

Cobol-WOW
Windows Object Workshop

User's Guide
Version 3.1 for Windows

®

™

This manual is a user’s guide for Cobol-WOW, Liant Software Corporation’s graphical
user interface development tool for RM/COBOL. It is assumed that the reader is familiar
with programming concepts and with the COBOL language in general.

The information contained herein applies to systems running under Microsoft Windows 95,
Microsoft Windows 98, Microsoft Windows NT, and Microsoft Windows 2000 operating
systems.

The information in this document is subject to change without prior notice. Liant
Software Corporation assumes no responsibility for any errors that may appear in this
document. Liant reserves the right to make improvements and/or changes in the products
and programs described in this manual at any time without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in a retrieval system or transmitted,
in any form or by any means, electronic, mechanical, photocopied, recorded, or
otherwise, without prior written permission of Liant Software Corporation.

The software described in this document is furnished to the user under a license for a
specific number of uses and may be copied (with inclusion of the copyright notice) only
in accordance with the terms of such license.

Copyright 2001 by Liant Software Corporation. All rights reserved. Printed in U.S.A.

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels,
RM/plusDB, VanGui Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, InstantSQL, Liant, and
the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Visual Basic, ActiveX, Windows 95, Windows 98, Windows NT, and Windows
2000 are trademarks or registered trademarks of Microsoft Corporation in the USA and other countries.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks
of their respective trademark holders, and are used only for explanation purposes. Other companies
mentioned herein own various trademarks.

Document Number 401204--1101

 Cobol-WOW User's Guide iii

Table of Contents
Preface: ..xxi

What’s New in Version 3.10 ..xxi
Cobol-WOW Documentation ... xxii

How This Manual is Organized... xxiii
Symbols and Conventions ..xxiv
Registration ...xxv
Technical Support ...xxv

Support Guidelines ...xxvi
Test Cases...xxvi

Enhancements... xxvii
Version 3.0 ... xxvii

Chapter 1: Installing Cobol-WOW ...1
System Requirements ..1

Required Hardware..1
Required Software ...1

System Installation ..2
Locating Required Tools ...2
Customizing the Initialization File (cblwow.ini) ...3

[WOWRT] Section..3

Chapter 2: Tutorial..5
Using the File Maintenance Program ..5
Using Projects ...6

Create a New Project...6
Designing Forms ...7

Create the FIRSTAPP Form..8
Setting Form Properties...8

Style Property..9
Title Property ..11
Border, Caption, MinButton, and SystemMenu Properties ...11

Moving and Sizing a Form ..11
Add Controls to the FIRSTAPP Form...12

Creating a Menu ..12
Creating a List Box..15
Creating the Command Buttons...16

Arrange Controls on the FIRSTAPP Form..17
Selecting ..17
Resizing...18
Moving ..18

iv Contents

Aligning and Spacing ..18
Specifying Tab Order ..19
Specifying Z-order...20

Save the FIRSTAPP Form...21
Name Property...22

Create the CUSTINFO Form...22
Setting Form Properties...23

Add Controls to the CUSTINFO Form ...23
Save the CUSTINFO Form ...24

Writing Code ...25
Step 1 — Exiting Methods ..26

Writing Code for Menu Controls...26
Compiling and Running Program..27
Controlling the COBOL Main Window ..27

Step 2 — Loading the List Box ...28
Using the WOWADDITEM Function...28
Creating Logic to Load the List Box ...29
Project Code Sections..30

Procedure Division Logic..30
Working-Storage Section Logic ..31

Saving, Generating, Compiling, and Running ...32
Step 3 — Adding the Second Window..32

Adding Logic to the Add Command Button..32
Declaring ADD-MODE...33
Declaring POPUP-RTN ..33
Removing the CUSTINFO Window..34
Saving, Compiling, and Running...34

Step 4 — Adding Customers ...34
Using the WOWGETPROP Function ...35
Adding Logic to the OK Command Button...35
Saving, Building, and Running..36

Step 5 — Changing Customers..36
Working with List Box Selections...37
Adding Logic to the Change Command Button...37
Adding Code to the Procedure Division..38
Modifying the POPUP-RTN Procedure ..39
Modifying the OK Command Button Procedure ...39
Adding the Delete List Box Entry Procedure ..40
Saving, Building, and Running..40

Step 6 — Deleting Customers ...40
WOWMESSAGEBOX Function ..41
Adding Logic to the Delete Command Button ..42
Saving, Building, and Running..42

 Cobol-WOW User's Guide v

Chapter 3: Introducing Cobol-WOW ...43
Cobol-WOW Components ..43

Cobol-WOW Designer ..43
Cobol-WOW Runtime System ..44
Cobol-WOW Thin Client ..44

Cobol-WOW Development Process Overview ...45
Windows Graphical Operating Environment...46

Forms and Controls ...46
Forms...46
Controls ...48

Properties...50
Setting a Property Value at Runtime ...51
Getting a Property Value at Runtime...52
Benefits of Using WOWSETPROP and WOWGETPROP...52
Sample Program — Setting Properties ..53

Handles..53
IDs...54
Functions and Messages ..54

What are Functions? ..55
What are Messages? ..55
Using Functions and Messages..56
Sample Program — Using Functions and Messages ...56

Chapter 4: Developing with Cobol-WOW ...57
Cobol-WOW Projects ...57
Event-Driven Applications ..58

Example 1..58
Example 2..59

Addressing Issues in Data Entry Programs..60
Handling Data..60

Example 1: Loading a Form with COBOL Data ..61
Example 2: Retrieving Information from a Form and Storing It in COBOL Data Items....61

Handling Different Types of Data ...64
Example 1: Basic Numeric Data for an Edit Box Control..64
Example 2: Formatted Numeric Data for an Edit Box Control ..65
Example 3: Handling Numeric Data with Scroll Bar Controls...66
Example 4: Handling Numeric Data with Check Box Controls ...66

Managing User Interaction ..67
Example 1: Handling an Invalid Value...68
Example 2: Dictating Entry Order for Controls..68
Example 3: Preventing Data Entry on a Control ..69
Example 4: Switching to Another Windows Application...70
Example 5: Disabling and Enabling a Validated Control ...73

vi Contents

Using Function Keys for Special Options ...74
Implementing Function Keys in Cobol-WOW ..74

Sample Program ..76
Working with Menus ...76

Using Menus..76
Checking and Unchecking Menu Items ...77
Enabling and Disabling Menu Items ...78
Popping Up Menus..78

Chapter 5: Debugging ..81
Debugging with COBOL DISPLAY Statements ...81

Executing the SHOWME Program..82
How the SHOWME Program Works ..82

Debugging with the RM/COBOL Interactive Debugger ...82
Executing the BREAK Program..83
How the BREAK Program Works...84

Debugging with CodeWatch..85

Appendix A: Setting Properties and Events for Intrinsic Controls
and Forms ..87
Manipulating Properties at Runtime..87
Intrinsic Controls...87

Animation Control...89
AnimationFile Property ...90
AutoPlay Property ...90
Border Property...90
Center Property ...90
Play Property ...91
Transparent Property ...91
Start Event ...91
Stop Event ...91

Bitmap Control ..92
Bitmap Property ..92
BitmapMode Property ...93
Border Property...93
Xoffset Property ..94
Yoffset Property ..94

Check Box Control ..94
Alignment Property ...95
AutoCheck Property ..96
ThreeState Property...96
Value Property...97

 Cobol-WOW User's Guide vii

Combo Box Control ..97
AutoHScroll Property..98
Count Property ..99
CurSel Property ...99
DisableNoScroll Property..99
OEMConvert Property ..99
SelText Property..100
Sort Property ...100
Style Property..100
DropDown Event...101
EditChange Event..101
NoSpace Event ..101

Command Button Control ...101
Accelerator Property..102
Bitmap Property ..103
Default Property ..103

Date Time Picker Control (Not Available in this Release) ...103
Format Property...105
LongDateFormat Property...106
MCFontBold Property...106
MCFontItalic Property ..106
MCFontName Property ...107
MCFontSize Property..107
MCFontStrikeThru Property ...107
MCFontUnderline Property...107
RightAlign Property ..108
ShortDateCenturyFormat Property..108
ShowNone Property...108
TimeFormat Property ..109
UpDown Property..109
Change Event ..109

Edit Box Control ...109
Alignment Property ...110
AutoHScroll Property..111
AutoVScroll Property..111
Border Property...111
Case Property ..112
MaxChars Property..112
Multiline Property ...112
NoHideSel Property ..112
OEMConvert Property ..113
Password Property...113
PasswordChar Property ...113

viii Contents

ReadOnly Property ..114
ScrollBars Property ...114
Text Property...114
WantReturn Property...114
Change Event ..115
HScroll Event ..115
MaxText Event ..115
NoSpace Event ..115
VScroll Event ..115

Ellipse Shape ...116
Group Box Control..116
IP Address Control (Not Available in this Release) ..117

FieldIndex Property...118
FieldMax Property...118
FieldMin Property ...118
Value Property...119
Change Event ..119

Line Shape...119
List Box Control..119

Border Property...120
ColumnWidth Property ...121
Count Property ..121
CurSel Property ...121
DisableNoScroll Property..121
ExtendedSel Property ..122
MultipleSel Property ...122
NoIntegralHeight Property ..122
NoRedraw Property...123
SelText Property..123
Sort Property ...123
Standard Property..123
UseTabStops Property...124
WantKeyboard Property..124
Using Functions and Messages with List Boxes..124
Using a List Box..124

Loading the List Box ...124
Operating the List Box ..125
Determining the Selection ...125
Finding an Item..125
Selecting an Item ...126
Retrieving the Selection...126
Removing One or All Items from the List Box..126

 Cobol-WOW User's Guide ix

Month Calendar Control (Not Available in this Release) ...126
FirstDayOfWeek Property...128
MaxSelCount Property ..128
MonthDelta Property...128
MultiSelect Property..128
NoToday Property ...129
NoTodayCircle Property ...129
WeekNumbers Property ..129
Change Event ..129

Option Button Control...130
Alignment Property ...131
AutoPress Property..131
Value Property...131
Grouping Option Buttons ..131

Progress Bar Control ...133
Increment Property ..133
Maximum Property..133
Minimum Property ..133
Value Property...134

Rectangle Shape ..134
Rounded Rectangle Shape ...134

RoundnessX Property..135
RoundnessY Property..135

Scroll Bar Controls..135
LineChange Property...136
Maximum Property..136
Minimum Property ..137
PageChange Property ..137
Value Property...137
EndScroll Event...137
LineLeft Event (Horizontal) ..137
LineRight Event (Horizontal) ..138
LineDn Event (Vertical) ..138
LineUp Event (Vertical) ..138
PageLeft Event (Horizontal)..138
PageRight Event (Horizontal) ...138
PageDn Event (Vertical)..138
PageUp Event (Vertical) ...138
ThumbPos Event ...138
ThumbTrk Event ...138
Using Scroll Bars...139

x Contents

Static Text Control ..139
Alignment Property ...140
Effect Property ..141
NoPrefix Property ...141
Transparent Property ...142
WordWrap Property ..142
Special Considerations for Static Text Controls..142

Status Bar Control ...142
CurSection Property ..143
SectionNoBorders Property...143
SectionPopOut Property ..144
Sections Property...144
SectionStatus Property...144
SectionWidth Property ..144
SimpleNoBorders Property ...144
SimplePopOut Property...145
SimpleStatus Property ...145

Tab Control ...145
Buttons Property..146
CurTab Property..146
FixedWidth Property ...147
ForceLabelLeft Property ...147
GetFocus Property...147
Multiline Property ...148
RightJustify Property...148
Tabs Property ..148
TabText Property ..148
KeyDown Event ..148
SelChange Event ...148
SelChanging Event ..148

Timer Control ..149
Interval Property..149
Timer Event...149

Toolbar Control ...149
AlignTop Property...150
BitmapHeight Property..151
BitmapWidth Property ..151
BtnBitmap Property...151
BtnEnabled Property ...151
BtnHidden Property...151
BtnState Property ..152
BtnStyle Property ..152
BtnText Property ...153

 Cobol-WOW User's Guide xi

BtnWrap Property ...153
ButtonHeight Property...153
Buttons Property..153
ButtonWidth Property ...153
CurButton Property ...153
Larger Property ...154
Rows Property ...154
Wrapable Property...154
Button-0 Event ..154

Trackbar Control ...154
AutoTicks Property ...155
BothTicks Property ...156
EnableSelRange Property..156
LeftTicks Property...156
LineChange Property...157
Maximum Property..157
Minimum Property ..157
NoThumb Property..157
NoTicks Property ..157
PageChange Property ..158
SelEnd Property...158
SelStart Property ...158
TickFreq Property ...158
TopTicks Property...158
Value Property...158
Vertical Property ...159
Bottom Event...159
EndTrack Event...159
LineDown Event..159
LineUp Event ..159
PageDown Event ...159
PageUp Event ..159
ThumbPos Event ...159
ThumbTrk Event ...160
Top Event ..160

Updown Control ..160
Accelerators Property ..161
AccelIncrement Property...161
AccelSeconds Property..161
AlignLeft Property...162
AlignRight Property ..162
ArrowKeys Property..162
Base Property ..163

xii Contents

Buddy Property ...163
BuddyInteger Property ..163
CurAccel Property...164
Horizontal Property ...164
Maximum Property..164
Minimum Property ..164
NoThousands Property ..165
Value Property...165
Wrapable Property...165
EndScroll Event...166
ThumbPos Event ...166

Common Intrinsic Control Properties..166
3D Property ...166
BackBrushHatch Property ...167
BackBrushStyle Property ..167
BackColor Property...167
Caption Property ...168
Enabled Property ...168
Fill Property...168
FontBold Property ...169
FontItalic Property...169
FontName Property ...169
FontSize Property..169
FontStrikethru Property ...170
FontUnderline Property...170
ForeColor Property..170
Group Property..171
Height Property ...171
Left Property ...171
Locked Property ..171
MCColor Property...171
MCColorIndex Property..172
Name Property...172
PenSize Property ...173
PenStyle Property ..173
ScrollBar Property...173
TabIndex Property...173
TabStop Property ..174
Top Property..174
Visible Property...174
Width Property ..174
ZOrder Property ..175

 Cobol-WOW User's Guide xiii

Common Intrinsic Control Events ...175
Click Event ..175
DblClick Event ..175
GotFocus Event ...175
KeyDown Event ..176
KeyPress Event..176
KeyUp Event ...176
LostFocus Event ..176

Forms...176
3D Property ...177
AllowEventFilter Property ..177
BackColor Property...178
Bitmap Property ..179
BitmapMode Property ...179
Border Property...180
Caption Property ...180
ClipControls Property..180
Cursor Property ...181
DialogMotion Property..182
Enabled Property ...182
Height Property ...182
Icon Property...182
IconIndex Property..183
Left Property ...183
MaxButton Property ..183
MinButton Property...183
Modal Property..184
Parent Property..184
ScrollBars Property ...184
ShowState Property ...185
Style Property..185
SysKeyMode Property...186
SystemMenu Property ...186
Title Property ..186
Top Property..187
Visible Property...187
Width Property ..187
Activate Event ...187
Close Event ...187
Create Event ..187
Enable Event ...187
GetFocus Event ...188
KeyDown Event ..188

xiv Contents

KeyPress Event..188
KeyUp Event ...188
LButtonDown Event..188
LButtonUp Event ..188
LoseFocus Event ...188
MButtonDown Event...188
MButtonUp Event ...189
Paint Event ..189
RButtonDown Event..189
RButtonUp Event ..189
Show Event..189

Appendix B: Working with ActiveX Controls191
ActiveX Controls and Cobol-WOW..191
History of ActiveX Controls..191
Adding and Removing ActiveX Controls to the Cobol-WOW Designer192

Troubleshooting Tips ..193
Using ActiveX Controls on a Form ...193
ActiveX Control Properties ...194

ActiveX Indexed Properties ..194
ActiveX Control Events...195
ActiveX Control Methods ...196
Limitations...197
Distribution Issues ...197

Appendix C: Understanding the Application Architecture................199
Initial Creation of a Cobol-WOW Program...199

Project File (.wpj)..200
Form File (.wow)...200
Working Storage Copy File (.wws) ...200
Procedure Division Copy File (.wpr)...200
COBOL Skeleton Program File (.cbl) ...201
COBOL Executable Program File (.cob)...201

Ongoing Maintenance of a Cobol-WOW Program ...202
How a Cobol-WOW Program Works..203

WINDOWS.CPY ..203
FORMNAME.WWS ..204
FORMNAME.CBL ..205
FORMNAME.WPR ...207

How a Cobol-WOW Program Works with Windows..208
Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs..............................209

Calling To and From Cobol-WOW Programs...209
Visual Considerations of Cobol-WOW and Non-Cobol-WOW Programs............................210

 Cobol-WOW User's Guide xv

Appendix D: Using Cobol-WOW with RM/Panels211
Enhancing Existing Panel Libraries...211

Character-Based GUI Portability and Cross Development..212
Communicating with RM/Panels ...212
Modifying an Existing Panel Library ..213

Open the library...213
Change controls...214
Add controls ..215
Delete controls...215
Save a panel...215
Test a panel ...216
Run an application with an enhanced panel...216

Setting Properties for RM/Panels Data Fields ...217
Check Box Field/Control...218
Combo Box Field/Control ...218

InputField Property..219
Command Button Field/Control ..220

PushedAttr Property ..220
SizeType Property ...221
SizeValue Property..221

Date Edit Box Field/Control..221
StorageFormat Property (Date Edit Box) ..222

Edit Box Field/Control ..223
Class Property ...224
Justify Property..224
Prompt Property ..224

Group Box Field/Control...224
Enabled Property ...225
Group Property..225
Locked Property ..225
TabStop Property ..226

List Box Field/Control...226
Multi-Line Edit Box Field/Control..226

ColsToDisplay Property ..227
ColsToStore Property..227
LinesToDisplay Property...228
LinesToStore Property ..228
Required Property ...228
Stream Property...228
Wrap Property ...229

Numeric Edit Box Field/Control ...230
AssumeDecimal Property ..230
CalculatorEntry Property...231

xvi Contents

Signed Property ...231
Option Button Field/Control..232

DataItemName Property..232
DataSigned Property..233
DataSize Property..233
DataValue Property ...233
NumericData Property...233

Scroll Bar Field/Control ..234
MaximumValue Property ..235
MinimumValue Property...235
PageSize Property ...235
Size Property ...235
StepSize Property ..236
ThumbAttr Property ..236

Static Text Field/Control ...236
Alignment Property ...237
Effect Property ..237
NoPrefix Property ...238
WordWrap Property ..238

Time Edit Box Field/Control...239
24HourFormat Property ..239
StorageFormat Property (Time Edit Box) ...240

Common Data Field Properties ...241
3D Property ...241
Accelerator Property..242
AlwaysDisabled Property ..242
AutoExit Property..242
BackColor Property...242
Beep Property..243
BlankWhenZero Property..243
Border Property...244
BorderAttr Property...244
Caption Property ...244
Case Property ..245
ChoiceHelp Property ...245
ChoicesToDisplay Property...245
ChoicesToStore Property ..246
ChoiceValue Property ...246
ChoiceWidth Property...246
Column Property ...247
CurChoice Property...247
DecimalDigits Property ...247
DefaultToPressed Property..247

 Cobol-WOW User's Guide xvii

DefaultToSystem Property ..248
DefaultValue Property...248
DisabledAttr Property..248
DisplayFormat Property ..249
DoubleClick Property..249
DropDown Property ..249
EnabledAttr Property...250
EnabledForDisplay Property ...250
EnabledForInput Property ...250
EntryFormat Property..251
EntryOrder Property ..251
ErrorMessage Property..251
Font Bold, FontItalic, FontName, FontSize, FontStrikethru, and

FontUnderline Properties ..251
ForeColor Property..252
Height Property ...252
HelpMessage Property ..252
IntegerDigits Property ...252
Left Property ...252
Length Property...252
Line Property...253
MnemonicAttr Property...253
Name Property...253
OccColOffset Property ..253
OccLineOffset Property...254
Occurrences Property ..254
OccXOffset Property...254
OccYOffset Property...254
PromptText Property ...255
Protected Property...255
ScrollBar Property...255
SelectedAttr Property ..255
StartOfGroup Property ..256
StaticChoices Property ..256
TimeOut Property..256
TimeOutValue Property ..257
Title Property ..257
Top Property..257
Update Property...257
Validation Property ...258
Width Property ..259

xviii Contents

Setting Properties for RM/Panels Panels...259
3D Property ...260
BackColor Property...260
BackgroundAttr Property ..260
Bitmap Property ..260
BitmapMode Property ...260
BorderAttr Property...261
BorderType Property...261
Description Property..262
DropShadow Property ...262
EndUserEditing Property...262
ErrorAttr Property ...263
ErrorMessage Property..263
GeographicMotion Property..263
Height Property ...264
HelpAttr Property..264
HelpMessage Property ..264
Icon Property...264
Left Property ...265
Prefix Property ..265
StoreByName Property..265
Title Property ..265
Top Property..266
Width Property ..266
Windowed Property...266

Configuring Function Keys ...266
How to Configure Function Keys with RM/Panels ...266
How to Configure Function Keys with Cobol-WOW..267

Sample Cobol-WOW Configuration File Entry...268
Sample RM/COBOL Configuration File Entry ...269

Using Global Default Property Settings ..269
Restrictions..270

Migrating Panel Libraries to Cobol-WOW Forms ..270
Migrate a Panel Library...271

 Cobol-WOW User's Guide xix

Appendix E: Using Cobol-WOW Thin Client273
Understanding Cobol-WOW Thin Client ..273
Benefits of Cobol-WOW Thin Client..274
Installing and Configuring Cobol-WOW Thin Client ...274

Files Installed on the Windows Client Workstation ..275
Files Installed on a Windows Server ...276

Sample Contents of RcpPlus.ini for a Windows Server ..276
Files Installed on a UNIX Server ..278

Sample Contents of RcpPlus.ini for a UNIX Server..279
Running the Application with Cobol-WOW Thin Client ..281

Index ..283

xx Contents

 Cobol-WOW User's Guide xxi
 What's New in Version 3.10

Preface

Cobol-WOW is Liant Software Corporation’s powerful, yet easy-to-use, graphical user
interface development tool for 32-bit Windows (9x/Me/NT/TS/2000). Cobol-WOW
enables the COBOL developer to create true Windows applications with Windows event-
handling and COBOL business logic, while leveraging the wealth of existing Windows
and user-interface component technologies.

