite a record whose length is longer or shorter than the limits established
by the RECORD IS VARYING clause.

− I-O Status Value=46 [96]. A sequential READ statement is attempted on a file open
in the input or I-O mode and no valid next record has been established for one of the
following reasons:

• The preceding START statement was unsuccessful.

• The preceding READ statement caused an at end condition.

• The preceding READ statement was unsuccessful for some other reason.

− I-O Status Value=47 [90, 91]. A READ or START statement is attempted on a file
not open in the input or I-O mode.

− I-O Status Value=48 [90, 91]. A WRITE statement is attempted on a file not open in
the I-O, output, or extend mode or on a sequential access file open in the I-O mode.

− I-O Status Value=49 [90, 91]. A DELETE or REWRITE statement is attempted on a
file not open in the I-O mode.

• General Error

− I-O Status Value=93. An OPEN statement is attempted on a file that is not available.
The availability of a file is determined by several factors, including the lock mode.
For details on the availability of a file, see “File Sharing” in Chapter 8: RM/COBOL
Features of the RM/COBOL User’s Guide.

− I-O Status Value=94. An OPEN statement is attempted at a time when there is
insufficient available memory to provide the required supplementary input-output
areas and control structures, or an OPEN statement is attempted for a file that has an
attribute that is not supported, or an OPEN statement is attempted for a file that has
file attributes that are inconsistent among themselves.

− I-O Status Value=98. Defective record structure has been found in the file.

− I-O Status Value=99. A DELETE, READ, or REWRITE statement is attempted that
refers to a record locked by another concurrent user. This I-O status value is
returned only when the referenced file has an associated file status data item and
there is an applicable USE procedure; when this is not the case, the program waits
for the record to become available.

Invalid Key Condition
The invalid key condition can occur as a result of the execution of a DELETE, READ,
REWRITE, START or WRITE statement. Details regarding the situations that cause an
invalid key condition are presented in the sections of Chapter 6: Procedure Division
Statements, which explain the individual input-output statements. If an invalid key condition
occurs, execution of the input-output statement that recognized the condition is unsuccessful
and the file is not affected.

Chapter 5: Procedure Division

212 RM/COBOL Language Reference Manual

If the invalid key condition exists after the execution of the input-output operations called for
by the input-output statement, the NOT INVALID KEY phrase, if specified, is ignored and
the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If the INVALID KEY phrase is specified in the input-output statement, any USE
procedure associated with the file is not executed. Control is transferred to the
imperative statement specified in the INVALID KEY phrase. The imperative statement
is executed according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes explicit transfer
of control is executed, control is transferred in accordance with the rules for that
statement. If control reaches the end of the imperative statement in the INVALID KEY
phrase, control is transferred to the end of the input-output statement.

3. If the INVALID KEY phrase is not specified in the input-output statement, but an
applicable USE procedure is specified either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the input-output statement.

4. If the INVALID KEY phrase is not specified in the input-output statement and no
applicable USE procedure is specified, a runtime error message is produced and
execution of the run unit terminates. The runtime can be configured, as described for the
DEFAULT-USE-PROCEDURE keyword of the RUN-FILES-ATTR record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a default
empty USE procedure is applicable, thus causing execution to continue at the next
executable statement after the input-output statement.

If the invalid key condition does not exist after the execution of the input-output operations
called for by an input-output statement, the INVALID KEY phrase, if specified, is ignored
and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If there is an error or exception condition other than an invalid key condition and an
applicable USE procedure is specified, either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the input-output statement.

3. If there is an error or exception condition other than an invalid key condition and no
applicable USE procedure is specified, a runtime error message is produced and
execution of the run unit terminates. The runtime can be configured, as described for
the DEFAULT-USE-PROCEDURE keyword of the RUN-FILES-ATTR record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a default
empty USE procedure is applicable, thus causing execution to continue at the next
executable statement after the input-output statement.

4. If no error or exception condition exists and a NOT INVALID KEY phrase is present, the
imperative statement in the NOT INVALID KEY phrase is executed according to the
rules for each statement encountered in that imperative statement. If a procedure
branching or conditional statement that causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement; otherwise, control is
transferred to the end of the input-output statement.

At End Condition
The at end condition can occur as a result of the execution of a Format 1 READ statement.
Details regarding the circumstances that cause an at end condition appear in the discussion of
the Format 1 READ statement (on page 333).

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 213

When the at end condition arises, execution of the READ statement is unsuccessful and the
positioning of the file is not changed. The NOT AT END phrase and its imperative statement,
if present, are ignored, and the following actions occur:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If the AT END phrase is specified in the READ statement, any USE procedure associated
with the file is not executed. Control is transferred to the imperative statement specified
in the AT END phrase. The imperative statement is executed according to the rules for
each statement encountered in that imperative statement. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement. If control reaches the end of
the imperative statement in the AT END phrase, control is transferred to the end of the
READ statement.

3. If the AT END phrase is not specified in the READ statement, but an applicable USE
procedure is specified either explicitly or implicitly, that procedure is performed and
control is transferred to the end of the READ statement.

4. If the AT END phrase is not specified in the READ statement and no applicable USE
procedure is specified, a runtime error message is produced and execution of the run unit
terminates. The runtime can be configured, as described for the DEFAULT-USE-
PROCEDURE keyword of the RUN-FILES-ATTR record in Chapter 10: Configuration
of the RM/COBOL User’s Guide, to assume that a default empty USE procedure is
applicable, thus causing execution to continue at the next executable statement after the
READ statement.

If the at end condition does not arise for the execution of a Format 1 READ statement, the AT
END phrase and its associated imperative statement, if present, are ignored, and the following
actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If there is an error or exception condition and an applicable USE procedure is specified,
either explicitly or implicitly, that procedure is performed and control is transferred to the
end of the READ statement.

3. If there is an error or exception condition and no applicable USE procedure is specified, a
runtime error message is produced and execution of the run unit terminates. The runtime
can be configured, as described for the DEFAULT-USE-PROCEDURE keyword of the
RUN-FILES-ATTR record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus causing
execution to continue at the next executable statement after the READ statement.

4. If no error or exception condition exists and a NOT AT END phrase is present, the
imperative statement in the phrase is executed according to the rules for each statement
encountered in that imperative statement. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, control is transferred to the end of
the READ statement.

Indexed Organization Input-Output
The indexed organization input-output statements in the Procedure Division are the CLOSE,
DELETE, DELETE FILE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements.

Chapter 5: Procedure Division

214 RM/COBOL Language Reference Manual

Function
Indexed organization input-output provides the capability to access records of a mass storage
file in either a random or sequential manner. Each record in an indexed organization file is
uniquely identified by the value of one or more keys within that record, except when the
DUPLICATES phrase is specified for all the keys associated with the file.

Organization
An indexed organization file is a mass storage file in which data records may be accessed by
the value of a key. A record description may include one or more key data items, each of
which is associated with an index. Each index provides a logical path to the data records
according to the contents of a data item within each record that is the recorded key for that
index.

The data item named in the RECORD KEY clause of the file control entry for a file is the
prime record key for that file. For purposes of inserting, updating and deleting records in a
file, each record is identified solely by the value of its prime record key. This value should,
therefore, be unique and must not be changed when updating the record. The value must be
unique unless the DUPLICATES phrase is specified in the RECORD KEY clause. When the
DUPLICATES phrase is specified in the RECORD KEY clause, the value of the prime record
key is not necessarily a unique identifier for a single record; therefore, in this case, the
DELETE and REWRITE statements are disallowed in the random access mode and are
sequential operations in the dynamic access mode.

Alternate record keys provide alternate means of retrieval for the records of a file. Such keys
are named in the ALTERNATE RECORD KEY clause of the file control entry. The value of
a particular alternate record key in each record must be unique unless the DUPLICATES
phrase is specified in the ALTERNATE RECORD KEY clause.

Access Modes
For indexed organization, the order of sequential access is ascending based on the value of the
current key of reference. If a collating sequence is specified for the file, it is used in
determining the ascending sequence for keys. Any of the keys defined for the file may be
established as the current key of reference during the processing of the file. The order of
retrieval from a set of records that have duplicate key of reference values is the original order
of arrival of those records into that set. The START statement may be used to establish a
starting point within an indexed file for a series of subsequent sequential retrievals.

When an indexed file is accessed in random access mode, input-output statements are used to
access the records in a programmer-specified order. The programmer specifies the desired
record by placing the value of one of its record keys in a record key or an alternate record key
data item.

In the dynamic access mode, the programmer may change at will from sequential access to
random access using appropriate forms of input-output statements.

File Position Indicator
The file position indicator is a concept used to facilitate specification of the next record to be
accessed within a given file during certain sequences of input-output operations. The concept
of the file position indicator has no meaning for a file opened in the output or extend mode.
The setting of the file position indicator is affected only by the CLOSE, OPEN, READ and
START statements.

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 215

I-O Status
If the FILE STATUS clause is included in a file control entry, it defines a two-character file
status data item for that file. During the execution of each input-output statement that refers
to such a file, the runtime system stores a value into the file status data item. Storage of the
value is done before the execution of any associated imperative statement and before any
applicable USE procedure is executed. The value can be used by the program to determine
the status of that input-output operation. The value that is stored into the file status data item
is called the I-O status value.

The I-O status value indicates the status of an input-output operation. It also determines
whether an applicable USE procedure should be executed: if one of the conditions listed
under the heading “Successful Completion” results, an applicable USE procedure is not
executed; if any other condition results, such a procedure may be executed depending on the
rules for the USE Statement on page 180.

Certain classes of I-O status values indicate critical error conditions. They are the ones that
begin with the digits 3, 4 and 9. When such conditions arise, certain system-standard error
correction procedures may be tried first, depending on the nature of the problem. If they are
not successful in clearing the problem, either a user-specified USE procedure is executed (if
one is applicable) and execution of the program continues, or a runtime error message is
produced and execution of the run unit terminates.

Upon completion of the input-output operation, the I-O status value expresses one of the
following conditions:

• Successful Completion. The input-output statement was executed successfully and no
exceptional conditions arose. The left character of the I-O status value is 0 for these
cases.

• At End. A sequential READ statement was not executed successfully because of an at
end condition. The left character of the I-O status value is 1 for this case.

• Invalid Key. The input-output statement was not executed successfully because of an
invalid key condition. The left character of the I-O status value is 2 for these cases.

• Permanent Error. The input-output statement was not executed successfully because of
an error that precludes further processing of the file. The problem could be a violation of
an external boundary, or a hardware input-output error such as a data check, parity error,
transmission error, and so forth. The left character of the I-O status value is 3 for these
cases.

• Logic Error. The input-output statement was not executed successfully because an
improper sequence of input-output statements was performed on the file, or because of a
violation of a user-defined limit. The left character of the I-O status value is 4 for these
cases.

• General Error. The input-output statement was not executed successfully because of a
condition that is specified by the right character of the I-O status value. The left
character of the I-O status value is 9 for these cases.

It should be noted that the I-O status values specified here differ in many respects from the
ones defined in earlier versions of RM/COBOL. The new values comply with ANSI COBOL
1985 whereas the old values comply with ANSI COBOL 1974. In the following list, the old
values are shown in square brackets following the new values when the two values are not the
same. In situations where it is necessary to preserve compatibility with earlier versions of
RM/COBOL in this respect, two courses of action are possible: either modify the text of the
source program to use the new set of status values, or make use of the 2 Compile Command
Option, which causes the compiler to treat the entire program as an ANSI COBOL 1974

Chapter 5: Procedure Division

216 RM/COBOL Language Reference Manual

program. That option and the language features it controls are detailed in the discussion of
the 7 Compile Command Option in Chapter 6: Compiling of the RM/COBOL User’s Guide.

The following list shows the possible I-O status values that can arise as a result of executing
an input-output statement that refers to an indexed file:

• Successful Completion

− I-O Status Value=00. The input-output statement is successfully executed and no
further information is available concerning the operation.

− I-O Status Value=02. The input-output statement executed successfully, but a
duplicate key is detected. For a READ statement, the key value for the current key
of reference is equal to the value of the same key in the next record within the
current key of reference. For a WRITE statement, the record just written created a
duplicate key value for at least one record key for which duplicates are allowed. For
a REWRITE statement, the record just written created a duplicate key value for at
least one alternate record key for which duplicates are allowed.

− I-O Status Value=04 [97]. A READ statement executed successfully but the length
of the record being processed does not conform to the fixed file attributes for the file.

− I-O Status Value=05. The input-output statement is successfully executed but the
file is not present at the time the input-output statement is executed.

• For a DELETE FILE statement, the referenced file is not available.

• For an OPEN statement, the referenced optional file is not present. If the open
mode is I-O or extend, the file has been created.

• At End Condition with Unsuccessful Completion

− I-O Status Value=10. A sequential READ statement is attempted and no next (or
previous) logical record exists in the file because the end (or beginning) of the file
has been reached, or a sequential READ statement is attempted for the first time on
an optional input file that is not present.

• Invalid Key Condition with Unsuccessful Completion

− I-O Status Value=21. A sequence error exists for a sequentially accessed indexed
file. Either the prime record key value has been changed by the program between
the successful execution of a READ statement and the execution of the next
REWRITE statement for that file, or the ascending sequence requirements for
successive record key values are violated. A sequentially accessed indexed file
includes the execution of a REWRITE statement in the dynamic access mode when
the DUPLICATES phrase is specified in the RECORD KEY clause.

− I-O Status Value=22. An attempt is made to write or rewrite a record that would
create a duplicate record key value for a record key for which the DUPLICATES
phrase is not specified.

− I-O Status Value=23. Either an attempt is made to randomly access a record that
does not exist in the file, or a START or random READ statement is attempted on an
optional input file that is not present. When the WHILE phrase is used in a START
statement with a data item (non-literal) pattern, syntax errors and other errors related
to the pattern will also cause an I-O Status value 23.

− I-O Status Value=24. An attempt is made to write beyond the externally defined
boundaries of the file.

• Permanent Error Condition with Unsuccessful Completion

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 217

− I-O Status Value=30. A permanent error exists and no further information is
available concerning the input-output operation.

− I-O Status Value=35 [94]. A permanent error exists because an OPEN statement
with the INPUT, I-O or EXTEND phrase is attempted on a nonoptional file that is
not present.

− I-O Status Value=37 [90, 95]. A permanent error exists because an OPEN statement
is attempted on a file that does not support the open mode specified in the OPEN
statement, or a DELETE FILE statement refers to a protected file. For OPEN
statements, the possible violations are as follows:

• The EXTEND or OUTPUT phrase is specified but the file does not support
write operations.

• The I-O phrase is specified but the file does not support the input and output
operations that are permitted for an indexed file when opened in the I-O mode.

• The INPUT phrase is specified but the file does not support read operations.

− I-O Status Value=38 [93]. A permanent error exists because an OPEN or DELETE
FILE statement is attempted on a file previously closed with lock.

− I-O Status Value=39 [94]. An OPEN or DELETE FILE statement is unsuccessful
because of an incompatibility between the fixed file attributes and the attributes
specified for the file in the program.

• Logic Error Condition with Unsuccessful Completion

− I-O Status Value=41 [92]. An OPEN statement is attempted for a file that is already
open, or a DELETE FILE statement is executed for an open file.

− I-O Status Value=42 [91]. A CLOSE statement is attempted for a file that is not
open.

− I-O Status Value=43 [90]. A DELETE or REWRITE statement in the sequential
access mode is attempted for a file, and the last input-output statement executed for
the file was not a successfully executed READ statement. A DELETE or REWRITE
statement in the dynamic access mode is attempted for a file that specifies the
DUPLICATES phrase in the RECORD KEY clause and the last input-output
statement executed for the file was not a successfully executed READ statement.

− I-O Status Value=44 [97]. A boundary violation exists because of an attempt to
write or rewrite a record whose length is longer or shorter than the limits established
by the RECORD IS VARYING clause.

− I-O Status Value=46 [96]. A sequential READ statement is attempted on a file open
in the input or I-O mode and no valid next record has been established for one of the
following reasons:

• The preceding START statement was unsuccessful.

• The preceding READ statement caused an at end condition.

• The preceding READ statement was unsuccessful for some other reason.

− I-O Status Value=47 [90, 91]. A READ or START statement is attempted on a file
not open in the input or I-O mode.

− I-O Status Value=48 [90, 91]. A WRITE statement is attempted on a file not open in
the I-O, output, or extend mode or on a sequential access file open in the I-O mode.

− I-O Status Value=49 [90, 91]. A DELETE or REWRITE statement is attempted on a
file not open in the I-O mode.

Chapter 5: Procedure Division

218 RM/COBOL Language Reference Manual

• General Error

− I-O Status Value=93. An OPEN statement is attempted on a file that is not available.
The availability of a file is determined by several factors, including the lock mode.
For details on the availability of a file, see “File Sharing” in Chapter 8: RM/COBOL
Features of the RM/COBOL User’s Guide.

− I-O Status Value=94. An OPEN statement is attempted at a time when there is
insufficient available memory to provide the required supplementary input-output
areas and control structures.

− I-O Status Value=98. An input-output statement is attempted on a file whose index
structure or other critical control characters are defective. Either the file being
referred to is not an indexed file at all, or it has been damaged in some way since its
last usage or creation. See the discussion of the Indexed File Recovery Utility
(recover1), in Appendix G: Utilities of the RM/COBOL User’s Guide, for assistance
in restoring a corrupted indexed file.

− I-O Status Value=99. A DELETE, READ, or REWRITE statement is attempted that
refers to a record locked by another concurrent user. This I-O status value is
returned only when the referenced file has an associated file status data item and
there is an applicable USE procedure; when this is not the case, the program waits
for the record to become available.

Invalid Key Condition
The invalid key condition can occur as a result of the execution of a DELETE, READ,
REWRITE, START or WRITE statement. Details regarding the situations that cause an
invalid key condition are presented in the sections of Chapter 6: Procedure Division
Statements, which explain the individual input-output statements. If an invalid key condition
occurs, execution of the input-output statement that recognized the condition is unsuccessful
and the file is not affected.

If the invalid key condition exists after the execution of the input-output operations called for
by the input-output statement, the NOT INVALID KEY phrase, if specified, is ignored and
the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If the INVALID KEY phrase is specified in the input-output statement, any USE
procedure associated with the file is not executed. Control is transferred to the
imperative statement specified in the INVALID KEY phrase. The imperative statement
is executed according to the rules for each statement encountered in that imperative
statement. If a procedure branching or conditional statement that causes explicit transfer
of control is executed, control is transferred in accordance with the rules for that
statement. If control reaches the end of the imperative statement in the INVALID KEY
phrase, control is transferred to the end of the input-output statement.

3. If the INVALID KEY phrase is not specified in the input-output statement, but an
applicable USE procedure is specified, either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the input-output statement.

4. If the INVALID KEY phrase is not specified in the input-output statement and no
applicable USE procedure is specified, a runtime error message is produced and
execution of the run unit is terminated. The runtime can be configured, as described for
the DEFAULT-USE-PROCEDURE keyword of the RUN-FILES-ATTR record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a default

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 219

empty USE procedure is applicable, thus causing execution to continue at the next
executable statement after the input-output statement.

If the invalid key condition does not exist after the execution of the input-output operations
called for by an input-output statement, the INVALID KEY phrase, if specified, is ignored
and the following actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If there is an error or exception condition other than an invalid key condition and an
applicable USE procedure is specified, either explicitly or implicitly, that procedure is
performed and control is transferred to the end of the input-output statement.

3. If there is an error or exception condition other than an invalid key condition and no
applicable USE procedure is specified, a runtime error message is produced and
execution of the run unit terminates. The runtime can be configured, as described for
the DEFAULT-USE-PROCEDURE keyword of the RUN-FILES-ATTR record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a default
empty USE procedure is applicable, thus causing execution to continue at the next
executable statement after the input-output statement.

4. If no error or exception condition exists and a NOT INVALID KEY phrase is present, the
imperative statement in the NOT INVALID KEY phrase is executed according to the
rules for each statement encountered in that imperative statement. If a procedure
branching or conditional statement that causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement; otherwise, control is
transferred to the end of the input-output statement.

At End Condition
The at end condition can occur as a result of the execution of a Format 1 READ statement.
Details regarding the circumstances that cause an at end condition appear in the discussion of
the Format 1 READ statement (on page 333).

When the at end condition arises, execution of the READ statement is unsuccessful and the
positioning of the file is not changed. The NOT AT END phrase and its imperative statement,
if present, are ignored, and the following actions occur:

1. If there is a file status data item associated with the file, the appropriate I-O status value
(10) is stored into it.

2. If the AT END phrase is specified in the READ statement, any USE procedure associated
with the file is not executed. Control is transferred to the imperative statement specified
in the AT END phrase. The imperative statement is executed according to the rules for
each statement encountered in that imperative statement. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement. If control reaches the end of
the imperative statement in the AT END phrase, control is transferred to the end of the
READ statement.

3. If the AT END phrase is not specified in the READ statement, but an applicable USE
procedure is specified, either explicitly or implicitly, that procedure is performed and
control is transferred to the end of the READ statement.

4. If the AT END phrase is not specified in the READ statement and no applicable USE
procedure is specified, a runtime error message is produced and execution of the run unit
is terminated. The runtime can be configured, as described for the DEFAULT-USE-
PROCEDURE keyword of the RUN-FILES-ATTR record in Chapter 10: Configuration

Chapter 5: Procedure Division

220 RM/COBOL Language Reference Manual

of the RM/COBOL User’s Guide, to assume that a default empty USE procedure is
applicable, thus causing execution to continue at the next executable statement after the
READ statement.

If the at end condition does not arise for the execution of a Format 1 READ statement, the AT
END phrase and its associated imperative statement, if present, are ignored, and the following
actions occur in the order shown:

1. If there is a file status data item associated with the file, the appropriate I-O status value
is stored into it.

2. If there is an error or exception condition and an applicable USE procedure is specified,
either explicitly or implicitly, that procedure is performed and control is transferred to the
end of the READ statement.

3. If there is an error or exception condition and no applicable USE procedure is specified, a
runtime error message is produced and execution of the run unit terminates. The runtime
can be configured, as described for the DEFAULT-USE-PROCEDURE keyword of the
RUN-FILES-ATTR record in Chapter 10: Configuration of the RM/COBOL User’s
Guide, to assume that a default empty USE procedure is applicable, thus causing
execution to continue at the next executable statement after the READ statement.

4. If no error or exception condition exists and a NOT AT END phrase is present, the
imperative statement in the phrase is executed according to the rules for each statement
encountered in that imperative statement. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, control is transferred to the end of
the READ statement.

File Locking
In runtime environments in which more than one run unit can be running concurrently, the
possibility arises that one run unit must deny concurrent access to a file or set of files by other
run units. This is accomplished through file locking. There are several methods provided in
RM/COBOL to specify file locking.

The LOCK MODE clause in the file control entry (on page 75) may specify the EXCLUSIVE
phrase. The LOCK MODE IS EXCLUSIVE clause causes each OPEN statement to open the
file in exclusive mode.

The EXCLUSIVE phrase may be specified in the OPEN statement (on page 316). This
causes the OPEN statement to open each file in exclusive mode.

The LOCK phrase may be specified for an individual file in the OPEN statement. This causes
the OPEN statement to open that file in exclusive mode.

When the LOCK MODE clause is not specified for a file and the OPEN statement does not
specify the EXCLUSIVE or WITH LOCK phrases, whether the OPEN statement opens the
file in exclusive or shared mode depends on the environment supporting the file and a
configurable default. (For additional information, see “File Sharing” in Chapter 8:
RM/COBOL Features and the FORCE-USER-MODE keyword in Chapter 10: Configuration
of the RM/COBOL User’s Guide.)

A file may be opened in the input mode as a shared or exclusive file when the same file is
open only in the shared or exclusive input mode by other run units. The exclusive input mode
prevents other run units only from concurrent updates of the file, not from concurrent reading
of the file.

When an attempt is made

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 221

• to open a file for which some other run unit has the same file open in exclusive extend,
exclusive input-output, or exclusive output mode,

• to open a file in input-output or extend mode for which some other run unit has the same
file open in exclusive input mode,

• to open a file in exclusive extend or exclusive input-output mode for which some other
run unit has the same file open in any mode, or

• to open a file in exclusive input mode for which some other run unit has the same file
open in extend, input-output or output mode,

the OPEN statement is unsuccessful. The file status data item, if there is one, is set to a value
indicating this condition and any applicable USE procedure for the file is executed.

Regardless of lock mode, a file that is open in any mode by another run unit cannot be opened
in the output mode.

In shared file environments, opening a file in exclusive mode can improve performance of the
other input-output statements executed while the file is open. This is because exclusive mode
guarantees that no other run unit will update the file while this run unit has the file open.
Therefore, physical records can be locally buffered by the run unit when the file is open in
exclusive mode, resulting in lower operating system overhead. For files open in the input-
output mode, operating system overhead is further reduced since record locking operations are
not necessary.

Record Locking
In runtime environments in which more than one user can be running concurrently, the
possibility arises that multiple users may wish to access the same file at the same time. In
these circumstances, the following sequence of events may occur: user A reads a record from
a file, modifies a field within the record, and then rewrites the record. After user A reads the
record but before it is rewritten, user B reads the same record from the same file, modifies it
and rewrites it. The final contents of the record depend on the sequence in which these
operations occur, and this is not predictable since the two users are not coordinated.

To prevent this sort of destructive interference between concurrent users of shared files,
RM/COBOL provides record locking facilities. If the LOCK MODE clause (on page 75) is
not specified for a file, the default record locking mode for a file opened in a shared input-
output mode is automatic single. (For additional information, see the “File Sharing” in
Chapter 8: RM/COBOL Features and the FORCE-USER-MODE keyword in Chapter 10:
Configuration of the RM/COBOL User’s Guide.) There are four record locking modes:
automatic multiple, automatic single, manual multiple, and manual single. For more
information, see Record Locking Modes on page 222. Record locking occurs only when the
file is open in the shared input-output mode.

Records need not be locked in order to rewrite or delete them. The runtime system will obtain
the lock in those cases where it is not already held by the run unit. The record so locked may
contain different data than expected because of the action of other run units sharing the file.
In addition, the REWRITE or DELETE statement will be unsuccessful if another run unit has
deleted that record or if the record is locked by another run unit and the program executing the
DELETE or REWRITE statement is such that it does not wait for the record lock to be
released. If the record is successfully locked, the record lock is released upon completion of
the REWRITE or DELETE statement. It is the application programmer’s responsibility to
provide appropriate record locking when necessary for data integrity in a shared file
environment by use of the READ statement immediately prior to REWRITE or DELETE
statements.

Chapter 5: Procedure Division

222 RM/COBOL Language Reference Manual

When a run unit attempts to hold multiple record locks, either through one of the multiple
record locking modes in one file or single record locking modes in more than one file, it is the
application programmer’s responsibility to avoid deadlock situations. A deadlock situation
occurs when run unit 1 holds a lock on record A and repeatedly attempts to lock record B
while run unit 2 holds a lock on record B and repeatedly attempts to lock record A. Each
application that shares the same files should lock records in the same order and, upon
unsuccessfully locking one record in the series, unlock all currently locked records before
attempting to lock the records again.

Programs that use record locking may specify both a file status data item and an applicable
USE procedure for each file that is possibly shared by other concurrent run units. When this
condition is met, the runtime system invokes the USE procedure with the file status data item
set to a value of 99 when a record cannot be locked because it is currently locked by another
run unit. This can occur for a DELETE or REWRITE statement if these statements are
executed without having previously locked the record to be deleted or replaced. When the
99 status occurs, the program can unlock (by use of the UNLOCK statement) any records
already successfully locked and then attempt to obtain the required locks again.

Programs that do not specify both a file status data item and an applicable USE procedure for
a shared file will cause the runtime system to wait for a record to be unlocked by another run
unit before locking the record for this run unit. Such programs should never attempt to hold
multiple record locks, either in one logical file or in two or more logical files, since the
program cannot recover from potential deadlock situations with other concurrently executing
run units that share those files.

Regardless of whether both a file status data item and applicable USE procedure are defined,
if the run unit attempts to lock the same record through two different COBOL file-names that
refer to the same physical file, the input-output statement will be unsuccessful with an I-O
status value of 99.

Note The maximum number of record locks that may be held simultaneously is a system-
dependent parameter. An application should not be designed to hold a large number of
simultaneous record locks. Special care should be taken when automatic multiple record
locking applies to a file because each READ statement without the NO LOCK phrase will
obtain another record lock. When a DELETE, READ, or REWRITE statement is executed
that attempts to obtain a record lock that exceeds the maximum number of record locks, the
statement will complete unsuccessfully.

Record Locking Modes
There are two ways to obtain record locks, either automatically upon execution of a READ
statement or manually upon execution of a READ statement that specifies the LOCK phrase.

There are two ways to release record locks, either implicitly such that only a single record is
locked by the run unit for the file or explicitly such that multiple records may be locked by the
run unit for the file.

These record locking and unlocking methods may be independently combined to give four
distinct record locking modes: automatic single, automatic multiple, manual single and
manual multiple.

Automatic Record Locking Modes
When the LOCK MODE IS AUTOMATIC clause is specified in the file control entry or is
the default applied to the file, then a record is automatically locked when a READ statement
without the NO LOCK phrase is executed successfully in the shared input-output mode. The
NO LOCK phrase may be specified in the READ statement to suppress this automatic record

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 223

locking. When automatic record locking applies, the NO LOCK phrase should be specified in
READ statements for which it is known that the accessed record will not be updated by a
REWRITE statement or deleted by a DELETE statement.

The automatic record locking modes are automatic single and automatic multiple.

Automatic single record locking applies when the LOCK MODE IS AUTOMATIC clause
does not specify the MULTIPLE option in the LOCK ON RECORD phrase or when the
LOCK MODE clause is omitted and automatic single record locking is the applicable default
for the file. In automatic single record locking mode, at most one record in the logical file is
locked by the run unit at any one time because any input-output statement that refers to the
file causes any existing record lock to be released.

Automatic multiple record locking applies when the LOCK MODE IS AUTOMATIC clause
specifies the LOCK ON MULTIPLE RECORDS phrase or when the LOCK MODE clause is
omitted and automatic multiple record locking is the applicable default for the file. Automatic
multiple record locking allows the run unit to hold a number of record locks in one file
simultaneously. In automatic multiple record locking mode, existing record locks are not
released until a CLOSE or UNLOCK statement that refers to the file-name is executed, except
that the successful execution of the DELETE statement causes the record lock to be released
for the deleted record.

Manual Record Locking Modes
When the LOCK MODE IS MANUAL clause is specified in the file control entry or is the
default applied to the file, then a record is manually locked when a READ statement with the
LOCK phrase is executed successfully in the shared input-output mode. A READ statement
that does not specify the LOCK phrase does not attempt to lock the record accessed. The
LOCK phrase may be omitted in a READ statement for which it is known that the accessed
record will not be updated by a REWRITE statement or deleted by a DELETE statement.

The manual record locking modes are manual single and manual multiple.

Manual single record locking applies when the LOCK MODE IS MANUAL clause does not
specify the MULTIPLE option in the LOCK ON RECORD phrase or when the LOCK
MODE clause is omitted and manual single record locking is the applicable default for the
file. In manual single record locking mode, at most one record in the logical file is locked by
the run unit at any one time because any input-output statement that refers to the file causes
any existing record lock to be released.

Manual multiple record locking applies when the LOCK MODE IS MANUAL clause
specifies the LOCK ON MULTIPLE RECORDS phrase or when the LOCK MODE clause is
omitted and manual multiple record locking is the applicable default for the file. Manual
multiple record locking allows the run unit to hold a number of record locks in one file
simultaneously. In manual multiple record locking mode, existing record locks are not
released until a CLOSE or UNLOCK statement that refers to the file-name is executed, except
that the successful execution of the DELETE statement causes the record lock to be released
for the deleted record.

Single Record Locking Modes
Single record locking modes are specified by omission of the MULTIPLE option in the
LOCK MODE clause of the file control entry or by configuration of single record locking as
the default for files not described with the LOCK MODE clause. In single record locking
modes, locked records are implicitly released upon execution of any input-output statement
that refers to the file. Thus, at most a single record at a time is locked by the run unit for the

Chapter 5: Procedure Division

224 RM/COBOL Language Reference Manual

file. This single record lock moves from record to record as READ statements that obtain a
record lock are executed, or is released if any other input-output statement is executed.

The single record locking modes are automatic single and manual single. Automatic single
record locking mode is described in Automatic Record Locking Modes on page 222. Manual
single record locking mode is described in Manual Record Locking Modes on page 223.

Multiple Record Locking Modes
Multiple record locking modes are specified by explicit inclusion of the WITH LOCK ON
MULTIPLE RECORDS phrase in the LOCK MODE clause of the file control entry or by
configuration of multiple record locking as the default for files not described with the LOCK
MODE clause. In multiple record locking modes, locked records are released only upon
execution of a CLOSE or UNLOCK statement that refers to the file-name, except that the
successful execution of the DELETE statement causes the record lock to be released for the
deleted record.

The multiple record locking modes are automatic multiple and manual multiple. Automatic
multiple record locking mode is described in Automatic Record Locking Modes on page 222.
Manual multiple record locking mode is described in Manual Record Locking Modes on
page 223.

Interactive Terminal I-O
RM/COBOL supports three distinct modes of transferring data to and from the terminal in an
interactive fashion with the terminal operator:

1. Standard-compliant mode. The Format 1 ACCEPT statement and the Format 1
DISPLAY statement are used to communicate with the terminal in the
standard-compliant mode. This mode provides no means of controlling the video and
audio features available on many CRT-based terminals but it offers the best chance of
complete portability across many different implementations of COBOL. In the
standard-compliant mode of terminal communication, the hardware device is driven
in a plain line-by-line scrolling fashion, as if it were a typewriter.

2. Field-oriented mode. The Format 3 ACCEPT statement and the Format 2 DISPLAY
statement are used to communicate with the terminal in the field-oriented mode. The
field-oriented mode supports a wide variety of language features that allow the user to
control the majority of the video and audio features available on many CRT-based
terminals. It also allows the user to place individual fields anywhere on the screen and to
control completely the appearance of the entire screen or any subregion of the screen.

3. Screen-oriented mode. The Format 5 ACCEPT statement and the Format 3 DISPLAY
statement are used in conjunction with the Screen Section of the Data Division to
communicate with the terminal in the screen-oriented mode. This mode provides much
the same control over CRT features as does the field-oriented mode. The primary
difference between the two is that in the field-oriented mode the added language elements
that control CRT features are in the individual ACCEPT or DISPLAY statements,
whereas in the screen-oriented mode they are collected together in the Screen Section of
the Data Division.

Both the field-oriented and the screen-oriented modes of terminal control are nonstandard
extensions to the COBOL language.

The three modes of communicating with the terminal are not intended to be intermixed within
a given run unit. The interaction between the three modes is undefined, and intermixing

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 225

elements from the three modes leads to results that are unpredictable and probably divergent
across various implementations of RM/COBOL. A run unit should be planned with one of
the modes in mind, and elements of the other modes should be avoided within that run unit.

Sort-Merge
The sort-merge feature provides the capability to order one or more files of records, or to
combine two or more identically ordered files of records, according to a set of user-specified
keys contained within each record. Optionally, a user may apply some special processing to
each of the individual records by input or output procedures. This special processing may be
applied before, after, or both before and after the records are ordered by the SORT, or after
the records have been combined by the MERGE.

Sort-merge provides the facility for sorting one or more files, or combining two or more files,
one or more times within a given execution of a program.

The files listed in the USING and GIVING phrases of the SORT and MERGE statements may
be of any organization.

No input-output statement may be executed for the file named in the sort-merge file
description.

Communication Facility
The communication facility provides the ability to access, process, and create messages or
portions thereof. It provides the ability to communicate through a Message Control System
(MCS) with local and remote communication devices.

Message Control System
The implementation of the communication facility requires that an MCS be present in the
operating environment of the object program.

The MCS is the logical interface to the operating system under which the object program
operates. The primary functions of the MCS are the following:

• To act as an interface between the object program and the network of communication
devices, in much the same manner as an operating system acts as an interface between the
object program and such devices as card readers, magnetic tapes, mass storage devices
and printers.

• To perform line discipline, including such tasks as dial-up, polling and synchronization.

• To perform device-dependent tasks, such as character translations and insertion of control
characters, so that the user can create device-independent programs.

The first function, that of interfacing the object program with the communication devices, is
the most obvious to the user. In fact, the user may be unaware that the other two functions
exist. Messages from communication devices are placed in input queues by the MCS while
awaiting disposition by the object program. Output messages from the object program are
placed in output queues by the MCS while awaiting transmission to communication devices.
The structures, formats, and symbolic names of the queues are defined by the user to the MCS
at some time prior to the execution of the object program. Symbolic names for message

Chapter 5: Procedure Division

226 RM/COBOL Language Reference Manual

sources and destinations are also defined at that time. The user must specify, in the program,
symbolic names that are known to the MCS.

During the execution of an object program, the MCS performs all necessary actions to update
the various queues as required.

Object Program
The object program interfaces with the MCS when it is necessary to send data, receive data,
or to interrogate the status of the various queues that are created and maintained by the MCS.
In addition, the object program may direct the MCS to establish or break the logical
connection between the communication device and a specified portion of the MCS queue
structure. The method of handling the physical connection is a function of the MCS.

Relationship of the Object Program to the Message
Control System and Communication Devices
The interfaces that exist in a communication environment are established by the use of a CD
and associated clauses in the Communication Section of the Data Division. There are two
such interfaces:

1. The interface between the object program and the MCS.

2. The interface between the MCS and the communication devices.

The source program uses four statements to control the interface with the MCS:

1. The RECEIVE statement, which causes data in a queue to be passed to the object
program.

2. The SEND statement, which causes data associated with the object program to be passed
to one or more queues.

3. The ACCEPT statement with the MESSAGE COUNT phrase, which causes the MCS to
indicate to the object program the number of complete messages in the specified queue
structure.

4. The PURGE statement, which causes the MCS to eliminate a partial message which has
been released by one or more SEND statements.

The source program uses two statements to control the interface between the MCS and
communication devices:

1. The ENABLE statement, which establishes a logical connection between the MCS and
one or more communication devices.

2. The DISABLE statement, which breaks a logical connection between the MCS and one
or more communication devices.

Invoking the Object Program
There are two methods of invoking an object program that makes use of the communication
facility:

1. Scheduled initiation

2. MCS invocation

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 227

The only operating difference between the two methods is that MCS invocation causes the
areas referenced by the symbolic queue and subqueue names in the specified CD to be filled.

Scheduled Initiation of the Object Program
An object program using the communication facility may be scheduled for execution through
the normal means available in the operating environment of the program, such as job control
language. In that case, the program can use three methods to determine what messages, if
any, are available in the input queues:

1. ACCEPT statement with the MESSAGE COUNT phrase.

2. RECEIVE statement with a NO DATA phrase.

3. RECEIVE statement without a NO DATA phrase (in which case a program wait is
implied if no data is available).

Invocation of the Object Program by the Message
Control System
It is sometimes desirable to schedule an object communication program only when there is
work available for it to do. Such scheduling occurs if the MCS determines what object
program is required to process the available message and subsequently causes that program to
be scheduled for execution. Each object program scheduled by the MCS establishes a run
unit. Prior to the execution of the object program, the MCS places the symbolic queue and
subqueue names in the associated data items of the communication description entry that
specifies the FOR INITIAL INPUT clause, or the MCS places the symbolic terminal name in
the associated data item of the communication description entry that specifies the FOR
INITIAL I-O clause.

A subsequent RECEIVE statement directed to that CD will result in the available message
being passed to the object program.

Determining the Method of Scheduling
A source program can be written so that its object program can operate with either of the two
modes of scheduling. The following technique may be used to determine which method was
used to load the object program:

• One CD must contain a FOR INITIAL INPUT clause or a FOR INITIAL I-O clause.

• When the program contains a CD with the FOR INITIAL INPUT clause, the Procedure
Division may contain statements to test the initial value of the symbolic queue name in
that CD. If it is space filled, the object program was activated by the normal runtime
invocation process. If it is not space filled, the MCS has invoked the object program and
initialized the data item with the symbolic name of the queue containing the messages to
be processed.

• When the program contains a CD with the FOR INITIAL I-O clause, the Procedure
Division may contain statements to test the initial value of the symbolic terminal name in
that CD. If it is space filled, the object program was activated by the normal runtime
invocation process. If it is not space filled, the MCS has invoked the object program and
initialized the data item with the symbolic name of the communication terminal that is the
source of the message to be processed.

Chapter 5: Procedure Division

228 RM/COBOL Language Reference Manual

Concept of Messages and Message Segments
A message consists of an arbitrary amount of information, usually character data, whose
beginning and end are defined or implied. As such, messages comprise the fundamental but
not necessarily the most elementary unit of data to be processed in a communication
environment.

Messages may be logically subdivided into smaller units of data called message segments,
which are delimited within a message by means of end of segment indicators (ESI). A
message consisting of one or more segments is delimited from the next message by means of
an end of message indicator (EMI). In a similar manner, a group of several messages may be
logically separated from succeeding messages by means of an end of group indicator (EGI).
When a message or message segment is received by the program, a communication
description interface area is updated by the MCS to indicate which, if any, delimiter was
associated with the text transferred during the execution of that RECEIVE statement. On
output the delimiter, if any, to be associated with the text released to the MCS during the
execution of a SEND statement is specified or referenced in the SEND statement. (For
further explanation, see Table 35: Data Item Contents on page 354 of the SEND statement.)
Thus, the presence of these logical indicators is recognized and specified both by the MCS
and by the object program; however, no indicators are included in the message text processed
by programs.

A precedence relationship exists between the indicators EGI, EMI and ESI. EGI is the most
inclusive indicator and ESI is the least inclusive indicator. The existence of an indicator
associated with message text implies the association of all less inclusive indicators with that
text. For example, the existence of the EGI implies the existence of EMI and ESI.

Concept of Queues
The following discussion applies only when the communication environment is established
using a CD without the FOR I-O clause.

Queues consist of one or more messages from or to one or more communication devices.
They form the data buffers between the object program and the MCS. Input queues are
logically separate from output queues.

The MCS logically places in queues or removes from queues only complete messages.
Portions of messages are not logically placed in queues until the entire message is available to
the MCS. That is, the MCS does not pass a message segment to an object program until all
segments of that message are in the input queue, even though the source program uses the
SEGMENT phrase of the RECEIVE statement. For output messages, the MCS does not
transmit any segment of a message until all of its segments are in the output queue. The
number of messages that exist in a given queue reflects only the number of complete
messages that exist in the queue.

The process by which messages are placed into a queue is called enqueueing. The process by
which messages are removed from a queue is called dequeueing.

Independent Enqueueing and Dequeueing
It is possible that a message may be received by the MCS from a communication device prior
to the execution of the object program. In this case, the MCS enqueues the message in the
proper input queue until the object program requests dequeueing with the RECEIVE
statement. It is also possible that an object program will cause the enqueueing of messages in
an output queue, which are not transmitted to a communication device until after the object
program has terminated. Two common reasons for such occurrences are as follows:

Chapter 5: Procedure Division

 RM/COBOL Language Reference Manual 229

1. The output queue is disabled.

2. The object program creates output messages at a speed faster than the destination can
receive them.

Enabling and Disabling Queues
Usually, the MCS enables and disables queues based on circumstances not necessarily related
to the program, such as time of day or message activity. However, the program has the ability
to enable and disable queues itself by using the ENABLE and DISABLE statements.

A key is required in both statements in order to prevent indiscriminate use of the facility by a
user who is not aware of the total network environment, and who may, therefore, disrupt
system functions by the untimely issuance of ENABLE and DISABLE statements. However,
this action never interrupts a transmission.

Queue Hierarchy
In order to control more explicitly the messages being enqueued and dequeued, it is possible
to define in the MCS a hierarchy of input queues, that is, queues comprising queues. Four
levels of queues are available. In order of decreasing significance, the queue levels are named
queue, sub-queue-1, sub-queue-2, and sub-queue-3.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 231

Chapter 6: Procedure Division
Statements

This chapter presents detailed information on the syntax and meaning of each Procedure
Division statement. Each Procedure Division statement within a series of statements may be
connected to the next by the optional word THEN.

ACCEPT . . . FROM Statement
The ACCEPT . . . FROM statement causes low volume data to be made available to the
specified data item.

Format 1: Accept From System-Name

Data is transferred from the standard input device into the data item referred to by
identifier-1. The FROM phrase may affect which input device is used. If mnemonic-name-3
is used in the FROM phrase, it must have been defined in the SPECIAL-NAMES paragraph
of the Environment Division with the low-volume-I-O-name-1 IS mnemonic-name-3 clause.
The associated low-volume-I-O-name-1 must be CONSOLE or SYSIN.

Note If identifier-1 is numeric or justified right and the FROM phrase is not specified,
the Format 1 ACCEPT statement is treated as if it were a Format 3 ACCEPT statement with
the CONVERT phrase. A compiler option suppresses this modification. For details, see
the discussion of the M Compile Command Option in Chapter 6: Compiling in the
RM/COBOL User’s Guide.

If the size of the receiving data item—or the portion of the receiving data item not yet
occupied by transferred data—exceeds the size of the transferred data, the transferred data is
stored aligned to the left in the receiving data item (or that portion not yet occupied), and
additional data is accepted from the keyboard.

If the size of the transferred data exceeds the size of the receiving data item—or the portion of
the receiving data item not yet occupied by transferred data—only the leftmost characters of

{ }

t-1l-statemenconditiona
-2-statementimperative-1-statementimperative THEN

[]ACCEPT-ENDFROMACCEPT

1-I-O-name-low-volume
ame-3mnemonic-n-1identifier

Chapter 6: Procedure Division Statements

232 RM/COBOL Language Reference Manual

the transferred data are stored in the receiving data item (or the remaining portion). The
remaining characters of the data that do not fit into the receiving data item are discarded.

ACCEPT . . . FROM CONSOLE is treated as if CONSOLE IS CONSOLE was specified in
the SPECIAL-NAMES paragraph if CONSOLE has not been otherwise defined.

ACCEPT . . . FROM SYSIN is treated as if SYSIN IS SYSIN was specified in the SPECIAL-
NAMES paragraph if SYSIN has not been otherwise defined.

The END-ACCEPT phrase delimits the scope of the ACCEPT statement. This phrase is not
necessary unless the ACCEPT statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also an ACCEPT statement. The END-ACCEPT
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-ACCEPT, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

Format 2: Accept From Implicit Definition

For any single Format 2 ACCEPT statement execution, the runtime ensures the consistency of
the data returned for cases when the result might be affected by a boundary condition. For
example, the runtime guarantees for the DATE-AND-TIME option that the time and date
agree when the time is just before or just after midnight. On the other hand, when the DATE
and TIME options are used in separate ACCEPT statements near midnight, the program will
obtain an inconsistent set of values that is nearly 24 hours off when considered as a pair if
midnight occurs between the two ACCEPT statements.

The information requested is transferred according to the rules of the MOVE Statement (see
page 311). CENTURY-DATE, CENTURY-DAY, DATE, DATE-AND-TIME, DATE-
COMPILED, DAY, DAY-AND-TIME, DAY-OF-WEEK, ESCAPE KEY, EXCEPTION
STATUS, and TIME are implicitly defined data items and, therefore, are not described in the
program.

CENTURY-DATE is made up of the data elements year, month, and day. The sequence is
YYYYMMDD; thus, a current date of July 1, 2003 would be expressed as 20030701.
CENTURY-DATE, when accessed by a program, behaves as if it had been described as an
unsigned elementary numeric integer data item eight digits in length.

CENTURY-DAY is made up of the data elements year and day. The sequence is
YYYYDDD; thus, a current date of July 1, 2003 would be expressed as 2003182.
CENTURY-DAY, when accessed by a program, behaves as if it had been described as an
unsigned elementary numeric integer data item seven digits in length.

DATE without the YYYYMMDD phrase is made up of the data elements year, month, and
day. The sequence is YYMMDD; July 1, 1988 would be expressed as 880701. DATE, when

[]

[] []ACCEPT-END

TIME
STATUSEXCEPTION

KEYESCAPE
WEEK-OF-DAY

TIME-AND-DAY
YYYYDDDDAY
COMPILED-DATE

TIME-AND-DATE
YYYYMMDDDATE

DAY-CENTURY
DATE-CENTURY

FROMACCEPT

-2identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 233

accessed by a program, behaves as if it had been described as an unsigned elementary
numeric integer data item six digits in length.

DATE with the YYYYMMDD phrase is made up of the same data elements and behaves in
the same manner as described for CENTURY-DATE.

DATE-AND-TIME is made up of the data elements year, month, day, hours, minutes,
seconds, and hundredths of seconds. The sequence is YYYYMMDDHHMMSShh; thus, a
current date and time of July 1, 2003 at 2:41 p.m. would be expressed as 2003070114410000.
DATE-AND-TIME, when accessed by a program, behaves as if it had been described as an
unsigned elementary numeric integer data item sixteen digits in length.

DATE-COMPILED is made up of the data elements year, month, and day for the date the
program compilation started (that is, it is a constant for any particular compilation). The
sequence is YYYYMMDD; thus, if the program were compiled on July 1, 2003, this would
be expressed as 20030701. DATE-COMPILED, when accessed by a program, behaves as if it
had been described as an unsigned elementary numeric integer data item eight digits in length.

DAY without the YYYYDDD phrase is made up of the data elements year and day. The
sequence is YYDDD; July 1, 1988 would be expressed as 88182. DAY, when accessed by a
program, behaves as if it had been described as an unsigned elementary numeric integer data
item five digits in length.

DAY with the YYYYDDD phrase is made up of the same data elements and behaves in the
same manner as described for CENTURY-DAY.

DAY-AND-TIME is made up of the data elements year, day, hours, minutes, seconds, and
hundredths of seconds. The sequence is YYYYDDDHHMMSShh; thus, a current date and
time of July 1, 2003 at 2:41 p.m. would be expressed as 200318214410000. DAY-AND-
TIME, when accessed by a program, behaves as if it had been described as an unsigned
elementary numeric integer data item fifteen digits in length.

DAY-OF-WEEK is composed of a single data element whose contents represent the day of
the week. DAY-OF-WEEK behaves as if it had been defined in the Data Division as an
unsigned elementary numeric integer data item one digit in length. The value 1 represents
Monday, 2 represents Tuesday, . . ., 7 represents Sunday.

ESCAPE KEY provides access to the exception status value associated with the field
termination key that terminated the most recent ACCEPT operation. ESCAPE KEY behaves
as if defined in the Data Division as an unsigned, two-digit, numeric integer data item. The
exception status value associated with specific keys is determined by runtime configuration
(see the CODE keyword of the TERM-INPUT configuration record in Chapter 10:
Configuration of the RM/COBOL User’s Guide). The default values for field termination
keys are shown in the topic “Default Configuration Files”, also located in Chapter 10 of the
user's guide. The normal meanings for exception status values are provided in the
RM/COBOL Generic Exception Status Values table in the “Character Sequence Specification
for Field Termination Keys” section of Chapter 10.

EXCEPTION STATUS provides access to an encoded value that identifies the type of
exception condition that occurred during the preceding pop-up window operation or CALL
PROGRAM statement execution. EXCEPTION STATUS behaves as if it had been described
as an unsigned elementary numeric integer data item three digits in length. For a pop-up
window operation, the possible values and their meanings are described in the “Pop-Up
Window Error Codes” table in Chapter 8: RM/COBOL Features of the RM/COBOL User’s
Guide. For a CALL PROGRAM statement execution, the possible values and their meanings
are shown here in Table 28.

The END-ACCEPT phrase delimits the scope of the ACCEPT statement. This phrase is not
necessary unless the ACCEPT statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also an ACCEPT statement. The END-ACCEPT

Chapter 6: Procedure Division Statements

234 RM/COBOL Language Reference Manual

phrase is allowed even when not necessary. For additional information on scope terminators
such as END-ACCEPT, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

Table 28: EXCEPTION STATUS Values

EXCEPTION STATUS Values

Value Meaning

000 Called program completed with no exception.

030 Hardware error.

199 CALL PROGRAM failed.

200 Called program exceeds size limitation.

201 Revision incompatibility in called program.

202 Called program is not a legal COBOL program file.

203 Called program not found.

207 Linkage error.

208 Linkage data too big for available memory.

TIME is made up of the data elements hours, minutes, seconds, and hundredths of a second.
TIME is based on elapsed time after midnight on a 24-hour clock basis. The sequence is
HHMMSShh; thus, 2:41 p.m. would be expressed 14410000. TIME, when accessed by a
program, behaves as if it had been described as an unsigned elementary numeric integer data
item eight digits in length. The minimum value of TIME is 00000000; the maximum value is
23595999.

ACCEPT . . . FROM Statement Examples

 ACCEPT NEXT-ITEM FROM CONSOLE.

 ACCEPT continuation-response FROM input-terminal.

 ACCEPT YEAR-DAY-VALUE FROM DAY.

 ACCEPT TIME-VALUE FROM TIME.

 ACCEPT CENTURY-DATE-VALUE FROM CENTURY-DAY.

 ACCEPT DATE-AND-TIME-VALUE FROM DATE-AND-TIME.

 ACCEPT COMPILATION-DATE FROM DATE-COMPILED.

ACCEPT Statement (Terminal I-O)
The terminal I-O ACCEPT statement causes low volume data to be accepted from the
terminal keyboard and transferred to the specified data item. ACCEPT statement phrases
allow the specification of position, form, and format of the accepted data.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 235

Format 3: Accept Terminal I-O

The Format 3 ACCEPT statement causes the transfer of data from the terminal keyboard. The
data replaces the contents of the data item named by identifier-1. The receiving data item
may have any usage except INDEX or POINTER.

identifier-2 (UNIT), identifier-3 (POSITION), identifier-5 (CURSOR), identifier-6 (LINE),
identifier-7 (SIZE), identifier-8 (TIME), and identifier-9 (EXCEPTION) must be described
as integer numeric data items. literal-1 (UNIT), literal-2 (POSITION), literal-4 (CURSOR),

[]

[]

[]ACCEPT-ENDESCAPE
EXCEPTIONONNOT

SENTENCENEXTESCAPE
EXCEPTIONON

UPDATE

TIMEBEFORE

TAB

SIZE

VIDEO-REVERSE
REVERSED
REVERSE

ISCHARACTER
ISCHARACTERPROMPT

BLOCKISMODE

AT

POSITION
COL
COLUMN

LINE

AT

OFF
SECURE
LOWLIGHT
LOW
HIGHLIGHT
HIGH

EOS
EOLERASE

ECHO

CURSOR

CONVERT

CONTROL

BLINK
BELL
BEEPNO

SKIP-AUTO
AUTO

WITHUNITACCEPT

-2-statementimperative

-1-statementimperative-9identifier

literal-8
-8identifier

literal-7
-7identifier

literal-6
-10identifier

literal-9
-11identifier

literal-2
-3identifier

literal-5
-6identifier

literal-4
-5identifier

literal-3
-4identifier

literal-1
-2identifier-1identifier

Chapter 6: Procedure Division Statements

236 RM/COBOL Language Reference Manual

literal-5 (LINE), literal-7 (SIZE), and literal-8 (TIME) must be nonnegative integer numeric
literals.

identifier-4 (CONTROL) must be a nonnumeric data item. literal-3 (CONTROL) must be a
nonnumeric literal.

identifier-10 (PROMPT) must refer to a nonnumeric data item of one character in length.
literal-6 (PROMPT) must be a nonnumeric literal of one character in length.

identifier-11 (AT) must refer to an unsigned numeric integer display data item of four or six
characters in length. literal-9 (AT) must be an unsigned numeric integer literal of four or six
characters in length.

It is worthwhile to define several terms used to describe the detailed function of each phrase:

• The term “input field” describes a conceptual data item containing the data transmitted
from the terminal as displayed on the screen. The size of this data item is determined
according to rules outlined in the discussion of the SIZE Phrase that begins on page 245,
and the type of the data item is alphanumeric.

• The term “receiving item” is synonymous with the data item identifier-1.

• The term “screen field” applies to the physical field presented on the screen itself.

• The term “field termination” is the means by which the terminal operator indicates the
conclusion of data input for an input field; “field termination key” describes a character
or character sequence which is interpreted, not as data to be included in the input field,
but as field termination. More than one field termination key exists; such keys are
differentiated by means of “exception status values.” For further information, see “Field
Termination Keys” in Chapter 8: RM/COBOL Features and the RM/COBOL Generic
Exception Status Values table in “TERM-INPUT Configuration Record” in Chapter 10:
Configuration of the RM/COBOL User's Guide.

Table 29 shows the relationship of the various Format 3 ACCEPT statement phrases to the
characteristics of the input field and screen field subject to control by the program.

Note that the CONTROL phrase may be used in many instances to allow dynamic (that is,
runtime as opposed to compile time) specification of characteristics.

Features that require support of the host operating system or terminal hardware may not be
supported in all circumstances. Unsupported features will compile correctly, but will be
ignored at runtime. For specific details, see the “Terminal Input and Output on UNIX” and
“Terminal Input and Output on Windows” sections in Chapters 2 and 3, respectively, of the
RM/COBOL User’s Guide. Also note that some phrases may require that character positions
on the screen between fields be reserved for attribute characters (typically, to support the
HIGH, LOW, OFF, BLINK, REVERSE, ERASE EOL and ERASE EOS phrases). Take care
to allow for attribute characters by not juxtaposing fields that may require them. For more
information, see “ACCEPT and DISPLAY Phrases” in Chapter 8: RM/COBOL Features of
the RM/COBOL User's Guide.

Table 29: ACCEPT Statement Phrases for Output and Screen Fields

ACCEPT Statement Phrases for Output and Screen Fields

Characteristic Phrases

Screen field position LINE, POSITION, ERASE, SIZE, UNIT, CONTROL

Screen field size identifier-1, UPDATE, SIZE, CONTROL

Position within field CURSOR

Visual attributes ERASE, HIGH/LOW/OFF, BLINK, REVERSE, CONTROL

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 237

ACCEPT Statement Phrases for Output and Screen Fields

Characteristic Phrases

Audio attribute NO BEEP, CONTROL

Default value display UPDATE, CONTROL

Prompt character fill PROMPT, CONTROL

Input conversion UPDATE, CONVERT, CONTROL, identifier-1, compiler option

Verification display ECHO, UPDATE, CONVERT, CONTROL

Field termination ON EXCEPTION, TAB, CONTROL

When an ACCEPT statement contains more than one receiving operand (identifier-1), the
values are transferred in the sequence in which the operands are encountered. ACCEPT
phrases apply to the previously specified identifier-1 only. A subsequent identifier-1 in the
same ACCEPT statement is treated as if no previous phrases had been specified; however, see
the discussion of the POSITION phrase in LINE and POSITION Phrases (on page 243).

An ACCEPT statement may contain no more than one ON EXCEPTION phrase, and if
present it must be associated with the last (or only) identifier-1.

The END-ACCEPT phrase delimits the scope of the ACCEPT statement. This phrase is not
necessary unless the ACCEPT statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also an ACCEPT statement. The END-ACCEPT
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-ACCEPT, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

AUTO Phrase

AUTO-SKIP is a synonym for AUTO. The AUTO phrase describes the normal behavior of
RM/COBOL, where a field is automatically accepted when the last character of the field is
entered, without waiting for a field termination key to be pressed. The phrase is allowed for
compatibility with other dialects of COBOL. In RM/COBOL, the TAB phrase must be
specified to suppress the automatic acceptance of a field when the last character is entered.

BEEP or NO BEEP Phrase

BELL is a synonym for BEEP.

The presence of the NO BEEP phrase in an ACCEPT statement causes suppression of the
default audio alarm signal when the ACCEPT statement is executed. The presence of the
BEEP phrase (without the NO) causes a compilation warning message because the phrase is
redundant with the default behavior of RM/COBOL.

SKIP-AUTO
AUTO

[]

BELL
BEEPNO

Chapter 6: Procedure Division Statements

238 RM/COBOL Language Reference Manual

If the NO BEEP phrase is omitted, an audio alarm signal occurs when the ACCEPT statement
is executed.

The default behavior of RM/COBOL to issue an audio alarm signal when an ACCEPT
statement without the NO BEEP phrase is executed may be modified with the ACCEPT-
BEEP-DEFAULT keyword of the COMPILER-OPTIONS configuration record. When this
keyword specifies a value of NO, the RM/COBOL terminal-I-O ACCEPT statement causes
an audio alarm signal only when the BEEP phrase (without the NO) is specified. In this case,
a NO BEEP phrase causes a compilation warning because the phrase is redundant with the
configured setting. (For further details, see the discussion of the ACCEPT-BEEP-DEFAULT
keyword in “COMPILER-OPTIONS Configuration Record” in Chapter 10: Configuration of
the RM/COBOL User’s Guide.)

BLINK Phrase

The presence of the BLINK phrase causes the PROMPT fill character and any displayed data
to be displayed in a blinking mode.

If the BLINK phrase is not specified, the data is displayed in a nonblinking mode.

CONTROL Phrase

The value of identifier-4 or literal-3 in the CONTROL phrase is used to specify a dynamic
option list. The value must be a character-string consisting of a series of keywords delimited
by commas; some keywords allow assignment of a value by following the keyword with an
equal sign and the value. Blanks are ignored in the character-string. Lowercase letters are
treated as uppercase letters within keywords. Keywords specified override corresponding
static options specified as phrases for the same identifier-1. Keywords may be specified in
any order. Keywords, which specify options that do not apply to the statement, are ignored.

The keywords that affect an ACCEPT statement are BEEP, BLINK, CONVERT, ECHO,
ERASE, ERASE EOL, ERASE EOS, HIGH, LOW, NO BEEP, NO BLINK, NO CONVERT,
NO ECHO, NO ERASE, NO PROMPT, NO REVERSE, NO TAB, NO UNDERLINE, NO
UPDATE, OFF, PROMPT, REVERSE, TAB, UNDERLINE, UPDATE and UPPER. The
meanings of these keywords when they appear in the value of the CONTROL phrase operand
are the same as the corresponding phrases which may be written as static options of the
ACCEPT statement, with the addition of the negative forms to allow suppression of statically
declared options. The keywords UNDERLINE and UPPER are not available as static options
of the ACCEPT statement. When specified, UPPER causes all lowercase alphabetic
characters contained in the screen field to be changed to uppercase alphabetic characters
before input data conversion and storing in the receiving field. When specified,
UNDERLINE causes the field on the screen to be shown in underlined mode, provided the
terminal supports that mode. Additional keywords may be supported in environments that
have device-dependent functions (for example, color control); see “CONTROL Phrase” in
Chapter 8: RM/COBOL Features of the RM/COBOL User’s Guide for specifics.

The keywords are grouped by function such that only the rightmost appearance in the control
value of a keyword from a functional group actually affects the screen field. The functional
groupings are as follows:

BLINK

literal-3
-4identifierCONTROL

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 239

• Erasure: ERASE, ERASE EOL, ERASE EOS, NO ERASE

• Alarm: BEEP, NO BEEP

• Intensity: HIGH, LOW, OFF

• Blinking: BLINK, NO BLINK

• Video: REVERSE, NO REVERSE

• Termination: TAB, NO TAB

• Prompting: PROMPT, NO PROMPT

• Input data conversion: CONVERT, NO CONVERT

• Output data conversion: UPDATE, NO UPDATE

• Verification: ECHO, NO ECHO

• Input data editing: UPPER

• Underscoring: UNDERLINE, NO UNDERLINE

• Password entry protection: SECURE, NO SECURE

Note that if the keyword UPDATE is specified, input data conversion is implied; unless
identifier-1 is numeric edited, the keywords CONVERT and NO CONVERT are ignored. In
the cases when identifier-1 is numeric and UPDATE is not specified, NO CONVERT may be
used to suppress implicit or explicit input conversion.

CONVERT Phrase

If identifier-1 is numeric, the CONVERT phrase causes input conversion of the input field to
a signed numeric value that is then stored in identifier-1. The CONVERT phrase is implied
when identifier-1 is numeric, unless specifically overridden by the NO CONVERT keyword
in identifier-7 or literal-7 of the CONTROL phrase, or by the use of the compiler option to
suppress implied input conversion (for details, see the discussion of the ACCEPT-
SUPPRESS-CONVERSION keyword in “COMPILER-OPTIONS Configuration Record” in
Chapter 10: Configuration of the RM/COBOL User’s Guide).

Numeric input conversion is accomplished by a scan of the input field according to the
following rules:

1. Set the sign according to the rightmost sign present in the input data, or positive if no
minus sign is present in the input data. The characters CR or DB occurring after all digits
in the input field are treated as a minus sign.

2. Set the implied decimal point according to the rightmost period given in the input. If no
period is present, the numeric value is an integer. If the DECIMAL-POINT IS COMMA
clause was specified in the source program, a comma replaces the period in determining
the implied decimal point.

3. Delete all nonnumeric characters from the input field.

See the discussion of the ON EXCEPTION phrase in ON EXCEPTION and NOT ON
EXCEPTION Phrases (on page 241) for more rules which, if violated, cause an error code to
be stored in identifier-8 and an exception condition to exist. A value will be stored in

CONVERT

Chapter 6: Procedure Division Statements

240 RM/COBOL Language Reference Manual

identifier-1, however, according to the rules listed above without regard to the presence of an
exception condition.

The CONVERT phrase is implied by the UPDATE phrase when identifier-1 is numeric, but
the CONVERT and UPDATE phrases may both be specified without error.

The use of input conversion is strongly recommended for numeric receiving items unless the
program needs a different conversion algorithm and performs its own input validation.

If identifier-1 is numeric and input conversion is not specified (either explicitly or implicitly),
identifier-1 is treated as an elementary alphanumeric data item whose size is equal to the
number of data storage positions occupied by identifier-1. The data from the unconverted
input field is moved to identifier-1 according to the rules for an alphanumeric move. The use
of identifier-1, whose value has been set in this manner, in an arithmetic operation, will have
unpredictable results.

If identifier-1 is numeric edited and the CONVERT phrase is specified, the input field is
converted to a signed numeric value as described above and that value is then stored in
identifier-1 with editing according to the PICTURE character-string for identifier-1.

If identifier-1 is justified right alphanumeric and the CONVERT phrase is specified, the data
from the input field is moved to identifier-1 according to the move rules for a justified right
receiving data item.

If identifier-1 is alphanumeric edited and the CONVERT phrase is specified, those characters
in the input field which correspond in position (from the left) to the PICTURE symbols A, X
or 9 are moved to their respective positions in identifier-1. Spaces will be moved to those
positions in identifier-1 that are represented by the PICTURE symbols A, X or 9 but which
have no corresponding positions in the input field. The insertion characters 0, space and / will
be stored in identifier-1 character positions represented by PICTURE symbols 0, B and /,
respectively.

If identifier-1 is any other type, or if the CONVERT phrase is not specified, the data from the
input field is moved to identifier-1 according to the rules for an alphanumeric move.

CURSOR Phrase

The value of identifier-5 or literal-4 in the CURSOR phrase specifies the initial cursor offset
within the screen field from which the data is to be accepted. When identifier-5 is specified,
the cursor offset at field termination is also returned to the program in identifier-5.

An offset of 1 represents the leftmost character position of the screen field. A value of zero is
treated as 1; a value greater than the size of the screen field is treated as equal to the size of
the screen field.

Note When the CURSOR clause is specified in the SPECIAL-NAMES paragraph, it has no
effect on this format of the ACCEPT statement. The CURSOR phrase must be used in this
format of the ACCEPT statement to position the cursor to other than the beginning of the
field. The CURSOR clause in the SPECIAL-NAMES paragraph is used in format 5,
ACCEPT screen-name, ACCEPT statements. This contrasts with the CRT STATUS clause
(on page 63) in the SPECIAL-NAMES paragraph, which is used with both this format and the
format 5 ACCEPT screen-name statement.

literal-4
-5identifierCURSOR

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 241

ECHO Phrase

The presence of the ECHO phrase in an ACCEPT statement causes the contents of
identifier-1 to be displayed in the screen field following data input. The display of the
data is done as if a DISPLAY statement with similar options were executed. Note, however,
that the CONVERT phrase in an ACCEPT statement controls only input conversion; output
conversion is controlled by the UPDATE phrase.

If identifier-1 is numeric and input conversion was specified either explicitly or implicitly, the
display of the data uses output conversion.

When the ECHO phrase is not specified, the original input data remains in the screen field.

ERASE Phrase

The presence of the ERASE phrase without either of the reserved words EOL or EOS causes
the entire screen of the terminal to be erased. The current line and current position are set
to 1.

The presence of the ERASE EOL phrase causes the portion of the line containing the leftmost
character of the screen field to be erased from the leftmost character of the screen field to the
rightmost character of that line.

The presence of the ERASE EOS phrase causes the portion of the screen to be erased from the
leftmost character of the screen field to the rightmost character of the bottom line of the
screen.

In all three cases above, erasure occurs before any data is displayed in or accepted from the
screen field.

When no ERASE phrase is specified, no erasure occurs before accepting the data.

ON EXCEPTION and NOT ON EXCEPTION Phrases

ESCAPE is a synonym for EXCEPTION.

The presence of the ON EXCEPTION phrase allows field termination key, time-out, and
conversion errors to be reported. Regardless of the presence or absence of the ON
EXCEPTION phrase, if the CRT STATUS clause (on page 63) is specified in the SPECIAL-
NAMES paragraph of the Environment Division, the exception status value will be stored in
the data item referenced by that clause.

At field termination, an exception status value is stored in identifier-9. This value is normally
the exception status associated with a field termination key. However, if the TAB phrase is
not specified for the same identifier-1, the field may also be terminated by typing a data

ECHO

EOS
EOLERASE

[]

-2-statementimperative

-1-statementimperative-9identifier

ESCAPE
EXCEPTIONONNOT

SENTENCENEXTESCAPE
EXCEPTIONON

Chapter 6: Procedure Division Statements

242 RM/COBOL Language Reference Manual

character (in other words, not a field termination key) in the rightmost character position of
the screen field; this method of field termination results in a value of zero being stored in
identifier-9. If identifier-9 is omitted, the value of the exception status may be obtained with
a Format 2 ACCEPT statement that specifies the ESCAPE KEY option or from the data item
referenced by the CRT STATUS clause if that clause is specified in the SPECIAL-NAMES
paragraph.

If input data conversion has been specified (see the discussions of the CONVERT Phrase on
page 239 and the UPDATE Phrase on page 247) and the conversion process detects a
violation of the following rules, the exception status value 98 is stored in identifier-9,
overriding the exception status value associated with the field termination key.

If identifier-1 is numeric or numeric edited, the following rules are checked:

1. At most, one decimal point (period, or comma if DECIMAL-POINT IS COMMA) is
allowed.

2. At most, one operational sign (+ or – either leading or trailing, or DB or CR as the
rightmost nonblank characters of the input field) is allowed.

3. Leading asterisks are allowed, but asterisks may not follow any digits (0 through 9).

4. All characters must be in the set digits (0 through 9), space, period, comma, dollar sign,
currency symbol, stroke (/), and plus and minus. In addition, the characters C, R, D, B,
and asterisk are allowed as stipulated in rules 2 and 3.

5. The resulting value of the conversion must not cause a size error condition when stored in
identifier-1.

Note that input data conversion will store a value in identifier-1 even if one of these rules is
violated; see the discussion of the CONVERT Phrase (on page 239) for more details.

If identifier-1 is alphanumeric edited, an input data conversion error occurs when an input
field character in a position corresponding to the PICTURE symbol 0, B, or / (in the
PICTURE character-string describing identifier-1) exists but is not equal to 0, blank or /,
respectively.

When the value of identifier-9 is nonzero, imperative-statement-1 may be executed.
imperative-statement-1 will be executed when identifier-9 has the exception status value 98
(input data conversion rule violation) or the exception status value 99 (input timed out). For
other values of identifier-9, the execution of imperative-statement-1 depends on the field
termination key for ACCEPT statements, as discussed in “Field Termination Keys” in
Chapter 8: RM/COBOL Features of the RM/COBOL User’s Guide.

Additional information on field termination keys and the associated exception status values
placed in identifier-9 can also be found in the RM/COBOL Generic Exception Status
Values table in “Character Sequence Specification for Field Termination Keys” section of
Chapter 10: Configuration of the RM/COBOL User’s Guide.

HIGH, LOW and OFF Phrases

HIGHLIGHT is a synonym for HIGH. LOWLIGHT is a synonym for LOW.

OFF
SECURE
LOWLIGHT
LOW
HIGHLIGHT
HIGH

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 243

The presence of the HIGH or LOW phrase causes the PROMPT fill character and the
accepted data (if UPDATE, ECHO or both are specified) to be displayed at the specified
intensity.

The presence of the OFF phrase causes data to be input from the terminal keyboard but not
displayed in the screen field. Space characters are displayed in the screen field in lieu of
data characters.

When none of the phrases HIGH, LOW or OFF is specified, the default intensity is HIGH.

The SECURE phrase causes asterisks to be displayed in the field instead of the actual
characters accepted. However, if the object version is restricted to less than 12, the SECURE
phrase is treated as a synonym for OFF.

LINE and POSITION Phrases

COLUMN and COL are synonyms for POSITION.

The screen field is positioned on the terminal screen by specifying the line and position (that
is, the character position within the line) of the leftmost character of the screen field. The top
line of the terminal screen is line 1, the line below line 1 is line 2, and so forth. The rightmost
character position of a line is immediately followed by the leftmost character position
(position 1) of the line below; a screen field may overlap line boundaries on the terminal
screen. The leftmost character of the screen field refers to the leftmost character position of
that portion of the screen field that is on the topmost line containing a portion of the screen
field. Similarly, the rightmost character position of the screen field refers to the rightmost
character position of that portion of the screen field that is on the bottommost line containing
a portion of the screen field.

The current line and current position prior to the ACCEPT operation for each identifier-1 may
affect the position of the screen field as described in the rules below. At the beginning of a
run unit, the current line is the last (bottommost) line and the current position is the leftmost
position (position 1) of that line. The current line and current position are changed by each
Format 3 ACCEPT and Format 2 DISPLAY operation to be the line and position of the
character immediately following the rightmost character of the screen field. If the ERASE
phrase (without EOL or EOS) is specified for the same identifier-1, the current line and
current position are both set to 1.

The value of identifier-6 or literal-5 in the LINE phrase specifies the line value for the
leftmost character of the screen field. The value of identifier-3 or literal-2 in the POSITION
phrase specifies the position value for the leftmost character of the screen field.

If the AT identifier-11/literal-9 phrase is specified, then the first half, that is, the first two or
three digits, of the operand specifies the line value and the second half specifies the column

literal-9
-11identifier

literal-2
-3identifier

literal-5
-6identifier

AT

NUMBER
POSITION
COL
COLUMN

NUMBERLINE

AT

Chapter 6: Procedure Division Statements

244 RM/COBOL Language Reference Manual

value. When this format of the phrase is used, it is as if both the LINE and POSITION
phrases have been specified.

Determining Line and Position
If the POSITION phrase is omitted, the position value is set to 1 for the first identifier-1 of a
Format 3 ACCEPT statement; this value is also set to 1 if a UNIT phrase is specified for the
same identifier-1. It is set to zero in all other cases.

If the line value is zero, or if the LINE phrase is omitted, the line value is set according to the
following rules:

• If an ERASE phrase (without EOL or EOS) is specified for the same identifier-1, the line
value is set to 1.

• If the position value is not equal to zero, the line value is set to the current line plus 1.

• If the position value is equal to zero, the line value is set to the current line.

If the position value is greater than the maximum number of characters within a line, the
position value is reduced by the maximum number of characters within a line and the line
value is incremented by 1. This process is repeated until the position value is not greater than
the maximum number of characters within a line.

If the position value is equal to zero, the position value is set to the current position.

If the line value exceeds the number of lines on the screen, the contents of the screen are
scrolled up one line and the line value is set to the number of lines on the screen.

If the line of the rightmost character of the screen field exceeds the number of lines on the
screen, the contents of the screen are scrolled up the amount of the excess and the line value is
reduced by the amount of the excess.

The resulting line value and position value specify the position of the leftmost character of the
screen field.

MODE IS BLOCK Phrase

The presence of the MODE IS BLOCK phrase in an ACCEPT statement causes the ACCEPT
to accept a group data item as a single input field. This is the normal behavior of
RM/COBOL, so if the phrase is omitted, a group is still accepted as a single input field. The
phrase is allowed for compatibility with other dialects of COBOL.

PROMPT Phrase

The presence of the PROMPT phrase in an ACCEPT statement causes the data to be accepted
with prompting. The action of prompting is to display fill characters on the screen in the
positions from which data is to be accepted.

BLOCKISMODE

literal-6
-10identifier

ISCHARACTER
ISCHARACTERPROMPT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 245

The value of literal-6 or the data item referenced by identifier-10 specifies the fill character to
be used in prompting. literal-6 must be a single-character, nonnumeric literal or figurative
constant. identifier-10 must refer to a single character alphanumeric data item. If literal-6
and identifier-10 are omitted in the PROMPT phrase, an underscore is used as the fill
character.

Note The keyword CHARACTER is required when identifier-10 is specified in the PROMPT
phrase. Otherwise, identifier-10 will be considered the next data item to be accepted in a
series of data items accepted within one ACCEPT statement.

When the PROMPT phrase is not specified, the data is accepted without prompting; the
original contents of the field on the screen are undisturbed before accepting input unless the
UPDATE phrase is specified.

When both the UPDATE and PROMPT phrases are specified, the fill character fills any
character positions not occupied by the original value of the receiving operand.

REVERSE Phrase

REVERSED and REVERSE-VIDEO are synonyms for REVERSE.

The presence of the REVERSE phrase causes any displayed data to be displayed in a reverse
video mode.

If the REVERSE phrase is not specified, the data is displayed in normal video mode.

SIZE Phrase

The value of identifier-7 or literal-7 in the SIZE phrase specifies the size of the screen field
and the input field.

If the SIZE phrase is not present, or if a value of zero is specified, the size of the input field
and screen field (called the size value) is determined by the characteristics of identifier-1 and
by the presence or absence of input and output conversion (see the discussions of the
CONVERT Phrase on page 239 and the UPDATE Phrase on page 247) as follows:

• If identifier-1 is numeric and input conversion is specified (either explicitly or implicitly),
the size value is set to the number of digits defined in the PICTURE character-string for
identifier-1, plus 1 if identifier-1 is signed, plus 1 if identifier-1 is noninteger.

• If identifier-1 is numeric, input conversion is not specified, and identifier-1 is usage
DISPLAY, BINARY or equivalent, the size value is set to the number of data storage
positions (that is, the number of bytes) occupied by identifier-1.

• If identifier-1 is numeric, input conversion is not specified, the CONVERT phrase is
specified, and identifier-1 is usage PACKED-DECIMAL or equivalent, the size value is
set to twice the number of data storage positions occupied by identifier-1.

VIDEO-REVERSE
REVERSED
REVERSE

literal-7
-7identifierSIZE

Chapter 6: Procedure Division Statements

246 RM/COBOL Language Reference Manual

• If identifier-1 is numeric edited and the UPDATE and CONVERT phrases are specified
explicitly, the size value is set as described in rule 1. Note that the number of digits
defined in the PICTURE character-string does not include the insertion symbol 0.

• In all other circumstances, the size value is set to the number of data storage positions
occupied by identifier-1.

• If identifier-1 is numeric and the SIZE phrase is present and the value of its operand is
greater than the number of 9’s in the PICTURE character-string of identifier-1, truncation
of the entered value may occur and no conversion error is produced. If the usage of
identifier-1 is COMP-1, binary truncation is done. If the usage of identifier-1 is COMP-1
and its PICTURE character-string specifies five or more 9’s, the entered value is also
truncated.

TAB Phrase

The presence of the TAB phrase in an ACCEPT statement causes a wait for a field
termination key; the field termination key will signal field termination.

If the TAB phrase is omitted, field termination occurs when either the end of the input field is
encountered or a field termination key is pressed.

TIME Phrase

The value of identifier-8 or literal-8 in the TIME phrase specifies the length of time to wait
before automatically terminating when no data is entered during the execution of the
ACCEPT statement. The time period is specified in hundredths of seconds, but should be
considered only an approximate value because of system variations. For example, a value of
6000 specifies an approximate time-out value of one minute.

A time-out value of 0 indicates that the ACCEPT should terminate immediately if there is no
character waiting. A time-out value greater than 4,294,967,295 (a PIC 9(10) data item set to a
value 9999999999 is recommended) indicates that the TIME phrase is being overridden and
the ACCEPT will behave as if the TIME phrase were not specified.

If the user enters any data during the execution of an ACCEPT statement prior to the
completion of the timing interval, the timer is canceled. The user may then take any amount
of time to complete the entry of data for the ACCEPT statement as if the TIME phrase had
not been specified.

If the timing interval completes without any entry of data by the user, then the ACCEPT
statement terminates and returns a value as if the user had typed the Return key, except that an
exception condition is raised and the exception status value 99 is returned. (See also the
discussion of the ON EXCEPTION and NOT ON EXCEPTION Phrases (on page 241).

TAB

literal-8
-8identifierTIMEBEFORE

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 247

UNIT Phrase

The UNIT phrase, if specified, must be the first phrase entered. The other phrases may be
written in any order.

The value of identifier-2 or literal-1 in the UNIT phrase specifies the terminal from which
the data is to be accepted. If the UNIT phrase is omitted, the terminal that started the run unit
is used.

The UNIT phrase may be ignored by some runtime implementations except as it affects the
default value of the POSITION phrase (described previously). This will occur in all systems
that do not allow use of terminals other than the one associated with the run unit execution.

UPDATE Phrase

The UPDATE phrase causes the current value of identifier-1 to be displayed in the screen
field with output conversion (internal to human-readable form). The operator may then
modify the contents of the screen field before indicating field termination. The data in the
input field is then stored in identifier-1 with input conversion (human-readable to internal
form; see the discussion of the CONVERT Phrase on page 239).

In output conversion, the value of a numeric data item is converted to a standardized format
according to the output conversion rules for the DISPLAY statement:

1. A leading, separate minus sign is provided for a negative value.

2. An explicit decimal point is provided for a noninteger value. The representation of this
explicit decimal point is a period, except that, if the DECIMAL-POINT IS COMMA
clause is specified in the source program, a comma is used instead.

3. Digits are left justified with leading zeroes removed.

With the exception of numeric edited data items, nonnumeric data items are not converted
before they are displayed (that is, output conversion for nonnumeric data items is a null
operation).

If identifier-1 is numeric edited and both the CONVERT and UPDATE phrases are specified,
a numeric value for identifier-1 is determined according to the rules for the MOVE statement
(MOVE numeric-edited TO numeric). That value is then converted to a standardized form
according to the rules listed above. If identifier-1 is numeric edited, the UPDATE phrase is
specified, and the CONVERT phrase is not specified, identifier-1 is treated as a nonnumeric
data item and is not converted before display.

Note that output conversion affects only the appearance of the value in the screen field. The
contents of identifier-1 are not changed by output conversion itself.

Output conversion in an ACCEPT statement is controlled by the UPDATE phrase. The
UPDATE phrase also implies input conversion (see the discussion of the CONVERT
phrase). Unlike the action of the CONVERT phrase in a DISPLAY statement, the
CONVERT phrase in an ACCEPT statement does not control output conversion but instead
affects input conversion.

literal-1
-2identifierUNIT

UPDATE

Chapter 6: Procedure Division Statements

248 RM/COBOL Language Reference Manual

ACCEPT Statement (Terminal I-O) Examples

 ACCEPT ANSWER-1, ANSWER-2.

 ACCEPT START-VALUE LINE 1, POSITION K,
 PROMPT, ECHO, CONVERT.

 ACCEPT NEXT-N POSITION 0, PROMPT, ECHO.

 ACCEPT YEAR, LINE YR-LN, POSITION YR-POS;
 MONTH, LINE MN-LN, POSITION MN-POS.

 ACCEPT PASSWORD-VALUE POSITION 0 OFF.

 ACCEPT INVENTORY-COUNT;
 ON EXCEPTION FUNCTION-CODE
 PERFORM FUNCTION-KEY-PROCEDURE
 END-ACCEPT.

 ACCEPT command-string
 LINE command-line
 COLUMN command-column
 CURSOR command-cursor-offset
 CONTROL command-control-string.

 ACCEPT FIELD-DATA (INX1) LINE FIELD-LINE (INX1)
 COL FIELD-COLUMN (INX1) CONTROL FIELD-CONTROL (INX1).

ACCEPT MESSAGE COUNT Statement
The ACCEPT statement with the MESSAGE COUNT phrase causes the number of complete
messages in a queue to be made available.

Format 4: Accept Input CD Message Count

cd-name-1 must reference an input CD.

The ACCEPT MESSAGE COUNT statement causes the message count data item specified
for cd-name-1 to be updated to indicate the number of complete messages that exist in the
queue structure designated by the contents of the data items specified by data-name-1
(SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area
referenced by cd-name-1.

Upon execution of the ACCEPT MESSAGE COUNT statement, the area specified by a
communication description entry must contain at least the name of the symbolic queue to
be tested. Testing the condition causes the contents of the data items referenced by
data-name-10 (STATUS KEY) and data-name-11 (MESSAGE COUNT) of the area
associated with the communication description entry to be appropriately updated. See the
discussion of the communication description entry (on page 137).

The END-ACCEPT phrase delimits the scope of the ACCEPT statement. This phrase is not
necessary unless the ACCEPT statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also an ACCEPT statement. The END-ACCEPT

[]ACCEPT-ENDCOUNTMESSAGEACCEPT cd-name-1

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 249

phrase is allowed even when not necessary. For additional information on scope terminators
such as END-ACCEPT, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

ACCEPT Message Count Statement Example

 ACCEPT COM-LINE-1 MESSAGE COUNT.

ACCEPT Screen-Name Statement
The ACCEPT Screen-Name statement moves data entered by the terminal operator from
fields on the terminal screen to data items defined in the Data Division. The organization,
placement and visual attributes of the fields on the screen are defined in the Screen Section of
the Data Division.

Format 5: Accept Screen-Name

screen-name-1 must be defined as an elementary or group entry in the Screen Section of the
Data Division. identifier-1 and identifier-2, when used, must refer to elementary numeric
integer data items.

COL is a synonym for COLUMN.

ESCAPE is a synonym for EXCEPTION.

If the LINE phrase is specified, the value of integer-1 or the current value of the data item
referred to by identifier-1 is used as an increment to each of the explicit or implicit LINE
specifications within screen-name-1, thus shifting the screen downward the specified number
of lines.

A similar rule applies if the COLUMN phrase is specified: the value of integer-2 or the
current value of the data item referred to by identifier-2 is used as an increment to each of the
explicit or implicit COLUMN specifications within screen-name-1, thus shifting the screen to
the right the specified number of columns.

[]ACCEPT-END

ESCAPE
EXCEPTIONONNOT

ESCAPE
EXCEPTIONON

AT

NUMBERCOL
COLUMN

NUMBERLINE

AT
ACCEPT

-2-statementimperative

-1-statementimperative

integer-3
-3identifier

integer-2
-2identifier

integer-1
-1identifier

e-1screen-nam

Chapter 6: Procedure Division Statements

250 RM/COBOL Language Reference Manual

If the AT identifier-3/integer-3 phrase is specified, then the first half, that is, the first two or
three digits, of the operand specifies the line value and the second half specifies the column
value. When this format of the phrase is used, it is as if both the LINE and COLUMN phrases
have been specified.

The following discussion uses the phrase “each input field referred to by screen-name-1.”
Within the Screen Section, an input field is defined by an elementary entry that contains a
PICTURE clause having the TO or USING option. If screen-name-1 is an elementary item
having a PICTURE clause with a TO or USING option, the phrase “each input field referred
to by screen-name-1” is a reference to the screen field defined by screen-name-1. If
screen-name-1 is a group item, the phrase is a reference to each subordinate elementary
input field, taken in the order of their definition.

For each input field referred to by screen-name-1, the cursor is positioned at the beginning of
the field, the field is filled with the retained value and the operator is given control to enter a
new value for that field. If the operator does not wish to change the retained value of the
field, the Return key can be used to terminate entry for the field, leaving the value unchanged.
If the CURSOR clause is specified in the SPECIAL-NAMES paragraph and the value in the
data item referenced by that CURSOR clause contains a valid cursor position, the cursor will
be placed as specified at the beginning of the ACCEPT statement; also, in this case, at the end
of the ACCEPT statement, the position of the cursor will be stored into the referenced data
item.

While the operator is entering a value into a field, the local editing keys may be used to revise
the value being entered. Until the last input field has been completed, the operator may move
the cursor to previously entered input fields to revise their contents. The keys needed to
perform these operations are defined in the “Field Edit Keys” topic in Chapter 8: RM/COBOL
Features of the RM/COBOL User’s Guide. Additionally, the field edit keys may be
configured by the value of the ACTION keyword of the TERM-INPUT configuration record,
as described in Chapter 10: Configuration of the user's guide.

The retained value that is shown in the field when the field first becomes active during an
ACCEPT operation depends on whether screen-name-1 has previously been the subject
of an ACCEPT or DISPLAY operation within this run unit. If this is the first usage of
screen-name-1 within the run unit, the retained value is ZEROES for numeric items or
SPACES for nonnumeric items. If this is not the first usage of screen-name-1 within the
run unit, the retained value is the value left from the last ACCEPT or DISPLAY of
screen-name-1.

If the current input field is numeric, the operator may enter a leading or trailing sign character
(provided the input field allows for a sign) and a decimal point in addition to the numeric
digits. The sign and decimal point characters are recognized and removed, using the same de-
editing algorithm that is used during a Format 3 ACCEPT of a numeric operand that specifies
the CONVERT phrase.

After each input field is completed, the runtime system checks that the characters entered are
valid for that particular field. If invalid characters have been entered, an error message is
displayed on the bottom line of the screen, and the operator is given control to correct the
field. (When the correction operation occurs, existing information on the bottom line, if any,
is overlayed and not restored.)

During the course of an ACCEPT operation, the operator may terminate the operation
prematurely by use of the Escape key or one of the function keys. If the Escape key is used,
the current and all remaining input fields within screen-name-1 are passed over without
changing their retained values. If one of the function keys is used, the current field is
completed and becomes the retained value; further input fields, if any, are passed over without
changing their retained values. In either case, the escape condition is raised. If neither the
Escape key nor one of the function keys is used to signal premature termination, the ACCEPT
operation terminates normally after the last input field has been completed.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 251

The circumstance that caused termination of the ACCEPT operation is recorded by the
runtime system, and may be interrogated by executing an ACCEPT . . . FROM ESCAPE
KEY statement. If the CRT STATUS clause (on page 63) is specified in the SPECIAL-
NAMES paragraph, the exception status value is also available in the data item referenced by
that clause.

When the ACCEPT operation completes (either normally or prematurely), each retained value
corresponding to an input field within screen-name-1 is moved to its associated item. The
move is done according to the standard MOVE rules (which are listed in the MOVE
Statement on page 311) with the sending item being the retained value as described by the
PICTURE clause in the Screen Section entry, and the destination item being the associated
item. If the CURSOR clause is specified in the SPECIAL-NAMES paragraph and the data
item referenced by that clause contained a valid screen position at the beginning of the
ACCEPT statement, then that data item is updated with the cursor position at the end of the
ACCEPT statement.

If the escape condition is raised during an ACCEPT operation and there is an ON
ESCAPE phrase in the ACCEPT statement, control is transferred to imperative-statement-1
and execution continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of execution of imperative-statement-1, control is
transferred to the end of the ACCEPT statement and the NOT ON ESCAPE phrase, if present,
is ignored.

If the escape condition is raised during an ACCEPT operation and there is no ON ESCAPE
phrase, the escape condition is ignored.

If the escape condition is not raised during an ACCEPT operation and there is a NOT
ON ESCAPE phrase, imperative-statement-1 is ignored, control is transferred to
imperative-statement-2 and execution continues according to the rules for each statement
specified in imperative-statement-2. If a procedure branching or conditional statement that
causes explicit transfer of control is executed, control is transferred in accordance with the
rules for that statement; otherwise, upon completion of execution of imperative-statement-2,
control is transferred to the end of the ACCEPT statement.

Screen fields within screen-name-1 that are not input fields have no effect on the operation of
the ACCEPT statement.

The BLANK LINE, BLANK REMAINDER and BLANK SCREEN attributes are not
active during an ACCEPT operation. The effect of other attributes (AUTO, BELL, BLINK,
FULL, REQUIRED, SECURE, and so forth) is as described in Chapter 4: Data Division (on
page 85).

The appearance of the screen is undefined and unpredictable when LINE or COLUMN values
are specified such that screen fields extend beyond the boundaries of the physical screen,
either horizontally or vertically.

The END-ACCEPT phrase delimits the scope of the ACCEPT statement. This phrase is not
necessary unless the ACCEPT statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also an ACCEPT statement. The END-ACCEPT
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-ACCEPT, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

ACCEPT Screen-Name Statement Examples

 ACCEPT INVOICE-FORM AT LINE 10 COLUMN 5.

Chapter 6: Procedure Division Statements

252 RM/COBOL Language Reference Manual

 ACCEPT EMPLOYEE-RECORD LINE 9
 ON ESCAPE
 DISPLAY ESCAPE-MESSAGE LINE 23
 END-ACCEPT.

 ACCEPT EOB-SCREEN AT COL EOB-COL LINE EOB-LINE.

ADD Statement
The ADD statement causes two or more numeric operands to be summed and the result to
be stored.

Format 1: Add…To

Format 2: Add…Giving

Format 3: Add Corresponding

In Format 1, the values of the operands preceding the word TO are added together; that sum is
then added to the current value of each data item referenced by identifier-2 storing the result
immediately into that data item.

[]{ }

[]

[]

[]ADD-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDTOADD

-2-statementimperative

-1-statementimperative

-2identifierliteral-1
-1identifier

[]{ }

[]

[]

[]ADD-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

TOADD

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

[]

[]

[]

[]ADD-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDTOCORR
INGCORRESPONDADD

-2-statementimperative

-1-statementimperative

-2identifier-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 253

In Format 2, the values of the operands preceding the word GIVING are added together; that
sum is then stored as the new value of each data item referenced by identifier-3.

In Formats 1 and 2, each identifier must refer to an elementary numeric item, except that in
Format 2, each identifier following the word GIVING may refer to either an elementary
numeric item or an elementary numeric edited item.

In Format 3, data items in identifier-1 are added to and stored in the corresponding data items
in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the ADD statement that are common
to other arithmetic statements can be found in the discussion of common rules (on page 182).
Note, in particular, the discussions of the ROUNDED phrase, the size error condition,
overlapping operands, modes of operation, composite size, and incompatible data.

The END-ADD phrase delimits the scope of the ADD statement. This phrase is not necessary
unless the ADD statement is specified in the conditional phrase of another statement. Even in
that case, the phrase is not necessary unless this statement specifies a conditional phrase or
that other statement is also an ADD statement. The END-ADD phrase is allowed even when
not necessary. For additional information on scope terminators such as END-ADD, see Scope
of Statements (on page 31), Imperative Statements (on page 30), and Delimited Scope
Statements (on page 31).

CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within identifier-1 are added to, and
the result stored in, the corresponding items in identifier-2.

For the ADD statement with the CORRESPONDING phrase:

• The description of identifier-1 and identifier-2 must not contain level-number 66, 77, 78,
or 88, the USAGE IS INDEX clause, or the USAGE IS POINTER clause.

• Neither identifier-1 nor identifier-2 may be reference modified.

• identifier-1 or identifier-2 may be described with the OCCURS or REDEFINES clauses
or be subordinate to data items described with the OCCURS or REDEFINES clauses. If
identifier-1 or identifier-2 is a table element, then the required subscripting must be
specified as part of identifier-1 or identifier-2. The specified subscripting will be applied
to the selected subordinate corresponding data items, respectively, for identifier-1 and
identifier-2.

The rules that govern the selection of eligible subordinate data item pairs are as follows:

1. The data items are not designated by the keyword FILLER and have the same data-name
and the same qualifiers up to but not including the original group items, identifier-1 and
identifier-2.

2. Both of the data items are elementary numeric data items.

3. A data item that is subordinate to identifier-1 or identifier-2 and contains a REDEFINES,
OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause is ignored, as well as

[]ROUNDEDTOCORR
INGCORRESPOND -2identifier-1identifier

Chapter 6: Procedure Division Statements

254 RM/COBOL Language Reference Manual

those data items subordinate to the data item that contains the REDEFINES, OCCURS,
USAGE IS INDEX, or USAGE IS POINTER clause.

4. The name of each data item that satisfies the above conditions must be unique after
application of the implied qualifiers.

If any of the individual operations produces a size error condition, imperative-statement-1
in the ON SIZE ERROR phrase is not executed until all of the individual additions are
completed.

CORR and CORRESPONDING are synonymous.

ADD Statement Examples

 ADD SALARY TO SALARY. *>(doubles the value of SALARY)

 ADD JOHNS-PAY, PAULS-PAY, ALBERTS-PAY
 GIVING COMPANY-PAY
 ON SIZE ERROR
 PERFORM BANKRUPTCY-PROC
 END-ADD.

 ADD CORRESPONDING
 DAY-TOTALS(DAYX) TO MONTH-TOTALS(MONTHX).

 ADD CORR SUB-TOTAL-RECORD TO TOTAL-RECORD ROUNDED
 ON SIZE ERROR GO TO ERROR-ROUTINE
 NOT ON SIZE ERROR PERFORM AUDIT-ROUTINE
 END-ADD.

ALTER Statement
The ALTER statement modifies a predetermined sequence of operations.

procedure-name-1 is the name of a paragraph that contains a single sentence consisting of a
GO TO statement without the DEPENDING phrase.

procedure-name-2 is the name of a paragraph or section in the Procedure Division.

Execution of the ALTER statement modifies the GO TO statement in the paragraph named
procedure-name-1, so that subsequent executions of the modified GO TO statements cause
transfer of control to procedure-name-2. Modified GO TO statements in independent
segments may, under some circumstances, be returned to their initial states; see the rules for
segmentation (on page 177) in Chapter 5: Procedure Division.

A GO TO statement in a section whose segment-number is greater than or equal to 50 must
not be referred to by an ALTER statement in a section with a different segment-number.

ALTER Statement Example

 .
 .
 .
 PERFORM SET-INITIALIZE-IT.

[]{ }name-2procedure-name-1procedure- TOPROCEEDTOALTER

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 255

 .
 .
 .
 SWITCH-PARAGRAPH.
 GO TO INITIALIZE-IT.
 INITIALIZE-IT.
 INITIALIZE EMPLOYEE-RECORD.
 ALTER SWITCH-PARAGRAPH TO INITIALIZED.
 INITIALIZED.
 .
 .
 .
 SET-INITIALIZE-IT.
 ALTER SWITCH-PARAGRAPH TO INITIALIZE-IT.

CALL Statement
The CALL statement causes control to be transferred from one object program to another,
within the run unit.

Format 1: Call…On Overflow

[]

[]

[]CALL-END

OVERFLOWON

RETURNING
GIVING

OMITTED

OMITTED
CONTENTBY

OMITTEDREFERENCEBY

USING

CALL

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-2
-2identifier

-2identifier

literal-1
-1identifier

Chapter 6: Procedure Division Statements

256 RM/COBOL Language Reference Manual

Format 2: Call…On Exception

The execution of a CALL statement causes control to pass to the program whose name is
specified by the value of literal-1 or identifier-1, termed the “called” program. The program
in which the CALL statement appears is the “calling” program.

literal-1 must be a nonnumeric literal.

identifier-1 must be defined as an alphanumeric data item such that its value can be a
program-name.

The value of literal-1 or of the data item referenced by identifier-1 specifies a program-name
that is used to select a program for loading and execution. If the program being called is a
COBOL program, the program that is loaded and executed may be selected because the
program-name matches the program-name that appears in the PROGRAM-ID paragraph of
the called program. For this comparison, any trailing spaces are ignored. Other techniques
that are available for selecting the called program are dependent on the runtime operating
system, and are described in the “Subprogram Loading” topic in Chapter 8: RM/COBOL
Features and in the “Directory Search Sequences on UNIX” and “Directory Search Sequence
on Windows” sections in Chapters 2 and 3, respectively, of the RM/COBOL User’s Guide.

Called programs may contain CALL statements. However, a called program must not contain
a CALL statement that directly or indirectly calls the calling program. If a CALL statement is
executed within the range of a declarative, that CALL statement cannot directly or indirectly
reference any called program to which control has been transferred and which has not
completed execution.

The CALL statement may appear anywhere within a segmented program. When a CALL
statement appears in a section with a segment-number greater than or equal to 50, that
segment is in its last used state when the EXIT PROGRAM statement returns control to the
calling program.

Two or more programs in the run unit may have the same program-name, and the reference in
a CALL statement to such a program-name is resolved by using the scope of names
conventions for program-names.

For example, when only two programs in the run unit have the same name as that specified in
a CALL statement:

[]

[]

[]

[]CALL-END

EXCEPTIONONNOT

EXCEPTIONON

RETURNING
GIVING

OMITTED

OMITTED
CONTENTBY

OMITTEDREFERENCEBY

USING

CALL

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-2
-2identifier

-2identifier

literal-1
-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 257

1. One of those two programs must also be contained directly or indirectly either within the
separately compiled program that includes that CALL statement or within the separately
compiled program which itself directly or indirectly contains the program that includes
that CALL statement.

2. The other of those two programs must be a different separately compiled program.

The mechanism used in this example is as follows:

1. If one of the two programs having the same name as that specified in the CALL statement
is directly contained within the program which includes that CALL statement, that
program is called.

2. If one of the two programs having the same name as that specified in the CALL statement
possesses the common attribute and is directly contained within another program which
directly or indirectly contains the program which includes the CALL statement, that
common program is called unless the calling program is contained within that common
program.

3. Otherwise, the separately compiled program is called.

If the called program does not possess the initial attribute, it and each program directly or
indirectly contained within it, is in its initial state the first time it is called within a run unit
and the first time it is called after a CANCEL to the called program.

On all other entries into the called program, the state of the program and each program
directly or indirectly contained within it remains unchanged from its state when last exited.

If the called program possesses the initial attribute, it and each program directly or indirectly
contained within it, is placed into its initial state every time the called program is called within
a run unit.

Files associated with the internal file connectors of a called program are not in the open mode
when the program is in an initial state.

On all other entries into the called program, the states and positioning of all such files is the
same as when the called program was last exited.

The process of calling a program or exiting from a called program does not alter the status or
positioning of a file associated with any external file connector.

The END-CALL phrase delimits the scope of the CALL statement. This phrase is not
necessary unless the CALL statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a CALL or CALL PROGRAM statement (on
page 261). The END-CALL phrase is allowed even when not necessary. For additional
information on scope terminators such as END-CALL, see Scope of Statements (on page 31),
Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

Chapter 6: Procedure Division Statements

258 RM/COBOL Language Reference Manual

USING Phrase

The operands specified by the USING phrase of the CALL statement indicate those data items
available to a calling program that may be referred to in the called program. The order of
appearance of the operands in the USING phrase of the CALL statement and the USING
phrase in the Procedure Division header is critical. Corresponding operands refer to a single
set of data that is available to the called and calling programs. The correspondence is by
position, not name. Index-names cannot be made available to the calling program. Index-
names in the called and calling programs always refer to separate indexes, except for index-
names with the external attribute.

The USING phrase is included in the CALL statement only if there is a USING phrase in the
Procedure Division header of the called program. The number of operands in the two USING
phrases need not be the same. However, when the two lists have a different number of
operands, trailing operands for which there is no corresponding operand in the other list are
inaccessible to the called program.

The reserved word OMITTED may be specified to represent an inaccessible operand in the
list of operands in the USING phrase of the CALL statement.

In the called program, operands that are inaccessible, either because of omitted trailing
operands or use of the word OMITTED in the USING phrase of the CALL statement in the
calling program, have a null address. If the called program refers to an inaccessible argument,
other than with the ADDRESS special register or in the USING or GIVING phrase of a
CALL statement, a data reference error will occur. The called program can check for
inaccessible operands by using the ADDRESS special register to test the address of the actual
argument for equality to the figurative constant NULL.

Each operand in the USING phrase must have been defined as a data item in the File Section,
Working-Storage Section, Communication Section or Linkage Section, and must be a level 01
data item, a level 77 data item, or an elementary data item.

The values of the parameters referenced in the USING phrase of the CALL statement are
made available to the called program at the time the CALL statement is executed.

Both the BY CONTENT and BY REFERENCE phrases are transitive across the parameters
that follow them until another BY CONTENT or BY REFERENCE phrase is encountered. If
neither the BY CONTENT nor the BY REFERENCE phrase is specified prior to the first
parameter, the BY REFERENCE phrase is assumed for identifiers and the BY CONTENT
phrase is assumed for literals.

Note Prior to v7.5 of RM/COBOL, both identifiers and literals were passed BY
REFERENCE when neither the BY CONTENT nor the BY REFERENCE phrase had been
explicitly specified. A configuration option has been added to retain the prior behavior; see
the SUPPRESS-LITERAL-BY-CONTENT keyword of the COMPILER-OPTIONS
configuration record in Chapter 10: Configuration of the RM/COBOL User’s Guide.

If the BY REFERENCE phrase is either specified or implied for an operand in the USING
list, the object program operates as if the associated data item in the called program occupies

[]

OMITTED

OMITTED
CONTENTBY

OMITTEDREFERENCEBY

USING

literal-2
-2identifier

literal-2
-2identifier

-2identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 259

the same storage area as the corresponding data item in the calling program. The description
of the data item in the called program must describe the same number of character positions
as described by the corresponding item in the calling program.

If the BY CONTENT phrase is specified or implied for a parameter, the called program
cannot change the value of this parameter as referenced in the USING phrase of the CALL
statement, though the called program may change the value of the data item referenced by the
corresponding data-name in the Procedure Division header of the called program. The data
description of each parameter in the BY CONTENT phrase of the CALL statement must be
the same (that is, no conversion, extension or truncation) as the data description of the
corresponding parameter in the USING phrase of the Procedure Division header.

When the ADDRESS special register is specified in the USING phrase, the result value is
always passed by content. The base address of a level 01 or 77 Linkage Section item can only
be changed by Formats 5 and 6 of the SET statement. Thus, if the goal is to change the
address of a Linkage Section item based on an argument value, the calling program must pass
by reference a pointer data item as an argument. The called program may then modify the
value of this pointer data item argument. The calling program may then use the pointer data
item after the CALL statement in a Format 5 SET statement to set the address of the Linkage
Section item.

When an identifier that refers to a level-number 01 or 77 Linkage Section data item that
represents a formal argument is specified in the USING phrase of a CALL statement, the data
item is resolved according to its description in the calling program. This is an exception to
the rule that formal arguments are resolved according to their description in the Linkage
Section of the called program. How the data item is resolved mainly affects the length of the
data item as seen in the called program. For additional information on this special case of
resolving Linkage Section record-names, see Linkage Section (on page 98).

GIVING Phrase

RETURNING is a synonym for GIVING.

The operand specified in the GIVING phrase of the CALL statement indicates a data item
available to a calling program that may be referred to in the called program for purposes of
returning a result from the called program. The GIVING argument is functionally the same as
any of the USING arguments, except that BY CONTENT and OMITTED are not allowed.
The purpose of the GIVING phrase is for source program readability by indicating the return
value argument.

The GIVING phrase is included in the CALL statement only if there is a GIVING phrase in
the Procedure Division header of the called program. If the GIVING phrase is omitted in the
CALL statement when calling a program that includes the GIVING phrase in the Procedure
Division header, then the GIVING operand is inaccessible to the called program. If the
GIVING phrase is included in a CALL statement where the GIVING phrase is not included in
the Procedure Division header of the called program, it has no effect and is ignored. In this
case, the operand of the GIVING phrase in the calling program is unchanged after the called
program completes.

The ADDRESS special register may not be specified in the GIVING phrase, but an identifier
that refers to a pointer data item may be specified.

When an identifier that refers to a level-number 01 or 77 Linkage Section data item that
represents a formal argument is specified in the GIVING phrase of a CALL statement, the

-3identifier

RETURNING
GIVING

Chapter 6: Procedure Division Statements

260 RM/COBOL Language Reference Manual

data item is resolved according to its description in the calling program. This is an exception
to the rule that formal arguments are resolved according to their description in the Linkage
Section of the called program.

OVERFLOW, EXCEPTION, and NOT EXCEPTION
Phrases

If, when a CALL statement is executed, the program specified by the CALL statement can be
made available for execution, control is transferred to the called program. After control is
returned from the called program, the ON OVERFLOW or ON EXCEPTION phrase, if
specified, is ignored and control is transferred to the end of the CALL statement or, if the
NOT ON EXCEPTION phrase is specified, to imperative-statement-2. In the latter case,
execution continues through imperative-statement-2 according to the rules for each statement
specified in that statement. If a procedure branching or conditional statement that causes
explicit transfer of control is executed, control is transferred in accordance with the rules for
that statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the CALL statement.

If, when a CALL statement is executed, it is determined that the program specified by the
CALL statement cannot be made available for execution, the NOT ON EXCEPTION phrase,
if specified, is ignored and one of the following two actions occurs:

1. If either the ON OVERFLOW or the ON EXCEPTION phrase is specified, control is
transferred to imperative-statement-1. Execution then continues according to the rules
for each statement in imperative-statement-1. If a procedure branching or conditional
statement that causes explicit transfer of control is encountered, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution
of imperative-statement-1, control is transferred to the end of the CALL statement.

2. If neither the ON OVERFLOW nor the ON EXCEPTION phrase is specified, a runtime
error message is produced and execution of the run unit is terminated.

Reasons for not making a called program available for execution include the following:

• The program cannot be found using the file extension and directory search sequences,
which are described in Chapter 2: Installation and System Considerations for UNIX and
in Chapter 3: Installation and System Considerations for Windows of the RM/COBOL
User’s Guide.

• The file format of the program is not one of the legal formats for an RM/COBOL called
program.

• There is insufficient available memory to load the program.

CALL Statement Examples

 0010.
 IF CHOICE-1 = "01" MOVE "APP01" TO SUBPRG1
 ELSE IF CHOICE-1 = "02" MOVE "APP02" TO SUBPRG1
 ELSE PERFORM 0020-RETRY-CHOICE GO TO 0010

-2-statementimperative

-1-statementimperative

-1-statementimperative

EXCEPTIONONNOT

EXCEPTIONON

OVERFLOWON

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 261

 END-IF END-IF.
 .
 .
 .
 CALL SUBPRG1. *>Call "APP01" or "APP02" per choice.

 CALL "REORDER" USING TABLE1 GIVING TABLE1-TOTAL.

 RETRY-1.
 CALL SUBNAME OF SUBTABLE (IX) GIVING STATUS-1
 USING FUNCTION-TYPE, ITEM-1, ITEM-2,
 ON EXCEPTION PERFORM CANCEL-PARAGRAPH GO TO RETRY-1
 NOT ON EXCEPTION SET SUB-LOADED (IX) TO TRUE
 END-CALL.

 CALL "C$SCRD" USING
 SCREEN-BUFFER, OMITTED, SCREEN-LINE, SCREEN-COLUMN.

CALL PROGRAM Statement
The CALL PROGRAM statement transfers control from the current program to another
program, with implicit termination of the current program and no expectation of return.

literal-1 must be a nonnumeric literal.

identifier-1 must be defined as an alphanumeric data item such that its value can be a
program-name.

If the program specified by literal-1 or by the current value of the data item identified by
identifier-1 can be found and loaded, the USING operands, if any, are copied to a save area in
memory, the current run unit is canceled, and control is transferred to the specified program,
passing the saved USING operands as parameters.

Cancellation of the run unit in which the CALL PROGRAM statement is executed includes
closing any files that are in an open mode and the release of all external objects.

The specified program is entered as the main program of a completely new run unit in the
same way as a program started from the command line, except that the argument list to this
program is not restricted in the same way; for an explanation of the restrictions on the
argument list for a main program started from the command line, see the A Runtime
Command Option in Chapter 7: Running of the RM/COBOL User’s Guide. The main
program of a run unit started with the CALL PROGRAM statement may receive all the
arguments passed by that CALL PROGRAM statement.

The specified program is not under the control of a calling program. There is no provision for
return of control from the specified program to the program in which the CALL PROGRAM
statement is executed. If the specified program executes an EXIT PROGRAM statement,
execution of the program continues with the next executable statement.

[]

[]CALL-END

EXCEPTIONON

OMITTED
USINGPROGRAMCALL

-1-statementimperative

literal-2
-2identifier

literal-1
-1identifier

Chapter 6: Procedure Division Statements

262 RM/COBOL Language Reference Manual

If the program referred to by literal-1 or by the current value of the data item identified by
identifier-1 cannot be found or loaded, the exception condition is raised and control remains
in the current program.

If the exception condition is raised and there is an ON EXCEPTION phrase, control is
transferred to imperative-statement-1 and execution continues according to the rules for each
statement specified in imperative-statement-1. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of execution of
imperative-statement-1, control is transferred to the end of the CALL PROGRAM statement.

The reason for the exception condition can be determined by executing an ACCEPT . . .
FROM EXCEPTION STATUS statement.

If the exception condition is raised and there is no ON EXCEPTION phrase, the exception
condition is ignored.

Selection of the program to be activated by a CALL PROGRAM statement is done using the
same rules as are used for that purpose by the CALL Statement (see page 255).

The USING phrase is subject to the same conditions and has the same purpose and effect as
described previously for the CALL statement.

The END-CALL phrase delimits the scope of the CALL PROGRAM statement. This phrase
is not necessary unless the CALL PROGRAM statement is specified in the conditional phrase
of another statement. Even in that case, the phrase is not necessary unless this statement
specifies a conditional phrase or that other statement is also a CALL (on page 255) or CALL
PROGRAM statement. The END-CALL phrase is allowed even when not necessary. For
additional information on scope terminators such as END-CALL, see Scope of Statements (on
page 31), Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

CALL PROGRAM Statement Examples

 CALL PROGRAM "MENU2" USING COMMON-DATA
 ON EXCEPTION
 DISPLAY "Chain to MENU2 failed."
 STOP RUN
 END-CALL.

 CALL PROGRAM CHAIN-NAME USING ARGUMENT-AREA
 ON EXCEPTION
 ACCEPT EX-STATUS FROM EXCEPTION STATUS
 PERFORM 0030-CHAIN-ERROR-STATUS
 STOP RUN
 END-CALL.

CANCEL Statement
The CANCEL statement ensures that the next time the referenced programs are called they
will be in their initial state. For a separately compiled program, the CANCEL statement
releases the memory areas occupied by the referenced programs.

literal-1 must be a nonnumeric literal.

literal-1
-1identifierCANCEL

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 263

identifier-1 must be defined as an alphanumeric data item such that its value can be a
program-name.

Subsequent to the execution of a CANCEL statement, the programs it refers to cease to have a
logical relationship to the run unit in which the CANCEL statement appears. A subsequently
executed CALL statement naming such a program results in that program being initiated in its
initial state. The memory areas associated with the named programs are released so as to be
made available for disposition by the runtime system.

A program named in a CANCEL statement in another program must be callable by that
other program.

When an explicit or implicit CANCEL statement is executed, all programs contained within
the program referenced by the CANCEL statement are also canceled. The result is the same
as if a valid CANCEL statement were executed for each contained program in the reverse
order in which the programs appear in the separately compiled program.

A program named in the CANCEL statement must not refer to any program that has been
called and has not yet executed an EXIT PROGRAM statement.

A logical relationship to a canceled subprogram is established only by execution of a
subsequent CALL statement. A called program is canceled either by being referred to as the
operand of a CANCEL statement, by the termination of the run unit of which the program is a
member or by execution of an EXIT PROGRAM statement in a called program that possesses
the initial attribute. See the discussion of the PROGRAM-ID paragraph (on page 50).

No action is taken when a CANCEL statement is executed naming a program that has not
been called in this run unit or has been called and is at present canceled. Control passes to the
next statement.

The contents of data items in external data records described by a program are not changed
when that program is canceled.

During execution of an explicit or implicit CANCEL statement, an implicit CLOSE statement
without any optional phrases is executed for each file in an open mode that is associated with
an internal file connector in the program named in the explicit CANCEL statement or implied
in the implicit CANCEL statement. Any USE procedures associated with any of these files
are not executed.

CANCEL Statement Examples

 CANCEL "SUB01", "SUB02".

 CANCEL SUBPROGRAM-NAME-HOLDER.

 CANCEL-PARAGRAPH.
 SET SUB-UNLOADED TO FALSE.
 PERFORM VARYING IX FROM 1 BY 1 UNTIL IX > 4
 IF SUB-LOADED OF SUBTABLE (IX)
 CANCEL SUBNAME OF SUBTABLE (IX)
 SET SUB-LOADED OF SUBTABLE (IX) TO FALSE
 SET SUB-UNLOADED TO TRUE
 END-IF
 END-PERFORM.
 IF NOT SUB-UNLOADED
 DISPLAY "Insufficient memory."
 STOP RUN
 END-IF.

Chapter 6: Procedure Division Statements

264 RM/COBOL Language Reference Manual

CLOSE Statement
The CLOSE statement terminates the processing of reels or units, and files with optional
rewind, lock, or both, or removal where applicable.

The files referenced in the CLOSE statement need not all have the same organization
or access.

The NO REWIND, REEL, and UNIT phrases may only be specified for files that are
sequential organization.

The function of a CLOSE statement (with no options) is to cause the runtime system to close
the file. For files opened for OUTPUT, the runtime system also writes an EOF as it closes
the file.

If a STOP RUN statement is executed prior to closing the file, the runtime system closes the
file. Such a close is equivalent to the execution of a CLOSE statement except that any
associated USE procedure is not executed.

A CLOSE statement may be executed only for a file in an open mode.

Once a CLOSE statement without the REEL or UNIT phrase has been executed for a file, no
other statement (except the SORT or MERGE statement with the USING or GIVING phrase)
can be executed that references that file, either explicitly or implicitly, unless an intervening
OPEN statement for that file is executed.

The execution of a CLOSE statement causes the value of the file status data item, if any,
associated with file-name-1 to be updated.

REEL and UNIT Phrases

The REEL and UNIT phrases are synonymous in this context. The CLOSE REEL and
CLOSE UNIT statements cause processing to be discontinued on the current volume and to
be continued on the next volume of a multivolume series. CLOSE REEL and CLOSE UNIT
on a single-volume file are ignored.

The REEL and UNIT phrases may only be specified for sequential organization files.

The action of the phrase for multivolume disk files and tape files depends on the open mode:

• For files that are open OUTPUT, the current volume is closed. The next WRITE
statement will cause the record to be written to the next volume in the series. If no next
volume is described or available to the series, an error occurs.

• For files that are open INPUT or I-O, the current volume is closed. The next READ
statement will obtain the first record from the next volume in the series. If no next
volume exists for the file, the next READ statement causes an at end condition.

LOCK
REWINDNOWITH

REMOVALFOR
REWINDNOWITH

UNIT
REEL

CLOSE 1file-name-

UNIT
REEL

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 265

NO REWIND Phrase

The NO REWIND phrase may be used to write and read multiple files on a tape with a single
file-name. The phrase suppresses the automatic rewinding of a tape volume when a CLOSE
statement, without the NO REWIND phrase, is executed.

The NO REWIND phrase may only be specified for sequential organization files.

Following a CLOSE file-name-1 WITH NO REWIND, an OPEN file-name-1 WITH NO
REWIND may be used to write or read the next file on the tape. For input, the file must be
closed without rewinding after reading all the records in the file; otherwise, the open without
rewinding will fail since the tape is not positioned at the beginning of a file.

The NO REWIND phrase is ignored for files that are not on tape or directed to a printer.

Specifying both the UNIT or REEL phrase and the NO REWIND phrase for a single
file-name within a CLOSE statement is an allowed syntactical form, but in such a case the
NO REWIND phrase has no meaning and is ignored at execution time.

REMOVAL Phrase

The REMOVAL phrase may be used so that the operating system is notified that the reel or
unit is logically removed from this run unit. However, the reel or unit may be accessed again,
in its proper order of reels and units within the file, if a CLOSE statement without the REEL
or UNIT phrase is subsequently executed for this file followed by the execution of an OPEN
statement for the file.

The REMOVAL phrase may only be specified for sequential organization files.

The NO REWIND and REMOVAL phrases have no effect at object time if they do not apply
to the storage medium on which the file resides.

LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the CLOSE function and
set a flag to prevent the file from being opened again during execution of this program. In
some runtime environments, the CLOSE WITH LOCK statement frees system resources that
would otherwise not be freed until the run unit terminates.

The execution of a CLOSE statement always releases any file lock or record locks held by the
run unit for file-name-1. The LOCK phrase of the CLOSE statement is unrelated to file
locking and record locking.

CLOSE Statement Examples

 CLOSE TRANSACTION-FILE.

 CLOSE LOG-FILE WITH LOCK, PRINT-FILE.

REWINDNOWITH

REMOVALFOR

LOCKWITH

Chapter 6: Procedure Division Statements

266 RM/COBOL Language Reference Manual

 CLOSE INPUT-FILE REEL FOR REMOVAL.

 CLOSE TAPE-FILE-1 WITH NO REWIND.

 CLOSE DATA-BASE WITH LOCK.
 .
 .
 .
 OPEN I-O DATA-BASE.
 IF DB-STATUS = "38"
 DISPLAY "Data-base file closed with lock."
 STOP RUN
 END-IF.

COMPUTE Statement
The COMPUTE statement calculates the value of an arithmetic expression and assigns the
value to one or more data items.

identifier-1 must refer to either an elementary numeric item or an elementary numeric
edited item.

An arithmetic expression consisting of a single identifier or literal provides a method of
setting the value of identifier-1 equal to the value of the single identifier or literal.

The COMPUTE statement allows the user to combine arithmetic operations without the
restrictions on composite of operands, receiving data items, or both, imposed by the
arithmetic statements ADD, SUBTRACT, MULTIPLY and DIVIDE.

Additional rules and explanations regarding features of the COMPUTE statement that are
common to other arithmetic statements can be found in the discussion of common rules (on
page 182). Note, in particular, the discussions of the ROUNDED phrase, the size error
condition, overlapping operands, modes of operation, composite size, and incompatible data.

The END-COMPUTE phrase delimits the scope of the COMPUTE statement. This phrase is
not necessary unless the COMPUTE statement is specified in the conditional phrase of
another statement. Even in that case, the phrase is not necessary unless this statement
specifies a conditional phrase or that other statement is also a COMPUTE statement. The
END-COMPUTE phrase is allowed even when not necessary. For additional information on
scope terminators such as END-COMPUTE, see Scope of Statements (on page 31),
Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

COMPUTE Statement Examples

 COMPUTE SALARY ROUNDED = WAGES * REGULAR-HOURS
 + WAGES * OVERTIME-HOURS * 1.5.

[]{ }

[]

[]

[]COMPUTE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDCOMPUTE

-2-statementimperative

-1-statementimperative

n-1-expressioarithmetic-1identifier =

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 267

 COMPUTE SECONDS = (((HRS * 60) + MIN) * 60) + SEC
 ON SIZE ERROR
 DISPLAY "Time value out of range."
 STOP RUN
 END-COMPUTE.

 COMPUTE AVERAGE = TOTAL-1 / COUNT-1
 ON SIZE ERROR MOVE 0 TO AVERAGE END-COMPUTE.

 COMPUTE INTEREST-PER-PERIOD ROUNDED =
 INTEREST-APR / 1200.
 COMPUTE PAYMENT-RND ROUNDED PAYMENT-TRUNC =
 (INITIAL-PRINCIPAL * INTEREST-PER-PERIOD) /
 (1 - (1 + INTEREST-PER-PERIOD) **
 (- NUMBER-OF-PERIODS)).

CONTINUE Statement
The CONTINUE statement has no effect on the execution of the program.

The CONTINUE statement may be used anywhere a conditional statement or an imperative
statement may be used.

The CONTINUE statement is most useful within a conditional phrase of another statement
when no action is desired when the condition occurs.

CONTINUE Statement Examples

 CONTINUE.

 IF NORMAL-RESULT = "Y"
 CONTINUE
 ELSE
 PERFORM EXCEPTION-CASE-ANALYSIS
 END-IF.

 ACCEPT PART-DESCRIPTION UPDATE ERASE EOL
 ON EXCEPTION EXCP-CODE CONTINUE END-ACCEPT.

DELETE Statement (Relative and Indexed I-O)
The DELETE statement logically removes a record from a mass storage file.

CONTINUE

[]

[]

[]DELETE-END

KEYINVALIDNOT

KEYINVALID

RECORDDELETE

-2-statementimperative

-1-statementimperative

1file-name-

Chapter 6: Procedure Division Statements

268 RM/COBOL Language Reference Manual

After the successful execution of a DELETE statement, the identified record has been
logically removed from the file and can no longer be accessed.

The execution of a DELETE statement does not affect the contents of the record area
associated with file-name-1 or the contents of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
file-name-1.

The file referenced by file-name-1 must be open in the I-O mode at the time of execution of
this statement.

For a file in sequential access mode, the last input-output statement executed for file-name-1
prior to the execution of the DELETE statement must have been a successfully executed
READ statement. The runtime system logically removes from the file the record that was
accessed by that READ statement.

For a file in random or dynamic access mode, except for an indexed file described with the
DUPLICATES phrase in the RECORD KEY clause, the runtime system logically removes
from the file the record identified by the contents of the key data item associated with
file-name-1. If the file does not contain the record specified by the key, the invalid key
condition exists. For a relative file, the key data item is the relative key data item specified
in the RELATIVE KEY phrase of the ACCESS MODE clause of the file control entry for
file-name-1. For an indexed file, the key data item is the prime key data item specified in the
RECORD KEY clause of the file control entry for file-name-1.

Transfer of control following the successful or unsuccessful execution of the DELETE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases in the DELETE statement. See the discussions of invalid key
conditions for relative files (on page 211) and indexed files (on page 218).

For an indexed file described with the DUPLICATES phrase in the RECORD KEY clause,
the DELETE statement in the dynamic access mode is executed as if the file were in the
sequential access mode and the DELETE statement in the random access mode is not allowed.

The execution of the DELETE statement causes the value of the specified file status data
item, if any, associated with file-name-1 to be updated.

The file position indicator is not affected by the execution of a DELETE statement.

The INVALID KEY phrase and the NOT INVALID KEY phrase must not be specified for a
DELETE statement that references a file which is in sequential access mode.

The INVALID KEY phrase must be specified for a DELETE statement that references a
file which is not in sequential access mode and for which an applicable USE procedure is
not specified.

See also the discussions of relative organization input-output (on page 207) and indexed
organization input-output (on page 213) for additional information on the invalid key
condition and the use of the INVALID KEY and NOT INVALID KEY phrases.

The record to be deleted by the execution of the DELETE statement must not be locked by
another run unit. For a shared input-output file, the run unit executing the DELETE statement
should obtain a record lock by preceding the DELETE statement with a READ statement that
locks the record to be deleted. If the run unit does not already hold a lock on the record to be
deleted, the runtime system will attempt to obtain the lock. If the lock cannot be obtained
because another run unit holds a lock on the record, subsequent action of the program is as
described for the READ statement when attempting to lock a record already locked by
another run unit. If the lock cannot be obtained because this run unit holds a lock on the
record through another COBOL file-name, the DELETE statement is unsuccessful. For
additional information on coordinating file updates in a shared file environment, see File
Locking (on page 220) and Record Locking (on page 221).

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 269

After successful execution of the DELETE statement, any record lock held by the run unit on
the deleted record is released regardless of the record locking mode applicable to file-name-1.

In single record locking modes when a different record than the one being deleted is locked,
that record lock is released upon execution of the DELETE statement.

In multiple record locking modes any record locks held by the run unit for file-name-1 are
not released upon execution of the DELETE statement, except for the record lock on the
deleted record.

The END-DELETE phrase delimits the scope of the DELETE statement. This phrase is not
necessary unless the DELETE statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a DELETE or DELETE FILE statement
(on page 269). The END-DELETE phrase is allowed even when not necessary. For
additional information on scope terminators such as END-DELETE, see Scope of Statements
(on page 31), Imperative Statements (on page 30), and Delimited Scope Statements (on
page 31).

DELETE Statement Examples

 DELETE INVENTORY-FILE RECORD; INVALID KEY
 PERFORM BAD-KEY-PROCEDURE END-DELETE.

 DELETE STATUS-FILE RECORD.

 MOVE DB-DELETE-KEY TO DB-KEY.
 DELETE DATA-BASE RECORD
 INVALID KEY PERFORM DB-INVALID-KEY-HANDLER
 NOT INVALID KEY PERFORM DB-SUCCESS-HANDLER
 END-DELETE.

DELETE FILE Statement
The DELETE FILE statement causes the removal of the referenced files from the runtime file
structure.

Each file referred to by file-name-1 is deleted from the runtime file structure provided the
following conditions are all true:

• The file is not in the open mode.

• The file was not previously closed with lock during this execution of the program.

• The file exists.

• The runtime file system supports file deletion.

• The file is not protected from deletion by a mechanism of the runtime file system.

• The fixed file attributes specified for the file match the actual fixed file attributes of
the existing file.

For each file referred to by file-name-1, the value of its file status data item, if any,
is updated.

{ } []DELETE-ENDFILEDELETE 2file-name-

Chapter 6: Procedure Division Statements

270 RM/COBOL Language Reference Manual

When a DELETE FILE statement references a file that does not exist, the statement
executes successfully. Otherwise, a failure of deletion causes the execution of any applicable
USE procedure.

The END-DELETE phrase delimits the scope of the DELETE FILE statement. This phrase is
not necessary unless the DELETE statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a DELETE (on page 267) or DELETE FILE
statement. The END-DELETE phrase is allowed even when not necessary. For additional
information on scope terminators such as END-DELETE, see Scope of Statements (on
page 31), Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

DELETE FILE Statement Examples

 DELETE FILE TEMP-FILE-1 TEMP-FILE-2.

 DELETE FILE OLD-TRANSACTION-FILE END-DELETE.

DISABLE Statement
The DISABLE statement notifies the Message Control System (MCS) to inhibit data transfer
between specified output queues and destinations for output, between specified sources and
input queues for input or between the program and one specified source or destination for
input-output.

cd-name-1 is defined below for each phrase.

identifier-1 must refer to a data item of category alphanumeric.

literal-1 must be a nonnumeric literal.

The DISABLE statement provides a logical disconnection between the MCS and the specified
sources or destinations. When this logical disconnection is already in existence, or is to be
handled by some other means external to this program, the DISABLE statement is not
required in this program. No action is taken when a DISABLE statement is executed which
specifies a source or destination that is already disconnected, except that the value in the
status key data item indicates this condition. The logical path for the transfer of data between
the object programs and the MCS is not affected by the DISABLE statement.

The MCS ensures that the execution of a DISABLE statement causes the logical
disconnection at the earliest time the source or destination is inactive. The execution of the
DISABLE statement never causes the remaining portion of the message to be terminated
during transmission to or from a terminal.

A DISABLE statement that lacks an INPUT, OUTPUT, I-O or TERMINAL keyword is
treated according to the format of the description of the cd-name:

• A DISABLE statement that refers to an INPUT cd-name and does not specify the INPUT
keyword is treated as if the INPUT clause without the keyword TERMINAL were
specified.

[]

literal-1
-1identifiercd-name-1 KEYWITH

TERMINAL
OUTPUT

TERMINALO-I
TERMINALINPUT

DISABLE

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 271

• A DISABLE statement that refers to an OUTPUT cd-name and does not specify the
OUTPUT keyword is treated as if the OUTPUT clause were specified.

• A DISABLE statement that refers to an I-O cd-name and does not specify the I-O
keyword is treated as if the I-O TERMINAL clause were specified.

INPUT Phrase

cd-name-1 must reference an input CD when the INPUT phrase is specified.

When the INPUT phrase with the optional word TERMINAL is specified, the logical paths
between the source and all of its associated queues and subqueues are deactivated. Only the
contents of the data item referenced by data-name-7 (SYMBOLIC SOURCE) of the area
referenced by cd-name-1 are meaningful.

When the INPUT phrase without the optional word TERMINAL is specified, the logical paths
for all of the enabled sources associated with the queues and subqueues specified by
the contents of data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC
SUB-QUEUE-3) of the area referenced by cd-name-1 are deactivated.

I-O TERMINAL Phrase

cd-name-1 must reference an input-output CD when the I-O TERMINAL phrase is specified.

When the I-O TERMINAL phrase is specified, the logical path between the source and the
program is deactivated. The source is defined by the contents of the data item referenced by
data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name-1.

OUTPUT Phrase

cd-name-1 must reference an output CD when the OUTPUT phrase is specified.

When the OUTPUT phrase is specified, the logical paths for all destinations, specified by the
contents of the data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the
area referenced by cd-name-1, are deactivated.

TERMINAL Phrase

cd-name-1 must reference either an input or an input-output CD. If cd-name-1 refers to an
input CD, the DISABLE statement is treated as if it specified the INPUT TERMINAL phrase;
if cd-name-1 refers to an I-O CD, the DISABLE statement is treated as if it specified the I-O
TERMINAL phrase.

[]TERMINALINPUT

TERMINALO-I

OUTPUT

TERMINAL

Chapter 6: Procedure Division Statements

272 RM/COBOL Language Reference Manual

WITH KEY Phrase

In the WITH KEY phrase, literal-1 or the contents of the data item referenced by identifier-1
are compared with a password built into the system. The DISABLE statement is honored
only if literal-1 or the contents of the data item referenced by identifier-1 match the system
password. When literal or the contents of the data item referenced by identifier-1 do not
match the system password, the value of the STATUS KEY item in the area referenced by
cd-name-1 is updated.

If the WITH KEY phrase is omitted, the DISABLE statement is honored only if a password is
not required by the system.

DISABLE Statement Examples

 DISABLE INPUT INPUT-COM.

 DISABLE OUTPUT COM-LINE-1 WITH KEY COM-PASSWORD.

DISPLAY . . . UPON Statement
The DISPLAY . . . UPON statement causes individual data items to be displayed on an
appropriate hardware device.

Format 1: Display Upon System-Name

The DISPLAY statement transfers the contents of each sending operand, identifier-1 or
literal-1 to the hardware device in the order listed.

In a Format 1 DISPLAY statement, the contents of the data item referred to by identifier-1 or
the value of literal-1 is transmitted to the standard output device. The presence of the UPON
phrase may affect which output device is used. If mnemonic-name-3 is used in the UPON
phrase, it must have been defined in the SPECIAL-NAMES paragraph of the Environment
Division with the low-volume-I-O-name-1 IS mnemonic-name-3 clause. The associated
low-volume-I-O-name-1 must be CONSOLE or SYSOUT.

The size of a data transfer is determined at program execution time; for details, see the
description of the B Runtime Command Option in Chapter 7: Running of the RM/COBOL
User’s Guide. If the size of the data item being transferred is not the same as that determined,
one of the following applies:

1. If the size of the data item being transferred exceeds the determined size, the data
beginning with the leftmost character is displayed aligned to the left on the terminal
screen for a length of the determined size, and then this rule is reapplied to the remaining
characters to the right until all the data has been transferred.

literal-1
-1identifierKEYWITH

[]ADVANCINGNOWITH

UPONDISPLAY

1-I-O-name-low-volume
ame-3mnemonic-n

literal-1
-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 273

2. If the size of the data item being transferred is less than the determined size, the
transferred data is displayed aligned to the left on the terminal screen.

When the DISPLAY statement contains more than one operand, the size of the sending item
is the sum of the sizes of the operands, and the values of the operands are transferred in the
sequence in which the operands are encountered without modifying the positioning of the
cursor between the successive operands.

If the WITH NO ADVANCING phrase is not specified, the positioning of the standard output
device is reset to the leftmost position of the next line following the transfer of the last
operand of the DISPLAY statement.

If the WITH NO ADVANCING phrase is specified, the standard output device remains
positioned at the character position immediately following the last character of the last
operand displayed.

DISPLAY . . . UPON CONSOLE is treated as if CONSOLE IS CONSOLE was specified in
the SPECIAL-NAMES paragraph if CONSOLE has not been otherwise defined.

DISPLAY . . . UPON SYSOUT is treated as if SYSOUT IS SYSOUT was specified in the
SPECIAL-NAMES paragraph if SYSOUT has not been otherwise defined.

DISPLAY . . . UPON Statement Examples

 DISPLAY "[" PROMPT-STRING "] " UPON SYSTEM-OUTPUT
 WITH NO ADVANCING.

 DISPLAY OPERATOR-MESSAGE UPON CONSOLE.

Chapter 6: Procedure Division Statements

274 RM/COBOL Language Reference Manual

DISPLAY Statement (Terminal I-O)
A terminal I-O DISPLAY statement causes individual data items to be displayed on the
terminal screen. DISPLAY statement phrases allow the specification of the position, form,
and format of the displayed data.

Format 2: Display Terminal I-O

The DISPLAY statement transfers the contents of each sending operand, identifier-1 or
literal-1 to the terminal screen in the order listed.

If a figurative constant is specified as one of the sending operands, only a single occurrence of
the figurative constant is displayed, except as specified in the rules for the SIZE Phrase (see
page 279).

identifier-2, identifier-3, identifier-5, and identifier-6 must be described as integer numeric
data items. literal-2, literal-3, literal-5, and literal-6 must be nonnegative integer numeric
literals.

identifier-4 must be a nonnumeric data item. literal-4 must be a nonnumeric literal.

identifier-7 (AT) must refer to an unsigned numeric integer display data item of four or six
characters in length. literal-7 (AT) must be an unsigned numeric integer literal of four or six
characters in length.

literal-6
-6identifier

literal-7
-7identifier

literal-3
-3identifier

literal-5
-5identifier

literal-4
-4identifier

literal-2
-2identifier

literal-1
-1identifier

SIZE

VIDEO-REVERSE
REVERSED
REVERSE

BLOCKISMODE

AT

POSITION
COL
COLUMN

LINE

AT

LOWLIGHT
LOW
HIGHLIGHT
HIGH

EOS
EOL

ERASE

CONVERT

CONTROL

BLINK
BELL
BEEP

WITHUNITDISPLAY

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 275

Several terms are used to describe the detailed function of each phrase in a Format 2
DISPLAY statement:

1. The term “output field” describes a conceptual data item containing the data transmitted
to the terminal and displayed on the terminal screen. The size of this data item is
determined according to the rules described below (see also the discussion of the SIZE
Phrase on page 279), and the type of this data item is alphanumeric.

2. The term “sending item” is synonymous with the data item identifier-1 or literal-1.

3. The term “screen field” applies to the physical field presented on the screen itself.

Table 30 shows the relationships of the various Format 2 DISPLAY statement phrases to the
characteristics of the output field and the screen field subject to control by the program.

Table 30: DISPLAY Statement Phrases for Output and Screen Fields

DISPLAY Statement Phrases for Output and Screen Fields

Characteristic Phrases

Screen field position LINE, POSITION, ERASE, SIZE, UNIT, CONTROL

Screen field size identifier-1, CONVERT, SIZE, CONTROL

Visual attributes ERASE, HIGH, LOW, BLINK, REVERSE, CONTROL

Audio attribute BEEP, CONTROL

Output conversion CONVERT, CONTROL

Note that the CONTROL phrase may be used in many instances to allow dynamic (that is,
runtime as opposed to compile time) specification of characteristics.

Features that require support of the host operating system or terminal hardware may not be
supported in all circumstances. Unsupported features will compile correctly, but will be
ignored at runtime. For specific details on each implementation environment, see the
“Terminal Input and Output on UNIX” and “Terminal Input and Output on Windows”
sections in Chapters 2 and 3, respectively, of the RM/COBOL User’s Guide. Also note that
some phrases may require that character positions on the screen between fields be reserved for
attribute characters (typically, to support the HIGH, LOW, BLINK, REVERSE, ERASE EOL
and ERASE EOS phrases). It is the programmer’s responsibility to allow for attribute
characters by not juxtaposing fields that may require them. For more information, see
“ACCEPT and DISPLAY Phrases” in Chapter 8: RM/COBOL Features of the RM/COBOL
User's Guide.

The phrases following a sending operand apply only to that operand. When the DISPLAY
statement contains multiple sending operands and any of the phrases are omitted for a
particular operand, the defaults described below for that phrase are applied to that operand.

BEEP Phrase

BELL is a synonym for BEEP.

The presence of the BEEP phrase in a DISPLAY statement causes the audio alarm signal to
occur prior to the display of the data. If the BEEP phrase is omitted, no signal is given.

BELL
BEEP

Chapter 6: Procedure Division Statements

276 RM/COBOL Language Reference Manual

BLINK Phrase

The presence of the BLINK phrase causes the data to be displayed in a blinking mode. If the
BLINK phrase is not specified, the data is displayed in a nonblinking mode.

CONTROL Phrase

The value of identifier-4 or literal-4 in the CONTROL phrase is used to specify a dynamic
option list. The value must be a character-string consisting of a series of keywords delimited
by commas; some keywords allow assignment of a value by following the keyword with an
equal sign and the value. Blanks are ignored in the character-string. Lowercase letters are
treated as uppercase letters within keywords. Keywords specified override corresponding
static options specified as phrases for the same sending item. Keywords may be specified in
any order. Keywords, which specify options that do not apply to the statement, are ignored.

The keywords that affect a DISPLAY statement are BEEP, BLINK, CONVERT, ERASE,
ERASE EOL, ERASE EOS, HIGH, LOW, NO BEEP, NO BLINK, NO CONVERT,
NO ERASE, NO REVERSE, NO UNDERLINE, REVERSE and UNDERLINE. The
meanings of these keywords when they appear in the value of the CONTROL phrase
operand are the same as the corresponding phrases which may be written as static options of
the DISPLAY statement, with the addition of the negative forms to allow suppression of
statically declared options. The keyword UNDERLINE is an exception. It is not recognized
as a static option, but it may be used in the value of the CONTROL phrase operand. When
specified there, UNDERLINE causes the field on the screen to be shown in underline mode,
provided the terminal supports that mode. Additional keywords may be supported in
environments that have device-dependent functions (for example, color control); see
“CONTROL Phrase” in Chapter 8: RM/COBOL Features of the RM/COBOL User’s Guide
for the specific implementation.

The keywords are grouped by function such that only the rightmost appearance in the control
value of a keyword from a functional group actually affects the screen field. The groupings
are as follows:

1. Erasure: ERASE, ERASE EOL, ERASE EOS, NO ERASE

2. Alarm: BEEP, NO BEEP

3. Intensity: HIGH, LOW, OFF

4. Blinking: BLINK, NO BLINK

5. Video: REVERSE, NO REVERSE

6. Output data conversion: CONVERT, NO CONVERT

7. Underscoring: UNDERLINE

CONVERT Phrase

BLINK

literal-4
-4identifierCONTROL

CONVERT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 277

The presence of the CONVERT phrase causes the contents of the sending item to be
converted before being moved to the output field and displayed.

If the sending item is numeric or numeric edited and CONVERT is specified, the value of the
sending item is converted from its internal form into display digits, which are moved to the
output field with leading zero digits removed. The display digits are left justified in the
output field, with a leading, separate minus sign provided if the value is negative and an
explicit decimal point provided if the sending item is noninteger. The representation of this
explicit decimal point is a period, except that, if the DECIMAL-POINT IS COMMA clause is
specified in the source program, a comma is used instead. Unused character positions to the
right of the converted number in the output field are space filled. If the SIZE phrase specifies
a value too small for the converted number, the string resulting from the conversion is
truncated on the right.

If the sending item is nonnumeric, or if the CONVERT phrase is not specified, the sending
item is treated as an alphanumeric item and the contents of the sending item are moved to the
output field according to the rules of a simple alphanumeric move (that is, left justified, with
space fill to the right).

ERASE Phrase

The presence of the ERASE phrase without either of the reserved words EOL or EOS causes
the entire screen of the terminal to be erased. The current line and current position are set
to 1.

The presence of the ERASE EOL phrase causes the portion of the line containing the leftmost
character of the screen field to be erased from the leftmost character of the screen field to the
rightmost character of that line.

The presence of the ERASE EOS phrase causes the portion of the screen to be erased from
the leftmost character of the screen field to the rightmost character of the bottom line of
the screen.

In all three cases above, erasure occurs before any data is displayed in the screen field.

When the ERASE phrase is not specified, no erasure occurs before displaying the data. The
displayed data will replace any previous contents of the screen field and the remainder of the
screen will be undisturbed.

HIGH and LOW Phrases

HIGHLIGHT is a synonym for HIGH. LOWLIGHT is a synonym for LOW.

The presence of the HIGH or LOW phrase causes the data to be displayed at the specified
intensity. When HIGH or LOW is not specified, the default intensity is HIGH.

EOS
EOLERASE

LOWLIGHT
LOW
HIGHLIGHT
HIGH

Chapter 6: Procedure Division Statements

278 RM/COBOL Language Reference Manual

LINE and POSITION Phrases

COLUMN and COL are synonyms for POSITION.

The screen field is positioned on the terminal screen by specifying the line and position (that
is, the character position within the line) of the leftmost character of the screen field. The top
line of the terminal screen is line 1, the line below line 1 is line 2, and so forth. The rightmost
character position of a line is immediately followed by the leftmost character position
(position 1) of the line below; a screen field may overlap line boundaries on the terminal
screen. The leftmost character of the screen field refers to the leftmost character position of
that portion of the screen field that is on the topmost line containing a portion of the screen
field. Similarly, the rightmost character position of the screen field refers to the rightmost
character position of that portion of the screen field that is on the bottommost line containing
a portion of the screen field.

The current line and current position prior to the DISPLAY operation for each identifier-1
may affect the position of the screen field as described in the rules below. At the beginning of
a run unit, the current line is the last (bottommost) line and the current position is the leftmost
(position 1) of that line. The current line and current position are changed by each Format 3
ACCEPT and Format 2 DISPLAY operation to be the line and position of the character
immediately succeeding the rightmost character of the screen field. If the ERASE phrase
(without EOL or EOS) is specified for the same identifier-1, the current line and current
position are both set to 1.

The value of identifier-5 or literal-5 in the LINE phrase specifies the line value for the
leftmost character of the screen field. The value of identifier-3 or literal-3 in the POSITION
phrase specifies the position value for the leftmost character of the screen field.

If the AT identifier-7/literal-7 phrase is specified, then the first half, that is, the first two or
three digits, of the operand specifies the line value and the second half specifies the column
value. When this format of the phrase is used, it is as if both the LINE and POSITION
phrases have been specified.

Determining Line and Position
If the POSITION phrase is omitted, the position value is set to 1 for the first identifier-1 of a
Format 2 DISPLAY statement; this value is also set to 1 if a UNIT phrase is specified for the
same identifier-1. It is set to zero in all other cases.

If the line value is zero, or if the LINE phrase is omitted, the line value is set according to the
following rules:

1. If an ERASE phrase (without EOL or EOS) is specified for the same identifier-1, the line
value is set to 1.

literal-7
-7identifier

literal-3
-3identifier

literal-5
-5identifier

AT

POSITION
COL
COLUMN

LINE

AT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 279

2. If the position value is not equal to zero, the line value is set to the current line plus 1.

3. If the position value is equal to zero, the line value is set to the current line.

If the position value is greater than the maximum number of characters within a line, the
position value is reduced by the maximum number of characters within a line and the line
value is incremented by 1. This process is repeated until the position value is not greater than
the maximum number of characters within a line.

If the position value is equal to zero, the position value is set to the current position.

If the line value exceeds the number of lines on the screen, the contents of the screen are
scrolled up one line and the line value is set to the number of lines on the screen.

If the line of the rightmost character of the screen field exceeds the number of lines on the
screen, the contents of the screen are scrolled up the amount of the excess and the line value is
reduced by the amount of the excess.

The resulting line value and position value specify the position of the leftmost character of the
screen field.

MODE IS BLOCK Phrase

The presence of the MODE IS BLOCK phrase in a DISPLAY statement causes the display of
a group data item as a single field. This is the normal behavior of RM/COBOL, so if the
phrase is omitted, a group is still displayed as a single field. The phrase is allowed for
compatibility with other dialects of COBOL.

REVERSE Phrase

REVERSED and REVERSE-VIDEO are synonyms for REVERSE.

The presence of the REVERSE phrase causes the data to be displayed in a reverse video
mode. If the REVERSE phrase is not specified, the data is displayed in normal video mode.

SIZE Phrase

The value of identifier-6 or literal-6 in the SIZE phrase specifies the size of the screen field
and the output field.

If the SIZE phrase is not present or a value of zero is specified, the size of identifier-1 or
literal-1 is used. If identifier-1 or literal-1 is numeric or numeric edited and the CONVERT
phrase is specified for the same identifier-1 or literal-1, the size is considered to be the
number of digits (9’s and P’s) defined in the PICTURE character-string or literal plus one if
the item is signed and plus one if the item is noninteger.

BLOCKISMODE

VIDEO-REVERSE
REVERSED
REVERSE

literal-6
-6identifierSIZE

Chapter 6: Procedure Division Statements

280 RM/COBOL Language Reference Manual

If literal-1 is a figurative constant and the SIZE phrase is specified, then the figurative
constant is repeated to match the specified size before being displayed.

UNIT Phrase

The UNIT phrase, if specified, must be written first. The other phrases may be written in
any order.

The value of identifier-2 or literal-2 in the UNIT phrase specifies the terminal upon which
the data is to be displayed. If the UNIT phrase is omitted, the terminal that started the run unit
is used.

The UNIT phrase may be ignored by some runtime implementations except in its effect on the
default value of the POSITION phrase (described previously). This situation will occur in all
systems that do not allow the use of terminals other than the one associated with the run unit
execution.

DISPLAY Statement (Terminal I-O) Examples

 DISPLAY "Flight arriving at gate:", LINE FLT-LN,
 POSITION 1, ERASE; GATE-NUMBER, HIGH, BLINK.

 DISPLAY "Enter job code: " LINE 12 COLUMN 5.

 DISPLAY MENU-HEADER LINE 1 ERASE HIGH.

 DISPLAY ZEROES SIZE 5. *> displays "00000"

 DISPLAY QUOTE. *> displays """" (one quote character)

 DISPLAY REPORT-LINE CONTROL "HIGH, ERASE EOL".

 DISPLAY display-data (ix),
 LINE display-line (ix),
 COL display-column (ix),
 SIZE display-size (ix),
 CONTROL display-control (ix).

DISPLAY Screen-Name Statement
The DISPLAY Screen-Name statement moves data onto the terminal screen from literals or
from data items defined in the Data Division. The organization, placement and visual
attributes of the fields on the screen are defined in the Screen Section of the Data Division.

literal-2
-2identifierUNIT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 281

Format 3: Display Screen-Name

COL is a synonym for COLUMN.

A DISPLAY statement that specifies multiple screen names is equivalent to a series of
DISPLAY statements, one for each of the specified screen names.

Each screen-name-1 must be defined as an elementary or group entry in the Screen Section of
the Data Division. If screen-name-1 is an elementary item, it is treated as if it were a group
consisting of the single elementary item to which it refers. identifier-1 and identifier-2, when
used, must refer to elementary numeric integer data items.

If the LINE phrase is specified, the value of integer-1 or the current value of the data item
referred to by identifier-1 is used as an increment to each of the explicit or implicit LINE
specifications within screen-name, thus shifting the screen downward the specified number
of lines.

A similar rule applies if the COLUMN phrase is specified: the value of integer-2 or the
current value of the data item referred to by identifier-2 is used as an increment to each of the
explicit or implicit COLUMN specifications within screen-name-1, thus shifting the screen to
the right the specified number of columns.

If the AT identifier-3/integer-3 phrase is specified, then the first half, that is, the first two or
three digits, of the operand specifies the line value and the second half specifies the column
value. When this format of the phrase is used, it is as if both the LINE and COLUMN phrases
have been specified.

Each elementary item subordinate to screen-name-1 is acted on in response to a DISPLAY
statement. Areas of the screen not specifically changed by fields within screen-name-1
remain unchanged. All the attributes meaningful for output operations are effective. This
excludes AUTO, FULL, REQUIRED and SECURE. For fields defined with a VALUE
clause, the literal is moved to the screen field. For fields defined with a PICTURE clause
that has a FROM or USING option, the value of the associated item is moved to the screen
field item and to the retained value. For fields defined with a PICTURE clause that has the
TO option and no FROM option, the screen field and the retained value are filled with
underline characters.

Numeric data items are always displayed with output conversion. (For an explanation of
output conversion, see the discussion of the CONVERT Phrase on page 276.)

The appearance of the screen is undefined and unpredictable when LINE or COLUMN values
are specified such that screen fields extend beyond the boundaries of the physical screen,
either horizontally or vertically.

DISPLAY Screen-Name Statement Examples

 DISPLAY INVOICE-FORM LINE 10 COLUMN 5.

integer-3
-3identifier

integer-2
-2identifier

integer-1
-1identifier

e-1screen-nam

AT

NUMBERCOL
COLUMN

NUMBERLINE

AT
DISPLAY

Chapter 6: Procedure Division Statements

282 RM/COBOL Language Reference Manual

 DISPLAY EMPLOYEE-RECORD AT LINE 9.

 DISPLAY EOB-SCREEN AT COL EOB-COL LINE EOB-LINE.

DIVIDE Statement
The DIVIDE statement divides one numeric data item into another and stores the quotient
and remainder.

Format 1: Divide…Into

Format 2: Divide…Into…Giving

Format 3: Divide…By…Giving

[]{ }

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDINTODIVIDE

-2-statementimperative

-1-statementimperative

-2identifierliteral-1
-1identifier

[]{ }

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

INTODIVIDE

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

[]{ }

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

BYDIVIDE

-2-statementimperative

-1-statementimperative

-3identifier

literal-1
-1identifier

literal-2
-2identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 283

Format 4: Divide…Into…Giving…Remainder

Format 5: Divide…By…Giving…Remainder

In Format 1, the value of identifier-1 or literal-1 is divided into the value of each identifier-2.
The value of each dividend (identifier-2) is replaced by this quotient.

In Format 2, the value of identifier-1 or literal-1 is divided into the value of identifier-2 or
literal-2 and the result is stored in each identifier-3.

In Format 3, the value of identifier-2 or literal-2 is divided by the value of identifier-1 or
literal-1 and the result is stored in each identifier-3.

In Format 4, the value of identifier-1 or literal-1 is divided into the value of identifier-2 or
literal-2; the result is stored in identifier-3, and the remainder is stored in identifier-4.

In Format 5, the value of identifier-2 or literal-2 is divided by the value of identifier-1 or
literal-1; the result is stored in identifier-3, and the remainder is stored in identifier-4.

Each identifier must refer to an elementary numeric item, except that any identifier associated
with the GIVING phrase may refer to either an elementary numeric item or an elementary
numeric edited item.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the DIVIDE statement that are
common to other arithmetic statements can be found in the discussion of common rules (on
page 182). Note, in particular, the discussions of the ROUNDED phrase, the size error
condition, overlapping operands, modes of operation, composite size, and incompatible data.

The END-DIVIDE phrase delimits the scope of the DIVIDE statement. This phrase is not
necessary unless the DIVIDE statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a DIVIDE statement. The END-DIVIDE
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-DIVIDE, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

[]

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

REMAINDERROUNDEDGIVING

INTODIVIDE

-2-statementimperative

-1-statementimperative

-4identifier-3identifier

literal-2
-2identifier

literal-1
-1identifier

[]

[]

[]

[]DIVIDE-END

ERRORSIZEONNOT

ERRORSIZEON

REMAINDERROUNDEDGIVING

BYDIVIDE

-2-statementimperative

-1-statementimperative

-4identifier-3identifier

literal-1
-1identifier

literal-2
-2identifier

Chapter 6: Procedure Division Statements

284 RM/COBOL Language Reference Manual

REMAINDER Phrase

Formats 4 and 5 are used when a remainder from the division operation is desired, namely
identifier-4. The remainder is defined as the result of subtracting the product of the quotient
(identifier-3) and the divisor from the dividend. If identifier-3 is defined as a numeric edited
item, the quotient used to calculate the remainder is an intermediate field that contains the
unedited quotient. If ROUNDED is used, the quotient used to calculate the remainder is an
intermediate field which contains the quotient of the DIVIDE statement, truncated rather than
rounded. The intermediate field used in these calculations has the same number of digit
positions and the same scale as identifier-3.

In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined by
the calculation described above.

Appropriate decimal alignment and truncation (not rounding) is performed for the content of
the data item referenced by identifier-4, as needed. When the composite of the quotient and
dividend operands contains more than 19 digits, the accuracy of the REMAINDER data item
may be greater than that obtainable by the use of a COMPUTE statement which duplicates the
calculation described above.

When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules pertain:

1. If the size error condition occurs on the quotient, no remainder calculation is meaningful.
Thus, the contents of the data items referenced by both identifier-3 and identifier-4
remain unchanged.

2. If the size error condition occurs on the remainder, the contents of the data item
referenced by identifier-4 remain unchanged.

It is the user’s responsibility to determine which situation has actually occurred.

DIVIDE Statement Examples

 DIVIDE 10 INTO TOTAL-WORK-LOAD. *> 10 FTEs

 DIVIDE 6 INTO TOTAL-WORK-LOAD *> 6 FTEs
 GIVING AVERAGE-WORK-LOAD.

 DIVIDE TOTAL-WORK-LOAD BY 2.5 *> 2.5 FTEs
 GIVING AVERAGE-WORK-LOAD
 ON SIZE ERROR PERFORM OVERFLOW-ROUTINE
 END-DIVIDE.

 DIVIDE DIVISOR-1 INTO DIVIDEND-1
 GIVING QUOTIENT-1 ROUNDED
 REMAINDER REMAINDER-1.

 DIVIDE DIVIDEND-1 BY DIVISOR-1
 GIVING QUOTIENT-1
 REMAINDER REMAINDER-1
 ON SIZE ERROR MOVE "E" TO SIZE-ERROR-FLAG
 END-DIVIDE.

[] -4identifier-3identifier REMAINDERROUNDEDGIVING

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 285

ENABLE Statement
The ENABLE statement notifies the Message Control System (MCS) to allow data transfer
between specified output queues and destinations for output, between specified sources and
input queues for input or between the program and one specified source or destination for
input-output.

cd-name-1 is defined below for each phrase.

identifier-1 must refer to a data item of category alphanumeric.

literal-1 must be a nonnumeric literal.

The ENABLE statement provides a logical connection between the MCS and the specified
sources or destinations. When this logical connection is already in existence, or is to be
handled by a means external to this program, the ENABLE statement is not required in this
program. No action is taken when an ENABLE statement is executed which specifies a
source or destination that is already connected, except that the value in the status key data
item indicates this condition. The logical path for the transfer of data between the object
programs and the MCS is not affected by the ENABLE statement.

An ENABLE statement that lacks an INPUT, OUTPUT, I-O or TERMINAL keyword is
treated according to the format of the description of the cd-name:

• An ENABLE statement that refers to an INPUT cd-name and does not specify the INPUT
keyword is treated as if the INPUT phrase without the keyword TERMINAL were
specified.

• An ENABLE statement that refers to an OUTPUT cd-name and does not specify the
OUTPUT keyword is treated as if the OUTPUT phrase were specified.

• An ENABLE statement that refers to an I-O cd-name and does not specify the I-O
keyword is treated as if the I-O TERMINAL phrase were specified.

INPUT Phrase

cd-name-1 must reference an input CD when the INPUT phrase is specified.

When the INPUT phrase with the optional word TERMINAL is specified, the logical paths
between the source and all of its associated queues and subqueues are activated. Only the
contents of the data item referenced by data-name-7 (SYMBOLIC SOURCE) of the area
referenced by cd-name-1 are meaningful to the MCS.

When the INPUT phrase without the optional word TERMINAL is specified, the logical paths
for all of the sources associated with the queues and subqueues specified by the contents of
data-name-1 (SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of
the area referenced by cd-name-1 are activated.

[]

literal-1
-1identifier

cd-name-1 KEYWITH

TERMINAL
OUTPUT

TERMINALO-I
TERMINALINPUT

ENABLE

[]TERMINALINPUT

Chapter 6: Procedure Division Statements

286 RM/COBOL Language Reference Manual

I-O TERMINAL Phrase

cd-name-1 must reference an input-output CD when the I-O TERMINAL phrase is specified.

When the I-O TERMINAL phrase is specified, the logical path between the source and the
program is activated. The source is defined by the contents of the data item referenced by
data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name-1.

OUTPUT Phrase

cd-name-1 must reference an output CD when the OUTPUT phrase is specified.

When the OUTPUT phrase is specified, the logical paths for all destinations, specified by the
contents of the data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the
area referenced by cd-name-1 are activated.

TERMINAL Phrase

cd-name-1 must reference either an input or an input-output CD. If cd-name-1 refers to an
input CD, the ENABLE statement is treated as if it specified the INPUT TERMINAL phrase;
if cd-name-1 refers to an I-O CD, the ENABLE statement is treated as if it specified the I-O
TERMINAL phrase.

WITH KEY Phrase

In the WITH KEY phrase, literal-1 or the contents of the data item referenced by identifier-1
are compared with a password built into the system. The ENABLE statement is honored
only if literal-1 or the contents of the data item referenced by identifier-1 match the system
password. When literal-1 or the contents of the data item referenced by identifier-1 do
not match the system password, the value of the status key item in the area referenced by
cd-name-1 is updated.

If the WITH KEY phrase is omitted, the ENABLE statement is honored only if a password is
not required by the system.

ENABLE Statement Examples

 ENABLE INPUT TERMINAL COM-PORT.

 ENABLE OUTPUT COM-LINE-1 WITH KEY COM-PASSWORD.

TERMINALO-I

OUTPUT

TERMINAL

literal-1
-1identifierKEYWITH

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 287

ENTER Statement
The ENTER statement provides a means of allowing the use of more than one language in the
same program. In RM/COBOL, no other source language is allowed in the source program.

language-name-1 may be any COBOL word.

routine-name-1 is a COBOL word and may be referred to only in an ENTER sentence.

The ENTER statement must appear only in a sentence by itself.

The sentence ENTER COBOL must follow the last statement of the other language in order to
indicate to the compiler where a return to COBOL source language takes place. It must be
followed by a separator period.

The statements of the other language are executed in the object program as if they had been
compiled into the object program following the ENTER statement.

No other languages may appear in a COBOL source program following an ENTER statement.

routine-name-1 indicates the portion of other-language coding to be executed at this point in
the procedure sequence when the entered language cannot be written in-line. If the other
language statements are written in-line, routine-name-1 is not used.

The ENTER statement is accepted as commentary for compatibility with other COBOL
implementations. The CALL statement may be used to execute object programs from other
language processors.

ENTER Statement Examples

 ENTER LINKAGE.
 CALL "SUBROUTINE" USING ARGUMENT-GROUP.
 ENTER COBOL.

 ENTER FORTRAN SUBROUTINE-1.

[]me-1routine-naame-1language-nENTER

Chapter 6: Procedure Division Statements

288 RM/COBOL Language Reference Manual

EVALUATE Statement
The EVALUATE statement describes a multi-branch, multi-join structure. It can cause
multiple conditions to be evaluated. The subsequent action of the object program depends on
the results of these evaluations.

The operands or the words TRUE and FALSE which appear before the first WHEN phrase of
the EVALUATE statement are referred to individually as selection subjects and collectively,
for all those specified, as the set of selection subjects.

The operands or the words TRUE, FALSE and ANY which appear in a WHEN phrase of an
EVALUATE statement are referred to individually as selection objects and collectively, for
all those specified in a single WHEN phrase, as the set of selection objects.

The words THROUGH and THRU are synonymous.

Two operands connected by a THROUGH phrase must be of the same class. The two
operands thus connected constitute a single selection object.

The number of selection objects within each set of selection objects must be equal to the
number of selection subjects.

[]

[]

[]

[]EVALUATE-END

OTHERWHEN

THRU
THROUGHNOT

FALSE
TRUE

ANY

ALSO

THRU
THROUGHNOT

FALSE
TRUE

ANY

WHEN

FALSE
TRUE

ALSO

FALSE
TRUE

EVALUATE

-2-statementimperative

-1-statementimperative

n-4-expressioarithmetic
literal-6

-6identifier

n-3-expressioarithmetic
literal-5

-5identifier

2condition-

n-2-expressioarithmetic
literal-4

-4identifier

n-1-expressioarithmetic
literal-3

-3identifier

1condition-

-2expression
literal-2

-2identifier

-1expression
literal-1

-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 289

Each selection object within a set of selection objects must correspond to the selection subject
having the same ordinal position within the set of selection subjects according to the
following rules:

1. Identifiers, literals or arithmetic expressions appearing within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects.

2. condition or the word TRUE or FALSE appearing as a selection object must correspond
to a conditional expression or the word TRUE or FALSE in the set of selection subjects.

3. The word ANY may correspond to a selection subject of any type.

The END-EVALUATE phrase delimits the scope of the EVALUATE statement. This phrase
is not necessary unless the EVALUATE statement is specified in the conditional phrase of
another statement. Even in that case, the phrase is not necessary unless this statement
specifies a conditional phrase or that other statement is also an EVALUATE statement. The
END-EVALUATE phrase is allowed even when not necessary. For additional information on
scope terminators such as END-EVALUATE, see Scope of Statements (on page 31),
Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

General Rules for the EVALUATE Statement
The general rules that apply to the EVALUATE statement are as follows:

1. The execution of the EVALUATE statement operates as if each selection subject and
selection object were evaluated and assigned a numeric or nonnumeric value, a range of
numeric or nonnumeric values, or a truth value. These values are determined as follows:

a. Any selection subject specified by identifier-1, identifier-2, and any selection object
specified by identifier-3, identifier-5 without either the NOT or the THROUGH
phrase, are assigned the value and class of the data item referenced by the identifier.

b. Any selection subject specified by literal-1, literal-2, and any selection object
specified by literal-3, literal-5 without either the NOT or the THROUGH phrase, are
assigned the value and class of the specified literal. If literal-3 is the figurative
constant ZERO, it is assigned the class of the corresponding selection subject.

c. Any selection subject in which arithmetic-expression-1, arithmetic-expression-2
is specified as an arithmetic expression and any selection object, without either
the NOT or the THROUGH phrase, in which arithmetic-expression-3,
arithmetic-expression-5 is specified, are assigned a numeric value according to
the rules for evaluating an arithmetic expression.

d. Any selection subject in which condition-1, condition-2 is specified as a conditional
expression and any selection object in which condition-3, condition-4 is specified,
are assigned a truth value according to the rules for evaluating conditional
expressions.

e. Any selection subject or any selection object specified by the word TRUE or FALSE
is assigned a truth value. The truth value “true” is assigned to those items specified
with the word TRUE, and the truth value “false” is assigned to those items specified
with the word FALSE.

f. Any selection object specified by the word ANY is not further evaluated.

g. If the THROUGH phrase is specified for a selection object, without the NOT phrase,
the range of values includes all permissible values of the selection subject that are
greater than or equal to the first operand and less than or equal to the second operand
according to the rules for comparison.

Chapter 6: Procedure Division Statements

290 RM/COBOL Language Reference Manual

h. If the NOT phrase is specified for a selection object, the values assigned to that item
are all permissible values of the selection subject not equal to the value, or not
included in the range of values, that would have been assigned to the item had the
NOT phrase not been specified.

2. The execution of the EVALUATE statement then proceeds as if the values assigned to
the selection subjects and selection objects were compared to determine if any WHEN
phrase satisfies the set of selection subjects. This comparison proceeds as follows:

a. Each selection object within the set of selection objects for the first WHEN phrase is
compared to the selection subject having the same ordinal position within the set of
selection subjects.

b. One of the following conditions must be satisfied if the comparison is to be satisfied:

1) If the items being compared are assigned numeric or nonnumeric values, or a
range of numeric or nonnumeric values, the comparison is satisfied if the value,
or one of the range of values, assigned to the selection object is equal to the
value assigned to the selection subject according to the rules for comparison.

2) If the items being compared are assigned truth values, the comparison is
satisfied if the items are assigned the identical truth value.

3) If the selection object being compared is specified by the word ANY, the
comparison is always satisfied regardless of the value of the selection subject.

c. If the above comparison is satisfied for every selection object within the set of
selection objects being compared, the WHEN phrase containing that set of selection
objects is selected as the one satisfying the set of selection subjects.

d. If the above comparison is not satisfied for one or more selection objects within the
set of selection objects being compared, that set of selection objects does not satisfy
the set of selection subjects.

e. This procedure is repeated for subsequent sets of selection objects, in the order of
their appearance in the source program, until either a WHEN phrase satisfying the
set of selection subjects is selected or until all sets of selection objects are exhausted.

3. After the comparison operation is completed, execution of the EVALUATE statement
proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first
imperative-statement-1 following the selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution
continues with imperative-statement-2.

c. The scope of execution of the EVALUATE statement is terminated when execution
reaches the end of imperative-statement-1 of the selected WHEN phrase or the end
of imperative-statement-2, or when no WHEN phrase is selected and no WHEN
OTHER phrase is specified.

EVALUATE Statement Examples

 EVALUATE OPERATION-TYPE
 WHEN TYPE-UPDATE PERFORM UPDATE-IT
 WHEN TYPE-DELETE PERFORM DELETE-IT
 WHEN TYPE-INSERT PERFORM INSERT-IT
 WHEN OTHER PERFORM BAD-OPERATION-TYPE
 END-EVALUATE.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 291

 EVALUATE DAY-VALUE ALSO LEVEL-VALUE
 WHEN 1 ALSO ANY PERFORM MONDAY-PROCESSING
 WHEN 2 THRU 4 ALSO "SUMMARY"
 PERFORM MIDWEEK-PROCESSING
 WHEN 2 ALSO "DETAILED" PERFORM TUESDAY-PROCESSING
 WHEN 3 ALSO "DETAILED" PERFORM WEDNESDAY-PROCESSING
 WHEN 4 ALSO "DETAILED" PERFORM THURSDAY-PROCESSING
 WHEN 5 ALSO ANY PERFORM FRIDAY-PROCESSING
 WHEN 6 ALSO ANY
 WHEN 7 ALSO ANY PERFORM WEEKEND-PROCESSING
 WHEN OTHER PERFORM BAD-DAY-OR-LEVEL
 END-EVALUATE.

 EVALUATE TRUE
 WHEN ANNUALLY AND YEAR-END
 PERFORM ANNUAL-UPDATE
 WHEN QUARTERLY AND QUARTER-END
 PERFORM QUARTER-UPDATE
 WHEN MONTHLY AND MONTH-END
 PERFORM MONTH-UPDATE
 END-EVALUATE.

EXIT Statement
The EXIT statement provides a common end point for a series of procedures. The EXIT
PROGRAM statement marks the logical end of a called program. The EXIT PERFORM
statement provides a means of exiting an in-line PERFORM (with or without returning to any
specified test). The EXIT PARAGRAPH or EXIT SECTION statements provide a means of
exiting a structured procedure without executing any of the following statements within a
procedure.

Format 1: Exit Paragraph

Format 2: Exit Program

Format 3: Exit In-Line Perform

Format 4: Exit Paragraph or Section

The Format 1 EXIT statement must appear in a sentence by itself, and that sentence must be
the only sentence in the paragraph.

EXIT

PROGRAMEXIT

[]CYCLEPERFORMEXIT

SECTION
PARAGRAPHEXIT

Chapter 6: Procedure Division Statements

292 RM/COBOL Language Reference Manual

If a Format 2, Format 3, or Format 4 EXIT statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the last statement in that sequence.

The Format 2 EXIT PROGRAM statement must not appear in a declarative procedure in
which the GLOBAL phrase is specified.

The Format 1 EXIT statement allows the user to assign a procedure-name to a given point in a
program. Such an EXIT statement has no other effect on the compilation or execution of the
program. The Format 1 EXIT statement, together with its paragraph-name, is equivalent to an
empty paragraph.

If the Format 2 EXIT PROGRAM statement is executed in a program that is not under the
control of a calling program, the EXIT PROGRAM statement causes execution of the
program to continue with the next executable statement.

The execution of a Format 2 EXIT PROGRAM statement in a called program, which does not
possess the initial attribute, causes execution to continue with the next executable statement
following the CALL statement in the calling program. The program state of the calling
program is not altered and is identical to that which existed at the time it executed the CALL
statement except that the contents of data items and the contents of data files shared between
the calling and called program may have been changed. The program state of the called
program is not altered except that the ends of the ranges of all PERFORM statements
executed by that called program are considered to have been reached.

Besides the actions specified in the preceding paragraph, the execution of an EXIT
PROGRAM statement in a called program, which possesses the initial attribute, is equivalent
also to executing a CANCEL statement referencing that program.

The Format 3 EXIT PERFORM statement may be specified only in an in-line PERFORM
statement.

The execution of a Format 3 EXIT PERFORM statement without the CYCLE phrase causes
control to be passed to an implicit CONTINUE statement immediately following the END-
PERFORM phrase that matches the most closely preceding, and as yet unterminated, in-line
PERFORM statement.

The execution of a Format 3 EXIT PERFORM statement with the CYCLE phrase causes
control to be passed to an implicit CONTINUE statement immediately preceding the
END-PERFORM phrase that matches the most closely preceding, and as yet unterminated,
in-line PERFORM statement.

The Format 4 EXIT statement with the PARAGRAPH phrase may be specified only in a
paragraph.

The execution of a Format 4 EXIT statement with the PARAGRAPH phrase causes control to
be passed to an implicit CONTINUE statement immediately following the last statement in
the current paragraph.

The Format 4 EXIT statement with the SECTION phrase may be specified only in a section.

The execution of a Format 4 EXIT statement with the SECTION phrase causes control to be
passed to an implicit CONTINUE statement within an implicit paragraph immediately
following the last statement in the current section.

Exit Statement Examples

 PERFORM WEEKEND-PROC THRU WEEKEND-PROC-EXIT.
 .
 .
 .
 WEEKEND-PROC.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 293

 .
 .
 .
 WEEKEND-PROC-CONT.
 .
 .
 .
 WEEKEND-PROC-EXIT.
 EXIT.

 IF RECORD-TYPE NOT = MY-RECORD-TYPE
 THEN
 MOVE 4096 TO RETURN-CODE
 EXIT PROGRAM
 END-IF.

GOBACK Statement
The GOBACK statement specifies the logical end of a called program.

The GOBACK statement is equivalent to the sequence:

EXIT PROGRAM.
STOP RUN.

The GOBACK statement must appear as the only statement, or as the last of a series of
imperative statements, in a sentence.

The GOBACK statement must not appear in a declarative procedure in which the GLOBAL
phrase is specified.

If control reaches a GOBACK statement while operating under the control of a CALL
statement, control returns to the point in the calling program immediately following the
CALL statement. For details, see the discussion of the Format 2 EXIT PROGRAM statement
in EXIT Statement (on page 291).

If no CALL statement is active and the GOBACK statement is executed in the main program,
control returns to the invoker (which may be the operating system and thus cause the end of
the run unit).

GOBACK Statement Examples

 GOBACK.

 IF RECORD-TYPE NOT = MY-RECORD-TYPE
 THEN
 MOVE 4096 TO RETURN-CODE
 GOBACK
 END-IF.

GOBACK

Chapter 6: Procedure Division Statements

294 RM/COBOL Language Reference Manual

GO TO Statement
The GO TO statement causes control to be transferred from one part of the Procedure
Division to another.

Format 1: Go To (Alterable)

Format 2: Go To (Non-Alterable)

Format 3: Go To…Depending On

A Format 1 GO TO statement can only appear in a single statement paragraph and can be
altered with an ALTER statement.

When a paragraph is referenced by an ALTER statement, that paragraph can consist only of a
paragraph header followed by a Format 1 GO TO statement.

If procedure-name-1 is not specified in Format 1, an ALTER statement, referring to the
paragraph containing this GO TO statement, must be executed prior to the execution of this
GO TO statement; otherwise, the run unit is terminated with an error message when the GO
TO statement is executed.

When a Format 1 or 2 GO TO statement is executed, control is transferred to
procedure-name-1 or to another procedure-name if the GO TO statement has been
modified by an ALTER statement.

If a Format 2 GO TO statement appears in a consecutive sequence of imperative statements
within a sentence, it must appear as the last statement in that sequence.

DEPENDING ON Phrase

When a Format 3 GO TO statement is executed, control is transferred to procedure-name-1
depending on the value of identifier-1 being 1, 2, . . ., n. If the value of identifier-1 is
anything other than the positive or unsigned integers 1, 2, . . ., n, no transfer occurs and
control passes to the next statement in the normal sequence for execution.

identifier-1 must refer to a numeric integer elementary data item.

GO TO Statement Examples

 IF STATE-1-UP
 ALTER STATE-1-SWITCH TO STATE-1-UP-PROC
 ELSE
 ALTER STATE-1-SWITCH TO STATE-1-DOWN-PROC.

[]name-1procedure-TOGO

name-1procedure-TOGO

{ } -1identifiername-1procedure- ONDEPENDINGTOGO

-1identifierONDEPENDING

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 295

 .
 .
 .
 STATE-1-SWITCH.
 GO TO.
 .
 .
 .
 STATE-1-UP-PROC.
 .
 .
 .
 STATE-1-DOWN-PROC.
 .
 .
 .

 GO TO STATE-1-EXIT-PROC.

 GO TO CHOICE-1, CHOICE-2, CHOICE-3
 DEPENDING ON USER-PICK.

IF Statement
The IF statement causes a specified condition to be evaluated. The subsequent action of the
object program depends on whether the value of the condition is true or false.

statement-1 and statement-2 each represent either an imperative statement or a conditional
statement optionally preceded by an imperative statement.

The scope of an IF statement is terminated by any of the following:

• An END-IF phrase at the same level of nesting.

• A separator period.

• If nested, by an ELSE phrase associated with an IF statement at a higher level of nesting.

• The next phrase of any statement in which the IF statement is contained.

When an IF statement is executed, the following transfers of control occur:

• If condition-1 is true, statement-1 is executed if specified. If statement-1 contains a
procedure branching or conditional statement, control is explicitly transferred in
accordance with the rules of that statement. If statement-1 does not contain a procedure
branching or conditional statement, the ELSE phrase, if specified, is ignored and control
passes to the end of the IF statement.

[]IF-END

SENTENCENEXTELSE

SENTENCENEXTTHENIF

2statement-

1statement-1condition-

Chapter 6: Procedure Division Statements

296 RM/COBOL Language Reference Manual

• If condition-1 is true and the NEXT SENTENCE phrase is specified instead of statement-
1, the ELSE phrase, if specified, is ignored and control passes to the next executable
sentence.

• If condition-1 is false, statement-1 or its surrogate NEXT SENTENCE is ignored, and
statement-2, if specified, is executed. If statement-2 contains a procedure branching or
conditional statement, control is explicitly transferred in accordance with the rules of that
statement; otherwise, upon the completion of statement-2 control passes to the end of the
IF statement. If the ELSE statement-2 phrase is not specified, statement-1 is ignored and
control passes to the end of the IF statement.

• If condition-1 is false, and the ELSE NEXT SENTENCE phrase is specified, statement-1
is ignored, if specified, and control passes to the next executable sentence.

Either statement-1 or statement-2 may contain an IF statement. When this occurs, the IF
statement is said to be nested.

IF statements within IF statements may be considered as paired IF and ELSE and END-IF
combinations, proceeding from left to right. Thus, any ELSE or END-IF encountered is
considered to apply to the most recent preceding IF that has not been already paired with an
ELSE or END-IF.

IF Statement Examples

 IF CHAR-STR IS ALPHABETIC
 THEN MOVE CHAR-STR TO ALPHA-STR;
 ELSE IF CHAR-STR IS NUMERIC
 THEN MOVE CHAR-STR TO NUM;
 ELSE NEXT SENTENCE.

 IF NUM = OLD-NUM GO TO RE-SET.

 IF ALPHA-STR NOT = "TEST"
 ADD 1 TO ERROR-CNT
 IF ERROR-CNT >= 20
 DISPLAY "Excessive errors."
 STOP RUN
 END-IF
 ELSE
 PERFORM TEST-PROCEDURE
 END-IF.

 IF NUM < UPPER-LIMIT, ADD 1 TO NUM.

 IF NUM IS LESS THAN UPPER-LIMIT
 THEN
 ADD 1 TO NUM
 ELSE
 PERFORM RE-SET
 END-IF.

 IF PRINT-SWITCH-ON PERFORM PRINT-ROUTINE.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 297

INITIALIZE Statement
The INITIALIZE statement provides the ability to set selected types of data fields to
predetermined values; for example, numeric data to zeroes, alphanumeric data to spaces, or
data pointers to NULL.

where category-name is:

identifier-1 must be of class alphabetic, alphanumeric, numeric, or data pointer.

For the category data-pointer specified in the REPLACING phrase, a SET statement with
identifier-2 or literal-1 as the sending operand and an item of the category data-pointer as the
receiving operand must be valid.

For each of the other categories specified in the REPLACING phrase, a MOVE statement
with identifier-2 or literal-1 as the sending item and an item of the specified category as the
receiving operand must be valid.

The same category cannot be repeated in a REPLACING phrase.

An index data item may not appear as an operand of an INITIALIZE statement.

The data description entry for the data item referenced by identifier-1 must not contain a
RENAMES clause.

General Rules for the INITIALIZE Statement
The general rules that apply to the INITIALIZE statement are as follows:

1. The data item referenced by identifier-1 represents the receiving item.

2. If the REPLACING phrase is specified, literal-1 or the data item referenced by
identifier-2 represents a possible sending item as specified in general rule 6.

3. The keywords in category-name correspond to a category of data as defined in the
discussion of the PICTURE clause (on page 110) or for DATA-POINTER, by the
USAGE IS POINTER clause. If ALL is specified in the VALUE phrase, it is as if all of
the categories listed in the syntax for category-name were specified.