Cobol-WOW also enables COBOL developers of RM/Panels-based applications to
create sophisticated Windows graphical user interfaces featuring many Windows controls.
See Appendix D, Using Cobol-WOW with RM/Panels, for more information on using
Cobol-WOW with RM/Panels.

What's New in Version 3.10
Version 3.10 of Cobol-WOW contains both enhancements and problem corrections to the
previous release. Enhancements to Cobol-WOW v3.10 include the following:

• A new component, Cobol-WOW Thin Client, has been added that allows Cobol-
WOW programs to be executed in a client/server architecture over a LAN or the
Internet.

• Print support has been added to the Cobol-WOW Designer. It is now possible to
print a form or print a packaging list of the application components, such as COBOL
program, bitmaps, icons, animation files, ActiveX controls, and so on) that are
required for distribution.

• Form and control properties can now be organized either alphabetically or by
functional category.

• The static text box control can now have a transparent background.

• Version 3.10 allows you to enter a text string that you want to locate in your
application code. Results are displayed in an area below the project tree and the
desktop area of the Designer window.

Cobol-WOW v3.10 requires RM/COBOL 7.00.03 or higher.

Note For information on the significant enhancements in previous releases of
RM/COBOL, see page xxvii.

xxii Installing Cobol-WOW
 Cobol-WOW Documentation

Cobol-WOW Documentation
Liant now distributes the documentation for this product on the software distribution
media (CD-ROM). This electronic documentation is formatted in Adobe Portable
Document Format (PDF). There is one PDF file per manual, each with the extension .pdf.
To view and print the PDF documentation requires using Adobe Acrobat Reader (version
4.0 or later). If needed, this software is available on the product CD and is also freely
available for most operating systems at www.adobe.com.

The PDF file for this product is the Cobol-WOW User’s Guide. On a Windows system,
this PDF file is located in the directory x:\docs, where x: is your CD-ROM drive.
(Access to this documentation will also be provided by a shortcut icon entry to the
Programs folder during installation of the Cobol-WOW application.) In addition,
Cobol-WOW also comes with extensive online Help files, which are designed to help you
learn and use the product. You can access Help through the Help menu, or by pressing
F1 or clicking the What’s This? toolbar button to get context-sensitive help for particular
parts of the Cobol-WOW Designer programming interface. Tooltips also are available on
controls, toolbar buttons, menu commands, and other screen elements during design time.
The Help files include the following:

• Designer, a fundamental guide to the elements of the Cobol-WOW Designer
interface.

• Functions and Messages, a comprehensive reference documenting the ActiveX,
Cobol-WOW, and Windows API functions and messages used in Cobol-WOW.

The Cobol-WOW User’s Guide and online Help files are designed to address the majority
of users’ questions,. If, however, these sources do not answer your question or problem,
please check the following:

• README files included with the Cobol-WOW media

• Liant web site at http://www.liant.com/

Note The Cobol-WOW documentation set assumes you know how to use a mouse, open
a menu, and choose menu and dialog box options. To review these techniques, consult
the documentation for Windows.

 Cobol-WOW User's Guide xxiii
 Cobol-WOW Documentation

How This Manual is Organized

This manual, the Cobol-WOW User’s Guide, gives detailed information about all aspects
of Cobol-WOW and is arranged as follows:

Chapter 1—Installing Cobol-WOW. This chapter provides the system requirements and
installation instructions for Cobol-WOW.

Chapter 2—Tutorial. This chapter guides you through the building of a sample program
that represents a fundamental building block typical of commercial applications.

Chapter 3—Introducing Cobol-WOW. This chapter describes the Cobol-WOW
components, provides an overview of the development process, and discusses the
Windows graphical operating environment as it relates to Cobol-WOW.

Chapter 4—Developing with Cobol-WOW. This chapter is designed to provide
essential background information to help you understand what you are doing and why.
Projects, event-driven applications, issues in data entry programs, and working with
menus are all discussed.

Chapter 5—Debugging. This chapter discusses three different approaches to debugging
a Windows-based application created with Cobol-WOW: using COBOL DISPLAY
statements, using the RM/COBOL Interactive Debugger, and using CodeWatch, Liant’s
standalone source-level debugger.

Appendix A—Setting Properties and Events for Intrinsic Controls and Forms. This
appendix describes the properties and events of each of the intrinsic controls (or default
controls) used in the Cobol-WOW programming system as well as the properties and
events for forms.

Appendix B—Working with ActiveX Controls. This appendix describes special
considerations for using ActiveX controls with Cobol-WOW.

Appendix C—Understanding the Application Architecture. This appendix covers the
overall design and structure of the Cobol-WOW programming system.

Appendix D—Using Cobol-WOW with RM/Panels. This appendix describes how to use
Cobol-WOW with RM/Panels to enhance existing panel libraries and also discusses how
to migrate panel libraries to Cobol-WOW forms.

Appendix E—Using Cobol-WOW Thin Client. This appendix describes how
to install and use Cobol-WOW Thin Client, which allows the user interface to exist on
the Windows client machine and the COBOL program (data processing) to occur on
the server.

xxiv Installing Cobol-WOW
 Symbols and Conventions

Symbols and Conventions
The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1. Words in all capital letters indicate COBOL reserved words, such as statements,
phrases, and clauses; acronyms; configuration keywords; and environment variables.

2. Names of properties, events, and special objects appear with initial letter capitalized.
Key names, such as Enter, also have the initial letter capitalized.

3. A plus sign (+) between key names indicates a combination of keys. For example,
Ctrl+X means to press and hold down the Ctrl key while pressing the X key. Then
release both keys.

4. Text displayed in a monospace font indicates user input or system output (according
to context). This type style sets off sample command lines, program code and file
listing examples, and sample sessions.

5. Bold, lowercase letters represent filenames, directory names, and programs. Note
that Cobol-WOW accepts uppercase and lowercase filenames. Words you are
instructed to type appear in bold. Bold type style is also used for emphasis, generally
in some types of lists.

6. Italic text identifies the titles of other books, and it is also used occasionally for
emphasis. In syntax, italic text denotes a placeholder or variable for information you
supply, as described below.

7. The symbols found in the syntax charts are used as follows:

italicized words indicate items for which you substitute a specific value.

UPPERCASE WORDS indicate items that you enter exactly as shown (although not
necessarily in uppercase).

... indicates indefinite repetition of the last item.

| separates alternatives (an either/or choice).

[] enclose optional items or parameters.

{ } enclose a set of alternatives, one of which is required.

{| |} surround a set of unique alternatives, one or more of which is required, but each
alternative may be specified only once; when multiple alternatives are specified, they
may be specified in any order.

 Cobol-WOW User's Guide xxv
 Registration

8. All punctuation must appear exactly as shown.

9. The term “window” refers to a delineated area of the screen, normally smaller
than the full screen. The term “Windows” refers to the Microsoft Windows
operating system.

Registration
Please take a moment to fill out and mail (or fax) the registration card you received with
Cobol-WOW. You can also complete this process by registering your Liant product
online at: http://www.liant.com/.

Registering your product entitles you to the following benefits:

• Customer support. Free 30-day telephone support, including direct access to
support personnel and 24-hour message service.

• Special upgrades. Free media updates and upgrades within 60 days of purchase.

• Product information. Notification of upgrades or revisions to Cobol-WOW as soon
as they are released.

You can also receive up-to-date information about Liant and all its products via our web
site. Check back often for updated content.

Technical Support
Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the Liant family of products. The technical support staff is committed
to providing you prompt and professional service when you have problems or questions
about your Liant products.

Technical support services are subject to Liant’s prices, terms, and conditions in place
at the time the service is requested.

While it is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each product. For
customers who elect not to upgrade to the most current release of the products, support is
provided on a limited basis, as time and resources allow.

http://www.liant.com/

xxvi Installing Cobol-WOW
 Technical Support

Support Guidelines
When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name, support contract, partner, ADR, or distributor number.

2. Liant product serial number (found on the media label, registration card, or
product banner message).

3. Liant product version number.

4. Operating system and version number.

5. Hardware, related equipment, and terminal type.

6. Exact message appearing on screen.

7. Concise explanation of the problem and process involved when the
problem occurred.

Test Cases

You may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

• The smaller the test case is, the faster we will be able to isolate the cause of the
problem.

• Do not send full applications.

• Reduce the test case to the smallest possible combination of components required to
reproduce the problem.

• If you have very large data files, write a small program to read in your current data
files and to create new data files with as few records as necessary to reproduce the
problem.

• Test the test case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. You may need to include
an RM/COBOL configuration file.

 Cobol-WOW User's Guide xxvii
 Enhancements

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include information
regarding the hardware, operating system, versions of all relevant software (including
the operating system and all Liant products). It must also include step-by-step
instructions to reproduce the behavior.

2. Program source files. We require source for any program that is called during the
course of the test case. Be sure to include any copy files necessary for recompilation.

3. Data files required by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

Enhancements
The following section summarizes the major enhancements available in earlier versions of
Cobol-WOW.

Version 3.0

Version 3.0 of Cobol-WOW has been significantly enhanced to provide new functionality
and improved reliability. With this version, Liant Software Corporation assumes all
responsibilities for the product, including future enhancement and support. Prior versions
were developed and maintained by England Technical Services, Inc.

Cobol-WOW 3.0, which requires RM/COBOL 7.00.03 or higher, includes improved
ActiveX support, a new “look-and-feel” for the Cobol-WOW Designer, up-to-date
documentation, and many defect corrections.

Note Cobol-WOW 3.0 is project-based. If you have a form-based application created
with an earlier version of Cobol-WOW, you must create a project and add the form files
in the existing application to it. For more information, see “Cobol-WOW Projects” on
page 57.

xxviii Installing Cobol-WOW
 Enhancements

 Cobol-WOW User's Guide 1
 System Requirements

Chapter 1: Installing Cobol-WOW

This chapter provides the system requirements and installation instructions
for Cobol-WOW.

System Requirements
Your computer configuration is the assembled set of hardware and software that makes up
your system. The minimum hardware and software requirements your computer system
needs to run Cobol-WOW successfully are shown in the following sections.

Required Hardware

Cobol-WOW requires the following minimum configuration:

• A PC with an Intel 80486 or higher processor; Pentium-class or higher
recommended.

• Eight megabytes of available memory (RAM); 16 or more megabytes recommended.

• Ten megabytes of disk space.

• A standard VGA monitor (640 pixels by 480 lines); an Enhanced Super VGA
monitor (800 pixels by 600 lines) recommended.

• A hard disk drive and a CD-ROM drive.

• A mouse.

Required Software
• Microsoft Windows 95, 98, Me, NT 4.0, NT 4.0 Terminal Server (TS), or 2000.

• RM/COBOL version 7.00.03 or higher for 32-bit Windows.

2 Installing Cobol-WOW
 System Installation

System Installation
This section describes the basic installation of the Cobol-WOW development system.
The Setup program provided by Cobol-WOW performs all tasks for installing the
Cobol-WOW components.

To install Cobol-WOW:

1. Start Windows.

Note It is recommended that you close all other applications before proceeding with
the installation.

2. Insert the Cobol-WOW CD in the CD-ROM drive.

If the installation program does not start automatically, click Start, then click Run.
In the Run dialog box, in Open, type d: autorun, where d is the drive letter of the
CD-ROM drive.

3. Follow the instructions presented by the installation program.

Locating Required Tools
The options on the Tools page of the Preferences dialog box determine where
Cobol-WOW locates the RM/COBOL compiler and runtime systems, the CodeWatch
debugger, and the Cobol-WOW panel runtime (wowpanrt.dll).

To establish the location of the RM/COBOL compiler and runtime system, the
CodeWatch debugger, and the Cobol-WOW panel runtime:

1. On the Options menu in the Cobol-WOW Designer window, click Edit Preferences.

2. In the Preferences dialog box, click the Tools tab to open the corresponding page
of preferences.

3. Set the preferences to your specifications.

 Cobol-WOW User's Guide 3
 Customizing the Initialization File (cblwow.ini)

Customizing the Initialization File (cblwow.ini)
An initialization file with the name cblwow.ini is a text file that is used to contain
configuration information for the Cobol-WOW Designer and runtime. The cblwow.ini
file must be located in the Windows directory. It is processed whenever the Cobol-WOW
Designer or runtime are executed.

If you add ActiveX controls to your Toolbox (see Appendix B, Working with ActiveX
Controls), the controls will be recorded in the cblwow.ini file.

While it is possible to customize the cblwow.ini file to suit your needs, editing should be
restricted to those features described specifically in the Cobol-WOW Designer online
Help file as changes to the cblwow.ini file. For example, you can define default settings
for various runtime activities by manually adding a [WOWRT] section (described below)
to the initialization file. Furthermore, you can also add an [RMPanelsFunctionKeys]
section to the .ini file so that the function key information (see page 267) can be loaded
by the Cobol-WOW runtime to run a Cobol-WOW-enhanced RM/Panels application.

Other entries in the cblwow.ini file are reserved for use by Cobol-WOW.

[WOWRT] Section

It is possible to customize the initialization file (cblwow.ini) in order to define default
settings for various runtime activities. This can be done by using either of the following
methods:

• Changing various options on the Runtime page of the Preferences dialog box in the
Cobol-WOW Designer (on the Options menu, click Edit Preferences, and then click
the Runtime tab).

• Or, manually adding a [WOWRT] section to the cblwow.ini file:

[WOWRT]

DevelopmentMode=True

RightJustifyMenus=True

FilterEvents=False

UseOEMConversion=True

ValidNumericChars=0123456789$,.+-

EditChar=x

DecChar=y

Setting DevelopmentMode to True enables messages that aid in debugging a
Cobol-WOW application at runtime.

4 Installing Cobol-WOW
 Customizing the Initialization File (cblwow.ini)

Setting RightJustifyMenus to True causes the MFT_RIGHTJUSTIFY style to be
added at runtime to a menu when it is created.

Setting FilterEvents to False causes event filtering not to be performed for a form and
its controls at runtime, overriding the default AllowEventFilter property setting
(True).

Setting UseOEMConversion to True causes COBOL data to be converted from OEM
to ANSI (and vice versa) when the WOWGETPROP and WOWSETPROP functions
are used at runtime. This option is useful if you need to support extended characters
in your Cobol-WOW application. Extended characters are those having an ASCII
value greater than 128, such as 'Ü', and '¢'.

ValidNumericChars causes the WOWGETNUM function to return a value of 1 at
runtime if an invalid numeric character is contained in the field. By default, valid
characters are considered to be the digits 0 through 9, the dollar sign ($), the plus (+)
and minus (-) characters, and the edit (comma) and decimal (period) characters. You
can change this default to a character set of your choosing. All characters listed will
be considered valid numeric characters. A limit of 80 characters is supported.

EditChar and DecChar allow you to override at runtime the default decimal (.) and
edit (,) characters for currency editing.

 Cobol-WOW User's Guide 5
 Using the File Maintenance Program

Chapter 2: Tutorial

In this chapter, you will build a sample program that represents a fundamental building
block typical of commercial applications. The first exercises demonstrate how you use
the Cobol-WOW Designer to begin a project and create two forms that work together to
build a full-fledged file maintenance application program. The last section of this chapter
presents techniques on how to attach code to events associated with these forms and
controls. These instructions contain most of the tasks you will need to perform when
writing your own applications.

Using the File Maintenance Program
If you do not want to perform the exercises in this file maintenance program, but would
like to run and examine the program in the Cobol-WOW Designer, a completed
application exists.

To open and run this sample program:

1. In the Cobol-WOW Designer window, do one of the following:

 • Click the Open Project toolbar button.

• On the Project menu, click Open.

2. In the Open Project dialog box, select the name of the project you want from the File
Name list (in this case, select project.wpj in the Samples folder). Click Open. The
forms for the selected project will appear in the Cobol-WOW Designer window.

3. Click the Execute Project toolbar button or click Run on the Project menu to run

the program. Shortcut key: F7

To examine specific code that demonstrates ways to manipulate the controls in this
sample program:

1. With the form open in the Cobol-WOW Designer window, select a control.

2. Open the Event-Handling Code dialog box by double-clicking the left mouse button.

Alternatively, click View Code on the Control menu or click the View Control
Code toolbar button.

Any code associated with the control will be displayed in the Event-Handling Code
dialog box.

6 Tutorial
 Using Projects

Using Projects
By using a project, the Cobol-WOW Designer allows you to do your complete
development in an integrated, visual framework. The default extension for Cobol-WOW
project filenames is .wpj. The .wpj file is a text file that contains project configuration
information and a list of the forms included in the project. The form files that are
contained in a project are also known as members. The default extension for a form
file is .wow. (For more information on forms and projects, see pages 46 and 57,
respectively.)

Create a New Project

To begin designing the customer file maintenance application, create a new project:

1. In the Cobol-WOW Designer window, click the New Project toolbar button or click

New on the Project menu. The Save Project dialog box opens.

Note Only one project can be opened at one time. If a project is open when you
choose this command, you are prompted to close the active project and save any
changes before a new project is created.

Save Project Dialog Box

2. In the Save in box, select the directory (folder) into which you wish to save the
project.

3. In the File Name box, enter firstapp.wpj as the project name.

4. After entering the project name, click Save to create the project.

The Edit Project dialog opens. The Edit Project dialog is used to add or remove
forms from the project. Since you have not created any forms for your project yet,
there are no files (or members) to add.

 Cobol-WOW User's Guide 7
 Designing Forms

Edit Project Dialog Box

5. Click Close to close the dialog box. Now you are ready to design your forms for
the project.

Designing Forms
Designing forms is as simple as arranging objects in a window. In Cobol-WOW, the
objects you manipulate are called controls, and the window is the form. Forms are the
foundation for all your Cobol-WOW applications.

An application program usually contains multiple forms. You develop an application by
customizing a form and then adding and customizing additional forms for other parts of
the interface. To customize a form, you add controls, set their properties, and create
menus to provide user control over the application at runtime.