{ } []

[]DEFAULTTOTHEN

BYDATAREPLACINGTHEN

VALUETOALL

FILLERWITHINITIALIZE

literal-1
-2identifieramecategory-n

amecategory-n

-1identifier

EDITED-NUMERIC
NUMERIC

POINTER-DATA
EDITED-ICALPHANUMER

ICALPHANUMER
ALPHABETIC

Chapter 6: Procedure Division Statements

298 RM/COBOL Language Reference Manual

4. Whether identifier-1 references an elementary item or a group item, the effect of the
execution of the INITIALIZE statement is as though a series of implicit MOVE or SET
statements, each of which has an elementary data item as its receiving-operand, were
executed. The receiving-operands of these implicit statements are defined in general
rule 5 and the sending-operands are defined in general rule 6.

If the category of a receiving operand is data-pointer, the implicit statement is:

SET receiving-operand TO sending-operand

Otherwise, the implicit statement is:

MOVE sending-operand TO receiving-operand

5. The receiving operand in each implicit MOVE or SET statement is determined by
applying the following steps in order:

a. First, an elementary data item is a possible receiving item if:

1) It is explicitly referenced by identifier-1; or

2) It is contained within the group data item referenced by identifier-1. If the
elementary data item is a table element, each occurrence of the elementary data
item is a possible receiving-operand.

b. Second, the following data items are excluded as receiving-operands:

1) Any identifiers that are not valid receiving operands of a MOVE statement,
except data items of category data-pointer. (For example, index data items are
excluded as receiving-operands.)

2) If the FILLER phrase is not specified, elementary data items with an explicit or
implicit FILLER clause. If the FILLER phrase is specified, elementary data
items with an explicit or implicit FILLER clause are not excluded and may be
initialized by the INITIALIZE statement.

3) Any elementary data item subordinate to identifier-1 whose data description
entry contains a REDEFINES clause or is subordinate to a data item whose data
description entry contains a REDEFINES clause. However, identifier-1 may
itself have a REDEFINES clause or be subordinate to a data item with a
REDEFINES clause.

c. Finally, each non-excluded possible receiving-operand is a receiving item if at least
one of the following is true:

1) The VALUE phrase is specified, the category of the elementary data item is one
of the categories specified or implied in the VALUE phrase, and the VALUE
clause is specified in the data description entry of the elementary data item.

2) The REPLACING phrase is specified and the category of the elementary data
item is one of the categories specified in the REPLACING phrase.

3) The DEFAULT phrase is specified or neither the REPLACING nor the VALUE
phrase is specified.

6. The sending-operand in each implicit MOVE or SET statement is determined as follows:

a. If the data item being initialized qualifies as a receiving-operand because of the
VALUE phrase, the sending-operand is determined by the literal in the VALUE
clause specified in the data description entry of the receiving-operand data item. If
the data item is a table element, the literal in the VALUE clause that corresponds to
the occurrence being initialized determines the sending-operand. For categories
other than data-pointer, the actual sending-operand is a literal that, when moved to

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 299

the receiving-operand with a MOVE statement, produces the same result as the
initial value of the data item as produced by the application of the VALUE clause.

b. If the data item being initialized does not qualify as a receiving-operand because of
the VALUE phrase, but does qualify because of the REPLACING phrase, the
sending-operand is the literal-1 or identifier-2 associated with the category specified
in the REPLACING phrase that matched the category of the receiving-operand.

c. If the data item does not qualify as a receiving-operand because of the VALUE or
REPLACING phrases, the sending-operand used depends on the category of the
receiving-operand as shown in Table 31.

Table 31: Default Initialization Values

Default Initialization Values

Category of Receiving-Operand Sending-Operand

Alphabetic SPACES

Alphanumeric SPACES

Alphanumeric-edited SPACES

Data-pointer NULL

Numeric ZERO

Numeric-edited ZERO

7. The order of execution of these implicit MOVE and SET statements is the order, left to
right, of the specification of each identifier-1 in the INITIALIZE statement. Within this
sequence, whenever identifier-1 refers to a group data item, affected elementary data
items are initialized in the sequence of their definition within the group data item. For a
fixed-occurrence data item, all occurrences of the affected elementary data items are
initialized. For a variable-occurrence data item, the number of occurrences initialized is
determined by the rules of the OCCURS clause for a receiving data item.

8. If identifier-1 occupies the same storage area as identifier-2, the result of the execution of
this statement is undefined, even if they are defined by the same data description entry.
For additional information, see Overlapping Operands (on page 184).

INITIALIZE Statement Examples

 INITIALIZE EMPLOYEE-RECORD HR-RECORD.

 INITIALIZE EMPLOYEE-RECORD
 REPLACING NUMERIC DATA BY ZERO
 ALPHANUMERIC DATA BY ALL "#".

 INITIALIZE HR-RECORD
 REPLACING NUMERIC DATA BY 100.00.

 INITIALIZE EMPLOYEE-RECORD HR-RECORD
 WITH FILLER
 ALL TO VALUE
 THEN REPLACING
 ALPHANUMERIC ALPHABETIC DATA BY ALL "#"
 THEN TO DEFAULT.

Chapter 6: Procedure Division Statements

300 RM/COBOL Language Reference Manual

INSPECT Statement
The INSPECT statement provides the ability to tally (Format 1), replace (Format 2), or tally
and replace (Format 3) occurrences of single characters or groups of characters in a data item.
Single character replacements can also be expressed as a conversion (Format 4).

Format 1: Inspect…Tallying

Format 2: Inspect…Replacing

Format 3: Inspect…Tallying…Replacing

literal-2
-4identifier

literal-1
-3identifier

literal-2
-4identifier

-2identifier

-1identifier

INITIAL
AFTER
BEFORE

FIRST
TRAILING
LEADING
ALL

INITIAL
AFTER
BEFORECHARACTERS

FOR

TALLYINGINSPECT

literal-2
-4identifier

literal-3
-5identifier

literal-1
-3identifier

literal-2
-4identifier

literal-3
-5identifier

-1identifier

INITIAL
AFTER
BEFORE

BY

FIRST
TRAILING
LEADING
ALL

INITIAL
AFTER
BEFORE

BYCHARACTERS

REPLACINGINSPECT

literal-2
-4identifier

literal-3
-5identifier

literal-1
-3identifier

literal-2
-4identifier

literal-3
-5identifier

literal-2
-4identifier

literal-1
-3identifier

literal-2
-4identifier

-2identifier

-1identifier

INITIAL
AFTER
BEFORE

BY

FIRST
TRAILING
LEADING
ALL

INITIAL
AFTER
BEFORE

BYCHARACTERS

REPLACING

INITIAL
AFTER
BEFORE

FIRST
TRAILING
LEADING
ALL

INITIAL
AFTER
BEFORE

CHARACTERS

FOR

TALLYINGINSPECT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 301

Format 4: Inspect…Converting

identifier-1 must reference either a group item or any category of elementary items that have
DISPLAY usage.

identifier-3, . . ., identifier-n must reference an elementary item that has DISPLAY usage.

Each literal must be a nonnumeric literal and may be any figurative constant except those that
begin with the word ALL. If literal-1, literal-2 or literal-4 is a figurative constant, it refers to
an implicit one-character data item.

No more than one BEFORE phrase and one AFTER phrase can be specified for any one ALL,
LEADING, CHARACTERS, FIRST or CONVERTING phrase.

For Formats 1, 2 and 3:

• If the TRAILING adjective is used, only one TALLYING operand (identifier-2), one
adjective phrase and one occurrence of identifier-3 or literal-1 may be specified. Series
of these phrases are not allowed when the TRAILING adjective is used.

• If the TRAILING adjective is used, literal-1, literal-2, and literal-3, or the size of the
data item referenced by identifier-3, identifier-4, and identifier-5, must be one character
in length.

For Formats 1 and 3:

• identifier-2 must reference an elementary numeric data item.

For Formats 2 and 3:

• The size of literal-3 or the data item referenced by identifier-5 must be equal to the size
of literal-1 or the data item referenced by identifier-3. When a figurative constant is used
as literal-3, the size of the figurative constant is equal to the size of literal-1 or to the size
of the data item referenced by identifier-3.

• When the CHARACTERS phrase is used, literal-2, literal-3, or the size of the data item
referenced by identifier-4, identifier-5 must be one character in length.

For Format 4:

• The size of literal-5 or the data item referenced by identifier-7 must be equal to the size
of literal-4 or the data item referenced by identifier-6. When a figurative constant is used
as literal-5, its size is equal to the size of literal-4 or to the size of the data item
referenced by identifier-6.

• The same character must not appear more than once either in literal-4 or in the data item
referenced by identifier-6.

General Rules for the INSPECT Statement
The general rules that apply to the INSPECT statement are as follows:

1. Inspection (which includes the comparison cycle, the establishment of boundaries for the
BEFORE or AFTER phrase, and the mechanism for tallying, replacing, or both) begins at
the leftmost character position of the data item referenced by identifier-1, regardless of its

literal-2
-4identifier

literal-5
-7identifier

literal-4
-6identifier

-1identifier

INITIAL
AFTER
BEFORETO

CONVERTINGINSPECT

Chapter 6: Procedure Division Statements

302 RM/COBOL Language Reference Manual

class, and proceeds from left to right to the rightmost character position as described in
general rules 5 through 7, except that, if the TRAILING adjective is used, inspection
begins at the rightmost character position of the data item referenced by identifier-1 and
proceeds from right to left.

2. For use in the INSPECT statement, the contents of the data item referenced by
identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7 is treated
as follows:

a. If any identifier-1, identifier-3, identifier-4, identifier-5, identifier-6, or identifier-7
refers to an alphabetic or alphanumeric data item, the INSPECT statement treats the
contents of each such data item as a character-string.

b. If any identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7
refers to an alphanumeric edited, numeric edited or unsigned numeric data item, the
data item is inspected as though it had been redefined as alphanumeric (see general
rule 2a) and the INSPECT statement had been written to reference the redefined data
item.

c. If any identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7
refers to a signed numeric data item, the data item is inspected as though it had
been moved to an unsigned numeric data item of the same length (excluding any
separate sign position) and then the rules in general rule 2b had been applied. See
the discussion of the MOVE Statement (on page 311). If identifier-1 is a signed
numeric item, the original value of the sign is retained upon completion of the
INSPECT statement.

3. In general, rules 5 through 17, all references to literal-1, literal-2, literal-3, literal-4, and
literal-5 apply equally to the contents of the data item referenced by identifier-3,
identifier-4, identifier-5, identifier-6, and identifier-7, respectively.

4. Subscripting associated with any identifier is evaluated only once as the first operation in
the execution of the INSPECT statement.

5. During inspection of the contents of the data item referenced by identifier-1, each
properly matched occurrence of literal-1 is tallied (Formats 1 and 3) or replaced by
literal-3 (Formats 2 and 3).

6. The comparison operation to determine the occurrences of literal-1 to be tallied or to be
replaced occurs as follows:

a. The operands of the TALLYING or REPLACING phrase are considered in the order
they are specified in the INSPECT statement from left to right. The first literal-1 is
compared to an equal number of contiguous characters, starting with the leftmost
(rightmost for TRAILING adjective) character position in the data item referenced
by identifier-1. literal-1 matches that portion of the contents of the data item
referenced by identifier-1 if they are equal, character for character, and if any of the
following conditions are present:

1) Neither LEADING nor FIRST is specified.

2) The LEADING adjective applies to literal-1 and literal-1 is a leading
occurrence as defined in general rules 10 and 13.

3) The FIRST adjective applies to literal-1 and literal-1 is the first occurrence as
defined in general rule 13.

b. If no match occurs in the comparison of the first literal-1, the comparison is repeated
with each successive literal-1, if any, until either a match is found or there is no next
successive literal-1. In the latter case, the character position in the data item
referenced by identifier-1 immediately to the right (left for TRAILING adjective) of
the leftmost (rightmost for TRAILING adjective) character position considered in

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 303

the last comparison cycle is considered the new leftmost (rightmost for TRAILING
adjective) character position, and the comparison cycle begins again with the first
literal-1.

c. Whenever a match occurs, tallying or replacing takes place as described in general
rules 10 and 13. The character position in the data item referenced by identifier-1
immediately to the right (left for TRAILING adjective) of the rightmost (leftmost for
TRAILING adjective) character position that participated in the match is now
considered to be the leftmost (rightmost for TRAILING adjective) character position
of the data item referenced by identifier-1, and the comparison cycle starts again
with the first literal-1.

d. The comparison operation continues until the rightmost (leftmost for TRAILING
adjective) character position of the data item referenced by identifier-1 has
participated in a match or has been considered as the leftmost (rightmost for
TRAILING adjective) character position. When this occurs, inspection is
terminated.

e. If the CHARACTERS phrase is specified, an implied one-character operand
participates in the cycle described in general rules 6a through 6d above as if it had
been specified as literal-1, except that no comparison to the contents of the data item
referenced by identifier-1 takes place. This implied character is considered always to
match the leftmost character of the contents of the data item referenced by identifier-
1 participating in the current comparison cycle.

7. The comparison operation defined in general rule 6 is affected by the BEFORE and
AFTER phrases as follows:

a. If neither the BEFORE nor the AFTER phrase is specified, literal-1 or the implied
operand of the CHARACTERS phrase participates in the comparison operation as
described in general rule 6. literal-1 or the implied operand of the CHARACTERS
phrase is first eligible to participate in matching at the leftmost (rightmost for
TRAILING adjective) character position of the data item referenced by identifier-1.

b. If the BEFORE (AFTER for TRAILING adjective) phrase is specified, the
associated literal-1 or the implied operand of the CHARACTERS phrase participates
only in those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-1 from its leftmost (rightmost for TRAILING
adjective) character position up to, but not including, the first (last for TRAILING
adjective) occurrence of literal-2 within the contents of the data item referenced by
identifier-1. The position of this first (last) occurrence is determined before the first
cycle of the comparison operation described in general rule 6 is begun. If, on any
comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is
not eligible to participate, it is considered not to match the contents of the data item
referenced by identifier-1. If there is no occurrence of literal-2 within the contents
of the data item referenced by identifier-1, its associated literal-1 or the implied
operand of the CHARACTERS phrase participates in the comparison operation as
though the BEFORE phrase had not been specified.

c. If the AFTER (BEFORE for TRAILING adjective) phrase is specified, the
associated literal-1 or the implied operand of the CHARACTERS phrase may
participate only in those comparison cycles which involve that portion of the
contents of the data item referenced by identifier-1 from the character position
immediately to the right (left for TRAILING adjective) of the rightmost (leftmost for
TRAILING adjective) character position of the first (last for TRAILING adjective)
occurrence of literal-2 within the contents of the data item referenced by identifier-1
to the rightmost (leftmost for TRAILING adjective) character position of the data
item referenced by identifier-1. This is the character position at which literal-1 or
the implied operand of the CHARACTERS phrase is first eligible to participate in

Chapter 6: Procedure Division Statements

304 RM/COBOL Language Reference Manual

matching. The position of this first (last) occurrence is determined before the first
cycle of the comparison operation described in general rule 6 is begun. If, on any
comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is
not eligible to participate, it is considered not to match the contents of the data item
referenced by identifier-1. If there is no occurrence of literal-2 within the contents
of the data item referenced by identifier-1, its associated literal-1 or the implied
operand of the CHARACTERS phrase is never eligible to participate in the
comparison operation.

For Format 1 (TALLYING):

8. The required words, ALL LEADING, TRAILING, and FIRST, are adjectives that apply
to each succeeding literal-1 until the next adjective appears.

9. The contents of the data item referenced by identifier-2 is not initialized before the
execution of the INSPECT statement.

10. The rules for tallying are as follows:

a. When the CHARACTERS phrase is specified, the contents of the data item
referenced by identifier-2 are incremented by one for each character matched, in
the sense of general rule 6e, within the contents of the data item referenced by
identifier-1.

b. When the adjective ALL is specified, the contents of the data item referenced by
identifier-2 are incremented by one for each occurrence of literal-1 matched within
the contents of the data item referenced by identifier-1.

c. When the adjective LEADING is specified, the contents of the data item referenced
by identifier-2 are incremented by one for the first and each subsequent contiguous
occurrence of literal-1 matched within the contents of the data item referenced by
identifier-1, provided that the leftmost such occurrence is at the point where
comparison began in the first comparison cycle in which literal-1 was eligible to
participate.

d. When the adjective TRAILING is specified, the contents of the data item referenced
by identifier-2 are incremented by one for the rightmost and each preceding
contiguous occurrence of literal-1 matched within the contents of the data item
referenced by identifier-1, provided that the rightmost such occurrence is at the point
where comparison began in the first comparison cycle in which literal-1 was eligible
to participate.

e. When the adjective FIRST is specified, the contents of the data item referenced by
identifier-2 are incremented by one for the first occurrence of literal-1 matched
within the contents of the data item referenced by identifier-1.

11. If identifier-1, identifier-3 or identifier-4 occupies the same storage area as identifier-2,
the result of the execution of this statement is undefined, even if it is defined by the same
data description entry.

For Format 2 (REPLACING):

12. The required words ALL, LEADING, TRAILING, and FIRST are adjectives that apply
to each succeeding BY phrase until the next adjective appears.

13. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in the sense
of general rule 6e, in the contents of the data item referenced by identifier-1 is
replaced by literal-3.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 305

b. When the adjective ALL is specified, each occurrence of literal-1 matched in the
contents of the data item referenced by identifier-1 is replaced by literal-3.

c. When the adjective LEADING is specified, the first and each successive contiguous
occurrence of literal-1 matched in the contents of the data item referenced by
identifier-1 is replaced by literal-3, provided that the leftmost occurrence is at the
point where comparison began in the first comparison cycle in which literal-1 was
eligible to participate.

d. When the adjective TRAILING is specified, the rightmost and each preceding
contiguous occurrence of literal-1 matched in the contents of the data item
referenced by identifier-1 is replaced by literal-3, provided that the rightmost
occurrence is at the point where comparison began in the first comparison cycle in
which literal-1 was eligible to participate.

e. When the adjective FIRST is specified, the leftmost occurrence of literal-1 matched
within the contents of the data item referenced by identifier-1 is replaced by
literal-3. This rule applies to each successive specification of the FIRST adjective
regardless of the value of literal-1.

14. If identifier-3, identifier-4 or identifier-5 occupies the same storage area as identifier-1,
the result of the execution of this statement is undefined, even if it is defined by the same
data description entry.

For Format 3 (TALLYING and REPLACING):

15. A Format 3 INSPECT statement is interpreted and executed as though two successive
INSPECT statements specifying the same identifier-1 had been written with the first
statement being a Format 1 statement with TALLYING phrases identical to those
specified in the Format 3 statement, and the second statement being a Format 2 statement
with REPLACING phrases identical to those specified in the Format 3 statement. The
general rules given for matching and counting apply to the Format 1 statement and the
general rules given for matching and replacing apply to the Format 2 statement. If any of
the identifiers in the Format 2 statement are subscripted, their subscripts are evaluated
only once before executing the Format 1 statement.

For Format 4 (CONVERTING):

16. A Format 4 INSPECT statement is interpreted and executed as though a Format 2
INSPECT statement specifying the same identifier-1 had been written with a series of
ALL adjectives, one for each character of literal-4. The effect is as if each of these ALL
adjectives referenced, as literal-1, a single character of literal-4 and referenced, as literal-
3, the corresponding single character of literal-5. Correspondence between the characters
of literal-4 and the characters of literal-5 is by ordinal position within the data item.

17. If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1,
the result of the execution of this statement is undefined, even if it is defined by the same
data description entry.

INSPECT Statement Examples

 *>---
 MOVE ZERO TO COUNT-1, COUNT-2.
 INSPECT WORD-1 TALLYING
 COUNT-1 FOR LEADING "L" BEFORE INITIAL "A"
 COUNT-2 FOR LEADING "A" BEFORE INITIAL "L".

 *> WORD-1 = "LARGE" -> COUNT-1 = 1, COUNT-2 = 0

Chapter 6: Procedure Division Statements

306 RM/COBOL Language Reference Manual

 *> WORD-1 = "ANALYST" -> COUNT-1 = 0, COUNT-2 = 1
 *>--

 MOVE ZERO TO COUNT-1.
 INSPECT WORD-1 TALLYING
 COUNT-1 FOR ALL "L" REPLACING
 ALL "A" BY "E" AFTER INITIAL "L".

 *> WORD-1 = "CALLAR" -> COUNT-1 = 2, WORD-1 = "CALLER"
 *> WORD-1 = "SALAMI" -> COUNT-1 = 1, WORD-1 = "SALEMI"
 *> WORD-1 = "LATTER" -> COUNT-1 = 1, WORD-1 = "LETTER"
 *>--

 INSPECT WORD-1 REPLACING
 ALL "A" BY "G" BEFORE INITIAL "X".

 *> WORD-1 = "ARXAX" -> WORD-1 = "GRXAX"
 *> WORD-1 = "HANDAX" -> WORD-1 = "HGNDGX”
 *>--

 MOVE ZERO TO COUNT-1.
 INSPECT WORD-1 TALLYING
 COUNT-1 FOR CHARACTERS AFTER INITIAL "J"
 REPLACING ALL "A" BY "B".

 *> WORD-1 = "ADJECTIVE" -> COUNT-1 = 6, WORD-1 = "BDJECTIVE”
 *>--

 INSPECT WORD-1 REPLACING ALL "X" BY "Y",
 "B" BY "Z", "W" BY "Q" AFTER INITIAL "R".

 *> WORD-1 = "RXXBQWY" -> WORD-1 = "RYYZQQY"
 *> WORD-1 = "YZACDWBR" -> WORD-1 = "YZACDWZR"
 *> WORD-1 = "RAWRXEB" -> WORD-1 = "RAQRYEZ”
 *>--

 INSPECT WORD-1 REPLACING CHARACTERS BY "B"
 BEFORE INITIAL "A".

 *> WORD-1 = "12 XZABCD" -> WORD-1 = "BBBBBABCD"
 *> WORD-1 = "123456789" -> WORD-1 = "BBBBBBBBB"
 *> WORD-1 = "A23456789" -> WORD-1 = "A23456789”
 *>--

 MOVE ZERO TO COUNT-1.
 INSPECT WORD-1 TALLYING COUNT-1 FOR TRAILING SPACES
 REPLACING TRAILING SPACES BY “#”.

 *> WORD-1 = "name " -> WORD-1 = "name#####”, COUNT-1 = 5
 *> WORD-1 = "address " -> WORD-1 = "address##", COUNT-1 = 2
 *>--

 INSPECT WORD-1 CONVERTING
 "abcdefghijklmnopqrstuvwxyz" TO
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

 *> WORD-1 = "name" -> WORD-1 = "NAME"
 *> WORD-1 = "Day Total" -> WORD-1 = "DAY TOTAL”
 *>--

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 307

MERGE Statement
The MERGE statement combines two or more identically sequenced files on a set of specified
keys, and during the process makes records available, in merged order, to an output procedure
or to an output file.

A MERGE statement may appear anywhere in the Procedure Division except in the
declaratives portion.

file-name-1 must be described in a sort-merge file description entry in the Data Division.

data-name-1 may be qualified. data-name-1 must reference either a record-name associated
with file-name-1 or a data item in a record associated with file-name-1. If more than one
record description entry is associated with file-name-1, the data items referenced by
different specifications of data-name-1 need not all be associated with the same record
description entry.

The data item referenced by data-name-1 must not be a group item that contains a
variable-occurrence data item.

file-name-2, file-name-3, and file-name-4 must be described in a file description entry in the
Data Division.

No two files specified in any one MERGE statement may reside on the same multiple file reel
(or reels). See the discussion of the I-O-CONTROL paragraph (on page 81).

File-names must not be repeated within the MERGE statement.

The words THRU and THROUGH are synonymous.

No pair of file-names in a MERGE statement may be specified in the same SAME AREA,
SAME RECORD AREA, SAME SORT AREA or SAME SORT-MERGE AREA clause.
(See the I-O-CONTROL paragraph.)

If the file referenced by file-name-1 contains variable-length records, the size of the records
contained in the files referenced by file-name-2 and file-name-3 must not be shorter than the
shortest record or longer than the longest record described for file-name-1. If the file
referenced by file-name-1 contains fixed-length records, the size of the records contained in
the files referenced by file-name-2 and file-name-3 must not be longer than the longest record
described for file-name-1.

If the GIVING phrase is specified and the file referenced by file-name-4 contains
variable-length records, the size of the records contained in the file referenced by file-name-1
must not be shorter than the shortest record or longer than the longest record size specified for
file-name-4. If the file referenced by file-name-4 contains fixed-length records, the size
of the records contained in the file referenced by file-name-1 must not be longer than the fixed
record size specified for file-name-4.

{ }

[]

{ }

{ }

4file-name-

ame-2rocedure-npname-1procedure-

3file-name-2file-name-

ame-1alphabet-n

1data-name-1file-name-

GIVING
THRU
THROUGHISPROCEDUREOUTPUT

USING

ISSEQUENCECOLLATING

KEYDESCENDING
ASCENDINGONMERGE

Chapter 6: Procedure Division Statements

308 RM/COBOL Language Reference Manual

General Rules for the MERGE Statement
The general rules applying to the MERGE statement are as follows:

1. The MERGE statement merges all records contained in the files referenced by
file-name-2 and file-name-3 and returns them to an output procedure, or to the file
referenced by file-name-4, in an order determined by the ASCENDING and
DESCENDING phrases and the values of the data items referenced by the specifications
of data-name-1.

2. The words ASCENDING and DESCENDING apply to each subsequent occurrence of
data-name-1 until another word ASCENDING or DESCENDING is encountered.

3. The data items referenced by the specification of data-name-1 are the key data items
that determine the order in which records are returned from the file referenced by
file-name-1. The order of significance of the keys is the order in which they are specified
in the MERGE statement, without regard to their association with ASCENDING or
DESCENDING phrases. The first (or only) key data item is the most significant. Further
key data items, if any, are of progressively lesser significance.

4. To determine the relative order in which two records are returned from the file referenced
by file-name-1, the contents of corresponding key data items are compared according to
the rules for comparison of operands in a relation condition, starting with the most
significant key data item.

a. If the contents of the corresponding key data items are not equal and the key is
associated with the ASCENDING phrase, the record containing the key data item
with the lower value is returned first.

b. If the contents of the corresponding key data item are not equal and the key is
associated with the DESCENDING phrase, the record containing the key data item
with the higher value is returned first.

c. If the contents of the corresponding key data items are equal, the determination is
made on the contents of the next most significant key data item.

d. If the contents of all the key data items in one record are equal to the contents of the
corresponding key data items in another record, the records are returned in the order
in which their associated input files are specified in the MERGE statement. If both
records are associated with the same file, the order of the records in that file is
preserved.

5. The collating sequence that applies to the comparison of nonnumeric key data items is
determined at the beginning of the execution of the MERGE statement in the following
order of precedence:

a. The collating sequence established by the COLLATING SEQUENCE phrase, if
specified, in that MERGE statement

b. The collating sequence established as the program collating sequence

6. The results of the merge operation are undefined unless the records in the files referenced
by file-name-2 and file-name-3 are ordered as described in the ASCENDING or
DESCENDING KEY clauses associated with the MERGE statement.

7. All the records in the files referenced by file-name-2 and file-name-3 in the USING
phrase are transferred to the file referenced by file-name-1. At the start of execution of
the MERGE statement, the files referenced by file-name-2 and file-name-3 must not be in
the open mode. For each of the files referenced by file-name-2 and file-name-3, the
execution of the MERGE statement causes the following actions to be taken:

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 309

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the INPUT phrase had been executed. If an output procedure is
specified, this initiation is performed before control passes to the output procedure.

b. The logical records are obtained and released to the merge operation. Each record is
obtained as if a READ statement with the NEXT and the AT END phrases had been
executed. If the file referenced by file-name-1 contains fixed-length records, any
record in the files referenced by file-name-2 and file-name-3 containing fewer
character positions than that specified for file-name-1 is space-filled on the right
beginning with the first character position after the last character in the record when
that record is released to the file referenced by file-name-1.

c. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed. If an output
procedure is specified, this termination is not performed until after control passes
the last statement in the output procedure.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION procedures are executed.

8. During the execution of any USE AFTER EXCEPTION procedure implicitly invoked
while executing the MERGE statement, no statements may be executed which manipulate
the file referenced by file-name-2, file-name-3, or file-name-4, or which access the record
area associated with file-name-2, file-name-3, or file-name-4.

9. The output procedure may consist of any procedure needed to select, modify or copy
the records that are made available one at a time by the RETURN statement in merged
order from the file referenced by file-name-1. The range includes all statements that are
executed as the result of a transfer of control by CALL, EXIT without the optional
PROGRAM phrase, GO TO and PERFORM statements in the range of the output
procedure, as well as all statements in declarative procedures that are executed as a
result of the execution of statements in the range of the output procedure. The range of
the output procedure must not cause the execution of any MERGE, RELEASE or
SORT statement.

10. If an output procedure is specified, control passes to it during execution of the MERGE
statement. The compiler inserts a return mechanism at the end of the last statement in the
output procedure. When control passes the last statement in the output procedure, the
return mechanism provides for termination of the merge, and then passes control to the
next executable statement after the MERGE statement. Before entering the output
procedure, the merge procedure reaches a point at which it can select the next record in
merged order when requested. The RETURN statements in the output procedure are the
requests for the next record.

11. During the execution of the output procedure, no statement may be executed
manipulating the file referenced by, or accessing the record area associated with,
file-name-2 or file-name-3.

12. If the GIVING phrase is specified, all the merged records are written on the file
referenced by file-name-4 as the implied output procedure for the MERGE statement. At
the start of the execution of the MERGE statement, the file referenced by file-name-4
must not be in the open mode. For each of the files referenced by file-name-4, the
execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file. Each record is
written as if a WRITE statement without any optional phrases had been executed.

Chapter 6: Procedure Division Statements

310 RM/COBOL Language Reference Manual

c. For a relative file, the relative key data item for the first record returned contains the
value 1; for the second record returned, the value 2; and so forth. After execution of
the MERGE statement, the contents of the relative key data item indicate the last
record returned to the file.

d. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE procedures are
executed; however, the execution of such a USE procedure must not cause the execution
of any statement manipulating the file referenced by, or accessing the record area
associated with, file-name-4. On the first attempt to write beyond the externally defined
boundaries of the file, any USE procedure specified for the file is executed; if control is
returned from that USE procedure or if no such USE procedure is specified, the
processing of the file is terminated as described above.

13. Segmentation can be applied to programs containing the MERGE statement. However,
the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an independent segment,
any output procedure referenced by that MERGE statement must appear:

1) Totally within nonindependent segments, or

2) Wholly contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, any output procedure
referenced by that MERGE statement must be contained:

1) Totally within nonindependent segments, or

2) Wholly within the same independent segment as that MERGE statement.

MERGE Statement Example

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MERGE01.
 *
 * Examples for RM/COBOL Language Reference Manual.
 * MERGE statement.
 *
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MERGE-FILE ASSIGN TO SORT-WORK.
 SELECT SORTED-FILE-1 ASSIGN TO DISK.
 SELECT SORTED-FILE-2 ASSIGN TO DISK.

 DATA DIVISION.
 FILE SECTION.
 SD MERGE-FILE.
 01 MERGE-RECORD.
 02 MERGE-KEY-1 PIC X(05).
 02 MERGE-KEY-2 PIC 9(05) BINARY.
 02 MERGE-DATA-1 PIC X(20).
 FD SORTED-FILE-1.
 01 SORTED-FILE-1-RECORD.
 02 SORTED-KEY-1 PIC X(05).
 02 SORTED-KEY-2 PIC 9(05) BINARY.
 02 SORTED-DATA-1 PIC X(20).
 FD SORTED-FILE-2.
 01 SORTED-FILE-2-RECORD.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 311

 02 SORTED-KEY-1 PIC X(05).
 02 SORTED-KEY-2 PIC 9(05) BINARY.
 02 SORTED-DATA-1 PIC X(20).
 WORKING-STORAGE SECTION.
 01 EOF-FLAG PIC X(01).
 88 EOF VALUE "T" WHEN FALSE "F".

 PROCEDURE DIVISION.
 MAIN1.
 MERGE MERGE-FILE
 ON ASCENDING KEY MERGE-KEY-1
 ON DESCENDING KEY MERGE-KEY-2
 USING SORTED-FILE-1 SORTED-FILE-2
 OUTPUT PROCEDURE IS PUT-RECORDS.
 STOP RUN.

 PUT-RECORDS.
 SET EOF TO FALSE.
 PERFORM UNTIL EOF
 RETURN MERGE-FILE RECORD
 AT END SET EOF TO TRUE
 NOT AT END CALL "WRITE-RECORD" USING MERGE-RECORD
 END-RETURN
 END-PERFORM.

 END PROGRAM MERGE01.

MOVE Statement
The MOVE statement transfers data, in accordance with the rules of editing, to one or more
data areas.

Format 1: Move…To

Format 2: Move Corresponding

literal-1 or the data item referenced by identifier-1 represents the sending area;
identifier-2 (. . .) represents the receiving area (or areas).

An index data item must not appear as an operand of a MOVE statement.

The data designated by literal-1 or identifier-1 is moved to the data item referenced by each
identifier-2 in the order in which it is specified. The rules referring to identifier-2 also apply
to the other receiving areas.

Any length evaluation or subscripting associated with identifier-2 is evaluated immediately
before the data is moved to the respective data item. Any length evaluation or subscripting
associated with identifier-1 is evaluated only once, immediately before data is moved to the
first of the receiving operands. The result of the statement

MOVE a (b) TO b, c (b)

{ }-2identifierliteral-1
-1identifier TOMOVE

{ }-2identifier-1identifier TOCORR
INGCORRESPONDMOVE

Chapter 6: Procedure Division Statements

312 RM/COBOL Language Reference Manual

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b).

Any move in which the receiving operand is an elementary item and the sending operand is
either a literal or an elementary item is an elementary move. Every elementary item belongs
to one of the following categories: numeric, alphabetic, alphanumeric, numeric edited or
alphanumeric edited. These categories are described in the PICTURE clause. Numeric
literals belong to the category numeric, and nonnumeric literals belong to the category
alphanumeric. The figurative constant ZERO, when moved to a numeric or numeric edited
item, belongs to the category numeric; in all other cases, it belongs to the category
alphanumeric. The figurative constant SPACE belongs to the category alphabetic. All other
figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these categories:

1. The figurative constant SPACE, or an alphanumeric edited or alphabetic data item
must not be moved to a numeric or numeric edited data item.

2. A numeric literal, the figurative constant ZERO, a numeric data item or a numeric
edited data item must not be moved to an alphabetic data item.

3. A noninteger numeric literal or a noninteger numeric data item must not be moved
to an alphanumeric or alphanumeric edited data item.

4. All other elementary moves are legal and are performed according to the rules
given below.

Any necessary conversion of data from one form of internal representation to another takes
place during legal elementary moves, along with any de-editing implied by the sending data
item or editing specified for the receiving data item:

1. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and
any necessary space-filling takes place as defined in the discussion of standard alignment
rules (on page 161). If the size of the sending item is greater than the size of the
receiving item, the excess characters are truncated on the right after the receiving item is
filled. If the sending item is described as being signed numeric, the operational sign is
not moved; if the operational sign occupies a separate character position (see the
discussion of the SIGN clause (on page 124) that character is not moved and the size of
the sending item is considered to be one less than its actual size (in terms of standard data
format characters). If the sending item is numeric edited, no de-editing takes place. If
the usage of the sending operand is different from that of the receiving operand,
conversion of the sending operand to the internal representation of the receiving operand
takes place. If the PICTURE character-string of the sending operand contains the symbol
“P”, all digit positions specified with this symbol are considered to contain the value zero
and are counted in the size of the sending item.

2. When a numeric or numeric edited item is the receiving item, alignment by decimal point
and any necessary zero filling takes place (see the discussion of standard alignment rules)
where zeroes are replaced because of editing requirements.

When a signed item is the receiving item, the sign of the sending item is placed in the
receiving item (see the discussion of the SIGN clause). Conversion of the representation
of the sign takes place as necessary. If the sending item is unsigned, a positive sign is
generated for the receiving item.

When an unsigned numeric item is the receiving item, the absolute value of the sending
item is moved and no operational sign is generated for the receiving item.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 313

When the sending operand is described as being alphanumeric, data is moved as if the
sending operand were described as an unsigned numeric integer.

When a numeric edited data item is the sending item, conversion is implied to establish
the unedited numeric value of the operand, which may be signed; then the unedited
numeric value is moved to the receiving field. The implied conversion deletes all
characters other than the decimal digits 0, 1, . . . 9, sets the operational sign negative if a
minus sign is present in the sending item or positive otherwise, and sets the scale
according to the rightmost decimal point present in the sending item or to the scale of the
sending data item otherwise. The representation of the decimal point used in this
conversion is a period unless the DECIMAL POINT IS COMMA clause is specified in
the source program, in which case a comma is used. In this conversion, any decimal digit
0 that matches an inserted character 0 in the sending item is excluded from the resulting
unedited numeric value.

3. When a receiving field is described as alphabetic, justification and any necessary space-
filling takes place. See the discussion of standard alignment rules (on page 161).

If the size of the sending item is greater than the size of the receiving item, the excess
characters are truncated on the right after the receiving item is filled.

Any move that is not an elementary move is treated exactly as if it were an alphanumeric to
alphanumeric elementary move, except that there is no conversion of data from one form of
internal representation to another. In such a move, the receiving area is filled without regard
for the individual elementary or group items contained within either the sending or receiving
area, except as noted in the OCCURS clause. When a group item is moved to an elementary
item described with the JUSTIFIED RIGHT clause, right justification occurs.

When a sending and receiving item share a part of their storage areas, the result of the
execution of such a statement is undefined.

Table 32 summarizes the legality of the various types of MOVE statements.

Table 32: Types of MOVE Statements and Their Legality

Types of MOVE Statements and Their Legality

 Category of Receiving Data Items

Sending Data
Item

Alphabetic

Alphanumeric
Edited

Alphanumeric

Numeric Integer
Numeric Noninteger

Numeric Edited

Alphabetic

Alphanumeric

Alphanumeric
Edited

Numeric Integer

Numeric
Noninteger

Numeric Edited

 Allowed.

 Disallowed.

Chapter 6: Procedure Division Statements

314 RM/COBOL Language Reference Manual

CORRESPONDING Phrase

When the CORRESPONDING phrase is specified, all identifiers must refer to group items.
When a MOVE statement with a CORRESPONDING phrase specifies more than one
receiving group item (identifier-2), the effect is the same as if multiple MOVE statements
with CORRESPONDING phrases had been written, one for each of the receiving group items
(identifier-2), and each having the same sending group item (identifier-1).

For the MOVE statement with the CORRESPONDING phrase:

• The description of identifier-1 and identifier-2 must not contain level-number 66, 77, 78,
or 88 or the USAGE IS INDEX clause.

• Neither identifier-1 nor identifier-2 may be reference modified.

• identifier-1 or identifier-2 may be described with the OCCURS or REDEFINES clauses
or may be subordinate to data items described with the OCCURS or REDEFINES
clauses. If identifier-1 or identifier-2 is a table element, then the required subscripting
must be specified as part of identifier-1 or identifier-2. The specified subscripting will be
applied to the selected subordinate corresponding data items, respectively, for identifier-1
and identifier-2.

For each individual MOVE statement with a CORRESPONDING phrase, subordinate data
item pairs are selected, one from the sending group item and one from the receiving group
item. Then for each such selected pair, data movement occurs from the data item that is
subordinate to the sending group item to the data item that is subordinate to the receiving
group item. The data movement that occurs is the same as if individual MOVE statements
had been written for each of the selected pairs.

The rules that govern the selection of eligible subordinate data item pairs are as follows:

1. The data items are not designated by the keyword FILLER and have the same data-name
and the same qualifiers up to but not including the original group items, identifier-1 and
identifier-2.

2. At least one of the data items is an elementary data item and the resulting move is legal
according to the move rules.

3. A data item that is subordinate to identifier-1 or identifier-2 and contains a REDEFINES,
OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause is ignored, as well as
those data items subordinate to the data item that contains the REDEFINES, OCCURS,
USAGE IS INDEX, or USAGE IS POINTER clause.

4. The name of each data item that satisfies the above conditions must be unique after
application of the implied qualifiers.

When multiple receiving group identifiers (identifier-2, . . .) are listed, all corresponding items
in the first identifier-2 are moved prior to moving corresponding items in the second and any
subsequent receiving group identifiers.

CORRESPONDING and CORR are synonymous.

MOVE Statement Examples

 MOVE INCOME TO TOTAL-INCOME.

{ }-2identifier-1identifier TOCORR
INGCORRESPOND

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 315

 MOVE 1 TO PAGE-COUNT, LINE-NUM.

 MOVE "Marmack Industries" to TITLE-HEADER.

 MOVE PERSON IN FILE-RECORD TO
 PERSON OF ALABAMA (I-A OF ALABAMA),
 PERSON OF CROSS-CENSUS.

 MOVE NUM TO NUM-ED.

 MOVE TABLE-ELT (N, 1, M) TO NEXT-ENTRY
 PREVIOUS-ENTRY.

 MOVE -36.7 TO DEFICIT.

 MOVE QUOTES TO SECTION-DIVIDER.

 MOVE ZERO TO COUN-TER.

 MOVE ZEROES TO COUN-TER, NUM, NUM-ED.

MULTIPLY Statement
The MULTIPLY statement causes numeric data items to be multiplied and stores the result.

Format 1: Multiply…By

Format 2: Multiply…Giving

In Format 1, the value of identifier-1 or literal-1 is multiplied by the value of each
identifier-2. The value of each multiplier (identifier-2) is replaced by this product.

In Format 2, the value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2 and
the result is stored in each identifier-3.

[]{ }

[]

[]

[]MULTIPLY-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDBYMULTIPLY

-2-statementimperative

-1-statementimperative

-2identifierliteral-1
-1identifier

[]{ }

[]

[]

[]MULTIPLY-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

BYMULTIPLY

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

Chapter 6: Procedure Division Statements

316 RM/COBOL Language Reference Manual

Each identifier must refer to a numeric elementary item, except that in Format 2, the
identifiers following the word GIVING may refer to either an elementary numeric item or an
elementary numeric edited item.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the MULTIPLY statement that are
common to other arithmetic statements can be found in the discussion of common rules (on
page 182). Note, in particular, the discussions of the ROUNDED phrase, the size error
condition, overlapping operands, modes of operation, composite size, and incompatible data.

The END-MULTIPLY phrase delimits the scope of the MULTIPLY statement. This phrase
is not necessary unless the MULTIPLY statement is specified in the conditional phrase of
another statement. Even in that case, the phrase is not necessary unless this statement
specifies a conditional phrase or that other statement is also a MULTIPLY statement. The
END-MULTIPLY phrase is allowed even when not necessary. For additional information on
scope terminators such as END-MULTIPLY, see Scope of Statements (on page 31),
Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

MULTIPLY Statement Examples

 MULTIPLY 10 BY INCOME. *> INCOME := (10 * INCOME)

 MULTIPLY PRINCIPAL BY INTEREST-RATE
 GIVING INTEREST ROUNDED.

 MULTIPLY INFLATION-RATE BY EXPENSES
 ON SIZE ERROR
 MOVE 0 TO ECONOMY-RATING
 END-MULTIPLY.

OPEN Statement
The OPEN statement initiates the processing of files.

The successful execution of an OPEN statement determines the availability of the file and
results in the file being in an open mode. A file is available if it is physically present and
recognized by the runtime system. Table 33 shows the results of opening available and
unavailable files.

The successful execution of an OPEN statement makes the associated record area available to
the program. If the file connector associated with the file-name is an external file connector,
there is only one record area associated with the file connector for the run unit.

[]

[]

[] []{ }

[]{ }

[]{ }

LOCKWITHEXTEND

LOCKWITHO-I

REWINDNOWITHLOCKWITHOUTPUT

REWINDNOWITH
REVERSEDLOCKWITHINPUT

EXCLUSIVEOPEN

4file-name-

3file-name-

2file-name-

1file-name-

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 317

The files referenced in the OPEN statement need not all have the same organization or access.

The EXTEND phrase may only be specified for files with sequential access.

The REVERSED and NO REWIND phrases may only be specified for files that are
sequential organization.

The EXCLUSIVE phrase indicates that the open is to obtain exclusive access to each file
referenced in the OPEN statement until the file is closed. The EXCLUSIVE phrase is
redundant for any file for which the LOCK MODE IS EXCLUSIVE clause is specified in its
file control entry.

The LOCK phrase indicates that the open is to obtain exclusive access to the associated file
until the file is closed. The LOCK phrase is redundant if the EXCLUSIVE phrase is specified
in the same OPEN statement or if the LOCK MODE IS EXCLUSIVE clause is specified in
the file control entry for the file.

The successful execution of the OPEN statement sets the lock mode of the file using the
EXCLUSIVE and LOCK phrases of the OPEN statement, the LOCK MODE clause, if
specified, in the file control entry for the file, or configurable defaults for each open mode.
The section File Locking (on page 220) provides a general discussion of lock mode. If the
file is opened in shared input-output mode, record locking will apply as described in the
section Record Locking (on page 221). The RM/COBOL User’s Guide also contains
additional information regarding system-dependent features of file and record locking (see
“File Sharing” in Chapter 8: RM/COBOL Features), as well as information on configuration
of defaults (see the description of relevant keywords in the “RUN-FILES-ATTR
Configuration Record” section in Chapter 10: Configuration).

Table 33: Availability of a File

Availability of a File

File Is Available Unavailable

INPUT Normal open. Open is unsuccessful.

INPUT (OPTIONAL) Normal open. Normal open; first read causes at end
condition or invalid key condition.

I–O Normal open. Open is unsuccessful.

I–O (OPTIONAL) Normal open. Open causes file to be created.

OUTPUT Normal open; file
contains no records.

Open causes file to be created.

EXTEND Normal open. Open is unsuccessful.

EXTEND (OPTIONAL) Normal open. Open causes file to be created.

Prior to the successful execution of an OPEN statement for a given file, no statement can be
executed that references that file, either explicitly or implicitly, except that the file may be
listed in the USING or GIVING phrases of a SORT or MERGE statement.

An OPEN statement must be successfully executed prior to the execution of any of the
permissible input-output statements. In Table 34, a ■■■ symbol at an intersection indicates
that the specified statement, used in the access mode given for that row, may be used with the
open mode given at the top of the column.

A file may be opened with the INPUT, OUTPUT, EXTEND, and I–O phrases in the same
program. Following the initial execution of an OPEN statement for a file, each subsequent
OPEN statement execution for that same file must be preceded by the execution of a CLOSE
statement, without the LOCK, REEL or UNIT phrase, for that file.

Chapter 6: Procedure Division Statements

318 RM/COBOL Language Reference Manual

Table 34: Permissible Statements

Permissible Statements

 Open Mode

Access Statement Input Output I-O Extend

Sequential

READ

WRITE

REWRITE

START

DELETE

Random

READ

WRITE

REWRITE

START

DELETE

Dynamic

READ

WRITE

REWRITE

START

DELETE

 May be used.

 May not be used.

Execution of the OPEN statement does not obtain or release the first data record.

The file description entry for file-name-1, file-name-3 or file-name-4 must be equivalent to
that used when this file was created.

The execution of an OPEN statement causes the value of the specified file status data item, if
any, associated with the file to be updated.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 319

INPUT Phrase

If a file opened with the INPUT phrase is an optional file that is not present, the OPEN
statement sets the file position indicator to indicate that an optional input file is not present.
Otherwise:

• When sequential or relative files are opened with the INPUT phrase, the file position
indicator is set to 1.

• When indexed files are opened with the INPUT phrase, the file position indicator is set to
the characters that have the lowest ordinal position in the collating sequence associated
with the file, and the prime record key is established as the key of reference.

The REVERSED and NO REWIND phrases may only be specified if file-name-1 refers to a
sequential organization file. Since the NO REWIND Phrase is common to the INPUT and
OUTPUT phrases, it is discussed separately on page 320.

When the REVERSED phrase is specified, the file is positioned at its end by execution of the
OPEN statement. Subsequent READ statements for the file make the data records of the file
available in reverse order; that is, starting with the last record.

The REVERSED phrase is applicable only to files whose storage medium is capable of
reverse motion. The phrase is ignored at runtime when not applicable to the storage medium
of the file. (Note that at the time this document was published, the RM/COBOL file manager
did not support any storage medium capable of reverse motion.)

OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is
created. At that time, the associated file contains no data records.

The NO REWIND phrase may only be specified if file-name-2 refers to a sequential
organization file. Since the NO REWIND Phrase is common to the INPUT and OUTPUT
phrases, it is discussed separately on page 320.

I-O Phrase

The I–O phrase permits the opening of a mass storage file for both input and output
operations. If the referenced file does not exist and the OPTIONAL phrase is specified in the
SELECT clause for the referenced file, the file is created as a new empty file as is done when
the OUTPUT phrase is used.

The I–O phrase can be used only for mass storage files (files assigned to the DISC, DISK, or
RANDOM device-type).

When the I–O phrase is specified and the LABEL RECORDS clause indicates that label
records are present, the execution of the OPEN statement includes the following:

[]

REWINDNOWITH
REVERSEDLOCKWITHINPUT 1file-name-

[] []{ }REWINDNOWITHLOCKWITHOUTPUT 2file-name-

[]{ }LOCKWITHO-I 3file-name-

Chapter 6: Procedure Division Statements

320 RM/COBOL Language Reference Manual

• The labels are checked.

• New labels are written.

When sequential or relative files are opened with the I–O phrase, the file position indicator is
set to 1.

When indexed files are opened with the I–O phrase, the file position indicator is set to the
characters that have the lowest ordinal position in the collating sequence associated with the
file, and the prime record key is established as the key of reference.

In 1985 mode, if the run unit does not have write access to the file, the execution of an OPEN
statement with the I–O phrase is unsuccessful and the I–O status value is set to indicate this
condition. In 1974 mode, if the run unit does not have write access to the file, an OPEN
statement with the I–O phrase is successful; however, any attempt to execute a DELETE,
REWRITE, or WRITE statement while in this mode will be unsuccessful.

EXTEND Phrase

When the EXTEND phrase is specified, the OPEN statement positions the file immediately
following the last logical record of that file. Subsequent WRITE statements referencing the
file will add records to the file as though the file has been opened with the OUTPUT phrase.

The EXTEND phrase may be specified only if file-name-4 refers to a file with sequential
access. The EXTEND phrase must not be specified for a file whose device-type is INPUT.

The last record for a sequential file is the last record written in the file.

The last record for a relative file is the currently existing record with the highest relative
record number.

The last record for an indexed file is the currently existing record with the highest prime key
value according to the collating sequence of the file. If the indexed file is described with
the DUPLICATES phrase in the RECORD KEY clause of its file control entry and the
highest prime key value is duplicated within the records of the file, then the last record is the
currently existing record with the highest prime key value that was chronologically last
released to the file.

NO REWIND Phrase

The NO REWIND phrase can be used only with sequential single reel or unit files. The
phrase is ignored if it does not apply to the storage medium on which the file resides.

If the storage medium for the file permits rewinding, the following rules apply:

1. When the REVERSED, EXTEND or NO REWIND phrase is not specified, execution of
the OPEN statement causes the file to be positioned at its beginning.

2. When the NO REWIND phrase is specified, execution of the OPEN statement does not
cause the file to be repositioned; the file must be already positioned at its beginning prior
to the execution of the OPEN statement.

[]{ }LOCKWITHEXTEND 4file-name-

REWINDNOWITH

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 321

OPEN Statement Examples

 OPEN EXCLUSIVE INPUT TRANSACTION-FILE.

 OPEN EXCLUSIVE OUTPUT LOG-FILE WITH NO REWIND.

 OPEN I-O LOG-FILE.

 OPEN EXTEND INPUT-FILE.

 OPEN INPUT TAPE-FILE-1 REVERSED.

 OPEN I-O DATA-BASE WITH LOCK.

 OPEN INPUT DATA-BASE.

PERFORM Statement
The PERFORM statement is used to transfer control explicitly to one or more procedures and
to return control implicitly whenever execution of the specified procedure is complete. The
PERFORM statement is also used to control execution of one or more imperative statements
that are within the scope of that PERFORM statement.

Format 1: Perform (Once)

Format 2: Perform…Times

Format 3: Perform…Until

[]PERFORM-END

THRU
THROUGHPERFORM

-1-statementimperative

name-2procedure-name-1procedure-

[]PERFORM-END

TIMES

THRU
THROUGHPERFORM

-1-statementimperative

integer-1
-1identifier

name-2procedure-name-1procedure-

[]PERFORM-END

UNTILAFTER
BEFORETESTWITH

THRU
THROUGHPERFORM

-1-statementimperative

1condition-

name-2procedure-name-1procedure-

Chapter 6: Procedure Division Statements

322 RM/COBOL Language Reference Manual

Format 4: Perform…Varying

If procedure-name-1 is omitted, imperative-statement-1 and the END-PERFORM phrase
must be specified; if procedure-name-1 is specified, imperative-statement-1 and the END-
PERFORM phrase must not be specified.

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST BEFORE
phrase is assumed.

Each identifier represents a numeric elementary item described in the Data Division. In
Format 2, identifier-1 must be described as a numeric integer.

Each literal represents a numeric literal.

The words THRU and THROUGH are synonymous.

If an index-name is specified in the VARYING or AFTER phrase, then:

• The identifier in the associated FROM and BY phrases must reference an integer data
item.

• The literal in the associated FROM phrase must be a positive integer.

• The literal in the associated BY phrase must be a nonzero integer.

If an index-name is specified in the FROM phrase, then:

• The identifier in the associated VARYING or AFTER phrase must refer to an integer
data item.

• The identifier in the associated BY phrase must refer to an integer data item.

• The literal in the associated BY phrase must be an integer.

[]PERFORM-END

UNTIL

BYFROMAFTER

UNTIL

BYFROMVARYING

AFTER
BEFORETESTWITH

THRU
THROUGHPERFORM

-1-statementimperative

2condition-

literal-4
-7identifier

literal-3
-4index-name

-6identifier

-3index-name
-5identifier

1condition-

literal-2
-4identifier

literal-1
-2index-name

-3identifier

-1index-name
-2identifier

name-2procedure-name-1procedure-

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 323

literal-2 or literal-4 in the BY phrase must not be zero.

condition-1, condition-2, . . . may be any conditional expression.

When procedure-name-1 and procedure-name-2 are both specified and either is the name of a
procedure in the declaratives portion of the Procedure Division, both must be procedure-
names in the same declarative section.

The data items referenced by identifier-4 and identifier-7 must not have a zero value.

If an index-name is specified in the VARYING or AFTER phrase, and an identifier is
specified in the associated FROM phrase, the data item referenced by the identifier must have
a positive value.

When procedure-name-1 is specified, the PERFORM statement is referred to as an out-of-line
PERFORM statement; when procedure-name-1 is omitted, the PERFORM statement is
referred to as an in-line PERFORM statement.

The statements contained within the range of procedure-name-1 (through procedure-name-2,
if specified) for an out-of-line PERFORM statement or contained within the PERFORM
statement itself for an in-line PERFORM statement are referred to as the specified set
of statements.

The END-PERFORM phrase delimits the scope of the in-line PERFORM statement. For
additional information on scope terminators such as END-PERFORM, see Scope of
Statements (on page 31), Imperative Statements (on page 30), and Delimited Scope
Statements (on page 31).

An in-line PERFORM statement functions according to the following general rules for an
otherwise identical out-of-line PERFORM statement, with the exception that the statements
contained within the in-line PERFORM statement are executed in place of the statements
contained within the range of procedure-name-1 (through procedure-name-2, if specified).
Unless specifically qualified by the terms in-line or out-of-line, all the rules that apply to the
out-of-line PERFORM statement also apply to the in-line PERFORM statement.

When the PERFORM statement is executed, control is transferred to the first statement of the
specified set of statements, except as indicated in the general rules for Formats 2 through 4 as
given below. This transfer of control occurs only once for each execution of a PERFORM
statement. For those cases when a transfer of control to the specified set of statements does
take place, an implicit transfer of control to the end of the PERFORM statement is established
as follows:

• If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, the
return is after the last statement of procedure-name-1.

• If procedure-name-1 is a section-name and procedure-name-2 is not specified, the return
is after the last statement of the last paragraph in procedure-name-1.

• If procedure-name-2 is specified and it is a paragraph-name, the return is after the last
statement of the paragraph.

• If procedure-name-2 is specified and it is a section-name, the return is after the last
statement of the last paragraph in the section.

• If an in-line PERFORM statement is specified, an execution of the PERFORM statement
is completed after the last statement contained within it has been executed.

There is no necessary relationship between procedure-name-1 and procedure-name-2 except
that a consecutive sequence of operations is to be executed beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure named procedure-name-2.
In particular, GO TO and PERFORM statements may occur between procedure-name-1 and
the end of procedure-name-2. If there are two or more logical paths to the return point,

Chapter 6: Procedure Division Statements

324 RM/COBOL Language Reference Manual

procedure-name-2 may be the name of a paragraph consisting of the EXIT or CONTINUE
statement, to which all of these paths must lead.

If control passes to the specified set of statements by means other than a PERFORM
statement, control will pass through the last statement of the set to the next executable
statement as if no PERFORM statement referenced the set.

The PERFORM statements operate as described in the following paragraphs.

Format 1 is the basic PERFORM statement. The specified set of statements referenced by
this type of PERFORM statement is executed once and then control passes to the end of the
PERFORM statement.

Format 2 is the PERFORM . . . TIMES statement. The specified set of statements is
performed the number of times specified by integer-1 or by the initial value of the data item
referenced by identifier-1 for that execution. If, at the time of execution of a PERFORM
statement, the value of the data item referenced by identifier-1 is equal to zero or is negative,
control passes to the end of the PERFORM statement. Following the execution of the
specified set of statements the specified number of times, control is transferred to the end of
the PERFORM statement. During execution of the PERFORM statement, references to
identifier-1 cannot alter the number of times the specified set of statements is to be executed
from that which was indicated by the initial value of the data item referenced by identifier-1.

Format 3 is the PERFORM . . . UNTIL statement. The specified set of statements is
performed until the condition specified by the UNTIL phrase is true. When the condition is
true, control is transferred to the end of the PERFORM statement. If the condition is true
when the PERFORM statement is entered and the TEST AFTER phrase is not specified,
control passes to the end of the PERFORM statement and the specified set of statements is not
executed. In the absence of the TEST AFTER phrase (that is, TEST BEFORE is specified or
implied), testing of the specified condition occurs before each execution of the specified set of
statements. When the TEST AFTER phrase is specified, the specified set of statements is
executed before the specified condition is tested. Any subscripting or reference modification
associated with the operands in condition-1 is evaluated each time the condition is tested.

Format 4 is the PERFORM . . . VARYING statement. This variation of the PERFORM
statement is used to augment the values referred to by one or more identifiers or index-names
in an orderly fashion during the execution of a PERFORM statement. In the following
discussion, every reference to identifier as the object of the VARYING, AFTER and FROM
(current value) phrases also refers to index-names.

If index-name-1 or index-name-3 is specified, the value of the associated index at the
beginning of the PERFORM statement must be set to an occurrence number of an element
in the table. If index-name-2 or index-name-4 is specified, the value of the data item referred
to by identifier-2 or identifier-5 at the beginning of the PERFORM statement must be
equal to an occurrence number of an element in a table associated with index-name-2 or
index-name-4. Subsequent augmentation, as described below, of index-name-1 or
index-name-3 must not result in the associated index being set to a value outside the range
of the table associated with index-name-1 or index-name-3, except that at the completion of
the PERFORM statement the index associated with index-name-1 may contain a value that
is outside the range of the associated table by one increment or decrement value.

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time the contents
of the data item referred to by the identifier are set or augmented. If identifier-3, identifier-4,
identifier-6, or identifier-7 is subscripted, the subscripts are evaluated each time the contents
of the data item referred to by the identifier are used in a setting or augmenting operation.
Any subscripting or reference modification associated with the operands specified in
condition-1 or condition-2 is evaluated each time the condition is tested.

The following paragraphs specify in detail the actions that occur as a result of executing four
of the simpler forms of a PERFORM . . . VARYING statement. The actions that occur when

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 325

more complex forms of the PERFORM . . . VARYING statement are executed may be
inferred by generalization from the simpler forms.

For a PERFORM . . . VARYING statement that does not have an AFTER phrase nor a TEST
AFTER phrase (that is, TEST BEFORE is specified or implied), the data item referred to by
identifier-2 is set to literal-1 or the current value of the data item referred to by identifier-3 at
the point of initial execution of the statement; then condition-1 in the UNTIL phrase is tested.
If it is false, the specified set of statements is executed once. The value of the data item
referred to by identifier-2 is augmented by the specified increment or decrement value
(literal-2 or the value of the data item referred to by identifier-4 in the BY phrase) and
condition-1 is retested, with subsequent execution of the specified set of statements if it is
found to be false. The cycle continues until condition-1 is found to be true, at which time
control is transferred to the end of the PERFORM statement. If condition-1 is true at the
beginning of execution of the PERFORM statement, control is transferred to the end of the
PERFORM statement without executing the specified set of statements at all.

Figure 5 represents this sequence of actions.

Figure 5: PERFORM . . . VARYING Statement

When control reaches the end of this form of the PERFORM . . . VARYING statement, the
data item referred to by identifier-2 contains a value that exceeds the setting last used by one
increment or decrement value, unless condition-1 was true to begin with, in which case it
contains literal-1 or the current value of the data item referred to by identifier-3.

For a PERFORM . . . VARYING statement that has one AFTER phrase but no TEST
AFTER phrase (that is, TEST BEFORE is specified or implied), the data item referred to by
identifier-2 is set to literal-1 or to the current value of the data item referred to by identifier-3;
then the data item referred to by identifier-5 is set to literal-3 or to the current value of the

This PERFORM . . . VARYING statement has no AFTER or TEST AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-1 Exit
True

False

Execute specified set
of statements

Augment identifier-2
with current BY value

Chapter 6: Procedure Division Statements

326 RM/COBOL Language Reference Manual

data item referred to by identifier-6. Subsequent actions form a nested set of two cycles.
condition-1 is tested. If it is true, control is transferred to the end of the PERFORM
statement; if it is false, condition-2 is tested. If condition-2 is false, the specified set of
statements is executed once, and then the data item referred to by identifier-5 is augmented by
literal-4 or by the current value of the data item referred to by identifier-7, and condition-2 is
retested with subsequent execution of the specified set of statements if it is found to be false.
This inner cycle of execution, testing, and augmentation continues until condition-2 is found
to be true, at which time the data item referred to by identifier-2 is augmented by literal-2 or
by the current value of the data item referred to by identifier-4, identifier-5 is set to literal-3
or to the current value of the data item referred to by identifier-6, and condition-1 is retested
with subsequent reevaluation of condition-2 as long as condition-1 is found to be false. This
outer cycle continues until condition-1 is found to be true.

Figure 6 represents this sequence of actions.

Figure 6: PERFORM . . . VARYING Statement

This PERFORM . . . VARYING statement has one AFTER phrase and no TEST
AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-1 Exit
True

False

Execute specified set
of statements

Augment identifier-5
with current BY value

Set identifier-5 to its
current FROM value

condition-2

False

True

Set identifier-5 to its
current FROM value

Augment identifier-2
with current BY value

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 327

When control reaches the end of this form of the PERFORM . . . VARYING statement, the
data item referred to by identifier-5 contains literal-3 or the current value of the data item
referred to by identifier-6. The data item referred to by identifier-2 contains a value that
exceeds the last used setting by one increment or decrement value, unless condition-1 was
true to begin with, in which case it contains literal-1 or the current value of the data item
referred to by identifier-3.

For a PERFORM . . . VARYING statement that does not have an AFTER phrase but does
have a TEST AFTER phrase, the data item referred to by identifier-2 is set to literal-1 or the
current value of the data item referred to by identifier-3 at the point of initial execution of the
statement; then the specified set of statements is executed once and condition-1 in the UNTIL
phrase is tested. If it is false, the value of the data item referred to by identifier-2 is
augmented by the specified increment or decrement value (literal-2 or the value of the data
item referred to by identifier-4) and the specified set of statements is executed again with
subsequent reevaluation of condition-1. The cycle continues until condition-1 is found to be
true, at which time control is transferred to the end of the PERFORM statement. For this
form of the PERFORM . . . VARYING statement, the specified set of statements is always
executed at least once.

Figure 7 represents this sequence of actions.

Figure 7: PERFORM . . . VARYING Statement

When control reaches the end of this form of the PERFORM . . . VARYING statement,
identifier-2 contains the same value it contained at the end of the most recent execution of the
specified set of statements.

This PERFORM . . . VARYING statement has a TEST AFTER phrase and no
AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-1 Exit
True

False

Augment identifier-2
with current BY value

Execute specified set
of statements

Chapter 6: Procedure Division Statements

328 RM/COBOL Language Reference Manual

For a PERFORM . . . VARYING statement that has one AFTER phrase and a TEST AFTER
phrase, the data item referred to by identifier-2 is set to literal-1 or the current value of the
data item referred to by identifier-3, then the data item referred to by identifier-5 is set to
literal-3 or the current value of the data item referred to by identifier-6. The specified set of
statements is executed once and condition-2 is tested. If it is false, the data item referred to by
identifier-5 is augmented by literal-4 or the current value of the data item referred to by
identifier-7 and the specified set of statements is executed again with subsequent reevaluation
of condition-2. This inner cycle of execution, testing and augmentation continues until
condition-2 is found to be true, at which time condition-1 is tested. If it is true, control is
transferred to the end of the PERFORM statement. If it is false, the data item referred to by
identifier-2 is augmented by literal-2 or the current value of the data item referred to by
identifier-4. identifier-5 is set to literal-3 or the current value of the data item referred to by
identifier-6; and the specified set of statements is executed again with subsequent reevaluation
of condition-2. This outer cycle continues until both condition-1 and condition-2 are found to
be true.

Figure 8 represents this sequence of actions.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 329

Figure 8: PERFORM . . . VARYING Statement

When control reaches the end of this form of the PERFORM . . . VARYING statement, each
data item varied by an AFTER or VARYING phrase contains the same value it contained at
the end of the most recent execution of the specified set of statements.

The preceding definition of the operation of a Format 4 PERFORM statement complies with
ANSI COBOL 1985. It should be noted that this definition differs slightly from the definition
in ANSI COBOL 1974, with which earlier versions of RM/COBOL complied. The difference
is in the point at which inner cycle loop variables are reset to their FROM values.

It can have an effect only on Format 4 PERFORM statements that specify one or more
AFTER phrases and that specify an inner FROM operand that is dependent on one of the
higher-level loop operands. Most Format 4 PERFORM statements are not of this form, and
are, therefore, not affected by this change. In situations where it is necessary to preserve

This PERFORM . . . VARYING statement has one AFTER phrase and a TEST
AFTER phrase.

Entrance

Set identifier-2 to its
current FROM value

condition-2

Exit

True

False

Execute specified set
of statements

Augment identifier-5
with current BY value

Set identifier-5 to its
current FROM value

condition-1

False

True

Augment identifier-2
with current BY value

Chapter 6: Procedure Division Statements

330 RM/COBOL Language Reference Manual

compatibility with earlier versions of COBOL in this regard, two courses of action are
possible: either modify the text of the source program, replacing the Format 4 PERFORM
statement with an appropriate sequence of IF, MOVE, ADD and Format 1 PERFORM
statements; or make use of the Compile Command option that causes the RM/COBOL
compiler to treat Format 4 PERFORM statements as before. The description of the
7 Compile Command Option in Chapter 6: Compiling of the RM/COBOL User’s Guide
contains further information on this option and the language features it controls.

During the execution of the specified set of statements associated with the PERFORM
statement, any change to the VARYING variable (the data item referred to by identifier-2 and
index-name-1), the BY variable (the data item referred to by identifier-4), the AFTER variable
(the data item referred to by identifier-5 and index-name-3), or the FROM variable (the data
item referred to by identifier-3 and index-name-2) are taken into consideration and affect the
operation of the PERFORM statement.

When the data items referred to by two identifiers are varied, the data item referred to by
identifier-5 goes through a complete cycle (FROM, BY, UNTIL) each time the contents of the
data item referred to by identifier-2 are varied. When the contents of three or more data items
referred to by identifiers are varied, the mechanism is the same as for two identifiers except
that the data item being varied by each AFTER phrase goes through a complete cycle each
time the data item being varied by the preceding AFTER phrase is augmented.

The range of a PERFORM statement consists logically of all those statements that are
executed as a result of executing the PERFORM statement through execution of the implicit
transfer of control to the end of the PERFORM statement. The range includes all statements
that are executed as the result of a transfer of control by CALL, EXIT, GO TO and
PERFORM statements in the range of the PERFORM statement, as well as all statements in
declarative procedures that are executed as a result of the execution of statements in the range
of the PERFORM statement. The statements in the range of a PERFORM statement need not
appear consecutively in the source program.

If the specified set of statements for one PERFORM statement includes another PERFORM
statement, the specified set of statements associated with the inner PERFORM must itself be
either totally included in, or totally excluded from, the logical sequence referred to by the
outer PERFORM statement. Thus an active PERFORM statement, whose execution point
begins within the range of another active PERFORM statement, must not allow control to
pass to the exit of the other active PERFORM statement; furthermore, two or more such
active PERFORM statements may not have a common exit. This is illustrated in Figure 9,
Figure 10, and Figure 11.

Figure 9: PERFORM Statement Examples

Performed statements totally included in logical sequence referred to by first
PERFORM.

x PERFORM a THRU m

a

d PERFORM f THRU j

f

j

m

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 331

Figure 10: PERFORM Statement Examples

Figure 11: PERFORM Statement Examples

A PERFORM statement that appears in a section that is not in an independent segment can
have within its range, in addition to any declarative sections whose execution is caused within
that range, only one of the following:

• Sections, paragraphs, or both, wholly contained in one or more nonindependent
segments.

• Sections, paragraphs, or both, wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within its range, in
addition to any declarative sections whose execution is caused within that range, only one of
the following:

• Sections, paragraphs, or both, wholly contained in one or more nonindependent
segments.

• Sections, paragraphs, or both, wholly contained in the same independent segment as the
PERFORM statement.

PERFORM Statement Examples

 PERFORM INTIALIZATION-PROCEDURE.

 PERFORM GROUP1 THROUGH GROUP5.

Performed statements totally excluded from logical sequence referred to by first
PERFORM.

x PERFORM a THRU m

a

d PERFORM f THRU j

m

f

j

Second PERFORM excluded in logical sequence referred to by first PERFORM.

x PERFORM a THRU m

a

f

m

j

d PERFORM f THRU j

Chapter 6: Procedure Division Statements

332 RM/COBOL Language Reference Manual

 PERFORM
 DISPLAY "Ending run unit now"
 STOP RUN
 END-PERFORM.

 PERFORM STEP-UP COUNT-1 TIMES.

 PERFORM 4 TIMES
 ADD ITEM-COUNT TO ITEM-COUNT
 END-PERFORM.

 SET EOF TO FALSE.
 PERFORM UNTIL EOF
 READ INPUT-FILE
 AT END SET EOF TO TRUE
 NOT AT END ADD 1 TO RECORD-COUNT
 END-READ
 END-PERFORM.

 PERFORM ITEM-PROCEDURE
 WITH TEST AFTER UNTIL ITEM-COUNT = 0.

 PERFORM VARYING T1-IX FROM 1 BY 1
 UNTIL T1-IX > 100
 DISPLAY E1-FIELD(T1-IX)
 LINE E1-LINE(T1-IX)
 COL E1-COL(T1-IX)
 END-PERFORM.

 PERFORM TABLE-INITIALIZE
 VARYING IX1 FROM 1 BY 1 UNTIL IX1 > 5
 AFTER IX2 FROM 1 BY 1 UNTIL IX2 > 10.

PURGE Statement
The PURGE statement eliminates from the Message Control System (MCS) a partial message
that has been released by one or more SEND statements.

cd-name-1 must reference an output CD or an input-output CD.

Execution of a PURGE statement causes the MCS to eliminate any partial message awaiting
transmission to the destinations specified in the CD referred to by cd-name-1.

Any message that has associated with it an end of message indicator (EMI) or end of group
indicator (EGI) is not affected by the execution of a PURGE statement. For further
explanation, see Table 35: Data Item Contents on page 354 of the SEND statement.

The contents of the status key data item and the contents of the error key data item (if
applicable) of the area referenced by cd-name-1 are updated by the MCS.

PURGE Statement Examples

 PURGE COM-LINE-1.

 PURGE COM-LINE-2.

cd-name-1PURGE

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 333

READ Statement
For sequential access, the READ statement makes available the next or previous logical
record from a file. For random access, the READ statement makes available a specified
record from a mass storage file.

Format 1: Read Sequential Access

Format 2: Read Random Access

The file referenced by file-name-1 must be open in the INPUT or I–O mode at the time this
statement is executed.

In a Format 1 READ statement, the NEXT phrase causes the next logical record to be
retrieved from the file, and the PREVIOUS phrase causes the previous logical record to be
retrieved. The PREVIOUS phrase may not be specified for a sequential organization file.

For a file in which sequential access mode is specified, a Format 1 READ statement must be
used. If both the NEXT phrase and the PREVIOUS phrase are omitted from a Format 1
READ statement for a file in sequential access mode, the default is NEXT.

For a file in which dynamic access mode is specified and records are to be retrieved
sequentially using Format 1 READ statements, either the NEXT phrase or the PREVIOUS
phrase must be specified.

Format 2 is used for files in random access mode or for files in dynamic access mode when
records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE
procedure is specified for file-name-1.

The KEY phrase may be specified only when the organization of file-name-1 is indexed.
When the KEY phrase is present, data-name-1 or split-key-name-1 must be the name of
one of the record keys associated with file-name-1. data-name-1 or split-key-name-1 may

[]

[]

[]

[]READ-END

ENDATNOT

ENDAT

INTO
LOCKNOWITHRECORDPREVIOUS

NEXTREAD

-2-statementimperative

-1-statementimperative

-1identifier1file-name-

[]

[]

[]

[]READ-END

KEYINVALIDNOT

KEYINVALID

ISKEY

INTO
LOCKNOWITHRECORDREAD

-2-statementimperative

-1-statementimperative

name-1split-key-
1data-name-

-1identifier1file-name-

Chapter 6: Procedure Division Statements

334 RM/COBOL Language Reference Manual

be qualified. The compiler implicitly qualifies data-name-1 in the KEY phrase of a READ
START statement for an indexed organization file with file-name-1 when data-name-1 does
not include file-name-1 as its last qualifier.

The setting of the file position indicator at the start of the execution of a Format 1 READ
statement is used in determining the record to be made available according to the following
rules. Comparisons for records in sequential files relate to the record number. Comparisons
for records in relative files relate to the relative key number. Comparisons for records in
indexed files relate to the value of the current key of reference, and the comparisons of key
values are made according to the collating sequence of the file.

1. If the file position indicator indicates that no valid next record has been established,
execution of the READ statement is unsuccessful.

2. If the file position indicator indicates that an optional input file is not present, execution
proceeds as described below for the case when no next record exists.

3. If the file position indicator was established by a previous OPEN or START statement,
and

a. PREVIOUS was not specified, the first existing record in the file whose record
number or key value is greater than or equal to the file position indicator is selected.

b. PREVIOUS was specified, the first existing record in the file whose record number
or key value is less than or equal to the file position indicator is selected.

4. If the file position indicator was established by a previous READ statement, and the file
is a sequential or relative file, or an indexed file whose current key of reference does not
allow duplicates, and

a. PREVIOUS was not specified, the first existing record in the file whose record
number or key value is greater than the file position indicator is selected.

b. PREVIOUS was specified, the first existing record in the file whose record number
or key value is less than the file position indicator is selected.

5. For indexed files, if the file position indicator was established by a previous READ
statement, and the current key of reference does allow duplicates, and

a. PREVIOUS was not specified, the first record in the file whose key value is either
equal to the file position indicator and whose logical position within the set of
duplicates is immediately after the record that was made available by that previous
READ statement, or whose key value is greater than the file position indicator, is
selected.

b. PREVIOUS was specified, the first record in the file whose key value is either equal
to the file position indicator and whose logical position within the set of duplicates is
immediately before the record that was made available by that previous READ
statement, or whose key value is less than the file position indicator, is selected.

If a record is found that satisfies these requirements, and there is no record lock conflict for
that record, it is made available in the record area for the file.

If no record is found that satisfies these requirements, the file position indicator is set to
indicate that no next record exists, and execution proceeds as described below for the case
when no next record exists.

If a record is made available, the file position indicator is updated as follows:

• For sequential files, the file position indicator is set to the record number of the record
made available.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 335

• For relative files, the file position indicator is set to the relative record number of the
record made available. If the RELATIVE KEY clause is specified for file-name-1 and
the number of significant digits in the relative record number of the selected record is
larger than the size of the relative key data item, the file position indicator is set to
indicate this condition and execution proceeds as described below for the case when no
next record exists.

• For indexed files, the file position indicator is set to the value of the current key of
reference of the record made available.

The execution of the READ statement causes the value of the file status data item, if any,
associated with file-name-1 to be updated.

When the logical records of a file are described with more than one record description, they
share the same storage area; this is equivalent to an implicit redefinition of the area. If the
number of character positions in the record that is read is less than the minimum size specified
by the record description entries for file-name-1, the portion of the record area that is to the
right of the last valid character read is undefined. If the number of character positions in the
record that is read is greater than the maximum size specified by the record description entries
for file-name-1, the record is truncated on the right to the maximum size. In either case, the
READ statement is successful and an I–O status value is set indicating that a record length
conflict has occurred.

For a Format 1 READ statement, if the file position indicator indicates that no next (or
previous) logical record exists, or that an optional input file is not present, the NOT AT END
phrase, if specified, is ignored, and the following operations occur in the order specified:

1. An I–O status value is derived from the setting of the file position indicator and stored
into the file status data item for the file, if there is one.

2. If the AT END phrase is specified in the Format 1 READ statement, control is transferred
to the imperative statement in the AT END phrase. Any USE procedure associated with
file-name-1 is not executed.

3. If the AT END phrase is not specified, the applicable USE procedure, if there is one,
is executed. Upon return from the USE procedure, control is transferred to the end of
the READ statement. If there is no applicable USE procedure, an error message is
produced and the run unit is terminated. The runtime can be configured, as described
for the DEFAULT-USE-PROCEDURE keyword of the RUN-FILES-ATTR record in
Chapter 10: Configuration of the RM/COBOL User’s Guide, to assume that a default
empty USE procedure is applicable, thus causing execution to continue at the next
executable statement after the READ statement.

If the at end condition occurs, execution of the Format 1 READ statement is unsuccessful.
Following the unsuccessful execution of the READ statement, the contents of the associated
record area are undefined and the file position indicator is set to indicate that no valid next
record has been established. A further Format 1 READ statement for that file must not be
executed without first executing one of the following:

• A successful CLOSE statement followed by the execution of a successful OPEN
statement for that file

• A successful START statement for that file

• A successful Format 2 READ statement for that file

If an at end condition does not occur during the execution of a Format 1 READ statement, the
AT END phrase and its associated imperative statement are ignored, if specified, and the
following actions occur:

Chapter 6: Procedure Division Statements

336 RM/COBOL Language Reference Manual

• The file position indicator is set and the I–O status value associated with the file-name is
updated and stored into the file status data item for the file, if there is one.

• If an exception condition other than at end exists, control is transferred according to rules
of the USE procedure applicable to the file-name.

• If no exception condition exists, the record is made available in the record area and any
implicit move resulting from the presence of an INTO phrase is executed. Control is
transferred to the end of the READ statement or to imperative-statement-2, if specified,
in the NOT AT END phrase. In the latter case, execution continues according to the rules
for each statement specified in imperative-statement-2. If a procedure branching or
conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion of
the execution of imperative-statement-2, control is transferred to the end of the READ
statement.

For relative files if the RELATIVE KEY phrase is specified, the execution of a Format 1
READ statement updates the contents of the relative key data item such that it contains the
relative record number of the record made available.

For relative files the execution of a Format 2 READ statement sets the file position indicator
to, and makes available, the record whose relative record number is contained in the data item
named in the RELATIVE KEY phrase for the file. If the file does not contain such a record,
the invalid key condition exists and execution of the READ statement is unsuccessful.

For an indexed file being sequentially accessed using the NEXT phrase (specified either
implicitly or explicitly) in a Format 1 READ statement, records having the same duplicate
value in an alternate record key which is the key of reference are made available in the same
order in which they are released by execution of WRITE statements, or by execution of
REWRITE statements that create such duplicate values. If the file is being sequentially
accessed using the PREVIOUS phrase in a Format 1 READ statement, the records with
duplicate keys are made available in reverse of the order that they are released or made
duplicate.

In single record locking modes, any record lock held by the run unit for file-name-1 is
released upon execution of the READ statement. The successful execution of the READ
statement may obtain a record lock on the accessed record as described in the discussion of
the LOCK Phrase (on page 337).

In multiple record locking modes any record locks held by the run unit for file-name-1 are not
released upon execution of the READ statement.

The END-READ phrase delimits the scope of the READ statement. This phrase is not
necessary unless the READ statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a READ statement. The END-READ phrase
is allowed even when not necessary. For additional information on scope terminators such as
END-READ, see Scope of Statements (on page 31), Imperative Statements (on page 30), and
Delimited Scope Statements (on page 31).

KEY Phrase

For an indexed file if the KEY phrase is specified in a Format 2 READ statement,
data-name-1 or split-key-name-1 is established as the key of reference for this retrieval.

name-1split-key-
1data-name-ISKEY

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 337

If the dynamic access mode is specified, this key of reference is also used for retrievals
by any subsequent executions of Format 1 READ statements for the file until a different
key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement, the prime record key is
established as the key of reference for this retrieval.

If the dynamic access mode is specified, this key of reference is also used for retrievals by any
subsequent executions of Format 1 READ statements for the file until a different key of
reference is established for the file.

For indexed files, the execution of a Format 2 READ statement causes the value of the key
of reference to be compared with the value contained in the corresponding data item of the
stored records in the file, until the first record having an equal value is found. The file
position indicator is positioned to this record which is then made available. If no record can
be so identified, the invalid key condition exists and execution of the READ statement is
unsuccessful.

For relative files, the KEY phrase cannot be specified.

LOCK Phrase

The LOCK phrase may be specified to control record locking for a shared input-output file. If
the file is not a shared input-output file, the LOCK phrase is ignored and the execution of the
READ statement does not attempt to obtain a lock on the record accessed. For a file open in
the INPUT mode, the execution of the READ statement never attempts to obtain a lock on the
record accessed.

In manual record locking modes, the READ statement only attempts to lock the record
accessed when the LOCK phrase, without the NO option, is specified. If the record accessed
by the READ statement is to be subsequently rewritten or deleted, the LOCK phrase, without
the NO option, should be specified in a READ statement executed in manual record locking
modes. For a READ statement that is executed in manual record locking modes, the NO
LOCK phrase is redundant.

In automatic record locking modes, the READ statement automatically attempts to lock the
record accessed except when the NO LOCK phrase is specified. Specifying NO LOCK will
reduce file contention in a shared file environment when the record accessed by the READ
statement is not to be subsequently rewritten or deleted. In automatic record locking modes,
the LOCK phrase, without the NO option, is redundant.

When a READ statement attempts to obtain a record lock and the record accessed is already
locked by another concurrently executing run unit, the subsequent action depends on the form
of the program:

• If the program declares both a file status data item for file-name-1 and an applicable
USE procedure for file-name-1, the READ statement completes unsuccessfully with
an I–O status value that indicates a locked record conflict and the USE procedure is
performed. The status of the file position indicator in this case is described in the
WITH NO LOCK Phrase (READ Statement) sections for sequential, relative, and
indexed files in “File Types and Structure” in Chapter 8: RM/COBOL Features of the
RM/COBOL User’s Guide.

• If the conditions in the above paragraph are not satisfied, the runtime system waits for the
other run unit to unlock the record before completing the READ statement execution for
this run unit.

[] LOCKNOWITH

Chapter 6: Procedure Division Statements

338 RM/COBOL Language Reference Manual

If the record is already locked by this run unit through another COBOL file-name that refers
to the same physical file, the READ statement will not wait but will complete unsuccessfully
regardless of whether both a file status data item and applicable USE procedure are defined in
the program.

If the record is already locked by this run unit through file-name-1, the READ statement
completes successfully and the lock status of the accessed record is not changed.

When a READ statement does not attempt to obtain a lock on the record accessed, the lock
status of the record is not significant. The current contents of the record are obtained at the
time of the execution of the READ statement without indication of its locked or unlocked
status.

See Record Locking (on page 221) for additional information on record locking.

INTO Phrase

If the INTO phrase is specified, the record being read is moved from the record area to the
area specified by identifier-1 according to the rules specified for the MOVE statement without
the CORRESPONDING phrase. The size of the current record is determined by rules
specified in the RECORD clause. If the file description entry contains a RECORD IS
VARYING clause, the implied move is a group move. The implied move does not occur if
the execution of the READ statement was unsuccessful. Any subscripting associated with
identifier-1 is evaluated after the record has been read and immediately before it is moved to
the data item.

When the INTO phrase is used, the record being read is available in both the input record area
and the data area associated with identifier-1.

The INTO phrase must not be used when the input file contains logical records of various
sizes as indicated by their record descriptions. The storage area associated with identifier-1
and the record area associated with file-name-1 must not be the same storage area.

INVALID KEY and NOT INVALID KEY Phrases

The causes of the invalid key condition for a READ statement execution have been indicated
in the preceding text. See the discussions of relative organization input-output (on page 207)
and indexed organization input-output (on page 213) for additional information on the invalid
key condition and the use of the INVALID KEY clause.

Transfer of control following the successful or unsuccessful execution of the READ operation
depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY
phrases in the Format 2 READ statement. See the discussions of invalid key conditions for
relative files (on page 211) and indexed files (on page 218).

See also the discussions of relative organization input-output (on page 207) and indexed
organization input-output (on page 213) for additional information on the invalid key
condition and the use of the INVALID KEY and NOT INVALID KEY phrases.

-1identifierINTO

-2-statementimperative

-1-statementimperative

KEYINVALIDNOT

KEYINVALID

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 339

READ Statement Examples

 READ TRANSACTION-FILE RECORD.

 READ LOG-FILE NEXT RECORD INTO RECORD-SAVE
 AT END SET EOF TO TRUE
 NOT AT END PERFORM PROCESS-LOG-RECORD
 END-READ.

 READ INVENTORY-FILE PREVIOUS RECORD WITH LOCK
 AT END DISPLAY "Beginning-of-file reached."
 END-READ.

 READ DATA-BASE NEXT RECORD WITH NO LOCK
 AT END PERFORM EOF-PROCEDURE.

 READ INVENTORY-FILE RECORD
 INVALID KEY PERFORM BAD-KEY-PROCEDURE
 END-READ.

 READ DATA-BASE WITH NO LOCK INTO RECORD-WORK-AREA
 INVALID KEY DISPLAY "Bad key"
 NOT INVALID KEY PERFORM PROCESS-WORK-AREA
 END-READ.

RECEIVE Statement
The RECEIVE statement makes available to the program a message or a message segment
and pertinent information about that data.

cd-name-1 must reference an input CD or an input-output CD.

If cd-name-1 references an input CD, the contents of the data items specified by data-name-1
(SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area
referenced by cd-name-1 designate the queue structure containing the message.

If cd-name-1 references an input-output CD, the contents of the data item specified by
data-name-3 (SYMBOLIC TERMINAL) of the area referenced by cd-name-1 designates
the source of the message.

The message, message segment, or portion of a message or segment, is transferred to the
receiving character positions of the area referenced by identifier-1 aligned to the left without
space fill.

The data items identified by cd-name-1 are appropriately updated by the MCS at each
execution of a RECEIVE statement.

[]

[]

[]RECEIVE-END

DATAWITH

DATANO

INTOSEGMENT
MESSAGERECEIVE

-2-statementimperative

-1-statementimperative

-1identifiercd-name-1

Chapter 6: Procedure Division Statements

340 RM/COBOL Language Reference Manual

A single execution of a RECEIVE statement never returns to the data item referenced by
identifier-1 more than a single message (when the MESSAGE phrase is used) or a single
segment (when the SEGMENT phrase is used). However, the MCS does not return any
portion of a message to the object program until the entire message is available to the MCS,
even when the SEGMENT phrase of the RECEIVE statement is specified.

Once the execution of a RECEIVE statement has returned a portion of a message, only
subsequent execution of RECEIVE statements in that run unit can cause the remaining portion
of the message to be returned.

The END-RECEIVE phrase delimits the scope of the RECEIVE statement. This phrase is not
necessary unless the RECEIVE statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a RECEIVE statement. The END-RECEIVE
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-RECEIVE, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

NO DATA and WITH DATA Phrases

When, during the execution of a RECEIVE statement, the MCS makes data available in the
data item referenced by identifier-1, the NO DATA phrase, if specified, is ignored and control
is transferred to the end of the RECEIVE statement or, if the WITH DATA phrase is
specified, to imperative-statement-2. In the latter case, execution continues according to the
rules for each statement in imperative-statement-2. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the RECEIVE statement.

When, during the execution of a RECEIVE statement, the MCS does not make data available
in the data item referenced by identifier-1, one of the following actions occurs:

• If the NO DATA phrase is specified in the RECEIVE statement, the RECEIVE operation
is terminated with the indication that action is complete and control is transferred to
imperative-statement-1. Execution then continues according to the rules for each
statement in imperative-statement-1. If a procedure branching or conditional statement
that causes explicit transfer of control is executed, control is transferred in accordance
with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the RECEIVE statement and
the WITH DATA phrase, if specified, is ignored.

• If the NO DATA phrase is not specified in the RECEIVE statement, execution of the
object program is suspended until data is made available in the data item referenced by
identifier-1.

• If one or more queues or subqueues are unknown to the MCS, the appropriate status key
value is stored and control is then transferred as if data had been made available.

MESSAGE Phrase

-2-statementimperative

-1-statementimperative

DATAWITH

DATANO

MESSAGE

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 341

If the MESSAGE phrase is used, end of segment indicators (ESI) are ignored, and the
following rules apply to data transfer:

1. If a message is the same size as the area referenced by identifier-1, the message is stored
in the area referenced by identifier-1.

2. If a message size is less than the area referenced by identifier-1, the message is aligned to
the leftmost character position of the area referenced by identifier-1 with no space fill.

3. If the message size is greater than the area referenced by identifier-1, the message fills the
area referenced by identifier-1 left to right starting with the leftmost character of the
message. The remainder of the message can be transferred to the area referenced by
identifier-1 with subsequent RECEIVE statements that specify the same queue structure.
The remainder of the message is treated as a new message.

4. If an end of group indicator (EGI) is associated with the text accessed by the RECEIVE
statement, the existence of an end of message indicator (EMI) is implied. For further
explanation, see Table 35: Data Item Contents on page 354 of the SEND statement.

SEGMENT Phrase

If the SEGMENT phrase is used, the following rules apply:

1. If a segment is the same size as the area referenced by identifier-1, the segment is stored
in the area referenced by identifier-1.

2. If the segment size is less than the area referenced by identifier-1, the segment is aligned
to the leftmost character position of the area referenced by identifier-1 with no space fill.

3. If a segment size is greater than the area referenced by identifier-1, the segment fills the
area referenced by identifier-1 left to right starting with the leftmost character of the
segment. The remainder of the segment can be transferred to the area referenced by
identifier-1 with subsequent RECEIVE statements that specify the same queue structure.
The remainder of the segment is treated as a new segment.

4. If the text to be accessed by the RECEIVE statement has associated with it an end of
message indicator (EMI) or end of group indicator (EGI), the existence of an end of
segment indicator (ESI) associated with the text is implied and the text is treated as a
message segment. For further explanation, see Table 35: Data Item Contents on
page 354 of the SEND statement.

RECEIVE Statement Examples

 RECEIVE COM-PORT MESSAGE INTO MESSAGE-BUFFER
 NO DATA PERFORM NO-MESSAGE-PROCEDURE
 WITH DATA PERFORM PROCESS-MESSAGE-PROCEDURE
 END-RECEIVE.

 RECEIVE COM-LINE-2 SEGMENT INTO SEGMENT-BUFFER
 NO DATA MOVE
 DEFAULT-SEGMENT TO SEGMENT-BUFFER
 END-RECEIVE.

SEGMENT

Chapter 6: Procedure Division Statements

342 RM/COBOL Language Reference Manual

RELEASE Statement
The RELEASE statement transfers records to the initial phase of a sort operation.

A RELEASE statement may be used only within the range of an input procedure
associated with a SORT statement for a file whose sort-merge file description entry
contains record-name-1.

record-name-1 must be the name of a logical record in the associated sort-merge file
description entry and may be qualified.

record-name-1 and identifier-1 must not refer to the same storage area.

The execution of a RELEASE statement causes the record named by record-name-1 to be
released to the initial phase of a sort operation.

When control passes from the input procedure, the file consists of all those records that were
placed in it by the execution of RELEASE statements.

FROM Phrase

If the FROM phrase is used, literal-1 or the contents of identifier-1 are moved to
record-name-1, then the contents of record-name-1 are released to the sort file. Moving
takes place according to the rules specified for the MOVE Statement (on page 311) without
the CORRESPONDING phrase. The information in the record area is no longer available,
but the information in the data area associated with identifier-1 is available.

RELEASE Statement Example

 SORT-INPUT-PROCEDURE.
 SET INPUT-EOF TO FALSE.
 OPEN INPUT INPUT-FILE.
 PERFORM UNTIL INPUT-EOF
 READ INPUT-FILE AT END
 SET INPUT-EOF TO TRUE
 NOT AT END
 RELEASE SORT-RECORD FROM INPUT-RECORD
 END-READ
 END-PERFORM.
 CLOSE INPUT-FILE.

literal-1
-1identifiere-1record-nam FROMRELEASE

literal-1
-1identifierFROM

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 343

RETURN Statement
The RETURN statement obtains either sorted records from the final phase of a sort operation
or merged records during a merge operation.

file-name-1 must be described by a sort-merge file description entry in the Data Division.

A RETURN statement may be used only within the range of an output procedure associated
with a SORT or MERGE statement for file-name-1.

The INTO phrase must not be used when the input file contains logical records of various
sizes as indicated by their record descriptions. The storage area associated with identifier-1
and the record area associated with file-name-1 must not be the same storage area.

When the logical records of a file are described with more than one record description, these
records automatically share the same storage area; this is equivalent to an implicit redefinition
of the area. The contents of any data items, which lie beyond the range of the current data
record, are undefined at the completion of the execution of the RETURN statement.

The execution of the RETURN statement causes the next record, in the order specified by the
keys listed in the SORT or MERGE statement, to be made available for processing in the
record area associated with file-name-1.

If no next record exists in the file referenced by file-name-1, the at end condition exists and
control is transferred to imperative-statement-1 in the AT END phrase. Execution continues
according to the rules for each statement in imperative-statement-1. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the RETURN
statement and the NOT AT END phrase, if specified, is ignored.

When the at end condition occurs, execution of the RETURN statement is unsuccessful and
the contents of the record area associated with file-name-1 are undefined. After the execution
of imperative-statement-1 in the AT END phrase, no further RETURN statements may be
executed as part of the current output procedure.

If the at end condition does not occur during the execution of a RETURN statement, then after
the record is made available and after executing any implicit move resulting from
the presence of an INTO phrase, control is transferred to imperative-statement-2 in the
NOT AT END phrase, if specified; otherwise, control is transferred to the end of the
RETURN statement.

If the INTO phrase is specified, the current record is moved from the input area to the area
specified by identifier-1 according to the rules for the MOVE statement without the
CORRESPONDING phrase. The implied MOVE does not occur if there is an at end
condition. Any subscripting associated with identifier-1 is evaluated after the record has been
returned and immediately before it is moved to the data item.

When the INTO phrase is used, the data is available in both the input record area and the data
area associated with identifier-1.

[]

[]

[]

[]RETURN-END

ENDATNOT

ENDAT

INTORECORDRETURN

-2-statementimperative

-1-statementimperative

-1identifier1file-name-

Chapter 6: Procedure Division Statements

344 RM/COBOL Language Reference Manual

The END-RETURN phrase delimits the scope of the RETURN statement. This phrase is not
necessary unless the RETURN statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a RETURN statement. The END-RETURN
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-RETURN, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

RETURN Statement Example

 SORT-MERGE-OUTPUT-PROCEDURE.
 OPEN OUTPUT OUTPUT-FILE.
 SET SORT-EOF TO FALSE.
 PERFORM UNTIL SORT-EOF
 RETURN SORT-FILE RECORD INTO OUTPUT-RECORD
 AT END SET SORT-EOF TO TRUE
 NOT AT END
 WRITE OUTPUT-RECORD
 END-RETURN
 END-PERFORM.
 CLOSE OUTPUT-FILE.

REWRITE Statement
The REWRITE statement logically replaces a record existing in a mass storage file.

record-name-1 and identifier-1 must not refer to the same storage area.

record-name-1 is the name of a logical record in the File Section of the Data Division and
may be qualified.

The file associated with record-name-1 must be a mass storage file and must be open in the
I-O mode at the time of execution of this statement.

The INVALID KEY and the NOT INVALID KEY phrases must not be specified for a
REWRITE statement which references a sequential file or a relative file in sequential access
mode.

The INVALID KEY phrase must be specified in the REWRITE statement for files in the
random or dynamic access mode for which an appropriate USE procedure is not specified.

For indexed files the INVALID KEY phrase must be specified in the REWRITE statement for
files for which an appropriate USE procedure is not specified.

For files in the sequential access mode, the last input-output statement executed for the
associated file prior to the execution of the REWRITE statement must have been a
successfully executed READ statement. The runtime system replaces the record that was
accessed by that READ statement.

[]

[]

[]REWRITE-END

KEYINVALIDNOT

KEYINVALID

FROMREWRITE

-2-statementimperative

-1-statementimperative

literal-1
-1identifiere-1record-nam

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 345

When an indexed file is described with the DUPLICATES phrase in the RECORD KEY
clause, the REWRITE statement in the dynamic access mode is executed as if the file were in
the sequential access mode and the REWRITE statement in the random access mode is not
allowed.

The file position indicator is not affected by the execution of a REWRITE statement.

The execution of the REWRITE statement causes the value of the file status data item, if any,
associated with the file to be updated.

The record to be replaced by the execution of the REWRITE statement must not be locked by
another run unit. For a shared input-output file, the run unit executing the REWRITE
statement should obtain a record lock by preceding the REWRITE statement with a READ
statement that locks the record to be replaced. If the run unit does not already hold a lock on
the record to be replaced, the runtime system will attempt to obtain the lock. If the lock
cannot be obtained because another run unit holds a lock on the record, subsequent action of
the program is as described for the READ statement when attempting to lock a record already
locked by another run unit. If the lock cannot be obtained because this run unit holds a lock
on the record through another COBOL file-name, the REWRITE statement is unsuccessful.
For additional information on coordinating file updates in a shared file environment, see File
Locking (on page 220) and Record Locking (on page 221).

In single record locking modes, any record lock held by the run unit for the file associated
with record-name-1 is released after execution of the REWRITE statement.

In multiple record locking modes, record locks are not released except for the record lock
obtained by the runtime system when the record to be replaced was not locked by the run unit
prior to execution of the REWRITE statement.

For a relative file accessed in a random or dynamic access mode, the runtime system replaces
the record specified by the contents of the relative key data item of the file. If the file does
not contain the record selected by that key value, the invalid key condition exists.

For an indexed file accessed in the sequential access mode, the record to be replaced is
selected by the value of the prime record key. When the REWRITE statement is executed,
the value of the prime record key of the record to be replaced must be equal to the value of the
prime record key of the last record read from the file. When the DUPLICATES phrase is
specified in the RECORD KEY clause of the file control entry for the file, the record to be
replaced is the one accessed by the previously executed READ statement.

For an indexed file in the random or dynamic access mode, the record to be replaced is
selected by the prime record key.

For an indexed file, execution of the REWRITE statement for a record that has an alternate
record key occurs as follows:

• When the value of a specific alternate record key is not changed, the order of retrieval
when that key is the key of reference remains unchanged.

• When the value of a specific alternate record key is changed, the subsequent order of
retrieval of that record may be changed when that specific alternate record key is the key
of reference. When duplicate key values are permitted, the record is logically positioned
last within the set of duplicate records containing the same alternate record key value as
the alternate record key value that was placed in the record.

For indexed files the invalid key condition exists under any of the following circumstances:

• When the access mode of the file is sequential and the value of the prime record key of
the record to be replaced is not equal to the value of the prime record key of the last
record read from the file.

Chapter 6: Procedure Division Statements

346 RM/COBOL Language Reference Manual

• When the access mode of the file is dynamic or random and the value of the prime record
key of the record to be replaced is not equal to the value of the prime record key of any
record existing in the file.

• When the value of an alternate record key of the record to be replaced, for which
duplicates are not allowed, equals the value of the corresponding data item of a record
already existing in the file.

When the invalid key condition is recognized for both relative and indexed files, the execution
of the REWRITE statement is unsuccessful, the updating operation does not take place, the
contents of the record area are unaffected, and the I-O status value of the file associated with
record-name-1 is set to a value indicating the cause of the condition.

Transfer of control following the successful or unsuccessful execution of the REWRITE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases in the REWRITE statement. See the discussions of invalid key
conditions for relative files (on page 211) and indexed files (on page 218).

See also the discussions of relative organization input-output (on page 207) and indexed
organization input-output (on page 213) for additional information on the invalid key
condition and the use of the INVALID KEY and NOT INVALID KEY phrases.

For sequential files, if the number of character positions in the record referenced by
record-name-1 is not equal to the number of character positions in the record being replaced,
the execution of the REWRITE statement is unsuccessful, the updating operation does not
take place, the contents of the record area are unaffected, and the I-O status value of the file
associated with record-name-1 is set to a value indicating the cause of the condition.

For relative and indexed files, the number of character positions in the record referenced by
record-name-1 need not be the same as the number of character positions in the record being
replaced. However, if it is larger than the largest or smaller than the smallest number of
character positions allowed by the RECORD IS VARYING clause associated with the file,
the execution of the REWRITE statement is unsuccessful, the updating operation does not
take place, the contents of the record area are unaffected, and the I-O status value of the file
associated with record-name-1 is set to a value indicating the cause of the condition.

The END-REWRITE phrase delimits the scope of the REWRITE statement. This phrase is
not necessary unless the REWRITE statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a REWRITE statement. The END-
REWRITE phrase is allowed even when not necessary. For additional information on scope
terminators such as END-REWRITE, see Scope of Statements (on page 31), Imperative
Statements (on page 30), and Delimited Scope Statements (on page 31).

FROM Phrase

The execution of a REWRITE statement with the FROM phrase is equivalent to the execution
of a move from identifier-1 or literal-1 to record-name-1 followed by the execution of the
same REWRITE statement without the FROM phrase. The contents of the record area prior
to the execution of the implicit MOVE statement have no effect on the execution of the
REWRITE statement.

literal-1
-1identifierFROM

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 347

REWRITE Statement Examples

 REWRITE LOG-RECORD OF LOG-FILE.

 REWRITE LOG-RECORD FROM "END-OF-BATCH"
 END-REWRITE.

 REWRITE INVENTORY-RECORD
 INVALID KEY PERFORM INVALID-KEY-HANDLER
 END-REWRITE.

 REWRITE DB-RECORD OF DATA-BASE
 INVALID KEY
 REWRITE INVENTORY-RECORD END-REWRITE
 END-REWRITE.

SEARCH Statement
The SEARCH statement is used to search a table for a table element that satisfies the
specified condition and to adjust the associated index-name to indicate that table element.

Format 1: Search (Serial)

[]

[]SEARCH-END

SENTENCENEXTWHEN

ENDAT

VARYINGSEARCH

-2-statementimperative1condition-

-1-statementimperative

-1index-name
-2identifier-1identifier

Chapter 6: Procedure Division Statements

348 RM/COBOL Language Reference Manual

Format 2: Search All (Binary)

In both Formats 1 and 2, identifier-1 must not be subscripted or reference modified, but its
description must contain an OCCURS clause with an INDEXED BY phrase. The description
of identifier-1 in Format 2 must also contain the KEY IS phrase in its OCCURS clause.

identifier-2, when specified, must be described as USAGE IS INDEX or as a numeric
elementary item without any positions to the right of the assumed decimal point.

In Format 1, condition-1 may be any conditional expression.

In Format 2, all referenced condition-names must be defined as having only a single value.
The data-name associated with a condition-name must appear in the KEY phrase of the
OCCURS clause of identifier-1. Each data-name may be qualified. Each data-name must be
subscripted by the first index-name associated with identifier-1 along with other indexes or
literals as required, and must be referenced in the KEY phrase of the OCCURS clause of
identifier-1. identifier-3, identifier-4, or identifiers specified in arithmetic-expression-1 or
arithmetic-expression-2 must not be referenced in the KEY phrase of the OCCURS clause
of identifier-1 or be subscripted by the first index-name associated with identifier-1.

In Format 2, when multiple keys are defined and a data-name in the KEY phrase of the
OCCURS clause of identifier-1 is referenced, or when a condition-name associated with a
data-name in the KEY phrase of the OCCURS clause of identifier-1 is referenced, all
preceding data-names in the KEY phrase of the OCCURS clause of identifier-1 or their
associated condition-names must also be referenced.

The END-SEARCH phrase delimits the scope of the SEARCH statement. This phrase is not
necessary unless the SEARCH statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a SEARCH statement. The END-SEARCH
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-SEARCH, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

General Rules for the SEARCH Statement
The following general rules apply to the SEARCH statement:

[]

[]SEARCH-END

SENTENCENEXT

IS
TOEQUALIS

AND

IS
TOEQUALIS

WHEN

ENDAT

ALLSEARCH

=

=

-2-statementimperative

name-2condition-
n-2-expressioarithmetic

literal-2
-4identifier

2data-name-

name-1condition-
n-1-expressioarithmetic

literal-1
-3identifier

1data-name-

-1-statementimperative

-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 349

1. If Format 1 is used, a serial type of search operation takes place, starting at the current
index setting.

a. If, at the start of the execution of the search, the index-name associated with
identifier-1 contains a value that corresponds to an occurrence number that is greater
than the highest permissible occurrence number for identifier-1, the search is
terminated immediately. Then, if the AT END phrase is specified, imperative-
statement-1 is executed; if the AT END phrase is not specified, control passes to the
end of the SEARCH statement.

b. If, at the start of the execution of the search, the index-name associated with
identifier-1 contains a value that corresponds to an occurrence number that is not
greater than the highest permissible occurrence number for identifier-1, the
SEARCH statement operates by evaluating the conditions in the WHEN phrases in
the order in which they are written, making use of the index settings to determine the
occurrence of those items to be tested. If none of the conditions are satisfied, the
index-name for identifier-1 is incremented, and the process is repeated unless the
index is out of range (in which case the search terminates as indicated in rule 1a). If
one of the conditions is satisfied, the search terminates immediately and control
passes to the imperative statement associated with that condition, if present, or if the
NEXT SENTENCE phrase is associated with that condition, the control passes to the
next executable sentence.

The index-name remains set at the value that causes the condition to be satisfied.

2. In a Format 2 search, the results of the SEARCH ALL operation are predictable only
when both of these conditions exist:

a. The data in the table is ordered in the same manner as described in the
ASCENDING/DESCENDING KEY clause associated with the description of
identifier-1.

b. The contents of the key (or keys) referenced in the WHEN clause are sufficient to
identify a unique table element.

3. If Format 2 of the SEARCH statement is used, a binary search technique is applied. The
value of the index-name for identifier-1 is varied in alternating directions and in
progressively smaller steps until either a value is found for which all the conditions of the
WHEN phrase are satisfied or it is determined that no value allows all of the conditions to
be satisfied. In the latter case, control is passed to imperative-statement-1 in the AT END
phrase, if specified, or to the end of the SEARCH statement if there is no AT END
phrase; in either case, the final setting of the index is not predictable. If a setting of the
index is found for which all of the conditions are satisfied, control passes to imperative-
statement-2, if specified, or if the NEXT SENTENCE phrase is specified, to the next
executable sentence; in either case, the final setting of the index is the one for which the
conditions are all satisfied. Regardless of the outcome of the SEARCH statement, the
initial setting of the index is not significant.

4. After execution of imperative-statement-1, imperative-statement-2, and so forth, that does
not contain an explicit transfer of control, control passes to the end of the SEARCH
statement.

5. In Format 2, the index-name that is used for the search operation is the first (or only)
index-name that appears in the INDEXED BY phrase of identifier-1. Any other index-
names for identifier-1 remain unchanged.

6. In Format 1, if the VARYING phrase is not used, the index-name that is used for the
search operation is the first (or only) index-name that appears in the INDEXED BY
phrase of identifier-1. Any other index-names for identifier-1 remain unchanged.

Chapter 6: Procedure Division Statements

350 RM/COBOL Language Reference Manual

7. In Format 1, if the VARYING index-name-1 phrase is specified, and if index-name-1
appears in the INDEXED BY phrase in the OCCURS clause referenced by identifier-1,
that index-name is used for this search. If this is not the case, or if the VARYING
identifier-2 phrase is specified, the first (or only) index-name given in the INDEXED BY
phrase in the OCCURS clause referenced by identifier-1 is used for the search. In
addition, the following operations occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1 appears in the
INDEXED BY phrase in the OCCURS clause referenced by another table entry, the
occurrence number represented by index-name-1 is incremented by the same amount
as, and at the same time as, the occurrence number represented by the index-name
associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index data
item, the data item referenced by identifier-2 is incremented by the same amount as,
and at the same time as, the index associated with identifier-1 is incremented. If
identifier-2 is not an index data item, the data item referenced by identifier-2 is
incremented by the value 1 at the same time as the index referenced by the index-
name associated with identifier-1 is incremented.

8. If identifier-1 references a data item subordinate to a data item that contains an OCCURS
clause, an index-name must be associated with each dimension of the table through the
INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name
associated with identifier-1 (and the data item identifier-2 or index-name-1, if present) is
modified by the execution of the SEARCH statement. To search a multidimensional
table it is necessary to execute a SEARCH statement several times. Prior to each
execution of a SEARCH statement, SET statements must be executed whenever index-
names must be adjusted to appropriate settings.

A representation of the action of a Format 1 SEARCH statement containing two WHEN
phrases is shown in Figure 12.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 351

Figure 12: SEARCH Statement

SEARCH Statement Examples

 ACCEPT INPUT-NAME TAB PROMPT.
 SET IX1 TO 1.
 SEARCH STATE-NAME-TABLE VARYING IX1
 AT END
 DISPLAY "The name """ INPUT-NAME
 """ is not in the state name table."
 WHEN STATE-NAME(IX1) = INPUT-NAME
 PERFORM SETUP-BUFFERS *> Note: uses current IX1 setting.
 DISPLAY "The abbreviation for the state of """
 STATE-BUFFER(1:STATE-COUNT)
 """ is """ STATE-ABBREV(IX1) ""","
 "and the state capital is """ COL 5
 CAPITAL-BUFFER
 WHEN STATE-CAPITAL(IX1) = INPUT-NAME
 PERFORM SETUP-BUFFERS *> Note: uses current IX1 setting.
 DISPLAY

1 These operations are options included only when specified in the SEARCH statement.
2 Each of these control transfers is to the end of the SEARCH statement unless the

imperative statement contains an explicit transfer.

Entrance

Index >
Maximum Occurrence

Number?

True (AT END) 1

False

Increment index-name for
identifier-1 (index-name-1
if applicable)

imperative-
statement-1

condition-1
True

False

imperative-
statement-2

condition-2
True

False

imperative-
statement-2

1

1

2

Increment index-name-1
(for a different table) or
identifier-2

1

This Format 1 SEARCH statement contains two WHEN phrases.

Chapter 6: Procedure Division Statements

352 RM/COBOL Language Reference Manual

 "The city """ CAPITAL-BUFFER(1:CAPITAL-COUNT)
 " is the state capital of """
 STATE-BUFFER(1:STATE-COUNT) """."
 WHEN STATE-ABBREV(IX1) = INPUT-NAME
 PERFORM SETUP-BUFFERS *> Note: uses current IX1 setting.
 DISPLAY "The abbreviation """ STATE-ABBREV(IX1)
 """ stands for the state of """
 STATE-BUFFER(1:STATE-COUNT) ""","
 " and the state capital is """ COL 5 CAPITAL-BUFFER
 END-SEARCH.

 ACCEPT CURR-ABBREV TAB PROMPT.
 SEARCH ALL STATE-NAME-TABLE
 AT END
 DISPLAY "The abbreviation """ CURR-ABBREV
 """ is not in the state name table."
 WHEN STATE-ABBREV(IX1) = CURR-ABBREV
 PERFORM SETUP-BUFFERS *> Note: uses current IX1 setting.
 DISPLAY "The abbreviation """ STATE-ABBREV(IX1)
 """ stands for the state of """
 STATE-BUFFER(1:STATE-COUNT) ""","
 " and the state capital is """ COL 5 CAPITAL-BUFFER
 END-SEARCH.

SEND Statement
The SEND statement causes a message, a message segment, or a portion of a message or
segment to be released to one or more output queues maintained by the Message Control
System (MCS).

Format 1: Send (Simple)

Format 2: Send (Advancing/Replacing)

cd-name-1 must reference an output CD or an input-output CD.

identifier-2 must reference a one-character integer without an operational sign.

literal-1
-1identifiercd-name-1 FROMSEND

[]LINEREPLACING

PAGE

LINES
LINE

ADVANCINGAFTER
BEFORE

EGI
EMI
ESIWITHFROMSEND

ame-2mnemonic-n

integer-1
-3identifier

-2identifier

literal-1
-1identifiercd-name-1

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 353

When identifier-3 is used in the ADVANCING phrase, it must be the name of an elementary
integer item.

When the mnemonic-name phrase is used, the name must be identified with a feature-name
that is a channel-name. See the syntax and rules for mnemonic-name-2 that are discussed in
Mnemonic-Name Clause (on page 65).

integer-1 or the value of the data item referenced by identifier-3 may be zero.

General Rules for the SEND Statement
The following general rules apply to both formats of the SEND statement:

1. When a receiving communication device (printer, display screen, card punch, and so
forth) is oriented to a fixed line size:

a. Each message or message segment begins at the leftmost character position of the
physical line.

b. A message or message segment that is smaller than the physical line size is released
so as to appear space-filled to the right.

c. Excess characters of a message or message segment are not truncated. Characters
are packed to a size equal to that of the physical line and then output to the device.
The process continues on the next line with the excess characters.

2. When a receiving communication device (paper tape punch, another computer, and so
forth) is oriented to handle variable-length messages, each message or message segment
begins on the next available character position of the communication device.

3. As part of the execution of a SEND statement, the MCS interprets the content of the text
length data item of the area referenced by cd-name-1 to be the user’s indication of the
number of leftmost character positions of the data item referenced by identifier-1 from
which data is to be transferred.

If the content of the text length data item of the area referenced by cd-name-1 is zero, no
characters of the data item referenced by identifier-1 are transferred.

If the content of the text length data item of the area referenced by cd-name-1 is outside
the range of zero through the size of the data item referenced by identifier-1 inclusive,
an error is indicated by the value of the status key data item of the area referenced by
cd-name-1, and no data is transferred.

4. As part of the execution of a SEND statement, the content of the status key data item of
the area referenced by cd-name-1 is updated by the MCS.

5. The effect of having special control characters within the contents of the data item
referenced by identifier-1 is undefined.

6. A single execution of a SEND statement represented by Format 1 releases only a single
portion of a message segment or a single portion of a message to the MCS. A single
execution of a SEND statement represented by Format 2 never releases to the MCS more
than a single message or a single message segment as indicated by the content of the data
item referenced by identifier-2 or by the specified indicator ESI, EMI or EGI.

However, the MCS does not transmit any portion of a message to a communication
device until the entire message has been released to the MCS.

7. During the execution of the run unit, the disposition of a portion of a message which is
not terminated by an EMI or EGI or which has not been eliminated by the execution of a
PURGE statement is undefined.

Chapter 6: Procedure Division Statements

354 RM/COBOL Language Reference Manual

However, the message does not logically exist for the MCS and hence cannot be sent to
a destination.

8. Once the execution of a SEND statement has released a portion of a message to the MCS,
only subsequent executions of SEND statements in the same run unit can cause the
remaining portion of the message to be released.

For Format 2:

9. The content of the data item referenced by identifier-2 indicates that the content of the
data item referenced by identifier-1, when specified, is to have an associated end of
segment indicator (ESI), end of message indicator (EMI), end of group indicator (EGI),
or no indicator (which implies a portion of a message or a portion of a segment). If
identifier-1 is not specified, only the indicator is transmitted to the MCS. See Table 33
on page 317.

Any character other than ‘1’, ‘2’ or ‘3’ is interpreted as ‘0’.

If the content of the data item referenced by identifier-2 is other than ‘1’, ‘2’, or ‘3’,
and identifier-1 is not specified, an error is indicated by the value in the data item
referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name-1, and
no data is transferred.

Table 35: Data Item Contents

Data Item Contents

If the content of the data
item referenced by
identifier-2 is

then the content of data
item referenced by
identifier-1 has associated
with it

which means

‘0’ No indicator. No indicator.

‘1’ ESI End of segment.

‘2’ EMI End of message.

‘3’ EGI End of group.

10. The WITH EGI phrase indicates to the MCS that the group of messages is complete.

The WITH EMI phrase indicates to the MCS that the message is complete.

The WITH ESI phrase indicates to the MCS that the message segment is complete.

The MCS recognizes these indications and uses them to maintain segment, message and
group control.

11. The hierarchy of ending indicators is EGI, EMI and ESI. An EGI need not be preceded
by ESI or EMI. An EMI need not be preceded by an ESI.

ADVANCING Phrase

PAGE

LINES
LINE

ADVANCINGAFTER
BEFORE

ame-2mnemonic-n

integer-1
-3identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 355

The ADVANCING phrase allows control of the vertical positioning of each message or
message segment on a communication device where vertical positioning is applicable. If
vertical positioning is not applicable on the device, the ADVANCING phrase is ignored.

If identifier-2 is specified and the content of the data item referenced by identifier-2 is zero,
the ADVANCING phrase is ignored.

On a device where vertical positioning is applicable and the ADVANCING phrase is not
specified, the default advance is one line.

If vertical positioning is applicable, the following rules apply to the ADVANCING phrase:

1. If identifier-3 or integer-1 is specified, characters transmitted to the communication
device are repositioned vertically downward the number of lines equal to the value
associated with the data item referenced by identifier-3 or integer-1.

2. If mnemonic-name-2 is specified, characters transmitted to the communication device are
positioned downward to the next occurrence of the channel indicator for the channel
number associated with mnemonic-name-2. If the communication device does not
support channel skipping, advancing defaults to ADVANCING 1 LINE.

3. If the BEFORE phrase is used, the message or message segment is represented on the
communication device before vertical repositioning.

4. If the AFTER phrase is used, the message or message segment is represented on the
communication device after vertical repositioning.

5. If PAGE is specified, characters transmitted to the communication device are represented
before or after (depending on the phrase used) the device is repositioned to the next page.
If PAGE is specified but has no meaning with a specific device, advancing defaults to
ADVANCING 1 LINE.

6. When the receiving communication device is a character imaging device on which it is
possible to present more than one character at the same position, and the device permits
the choice of either the second or subsequent characters appearing superimposed on
characters already displayed at that position or each character appearing in place of the
characters previously transmitted to that line, then:

a. If the REPLACING phrase is specified, the characters transmitted by the SEND
statement replace all characters that may have previously been transmitted to the
same line beginning with the leftmost character position of the line.

b. If the REPLACING phrase is not specified, the characters transmitted by the SEND
statement appear superimposed upon the characters that may have previously been
transmitted to the same line beginning with the leftmost character position of the
line.

7. When the receiving communication device does not support the replacement of
characters, regardless of whether the REPLACING phrase is specified, the characters
transmitted by the SEND statement appear superimposed upon the characters that may
have previously been transmitted to the same line, beginning with the leftmost character
position of the line.

8. When the receiving communication device does not support the superimposition of more
than one character at the same position, regardless of whether the REPLACING phrase is
specified, the characters transmitted by the SEND statement replace all characters that
may have previously been transmitted to the same line, beginning with the leftmost
character position of the line.

Chapter 6: Procedure Division Statements

356 RM/COBOL Language Reference Manual

SEND Statement Examples

 SEND COM-LINE-1 FROM "Enter your PIN: ".

 SEND COM-LINE-2 FROM SEGMENT-BUFFER WITH ESI
 AFTER ADVANCING 3 LINES.

SET Statement
The SET statement is used to establish reference points for table handling operations, alter the
status of external switches, and alter the value of conditional variables.

Format 1: Set Index

Format 2: Set Index Up/Down

Format 3: Set Switch On/Off

Format 4: Set Condition-Name True/False

Format 5: Set Pointer

integer-1
-2identifier

-2index-name

-1identifier
-1index-name TOSET

{ }

integer-2
-3identifier-3index-name BYDOWN

UPSET

{ }

OFF
ONTOSET ame-1mnemonic-n

{ }

FALSE
TRUETOSET name-1condition-

NULLS
NULL

OF
INADDRESS

TOOF
INADDRESSSET -6identifier

-5identifier

-4identifier

1data-name-

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 357

Format 6: Set Pointer Up/Down

identifier-1 and identifier-2 must name either index data items, or elementary items described
as an integer.

identifier-3 and identifier-7 must refer to elementary data items described as an integer.

integer-1 and integer-2 may be signed. integer-1 must be positive.

mnemonic-name-1 must be identified in the SPECIAL-NAMES paragraph of the
Environment Division as one of the permissible switch-names SWITCH-1, SWITCH-2, . . .,
SWITCH-8, or UPSI-0, UPSI-1, . . ., UPSI-7.

condition-name-1 must be associated with a conditional variable.

data-name-1 must be the name of a level 01 or level 77 data description entry that is described
in the Linkage Section.

identifier-4 and identifier-6 must refer to elementary data items described with
POINTER usage.

In Format 4, if the TRUE phrase is specified, the Format 2 VALUE clause (on page 132)
described for the condition-name must either not specify a relational operator prior to the first
listed literal or that first relational operator must be one that includes an equality relation. For
additional information regarding the use of a relational operator in the VALUE clause and the
existence of a true value for purposes of the SET statement, see Condition-Name Rules
(Format 2 VALUE Clause) (on page 135).

In Format 4, if the FALSE phrase is specified, the FALSE phrase must be specified in the
VALUE clause of the data description entry for condition-name-1.

General Rules for the SET Statement
The general rules that apply to the SET statement are as follows:

Index-names are considered related to a given table and are defined by being specified in the
INDEXED BY clause.

If index-name-2 is specified, the value of the index before the execution of the SET statement
must correspond to an occurrence number of an element in the associated table.

If index-name-3 is specified, the value of the index both before and after the execution of the
SET statement must correspond to an occurrence number of an element in the associated
table. If index-name-1 is specified, the value of the index after the execution of the SET
statement must correspond to an occurrence number of an element in the associated table.
The value of the index associated with an index-name after the execution of a PERFORM
statement may be undefined.

In Format 1, the following action occurs:

• index-name-1 is set to a value causing it to refer to the table element that corresponds in
occurrence number to the table element referenced by index-name-2, identifier-2 or
integer-1. If identifier-2 is an index data item, see the note below.

-8identifier

integer-3
-7identifier

-4identifier

1data-name-

OF
INLENGTH

BYDOWN
UPOF

INADDRESSSET

Chapter 6: Procedure Division Statements

358 RM/COBOL Language Reference Manual

• If identifier-1 is an index data item, it may be set equal to the contents of either index-
name-2 or identifier-2, where identifier-2 is also an index data item.

• If identifier-1 is not an index data item, it may be set only to an occurrence number that
corresponds to the value of index-name-2. Neither identifier-2 nor integer-1 can be used
in this case.

• The process is repeated if specified. Any subscripting associated with identifier-1 is
evaluated immediately before the value of the respective data item is changed.

In Format 2, the contents of each index-name-3 are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number of occurrences represented by the
value of integer-2 or of the data item referenced by identifier-3. Each time the value of
identifier-3 is used as it was at the beginning of the execution of the statement.

Note Standard COBOL does not require conversion of an index value (that is, the character
offset within the table to a specific occurrence of a table element) to or from the occurrence
number in either case. It is an error to code the following sequence when index-name-4 and
index-name-5 are not associated with the same table:

SET index-data-item TO index-name-4.
SET index-name-5 TO index-data-item.

Generally, RM/COBOL cannot detect such errors. It treats index data items as if they
contained occurrence numbers and converts to or from index values as necessary in SET
statements. Programs that depend on this conversion will not necessarily execute correctly on
other implementations of standard COBOL.

Table 36 shows the validity of various operand combinations in the SET statement.

Table 36: SET Statement Operand Validity

SET Statement Operand Validity

 Receiving Item

Sending Item Integer Data Item Index-Name Index Data Item

Integer Literal No Valid No

Integer Data Item No Valid No

Index-Name Valid Valid Valid 1

Index Data Item No Valid 1 Valid 2

1 No conversion is required in standard COBOL, but RM/COBOL converts between occurrence
number for index data items and index value for index-names.

2 No conversion takes place.

In Format 3, the status of each external switch associated with the specified
mnemonic-name-1 is modified such that the truth value resultant from evaluation of a
condition-name associated with that switch reflects an on status if the ON phrase is specified
or an off status if the OFF phrase is specified.

In Format 4 if the TRUE phrase is specified, the literal in the VALUE clause associated with
condition-name-1 is placed in the conditional variable according to the rules for the VALUE
clause. If more than one literal is specified in the VALUE clause, the conditional variable is
set to the value of the first literal that appears in the VALUE clause.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 359

In Format 4 if the FALSE phrase is specified, the literal in the FALSE phrase of the VALUE
clause associated with condition-name-1 is placed in the conditional variable according to the
rules for the VALUE clause.

If multiple condition-names are specified in Format 4, the results are the same as if a separate
SET statement had been written for each condition-name-1 in the same order as specified in
the SET statement.

In Format 5, the sending value represents the address of a data item. If identifier-6 is
specified, the sending value is the value of the pointer data item referred to by identifier-6.
If ADDRESS OF identifier-5 is specified, the sending value represents the address of the data
item referred to by identifier-5. If NULL or NULLS is specified, the sending value is the null
pointer value, which is not the address of any data item.

In Format 5, the receiving data item is either a pointer data item or the base address of a based
linkage record. If identifier-4 is specified, the receiving data item is a pointer data item into
which the sending value is stored. If ADDRESS OF data-name-1 is specified, the receiving
data item is a system-defined base address pointer data item for the based linkage record. In
the latter case, the object program subsequently operates as if the based linkage record
identified by data-name-1 were located at the address represented by the sending value.

In Format 6, the UP phrase increments and the DOWN phrase decrements the offset field of a
pointer receiving data item identified by identifier-4 or the base address of a based linkage
record identified by data-name-1 by a given number of character positions. The number of
character positions to increment or decrement the receiving value is given by integer-3, the
value of the data item referred to by identifier-7, or the value returned by the LENGTH
special register for identifier-8. If the receiving item initially has a null value, the Format 6
SET statement has no effect. If after the operation of the Format 6 SET statement, the offset
exceeds the length field of the receiving pointer value no action is taken. However, if that
resultant pointer value is used unchanged to reference a based linkage record, the run unit will
be terminated with a data reference error 104. Note that, because the offset field of a pointer
value is an unsigned quantity, setting it down below zero will generally result in a large
positive number that exceeds the length field of the pointer value. Again, no error occurs
until a later attempt is made to use the resultant pointer value.

SET Statement Examples

 SET IX1 IX2 TO IX3, IX3 IX4 TO SUB1.

 SET IX1 IX2 UP BY 1, IX3 IX4 DOWN BY 2.

 SET SUMMARY-SWITCH TO OFF, DETAIL-SWITCH TO ON.

 SET EOF TO TRUE, COND-1 TO FALSE.

 SET P1 TO P2.

 SET ADDRESS OF BL-RECORD TO P1.

 SET P1 TO ADDRESS OF G1.

 SET P2 TO NULL.

 SET P1 UP BY LENGTH OF T1(1).

 SET ADDRESS OF BL-RECORD DOWN BY COUNT-1.

Chapter 6: Procedure Division Statements

360 RM/COBOL Language Reference Manual

SORT Statement
The SORT statement creates a sort file by executing an input procedure or by transferring
records from another file, sorts the records in the sort file on a set of specified keys, and in the
final phase of the sort operation, makes available each record from the sort file, in sorted
order, to an output procedure or to an output file.

A SORT statement may appear anywhere in the Procedure Division except in the
declaratives portion.

file-name-1 must be described in a sort-merge file description entry in the Data Division.

data-name-1 may be qualified.

data-name-1 must reference either a record-name associated with file-name-1 or a data item in
a record associated with file-name-1. If more than one record description entry is associated
with file-name-1, the data items referenced by different specifications of data-name-1 need
not all be associated with the same record description entry.

The data item referenced by data-name-1 must not be a group item that contains a
variable-occurrence data item.

file-name-2 and file-name-3 must be described in a file description entry in the Data Division.

The files referenced by file-name-2 and file-name-3 may reside on the same multiple file reel
(or reels). See the discussion of the I-O-CONTROL paragraph (on page 81).

No pair of file-names in the same SORT statement may be specified in the same SAME
SORT AREA or SAME SORT-MERGE AREA clause. (See the I-O-CONTROL paragraph.)

The words THRU and THROUGH are synonymous.

If the USING phrase is specified and the file referenced by file-name-1 contains
variable-length records, the size of the records contained in the file referenced by file-name-2
must not be shorter than the shortest record or longer than the longest record described for
file-name-1. If the file referenced by file-name-1 contains fixed-length records, the size of the
records contained in the file referenced by file-name-2 must not be longer than the fixed
record size specified for the file referenced by file-name-1.

If the GIVING phrase is specified and the file referenced by file-name-3 contains
variable-length records, the size of the records contained in the file referenced by file-name-1
must not be shorter than the shortest record or longer than the longest record described for
file-name-3. If the file referenced by file-name-3 contains fixed-length records, the size of the

{ }

[]

[]

{ }

{ }

3file-name-

name-4procedure-name-3procedure-

2file-name-

name-2procedure-name-1procedure-

ame-1alphabet-n

1data-name-1file-name-

GIVING
THRU
THROUGHISPROCEDUREOUTPUT

USING
THRU
THROUGHISPROCEDUREINPUT

ISSEQUENCECOLLATING

ORDERINDUPLICATESWITH

KEYDESCENDING
ASCENDINGONSORT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 361

records contained in the file referenced by file-name-1 must not be longer than the fixed
record size specified for the file referenced by file-name-3.

General Rules for the SORT Statement
The general rules that apply to the SORT statement are as follows:

1. The SORT statement releases all the records in the file referenced by file-name-2 or
released by an input procedure to the file referenced by file-name-1, and returns them to
an output procedure, or to the file referenced by file-name-3, in an order determined by
the ASCENDING and DESCENDING phrases and the values of the data items
referenced by the specifications of data-name-1.

2. The words ASCENDING and DESCENDING apply to each subsequent occurrence of
data-name-1 until another word ASCENDING or DESCENDING is encountered.

3. The data items referenced by the specifications of data-name-1 are the key data items that
determine the order in which records are returned from the file referenced by file-name-1.
The order of significance of the keys is the order in which they are specified in the SORT
statement, without regard to their association with ASCENDING or DESCENDING
phrases. The first (or only) key data item is the most significant. Further key data items,
if any, are of progressively lesser significance.

4. To determine the relative order in which two records are returned from the file referenced
by file-name-1, the contents of corresponding key data items are compared according to
the rules for comparison of operands in a relation condition, starting with the most
significant key data item.

a. If the contents of the corresponding key data items are not equal and the key is
associated with the ASCENDING phrase, the record containing the key data item
with the lower value is returned first.

b. If the contents of the corresponding key data items are not equal and the key is
associated with the DESCENDING phrase, the record containing the key data item
with the higher value is returned first.

c. If the contents of the corresponding key data items are equal, the determination is
made on the contents of the next most significant key data item.

5. If the DUPLICATES phrase is specified and the contents of all the key data items in one
record are equal to the contents of the corresponding key data items in one or more other
records, the order of the return of such duplicate-key records is:

a. When an input procedure is not specified, the order of the associated input files is
specified in the SORT statement. Within a given input file the order is that in which
the records are accessed from that file.

b. When an input procedure is specified, the order in which these records are released
by that input procedure.

6. If the DUPLICATES phrase is not specified, the order in which duplicate-key records are
returned is not predictable.

7. The collating sequence that applies to the comparison of nonnumeric key data items is
determined at the beginning of the execution of the SORT statement in the following
order of precedence:

a. The collating sequence established by the COLLATING SEQUENCE phrase, if
specified, in the SORT statement.

b. The collating sequence established as the program collating sequence.

Chapter 6: Procedure Division Statements

362 RM/COBOL Language Reference Manual

8. The execution of the SORT statement consists of three distinct phases as follows:

a. Records are made available to the file referenced by file-name-1. This is achieved
either by the execution of RELEASE statements in the input procedure or by the
implicit execution of READ statements for file-name-2. When this phase
commences, the file referenced by file-name-2 must not be in the open mode. When
this phase terminates, the file referenced by file-name-2 is not in the open mode.

b. The file referenced by file-name-1 is sequenced. No processing of the files
referenced by file-name-2 and file-name-3 takes place during this phase.

c. The records of the file referenced by file-name-1 are made available in sorted order.
The sorted records are either written to the file referenced by file-name-3 or, by the
execution of a RETURN statement, are made available for processing by the output
procedure. When this phase commences, the file referenced by file-name-3 must not
be in the open mode. When this phase terminates, the file referenced by file-name-3
is not in the open mode.

9. The input procedure may consist of any procedure needed to select, modify or copy the
records that are made available one at a time by the RELEASE statement to the file
referenced by file-name-1. The range includes all statements that are executed as the
result of a transfer of control by CALL, EXIT without the optional PROGRAM phrase,
GO TO and PERFORM statements in the range of the input procedure, as well as all
statements in declarative procedures that are executed as a result of the execution of
statements in the range of the input procedure. The range of the input procedure must not
cause the execution of any MERGE, RETURN, or SORT statement.

10. If an input procedure is specified, control is passed to the input procedure before the file
referenced by file-name-1 is sequenced by the SORT statement. The compiler inserts a
return mechanism at the end of the last statement in the input procedure and when control
passes the last statement in the input procedure, the records that have been released to the
file referenced by file-name-1 are sorted.

11. If the USING phrase is specified, all the records in the file (or files) referenced by
file-name-2 are transferred to the file referenced by file-name-1. For each of the files
referenced by file-name-2 the execution of the SORT statement causes the following
actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation. Each record is
obtained as if a READ statement with the NEXT the AT END phrases had been
executed. If the file referenced by file-name-1 contains fixed-length records, any
record in the file referenced by file-name-2 containing fewer character positions than
that specified for file-name-1 is space-filled on the right beginning with the first
character position after the last character in the record when that record is released to
the file referenced by file-name-1.

c. For a relative file, the contents of the relative key data item are undefined after
the execution of the SORT statement if file-name-2 is not referenced in the
GIVING phrase.

d. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed. This termination is
performed before the file referenced by file-name-1 is sequenced by the SORT
statement.

These implicit functions are performed such that any associated USE procedures are
executed; however, the execution of such a USE procedure must not cause the execution

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 363

of any statement manipulating the file referenced by file-name-2 or accessing the record
area associated with file-name-2.

12. The output procedure may consist of any procedure needed to select, modify or copy the
records that are made available one at a time by the RETURN statement in sorted order
from the file referenced by file-name-1. The range includes all statements that are
executed as the result of a transfer of control by CALL, EXIT without the optional
PROGRAM phrase, GO TO and PERFORM statements in the range of the output
procedure, as well as all statements in declarative procedures that are executed as a
result of the execution of statements in the range of the output procedure. The range of
the output procedure must not cause the execution of any MERGE, RELEASE, or
SORT statement.

13. If an output procedure is specified, control passes to it after the file referenced by file-
name-1 has been sequenced by the SORT statement. The compiler inserts a return
mechanism at the end of the last statement in the output procedure and when control
passes the last statement in the output procedure, the return mechanism provides for
termination of the sort and then passes control to the next executable statement after the
SORT statement. Before entering the output procedure, the sort procedure reaches a
point at which it can select the next record in sorted order when requested. The
RETURN statements in the output procedure are the requests for the next record.

14. If the GIVING phrase is specified, all the sorted records are written on the file referenced
by file-name-3 as the implied output procedure for the SORT statement. At the start of
execution of the SORT statement, the file referenced by file-name-3 must not be in the
open mode. For each of the files referenced by file-name-3, the execution of the SORT
statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the OUTPUT phrase had been executed. The initiation occurs after
the execution of the input procedure, if there is one.

b. The sorted logical records are returned and written onto the file. Each record is
written as if a WRITE statement without any optional phrases had been executed.

c. For a relative file, the relative key data item for the first record returned contains the
value 1; for the second record returned, the value 2, and so forth. After execution of
the SORT statement, the contents of the relative key data item indicate the last record
returned to the file.

d. The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE procedures are
executed. However, the execution of such a USE procedure must not cause the execution
of any statement manipulating the file referenced by, or accessing the record area
associated with, file-name-3. On the first attempt to write beyond the externally defined
boundaries of the file, any USE procedure specified for the file is executed. If control is
returned from that USE procedure or if no such USE procedure is specified, the
processing of the file is terminated as described above.

15. Segmentation can be applied to programs containing the SORT statement. However, the
following restrictions apply:

a. If a SORT statement appears in a section that is not in an independent segment, any
input procedures or output procedures referenced by that SORT statement must
appear:

1) Totally within nonindependent segments, or

2) Wholly contained in a single independent segment.

Chapter 6: Procedure Division Statements

364 RM/COBOL Language Reference Manual

b. If a SORT statement appears in an independent segment, any input procedures or
output procedures referenced by that SORT statement must be contained:

1) Totally within nonindependent segments, or

2) Wholly within the same independent segment as that SORT statement.

SORT Statement Examples

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SORT01.
 *
 * Examples for RM/COBOL Language Reference Manual.
 * SORT statement.
 *
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT SORT-FILE ASSIGN TO SORT-WORK.

 DATA DIVISION.
 FILE SECTION.
 SD SORT-FILE.
 01 SORT-RECORD.
 02 SORT-KEY-1 PIC X(05).
 02 SORT-DATA-1 PIC X(20).
 02 SORT-KEY-2 PIC 9(05) BINARY.
 WORKING-STORAGE SECTION.
 01 EOF-FLAG PIC X.
 88 EOF VALUE "T" FALSE "F".

 PROCEDURE DIVISION.
 MAIN1.
 SORT SORT-FILE
 ON ASCENDING KEY SORT-KEY-1
 ON DESCENDING KEY SORT-KEY-2
 WITH DUPLICATES IN ORDER
 INPUT PROCEDURE IS GET-RECORDS
 OUTPUT PROCEDURE IS PUT-RECORDS.
 STOP RUN.

 GET-RECORDS.
 PERFORM WITH TEST AFTER UNTIL EOF
 CALL "READ-RECORD" USING SORT-RECORD, EOF-FLAG
 IF NOT EOF
 RELEASE SORT-RECORD
 END-IF
 END-PERFORM.

 PUT-RECORDS.
 SET EOF TO FALSE.
 PERFORM UNTIL EOF
 RETURN SORT-FILE RECORD
 AT END SET EOF TO TRUE
 NOT AT END
 CALL "WRITE-RECORD" USING SORT-RECORD
 END-RETURN
 END-PERFORM.

 END PROGRAM SORT01.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 365

START Statement (Relative and Indexed I-O)
The START statement provides a method of setting the file position indicator for a
relative or indexed file and provides a means of determining whether a record exists. The
START statement additionally provides a method to set a filter for records of an indexed file
that limits the records returned by subsequent sequential READ statements on the same
indexed file.

Note The required relational characters >, < and = are not underlined to avoid confusion with
other symbols.

file-name-1 must be the name of a relative or indexed file.

file-name-1 must be the name of a file with sequential or dynamic access.

data-name-1 or split-key-name-1 may be qualified. The compiler implicitly qualifies
data-name-1 in the KEY phrase of a START statement for an indexed organization file
with file-name-1 when data-name-1 does not include file-name-1 as its last qualifier.

split-key-name-1 and the SIZE phrase may be specified only for indexed files.

identifier-1 must refer to an elementary integer data item.

literal-1 must be a nonnumeric literal.

[]
[]

[]
[]

[]

[]

[]

[]START-END

KEYINVALIDNOT

KEYINVALID

SENSITIVE-CASE
EINSENSITIV-CASE

LEFT
RIGHT

TRIMMED
LIKENOTISKEY WHILE

SIZEWITH

LASTIS
FIRSTIS

IS
TOEQUALORTHANLESSIS

IS
TOEQUALORTHANGREATERIS

NOTIS
THANGREATERNOTIS

IS
TOEQUALIS

NOTIS
THANLESSNOTIS

KEYSTART

-2-statementimperative

-1-statementimperative

literal-1
-2identifier

integer-1
-1identifier

name-1split-key-
1data-name-

1file-name-

=<

=>

>

=

<

Chapter 6: Procedure Division Statements

366 RM/COBOL Language Reference Manual

identifier-2 must refer to an alphanumeric data item or a pointer data item.

The INVALID KEY phrase must be specified if no applicable USE procedure is specified for
file-name-1.

If file-name-1 is the name of a relative file, then data-name-1, if specified, must be the data
item specified in the RELATIVE KEY phrase of the associated file control entry.

If file-name-1 is the name of an indexed file then data-name-1, if specified, may reference any
one of the data items specified as the record keys associated with file-name-1 or it may
reference any data item of category alphanumeric whose leftmost character position
corresponds to the leftmost character position of a record key data item and whose length is
not greater than the length of that record key.

If file-name-1 is the name of an indexed file, split-key-name-1, if specified, may refer to any
one of the split keys specified as the record keys associated with file-name-1.

file-name-1 must be open in the INPUT or I-O mode at the time the START statement is
executed.

If the KEY phrase is not specified, the relational operator IS EQUAL TO is implied and, for
an indexed file, the key of reference is the prime record key of the file.

The type of comparison specified by the relational operator in the KEY phrase of a START
statement occurs between a key associated with a record in the file to which file-name-1 refers
and a data item.

• If file-name-1 refers to a relative file, the data item used in the comparison is the relative
key associated with file-name-1. All numeric comparison rules apply.

• If file-name-1 refers to an indexed file, the data item used in the comparison is either the
prime record key associated with file-name-1 or, if the KEY phrase is specified, the data
item or split key to which the KEY phrase refers. The comparison is made on the
ascending key of reference according to the collating sequence of the file. If the operands
of the comparison are of unequal size, comparison proceeds as though the longer one
were truncated on the right such that its length is equal to that of the shorter. The size of
the comparison is further modified by the SIZE phrase, if specified. All other
nonnumeric comparison rules apply, except that the presence of the PROGRAM
COLLATING SEQUENCE clause has no effect on the comparison.

When FIRST or LAST are specified in the KEY phrase instead of a relational operator, no
comparison takes place and the value of the relative key data item for a relative file or the
value of the key of reference data item for an indexed file is not used in setting the file
position indicator.

For a relative file the file position indicator is modified as follows:

• If the relational operator specifies that the key must be “equal to”, “greater than” or
“greater than or equal to” the data item, then the file position indicator is set to the lowest
relative record number of a record currently existing in the file whose key satisfies the
comparison.

• If the relational operator specifies that the key must be “less than” or “less than or equal
to” the data item, then the file position indicator is set to the highest relative record
number of a record currently existing in the file whose key satisfies the comparison.

• If FIRST is specified, the file position indicator is set to the lowest relative record number
of a record currently existing in the file.

• If LAST is specified, the file position indicator is set to the highest relative record
number of a record currently existing in the file.

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 367

For an indexed file, the file position indicator is modified as follows:

• If the relational operator specifies that the key must be “equal to”, “greater than” or
“greater than or equal to” the data item, then the file position indicator is set to the value
of the key of reference of the first logical record currently existing in the file whose key
satisfies the comparison.

• If the relational operator specifies that the key must be “less than” the data item, then the
file position indicator is set to the value of the key of reference of the last logical record
currently existing in the file whose key satisfies the comparison.

• If the relational operator specifies that the key must be “less than or equal to” the data
item, then the file position indicator is set to the value of the key of reference of the first
record whose key equals the data item. If no record with the specified key value
currently exists in the file, then the file position indicator is set to the value of the key of
reference of the last logical record currently existing in the file whose key satisfies the
comparison.

• If FIRST is specified, the file position indicator is set to the lowest value of the key of
reference of a record existing in the file according to the collating sequence of the file.

• If LAST is specified, the file position indicator is set to the highest value of the key of
reference of a record existing in the file according to the collating sequence of the file.

If there are no records currently existing in the file or if the comparison in the KEY phrase is
not satisfied by any record currently existing in the file, an invalid key condition exists. The
invalid key condition also exists if file-name-1 refers to an optional input file that is not
present. For indexed files, the invalid key condition can also exist if there is an error in a data
item filter pattern specified in a WHILE phrase, but not for the case where no records satisfy a
valid filter pattern; the latter is indicated by an at end condition in a subsequent sequential
READ statement. When the invalid key condition exists, the execution of the START
statement is unsuccessful, the file position indicator is set to indicate that no valid next record
has been established, and, for indexed files, the key of reference becomes undefined.

The execution of the START statement causes the value of the file status data item associated
with file-name-1, if there is one, to be updated. It does not alter either the contents of the
record area or the contents of the data item referenced by the data-name specified in the
DEPENDING ON phrase of the RECORD clause associated with file-name-1.

For indexed files, a key of reference is established as follows:

• If the KEY phrase is not specified, the prime record key for the file becomes the key of
reference.

• If the KEY phrase is specified and data-name-1 or split-key-name-1 is one of the record
keys of the file, that record key becomes the key of reference.

• If the KEY phrase is specified and data-name-1 is not one of the record keys of the file,
the record key whose leftmost character position coincides with the leftmost character
position of the data item referenced by data-name-1 becomes the key of reference.

For indexed files, the key of reference is used to select the data item that participates in the
key comparison described above, and it is used for subsequent sequential (Format 1) READ
statements.

In single record locking modes, any record lock held by the run unit for file-name-1 is
released upon execution of the START statement. The START statement does not obtain a
record lock and does not indicate the lock status of the record that satisfies the comparison.

In multiple record locking modes, any record locks held by the run unit for file-name-1 are not
released upon execution of the START statement.

Chapter 6: Procedure Division Statements

368 RM/COBOL Language Reference Manual

The END-START phrase delimits the scope of the START statement. This phrase is not
necessary unless the START statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a START statement. The END-START
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-START, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

SIZE Phrase

The SIZE phrase modifies the length of the data item used in the comparison to a key
associated with a record in the indexed file to which file-name-1 refers. Since there is no
comparison to a data item for the FIRST and LAST options, the SIZE phrase has no effect
when specified with those options. The SIZE phrase is not allowed if file-name-1 refers to a
relative file.

The SIZE phrase affects only the setting of the file position indicator. The SIZE phrase does
not affect the filtering of records when the WHILE phrase (see the following topic) is also
specified in the same START statement.

When the SIZE phrase is omitted, the size of the data item specified in the KEY phrase, or the
size of the prime record key for file-name-1 when the KEY phrase is omitted, is used as the
size in the comparison described above.

When the SIZE phrase is present, integer-1 or the value of the data item to which identifier-1
refers is used as the size in the comparison described above.

integer-1 or the value of the data item to which identifier-1 refers must be greater than or
equal to one and less than or equal to the length of the record key specified by the KEY
phrase, if present, or the length of the prime record key for file-name-1, if the KEY phrase
is omitted.

Note Specification of the SIZE phrase overrides the size of a data item specified by
data-name-1 when that data item is not a record key of the file.

WHILE Phrase

The WHILE phrase specifies a filter to be applied when sequentially reading records (READ
NEXT or READ PREVIOUS) in an indexed organization file subsequent to successful
execution of the START statement. The filter is expressed as a pattern regular expression in
the same form as used for the LIKE condition in relation conditions.

The implied subject of the WHILE KEY LIKE filter is the key value of the key of reference
in the record that would be accessed by the READ statement.

integer-1
-1identifierSIZEWITH

[]

literal-1
-2identifier

SENSITIVE-CASE
EINSENSITIV-CASE

LEFT
RIGHTTRIMMED

LIKENOTISKEY WHILE

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 369

• Records with key of reference values that match the specified pattern regular expression
are returned during subsequent sequential READ statements.

• Records with key of reference values that do not match the specified pattern regular
expression are skipped during subsequent sequential READ statements.

If the word NOT is specified in the WHILE phrase, then filtering is reversed: records with
key of reference values that match the pattern are not returned and records with key of
reference values that do not match the pattern are returned in subsequent sequential READ
statements.

The key value of the key of reference established by the START statement from the KEY
phrase is the subject of the filter condition. Selection of the key of reference is not affected by
specification of the WHILE phrase in a START statement. The key of reference may be a
split key; in this case, the complete split key value is the subject of the filter condition.

The SIZE phrase does not affect the pattern matching performed when the WHILE phrase is
specified. Whether or not the SIZE phrase is specified, the entire key value, except as
modified by the TRIMMED phrase, is used when applying the pattern for filtering records
during subsequent sequential READ statements. The SIZE phrase affects only the initial
positioning established by the START statement.

Unless otherwise specified by use of the TRIMMED phrase, the entire contents of the key
value must match the pattern value for a record to pass the filter.

• If the TRIMMED LEFT phrase is specified, leading spaces in the key value are ignored.

• If the TRIMMED RIGHT phrase is specified, trailing spaces in the key value are ignored.

• If the TRIMMED phrase is specified without either the LEFT or RIGHT modifiers, both
leading and trailing spaces in the key value are ignored.

Note The TRIMMED phrase must not be used if the key value contains significant spaces
that would be ignored as a result of its specification.

Case is significant for the filter if the CASE-SENSITIVE phrase is specified or implied; that
is, a case-sensitive match of the key value to the pattern value is done when filtering records.
Case is not significant for the filter if the CASE-INSENSITIVE phrase is specified; that is, a
case-insensitive match of the key value to the pattern value is done when filtering records.

The data item referenced by identifier-2 or the value of literal-1 is the pattern of the filter. If
literal-1 is specified, its value must be a syntactically-correct regular expression for the
desired pattern. If identifier-2 is specified and refers to an alphanumeric data item, the value
of that data item must be a syntactically-correct regular expression for the desired pattern. If
identifier-2 refers to a pointer data item, then the value of that data item must point to a
compiled pattern at the time the START statement is executed. A compiled pattern may be
obtained by using the C$CompilePattern library routine, as described in Appendix F:
Subprogram Library of the RM/COBOL User's Guide. The syntax and semantics of a regular
expression that may be used in a WHILE KEY LIKE pattern are the same as for the LIKE
condition, which is fully described in LIKE Condition (Special Case of Relation Condition)
(on page 190).

As in the LIKE relation condition, all spaces included in a literal pattern value, including any
trailing spaces in the literal, are significant, but trailing spaces in a data item pattern value are
ignored, unless the RUN-ATTR configuration record specifies STRIP-LIKE-PATTERN-
TRAILING-SPACES=NO. (Trailing spaces that should be matched can be specified in a
pattern by using a space followed by a quantifier operator even when trailing space stripping
is in effect.)

Syntax errors in a literal pattern are detected during RM/COBOL compile time and the
compilation error fully describes the syntax error. Syntax errors in an alphanumeric data item

Chapter 6: Procedure Division Statements

370 RM/COBOL Language Reference Manual

pattern cause the START statement to be unsuccessful and result in a 23,nn I/O status value
when the START statement is executed. The value of nn indicates the type of error, as
described in Appendix A: Runtime Messages of the RM/COBOL Users Guide for I/O status
value 23,nn. The nn values 1 through 26 correspond to compiler error messages 682 through
707 that would occur for a literal pattern in the WHILE phrase. See Appendix B: Compiler
Messages (on page 399) for additional information about each of these errors. The nn values
27 and 28 represent execution time errors that have no corresponding compiler error message.

The WHILE phrase does not affect the order of records returned by subsequent sequential
READ statements; the phrase only affects which records are returned. Records are returned in
the order established by the collating sequence for the file. The collating sequence of the file
does not affect pattern matching performed while filtering records; the filter pattern is applied
to the uncollated values of the key of reference. That is, the filter pattern is defined
independent of the collating sequence for the file as if matching against the character values
of the key in the data record. However, there are efficiency concerns because key values in
the index are stored as collated values for quick comparison when searching the index.

A collating sequence for the file that maps multiple characters to the same collating value may
impact performance of the filtering. Such a collating sequence may result in false positive
matches when matching the pattern to the key value in the index. If this is the case, a filter is
applied on the key value in the record before returning the record in order to eliminate the
false positive matches. If the NOT LIKE form of the WHILE phrase is used, filtering is done
only before records are returned; that is, no filtering occurs using the index, because false
positive matches would be false non-matches. Filtering on the key value in the record is
slightly less efficient than filtering on the key value in the index, but should still be more
efficient than applying filtering logic in the COBOL program after a record is read. In
summary, the best efficiency is obtained by following these guidelines:

• If possible, avoid using a collating sequence on the indexed file that collates multiple
characters to the same collating position.

• If the file does have a collating sequence that maps multiple characters to the same
collating position, use a pattern with classes that match on all the character values that
map to the same collating position. This results in no false positives on matching and the
implementation optimizes this case.

• If possible, avoid using the NOT LIKE form of the WHILE phrase on indexed files with
a collating sequence that maps multiple characters to the same collating position and a
pattern that can result in false positive matches.

A subsequent START statement or random READ statement cancels any existing filter
established by the WHILE phrase in a START statement. The cancelling of the existing filter,
if any, is done at the beginning of the START or random READ operation. Thus, a random
READ is never filtered.

Reaching the end of file (READ NEXT) or beginning of file (READ PREVIOUS) does not
cancel the filter; the filter continues to apply if the direction of reading is reversed and
continued sequentially. Reading past the end of file, that is, a READ NEXT at end of file or a
READ PREVIOUS at the beginning of the file, or any operation that fails in such a manner
that the current record is not set, will cancel the current filter, if any.

INVALID KEY and NOT INVALID KEY Phrases

 -2-statementimperative

-1-statementimperative

KEYINVALIDNOT

KEYINVALID

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 371

The causes of the invalid key condition for the START statement are indicated in the
preceding text.

Transfer of control following the successful or unsuccessful execution of the START
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases in the START statement. See the discussions of invalid key
conditions for relative files (on page 211) and indexed files (on page 218).

See also the discussions of relative organization input-output (on page 207) and indexed
organization input-output (on page 213) for additional information on the invalid key
condition and the use of the INVALID KEY and NOT INVALID KEY phrases.

START Statement (Relative and Indexed I-O) Examples

 MOVE 10 TO INVENTORY-KEY.
 START INVENTORY-FILE; INVALID KEY
 DISPLAY "Key 10 not present in inventory file."
 NOT INVALID KEY
 DISPLAY "Key 10 present in inventory file."
 END-START.

 START STATUS-FILE KEY IS LAST SF-KEY.

 MOVE DB-START-KEY TO DB-KEY.
 START DATA-BASE KEY >= DB-KEY SIZE 10
 INVALID KEY PERFORM DB-INVALID-KEY-HANDLER
 NOT INVALID KEY PERFORM DB-SUCCESS-HANDLER
 END-START.

 *> set filter for finding all keys ending in
 *> "smith" (case insensitively)
 START DATA-BASE WHILE KEY LIKE ".*smith".

STOP Statement
The STOP statement causes a permanent or temporary suspension of the execution of the
object program.

The implicit or explicit usage of both identifier-1 and identifier-2 must be DISPLAY.

literal-1 may be numeric or nonnumeric or may be any figurative constant.

If a STOP RUN statement appears in a consecutive sequence of imperative statements within
a sentence, it must appear as the last statement in that sequence.

If the RUN phrase is used:

• The execution of the entire run unit is terminated.

• integer-1 or the value of the data item referenced by identifier-1 may be zero.

literal-1
-2identifier

integer-1
-1identifier

RUN

STOP

Chapter 6: Procedure Division Statements

372 RM/COBOL Language Reference Manual

• When identifier-1 is used in the RUN phrase, it must be the name of an elementary
integer data item.

• The value of the data item referenced by identifier-1 or the value of integer-1 is used to
set the RETURN-CODE special register. When the run unit is terminated by a STOP
RUN or GOBACK statement, the value in the RETURN-CODE special register is made
available to the operating system. For details on using that value, see the RM/COBOL
Use’s Guide.

There is an implicit interaction between the STOP RUN statement and the RETURN-CODE
special register. See the discussion of the RETURN-CODE special register (on page 19).

If STOP identifier-2 or literal-1 is specified, the value of the operand is displayed at the
terminal associated with this run unit and execution of the run unit is suspended until the
message is acknowledged. After the message is acknowledged, execution continues with the
next executable statement.

STOP Statement Examples

 STOP RUN.

 STOP RUN 1.

 STOP RUN STATUS-CODE.

 STOP "End of Procedure.".

STRING Statement
The STRING statement concatenates the partial or complete contents of one or more data
items into a single data item.

literal-1 and literal-2 may be any figurative constant except those that begin with the word
ALL. When figurative constants are used in a STRING statement, they behave as single
character nonnumeric literals.

All literals must be nonnumeric literals, and the explicit or implicit usage of each identifier,
except identifier-4, must be DISPLAY.

identifier-3 must not be reference modified; it must not represent an edited data item; and it
must not be described with the JUSTIFIED clause.

[]

[]

[]

[]STRING-END

OVERFLOWONNOT

OVERFLOWON

POINTERWITH

INTO

SIZE
BYDELIMITEDSTRING

-2-statementimperative

-1-statementimperative

-4identifier

-3identifier

literal-2
-2identifier

literal-1
-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 373

identifier-4 must represent an elementary numeric integer data item of sufficient size to
contain a value equal to the size plus 1 of the area referenced by identifier-3. The symbol P
may not be used in the PICTURE character-string of identifier-4.

When identifier-1 or identifier-2 is an elementary numeric data item, it must be described as
an integer without the symbol P in its PICTURE character-string.

identifier-1 or literal-1 represents the sending item. identifier-3 in the INTO phrase
represents the receiving item.

When the STRING statement is executed, characters from literal-1 or from the contents of the
data item referenced by identifier-1 are transferred to the data item referenced by identifier-3
in accordance with the rules for alphanumeric to alphanumeric moves, except that no space
filling is provided.

When characters are transferred to the data item referenced by identifier-3, the moves
behave as though the characters were moved one at a time from the source into the character
position of the data item referenced by identifier-3 designated by the value associated with
identifier-4, and then identifier-4 was increased by one prior to the move of the next character.
The value associated with identifier-4 is changed during execution of the STRING statement
according to the rules set forth in the POINTER phrase description.

At the end of the execution of the STRING statement, only the portion of the data item
referenced by identifier-3 that was referenced during the execution of the STRING statement
is changed. All other portions of the data item referenced by identifier-3 contain data that was
present before this execution of the STRING statement.

The END-STRING phrase delimits the scope of the STRING statement. This phrase is not
necessary unless the STRING statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a STRING statement. The END-STRING
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-STRING, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

DELIMITED Phrase

If the DELIMITED phrase is specified without the SIZE phrase, the contents of the data item
referenced by identifier-1 or the value of literal-1 are transferred to the receiving data item in
the sequence specified in the STRING statement beginning with the leftmost character and
continuing from left to right until the end of the sending data item is reached, or the end of the
receiving data item is reached, or until the character (or characters) specified by literal-2, or
by the content of the data item referenced by identifier-2 is encountered. The character (or
characters) specified by literal-2 or by the data item referenced by identifier-2 is not
transferred.

If the DELIMITED phrase is specified with the SIZE phrase, the entire contents of literal-1 or
the contents of the data item referenced by identifier-1 are transferred, in the sequence
specified in the STRING statement, to the data item referenced by identifier-3 until all data
has been transferred or the end of the data item referenced by identifier-3 has been reached.

SIZE
BYDELIMITED literal-2

-2identifier

Chapter 6: Procedure Division Statements

374 RM/COBOL Language Reference Manual

POINTER Phrase

If the POINTER phrase is specified, the data item referenced by identifier-4 must have a
positive value at the time execution of the STRING statement begins.

If the POINTER phrase is not specified, the effect is as if the user had specified identifier-4
referencing a data item with an initial value of 1.

OVERFLOW and NOT OVERFLOW Phrases

Before each move of a character from the current sending item to the receiving item, if the
value associated with the data item referenced by identifier-4 is either less than one or exceeds
the number of character positions in the receiving item, an overflow condition exists.

If an overflow condition arises, no (further) data is transferred from the sending item to the
receiving item, the NOT ON OVERFLOW phrase, if present, is ignored, and control is
transferred either to the end of the STRING statement, or, if the ON OVERFLOW phrase is
present, to imperative-statement-1. In the latter case, execution continues according to the
rules for each statement specified in imperative-statement-1. If a procedure branching or
conditional statement that causes explicit transfer of control is encountered, control is
transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-1, control is transferred to the end of the
STRING statement.

If the STRING statement executes without an overflow condition arising, the ON
OVERFLOW phrase, if present, is ignored and control is transferred either to the end
of the STRING statement, or, if the NOT ON OVERFLOW phrase is present, to
imperative-statement-2. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-2. If a procedure branching or conditional
statement that causes explicit transfer of control is encountered, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the STRING statement.

STRING Statement Examples

 STRING FIELD-1 DELIMITED BY SPACES
 ";" DELIMITED BY SIZE
 FIELD-2 DELIMITED BY "."
 ";" DELIMITED BY SIZE
 INTO FIELD-GROUP
 ON OVERFLOW
 DISPLAY "Overflow error."
 STOP RUN
 END-STRING.

 STRING MONTH-VALUE DELIMITED BY SPACES
 SPACE DAY-VALUE "," YEAR-VALUE
 DELIMITED BY SIZE
 INTO TITLE-RECORD
 WITH POINTER COLUMN-CURSOR.

-4identifierPOINTERWITH

-2-statementimperative

-1-statementimperative

OVERFLOWONNOT

OVERFLOWON

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 375

SUBTRACT Statement
The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data
items from a numeric data item and store the result.

Format 1: Subtract…From

Format 2: Subtract…Giving

Format 3: Subtract Corresponding

In Format 1, all literals or identifiers preceding the word FROM are added together and the
sum is stored in a temporary data item. The value of this temporary data item is subtracted
from the value of the data item specified by identifier-3, storing the result into the data item
specified by identifier-3, and repeating this process for each successive occurrence of
identifier-3 in the left-to-right order in which identifier-3 is specified.

In Format 2, all literals or identifiers preceding the word FROM are added together, the sum
is subtracted from literal-2 or identifier-2 and the result of the subtraction is stored as the new
value of identifier-3.

If Format 3 is used, data items in identifier-1 are subtracted from and stored into
corresponding data items in identifier-2.

[]{ }

[]

[]

[]SUBTRACT-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDFROMSUBTRACT

-2-statementimperative

-1-statementimperative

-3identifierliteral-1
-1identifier

[]{ }

[]

[]

[]SUBTRACT-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDGIVING

FROMSUBTRACT

-2-statementimperative

-1-statementimperative

-3identifier

literal-2
-2identifier

literal-1
-1identifier

[]

[]

[]

[]SUBTRACT-END

ERRORSIZEONNOT

ERRORSIZEON

ROUNDEDFROMCORR
INGCORRESPONDSUBTRACT

-2-statementimperative

-1-statementimperative

-2identifier-1identifier

Chapter 6: Procedure Division Statements

376 RM/COBOL Language Reference Manual

Each identifier must refer to a numeric elementary item except that:

• In Format 2, the identifier following the word GIVING must refer to either an elementary
numeric item or an elementary numeric edited item.

• In Format 3, the identifiers must refer to group items.

Each literal must be a numeric literal.

Additional rules and explanations regarding features of the SUBTRACT statement that are
common to other arithmetic statements can be found in the discussion of common rules (on
page 182). Note, in particular, the discussions of the ROUNDED phrase, the size error
condition, overlapping operands, modes of operation, composite size, and incompatible data.

The END-SUBTRACT phrase delimits the scope of the SUBTRACT statement. This phrase
is not necessary unless the SUBTRACT statement is specified in the conditional phrase of
another statement. Even in that case, the phrase is not necessary unless this statement
specifies a conditional phrase or that other statement is also a SUBTRACT statement. The
END-SUBTRACT phrase is allowed even when not necessary. For additional information on
scope terminators such as END-SUBTRACT, see Scope of Statements (on page 31),
Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within identifier-1 are subtracted
from, and the result stored in, the corresponding items in identifier-2.

For the SUBTRACT statement with the CORRESPONDING phrase:

• The description of identifier-1 and identifier-2 must not contain level-number 66, 77, 78,
or 88, or the USAGE IS INDEX clause.

• Neither identifier-1 nor identifier-2 may be reference modified.

• identifier-1 or identifier-2 may be described with the OCCURS or REDEFINES clauses
or be subordinate to data items described with the OCCURS or REDEFINES clauses. If
identifier-1 or identifier-2 is a table element, then the required subscripting must be
specified as part of identifier-1 or identifier-2. The specified subscripting will be applied
to the selected subordinate corresponding data items, respectively, for identifier-1 and
identifier-2.

The rules that govern the selection of eligible subordinate data item pairs are as follows:

1. The data items are not designated by the keyword FILLER and have the same data-name-
1 and the same qualifiers up to but not including the original group items, identifier-1 and
identifier-2.

2. Both of the data items are elementary numeric data items.

3. A data item that is subordinate to identifier-1 or identifier-2 and contains a REDEFINES,
OCCURS, USAGE IS INDEX, or USAGE IS POINTER clause is ignored, as well as
those data items subordinate to the data item that contains the REDEFINES, OCCURS,
USAGE IS INDEX, or USAGE IS POINTER clause.

4. The name of each data item that satisfies the above conditions must be unique after
application of the implied qualifiers.

[]ROUNDEDFROMCORR
INGCORRESPOND -2identifier-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 377

If any of the individual operations produces a size error condition, imperative-statement-1
in the ON SIZE ERROR phrase is not executed until all of the individual subtractions are
completed.

CORR is an abbreviation for CORRESPONDING.

SUBTRACT Statement Examples

 SUBTRACT TAXES FROM INCOME.

 SUBTRACT 1 FROM TALLY-COUNTER GIVING TALLY-1.

 SUBTRACT 2.68, INTEREST, PENALTY
 FROM PRINCIPAL ROUNDED
 ON SIZE ERROR GO TO ERROR-HANDLER.

 SUBTRACT CORR DAILY-SALES FROM INVENTORY-ON-HAND.

UNLOCK Statement
The UNLOCK statement releases all record locks held by the run unit for a shared input-
output file.

The file to which file-name-1 refers must be in an open mode at the time the UNLOCK
statement is executed.

In all record locking modes any record locks held by the run unit for file-name-1 are released
upon execution of the UNLOCK statement.

If no record in the file is locked, execution of the UNLOCK statement is successful and no
action is taken except for updating the file status data item.

The file position indicator is not affected by the execution of the UNLOCK statement. The
file status data item associated with the file, if one exists, is updated.

The UNLOCK statement may not be used to unlock records locked by other run units.

For additional information on record locking and unlocking, see Record Locking (on
page 221).

UNLOCK Statement Examples

 UNLOCK DATA-BASE RECORDS.

 UNLOCK INVENTORY-FILE.

RECORDS
RECORDUNLOCK 1file-name-

Chapter 6: Procedure Division Statements

378 RM/COBOL Language Reference Manual

UNSTRING Statement
The UNSTRING statement causes contiguous data in a sending field to be separated and
placed in multiple receiving fields.

literal-1 and literal-2 must be nonnumeric literals and may be any figurative constant except
those that begin with the word ALL.

identifier-1, identifier-2, identifier-3, and identifier-5 must reference data items described
implicitly or explicitly as category alphanumeric.

identifier-1 must not be reference modified.

identifier-4 may be described as alphabetic, alphanumeric, or numeric (except that the symbol
“P” may not be used in the PICTURE character-string), and must be described as usage is
DISPLAY.

identifier-6, identifier-7, and identifier-8 must be described as elementary numeric integer
data items (except that the symbol “P” may not be used in the PICTURE character-string).

The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the
DELIMITED BY phrase is specified.

When a figurative constant is used as the delimiter, it stands for a single character nonnumeric
literal.

When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of
literal-1 (figurative constant or not) or the contents of the data item referenced by identifier-2
are treated as if they were only one occurrence, and one occurrence of literal-1 or the data
item referenced by identifier-2 is moved to the receiving data item.

When the ALL phrase is not specified and any examination encounters two contiguous
delimiters, the current receiving area is space filled if it is described as alphabetic or
alphanumeric, or zero filled if it is described as numeric.

literal-1 or the contents of the data item referenced by identifier-2 can contain any character
in the character set of the computer.

Each literal-1 or the data item referenced by identifier-2 represents one delimiter. When a
delimiter contains two or more characters, all of the characters must be present in contiguous
positions of the sending item, and in the order given, to be recognized as a delimiter.

[] []

[] []{ }

[]

[]

[]

[]

[]UNSTRING-END

OVERFLOWONNOT

OVERFLOWON

INTALLYING

POINTERWITH

INCOUNTINDELIMITERINTO

ALLORALLBYDELIMITED

UNSTRING

-2-statementimperative

-1-statementimperative

-8identifier

-7identifier

-6identifier-5identifier-4identifier

literal-2
-3identifier

literal-1
-2identifier

-1identifier

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 379

When two or more delimiters are specified in the DELIMITED BY phrase, an OR condition
exists between them. Each delimiter is compared to the sending field. If a match occurs, the
character (or characters) in the sending field is considered to be a single delimiter. No
character (or characters) in the sending field can be considered a part of more than one
delimiter. Each delimiter is applied to the sending field in the sequence specified in the
UNSTRING statement.

When the UNSTRING statement is initiated, the current receiving area is the data item
referenced by identifier-4. Data is transferred from the data item referenced by identifier-1 to
the data item referenced by identifier-4 according to the following rules:

1. If the POINTER phrase is specified, the string of characters referenced by identifier-1 is
examined beginning with the relative character position indicated by the contents of the
data item referenced by identifier-7. If the POINTER phrase is not specified, the string
of characters is examined beginning with the leftmost character position.

2. If the DELIMITED BY phrase is specified, the examination proceeds left to right until
either a delimiter specified by the value of literal-1 or the data item referenced by
identifier-2 is encountered. If the DELIMITED BY phrase is not specified, the number
of characters examined is equal to the size of the current receiving area. However, if the
sign of the receiving item is defined as occupying a separate character position, the
number of characters examined is one less than the size of the current receiving area. If
the end of the data item referenced by identifier-1 is encountered before the delimiting
condition is met, the examination terminates with the last character examined.

3. The characters thus examined (excluding the delimiting characters, if any) are treated as
an elementary alphanumeric data item, and are moved into the current receiving area
according to the rules for the MOVE Statement (see page 311).

4. If the DELIMITER IN phrase is specified, the delimiting character (or characters) are
treated as an elementary alphanumeric data item, and are moved into the data item
referenced by identifier-5 according to the rules for the MOVE statement. If the
delimiting condition is the end of the data item referenced by identifier-1, the data item
referenced by identifier-5 is space filled.

5. If the COUNT IN phrase is specified, a value equal to the number of characters thus
examined (excluding the delimiter characters, if there are any) is moved into the area
referenced by identifier-6 according to the rules for an elementary move.

6. If the DELIMITED BY phrase is specified, the string of characters is further examined
beginning with the first character to the right of the delimiter. If the DELIMITED BY
phrase is not specified, the string of characters is further examined beginning with the
character to the right of the last character transferred.

7. After data is transferred to the data item referenced by identifier-4 in the INTO phrase,
the current receiving area is the data item referenced by the next recurrence of identifier-
4. Steps 2 through 6 above are then repeated until all the characters are exhausted in the
data item referenced by identifier-1, or until there are no more receiving areas.

The initialization of the contents of the data items associated with the POINTER phrase or the
TALLYING phrase is the responsibility of the user.

The contents of the data item referenced by identifier-7 are incremented by one for each
character examined in the data item referenced by identifier-1. When the execution of an
UNSTRING statement with a POINTER phrase is completed, the contents of the data item
referenced by identifier-7 contain a value equal to the initial value plus the number of
characters examined in the data item referenced by identifier-1.

When the execution of an UNSTRING statement with a TALLYING phrase is completed, the
data item referenced by identifier-8 contains a value equal to its initial value plus the number
of data receiving items acted upon.

Chapter 6: Procedure Division Statements

380 RM/COBOL Language Reference Manual

Either of the following situations causes an overflow condition:

• An UNSTRING statement is initiated, and the value in the data item referenced by
identifier-7 is less than 1 or greater than the size of the data item referenced by
identifier-1.

• If, during the execution of an UNSTRING statement, all data receiving areas have been
acted upon, and the data item referenced by identifier-1 contains characters that have not
been examined.

If an overflow condition arises, the UNSTRING operation is terminated, the NOT ON
OVERFLOW phrase, if present, is ignored, and control is transferred either to the end of the
UNSTRING statement, or, if the ON OVERFLOW phrase is present, to imperative-statement-
1. In the latter case, execution continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or conditional statement that causes explicit
transfer of control is encountered, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the UNSTRING statement.

If the UNSTRING operation completes without an overflow condition arising, the ON
OVERFLOW phrase, if present, is ignored and control is transferred either to the end
of the UNSTRING statement, or, if the NOT ON OVERFLOW phrase is present, to
imperative-statement-2. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-2. If a procedure branching or conditional
statement that causes explicit transfer of control is encountered, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the UNSTRING statement.

The END-UNSTRING phrase delimits the scope of the UNSTRING statement. This phrase
is not necessary unless the UNSTRING statement is specified in the conditional phrase of
another statement. Even in that case, the phrase is not necessary unless this statement
specifies a conditional phrase or that other statement is also a UNSTRING statement. The
END-UNSTRING phrase is allowed even when not necessary. For additional information on
scope terminators such as END-UNSTRING, see Scope of Statements (on page 31),
Imperative Statements (on page 30), and Delimited Scope Statements (on page 31).

UNSTRING Statement Example

 MOVE ZERO TO FIELD-COUNT.
 UNSTRING PSTRING DELIMITED BY ";" OR "."
 INTO FIELD-1 DELIMITER IN DELIM-1
 FIELD-2 DELIMITER IN DELIM-2
 FIELD-3 DELIMITER IN DELIM-3
 TALLYING IN FIELD-COUNT
 ON OVERFLOW
 DISPLAY "Too many fields in parameter."
 STOP RUN
 END-UNSTRING.

USE Statement
See the discussion of the USE statement (on page 180).

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 381

WRITE Statement
The WRITE statement releases a logical record for an output or input-output file. For a
sequential file, it can also be used for vertical positioning of lines within a logical page.

Format 1: Write Sequential File

Format 2: Write Relative and Indexed File

In a Format 1 WRITE statement, record-name-1 must refer to a record associated with a
sequential organization file.

In a Format 2 WRITE statement, record-name-1 must refer to a record associated with a
relative or indexed organization file.

record-name-1 and identifier-1 must not reference the same storage area.

record-name-1 is the name of a logical record in the File Section of the Data Division and
may be qualified.

When identifier-2 is used in the ADVANCING phrase, it must be the name of an elementary
integer data item.

integer-1 or the value of the data item referenced by identifier-2 may be zero.

identifier-3 must reference an unsigned integer data item.

[]

[]WRITE-END

EOP
PAGE-OF-ENDATNOT

EOP
PAGE-OF-ENDAT

PAGE

PAGENEXTONLINETO

LINES
LINE

ADVANCINGAFTER
BEFORE

FROMWRITE

-2-statementimperative

-1-statementimperative

ame-2mnemonic-n

integer-2
-3identifier

integer-1
-2identifier

literal-1
-1identifiere-1record-nam

[]

[]

[]WRITE-END

KEYINVALIDNOT

KEYINVALID

FROMWRITE

-2-statementimperative

-1-statementimperative

literal-1
-1identifiere-1record-nam

Chapter 6: Procedure Division Statements

382 RM/COBOL Language Reference Manual

In a Format 2 WRITE statement, the INVALID KEY phrase must be specified if an
applicable USE procedure is not specified for the associated file.

If the access mode is sequential, the associated file must be open in the OUTPUT or
EXTEND mode at the time of the execution of this statement.

If the access mode is random or dynamic, the associated file must be open in the OUTPUT or
I-O mode at the time of the execution of this statement.

The file position indicator is unaffected by the execution of a WRITE statement.

The execution of the WRITE statement causes the value of the file status data item, if any,
associated with the file to be updated.

The maximum record size for a file is established at the time the file is created and must not
subsequently be changed.

The number of character positions on a mass storage device required to store a logical record
in a file may or may not be equal to the number of character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to the operating system. The
contents of the record area are not changed.

When an attempt is made to write beyond the externally defined boundaries of a sequential
file, an exception condition exists. The following action takes place:

• The value of the file status data item, if any, of the associated file is set to a value
indicating a boundary violation.

• If a USE declarative is explicitly or implicitly specified for the file, that declarative
procedure is executed.

• If a USE declarative is not explicitly or implicitly specified for the file, an error message
is displayed and the run unit is terminated.

When a relative file is opened in the output mode, records may be placed into the file by one
of the following:

• If the access mode is sequential, the WRITE statement causes a record to be released to
the associated file. The first record has a relative record number of 1, and subsequent
records have relative record numbers 2, 3, 4, If a relative key data item has been
specified in the file control entry for the associated file, the relative record number of the
record just released is placed into the relative key data item by the runtime system during
execution of the WRITE statement.

• If the access mode is random or dynamic, prior to the execution of the WRITE statement
the value of the relative key data item must be initialized in the program with the relative
record number to be associated with the record in the record area. That record is then
released to the associated file by execution of the WRITE statement.

When a relative file is opened in the I-O mode and the access mode is random or dynamic,
records are to be inserted in the associated file. The value of the relative key data item must
be initialized by the program with the relative record number to be associated with the record
in the record area. Execution of a WRITE statement then causes the contents of the record
area to be released to the associated file.

For an indexed file, the data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE statement. Records may be
placed into the file by one of the following:

• If the access mode is sequential, records must be released in strictly ascending order of
prime record key values according to the collating sequence of the file, except that, if the

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 383

DUPLICATES phrase is specified in the RECORD KEY clause, records with duplicate
prime record key values may be released. If the access mode is random or dynamic,
records may be released to the system in any program-specified order.

• When the DUPLICATES phrase is specified for a record key of an indexed file, the value
of the record key may be nonunique. In this case, the indexed file provides storage of
records such that when records are accessed sequentially, the order of retrieval of those
records is the order in which they are released to the runtime system.

In single record locking modes any record lock held by the run unit for the file associated with
record-name-1 is released upon execution of the WRITE statement.

In multiple record locking modes any record locks held by the run unit for file-name-1 are not
released upon execution of the WRITE statement.

The END-WRITE phrase delimits the scope of the WRITE statement. This phrase is not
necessary unless the WRITE statement is specified in the conditional phrase of another
statement. Even in that case, the phrase is not necessary unless this statement specifies a
conditional phrase or that other statement is also a WRITE statement. The END-WRITE
phrase is allowed even when not necessary. For additional information on scope terminators
such as END-WRITE, see Scope of Statements (on page 31), Imperative Statements (on
page 30), and Delimited Scope Statements (on page 31).

FROM Phrase

The result of the execution of the WRITE statement with the FROM phrase is equivalent to
the execution of a move from identifier-1 or literal-1 to record-name-1 followed by the same
WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit MOVE statement have
no effect on the execution of this WRITE statement.

ADVANCING Phrase

The ADVANCING phrase allows control of the vertical positioning of each line on a
representation of a printed page. If the ADVANCING phrase is not used, automatic
advancing occurs as if the user had specified AFTER ADVANCING 1 LINE. If the
ADVANCING phrase is used, advancing is provided as follows:

• If identifier-2 is specified, the representation of the printed page is advanced the number
of lines equal to the current value associated with identifier-2, which must be positive
or zero.

literal-1
-1identifierFROM

[]

PAGE

PAGENEXTONLINETO

LINES
LINE

ADVANCINGAFTER
BEFORE

ame-2mnemonic-n

integer-2
-3identifier

integer-1
-2identifier

Chapter 6: Procedure Division Statements

384 RM/COBOL Language Reference Manual

• If integer-1 is specified, the representation of the printed page is advanced the number of
lines equal to the value of integer-1.

• When mnemonic-name-2 is used, the name must be identified with a feature-name that is
a channel-name in the SPECIAL-NAMES paragraph of the Environment Division. The
representation of the printed page is advanced to the next occurrence of the channel
indicator for the channel number associated with mnemonic-name-2. If the print device
does not support channel skipping, advancing defaults to ADVANCING 1 LINE. The
mnemonic-name phrase may not be used when writing a record to a file whose file
description entry contains a LINAGE clause.

• If the BEFORE phrase is used, the line is presented before the representation of the
printed page is advanced.

• If the AFTER phrase is used, the line is presented after the representation of the printed
page is advanced.

• If PAGE is specified, the record is presented on the logical page before or after
(depending on the phrase used) the device is repositioned to the next logical page.

• If the TO LINE phrase without the NEXT PAGE phrase is specified, the representation
of the printed page is positioned to the line within the current page body corresponding
to integer-2 or the value of the data item referenced by identifier-3.

• If the TO LINE phrase with the NEXT PAGE phrase is specified, the representation of
the printed page is positioned to the line within the next logical page body corresponding
to integer-2 or the value of the data item referenced by identifier-3.

• If PAGE is specified and the LINAGE clause is specified in the associated file
description entry, the record is presented on the logical page before or after (depending
on the phrase used) the device is repositioned to the next logical page. The repositioning
is to the first line that can be written on the next logical page as specified in the LINAGE
clause.