In this project, you will design the first form, FIRSTAPP, as the application’s main
window. It will contain a menu, a list box displaying customer names, and Add, Change,
and Delete command buttons. You will design the second form, CUSTINFO, to pop up
when the user chooses the Add or Change command buttons on the FIRSTAPP form to
allow editing of the customer information.

8 Tutorial
 Designing Forms

The FIRSTAPP form is illustrated in the following figure.

FIRSTAPP Form

Create the FIRSTAPP Form

To create a new, blank form in the Cobol-WOW Designer window:

• Click the New Form toolbar button, or click New on either the Form menu or the

File menu.

Each new form is created with the same default, initial properties. Before you add any
controls to this form, you need to change some of these initial properties.

Setting Form Properties

Cobol-WOW makes it easy for you to set properties, the attributes that define how forms
and controls are displayed and how they function in the running application. To change
some of the form’s initial properties during design time, open the Properties dialog box
for the associated form by doing one of the following:

• On the View menu, click Properties.

 • Click the View Properties toolbar button.
• Right-click anywhere within the form.

 Cobol-WOW User's Guide 9
 Designing Forms

Properties Dialog Box

Although most of the default settings will be appropriate for the FIRSTAPP form, you do
need to modify the Border, Caption, MinButton, Style, SystemMenu, and Title properties.
Let’s look at each of these properties, beginning with Style.

Note The Properties area of this dialog box is divided into two columns. The left column
displays all of the properties associated with the selected form. The right column displays
the current value (or setting) for each property. You can view the properties either
alphabetically or by functional category. Simply click the appropriate tab.

Style Property

Cobol-WOW provides three different types of forms from which you can choose:
Overlapped, Child, and Popup. The differences among these types are not dramatic. In
Windows application design, an overlapped window is a top-level window with a border,
a client area, and a title bar. Top-level windows are windows that are not children of
other windows and are generally appropriate for the main window of an application.

10 Tutorial
 Designing Forms

A pop-up window does not have a parent by default (although a parent can be set for it);
a pop-up window can be drawn anywhere on the screen. The main differences between
a pop-up window and an overlapped window is that a pop-up window can be displayed
outside the border of its parent window (if it has one). A child window means that the
form has a parent. The parent-child relationship determines where a window can be
drawn on the screen. A child window can be drawn only within its parent’s client area,
and is destroyed along with its parent.

The Overlapped option is a convenient combination of a number of other property
settings. Choosing Overlapped as the Style is equivalent to setting the Caption,
MaxButton, MinButton, and SystemMenu properties all to True, and setting Border to
Thick. These settings would create a form as an overlapped window with a title,
System-menu box, Minimize button, and Maximize button in the title bar. The form
would also have a sizable frame.

While you want an overlapped window style for your application’s main window, you do
not necessarily want exactly the type configured with the Overlapped option of the Style
property. Since your window will contain a fixed layout of controls, sizing should not be
allowed. (Sizing is determined by the MaxButton and Border properties.)

To enable the specific properties that you require for the FIRSTAPP form:

1. In the Properties list on the Properties dialog box, click Style.

2. Select the Overlapped option.

Setting Style to Overlapped removes the thick frame and Maximize button settings.
By removing the thick frame and Maximize button, you ensure that the window is
always the size you specify at design time.

Note Because the Cobol-WOW Designer is a standard Windows multiple document
interface (MDI) application, your form does not change in the Cobol-WOW Designer
window to reflect these property changes. Windows is very particular about the nature of
MDI windows. The multiple document interface feature is a means for applications to
simultaneously open and display two or more files in the same application. MDI window
styles defined in the Cobol-WOW Designer cannot change to reflect the current property
settings at design time. For example, if a form did not have a sizable border, there would
be no way of sizing it in the Cobol-WOW Designer. These settings will be reflected at
runtime when the window is created.

 Cobol-WOW User's Guide 11
 Designing Forms

Title Property

The Title property is a descriptive label and can contain any alphanumeric character of
your keyboard, including spaces. This property setting can be used only for top-level
windows.

To change the title of your form, type My First Application in the value column of the
Title property. Remember, until you compile and run the project, the Title bar will
continue to display the default form filename in the Cobol-WOW Designer, not the text
you entered for the Title property.

Border, Caption, MinButton, and SystemMenu Properties

Set the remaining properties, as follows:

Property Setting

Border 1 - Thin
Caption True
MinButton True
SystemMenu True

Moving and Sizing a Form

The property settings for your FIRSTAPP form are now complete. Close the Properties
dialog box.

Before you start adding controls to your form, try sizing and moving it.

To move the form, place the pointer on the form’s title and press the left mouse button.
Then drag the mouse to reposition the form.

To size the form, place the pointer on the form’s border. The pointer changes shape to
indicate the directions in which the form can be resized. Press the left mouse button and
drag the border to resize the form. As you add controls to the form, you may need to
resize it again.

Note The size and position the form has in the Cobol-WOW Designer window are the
default size and position for the form at runtime.

12 Tutorial
 Designing Forms

Add Controls to the FIRSTAPP Form

This exercise explains how to add a pulldown (also known as drop-down) menu control
with the Menu Editor dialog box, a list box control displaying customer names, and Add,
Change, and Delete command button controls to the FIRSTAPP form.

Creating a Menu

This section discusses the basics of creating a menu at design time in the FIRSTAPP
form, your application’s main window. The Cobol-WOW Designer provides an easy
method to add a menu control to a form at design time by using the Menu Editor dialog
box. First, however, it is important to understand the implementation of menus in
Windows programming and the relationship between a menu and a form.

The menu object is an independent object from the form. When a pulldown menu is
added to a form, the menu maintains its own distinct identity. Because the menu is
created as a unique object (behind the scenes) and then attached to the form, it can also be
detached from the form, and then a different menu can be attached. Windows provides a
wealth of API functions to create, modify, and destroy menus. These functions give you
complete control and flexibility with menus at runtime. (For more information, see the
Functions and Messages online Help file.)

It may also be helpful to learn some terminology associated with menus. A pulldown
menu is represented by a menu title (for example, File, Edit, Help) that appears in the
menu bar of an application window (form). The menu bar is the horizontal list of titles
immediately below the title bar on the form. When you choose a pulldown menu title, a
menu containing a list of menu items drops down. Menu items can include commands,
separator bars, and submenu titles. Each menu title and menu item the user sees
corresponds to a menu control you define in the Menu Editor dialog box.

At menu design time, this terminology is not pertinent. When you start to modify menus
at runtime, however, you need to understand the distinctions. Each pulldown menu and
menu item has a distinct handle. In order to change the menus at runtime, you must use
the proper handle.

Main applications windows are the main windows that remain displayed throughout an
application. Most application windows have a menu bar and pulldown menus, which
provide a set of logically grouped commands to users.

The menu for the FIRSTAPP form will contain only one top-level option displayed in the
menu bar: a File menu. The File menu will have one menu item, Quit.

 Cobol-WOW User's Guide 13
 Designing Forms

To create a menu control:

1. From the View menu, click Menu Editor or click the View Menu Editor toolbar

button.

2. In the Menu Editor dialog box, the first position in the Menu Control list box is
blank and highlighted. Select the position where you want to create the top-level
menu. (For this exercise, if the first line in this list is not highlighted, click the first
line.)

3. In the Properties area, click the Title box.

4. In the Title box, type File.

This value is the text for the first menu title that you want to appear on the form’s
menu bar. The menu title, File, is displayed in the top line of the Menu Control list
box. It is also immediately visible on the form as changes made in this dialog box
are automatically applied to a form.

As you give the menu item a Title property value of File, notice that Cobol-WOW
automatically assigns the Name property of the menu control a default value. Under
Cobol-WOW’s default configuration, the naming convention used for menu controls
includes the prefix M- followed by the text entered in the Title box. In this case, the
value M-FILE is displayed in the Name box. Cobol-WOW adds this menu name to
the form’s declaration, and the menu name appears in the Events/Code Sections list

14 Tutorial
 Designing Forms

of the menu Event-Handling Code dialog box. It is the name Cobol-WOW uses to
reference the menu control in the generated code.

Note You can configure the way in which the menu names are generated by
changing the options in the Code page of the Preferences dialog box. To open the
Preferences dialog box, click Edit Preferences on the Options menu, and then click
the Code tab.

5. Click the second line in the Menu Control list box to add a menu item (option) to
the menu created in the previous step. (You can also press Enter from the first line in
the Menu Control area to advance to the second line.)

6. Click the Title box.

7. In the Title box, type Quit.

This value is the text for the first menu item that you want to appear in the File menu.
The menu item, Quit, is displayed in the second line of the Menu Control list box.
The name value M-QUIT is automatically displayed in the Name box.

8. To indent the menu item, click the Right command button at the top of the dialog
box.

Indenting Quit to the right under File makes it a menu item in a menu list of the File
menu. The name value M-QUIT is automatically changed in the Name box to
display M-F-QUIT. If you did not indent this control, the menu bar would have two
top-level options, File and Quit.

9. In the upper-right corner of the title bar, click to close the Menu Editor dialog
box.

The Menu Editor dialog box also allows you to apply several formats to the different
menu items. For instance, you can add an accelerator (or shortcut key) to the menu item
(for example, Ctrl+N) by clicking on the Accelerator list box to display a list of key
combinations that may be used to assign accelerator keys to access menu commands. In
order for the accelerator to appear next to the menu item, you must type the accelerator
key sequence selected from the list box following the text you entered in the Title box. It
is also possible to place a tab character in the menu item to align the text that describes
the accelerator key sequence. A tab character is added by placing the sequence \t in the
menu item. For example, if you select Ctrl+N in the Accelerator list box, you will type
New\tCtrl+N in the Title box. Note that this should be done only for pulldown menu
items, not for top-level titles. Only one tab character should be added to a menu item.

Additionally, you can display a check mark on the menu item at design time by clicking
on the Checked check box. Check marks are commonly used to indicate an on/off
condition. Choosing the menu command alternately adds and removes the check mark. If

 Cobol-WOW User's Guide 15
 Designing Forms

a menu command is active, a check mark will appear next to the menu item. For more
information about displaying a check mark on a menu item at runtime, see page 77.

You may also enable the menu item at design time by clicking on the Enabled check box.
When the Enabled property is checked (the default), the menu responds to user actions. If
a menu control is disabled, it appears grayed or dimmed. For information about enabling
a menu control at runtime, see page 78.

Whenever a menu contains a set of related menu items, you can insert a horizontal line,
known as a separator bar, between the menu items by clicking on the Separator check
box. This provides a visual break in the list of items.

Creating a List Box

The primary control of your FIRSTAPP form is a list box that will be used to display
customers. Within a form, a list box presents a list of available choices for the user. It is
a good design choice whenever you have a large number of fixed choices; for example, a
list of all the files in a directory or a list of customer accounts.

To create a list box:

 1. On the View menu, click Toolbox or click the View Toolbox toolbar button.

2. In the Toolbox, click the List Box control.

3. Move the cross-hair pointer to the upper-left corner of the form and click the left
mouse button.

4. Drag the pointer down towards the lower-right corner of the form to draw the box.

5. Release the mouse button. An empty list box is displayed.

A list box has its own set of unique properties and events. With two exceptions, the
default set of properties will work satisfactorily for this application. Open the Properties
dialog box for the list box and set the following properties:

Property Setting

Name CUST-LB
UseTabStops True

The Name property setting is referenced by your application code and must
conform to COBOL data name restrictions. Cobol-WOW automatically forces the
entry to uppercase.

16 Tutorial
 Designing Forms

The UseTabStops setting will help you align the information in the list box. (For
information on how to add items to a list box at a specific position, see page 28.)

By default, the list box, like all controls, is created with the same background color as the
form. You may wish to set a different background color for the list box control. If so,
modify the BackColor property in the Properties dialog box or click Background Color
on the Control menu to select a different background color for the list box.

Creating the Command Buttons

The easiest way to allow the user to interact with an application is to provide a command
button to click. Like menus, command buttons issue commands. You generally design
pulldown menus to contain commands that fall into logical groups. If you have only a
few commands and enough space on the form, you can create command buttons instead
of menus.

In the following exercises, you will add three command buttons to the FIRSTAPP form
The first command button, Add, will initiate and carry out the add operation in order to
add customers to the list box you just created.

To create the Add button:

 1. On the View menu, click Toolbox or click the View Toolbox toolbar button.

2. In the Toolbox, click the Command Button control.

3. Move the cross-hair pointer to the lower-left corner of the form and click the left
mouse button.

4. Drag the pointer down to the right to outline an area for the button.

5. Release the mouse button. A command button appears with default text.

The command button, like the list box, is created with a default set of properties. For this
application, you need to modify only a few of these properties. Open the Properties
dialog box for the Add command button control and set the following properties:

Property Setting

Caption Add
Name ADD-CMD

The Add value is the caption that identifies the command button on the form. The text
Add replaces the default text of “Command Button.”

ADD-CMD is the name you will use to refer to the command button control in code.

 Cobol-WOW User's Guide 17
 Designing Forms

Note The TabIndex property is used to specify the order in which the controls are
sequenced. This sequencing is used when a user presses Tab (to move forward) or
Shift+Tab (to move backward). A TabIndex value of 2 causes the Add command button
to be second in the entry order of the controls on this form. (The list box, because it was
the first control created, has a TabIndex value of 1.)

You also need to create Change and Delete command buttons similar to the Add button
you have already created. Create these two buttons on the same line and to the right of
the Add button on the form.

Set the following properties for the Change button:

Property Setting

Caption Change
Name CHANGE-CMD

Set the following properties for the Delete button:

Property Setting

Caption Delete
Name DELETE-CMD

Arrange Controls on the FIRSTAPP Form

Once you have added all the controls, you can refine the appearance of your form by
resizing the form, if necessary. You can also arrange or align the controls for a more
balanced layout, and define the tab order and/or z-order for the controls.

Note You must select a control before you can manipulate it on a form.

Selecting

To select a single control, single-click the control on the form with the left mouse button.

You can also select more than one (or multiple) controls, which provides a convenient
method for moving or aligning a group of controls at the same time. To select multiple
controls, first hold down the Shift key, and then click the controls, one at a time. You can
also select more than one control by positioning the pointer beside (not on) one of the
controls you want to select. Then, drag diagonally through all the controls you want to
select. While you drag, Cobol-WOW draws a rectangle around the controls. When you
release the mouse button, all the controls in the rectangle are selected.

To select all the controls in a form, you can choose Select All from the Edit menu.

18 Tutorial
 Designing Forms

Note When more than one control is selected in the form, a single Properties dialog box
displays all the properties that are shared among the selected controls. (The Objects list
area in the Properties dialog will indicate “Form – Multiple Objects Selected”.) This is
true even when the value for the shared property differs among the selected controls. In
this case, the property value column is empty (or blank). However, when you click on the
value area, the value of the first control selected is displayed. When you change any of
the shared properties in the Properties dialog, the property value changes to the new value
in all the selected controls. There is one notable exception to this: when you select
multiple controls in a form, their Name property no longer appears in the Properties list
area even though they all have a Name property. This is because you cannot assign the
same value for the Name property to more than one control in a form.

Resizing

When a control is selected on a form, small squares called sizing handles appear on the
perimeter of the control. To resize a control, select the control on the form, then drag one
of the sizing handles to the desired size:

• Drag the handles on the top and bottom to size the control vertically.

• Drag the handles on the left and right sides to size the control horizontally.

• Drag the handles in the corners to size the control both vertically and horizontally.

When you release the mouse button, the control is redrawn in the new size.

You can also size the controls on a form by using the Size command from the
Control menu or by using toolbar buttons on the Sizing toolbar.

Moving

To move a control, select it, then click the body of the control (being careful not to select
the sizing handles), and then drag the control to the desired location. If you wish to move
the controls in a position not allowed by the grid, turn off the Show Grid and Snap to
Grid commands in the Form menu.

Aligning and Spacing

You can align, center, and distribute controls by using the Align, Center, and Space
commands from the Control menu or by using toolbar buttons on the Aligning,
Centering, and Spacing toolbars. If you wish to place your controls in a position not
allowed by the grid, turn off the Show Grid and Snap to Grid commands in the Form
menu. (You can also change the position of controls with certain properties in the
Properties dialog box.)

 Cobol-WOW User's Guide 19
 Designing Forms

When aligning a group of controls, the first control you select is used as a guide to which
the other controls are aligned. To align the three command buttons along the bottom of
the form:

1. Click the Add button and move it to the position you want in the lower-left corner
of the form.

2. Select the other two command buttons by pressing the Shift key as you click each
control.

3. On the Control menu, click Align and point to the submenu.

4. On the submenu, click Bottoms.

The three command buttons align horizontally relative to the bottom edge of the first
control selected, in this case the Add command button.

At this point, you probably need to modify the spacing among the three command buttons
in even intervals along the bottom of the form.

To space the controls evenly across the form:

1. On the Options menu, click Edit Preferences. The Preferences dialog box opens.

2. Click the Alignment tab.

3. In the Spacing area, click Space Controls and then click OK. The dialog box
closes.

With this option, selected controls are distributed equally between the left and right
edges of the controls and the leftmost and rightmost boundaries of the form. (The
Space Centers options distribute the spacing between the center points of each
control and the leftmost and rightmost boundaries of the form.)

4. Select the three command buttons.

5. On the Control menu, click Space, and then point to Horizontal on the submenu.

The spacing among the three command buttons is evenly distributed between the
edges of the controls and the boundaries of the form.

You can continue to choose or modify alignment options as long as the controls
remain selected.

Specifying Tab Order

Tab order is the order in which the Tab key moves the input focus from one control to the
next. (Pressing Shift+Tab moves the focus in the reverse order.) When a control has
focus, it can receive input from the user through the mouse or keyboard. The tab order is

20 Tutorial
 Designing Forms

initially set by Cobol-WOW and corresponds to the order in which controls are added to
the form.

Note To enable the Tab key to shift focus to a control on a form in a running application,
the TabStop property (see page 174) must be set to True.

You can determine the tab order for your program by choosing the Tab Order command
on the Control menu in the Designer window, or by using the shortcut key, Ctrl+T. A
number in blue in the upper-left corner of each control shows its place in the current tab
order. (Note that the Toolbox closes temporarily when the Designer is in tab order
mode.) To change the tab order, double-click the control you want to be first in the tab
order, and then single-click on the rest of the controls in the order in which you want them
to be selected in the form when a user presses the Tab key. To exit tab order mode, click
the mouse anywhere in the form or click the Tab Order command again. (See page 69 for
more information handling tab order at runtime.)

Alternatively, you can change the tab order for selected controls by changing the
TabIndex property (see page 173) for the control in the Properties dialog box. Note,
however, that there is a limitation when using this method since you can only change the
value of the TabIndex property to a value that has not already been set. Although some
controls (animation, bitmap, progress bar, static text box, status bar, tab, timer, toolbar,
and all shapes) cannot accept mouse or keyboard focus, they still will have a valid tab
order. When the user presses Tab, the focus skips over such a control and goes to the
next control in the tab order.

By default, the first control added to the form in this exercise has a TabIndex property
of 1, the second has a TabIndex of 2, and so on. In this example, the list box, which has a
TabIndex value of 1, would have the focus at runtime. Pressing Tab would move the
focus to the Add command button, then to the Change button, and finally to the Delete
button. For this FIRSTAPP form, you do not need to change the tab order of the controls
as long as you added them in the order specified. Examine the Properties dialog box for
the list box and each of the command buttons to verify that they are in the correct tab
order sequence.

Specifying Z-order

The z-order indicates the control stacking order, that is, the order in which controls are
created. The controls with the smaller numbers are stacked “behind” the controls with
the larger numbers. The controls with the larger numbers are “on top” of all the other
controls. Cobol-WOW initially sets the z-order for each control to correspond to the
order in which they are added to the form.

You can determine the z-order for your program by choosing the Z-Order command on
the Control menu in the Designer window, or by using the shortcut key, Ctrl+R. A

 Cobol-WOW User's Guide 21
 Designing Forms

number in red in the upper-left corner of each control shows its place in the current
z-order. To change the z-order, select the Z-Order command (a check will appear to the
left of the command), then click the control you want to be first in the stacking order. Its
number will change. Then, continue to click controls until they are in the desired order.
To exit z-order mode, click the mouse anywhere in the form or click the Z-Order
command again. (Note that the Toolbox temporarily closes when the Designer is in
z-order mode.)