• If PAGE is specified and the LINAGE clause is not specified in the associated file
description entry, the record is repositioned to the next physical page. If physical page
has no meaning in conjunction with a specific device, advancing occurs as if the user had
specified BEFORE or AFTER (depending on the phrase used) ADVANCING 1 LINE.

END-OF-PAGE and NOT END-OF-PAGE Phrases

If the END-OF-PAGE phrase, the NOT END-OF-PAGE phrase or the ADVANCING TO
LINE phrase is specified, the LINAGE clause must be specified in the file description entry
for the associated file.

The words END-OF-PAGE and EOP are synonymous.

An end-of-page condition occurs when the execution of a WRITE statement with the END-
OF-PAGE phrase causes printing or spacing within the footing area of a page body. This
occurs when the execution of such a WRITE statement causes the LINAGE-COUNTER to
equal or exceed the value specified by integer-8 or the data item referenced by data-name-5
of the LINAGE clause. In this case, the WRITE statement is executed and then

-2-statementimperative

-1-statementimperative

EOP
PAGE-OF-ENDATNOT

EOP
PAGE-OF-ENDAT

Chapter 6: Procedure Division Statements

 RM/COBOL Language Reference Manual 385

imperative-statement-1 in the END-OF-PAGE phrase is executed. A NOT END-OF-PAGE
phrase, if present, is ignored.

An automatic page overflow condition occurs when the execution of a WRITE statement
(with or without an END-OF-PAGE phrase) cannot be fully accommodated within the current
page body. An automatic page overflow condition does not occur as a result of the execution
of a WRITE statement containing a NEXT PAGE phrase.

An automatic page overflow condition occurs when the execution of a WRITE statement
causes the LINAGE-COUNTER to exceed the value specified by integer-7 or the data item
referenced by data-name-4 of the LINAGE clause. In this case, the record is presented on the
logical page before or after (depending on the phrase used) the device is repositioned to the
first line that can be written on the next logical page as specified in the LINAGE clause.
imperative-statement-1 in the END-OF-PAGE phrase, if specified, is executed after the record
is written and the device has been repositioned.

A page overflow condition occurs when the execution of a WRITE statement causes the
LINAGE-COUNTER to simultaneously exceed the value of both integer-8 and the data item
referenced by data-name-5 of the LINAGE clause and integer-7 or the data item referenced
by data-name-4 of the LINAGE clause.

If the execution of a WRITE statement with the TO LINE phrase would cause the record to be
presented on a line outside the current page body if the NEXT PAGE phrase is not specified,
or outside the next page body if the NEXT PAGE phrase is specified, the execution of the
WRITE statement is unsuccessful. Furthermore, if the execution of the WRITE statement
with identifier-2 or integer-1 LINES phrase would cause the LINAGE-COUNTER associated
with record-name-1 to have a negative or zero value, the execution of the WRITE statement
is unsuccessful. If the execution of the WRITE statement is unsuccessful for one of these
reasons, an exception condition exists, the contents of the record area and of LINAGE-
COUNTER are unchanged, and the following actions take place:

• If the file with which record-name-1 is associated has a file status data item, its value is
set to a value indicating a page boundary violation.

• If a USE procedure is explicitly or implicitly specified for the file associated with record-
name-1, that declarative procedure is executed.

• If a USE procedure is not explicitly or implicitly specified for the file associated with
record-name-1, control is transferred to the next executable statement.

INVALID KEY and NOT INVALID KEY Phrases

The invalid key condition exists under one of the following circumstances:

• When a relative file has random or dynamic access mode and the relative key data item
specifies a record that already exists in the file.

• When the access mode is sequential for an indexed file opened in the output mode, and
the value of the prime record key is not greater than the value of the prime record key of
the previous record, except that, if the DUPLICATES phrase is specified in the RECORD
KEY clause of the file control entry, the value of the prime record key may be equal to
the value of the prime record key of the previous record.

• When an indexed file is opened in the output or I-O mode, and the value of the prime
record key is equal to the value of the prime record key of a record already existing in the

-2-statementimperative

-1-statementimperative

KEYINVALIDNOT

KEYINVALID

Chapter 6: Procedure Division Statements

386 RM/COBOL Language Reference Manual

file and the DUPLICATES phrase is not specified in the RECORD KEY clause of the
file control entry.

• When an indexed file is opened in the output or I-O mode, and the value of an alternate
record key for which duplicates are not allowed equals the corresponding data item of a
record already existing in the file.

• When an attempt is made to write beyond the externally defined boundaries of the file.

When the invalid key condition is recognized, the execution of the WRITE statement is
unsuccessful, the contents of the record area are unaffected and the file status data item, if
any, of the associated file is set to a value indicating the cause of the condition.

Transfer of control following the successful or unsuccessful execution of a Format 2 WRITE
statement depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases in the WRITE statement. This topic is presented in detail in the
discussions of invalid key conditions for relative files (on page 211) and indexed files (on
page 218).

See also the discussions of relative organization input-output (on page 207) and indexed
organization input-output (on page 213) for additional information on the invalid key
condition and the use of the INVALID KEY and NOT INVALID KEY phrases.

WRITE Statement Examples

 WRITE TR-RECORD OF TRANSACTION-FILE.

 WRITE PF-RECORD FROM TITLE-LINE
 AFTER ADVANCING PAGE.

 WRITE PF-RECORD OF PRINT-FILE
 AFTER ADVANCING CHANNEL-1.

 WRITE RF-RECORD FROM DETAIL-LINE
 AFTER ADVANCING TO LINE 10
 AT END-OF-PAGE
 ADD 1 TO PAGE-COUNT
 END-WRITE.

 WRITE DB-RECORD OF DATA-BASE
 INVALID KEY PERFORM BAD-KEY-PROCEDURE
 END-WRITE.

 MOVE 5 TO INVENTORY-KEY.
 WRITE INVENTORY-RECORD FROM NEW-INVENTORY-ITEM
 INVALID KEY DISPLAY "Key 5 not accepted."
 NOT INVALID KEY DISPLAY "Key 5 written."
 END-WRITE.

Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 387

Appendix A: Reserved Words

This appendix lists all RM/COBOL reserved words. Some words are reserved only for use
in the Debug and Report Writer modules; since these modules are not implemented in this
version of RM/COBOL, such words do not appear elsewhere in the syntax formats.

Reserved Words
Note The DERESERVE keyword of the COMPILER-OPTIONS configuration record, which
is described in Chapter 10: Configuration of the RM/COBOL User’s Guide, can be used to
make a reserved word a user-defined word whenever it occurs in the source program, but then
the language feature provided by the construct in which the word appears is not available for
programs compiled with that particular configuration setting.

A
ACCEPT ALSO 1
ACCESS ALTER
ADD ALTERNATE
ADDRESS 1 AND
ADVANCING ANY 1
AFTER ARE
ALL AREA
ALPHABET 1 AREAS
ALPHABETIC AS 1
ALPHABETIC-LOWER 1 ASCENDING 1
ALPHABETIC-UPPER 1 ASSIGN
ALPHANUMERIC 1 AT
ALPHANUMERIC-EDITED 1 AUTHOR

B
BEEP BLINK
BEFORE BLOCK
BELL 1 BOTTOM 1
BINARY BY
BLANK

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.

Appendix A: Reserved Words

388 RM/COBOL Language Reference Manual

C
CALL COMP-5 1
CANCEL COMP-6
CD 1 COMPUTATIONAL
CENTURY-DATE 1 COMPUTATIONAL-1
CENTURY-DAY 1 COMPUTATIONAL-3
CF 1 COMPUTATIONAL-4 1
CH 1 COMPUTATIONAL-5 1
CHARACTER COMPUTATIONAL-6
CHARACTERS COMPUTE
CLASS 1 CONFIGURATION
CLOCK-UNITS 1 CONTAINS
CLOSE CONTENT 1
COBOL 1 CONTINUE 1
CODE 1 CONTROL 1
CODE-SET CONTROLS 1
COL 1 CONVERT
COLLATING CONVERTING 1
COLUMN 1 COPY
COMMA CORR
COMMON 1 CORRESPONDING
COMMUNICATION 1 COUNT 1
COMP COUNT-MAX 1
COMP-1 COUNT-MIN 1
COMP-3 CURRENCY
COMP-4 1 CURSOR 1

D
DATA DECIMAL-POINT
DATA-POINTER 1 DECLARATIVES
DATE DEFAULT 1
DATE-AND-TIME 1 DELETE
DATE-COMPILED 1 DELIMITED 1
DATE-WRITTEN DELIMITER 1
DAY DEPENDING
DAY-AND-TIME 1 DESCENDING 1
DAY-OF-WEEK 1 DESTINATION 1
DE 1 DETAIL 1
DEBUG-CONTENTS 1 DISABLE 1
DEBUG-ITEM 1 DISPLAY
DEBUG-LINE 1 DIVIDE
DEBUG-NAME 1 DIVISION
DEBUG-SUB-1 1 DOWN
DEBUG-SUB-2 1 DUPLICATES
DEBUG-SUB-3 1 DYNAMIC
DEBUGGING 1

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.

Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 389

E
ECHO END-SEARCH 1
EGI 1 END-START 1
ELSE END-STRING 1
EMI 1 END-SUBTRACT 1
ENABLE 1 END-UNSTRING 1
END END-WRITE 1
END-ACCEPT 1 ENTER 1
END-ADD 1 ENVIRONMENT
END-CALL 1 EOP 1
END-COMPUTE 1 EQUAL
END-DELETE 1 ERASE
END-DIVIDE 1 ERROR
END-EVALUATE 1 ESCAPE 1
END-IF 1 ESI 1
END-MULTIPLY 1 EVALUATE 1
END-OF-PAGE 1 EVERY 1
END-PERFORM 1 EXCEPTION
END-READ 1 EXCLUSIVE 1
END-RECEIVE 1 EXIT
END-RETURN 1 EXTEND
END-REWRITE 1 EXTERNAL 1

F
FALSE 1 FIRST
FD FIXED 1
FILE FOOTING 1
FILE-CONTROL FOR
FILLER FROM
FINAL 1 FUNCTION 1

G
GENERATE 1 GOBACK 1
GIVING GREATER
GLOBAL 1 GROUP 1
GO

H
HEADING 1 HIGH-VALUES
HIGH HIGHEST-VALUE
HIGH-VALUE HIGHLIGHT 1

I
I-O INITIAL-VALUE 1
I-O-CONTROL INITIALIZE 1
ID 2 INITIATE 1

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.
2 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.

Appendix A: Reserved Words

390 RM/COBOL Language Reference Manual

IDENTIFICATION INPUT
IF INPUT-OUTPUT
IMP 1 INSPECT
IN INSTALLATION
INDEX INTO
INDEXED INVALID
INDICATE 1 IS
INITIAL

J
JUST
JUSTIFIED

K
KEY

L
LABEL LINE
LAST 1 LINE-COUNTER 1
LEADING LINES
LEFT LINKAGE
LENGTH 1 LOCK
LESS LOW
LIKE 1 LOW-VALUE
LIMIT 1 LOW-VALUES
LIMITS 1 LOWEST-VALUE
LINAGE 1 LOWLIGHT 1
LINAGE-COUNTER 1

M
MAX-VALUE 1 MODE
MEMORY MODULES
MERGE 1 MOVE
MESSAGE 1 MULTIPLY
MIN-VALUE 1

N
NATIVE NULL 1
NEGATIVE 1 NULLS 1
NEXT NUMBER 1
NO NUMERIC
NOT NUMERIC-EDITED 1

O
OBJECT-COMPUTER OPTIONAL 1
OCCURS OR
OF ORDER 1
OFF ORGANIZATION
OMITTED OTHER 1
ON OUTPUT

Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 391

OPEN OVERFLOW

P
PACKED-DECIMAL 1 POSITION
PADDING 1 POSITIVE 1
PAGE PRINTING 1
PAGE-COUNTER 1 PROCEDURE
PERFORM PROCEDURE-NAME 1
PF 1 PROCEDURES 1
PH 1 PROCEED
PIC PROGRAM
PICTURE PROGRAM-ID
PLUS 1 PROMPT
POINTER 1 PURGE 1

Q
QUEUE 1
QUOTE
QUOTES

R
RANDOM REPORT 1
RD 1 REPORTING 1
READ REPORTS 1
RECEIVE 1 RERUN 1
RECORD RESERVE
RECORDING 1 RESET 1
RECORDS RETURN 1
REDEFINES RETURN-CODE 1

REEL RETURNING 1
REFERENCE 1 REVERSE
REFERENCES 1 REVERSE-VIDEO 1
RELATIVE REVERSED 1
RELEASE 1 REWIND
REMAINDER REWRITE
REMARKS 1 RF 1
REMOVAL 1 RH 1
RENAMES RIGHT
REPLACE 1 ROUNDED
REPLACING RUN

S
SAME SOURCE-COMPUTER
SCREEN 2 SPACE
SD 1 SPACES
SEARCH 1 SPECIAL-NAMES

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.
2 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.

Appendix A: Reserved Words

392 RM/COBOL Language Reference Manual

SECTION STANDARD
SECURE 1 STANDARD-1
SECURITY STANDARD-2 1
SEGMENT 1 START
SEGMENT-LIMIT 1 STATUS
SELECT STOP
SEND 1 STRING 1
SENTENCE SUB-QUEUE-1 1
SEPARATE SUB-QUEUE-2 1
SEQUENCE SUB-QUEUE-3 1
SEQUENTIAL SUBTRACT
SET SUM 1
SIGN SUPPRESS 1
SIZE SYMBOLIC 1
SORT 1 SYNC
SORT-MERGE 1 SYNCHRONIZED
SOURCE 1

T
TAB THROUGH
TABLE 1 THRU
TALLYING TIME
TAPE 1 TIMES
TERMINAL 1 TO
TERMINATE 1 TOP 1
TEST 1 TRAILING
TEXT 1 TRUE 1
THAN TYPE 1
THEN 1

U
UNIT UPDATE
UNLOCK UPON 1
UNSTRING 1 USAGE
UNTIL USE
UP USING

V
VALUE
VALUES
VARIABLE 1

VARYING

W
WHEN
WHEN-COMPILED 1
WITH

1 This word is not considered reserved if the RM/COBOL (74) 2.0 compatibility option is present in the Compile Command (see the RM/COBOL

User's Guide for details on this option). In such cases, this word is treated as a user-defined word whenever it occurs in the source program.

Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 393

WORDS
WORKING-STORAGE
WRITE

Z
ZERO
ZEROES
ZEROS

Context-Sensitive Words
The words listed in Table 37 are context-sensitive words and are reserved in the specified
language construct or context. If a context-sensitive word is used where the context-sensitive
word is permitted in the general format, the word is treated as a keyword; otherwise, it is
treated as a user-defined word.

Note The DERESERVE keyword of the COMPILER-OPTIONS configuration record, which
is described in Chapter 10: Configuration of the RM/COBOL User’s Guide, can be used to
make a context-sensitive word a user-defined word whenever it occurs in the source program,
but then the language feature provided by the construct in which the word appears is not
available for programs compiled with that particular configuration setting.

Table 37: Context-Sensitive Words

Context-Sensitive Words

Context-Sensitive Word Language Construct or Context

AUTO 2

Screen description entry (for AUTO clause)

Format 3 (Terminal I-O) ACCEPT statement (for AUTO
phrase)

AUTO-SKIP 2

Screen description entry (for AUTO-SKIP clause)

Format 3 (Terminal I-O) ACCEPT statement (for AUTO-
SKIP phrase)

AUTOMATIC 2 LOCK MODE clause in file control entry

BACKGROUND 2 Screen description entry (for BACKGROUND clause)

BACKGROUND-COLOR 2 Screen description entry (for BACKGROUND-COLOR
clause)

CARD-PUNCH ASSIGN clause (device-name) in file control entry

CARD-READER ASSIGN clause (device-name) in file control entry

CASE-INSENSITIVE 2 LIKE relational operator in LIKE relation condition

CASE-SENSITIVE 2 LIKE relational operator in LIKE relation condition

CASSETTE ASSIGN clause (device-name) in file control entry

CONSOLE

ASSIGN clause (device-name) in file control entry

Special-Names paragraph (for CONSOLE IS mnemonic-
name and CONSOLE IS CRT clauses)

Appendix A: Reserved Words

394 RM/COBOL Language Reference Manual

Context-Sensitive Words

Context-Sensitive Word Language Construct or Context

CRT 2 Special-Names paragraph (for CONSOLE IS CRT and CRT
STATUS clauses)

CYCLE 2 Format 3 EXIT statement

DISC ASSIGN clause (device-name) in file control entry

DISK ASSIGN clause (device-name) in file control entry

END-COPY 2 COPY statement

END-REPLACE 2 REPLACE statement

EOL
ERASE clause in screen description entry

ERASE phrase in ACCEPT and DISPLAY statements

EOS
ERASE clause in screen description entry

ERASE phrase in ACCEPT and DISPLAY statements

2 This word is not considered to be a context-sensitive word if the RM/COBOL (74) 2.0
compatibility option is present in the Compile Command (see the RM/COBOL User’s Guide
for details on this option). When that option is present, this word is treated as a user-defined
word whenever it occurs in the source program.

FOREGROUND 2 Screen description entry (for FOREGROUND clause)

FOREGROUND-COLOR 2 Screen description entry (for FOREGROUND-COLOR
clause)

FULL 2 Screen description entry (for FULL clause)

IMP 2 Compiler directive (for implementor-defined directive)

KEYBOARD ASSIGN clause (device-name) in file control entry

LISTING
ASSIGN clause (device-name) in file control entry

Compiler directive (for LISTING directive)

MAGNETIC-TAPE ASSIGN clause (device-name) in file control entry

MANUAL 2 LOCK MODE clause in file control entry

MARGIN-R 2 IMP compiler directive (for implementor-defined
MARGIN-R directive)

MULTIPLE 2

LOCK MODE clause in file control entry

I-O-CONTROL paragraph (for MULTIPLE FILE TAPE
clause)

PARAGRAPH 2
Format 4 EXIT statement

PROCEDURE-NAME special register

PREVIOUS 2 Format 1 READ statement

PRINT ASSIGN clause (device-name) in file control entry

PRINTER ASSIGN clause (device-name) in file control entry

PRINTER-1 ASSIGN clause (device-name) in file control entry

REQUIRED 2 Screen description entry (for REQUIRED clause)

SORT-WORK ASSIGN clause (device-name) in file control entry

Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 395

Context-Sensitive Words

Context-Sensitive Word Language Construct or Context

TRIMMED 2 LIKE relational operator in LIKE relation condition

UNDERLINE 2 Screen description entry (for UNDERLINE clause)

WHILE 2 START statement (for WHILE phrase)

YYYYDDD 2 FROM DAY phrase in Format 2 ACCEPT statement

YYYYMMDD 2 FROM DATE phrase in Format 2 ACCEPT statement

Special Symbols
The following lists all special symbols except those used in PICTURE character-strings (on
page 113).

Special Symbols

. (

; ”

) +

’ *

- **

/ >

= >=

< <=

, = =

: *>

& >>

Nonreserved System-Names
Table 38 contains system-names that are used in the SPECIAL-NAMES paragraph of
the Environment Division to define mnemonic-names and alphabet-names. They are
not reserved.

Appendix A: Reserved Words

396 RM/COBOL Language Reference Manual

Table 38: System-Names Used in the SPECIAL-NAMES Paragraph

System-Names Used in the SPECIAL-NAMES Paragraph

System-Name Meaning

C01 Channel 1 ADVANCING for SEND, WRITE statements.

C02 Channel 2 ADVANCING for SEND, WRITE statements.

C03 Channel 3 ADVANCING for SEND, WRITE statements.

C04 Channel 4 ADVANCING for SEND, WRITE statements.

C05 Channel 5 ADVANCING for SEND, WRITE statements.

C06 Channel 6 ADVANCING for SEND, WRITE statements.

C07 Channel 7 ADVANCING for SEND, WRITE statements.

C08 Channel 8 ADVANCING for SEND, WRITE statements.

C09 Channel 9 ADVANCING for SEND, WRITE statements.

C10 Channel 10 ADVANCING for SEND, WRITE statements.

C11 Channel 11 ADVANCING for SEND, WRITE statements.

C12 Channel 12 ADVANCING for SEND, WRITE statements.

CONSOLE Standard system input-output device (primary terminal).

EBCDIC Alphabet code-name for EBCDIC as defined by IBM.

SWITCH-1 Switch 1, switch-status conditions and SET statement.

SWITCH-2 Switch 2, switch-status conditions and SET statement.

SWITCH-3 Switch 3, switch-status conditions and SET statement.

SWITCH-4 Switch 4, switch-status conditions and SET statement.

SWITCH-5 Switch 5, switch-status conditions and SET statement.

SWITCH-6 Switch 6, switch-status conditions and SET statement.

SWITCH-7 Switch 7, switch-status conditions and SET statement.

SWITCH-8 Switch 8, switch-status conditions and SET statement.

SYSIN Standard system input device or file.

SYSOUT Standard system output device or file.

UPSI-0 Switch 1, switch-status conditions and SET statement.

UPSI-1 Switch 2, switch-status conditions and SET statement.

UPSI-2 Switch 3, switch-status conditions and SET statement.

UPSI-3 Switch 4, switch-status conditions and SET statement.

UPSI-4 Switch 5, switch-status conditions and SET statement.

UPSI-5 Switch 6, switch-status conditions and SET statement.

UPSI-6 Switch 7, switch-status conditions and SET statement.

UPSI-7 Switch 8, switch-status conditions and SET statement.

Table 39 contains system-names that are used in the FILE-CONTROL paragraph of the
Environment Division to specify a device type for files. They are not reserved.

Appendix A: Reserved Words

 RM/COBOL Language Reference Manual 397

Table 39: System-Names for Device Types

System-Names for Device Types

System-Name Meaning

CARD-PUNCH Any sequential output-only device.

CARD-READER Any sequential input-only device.

CASSETTE Any sequential input and output device.

CONSOLE Any sequential input and output device.

DISC Any mass storage device.

DISK Any mass storage device.

KEYBOARD Any sequential input-only device.

LISTING Any sequential print output device.

MAGNETIC-TAPE Any sequential input and output device.

PRINT Any sequential print output device.

PRINTER Any sequential print output device.

PRINTER-1 Any sequential print output device.

SORT-WORK Any input and output device for temporary work files
(declares file to be a SORT-MERGE file).

Table 40 contains system-names that are used in the FILE-CONTROL paragraph of the
Environment Division to specify the record delimiting technique for sequential files. They
are not reserved.

Table 40: System-Names for Record Delimiting Techniques

System-Names for Record Delimiting Techniques

System-Name Meaning

BINARY-SEQUENTIAL Binary sequential.

LINE-SEQUENTIAL Line sequential.

Table 41 contains system-names that are used in the file description entry of the Data Division
to specify label information for files. They are not reserved.

Table 41: System-Names for Labels

System-Names for Labels

System-Name Meaning

FILE-ID Specifies file access name.

Table 42 contains system names that are used as color-names in the screen description entry
to specify foreground and background colors. They are not reserved.

Appendix A: Reserved Words

398 RM/COBOL Language Reference Manual

Table 42: System-Names for Colors

System-Names for Colors

Color-Name Color Integer Meaning

BLACK 0 The color black.

BLUE 1 The color blue.

GREEN 2 The color green.

CYAN 3 The color cyan.

RED 4 The color red.

MAGENTA 5 The color magenta.

BROWN 6 The color brown.

WHITE 7 The color white.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 399

Appendix B: Compiler
Messages

This appendix lists the informational, warning and error messages that may be generated
during compilation. These classes of messages are defined as follows:

1. I indicates an information-only message. Information messages often follow a warning
or error message to provide additional information.

2. W indicates a warning. Warning messages are generated when an error occurs during
compilation that does not interrupt compilation and that will not prevent program
execution.

3. E indicates a severe error. Error messages are generated if the error detected during
compilation may cause the program to fail during execution.

Compiler Messages
Italics indicate text replaced by compiler-generated values.

The compiler messages are divided into the following groups:

• Compiler Messages 001—100 (see page 400)

• Compiler Messages 101—200 (see page 411)

• Compiler Messages 201—300 (see page 423)

• Compiler Messages 301—400 (see page 433)

• Compiler Messages 401—500 (see page 444)

• Compiler Messages 501—600 (see page 455)

• Compiler Messages 601—700 (see page 459)

• Compiler Messages 701—800 (see page 466)

• Compiler Messages 801—900 (see page 479)

Appendix B: Compiler Messages

400 RM/COBOL Language Reference Manual

Compiler Messages 001—100
0001: I Data-name specified in DATA RECORDS clause is: data-name-1

Indicates the data-name of the particular data record that is the subject of the previous
summary error message.

0002: I Previous diagnostic message occurred at line line-number-1
Provides error-threading facilities by pointing to the line location of errors generated during
compilation. Only the text of the message is printed.

0003: I Above message caused by line line-number-1

Indicates the approximate line number of the first occurrence of the summary error message
printed just prior to this message.

0004: I Data-name specified in RECORD KEY clause is: data-name-1

Indicates the data-name of the particular record key that is the subject of the previous
summary error message.

0005: I Scan resumed.

Scanning was suppressed at the previous error and resumes at the indicated point in the source
program.

0006: I (scan suppressed).

This message is printed following any error messages that cause the compiler to suspend
source scanning. Only the text of the message is printed.

0007: I Data-name specified in KEY phrase of OCCURS clause is:
data-name-1

Indicates the data-name for the particular table key that is the subject of the previous summary
message.

0008: I ALPHABET literal phrase specifies duplicate character for alphabet-
name: alphabet-name-1

The alphabet-name is defined with a literal phrase that lists a duplicate character, and the
alphabet-name was used in a context that does not allow such a definition. A prior error
message indicates how the alphabet-name was used.

0009: I First duplicate character occurs at position position-number-1
[= character-value-1]

An alphabet-name has one or more duplicate characters defined, and the alphabet-name was
used in a context that does not allow such a definition. The first or only duplicated character
is included in this message. Informative message 8 is always produced prior to this message
to provide the alphabet-name.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 401

0015: W Configured binary allocation sizes not supported by specified
version of runtime.

The indicated data description entry describes a binary data item with a number of digits such
that the configured allocation size for that many digits results in a conflict with the maximum
object version specified for the compilation. Binary allocation sizes other than two, four, or
eight, or sixteen bytes require at least object version 8. A binary allocation size of sixteen
requires at least object version 7. When this warning occurs, the compiler allocates the data
item with a size compatible with the object version specified.

0016: W Configured binary allocation sizes do not support the precision
specified by the PICTURE character-string.

The indicated data description entry describes a binary data item with a number of digits such
that no configured allocation size supports that many digits. When this warning occurs, the
compiler uses the traditional RM/COBOL allocation scheme of two, four, eight, or sixteen
bytes, depending on the number of digits in the data item.

0017: W Signed literal is associated with unsigned data item; absolute value
of literal used.

A signed literal is associated with an unsigned data item. For example, a signed literal is the
sending item in a MOVE statement where one or more of the receiving items are an unsigned
data item. Since unsigned data items always receive the absolute value of any sending item,
the sign in the literal is extraneous and may indicate a program logic error. This warning may
indicate that the description of the unsigned data item should be changed to that of a signed
data item by including an S symbol in its PICTURE character-string.

0018: W Length of literal associated with THRU or ALSO phrase of ALPHABET
clause exceeds one character.

More than one character was given for a literal in the ALPHABET clause. It is assumed that
each of the characters of the literal was meant to be listed individually in the order given in
the source program.

0019: W Level-number 01 or 77 must start in area A of source program.

Level-number 01 or 77 is found in area B. These level-numbers should be in area A, and are
treated as if they appeared in area A.

0020: W Record associated with CD entry has wrong size.

A record description entry following an input CD entry implicitly redefines the record area
and must be 87 characters in length. A record description entry following an input I-O entry
implicitly redefines the record area and must be 33 characters in length. Record entries for
output may vary in length, depending on the DESTINATION TABLE OCCURS clause.
However, all record entries within a single output CD entry must be the same length.

0021: W CD entry needs more data-names.

Not all 11 data-names for Option 2 of the communication description entry for input or all
6 data-names for Option 2 of the communication description entry for I-O have been listed.
Data entries will be used in the order listed.

Appendix B: Compiler Messages

402 RM/COBOL Language Reference Manual

0022: W Missing period or END-COPY for preceding COPY statement was
assumed here.

A COPY statement is missing its required terminating period separator or END-COPY scope
terminator. The statement terminator was assumed at the indicated location, which might not
be the desired location if some other syntax error has caused this diagnostic message. To
resolve this error, modify the source program to include the missing terminator at the end of
the COPY statement.

0023: W CURRENCY SIGN literal length exceeds one character.

The literal specified in the CURRENCY SIGN clause is longer than one character in length.
Only the first character will be used.

0024: W Header or level indicator is in wrong order within Data Division.

The indicated Data Division division header, section header, paragraph header, or level
indicator is not in the required order for a COBOL source program. Scanning continues
without regard to proper order.

0025: W Literal length must not exceed one character.
A character type operand (INSPECT . . . CHARACTERS or ACCEPT . . . PROMPT)
specifies more than one character. For ACCEPT . . . PROMPT, only the first character will
be used. For INSPECT . . . CHARACTERS, the entire operand will be used.

0026: W Declarative procedure refers to nondeclarative procedure:
procedure-name-1

A procedure-name specified in the declaratives is not defined in the declaratives. The
COBOL language does not allow references from the declaratives to the imperatives.
If later defined, the procedure-name reference will be allowed by RM/COBOL and will
execute correctly.

0027: W DEPENDING ON phrase expected in variable-occurrence OCCURS
clause.

When Format 2 of the OCCURS clause is used, it is expected that the DEPENDING ON
phrase will also be included in the clause.

0028: W Header is in wrong order within Environment Division.

The indicated Environment Division division header, section header, or paragraph header is
not in the required order for a COBOL source program. Scanning continues without regard to
proper order.

0029: W DATA RECORDS data-name not defined for file: file-name-1

The DATA RECORD/RECORDS clause in the file description entry (FD) for the indicated
file lists a data-name that is not defined as a level 01 record-name of the file.

0030: W PADDING CHARACTER literal or data item length exceeds one

character

.
1file-name-:

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 403

The data-name or literal specified in the PADDING clause should be one character in length.
Only the first character of the specified operand is used.

• When a literal is the offending operand, this message occurs with the PADDING
character clause for the file and “: file-name-1” is not included in the message.

• When a data-name is the offending operand, this message occurs in the summary error
messages shown after the source listing is complete. “: file-name-1” is provided for
reference.

0031: W VALUE OF LABEL data-name is not defined in Working-Storage
Section for file: file-name-1

The file label data item of the indicated file-name is not defined in the Working-Storage
Section as required by the language definition. There is no effect on the object program.

0032: W RECORD KEY data item must not be variable-length group for file:
file-name-1

The record key data-name refers to a data item that is defined as variable in length.

0033: W Records of sort-merge file are too small for USING file or too large for
GIVING file.

The record size of the indicated file-name is not appropriate for the context. In a SORT or
MERGE statement, the maximum record size of a USING file is greater than the maximum
record size of the sort-merge file or the maximum record size of the sort-merge file is greater
than the maximum record size of the GIVING file; records will be truncated during the sort or
merge operation if the actual record length is greater than the maximum record length of the
sort-merge or GIVING file.

0034: W RECORD DEPENDING data item must be unsigned integer for file:
file-name-1

The numeric data item in the DEPENDING ON phrase of the RECORD clause in the file
description entry for the indicated file-name is defined with a sign.

0035: W RELATIVE KEY data item must be unsigned integer for file:
file-name-1

The relative key declared for the indicated file-name is a signed numeric integer. The
COBOL language requires an unsigned numeric integer. The program may be executed, but
negative values, if they occur, may cause undesired results.

0036: W FILE STATUS data-name must not be defined in File Section for file:
file-name-1

The file status data item declared for the indicated file-name is defined in the File Section of
the Data Division. The COBOL language does not permit this situation. The program will
execute, but unpredictable results may occur if, for example, the file status data item is
defined within the record area associated with the file.

0037: W Clause conflicts with VALUE clause specified for group.

The indicated data description clause is wrong because a containing group has a VALUE
IS clause.

Appendix B: Compiler Messages

404 RM/COBOL Language Reference Manual

0038: W Statement not allowed because of preceding unconditional transfer
of control.

The indicated statement in an imperative sequence follows a statement that causes an
unconditional transfer of control (a GOBACK, GO TO, EXIT PARAGRAPH, EXIT
PERFORM [CYCLE], EXIT SECTION, or STOP RUN statement), which is not, but
should have been, the last statement in the sequence. An unconditional transfer of control
statement must be followed by a period separator or, if contained within another statement,
a scope terminator of the containing statement. The indicated statement is unreachable
during execution of the program.

0039: W Indicator area contains wrong character.

The nonblank character in the indicator area (column 7) is not an * (comment), / (new page
comment), – (continuation), or D (debug line). The character is treated as a blank.

0040: W Integer has value that exceeds maximum permitted for this use.

The integer indicated is too large for the context in which it is specified. For example, large
integers for a binary allocation override or for a screen field location do not make sense.
Specify a smaller integer value appropriate to the context.

0041: W LABEL RECORDS ARE OMITTED and VALUE OF LABEL clauses are
not permitted in same file description entry.

The VALUE OF LABEL and LABEL RECORDS ARE OMITTED clauses are specified in
the same file description entry, but these two clauses are mutually exclusive. There is no
effect on the object program. To correct the source, the LABEL RECORDS ARE
STANDARD clause may be specified instead or the LABEL RECORDS clause or the
VALUE OF LABEL clause can be removed from the file description entry.

0042: W Unsigned integer expected in MEMORY SIZE clause. Nonnumeric or
signed literal is not permitted here.

The literal specified in the MEMORY clause of the OBJECT-COMPUTER paragraph is not
unsigned numeric. There is no effect on the object program.

0043: W Unsigned integer expected in MEMORY SIZE clause. Noninteger
literal is not permitted here.

The literal specified in the MEMORY clause of the OBJECT-COMPUTER paragraph is not
an integer. There is no effect on the object program.

0044: W Repeated period space separator is not permitted.
A period space separator is repeated where only one period space separator is allowed. The
unneeded separator is ignored by the compiler.

0045: W Imperative statement expected but scope terminator was found.
CONTINUE statement assumed.

An imperative statement is required at the indicated source location, but a scope terminator
was specified instead. The compiler assumes a CONTINUE statement was intended.

0046: W Repeated phrase in ACCEPT or DISPLAY statement is not permitted.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 405

An option phrase is specified more than once or the default option has been specified in
violation of syntactic rules. The indicated or later occurrence is ignored.

0047: W PERFORM independent segment THRU fixed segment is not
permitted.

The EXIT paragraph of the performed procedure (or procedures) is in a fixed segment
(segment number less than 50) and the PERFORM statement is in an independent segment.
Only sections or paragraphs wholly contained in the fixed segment or wholly contained in the
same independent segment should be used.

0048: W PERFORM exit procedure ends with unconditional transfer of control:
procedure-name-1

A procedure specified as the exit of a PERFORM statement contains an unconditional
GOBACK, GO TO or STOP RUN statement as its last statement. Therefore, the procedure
cannot reach its exit so as to return control to the controlling PERFORM statement.
PERFORM statements which reference such a procedure as the exit procedure are equivalent
to a GO TO statement referencing the same entry procedure as specified by the PERFORM
statement.

0049: W Procedure-name expected in area A.

A procedure-name is required in area A because of a preceding section header.

0050: W Procedure-name contains wrong character.

A procedure-name contains a decimal point. The decimal point character is ignored.

0051: W EXTERNAL clause requires specification of device-name in ASSIGN
clause. DISK assumed.

The ASSIGN clause for a sequential organization file omitted the device-name or specified
an unknown device-name and the file is described as EXTERNAL. Since other programs,
unknown to this compilation, may access the external file in the I-O mode, the compiler
must assume a mass storage device. If a non-mass storage device is intended, specify the
appropriate device-name in the ASSIGN clause.

0052: W Space separator expected.

A literal and a user-defined word have no separator between them.

0053: W Space character expected after punctuation character.

A comma or semicolon character occurs in the source program without a following space.
The comma or semicolon is treated as if the space was present.

0054: W Sort-merge file control entry must contain only SELECT and
ASSIGN clauses.

A sort-merge file is declared with file control clauses that are not allowed. The clauses are
ignored unless they specify illegal options (for example, nonsequential organization).

0055: W ASCENDING or DESCENDING phrase expected. ASCENDING
assumed.

Appendix B: Compiler Messages

406 RM/COBOL Language Reference Manual

The ASCENDING or DESCENDING key comparison is omitted or misspelled. If simply
omitted, ASCENDING will be assumed. If misspelled, a syntax error will also occur.

0056: W TIMES, UNTIL, and VARYING phrases are nonstandard in SORT or
MERGE statement.

The indicated non-standard phrases are specified in the INPUT or OUTPUT procedure
declaration of a SORT or MERGE statement. The RM/COBOL compiler accepts these
phrases with their normal meaning for the PERFORM statement.

0057: W User-defined word length exceeds 240 characters.

A user-defined word is longer than 240 characters in length and has been truncated. The
truncated name may still be referenced, subject to uniqueness of reference rules for the
truncated name. Data-names and file-names with the external attribute are truncated to 30
characters in the object program.

0058: W Repeated file-name or open mode in USE statement is not permitted.

A multiple USE declarative exists for the indicated file-name or open mode. When multiple
USE declaratives are declared, the last one declared is in effect for the object program, except
that a USE declarative for a file-name will take precedence over a USE declarative for an
open mode.

0059: W Value of numeric literal in VALUE clause exceeds capacity of
PICTURE character-string.

The numeric literal specified in the VALUE clause for a numeric data item is incorrect for
initialization of the data item as described by its PICTURE character-string, but is within the
range of values allowed by the data item. Truncation of nonzero low-order digits was
required; or, for a BINARY, COMPUTATIONAL-1, COMP-1, COMPUTATIONAL-4,
COMP-4, COMPUTATIONAL-5, or COMP-5 usage data item, more digits were specified
than allowed by the PICTURE character-string, but the value can still be expressed within the
number of bytes allocated for the data item.

0060: W Verb must start in area B of source program.

A verb was found in area A of the source program. The verb is treated as if it occurred in area
B.

0061: W Clause must start in area B of source program.

A clause begins in area A of a source record. The clause is treated as if it began in area B.

0062: W Paired delimiting quote characters are not same character.
A hexadecimal literal is not delimited by a matched pair of single or double quotation marks.
The compiler assumes that the single or double quotation mark found, even though it does not
match the beginning quotation mark, was intended as the ending delimiter for the
hexadecimal literal.

0063: W Phrase is not valid for data type being accepted or displayed.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 407

The indicated ACCEPT or DISPLAY option is not allowed for the operand being accepted or
displayed. For example, the CONVERT option requires a numeric or edited operand. The
option is ignored.

0064: W Phrase is valid only for USAGE IS DISPLAY operand.

One or more of the ACCEPT or DISPLAY options are not allowed for nondisplay
(computational) numeric operands. For DISPLAY of a nondisplay data item, the CONVERT
phrase is required and is assumed. For ACCEPT of a nondisplay data item, the ECHO phrase
is not allowed and is ignored unless the UPDATE phrase is also present.

0065: W Integer value must not be equal to zero.
An integer with the value zero is not allowed in the indicated context. The program may or
may not execute correctly. For example, if an index-name is set to the value zero it will
contain a value that is not valid for subscripting but a subsequent SET . . . UP BY 1 statement
will cause the index-name to contain a valid value for the first occurrence.

0066: W Neither GREATER OR EQUAL (>=) nor LESS THAN OR EQUAL (<=)
may be preceded by NOT.

The reserved word NOT should not be used with the relational operators >= and <= or with
their spelled-out equivalents. Such cases are treated as < and >, respectively.

0067: W RECORD DELIMITER clause specified with fixed-length records for
file: file-name-1

A RECORD DELIMITER clause with the STANDARD-1 option has been specified for a file
whose records are not variable length.

0068: W Repeated character in CLASS clause is not permitted.

A character has been specified more than once in a CLASS clause. Specifying the same
character more than once in a CLASS clause is redundant.

0069: W Nonconforming nonstandard language element found in statement,
clause, or header. RM extension to COBOL.

The indicated language element is not defined in the standard COBOL language. It is an
extension that is defined and supported by RM/COBOL, but which may not be supported in
other COBOL dialects. This message is only generated when the flagging of extensions is
requested by specification of a compiler option.

0070: W Nonconforming standard language element found in statement,
clause, or header.

The indicated language element is defined in the standard COBOL language but at a level
above the requested level. This message is only generated when the flagging of COBOL
subsets or optional modules is requested by specification of a compiler option.

0071: W Obsolete language element found in statement, clause, or header.

The indicated language element is defined in the standard COBOL language, but has been
designated for deletion from the standard language in a future revision. This message is

Appendix B: Compiler Messages

408 RM/COBOL Language Reference Manual

only generated when the flagging of obsolete elements is requested by specification of a
compiler option.

0072: W Pseudo-text delimiter must not be continued.
The two characters of a pseudo-text delimiter should be contiguous within the same source
record. They are treated as if they were contiguous.

0073: W Pseudo-text operand expected for REPLACE statement.

The two operands of a BY phrase in a REPLACE statement should be pseudo-text operands.
Operands that are not written as pseudo-text operands are treated by the compiler like the
nonpseudo-text operands of a REPLACING phrase in a COPY statement.

0074: W Statement cannot be executed because preceding statement
transfers control.

The indicated statement can never be executed because it is immediately preceded by another
statement that transfers control unconditionally to another statement in the program.

0075: W Data item containing file access name must have fixed length for file:
file-name-1

The data-name specified in the ASSIGN clause or VALUE OF FILE-ID clause for the
indicated file-name is a variable-length data item (that is, a group that contains a data item
described with the OCCURS . . . DEPENDING clause). The maximum length of the group
will be used to resolve the file access name for the file. The value of the data item specified
in the DEPENDING ON phrase of the OCCURS clause will not be used to determine the
length of the group when used for this purpose.

0076: W Device-name is not supported by this implementation.

The indicated word is not recognized as a valid device-name known to this implementation.
An unspecified device type is assumed. The unspecified device type is changed to mass
storage if any clause (for example, ORGANIZATION IS INDEXED) or statement (for
example, OPEN I-O) referencing the file so requires. Otherwise, the file may reside on either
mass storage or non-mass storage media.

0077: W Contained program has wrong structure.

The indicated syntax is not allowed in a program nested within another program. Clauses that
typically affect the remainder of the program are ignored. Declarations of mnemonic-names,
alphabet-names, symbolic-characters, and class-names are accepted and used for the
remainder of the compilation of the separately compiled program that contains the nested
program, including programs not nested within the program that was diagnosed with this
warning.

If nested programs were not desired, add the END PROGRAM headers or use the Z Compile
Command Option to set the object version level to 1 or 2. (See Chapter 6: Compiling of the
RM/COBOL User’s Guide.) Since nested programs are not supported prior to version 3,
restricting the object version level to 1 or 2 causes the compiler to assume that—even in the
absence of END PROGRAM headers—the source file contains a sequence of source
programs rather than nested source programs.

0078: W END PROGRAM header expected.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 409

An END PROGRAM header is required because a nested program has been scanned and the
matching END PROGRAM header has not been found, either for the nested program itself or
for each of its containing programs.

If nested program were not desired, use the Z Compile Command Option to set the object
version level to 1 or 2. (See Chapter 6: Compiling of the RM/COBOL User’s Guide.) This
causes the compiler to assume that—even in the absence of END PROGRAM headers—the
source file contains a sequence of source programs rather than nested source programs.

0079: W Program-name is not unique within this separately compiled
program.

A nested program specifies the same program-name as another program within the separately
compiled program containing that nested program. When source programs are nested, a
particular program-name may only occur once in the PROGRAM-ID paragraph of any
program contained in the separately compiled program.

0080: E Figurative constant preceded by ALL is not permitted.

Use of the “ALL” form of a figurative constant is not allowed in the indicated context.

0081: E Numeric literal in ALPHABET clause exceeds 256, maximum number
of characters in native character set.

The integer used in the ALPHABET clause of the SPECIAL-NAMES paragraph must
represent an ordinal position in the native character set. The number of characters in the
native character set is 256.

0082: E Alphabet-name associated with COLLATING SEQUENCE clause or
phrase must not have duplicate character.

A character has been specified more than once in the ALPHABET clause that defines the
alphabet-name specified in the COLLATING SEQUENCE clause of the File-Control entry or
in the COLLATING SEQUENCE phrase of the SORT and MERGE statements. Since a
character can have only one collating position, a character must not be repeated in the
definition of an alphabet-name specified as a collating sequence. Refer to the “ASCII
Position” and “U.S. Character” columns in Appendix J: Code-Set Translation Tables of the
RM/COBOL User’s Guide. Informational message 8 (on page 400) and informational
message 9 (on page 400) are generated at the end of the program listing to provide the
alphabet-name and duplicated character.

0083: E Class-name in CLASS clause is not unique.
The indicated user-defined word has already been defined for some other purpose and cannot
be used to define a class-name.

0084: E Class-name in class condition is not defined by CLASS clause.

The context suggests that a class-name is intended at the indicated position, but the specified
user-defined word is undefined.

0085: E Alphabet-name in ALPHABET clause is not unique.
The indicated user-defined word has already been defined for some other purpose and cannot
be used to define an alphabet-name.

Appendix B: Compiler Messages

410 RM/COBOL Language Reference Manual

0086: E Alphabet-name expected.

The context requires an alphabet-name, but the indicated user-defined word is not an
alphabet-name.

0087: E Alphabet-name is not defined by ALPHABET clause.

The indicated context requires an alphabet-name, but the given user-defined word is
undefined.

0088: E Wrong code-name in ALPHABET clause.

An unrecognized type is given in the ALPHABET clause of the SPECIAL-NAMES
paragraph. Valid alphabet types are STANDARD-1, EBCDIC, NATIVE or a literal phrase.

0089: E ALTER in nondeclarative procedure must not refer to declarative
procedure: procedure-name-1

An ALTER statement in the nondeclaratives region is wrong because the procedure-name of
the procedure to be altered, the paragraph containing the alterable GO TO statement, refers to
a declarative procedure.

0090: E ALTER of independent segment must be in same independent
segment.

An ALTER statement is wrong because the procedure-name of the procedure to be altered,
the paragraph containing the alterable GO TO statement, refers to a procedure defined in an
independent segment which has a different segment number than the segment containing the
ALTER statement.

0091: E ALTER must refer to alterable paragraph that contains only a GO TO
sentence.

An ALTER statement is wrong because the procedure-name of the procedure to be altered,
the paragraph containing the alterable GO TO statement, does not refer to a paragraph
containing only a single Format 1 GO TO statement.

0092: E ALTER refers to procedure-name that is not unique:
procedure-name-1

An ALTER statement is wrong because the procedure-name of the procedure to be altered,
the paragraph containing the alterable GO TO statement, refers to two or more procedures.
Qualification of the paragraph-name by its section-name is required to yield a unique
reference.

0093: E ALTER refers to procedure-name that is not defined:
procedure-name-1

An ALTER statement is wrong because the procedure-name of the procedure to be altered,
the paragraph containing the alterable GO TO statement, refers to a procedure that is
undefined. The procedure-name may be incorrectly qualified.

0094: E GO TO statement omits procedure-name. No ALTER statement found
for paragraph: procedure-name-1

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 411

A GO TO statement with the procedure-name omitted is not the object of any ALTER
statement and, therefore, can never be executed successfully.

0095: E Continuation of nonnumeric literal must begin with quotation mark.
A nonnumeric literal is continued but does not have the required opening quotation mark on
the continuation line.

0096: E Nonnumeric literal expected.

The context requires a nonnumeric literal.

0097: E Nonnumeric literal length exceeds 65535 characters.

A nonnumeric literal greater than 65535 characters in length is specified by the source
program. The COBOL language requires support of literals up to 160 characters in length.
RM/COBOL supports literals up to 65535 characters in length.

0098: E Nonnumeric literal must end with quotation mark.

A nonnumeric literal is not continued and does not have the required closing quotation mark.

0099: E Header or level indicator expected in area A of source program.

Context requires an entry in area A at the indicated point in the source program.

0100: E Arithmetic expression has wrong combination of operands and
symbols.

The syntax of the arithmetic expression is wrong. The permissible combinations of variables,
numeric literals, arithmetic operators, and parentheses are given in Table 20: Combination of
Symbols in Arithmetic Expressions (on page 185).

Compiler Messages 101—200
0101: E ASSIGN clause required in file control entry.
No ASSIGN clause was found in the file control entry that begins with a SELECT clause and
ends with a period. The ASSIGN clause is required in a file control entry.

0102: E AT END phrase required in RETURN statement.

The AT END clause is required in a RETURN statement, but was not found.

0103: E BLANK WHEN ZERO clause requires elementary numeric or numeric
edited data item with USAGE IS DISPLAY.

The BLANK WHEN ZERO clause is specified in a data description entry in conflict with
other clauses specified in the same entry.

0104: E Repeated clause in CD entry is not permitted.

A clause in the communication description entry has been specified more than once.

Appendix B: Compiler Messages

412 RM/COBOL Language Reference Manual

0105: E INITIAL clause is not permitted in program having USING or GIVING
phrase in Procedure Division header.

The INITIAL clause of the communication description entry may not be used in a program
that specifies the USING or GIVING phrases in the Procedure Division header.

0106: E Repeated INITIAL clause in program is not permitted.

More than one communication description entry with the INITIAL clause has been specified
in the source program. Only one CD FOR INITIAL INPUT or one CD FOR INITIAL I-O is
allowed in a program.

0107: E Input CD entry has wrong format.
The indicated word, literal, character-string, or separator is incorrect syntax within the
context of the Format 1 (FOR INPUT) communication description entry as given in the
source program.

0108: E I-O CD entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the Format 3 (FOR I-O) communication description entry as given in the
source program.

0109: E Output CD entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the Format 2 (FOR OUTPUT) communication description entry as given in the source
program.

0110: E Cd-name is not unique.
A cd-name has previously been defined and cannot be used again.

0111: E Cd-name of input or I-O CD entry expected.

An INPUT or I-O cd-name must be specified in the context of the statement as given in the
source program. An INPUT cd-name is required with ACCEPT MESSAGE COUNT,
ENABLE INPUT and DISABLE INPUT statements. An INPUT or I-O cd-name is required
with RECEIVE statements.

0112: E Cd-name of output or I-O CD entry expected.

An OUTPUT or I-O cd-name must be specified in the context of the statement as given in the
source program. An OUTPUT cd-name is required with ENABLE OUTPUT and DISABLE
OUTPUT statements. An OUTPUT or I-O cd-name is required with SEND statements.

0113: E Cd-name is not permitted here.
The context does not allow a cd-name reference.

0114: E Associated CD entry contains error.

There is an error in the communication description entry associated with the indicated
cd-name.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 413

0115: E Cd-name is not defined by CD entry in program.

The cd-name specified in a SEND, RECEIVE, ACCEPT, ENABLE, or DISABLE statement
is not defined in the current program. A communication description entry is required in the
context of the statement indicated in the source program. Only cd-names declared in the Data
Division associated with the Procedure Division may be specified in the Procedure Division
(that is, cd-names are always local names, never global).

0116: E Length of record associated with CD entry exceeds 65280 characters.

The maximum CD record size has been exceeded. Only the first 65280 characters will
be used.

0117: E CD entry needs FOR INPUT, FOR OUTPUT, or FOR I-O clause.

The INPUT, OUTPUT or I-O clause is required in the communication description entry.

0118: E Mnemonic-name in ADVANCING phrase must be associated with
channel-name in SPECIAL-NAMES paragraph.

The indicated user-defined word must be identified with a feature-name that is a channel-
name in the SPECIAL-NAMES paragraph of the Environment Division.

0119: E Operand data type not permitted for this class condition.

The specified class condition conflicts with the data type of the item being tested. An
alphabetic data item may not be specified in the NUMERIC class test. A numeric data
item may not be specified in the ALPHABETIC, ALPHABETIC-LOWER, or
ALPHABETIC-UPPER class tests.

0120: E CODE-SET clause in FD entry must specify same alphabet as
CODE-SET clause in file control entry.

A code-set was previously defined in the file control entry for the indicated file and does not
match the code-set in the file description entry. The code-set should be specified only once,
but if specified in both the file control entry and file description entry, the specifications must
be consistent.

0121: E CODE-SET clause requires all signed data items for file to specify
SIGN IS SEPARATE CHARACTER.

A file that is defined with a CODE-SET clause must have a SIGN SEPARATE clause in all
signed numeric data descriptions in the record descriptions associated with the file.

0122: E CODE-SET clause requires all data items for file to have USAGE IS
DISPLAY.

A file that is defined with a CODE-SET clause must not have any numeric data items defined
with a USAGE IS clause except USAGE IS DISPLAY in the record descriptions associated
with the file.

0123: E Only one PROGRAM COLLATING SEQUENCE clause is permitted.

More than one PROGRAM COLLATING SEQUENCE clause has been specified in the
source program. Only one is allowed.

Appendix B: Compiler Messages

414 RM/COBOL Language Reference Manual

0124: E COLLATING SEQUENCE clause permitted only in indexed file
control entry.

The COLLATING SEQUENCE clause may be specified for indexed organization files
only. Relative and sequential file control entries may not include the COLLATING
SEQUENCE clause.

0125: E Composite of operands contains more than 30 decimal digits.

The composite of operands specified in the indicated statement contains more than 30 digits.
The total integer positions plus the total fractional positions must not exceed 30 for the
specified operands. For additional information, see the discussion of composite size (on
page 183).

0126: E Associated conditional variable has error in its data description
entry.

The condition-name indicated is associated with a conditional variable that has an error in
its description.

0127: E User-defined word previously defined for use that does not permit its
use as condition-name.

The indicated user-defined word has already been defined and cannot be redefined as a
condition-name.

0128: E Condition-name is not permitted here.

The context does not allow a condition-name, but the identifier indicated is that of a
condition-name.

0129: E Data description entry for condition-name must specify single value
for use in SEARCH ALL statement.

A condition-name specified in a SEARCH ALL statement must have a single value associated
with it, but the indicated condition-name has multiple values associated with it.

0130: E Literal in VALUE clause has wrong category for data type of
associated conditional variable.

The value literal specified for a condition-name has a type which conflicts with the type of the
associated conditional variable.

0131: E Condition has wrong combination of conditions, logical operators,
and parentheses.

The syntax of a conditional expression is incorrect. The syntax given in the source is not that
of a relation, class, sign, condition-name, or switch-status condition. This syntax error may be
caused by failure to follow the separator rules of COBOL, which require spaces around the
special characters used in relation conditions.

0132: E COPY statement exceeds maximum nesting level of 9 active COPY
statements.

The maximum copy nesting level of nine has been exceeded. Only five copy files may be
open, but the maximum nesting level of nine can be exceeded when COPY statements are the

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 415

last statement in a COPY file. In such cases, the COPY file is closed before opening the next
COPY file, but the COPY statement is still considered to be nested.

0133: E Text-name or file-name in COPY statement is not accessible to
compiler.

The text-name and, optionally, the library-name specified in a COPY statement refer to a
copy text file that could not be accessed. The file could not be opened, either because it was
not found or because of one of the following reasons:

1. The compiler user does not have the necessary privileges to open the file.

2. The nesting level of five open copy files has been exceeded.

3. The copy text contains a COPY statement which copies itself, either directly or
indirectly.

To be found, a copy text file must either be in the current working directory at the time of the
compilation or be locatable, as described in the “Locating RM/COBOL Files on UNIX” and
“Locating RM/COBOL Files on Windows” topics in Chapters 2 and 3, respectively, of the
RM/COBOL User’s Guide. The compiler uses the RMPATH environment variable to specify
the directory search sequence for copy text files. You may need to specify the ALLOW-
EXTENDED-CHARACTERS, EXPANDED-PATH-SEARCH, RESOLVE-LEADING-
NAME, and RESOLVE-SUBSEQUENT-NAMES keywords for the RUN-FILES-ATTR
configuration record to modify how a copy text file is located, depending on how the
text-name or library-name is specified in the source program.

0134: E CORRESPONDING operand must be group data item not defined
with RENAMES clause.

The context requires an identifier of a group data item that satisfies the rules for
CORRESPONDING. The identifier indicated is either not a group or is a group with no
subordinate named data items (for example, a group defined by RENAMES).

0135: E CORRESPONDING operands have no corresponding numeric
data items.

The two groups specified in an ADD CORRESPONDING or SUBTRACT
CORRESPONDING statement have no corresponding numeric items. These statements
require at least one pair of corresponding numeric items.

0136: E CURRENCY SIGN literal contains wrong character.

The literal specified in the CURRENCY SIGN clause specifies a character that is not allowed
for the currency symbol.

0137: E Data description entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the data description entry or screen description entry as given in the source program.

0138: E Data Division has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the Data Division as given in the source program.

Appendix B: Compiler Messages

416 RM/COBOL Language Reference Manual

0139: E User-defined word or literal expected.

The context requires a reference to a data item or literal but the indicated character-string or
separator does not reference data.

0140: E Data item described in Linkage Section is not addressable from
USING phrase of Procedure Division header.

The indicated identifier refers to a data item or condition-name defined in the Linkage Section
of the Data Division but its data-name or the data-name of its conditional variable is not listed
in the USING phrase of the Procedure Division header nor is the data item or condition-name
defined subordinate to a data-name listed in the USING phrase of the Procedure Division
header nor is it a redefinition or rename of such a name. Thus, the identifier refers to a data
item that would not be addressable by the program at object time.

Note Message 140 only occurs when the object version is restricted to less than 8. Object
version 8 supports the ability to make any Linkage Section data item addressable by use of the
Format 5 SET statement. For object version 8 or greater, if a Linkage Section data item is
referenced and the base address is never set within the program, message 665 (on page 462)
will occur.

0141: E Repeated clause in data description entry is not permitted.

The indicated data description clause is repeated for the same subject or is redundant with the
same clause specified for a parent of the data description entry.

0142: E User-defined word previously defined for use that does not permit its
use as data-name.

The indicated user-defined word is already defined for a purpose that conflicts with its use as
a data-name.

0143: E Data item length exceeds 65280 characters.

The indicated data item has a size greater than 65280 characters. Such items may be specified
only in a MOVE statement or in the USING phrase of a CALL statement for object version 14
and less. Object version 15, introduced in RM/COBOL version 12, allows general references
to data items with a length greater than 65280 characters.

0145: E Alphanumeric data item expected.

The context requires an alphanumeric data item.

0146: E Elementary data item expected.

The indicated identifier does not refer to an elementary data item as required by the context in
which it is specified. The identifier refers to a group data item and group data items are not
allowed in this context.

0147: E Data item with DISPLAY usage expected.

The context requires a data item with DISPLAY usage.

0148: E Data item described with JUSTIFIED clause is not permitted.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 417

The JUSTIFIED clause cannot be used in the data description entry of the data-name
specified in the indicated context.

0149: E Numeric integer data item or literal expected.
The context requires a numeric integer data item.

0150: E Numeric or numeric edited data item expected.

The context requires a numeric or a numeric edited data item.

0151: E Numeric data item or literal expected. Numeric edited data item is
not permitted here.

The context requires a numeric data item; a numeric edited data item is not allowed.

0152: E Literal in VALUE clause has wrong category for data item described
by data description entry.

The literal type specified in the VALUE literal for a data description entry conflicts with the
data type of the item as described by other clauses.

0153: E END DECLARATIVES header expected.

An END header was found while scanning the declaratives portion of the Procedure Division,
but it was not the END DECLARATIVES header.

0154: E GO TO or ALTER statement in nondeclarative procedure must not
refer to declarative procedure: procedure-name-1

A GO TO or ALTER statement in the imperatives refers to a procedure-name defined in the
declaratives. All GO TO and ALTER statements in the imperatives must refer to procedure-
names defined in the imperatives.

0155: E Section header must follow DECLARATIVES header.

The declaratives must begin with a section definition.

0156: E Segment-number in declaratives section header exceeds 49.

A segment-number greater than 49 is given in the declaratives. Independent segments are not
allowed in the declaratives. The last valid segment-number is used instead.

0157: E Statement is not permitted in declarative procedure or in GLOBAL
declarative procedure.

The indicated statement clashes with the declaratives context in which it is specified. A
SORT or MERGE statement is not allowed anywhere in the declaratives portion of the
Procedure Division. An EXIT PROGRAM or GOBACK statement is not allowed in a
declarative procedure in which the GLOBAL phrase is specified.

0158: E Level-number less than or equal to level-number in previous
elementary data description entry expected.

Appendix B: Compiler Messages

418 RM/COBOL Language Reference Manual

The previous data description entry defined an elementary data item, but the indicated
level-number is not less than or equal to the level-number of the previous entry.

0159: E Environment Division has wrong format.
The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the Environment Division as given in the source program.

0160: E EQUAL (=) relational operator required in WHEN phrase of SEARCH
ALL statement.

The condition specified is not an equal relation. In a SEARCH ALL statement, only a
condition-name or an equal relation is allowed.

0161: E Data description entry for condition-name must have WHEN SET TO
FALSE phrase.

A condition-name cannot be set to false unless the WHEN SET TO FALSE phrase is
specified in the data description entry for the condition-name.

0162: E File description entry (FD entry) has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the file description entry as given in the source program.

0163: E BOTTOM data item must be unsigned integer for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for the
indicated file does not refer to an elementary unsigned numeric data item.

0164: E BOTTOM data-name has error in its data description entry for file:
file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for the
indicated file has an error in its data description.

0165: E BOTTOM operand must refer to data item for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for the
indicated file is not a valid data item described in the Data Division.

0166: E BOTTOM data item must not be table element for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for the
indicated file cannot be defined with an OCCURS clause.

0167: E BOTTOM data-name is not unique for file: file-name-1

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for the
indicated file is defined more than once and is not adequately qualified.

0168: E BOTTOM data-name is not defined for file: file-name-1

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 419

The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for the
indicated file has not been defined. An elementary unsigned numeric data entry in the Data
Division is required.

0169: E BOTTOM data item is wrong linkage item or is not external item for
file: file-name-1

• The data-name specified in the LINES AT BOTTOM phrase of the LINAGE clause for
the indicated file has been defined in the Linkage Section. The data-name is not listed in
the Procedure Division USING phrase, nor is it defined subordinate to such a data-name.
The data-name should be included as a USING parameter or defined outside the
Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 (on page 462) will occur if the base address of the
linkage record is never set within the program.

• Or, the indicated file-name names an external file connector but the data-name specified
in the LINES AT BOTTOM phrase of the LINAGE clause does not possess the external
attribute as required.

0170: E Open mode not permitted for file with CODE-SET clause that
specifies alphabet with duplicate character.

A file with a CODE-SET clause specifies an alphabet-name that has a character used more
than once. A file opened for any mode other than INPUT cannot refer to an alphabet-name
that has a character listed more than once. Refer to the “ASCII Position” and “U.S.
Character” columns in Appendix J: Code-Set Translation Tables of the RM/COBOL
User’s Guide for the exact correlation of ordinal position to native character. Informational
message 8 (on page 400) and informational message 9 (on page 400) are generated at the end
of the program listing to provide the alphabet-name and duplicated character.

0171: E Repeated clause in file control entry is not permitted.

A file control clause is repeated for the same file.

0172: E File control entry has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the file control entry as given in the source program.

0173: E Missing or wrong file description entry for file: file-name-1
The file description for the indicated file-name is either missing or has an error. No record
area is defined for the file.

0174: E Device-name specified for file-name-1 does not permit this operation.

The device associated with file-name does not allow the indicated operation. The device type
is determined by the device-name specified in the ASSIGN clause of the file control entry.

0175: E File access name data item must be alphanumeric for file:
file-name -1

Appendix B: Compiler Messages

420 RM/COBOL Language Reference Manual

The category of the data item declared as the file access name in the ASSIGN clause or
VALUE OF FILE-ID clause for the indicated file-name is not alphanumeric as required.

0176: E File access name data-name has error in its data description for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE OF FILE-
ID clause for the indicated file-name refers to a data item that has an error in its description.

0177: E File access name data-name must refer to data item for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE OF
FILE-ID clause for the indicated file-name does not refer to a data item as required.

0178: E File access name data item must not be table element for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE OF
FILE-ID clause for the indicated file-name refers to a data item that is described with the
OCCURS clause or is subordinate to an item described with the OCCURS clause. Since this
would require subscripting, it is not allowed.

0179: E File access name data-name is not unique for file: file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE OF
FILE-ID clause for the indicated file-name refers to two or more data items; the qualification
is ambiguous.

0180: E File access name data-name is not defined for file: file-name-1
The data-name declared as the file access name in the ASSIGN clause or VALUE OF
FILE-ID clause for the indicated file-name is undefined.

0181: E File access name data-name is wrong linkage item for file:
file-name-1

The data-name declared as the file access name in the ASSIGN clause or VALUE OF
FILE-ID clause for the indicated file-name refers to a data item defined in the Linkage
Section but is neither specified in the Procedure Division USING phrase nor is it subordinate
to an item specified in the Procedure Division USING phrase.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0182: E FOOTING data item must be unsigned integer for file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated file
does not refer to an elementary unsigned numeric data item.

0183: E FOOTING data-name has error in its data description entry for file:
file-name-1

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 421

The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated file
has an error in its data description.

0184: E FOOTING operand must refer to data item for file: file-name-1
The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated file
is not a valid data item described in the Data Division.

0185: E FOOTING data item must not be table element for file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated file
cannot be defined with an OCCURS clause.

0186: E FOOTING data-name is not unique for file: file-name-1
The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated file
is defined more than once and is not adequately qualified.

0187: E FOOTING data-name is not defined for file: file-name-1

The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated
file has not been defined. An elementary unsigned numeric data entry in the Data Division
is required.

0188: E FOOTING data item is wrong linkage item or is not external item for
file: file-name-1

• The data-name specified in the FOOTING phrase of the LINAGE clause for the indicated
file has been defined in the Linkage Section. The data-name is not listed in the Procedure
Division USING phrase, nor is it defined subordinate to such a data-name. The data-
name should be included as a USING parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 (on page 462) will occur if the base address of the
linkage record is never set within the program.

• Or, the indicated file-name names an external file connector but the data-name specified
in the FOOTING phrase of the LINAGE clause does not possess the external attribute
as required.

0189: E LABEL RECORDS clause must specify STANDARD or OMITTED
option.

The LABEL RECORDS clause specifies an unrecognized label option. The label must be
described as STANDARD or OMITTED.

0190: E VALUE OF data-name has error in its data description for file:
file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name refers to a data
item that has an error in its description.

0191: E VALUE OF operand must refer to data item for file: file-name-1

Appendix B: Compiler Messages

422 RM/COBOL Language Reference Manual

The data-name declared in the VALUE OF clause for the indicated file-name refers to a
nondata item such as an alphabet-name or condition-name.

0192: E VALUE OF data item must not be table element for file: file-name-1
The data-name declared in the VALUE OF clause for the indicated file-name refers to a data
item that is described with the OCCURS clause or is subordinate to an item described with the
OCCURS clause.

0193: E VALUE OF data-name is not unique for file: file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name refers to two or
more data items; the qualification is ambiguous.

0194: E VALUE OF data-name is not defined for file: file-name-1

The data-name declared in the VALUE OF clause for the indicated file-name is undefined.

0195: E VALUE OF data item is wrong linkage item for file: file-name-1

The data-name declared in the VALUE OF clause of the file description entry is defined in
the Linkage Section but is not listed in the Procedure Division USING phrase, and is not
defined subordinate to such a data-name. The data-name should be included as a USING
parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0196: E LINAGE data item must be unsigned integer for file: file-name-1
The data-name specified in the LINAGE IS clause does not refer to an elementary unsigned
numeric data item.

0197: E LINAGE data-name has error in its data description entry for file:
file-name-1

The data-name specified in the LINAGE IS clause for the indicated file has an error in its
data description.

0198: E LINAGE operand must refer to data item for file: file-name-1

The data-name specified in the LINAGE IS clause for the indicated file is not a valid data
item described in the Data Division.

0199: E LINAGE data item must not be table element for file: file-name-1

The data-name specified in the LINAGE IS clause for the indicated file cannot be defined
with an OCCURS clause.

0200: E LINAGE data-name is not unique for file: file-name-1

The data-name specified in the LINAGE IS clause for the indicated file is defined more than
once and is not adequately qualified.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 423

Compiler Messages 201—300
0201: E LINAGE data-name is not defined for file: file-name-1

The data-name specified in the LINAGE IS clause has not been defined. An elementary
unsigned numeric data entry in the Data Division is required.

0202: E LINAGE data item is wrong linkage item or is not external item for
file: file-name-1

• The data-name specified in the LINAGE IS clause has been defined in the Linkage
Section. The data-name is not listed in the Procedure Division USING phrase, and is not
defined subordinate to such a data-name. The data-name should be included as a USING
parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 (on page 462) will occur if the base address of the
linkage record is never set within the program.

• Or, the indicated file-name names an external file connector but the data-name specified
in the LINAGE IS clause does not possess the external attribute as required.

0203: E Repeated FD or SD entry for file-name is not permitted.

The indicated file-name has already been defined in an FD or SD entry and cannot be
defined again.

0204: E Repeated clause in file description entry is not permitted.

The indicated file description clause is repeated for the same file.

0205: E User-defined word previously defined for use that does not permit its
use as file-name.

The indicated user-defined word is already defined for some other purpose and cannot be
defined as a file-name.

0206: E File-name is not permitted here.

The indicated context does not allow a file-name reference. If the indicated context is the first
operand of a REWRITE or WRITE statement, a record-name of a file is required instead of
the file-name.

0207: E File-name has error in its file control or file description entry.

The indicated file-name has an error in its description.

0208: E File-name expected.

The context requires a file-name.

0209: E File-name is not defined by file control entry.

Appendix B: Compiler Messages

424 RM/COBOL Language Reference Manual

The indicated file-name is not defined. This includes qualification errors such as an attempt
to qualify a file-name.

This error may also indicate that the file-name is defined outside the current program, but is
wrong for one of these reasons: the file-name is not global; the file-name is global but is not
defined in a program which contains the current program; or a file-name described in the
same program is required in this context.

0210: E RECORD KEY data item extends beyond minimum record size for
file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data item that
extends outside the minimum record size for the file. All record keys must be totally
contained within the minimum record size.

0211: E RECORD KEY data item is not defined in record associated with file:
file-name-1

The data-name declared for a record key of the indicated file-name refers to a data item that is
not defined in a record associated with the file-name. All record keys must be defined within
a record associated with the file.

0212: E RECORD KEY data item has same offset as another record key for
file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data item that
has the same leftmost character offset as another record key of that file-name. No two keys
may share the same leftmost character position.

0213: E RECORD KEY data item length exceeds 255 characters for file:
file-name-1

The data-name declared for a record key of the indicated file-name refers to a data item with
a length of more than 255 characters.

0214: E RECORD KEY data item must be alphanumeric or unsigned numeric
DISPLAY item for file: file-name-1

The data-name declared as a record key of the indicated file-name refers to a data item that
does not have an allowed data type. A record key data item must be category alphanumeric or
an unsigned numeric data item with DISPLAY usage.

0215: E RECORD KEY data-name has error in its data description entry for
file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a data item that
has an error in its description.

0216: E RECORD KEY operand must refer to data item for file: file-name-1

The data-name declared for a record key of the indicated file-name refers to a nondata item.

0217: E RECORD KEY data item must not be table element for file:
file-name-1

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 425

The data-name declared for a record key of the indicated file-name refers to a data item which
is described with the OCCURS clause or is subordinate to an item described with the
OCCURS clause. Record keys may not be table items.

0218: E RECORD KEY data-name is not unique for file: file-name-1

The data-name declared for a record key of the indicated file-name refers to two or more data
items; the qualification is ambiguous.

0219: E RECORD KEY data-name is not defined for file: file-name-1

The data-name declared for a record key of the indicated file-name is undefined.

0220: E RECORD DEPENDING data-name must be defined in
Working-Storage or Linkage Section for file: file-name-1

The data-name used in the DEPENDING ON phrase of the RECORD IS VARYING clause
has been defined in the wrong section of the Data Division. It must be defined in the
Working-Storage Section or the Linkage Section.

0221: E RECORD DEPENDING data item must be able to contain maximum
record size for file: file-name-1

The data-name used in the DEPENDING ON phrase of the RECORD IS VARYING clause
has not been defined to be large enough to hold the number that represents the maximum
number of characters needed for the record. The data item description should be changed so
that it can contain the value of the maximum record size for the file.

0222: E RECORD DEPENDING data item must be unsigned integer for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS VARYING
clause must be defined as an elementary unsigned integer.

0223: E Record description sizes conflict with RECORD clause specification
for file: file-name-1

The declaration of the file record size in the RECORD clause does not match the size
described by the record description entry or entries given. This includes specification of the
RECORD IS VARYING format when only fixed-length records are described.

This error also occurs for a file described with the EXTERNAL clause and without a
RECORD clause when there are multiple record descriptions of differing lengths. COBOL
requires that if the RECORD clause is not specified for an external file, all the record
description entries associated with the file connector must be the same length. This rule is
one of the rules for the RECORD clause (on page 95).

0224: E RECORD DEPENDING data-name has error in its data description for
file: file-name-1

There is an error in the data description of the data-name used in the DEPENDING ON
phrase of the RECORD IS VARYING clause.

0225: E RECORD DEPENDING operand must refer to data item for file:
file-name-1

Appendix B: Compiler Messages

426 RM/COBOL Language Reference Manual

The data-name specified in the DEPENDING ON phrase of the RECORD IS VARYING
clause is not defined as an elementary numeric data item.

0226: E RECORD DEPENDING data item must not be table element for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS VARYING
clause cannot be defined with an OCCURS clause or be subordinate to an OCCURS clause.

0227: E RECORD DEPENDING data-name is not unique for file: file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS VARYING
clause is defined more than once and is not adequately qualified.

0228: E RECORD DEPENDING data-name is not defined for file: file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS VARYING
clause has not been defined.

0229: E RECORD DEPENDING data item is wrong linkage item for file:
file-name-1

The data-name specified in the DEPENDING ON phrase of the RECORD IS VARYING
clause for the indicated file-name is defined in the Linkage Section. The data-name is not
listed in the Procedure Division USING phrase, nor is it defined subordinate to such a data-
name. The data-name should be included as a USING parameter or defined outside the
Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0230: E Record length exceeds 65280 characters

The maximum file record size allowed for RM/COBOL is 65280 characters. When the
record length specified in the RECORD CONTAINS clause exceeds the limit, this message
occurs for that clause and “: file-name-1” is not included in the message; otherwise, this
message occurs in the summary error messages shown after the source listing is complete
and “: file-name-1” is provided for reference.

0231: E RELATIVE KEY data item must not be defined in record area for file:
file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data item
defined in a record associated with file-name.

0232: E RELATIVE KEY data item must be unsigned integer for file:
file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data item
that is not a numeric integer.

.
1file-name-:

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 427

0233: E RELATIVE KEY data-name has error in its data description entry for
file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data item
that has an error in its description.

0234: E RELATIVE KEY operand must refer to data item for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to a
nondata item.

0235: E RELATIVE KEY data item must not be table element for file:
file-name-1

The data-name declared for the relative key of the indicated file-name refers to a data item
which is described with the OCCURS clause or is subordinate to an item described with the
OCCURS clause.

0236: E RELATIVE KEY data-name is not unique for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to two or more
data items; the qualification is ambiguous.

0237: E RELATIVE KEY data-name is not defined for file: file-name-1

The data-name declared for the relative key of the indicated file-name is undefined.

0238: E RELATIVE KEY data item is wrong linkage item or is not external item
for file: file-name-1

The data-name declared for the relative key of the indicated file-name refers to a linkage data
item that is not subordinate to an item in the Procedure Division header USING phrase.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0239: E FILE STATUS data item must have length of two characters for file:
file-name-1

The data-name declared for the file status data item of the indicated file-name refers to a data
item that is not two characters in length.

0240: E FILE STATUS data item must be alphanumeric for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers to a data
item that is not of the category alphanumeric.

0241: E FILE STATUS data-name has error in its data description for file:
file-name-1

The data-name declared for the file status data item of the indicated file-name refers to a data
item that has an error in its description.

0242: E FILE STATUS operand must refer to data item for file: file-name-1

Appendix B: Compiler Messages

428 RM/COBOL Language Reference Manual

The data-name declared for the file status data item of the indicated file-name refers to a
nondata item.

0243: E FILE STATUS data item must not be table element for file: file-name-1
The data-name declared for the file status data item of the indicated file-name refers to a data
item which is described with the OCCURS clause or is subordinate to an item described with
the OCCURS clause. The file status data item may not be a table item.

0244: E FILE STATUS data-name is not unique for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers to two or
more data items; the qualification is ambiguous.

0245: E FILE STATUS data-name is not defined for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers to an
undefined data item.

0246: E FILE STATUS data item is wrong linkage item for file: file-name-1

The data-name declared for the file status data item of the indicated file-name refers to a
linkage data item that is not subordinate to an item in the Procedure Division header
USING phrase.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0247: E TOP data item must be unsigned integer for file: file-name-1
The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file does not refer to an elementary unsigned numeric data item.

0248: E TOP data-name has error in its data description entry for file:
file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file has an error in its data description.

0249: E TOP operand must refer to data item for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file does not refer to a valid data item described in the Data Division.

0250: E TOP data item must not be table element for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file cannot be defined with an OCCURS clause.

0251: E TOP data-name is not unique for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file is defined more than once and is not adequately qualified.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 429

0252: E TOP data-name is not defined for file: file-name-1

The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file has not been defined. An elementary unsigned numeric data entry in the Data
Division is required.

0253: E TOP data item is wrong linkage item or is not external item for file:
file-name-1

• The data-name specified in the LINES AT TOP phrase of the LINAGE clause for the
indicated file has been defined in the Linkage Section. The data-name is not listed in the
Procedure Division USING phrase, nor is it defined subordinate to such a data-name.
The data-name should be included as a USING parameter or defined outside the
Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be
produced under the condition described above. Instead, the item will be considered a
based linkage item. Message 665 (on page 462) will occur if the base address of the
linkage record is never set within the program.

• Or, the indicated file-name names an external file connector and the data-name specified
in the LINES AT TOP phrase of the LINAGE clause does not possess the external
attribute as required.

0255: E Data-name in USING or GIVING phrase of Procedure Division
header must not be described with REDEFINES clause.

The description of an operand that is specified in the USING or GIVING phrase in the
Procedure Division header may not include a REDEFINES clause. The name of the original
definition must be specified instead.

0256: E USAGE clause must not specify different usage than USAGE clause
specified in containing group entry.

The USAGE clause indicated contradicts the USAGE clause for the group to which the
subject item belongs.

0257: E VALUE clause is not permitted in data description entry when
containing group entry has VALUE clause.

The VALUE clause indicated is given for a data item that belongs to a group for which a
VALUE clause was also specified.

0258: E Hexadecimal literal contains character other than hexadecimal digit
(0-9 or A-F).

The indicated character within a hexadecimal literal is not a valid hexadecimal digit. The
allowable characters are: 0 through 9, A through F, and a through f.

0259: E Identification Division has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the Identification Division as given in the source program.

0260: E Identifier has error in its data description entry.

The indicated identifier refers to an item that has an error in its description.

Appendix B: Compiler Messages

430 RM/COBOL Language Reference Manual

0261: E Identifier is not unique.

The identifier refers to two or more items; the qualification is ambiguous.

0262: E Identifier expected. Literal is not permitted here.
The context requires an identifier instead of a literal.

0263: E Identifier is not defined.

The identifier is undefined. This includes qualification errors such as incorrect qualifiers.

This error may also indicate that the identifier is defined outside of—but is not accessible to—
the current program because it either does not have the global attribute or is not defined in a
program that contains the current program.

0264: E PERFORM statement must not refer to procedure in different
independent segment.

The procedure-name must not refer to a different independent segment than the independent
segment containing the PERFORM statement.

0265: E Index data item is not permitted as conditional variable.

The associated conditional variable is an index data item.

0266: E Index data item is not permitted here.

The context does not allow an index data item.

0267: E Neither index-name nor index data item is permitted here.

The context does not allow index-names or index data items.

0268: E User-defined word previously defined for use that does not permit its
use as index-name.

The index-name is already defined and cannot be redefined.

0269: E Index-name is not permitted here.

The context does not allow index-names.

0270: E Index-name may access another table only if both tables have same
element size.

An index-name cannot be used with a table other than the one with which it is associated
unless there is an exact match in the number of character positions in both tables.

0271: E Value of integer that specifies minimum is greater than value of
integer that specifies maximum.

The second integer is less than the first integer in the pair of integers indicated.

0272: E Integer expected. Nonnumeric literal is not permitted here.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 431

The context requires an integer numeric literal, but a nonnumeric literal was found.

0273: E Unsigned integer expected. Signed integer is not permitted here.

The context requires an unsigned integer, but a signed integer was found.

0274: E Integer value that exceeds 4294967295is not permitted here.

The indicated integer has a value too large for the context in which it was used. The
maximum integer value in such contexts is 4294967295.

0275: E Nonzero integer value expected.

The context requires a nonzero integer.

0276: E I-O-CONTROL paragraph has wrong format.
The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the I-O-CONTROL paragraph as given in the source program.

0277: E Expected file-name that does not refer to sort-merge file.

The context requires a file-name that refers to an I-O file; that is, a file-name of a sequential,
relative, or indexed organization file not defined as a sort-merge file.

0278: E Expected record-name of file that is not sort-merge file.
The context requires a record-name associated with an I-O file; that is, a sequential, relative or
indexed organization file record-name not defined as a sort-merge record. The record-name
may be qualified by the file-name of the file with which it is associated, but may not be
subscripted or reference modified.

0279: E JUSTIFIED clause is not permitted for any data item that is group,
numeric, edited, index, or pointer data.

The JUSTIFIED clause is given in the data description entry in conflict with other data
description clauses specified for the same subject.

0280: E Sort-merge key is not defined in record associated with
sort-merge file.

The indicated data-name is not associated with the sort-merge file specified in this statement.
That is, the data-name is not defined as a record of the file nor is it defined subordinate to a
record of the file. Thus, the data-name does not refer to data that can be used as a key for the
SORT or MERGE operation.

0281: E Sort-merge key must not be table element.

The indicated sort-merge key data-name is described with the OCCURS clause or is defined
subordinate to an item described with the OCCURS clause. That is, the data-name refers to a
table data item and thus cannot be used as a key for the SORT or MERGE operation.

0282: E Sort-merge key must not be variable-length group.

Appendix B: Compiler Messages

432 RM/COBOL Language Reference Manual

The indicated sort-merge key data-name refers to a group that contains a data item described
with Format 2 of the OCCURS clause. That is, the data-name refers to a variable-length data
item and thus cannot be used as a key for the SORT or MERGE operation.

0283: E Level-number must be 01-49, 66, 77, 78, or 88.

The compiler expected a valid level-number at the indicated place in the source, but did not
find one of the valid level-number values, which are 01 through 49, 66, 77, 78, and 88.

0284: E Level-number 77 data description entry must describe elementary
data item.

A level-number 77 data description entry did not describe an elementary data item. A
PICTURE clause or a USAGE IS INDEX clause is required in level-number 77 data
description entries.

0285: E Level-number 88 condition-name expected.

The indicated item is not a level-number 88 conditional variable condition-name. The format
of the SET statement used requires a conditional variable condition-name.

0286: E ADVANCING mnemonic-name is not permitted when file-name-1 is
described with LINAGE clause.

The ADVANCING mnemonic-name phrase of the WRITE statement cannot be used for a file
that is described with a LINAGE clause. The file-name-1 specified in the indicated WRITE
statement is described with the LINAGE clause.

0287: E ADVANCING TO LINE and AT END-OF-PAGE phrases permitted only
when file-name-1 is described with LINAGE clause.

The ADVANCING TO LINE and END-OF-PAGE phrases of the WRITE statement are
allowed only when the file is described with the LINAGE clause. The file-name-1 specified
in the indicated WRITE statement is described with the LINAGE clause.

0288: E Data-name must have level-number 01 or 77 data description entry in
Linkage Section.

A data-name in the USING or GIVING phrase of the Procedure Division header does not
refer to a data item described with level-number 01 or 77.

0289: E Data-name must be described in Linkage Section.

A data-name in the Procedure Division USING header phrase does not reference a data item
defined in the Linkage Section of the program.

0290: E Level-number 01 or 77 expected in Linkage Section.
An entry in the Linkage Section of the Data Division is neither a record description entry
(level-number 01) nor a 77 level description entry (level-number 77).

0291: E Literal expected. Identifier is not permitted here.

The context requires a literal.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 433

0292: E MEMORY SIZE clause requires either WORDS, CHARACTERS, or
MODULES option.

There is a syntax error in the MEMORY clause of the OBJECT-COMPUTER paragraph.
A memory size option was incorrect or omitted. The allowable options are WORDS,
CHARACTERS or MODULES.

0293: E Repeated file-name in MERGE statement is not permitted.

A file-name is repeated within a MERGE statement. File-names must not be repeated within
the MERGE statement.

0294: E USING phrase of MERGE statement requires two or more file-names.
Two or more USING files are required for a MERGE statement, but only one is given.

0295: E User-defined word previously defined for use that does not permit its
use as mnemonic-name.

The user-defined word is already defined and cannot be redefined as a mnemonic-name.

0296: E Alphanumeric edited or alphabetic data item must not be moved to
numeric or numeric edited data item.

The MOVE statement is wrong because it attempts to move an alphanumeric edited or
alphabetic data item to a numeric edited or numeric data item.

0297: E Noninteger numeric data item must not be moved to alphabetic,
alphanumeric, or alphanumeric edited data item.

The MOVE statement is wrong because it attempts to move a noninteger numeric data item to
a nonnumeric data item.

0298: E Numeric edited data item must not be moved to alphabetic data item.

The MOVE statement is wrong because it attempts to move a numeric edited data item to an
alphabetic data item.

0299: E Numeric data item must not be moved to alphabetic data item.

The MOVE statement is wrong because it attempts to move a numeric data item to an
alphabetic data item.

0300: E Zero length literal is not permitted. This may be caused by
extraneous plus sign, minus sign, or period.

The indicated literal has zero length. For a numeric literal, this means no digit positions are
defined. For a nonnumeric literal, this means that there are no characters enclosed in the
quotation marks. This error may also result from the presence of an extraneous plus sign,
minus sign or period in the source text.

Compiler Messages 301—400
0301: E Numeric literal exceeds 30 decimal digits.

Appendix B: Compiler Messages

434 RM/COBOL Language Reference Manual

The indicated numeric literal defines more than 30 digit positions.

0302: E Level-number must be greater than level-number in previous data
description with OCCURS DEPENDING ON clause.

The indicated level-number is wrong because it is less than or equal to the level-number of an
item described with the OCCURS clause with the DEPENDING ON phrase and is not the
beginning of a new record description entry.

Note In version 12 and later of the compiler, the rules for the OCCURS clause with the
DEPENDING ON phrase were relaxed such that message 0302 no longer applies.

0303: E Data item having OCCURS DEPENDING ON clause must not be
subordinate to data item having OCCURS clause.

The OCCURS clause with the DEPENDING ON phrase is specified subordinate to a data
item described with the OCCURS clause.

Note In version 12 and later of the compiler, the rules for the OCCURS clause with the
DEPENDING ON phrase were relaxed such that message 0303 no longer applies.

0304: E OCCURS DEPENDING in redefinition is not permitted.
The OCCURS . . . DEPENDING clause is specified for a data item that is described with the
REDEFINES clause or is subordinate to an item described with the REDEFINES clause.

Note In version 12 and later of the compiler, the rules for the OCCURS clause with the
DEPENDING ON phrase were relaxed such that message 0304 no longer applies.

0305: E More than 2046 external items are specified in separately compiled
program, including any contained programs.

The implementation limit of 2046 external items in a single separately compiled program,
including any of its contained programs, has been exceeded in the current program.

0306: E Pseudo-text-1 may not be empty. One or more text words are
required here.

The left pseudo-text operand in a BY phrase must not be empty.

0307: E Open mode INPUT, OUTPUT, I-O, or EXTEND option expected.

A wrong open mode is specified. The allowed open mode options are EXTEND, INPUT,
I-O and OUTPUT.

0308: E Combination of operands in SET statement is wrong.

The combination of operands specified is wrong because of their data types and the context.
See Table 36: SET Statement Operand Validity (on page 358) for valid combinations.

0309: E Positive integer expected. Negative integer is not permitted here.

The indicated integer cannot be negative.

0310: E Paragraph-name and section-name must not be same
user-defined word.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 435

A paragraph and a section must not be given the same name.

0311: E Cannot refer to paragraph-name that is not unique within section.

The specified paragraph is defined more than once within the specified section.

0312: E PERFORM procedure-names must be in same declarative section:
procedure-name-1

A PERFORM statement is wrong because either the entry or exit procedure-name refers to a
procedure in a declaratives section and the other refers to a procedure not in the same
declaratives section.

0313: E PERFORM entry procedure-name must not be in different
independent segment: procedure-name-1

A PERFORM statement in an independent segment is wrong because the entry
procedure-name refers to a procedure in a different independent segment.

0314: E PERFORM entry procedure-name is not unique: procedure-name-1

A PERFORM statement is wrong because the entry procedure-name is ambiguous.
Qualification is required to yield a unique reference.

0315: E PERFORM entry procedure-name is not defined: procedure-name-1

A PERFORM statement is wrong because the entry procedure-name is undefined. This
includes qualification errors such as a qualified section-name.

0316: E PERFORM exit procedure-name must be in same independent
segment as entry: procedure-name-1

A PERFORM statement is wrong because its exit procedure-name refers to a procedure in a
different independent segment than the segment containing the entry procedure.

0317: E PERFORM exit procedure-name is not unique: procedure-name-1

A PERFORM statement is wrong because the exit procedure-name is ambiguous.
Qualification is required to yield a unique reference.

0318: E PERFORM exit procedure-name is not defined: procedure-name-1
A PERFORM statement is wrong because the exit procedure-name is undefined. This
includes qualification errors such as a qualified section-name.

0319: E Period space separator expected.

The context requires a period space separator at the indicated point in the source program.

0320: E BLANK WHEN ZERO clause is not permitted with PICTURE character-
string containing symbols '*' or 'S'.

The BLANK WHEN ZERO clause is used to describe a data item that specifies asterisk zero
suppression or an operational sign in its PICTURE character-string.

Appendix B: Compiler Messages

436 RM/COBOL Language Reference Manual

0321: E Wrong character in PICTURE character-string.

The indicated character in the PICTURE character-string is not a valid PICTURE character.

0322: E PICTURE clause is not permitted for index or pointer data item.
The PICTURE clause has been used to describe an index (USAGE IS INDEX) or
pointer (USAGE IS POINTER) data item. These types of data items do not allow a
PICTURE clause.

0323: E Letter 'R' is missing from 'CR' symbol in PICTURE character-string.

The PICTURE character-string contains a “C” not followed by “R”.

0324: E PICTURE character-string describes data item with excessive
character length

The number of character positions described by the PICTURE character-string for a single
data item exceeds the compiler limit. Prior to RM/COBOL version 12, the limit was 65280
characters. RM/COBOL versions 12 and later allow up to 4294967295 characters to be
described for a data item, although values near this limit will trigger other limits. For
example, the sum of the lengths of all data items must not exceed 4294967295.

0325: E Letter 'B' is missing from 'DB' symbol in PICTURE character-string.

The PICTURE character-string contains a “D” not followed by “B”.

0326: E Ending pseudo-text delimiter is missing.

The nearest preceding pseudo-text delimiter was an opening pseudo-text delimiter for which
no closing pseudo-text delimiter has been found.

0327: E Repeated character in first literal of INSPECT CONVERTING
statement is not permitted.

A character must not appear more than once in a CONVERTING literal.

0328: E Fixed insertion currency must be first symbol in PICTURE
character-string.

The PICTURE character-string contains a fixed insertion currency symbol which is not the
leftmost character in the character-string, except for either a ‘+’ or a ‘–’ symbol.

0329: E Fixed insertion sign must be first or last symbol in PICTURE
character-string.

The PICTURE character-string contains a fixed insertion sign character that is not the
leftmost or rightmost character in the character-string.

0330: E PICTURE character-string has wrong combination of symbols '.', 'P',
and 'V'.

The PICTURE character-string contains combinations of scaling characters (P, decimal-point,
V) such that the decimal point position is defined in more than one place.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 437

0331: E Symbol in PICTURE character-string is wrong for nonnumeric
data item.

The PICTURE character-string was nonnumeric up to the indicated character that is not
permitted in a nonnumeric PICTURE character-string.

0332: E PICTURE character-string for numeric or numeric edited data item
exceeds 30 decimal digits.

The PICTURE character-string defines a numeric or numeric edited data item with more than
30 digit positions.

0333: E PICTURE character-string symbol combination wrong for PICTURE
precedence rules.

The indicated character in a numeric or numeric edited PICTURE character-string violates the
precedence rules. See Table 12: PICTURE Symbol Precedence (on page 120).

0334: E PICTURE character-string for numeric or numeric edited data item
must include digit positions.

The PICTURE character-string defines a numeric or numeric edited data item without any
digit positions.

0335: E PICTURE character-string must not have digit positions both to left
and right of symbols 'P'.

The PICTURE character-string defines digit positions both to the left and right of
P characters.

0336: E Symbols 'CR', 'DB', 'S', 'V', and '.' must occur only once in PICTURE
character-string.

The indicated character in the PICTURE character-string is repeated when it must occur as a
single character.

0337: E Symbol is not permitted in PICTURE character-string for signed
numeric item.

The indicated character in the PICTURE character-string is not allowed in a signed numeric
data item (that is, a character-string starting with S).

0338: E PICTURE character-string and USAGE clause are not compatible.

The PICTURE character-string describes a data item that conflicts with the USAGE declared
for the data item (for example, nonnumeric picture with COMP usage).

0339: E Section-name header required because declaratives specified in
same program.

The nondeclarative portion of the Procedure Division must be sectioned when declaratives are
defined.

0340: E Procedure-name is not unique: procedure-name-1

Appendix B: Compiler Messages

438 RM/COBOL Language Reference Manual

The indicated procedure reference is ambiguous and requires qualification to yield a unique
procedure reference.

0341: E Procedure-name required in GO TO statement that is not alterable.
The indicated Format 1 GO TO statement does not occur in a single statement paragraph
(alterable paragraph) and, therefore, must be followed by a procedure-name. This error may
indicate that the procedure-name specified is a reserved word.

0342: E Procedure-name is not defined: procedure-name-1

The indicated procedure reference is not defined. This includes qualification errors such as a
qualified section-name.

0343: E Alphabet-name specified for PROGRAM COLLATING SEQUENCE
must not have duplicate character.

The alphabet-name specified in the PROGRAM COLLATING SEQUENCE clause refers to
an alphabet defined with a duplicate character. Since a character can only have one collating
position, a character must not be repeated in the definition of an alphabet-name specified as
a collating sequence. Refer to the “ASCII Position” and “U.S. Character” columns in
Appendix J: Code-Set Translation Tables of the RM/COBOL User’s Guide for the exact
correlation of ordinal position to native character. Informational message 8 (on page 400)
and informational message 9 (on page 400) are generated at the end of the program listing to
provide the alphabet-name and duplicated character.

0344: E Data defined in program has combined length that exceeds
4 gigabytes.

The program defined data in excess of four gigabytes. The program has overflowed the
compiler limit of 4GB for read/write data. Besides data areas defined in the Data Division of
the program, this includes compiler generated temporary data areas such as exit temps for
procedures, arithmetic expression evaluation temporaries, INSPECT temporaries, and CALL
BY CONTENT argument temporaries. If the error occurs before the end of the Data
Division, the program defined data exceeds the limit, which is usually caused by one or more
large tables (OCCURS clause). If the error occurs after the end of the program, the sum of
the data defined by the program plus the temporary data generated by the compiler exceeds
the limit or the total generated object size exceeds the limit. When the total generated object
size exceeds the limit, the summary listing line for the total size will say “Total generated
object size: {32-bit overflow!} bytes”.

0345: E Object code generated by procedural statements exceeds compiler
limit of 16MB in a single segment.

The program required object instructions—generated for Procedure Division statements—that
were in excess of 16 megabytes for a single segment. Approximately 10 bytes are generated
per simple source statement. The program should be divided into two or more separate
programs. Alternatively, segmentation can be used in the Procedure Division so that no
single segment exceeds the 16MB limit.

0346: E Program-name in END PROGRAM header must equal program-name
in PROGRAM-ID paragraph.

The program-name specified in the END PROGRAM header does not match the program-
name specified in the PROGRAM-ID paragraph of the Identification Division.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 439

0347: E Statement does not permit data item described with symbol 'P' in its
PICTURE character-string.

Use of a data item described with the scaling position character P in its PICTURE character-
string is not allowed in the context of the indicated statement in the source program.

0348: E Qualification of section-name is not permitted.

A section-name is qualified in the source program. Section-names must be unique in the set
of procedure-names for a given source program and cannot be qualified.

0349: E File-name described with ACCESS MODE RANDOM clause is not
permitted here.

The context does not allow a file defined with RANDOM access mode. The indicated file-
name must be described with SEQUENTIAL or DYNAMIC access mode.

0350: E ASSIGN clause for file must specify RANDOM, DISK, or DISC.

The context requires a file assigned to a mass-storage device-name, which is RANDOM,
DISK or DISC.

0351: E KEY phrase is permitted only for random or dynamic access indexed
file without NEXT or PREVIOUS phrases.

The KEY phrase is not allowed in the indicated READ statement because either file-name-1
does not refer to an indexed organization file, file-name-1 refers to a file that has sequential
access mode, or the NEXT or PREVIOUS phrase is specified in the same READ statement.

0352: E Record description entry must begin with level-number 01.

The level-number of a record entry is not 01.

0353: E File description entry must be followed by one or more record
description entries.

The context requires a record entry description at the indicated point in the source program.

0354: E Number of record keys or record key segments exceeds 255.

More than 255 record keys are defined for a file or more than 255 record key segments are
defined for a file. RM/COBOL allows at most 255 record keys or record key segments.

0355: E RECORD KEY and ALTERNATE RECORD KEY clauses permitted only
in indexed file control entry.

The RECORD KEY clause is given for a file that is not indexed organization.

0356: E Data-name-1 must refer to record key or to data item aligned on
record key associated with file-name-1.

The KEY phrase of a START statement requires data-name-1 to refer to a record key of the
file-name-1 specified in that START statement or a data item whose leftmost character
position is the same as the leftmost character position of a record key of the file-name-1
specified in that START statement. The data-name-1 specified does not meet either of these
requirements.

Appendix B: Compiler Messages

440 RM/COBOL Language Reference Manual

0357: E RECORD KEY clause is required in indexed file control entry.

An indexed organization file must be described with the RECORD KEY clause. A prime
record key is required for indexed files.

0358: E REDEFINES clause not permitted for level-number 01 entries in
this section.

The REDEFINES clause may not be used in level-number 01 entries of the File Section or
Communication Section. When multiple level-number 01 entries are subordinate to a file
description entry (FD) or communication-description-entry (CD) in these sections, all but the
first entry implicitly redefine the first entry.

0359: E REDEFINES cannot specify this data-name.

The data-name specified in a REDEFINES clause is wrong because it is neither that of the last
allocated data item nor the data-name of the last redefinition at the same level.

0360: E REDEFINES cannot specify data-name described with OCCURS
clause.

The data item to be redefined cannot be described with an OCCURS clause.

0361: E Size of redefinition exceeds size of item referred to by REDEFINES
clause.

The indicated data-name defines an area of storage larger than the area it is redefining and is
not described with level-number 01.

0362: E VALUE clause is not permitted in redefinition.

The VALUE clause is used to describe a data item which is also described with the
REDEFINES clause or which is subordinate to a data item described with the
REDEFINES clause.

0363: E REDEFINES is not permitted for group containing variable-
occurrence data item.

A data item that is variable length because the Format 2 of the OCCURS clause cannot
be redefined.

Note In version 12 and later of the compiler, the rules for the OCCURS clause with the
DEPENDING ON phrase were relaxed such that message 0363 no longer applies.

0364: E Nonnumeric to numeric relation requires the numeric object to be
DISPLAY usage.

The indicated relation condition compares a nonnumeric value to a numeric value, but the
numeric object is not DISPLAY usage as required for such a relation condition.

0365: E Nonnumeric to numeric relation requires the numeric object to be
an integer.

The indicated relation condition compares a nonnumeric value to a numeric value, but the
numeric object is not an integer as required for such a relation condition.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 441

0366: E Relational operator is not permitted in START statement.

The context does not allow the indicated relation that uses a relational operator.

0367: E Data item, literal, or arithmetic expression expected for object of
relational operator.

The conditional expression is syntactically incorrect because a conditional expression was
found where an arithmetic expression, nonnumeric data item or nonnumeric literal was
required as the object of a preceding relational operator.

0368: E Relational operator expected.

The context requires a relational operator.

0369: E Relational operator specified without subject data item, literal, or
arithmetic expression.

The conditional expression is syntactically incorrect because a relation condition with no
subject was specified and the relation is not a valid abbreviated relation condition.

0370: E RELATIVE KEY phrase permitted only in relative file control entry.

The RELATIVE KEY phrase is specified for a file that does not have relative organization.
The RELATIVE KEY phrase is not allowed in an indexed or sequential file control entry.

0371: E RELATIVE KEY phrase required for relative file referred to in START
statement or with random or dynamic access.

A relative organization file with random or dynamic access must be described with the
RELATIVE KEY phrase. Also, if a START statement refers to a relative file, the
RELATIVE KEY phrase must be specified for that file.

0372: E RENAMES clause must not refer to data-name described with
level-number 01, 66, or 77.

The object data-name of a RENAMES clause is wrong because it is described with
level-number 01, 66 or 77.

0373: E RENAMES clause must not refer to data-name described with
OCCURS clause.

The object data-name of a RENAMES clause is wrong because it is described with the
OCCURS clause or is subordinate to a data item described with the OCCURS clause.

0374: E Second data item in THRU phrase of RENAMES clause must not
begin to left of first data item in that phrase.

The beginning of the area described by data-name-3 begins to the left of the area described by
data-name-2 in a RENAMES data-name-2 THRU data-name-3 clause.

0375: E Second data item in THRU phrase of RENAMES clause must end to
right of first data item in that phrase.

The end of the area described by data-name-3 is not to the right of the area described by data-
name-2 in a RENAMES data-name-2 THRU data-name-3 clause.

Appendix B: Compiler Messages

442 RM/COBOL Language Reference Manual

0376: E RENAMES of group containing variable-occurrence data item is
not permitted.

The object data-name of a RENAMES clause is described such that it is variable length as
defined in the OCCURS clause.

Note In version 12 and later of the compiler, the rules for the OCCURS clause with the
DEPENDING ON phrase were relaxed such that message 0376 no longer applies.

0377: E Repeated RERUN clause for file-name is not permitted.

A RERUN statement has been repeated for the same file.

0378: E ON phrase required for this format of RERUN clause.
An ON phrase is needed in the RERUN clause when either an END OF REEL or END OF
UNIT phrase is used and the file-name associated with the END OF REEL or END OF UNIT
is not an output file, or when the condition-name format of the RERUN clause is used.

0379: E Rerun-name required in ON phrase for this format of RERUN clause.

The ON phrase with the rerun-name option must be specified if either the RECORDS or
CLOCK-UNITS phrase is used.

0380: E RERUN clause has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the RERUN clause of the I-O-CONTROL paragraph as given in the source program.

0381: E RESERVE clause integer value exceeds 255.

The integer given in the RESERVE AREAS clause specifies that more than 255 input-output
areas be reserved.

0382: E Computer-name must be user-defined word instead of reserved word.

The indicated computer-name is a reserved word; a user-defined word must be given for the
computer-name.

0383: E Text-name in COPY statement must not be a reserved word; quote
the word to avoid this conflict.

The indicated text-name is a reserved word; a user-defined word must be given for the
text-name. A nonnumeric literal (the reserved word in quotes) may be specified to eliminate
the reserved word conflict.

0384: E User-defined word expected instead of reserved word.

Context requires a user-defined word at the indicated position in the source program, but a
reserved word was found.

0385: E Right parenthesis missing in PICTURE character-string.

The PICTURE character-string contains a repeat count that is not properly terminated with a
right parenthesis. The right parenthesis is missing, possibly because it is within the

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 443

commentary Identification area of the source record or because text follows the integer
specifying the count.

0386: E File-name may not be specified more than once in SAME AREA
clause.

The indicated file-name is specified more than once in a SAME AREA clause.

0387: E All file-names in SAME AREA clause must also occur in any
associated SAME RECORD AREA clause: file-name-1

The indicated file-name is specified in a SAME AREA clause with another file-name that is
also specified in a SAME RECORD AREA clause. The indicated file-name is not specified
in the SAME RECORD AREA clause as required.

0388: E All file-names in SAME AREA clause must also occur in any
associated SAME SORT/SORT-MERGE AREA clause: file-name-1

The indicated file-name is specified in a SAME AREA clause with another file-name that is
also specified in a SAME SORT AREA clause. The indicated file-name is not specified in
the SAME SORT AREA clause as required.

0389: E Sort-merge file-name is not permitted in SAME AREA clause.

The indicated file-name refers to a sort-merge file and is, therefore, not allowed in a SAME
AREA clause.

0390: E File-name is not permitted more than once in SAME RECORD AREA
clause.

The indicated file-name is specified more than once in a SAME RECORD AREA clause.

0391: E Repeated sort-merge file-name in SAME SORT AREA clause is not
permitted.

The indicated file-name is a sort-merge file that is specified more than once in a SAME
SORT AREA clause or SAME SORT-MERGE AREA clause.

0392: E At least one file-name in SAME SORT AREA clause must be
sort-merge file-name.

The indicated SAME SORT AREA clause or SAME SORT-MERGE AREA clause does not
contain a sort-merge file-name as required.

0393: E Sort-merge file description entry (SD entry) has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the sort-merge file description entry as given in the source program.

0394: E Section header is not permitted in Procedure Division that begins
with paragraph header.

A section definition is not allowed here because the Procedure Division did not begin with a
section. The section definition is accepted.

Appendix B: Compiler Messages

444 RM/COBOL Language Reference Manual

0395: E Section-name is not unique.

The indicated user-defined word is already defined as a section-name or a paragraph-name
and, therefore, cannot be defined as a new section-name.

0396: E Section-name expected.

Context requires a section-name. A paragraph-name may not be used as a qualifier.

0397: E Repeated SEGMENT-LIMIT clause is not permitted.

The SEGMENT-LIMIT clause has been defined more than once.

0398: E Segment-number specified in SEGMENT-LIMIT clause must
be 01 - 49.

The segment-number in the SEGMENT-LIMIT clause must be within the range of 1
through 49.

0399: E Segment-number exceeds 127.

The indicated segment-number is larger than the limit of 127. The last valid segment-number
is used instead.

0400: E Random or dynamic access is not permitted for sequential
organization file or for EXTEND open mode.

The context requires a sequential access file. A sequential organization file must be described
implicitly or explicitly as having sequential access. The EXTEND open mode may only be
specified for files described implicitly or explicitly as having sequential access.

Compiler Messages 401—500
0401: E File-name of sequential organization file is not permitted here.

The context does not allow a sequential organization file.

0402: E File-name of sequential organization file expected.

The context requires a sequential organization file.

0403: E SIGN clause is not permitted with unsigned PICTURE character-
string or non-DISPLAY usage.

The SIGN clause is given in conflict with other data description entries. A SIGN clause
cannot be used when the PICTURE character-string does not contain an S symbol indicating a
signed numeric data item or the USAGE clause specifies a usage other than DISPLAY.

0404: E LEADING or TRAILING option expected in SIGN clause.

The SIGN clause specifies an unrecognized option. The valid options are LEADING
and TRAILING.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 445

0405: E Sort-merge file-name expected.

The context requires a file-name that refers to a sort-merge file.

0406: E Record-name associated with sort-merge file expected.
The context requires a record-name associated with a sort-merge file. The record-name may
be qualified by the file-name of the sort-merge file with which it is associated, but may not be
subscripted or reference modified.

0407: E Sort-merge file must have sequential organization.

The file-name following an SD level-indicator must reference a sequential organization file.

0408: E Clauses specified in wrong order within SPECIAL-NAMES paragraph.
The clauses in the SPECIAL-NAMES paragraph are not listed in the order shown in the
paragraph skeleton. The required order is mnemonic-names, ALPHABET, SYMBOLIC
CHARACTERS, CLASS, CURRENCY SIGN and DECIMAL-POINT. Clauses not needed
may be omitted.

0409: E SPECIAL-NAMES paragraph has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the SPECIAL-NAMES paragraph as given in the source program.

0410: E Alphabet-name, class-name, or mnemonic-name is not permitted
here.

The context does not allow a special-name such as a mnemonic-name or alphabet-name
as given.

0411: E Data-name must not refer to data item that is longer than associated
record key.

The data-name given in the START statement relation for an indexed organization file does
not reference a data item that is subordinate to its associated record key.

0412: E Data-name must refer to data item that is alphanumeric or unsigned
numeric with DISPLAY usage.

The data-name given in the START statement relation for an indexed organization file does
not reference a data item with an allowed data type. The data item must be described as
category alphanumeric or as an unsigned numeric data item with DISPLAY usage.

0413: E Data-name must refer to relative key data item associated with
file-name-1.

The indicated data-name given in the START statement KEY relation for a relative
organization file is not the relative key data-name associated with the file-name-1 specified in
that START statement, as required by the COBOL language.

0414: E Statement has wrong format.

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the Procedure Division verbs as given in the source program.

Appendix B: Compiler Messages

446 RM/COBOL Language Reference Manual

0415: E Identifier may not refer to table element.

The context does not allow a subscripted reference. The data item specified here must not
be described with the OCCURS clause or be subordinate to an item described with the
OCCURS clause.

0416: E Data item used as subscript must not be table element.

A data-name specified as a subscript is described with the OCCURS clause or is subordinate
to a data item described with the OCCURS clause.

0417: E Too many subscripts for table element or missing right parenthesis.

The syntax of the subscripting for the identifier is incorrect. Either too many subscripts are
specified or the right parenthesis is missing, possibly because it is in the commentary
Identification area of the source record.

0418: E Identifier refers to table element and thus must be subscripted.

The indicated data-name must be subscripted to provide a unique reference.

0419: E Identifier needs more subscripts to form unique reference.

Too few subscripts were specified for the identifier. The data-name portion of the identifier
refers to a table element which, in order to specify a unique reference, requires more
subscripts than were specified.

0420: E Literal subscript value exceeds number of table elements.

The indicated literal subscript is greater than the maximum number of table elements that are
defined in the OCCURS clause for the specified table. A relative subscript literal is limited to
one less than the number of elements.

0421: E Switch-status condition-name expected.

The indicated context requires a switch condition-name, but a user word for some other entity
was specified, such as a data-name, file-name or alphabet-name.

0422: E Switch-status condition-name is not defined.

The indicated context requires a switch condition-name, but an undefined user word
was specified.

0423: E Mnemonic-name associated with external switch expected.

The indicated mnemonic-name is not associated with an external switch as required by the
context. SWITCH-1 through SWITCH-8 or the synonyms UPSI-0 through UPSI-7 may be
specified in the SPECIAL-NAMES paragraph to associate a mnemonic-name with an external
switch.

0424: E Repeated ON STATUS or OFF STATUS phrase in switch-name clause
is not permitted.

Two ON STATUS or OFF STATUS condition-names are defined in the same
SPECIAL-NAMES clause for a switch implementor-name. The language syntax requires
an ON/OFF or OFF/ON pair or a single ON or OFF status declaration.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 447

0425: E ON STATUS or OFF STATUS phrase expected.

At least one ON or OFF STATUS condition-name must be associated with a switch-name.

0426: E User-defined word must begin with letter or digit.
A user-defined word must begin with a letter or digit.

0427: E User-defined word must contain at least one letter.

A data-name must contain at least one letter character.

0428: E Integer in SYMBOLIC CHARACTERS clause exceeds 256 or character
code set size.

The integer specified in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES
paragraph represents the ordinal position of the character in the native character set or of the
character set specified by alphabet-name in the IN phrase. Valid integer values for the native
character set are 1 through 256. Valid integer values for an alphabet-name are dependent on
the number of characters included in the description.

0429: E Symbolic-character already declared.

The user-defined word in the indicated SYMBOLIC CHARACTERS clause has been
previously defined and cannot be used again.

0430: E User-defined word following ALL must be symbolic-character.

A symbolic-character name is required following the indicated figurative constant ALL.

0431: E Symbolic-character is not defined by SYMBOLIC CHARACTERS
clause.

The indicated name following the figurative constant ALL is presumed to be a user-defined
symbolic name but is not defined in a SYMBOLIC CHARACTERS clause.

0432: E SYNCHRONIZED clause is not permitted for group.

The SYNCHRONIZED clause was specified in conflict with other data description clauses
specified in the same entry.

0433: E Identifier must not be subscripted by first index-name associated
with table being searched.

The indicated identifier is subscripted by the first index-name of the table being searched by
this SEARCH statement. In this context (for example, the VARYING phrase), such
subscripting is disallowed.

0434: E OCCURS DEPENDING ON data-name must not be defined within
table for table: table-name-1

The data-name for the DEPENDING ON phrase of the OCCURS clause cannot be in the
variable-length portion of the table. This may occur with implicit redefinition of the table
item.

Appendix B: Compiler Messages

448 RM/COBOL Language Reference Manual

0435: E OCCURS DEPENDING ON data item must be numeric integer for
table: table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for the
indicated table does not refer to a data item described as a numeric integer.

0436: E OCCURS DEPENDING ON data-name has error in its data description
entry for table: table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for the
indicated table refers to a data item that has an error in its description.

0437: E OCCURS DEPENDING ON must refer to data item for table:
table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for the
indicated table refers to a nondata item.

0438: E OCCURS DEPENDING ON data item must not be table element for
table: table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for the
indicated table refers to a data item described with the OCCURS clause or which is
subordinate to a data item described with the OCCURS clause.

0439: E OCCURS DEPENDING ON data-name is not unique for table:
table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for the
indicated table refers to two or more data items; the qualification is ambiguous.

0440: E OCCURS DEPENDING ON data-name is not defined for table:
table-name-1

The data-name specified in the DEPENDING ON phrase of the OCCURS clause for the
indicated table is undefined.

0441: E OCCURS DEPENDING ON data item is wrong linkage item for table:
table-name-1

The data-name for the DEPENDING ON phrase of the OCCURS clause is defined in the
Linkage Section. The data-name is not listed in the Procedure Division USING phrase nor is
it defined subordinate to such a data-name. The data-name should be included as a USING
parameter or defined outside the Linkage Section.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0442: E Table element length exceeds 65535 characters and object version
restricted to less than 13.

The maximum table element size has been exceeded for the specified object version
(Z Compile Command Option). Up to 65535 characters may be defined in a table element;

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 449

that is, the data subordinate to an OCCURS clause in object versions less than 13. Either
adjust the object version limit or reduce the size of the occurring data.

0443: E More AND phrases than KEY phrases for table being searched is not
permitted.

Too many AND phrases in the SEARCH ALL statement have been specified for the number
of keys declared for the specified table.

0444: E OCCURS KEY data item must be defined in table for table:
table-name-1

The indicated table key data-name is not associated with the data entry containing the
OCCURS clause or is not subordinate to the entry containing the OCCURS clause.

0445: E Wrong key specification in SEARCH ALL statement.

The data items to be compared in the SEARCH ALL statement are not given in the same
order as they appear in the OCCURS clause of the specified table, or an item which is not a
key of the table has been listed.

0446: E OCCURS KEY data-name has error in its data description entry for
table: table-name-1

The data-name in the KEY IS phrase of the OCCURS clause has an error in its
data description.

0447: E OCCURS KEY operand must refer to data item for table:
table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause is not a valid data item
described in the Data Division.

0448: E OCCURS KEY data item must be same dimension as table for table:
table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause is defined such that it
requires a different number of subscripts than the table defined by the OCCURS clause.

0449: E OCCURS KEY data-name is not unique for table: table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause is defined more than
once and is not adequately qualified.

0450: E OCCURS KEY data-name is not defined for table: table-name-1

The data-name specified in the KEY IS phrase of the OCCURS clause has not
been defined.

0451: E Identifier must refer to data item with OCCURS clause in its data
description entry.

The indicated identifier does not refer to a table, that is, a data item described with the
OCCURS clause in its data description entry. For the SEARCH and SEARCH ALL

Appendix B: Compiler Messages

450 RM/COBOL Language Reference Manual

statements, the data item to be searched must be a table. For the COUNT, COUNT-MAX,
and COUNT-MIN special registers, the operand must be a table.

0452: E Identifier must refer to data item with INDEXED BY phrase in its data
description entry.

The table specified in the SEARCH or SEARCH ALL statement does not contain an
INDEXED BY phrase in the OCCURS clause as required.

0453: E Identifier must refer to data item with KEY phrase in its data
description entry.

The table specified in the SEARCH ALL statement does not have a KEY IS phrase
as required.

0454: E Library-name in COPY statement must not be a reserved word; quote
the word to avoid this conflict.

In the COPY statement, a reserved word was used to specify the library-name. A nonnumeric
literal (the reserved word in quotes) may be specified to eliminate the reserved word conflict.

0455: E Library-name in COPY statement contains wrong character.
A wrong character was found in the library-name of the COPY statement. Sometimes, this
indicates a syntax error in the COPY statement following the library-name. The characters
allowed in a library-name specified as a word rather than a nonnumeric literal are alphabetic
characters, digits, and any of the special characters:

! # $ % & () * – . / : ? @ \ ^ _ ‘ { }

Note Using a nonnumeric literal (quoted literal) for the library-name may resolve this issue.

0456: E Text-name in COPY statement contains wrong character.

The text-name in a COPY statement contains a wrong character. Sometimes, this indicates a
syntax error in the COPY statement following the text-name. The characters allowed in a
text-name specified as a word rather than a nonnumeric literal are alphabetic characters,
digits, and any of the special characters:

! # $ % & () * – . / : ? @ \ ^ _ ‘ { }

Note Using a nonnumeric literal (quoted literal) for the text-name may resolve this issue.

0457: E Data item or literal must be unsigned integer.

The indicated literal must be specified as an unsigned integer or the indicated identifier must
refer to a data item described as an unsigned integer.

0458: E USAGE clause has wrong format.
An unrecognized usage option is specified. The valid usage options are BINARY,
COMP, COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, COMPUTATIONAL-6, COMP-1,
COMP-3, COMP-4, COMP-5, COMP-6, DISPLAY, INDEX, PACKED-DECIMAL,
and POINTER.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 451

0459: E USING phrase in Procedure Division header or CALL statement
exceeds 2047 data-names.

The maximum number of operands in the USING phrase of the Procedure Division header or
the CALL statement has been exceeded. No more than 2047 data-names may be specified.

0460: E Repeated data-name in USING or GIVING phrase of Procedure
Division header is not permitted.

A data-name is specified more than once in the USING or GIVING phrase of the Procedure
Division header.

0461: E VALUE clause is not permitted for index data item.
The VALUE clause is specified in conflict with other data description clauses specified in the
same entry.

0462: E Numeric literal in VALUE clause must have value within range
indicated by PICTURE clause.

The numeric literal specified in the VALUE clause for a numeric data item is incorrect for
initialization of the data item as described by its PICTURE character-string because
truncation of nonzero high-order digits was required.

0463: E Nonnumeric value in VALUE clause must not exceed size indicated
by PICTURE clause.

The nonnumeric literal specified in the VALUE clause for an elementary nonnumeric data
item contains too many characters for initialization of the data item. Characters were
truncated from the low-order (rightmost) end of the literal value.

This error also occurs when the nonnumeric literal specified as the true or false value in a
level-number 88 condition-name data description entry contains more characters than the
associated elementary conditional variable.

 0465: E Verb expected.

The context requires a verb at the indicated position in the source program.

0466: E Level-number 01 or 77 expected in Working-Storage Section.

An entry in the Working-Storage Section of the Data Division is neither a record description
entry (level-number 01) nor a 77 level description entry (level-number 77).

0467: E Identifier or condition-name must be subscripted by first index-name
of table being searched.

The indicated reference to a table key data-name or condition-name is not subscripted with
the first or only index-name of the table specified in the SEARCH ALL statement. Since only
the first index-name of the table will be varied by the execution of the SEARCH ALL
statement, the desired results cannot be obtained unless the subscripting is changed to include
the first index-name of the table.

0468: E Paragraph has wrong format.

Appendix B: Compiler Messages

452 RM/COBOL Language Reference Manual

The indicated word, literal, character-string, or separator is incorrect syntax within the context
of the paragraph as given in the source program.

0469: E Scope terminator does not match preceding unterminated verb.
The indicated scope terminator does not match a previously unmatched verb. For example, an
ELSE is specified which is not paired with a previously unpaired IF. This error frequently
occurs as a result of previous errors that caused the verb with which the scope terminator was
meant to be paired to be either ignored by the compiler or already implicitly terminated by
another scope terminator.

0470: E Data-name required in level-number 01 data description entry with
GLOBAL or EXTERNAL clause.

The indicated data description entry must include a data-name since it is a record of a file
described with either the GLOBAL or EXTERNAL clauses. FILLER or omission of the data-
name is not allowed in level-number 01 record description entries for these files.

0471: E Neither subscripting nor reference modification is permitted in this
context.

The indicated subscripting or reference modification is prohibited in the context in which it is
written. Although the preceding data-name may reference a table element and would thus
normally require subscripting, such subscripting is prohibited in this context. Contexts where
subscripting of a table element are not allowed include identifier-1 in the SEARCH statement
and data-name-1 in the COUNT, COUNT-MAX and COUNT-MIN special registers.
Reference modification is also disallowed in these contexts.

0472: E Paragraph generates object code that exceeds 32512 bytes.

The indicated Procedure Division paragraph has caused the generation of more than 32512
bytes of object code. The paragraph must be divided into two or more paragraphs by insertion
of paragraph-names in the source program.

0473: E Sentence generates object code that exceeds 32512 bytes.
The indicated sentence has caused the generation of more than 32512 bytes of object code.
The sentence must be divided into two or more sentences by insertion of the period space
separator or by replacing a portion of the sentence with a PERFORM statement which refers
to a paragraph or section containing the replaced statements.

0474: E DELIMITER IN and COUNT IN phrases require DELIMITED BY phrase
in UNSTRING statement.

The DELIMITER IN and COUNT IN phrases are not allowed when the DELIMITED BY
phrase is not specified in an UNSTRING statement.

0475: E Mnemonic-name must be associated with low-volume-I-O-name in
SPECIAL-NAMES paragraph.

The indicated user-defined word is not a mnemonic-name defined in the SPECIAL-NAMES
paragraph as being associated with a low-volume-I-O-name (for example, CONSOLE).
The context requires a mnemonic-name associated with a low-volume-I-O-name: the
mnemonic-name in the indicated context may not be associated with a switch-name or with
a feature-name.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 453

0476: E Identifier in INTO phrase of STRING statement must not refer to
edited data item.

The indicated identifier refers to an edited data item in a context which does not allow edited
data items.

0477: E Two or more file-names in MERGE statement are not permitted in one
MULTIPLE FILE TAPE clause.

Two or more files specified in a MERGE statement are listed in the same MULTIPLE FILE
TAPE clause in the I-O-CONTROL paragraph.

0478: E Two or more file-names in MERGE statement are not permitted in one
SAME AREA or SAME RECORD AREA clause.

Two or more files specified in a MERGE statement are listed in the same SAME AREA or
SAME RECORD AREA clause in the I-O-CONTROL paragraph.

0479: E Sort-merge key data item extends beyond minimum record size for
sort-merge file.

A data-name specified in a KEY phrase of a SORT or MERGE statement refers to a data item
that is not totally contained within the minimum record length of the sort-merge file.

0480: E Minimum record length conflicts with variable-length sort-merge file
or GIVING file.

The minimum record length of a USING file is less than the minimum record length of a
sort-merge file with variable-length records or the minimum record length of the sort-merge
file is less than the minimum record length of a GIVING file with variable-length records.

0481: E PADDING CHARACTER clause only permitted in sequential file
control entry.

The PADDING CHARACTER clause may be specified only for sequential files.

0482: E RECORD DELIMITER clause only permitted in sequential file control
entry.

The RECORD DELIMITER clause may be specified only for sequential files.

0483: E Conditional operator expected.

The context suggests that a class-name is intended at the indicated position, but the specified
identifier is not a class-name.

0484: E CLASS clause has error in definition of class-name.

There is an error in the declaration of the specified class-name.

0485: E Cd-name of I-O CD entry expected.

An I-O cd-name must be specified in the context of the statement as given in the source
program. An I-O cd-name is required with the DISABLE I-O and ENABLE I-O statements.

Appendix B: Compiler Messages

454 RM/COBOL Language Reference Manual

0486: E PADDING CHARACTER data item must be alphanumeric for file:
file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
must refer to a data item of category alphanumeric.

0487: E PADDING CHARACTER data-name has error in its data description
entry for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
refers to a data item that has an error in its description.

0488: E PADDING CHARACTER operand must refer to data item for file:
file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
refers to a nondata item.

0489: E PADDING CHARACTER data item must not be table element for file:
file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
refers to a data item that is described with the OCCURS clause or is subordinate to an
item described with the OCCURS clause. The padding character data item may not be a
table item.

0490: E PADDING CHARACTER data-name is not unique for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
refers to two or more data items; the qualification is ambiguous.

0491: E PADDING CHARACTER data-name is not defined for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
is undefined.

0492: E PADDING CHARACTER data item is wrong linkage item or is not
external item for file: file-name-1

The data-name declared in the PADDING CHARACTER clause for the indicated file-name
refers to a linkage data item that is not subordinate to an item in the Procedure Division
header USING phrase.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0493: E Selection object is incompatible with corresponding selection
subject.

When a selection object is specified by a condition or by the words TRUE or FALSE, the
corresponding selection subject must also be a condition or either of the words TRUE or
FALSE; it may not be an identifier, a literal or an arithmetic expression. When a selection
object is an identifier, literal or arithmetic expression, the corresponding selection subject
must also be an identifier, a literal or an arithmetic expression.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 455

0494: E Operands of THROUGH phrase must have same class for selection
subject or object.

The two operands connected by a THROUGH phrase must be of the same class: numeric,
alphanumeric or alphabetic.

0495: E REPLACING phrase of INITIALIZE statement must not repeat any
given category.

The REPLACING phrase of the INITIALIZE statement specifies the same category in
different BY phrases. Any given category must not be specified more than once in the
REPLACING phrase.

0496: E Integer expected. Identifier is not permitted here.

The context requires an integer numeric literal, but an identifier was found.

0498: E Negative numeric literal is not permitted.

The context does not allow the use of a negative numeric literal.

0499: E Reference modification is not permitted here.

The context does not allow the use of a reference modification specification.

0500: E Leftmost-character-position or length in reference modifier exceeds
length of data item.

The value of the indicated numeric literal is too large for its use in a reference modification
specification. The offset and length values may not exceed the length of the data item being
reference modified. If both the offset and length are specified as literals, their sum less 1 may
not exceed the length of the data item being reference modified.

Compiler Messages 501—600
0501: E Source language feature not supported by specified object version in

Z option.

The indicated language feature is incompatible with the requested runtime object version.
The requested object version is determined by the Z Compile Command Option. The
language feature must be removed from the source program or the value specified in the
Z Option must be increased to a level that includes the feature. In the latter case, the resulting
object will only run on systems with a runtime that supports at least the specified object
version. Appendix H: Object Versions of the RM/COBOL User’s Guide explains the
language features supported by the various object versions.

0502: E Colon required after leftmost-character-position in reference
modifier.

A colon separator is required following the left operand of a reference modification
specification.

Appendix B: Compiler Messages

456 RM/COBOL Language Reference Manual

0504: E Unique data-name required when EXTERNAL or GLOBAL clause is
present in data description entry.

The indicated clause may not be specified in the current data description entry since either the
description does not specify a data-name (that is, is implicitly or explicitly FILLER) or the
data-name is the same as another data-name described with the same clause.

0505: E Clause and level-number conflict.

The indicated clause clashes with the level-number of the data description entry in which it is
specified. An EXTERNAL or GLOBAL clause may not be specified in a data description
entry if the level-number is other than 01. An EXTERNAL clause may be specified in the
FILE SECTION only in a file description (FD) entry. An OCCURS clause may be specified
in a data description entry only when the level-number is 02 through 49, except that
RM/COBOL allows the OCCURS clause with level-number 01 in the Working-Storage
Section.

0506: E Clause is not permitted when file-name is specified in a MULTIPLE
FILE TAPE clause.

The indicated clause may not be specified in a file description entry for a file that is listed in
any MULTIPLE FILE TAPE clause in the I-O-CONTROL paragraph.

0507: E Clause is not permitted when file-name is specified in a SAME AREA
or SAME RECORD AREA clause.

The indicated clause may not be specified for the current file description entry or record
description entry for a file since the file is listed in a SAME clause in the I-O-CONTROL
paragraph. For the EXTERNAL clause, the file may not be listed in any SAME AREA,
SAME RECORD AREA or SAME SORT AREA clause. For the GLOBAL clause, the file
may not be listed in any SAME RECORD AREA clause.

0508: E EXTERNAL and GLOBAL clauses are only permitted in File and
Working-Storage Sections.

The indicated clause may not be specified in the current section of the Data Division.

0509: E EXTERNAL and REDEFINES clauses not permitted in same data
description entry.

The EXTERNAL clause is specified with the REDEFINES clause. These clauses are
mutually exclusive within a single data description entry.

0511: E COMMON clause permitted only if program is contained within
another program.

The indicated syntax is allowed only within a nested program, and the current program is not
contained within another program.

0512: E LINE or COLUMN option required in AT phrase of ACCEPT or
DISPLAY screen-name statement.

The AT keyword in a Format 5 ACCEPT statement or a Format 3 DISPLAY statement is not
followed by LINE, COLUMN or COL.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 457

0513: E Clause permitted only at elementary level in Screen Section.

The relation between the current level-number and the preceding level-number implies that
the preceding item is a group, but the preceding item description includes attributes allowed
only at the elementary level.

0514: E Color integer value must be in range 0 (black) through 7 (white).

The integer specified in a BACKGROUND-COLOR or FOREGROUND-COLOR clause is
not in the range 0 to 7 as required.

0515: E Integer expected. Literal with digits to right of decimal point is not
permitted here.

The context requires an integer numeric literal, but a numeric literal with digits to the right of
the decimal point was found.

0519: E COLUMN NUMBER data item is wrong linkage item for screen-name:
screen-name-1

The data-name specified in the COLUMN clause of the indicated Screen Section data item is
defined in the Linkage Section. The data-name is not listed in the Procedure Division USING
phrase, nor is it defined subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0520: E Repeated screen description clause is not permitted.
A Screen Section attribute has been specified more than once.

0526: E LINE NUMBER data item is wrong linkage item for screen-name:
screen-name-1

The data-name specified in the LINE clause of the indicated Screen Section data item is
defined in the Linkage Section. The data-name is not listed in the Procedure Division USING
phrase, nor is it defined subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0527: E Screen-name expected.
If the first primary operand of a DISPLAY statement is a screen-name, all subsequent primary
operands of that DISPLAY statement must also be screen-names.

0528: E Screen-name is not permitted here.

The screen-name is specified in the source program where a screen-name is not allowed.
Screen-names may be specified only as certain operands of ACCEPT and DISPLAY
statements.

Appendix B: Compiler Messages

458 RM/COBOL Language Reference Manual

0529: E Split-key-name is not permitted here.

The split-key-name is specified in the source program where a split-key-name is not allowed.
Split-key-names may be specified only as certain operands of READ and START statements.

0533: E Subscript data item is wrong linkage item for screen-name:
screen-name-1

The data-name specified as a subscript in the description of the indicated Screen Section data
item is defined in the Linkage Section. The data-name is not listed in the Procedure Division
USING phrase, nor is it defined subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0534: E FROM, TO, or USING phrase expected following PICTURE character-
string in screen description entry.

In the Screen Section, the PICTURE character-string in a PICTURE clause must be followed
by a TO, FROM or USING phrase.

0535: E PICTURE and VALUE clause not permitted in same screen
description entry.

In the Screen Section, an item description cannot contain both a PICTURE and a
VALUE clause.

0541: E USING/FROM data item is wrong linkage item for screen-name:
screen-name-1

The data-name specified as a source item (FROM or USING) in the description of the
indicated Screen Section data item is defined in the Linkage Section. The data-name is not
listed in the Procedure Division USING phrase, nor is it defined subordinate to such a
data-name.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0544: E SIZE phrase in START statement is not permitted for relative file.

The SIZE phrase is specified in a START statement for a relative file. The SIZE phrase is
meaningful only for indexed files.

0545: E SIZE phrase in START statement specifies integer value that exceeds
key size.

The SIZE phrase specifies an integer value that is greater than the length of the key data item
specified in the same START statement. The integer value must not exceed the key size since
the SIZE phrase is meaningful only for limiting the comparison to a size less than or equal to
the length of the key data item.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 459

0546: W VALUE OF FILE-ID clause specifies different file access name than
ASSIGN clause.

The file description entry VALUE OF FILE-ID clause specifies a different file access name
literal or data-name than specified in the file control entry ASSIGN clause. The file access
name should be specified in only one of these two alternatives, but if specified in both they
must agree. The ASSIGN clause specification takes precedence when this warning occurs.

0547: E TO data item is wrong linkage item for screen-name: screen-name-1

The data-name specified as a target item (TO or USING) in the description of the indicated
Screen Section data item is defined in the Linkage Section. The data-name is not listed in the
Procedure Division USING phrase, nor is it defined subordinate to such a data-name.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0548: E Level-number 01 or 77 expected in Screen Section.
An entry in the Screen Section of the Data Division is neither a record description entry
(level-number 01) nor a 77 level description entry (level-number 77).

0549: W Screen-name in ACCEPT statement has no input screen items.

A screen-name specified as an operand in an ACCEPT statement has no subordinate
elementary fields that specify a TO or USING attribute.

0567: E Operand size must be one character.
The indicated operand must be a single character literal or refer to a single character
data item.

0568: E Operand sizes must match.

The indicated operand and the preceding operand have different lengths but are required to
be the same size.

Compiler Messages 601—700
0630: E COPY statement is not permitted within COPY statement.
The indicated COPY statement is embedded within another COPY statement. Such nesting of
COPY statements is not permitted. This error may be the result of omitting the required
period that should have been present to end the preceding COPY statement.

0631: E End of source file encountered while scanning REPLACING phrase of
COPY statement.

The COPY statement is incomplete because the end of the current source file was encountered
before the required period that ends the COPY statement was found. The COPY statement
must be complete within one source file.

Appendix B: Compiler Messages

460 RM/COBOL Language Reference Manual

Note In version 12 and later of the compiler, this message no longer occurs. Message 0022
(on page 402) will occur instead at the end of file.

0633: W Screen description clause is not permitted with VALUE clause.
The screen description entry contains the VALUE clause and another clause that is mutually
exclusive with the VALUE clause. The AUTO, BLANK WHEN ZERO, FULL, JUSTIFIED,
PICTURE, REQUIRED, and SECURE clauses must not be specified in a screen description
entry that also specifies the VALUE clause.

Note The VALUE clause may be implicitly specified by a nonnumeric literal.

0636: W Duplicate split keys are not permitted. Split-key-name is:
split-key-name-1

The indicated split-key-name duplicates another key. That is, it has the same number of
segments as another key and each segment has the same offset and length as the
corresponding segments of the other split-key. Such duplicates are not allowed because they
cannot be uniquely ordered and result in redundant indexes for the file.

0637: W No data items for this identifier are eligible for initialization.
The indicated identifier in an INITIALIZE statement has no data items that qualify for
initialization according to the rules of the INITIALIZE statement.

0638: E Data-name required here (RENAMES clause or VALUE START OF).

The user-defined word in the RENAMES clause or START OF phrase in a VALUE clause
must be a data-name, but another type of user-defined word was found. For example, a
file-name, index-name, or cd-name was found instead of a data-name.

0639: E Repeated file-name in MULTIPLE FILE TAPE clause is not permitted.

A given file-name may only be specified once in a MULTIPLE FILE TAPE clause but the
indicated file-name has already been specified in a MULTIPLE FILE TAPE clause.

0640: W ALPHABETIC in INITIALIZE statement but there are no alphabetic
data items in receiving items.

The INITIALIZE statement specifies the REPLACING ALPHABETIC DATA phrase but
none of the receiving items are alphabetic data items or groups that contain alphabetic data
items. Therefore, no initialization results from the specification of this phrase. When the
REPLACING phrase is specified without the VALUE or DEFAULT phrases, only data items
that belong to the category or categories specified in the REPLACING phrase are initialized.

0641: W ALPHANUMERIC in INITIALIZE statement but there are no
alphanumeric data items in receiving items.

The INITIALIZE statement specifies the REPLACING ALPHANUMERIC DATA phrase but
none of the receiving items are alphanumeric data items or groups that contain alphanumeric
data items. Therefore, no initialization results from the specification of this phrase. When the
REPLACING phrase is specified without the VALUE or DEFAULT phrases, only data items
that belong to the category or categories specified in the REPLACING phrase are initialized.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 461

0642: W NUMERIC in INITIALIZE statement but there are no numeric data
items in receiving items.

The INITIALIZE statement specifies the REPLACING NUMERIC DATA phrase but none of
the receiving items are numeric data items or groups that contain numeric data items.
Therefore, no initialization results from the specification of this phrase. When the
REPLACING phrase is specified without the VALUE or DEFAULT phrases, only data items
that belong to the category or categories specified in the REPLACING phrase are initialized.

0643: W ALPHANUMERIC-EDITED in INITIALIZE statement but there are no
alphanumeric edited data items in receiving items.

The INITIALIZE statement specifies the REPLACING ALPHANUMERIC-EDITED DATA
phrase but none of the receiving items are alphanumeric edited data items or groups that
contain alphanumeric edited data items. Therefore, no initialization results from the
specification of this phrase. When the REPLACING phrase is specified without the VALUE
or DEFAULT phrases, only data items that belong to the category or categories specified in
the REPLACING phrase are initialized.

0644: W NUMERIC-EDITED in INITIALIZE statement but there are no numeric
edited data items in receiving items.

The INITIALIZE statement specifies the REPLACING NUMERIC-EDITED DATA phrase
but none of the receiving items are numeric edited data items or groups that contain numeric
edited data items. Therefore, no initialization results from the specification of this phrase.
When the REPLACING phrase is specified without the VALUE or DEFAULT phrases, only
data items that belong to the category or categories specified in the REPLACING phrase
are initialized.

0645: W Program-name length exceeds 30 characters.

A program-name must not exceed 30 characters in length. Only the first 30 characters of the
specified program-name are retained to identify the object program.

0651: W Negative literal moved to unsigned receiving data item; absolute
value of literal used.

The indicated receiving data item in a MOVE statement is unsigned numeric, alphanumeric,
or alphanumeric edited, but the sending item is a negative literal. The absolute value of the
literal will be moved to the indicated receiving item. It is likely that a signed numeric
receiving data item should be specified in the source program in place of the indicated
receiving data item.

0652: W Negative literal in relation with unsigned data item; condition does
not depend on data item value.

In the indicated relation condition, one operand is a negative numeric literal and the other
operand is an unsigned numeric data item. Since a negative numeric literal is always less than
an unsigned numeric value, the relation result is independent of the value of the data item.
This probably indicates a coding error. Either the numeric data item should be described as
signed or the literal should not be negative.

0653: W Sending nonnumeric literal value is not compatible with receiving
numeric or numeric edited data item.

Appendix B: Compiler Messages

462 RM/COBOL Language Reference Manual

The indicated receiving item is a numeric or numeric edited data item. The sending item is a
nonnumeric literal that contains characters other than decimal digits. COBOL defines such a
move only when the sending item is a string of decimal digits representing a positive integer
value. The literal must not contain a sign representation, decimal point, currency symbol,
space, or comma. Note that the figurative constants, LOW-VALUES and HIGH-VALUES,
are normally not valid sending items for a numeric or numeric edited receiving item. Only
when the program collating sequence is defined such that LOW-VALUES or HIGH-
VALUES represent a decimal digit is such a move defined in COBOL.

0657: E Data item has zero size or group is not yet completed. Value of 0
assumed.

For the indicated constant-expression LENGTH OF data-name-1 operator, the referenced
data-name-1 has zero length at the time the operator is evaluated. The common cause of
this error is specifying a data-name-1 for a group that has not been allocated yet because a
level-number that is less than or equal to the level-number of data-name-1 has not yet
been scanned. The level-number 78 data description entry containing this reference must
be moved after a data description entry with a level-number less than or equal to the
level-number used in the description of data-name-1.

0662: E Symbol table size exceeds capacity of object version 7; object
version has been forced to 8.

The Z Compile Command Option or the OBJECT-VERSION keyword of the
COMPILER-OPTIONS configuration record has been used to force the object version to less
than 8, the Y Compile Command Option or the SYMBOL-TABLE-OUTPUT keyword of the
COMPILER-OPTIONS configuration record has been specified to indicate that the symbol
table should be written to the object file for debugging purposes, and the program used more
than 64K of name space. Object versions less than 8 did not support a debugging symbol
table that required more than 64K of name space. The compiler forces the object version
to 8 so that the symbol table can be properly output to the object file.

0663: E Pointer data item is not permitted here.

A pointer data item, literal, or special register has been used where it is not permitted. Pointer
items may only be used in the VALUE clause of a data description entry that specifies
USAGE IS POINTER, in a relation condition with another pointer item, in the USING and
GIVING phrases of the Procedure Division header or of the CALL statement, or in Formats 5
and 6 of the SET statement.

0664: E Pointer data item expected here.

The indicated context requires a pointer item, but the item found by the compiler is not a
pointer data item, an ADDRESS special register, nor the figurative constant NULL (NULLS).

0665: E The base address was never set for the referenced based linkage
record: data-name-1

The indicated data-name-1 is defined in the Linkage Section and is not a formal argument of
the program, that is, it is not listed in the USING or GIVING phrases of the Procedure
Division header, nor is it a redefinition or renaming of such an item. data-name-1 or a data
item subordinate to it has been referenced in the program, but the base address of the record
has never been set with a Format 5 SET statement. If the statement that made the reference
were executed during the run unit, the run unit would be terminated with data reference error
108 since the record will have a null base address.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 463

0666: E Special register not permitted here. An identifier is required.

A special register has been referenced where an identifier is required, and the special register
is not one that can be a receiving operand.

0669: E Reserved word “reserved-word” expected.

The context requires a specific reserved word or one of a specific set of words. The required
word or one of the set of words is given in quotation marks in the message text.

0670: E Statement is permitted only within a paragraph.

The indicated statement requires a paragraph, but no paragraph-name was specified at the
beginning of the Procedure Division.

0671: E Statement is permitted only within an in-line PERFORM statement.

The indicated statement requires an in-line PERFORM statement, but is specified outside of
any in-line PERFORM statement.

0672: E Statement is permitted only within a section.

The indicated statement requires a section, but is not specified within a section.

0673: E LIKE conditional variable must be a nonnumeric data item.
The conditional variable data item for which a level-number 88 condition-name is associated
that uses the LIKE relational operator is described as a numeric data item. The conditional
variable in this case must be described as a nonnumeric data item.

0674: E LIKE condition subject must be a nonnumeric data item or literal.

The subject of a LIKE relation condition must be a nonnumeric data item or nonnumeric
literal. The subject of a LIKE condition must not be a numeric data item or numeric literal.

0675: E LIKE condition subject must not be a pointer data item.

The subject of a LIKE relation condition must not be a pointer data item.

0676: E LIKE condition pattern must be nonnumeric data item, nonnumeric
literal, or pointer data item.

The pattern of a LIKE relation condition must be a nonnumeric data item, nonnumeric literal
or a pointer data item. The pattern of a LIKE relation condition must not be a numeric data
item or a numeric literal.

0677: E Numeric to nonnumeric relation requires the numeric subject to be
DISPLAY usage.

The indicated relation condition compares a numeric value to a nonnumeric value, but the
numeric subject is not DISPLAY usage as required for such a relation condition.

0678: E Numeric to nonnumeric relation requires the numeric subject to be
an integer.

Appendix B: Compiler Messages

464 RM/COBOL Language Reference Manual

The indicated relation condition compares a numeric value to a nonnumeric value, but the
numeric subject is not an integer as required for such a relation condition.

0679: E Relation object must not be a pointer when relation subject is not a
pointer.

The indicated relation condition compares a non-pointer value to a pointer value, but only a
pointer value may be compared to another pointer value.

0680: E Relation subject must not be a pointer when relation object is not a
pointer.

The indicated relation condition compares a pointer value to a non-pointer value, but a pointer
value may only be compared to another pointer value.

0681: E Table element requires subscripting before reference modification.

Reference modification has been specified for a table element without the required
subscripting specification. The subscripting for a table element data item must be supplied
first (leftmost) and then reference modification, if desired, may be specified in a COBOL
identifier.

0682: E Pattern class character range cannot include multi-character escape.

A class character range of the form s-e in a pattern cannot specify a multi-character escape
for either s or e. A multi-character escape specifies a set of matching characters and thus
is not allowed as the starting or ending point of a class character range of the form s-e.

0683: E Pattern class character range cannot be hyphen except at begin or
end of positive character group.

Within a character class expression of a pattern, a hyphen cannot be used to represent itself
except at the beginning or ending point of a positive character range. This is necessary to
allow the hyphen to be interpreted as specifying a character range of the form s-e or
character class subtraction.

0684: E Pattern class character range cannot be opening bracket '['.
Within a character class expression of a pattern, the opening bracket character ‘[’ may not be
used as a character range character. To include an opening bracket, it must be escaped as ‘\[’.

0685: E Pattern class character range cannot specify decreasing range.

Within a character class expression of a pattern, a character range of the form s-e must
specify an increasing range. That is, the character range character e must not be less than
the character range character s.

0686: E Pattern character class subtraction cannot be followed by additional
class specification.

Within a character class expression of a pattern, a character class subtraction must be
specified last (rightmost) in the expression. The closing bracket of the character class
expression containing the subtraction expression must immediately follow the subtraction
expression.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 465

0687: E Pattern escape sequence (initiated by '\') is not valid.

Within a pattern regular expression, an escape sequence initiated by a backslash (‘\’) is not a
valid single-character escape, multi-character escape, or category escape. The indicated
escape sequence is reserved for possible future definition and, therefore, is not currently
defined nor allowed.

0688: E Pattern compilation requires more memory than is available.

The pattern regular expression is either too large or too complex to compile in the amount of
memory available. The pattern must be made smaller or simpler. It is possible that making
more memory available to the pattern compilation process by embedding the pattern in a
smaller or simpler COBOL program will allow the original pattern to compile.

0689: E Pattern quantifier opened with '{' is missing the closing brace '}'.

The pattern regular expression contains a quantifier opened with a brace (‘{’), but the required
closing brace (‘}’) is not present.

0690: E Pattern character class expression is missing the closing
bracket ']'.

The pattern regular expression contains a character class expression opened with a bracket
(‘[’), but the required closing bracket (‘]’) is not present.

0691: E Pattern parenthesized subexpression is missing the closing
parenthesis ')'.

The pattern regular expression contains a parenthesized subexpression opened with a
parenthesis (‘(’), but the required closing parenthesis (‘)’) is not present.

0692: E Pattern category escape '\p{' or '\P{' is missing the closing brace '}'.

The pattern regular expression contains a category escape, but the required closing brace (‘}’)
is not present.

0693: E Pattern category escape '\p{' or '\P{' is missing the opening brace '{'.

The pattern regular expression contains a category escape, but the required opening brace
(‘{’) is not present.

0694: E Pattern category escape '\p{' or '\P{' contains an unknown category
specification.

The pattern regular expression contains a category escape, but the category specification
provided between the braces is not recognized. Valid category escape specifications consist
of one uppercase letter followed, optionally, by one lowercase letter. Only certain
combinations are defined and allowed, as specified in the documentation for a pattern regular
expression. Additionally, category escapes may specify a block escape of the form
IsBlockName, where BlockName is the Unicode block name (with all white space
stripped out) of a block of characters.

0695: E Pattern quantifier maximum count is less than the minimum count.

Appendix B: Compiler Messages

466 RM/COBOL Language Reference Manual

Within a pattern regular expression, a quantifier of the form “{n,m}” is specified where m, the
maximum count, is less than n, the minimum count. The maximum count must not be less
than the minimum count.

0696: E Pattern quantifier maximum count is missing; at least one decimal
digit was expected.

Within a pattern regular expression, a quantifier of the form “{n,m}” is specified where m, the
maximum count, has no decimal digits. Possibly, a quantifier of the form “{n,}” was
intended and the closing brace was incorrectly entered.

0697: E Pattern quantifier maximum count is too large (> 65535).
Within a pattern regular expression, a quantifier of the form “{n,m}” is specified where m,
the maximum count, is greater than 65535. The maximum count must be less than or equal
to 65535.

0698: E Pattern quantifier minimum count is missing; at least one decimal
digit was expected.

Within a pattern regular expression, a quantifier of the form “{n}”, “{n,}” or “{n,m}”
is specified where n, the minimum or exact count, has no decimal digits. Possibly, a
quantifier of the form “{n}” or “{n,}” was intended and the closing brace or comma was
incorrectly entered.

0699: E Pattern quantifier minimum count is too large (> 65535).

Within a pattern regular expression, a quantifier of the form “{n}”, “{n,}” or “{n,m}” is
specified where n, the minimum or exact count, is greater than 65535. The minimum count
must be less than or equal to 65535.

0700: E Pattern contains an unexpected closing brace '}'.

Within a pattern regular expression, an unexpected closing brace was encountered. If a
closing brace is intended as a match character, it must be specified as the single-character
escape ‘\}’. Otherwise, a corresponding opening brace for a quantifier is required prior to a
closing brace.

Compiler Messages 701—800
0701: E Pattern contains an unexpected closing bracket ']'.

Within a pattern regular expression, an unexpected closing bracket was encountered. If a
closing bracket is intended as a match character, it must be specified as the single-character
escape ‘\]’. Otherwise, a corresponding opening bracket for a character class expression is
required prior to a closing bracket.

0702: E Pattern contains an unexpected closing parenthesis ')'.

Within a pattern regular expression, an unexpected closing parenthesis was encountered.
If a closing parenthesis is intended as a match character, it must be specified as the
single-character escape ‘\)’. Otherwise, a corresponding opening parenthesis for a
parenthesized subexpression is required prior to a closing parenthesis.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 467

0703: E Pattern contains an unexpected quantifier '*' that is not preceded by
a valid atom.

Within a pattern regular expression, an unexpected asterisk was encountered. If an asterisk is
intended as a match character, it must be specified as the single-character escape ‘*’.
Otherwise, a valid atom of the regular expression must precede the asterisk. If the atom
already specifies another quantifier, the atom must be parenthesized before another quantifier
may be applied.

0704: E Pattern contains an unexpected quantifier '+' that is not preceded by
a valid atom.

Within a pattern regular expression, an unexpected plus sign was encountered. If a plus sign
is intended as a match character, it must be specified as the single-character escape ‘\+’.
Otherwise, a valid atom of the regular expression must precede the plus sign. If the atom
already specifies another quantifier, the atom must be parenthesized before another quantifier
may be applied.

0705: E Pattern contains an unexpected quantifier '?' that is not preceded by
a valid atom.

Within a pattern regular expression, an unexpected question mark was encountered. If a
question mark is intended as a match character, it must be specified as the single-character
escape ‘\?’. Otherwise, a valid atom of the regular expression must precede the question
mark. If the atom already specifies another quantifier, the atom must be parenthesized before
another quantifier may be applied.

0706: E Pattern contains an unexpected quantifier '{' that is not preceded by
a valid atom.

Within a pattern regular expression, an unexpected opening brace was encountered. If an
opening brace is intended as a match character, it must be specified as the single-character
escape ‘\{’. Otherwise, a valid atom of the regular expression must precede the opening
brace. If the atom already specifies another quantifier, the atom must be parenthesized before
another quantifier may be applied.

0707: E Pattern is too large or complex to compile.

The pattern regular expression is either too large or too complex to compile because it
generates a state machine description that is greater than 65535 bytes in length, which is the
maximum supported by the implementation. The pattern must be made smaller or simpler.
Patterns on the order of 5,000 to 10,000 characters in length should compile without
exceeding this limit.

0720: E Relational operator specified with first condition value does not
define a true value.

A true value cannot be determined for use in the SET statement because the specified level-
number 88 condition-name is defined with a relational operator for the first value given in the
associated Format 2 VALUE clause and that relational operator does not define a true value.
Only relational operators that include an equality relation define a true value. Thus, the
relational operators NOT EQUAL, LESS THAN, GREATER THAN, and LIKE, when used
with the first value in the Format 2 VALUE clause, do not define a true value for the
condition-name. The true value may be defined by listing it first in the Format 2 VALUE
clause without a relational operator or by using a relational operator that includes an equality
relation such as EQUAL, NOT LESS THAN, or NOT GREATER THAN.

Appendix B: Compiler Messages

468 RM/COBOL Language Reference Manual

0721: W DATA-POINTER in INITIALIZE statement but there are no data pointer
data items in receiving items.

The INITIALIZE statement specifies the REPLACING DATA-POINTER DATA phrase but
none of the receiving items are data pointer data items or groups that contain data pointer data
items. Therefore, no initialization results from the specification of this phrase. When the
REPLACING phrase is specified without the VALUE or DEFAULT phrases, only data items
that belong to the category or categories specified in the REPLACING phrase are initialized.

0722: E One or more data categories as described for category-name are
required here.

The REPLACING phrase has been specified in an INITIALIZE statement, but is not followed
by a recognized category from the category-name list. The REPLACING phrase of the
INITIALIZE statement requires that one or more categories be specified.

0723: W Repeated category in INITIALIZE statement category-name list is not
permitted.

A category-name construct in the VALUE or REPLACING phrases of the INITIALIZE
statement permits only unique categories. The compiler ignores, after producing this
message, a repeated category within one category-name construct.

0724: W FILLER phrase conflicts with configured suppression of FILLER
identifiers in symbol table.

The FILLER phrase in the INITIALIZE statement has been specified, but the source program
is being compiled with SUPPRESS-FILLER-IN-SYMBOL-TABLE=YES configured in the
COMPILER-OPTIONS configuration record. When FILLER data items are suppressed from
the symbol table, they are not available to the compiler for reference by the FILLER phrase of
the INITIALIZE statement.

0727: E CRT STATUS clause must not be repeated.

The CRT STATUS clause has been specified more than once in the SPECIAL-NAMES
paragraph of the program. Only the first occurrence is accepted by the compiler.

0728: E CRT STATUS data item must be numeric integer.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES paragraph
does not refer to a data item described as a numeric integer. RM/COBOL requires a numeric
integer data item for the CRT status data item.

0729: E CRT STATUS data-name has an error in its data description entry.
The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES paragraph
refers to a data item with an error in its data description entry. The error in the CRT STATUS
data item data description must be fixed so that the compiler can verify that it is suitable to be
a CRT STATUS data item.

0730: E CRT STATUS operand must refer to data item.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES paragraph
does not refer to a data item. Instead, it refers to an index-name, condition-name, constant-
name or other such non-data items. The CRT STATUS data-name must refer to data item
described as a numeric integer.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 469

0731: E CRT STATUS data item must not be table element.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES paragraph
refers to a data item that is a table element, that is, is described with or subordinate to an
OCCURS clause, which is not allowed.

0732: E CRT STATUS data-name is not unique.

The data-name, including any qualification provided, specified in the CRT STATUS clause of
the SPECIAL-NAMES paragraph refers to two or more data items. Either additional
qualification is necessary or one or more of the duplicate data items must be removed from
the Data Division of the program so that the reference will refer to a unique data item.

0733: E CRT STATUS data-name is not defined.

The data-name specified in the CRT STATUS clause of the SPECIAL-NAMES paragraph is
undefined. When a simple unqualified data-name is specified, this error does not occur
because the compiler creates an implicit data item. When a qualified data-name is specified,
this error does occur because the compiler does not attempt to create the containing group and
cannot insert a data item in an existing group.

0734: E CRT STATUS data item is wrong linkage item.

The data-name specified in the CRT STATUS clause refers to a data item defined in the
Linkage Section but is neither specified in the Procedure Division USING phrase nor is it
subordinate to an item specified in the Procedure Division USING phrase.

Note If the object version is not restricted to less than 8, this message will not be produced
under the condition described above. Instead, the item will be considered a based linkage
item. Message 665 (on page 462) will occur if the base address of the linkage record is never
set within the program.

0735: E CURSOR clause must not be repeated.

The CURSOR clause has been specified more than once in the SPECIAL-NAMES paragraph
of the program. Only the first occurrence is accepted by the compiler.

0736: E CURSOR data item must have a size of four or six characters.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph refers
to a data item that is not one of the two allowed sizes of four or six characters.

0737: E CURSOR data item must be DISPLAY usage and, if numeric, an
unsigned integer.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph refers
to a data item that is not the type of item that is allowed for the cursor data item. The usage
must be DISPLAY, and if the data item is numeric, it must be described as an unsigned
integer.

0738: E CURSOR data-name has an error in its data description entry.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph refers
to a data item with an error in its data description entry. The error in the CURSOR data item
data description must be fixed so that the compiler can verify that it is suitable to be a
CURSOR data item.

Appendix B: Compiler Messages

470 RM/COBOL Language Reference Manual

0739: E CURSOR operand must refer to data item.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph does
not refer to a data item. Instead, it refers to an index-name, condition-name, constant-name or
other such non-data items. The CURSOR data-name must refer to a data item described as a
numeric integer.

0740: E CURSOR data item must not be table element.

The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph refers
to a data item that is a table element, that is, is described with or subordinate to an OCCURS
clause, which is not allowed.

0741: E CURSOR data-name is not unique.

The data-name, including any qualification provided, specified in the CURSOR clause of the
SPECIAL-NAMES paragraph refers to two or more data items. Either additional
qualification is necessary or one or more of the duplicate data items must be removed from
the Data Division of the program so that the reference will refer to a unique data item.

0742: E CURSOR data-name is not defined.
The data-name specified in the CURSOR clause of the SPECIAL-NAMES paragraph is
undefined. When a simple unqualified data-name is specified, this error does not occur
because the compiler creates an implicit data item. When a qualified data-name is specified,
this error does occur because the compiler does not attempt to create the containing group and
cannot insert a data item in an existing group.

0743: E CURSOR data item is wrong linkage item.
The data-name specified in the CRT STATUS clause refers to a data item defined in the
Linkage Section but is neither specified in the Procedure Division USING phrase nor is it
subordinate to an item specified in the Procedure Division USING phrase.

Note This message will not be produced under the condition described above, because
object version 12 is required for the CURSOR clause and object versions 8 and higher support
based linkage items, so the item will be considered a based linkage item. Message 665 (on
page 462) will occur if the base address of the linkage record is never set within the program.

0744: E Debugging line number overflow for object version < 12 in Z option.

Object version 12 or higher is required for support of debugging line numbers in programs
that contain more than 65535 lines in the Procedure Division or a Procedure Division header
that has a line number greater than 65535. Either specify the Q Compile Command Option to
suppress debugging line numbers or specify a value of 12 or higher in the Z Compile
Command Option.

0745: E Program overflow because of excessive file parameters for object
version < 12 in Z option.

The source program specifies more file parameters, such as file access data-names or literals,
RELATIVE KEY data-names, PADDING CHARACTER data-names or literals, RECORD
SIZE DEPENDING ON data-names, and LINAGE data-names than can be supported in
object versions prior to object version 12, but the Z Compile Command Option limits the
object version to less than 12. Either allow object version 12 with option Z or reduce the

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 471

number of file parameters in the program. Prior to object version 12, the runtime system
could accommodate about 8,000 file parameters.

0746: E Program overflow because of excessive file parameters.
The source program specifies more file parameters, such as file access data-names or literals,
RELATIVE KEY data-names, PADDING CHARACTER data-names or literals, RECORD
SIZE DEPENDING ON data-names, and LINAGE data-names than can be supported.
Reduce the number of file parameters in the program. The runtime system, for object
versions 12 and higher, can accommodate about 16,000 file parameters.

0747: E Symbol table name space overflow (Y option).
The symbol table name space, that is, the area for storing the name values, exceeds the
compiler limit. The Y Compile Command Option for storing the symbol table in the object
for debugging cannot be used or the program must be subdivided into two or more smaller
programs.

0748: E Program overflow because of excessive procedures (paragraphs or
sections).

The source program has too many procedures (paragraphs or sections) defined. The program
must be subdivided into two or more smaller programs. The current compiler limit is 8190
procedures in any one program. This limit is dependent only on the definition of the
procedure, not whether the procedure is ever performed. Procedures that end in an
unconditional transfer of control, such as with a GO TO or STOP RUN statement, do not
count toward the limit.

0749: E Program overflow because of excessive INSPECT temporaries.

The source program has overflowed the INSPECT statement temporaries. INSPECT
statement temporaries are shared with procedure exit temporaries, so the program has a
combination of procedures and INSPECT statements that are too large to compile.

0750: E Program overflow because of excessive unique data references.
The source program has too many unique data references to compile.

0751: E Program overflow because of excessive literals.

The source program has too many unique literal values to compile. Literals specified in
VALUE phrases in the Data Division do not count towards this compiler limit, except when
the VALUE phrase is a condition-name and the condition-name is referenced in the program.

0752: E Program overflow because of excessive index-name references.
The source program has too many unique index-name references to compile.

0753: E Program overflow because of read-only area exceeding 4GB.

The read-only area, which consists of procedural object code instructions, literal values, and
various tables, has exceeded four gigabytes of memory for the program. The program is too
large to compile.

0754: E Program overflow because of file table exceeding 64KB.

Appendix B: Compiler Messages

472 RM/COBOL Language Reference Manual

The source program declares and references more than 16,384 files, so the file table size
exceeds the compiler limit of 65535 bytes. The compiler only adds files to the file table
when they are referenced in the program, so files that have only a file-control-entry and a
file-description-entry do not count towards this limit. However, in the current compiler
implementation, the limit on file parameters, error 0745 or 0746, occurs before this error can
be caused by a source program.

0755: E Program overflow because of global file USE table exceeding
compiler limit.

The source program has too many files declared with the global attribute or too many USE
procedures with the global attribute.

0756: E Program overflow because of excessive segmentation.

The program has too many segments or partial segments. Partial segments occur when a
segment number is repeated after a different segment number has occurred. The compiler
must build tables describing the segmentation and these tables have limited size. This error
can be eliminated by reducing the complexity of the segmentation, for example, by
consolidating segments lexically within the source program.

0757: E Program-name has already been specified for this program and
cannot be specified again.

A PROGRAM-ID paragraph has been previously scanned in this program. The
program-name has already been declared for the program and cannot be declared again.
Only the first program-name declaration is used. The multiple PROGRAM-ID paragraphs
should be eliminated so that there is only one declaration of the program-name for a program.

0758: E Nonnumeric value in VALUE clause must not exceed size of the
group: data-name-1

The nonnumeric literal specified in the VALUE clause for a group data item contains too
many characters for initialization of the data item. Characters were truncated from the low-
order (rightmost) end of the literal value.

This error also occurs when the nonnumeric literal for the true or false value in a level-
number 88 condition-name data description entry contains more characters than the associated
group conditional variable.

The diagnostic occurs as a summary error since the group size is not known until all
subordinate data items have been scanned. The line number of the offending VALUE clause
is provided in a subsequent message.

0759: W External name length exceeds 30 characters.

A file-name, data-name, or index-name with the external attribute has more than 30 characters
in its name. RM/COBOL allows names to have up to 240 characters, except that names with
the external attribute are truncated to 30 characters for purposes of matching externals at
runtime. The full length of the name is used during compilation, but only the
first 30 characters will be used to match external names while running the object program.

0760: E Line-column item in AT phrase must be four or six characters
in length.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 473

The literal or data item specified in the AT phrase of an ACCEPT or DISPLAY statement
must be four or six characters in length. The indicated literal or data item in the source
program does not meet this requirement.

0761: W Continuation line should begin in area B, but this line begins in
area A.

The compiler found a continuation line beginning in area A. Prior to version 11, the compiler
ignored this violation of COBOL fixed-reference format rules.

Note This warning can be suppressed with configuration, if desired. See the keyword,
NO-DIAGNOSTIC, of the COMPILER-OPTIONS configuration record in Chapter 10:
Configuration of the RM/COBOL User's Guide.

0762: W Preceding period separator is required before this REPLACE
statement.

The compiler found a REPLACE statement, other than as the first statement in a source file,
which did not follow a period space separator. A REPLACE statement that is not the first
statement in a source file must be preceded by a period space separator.

0763: E Compiler directive required here, but this word is not recognized as a
compiler directive.

This error indicates that source records, beginning with “>>” in the program-text area, have
unrecognized compiler directives.

The currently recognized directives are IMP, LISTING, and PAGE. This error is also
generated when the IMP directive is not followed by a recognized implementer-defined
RM/COBOL directive. The only current implementer-defined RM/COBOL directive is
MARGIN-R.

0764: E Compiler directive has a syntax error here.

This error indicates that compiler directives have a syntax error other than “unknown
directive”, as described in error message 0763.

0765: W Replaced text began on debug line, but replacement text requires
continuation.

This error indicates that a replaced region starts on a debug line whereas the replacement
requires a continuation record. Because of internal changes to how source is represented, the
compiler still knows that the line is a debug line, even though a “D” cannot be placed in the
indicator area of the line, thus minimizing additional errors that previously occurred during a
non-debug compilation in this situation.

0766: W One or more source records were truncated during compilation: total
truncations = n.

This error message occurs when the compiler detects that source records were truncated on
input. This aids the user in determining the need to adjust the maximum source record size
configuration, as described in the SOURCE-RECORD-MAX-LENGTH keyword of the
COMPILER-OPTIONS configuration record (see “COMPILER-OPTIONS Configuration
Record” in Chapter 10: Configuration of the RM/COBOL User's Guide). When this warning
message is produced, the total warning count for the compilation is incremented by n instead
of the usual 1 per warning message.

Appendix B: Compiler Messages

474 RM/COBOL Language Reference Manual

Note The warning can be suppressed with configuration, in which case the warning count is
not modified. See the NO-DIAGNOSTIC keyword of the COMPILER-OPTIONS
configuration record in Chapter 10: Configuration of the RM/COBOL User's Guide.

0768: W The reserved word REPLACE must not be used in the replacement
text of a REPLACE statement.

The compiler found a REPLACE statement specified in the replacement text of a REPLACE
statement. The result of REPLACE statement processing must not result in a REPLACE
statement. Thus, the containing REPLACE statement is incorrect. The REPLACE statement
will still cause replacements to occur, but if any of the replacements result in the insertion of
the word REPLACE in the resultant source program, a syntax error will occur in the resultant
source program.

0769: E WHILE phrase in START statement is not permitted for relative file.

The WHILE phrase is only allowed for an indexed organization file. Use of the WHILE
phrase in a START statement for a relative organization file is diagnosed with this error
message.

0770: E The figurative constant NULL is not allowed here.

The LIKE condition, both in relation conditions and in the START statement, must not
specify the figurative constant NULL as the pattern specifier.

0771: E Pattern match memory overflow occurred while evaluating
conditional expression.

This error occurs when the LIKE condition results in a memory overflow while comparing a
literal subject to a literal pattern at compile-time. (At runtime, a memory overflow causes
procedure error 258, as described in “Procedure Errors” in Appendix A: Runtime Messages
of the RM/COBOL User's Guide.)

0772: E Data-name-1 must refer to prime or alternate record key associated
with file-name-1.

The data-name-1 specified in the KEY phrase of a READ statement does not refer to the
prime or an alternate record key associated with the file-name-1 specified in that same READ
statement, as required by the rules for the KEY phrase of a READ statement.

0773: E Data-name-1 does not uniquely specify a record key associated with
file-name-1.

The compiler, as of version 11, allows data-name-1 in the KEY phrase of a START statement
to refer to the first segment of a split key or to a data item aligned on the first character of the
first segment of a split key associated with the file-name-1 specified in that START statement,
as long as the reference uniquely identifies a record key of the file for establishing the key of
reference. If this feature is used, and the reference does not uniquely identify a record key of
the file, that is, two or more record keys would qualify for the key of reference based on the
data item referenced by data-name-1, the lack of uniqueness is diagnosed with this error
message.

0774: W Number of statements on one source record exceeds 64.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 475

This message indicates that more than 64 statements were coded on a single source record.
Even though source records may now extend beyond column 72 and be quite large, a limit on
the number of statements per source record is necessary to prevent issues with program
debugging and instrumentation. A limit of 64 statements per source record was chosen to
avoid such issues.

The remaining statements on the source record are still compiled, but are treated as if they
were part of the 64th statement for purposes of debugging and instrumentation. For example,
performing a single statement step in the debugger on the 64th statement will step to the first
statement on the next line after executing all the remaining statements on the source record.

0775: E Compiler directives are not allowed in pseudo-text operands.

A compiler directive has been found within pseudo-text of a COPY or REPLACE statement.
Compiler directives are not allowed in this context within a source program.

0776: E Clause is not permitted in same data description entry with BLANK
WHEN ZERO clause.

The indicated clause is not allowed in a data description entry that also specifies the BLANK
WHEN ZERO clause. For example, the SAME AS clause cannot be specified when there is a
BLANK WHEN ZERO clause in the same data description entry. One or the other of the
clauses must be removed from the data description entry.

0777: E Clause is not permitted in same data description entry with
JUSTIFIED clause

The indicated clause is not allowed in a data description entry that also specifies the
JUSTIFIED clause. For example, the SAME AS clause cannot be specified when there is a
JUSTIFIED clause in the same data description entry. One or the other of the clauses must be
removed from the data description entry.

0778: E Clause is not permitted in same data description entry with PICTURE
clause.

The indicated clause is not allowed in a data description entry that also specifies the
PICTURE clause. For example, the SAME AS clause cannot be specified when there is a
PICTURE clause in the same data description entry. One or the other of the clauses must be
removed from the data description entry.

0779: E Clause is not permitted in same data description entry with SIGN
clause.

The indicated clause is not allowed in a data description entry that also specifies the SIGN
clause. For example, the SAME AS clause cannot be specified when there is a SIGN clause
in the same data description entry. One or the other of the clauses must be removed from the
data description entry.

0780: E Clause is not permitted in same data description entry with
SYNCHRONIZED clause.

The indicated clause is not allowed in a data description entry that also specifies the
SYNCHRONIZED clause. For example, the SAME AS clause cannot be specified when
there is a SYNCHRONIZED clause in the same data description entry. One or the other of
the clauses must be removed from the data description entry.

Appendix B: Compiler Messages

476 RM/COBOL Language Reference Manual

0781: E Clause is not permitted in same data description entry with USAGE
clause.

The indicated clause is not allowed in a data description entry that also specifies the USAGE
clause. For example, the SAME AS clause cannot be specified when there is a USAGE
clause in the same data description entry. One or the other of the clauses must be removed
from the data description entry.

0782: E Clause is not permitted in same data description entry with VALUE
clause.

The indicated clause is not allowed in a data description entry that also specifies the VALUE
clause. For example, the SAME AS clause cannot be specified when there is a VALUE
clause in the same data description entry. One or the other of the clauses must be removed
from the data description entry.

0783: E SAME AS clause is not permitted when containing group entry
specifies SIGN or USAGE clause.

The SAME AS clause cannot be specified in a data description entry that is subordinate to a
data description entry that specifies the SIGN or USAGE clause. Either remove the SIGN or
USAGE clauses from the containing group data description entry or do not use the SAME AS
clause in this context.

0784: E Clause is not permitted in the same data description entry with a
SAME AS clause.

The indicated clause is not allowed in a data description entry that also specifies the SAME
AS clause. For example, the JUSTIFIED clause cannot be specified when there is a SAME
AS clause in the same data description entry. One or the other of the clauses must be
removed from the data description entry.

0785: E Data-name-1 in SAME AS at level-number 77 must not refer to group
data item.

The SAME AS clause, when specified in a level-number 77 data description entry, must not
refer to a group data item since level-number 77 data description entries must describe
elementary data items. Change the data-name specified in the SAME AS clause so that an
elementary data item is referenced or use a level-number 01 in the data description entry.

0786: E SAME AS clause data-name-1 must refer to data item in File,
Working-Storage or Linkage Section.

The data-name specified as the object of a SAME AS clause must refer to a data item declared
in the File, Working-Storage, or Linkage Section. The indicated data-name is either not a
data item reference or the data item is not declared in the File, Working-Storage, or Linkage-
Sections.

0787: E SAME AS clause data-name-1 must not refer to index-name.

The name specified as the object of a SAME AS clause is not permitted to refer to an
index-name. Specify a different name (data-name) that refers to a data item instead.

0788: E SAME AS clause data-name-1 refers to data item with an error in its
data description entry.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 477

The data-name specified as the object of a SAME AS clause refers to a data item with an error
in its data description entry. Thus, the subject of the SAME AS clause will have the same
error in its data description entry. References to either the object or subject data-name will be
diagnosed with an error.

0789: E SAME AS clause data-name-1 must not refer to data description entry
with OCCURS clause.

The data-name specified as the object of a SAME AS clause is not permitted to refer to a data
description entry with the OCCURS clause, but the data-name-1 in the indicated SAME AS
clause refers to a data description entry with the OCCURS clause. The SAME AS clause
must be changed specify a different data-name-1 or the OCCURS clause must be removed
from the data description entry for data-name-1.

Note The SAME AS clause may refer to a group containing subordinate items described with
the OCCURS clause.

0790: E SAME AS clause data-name-1 must not refer to level-number 66 group
data description entry.

The data-name specified as the object of a SAME AS clause is not permitted to refer to a
level-number 66 group data description entry, but the data-name-1 in the indicated SAME AS
clause refers to a level-number 66 group data description entry. The SAME AS clause must
be changed to specify a different data-name-1, or the referenced data description entry
changed so that it is either elementary or not a level-number 66 data description entry.

0791: E Data description with SAME AS clause must not be followed by
subordinate data description entry.

The compiler has found a subordinate data description entry immediately following a data
description entry with the SAME AS clause. A subordinate data description entry is not
allowed in this context because the SAME AS clause either refers to an elementary item and
is thus elementary itself or refers to a complete group for which additional subordinate items
are not permitted. Adjust the level-number of the indicated data description entry so that it
does not define a subordinate data item.

0792: E Data description with SAME AS clause must not be followed by
level 88 data description entry.

The compiler has found a level-number 88 condition-name entry immediately following a
data description entry with the SAME AS clause. A level-number 88 condition-name
entry is not permitted in this context. The condition-name entry should be defined as part
of the object of the SAME AS clause instead, since the SAME AS clause includes any
condition-names associated with its object data-name reference.

0793: E Level-number must be 01-49 and less than or equal previous
level-number, or 66, 77, or 78.

The indicated level-number does not meet the requirements of its context within a data
hierarchy. For example, the level-number 50 is not permitted. Choose a level-number that is
01-49 and less than or equal to the previous specified level-number or is 66, 77, or 78.

0794: E External index-name must not be the same as another external
index-name in same program.

Appendix B: Compiler Messages

478 RM/COBOL Language Reference Manual

Two external index-names in the same program are not permitted to have the same name.
The indicated index-name is external, that is, is defined in an external record, and has the
same name as another external index-name. The indicated index-name will not be made
external.

Note This error can be suppressed by using configuration to eliminate making any
index-name external (an official interpretation of the COBOL language eliminated external
index-names from the language). See the EXTERNAL-INDEX-NAMES keyword of the
COMPILER-OPTIONS configuration record in Chapter 10: Configuration of the
RM/COBOL User's Guide.

0795: E User-defined word previously defined for use that does not permit
its use as screen-name.

The indicated user-defined word is being declared as a screen-name, but has already
been declared for another use that is mutually exclusive with its use as a screen-name.
Screen-names are mutually exclusive with alphabet-names, file-names, cd-names, class-
names, mnemonic-names, and symbolic-character names. Screen-names may be the same
as other data-names, condition-names, record-names, and screen-names.

0796: E Multi-character control operands are not permitted when the
TRAILING adjective is specified.

The indicated multi-character control operand was found in an INSPECT statement that also
specifies the TRAILING adjective. When the TRAILING adjectives is specified in an
INSPECT statement, only single-character control operands are permitted.

0797: E Series of INSPECT control phrases are not permitted when the
TRAILING adjective is specified.

A series of control phrases was found in the indicated INSPECT statement that also specifies
the TRAILING adjective. The series is not permitted because of the use of the TRAILING
adjective in the same INSPECT statement.

0798: E Z option with value less than 15 and Y option when more than 65534
identifiers is not permitted.

The Z Compile Command Option (object version restriction) with a value less than 15 is
incompatible with the Y Compile Command Option (object symbol table) when a separately
compiled program, including any of its contained programs, declares more than 65534
identifiers. The object symbol table version that supports more than 65534 identifiers
requires object version 15 or later. When this message is produced, object version 15 will be
produced despite the value specified in the Z Compile Command Option. To generate a
desired object version less than 15, either omit the Y Compile Command Option or reduce the
number of declared identifiers to 65534 or less. The compilation listing summary indicates
the number of identifiers declared in a program.

0799: E RENAMES clause must refer to a data-name described in immediately
preceding logical record.

The object data-name specified in the indicated RENAMES clause does not refer to a
data-name described within the immediately preceding logical record (level-number 01 data
description), as required. Replace the object data-name in the RENAMES clause with a
data-name from the immediately preceding logical record.

Appendix B: Compiler Messages

 RM/COBOL Language Reference Manual 479

0800: E Identifier defined with RENAMES clause is not permitted here.

The indicated identifier was defined as the subject of a level-number 66 data description entry
using the RENAMES clause. Such identifiers may be not be used in the indicated context.
Contexts where an identifier defined with the RENAMES clause is not permitted include
identifier-1 in the INITIALIZE statement or an identifier specified in the CORRESPONDING
phrase of an ADD, MOVE, or SUBTRACT statement.

Compiler Messages 801—900
0801: E BY phrase expected here; preceding REPLACE statement might be

missing proper termination.

The syntax of the REPLACE statement requires a BY phrase at the indicated location. The
REPLACE statement might be missing its terminating period separator or END-REPLACE
scope terminator, thus causing the compiler to scan beyond what the program author intended
as the end of the REPLACE statement. To resolve this error, modify the source program to
include the missing terminator.

0802: E BY phrase expected here; preceding COPY statement might be
missing proper termination.

The syntax of the COPY statement with the REPLACING phrase requires a BY phrase at the
indicated location. The COPY statement might be missing its terminating period separator or
END-COPY scope terminator, thus causing the compiler to scan beyond what the program
author intended as the end of the COPY statement. To resolve this error, modify the source
program to include the missing terminator.

0803: W Missing period or END-REPLACE for preceding REPLACE statement
was assumed here.

A REPLACE statement is missing its required terminating period separator or
END-REPLACE scope terminator. The statement terminator was assumed at the indicated
location, which might not be the desired location if some other syntax error has caused
this diagnostic message. To resolve this error, modify the source program to include the
missing terminator at the end of the REPLACE statement.

0804: E Numeric literal is not allowed in a concatenation expression.

The indicated literal is specified as the left or right operand of a concatenation expression,
which requires a nonnumeric literal for either operand. Note that the figurative constant
ZERO (ZEROES, ZEROS) is both numeric and nonnumeric and thus is allowed (with its
nonnumeric interpretation) in a concatenation expression.

Glossary

 RM/COBOL Language Reference Manual 481

Glossary

The terms in this glossary are defined in accordance with their meaning in RM/COBOL and
may not have the same meaning for other languages.

These definitions are also intended as either reference or introductory material to be reviewed
prior to reading the detailed language specifications. For this reason, these definitions are,
in most instances, brief and do not include detailed syntactical rules. Complete specifications
for elements defined in this section can be located in the chapters and appendixes of this
document.

Terms and Definitions

66-Level-Description-Entry
A data description entry with the level-number 66 that describes a data item as a renaming of
previously described data items.

77-Level-Description-Entry
A data description entry with the level-number 77 that describes a noncontiguous data item
with the level-number 77.

78-Level-Description-Entry
A data description entry with the level-number 78 that describes a constant-name.

88-Level-Description-Entry
A data description entry with the level-number 88 that describes a condition-name.

Abbreviated Combined Relation Condition
The combined condition that results from the explicit omission of a common subject or a
common subject and common relational operator in a consecutive sequence of relation
conditions.

Glossary

482 RM/COBOL Language Reference Manual

Access Mode
The manner in which records are to be operated upon within a file. COBOL supports three
access modes: sequential, random, and dynamic.

Actual Argument
A data item named in the USING or GIVING phrases of a CALL statement. Both the calling
and the called program may refer to these data items. The called program refers to the actual
argument by using the name of the corresponding formal argument.

Actual Decimal Point
The physical representation, using the decimal point character period (.) or comma (,), of the
decimal point position in a data item.

Alphabetic Character
A letter or a space character.

Alphabet-Name
A user-defined word, in the SPECIAL-NAMES paragraph of the Environment Division,
which assigns a name to a specific character set, collating sequence, or both.

Alphanumeric Character
Any character in the character set of the computer.

Alternate Record Key
A key, other than the prime record key, whose contents identify a record within an indexed
file.

ANSI
An acronym for American National Standards Institute when modifying the word COBOL; in
this case, ANSI COBOL indicates the standard definition of COBOL as opposed to the
RM/COBOL implementor-defined implementation of COBOL.