You also can change the z-order for selected controls by changing the value of the
ZOrder property in the Properties dialog box. (The first control in the z-order should
have the ZOrder value of 1.)

For this FIRSTAPP form, you do not need to change the z-order of the controls as
long as you added them in the order specified. Examine the Properties dialog box for
the list box and each of the command buttons to verify that they are in the correct
z-order sequence.

Save the FIRSTAPP Form

Once you have completed your form design layout and property settings, you are ready to
save your work.

To save the FIRSTAPP form:

1. On either the File or Form menu, click Save or click the Save Form and Generate

Code toolbar button.
2. In File Save As dialog box, type a filename in the File Name box. In this case, type

firstapp.wow. Be sure to save the form in the appropriate working directory.

It is generally a good idea to use the form title for the filename (or a shortened
version of it), although you can use any name you want.

Note All filenames must conform to MS-DOS naming conventions.

3. Click Save. A message box asks, “Do you want to add Firstapp to the project?”

4. Click Yes. Your form is now saved in the current project file, firstapp.wpj.

Note If you were designing several new forms at once in a project, you can choose the
Save All command from either the File or the Form menu to save all the open forms.
The save process varies depending upon whether the form has previously been saved. If
you have not previously saved the form(s), Cobol-WOW displays the File Save As dialog
box. This dialog box prompts you to supply a name for each open form that has been
created. If you have previously saved the form, all open forms that reside in the directory
created to store them, are saved to disk if they have been modified.

22 Tutorial
 Designing Forms

Name Property

The name you entered to save the form is very significant. First, this name is the name
shown in your code — it is used to identify the form to the underlying program. Any time
you need to reference the form from application code you will use this name. Form files
are, by default, given an extension of .wow when they are saved. This filename extension
represents a Cobol-WOW resource file. You may change the extension to whatever you
desire, but it will be easier to locate your forms if you use this extension.

At the same time, the name you entered when you save a form is used to identify and
generate two copy files. The first copy file, with the filename extension .wpr, contains
the COBOL logic necessary for the form. The name of your file also identifies and
generates the COBOL Working Storage copy file needed for the form. This copy file has
a filename extension of .wws.

Create the CUSTINFO Form

You are ready to build the second form of your file maintenance application, the
CUSTINFO form. By following the previous techniques, you now have enough
experience with the Cobol-WOW Designer to design a form without step-by-step
instructions. This exercise presents only the specifications for the second form of your
application. Be sure to adhere strictly to these specifications, however, or you will have
difficulty writing and attaching code to the events associated with these forms and
controls.

The form you will create is a small form named CUSTINFO, which will pop up on top
of the FIRSTAPP form (although not hiding it completely) when a user chooses the
Add or Change command button. If you leave the FIRSTAPP form open in the
Cobol-WOW Designer while you design the CUSTINFO form, you can see how they
will be displayed together.

When completed, the form will appear as illustrated in the following figure.

CUSTINFO Form

 Cobol-WOW User's Guide 23
 Designing Forms

The CUSTINFO form will have two data entry controls, one for the customer
identification number and one for customer name. These controls will both have
captions (or labels) to identify them. The form will also contain OK and Cancel
command buttons to confirm or cancel the action being executed.

Setting Form Properties

To create the CUSTOINFO form:

 1. On either the File or Form menu, click New or click the New Form toolbar button.

2. Set the following properties for the form (use the default settings for all other
properties):

Property Setting

Border 1 - Thin
Caption True
Style 1 - Popup
Modal True
Title Customer Information

Note Changing the Modal value to True causes the form to disable all other forms
belonging to that application. When a form runs modally, the user must explicitly
close it before working in another running form. (In contrast, when a running form is
modeless, it remains onscreen while the user works in another form, for example, the
application main form.) When a user needs to enter information into a form or
otherwise complete its use prior to accessing other forms, create a modal form. This
change becomes visible at runtime, not design time.

Add Controls to the CUSTINFO Form

Next, add the following controls to the form by using the following tools in the Toolbox:

Tool Control

Use the Edit Box tool to create two edit box controls: customer
identification and customer name.

Use the Static Text tool to create label controls for the two edit
box controls: customer identification and customer name.

Use the Command Button tool to create two command button
controls: OK and Cancel.

24 Tutorial
 Designing Forms

After you add the controls to the form, set the following properties for these controls (use
the default settings for the remaining properties):

Control Property Setting

Edit Box Border
MaxChars
Name
TabIndex
Text

True
6
CUST-ID
1
Delete default text and leave
the text box blank.

Edit Box
(Customer Name)

Border
MaxChars
Name
TabIndex
Text

True
20
CUST-NAME
2
Delete default text and leave
the text box blank.

Static Text Caption Customer ID

Static Text Caption Name

Command Button Caption
Name
TabIndex

OK
OK-CMD
3

Command Button Caption
Name
TabIndex

Cancel
CANCEL-CMD
4

Save the CUSTINFO Form

Save the form with the filename, custinfo.wow, and add it to the project when prompted
to do so.. (Use the method described on page 21 for saving the FIRSTAPP form.) You
also can further edit this member of the project.

1. From the Project menu, click Edit. The Edit Project dialog box opens.

2. In the Members in Project area, select custinfo.wow.

Notice that an asterisk is appended to the filename. The asterisk indicates that the
form will be shown at project startup.

3. Click the Show State button to remove the asterisk and ensure that the CUSTINFO
form does not appear at project startup.

 Cobol-WOW User's Guide 25
 Writing Code

Note The default behavior of Cobol-WOW is to display all forms in a project when
the project is opened. If, after clicking the Show State button to remove the asterisk
from the CUSTINFO form, you close and reopen firstapp.wpj, Cobol-WOW will
revert to its default behavior. To change the default, click Options from the Project
menu. In the At Project Open area of the Project Options dialog box, click Open
showstate forms at project open to ensure that the CUSTINFO form does not
appear at project startup.

4. Click Close to exit the Edit Project dialog box.

Writing Code
So far, this chapter has discussed design guidelines: how to create forms within a project,
add controls to a form, set form and control properties, and save forms. This section
takes you through six steps to build on this design of a customer file maintenance
program. Before you can use the forms that you have designed, you must attach
procedure code (logic) and functions to the events associated with these forms and
controls (the window objects).

You must also provide access to the COBOL data files required by the application. Copy
files provide this file access.

1. In the Cobol-WOW Designer, open the FIRSTAPP form.

2. From the Project menu, click View Code. Alternatively, click the View Project

Code toolbar button. The project Event-Handling Code dialog box opens.
3. In the Events/Code Sections list, click Declaratives.

4. Press Tab once in order to start typing in column 8.

5. Add the following COPY statement: COPY “firstapp.dcl”.

6. Continue adding COPY statements to code sections as follows:

Code Section COPY Statement

File Section COPY "firstapp.fd".

File-Control COPY "firstapp.sl".

Procedure Division COPY "firstapp.prc".

Working-Storage Section COPY "firstapp.ws".

Each of the following exercises provides you with a working program. These techniques
will provide an excellent foundation on how to build Windows-based applications with

26 Tutorial
 Writing Code

Cobol-WOW. The methods learned here will transfer easily to the other types of
programs you develop.

In each of these exercises, you will gain additional familiarity with the Windows API
functions, their use, and the characteristics of window objects and different types of
controls. Windows presents a number of controls you can use to develop Windows-based
applications, including buttons, text boxes, list boxes, and many others. Each of these
objects is created with a specific “personality” and capabilities. For example, buttons and
text boxes provide the most fundamental methods of receiving input and displaying
output in your programs. To effectively develop Windows-based software, you must
learn the nature of these objects and how to work with them.

Step 1 — Exiting Methods

In the following exercise, you will provide the user with ways to exit the application.

Writing Code for Menu Controls

The customer file maintenance program’s main form is the firstapp.wow file. It contains
a System menu with a Close command, and a File menu that includes a Quit command.
Whenever the user chooses either of these menu items in a running application, either by
clicking the menu command or by using its accelerator or shortcut keys, the form is
destroyed and the program is exited.

By default, Cobol-WOW automatically attaches code to destroy the window (form) and
exit the program when a user chooses the Close command on the System menu. In this
exercise, you will attach this same logic to the Quit menu item on the FIRSTAPP form,
and then compile and run the program.

To attach this code to the Quit event on the File menu and save the form:

1. On the Form menu, click View Code and then click the submenu option, Menus.

Alternatively, click the View Form Menu Code toolbar button.
2. In the Event-Handling Code dialog box, click M-F-QUIT in the Events/Code

Sections list.

There is only one event that can occur when a user chooses a menu item: the Click
event. Therefore, when you select the M-F-QUIT object, the Click event is selected
automatically in the Events/Code Sections list.

3. Move the cursor to the Code Entry area and press Tab twice in order to start typing
in column 12, since this is the body of a procedure. The Line, Col identifier in the
lower-right corner of the Event-Handling Code dialog box should read 1,12.

 Cobol-WOW User's Guide 27
 Writing Code

4. Type the following line of code:

SET WOW-QUIT TO TRUE.

5. Click Close to close the Event-Handling Code dialog box.

6. Click the Save Form and Generate Code toolbar button to save the changes made

to the form.

Compiling and Running Program

To compile the COBOL source code for the project’s main program file (firstapp.cbl,
which was created when the project was first saved):

 1. On the Project menu, click Build or click the Build Project toolbar button.
Shortcut key: F7.

2. When the compiler has finished, close the COBOL compiler window. You are now
ready to run the project.

To run the COBOL object code for the project’s main program file (firstapp.cob, which
was created when the project was first compiled):

 1. On the Project menu, click Run or click the Execute Project toolbar button.
Shortcut key: F5.

2. While the program is running, you can test the event-handling code that you added to
the Close and Quit menu controls. Click Close from the System menu or double-
click the System menu. The program exits to the Cobol-WOW Designer.

3. Run the program again, and this time click Quit from the File menu. Once again, the
program returns to the Cobol-WOW Designer.

Controlling the COBOL Main Window

When you run the program, you may or may not see the standard COBOL main window
displayed in addition to your Cobol-WOW form. By setting the Main Window Type
property in the Windows Registry to a value of SHOW or HIDDEN, you can specify
whether or not the COBOL main window is displayed. For more information, refer to the
“Setting Properties” section of the chapter entitled “Installation and System
Considerations for Microsoft Windows” in the RM/COBOL User’s Guide.

The RM/COBOL Configuration utility (rmconfig.exe) also may be used to specify
property values for the Main Window Type property to determine whether the COBOL
main window is shown or hidden. You can also call a COBOL subprogram, C$SHOW,
to dynamically hide and show the standard COBOL main window at runtime.

28 Tutorial
 Writing Code

Step 2 — Loading the List Box

List boxes present a list of choices to the user. By default, the choices are displayed
vertically in a single column. In this exercise, you will load your customer list into the list
box control created previously on the FIRSTAPP form.

There are a number of places where you could load this information. At first, it may
appear most likely to add the data to the skeleton program after the statement that creates
the form. However, a better place to initialize the list box control is in response to the
Windows message when the list box control is created. When a window object is created,
Windows sends a message to the window object saying, “You are being created.”
Responding to this message is the appropriate place to initialize any and all controls on
a form, including the list box. It is important that Windows-based applications be as
event-driven as possible in order to make the program more maintainable. Internal
program architecture is more likely to change than the Windows messaging system.

This tutorial so far has discussed how to set properties for forms and controls. Setting
properties, however, is only one component of code development in Cobol-WOW. For
some events or activities (loading a list box, for example), special functions and messages
are used.

Using the WOWADDITEM Function

Loading the list box involves reading the customer file from start to finish and
individually adding each customer to the list box. The easiest way to add an item to a list
box is with the WOWADDITEM function.

The syntax of the function is as follows:

CALL WOWADDITEM USING WIN-RETURN WND-H NEWITEM

The WIN-RETURN parameter specifies the index of where the entry is added to the list
box. This index is not used in this example. WNDORACTIVEX-H specifies the handle
of the list box to which the entry should be added. NewItem specifies an alphanumeric
field containing the text to add to the list box.

Although at first glance this function appears straightforward, it deserves closer
examination. By default, a list box redisplays its contents every time an entry is added,
which would, in this case, cause a distracting flicker on the screen. You can, however,
tell the list box not to redisplay its contents during the loading operation by sending the
message WM-SETREDRAW. WM-SETREDRAW works with all window objects
(forms and controls), not just list boxes.

 Cobol-WOW User's Guide 29
 Writing Code

The syntax of the message appears as follows:

CALL SENDMESSAGE USING WIN-RETURN CUST-LB-H WM-SETREDRAW
 WIN-FALSE.

The WIN-RETURN parameter is not relevant in this context. CUST-LB-H specifies the
handle of the list box for which to suppress redrawing. WM-SETREDRAW specifies the
message identifier (ID). WIN-FALSE specifies that redraw should be turned off.

This same message can then be used with WIN-TRUE as the last parameter in order to
turn redrawing back on after you have finished loading the list box.

Creating Logic to Load the List Box

Now you know where to write your code and what messages you will be using. To add
the logic to load the list box to the FIRSTAPP form:

1. In the Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box:

• Select the form and double-click the left mouse button.

 • Click the View Form Code toolbar button.

3. In the Events/Code Sections list, click the Create event.

4. Move the cursor to the Code Entry area and press Tab twice in order to start typing
in column 12, since this is the body of a procedure.

5. Type the following code:

PERFORM OPEN-CUST.
CALL SENDMESSAGE USING WIN-RETURN CUST-LB-H WM-SETREDRAW
 WIN-FALSE.
PERFORM READ-NEXT-CUST.
PERFORM UNTIL NOT VALID-CUST-IO
 PERFORM ADD-ENTRY-TO-LISTBOX
 PERFORM READ-NEXT-CUST
END-PERFORM.
CALL SENDMESSAGE USING WIN-RETURN CUST-LB-H WM-SETREDRAW
 WIN-TRUE.

This code uses two procedures, READ-NEXT-CUST and ADD-ENTRY-TO-LISTBOX.
The READ-NEXT-CUST procedure, like all your file I/O logic, is supplied in the
firstapp.cbl program. The ADD-ENTRY-TO-LISTBOX procedure, however, is not
supplied in this manner.

The ADD-ENTRY-TO-LISTBOX procedure is not only used by the Create event logic,
but also by other event-handling routines in the project. Since it is used by other routines,

30 Tutorial
 Writing Code

you should create it in the Procedure Division of the PROJECT CODE SECTIONS
object, rather than within this event procedure. While you could create it here and still
perform it from other event procedures, it would be difficult to remember where it was
defined. Placing shared procedures in the Procedure Division of the project Event-
Handling Code dialog box eases maintenance. The next section describes how to do this.

Project Code Sections

When you create a project, Cobol-WOW allows you to specify the forms that are used
in the project. Not only will Cobol-WOW keep track of the forms that are part of the
project, it will create a skeleton COBOL program that creates, operates, and removes
all of the forms. Better yet, you can edit any part of this COBOL program from inside
the Cobol-WOW Designer. Because you are working with a project, you will select
View Code from the Project menu. (Alternatively, you can click the View Project
Code toolbar button.) Every code section of the COBOL program is listed in the
Events/Code Sections list. You can copy in your file descriptions, declaratives, create
additional Working Storage data items — in short, everything — from within the
Cobol-WOW Designer.

Procedure Division Logic

The ADD-ENTRY-TO-LISTBOX procedure, which will add your customers to the list
box, involves formatting the entry and sending the message to add it. You have already
analyzed the message used to add the entry. There is, however, an interesting aspect to
formatting the entry that should be discussed.

When you set the list box properties, you set UseTabStops to True because Windows
supports fonts that are both fixed width and variable width. Variable-width fonts are
more common under Windows, but they present some challenges to developers,
especially when trying to align information.

With fixed-width fonts, the following entry would align properly by placing space
characters between the number and the name:

0013422 John Smith
0015311 Harry Jones

With variable-width fonts, some characters are wider than others. Having the same
number of characters in two lines does not necessarily cause the two entries to line up. In
order to align the entries shown in this example, you must place a Tab character between
the number and the name. In the case of a list box control, you must also tell the list box
that you are using Tab characters by setting the UseTabStops property to True. Using this
setting, the list box will interpret the Tab character as a positioning character and not as
part of the text.

 Cobol-WOW User's Guide 31
 Writing Code

Note Be careful not to confuse this task with creating a multi-column list box control. In
this case, you are separating two parts of a single entry with a Tab character so that it
appears to be in two columns; it is still one entry. A multi-column list box would display
as follows:

0013422 John Smith 014322 Frank Jones
0043255 Peter Parker 015322 Herb Black

To add the ADD-ENTRY-TO-LISTBOX procedure to the Procedure Division area:

 1. From the Project menu, click View Code or click the View Project Code toolbar
button.

2. The project Event-Handling Code dialog box is displayed.

3. In the Events/Code Sections list, click Procedure Division.

4. Move the cursor to the Code Entry area and press Tab once in order to start typing
in column 8, since this is a complete procedure. The Line, Col identifier in the
lower-right corner of the window should read 1,8.

5. Type the following code:

ADD-ENTRY-TO-LISTBOX.
 MOVE CUST-ID TO NEW-ENTRY (1:6).
 MOVE X"09" TO NEW-ENTRY (7:1).
 MOVE CUST-NAME TO NEW-ENTRY (8:40).
 CALL WOWADDITEM USING WIN-RETURN CUST-LB-H NEW-ENTRY.

The list box entry is formatted by moving the desired fields to an alphanumeric data
item called NEW-ENTRY. The declaration variable NEW-ENTRY is described in the
next section.

Working-Storage Section Logic

Because you are working with a project, you should declare variables in the Working-
Storage Section of the project Event-Handling Code dialog box. This is the area where
the variable NEW-ENTRY should be declared.

To declare NEW-ENTRY in the Working-Storage Section area:

1. In the Events/Code Sections list, click Working-Storage Section.

2. Move the cursor to the Code Entry area and press Tab once in order to start typing
in column 8, since this is a variable declaration. The Line, Col identifier in the
lower-right corner of the window should read 1,8.

32 Tutorial
 Writing Code

3. Type the following code:

01 NEW-ENTRY PIC X(50).

4. Click Close to close the project Event-Handling Code dialog box.

Saving, Generating, Compiling, and Running

 To save the changes made to the list box, click the Save Form and Generate Code
toolbar button.

The FIRSTAPP program can now be compiled. Then run the program to see the
customers displayed in the list box.

Step 3 — Adding the Second Window

Right now your application displays only the FIRSTAPP form. When a user chooses the
Add or Change options, you want the CUSTINFO form to appear for editing. To
accomplish this, you will set an internal flag that indicates Add or Change mode, allowing
the logic that pops up for the CUSTINFO form between the Add and Change operations
to be shared. (The instructions for adding the logic to the Change command button are
discussed on page 37.)

You will pop up the CUSTINFO form by creating it and then remove it by destroying it,
although showing and hiding the form would work equally well. When you pop up the
CUSTINFO form, it will disable the FIRSTAPP form because the CUSTINFO form is
modal. When a form runs as a modal window, the user must explicitly close it before
accessing and working in another running form.

In this step, you will allow the user to remove the form only with the Cancel command
button. To remove the CUSTINFO form, you will destroy it.

Adding Logic to the Add Command Button

To add the required logic to the Add command button:

1. In the Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box for the control:

• Select the Add command button control and double-click the left mouse button.

• On the Control menu, click View Code.

 • Click the View Control Code toolbar button.

3. In the Events/Code Sections list, click the Click event.

 Cobol-WOW User's Guide 33
 Writing Code

4. Move the cursor to the Code Entry area and press Tab twice in order to start typing
in column 12, since this is the body of a procedure.

5. Type the following code:

SET ADD-MODE TO TRUE.
PERFORM POPUP-RTN.

6. Click Close to close the control Event-Handling Code dialog box.

Declaring ADD-MODE

To declare the variable ADD-MODE in the Working-Storage Section:

1. From the Project menu, click View Code or click the View Project Code toolbar

button. The project Event-Handling Code dialog box is displayed.
2. In the Events/Code Sections list, click Working-Storage Section. Existing code

appears in the Code Entry area.