In the context of Microsoft Windows, ANSI is used to modify the word codepage to indicate
the Windows standard codepages as opposed to the OEM codepages previously used in
MS-DOS and still supported by Windows for some purposes. This use of ANSI is a historical
misnomer that came about because codepage 1252 (the “ANSI” codepage for the Western
countries) was originally based on an ANSI draft, which became ISO Standard 8859-1.
However, in adding code points to the range reserved for control codes in the ISO standard,
the Windows codepage 1252 and subsequent Windows codepages originally based on the
ISO 8859-x series deviated from ISO standards.

Area A
In fixed-form reference format, columns 8 through 11 of the source record. Major elements
of COBOL such as division, section and paragraph headers, must begin within area A in

Glossary

 RM/COBOL Language Reference Manual 483

fixed-form reference format. Other elements, such as continuation lines must not start in area
A, but rather in area B.

Area B
In fixed-form reference format, columns 12 through the last column before margin R.
Traditionally, margin R has been after column 72, but RM/COBOL supports a directive, IMP
MARGIN-R, and a configuration keyword, INITIAL-MARGIN-R, which can set margin R
after any column from 72 through the maximum source record length.

Arithmetic Expression
An identifier of a numeric elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic
operator, or an arithmetic expression enclosed in parentheses.

Arithmetic Operation
The process caused by the execution of an arithmetic statement, or the evaluation of an
arithmetic expression, that results in a mathematically correct solution to the arguments
presented.

Arithmetic Operator
A single character or fixed two-character combination that belongs to the following set:

Character Meaning

+ Addition

– Subtraction

* Multiplication

/ Division

** Exponentiation

Arithmetic Statement
A statement that causes an arithmetic operation to be run. The arithmetic statements are the
ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements.

Ascending Key
A key upon the values of which data is ordered starting with the lowest value of key up to the
highest value of key in accordance with the rules for comparing data items.

Assumed Decimal Point
A decimal point position that does not involve the existence of an actual character in a data
item. The assumed decimal point has logical meaning with no physical representation.

Glossary

484 RM/COBOL Language Reference Manual

At End Condition
A condition caused:

1. During the running of a READ statement for a sequentially accessed file, when no next
logical record exists in the file, or when the number of significant digits in the relative
record number is larger than the size of the relative key data item, or when an optional
input file is not present.

2. During the running of a RETURN statement, when no next logical record exists for the
associated sort or merge file.

3. During the running of a SEARCH statement, when the search operation ends without
satisfying the condition specified in any of the associated WHEN phrases.

Automatic Multiple
A record locking mode in which the READ statement executed in shared input-output mode
automatically obtains a lock on the record accessed except when the NO LOCK phrase is
specified. Multiple record locks for the logical file may be held by the run unit. The record
locks are released only by execution of a CLOSE or UNLOCK statement, except that the
successful execution of a DELETE statement releases the lock on the deleted record.

Automatic Record Locking Modes
Record locking modes in which the READ statement executed in shared input-output mode
automatically obtains a lock on the record accessed except when the NO LOCK phrase is
specified. The automatic record locking modes are automatic single and automatic multiple.

Automatic Single
A record locking mode in which the READ statement executed in shared input-output mode
automatically obtains a lock on the record accessed except when the NO LOCK phrase is
specified. Only a single record for the logical file is locked by the run unit since the next
input-output operation on the file releases any existing record lock.

Based Linkage Record
A record-description-entry or 77-level-description-entry described in the Linkage Section that
receives its base address by use of a Format 5 SET statement. Linkage records are not
allocated storage during compilation. A based linkage record is assigned (Format 5) or
reassigned (Format 6) to a storage location by use of the SET statement that specifies the
ADDRESS OF data-name-1 as the receiving item, where data-name-1 names the based
linkage record. Based linkage records may include formal arguments of the program.

Binary Allocation Override
An integer specified in parentheses following one of the binary usage words BINARY,
COMP-4, COMPUTATIONAL-4, COMP-5, or COMPUTATIONAL-5 in the USAGE
clause. The integer must be in the range one through sixteen and specifies the number of
character positions (bytes) of storage to allocate for the binary data item being described. A
binary allocation override may also follow COMP or COMPUTATIONAL if the compiler has
been configured for treating this usage type as binary.

Glossary

 RM/COBOL Language Reference Manual 485

Binary Sequential
A record delimiting technique that allows packed-decimal and binary data items in the record.
For fixed-length record files, no record delimiter is needed or used. For variable-length
record files, a record length header and trailer are stored with the record on the external
storage medium.

Block
A physical unit of data that is normally composed of one or more logical records. For mass
storage files, a block may contain a portion of a logical record. The size of a block has no
direct relationship to the size of the file within which the block is contained or to the size of
the logical record(s) that are either contained within the block or that overlap the block. The
term is synonymous with physical record.

Bottom Margin
An empty area that follows the page body.

Called Program
A program that is the object of a CALL statement combined at object time with the calling
program to produce a run unit.

Calling Program
A program that starts a CALL to another program.

Cd-Name
A user-defined word that names an MCS interface area described in a communication
description entry within the Communication Section of the Data Division.

Channel-Name
A feature-name that names a channel on a printer carriage control tape or program.

Character
The basic indivisible unit of the language.

Character Position
The amount of physical storage required to store a single standard data format character
whose usage is DISPLAY. (For further characteristics of physical storage, see Appendix C:
Internal Data Formats of the RM/COBOL User’s Guide.)

Character-String
A sequence of adjacent characters that form a COBOL word, a literal, a PICTURE character-
string, or a comment-entry.

Glossary

486 RM/COBOL Language Reference Manual

Class Condition
The proposition, for which a truth value can be determined, that the content of an item is
wholly alphabetic or is wholly numeric or consists exclusively of those characters listed in the
definition of a class-name.

Class-Name
A user-defined word defined in the SPECIAL-NAMES paragraph of the Environment
division that assigns a name to the proposition for which a truth value can be defined, that the
content of a data item consists exclusively of those characters listed in the definition of the
class-name.

Clause
A clause is an ordered set of consecutive COBOL character-strings whose purpose is to
specify an attribute of an entry.

COBOL Character Set
The complete COBOL character set consists of the characters listed below.

Character Meaning

0, 1, . . . , 9 Digit

A, B, . . . , Z Uppercase letter

a, b, . . . , z Lowercase letter

 Space

+ Plus sign

– Minus sign (hyphen)

* Asterisk

/ Slant (solidus)

= Equal sign

$ Currency sign (represented as ¤ in the International Reference
Version of International Standard, ISO 646-1973)

, Comma (decimal point)

; Semicolon

. Period (decimal point, full stop)

“ Quotation mark (double quotation)

’ Apostrophe (single quotation)

(Left parenthesis

) Right parenthesis

> Greater than symbol

< Less than symbol

: Colon

& Ampersand

Glossary

 RM/COBOL Language Reference Manual 487

Note When the computer character set includes lowercase letters, they may be used in
character-strings. Except when used in nonnumeric literals and some PICTURE symbols,
each lowercase letter is equivalent to the corresponding uppercase letter.

COBOL Word
A character-string of not more than 240 characters that forms a user-defined word, a system-
name, a context-sensitive word, or a reserved word.

Code-Name
A system-name that names a character code set or collating sequence or both.

Codepage
A definition of a character set, specifying the mapping from a 256-codepoint character set to
Unicode. There are different codepages for different language groups. Microsoft Windows
supports both a system ANSI codepage and a system OEM codepage. The terms “ANSI
codepage” and “OEM codepage” do not uniquely define a character set, since different
countries using different internationalized versions of Windows use different codepages for
both the ANSI and the OEM codepage. A complete discussion of codepages can be found at
http://www.microsoft.com/typography/unicode/cscp.htm.

Collating Sequence
The sequence in which the characters that are acceptable to a computer are ordered for
purposes of sorting, merging, comparing, and for processing indexed files sequentially.

Column
A character position within a print line or screen line. The columns are numbered from 1, by
1, starting at the farthest left character position of the line and extending to the farthest right
position of the line.

Combined Condition
A condition that is the result of connecting two or more conditions with the ‘AND’ or the
‘OR’ logical operator.

Comment Line
A source program line represented by an asterisk (*) in the indicator area of the line and any
characters from the character set of the computer in area A and area B of that line. The
comment line serves only for documentation in a program. A special form of comment line
represented by a slant (/) in the indicator area of the line and any characters from the character
set of the computer in area A and area B of that line causes page ejection prior to printing the
comment.

Comment Entry
An entry in the Identification Division that may be any combination of characters from the
character set of the computer.

Glossary

488 RM/COBOL Language Reference Manual

Common Program
A program that despite being directly contained within another program, may be called from
any program directly or indirectly contained in that other program.

Communication Description Entry
An entry in the Communication Section of the Data Division that is composed of the level
indicator CD, followed by a cd-name, and then followed by a set of clauses as required. It
describes the interface between the message control system (MCS) and the COBOL program.

Communication Device
A mechanism, hardware or hardware plus software, capable of sending data to a queue or
receiving data from a queue or both. This mechanism may be a computer or a peripheral
device. One or more programs, containing communication description entries and residing
within the same computer, define one or more of these mechanisms.

Communication Section
The section of the Data Division that describes the interface areas between the message
control system (MCS) and the program, composed of one or more communication description
areas.

Compile Time
The time at which a COBOL source program is translated, by a COBOL compiler, to a
COBOL object program.

Compiler Directing Statement
A statement, beginning with a compiler directing verb, which causes the compiler to take a
specific action during compilation. The compiler directing statements are the COPY,
ENTER, REPLACE, and USE statements.

Compiler Directive
A single source line that begins with “>>”in the program-text area followed by a compiler
directive word and additional options. Compiler directives specify options for the compiler.
The compiler directive words are IMP, LISTING, and PAGE. Compiler directives are not
affected by the REPLACING phrase of the COPY statement or by the REPLACE statement.

Complex Condition
A condition in which one or more logical operators act upon one or more conditions.

Composite of Operands
A hypothetical data item resulting from the superimposition of specified operands in a
statement aligned on their decimal points. This data item must not contain more than 30
decimal digits.

Glossary

 RM/COBOL Language Reference Manual 489

Computer-Name
A system-name that identifies the computer upon which the program is to be compiled or run.

Concatenation Expression
A concatenation expression operates on two nonnumeric literals to concatenate their values.
Concatenation expressions simplify the continuation of long nonnumeric literals. They also
allow the construction of a single literal from combinations of nonnumeric literal forms, such
as quoted strings, hexadecimal strings, figurative constants (including symbolic-characters),
and constant-names that refer to nonnumeric literal values.

Condition
A status of a program at execution time for which a truth value can be determined. Where the
term ‘condition’ (condition-1, condition-2, . . .) appears in these language specifications in or
in reference to ‘condition’ (condition-1, condition-2, . . .) of a general format, it is a
conditional expression consisting of either a simple condition optionally parenthesized, or a
combined condition consisting of the syntactically correct combination of simple conditions,
logical operators, and parentheses, for which a truth value can be determined.

Conditional Expression
A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or
SEARCH statement.

Conditional Phrase
A conditional phrase specifies the action to be taken upon determination of the truth value of
a condition resulting from the execution of a conditional statement.

Conditional Statement
A conditional statement specifies that the truth value of a condition is to be determined and
that the subsequent action of the object program is dependent on this truth value. Contrast
with Imperative Statement (on page 498).

Conditional Variable
A data item one or more values of which have a condition-name assigned to it.

Condition-Name
A user-defined word that assigns a name to a subset of values that a conditional variable may
assume; or a user-defined word assigned to a status of an implementor-defined switch or
device. When ‘condition-name’ is used in the general formats, it represents a unique data
item reference consisting of a syntactically correct combination of a condition-name, together
with qualifiers and subscripts, as required for uniqueness of reference.

Glossary

490 RM/COBOL Language Reference Manual

Condition-Name Condition
The proposition, for which a truth value can be determined, that the value of a conditional
variable is a member of the set of values attributed to a condition-name associated with the
conditional variable.

Configuration Section
A section of the Environment Division that describes overall specifications of source and
object programs.

Constant-Expression
A constant-name that has already been defined with an integer value other than the one being
defined in the current 78-level-description-entry, a numeric integer literal, a NEXT, LENGTH
OF, or START OF, or DATE-COMPILED operator, such constant-names, literals and
operators preceded by the constant-expression operator NOT, such constant-names, literals
and operators separated by constant-expression operators (+, -, *, /, **, AND, OR,
EXCLUSIVE OR), two constant expressions separated by a constant-expression operator, or a
constant-expression enclosed in parentheses. Constant-expressions are evaluated in strict left
to right order with no precedence other than expressions within parentheses are evaluated
first.

Constant-Name
A user-defined word that assigns a name to a literal value in a level-number 78 data
description entry. After the constant-name is defined, it may be used wherever a literal is
shown in the general formats unless otherwise prohibited. A constant-name with an integer
literal value may also be used wherever an integer, level-number, or segment-number is
shown in the general formats. A constant-name with an integer value may be used as the
repeat count in a PICTURE character-string. The effect of a constant-name reference is the
same as if the literal value assigned to the constant-name were written instead.

Context-Sensitive Word
A COBOL word that is reserved in a specified language construct or context. If a context-
sensitive word is used where the context-sensitive word is permitted in the specified language
construct or context, the word is treated as a keyword; otherwise, it is treated as a user-defined
word.

Contiguous Items
Items that are described by consecutive entries in the Data Division, and that bear a definite
hierarchical relationship to each other.

Counter
A data item used for storing numbers or number representations in a manner that permits
these numbers to be increased or decreased by the value of another number, or to be changed
or reset to zero or to an arbitrary positive or negative value.

Glossary

 RM/COBOL Language Reference Manual 491

Currency Sign
The character ‘$’ of the COBOL character set.

Currency Symbol
The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.
If no CURRENCY SIGN clause is present in a COBOL source program, the currency symbol
is identical to the currency sign.

Current Record
In file processing, the record that is available in the record area associated with a file.

Current Volume Pointer
A conceptual entity that points to the current volume of a sequential file.

Data Clause
A clause, specified in a data description entry in the Data Division of a COBOL program,
which provides information describing a particular attribute of a data item.

Data Description Entry
An entry, in the Data Division of a COBOL program, that is composed of a level-number
followed by a data-name, condition-name, or constant-name, if required, and then followed by
a set of data clauses, as required.

Data Item
A unit of data (excluding literals) defined by the COBOL program.

Data-Name
A user-defined word that names a data item described in a data description entry. When used
in the general formats, ‘data-name’ represents a word that must not be reference-modified,
subscripted, or qualified unless specifically permitted by the rules of the format.

Debugging Line
A debugging line is any line with a ‘D’ in the indicator area of the line.

Declarative Sentence
A compiler directing sentence consisting of a single USE statement stopped by the
separator period.

Glossary

492 RM/COBOL Language Reference Manual

Declaratives
A set of one or more special purpose sections, written at the beginning of the Procedure
Division, the first of which is preceded by the key word DECLARATIVES and the last of
which is followed by the key words END DECLARATIVES. A declarative is composed of a
section header, followed by a USE compiler directing sentence, and followed by a set of zero,
one, or more associated paragraphs.

De-Edit
The logical removal of all editing characters from a numeric edited data item in order to
determine the unedited numeric value of the item.

Delimited Scope Statement
Any statement that includes its explicit scope terminator.

Delimiter
A character or a sequence of adjacent characters that identify the end of a string of characters
and separate that string of characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Descending Key
A key upon the values of which data is ordered starting with the highest value of key down to
the lowest value of key, in accordance with the rules for comparing data items.

Destination
The symbolic identification of the receiver of a transmission from a queue.

Device Name
A system-name that names a class of input-output devices. Each class is characterized by the
statements, open modes, and file organizations it supports.

Digit Position
A digit position is the amount of physical storage required to store a single digit. This amount
may vary, depending on the usage specified in the data description entry that defines the data
item. If the data description entry specifies that usage is DISPLAY, then a digit position is
synonymous with a character position. (For further characteristics of physical storage, see
Appendix C: Internal Data Formats of the RM/COBOL User’s Guide.)

Directive
See Compiler Directive (on page 488).

Glossary

 RM/COBOL Language Reference Manual 493

Division
A collection of zero, one, or more sections or paragraphs, called the division body, which are
formed and combined in accordance with a specific set of rules. Each division consists of the
division header and the related division body. There are four divisions in a COBOL program:
Identification, Environment, Data, and Procedure.

Division Header
A combination of words, followed by a separator period, which indicates the beginning of a
division. The division headers in a COBOL program are as follows:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING {data-name-1} ...].

Dynamic Access
An access mode in which specific logical records can be obtained from or placed into a mass
storage file in a nonsequential manner and obtained from a file in a sequential manner during
the scope of the same OPEN statement. Compare with definitions for Sequential Access (on
page 517) and Random Access (on page 512).

Editing Character
A single character or a fixed two-character combination belonging to the following set:

Character Meaning

B Space

0 Zero

+ Plus

– Minus

CR Credit

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (solidus)

EGI
An acronym for end of group indicator and also the reserved word used in the SEND
statement to send an end of group indicator. See also Message Indicators (on page 505).

Elementary Item
A data item that is described as not being further logically subdivided.

Glossary

494 RM/COBOL Language Reference Manual

EMI
An acronym for end of message indicator and also the reserved word used in the SEND
statement to send an end of message indicator. See also Message Indicators (on page 505).

End of Group Indicator (EGI)
An indication that a group of messages has ended. See also Message Indicators (on page 505)
and Message (on page 505).

End of Message Indicator (EMI)
An indication that a message has ended. See also Message Indicators (on page 505) and
Message (on page 505).

End of Procedure Division
The physical position of a COBOL source program after which no further procedures appear.

End of Segment Indicator (ESI)
An indication that a message segment has ended. See also Message Indicators (on page 505)
and Message Segment (on page 506).

End Program Header
A combination of words, followed by a separator period, which indicates the end of a COBOL
source program. The end program header is:

Entry
Any descriptive set of consecutive clauses ended by a separator period and written in the
Identification Division, Environment Division, or Data Division of a COBOL program.

Environment Clause
A clause that appears as part of an Environment Division entry.

ESI
An acronym for end of segment indicator and also the reserved word used in the SEND
statement to send an end of segment indicator. See also Message Indicators (on page 505).

Exclusive File
A file that is open with a lock mode of exclusive. An exclusive input-output or output file
may not be open concurrently by any other run unit. An exclusive input file may not be open
concurrently by any other run unit except in the input mode.

.

literal-1

me-1program-na
PROGRAMEND

Glossary

 RM/COBOL Language Reference Manual 495

Exclusive Mode
A lock mode in which, for extend, input-output and output modes, access to the file is denied
to any other run unit and, for input mode, access is denied to any other run unit that attempts
to open the file for extend or input-output mode. A file cannot be successfully opened in
exclusive mode if any other run unit has the file open in a conflicting mode.

Execution Time
The time at which an object program is run. The term is synonymous with object time.

Explicit Scope Terminator
A reserved word that ends the scope of a particular Procedure Division statement.

Expression
An arithmetic or conditional expression.

Extend Mode
The state of a file after running an OPEN statement, with the EXTEND phrase specified, for
that file and before running a CLOSE statement without the REEL or UNIT phrase for that
file.

External Attribute
The attribute of a data item obtained by specification of the EXTERNAL clause in the data
description entry of the data item or of a data item to which the subject data item is
subordinate.

External Data
The data described in a program as external data items and external file connectors.

External Data Item
A data item that is described as part of an external record in one or more programs of a run
unit and which itself may be referred to from any program in which it is described.

External Data Record
A logical record that is described in one or more programs of a run unit and whose constituent
data items may be referred to from any program in which they are described.

External File Connector
A file connector that is accessible to one or more object programs in the run unit.

Glossary

496 RM/COBOL Language Reference Manual

External Switch
A hardware or software device, defined and named by the implementor, which is used to
indicate that one of two alternate states exists.

Feature-Name
A system-name that names a channel on a printer carriage control tape or program.

Figurative Constant
A compiler-generated value referred by the use of certain reserved words.

File
A collection of logical records.

File Access Name
The name communicated to the operating system to identify a physical file. The file access
name may be explicitly specified in the ASSIGN clause of the file control entry or the
VALUE OF FILE-ID clause of the file description entry. If not explicitly specified, the file
access name defaults to the COBOL file-name. The runtime system may further modify the
file access name before it is communicated to the operating system, as explained in the “File
Access Names on UNIX” and “File Access Names on Windows” topics in Chapters 2
and 3, respectively, of the RM/COBOL User’s Guide.

File Attribute Conflict Condition
An unsuccessful attempt has been made to run an input-output operation on a file and the file
attributes, as specified for that file in the program, do not match the fixed attributes for that
file.

File Clause
A clause that appears as part of any of the following Data Division entries: file description
entry (FD entry) and sort-merge file description entry (SD entry.)

File Connector
A storage area that contains information about a file and is used as the linkage between a file-
name and a physical file and between a file-name and its associated record area.

File Control Entry
A SELECT clause and all its subordinate clauses that declare the relevant physical attributes
of a file.

File Description Entry
An entry in the File Section of the Data Division that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

Glossary

 RM/COBOL Language Reference Manual 497

File Organization
The permanent logical file structure established at the time that a file is created.

File Position Indicator
A conceptual entity that contains the value of the current key within the key of reference for
an indexed file, or the record number of the current record for a sequential file, or the relative
record number of the current record for a relative file, or indicates that no next logical record
exists, or that the number of significant digits in the relative record number is larger than the
size of the relative key data item, or that an optional input file is not present, or that the at end
condition already exists, or that no valid next record has been established.

File Section
The section of the Data Division that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

FILE-CONTROL
The name of an Environment Division paragraph in which the data files for a given source
program are declared.

File-Name
A user-defined word that names a file connector described in a file description entry or a
sort-merge file description entry within the File Section of the Data Division.

Fixed File Attributes
Information about a file that is established when a file is created and cannot subsequently be
changed during the existence of the file. These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key, the alternate record keys, the
minimum and maximum record size, the record type (fixed or variable), the collating
sequence of the keys for indexed files, the minimum and maximum physical record size, the
padding character, and the record delimiter.

Fixed-Length Record
A record associated with a file whose file description or sort-merge description entry requires
that all records contain the same number of character positions.

Fixed-Form Reference Format
The rules for how a line of source must be written, where the elements of a source program
must be written in certain fixed columns. In RM/COBOL, the margin R location may
vary based on the compiler directive IMP MARGIN-R, but the other column locations
remain fixed.

Footing Area
The position of the page body adjacent to the bottom margin.

Glossary

498 RM/COBOL Language Reference Manual

Formal Argument
A record-description-entry or 77-level-description-entry described in the Linkage Section that
is named in the USING or GIVING phrases of the Procedure Division header. Formal
arguments describe data items available from a calling program. Formal arguments are
linkage records that receive their base address from the actual arguments passed in a CALL
statement. The called program may override the actual argument address by using Format 5
of the SET statement, effectively converting the formal argument to a based linkage record.

Format
A specific arrangement of a set of data.

Global Name
A name that is declared in only one program but which may be referred to from that program
and from any program contained within that program. Condition-names, data-names,
file-names, record-names, and some special registers may be global names.

Group Item
A data item that is composed of subordinate data items.

High Order End
The farthest left character of a string of characters.

Identification Area
In fixed-form reference format, the source record area from margin R to the end of the source
record. This area is for the most part commentary, but can also be used to contain case-
sensitive conditional compilation strings when the SOURCE-PATTERN-INCLUDE or
SOURCE-PATTERN-EXCLUDE keywords are specified in the COMPILER-OPTIONS
configuration record. The Identification area is not present in source records when margin R
is after the maximum source record length.

Identifier
A syntactically correct combination of a data-name, with its qualifiers, subscripts, and
reference modifiers, as required for uniqueness of reference, that names a data item. The
rules for ‘identifier’ associated with the general formats may, however, specifically prohibit
qualification, subscripting, or reference modification.

Imperative Statement
A statement that either begins with an imperative verb and specifies an unconditional action
to be taken or is a conditional statement that is delimited by its explicit scope terminator
(delimited scope statement). The imperative verbs are listed in Table 6 (on page 30) in
Chapter 1: Language Structure. An imperative statement may consist of a sequence of
imperative statements. Contrast with Conditional Statement (on page 489).

Glossary

 RM/COBOL Language Reference Manual 499

Implicit Scope Terminator
A separator period that ends the scope of any preceding unterminated statement, or a phrase
of a statement that by its occurrence indicates the end of the scope of any statement contained
within the preceding phrase.

Index
A computer storage area or register, the content of which represents the identification of a
particular element in a table.

Index Data Item
A data item in which the values associated with an index-name can be stored in a machine
dependent form.

Indexed File
A file with indexed organization.

Indexed Organization
The permanent logical file structure in which each record is identified by the value of one
or more keys within that record. Compare with definitions for Relative Organization (on
page 515) and Sequential Organization (on page 518).

Index-Name
A user-defined word that names an index associated with a specific table. When used in the
general formats, other than the INDEXED BY phrase of the OCCURS clause that declares the
index-name, ‘index-name’ includes any qualification necessary to make the reference unique
as required by the Uniqueness of Reference rules.

Indicator Area
In fixed-form reference format, column 7 of the source record. The indicator area is used to
indicate whether a source record is a comment (“*” or “/”), a debug line (“D” or “d”), a
continuation line (“-“), or a normal line (“ “).

Initial Program
A program that is placed into an initial state every time the program is called in a run unit.

Initial State
The state of a program when it is first called in a run unit.

In-Line Comment
An in-line comment begins with the two contiguous characters *> preceded by a separator
space, and ends with the last character position of the line. The in-line comment serves only

Glossary

500 RM/COBOL Language Reference Manual

for documentation in a program. The characters following the *> may be any characters from
the character-set of the computer.

Input File
A file that is opened in the input mode.

Input Mode
The state of a file after running an OPEN statement, with the INPUT phrase specified, for that
file and before running a CLOSE statement without the REEL or UNIT phrase for that file.

Input Procedure
A set of statements, to which control is given during the execution of a SORT statement, for
controlling the release of specified records to be sorted.

Input-Output File
A file that is opened in the I-O mode.

Input-Output Section
The section of the Environment Division that names the files and the external media required
by an object program and which provides information required for transmission and handling
of data during running of the object program.

Input-Output Statement
A statement that causes files to be processed by performing operations upon individual
records or upon the file as a unit. The input-output statements are: ACCEPT, CLOSE,
DELETE, DELETE FILE, DISABLE, DISPLAY, ENABLE, OPEN, PURGE, READ,
RECEIVE, REWRITE, SEND, SET (with the TO ON or TO OFF phrase), START,
UNLOCK, and WRITE.

Integer
A numeric literal or a numeric data item that does not include any digit position to the right of
the assumed decimal point. When the term ‘integer’ appears in general formats, integer must
not be a numeric data item, and must not be signed, nor zero unless explicitly allowed by the
rules of that format.

Internal Data
The data described in a program excluding all external data items and external file connectors.
Items described in the Linkage Section of a program are treated as internal data.

Internal Data Item
A data item that is described in one program in a run unit. An internal data item may have a
global name.

Glossary

 RM/COBOL Language Reference Manual 501

Internal File Connector
A file connector that is accessible to only one object program in the run unit.

Intra-Record Data Structure
The entire collection of groups and elementary data items from a logical record, which is
defined by an adjacent subset of the data description entries that describe that record.
These data description entries include all entries whose level-number is greater than the
level-number of the first data description entry describing the intra-record data structure.

Invalid Key Condition
A condition, at object time, caused when a specific value of the key associated with an
indexed or relative file is determined to be invalid.

I-O Mode
The state of a file after running an OPEN statement, with the I-O phrase specified, for that file
and before running a CLOSE statement without the REEL or UNIT phrase for that file.

I-O Status
A conceptual entity that contains the two-character value indicating the resulting status of an
input-output operation. This value is made available to the program by use of the FILE
STATUS clause in the file control entry for the file.

I-O-CONTROL
The name of an Environment Division paragraph in which object program requirements for
rerun points, sharing of same areas by several data files, and multiple file storage on a single
input-output device are specified.

I-O-CONTROL Entry
An entry in the I-O-CONTROL paragraph of the Environment Division, which contains
clauses that provide information required for the transmission and handling of data on named
files during the running of a program.

ISO
An acronym for International Standards Organization, the body that approves standards for
the international community, such as for computer languages (RM/COBOL is based on ISO
Standard 1989-1985, which matches ANSI Standard X3.23-1985) and character sets (for
example, ISO Standard 8859-1).

Key
A data item that identifies the location of a record, or a set of data items that serve to identify
the ordering of data.

Glossary

502 RM/COBOL Language Reference Manual

Key of Reference
The key, either prime or alternate, currently being used to access records within an indexed
file.

Keyword
A reserved word whose presence is required when the format in which the word appears is
used in a source program.

Language-Name
A system-name that specifies a particular programming language.

Letter
A character belonging to one of the following two sets:

1. uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V,
W, X, Y, Z;

2. lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

Level Indicator
Two letters that identify a specific type of file or a position in a hierarchy. The level
indicators in the Data Division are: CD, FD, and SD.

Level-Number
A user-defined word, expressed as a one or two digit number, which indicates the hierarchical
position of a data item or the special properties of a data description entry. Level-numbers in
the range 1 through 49 indicate the position of a data item in the hierarchical structure of a
logical record. Level-numbers in the range 1 through 9 may be written either as a single digit
or as a zero followed by a significant digit. Level-numbers 66, 77, 78, and 88 identify special
properties of a data description entry.

Library Text
A sequence of text words, comment lines, the separator space, or the separator pseudo-text
delimiter in a COBOL library.

Library-Name
A user-defined word that names a COBOL library that is to be used by the compiler for a
given source program compilation.

LIKE Relation Condition
A special case of a relation condition that matches a subject data item to a pattern specified by
a regular expression.

Glossary

 RM/COBOL Language Reference Manual 503

LINAGE-COUNTER
A special register whose value points to the current position within the page body.

Line Sequential
A record delimiting technique that matches the technique used by the standard system editor.
In most systems, this technique uses a sequence of one or more control characters appended to
the record on the external storage medium. Therefore, files using this technique and
containing packed decimal or binary data items cannot be reliably decomposed into the
original output records during input.

Linkage Section
The section in the Data Division that describes formal arguments and based linkage records.
Data description entries in the Linkage Section are not allocated storage during compilation,
but describe data items available from a calling program or from having their base address set
or modified by Formats 5 or 6 of the SET statement. All data items described in the Linkage
Section initially have a null base address. In most cases, a reference to a Linkage Section data
item will terminate the run unit with a data reference error unless the base address has been
changed to a valid address by one of the following means:

• The data item is a formal argument, or is subordinate to a formal argument, that received
a base address from an actual argument in a calling program.

• The data item is a based linkage record, or is subordinate to a based linkage record, for
which the base address has been set to a value other than NULL by Format 5 of the SET
statement.

Literal
A character-string whose value is implied by the ordered set of characters comprising
the string.

Lock Mode
The manner in which a file is to be protected from concurrent access by other run units.
RM/COBOL supports lock modes of exclusive and shared. For a shared input-output file,
automatic multiple, automatic single, manual multiple or manual single record locking will
apply.

Logical Operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND,
or OR, or both, can be used as logical connectives. NOT can be used for logical negation.

Logical Page
A conceptual entity consisting of the top margin, the page body, and the bottom margin.

Glossary

504 RM/COBOL Language Reference Manual

Logical Record
The most inclusive data item. The level-number for a record is 01. A record may be either an
elementary item or a group item. When not further qualified, the term record refers to a
logical record.

Low Order End
The farthest right character of a string of characters.

Low-Volume-I-O-Name
A system-name that names a low volume input-output device.

Manual Multiple
A record locking mode in which only a READ statement that specifies the LOCK phrase and
is executed in shared input-output mode obtains a lock on the record accessed. Multiple
record locks for the logical file may be held by the run unit. The record locks are released
only by execution of a CLOSE or UNLOCK statement, except that the successful execution
of a DELETE statement releases the lock on the deleted record.

Manual Record Locking Modes
Record locking modes in which only a READ statement that specifies the LOCK phrase and
is executed in shared input-output mode obtains a lock on the record accessed. The manual
record locking modes are manual single and manual multiple.

Manual Single
A record locking mode in which only a READ statement that specifies the LOCK phrase and
is executed in shared input-output mode obtains a lock on the record accessed. Only a single
record for the logical file is locked by the run unit since the next input-output operation on the
file releases any existing record lock.

Margin R
The end of the program-text area after which the Identification area is written in fixed-form
reference format for source. Traditionally, margin R is after column 72. RM/COBOL has the
IMP MARGIN-R directive, which allows specifying a different location for margin R to
allow longer length source records. A COMPILER-OPTIONS configuration record keyword,
INITIAL-MARGIN-R, may also be used to specify the initial margin R setting for a
compilation. The default initial margin R is after column 72 as in traditional COBOL source
records.

Mass Storage
A storage medium in which data may be organized and maintained in both a sequential and
nonsequential manner.

Glossary

 RM/COBOL Language Reference Manual 505

Mass Storage Control System (MSCS)
An input-output control system that directs, or controls, the processing of mass storage files.

Mass Storage File
A collection of records that is assigned to a mass storage medium.

Maximum Source Record Length
The maximum length of source records that may be used in any one compilation. The value
is established at the beginning of compilation and cannot be changed during that compilation.
Source records longer than the maximum source record length are truncated to the maximum
source record length. If any records are truncated, the compiler indicates how many records
were truncated at the end of compilation. The default maximum source record length is 1024
characters, but any value from 80 to 65000 can be configured with the SOURCE-RECORD-
MAX-LENGTH keyword of the COMPILER-OPTIONS configuration record.

In contexts discussing source records, this term may be shortened to “maximum record
length” for brevity.

MCS (Message Control System)
A communication control system that supports the processing of messages.

Merge File
A collection of records to be merged by a MERGE statement. The merge file is created and
can be used only by the merge function.

Message
Data associated with an end of message indicator (EMI) or an end of group indicator (EGI).

Message Control System (MCS)
A communication control system that supports the processing of messages.

Message Count
The count of the number of complete messages that exist in the designated queue of
messages.

Message Indicators
End of group indicator (EGI), end of message indicator (EMI), and end of segment indicator
(ESI) are conceptual indications that serve to notify the message control system (MCS) that a
specific condition exists (end of group, end of message, or end of segment). Within the
hierarchy of EGI, EMI, and ESI, an EGI is conceptually equivalent to an ESI, EMI, and EGI.
An EMI is conceptually equivalent to an ESI and EMI. Therefore, a message segment may be
terminated by an ESI, EMI, or EGI; or, a message may be terminated by an EMI or EGI.

Glossary

506 RM/COBOL Language Reference Manual

Message Segment
Data that forms a logical subdivision of a message, normally associated with an end of
segment indicator (ESI).

Mnemonic-Name
A user-defined word that is associated in the Environment Division with a specific feature-
name, switch-name, or low-volume-I-O-name.

MSCS (Mass Storage Control System)
An input-output control system that directs, or controls, the processing of mass storage files.

Multiple Record Locking Modes
Record locking modes in which locked records are not unlocked except by the explicit
execution of a CLOSE or an UNLOCK statement that refers to the file. Multiple records may
be locked in the file by the run unit. The multiple record locking modes are automatic
multiple and manual multiple.

Native Character Set
The implementor-defined character set associated with the computer specified in the
OBJECT-COMPUTER paragraph.

Native Collating Sequence
The implementor-defined collating sequence associated with the computer specified in the
OBJECT-COMPUTER paragraph.

Negated Combined Condition
The ‘NOT’ logical operator immediately followed by a parenthesized combined condition.

Negated Simple Condition
The ‘NOT’ logical operator immediately followed by a simple condition.

Next Executable Sentence
The next sentence to which control will be transferred after running of the current statement is
complete.

Next Executable Statement
The next statement to which control will be transferred after running of the current statement
is complete.

Glossary

 RM/COBOL Language Reference Manual 507

Next Record
The record that logically follows the current record of a file.

Noncontiguous Item
Elementary data items, in the Working-Storage and Linkage Sections, which bear no
hierarchic relationship to other data items.

Nonnumeric Item
A data item whose description permits its content to be composed of any combination of
characters taken from the character set of the computer. Certain categories of nonnumeric
items may be formed from more restricted character sets.

Nonnumeric Literal
A literal bounded by quotation marks. The string of characters may include any character in
the character set of the computer.

Null
The state of a pointer indicating that it contains no address.

Numeric Character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item
A data item whose description restricts its content to a value represented by characters chosen
from the digits ‘0’ through ‘9’; if signed, the item may also contain a ‘+’, ‘–’, or other
representation of an operational sign.

Numeric Literal
A literal composed of one or more numeric characters that may contain either a decimal point,
or an algebraic sign, or both. The decimal point must not be the farthest right character. The
algebraic sign, if present, must be the farthest left character.

Object Computer Entry
An entry in the OBJECT-COMPUTER paragraph of the Environment Division, which
contains clauses that describe the computer environment in which the object program is to be
run.

Object of Entry
A set of operands and reserved words, within a Data Division entry of a COBOL program,
which immediately follow the subject of the entry.

Glossary

508 RM/COBOL Language Reference Manual

Object Program
A set or group of executable machine language instructions and other material designed to
interact with data to provide problem solutions. In this context, an object program is
generally the machine language result of the operation of a COBOL compiler on a source
program. Where there is no danger of ambiguity, the word ‘program’ alone may be used in
place of the phrase ‘object program’.

Object Time
The time at which an object program is run. The term is synonymous with execution time.

OBJECT-COMPUTER
The name of an Environment Division paragraph in which the computer environment, within
which the object program is run, is described.

Obsolete Element
A COBOL language element in ANSI COBOL that is to be deleted from the next revision of
ANSI COBOL.

OEM
An acronym for Original Equipment Manufacturer, which is a misleading term for a company
that has a special relationship with computer producers. OEMs buy computers in bulk and
customize them for a particular application. They then sell the customized computer under
their own name. The term is really a misnomer because OEMs are not the original
manufacturers—they are the computer customizers.

When used to modify codepage or character sets, as in OEM codepage, the term refers to the
codepages used under MS-DOS and IBM PC DOS. These codepages defined country
specific character sets, but did not follow any well-accepted standard. MS-Windows supports
a system OEM codepage as well as a system ANSI codepage.

Open Mode
The state of a file after running an OPEN statement for that file and before running a CLOSE
statement without the REEL or UNIT phrase for that file. The particular open mode is
specified in the OPEN statement as INPUT, OUTPUT, I-O, or EXTEND.

Operand
Whereas the general definition of operand is ‘that component which is operated upon’, for the
purposes of this document, any lowercase word (or words) that appears in a statement or entry
format may be considered to be an operand and, as such, is an implied reference to the data
indicated by the operand.

Operational Sign
An algebraic sign, associated with a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

http://www.webopedia.com/TERM/O/computer.html
http://www.webopedia.com/TERM/O/application.html

Glossary

 RM/COBOL Language Reference Manual 509

Optional File
A file that is declared as being not necessarily present each time the object program is run.
The object program causes an interrogation for the presence or absence of the file.

Optional Word
A reserved word that is included in a specific format only to improve the readability of the
language and whose presence is optional to the user when the format in which the word
appears is used in a source program.

Output File
A file that is opened in either the output mode or extend mode.

Output Mode
The state of a file after running an OPEN statement, with the OUTPUT or EXTEND phrase
specified, for that file and before running a CLOSE statement without the REEL or UNIT
phrase for that file.

Output Procedure
A set of statements to which control is given during the running of a SORT statement after the
sort function is completed, or during the running of a MERGE statement after the merge
function reaches a point at which it can select the next record in merged order when
requested.

Padding Character
An alphanumeric character used to fill the unused character positions in a physical record.

Page Body
That part of the logical page in which lines can be written and/or spaced.

Paragraph
In the Procedure Division, a paragraph-name followed by a separator period and by zero, one,
or more sentences. In the Identification and Environment Divisions, a paragraph header
followed by zero, one, or more entries.

Paragraph Header
A reserved word, followed by the separator period, which indicates the beginning of a
paragraph in the Identification and Environment Divisions. The permissible paragraph
headers in the Identification Division are as follows:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.

Glossary

510 RM/COBOL Language Reference Manual

DATE-COMPILED.
SECURITY.
REMARKS.

The permissible paragraph headers in the Environment Division are as follows:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name
A user-defined word that identifies and begins a paragraph in the Procedure Division.

Pattern
The object of a LIKE relation condition that specifies the regular expression used for testing
the subject for a match.

Phrase
A phrase is an ordered set of one or more consecutive COBOL character-strings that form a
portion of a COBOL procedural statement or of a COBOL clause.

Physical Page
A device dependent concept defined by the action taken by a printer when a new page is
requested.

Physical Record
The term is synonymous with block.

Pointer Data Item
A data item in which the address of another data item may be stored in a machine dependent
form. The area of memory addressed by a pointer data item can be accessed by setting the
base address of a based linkage record to the value of the pointer in a Format 5 SET
statement.

Previous Record
The record that logically precedes the current record of a file.

Prime Record Key
The primary record key for an indexed file specified by the RECORD KEY clause of the file
control entry. Except when the DUPLICATES phrase is specified, the contents of the prime
record key uniquely identify a record within an indexed file. The prime record key is the
default key when the KEY phrase is omitted in a Format 2 READ statement or in a START
statement.

Glossary

 RM/COBOL Language Reference Manual 511

Procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically
successive sections, within the Procedure Division.

Procedure Branching Statement
A statement that causes the explicit transfer of control to a statement other than the next
operable statement in the sequence in which the statements are written in the source program.
The procedure branching statements are: ALTER, CALL, CALL PROGRAM, EXIT, EXIT
PROGRAM, GOBACK, GO TO, MERGE (with the OUTPUT PROCEDURE phrase),
PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE phrase).

Procedure-Name
A user-defined word that is used to name a paragraph or section in the Procedure Division.
It consists of a paragraph-name (which may be qualified) or a section-name.

Program Identification Entry
An entry in the PROGRAM-ID paragraph of the Identification Division, which contains
clauses that specify the program-name and assign selected program attributes to the program.

Program-Name
In the Identification Division and the end program header, a user-defined word that identifies
a COBOL source program.

Program-Text
Program-text is the collection of character-strings (COBOL words) and separators that are
specified in the program-text area of source programs. The program-text is compiled to
produce an object program.

Program-Text Area
The area of source records starting in column 8 (subject to certain rules requiring program-
text to start in Area B, that is, column 12 or later) and ending at margin R in fixed-form
reference format.

Pseudo-Text
A sequence of text words, comment lines, or the separator space in a source program or
COBOL library bounded by, but not including, pseudo-text delimiters.

Pseudo-Text Delimiter
Two adjacent equal sign (=) characters used to delimit pseudo-text.

Punctuation Character
A character that belongs to the following set:

Glossary

512 RM/COBOL Language Reference Manual

Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

“ Quotation mark

’ Apostrophe

(Left parenthesis

) Right parenthesis

 Space

= Equal sign

Qualified Data-Name
An identifier that is composed of a data-name followed by one or more set of either of the
connectives OF and IN followed by a data-name qualifier.

Qualifier
1. A data-name or a name associated with a level indicator that is used in a reference either

together with another data-name, which is the name of an item that is subordinate to the
qualifier, or together with a condition-name.

2. A screen-name that is used in a reference together with another screen-name, which
is the name of an item that is subordinate to the qualifier.

3. A section-name that is used in a reference together with a paragraph-name specified
in that section.

4. A library-name that is used in a reference together with a text-name associated
with that library.

5. A file-name that is used in a reference together with the special register
LINAGE-COUNTER associated with that file.

Queue
A logical collection of messages awaiting transmission or processing.

Queue Name
A symbolic name that indicates to the message control system the logical path by which a
message or a portion of a completed message may be accessible in a queue.

Random Access
An access mode in which the program-specified value of a key data item identifies the logical
record that is obtained from, deleted from, or placed into a relative or indexed file. Compare
with definitions for Dynamic Access (on page 493) and Sequential Access (on page 517).

Glossary

 RM/COBOL Language Reference Manual 513

Record
The most inclusive data item. The level-number for a record is 01. A record may be either an
elementary item or a group item. The term is synonymous with logical record unless
otherwise qualified (as in physical record).

Record Area
A storage area allocated for processing the record described in a record description entry in
the File Section of the Data Division. In the File Section, the current number of character
positions in the record area is determined by the explicit or implicit RECORD clause.

Record Delimiting Technique
The method of determining the length of a record on the external storage medium for a
sequential file.

Record Description
The total set of data description entries associated with a particular record. The term is
synonymous with record description entry.

Record Description Entry
The total set of data description entries associated with a particular record. The term is
synonymous with record description.

Record Key
A key whose contents identify a record within an indexed file. Within an indexed file, a
record key is either the prime record key or an alternate record key.

Record Locking Mode
The manner in which records are to be locked and unlocked within a shared input-output file.
The record locking modes are automatic multiple, automatic single, manual multiple and
manual single. Because automatic and manual specify how records are locked and single and
multiple specify how records are unlocked, these modes are sometimes specified in the text as
one of the following:

• Automatic record locking modes: automatic single and automatic multiple

• Manual record locking modes: manual single and manual multiple

• Multiple record locking modes: automatic multiple and manual multiple

• Single record locking modes: automatic single and manual single

Record Number
The ordinal number of a record in the file whose organization is sequential.

Glossary

514 RM/COBOL Language Reference Manual

Record-Name
A user-defined word that names a record described in a record description entry in the Data
Division of a COBOL program.

Reel
A discrete portion of a storage medium, the dimensions of which are determined by the
physical medium, that contains part of a file, all of a file, or any number of files. The term is
synonymous with unit and volume.

Reference Modifier
The farthest left-character-position and length used to establish and refer to a data item.

Regular Expression
A simple form of an expression that uses meta-characters as operators to define a pattern. The
regular expressions used in RM/COBOL LIKE conditions match regular expressions defined
by XML Schema (on page 524). For more information, see the explanation of regular
expressions (on page 191) and a summary of regular expression grammar (on page 197).

Relation
The term is synonymous with relational operator.

Relation Character
A character that belongs to the following set:

Character Meaning

> Greater than

< Less than

= Equal to

Relation Condition
The proposition, for which a truth value can be determined, that the value of an arithmetic
expression, data item, nonnumeric literal, or index-name has a specific relationship to the
value of another arithmetic expression, data item, nonnumeric literal, or index-name.

Relational Operator
A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation
condition. The permissible operators and their meanings are as follows:

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than or not greater than

Glossary

 RM/COBOL Language Reference Manual 515

IS [NOT] LESS THAN
IS [NOT] <

Less than or not less than

IS [NOT] EQUAL TO
IS [NOT] =

Equal to or not equal to

IS GREATER THAN OR EQUAL TO
IS >=

Greater than or equal to

IS LESS THAN OR EQUAL TO
IS <=

Less than or equal to

Relative File
A file with relative organization.

Relative Key
A key whose contents identify a logical record in a relative file.

Relative Organization
The permanent logical file structure in which each record is uniquely identified by an integer
value greater than zero, which specifies the logical ordinal position of the record in the file.
Compare with definitions for Indexed Organization (on page 499) and Sequential
Organization (on page 499).

Relative Record Number
The ordinal number of a record in a file whose organization is relative. This number is treated
as a numeric literal, which is an integer.

Reserved Word
A COBOL word specified in the list of words that may be used in a COBOL source program,
but that must not appear in the program as user-defined words or system-names. For a list of
reserved words, see Appendix A: Reserved Words (on page 387).

Resource
A facility or service, controlled by the operating system, which can be used by a running
program.

Resultant Identifier
A user-defined data item that is to contain the result of an arithmetic operation.

Routine-Name
A user-defined word that identifies a procedure written in a language other than COBOL.

Glossary

516 RM/COBOL Language Reference Manual

Run Unit
One or more object programs that interact with one another and that function, at object time,
as an entity to provide problem solutions.

Screen Clause
A clause, specified in a screen description entry in the Screen Section of the Data Division of
a COBOL program, that provides information describing a particular attribute of a screen
item.

Screen Description Entry
An entry, in the Screen Section of the Data Division of a COBOL program, that is composed
of a level-number followed by a screen-name, if required, and then followed by a set of screen
clauses, as required.

Screen Item
A unit of data, including its associated screen attributes, defined by the COBOL program in
the Screen Section of the Data Division.

Screen Section
The section of the Data Division that describes screen items, composed of screen records.

Screen-Name
A user-defined word that names a screen item described in a screen description entry.

Section
A set of zero, one, or more paragraphs or entries, called a section body, the first of which is
preceded by a section header. Each section consists of the section header and the related
section body.

Section Header
A combination of words followed by a separator period that indicates the beginning of a
section in the Environment, Data, and Procedure Divisions. In the Environment and Data
Divisions, a section header is composed of reserved words followed by a separator period.
The permissible section headers in the Environment Division are as follows:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division are as follows:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
SCREEN SECTION.

Glossary

 RM/COBOL Language Reference Manual 517

In the Procedure Division, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a segment-number (optional), and followed by a
separator period.

Section-Name
A user-defined word that names a section in the Procedure Division.

Segment-Number
A user-defined word that classifies sections in the Procedure Division for purposes of
segmentation. Segment-numbers may contain only the characters ‘0’, ‘1’, . . ., ‘9’. A
segment-number may be expressed either as a one or two digit number.

Sentence
A sequence of one or more statements, the last of which is ended by a separator period.

Separately Compiled Program
A program that, together with its contained programs, is compiled separately from all other
programs.

Separator
A character or two adjacent characters used to delimit character-strings.

Sequence Number Area
In fixed-form reference format, columns 1 to 6 of a source record. The sequence number area
can be used to contain a sequence number, if desired, but may also contain any desired
commentary. The compiler ignores the contents of the sequence number area when compiling
a source program. In the listing, the sequence number area can be replaced with a sequence
number by configuring the RENUMBER-SEQUENCE-AREA value of the LISTING-
ATTRIBUTES keyword in the COMPILER-OPTIONS configuration record.

Sequential Access
An access mode in which logical records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record sequence determined by the order of
records in the file. Compare with definitions for Dynamic Access (on page 493) and Random
Access (on page 512).

Sequential File
A file with sequential organization.

Glossary

518 RM/COBOL Language Reference Manual

Sequential Organization
The permanent logical file structure in which a record is identified by a predecessor-successor
relationship established when the record is placed into the file. Compare with definitions for
Indexed Organization (on page 499) and Relative Organization (on page 515).

Shared File
A file that is open with a lock mode of shared.

Shared File Environment
An execution environment for COBOL programs in which concurrently executing run units
may asynchronously access the same physical files. Examples of such environments are
multitasking operating systems and network file systems (such as local area networks, which
are often called LANs).

Shared Mode
A lock mode in which the file may be in an open mode concurrently by more than one run
unit. When shared input-output mode applies, record locking also applies in order to
coordinate access to and updating of individual records. A file cannot be successfully opened
in shared mode if any other run unit has the file open in a conflicting exclusive mode.

Sign Condition
The proposition, for which a truth value can be determined, that the algebraic value of a data
item or an arithmetic expression is either less than, greater than, or equal to zero.

Simple Condition
Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

Single Record Locking Modes
Record locking modes in which locked records are to be unlocked implicitly by the execution
of any input-output statement that refers to the file. Thus, only at most a single record at a
time is locked in the file by the run unit. The single record locking modes are automatic
single and manual single.

Sort File
A collection of records to be sorted by a SORT statement. The sort file is created and can be
used by the sort function only.

Glossary

 RM/COBOL Language Reference Manual 519

Sort-Merge File Description Entry
An entry in the File Section of the Data Division that is composed of the level indicator SD,
followed by a file-name, and then followed by a set of file clauses as required.

Source
The symbolic identification of the originator of a transmission to a queue.

Source Computer Entry
An entry in the SOURCE-COMPUTER paragraph of the Environment Division, which
contains clauses that describe the computer environment in which the source program is to be
compiled.

Source Format
A format that provides a standard method for describing COBOL source programs.

Source Program
Although it is recognized that a source program may be represented by other forms and
symbols, in this document it always refers to a syntactically correct set of COBOL statements.
A COBOL source program commences with the Identification Division; a COPY statement;
or a REPLACE statement. A COBOL source program is ended by the end program header, if
specified, or by the absence of additional source program lines.

SOURCE-COMPUTER
The name of an Environment Division paragraph in which the computer environment, within
which the source program is compiled, is described.

Special Character
A character that belongs to the following set:

Character Meaning

+ Plus sign (unary plus operator; addition operator)

– Minus sign (unary minus operator; subtraction operator)

* Asterisk (multiplication operator)

/ Slant (solidus) (division operator)

= Equal sign (relation operator; assignment operator)

$ Currency sign

, Comma (decimal point)

; Semicolon

. Period (decimal point, full stop)

“ Quotation mark (nonnumeric literal delimiter)

’ Apostrophe (nonnumeric literal delimiter)

(Left parenthesis (subscripting; reference modification)

Glossary

520 RM/COBOL Language Reference Manual

) Right parenthesis (subscripting; reference modification)

> Greater than symbol (relation operator)

< Less than symbol (relation operator)

: Colon (reference modification)

& Ampersand (literal concatenation operator)

Special Character Word
A reserved word that is an arithmetic operator or a relation character.

Special Names Entry
An entry in the SPECIAL-NAMES paragraph of the Environment Division, which provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic
characters; relating feature-names, switch-names, and low-volume-I-O-names to user-
specified mnemonic-names; relating alphabet-names to character sets or collating sequences;
and relating class-names to sets of characters.

Special Registers
Certain compiler generated storage areas whose primary use is to store information produced
in conjunction with the use of specific COBOL features.

SPECIAL-NAMES
The name of an Environment Division paragraph, which provides means for specifying the
currency sign; choosing the decimal point; specifying symbolic characters; relating feature-
names, switch-names, and low-volume-I-O-names to user-specified mnemonic-names;
relating alphabet-names to character sets or collating sequences; and relating class-names to
sets of characters.

Split Key
A record key of an indexed file that is the concatenation of one or more data items with a
record associated with the file. The data items need not be contiguous within the record. The
split key is specified in READ and START statements with a split-key-name.

Split-Key-Name
A user-defined word that names a concatenation of one or more data items within a record
associated with an indexed file. The concatenation of the data items forms a single record key
for that file. A split-key-name may be specified only in a READ or START statement.

Standard Data Format
The concept used in describing data in a COBOL Data Division under which the
characteristics or properties of the data are expressed in a form oriented to the appearance of
the data on a printed page of infinite length and breadth, rather than a form oriented to the
manner in which the data is stored internally in the computer or on a particular medium.

Glossary

 RM/COBOL Language Reference Manual 521

Statement
A syntactically valid combination of words, literals, and separators, beginning with a verb,
written in a COBOL source program.

Subject of Entry
An operand or reserved word that appears immediately following the level indicator or the
level-number in a Data Division entry.

Subprogram
A program that is the object of a CALL statement combined at object time with the calling
program to produce a run unit. The term is synonymous with called program.

Sub-Queue
A logical hierarchical division of a queue.

Subscript
An occurrence number represented by either an integer, a data-name optionally followed by
an integer with the operator + or –, or an index-name optionally followed by an integer with
the operator + or –, which identifies a particular element in a table.

Subscripted Data-Name
An identifier that is composed of a data-name followed by one or more subscripts enclosed in
parentheses.

Switch-Name
A system-name that names a switch in the operating environment.

Switch-Status Condition
The proposition, for which a truth value can be determined that a switch, capable of being set
to an ‘on’ or ‘off’ status, has been set to a specific status.

Symbolic-Character
A user-defined word that specifies a user-defined figurative constant.

System-Name
A COBOL word that is used to communicate with the operating environment.

Table
A set of logically consecutive items of data that are defined in the Data Division of a COBOL
program by means of the OCCURS clause.

Glossary

522 RM/COBOL Language Reference Manual

Table Element
A data item that belongs to the set of repeated items comprising a table.

Table-Name
A data-name that includes the OCCURS clause in its data description entry.

Terminal
The originator of a transmission to a queue or the receiver of a transmission from a queue.

Text Word
A character or a sequence of adjacent characters between margin A and margin R in a
COBOL library, source program, or in pseudo-text that is:

1. A separator, except for: space; a pseudo-text delimiter; and the opening and closing
delimiters for nonnumeric literals. The right parenthesis and left parenthesis characters,
regardless of context within the library, source program, or pseudo-text, are always
considered text words.

2. A literal including, in the case of nonnumeric literals, the opening quotation mark and the
closing quotation mark that bound the literal.

3. Any other sequence of adjacent COBOL characters except comment lines and the word
‘COPY’, bounded by separators, which is neither a separator nor a literal.

Text-Name
A user-defined word that identifies library text.

Top Margin
An empty area that precedes the page body.

Truth Value
The representation of the result of the evaluation of a condition in terms of one of two
values: true, false.

Unary Operator
A plus (+) or a minus (–) sign, which precedes a variable or a left parenthesis in an arithmetic
expression and which has the effect of multiplying the expression by +1 or –1, respectively.

Unicode
Unicode provides a unique number for every character, no matter what the platform, no
matter what the program, no matter what the language. Information about Unicode is
available at http://www.unicode.org.

http://www.unicode.org/

Glossary

 RM/COBOL Language Reference Manual 523

Unit
A discrete portion of a storage medium, the dimensions of which are determined by the
physical medium, that contains part of a file, all of a file, or any number of files. The term is
synonymous with reel and volume.

Unsuccessful Execution
The attempted running of a statement that does not result in the running of all the operations
specified by that statement. The unsuccessful execution of a statement does not affect any
data referred by that statement, but may affect status indicators.

User-Defined Word
A COBOL word that must be supplied by the user to satisfy the format of a clause or
statement.

Variable
A data item whose value may be changed by execution of the object program. A variable
used in an arithmetic-expression must be a numeric elementary item.

Variable-Length Group
A group data item that contains a data item described with the OCCURS clause with the
DEPENDING ON phrase, and the data item described with that clause is neither subordinate
to a data item described with the OCCURS clause nor followed by a data item with a lower
or equal level-number (that is, is not subordinate to data item described with the OCCURS
clause, but is subordinate to the group containing that data item). The length of a
variable-length group varies, depending on the active number of occurrences of the data
item described with the OCCURS clause with the DEPENDING ON phrase that is
subordinate to the group.

Variable-Length Record
A record associated with a file whose file description or sort-merge description entry permits
records to contain a varying number of character positions.

Variable-Occurrence Data Item
A variable-occurrence data item is a table element that is repeated a variable number of times.
Such an item must contain an OCCURS DEPENDING ON clause in its data description
entry, or be subordinate to such an item. A group that contains a variable-occurrence data
item is a variable-length group unless the containing group is described with the OCCURS
clause or contains data items following the variable-occurrence data items that are not
subordinate to the data item described with the OCCURS clause with the DEPENDING
ON phrase.

Verb
A word that expresses an action to be taken by a COBOL compiler or object program.

Glossary

524 RM/COBOL Language Reference Manual

Volume
A discrete portion of a storage medium, the dimensions of which are determined by the
physical medium, that contains part of a file, all of a file, or any number of files. The term is
synonymous with reel and unit.

Word
A character-string of not more than 30 characters that forms a user-defined word, a
system-name, or a reserved word.

Working-Storage Section
The section of the Data Division that describes working storage data items, composed either
of noncontiguous items or working storage records or of both.

XML
The abbreviation denoting the eXtensible Markup Language, a language for specifying
documents. The specification for XML is available at the following web site:

http://www.w3.org/TR/2000/REC-xml-20001006

XML Schema
The specification that describes a definition language for XML documents. The specification
is available at http://www.w3.org/XML/Schema.

Zero-Length Item
An item whose minimum permitted length is zero and whose length at execution time is zero.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/XML/Schema

Index

 RM/COBOL Language Reference Manual 525

Index

0

01-level-description-entry 10, 101, 108
format 90

6

66-level-description-entry 10, 108
format 104, 122
glossary term 481

7

7 Compile Command Option 199, 204, 209, 216, 330
77-level-description-entry 10, 108

format 102
glossary term 481

78-level-description-entry 9, 10, 108
format 104
glossary term 481

8

88-level-description-entry 10, 108
format 104
glossary term 481

A

A Runtime Command Option 172, 261
Abbreviated combined relation condition 202

glossary term 481
ACCEPT . . . FROM statement 101, 231
ACCEPT MESSAGE COUNT statement 248
ACCEPT screen-name statement 249
ACCEPT statement (terminal I-O) 234
ACCEPT-BEEP-DEFAULT keyword, COMPILER-

OPTIONS configuration record 238
ACCEPT-SUPPRESS-CONVERSION keyword,

COMPILER-OPTIONS configuration record
239

Access mode See also Dynamic access, Random
access, and Sequential access

for indexed file organization 214
for relative file organization 208
for sequential file organization 203
glossary term 482

ACCESS MODE clause, file control entry 69, 71
ACTION keywordTERM-INPUT configuration

record 250
Actual argument

CALL statement 99, 173, 258
glossary term 482
Linkage Section 13, 85, 98, 99

Actual decimal point
editing symbol 115
glossary term 482

ADD statement 182, 252
ADDRESS phrase, SET statement 356
ADDRESS special register 12, 98, 173, 188, 258, 259
ADVANCING phrase

SEND statement 355
WRITE statement 383

AFTER phrase
INSPECT statement 303
PERFORM statement 324
SEND statement 355
WRITE statement 384

Alignment rules, standard 161
ALL adjective

INSPECT REPLACING statement 305
INSPECT TALLYING statement 304

ALL literal, figurative constant 23, 24
ALL phrase

INITIALIZE statement 297
INSPECT statement 301
SEARCH statement 170, 349
UNSTRING statement 378

ALPHABET clause 54, 58, 59
code name alphabets 61
literal alphabets 61

Alphabetic character
alphabetic data item 112
class condition 199
CONTROL phrase, ACCEPT statement 238
CURRENCY SIGN clause 64
glossary term 482
PICTURE character-string 113
user-defined words 8, 40

Alphabetic class 160
ALPHABETIC class condition, conditional

expressions 198
Alphabetic data item 112
ALPHABETIC phrase, INITIALIZE statement 297
ALPHABETIC-LOWER class condition, conditional

expressions 198

Index

526 RM/COBOL Language Reference Manual

ALPHABETIC-UPPER class condition, conditional
expressions 198

Alphabet-name
ALPHABET clause 54, 58, 59
CODE-SET clause

file control entry 69, 73
file description entry 88, 89

COLLATING clause, file control entry 70, 74
COLLATING SEQUENCE clause, program 54, 57
glossary term 482
MERGE statement 307
PROGRAM COLLATING SEQUENCE clause 54,

57
scope 36
SEQUENCE clause

file control entry 70, 74
program collating 54, 57

SORT statement 360
SYMBOLIC CHARACTERS clause 54, 58, 67
user-defined word type 8

Alphanumeric character
glossary term 482
regular expressions, Perl language 194

Alphanumeric class 160
Alphanumeric data item 112, 191
Alphanumeric edited data item 113
ALPHANUMERIC phrase, INITIALIZE statement

297
ALPHANUMERIC-EDITED phrase, INITIALIZE

statement 297
ALSO phrase, EVALUATE statement 288
ALTER statement 254

restrictions 179
ALTERNATE phrase, RESERVE [AREAS] clause,

file control entry 70, 80
Alternate record key 70, 78, 214

glossary term 482
NEXT phrase, Format 1 READ statement 336
REWRITE statement 345
WRITE statement 386

ALTERNATE RECORD KEY clause, file control
entry 70, 78, 214

American Standard Code for Information Interchange
See ASCII

AND logical operator
abbreviated combined relation conditions 202
combined conditions 201
constant-expressions 136

ANY, selection object 289
Area A

glossary term 482
illustrated and rules defined 25

Area B
glossary term 483
illustrated and rules defined 25

Argument passing 261

Argument, actual
CALL statement 99, 173, 258
glossary term 482
Linkage Section 13, 85, 98, 99

Argument, formal
glossary term 498
Linkage Section 85, 98, 166
procedure division header 173

Arithmetic expressions 185
COMPUTE statement 266
EVALUATE statement 288
glossary term 483
parentheses, using in 6, 185, 186
reference modification 165
relational condition 187
SEARCH ALL statement 347
Sign condition 200

Arithmetic operation 182–84, 187
glossary term 483

Arithmetic operators 136, 186
glossary term 483

Arithmetic statements 29, 182
ADD statement 252
COMP usage 129–30
COMPUTE statement 266
DIVIDE statement 282
glossary term 483
MULTIPLY statement 315
subscripting 164
SUBTRACT statement 375

Ascending key
glossary term 483
OCCURS clause, KEY phrase 110

ASCENDING phrase
MERGE statement 308
OCCURS clause 109
SORT statement 361

ASCII
STANDARD-1 alphabet 59, 61
translation 62

ASSIGN clause
file control entry 69, 72
sort-merge file control entry 80

Assumed decimal point
data alignment 161
glossary term 483
PICTURE character-string symbol, V 114

At end condition
glossary term 484
indexed file 216, 219
relative file 209, 212
sequential file 205, 206

AT END phrase
indexed file 219
READ statement 335
relative file 213

Index

 RM/COBOL Language Reference Manual 527

RETURN statement 343
SEARCH statement 349
sequential file 206

AUTHOR paragraph 49, 50
AUTO clause

screen field description entry 151
screen group description entry 149, 151

AUTO phrase, ACCEPT statement 237
Automatic multiple record locking mode 223

glossary term 484
AUTOMATIC phrase, LOCK MODE clause, file

control entry 75
Automatic record locking modes 75, 222

glossary term 484
Automatic single record locking mode 75, 223

glossary term 484
AUTO-SKIP clause

screen field description entry 151
screen group description entry 149, 151

AUTO-SKIP phrase, ACCEPT statement 237

B

B Compile Command Option 78
B Runtime Command Option 272
BACKGROUND clause

screen field description entry 150, 151
screen group description entry 148, 151
screen literal description entry 149, 151

BACKGROUND-COLOR clause
screen field description entry 150, 152
screen group description entry 148, 152
screen literal description entry 149, 152

Base address
based linkage 98
SET statement 356

Based linkage record 98
glossary term 484

BEEP clause
screen field description entry 150, 152
screen literal description entry 149, 152

BEEP phrase
ACCEPT statement 237
DISPLAY statement 275

BEFORE phrase
INSPECT statement 303
SEND statement 355
WRITE statement 384

BEFORE TIME phrase, ACCEPT statement 246
BELL clause

screen field description entry 150, 152
screen literal description entry 149, 152

BELL phrase, ACCEPT statement 237
Binary allocation override 127, 129, 130, 172

glossary term 484
parentheses, using in 6, 129, 130

Binary sequential
glossary term 485
record delimiting technique 76, 77

Binary usage
data description entry 129
highest value 14
lowest value 16
maximum value 17
minimum value 18

BINARY-ALLOCATION keyword, COMPILER-
OPTIONS configuration record 129, 130, 172

BINARY-ALLOCATION-SIGNED keyword,
COMPILER-OPTIONS configuration record
129, 130, 172

BINARY-SEQUENTIAL record delimiting
technique

nonreserved system-names 397
RECORD DELIMITER clause 77
system-names 12

BLANK LINE clause
screen field description entry 150, 152
screen literal description entry 149, 152

Blank lines, source format 27
BLANK REMAINDER clause

screen field description entry 150, 153
screen literal description entry 149, 153

BLANK SCREEN clause
screen field description entry 150, 153
screen literal description entry 149, 153

BLANK WHEN ZERO clause
data description entry 103, 105
screen field description entry 150, 153

BLINK clause
screen field description entry 150, 154
screen literal description entry 149, 154

BLINK phrase
ACCEPT statement 238
DISPLAY statement 276

Block
BLOCK CONTAINS clause 87, 89
glossary term 485

BLOCK CONTAINS clause, file description entry
87, 89

Bottom margin 92, 93
glossary term 485

Buffer size
B Runtime Command Option (ACCEPT and

DISPLAY statements) 272
BY CONTENT phrase, CALL statement 259
BY phrase

COPY statement 40, 43
INSPECT statement 304
PERFORM statement 325
REPLACE statement 44
SET statement 356

BY REFERENCE phrase, CALL statement 258

Index

528 RM/COBOL Language Reference Manual

C

C Compile Command Option 47, 51
C$CARG subprogram 99
C$CompilePattern subprogram 191, 369
C$MemoryAllocate subprogram 132
C01–C12 channel-names

nonreserved system-names 395
SPECIAL-NAMES paragraph 66
system-names 11

CALL PROGRAM statement 261
CALL statement 255
Called program

CALL statement 256
glossary term 485

Calling program
CALL statement 256
glossary term 485

CANCEL statement 262
CARD-PUNCH device-name

ASSIGN clause 72
nonreserved system-names 397
system-names 11

CARD-READER device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

CASE-INSENSITIVE phrase
LIKE relation condition 191
START statement WHILE phrase 369

CASE-SENSITIVE phrase
LIKE relation condition 191
START statement WHILE phrase 369

CASSETTE device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

CD entry See Communication description entry
CD level-indicator

input communication description 137
I-O (input-output) communication description 138
output communication description 137

Cd-name
ACCEPT MESSAGE COUNT statement 248
communication description entry 137–46
condition-name qualification 166
data-name qualification 166
DISABLE statement 270
ENABLE statement 285
glossary term 485
index-name qualification 167
PURGE statement 332
RECEIVE statement 339
scope 36
SEND statement 352
user-defined word type 8

CENTURY-DATE phrase, ACCEPT FROM
statement 232

CENTURY-DAY phrase, ACCEPT FROM statement
232

Channel See Channel-name, C01-C12
Channel-name, C01–C12

glossary term 485
nonreserved system-names 395
SPECIAL-NAMES paragraph 66
system-names 11

Character 5
glossary term 485

Character code set, ALPHABET clause 59
Character position, glossary term 485
Character sequence specification 233
Character set, described 5
CHARACTERS phrase

INSPECT REPLACING statement 304
INSPECT TALLYING statement 304

Characters, special 20
Character-strings 7, 110

COBOL words
length of 7
user-defined 7, 8–10

comment-entry 25
glossary term 485
literals, figurative constants, rules for determining

string length 23
PICTURE 24

in PICTURE clause (data description entry) 110
in PICTURE clause (screen description entry)

158
separators 6

CLASS clause 54, 58, 63
Class condition 63, 198

glossary term 486
Classes of data 160
Class-name

CLASS clause 54, 58, 63
class condition 63, 198
glossary term 486
scope 36
user-defined word type 9

Clause
ACCESS MODE 69, 71
ALPHABET 54, 58, 59
ALTERNATE RECORD KEY 70, 78, 214
ASSIGN

file control 69, 72
sort-merge file control 80

AUTO
screen field description 151
screen group description 149, 151

AUTO-SKIP
screen field description 151
screen group description 149, 151

Index

 RM/COBOL Language Reference Manual 529

BACKGROUND
screen field description 150, 151
screen group description 148, 151
screen literal description 149, 151

BACKGROUND-COLOR
screen field description 150, 152
screen group description 148, 152
screen literal description 149, 152

BEEP
screen field description 150, 152
screen literal description 149, 152

BELL
screen field description 150, 152
screen literal description 149, 152

BLANK LINE
screen field description 150, 152
screen literal description 149, 152

BLANK REMAINDER
screen field description 150, 153
screen literal description 149, 153

BLANK SCREEN
screen field description 150, 153
screen literal description 149, 153

BLANK WHEN ZERO
data description 103, 105
screen field description 150, 153

BLINK
screen field description 150, 154
screen literal description 149, 154

BLOCK CONTAINS 87, 89
CLASS 54, 58, 63
CODE-SET

file control 69, 73
file description 88, 89

COL
screen field description 150, 154
screen literal description 149, 154

COLLATING SEQUENCE
file control 70, 74
program 54, 57

COLUMN
screen field description 150, 154
screen literal description 149, 154

CONSOLE IS CRT 55, 58, 63
COUNT, input communication description (CD)

137, 140
CRT STATUS 55, 58, 63
CURRENCY SIGN 54, 58, 64, 116
CURSOR 55, 58, 64
DATA RECORDS

file description 87, 90
sort-merge file description 88, 90

Data-name or FILLER, data description 102, 106
DEBUGGING MODE 53, 56
DECIMAL-POINT IS COMMA 54, 58, 65

DESTINATION COUNT, output communication
description (CD) 137, 142

DESTINATION TABLE OCCURS, output
communication description (CD) 137, 139, 142

DESTINATION, output communication
description (CD) 137, 142

END KEY
input communication description (CD) 137, 140
I-O (input-output) communication description

138, 144
ERASE

screen field description 150, 154
screen literal description 149, 154

ERROR KEY, output communication description
(CD) 137, 142

EXTERNAL
data description 102, 106
file description 87, 90

FILE STATUS 70, 74
FILLER

data description 102, 106
screen field description 106, 150
screen group description 106, 148
screen literal description 106, 149

FOREGROUND
screen field description 150, 155
screen group description 148, 155
screen literal description 149, 155

FOREGROUND-COLOR
screen field description 150, 155
screen group description 148, 155
screen literal description 149, 155

FULL
screen field description 151, 155
screen group description 149, 155

GLOBAL
data description 102, 107
file description 87, 90

glossary term 486
HIGHLIGHT

screen field description 150, 156
screen literal description 149, 156

INITIAL
input communication description (CD) 137
I-O (input-output) communication description

138
PROGRAM-ID paragraph 50

JUST
data description 103, 107
screen field description 150, 156

JUSTIFIED
data description 103, 107
screen field description 150, 156

LABEL RECORDS 87, 91
LINAGE 88, 91
LINE

Index

530 RM/COBOL Language Reference Manual

screen field description 150, 156
screen literal description 149, 156

LOCK MODE 69, 75
LOWLIGHT

screen field description 150, 156
screen literal description 149, 156

MEMORY SIZE 54, 57
MESSAGE COUNT, input communication

description (CD) 137, 140
MESSAGE DATE

input communication description (CD) 137, 140
I-O (input-output) communication description

138, 144
MESSAGE TIME

input communication description (CD) 137, 140
I-O (input-output) communication description

138, 144
Mnemonic-Name 54, 58, 65
MULTIPLE FILE TAPE 55, 68, 83
NO HIGHLIGHT

screen field description 150, 156
screen literal description 149, 156

NUMERIC SIGN 55, 58, 66, 125
OCCURS, data description 13, 102, 103, 108, 136
ORGANIZATION 69, 76
PADDING CHARACTER 69, 76
PICTURE

data description 102, 110
screen field description 150, 158

PROGRAM COLLATING SEQUENCE 54, 57
program structure 31
QUEUE, input communication description (CD)

137, 139
RECORD

file description 87, 95
sort-merge file description 88, 95

RECORD DELIMITER 69, 77
RECORD KEY 70, 78
REDEFINES, data description 102, 121
RENAMES, data description 104, 122
REQUIRED

screen field description 151, 158
screen group description 149, 158

RERUN 55, 68, 81
RESERVE [AREAS] 69, 70, 79
REVERSE

screen field description 150, 159
screen literal description 149, 159

REVERSED
screen field description 150, 159
screen literal description 149, 159

REVERSE-VIDEO
screen field description 150, 159
screen literal description 149, 159

SAME [AREA] 55, 68, 82
SAME AS, data description 103, 123

Screen-name
screen field description 150
screen group description 148
screen literal description 149

SECURE
screen field description 151, 159
screen group description 149, 159

SEGMENT-LIMIT 54, 57
SELECT

file control 69, 70
sort-merge file control 80

SEQUENCE
file control collating 70, 74
program collating 54, 57

SIGN
data description 103, 124, 199
screen field description 150, 159
screen group description 148, 159

SOURCE, input communication description (CD)
137, 140

STATUS KEY
input communication description (CD) 137, 140
I-O (input-output) communication description

138, 144
output communication description (CD) 137, 142

SUB-QUEUE-1, input communication description
(CD) 137, 139

SUB-QUEUE-2, input communication description
(CD) 137, 139

SUB-QUEUE-3, input communication description
(CD) 137, 140

SYMBOLIC CHARACTERS 54, 58, 67
SYMBOLIC DESTINATION, output

communication description (CD) 137, 142
SYMBOLIC QUEUE, input communication

description (CD) 137, 139
SYMBOLIC SOURCE, input communication

description (CD) 137, 140
SYMBOLIC SUB-QUEUE-1, input

communication description (CD) 137, 139
SYMBOLIC SUB-QUEUE-2, input

communication description (CD) 137, 139
SYMBOLIC SUB-QUEUE-3, input

communication description (CD) 137, 140
SYMBOLIC TERMINAL, I-O (input-output)

communication description 138, 144
SYNC, data description 103, 126
SYNCHRONIZED, data description 103, 126
TERMINAL, I-O (input-output) communication

description 138, 144
TEXT LENGTH

input communication description (CD) 137, 140
I-O (input-output) communication description

138, 144
output communication description (CD) 137, 142

UNDERLINE

Index

 RM/COBOL Language Reference Manual 531

screen field description 150, 159
screen literal description 149, 159

USAGE
data description 103, 126, 127, 172, 188, 199
screen field description 150, 160
screen group description 148, 160

VALUE
condition-name description 104, 133
constant-name description 104, 133
data description 103, 132
screen literal description 149, 160

VALUE OF 87, 97
CLOCK-UNITS phrase

RERUN clause, I-O-CONTROL paragraph 81
CLOSE statement 264

implicit CLOSE on CANCEL 263
COBOL character set 6

glossary term 486
COBOL words

context-sensitive 7, 21, 393
disjoint sets 8
glossary term 487
reserved 7, 12, 387–93
system-names 7, 11, 395–97
user-defined 7, 8–10

CODE keyword, TERM-INPUT configuration record
233

Code-name
ALPHABET clause 54, 58, 59
alphabets 61
EBCDIC 11, 396
glossary term 487
nonreserved system-names 396
system-names 11

CODE-SET clause
file control entry 69, 73
file description entry 88, 89

COL clause
screen field description entry 150, 154
screen literal description entry 149, 154

Collating sequence 57, 74
ALPHABET clause 59
comparison of nonnumeric operands 189
glossary term 487
indexed file 74
MERGE statement 308
SORT statement 361

COLLATING SEQUENCE clause
file control entry 70, 74
program 54, 57
PROGRAM OBJECT-COMPUTER paragraph 57

COLLATING SEQUENCE phrase
MERGE statement 308
SORT statement 361

Colons, using as separators 7
Color-name

BACKGROUND clause
screen field description entry 150, 151
screen group description entry 148, 151
screen literal description entry 149, 151

FOREGROUND clause
screen field description entry 150, 155
screen group description entry 148, 155
screen literal description entry 149, 155

nonreserved system-names 397
Column

COLUMN (COL) phrase
ACCEPT statement (terminal I-O) 243
DISPLAY statement (terminal I-O) 278

COLUMN clause, screen description entry 149,
150, 154

glossary term 487
LINE and POSITION phrases

ACCEPT statement (terminal I-O) 243
DISPLAY statement (terminal I-O) 278

COLUMN (COL) phrase
ACCEPT screen-name statement 249
ACCEPT statement (terminal I-O) 243
DISPLAY screen-name statement 281
DISPLAY statement (terminal I-O) 278

COLUMN clause
screen field description entry 150, 154
screen literal description entry 149, 154

Combined condition 201
glossary term 487

Comma
DECIMAL-POINT clause, SPECIAL-NAMES

paragraph 65
numeric literals 21
PICTURE character-string 115
using as separators 6

Comment entry 25, 44, 49
AUTHOR paragraph 49, 50
DATE-COMPILED paragraph 49, 51
DATE-WRITTEN paragraph 49, 51
glossary term 487
in Identification Division 49
INSTALLATION paragraph 49, 50
REMARKS paragraph 49, 51
SECURITY paragraph 49, 51

Comment lines 5, 27
glossary term 487
source format 28
with asterisk 28

Comments 26
in-line 28

COMMON clause, PROGRAM-ID paragraph 50
Common program 35, 50

glossary term 488
Common rules, procedure division 182
Communication description entry 137

glossary term 488

Index

532 RM/COBOL Language Reference Manual

input 137, 138, 139
I-O (input-output) 138, 139, 143
output 137, 138, 142

Communication device
glossary term 488
relationship to Message Control System, object

program 226
Communication facility 225
Communication Section, Data Division 86, 100

glossary term 488
header 86, 100

Communication statements
DISABLE 270
ENABLE 285
PURGE 332
RECEIVE 339
SEND 352

Comparison
index-names and index data items 190
operands, numeric and nonnumeric 189
pointer data items 190

Compilation, conditional 26
Compile Command

options
ANSI COBOL 1974 or 1985 semantics (7) 199,

204, 209, 216, 330
binary sequential files (B) 78
create smaller COBOL object files (Q) 470
line sequential files (V) 78
output the debug line table (Y) 471, 478
output the symbol table (Y) 471, 478
separate sign in the absence of a SIGN clause (S)

66, 125
specify the RM/COBOL object version (Z) 408,

455, 470, 478
suppress automatic conversion in certain

ACCEPT and DISPLAY statements (M) 231
suppress copied text (C) 47, 51
suppress source program listing (E) 47
with debugging mode (D) 28, 56

Compile time, glossary term 488
Compiler directing statements

COPY 40
ENTER 287
glossary term 488
REPLACE 44
USE 180

Compiler directive 46
glossary term 488
IMP MARGIN-R 25, 27, 46
LISTING 47
PAGE 47

Compiler messages 399
001 - 100 group 400
101 – 200 group 411
201 – 300 group 423

301 – 400 group 434
401 – 500 group 444
501 – 600 group 455
601 – 700 group 459
701 – 800 group 466

COMPILER-OPTIONS configuration record
ACCEPT-BEEP-DEFAULT keyword 238
ACCEPT-SUPPRESS-CONVERSION keyword

239
BINARY-ALLOCATION keyword 129, 130, 172
BINARY-ALLOCATION-SIGNED keyword 129,

130, 172
COMPUTATIONAL-TYPE keyword 127–28, 128
DERESERVE keyword 387, 393
ENTRY-LINKAGE-SETTINGS keyword 99
EXTERNAL-INDEX-NAME keyword 38
INITIAL-MARGIN-R keyword 25, 46
LISTING-ATTRIBUTES keyword 47
LISTING-DATE-FORMAT keyword 51
LISTING-DATE-SEPARATOR keyword 51
OBJECT-VERSION keyword 462
SOURCE-ON-INPUT-DEVICE keyword 27
SOURCE-PATTERN-EXCLUDE keyword 26
SOURCE-PATTERN-INCLUDE keyword 26
SOURCE-RECORD-MAX-LENGTH keyword 25
STRICT-REFERENCE-MODIFICATION

keyword 166
STRIP-LIKE-PATTERN-TRAILING-SPACES

keyword 369
SUPPRESS-FILLER-IN-SYMBOL-TABLE

keyword 468
SUPPRESS-LITERAL-BY-CONTENT keyword

258
SYMBOL-TABLE-OUTPUT keyword 462
WHEN-COMPILED-FORMAT keyword 20

Complex condition 201
glossary term 488

Composite of operands 187, 266, 414
glossary term 488

Composite size 183
COMPUTATIONAL usage 128
COMPUTATIONAL-1 usage 16, 129
COMPUTATIONAL-3 usage 16, 129
COMPUTATIONAL-4 usage 16, 129
COMPUTATIONAL-5 usage 16, 130
COMPUTATIONAL-6 usage 16, 131
COMPUTATIONAL-TYPE keyword, COMPILER-

OPTIONS configuration record 127–28, 128
COMPUTE statement 182, 266
Computer-name

glossary term 489
OBJECT-COMPUTER paragraph 53, 57
SOURCE-COMPUTER paragraph 53, 56

Concatenation expression
continuation 27
definition 24

Index

 RM/COBOL Language Reference Manual 533

glossary term 489
Concatenation operator 20, 24
Condition evaluation rules 202
Conditional compilation 26
Conditional expressions 187, See also Conditions

complex 201
glossary term 489
simple 187

Conditional phrases
glossary term 489
program structure 30

Conditional sentences 31
Conditional statements 29

glossary term 489
program structure 29

Conditional variable
condition-name condition 200
condition-name VALUE clause 135
Format 3 data description entry 105
glossary term 489

Condition-name 36, 104, 133
conditional variable condition 200
data description entry 104
global 34, 107
glossary term 489
Mnemonic-Name clause 54, 65
qualification 162
references 166
RERUN clause 55, 68, 81
rules (Format 2 VALUE clause) 135
scope 37
switch-status 57, 66
switch-status condition 200
tests 66
user-defined word type 9

Condition-name condition
conditional expressions 200
glossary term 490

Conditions
abbreviated combined 202, 481
class 198, 486
combined 201, 487
complex 201, 488
conditional expressions 187, 201, 489
condition-name 200, 490
evaluation rules 202
glossary term 489
LIKE (relation condition) 190, 502
negated 201, 506
parentheses, using in 6, 187
relation 187, 514
sign 200, 518
simple 187, 518
switch-status 200, 521

Configuration Section, Environment Division 53, 56
glossary term 490

header 53
Connectives 12
CONSOLE device-name

ASSIGN clause 72
nonreserved system-names 396–97
system-names 11

CONSOLE IS CRT clause 55, 58, 63
CONSOLE low-volume-I-O-name 66

ACCEPT statement 231
DISPLAY statement 272
nonreserved system-names 396
system-names 12

Constant-expressions
DATE-COMPILED phrase 137
exponentiation 135
format 135
glossary term 490
logical operators 136
parentheses, using in 6, 136
rules 135
VALUE clause 133, 135

Constant-name 104, 133
data description entry 104
global 34
glossary term 490
rules (Format 3 VALUE clause) 135
scope 37
user-defined word type 9

Contained program
directly 33
indirectly 33

Context-sensitive words 7, 21, 393
glossary term 490

Contiguous items
glossary term 490
record description entry 101

Continuation line 27
CONTINUE statement 267
Continued line, source format 27
CONTROL phrase

ACCEPT and DISPLAY statements 238, 276
ACCEPT statement 236, 238
DISPLAY statement 275, 276

Conventions and symbols 2
CONVERT phrase

ACCEPT statement 239
DISPLAY statement 277

CONVERTING phrase, INSPECT statement 300
COPY statement 40

BY phrase 40, 43
REPLACING phrase 40, 41
SUPPRESS phrase 40, 41, 47

CORRESPONDING phrase
ADD statement 253
MOVE statement 314
SUBTRACT statement 376

Index

534 RM/COBOL Language Reference Manual

COUNT clause, input communication description
(CD) entry 137, 140

COUNT phrase, UNSTRING statement 379
COUNT special register 13
Counter, glossary term 490
COUNT-MAX special register 13
COUNT-MIN special register 13
Critical error conditions

indexed 215
relative 208
sequential 204

CRT STATUS clause 55, 58, 63
cs See Currency sign
Currency sign See also Currency symbol

CURRENCY SIGN clause, SPECIAL-NAMES
paragraph 64

glossary term 491
PICTURE character-string 116

CURRENCY SIGN clause 54, 58, 64
PICTURE character-string 116
SPECIAL-NAMES paragraph 64

Currency symbol See also Currency sign
CURRENCY-SIGN clause, SPECIAL-NAMES

paragraph 64
glossary term 491
PICTURE character-string 116

Current record
glossary term 491
READ statement 333

Current volume pointer
CLOSE statement, REEL and UNIT phrases 264
glossary term 491

CURSOR clause 55, 58, 64
CURSOR phrase, ACCEPT statement 240
CYCLE phrase, EXIT PERFORM statement 292

D

D Compile Command Option 28, 56
Data

external 106
structure, classes of 160

DATA BY phrase, INITIALIZE statement 297
Data clause

BLANK WHEN ZERO 103, 105
data-name or FILLER 102, 106
EXTERNAL 102, 106
GLOBAL 102, 107
glossary term 491
JUST 103, 107
JUSTIFIED 103, 107
level-number 101, 102, 108
OCCURS 13, 102, 103, 108, 136
PICTURE 102, 110
REDEFINES 102, 121
RENAMES 104, 122

SAME AS 103, 123
SIGN 103, 124, 199
SYNC 103, 126
SYNCHRONIZED 103, 126
USAGE 103, 126, 127, 172, 188, 199
VALUE 103, 132

Data description entry 102
BLANK WHEN ZERO clause 103, 105
condition-name declaration 104
constant-name declaration 104
data-name or FILLER clause 102, 106
EXTERNAL clause 102, 106
GLOBAL clause 102, 107
glossary term 491
JUST clause 103, 107
JUSTIFIED clause 103, 107
level-number 101, 102, 108
OCCURS clause 13, 102, 103, 108, 136
PICTURE clause 102, 110
REDEFINES clause 102, 121
RENAMES clause 104, 122
rules

condition-name 135
constant-name 135
VALUE clause 134

SAME AS clause 103, 123
SIGN clause 103, 124, 199
SYNC clause 103, 126
SYNCHRONIZED clause 103, 126
USAGE clause 103, 126, 127, 172, 188, 199
VALUE clause 103, 132

Data Division 32, 85
77-level description entry 102
communication description entry 137
data description entry 102
data structures 160

classes of data 160
standard alignment rules 161

file description clauses 89
file description entry 87
header 86
identifier 166
record description entry 101
reference modification 165, 185
screen description entry 148

screen field format 150
screen group format 148
screen literal format 149

section
Communication 86, 100
File 85, 87
Linkage 85, 98
Screen 86, 100
Working-Storage 85, 97

sort-merge file description entry 88
subscripting 164

Index

 RM/COBOL Language Reference Manual 535

table handling 167
references to table items 169
table definition 168

uniqueness of reference 161
qualification 162

Data item
data pointer 113, 132, 134, 297
external 106
file status 203, 208, 215
glossary term 491
internal 34
variable-occurrence 109

DATA phrase, RECEIVE statement 340
Data pointer 113, 132, 134, 297
DATA RECORDS clause

file description entry 87, 90
sort-merge file description entry 88, 90

Data-name
global 34, 91, 107
glossary term 491
qualification 162
references 166
scope 37
user-defined word type 9

Data-name or FILLER clause, data description entry
102, 106

DATA-POINTER phrase, INITIALIZE statement
297

Date
ACCEPT FROM CENTURY-DATE statement 232
ACCEPT FROM CENTURY-DAY statement 232
ACCEPT FROM DATE statement 232
ACCEPT FROM DATE-AND-TIME statement

233
ACCEPT FROM DATE-COMPILED statement

233
listing format configuration 51
listing separator configuration 51

DATE phrase, ACCEPT FROM statement 232
DATE-AND-TIME phrase, ACCEPT FROM

statement 233
DATE-COMPILED paragraph 49, 51
DATE-COMPILED phrase

ACCEPT FROM statement 233
constant-expressions 137

DATE-WRITTEN paragraph 49, 51
Day

ACCEPT FROM DAY statement 233
ACCEPT FROM DAY-AND-TIME statement 233
ACCEPT FROM DAY-OF-WEEK statement 233