3. Move the cursor to the Code Entry area below the existing code. Press Tab once in
order to start typing in column 8, since this is a variable declaration.

4. Type the following code:

01 PROGRAM-MODE PIC X.
 88 ADD-MODE VALUE "A".
 88 CHANGE-MODE VALUE "C".

Declaring POPUP-RTN

Since the POPUP-RTN procedure will be used within both the Add and Change
operations, create it in the Procedure Division of the PROJECT CODE SECTIONS
object.

To add the POPUP-RTN procedure to the PROJECT CODE SECTIONS object:

1. In the Events/Code Sections list, click Procedure Division. Existing code appears
in the Code Entry area.

2. Move the cursor to the Code Entry area below the existing code. Press Tab once in
order to start typing in column 8, since this is a complete procedure.

3. Type the following code:

POPUP-RTN.
 PERFORM WP-CREATE-CUSTINFO.

4. Click Close to close the project Event-Handling Code dialog box.

34 Tutorial
 Writing Code

Removing the CUSTINFO Window

To remove the CUSTINFO form and re-enable the FIRSTAPP form, you need to add
logic to the Cancel command button on the CUSTINFO form:

1. In the Cobol-WOW Designer, open the CUSTINFO form.

2. From the Form menu, click View Code and then click Form, or click the View

Form Code toolbar button. The form Event-Handling Code dialog box opens.
3. In the Events/Code Sections list, click the Click event.

4. Move the cursor to the Code Entry area and press Tab twice in order to start typing
in column 12, since this is the body of a procedure.

5. Type the following code:

PERFORM WP-DESTROY-CUSTINFO.

The sequence of these two procedures is significant. Since FIRSTAPP is enabled before
CUSTINFO is destroyed, FIRSTAPP becomes the active window when CUSTINFO is
removed. If CUSTINFO were removed while FIRSTAPP was still disabled, some other
enabled form would become the active window. Then, when FIRSTAPP was enabled, it
would not automatically become active, and it would require an additional function call to
make it the active window.

Saving, Compiling, and Running

Save, build, and run the project.

Step 4 — Adding Customers

When you pop up a CUSTINFO form, you need to be able to add customers. To do this,
you add logic to the OK command button to save what you created in the CUSTINFO
form.

When the OK command button is pressed, you want the user to retrieve the contents of
the CUSTINFO edit fields, load the data record with them, and then write the new record.
You also want to use this data to add a new entry to the list box. Then, you want to
remove the pop-up window, just as you did with the Cancel command button. Notice that
even though the FIRSTAPP form is disabled for user input, you can modify it (for
example, add an entry to the list box).

 Cobol-WOW User's Guide 35
 Writing Code

Using the WOWGETPROP Function

Retrieving the contents of the CUSTINFO edit controls involves something new:
retrieving the value of a property with the WOWGETPROP function. This function is
very similar to the function used to set properties, WOWSETPROP.

The syntax of the WOWGETPROP function is as follows:

CALL WOWGETPROP USING WIN-RETURN CUST-ID-H "TEXT" CUST-ID.

The WIN-RETURN parameter is a status value for the function. CUST-ID-H specifies
the handle of the form or control from which you want to retrieve a property value.
“TEXT” is the name of the property to be retrieved. CUST-ID is the COBOL data item
in which the property value should be stored.

This function can be used to retrieve any property for a form or control.

Adding Logic to the OK Command Button

To add the required logic to the OK command button:

1. In the Cobol-WOW Designer, open the CUSTINFO form.

2. Do one of the following to open the Event-Handling Code dialog box for the control:

• Select the OK command button control and double-click the left mouse button.

• On the Control menu, click View Code.

 • Click the View Control Code toolbar button.

3. In the Events/Code Sections list, click the Click event.

4. Move the cursor to the Code Entry area and press Tab twice to start typing in
column 12, since this is the body of a procedure.

5. Type the following code:

PERFORM MOVE-DATA-TO-RECORD.
PERFORM WRITE-CUST.
PERFORM ADD-ENTRY-TO-LISTBOX.
PERFORM WP-DESTROY-CUSTINFO.

MOVE-DATA-TO-RECORD is a new procedure that you will create in a moment.
WRITE-CUST is a file I/O procedure in the firstapp.cbl program. ADD-ENTRY-TO-
LISTBOX, which formats an entry and adds it to the list box, is the procedure you
created in Step 2 (see page 28). WP-DESTROY-CUSTINFO is the same procedure you
used with the Cancel command button to remove the CUSTINFO form and enable the
FIRSTAPP form.

36 Tutorial
 Writing Code

MOVE-DATA-TO-RECORD is used only by the OK command button event procedure.
It is, however, such a discreet piece of functionality that good COBOL programming
practice requires that you create it as a separate procedure. A procedure that is used by
only one event-handling procedure should be created alongside that procedure. Create
the MOVE-DATA-TO-RECORD procedure in the same Event-Handling Code dialog box
(Click event for the OK-CMD object), but place it after the main body of the event-
handling procedure. Since you are creating a procedure name, press Tab once to start
typing in column 8. Type the following code:

MOVE-DATA-TO-RECORD.
 CALL WOWGETPROP USING WIN-RETURN CUST-ID-H "TEXT" CUST-ID.
 CALL WOWGETPROP USING WIN-RETURN CUST-NAME-H "TEXT" CUST-NAME.

Saving, Building, and Running

Save, build, and run the project.

When you run the project, press the Add command button to display the CUSTINFO
form, enter the data, and press the OK command button. Your new entry should be
displayed in the list box.

Step 5 — Changing Customers

Next, you need the ability to change customers, which requires adding logic to the
Change command button, and modifying the POPUP-RTN and OK command button
procedures.

When the Change button is pressed you want to make sure that a customer has been
selected. If not, you do not want the CUSTINFO form to pop up. After determining that
a customer is selected, you will read the customer, set CHANGE-MODE to TRUE, and
then perform the POPUP-RTN. The POPUP-RTN procedure must be changed to load
the current customer information into the CUSTINFO form after it is created. The OK
command button logic must be changed to delete the customer from both the list box and
the file before the new values are saved.

 Cobol-WOW User's Guide 37
 Writing Code

Working with List Box Selections

The presence or absence of a selection in a list box is determined with the CurSel
property. This property is the 0 relative index of the currently selected item. If no item is
selected, the property value is LB-ERR. The value of the selected list box item can be
determined with the SelText property. If no item is selected the value is space.

An item can be deleted by using the WOWREMOVEITEM function as follows:

CALL WOWREMOVEITEM USING WIN-RETURN CUST-LB-H CUST-SEL-NUM.

The WIN-RETURN parameter is not relevant in this context. CUST-LB-H specifies the
handle of the list box to be modified. CUST-SEL-NUM specifies the 0 relative index of
the entry to be removed.

Adding Logic to the Change Command Button

To add the required logic to the Change command button:

1. In the Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box for the control:

• Select the Change command button control and double-click the left
mouse button.

• On the Control menu, click View Code.

 • Click the View Control Code toolbar button.

3. In the Events/Code Sections list, click the Click event.

4. Move the cursor to the Code Entry area and press Tab twice in order to start typing
in column 12, since this is the body of a procedure.

5. Type the following code:

PERFORM CHECK-FOR-CUST-SELECTION.
IF NOT NO-CUST-SELECTED
 PERFORM READ-THIS-CUST
 SET CHANGE-MODE TO TRUE
 PERFORM POPUP-RTN
END-IF.

6. Click Close to close the control Event-Handling Code dialog box.

38 Tutorial
 Writing Code

Adding Code to the Procedure Division

Because CHECK-FOR-CUST-SELECTION and READ-THIS-CUST are procedures that
will also be used by the Delete operation, create these in the Procedure Division of the
PROJECT CODE SECTIONS object. CHECK-FOR-CUST-SELECTION indicates
whether or not a customer has been selected with the condition, NO-CUST-SELECTED.

To add the CHECK-FOR-CUST-SELECTION and READ-THIS-CUST procedures to
the PROJECT CODE SECTIONS object:

1. From the Project menu, click View Code or click the View Project Code toolbar

button. The project Event-Handling Code dialog box is displayed.
2. In the Events/Code Sections list, click Procedure Division. Existing code appears

in the Code Entry area.

3. Move the cursor to the Code Entry area on the next line following the existing
code. Press Tab once in order to start typing in column 8, since these are
complete procedures.

4. Type the following code:

CHECK-FOR-CUST-SELECTION.
 CALL WOWGETPROP USING WIN-RETURN CUST-LB-H "CURSEL"
 CUST-SEL-NUM.

READ-THIS-CUST.
 CALL WOWGETPROP USING WIN-RETURN CUST-LB-H "SELTEXT"
 CUST-ID.
 PERFORM READ-CUST.

Both of these procedures use the CUST-SEL-NUM field. To declare this field in the
Working-Storage Section:

1. In the Events/Code Sections list, click Working-Storage Section. Existing code
appears in the Code Entry area.

2. Move the cursor to the Code Entry area on the next line following the existing code.
Press Tab once in order to start typing in column 8, since this is a variable
declaration.

3. Type the following code:

01 CUST-SEL-NUM PIC S9(4).
 88 NO-CUST-SELECTED VALUE -1.

 Cobol-WOW User's Guide 39
 Writing Code

Modifying the POPUP-RTN Procedure

To modify the POPUP-RTN procedure:

1. In the Events/Code Sections list, click Procedure Division.

2. Add three lines to the end of the POPUP-RTN procedure so that it appears as follows
(the new lines of code appear as bold text):

POPUP-RTN.
 PERFORM WP-CREATE-CUSTINFO.
 IF CHANGE-MODE
 PERFORM MOVE-DATA-TO-WINDOW
 END-IF.

3. While still in the Procedure Division code section, create the MOVE-DATA-TO-
WINDOW procedure following the existing code.

MOVE-DATA-TO-WINDOW.
 CALL WOWSETPROP USING WIN-RETURN CUST-ID-H "TEXT"
 CUST-ID.
 CALL WOWSETPROP USING WIN-RETURN CUST-NAME-H "TEXT"
 CUST-NAME.

Modifying the OK Command Button Procedure

To modify the OK command button procedure:

1. In the Cobol-WOW Designer, open the CUSTINFO form.

2. Do one of the following to open the Event-Handling Code dialog box for the control:

• Select the OK command button control and double-click the left mouse button.

• On the Control menu, click View Code.

 • Click the View Control Code toolbar button.

3. In the Events/Code Sections list, click the Click event.

4. Add four lines to the beginning of the procedure so that it appears as follows (the
new lines of code appear as bold text):

IF CHANGE-MODE
 PERFORM DELETE-LISTBOX-ENTRY
 PERFORM DELETE-CUST
END-IF.
PERFORM MOVE-DATA-TO-RECORD.
PERFORM WRITE-CUST.
PERFORM ADD-ENTRY-TO-LISTBOX.
PERFORM WP-DESTROY-CUSTINFO.

40 Tutorial
 Writing Code

Adding the Delete List Box Entry Procedure

The DELETE-LISTBOX-ENTRY procedure, used by both the Delete and Change
operations, should be created in the Procedure Division of the PROJECT CODE
SECTIONS object.

To create the DELETE-LISTBOX-ENTRY procedure:

1. From the Project menu, click View Code or click the View Project Code toolbar

button. The project Event-Handling Code dialog box is displayed.
2. In the Events/Code Sections list, click Procedure Division. Existing code appears

in the Code Entry area.

3. Move the cursor to the Code Entry area and press Tab once in order to start typing
in column 8, since these are complete procedures.

4. Type the following code after the existing code:

DELETE-LISTBOX-ENTRY.
 CALL WOWREMOVEITEM USING WIN-RETURN CUST-LB-H
 CUST-SEL-NUM.

Saving, Building, and Running

Save, build, and run the project.

When you run the project, select a customer in the list box of the FIRSTAPP form and
press the Change command button to display the CUSTINFO form. Then modify the
data, and press the OK command button. The previous entry is deleted and the new one
is displayed.

Step 6 — Deleting Customers

Finally, you need to add the ability to delete customers by creating logic to the Delete
command button.

Like the Change command button, when the Delete command button is pressed, you want
to be sure a customer is selected. When the customer is selected, a message box displays,
asking the user to respond to the inquiry. When the user confirms the action, the
customer is removed from the list box and the file.

Fortunately, all the required list box manipulation has already been created for the
Change function. There is, however, one new technique that can be performed using the
WOWMESSAGEBOX function.

 Cobol-WOW User's Guide 41
 Writing Code

WOWMESSAGEBOX Function

The WOWMESSAGEBOX function displays the confirmation message. The following
syntax shows the logic required to use this function:

INITIALIZE MESSAGE-BOX-FLAGS.
SET MB-OKCANCEL MB-ICONQUESTION MB-TASKMODAL TO TRUE.
CALL WOWMESSAGEBOX USING WIN-RETURN 0
 "Are you sure you want to delete this customer"
 "Confirm deletion"
 MESSAGE-BOX-FLAGS.

The WOWMESSAGEBOX function has a large number of conditions associated with it.
These conditions specify what buttons and icons should be placed in the message box and
how the message box is displayed. These conditions are declared in MESSAGE-BOX-
FLAGS.

MESSAGE-BOX-FLAGS must be initialized to clear all default conditions. Then the
desired conditions are established again by setting their values to TRUE. In this
example, the OK and Cancel command buttons are placed in the message box by setting
MB-OKCANCEL to TRUE, a question mark icon is placed in the message box by setting
MB-ICONQUESTION to TRUE, and the message box is displayed in task modal form by
setting MB-TASKMODAL to TRUE. (Task modal means that the only item the user can
access in this task is the WOWMESSAGEBOX. They could, however, switch to other
tasks.)

The parameters for the WOWMESSAGEBOX function are described as follows:

• The WIN-RETURN parameter indicates what button was pressed to remove the
dialog box.

• The 0 parameter is a parent for the message box; in this case, none.

• “Are you sure ...” is the text of the message to display.

• “Confirm deletion” is the title of the message box window.

• MESSAGE-BOX-FLAGS includes the conditions affecting the message box.

42 Tutorial
 Writing Code

Adding Logic to the Delete Command Button

To add the required logic to the Delete command button:

1. In the Cobol-WOW Designer, open the FIRSTAPP form.

2. Do one of the following to open the Event-Handling Code dialog box for the control:

• Select the Delete command button control and double-click the left mouse button.

• On the Control menu, click View Code.

 • Click the View Control Code toolbar button.

3. In the Events/Code Sections list, click the Click event.

4. Move the cursor to the Code Entry area and press Tab twice in order to start typing
in column 12, since this is the body of a procedure.

5. Type the following code:

PERFORM CHECK-FOR-CUST-SELECTION.
 IF NOT NO-CUST-SELECTED
 PERFORM CONFIRM-DELETE
 END-IF.
 IF WIN-RETURN = IDOK
 PERFORM READ-THIS-CUST
 PERFORM DELETE-LISTBOX-ENTRY
 PERFORM DELETE-CUST
 END-IF.

6. Type the following code beginning at column 8, since this is a complete procedure:

CONFIRM-DELETE.
 INITIALIZE MESSAGE-BOX-FLAGS.
 SET MB-OKCANCEL MB-ICONQUESTION MB-TASKMODAL TO TRUE.
 CALL WOWMESSAGEBOX USING WIN-RETURN 0
 "Are you sure you want to delete this customer?"
 "Confirm Deletion"
 MESSAGE-BOX-FLAGS.

Saving, Building, and Running

Save, build, and run the project.

When you run the project, press the Delete command button to display the message box,
and then select OK to delete the currently selected customer.

 Cobol-WOW User's Guide 43
 Cobol-WOW Components

Chapter 3: Introducing Cobol-WOW

Cobol-WOW (Windows Object Workshop) is a programming tool that allows you
to design and to develop full-featured, event-driven Windows applications completely
in COBOL.

This chapter includes the following topics:

• Cobol-WOW Components

• Cobol-WOW Development Process Overview

• Windows Graphical Operating Environment

Cobol-WOW Components
The Cobol-WOW development environment consists of three major components: a
design facility, a runtime system, and the Cobol-WOW Thin Client program.

Cobol-WOW Designer

The Cobol-WOW Designer, cblwow.exe, is a standard Windows, multiple document
interface (MDI) application that provides COBOL developers with the capability to
define the visual interface elements of the application. The multiple document interface
feature allows an application to manage multiple files within the single, parent (or
application) window. In Cobol-WOW, this means you can open and edit multiple forms
at one time in the Cobol-WOW Designer window. You can also copy information back
and forth between forms, move and resize the forms, and so forth.

You first design the forms, populate those forms with controls, and adjust the properties
of those forms and controls. Cobol-WOW collectively refers to these forms and controls
as objects.

Then you use Cobol-WOW to write and manage the source code to support these
objects. Every object has certain events to which it can respond. In the Designer, you
write and attach COBOL event-handling logic to the specific Windows events and the
code necessary to respond to user input events. Because Windows programming is
event-driven, you write code to respond to user events rather than control the sequence
of events.

44 Introducing Cobol-WOW
 Cobol-WOW Components

Cobol-WOW Runtime System

The Cobol-WOW DLL, wowrt.dll, is a Windows dynamic link library (DLL) that
manages Windows messages, provides runtime support for the forms and controls, and
provides a COBOL interface to the Windows Application Programming Interface (API).
When the Cobol-WOW runtime system is invoked by the Cobol-WOW Thin Client
program (tclient.exe), it causes all Windows-based Cobol-WOW functions to be executed
on the client workstation.

Note The Cobol-WOW DLL must be distributed with your Cobol-WOW applications.

Windows provides hundreds of functions for application programming, collectively
referred to as the Windows API. The interface to these functions is a C-language
interface that does not accept COBOL data types. Sometimes the architecture of these
functions prevents direct access from COBOL. The Cobol-WOW DLL provides a
COBOL interface to these Windows functions, providing direct access to the power and
flexibility of Windows. For more information, see the Functions and Messages online
Help file.

Execution of a Windows program also generates a number of messages. Again, the
generation and dispatching of these messages are designed for a C-language interface.
The Cobol-WOW DLL conveniently captures, organizes, stores, and reports these
messages to the COBOL application. For more information, see the Functions and
Messages online Help file.

It is possible to customize the initialization file (cblwow.ini) in order to define default
settings for various runtime activities. This is accomplished by using the Runtime page of
the Preferences dialog box in the Cobol-WOW Designer or by manually adding a
[WOWRT] section to the cblwow.ini file. For more information, see page 3.

Cobol-WOW Thin Client

The Cobol-WOW Thin Client executable program, tclient.exe, which is installed on the
Windows client workstation, begins the Thin Client session by connecting to the server.
It loads the required DLLs (see page 274) and reads the configuration file, RpcPlus.ini.
The server, upon receiving this connection request, begins execution of the application on
the server. The application runs as a normal RM/COBOL program on the server until a
Cobol-WOW function is invoked. All Cobol-WOW functions are intercepted by special
logic in the Cobol-WOW runtime, which routes the requests back to the client, where they
are executed. This causes the user interface to be presented on the client. When the
Cobol-WOW function completes execution, control is returned back to the server. The
Thin Client portion of Cobol-WOW is discussed in more detail in Appendix E, Using
Cobol-WOW Thin Client, beginning on page 273.

 Cobol-WOW User's Guide 45
 Cobol-WOW Development Process Overview

Cobol-WOW Development Process Overview
Note The development process is discussed in more detail in Chapter 4, Developing with
Cobol-WOW, beginning on page 57.

You begin the Cobol-WOW development process by creating a project. A project is a
development environment provided by Cobol-WOW to facilitate the creation of the
multiple forms that make up your application’s user interface. A project manages not
only the form creation, but also provides the ability to add file access and other code to
the rest of your program.

Next, you design forms. The form files that are contained in a project are also known as
members. The default extension for a form file is .wow. A full range of form types,
styles, system colors and fonts is available to create highly stylized forms.

You continue using the Cobol-WOW Designer to populate the form with controls
selected from the Toolbox. The Toolbox provides the ability to add Windows intrinsic
controls (default) and ActiveX controls to the form. Using the Properties dialog box,
Cobol-WOW enables the appearance and functionality of each control to be fully tailored
to your needs.

Next, you attach event-handling code to the graphical user interface objects: the form,
Windows intrinsic controls, and ActiveX controls. The Cobol-WOW Designer provides
a complete list of possible events for each object and includes an Event-Handling Code
dialog box that can be used to easily add event-handling code using familiar COBOL
statements. In addition, over 150 of the Windows API functions are available, all with
parameters that use standard COBOL data types.

Once the event-handling code is complete, you can generate copy files to allow for
easy integration of the form into a legacy COBOL application or into a new COBOL
program — ready to compile and execute. The compile and execute processes are
available from the Project menu in the Cobol-WOW Designer.

Cobol-WOW also makes it easy to test your program and debug your source code.

46 Introducing Cobol-WOW
 Windows Graphical Operating Environment

Windows Graphical Operating Environment
The elements of the Microsoft Windows graphical operating environment allow you to
develop Windows applications with Cobol-WOW. These GUI elements are as follows:

• Forms • Handles

• Controls • IDs

• Properties • Functions and Messages

In this section, you will examine the two types of objects used to build your user
interface: forms and controls, and two unique identifiers for these objects, handles
and IDs. The use of properties to customize the way in which the controls that you
place on a form (or the form itself) appear and behave are also discussed, as are functions
and messages.

Forms and Controls

In the past, COBOL programmers built user interfaces with two verbs, ACCEPT and
DISPLAY. Under Windows, however, programmers build user interfaces with two types
of objects. This illustrates the paradigm shift that has occurred in software development.
User interface development has shifted from a process described by syntax to an entity
built from different objects.

Cobol-WOW and Windows provide you with a wealth of user interface technology,
vastly expanding your capabilities beyond anything you could attempt with COBOL
ACCEPT and DISPLAY statements. This new approach is more powerful, more flexible,
and more easily maintainable than traditional COBOL user-interface development — a
true “win-win” situation.

In this section, you will examine the two types of objects used to build your user
interface: forms and controls, and two unique identifiers for these objects: handles and
IDs. The use of properties to customize the way in which the controls that you place on a
form (or the form itself) appear and behave are also discussed.

Forms

Windows with a capital “W” refers to the Microsoft Windows operating system. The
term windows with a lowercase letter refer to a displayable, rectangular object that a
program asks the operating system to create. The window is the basic building block of

 Cobol-WOW User's Guide 47
 Windows Graphical Operating Environment

the user interface. Everything you see on the screen is contained in a window. Dialog
boxes, command buttons, list boxes, and text boxes are all specialized types of windows.

The Windows operating system provides extensive capabilities to manipulate windows.
Most of these capabilities apply equally to a command button or a main window with a
title, scroll bars, and a System menu. One of the merits of Windows is that you can
manipulate many different types of objects in the same way, since they are all windows.

These different kinds of windows are extremely flexible. They can be visible or invisible.
They can be as large as the screen or be 0 pixels wide by 0 pixels high. They can be
enabled or disabled. They can be moved and stretched dynamically by the user or the
application program. They can even have other windows created inside them.

You can see that window is a very broad and general term. To avoid confusion, Cobol-
WOW uses the term “form” to describe the windows you create in the Cobol-WOW
Designer. These forms, however, are true Windows windows. Forms are the containers
within which you group controls. In traditional programming, you placed fields on the
screen or in a pop-up window. With Cobol-WOW, you place fields (that is, controls) in
a form.

When a program creates a form, all the controls contained on the form are created. The
form is the parent of the controls. If the form is moved, the controls move with it. If the
form is hidden, the controls are hidden. If the form is destroyed, the controls are
destroyed.

Although forms are quite versatile, most of your programming will be involved with
manipulating controls, not forms.

The form is where you create the interface of your application during design time — the
time during which you are designing, rather than running, your form. This form looks
like a typical window and contains a System-menu box (also known as the Control-menu
box), a title bar, a border, a client (or workspace) area, and Minimize and Maximize
buttons. The form has only default properties associated with it.

Note The evenly spaced marks that appear on the form at design time are the grid. The
grid makes it easier to align, reposition, and resize controls visually. The Show Grid
option and the Snap to Grid option, which are enabled by default at design time, cause the
edges of each control to align with the nearest grid points. You can, however, disable
these commands from the Form menu. To specify the units of measure for the grid points
(that is, the X and Y coordinates), choose Edit Preferences on the Options menu to
display the Preferences dialog box. Click the Alignment tab.

For more information about forms, see Appendix A, Setting Properties and Events for
Intrinsic Controls and Forms.

48 Introducing Cobol-WOW
 Windows Graphical Operating Environment

Controls

Controls are the primary mechanism for getting user input and displaying output.
Controls replace the fields you used with the COBOL ACCEPT and DISPLAY
statements. A large portion of the interface design consists of using controls to customize
the forms that make up your application. Tool tips are available on controls at design
time.

You have probably seen and used controls in other Windows-based software applications.
Although they vary from one another in appearance and function, they are all windows,
and, as such, can be manipulated in identical ways. They are all hidden, displayed,
enabled, disabled, created, destroyed, moved, and resized in the same manner.

Cobol-WOW supports two broad categories of controls:

• ActiveX controls, which exist as separate files with an .ocx filename extension.
These include controls that are available with 32-bit versions of the Windows
operating system, such as the animation, toolbar, or progress bar controls, as well
those available from third-party vendors. See Appendix B, Working with ActiveX
Controls, for more information about ActiveX controls.

Note Although ActiveX controls may have additional features, we recommend that
you use intrinsic controls whenever possible for greater portability.

• Intrinsic controls, (or default controls), such as the command button or a check box.
The intrinsic controls are the easiest controls to implement, because they are part of
the Windows operating system. You do not need to install or distribute any special
files to support them. They will work under any version of Windows. Intrinsic
controls are always included in the Cobol-WOW Toolbox, unlike ActiveX controls,
which can be removed from or added to the Toolbox. See Appendix A, Setting
Properties and Events for Intrinsic Controls and Forms, for more information about
intrinsic controls.

Note If you are using Cobol-WOW to modify an existing RM/Panels panel library,
Cobol-WOW refers to the objects called “data fields” in RM/Panels as “controls.”
See Appendix D, Using Cobol-WOW with RM/Panels, for more information.

Table 1 illustrates the intrinsic controls that appear on the Toolbox in the Cobol-WOW
Designer window. These are the basic controls that are common to most dialog boxes in
Windows and the ones that you are likely to use most frequently when designing the user
interface for your application.

 Cobol-WOW User's Guide 49
 Windows Graphical Operating Environment

Table 1 — Intrinsic Controls

Note The pointer tool (the first tool in the Toolbox) provides a way to select the form
or controls on the form, and move and resize forms and controls. It is not a control.

Icon Control Name Description

Animation Displays an AVI clip. An AVI clip is a series of bitmap frames

that run like a movie. Only AVI files without sound can be played
using the animation control.

Bitmap Displays bitmap files. The bitmap control acts like a command

button when clicked.

Check Box Displays a Yes/No, True/False, or On/Off option. You can check

any number of check boxes on a form at one time.

Combo Box Combines a text box with a list box. Allows a user to type in a

selection or select an item from a drop-down list.

Command
Button

Carries out a command or action when a user chooses it.

Date Time
Picker

Allows the user to select a date and time, and to display that date-
time in the specified format. Note: Not available in this release.

Edit Box

Provides an area to enter or display text.

Ellipse Shape

Draws the geometric shape of an ellipse on the form.

Group Box Provides a visual and functional container for other controls. It is

generally used to enclose related controls (usually check boxes or
option buttons).

IP Address Allows the user to enter a numeric address in Internet protocol

(IP) format. This control also allows the application to obtain the
address in numeric form. Note: Not available in this release.

Line Shape

Draws a line on the form.

List Box

Displays a list of choices from which the user can select one or
more items.

Month Calendar

Displays a monthly calendar. The calendar can display one or
more months at a time. Note: Not available in this release.

Option Button Presents mutually exclusive options in an option control. Option

buttons are usually used with the group box control to form
groups where only one of the listed buttons can be selected at one
time.

50 Introducing Cobol-WOW
 Windows Graphical Operating Environment

Table 1 — Intrinsic Controls (Cont.)

Icon Control Name Description

Progress Bar

Displays a pattern of blocks that show the status of a long
operation.

Rectangle Shape

Draws the geometric shape of a rectangle on the form.

Rounded
Rectangle Shape

Draws the geometric shape of a rectangle with rounded corners on
the form.

Scroll Bar
(Horizontal and
Vertical)

Allows a user to add scroll bars (horizontal and/or vertical) to
controls that do not automatically provide them. (These are not the
same as the built-in scroll bars that are found with many controls.)

Static Text

Displays text, such as titles or captions, in regular outlines or filled
rectangles, that the user cannot interact with or modify.

Status Bar

Displays status information in a horizontal window at the bottom of
an application window.

Tab

Acts as a container for other controls and places a series of tabs at
the top of the container.

Timer

Provides a measured time interval that can be tied to events

Toolbar Displays a series of buttons that can be placed at the top and/or

bottom of a form

Trackbar Displays a window containing a slider and optional tick marks used

to select a value or a set of consecutive values in a range.

Updown Consists of a pair of arrows the user can click to increment or

decrement a value, such as a scroll position or a number displayed
in a companion control.

Properties

Forms and controls have a number of configurable characteristics. These characteristics
are called properties. Properties are the primary means by which forms and controls are
manipulated. Setting properties defines how forms and controls are displayed and how
they function in the running application.

The properties of a form and control are initially defined in the Cobol-WOW Designer.
During design time, you use the Properties dialog box, which lists each property and its
value, to set the default (initial) properties of a selected form or control. That is only half
the story, however. Most of those properties can also be altered and retrieved at runtime
by the code you enter in the Event-Handling Code dialog box. Think about that for a

 Cobol-WOW User's Guide 51
 Windows Graphical Operating Environment

second. You have almost the same level of flexibility in customizing your user-interface
at runtime that you do at design time.

While setting properties in the Cobol-WOW Designer is achieved through the Properties
dialog box, retrieving and setting property values at runtime is accomplished primarily
with the CALL statement and two Cobol-WOW functions, WOWSETPROP and
WOWGETPROP, which provide a consistent method of getting and setting property
values for forms and all types of controls. For more information, see the Functions and
Messages online Help file.

The following sections introduce you to the WOWSETPROP and WOWGETPROP
functions. A sample program demonstrates some of what you can do with properties
at runtime.

Setting a Property Value at Runtime

A property value is set at runtime by calling a special Cobol-WOW function,
WOWSETPROP. For example:

CALL WOWSETPROP USING WIN-RETURN OBJECT-H "PropertyName"
 PROPERTY-VALUE.

WIN-RETURN is a numeric field into which a value of 1 is returned if the operation is
successful, or a value of 0 if it fails. Any numeric field may be used. WIN-RETURN is a
numeric field declared in a Cobol-WOW copy file, windows.cpy.

OBJECT-H indicates the handle of the object whose property is to be set. This field
could be the handle of a form or a control.

“PropertyName” contains the name of the property to be set. All properties have an
alphanumeric name, which is not case-sensitive. This field can be an alphanumeric literal
or an alphanumeric data item containing the property name.

PROPERTY-VALUE contains the value to which the property should be set. This field
can be an alphanumeric or numeric literal, or a data item.

52 Introducing Cobol-WOW
 Windows Graphical Operating Environment

Getting a Property Value at Runtime

A property value is retrieved at runtime by calling a special Cobol-WOW function,
WOWGETPROP. For example:

CALL WOWGETPROP USING WIN-RETURN OBJECT-H "PropertyName"
 PROPERTY-VALUE.

WIN-RETURN is a numeric field into which a value of 1 is returned if the operation
is successful, or a value of 0 if it fails. Any numeric field may be substituted.
WIN-RETURN is a numeric field declared in a Cobol-WOW copy file, windows.cpy.

OBJECT-H indicates the handle of the object whose property is to be retrieved. This
field could be the handle of a form or a control.

“PropertyName” contains the name of the property to be retrieved. All properties have an
alphanumeric name, which is not case-sensitive. This field can be an alphanumeric literal,
as shown, or an alphanumeric data item containing the property name.

PROPERTY-VALUE is where the value of the property will be stored. It must be a data
item, not a literal.

Benefits of Using WOWSETPROP and WOWGETPROP

You will use these two CALL statements frequently as you build your user interface.
These calls are to Windows programming what the MOVE statement is to COBOL.
Since these two CALL statements are used so extensively, they have three important and
helpful characteristics.

1. You can retrieve and set multiple property values in a single CALL statement.

For example, to retrieve the size and location of any object with one CALL
statement:

CALL WOWGETPROP USING WIN-RETURN OBJECT-H "TOP" TOP-VALUE
 "LEFT" LEFT-VALUE
 "WIDTH" WIDTH-VALUE
 "HEIGHT" HEIGHT-VALUE.

To set the size and location of any object with one CALL statement:

CALL WOWSETPROP USING WIN-RETURN OBJECT-H "TOP" TOP-VALUE
 "LEFT" LEFT-VALUE
 "WIDTH" WIDTH-VALUE
 "HEIGHT" HEIGHT-VALUE.

2. You can retrieve the numeric value of a Text property. The following example sets
the text of an edit field to an alphanumeric value that represents a negative decimal
number. Then it retrieves that value directly into a signed numeric field with decimal

 Cobol-WOW User's Guide 53
 Windows Graphical Operating Environment

digits. By doing so, this operation prevents you from having to translate the
alphanumeric value into a numeric value within your code.

01 DEC-FIELD PIC S9(5)V99.

CALL WOWSETPROP USING WIN-RETURN OBJECT-H "Text" 123.45-".
CALL WOWGETPROP USING WIN-RETURN OBJECT-H "TEXT" DEC-FIELD.

3. You can set the value of a Text property directly from a numeric field. For example:

01 DEC-FIELD PIC S9(5)V99 COMP-3.

MOVE 512.1 TO DEC-FIELD.
CALL WOWSETPROP USING WIN-RETURN OBJECT-H "Text" DEC-FIELD.

The edit field will display “512.10”.

Sample Program — Setting Properties

The sample project, PROPRTES, demonstrates how some common properties can be set
and retrieved at runtime with these two functions. Using the Cobol-WOW Designer, look
at the event-handling code attached to the Click event for each of the buttons to see how
WOWSETPROP and WOWGETPROP are used. The variables used for retrieving
property values are declared in the Common Working Storage area of the form.

Handles

In a Windows graphical interface, a handle is a number that can be used to uniquely
identify and access a window’s object. While most handles are associated with windows,
other types of objects, such as fonts and bitmaps, can also have handles. For example,
when a window is created, Windows assigns it a numeric identifier that is specific to that
particular window. This number is the window’s handle. The handle is then used to
identify the window when Windows wants to inform you of activity for the window, or
when you tell Windows to take some action on the window.

The handle is a subscript into an internal table of information maintained by Windows.
Using this handle, or subscript, to identify the window gives Windows the ability to
relocate its internal information without affecting your application program.

A handle is valid from the time the object is created until the time the object is destroyed.
Once the object is destroyed, the handle may be reused and assigned to another object.
Handles are never saved from one session to another. They must always be stored when
the object is created. Cobol-WOW automatically stores all the required handles when it
creates objects, so you do not have to worry about this process.

54 Introducing Cobol-WOW
 Windows Graphical Operating Environment

IDs

An ID is a numeric identifier assigned by the developer to a control when it is created.
While handles and IDs are both numerical identifiers of a window, there are several
important distinctions between the two values. An ID is assigned by the developer; a
handle is assigned by the Windows operating system. An ID may or may not be unique; a
handle is always unique. An ID is known at design time; a handle is not known until
runtime and must, therefore, be stored for use.

Why does Windows support both types of identifiers? The window handle is essential to
the functioning of the operating system. It provides a system-wide, unique identifier so
that individual windows can be manipulated. Since several applications are running at
once under Windows, the identifiers they use for windows must be unique for the entire
system.

The window ID is for the developer’s use in order to simplify the programming of user
interaction in windows with controls. If you assign unique ID numbers to controls,
application logic can be simplified. For example, an application program might create a
window containing four controls: a name text box, an address text box, an OK command
button, and a Cancel command button. The application program could assign ID numbers
of 1, 2, 3, and 4, respectively, to these controls. The rest of the application code could
use the ID numbers to identify the controls, rather than use their window handles.

Windows always uses the window handle to identify the window when it reports events
that have taken place for the window. Sometimes it also provides the window ID. Some
of the actions you can take on windows allow you to specify either the window handle or
the ID.

Cobol-WOW makes it easy to use both handles and IDs. Data items containing both
values are generated in a copy file so you can use the data name to specify the ID or
handle in your code.

Functions and Messages

While properties are the primary method for manipulating controls in your programs,
there are two other methods of handling controls: functions and messages.

When Windows was developed, functions and messages were the primary way of
manipulating controls. In fact, the intrinsic controls do not actually have properties.
Cobol-WOW imposes a property interface on top of the controls to give you a consistent
method for using intrinsic and ActiveX controls.

Since Windows did not implement properties for the intrinsic controls, it provided
hundreds of functions and messages to use with them. This large number of functions and

 Cobol-WOW User's Guide 55
 Windows Graphical Operating Environment

messages, each with its own unique set of parameters, may seem confusing at first. They
do, however, provide a great deal of flexibility that you can use to supplement setting
properties, which is the new approach to using these controls. When using properties,
you need only remember the property name. The syntax for setting and getting all
properties is the same.

Note In most cases, you will use only properties when manipulating ActiveX controls,
since these were developed with an emphasis on properties. However, you may use a few
functions with ActiveX controls when working with list boxes or combo boxes.

What are Functions?

A function is a callable subroutine, contained either in the Windows or Cobol-WOW
runtime, that can be passed COBOL parameters and that will perform some special
processing. A function is always executed with a CALL statement. The term “function”
is commonly associated with C-language programming. In Cobol-WOW, functions are
non-COBOL routines (or subprograms) that allow you to use the capabilities of the
Windows operating system. To COBOL applications, functions are non-COBOL callable
subprograms. Because most documentation on Windows will refer to these subprograms
as functions, that term is used here.

Functions allow you to adjust the initial state of the forms and controls that you create in
the Cobol-WOW Designer. A function executes code that can be used to carry out a
specific task. Most of the functions that you will use are in the Windows application
programming interface (API). Other functions are specifically designed for ActiveX
controls; the remainder are provided to address issues exclusive to COBOL.

Cobol-WOW supports Windows API functions, ActiveX control functions, and Cobol-
WOW functions. Cobol-WOW has tailored the Windows API to COBOL in order to
simplify its use. It has also maintained a close parallel to the C-language syntax. These
approaches should allow you to use general reference information on the Windows API
from other sources to expand your knowledge of the API. Where substantial differences
exist from the standard API functions, the Cobol-WOW documentation notes those
differences. For more information, see the Functions and Messages online Help file.

What are Messages?

Messages are the means of communicating between your application program and the
Windows operating environment. The Windows operating system sends messages to your
program to give you an opportunity to respond to events. You send messages to
Windows to tell it what you want it to do. (This second use is very similar to executing a
Windows function. In fact, many Windows functions simply send messages.)

56 Introducing Cobol-WOW
 Windows Graphical Operating Environment

Windows reports hundreds of messages to your application. We recommend that you
allow Cobol-WOW to interpret these messages. Although you can write your own
message interpretation code, this is an advanced task that should not be attempted until
you have significant experience in developing with Windows.

Since all the messages are Windows messages, they are intended by Windows for use
with forms and the intrinsic controls. Messages cannot be sent directly to ActiveX
controls.

For more information, see the Functions and Messages online Help file.

Using Functions and Messages

Cobol-WOW has a feature that makes it very easy to use the enormous collection of
functions and messages. The Code Templates list in the Cobol-WOW Designer’s
Event-Handling Code dialog box lists code templates of every function and message that
can be used with forms and controls.

When you select a name in this list, Cobol-WOW inserts into the Code Entry area a full
description of the function or message, the COBOL syntax for its use, and a description of
each parameter in your event-handling code. You simply replace the parameter names
and values with your own, and the function or message is ready to use. (The manner in
which code is displayed in the Event-Handling Code dialog box is configured by default.
The Preferences dialog box provides several pages of configuration options that you can
modify. To change this option on the Code page of the Preferences dialog box, click Edit
Preferences on the Options menu and then click the Code tab.)