DAY phrase, ACCEPT FROM statement 233
DAY-AND-TIME phrase, ACCEPT FROM

statement 233
DAY-OF-WEEK phrase, ACCEPT FROM statement

233
Debug

output debugging information (Y Compile
Command Option) 471, 478

Debugging lines
DEBUGGING MODE clause, SOURCE-

COMPUTER paragraph 56
glossary term 491
source format 26, 28, 43

DEBUGGING MODE clause 53, 56
Decimal point

DECIMAL-POINT clause, SPECIAL-NAMES
paragraph 21, 65

numeric literals 21
PICTURE character-string 115

DECIMAL-POINT clause, SPECIAL-NAMES
paragraph 65

ACCEPT statement
input conversion 239
output conversion 247

DISPLAY statement
output conversion 277

numeric literals 21
PICTURE character-string 115

DECIMAL-POINT IS COMMA clause 54, 58, 65
Declarative sentence

DECLARATIVES, Procedure Division format 174
glossary term 491
USE statement 180

Declaratives
glossary term 492
Procedure Division format 174

DECLARATIVES keyword 174
De-edit

glossary term 492
MOVE statement 313

DEFAULT phrase, INITIALIZE statement 298
DEFAULT TYPE keyword

RUN-SEQ-FILES configuration record 78
DEFAULT-USE-PROCEDURE keyword, RUN-

FILES-ATTR configuration record 181, 207,
212–13, 218–20, 335

DELETE FILE statement 269
DELETE statement (relative and indexed I-O) 267
DELIMITED phrase

STRING statement 373
UNSTRING statement 379

Delimited scope statements 29
glossary term 492
program structure 31

Delimiter
glossary term 492
pseudo-text 7

DELIMITER clause See RECORD DELIMITER
clause

DELIMITER phrase, UNSTRING statement 379
Delimiter-name, RECORD DELIMITER clause 69,

77

Index

536 RM/COBOL Language Reference Manual

DEPENDING ON phrase
GO TO statement 294
RECORD VARYING clause 95

DERESERVE keyword, COMPILER-OPTIONS
configuration record 387, 393

Descending key
glossary term 492
OCCURS clause, KEY phrase 110

DESCENDING phrase
MERGE statement 308
OCCURS clause 109
SORT statement 361

Destination
glossary term 492
output communication description entry 143

DESTINATION clause, output communication
description (CD) entry 137, 142

DESTINATION COUNT clause, output
communication description (CD) entry 137, 142

DESTINATION TABLE OCCURS clause, output
communication description (CD) entry 137,
139, 142

Determining line and position 244, 278
Determining the method of scheduling 227
Device-name

ASSIGN clause
file control entry 69, 72
sort-merge file control entry 80

glossary term 492
nonreserved system-names 396
system-names 11

Digit position, glossary term 492
Directive sentences 31
Directive statements 29
Directive, compiler 46

glossary term 488
IMP MARGIN-R 25, 27, 46
LISTING 47
PAGE 47

Directly contained program 33
DISABLE statement 270
DISC device-name

ASSIGN clause 72
nonreserved system-names 397
system-names 11

Disjoint sets 8
DISK device-name

ASSIGN clause 72
nonreserved system-names 397
system-names 11

DISPLAY . . . UPON statement 101, 272
DISPLAY device-name

ASSIGN clause 72
system-names 11

DISPLAY screen-name statement 280
DISPLAY statement (terminal I-O) 274

DISPLAY usage
data description entry 131
screen description entry 160

DIVIDE statement 182, 282
Division See also Division header

Data 32, 85
Environment 32, 53
glossary term 493
Identification 32, 49
Procedure 32, 171
program structure 32

Division header
DATA 86
ENVIRONMENT 53
glossary term 493
IDENTIFICATION 49, 50
PROCEDURE 171, 174

DOWN BY phrase, SET statement 356
DUPLICATES phrase

ALTERNATE RECORD KEY clause, file control
entry 70, 78, 79

DELETE statement (relative and indexed I-O) 268
I-O status value 43 217
RECORD KEY clause, file control entry 78
REWRITE statement 345
SORT statement 361
WRITE statement 383, 386

Dynamic access
glossary term 493
mode

for indexed file organization 214
for relative file organization 208

E

E Compile Command Option 47
EBCDIC code-name 59, 61

nonreserved system-names 396
system-names 11
translation 62

ECHO phrase, ACCEPT statement 241
Edit keys 250
EDIT-COMMA keyword, RUN-ATTR configuration

record 65
EDIT-CURRENCY-SYMBOL keyword, RUN-

ATTR configuration record 64
EDIT-DECIMAL keyword, RUN-ATTR

configuration record 65
EDIT-DOLLAR keyword, RUN-ATTR

configuration record 64
Editing (PICTURE clause)

fixed insertion 117
floating insertion 118
general rules 116
simple insertion 117
special insertion 117

Index

 RM/COBOL Language Reference Manual 537

zero suppression 119
Editing characters 113

glossary term 493
EGI 228, 332, 341, 354

glossary term 493, 494, 505
Elementary items 101

glossary term 493
ELSE phrase, IF statement 295
EMI 228, 332, 341, 354

glossary term 494, 505
ENABLE statement 285
Enabling and disabling queues 229
END DECLARATIVES keywords 174
END KEY clause

input communication description (CD) entry 137,
140

I-O (input-output) communication description entry
138, 144

End of group indicator (EGI) 228, 332, 341, 354
glossary term 493, 494, 505

End of message indicator (EMI) 228, 332, 341, 354
glossary term 494, 505

End of procedure division, glossary term 494
End of segment indicator (ESI) 228, 341, 354

glossary term 494, 505
End program header 19, 39

glossary term 494
program structure 32

END-ACCEPT scope terminator 31, 232, 233, 237,
251

END-ADD scope terminator 31, 253
END-CALL scope terminator 31, 257, 262
END-COMPUTE scope terminator 31, 266
END-COPY scope terminator 31, 40
END-DELETE scope terminator 31, 269, 270
END-DIVIDE scope terminator 31, 283
END-EVALUATE scope terminator 31, 289
END-IF scope terminator 31, 295
END-MULTIPLY scope terminator 31, 316
END-OF-PAGE phrase, WRITE statement 92, 384
END-PERFORM scope terminator 31, 323
END-READ scope terminator 31, 336
END-RECEIVE scope terminator 31, 340
END-REPLACE scope terminator 31, 44
END-RETURN scope terminator 31, 344
END-REWRITE scope terminator 31, 346
END-SEARCH scope terminator 31, 348
END-START scope terminator 31, 368
END-STRING scope terminator 31, 373
END-SUBTRACT scope terminator 31, 376
END-UNSTRING scope terminator 31, 380
END-WRITE scope terminator 31, 383
ENTER statement 287
Entry

77-level description
Linkage Section 86, 98

Working-Storage Section 86, 97
comment

AUTHOR paragraph 49, 50
DATE-COMPILED paragraph 49, 51
DATE-WRITTEN paragraph 49, 51
INSTALLATION paragraph 49, 50
REMARKS paragraph 49, 51
SECURITY paragraph 49, 51

communication description 86, 100, 137
file control entry 55, 68, 69
file description 86, 87
glossary term 494
input communication description 137
I-O (input-output) communication description 138
output communication description 137
program structure 31
record description

Communication Section 86, 100
File Section 86, 87
Linkage Section 86, 98
Working-Storage Section 86, 97

screen description 101
screen group description 149
Screen Section 86

sort-merge file description 86, 87
ENTRY-LINKAGE-SETTINGS keyword,

COMPILER-OPTIONS configuration record 99
Environment clause, glossary term 494
Environment Division 32, 53

Configuration Section 56
OBJECT-COMPUTER paragraph 56
SOURCE-COMPUTER paragraph 56
SPECIAL-NAMES paragraph 57

header 53
Input-Output Section 68

FILE-CONTROL paragraph 68
I-O-CONTROL paragraph 81

EOP phrase See END-OF-PAGE phrase
EQUAL relation condition, conditional expressions

187
ERASE clause

screen field description entry 150, 154
screen literal description entry 149, 154

ERASE phrase
ACCEPT statement 241
DISPLAY statement 277

ERROR KEY clause, output communication
description (CD) entry 137, 142

Error key values 147
ERROR phrase, USE statement 180
Escape condition, ACCEPT screen-name statement

251
ESCAPE KEY phrase, ACCEPT statement 233
ESCAPE phrase

ACCEPT (terminal I-O)statement 241
ACCEPT screen-name statement 251

Index

538 RM/COBOL Language Reference Manual

ESI 228, 341, 354
glossary term 494, 505

EVALUATE statement 187, 288
EXCEPTION phrase

ACCEPT statement 241
CALL PROGRAM statement 262
CALL statement 260
USE statement 180

EXCEPTION STATUS phrase, ACCEPT statement
233

Exception status values
field termination keys used 233
special 233

Exclusive file
file locking 220
glossary term 494

Exclusive mode
file locking 75, 220
glossary term 495

EXCLUSIVE OR logical operator, constant-
expressions 136

EXCLUSIVE phrase
LOCK MODE clause, file control entry 75
OPEN statement 317

file locking 220
Execution time 175

glossary term 495
EXIT statement 291
Explicit scope terminator

glossary term 495
in Procedure Division statements 31

Exponentiation
arithmetic-expressions 187
constant-expressions 135

Expressions
arithmetic 185
concatenation 24
conditional 187, 201
constant 135
glossary term 495
regular 191

Extend mode
glossary term 495
OPEN statement 320

EXTEND phrase
OPEN statement 317, 320
USE statement 181

Extended Binary Coded Decimal Interchange Code
See EBCDIC code-name

EXTERNAL clause
data description entry 102, 106
file description entry 87, 90

External data 106
glossary term 495

External data item
EXTERNAL clause, data description entry 106

glossary term 495
External data record, glossary term 495
External file connector

EXTERNAL clause, file description entry 90
glossary term 495

External objects 34
External switch

glossary term 496
mnemonic-names 66
SET statement (ON/OFF) 358
switch-names 12
switch-status condition 200

EXTERNAL-INDEX-NAME keyword,
COMPILER-OPTIONS configuration record 38

F

FALSE phrase
condition-name description 104, 133
SET statement 356
VALUE clause 133

FALSE, selection subject or object 289
FD See File description entry
Feature-name 11

glossary term 496
Mnemonic-Name clause 54, 58, 65
SPECIAL-NAMES paragraph 66
system-names 11

Field editing keys 250
Field termination keys 233
Figurative constant 22

ALL literal 23
HIGH-VALUE (HIGH-VALUES) 23
LOW-VALUE (LOW-VALUES) 23
NULL (NULLS) 23
QUOTE (QUOTES) 23
SPACE (SPACES) 23
symbolic-character 23
ZERO (ZERO, ZEROES) 22

Figurative constants
glossary term 496
symbolic-characters 67

File
file control entry 69
file description entry 87
glossary term 496
procedure division input-output

indexed 213
relative 207
sequential 203

sort-merge file control entry 80
sort-merge file description entry 88

File access name
ASSIGN clause

file control entry 73
sort-merge file control entry 80

Index

 RM/COBOL Language Reference Manual 539

glossary term 496
VALUE OF clause 97

File attribute conflict condition
DELETE FILE statement 269
glossary term 496
I-O status 39 (indexed I-O) 217
I-O status 39 (relative I-O) 210
I-O status 39 (sequential I-O) 205

File availability 317
File clause, glossary term 496
File connector 33

external 90
glossary term 496

File control entry 55, 68
ACCESS MODE clause 69, 71
ALTERNATE RECORD KEY clause 70, 78, 214
ASSIGN clause 69, 72
CODE SET clause 69, 73
COLLATING SEQUENCE clause 70, 74
FILE STATUS clause 70, 74
glossary term 496
LOCK MODE clause 69, 75
ORGANIZATION clause 69, 76
PADDING CHARACTER clause 69, 76
RECORD DELIMITER clause 69, 77
RECORD KEY clause 70, 78
RESERVE [AREAS] clause 69, 70, 79
SELECT clause 69, 70
sequential, relative, and indexed file organization

69
sort-merge file control entry 80

File description clause
BLOCK CONTAINS 87, 89
CODE-SET 88, 89
DATA RECORDS 87, 90
EXTERNAL 87, 90
GLOBAL 87, 90
LABEL RECORDS 87, 91
LINAGE 88, 91
RECORD 87, 95
VALUE OF 87, 97

File description entry 87
BLOCK CONTAINS clause 87, 89
CODE-SET clause 88, 89
DATA RECORDS clause 87, 90
EXTERNAL clause 87, 90
GLOBAL clause 87, 90
glossary term 496
LABEL RECORDS clause 87, 91
LINAGE clause 88, 91
RECORD clause 87, 95
VALUE OF clause 87, 97

File locking 220
CLOSE statement 265
LOCK MODE clause, file control entry 75
OPEN statement 317

File organization
file control entry 69
glossary term 497
indexed 76, 214
ORGANIZATION clause, file control entry 76
relative 76, 208
sequential 76, 203

File position indicator
CLOSE statement 264
glossary term 497
indexed file 214
OPEN statement

input mode 319
I-O mode 320

READ statement 334
relative file 208
sequential file 203
START statement (relative and indexed I-O) 366

File Section, Data Division 85, 87
glossary term 497
header 86, 87

FILE STATUS clause, file control entry 70, 74
File status data item

indexed file 215
relative file 208
sequential file 203

File types and structure
sequential files

REVERSED phrase 319
FILE-CONTROL paragraph 55, 68

glossary term 497
Input-Output Section 68

FILE-ID label-name
nonreserved system-names 397
system-names 11
VALUE OF clause 97

File-name 37
CLOSE statement 264
condition-name qualification 166
data-name qualification 166
DELETE FILE statement 269
DELETE statement (relative and indexed I-O) 267
file control entry 71
file description entry 87–88
global 34, 90
glossary term 497
index-name qualification 167
MERGE statement 307
MULTIPLE FILE TAPE clause 55, 68, 83
OPEN statement 316
qualifier 162
READ statement 333
RERUN clause 55, 68, 81
RETURN statement 343
SAME [AREA] clause 55, 68, 82
scope 37

Index

540 RM/COBOL Language Reference Manual

SELECT clause
file control entry 69, 70
sort-merge file control entry 80

SORT statement 360
sort-merge description entry 88
START statement (relative and indexed I-O) 365
UNLOCK statement 377
USE statement 180
user-defined word type 9

FILLER clause
data description entry 102, 106
screen field description entry 106, 150
screen group description entry 106, 148
screen literal description entry 106, 149

FILLER phrase, INITIALIZE statement 298
Filter (indexed I-O) 365, 368
FIRST adjective, INSPECT REPLACING statement

302, 304, 305
FIRST phrase, START statement 365
Fixed file attributes, glossary term 497
Fixed insertion editing 117
Fixed overlayable segment 177
Fixed permanent segment 177
Fixed portion 177
Fixed-form reference format 25, 46

glossary term 497
Fixed-length record 95

glossary term 497
Floating indicator 46
Floating insertion editing 118
Footing area 92, 93

glossary term 497
FOOTING phrase, LINAGE clause, file description

entry 92
FOR REMOVAL phrase, CLOSE statement 265
FORCE-USER-MODE keyword

RUN-FILES-ATTR configuration record 75
FORCE-USER-MODE keyword, RUN-FILES-

ATTR configuration record 220–22
FOREGROUND clause

screen field description entry 150, 155
screen group description entry 148, 155
screen literal description entry 149, 155

FOREGROUND-COLOR clause
screen field description entry 150, 155
screen group description entry 148, 155
screen literal description entry 149, 155

Formal argument
glossary term 498
Linkage Section 85, 98, 166
procedure division header 173

Format
glossary term 498
source, lines 25

FROM phrase
ACCEPT statement 231

PERFORM statement 324
PICTURE clause, screen description entry 158
RELEASE statement 342
REWRITE statement 346
SEND statement 352
SUBTRACT statement 375
WRITE statement 383

FULL clause
screen field description entry 151, 155
screen group description entry 149, 155

G

Generic key name, field termination 233
GIVING phrase

ADD statement 253
CALL statement 259
DIVIDE statement 283
MERGE statement 309
MULTIPLY statement 316
Procedure Division header 172
SORT statement 363
SUBTRACT statement 375

Global
condition-name 107
data-name 107
file-name 90
index-name 38

GLOBAL clause
data description entry 102, 107
file description entry 87, 90

Global name
GLOBAL clause

data description enty 102, 107
file description entry 87, 90

glossary term 498
inter-program identification module 34

GLOBAL phrase, USE statement 182
GO TO statement 294
GOBACK statement 293
GREATER relation condition, conditional

expressions 187
Group item

glossary term 498
record description entry 101
variable length 110

H

Header
Division

DATA 86
ENVIRONMENT 53
IDENTIFICATION 49, 50
PROCEDURE 171, 174

END PROGRAM, program structure 32

Index

 RM/COBOL Language Reference Manual 541

Paragraph
AUTHOR 49, 50
DATE-COMPILED 49, 51
DATE-WRITTEN 49, 51
FILE-CONTROL 55, 68
INSTALLATION 49, 50
I-O-CONTROL 55, 68, 81
OBJECT-COMPUTER 53, 57
PROGRAM-ID 49, 50
REMARKS 49, 51
SECURITY 49, 51
SOURCE-COMPUTER 53, 56
SPECIAL-NAMES 54, 57
user-defined in Procedure Division 174

Section
COMMUNICATION 86, 100
CONFIGURATION 53, 56
FILE 86, 87
INPUT-OUTPUT 55, 68
LINKAGE 86, 98
SCREEN 86, 101
user-defined in Procedure Division 174
WORKING-STORAGE 86, 97

High order end 190
glossary term 498

HIGH phrase
ACCEPT statement 242
DISPLAY statement 277

Highest value 14
HIGHEST-VALUE special register 13
HIGHLIGHT clause

screen field description entry 150, 156
screen literal description entry 149, 156

HIGHLIGHT phrase, ACCEPT statement 242
HIGH-VALUE (HIGH-VALUES) figurative

constant 23, 60

I
Identification area

glossary term 498
source format 26, 27, 46

Identification Division 32, 49
header 49, 50
program identification

AUTHOR, INSTALLATION, DATE-
WRITTEN, SECURITY and REMARKS
paragraphs 51

DATE-COMPILED paragraph 51
PROGRAM-ID paragraph 50

Identifier
data-name 166
glossary term 498

IF statement 187, 295
IMP MARGIN-R directive 25, 27, 46
Imperative

sentences 31
verbs, list of 30

Imperative statements 29
glossary term 498
program structure 30

Implicit scope terminator
glossary term 499
in Procedure Division statements 31

Implied PICTURE clause 111
Incompatible data 185
Independent enqueueing and dequeueing 228
Independent segments 178
Index data item

comparison with index-name 190
data description entry 131
glossary term 499

INDEX usage, data description entry 131
Index, glossary term 499
INDEXED BY phrase, OCCURS clause 109

defining index-names 110
Indexed file

access modes 214
alphabets 62
file control entry 69
glossary term 499

Indexed organization input-output 213
CLOSE statement 264
DELETE FILE statement 269
DELETE statement 267
file description entry 87
indexed file control entry 69
OPEN statement 316
READ statement 333
REWRITE statement 344
START statement 365
UNLOCK statement 377
WRITE statement 381

Indexed organization, glossary term 499
Index-name

comparisons 190
DESTINATION TABLE clause 137
EXTERNAL-INDEX-NAMES keyword,

COMPILER-OPTIONS configuration record 38
glossary term 499
Linkage Section 85
OCCURS clause 109
PERFORM statement 321
qualification 162, 167
references 167
scope 38
SEARCH statement 349
SET statement 356
subscripts 164
user-defined word type 10

Indicator area 26
glossary term 499

Index

542 RM/COBOL Language Reference Manual

illustrated 25
Indirectly contained program 33
Initial attribute 292
INITIAL clause

input communication description (CD) entry 137
I-O (input-output) communication description entry

138
PROGRAM-ID paragraph 50

Initial program 35, 38, 50
glossary term 499

Initial state 38, 98
glossary term 499

Initial state of a program
ALTER statements 39
GO TO statements 39
internal file connectors 38
PERFORM statements 38
VALUE clause 38

INITIALIZE statement 297
File Section 87
Linkage Section 99
POINTER usage 132
VALUE phrase 133

INITIAL-MARGIN-R keyword, COMPILER-
OPTIONS configuration record 25, 46

INITIAL-VALUE special register 15
In-line comment

glossary term 499
source format 28

Input code set 60
Input communication description (CD) entry 137
INPUT device-name

ASSIGN clause 72
system-names 11

Input file 66
glossary term 500

Input mode
CLOSE statement 264
glossary term 500
OPEN statement 319

INPUT phrase
DISABLE statement 271
ENABLE statement 285
OPEN statement 319
USE statement 181

Input procedure
glossary term 500
INPUT PROCEDURE phrase, SORT statement

362
Input-output (I-O) communication description entry

138
Input-output areas, RESERVE [AREAS] clause 80
INPUT-OUTPUT device-name

ASSIGN clause 72
system-names 11

Input-output file

DELETE statement (relative and indexed I-O) 268
glossary term 500
LOCK phrase, READ statement 337
REWRITE statement 345
UNLOCK statement 377
WRITE statement 381

Input-Output Section, Environment Division 53, 68
glossary term 500
header 55, 68

Input-output statements
ACCEPT (terminal I-O) 234
ACCEPT . . . FROM 231
ACCEPT MESSAGE COUNT 248
ACCEPT screen-name 249
CLOSE 264
DELETE (relative and indexed I-O) 267
DELETE FILE 269
DISABLE 270
DISPLAY 272
DISPLAY (terminal-I-O) 274
DISPLAY screen-name 280
ENABLE 285
glossary term 500
OPEN 316
PURGE 332
READ 333
RECEIVE 339
REWRITE 344
SEND 352
SET . . . TO ON/OFF 356
START (relative and indexed I-O) 365
UNLOCK 377
WRITE 381

Insertion editing
fixed 117
floating 118
simple 117
special 117

INSPECT statement 300
INSTALLATION paragraph 49, 50
Integer 21

constant-expressions 135
glossary term 500

Interactive terminal I-O 224
Internal data 34

glossary term 500
Internal data item 34

glossary term 500
Internal file connector 34

glossary term 501
Internal objects 34
Inter-program communication 33
Intersecting sets 8
INTO phrase

READ statement 96, 338
RECEIVE statement 339

Index

 RM/COBOL Language Reference Manual 543

RETURN statement 96, 343
STRING statement 373
UNSTRING statement 379

Intra-record data structure, glossary term 501
Invalid key condition

glossary term 501
indexed file 216, 218

DELETE statement 268
READ statement 338
REWRITE statement 346
START statement 371
WRITE statement 386

relative file 210, 211
DELETE statement 268
READ statement 338
REWRITE statement 346
START statement 371
WRITE statement 386

INVALID KEY phrase
DELETE statement (relative and indexed I-O) 268
indexed file 218
READ statement 338
relative file 212
REWRITE statement 346
START statement (relative and indexed I-O) 371
WRITE statement 385

Invocation of the object program by the Message
Control System 227

Invoking the object program 226
I-O (input-output) communication description entry

138
I-O mode

glossary term 501
OPEN statement 319

I-O phrase
OPEN statement 319
USE statement 181

I-O status
FILE STATUS, file control entry 74
glossary term 501

I-O status values
indexed file 215
relative file 208
sequential file 203

I-O TERMINAL phrase
DISABLE statement 271
ENABLE statement 286

I-O-CONTROL entry
glossary term 501

I-O-CONTROL paragraph 55, 68, 81
glossary term 501
Input-Output Section 68, 81

J

JUST clause

data description entry 103, 107
screen field description entry 150, 156

JUST phrase
reference modification 165

JUSTIFIED clause
data description entry 103, 107
screen field description entry 150, 156

JUSTIFIED phrase
reference modification 165

K

Key
file control entry 78

alternate 78
prime 78

glossary term 501
OCCURS clause, KEY phrase 110

Key of reference
glossary term 502
OPEN statement

input mode 319
I-O mode 320

READ statement 336
START statement 367

KEY phrase
DISABLE statement 272
ENABLE statement 286
MERGE statement 307
OCCURS clause 109
READ statement 336
SORT statement 360
START statement (relative and indexed I-O) 366

KEYBOARD device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

Keys
field edit 250
field termination 233

Keyword
glossary term 502
reserved word 12

L

LABEL label-name
system-names 11
VALUE OF clause 87, 97

LABEL RECORDS clause, file description entry 87,
91

Label-name
system-names 11
VALUE OF clause 87, 97

Language structure 5
Language-name

Index

544 RM/COBOL Language Reference Manual

ENTER statement 287
glossary term 502

LAST phrase, START statement 365
LEADING adjective

INSPECT REPLACING statement 305
INSPECT TALLYING statement 304

LEADING phrase, SIGN clause 124
LENGTH operator, constant-expressions 136
LENGTH special register 15, 359
LESS relation condition, conditional expressions 187
Letters

glossary term 502
in character sets 5

Level indicator 87
CD 100
FD 88
glossary term 502
SD 88

Level-number
01-level-description-entry 10, 101, 108
66-level-description-entry 10, 108
77-level-description-entry 10, 108
78-level-description-entry 10, 108
88-level-description-entry 10, 108
data description entry 101, 102, 108
glossary term 502
screen field description entry 100, 150
screen group description entry 100, 148
screen literal description entry 100, 149
user-defined word type 10

Library text
COPY statement 28, 40
glossary term 502
REPLACING phrase, COPY statement 41

Library-name
COPY statement 41
glossary term 502
scope 36
user-defined word type 10

LIKE relation condition
conditional expressions 188, 190
glossary term 502

LIKE relational condition
conditional expressions 368

LINAGE clause, file description entry 88, 91
LINAGE-COUNTER

glossary term 503
qualification 162
special register 16, 88, 92, 163

LINE clause
screen field description entry 150, 156
screen literal description entry 149, 156

LINE phrase
ACCEPT screen-name statement 249
ACCEPT statement (terminal I-O) 243
DISPLAY screen-name statement 281

DISPLAY statement (terminal I-O) 278
Line sequential

glossary term 503
record delimiting technique 76, 77

Lines
blank 27
comment 28
continuation 27
continued 27
debugging 26, 28, 43
in-line comment 28

LINES AT BOTTOM phrase, LINAGE clause, file
description entry 92

LINES AT TOP phrase, LINAGE clause, file
description entry 92

LINE-SEQUENTIAL record delimiting technique
nonreserved system-names 397
RECORD DELIMITER clause 77
system-names 12

Linkage Section, Data Division 85, 98
glossary term 503
header 86, 98

LISTING device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

LISTING directive 47
LISTING-ATTRIBUTES keyword, COMPILER-

OPTIONS configuration record 47
LISTING-DATE-FORMAT keyword, COMPILER-

OPTIONS configuration record 51
LISTING-DATE-SEPARATOR keyword,

COMPILER-OPTIONS configuration record 51
Literal alphabets 61
Literals 21

and figurative constants 22
glossary term 503
nonnumeric 21
numeric 21

Local names 34
Lock mode

file locking 220
glossary term 503
record locking 221

LOCK MODE clause
file control entry 69, 75
file locking 75, 220
record locking 221

LOCK phrase
CLOSE statement 265
OPEN statement 317

file locking 220
READ statement 337

automatic record locking 222
manual record locking 223

Index

 RM/COBOL Language Reference Manual 545

LOCK phrase, LOCK MODE clause, file control
entry 75

Logic error condition
indexed file 217
relative file 210
sequential file 205

Logical operator
AND 201
glossary term 503
meanings 201
NOT 201
OR 201

Logical page 92
glossary term 503

Logical record
ACCESS MODE clause 72
BLOCK CONTAINS clause 89
EXTEND phrase, OPEN statement 320
FILLER clause 106
glossary term 504
level-number 108
MERGE statement 309
organization input-output 205, 209, 216
PADDING CHARACTER clause 77
READ statement 333
RECORD clause 96
RELEASE statement 342
RENAMES clause 122
RETURN statement 343
REWRITE statement 344
SAME RECORD AREA clause 83
SORT statement 362
START statement (relative and indexed I-O) 367
WRITE statement 381

Low order end 190
glossary term 504

LOW phrase
ACCEPT statement 242
DISPLAY statement 277

Lowercase letters, character set 5
Lowest value 16
LOWEST-VALUE special register 16
LOWLIGHT clause

screen field description entry 150, 156
screen literal description entry 149, 156

LOWLIGHT phrase, ACCEPT statement 242
LOW-VALUE (LOW-VALUES) figurative constant

23, 60
Low-volume-I-O-name

ACCEPT statement 231
DISPLAY statement 272
glossary term 504
Mnemonic-Name clause 54, 65
nonreserved system-names 396
SPECIAL-NAMES paragraph 66
system-names 12

M

M Compile Command Option 231
MAGNETIC-TAPE device-name

ASSIGN clause 72
nonreserved system-names 397
system-names 11

Manual multiple record locking mode 75, 223
glossary term 504

MANUAL phrase, LOCK MODE clause, file control
entry 75

Manual record locking modes 75, 223
glossary term 504

Manual single record locking mode 75, 223
glossary term 504

Margin R 46
glossary term 504
illustrated 25
IMP MARGIN-R directive 25
initial value configuration 25
source format

effect on continued nonnumeric literals 27
use of 25

MARGIN-R directive 25, 27, 46
Mass storage control system, glossary term 505
Mass storage file, glossary term 505
Mass storage, glossary term 504
Maximum source record length 25

continued nonnumeric literals 27
glossary term 505

Maximum value 17
MAX-VALUE special register 17
MCS See Message Control System
Memory allocation 132
MEMORY SIZE clause 54, 57
Merge

alphabet-name 61
MERGE statement 307
RETURN statement 343
sort-merge file control entry 80
sort-merge file description entry 88

MERGE device-name
system-names 11

Merge file
glossary term 505
sort-merge file control entry 80

MERGE statement 307
restrictions 179

Message Control System 8, 86, 137
communication facility 225
DISABLE statement 270
ENABLE statement 285
glossary term 505
interface area 137
PURGE statement 332
RECEIVE statement 339

Index

546 RM/COBOL Language Reference Manual

SEND statement 352
MESSAGE COUNT clause, input communication

description (CD) entry 137, 140
MESSAGE COUNT phrase, ACCEPT statement 248
Message count, glossary term 505
MESSAGE DATE clause

input communication description (CD) entry 137,
140

I-O (input-output) communication description entry
138, 144

Message indicators 228, 341
glossary term 505
SEND statement 352

MESSAGE phrase, RECEIVE statement 341
Message segments

communication 228
glossary term 506

MESSAGE TIME clause
input communication description (CD) entry 137,

140
I-O (input-output) communication description entry

138, 144
Messages

communication 228
compiler 399

001 - 100 group 400
101 – 200 group 411
201 – 300 group 423
301 – 400 group 434
401 – 500 group 444
501 – 600 group 455
601 – 700 group 459
701 – 800 group 466

glossary term 505
Minimum value 18
MIN-VALUE special register 18
Mnemonic-name

ACCEPT statement 231
DISPLAY statement 272
glossary term 506
Mnemonic-Name clause 54, 58, 65
scope 36
SEND statement 355
SET statement 357
user-defined word type 10
WRITE statement 384

Mnemonic-Name clause 54, 58, 65
MODE

ACCESS clause, file control entry 71
DEBUGGING clause, SOURCE-COMPUTER

paragraph 56
LOCK clause, file control entry 75

MODE IS BLOCK phrase
ACCEPT statement 244
DISPLAY statement 279

Modes

access 71, 203, 208, 214, See also Dynamic access,
Random access, and Sequential access

file locking 75, 220
of operation, arithmetic statements 182
record locking 75, 222

MOVE statement 311
MULTIPLE FILE TAPE clause 55, 68, 83
MULTIPLE phrase, LOCK MODE clause, file

control entry 75
Multiple record locking modes 75, 222, 224

glossary term 506
MULTIPLY statement 182, 315

N

Names
global 34
local 34

Native character set 56
glossary term 506

NATIVE code-name 59
Native collating sequence 56

glossary term 506
Negated condition 201

negated combined, glossary term 506
negated simple, glossary term 506

NEGATIVE sign condition, conditional expressions
200

Nested source programs 33
Next executable sentence 176

glossary term 506
Next executable statement 176

glossary term 506
NEXT operator, constant-expressions 136
NEXT PAGE phrase, WRITE statement 384
NEXT phrase, READ statement 333
Next record

file position indicator, organization input-output
203, 208, 214

glossary term 507
MERGE statement 309
READ statement 334
RETURN statement 343
START statement 367

NEXT SENTENCE phrase
ACCEPT statement 241
IF statement 296
SEARCH statement 349

NO ADVANCING phrase, DISPLAY statement 273
NO BEEP phrase, ACCEPT statement 237
NO BELL phrase, ACCEPT statement 237
NO DATA phrase, RECEIVE statement 340
NO HIGHLIGHT clause

screen field description entry 150, 156
screen literal description entry 149, 156

NO LOCK phrase, READ statement 337

Index

 RM/COBOL Language Reference Manual 547

NO REWIND phrase
CLOSE statement 265
OPEN statement 317, 320

Noncontiguous items
glossary term 507
record description entry 98, 102

Nonnumeric item 250
glossary term 507

Nonnumeric literal continuation 27
Nonnumeric literals 21

glossary term 507
Nonnumeric operands, comparison of 189
NOT AT END phrase

indexed file 220
READ statement 336
relative file 213
RETURN statement 343
sequential file 207

NOT END-OF-PAGE phrase, WRITE statement 384
NOT ESCAPE phrase

ACCEPT screen-name statement 251
ACCEPT statement (terminal I-O) 241

NOT EXCEPTION phrase
ACCEPT statement 241
CALL statement 260

NOT INVALID KEY phrase
DELETE statement (relative and indexed I-O) 268
indexed file 219
READ statement 338
relative file 212
REWRITE statement 346
START statement (relative and indexed I-O) 371
WRITE statement 385

NOT logical operator
abbreviated combined relation conditions 202
constant-expressions 136
negated conditions 201

NOT OPTIONAL phrase, SELECT clause, file
control entry 71

NOT OVERFLOW phrase
STRING statement 374
UNSTRING statement 380

NOT SIZE ERROR phrase
ADD statement 253
common rules 184
COMPUTE statement 266
DIVIDE statement 283
MULTIPLY statement 316
SUBTRACT statement 376

NULL (NULLS) figurative constant 23, 188, 258,
356

Null, glossary term 507
Numeric character 112, 115, 116

glossary term 507
PICTURE character-string 118
user-defined words 8

zero suppression editing 119
Numeric class 160
NUMERIC class condition

COMPUTATIONAL usage 128
COMPUTATIONAL-3 usage 129
COMPUTATIONAL-6 usage 131
conditional expressions 198
DISPLAY usage 131

Numeric data item 112
Numeric edited data item 113
Numeric item

glossary term 507
operational sign 124

Numeric literals 21
glossary term 507

Numeric operands, comparison of 189
NUMERIC phrase, INITIALIZE statement 297
NUMERIC SIGN clause 55, 58, 66, 125
NUMERIC-EDITED phrase, INITIALIZE statement

297

O

Object computer entry 56
glossary term 507

Object of entry, glossary term 507
Object program 49, 53, 85, 171, 226

glossary term 508
Object time, glossary term 508
Object versions 408
OBJECT-COMPUTER paragraph 56

glossary term 508
Objects

external 34
internal 34

OBJECT-VERSION keyword, COMPILER-
OPTIONS configuration record 462

Obsolete element, glossary term 508
OCCURS clause, data description entry 13, 102, 103,

108, 136
OEM, glossary term 508
OFF phrase

ACCEPT statement 242
REPLACE statement 44
SET statement 356

OMITTED phrase
CALL PROGRAM statement 262
CALL statement 258
LABEL RECORDS clause 91

ON phrase, SET statement 356
Open mode

glossary term 508
OPEN statement 316

REVERSED phrase (sequential I-O) 319
Operand

glossary term 508

Index

548 RM/COBOL Language Reference Manual

overlapping operands 184
Operational sign

glossary term 508
NUMERIC SIGN clause, SPECIAL-NAMES

paragraph 66, 125
Optional file

glossary term 509
I-O status 205, 209, 216, 319

OPTIONAL phrase, SELECT clause, file control
entry 71

Optional words 12
glossary term 509

OR logical operator
abbreviated combined relation conditions 202
combined conditions 201
constant-expressions 136

Organization
indexed file 214
relative file 208
sequential file 203

ORGANIZATION clause, file control entry 69, 76
Organization of this guide 1
Output code set 60
Output communication description (CD) entry 137
OUTPUT device-name

ASSIGN clause 72
system-names 11

Output file 66
glossary term 509
MERGE statement 307
SORT statement 360

Output mode
glossary term 509
OPEN statement 319

OUTPUT phrase
DISABLE statement 271
ENABLE statement 286
OPEN statement 319
USE statement 181

Output procedure
glossary term 509
MERGE statement 176, 178, 179, 225, 307
SORT statement 176, 178, 179, 225, 360

OUTPUT PROCEDURE phrase
MERGE statement 309
SORT statement 363

OVERFLOW phrase
CALL statement 260
STRING statement 374
UNSTRING statement 380

Overlapping operands 184

P

Packed-decimal usage
highest value 14

lowest value 16
maximum value 17
minimum value 18

PACKED-DECIMAL usage
data description entry 129

PADDING CHARACTER clause, file control entry
69, 76

Padding characters 76
glossary term 509

Page body 92
glossary term 509

PAGE directive 47
PAGE phrase

SEND statement 355
WRITE statement 384

Paragraph 175
glossary term 509
program structure 32

Paragraph header
AUTHOR 49, 50
DATE-COMPILED 49, 51
DATE-WRITTEN 49, 51
FILE-CONTROL 55, 68
glossary term 509
INSTALLATION 49, 50
I-O-CONTROL 55, 68, 81
OBJECT-COMPUTER 53, 57
PROGRAM-ID 49, 50
REMARKS 49, 51
SECURITY 49, 51
SOURCE-COMPUTER 53, 56
SPECIAL-NAMES 54, 57
user-defined in Procedure Division 174

PARAGRAPH phrase, EXIT PARAGRAPH
statement 292

PARAGRAPH, in PROCEDURE-NAME special
register 19

Paragraph-name
glossary term 510
Procedure Division 174
qualification 175
scope 36
user-defined word type 10

Parentheses
arithmetic expressions 6, 185, 186
as separators 6
binary allocation override 6, 129, 130
conditions 6, 187
constant-expressions 6, 136
reference modifiers 6, 165
subscripts 6, 164

Pattern
glossary term 510
LIKE relation condition 189
regular expressions 191
WHILE phrase, START statement 368

Index

 RM/COBOL Language Reference Manual 549

PERFORM phrase, EXIT PERFORM statement 292
PERFORM statement 321

conditional expressions 187
restrictions 179

Period 65
DECIMAL POINT IS COMMA clause, SPECIAL-

NAMES paragraph 65
numeric literals 21
PICTURE character-string 115

Permanent error condition
indexed file 216
relative file 210
sequential file 205

Permanent segments 57
Phrase

conditional 30
glossary term 510

Physical page 92, 384
glossary term 510

Physical record 89, 221
glossary term 510

PICTURE character-strings 24
in PICTURE clause (data description entry) 110,

125
in PICTURE clause (screen description entry) 158

PICTURE clause
data description entry 102, 110
editing rules 116
implied 111
screen field description entry 150, 158

PICTURE symbols 110
precedence 120

Pointer data items
comparison 190
data description entry 132
glossary term 510
INITIALIZE statement 297
LIKE relation condition 191
NULL (NULLS) figurative constant 23
pattern 191
SET statement 356
usage 132

POINTER phrase
STRING statement 374
UNSTRING statement 379

POINTER usage, data description entry 132
POSITION phrase

ACCEPT statement (terminal I-O) 243
DISPLAY statement (terminal I-O) 278
MULTIPLE FILE TAPE clause, I-O-CONTROL

paragraph 83
POSITIVE sign condition, conditional expressions

200
PREVIOUS phrase, READ statement 333
Previous record, glossary term 510
Prime record key

DUPLICATES phrase, REWRITE statement 345
glossary term 510
KEY phrase, READ statement 337
OPEN statement

INPUT phrase 319
I-O phrase 320

ORGANIZATION clause, file control entry 76
RECORD KEY clause, file control entry 78, 214
START statement (relative and indexed I-O) 366

SIZE phrase 368
WRITE statement 382

PRINT device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

PRINTER device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

PRINTER-1 device-name
ASSIGN clause 72
nonreserved system-names 397
system-names 11

Procedure branching statements
ALTER 254
CALL 255
CALL PROGRAM 261
EXIT 291
EXIT PROGRAM 291
glossary term 511
GO TO 294
GOBACK 293
MERGE 307
PERFORM 321
SORT 360

Procedure Division 32
common rules 182
communication facility 225

message segments 228
messages 228

conditional expressions 187
header 171, 174

GIVING phrase 172
RETURNING phrase 172
USING phrase 171

indexed input/output 213
interactive input/output 224
order of execution 175
paragraph 174, 175
procedure references 175
procedures 175
record locking 221
relative input/output 207
section 175
segmentation 177
sequential input/output 203

Index

550 RM/COBOL Language Reference Manual

sort-merge 225
statement 175
structure 174
transfers of control 176

explicit 176
implicit 176

Procedure references 175
PROCEDURE, in PROCEDURE-NAME special

register 19
Procedure-name

ALTER statement 254
glossary term 511
GO TO statement 294
MERGE statement 307
PERFORM statement 321
procedures 175
SORT statement 360

PROCEDURE-NAME special register 19
Procedures 175

glossary term 511
Program

common 35
initial 35

Program collating sequence 57
MERGE statement 308
SORT statement 361

PROGRAM COLLATING SEQUENCE clause 54,
57

Program identification entry
glossary term 511

PROGRAM phrase, EXIT PROGRAM statement
292

Program structure
clause 31
conditional phrases 30
conditional statements 29
divisions 32
entry 31
imperative statements 30
paragraph 32
sections 32
sentences 31
source format 25
source program, general format 32
statements 29

delimited scope 31
scope of 31

PROGRAM-ID paragraph 49, 50
PROGRAM-ID special register 19
Program-name 37

CALL PROGRAM statement 261
CALL statement 256
CANCEL statement 263
END PROGRAM header 39
glossary term 511
PROGRAM-ID paragraph 19, 50

scope 37
user-defined word type 10

Program-text 25, 46
glossary term 511

Program-text area 25, 27, 46
glossary term 511

PROMPT phrase, ACCEPT statement 244
Pseudo-text

COPY statement 40, 41
glossary term 511
program structure 29
REPLACE statement 44

Pseudo-text delimiter 7
COPY statement 40
glossary term 511
REPLACE statement 44

Punctuation character 6, 24, 194, 195
glossary term 511

PURGE statement 332

Q

Q Compile Command Option 470
Qualification 38, 162

condition-name 162, 166
data-name 162, 166
index-name 162, 167
LINAGE-COUNTER 162
paragraph-name 175
screen-name 162
split-key-name 162
text-name 40–41

Qualified data-name 163
glossary term 512

Qualifier, glossary term 512
QUEUE clause, input communication description

(CD) entry 137, 139
Queue hierarchy 229
Queue name 229

glossary term 512
Queues

communication 228
glossary term 512

Quotation marks, using as separators 7
QUOTE (QUOTES) figurative constant 23

R

Random access
glossary term 512
mode

for indexed file organization 214
for relative file organization 208

RANDOM device-name
ASSIGN clause 72
system-names 11

Index

 RM/COBOL Language Reference Manual 551

READ statement 96, 333
RECEIVE statement 339
Record area 95

glossary term 513
RECORD clause

file description entry 87, 95
sort-merge file description entry 88, 95

RECORD DELIMITER clause, file control entry 69,
77

Record delimiting techniques 11
binary sequential 77
glossary term 513
line sequential 77
STANDARD-1 77
system-names 12

Record description entry 101
Communication Section 100
File Section 87
glossary term 513
Linkage Section 98
Working-Storage Section 97

Record description, glossary term 513
Record filter (indexed I-O) 365, 368
RECORD KEY clause, file control entry 70, 78
Record key, glossary term 513
Record locking 221

CLOSE statement 265
DELETE statement (relative and indexed I-O) 268
LOCK MODE clause, file control entry 75
modes

automatic 75, 222
manual 75, 223
multiple 75, 224
single 75, 223

READ statement 337
REWRITE statement 345
UNLOCK statement 377
WRITE statement 382

Record locking mode
automatic 75, 222
glossary term 513
manual 75, 223
multiple 75, 224
single 75, 223

Record number, glossary term 513
Record, glossary term 513
Record-name

global 34
glossary term 514
RELEASE statement (sort) 342
REWRITE statement 344
scope 37
user-defined word type 10
WRITE statement 381

REDEFINES clause, data description entry 102, 121
REEL phrase

CLOSE statement 264
RERUN clause, I-O-CONTROL paragraph 81

Reel, glossary term 514
Reference modification 165, 185
Reference modifiers

glossary term 514
parentheses, using in 6, 165

References to table items 169
Regular expressions 191, 368

glossary term 514
Related publications 3
Relation character, glossary term 514
Relation condition 135, 187

glossary term 514
Relation, glossary term 514
Relational operator 20, 135

condition-name 104
glossary term 514
meanings 188
SEARCH ALL statement 347
START (relative and indexed I-O) statement 365

Relationship of the object program to the message
control system and communication devices 226

Relative file
access modes 208
file control entry 69
glossary term 515

Relative key
file control entry 71
glossary term 515

RELATIVE KEY phrase, ACCESS MODE clause,
file control entry 71

Relative organization input-output 207
CLOSE statement 264
DELETE FILE statement 269
DELETE statement 267
file description entry 87
OPEN statement 316
READ statement 333
relative file control entry 69
REWRITE statement 344
START statement 365
UNLOCK statement 377
WRITE statement 381

Relative organization, glossary term 515
Relative record number, glossary term 515
RELEASE statement 96, 110, 342
REMAINDER phrase, DIVIDE statement 284
REMARKS paragraph 49, 51
REMOVAL phrase, CLOSE statement 265
RENAMES clause, data description entry 104, 122
REPLACE statement 44
REPLACING phrase

COPY statement 40, 41
INITIALIZE statement 297
INSPECT statement 300

Index

552 RM/COBOL Language Reference Manual

SEND statement 355
REQUIRED clause

screen field description entry 151, 158
screen group description entry 149, 158

RERUN clause 55, 68, 81
Rerun-name

RERUN clause 55, 68, 81
RESERVE [AREAS] clause, file control entry 69,

70, 79
Reserved words 7, 12

context-sensitive 21, 393
glossary term 515
list of 387–93
special symbols 395

Resource, glossary term 515
Restrictions on program flow 179
Resultant identifier, glossary term 515
RETURN statement 96, 343
RETURN-CODE special register 19, 372
RETURNING phrase

CALL statement 259
Procedure Division header 172

REVERSE clause
screen field description entry 150, 159
screen literal description entry 149, 159

REVERSE phrase
ACCEPT statement 245
DISPLAY statement 279

REVERSED clause
screen field description entry 150, 159
screen literal description entry 149, 159

REVERSED phrase
ACCEPT statement 245
DISPLAY statement 279
OPEN statement 317, 319

REVERSED phrase, OPEN statement (sequential I-
O) 319

REVERSE-VIDEO clause
screen field description entry 150, 159
screen literal description entry 149, 159

REVERSE-VIDEO phrase
ACCEPT statement 245
DISPLAY statement 279

REWIND phrase See NO REWIND phrase
REWRITE statement 96, 110, 344
Right alignment of data

JUSTIFIED
data description 107
reference modification 166

Right margin See Margin R.
ROUNDED phrase 183

ADD statement 253
common rules 183
COMPUTE statement 266
DIVIDE statement 283, 284
MULTIPLY statement 316

SUBTRACT statement 376
Routine-name

ENTER statement 287
glossary term 515
user-defined word type 10

RUN phrase, STOP statement 371
Run unit

CALL PROGRAM statement 261
CALL statement 255
glossary term 516
inter-program communication 33
suspension 371
termination 371

RUN-ATTR configuration record
EDIT-COMMA keyword 65
EDIT-CURRENCY-SYMBOL keyword 64
EDIT-DECIMAL keyword 65
EDIT-DOLLAR keyword 64

RUN-FILES-ATTR configuration record 317
DEFAULT-USE-PROCEDURE keyword 181, 207,

212–13, 218–20, 335
FORCE-USER-MODE keyword 75

RUN-FILES-ATTR configuration record, FORCE-
USER-MODE keyword 220–22

RUN-SEQ-FILES configuration record
DEFAULT TYPE keyword 78

Runtime Command
options

maximum size for ACCEPT and DISPLAY
buffers (B) 272

pass an argument to the main program (A) 172,
261

switch set and reset (S) 12

S

S Compile Command Option 66, 125
S Runtime Command Option 12
SAME [AREA] clause 55, 68, 82
SAME AS clause, data description entry 103, 123
Scheduled initiation of the object program 227
Scope of

names 36
statements, program structure 31

Scope terminator 30–31
END-ACCEPT 31, 232, 233, 237, 251
END-ADD 31, 253
END-CALL 31, 257, 262
END-COMPUTE 31, 266
END-COPY 31, 40
END-DELETE 31, 269, 270
END-DIVIDE 31, 283
END-EVALUATE 31, 289
END-IF 31, 295
END-MULTIPLY 31, 316
END-PERFORM 31, 323

Index

 RM/COBOL Language Reference Manual 553

END-READ 31, 336
END-RECEIVE 31, 340
END-REPLACE 31, 44
END-RETURN 31, 344
END-REWRITE 31, 346
END-SEARCH 31, 348
END-START 31, 368
END-STRING 31, 373
END-SUBTRACT 31, 376
END-UNSTRING 31, 380
END-WRITE 31, 383

Screen clause
AUTO 149, 151
AUTO-SKIP 149, 151
BACKGROUND 148, 149, 150, 151
BACKGROUND-COLOR 148, 149, 150, 152
BEEP 149, 150, 152
BELL 149, 150, 152
BLANK LINE 149, 150, 152
BLANK REMAINDER 149, 150, 153
BLANK SCREEN 149, 150, 153
BLANK WHEN ZERO 150, 153
BLINK 149, 150, 154
COL 149, 150, 154
COLUMN 149, 150, 154
ERASE 149, 150, 154
FOREGROUND 148, 149, 150, 155
FOREGROUND-COLOR 148, 149, 150, 155
FULL 149, 151, 155
glossary term 516
HIGHLIGHT 149, 150, 156
JUST 150, 156
JUSTIFIED 150, 156
LINE 149, 150, 156
LOWLIGHT 149, 150, 156
NO HIGHLIGHT 149, 150, 156
PIC 150, 158
PICTURE 150, 158
REQUIRED 149, 151, 158
REVERSE 149, 150, 159
REVERSED 149, 150, 159
REVERSE-VIDEO 149, 150, 159
SECURE 149, 151, 159
SIGN 148, 150, 159
UNDERLINE 149, 150, 159
USAGE 148, 150, 160
VALUE 149, 160

Screen description entry 101, 148
AUTO clause 149, 151
AUTO-SKIP clause 149, 151
BACKGROUND clause 148, 149, 150, 151
BACKGROUND-COLOR clause 148, 149, 150,

152
BEEP clause 149, 150, 152
BELL clause 149, 150, 152
BLANK LINE clause 149, 150, 152

BLANK REMAINDER clause 149, 150, 153
BLANK SCREEN clause 149, 150, 153
BLANK WHEN ZERO clause 150, 153
BLINK clause 149, 150, 154
COL clause 149, 150, 154
COLUMN clause 149, 150, 154
ERASE clause 149, 150, 154
FOREGROUND clause 148, 149, 150, 155
FOREGROUND-COLOR clause 148, 149, 150,

155
FULL clause 149, 151, 155
glossary term 516
HIGHLIGHT clause 149, 150, 156
JUST clause 150, 156
JUSTIFIED clause 150, 156
LINE clause 149, 150, 156
LOWLIGHT clause 149, 150, 156
NO HIGHLIGHT clause 149, 150, 156
PIC clause 150, 158
PICTURE clause 150, 158
REQUIRED clause 149, 151, 158
REVERSE clause 149, 150, 159
REVERSED clause 149, 150, 159
REVERSE-VIDEO clause 149, 150, 159
screen group description 149
Screen Section 86
SECURE clause 149, 151, 159
SIGN clause 148, 150, 159
UNDERLINE clause 149, 150, 159
USAGE clause 148, 150, 160
VALUE clause 149, 160

Screen item, glossary term 516
Screen Section, Data Division 86, 100

glossary term 516
header 86, 101

Screen-name
ACCEPT screen-name statement 249
DISPLAY screen-name statement 281
glossary term 516
qualification 162
scope 36
user-defined word type 10

Screen-name clause
screen field description entry 150
screen group description entry 148
screen literal description entry 149

SD See Sort-merge file description entry
SEARCH statement 187, 347
Section header

COMMUNICATION 86, 100
CONFIGURATION 53, 56
FILE 86, 87
glossary term 516
INPUT-OUTPUT 55, 68
LINKAGE 86, 98
SCREEN 86, 101

Index

554 RM/COBOL Language Reference Manual

user-defined in Procedure Division 174
WORKING-STORAGE 86, 97

SECTION phrase, EXIT SECTION statement 292
SECTION, in PROCEDURE-NAME special register

19
Section-name

glossary term 517
Procedure Division section header 174
qualification 175
scope 36
user-defined word type 10

Sections See also Section header
glossary term 516
program structure 32

SECURE clause
screen field description entry 151, 159
screen group description entry 149, 159

SECURE phrase, ACCEPT statement 242
SECURITY paragraph 49, 51
SEGMENT phrase, RECEIVE statement 341
Segmentation 177
Segmentation classification 178
SEGMENT-LIMIT clause 54, 57
Segment-number

glossary term 517
Procedure Division section header 174
segmentation 177
SEGMENT-LIMIT clause 54, 57
user-defined word type 10

Segments 177
message 228

SELECT clause
file control entry 69, 70
sort-merge file control entry 80

Selection object, EVALUATE statement 288
Selection subject, EVALUATE statement 288
SEND statement 352
Sentence

conditional 31
directive 31
glossary term 517
imperative 31
Procedure Division paragraph 174
program structure 31

SEPARATE CHARACTER phrase, SIGN clause 124
Separately compiled program, glossary term 517
Separators

colons 7
comma 6
glossary term 517
list of 6
parentheses 6
pseudo-text delimiter 7
quotation marks 7
rules for forming 6
space 6

SEQUENCE clause
file control collating 70, 74
MERGE COLLATING 308
program collating 54, 57
PROGRAM COLLATING 57
SORT COLLATING 361

Sequence number area
glossary term 517
illustrated 25
source format 26

Sequential access
glossary term 517
mode

for indexed file organization 214
for relative file organization 208
for sequential file organization 203

Sequential file
access modes 203
file control entry 69
glossary term 517

Sequential organization input-output 203
CLOSE statement 264
DELETE FILE statement 269
file description entry 87
OPEN statement 316
READ statement 333
REWRITE statement 344
sequential file control entry 69
UNLOCK statement 377
WRITE statement 381

Sequential organization, glossary term 518
SET statement 356

POINTER usage 132
Shared file 221

glossary term 518
Shared file environment 221

glossary term 518
Shared mode

file locking 75, 220, 221
glossary term 518

Sharing in a run unit
data 35
files 36

SIGN clause
data description entry 103, 124, 199
screen field description entry 150, 159
screen group description entry 148, 159

Sign condition 200
glossary term 518

Sign, NUMERIC SIGN clause, SPECIAL-NAMES
paragraph 66, 125

Simple condition 187
glossary term 518

Simple insertion editing 117
Single record locking modes 75, 222, 223

glossary term 518

Index

 RM/COBOL Language Reference Manual 555

Size error condition
ADD statement 253
common rules 183
COMPUTER statement 266
DIVIDE statement 283
MULTIPLY statement 316
SUBTRACT statement 376

SIZE ERROR phrase
ADD statement 253
common rules 184
COMPUTE statement 266
DIVIDE statement 283
MULTIPLY statement 316
SUBTRACT statement 376

SIZE operator, constant-expressions 136
SIZE phrase

ACCEPT statement 236, 245
DISPLAY statement 279
START statement (relative and indexed I-O) 368

SIZE, MEMORY clause 54, 57
SORT device-name

system-names 11
Sort file 80

glossary term 518
SORT statement 360

restrictions 179
Sort-merge 225

alphabet-name 61
MERGE statement 307
RELEASE statement 342
RETURN statement 343
SORT statement 360
sort-merge file control entry 80
sort-merge file description entry 88

SORT-MERGE device-name
system-names 11

Sort-merge file control entry
ASSIGN clause 80
SELECT clause 80

Sort-merge file description clause
DATA RECORDS 88, 90
RECORD 88, 95

Sort-merge file description entry 88
DATA RECORDS clause 88, 90
glossary term 519
RECORD clause 88, 95

SORT-WORK device-name
ASSIGN clause 72
nonreserved system-names 397

SOURCE clause, input communication description
(CD) entry 137, 140

Source computer entry, glossary term 519
Source format 25

glossary term 519
Source program

general format, program structure 32

glossary term 519
Source, glossary term 519
SOURCE-COMPUTER paragraph 53, 56

glossary term 519
SOURCE-ON-INPUT-DEVICE keyword,

COMPILER-OPTIONS configuration record 27
SOURCE-PATTERN-EXCLUDE keyword,

COMPILER-OPTIONS configuration record 26
SOURCE-PATTERN-INCLUDE keyword,

COMPILER-OPTIONS configuration record 26
SOURCE-RECORD-MAX-LENGTH, COMPILER-

OPTIONS configuration record 25
SPACE (SPACES) figurative constant 23
Spaces, using as separators 6
Special character 20

glossary term 519
Special character word, glossary term 520
Special insertion editing 117
Special names entry, glossary term 520
Special registers 12, 162

ADDRESS 12, 98, 173, 188, 258, 259
COUNT 13
COUNT-MAX 13
COUNT-MIN 13
glossary term 520
HIGHEST-VALUE 13
INITIAL-VALUE 15
LENGTH 15, 359
LINAGE-COUNTER 16, 88, 92, 163
LOWEST-VALUE 16
MAX-VALUE 17
MIN-VALUE 18
PROCEDURE-NAME 19
PROGRAM-ID 19
RETURN-CODE 19, 372
WHEN-COMPILED 20

Special symbols 395
SPECIAL-NAMES paragraph 54, 57

glossary term 520
Split key, glossary term 520
Split-key-name

ALTERNATE RECORD KEY clause 70, 78
global 34, 91
glossary term 520
qualification 162
READ statement 333, 336
RECORD KEY clause 70, 78
scope 37
START statement 365
user-defined word type 10

Standard alignment rules 161
Standard data format, glossary term 520
STANDARD phrase, LABEL RECORDS clause 91
STANDARD-1

code-name 59
record delimiting technique 77

Index

556 RM/COBOL Language Reference Manual

STANDARD-2, code-name 59
START operator, constant-expressions 136
START statement (relative and indexed I-O) 365
Statement

ACCEPT (terminal I-O) 234
ACCEPT . . . FROM implicit definition 232
ACCEPT . . . FROM system-name 231
ACCEPT cd-name MESSAGE COUNT 248
ACCEPT screen-name 249
ADD (numeric data) 182, 252
ALTER procedure-name 254
CALL (subprogram) 255
CALL PROGRAM 261
CANCEL (subprogram) 262
CLOSE file-name 264
COMPUTE (numeric data) 182, 266
CONTINUE 267
COPY (library text) 40
DELETE FILE 269
DELETE file-name RECORD 267
DISABLE cd-name 270
DISPLAY (terminal I-O) 274
DISPLAY … UPON system-name 272
DISPLAY screen-name 280
DIVIDE (numeric data) 182, 282
ENABLE cd-name 285
ENTER language-name 287
EVALUATE 187, 288
EXIT 291
EXIT PARGRAPH 291
EXIT PERFORM [CYCLE] 291
EXIT PROGRAM 291
EXIT SECTION 291
GO TO procedure-name 294
GO TO procedure-name DEPENDING ON 294
GOBACK 293
IF 187, 295
INITIALIZE (data) 297
INSPECT … CONVERTING (data) 301
INSPECT … TALLYING (data) 300
INSPECT … TALLYING and REPLACING (data)

300
MERGE file-name 179, 307
MOVE (data) 311
MULTIPLY (numeric data) 182, 315
OPEN file-name 316
PERFORM (once) 187, 321
PERFORM … TIMES 321
PERFORM … UNTIL 322
PERFORM … VARYING 322
PERFORM procedure or statement sequence 321
PURGE cd-name 332
READ file-name RECORD 96, 333
RECEIVE cd-name MESSAGE or SEGMENT 339
RELEASE record-name (sort-merge) 96, 110, 342
REPLACE (source text) 44

RETURN file-name RECORD (sort-merge) 96,
343

REWRITE record-name (to file) 96, 110, 344
SEARCH (table, serially) 187, 347
SEARCH ALL (table, binarily) 187, 347
SEND cd-name (message or segment) 352
SET condition-name TO TRUE or FALSE 356
SET index TO 356
SET index UP or DOWN 356
SET pointer TO 356
SET pointer UP or DOWN 357
SET switch ON or OFF 356
SORT file-name 179, 360
START file-name 365
STOP (program) 371
STRING (data) 372
SUBTRACT (numeric data) 182, 375
UNLOCK file-name RECORD(S) 377
UNSTRING (data) 378
USE 180
WRITE record-name (to file) 96, 110, 381

Statements
arithmetic 182
conditional 29
delimited scope 29, 31
directive 29
glossary term 521
imperative 29, 30
nesting 31
program structure 29

STATUS clause See FILE STATUS clause
STATUS KEY clause

input communication description (CD) entry 137,
140

I-O (input-output) communication description entry
138, 144

output communication description (CD) entry 137,
142

Status values See I-O status values
STOP RUN statement 371
STOP statement 371
STOP statement, temporary 371
STRICT-REFERENCE-MODIFICATION keyword,

COMPILER-OPTIONS configuration record
166

STRING statement 372
STRIP-LIKE-PATTERN-TRAILING-SPACES

keywordCOMPILER-OPTIONS configuration
record 369

Subject of entry, glossary term 521
Subprogram

CALL statement 256
CANCEL statement 263
glossary term 521

Sub-queue, glossary term 521

Index

 RM/COBOL Language Reference Manual 557

SUB-QUEUE-1 clause, input communication
description (CD) entry 137, 139

SUB-QUEUE-2 clause, input communication
description (CD) entry 137, 139

SUB-QUEUE-3 clause, input communication
description (CD) entry 137, 140

Subscripted data item, glossary term 521
Subscripting 164
Subscripts 164

evaluation 182
glossary term 521
parentheses, using in 6, 164

SUBTRACT statement 182, 375
SUPPRESS phrase, COPY statement 40, 41, 47
SUPPRESS-FILLER-IN-SYMBOL-TABLE

keyword, COMPILER-OPTIONS configuration
record 468

Suppression editing 119
SUPPRESS-LITERAL-BY-CONTENT keyword,

COMPILER-OPTIONS configuration record
258

Suspension (temporary), run unit 371
SWITCH-1–SWITCH-8 switch-names

nonreserved system-names 396
SPECIAL-NAMES paragraph 66
system-names 12

Switches 12
Switch-name 11

glossary term 521
Mnemonic-Name clause 54, 65
SPECIAL-NAMES paragraph 66
SWITCH-1–SWITCH-8 and UPSI-0–UPSI-7 396
system-names 12

Switch-status condition 200
glossary term 521

Switch-status, SET statement (ON/OFF) 357, 358
SYMBOLIC CHARACTERS clause 54, 58, 67
SYMBOLIC DESTINATION clause, output

communication description (CD) entry 137, 142
SYMBOLIC QUEUE clause, input communication

description (CD) entry 137, 139
SYMBOLIC SOURCE clause, input communication

description (CD) entry 137, 140
SYMBOLIC SUB-QUEUE-1 clause, input

communication description (CD) entry 137, 139
SYMBOLIC SUB-QUEUE-2 clause, input

communication description (CD) entry 137, 139
SYMBOLIC SUB-QUEUE-3 clause, input

communication description (CD) entry 137, 140
SYMBOLIC TERMINAL clause, I-O (input-output)

communciation description entry 144
SYMBOLIC TERMINAL clause, I-O (input-output)

communication description entry 138
Symbolic-character

figurative constant 23
glossary term 521

scope 36
SYMBOLIC CHARACTERS clause 54, 58, 67
user-defined word type 10

Symbols and conventions 2
Symbols, special 395
SYMBOL-TABLE-OUTPUT keyword,

COMPILER-OPTIONS configuration record
462

SYNC clause, data description entry 103, 126
SYNCHRONIZED clause, data description entry

103, 126
SYSIN low-volume-I-O-name

ACCEPT statement 231
nonreserved system-names 396
SPECIAL-NAMES 66
system-names 12

SYSOUT low-volume-I-O-name
DISPLAY statement 272
nonreserved system-names 396
SPECIAL-NAMES 66
system-names 12

System-name
defined 7, 11
file control entry 396
glossary term 521
nonreserved, list of 395–97
SPECIAL-NAMES paragraph 395

T

TAB phrase, ACCEPT statement 246
Table definition 168
Table element, glossary term 522
Table handling 167
Table items, referencing 169
Table, glossary term 521
Table-name, glossary term 522
TALLYING phrase

INSPECT statement 300
UNSTRING statement 379

TAPE device-name
ASSIGN clause 72
system-names 11

Temporary STOP statement 371
Temporary suspension, run unit 371
TERMINAL clause, I-O (input-output)

communication description entry 138, 144
TERMINAL phrase

DISABLE statement 271
ENABLE statement 286

Terminal, glossary term 522
Termination, run unit 371
TERM-INPUT configuration record

ACTION keyword 250
CODE keyword 233
field editing keys 250

Index

558 RM/COBOL Language Reference Manual

TEST AFTER phrase
PERFORM statement 322
PERFORM UNTIL statement 324
PERFORM VARYING AFTER statement 328
PERFORM VARYING statement 327

TEST BEFORE phrase
PERFORM statement 322
PERFORM UNTIL statement 324
PERFORM VARYING AFTER statement 325
PERFORM VARYING statement 325

TEXT LENGTH clause
input communication description (CD) entry 137,

140
I-O (input-output) communication description entry

138, 144
output communication description (CD) entry 137,

142
Text word 41

glossary term 522
Text-name

COPY statement 40
glossary term 522
qualification 40
scope 36
user-defined word type 10

THROUGH phrase
EVALUATE statement 288
PERFORM statement 323

Time of day
ACCEPT FROM TIME statement 234
DATE-AND-TIME phrase, ACCEPT FROM

statement 233
DAY-AND-TIME phrase, ACCEPT FROM

statement 233
TIME phrase, ACCEPT statement 246
Time-out, ACCEPT statement, TIME phrase 246
TIMES phrase, PERFORM statement 324
TO LINE phrase, WRITE statement 384
TO phrase, PICTURE clause, screen description

entry 158
TO VALUE phrase, INITIALIZE statement 297
Top margin 92

glossary term 522
TRAILING adjective

INSPECT REPLACING statement 305
INSPECT TALLYING statement 304

TRAILING phrase, SIGN clause 124
Transfers of control, explicit and implicit 176
Translation

CODE-SET clause (sequential I-O) 74
EBCDIC 62

TRIMMED phrase
LIKE relation condition 191
START statement WHILE phrase 369

TRUE phrase, SET statement 135, 356
TRUE, selection subject or object 289

Truth value 187
glossary term 522

U

Unary operator 185–87
glossary term 522

UNDERLINE clause
screen field description entry 150, 159
screen literal description entry 149, 159

Unicode
glossary term 522
LIKE condition 192, 194–96

Uniqueness of reference
qualification 38, 162
reference modification 165
subscripting 164

UNIT phrase
ACCEPT statement 247
CLOSE statement 264
DISPLAY statement 280
RERUN clause, I-O-CONTROL paragraph 81

Unit, glossary term 523
UNLOCK statement 377
UNSTRING statement 378
Unsuccessful execution, glossary term 523
UNTIL phrase, PERFORM statement 324
UP BY phrase, SET statement 356
UPDATE phrase, ACCEPT statement 247
Uppercase letters, character set 5
UPSI-0–UPSI-7 switch-names

nonreserved system-names 396
SPECIAL-NAMES paragraph 66
system-names 12

USAGE clause
data description entry 103, 126, 127, 172, 188, 199
screen field description entry 150, 160
screen group description entry 148, 160

USE statement 180
User-defined words

glossary term 523
rules 8
types 8

USING phrase
CALL PROGRAM statement 262
CALL statement 258
MERGE statement 308
PICTURE clause, screen description entry 158
Procedure Division header 171
SORT statement 362

V

V Compile Command Option 78
VALUE clause

condition-name description 104, 133

Index

 RM/COBOL Language Reference Manual 559

constant-name description 104, 133
data description entry 103, 132
screen literal description entry 149, 160

VALUE OF clause, file description entry 87, 97
VALUE phrase, INITIALIZE statement 133, 297
Variable length 110
Variable, glossary term 523
Variable-length group

glossary term 523
Variable-length record 95

glossary term 523
Variable-occurrence data item 109

glossary term 523
VARYING phrase

PERFORM statement 324
RECORD clause 95
SEARCH statement (serial) 350

Verbs
glossary term 523
imperative 30

Volume 264
glossary term 524

W

WHEN OTHER phrase, EVALUATE statement 290
WHEN phrase

EVALUATE statement 288
SEARCH statement 349

WHEN-COMPILED special register 20
WHEN-COMPILED-FORMAT keyword,

COMPILER-OPTIONS configuration record 20
WHILE phrase, START statement (relative and

indexed I-O) 368
WITH DATA phrase, RECEIVE statement 340
WITH DEBUGGING MODE clause, SOURCE-

COMPUTER paragraph 56
WITH FILLER phrase, INITIALIZE statement 298
WITH KEY phrase

DISABLE statement 272
ENABLE statement 286

WITH LOCK phrase
CLOSE statement 265
OPEN statement 317
READ statement 337

WITH NO ADVANCING phrase, DISPLAY
statement 273

WITH NO LOCK phrase, READ statement 337
WITH NO REWIND phrase

CLOSE statement 265
OPEN statement 320

Words
COBOL, defined 7
context-sensitive 7, 21, 393
glossary term 524
reserved 7, 12, 387–93

system-names 7, 11, 395–97
user-defined 7, 8–10

Working-Storage Section, Data Division 85, 97
glossary term 524
header 86, 97

WRITE statement 96, 110, 381

X

XML
glossary term 524
LIKE relation condition 191–94

XML schema
glossary term 524
LIKE relation condition 191–94

Y

Y Compile Command Option 471, 478
YYYYDDD phrase, ACCEPT FROM statement

232–33
context-sensitive words 393

YYYYMMDDD phrase, ACCEPT FROM statement
232–33

context-sensitive words 393

Z

Z Compile Command Option 408, 455, 470, 478
ZERO (ZERO, ZEROES) figurative constant 22
ZERO sign condition, conditional expressions 200
Zero suppression editing 119
Zero-length item, glossary term 524

	Preface
	Organization of Information
	Conventions and Symbols
	Related Publications

	Chapter 1: Language Structure
	Overview
	Character Set
	Separators
	Character-Strings
	COBOL Words
	User-Defined Words
	System-Names
	Reserved Words
	Context-Sensitive Words

	Literals
	Numeric Literals
	Nonnumeric Literals
	Figurative Constants
	Concatenation Expressions

	PICTURE Character-Strings
	Comment-Entry

	Program Structure
	Source Format
	Continuation of Lines
	Blank Lines
	Comment Lines
	In-Line Comments
	Debugging Lines
	Pseudo-Text
	Statements
	Directive Statements
	Conditional Statements
	Conditional Phrases

	Imperative Statements
	Delimited Scope Statements
	Scope of Statements

	Sentences
	Clauses and Entries
	Paragraphs
	Sections
	Divisions
	Source Program General Format

	Inter-Program Communication
	Nested Source Programs
	File Connector
	Global Names and Local Names
	External Objects and Internal Objects
	Common Programs and Initial Programs
	Sharing Data in a Run Unit
	Sharing Files in a Run Unit
	Scope of Names
	Program-Names
	Condition-Names, Constant-Names, Data-Names, File-Names, Record-Names and Split-Key-Names
	Index-Names

	Initial State of a Program
	End Program Header
	COPY Statement
	REPLACE Statement
	Compiler Directives
	IMP Directive
	IMP MARGIN-R

	LISTING Directive
	PAGE Directive

	Chapter 2: Identification Division
	Identification Division Structure
	Program Identification
	PROGRAM-ID Paragraph
	AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY, and REMARKS Paragraphs
	DATE-COMPILED Paragraph

	Chapter 3: Environment Division
	Environment Division Structure
	Configuration Section
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph
	ALPHABET Clause
	Code Name Alphabets
	Literal Alphabets
	Indexed File Alphabets
	EBCDIC Translation

	CLASS Clause
	CONSOLE IS CRT Clause
	CRT STATUS Clause
	CURRENCY SIGN Clause
	CURSOR Clause
	DECIMAL-POINT Clause
	Mnemonic-Name Clause
	NUMERIC SIGN Clause
	SYMBOLIC CHARACTERS Clause

	Input-Output Section
	FILE-CONTROL Paragraph
	File Control Entry
	SELECT Clause
	ACCESS MODE Clause
	ASSIGN Clause
	CODE-SET Clause
	COLLATING SEQUENCE Clause
	FILE STATUS Clause
	LOCK MODE Clause
	ORGANIZATION Clause
	Sequential
	Relative
	Indexed

	PADDING CHARACTER Clause
	RECORD DELIMITER Clause
	RECORD KEY and ALTERNATE RECORD KEY Clauses
	RESERVE Clause

	Sort-Merge File Control Entry
	SELECT Clause
	ASSIGN Clause

	I-O-CONTROL Paragraph
	RERUN Clause
	SAME Clause
	MULTIPLE FILE TAPE Clause

	Chapter 4: Data Division
	Data Division Structure
	File Section
	File Description Entry
	Sort-Merge File Description Entry

	File Description Clauses
	BLOCK CONTAINS Clause
	CODE-SET Clause
	DATA RECORDS Clause
	EXTERNAL Clause
	GLOBAL Clause
	LABEL RECORDS Clause
	LINAGE Clause
	RECORD Clause
	VALUE OF Clause

	Working-Storage Section
	Linkage Section
	Communication Section
	Screen Section
	Record Description Entry
	Level-Numbers
	Elementary Items

	77-Level Description Entry
	Data Description Entry
	Condition-Name Data Description Entry
	Constant-Name Data Description Entry
	BLANK WHEN ZERO Clause
	Data-Name or FILLER Clause
	EXTERNAL Clause
	GLOBAL Clause
	JUSTIFIED Clause
	Level-Number
	OCCURS Clause
	PICTURE Clause
	Implied PICTURE Clause
	Nonnumeric Implied PICTURE Clause
	Numeric Implied PICTURE Clause
	Implied PICTURE Clause and Other Data Description Clauses

	PICTURE Character-Strings (Data Categories)
	Symbols Used in a PICTURE Character-String
	Editing Rules
	Simple Insertion Editing
	Special Insertion Editing
	Fixed Insertion Editing
	Floating Insertion Editing
	Zero Suppression Editing

	PICTURE Symbols Precedence

	REDEFINES Clause
	RENAMES Clause
	SAME AS Clause
	SIGN Clause
	SYNCHRONIZED Clause
	USAGE Clause
	COMPUTATIONAL Usage
	COMPUTATIONAL-1 Usage
	COMPUTATIONAL-3 or PACKED-DECIMAL Usage
	COMPUTATIONAL-4 or BINARY Usage
	COMPUTATIONAL-5 Usage
	COMPUTATIONAL-6 Usage
	DISPLAY Usage
	INDEX Usage
	POINTER Usage

	VALUE Clause
	Data Item Initialization Rules (Format 1 VALUE Clause)
	Condition-Name Rules (Format 2 VALUE Clause)
	Constant-Name Rules (Format 3 VALUE Clause)

	Communication Description Entry
	Input CD General Rules
	Output CD General Rules
	Input-Output CD General Rules
	Status Key Conditions
	Error Key Values

	Screen Description Entry
	AUTO Clause
	BACKGROUND Clause
	BELL Clause
	BLANK LINE Clause
	BLANK REMAINDER Clause
	BLANK SCREEN Clause
	BLANK WHEN ZERO Clause
	BLINK Clause
	COLUMN Clause
	ERASE Clause
	FOREGROUND Clause
	FULL Clause
	HIGHLIGHT and LOWLIGHT Clauses
	JUSTIFIED Clause
	LINE Clause
	PICTURE Clause
	REQUIRED Clause
	REVERSE Clause
	SECURE Clause
	SIGN Clause
	UNDERLINE Clause
	USAGE Clause
	VALUE Clause

	Data Structures
	Classes of Data
	Standard Alignment Rules

	Uniqueness of Reference
	Qualification
	Subscripting
	Reference Modification
	Identifier
	Condition-Name
	Index-Name

	Table Handling
	Table Definition
	References to Table Items

	Chapter 5: Procedure Division
	Procedure Division Header
	Procedure Division Structure
	Procedures
	Execution
	Procedure References
	Explicit and Implicit Transfers of Control
	Segmentation
	Segments
	Fixed Portion
	Independent Segments

	Segmentation Classification
	Segmentation Control
	Restrictions on Program Flow
	ALTER Statement Restrictions
	PERFORM Statement Restrictions
	MERGE Statement Restrictions
	SORT Statement Restrictions

	USE Statement
	Common Rules
	Subscript Evaluation
	Arithmetic Statements
	Modes of Operation
	Composite Size
	ROUNDED Phrase
	Size Error Condition

	Overlapping Operands
	Incompatible Data

	Arithmetic Expressions
	Arithmetic Operators
	Formation and Evaluation Rules

	Conditional Expressions
	Simple Conditions
	Relation Condition
	Comparison of Numeric Operands
	Comparison of Nonnumeric Operands
	Comparisons of Index-Names and Index Data Items
	Comparison of Pointer Data Items
	LIKE Condition (Special Case of Relation Condition)

	Class Condition
	Sign Condition
	Condition-Name Condition (Conditional Variable)
	Switch-Status Condition

	Complex Conditions
	Negated Conditions
	Combined Conditions
	Abbreviated Combined Relation Conditions

	Condition Evaluation Rules

	Sequential Organization Input-Output
	Function
	Organization
	Access Mode
	File Position Indicator
	I-O Status
	At End Condition

	Relative Organization Input-Output
	Function
	Organization
	Access Modes
	File Position Indicator
	I-O Status
	Invalid Key Condition
	At End Condition

	Indexed Organization Input-Output
	Function
	Organization
	Access Modes
	File Position Indicator
	I-O Status
	Invalid Key Condition
	At End Condition

	File Locking
	Record Locking
	Record Locking Modes
	Automatic Record Locking Modes
	Manual Record Locking Modes
	Single Record Locking Modes
	Multiple Record Locking Modes

	Interactive Terminal I-O
	Sort-Merge
	Communication Facility
	Message Control System
	Object Program
	Relationship of the Object Program to the Message Control System and Communication Devices
	Invoking the Object Program
	Scheduled Initiation of the Object Program
	Invocation of the Object Program by the Message Control System
	Determining the Method of Scheduling
	Concept of Messages and Message Segments
	Concept of Queues
	Independent Enqueueing and Dequeueing
	Enabling and Disabling Queues
	Queue Hierarchy

	Chapter 6: Procedure Division Statements
	ACCEPT . . . FROM Statement
	ACCEPT Statement (Terminal I-O)
	AUTO Phrase
	BEEP or NO BEEP Phrase
	BLINK Phrase
	CONTROL Phrase
	CONVERT Phrase
	CURSOR Phrase
	ECHO Phrase
	ERASE Phrase
	ON EXCEPTION and NOT ON EXCEPTION Phrases
	HIGH, LOW and OFF Phrases
	LINE and POSITION Phrases
	Determining Line and Position

	MODE IS BLOCK Phrase
	PROMPT Phrase
	REVERSE Phrase
	SIZE Phrase
	TAB Phrase
	TIME Phrase
	UNIT Phrase
	UPDATE Phrase

	ACCEPT MESSAGE COUNT Statement
	ACCEPT Screen-Name Statement
	ADD Statement
	CORRESPONDING Phrase

	ALTER Statement
	CALL Statement
	USING Phrase
	GIVING Phrase
	OVERFLOW, EXCEPTION, and NOT EXCEPTION Phrases

	CALL PROGRAM Statement
	CANCEL Statement
	CLOSE Statement
	REEL and UNIT Phrases
	NO REWIND Phrase
	REMOVAL Phrase
	LOCK Phrase

	COMPUTE Statement
	CONTINUE Statement
	DELETE Statement (Relative and Indexed I-O)
	DELETE FILE Statement
	DISABLE Statement
	INPUT Phrase
	I-O TERMINAL Phrase
	OUTPUT Phrase
	TERMINAL Phrase
	WITH KEY Phrase

	DISPLAY . . . UPON Statement
	DISPLAY Statement (Terminal I-O)
	BEEP Phrase
	BLINK Phrase
	CONTROL Phrase
	CONVERT Phrase
	ERASE Phrase
	HIGH and LOW Phrases
	LINE and POSITION Phrases
	Determining Line and Position

	MODE IS BLOCK Phrase
	REVERSE Phrase
	SIZE Phrase
	UNIT Phrase

	DISPLAY Screen-Name Statement
	DIVIDE Statement
	REMAINDER Phrase

	ENABLE Statement
	INPUT Phrase
	I-O TERMINAL Phrase
	OUTPUT Phrase
	TERMINAL Phrase
	WITH KEY Phrase

	ENTER Statement
	EVALUATE Statement
	General Rules for the EVALUATE Statement

	EXIT Statement
	GOBACK Statement
	GO TO Statement
	DEPENDING ON Phrase

	IF Statement
	INITIALIZE Statement
	General Rules for the INITIALIZE Statement

	INSPECT Statement
	General Rules for the INSPECT Statement

	MERGE Statement
	General Rules for the MERGE Statement

	MOVE Statement
	CORRESPONDING Phrase

	MULTIPLY Statement
	OPEN Statement
	INPUT Phrase
	OUTPUT Phrase
	I-O Phrase
	EXTEND Phrase
	NO REWIND Phrase

	PERFORM Statement
	PURGE Statement
	READ Statement
	KEY Phrase
	LOCK Phrase
	INTO Phrase
	INVALID KEY and NOT INVALID KEY Phrases

	RECEIVE Statement
	NO DATA and WITH DATA Phrases
	MESSAGE Phrase
	SEGMENT Phrase

	RELEASE Statement
	FROM Phrase

	RETURN Statement
	REWRITE Statement
	FROM Phrase

	SEARCH Statement
	General Rules for the SEARCH Statement

	SEND Statement
	General Rules for the SEND Statement
	ADVANCING Phrase

	SET Statement
	General Rules for the SET Statement

	SORT Statement
	General Rules for the SORT Statement

	START Statement (Relative and Indexed I-O)
	SIZE Phrase
	WHILE Phrase
	INVALID KEY and NOT INVALID KEY Phrases

	STOP Statement
	STRING Statement
	DELIMITED Phrase
	POINTER Phrase
	OVERFLOW and NOT OVERFLOW Phrases

	SUBTRACT Statement
	CORRESPONDING Phrase

	UNLOCK Statement
	UNSTRING Statement
	USE Statement
	WRITE Statement
	FROM Phrase
	ADVANCING Phrase
	END-OF-PAGE and NOT END-OF-PAGE Phrases
	INVALID KEY and NOT INVALID KEY Phrases

	Appendix A: Reserved Words
	Reserved Words
	Context-Sensitive Words
	Special Symbols
	Nonreserved System-Names

	Appendix B: Compiler Messages
	Compiler Messages
	Compiler Messages 001—100
	Compiler Messages 101—200
	Compiler Messages 201—300
	Compiler Messages 301—400
	Compiler Messages 401—500
	Compiler Messages 501—600
	Compiler Messages 601—700
	Compiler Messages 701—800
	Compiler Messages 801—900

	Glossary
	Terms and Definitions
	66-Level-Description-Entry
	77-Level-Description-Entry
	78-Level-Description-Entry
	88-Level-Description-Entry
	Abbreviated Combined Relation Condition
	Access Mode
	Actual Argument
	Actual Decimal Point
	Alphabetic Character
	Alphabet-Name
	Alphanumeric Character
	Alternate Record Key
	ANSI
	Area A
	Area B
	Arithmetic Expression
	Arithmetic Operation
	Arithmetic Operator
	Arithmetic Statement
	Ascending Key
	Assumed Decimal Point
	At End Condition
	Automatic Multiple
	Automatic Record Locking Modes
	Automatic Single
	Based Linkage Record
	Binary Allocation Override
	Binary Sequential
	Block
	Bottom Margin
	Called Program
	Calling Program
	Cd-Name
	Channel-Name
	Character
	Character Position
	Character-String
	Class Condition
	Class-Name
	Clause
	COBOL Character Set
	COBOL Word
	Code-Name
	Codepage
	Collating Sequence
	Column
	Combined Condition
	Comment Line
	Comment Entry
	Common Program
	Communication Description Entry
	Communication Device
	Communication Section
	Compile Time
	Compiler Directing Statement
	Compiler Directive
	Complex Condition
	Composite of Operands
	Computer-Name
	Concatenation Expression
	Condition
	Conditional Expression
	Conditional Phrase
	Conditional Statement
	Conditional Variable
	Condition-Name
	Condition-Name Condition
	Configuration Section
	Constant-Expression
	Constant-Name
	Context-Sensitive Word
	Contiguous Items
	Counter
	Currency Sign
	Currency Symbol
	Current Record
	Current Volume Pointer
	Data Clause
	Data Description Entry
	Data Item
	Data-Name
	Debugging Line
	Declarative Sentence
	Declaratives
	De-Edit
	Delimited Scope Statement
	Delimiter
	Descending Key
	Destination
	Device Name
	Digit Position
	Directive
	Division
	Division Header
	Dynamic Access
	Editing Character
	EGI
	Elementary Item
	EMI
	End of Group Indicator (EGI)
	End of Message Indicator (EMI)
	End of Procedure Division
	End of Segment Indicator (ESI)
	End Program Header
	Entry
	Environment Clause
	ESI
	Exclusive File
	Exclusive Mode
	Execution Time
	Explicit Scope Terminator
	Expression
	Extend Mode
	External Attribute
	External Data
	External Data Item
	External Data Record
	External File Connector
	External Switch
	Feature-Name
	Figurative Constant
	File
	File Access Name
	File Attribute Conflict Condition
	File Clause
	File Connector
	File Control Entry
	File Description Entry
	File Organization
	File Position Indicator
	File Section
	FILE-CONTROL
	File-Name
	Fixed File Attributes
	Fixed-Length Record
	Fixed-Form Reference Format
	Footing Area
	Formal Argument
	Format
	Global Name
	Group Item
	High Order End
	Identification Area
	Identifier
	Imperative Statement
	Implicit Scope Terminator
	Index
	Index Data Item
	Indexed File
	Indexed Organization
	Index-Name
	Indicator Area
	Initial Program
	Initial State
	In-Line Comment
	Input File
	Input Mode
	Input Procedure
	Input-Output File
	Input-Output Section
	Input-Output Statement
	Integer
	Internal Data
	Internal Data Item
	Internal File Connector
	Intra-Record Data Structure
	Invalid Key Condition
	I-O Mode
	I-O Status
	I-O-CONTROL
	I-O-CONTROL Entry
	ISO
	Key
	Key of Reference
	Keyword
	Language-Name
	Letter
	Level Indicator
	Level-Number
	Library Text
	Library-Name
	LIKE Relation Condition
	LINAGE-COUNTER
	Line Sequential
	Linkage Section
	Literal
	Lock Mode
	Logical Operator
	Logical Page
	Logical Record
	Low Order End
	Low-Volume-I-O-Name
	Manual Multiple
	Manual Record Locking Modes
	Manual Single
	Margin R
	Mass Storage
	Mass Storage Control System (MSCS)
	Mass Storage File
	Maximum Source Record Length
	MCS (Message Control System)
	Merge File
	Message
	Message Control System (MCS)
	Message Count
	Message Indicators
	Message Segment
	Mnemonic-Name
	MSCS (Mass Storage Control System)
	Multiple Record Locking Modes
	Native Character Set
	Native Collating Sequence
	Negated Combined Condition
	Negated Simple Condition
	Next Executable Sentence
	Next Executable Statement
	Next Record
	Noncontiguous Item
	Nonnumeric Item
	Nonnumeric Literal
	Null
	Numeric Character
	Numeric Item
	Numeric Literal
	Object Computer Entry
	Object of Entry
	Object Program
	Object Time
	OBJECT-COMPUTER
	Obsolete Element
	OEM
	Open Mode
	Operand
	Operational Sign
	Optional File
	Optional Word
	Output File
	Output Mode
	Output Procedure
	Padding Character
	Page Body
	Paragraph
	Paragraph Header
	Paragraph-Name
	Pattern
	Phrase
	Physical Page
	Physical Record
	Pointer Data Item
	Previous Record
	Prime Record Key
	Procedure
	Procedure Branching Statement
	Procedure-Name
	Program Identification Entry
	Program-Name
	Program-Text
	Program-Text Area
	Pseudo-Text
	Pseudo-Text Delimiter
	Punctuation Character
	Qualified Data-Name
	Qualifier
	Queue
	Queue Name
	Random Access
	Record
	Record Area
	Record Delimiting Technique
	Record Description
	Record Description Entry
	Record Key
	Record Locking Mode
	Record Number
	Record-Name
	Reel
	Reference Modifier
	Regular Expression
	Relation
	Relation Character
	Relation Condition
	Relational Operator
	Relative File
	Relative Key
	Relative Organization
	Relative Record Number
	Reserved Word
	Resource
	Resultant Identifier
	Routine-Name
	Run Unit
	Screen Clause
	Screen Description Entry
	Screen Item
	Screen Section
	Screen-Name
	Section
	Section Header
	Section-Name
	Segment-Number
	Sentence
	Separately Compiled Program
	Separator
	Sequence Number Area
	Sequential Access
	Sequential File
	Sequential Organization
	Shared File
	Shared File Environment
	Shared Mode
	Sign Condition
	Simple Condition
	Single Record Locking Modes
	Sort File
	Sort-Merge File Description Entry
	Source
	Source Computer Entry
	Source Format
	Source Program
	SOURCE-COMPUTER
	Special Character
	Special Character Word
	Special Names Entry
	Special Registers
	SPECIAL-NAMES
	Split Key
	Split-Key-Name
	Standard Data Format
	Statement
	Subject of Entry
	Subprogram
	Sub-Queue
	Subscript
	Subscripted Data-Name
	Switch-Name
	Switch-Status Condition
	Symbolic-Character
	System-Name
	Table
	Table Element
	Table-Name
	Terminal
	Text Word
	Text-Name
	Top Margin
	Truth Value
	Unary Operator
	Unicode
	Unit
	Unsuccessful Execution
	User-Defined Word
	Variable
	Variable-Length Group
	Variable-Length Record
	Variable-Occurrence Data Item
	Verb
	Volume
	Word
	Working-Storage Section
	XML
	XML Schema
	Zero-Length Item

	Index