While the large number of functions and messages provide an overwhelming amount of
functionality, there is a significant amount of overlap between them. For example, the
SETWINDOWTEXT function and the WM-SETTEXT message both set the text of a
window. When you use the SETWINDOWTEXT function, it merely sends a
WM-SETTEXT message to the window.

Sample Program — Using Functions and Messages

The sample project, FUNCMESG, demonstrates the use of functions and messages with a
list box control. The list box and combo box have the most dependence on functions and
messages of any of the Windows intrinsic controls. Look at the event-handling code
attached to each button to see how the function was executed or the message was sent.

 Cobol-WOW User's Guide 57
 Cobol-WOW Projects

Chapter 4: Developing with
Cobol-WOW

This chapter is designed to provide essential background information to help you
understand what you are doing and why. Then, it looks at how you approach common
types of programs under Windows and how you take advantage of Windows’ features.
These concepts are illustrated by simple, but functional, sample programs.

The topics covered in this chapter include the following:

• Cobol-WOW Projects

• Event-Driven Applications

• Addressing Issues in Data Entry Programs

• Working with Menus

Cobol-WOW Projects
Most of the time, your user interface will consist of multiple forms. After you have
created your forms, you will want to add file access and other code to the rest of the
program. To provide these capabilities in a seamless environment, Cobol-WOW provides
a facility called a project.

By using a project, the Cobol-WOW Designer allows you to do your complete
development in an integrated, visual framework. The default extension for Cobol-WOW
project filenames is .wpj (see page 200). The .wpj file is a text file that contains project
configuration information and a list of the forms included in the project.

When you create a project, Cobol-WOW lets you specify the forms that are used in the
project. Not only will Cobol-WOW keep track of all the forms that are part of the
project, it will create a skeleton COBOL program that creates, operates, and removes all
of the forms. Better yet, you can edit any part of this COBOL program from inside the
Cobol-WOW Designer. The Event-Handling Code dialog box lists every code section of
the COBOL program in the Events/Code Sections list box. You can copy in your file
descriptions, declaratives, create additional Working Storage data items — in short,
everything — from within the Designer.

58 Developing with Cobol-WOW
 Event-Driven Applications

Cobol-WOW assumes that you will be working in a project. In the Cobol-WOW
Designer window, all the forms in a project are displayed in the project tree. The Project
menu provides all the commands necessary for working with the project.

Note Cobol-WOW v3.0 is project-based. If you have a form-based application created
with an earlier version of Cobol-WOW, you must create a project and add the form files
in the existing application to it.

Event-Driven Applications
Even before Windows came along, COBOL programmers were not the only ones
struggling with how to code user-input logic. Everybody else was too. The developers
of Windows took a new approach to user input, which is reflected in Cobol-WOW. This
new concept is called “event-driven” programming, as opposed to the more traditional
method, sequential programming.

In sequential programming, the programmer dictates the exact sequence of events in the
program. The user is directed to enter field 1, then field 2, and so forth. With this
method, the programmer always knows what is going to happen. In actual use, however,
users generally want to be in charge and enter things in whatever manner they wish.

Event-driven programming allows users to have that flexibility. The user is in control and
makes the program respond to the user’s actions. Every time an action occurs on a field,
an event is triggered. The program then responds to those events.

How does this work? First, you tell Windows that you want this field, this field, and that
field on the screen. Windows creates these elements. Then Windows allows users to do
whatever they want with those fields. Whenever a user does something, Windows tells
the developer what is going on by communicating events to use (such as field changed,
mouse clicked, and so forth). You attach your program logic (code) to these events.

The following examples compare traditional COBOL programming and event-driven
programming implemented under Windows.

Example 1

ENTER-CUST-ID
 ACCEPT CUST-ID LINE 4 POSITION 10.
 IF F3-KEY
 PERFORM LOOK-UP-CUST.
 PERFORM VALIDATE-CUSTOMER.
 IF NOT VALID-CUST
 PERFORM BAD-CUST
 GO TO ENTER-CUST-ID.

 Cobol-WOW User's Guide 59
 Event-Driven Applications

In traditional COBOL programming, the example shown above performs three
operations:

1. Accepts the customer ID.

2. Performs a lookup when the F3 key is pressed.

3. Validates the customer number before the user can proceed.

Under Windows, you simply take the same logic and distribute it to the appropriate
events. Examine these same three operations when implemented under Windows:

1. The COBOL ACCEPT statement would be eliminated because Windows handles it.

2. The lookup would probably be associated with a button or menu command, rather
than the F3 key. You would attach PERFORM LOOK-UP-CUST to one or all of
these events.

3. The VALIDATE-CUSTOMER validation would be attached to two events:
LostFocus and Click. The first event, LostFocus, occurs when the user finishes entry
into a field and moves to another field. The second event, Click, occurs when the
user clicks the OK button to signal completion of all information on the window.
This validation is important because the user may never even access the CUST-ID
control (unless you position him there). If the validation failed, you tell Windows to
put the user back into the CUST-ID control.

In one way, this does make it less convenient, because the logic is in several places rather
than one.

Example 2

ENTER-CUST-STREET-1.
 ACCEPT CUST-STREET-1 LINE 7 POSITION 10 TAB UPDATE NO BEEP.
 IF UP-ARROW
 GO TO GET-CUST-NAME.
 IF DOWN-ARROW
 GO TO GET-CUST-STREET-2.

No special processing is associated with this field; the only requirements are the data
entry fields and logic to provide keyboard control over what field is entered next. With
Windows and Cobol-WOW, however, this processing is all automatic. You do not need
to replace the code; you simply discard it.

Take a minute to think about your data entry screens and logic. Instead of writing all
the logic to implement those screens, Cobol-WOW enables you to write only the logic
to implement special features, thereby substantially reducing the size of an average
COBOL program.

60 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

Addressing Issues in Data Entry Programs
COBOL is often used to create data entry programs. Data entry programs have unique
requirements and issues that are not ordinarily discussed in programming literature. Over
the years, COBOL developers have adopted fairly common techniques for addressing
these issues in a character-based environment. This section discusses these issues and
suggests how they could be addressed under Windows with Cobol-WOW.

While Windows was designed around an exceptional user interface, it was not designed
for data entry. However, there are practical ways to address the different sets of issues
important to data entry programs, including:

• Handling Data

• Handling Different Types of Data

• Managing User Interaction

• Using Function Keys for Special Options

Handling Data

One set of issues important to data entry programs are those related to the manipulation of
data. When data is read out of a file, how does it become displayed? How are numeric
and date fields handled? How are the fields formatted? How is data moved from the user
interface back to the file? This section, along with the following topics, discusses these
issues.

When Windows creates a control, such as an edit box, it allocates its own storage space
for the contents of that edit box control. When the user modifies the contents of the edit
box control on the screen, Windows stores the new value in its own storage space and
sends your program a message that the value changed. If you want the new value, you
have to ask Windows for it. Windows will not automatically store the new value in your
COBOL data item. The reverse is also true. Windows does not know when the value of
your COBOL data item changes and will not automatically update an edit box control to
display the new value. You have to send it the new value.

The following two examples show how data is transferred between COBOL data items in
Working Storage on record areas and a form created under Windows.

 Cobol-WOW User's Guide 61
 Addressing Issues in Data Entry Programs

Example 1: Loading a Form with COBOL Data

This example illustrates how to load a form with COBOL data.

In the following code section, the lines of code that contain the COBOL data are
highlighted; the lines of code that move the data to the form are not highlighted.

01 CUST-FIELDS
 03 CUST-NAME PIC X(40).
 03 CUST-CITY PIC X(20).
 03 CUST-ST PIC X(2).

CALL WOWSETPROP USING WIN-RETURN CUST-NAME-H "TEXT" CUST-NAME.
CALL WOWSETPROP USING WIN-RETURN CUST-CITY-H "TEXT" CUST-CITY.
CALL WOWSETPROP USING WIN-RETURN CUST-ST-H "TEXT" CUST-ST.

The following figure illustrates the three fields on the form (the edit box controls labeled
Name, City, and State) that will receive the transferred COBOL data.

Example 2: Retrieving Information from a Form and Storing It in
COBOL Data Items

This example illustrates how to retrieve information from a form and store it in COBOL
data items.

In the following code section, the lines of code that contain the COBOL data are
highlighted; the lines of code that retrieve the data from the form are not highlighted.

01 CUST-FIELDS
 03 CUST-NAME PIC X(40).
 03 CUST-CITY PIC X(20).
 03 CUST-ST PIC X(2).

CALL WOWGETPROP USING WIN-RETURN CUST-NAME-H "TEXT" CUST-NAME.
CALL WOWGETPROP USING WIN-RETURN CUST-CITY-H "TEXT" CUST-CITY.
CALL WOWGETPROP USING WIN-RETURN CUST-ST-H "TEXT" CUST-ST.

62 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

Most likely, you will want to create two procedures in your program for each data entry
form. Create one procedure to set the value of the controls on the form from your
COBOL data. Produce the second procedure to retrieve the value of the controls on the
form into your COBOL data.

Let’s say you created a form called CUSTFORM, and want to use it to update the
contents of your customer file, CUSTFILE. The file and record would both contain fields
such as CUST-NAME, CUST-CITY, and CUST-ST. You would create the following
two procedures:

LOAD-CUST-FORM.
 CALL WOWSETPROP USING WIN-RETURN CUST-NAME-H
 "Text" CUST-NAME.
 CALL WOWSETPROP USING WIN-RETURN CUST-CITY-H
 "Text" CUST-CITY.
 CALL WOWSETPROP USING WIN-RETURN CUST-ST-H
 "Text" CUST-ST.

UNLOAD-CUST-FORM.
 CALL WOWGETPROP USING WIN-RETURN CUST-NAME-H
 "Text" CUST-NAME.
 CALL WOWGETPROP USING WIN-RETURN CUST-CITY-H
 "Text" CUST-CITY.
 CALL WOWGETPROP USING WIN-RETURN CUST-ST-H
 "Text" CUST-ST.

LOAD-CUST-FORM sets the Text property of each control based on the data in the file.

UNLOAD-CUST-FORM sets the value of each field in the record based on the Text
property of each control.

When you want to update the data on the screen from the record, you execute PERFORM
LOAD-CUST-FORM. When you want to update the data in the record from the screen,
you execute PERFORM UNLOAD-CUST-FORM.

The handle fields, such as CUST-NAME-H, CUST-CITY-H, and CUST-ST-H, contain
the handle of the control. The data fields, such as CUST-NAME, CUST-CITY, and
CUST-ST are the COBOL data items. “Text” indicates the control property that stores
the value or contents of the control. The property name to use will depend on the control.

 Cobol-WOW User's Guide 63
 Addressing Issues in Data Entry Programs

In a typical data entry situation, the program works as follows:

1. Read a record from the file.

2. Execute PERFORM LOAD-CUST-FORM to display the values in the form.

3. Let the user modify the values (Windows handles this).

4. When the OK button is pressed:

a. Execute PERFORM UNLOAD-CUST-FORM to put updated values in
the record.

b. Write/Rewrite the record to the file.

The drawback to this approach is that you have to create two procedures that list each
control handle and data field. This means you have to maintain two procedures as you
add or remove controls and fields. You can, however, alter the approach and consolidate
this information in one procedure.

First, declare a new data item:

01 LOAD-FUNC PIC X(5).

Then rewrite your procedures as follows:

LOAD-CUST-FORM.
 MOVE WOWSETPROP TO LOAD-FUNC.
 PERFORM CUST-LOAD-UNLOAD.

UNLOAD-CUST-FORM.
 MOVE WOWGETPROP TO LOAD-FUNC.
 PERFORM CUST-LOAD-UNLOAD.

CUST-LOAD-UNLOAD.
 CALL LOAD-FUNC USING WIN-RETURN CUST-NAME-H
 "Text" CUST-NAME.
 CALL LOAD-FUNC USING WIN-RETURN CUST-CITY-H
 "Text" CUST-CITY.
 CALL LOAD-FUNC USING WIN-RETURN CUST-ST-H "Text"
 CUST-ST.

Although this may look unusual, it is actually fairly straightforward. The
WOWGETPROP and WOWSETPROP routines (functions) are alphanumeric fields in
windows.cpy. These routines contain the names of subprograms in the Cobol-WOW
dynamic-link library (DLL), wowrt.dll. These routines are called by using a data name,
not a literal name. Since they are alphanumeric data, you can MOVE them to
LOAD-FUNC and CALL LOAD-FUNC instead of calling WOWGETPROP or
WOWSETPROP. Because the syntax for WOWGETPROP and WOWSETPROP is
identical, you can use the same statement for both. You now have the list of controls
and fields in one place.

64 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

Handling Different Types of Data

Now that you have a logic structure for loading and unloading the controls in your forms,
how do you deal with different types of data?

Alphanumeric data. Not surprisingly, managing alphanumeric data is the easiest. The
edit box control and many ActiveX control equivalents have a “Text” (or similarly
named) property that contains the alphanumeric data of the control. Generally, you will
use some type of edit box control for alphanumeric data entry and then set the Text
property of the control.

Numeric data. If you do not require special formatting, managing and supporting
numeric data can be just as easy as alphanumeric data. See Example 1 below.

Special formatting of numeric data. Although the approach illustrated in Example 1
provides a simple way to handle basic numeric data, in some circumstances you will want
to carefully control the format in which the numeric data is displayed. In these situations,
you will need to perform the formatting in your COBOL program, then use the formatted
value to set the control text. Example 2, on page 65, illustrates formatted numeric data.

Some controls, for example scroll bars, are designed to manipulate a numeric value. See
Example 3 on page 66.

Other controls, such as buttons and check boxes, often represent a True or False value.
Consequently, these types of controls need a different approach for handling numeric
data, as illustrated by Example 4 on page 66.

Example 1: Basic Numeric Data for an Edit Box Control

The edit box control does not have any special support for numeric data. Cobol-WOW,
however, does provide this functionality. When you pass a numeric literal or data item
while setting the Text property, Cobol-WOW converts it to a string and passes the string
to Windows. When you use a numeric data item while getting the Text property, Cobol-
WOW retrieves the text from Windows, converts it to a numeric value, and returns the
numeric value. Let’s see how this works.

This function call will set the text of the control to 127 because Cobol-WOW takes the
numeric value and converts it to a text string.

01 COMP-FIELD PIC 9(5) COMP VALUE 127.
 CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT" COMP-FIELD.

 Cobol-WOW User's Guide 65
 Addressing Issues in Data Entry Programs

Cobol-WOW does not provide any flexibility in numeric formatting with
WOWSETPROP. It will always zero suppress leading zeros and display all trailing
decimal zeros. For example, this function call will set the text of the control to 127.00.

01 CUST-BAL PICS 9(7)V99 VALUE 127.
 CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT" CUST-BAL.

The numeric capabilities of WOWGETPROP are less interesting to illustrate. For
example, the following function call will store the numeric value of the text of the edit
box control in CUST-BAL. If the text value contains more than five integers or two
decimal digits, the remaining digits are truncated.

 CALL WOWGETPROP USING WIN-RETURN EDIT-H "TEXT" CUST-BAL.

Example 2: Formatted Numeric Data for an Edit Box Control

When special formatting of numeric data is required, you will need to perform the
formatting in your COBOL program, then use the formatted value to set the control text.
For example:

01 YMD-DATE PIC 99/99/99.
 MOVE CUST-LAST-PURCHASE TO YMD-DATE.
 CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT" YMD-DATE.

You can still retrieve the numeric value with the CALL to WOWGETPROP.

 CALL WOWGETPROP USING WIN-RETURN EDIT-H "TEXT" YMD-DATE.

Notice that the calls to WOWGETPROP and WOWSETPROP are now different, which
affects the coding strategy outlined for handling basic numeric data. You now need to
modify your approach as follows:

LOAD-CUST-FORM.
 MOVE WOWSETPROP TO LOAD-FUNC.
 PERFORM CUST-LOAD-UNLOAD.
 MOVE CUST-LAST-PURCHASE TO YMD-DATE.
 CALL WOWSETPROP USING WIN-RETURN EDIT-H "TEXT" YMD-DATE.

UNLOAD-CUST-FORM.
 MOVE WOWGETPROP TO LOAD-FUNC.
 PERFORM CUST-LOAD-UNLOAD.
 CALL WOWGETPROP USING WIN-RETURN EDIT-H "TEXT" YMD-DATE.

CUST-LOAD-UNLOAD.
 CALL LOAD-FUNC USING WIN-RETURN CUST-NAME-H
 "Text" CUST-NAME.
 CALL LOAD-FUNC USING WIN-RETURN CUST-CITY-H
 "Text" CUST-CITY.
 CALL LOAD-FUNC USING WIN-RETURN CUST-ST-H "Text" CUST-ST.

66 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

Example 3: Handling Numeric Data with Scroll Bar Controls

Numeric values are easy to handle with scroll bar controls. Simply use any type of
numeric field with the desired property as follows:

01 NUM-VALUE PIC 9(5) COMP-6.
 CALL WOWSETPROP USING WIN-RETURN SCROLLBAR-H "Value" NUM-VALUE.

or

 CALL WOWGETPROP USING WIN-RETURN SCROLLBAR-H "Value" NUM-VALUE.

Example 4: Handling Numeric Data with Check Box Controls

Several types of controls often represent a True and False value: the value True
corresponds to a numeric value of 1, and the value False corresponds to a numeric value
of 0. These kinds of controls are often used to represent the value of a data item with
88-level condition names. If the data item is numeric and the conditions are 0 and 1, this
is very straightforward.

The following example shows that you are using a check box control to indicate whether a
customer is active or inactive:

01 CUST-ACTIVE PIC 9.
 88 CUST-IS-ACTIVE VALUE 1.
 88 CUST-IS-INACTIVE VALUE 0.

The following function call will set the check box state:

CALL WOWSETPROP USING WIN-RETURN CB-H "State" CUST-ACTIVE.

The following function call will retrieve the check box state:

CALL WOWGETPROP USING WIN-RETURN CB-H "State" CUST-ACTIVE.

If your data item and condition name are not numeric, or have values other than one and
zero, you will have to use logic more like that shown in the following example:

01 CUST-WHLSLE PIC X.
 88 CUST-IS-WHLSLE VALUE "Y".
 88 CUST-IS-NOT-WHLSLE VALUE "N".

To set the check box state:

IF CUST-IS-WHLSLE
 CALL WOWSETPROP USING WIN-RETURN CB-H "State" WIN-TRUE
ELSE
 CALL WOWSETPROP USING WIN-RETURN CB-H "State" WIN-FALSE.

 Cobol-WOW User's Guide 67
 Addressing Issues in Data Entry Programs

To retrieve the check box state:

CALL WOWGETPROP USING WIN-RETURN CB-H "State" NUM-VALUE.
IF NUM-VALUE = 1
 SET CUST-IS-WHSLE TO TRUE
ELSE
 SET CUST-IS-WHSLE TO FALSE.

Managing User Interaction

Another type of issue that you must deal with in data entry programs involves user
interaction. Although there are reasonable approaches to use under Windows to address
this issue, COBOL programmers are generally unaccustomed to implementing them. This
section covers a range of topics pertaining to this issue and provides examples illustrating
how to respond to user actions in your Cobol-WOW applications.

Handling input validation. In data entry programs, it is common to want to validate the
contents of a field after it is entered. In character-based applications this process was
easy as you did it after the COBOL ACCEPT statement. However, in Windows your
Cobol-WOW application would respond to an event, which represents user actions,
associated with the field (control) that your application can recognize. Every field
(control) has certain events to which it can respond. See Example 1 on page 68.

Dictating entry order for controls. Character-based data entry programs generally
dictate a specific entry order for fields (controls). Although Windows programs usually
do not dictate such a specific order, they can easily support one by using the Tab key to
move through controls in a default tab order. See Example 2 on page 68.

Preventing data entry on a control. If you do not want a user to enter data in a
particular field (control), you must disable it, as detailed in Example 3 on page 69.

Switching to another Windows application. Your program needs to be flexible enough
to accommodate moving between applications if the user wants to switch to another
Windows application. See two cases in point in Example 4, on page 70.

Disabling and enabling a validated control. When a user completes data entry of a key
field (control), such as the customer ID, and the value is validated, you do not want the
user to return and change the value of the key control. See Example 5 on page 73.

68 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

Example 1: Handling an Invalid Value

In Windows, your first response to handle field validation might be to watch for users to
press the Enter key, indicating they had completed the field. However, Enter is not the
key usually used for moving between fields (controls) under Windows. (The Enter key is
discussed in Example 2 below.) Such a response also overlooks the use of the mouse:
the user might have clicked on another field with the mouse, rather than pressed any key
on the keyboard.

In a Cobol-WOW application, there are two reasonable places to perform input validation
on a field (control): in the Change event or in the LostFocus event. It is preferable,
however, to perform input validation in the LostFocus event rather than in the Change
event. You can assume that when the user leaves the control, a value has been entered.
The Change event occurs every time the user or your program changes the value of a
control, for example, on every keystroke or whenever a WOWSETPROP routine is
called. Unless you want to validate at all these times, the LostFocus event is the most
feasible strategy as it indicates that the input focus is moving away from the control.

You can get the value of the control and validate it in the LostFocus event. What if the
value is invalid? Instead of going back to the ACCEPT statements (as you would in
character-based programs), under Windows, you can force the user back to the invalid
control with the SETFOCUS function. In this case, the LostFocus event logic is executed
as follows:

CUST-TYPE-LOSTFOCUS.
 CALL WOWGETPROP USING WIN-RETURN CUST-TYPE-H "TEXT" CUST-TYPE.
 PERFORM VALIDATE-CUST-TYPE.
 IF CUST-TYPE-IS-INVALID
 PERFORM INVALID-CUST-TYPE-MSG
 CALL SETFOCUS USING WIN-RETURN CUST-TYPE-H.

The user will not be allowed to leave the CUST-TYPE field until a valid value is entered.
The SETFOCUS function solution, however, has implications on switching to another
Windows application, as discussed in Case 1 of Example 4 (see page 70).

Example 2: Dictating Entry Order for Controls

A default order for moving through controls can be assigned in the Cobol-WOW
Designer through the TabIndex property. The TabIndex is the order through which the
controls should be moved when the user presses the Tab key. Notice that there is also a
TabStop property. Windows will stop at controls with TabStop set to True only when the
Tab key is pressed. The Enter key is generally used to indicate that the default button on
the form should be pressed; it is not used for moving between controls.

In some situations, such as in the preceding input validation example, you may want to
position the user on a specific control. This is performed with the SETFOCUS function.

 Cobol-WOW User's Guide 69
 Addressing Issues in Data Entry Programs

You can use SETFOCUS to override the default tab order (see page 19) by detecting the
Tab key in the KeyDown event and calling the SETFOCUS function. You also can
disable automatic tabbing between controls by setting the DialogMotion property of the
form to False.

Example 3: Preventing Data Entry on a Control

In character-based applications, it was easy to prevent a user from entering a value into a
field. You simply did not ACCEPT it. Under Windows, any enabled control on a form
can be accessed by the user. The key word here is “enabled.” If you do not want a user
to Tab to or click a control, you must disable it.

For example, you have a customer maintenance form with Customer ID as the key
control. You want the user to enter the customer identification number, then you will read
the file, load the form, and let the user modify the rest of the fields. If you simply present
the form with all the controls enabled, there is no way to prevent the user from clicking
one of the other controls before completing the Customer ID control. Disabling all the
other controls on the form, however, is inconvenient.

Let’s look at how you might handle this situation if you use an edit box control with the
user entering the customer ID. (A more appropriate solution in this situation, however,
would be to use a combo box for the Customer ID control, since it allows the user to
either enter a customer ID or select a customer from a list.)

The first issue is positioning the user in the Customer ID control. Cobol-WOW
automatically positions the user in the first control (set by the TabIndex property) of the
form when the form is created. To avoid destroying and recreating the form every time
the user wants to access a different customer, you will use the SETFOCUS function. Add
the following code to your OK and Cancel buttons, so that after every completed or
canceled maintenance operation, the user will be repositioned in the Customer ID control.
Be sure to place this code after the other OK or Cancel command button logic. For
example:

OK-CLICK.
*Followed by logic to save data.
.
.
.
CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

CANCEL-CLICK.
*Followed by logic to cancel changes.
.
.
.
CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

70 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

You also may want to add the SETFOCUS call to the Create event for your form. Then
your code will not be sensitive to the TabIndex value of the CUST-ID control.

Now that you know the user will start with the CUST-ID control, you need to keep the
user there until a valid customer ID is entered. However, the user may switch to another
Windows application. How can you handle this? See case 2 in Example 4 on page 71.

Example 4: Switching to Another Windows Application

Case 1. What if the user, however, wants to switch to another Windows application?
Using the logic in Example 1 (see page 68), that would not be possible. Perhaps using the
SETFOCUS function is not the best solution.

Let’s say that the customer type control is one of many controls on the form. The user
begins to enter the value, then decides to switch to another application. Your LostFocus
code is executed and you determine the customer type is invalid. You display a warning
message, but do not call the SETFOCUS back to CUST-TYPE. The user moves on to the
other application, then switches back to your application by clicking a field other than
CUST-TYPE. The customer type control now contains an invalid value. To protect the
integrity of your data, you will need validation logic somewhere else in order to detect
this response. The OK button would appear to be an ideal place, as presumably your
user will click the OK button to save the data. Then, you could set focus back to the
CUST-TYPE field if the value is invalid, as shown in the following example:

OK-CLICK.
 PERFORM VALIDATE-CUST-TYPE.
 IF CUST-TYPE-IS-INVALID
 PERFORM INVALID-CUST-TYPE-MSG
 CALL SETFOCUS USING WIN-RETURN CUST-TYPE-H.

This is, of course, a matter of personal preference. Windows applications should be as
flexible as possible. From a programming viewpoint, it would be simpler to include the
SETFOCUS in the LOSTFOCUS logic, although it would inconvenience your users.
Without the SETFOCUS, the LOSTFOCUS logic looks like the following:

CUST-TYPE-LOSTFOCUS.
 CALL WOWGETPROP USING WIN-RETURN CUST-TYPE-H "TEXT" CUST-TYPE.
 PERFORM VALIDATE-CUST-TYPE.
 IF CUST-TYPE-IS-INVALID
 PERFORM INVALID-CUST-TYPE-MSG.

 Cobol-WOW User's Guide 71
 Addressing Issues in Data Entry Programs

Case 2. If the user clicks on another control on the form, you want to keep them on
CUST-ID, as discussed in Example 3. If they click another application, however, you
want to let them move on to that program. Is there a simple way you can tell if they are
moving to another application?

Windows provides a function called ISCHILD, which tells you whether a control is a
child of a form. You can use this function to determine whether the user has clicked on
another control on the form. Here is an example of the logic:

CUST-ID-LOSTFOCUS.
*Get the cust ID and validate it, as described previously.
.
.
.
IF CUST-ID-INVALID
 CALL GETFOCUS USING CURRENT-H
 CALL ISCHILD USING WIN-RETURN DATANTRY-H CURRENT-H
 IF WIN-RETURN = WIN-TRUE
 CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

First, use the GETFOCUS function to determine what form or control has focus. Then,
use the ISCHILD function to determine whether that form or control (CURRENT-H) is a
child control of the form (DATANTRY-H). If it is, set focus back to the CUST-ID
control. Otherwise, you can let the focus go to wherever the user places it.

That process, however, solves only half the problem. What happens when the user clicks
back on the same form, but to a different control? You need to catch that event too and
force the user to the CUST-ID control.

Whenever a form or control gets focus, the GetFocus event occurs. When a control on an
inactive form gets focus, the GetFocus event occurs for both the form and the control. If
the user switches back to the form after switching to some other application, no matter
what control is clicked on, the GetFocus event will occur for the form. You can add a
SETFOCUS call to the form’s GetFocus event to make sure the user goes back to the
CUST-ID control.

72 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

There is one more detail. If the user has already completed the CUST-ID field, you do
not want to force the user back to it. You could determine whether to force the user to the
CUST-ID control by validating CUST-ID again, but that might disrupt the file position or
some data value in the record. Instead, modify the LostFocus code to set a flag as shown
in the following example:

CUST-ID-LOSTFOCUS.
*Get the cust id and validate it, as described previously.
.
.
.
 IF CUST-ID-INVALID
 CALL GETFOCUS USING CURRENT-H
 CALL ISCHILD USING WIN-RETURN DATAENTRY-H CURRENT-H
 IF WIN-RETURN = WIN-TRUE
 CALL SETFOCUS USING WIN-RETURN CUST-ID-H
 ELSE
 SET FORCE-FOCUS TO TRUE
 END-IF
 ELSE
 SET FORCE-FOCUS TO FALSE.

Now you can add this code to the GetFocus event for the form:

DATANTRY-GETFOCUS.
 IF FORCE-FOCUS
 CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

The user will have to enter a valid customer ID before anything else can be done on
the form.

 Cobol-WOW User's Guide 73
 Addressing Issues in Data Entry Programs

Example 5: Disabling and Enabling a Validated Control

To prevent a user from returning and changing a value after it has been validated, you
need to make one more change to the LostFocus code:

CUST-ID-LOSTFOCUS.
*Get the cust id and validate it, as described previously.
.
.
.
 IF CUST-ID-INVALID
 CALL GETFOCUS USING CURRENT-H
 CALL ISCHILD USING WIN-RETURN DATANTRY-H CURRENT-H
 IF WIN-RETURN = WIN-TRUE
 CALL SETFOCUS USING WIN-RETURN CUST-ID-H
 ELSE
 SET FORCE-FOCUS TO TRUE
 END-IF
 ELSE
 CALL ENABLEWINDOW USING WIN-RETURN CUST-ID-H WIN-FALSE
 SET FORCE-FOCUS TO FALSE.

The ENABLEWINDOW function, when used with the argument WIN-FALSE, disables
the control. In order to enable it, return to the logic for the OK and Cancel buttons:

OK-CLICK.
 *Followed by logic to save data.
 CALL ENABLEWINDOW USING WIN-RETURN CUST-ID-H WIN-TRUE.
 CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

CANCEL-CLICK.
 *Followed by logic to cancel changes.
 CALL ENABLEWINDOW USING WIN-RETURN CUST-ID-H WIN-TRUE.
 CALL SETFOCUS USING WIN-RETURN CUST-ID-H.

You need to make sure you enable the control before you set focus to it. You cannot set
focus to a disabled control.

74 Developing with Cobol-WOW
 Addressing Issues in Data Entry Programs

Using Function Keys for Special Options

Another technique commonly used in character-based data entry programs is that of using
function keys for special options. This also can be accomplished under Windows,
although before we describe how it is done, let’s examine some more Windows
programming principles.

Windows, a feature-rich, flexible environment, allows you to develop software that will
work virtually in any capacity you wish. That being said, you need to do things the
Windows way. Not because it is necessarily better, or because it is an industry standard,
but because it will make your coding easier. While Windows is very flexible, it was
designed with a certain orientation, which was not function-key nor data-entry-program
driven.

It is important to know how to do under Windows what you could do in a character-based
environment. This is the skill set and basic approach to software development you have
perfected over the years. However, mirroring that approach exactly under Windows will
be more difficult than transitioning to a more Windows-like approach for you and your
users both.

Function keys are a good example of this point. The KeyDown and KeyUp events,
provided on virtually all controls, return the value of the key pressed, thereby making
function key detection possible. The Windows approach to software design, however,
mandates the use of pulldown menus or command buttons for executing the type of
functionality you have been used to assigning to function keys. We recommend that you
give serious consideration to implementing these approaches before implementing
function keys.

Implementing Function Keys in Cobol-WOW

Note The following description on how to detect function keys applies only for Windows
intrinsic controls.

When any key is pressed, the KeyDown event is triggered. When it is released, the
KeyUp event is triggered. If the key that was pressed and released was an ASCII key, the
KeyPress event is also triggered.

All of these events return a value identifying the key in WIN-WPARAM. Cobol-WOW
automatically moves this value to WIN-KEY, which is a numeric field that is redefined to
include a one-byte, alphanumeric field, WIN-CHAR. You can, therefore, examine the
key as numeric or alphanumeric data.

If the value is that of an ASCII character, WIN-CHAR will contain the alphanumeric
character value. Otherwise, WIN-KEY will contain a numeric value identifying the key.

 Cobol-WOW User's Guide 75
 Addressing Issues in Data Entry Programs

This value is called a virtual key code. The value in WIN-KEY can be compared to the
virtual key values defined in windows.cpy. The names of these values more or less
correspond to the key names.

Now you are ready to detect function keys (remember, however, that this is not the
Windows approach). If you want to use F7 key to trigger a customer lookup in the
CUST-ID field, add the following code to the KeyDown event for the CUST-ID field:

CUST-ID-KEYDOWN.
 IF WIN-KEY = VK-F7
 PERFORM CUSTOMER-LOOKUP.

What if you added several special key actions to the same event? In this case, you might
want to switch to the EVALUATE statement, although this step is not recommended:

CUST-ID-KEYDOWN.
 EVALUATE WIN-KEY
 WHEN VK-F7 PERFORM CUSTOMER-LOOKUP
 WHEN VK-F20 PERFORM …
 WHEN VK-NUMLOCK PERFORM …
 WHEN VK-ADD PERFORM …
 WHEN VK-NUMPAD3 PERFORM …
 WHEN VK-PRINT PERFORM …
 END-EVALUATE.

This key detection will be active only for the CUST-ID field. What if you want to assign
a global function key action that applies to every field on the form? The KeyPress event
for the form, however, is triggered only under one of the following conditions:

• When the form is active.

• No control on the form has focus.

• A key is pressed.

When a control has focus and a key is pressed, the form KeyPress event is not triggered.
You can, however, simulate it by adding the following code to the KeyPress event for
each control on the form:

PERFORM FORMNAME-KEYPRESS.

Then, the EVALUATE or IF statement used for key detection could be placed in the
form’s KeyPress event and would be executed when any key is pressed in any control,
providing global detection. This behavior is very non-Windows-like. Windows provides
accelerators for buttons and menu commands.

76 Developing with Cobol-WOW
 Working with Menus

Sample Program

The sample project, DATANTRY, demonstrates all of the techniques discussed in this
section except function key detection.

DATANTRY is a very simple data entry program that allows maintenance of a file with
only one record in it. It is a customer record with a key value of 000001. Enter the key
value and press Tab or click another field. The file will be read and the data displayed.
Make any changes you want and press OK to save them or Cancel to discard them.

This sample is not intended to demonstrate how to design your user interface under
Windows. You should use some type of list box or combo box for entering customer
numbers. You might want to support Add options in your customer maintenance
program. This program simply illustrates how to implement the types of approaches we
used to use in the character-based world under Windows.

Working with Menus
Menus provide a simple, consistent, and intuitive way to inform users of options (menu
items) available when running a program. The Cobol-WOW Designer contains a Menu
Editor dialog box (see page 13) that makes menu creation easy. (See “Creating a Menu”
in Chapter 2, Tutorial, for further information.)

A menu is another type of object you add to your form. A menu has two parts: the
horizontal bar at the top of the form, which is always present, and the vertical menus
that appear when a top-level item is selected. The line at the top of the form is called
the top-level menu. The menus that “pop up” when a top-level item is selected are
called pop-up menus. The top-level menu is actually constructed from the titles of the
pop-up menus.

Menus are another built-in part of Windows, similar to intrinsic controls. You do not
need to distribute any special files to support menus.

Using Menus

Menus are one of the simplest objects to use in your programs. They have one purpose:
to indicate to the program that the user has selected an option (menu item).

A menu item can be selected from a menu in one of three ways. First, the user can select
the menu item by clicking it. Second, by pressing the Alt key, the user can highlight the
menu, use the arrow keys to move to a menu item, and press Enter to select it. Third, the

 Cobol-WOW User's Guide 77
 Working with Menus

user can press an accelerator key that is associated with the menu item. Accelerator keys
are assigned in the Menu Editor dialog box.

When a menu item is selected, the Click event for that menu item is executed. This is the
only event available for menu items. There are no data associated with menu items.
Menus are very similar to command buttons, in that they are a request for action.

Menus do not have properties like controls do, but there are some characteristics of menu
items you may want to manipulate in your programs. The most common ones to use are
the Checked/Unchecked and Enabled/Disabled characteristics. You may also want to
support pop-up menus (see page 78).

Checking and Unchecking Menu Items

Menu options (items) can be checked and unchecked in much the same way as check
boxes. Menu items let the user select whether or not to activate a certain feature that
affects program execution. The checked state of the menu item is toggled every time the
item is selected (clicked). Since this is not done automatically by Windows, it must be
done at runtime in your programs using the CHECKMENUITEM function (see also the
Functions and Messages online Help file).

Note For information about displaying a check mark on a menu item at design time
using the Menu Editor dialog box, see page 13.

A menu item is checked with the following code:

INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-CHECKED TO TRUE.
CALL CHECKMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

MENU-FLAGS is a collection of options that affect menus. By first initializing
MENU-FLAGS, all the options are unset so that options can be selected.

MF-BYCOMMAND supplies the ID of the menu item to be checked.

MF-CHECKED indicates that the menu item should be checked.

WIN-RETURN returns 1 if the menu item was already checked, 0 if it was not.

MENU-H is the handle of the menu containing the item to be checked. If the item is
on a pop-up menu, MENU-H should be the handle of the pop-up menu, rather than the
top-level menu.

ITEM-ID is the ID number of the item to check.

The menu item is unchecked in the same manner, but MF-UNCHECKED is used in place
of MF-CHECKED.

78 Developing with Cobol-WOW
 Working with Menus

Enabling and Disabling Menu Items

Menu options (items) can be enabled and disabled at runtime in the same manner as
controls, although this is not done with an Enabled property, but rather by using the
ENABLEMENUITEM function. (For more information, see the Functions and Messages
online Help file.)

Note For information about enabling or disabling a menu item at design time using the
Menu Editor dialog box, see page 13.

A menu item is disabled with the following code:

INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-DISABLED MF-GRAYED TO TRUE.
CALL ENABLEMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

Most of the parameters for the ENABLEMENUITEM are the same as defined for the
CHECKMENUITEM function, described in the previous section. MF-DISABLED and
MF-GRAYED are new options that respectively disable and gray out the option.
Disabling the option does not automatically gray it out as is the case with controls.
Graying must be explicitly requested with the MF-GRAYED option.

To enable the menu item, use the following code:

INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-ENABLED TO TRUE.
CALL ENABLEMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

Notice that it is not necessary to specify “un-gray” when the option is enabled. That
characteristic is enabled by default. The following code causes the option to be grayed
out even when it is enabled:

INITIALIZE MENU-FLAGS.
SET MF-BYCOMMAND MF-ENABLED MF-GRAYED TO TRUE.
CALL ENABLEMENUITEM USING WIN-RETURN MENU-H ITEM-ID MENU-FLAGS.

This behavior would, however, be unlike the expected Windows behavior.

Popping Up Menus

One interesting technique that can be used with menus is to have the program pop up a
menu on the display without the user having selected it from the top-level menu. This
type of menu is usually referred to as a context-sensitive pop-up menu. Such menus
provide an efficient way to access frequently used commands without the need to navigate
a menu bar. They also can include commands that logically apply to the limited context
of the selected object. For example, when input focus moves to a customer number field,
the program could pop up a menu listing functions related to customer number entry and

 Cobol-WOW User's Guide 79
 Working with Menus

place the menu next to the field. The user can select an option from the menu. By
clicking outside the pop-up menu (or a specified area), the menu can be dismissed. If the
user selects an option from the menu, the Click event associated with that menu option is
triggered.

Use the TRACKPOPUPMENU function (see also the Functions and Messages online
Help file) to accomplish this feature. A call to the TRACKPOPUPMENU function
appears as follows:

CALL TRACKPOPUPMENU USING WIN-RETURN MENU-H 0 X Y 0 WND-H RECT

WIN-RETURN returns 1 if the menu was displayed, 0 if it was not.

MENU-H is the handle of the pop-up menu to display. This cannot be the handle of the
top-level menu.

The two 0s are unused parameters for some future functionality.

X and Y are the pixel coordinates at which the top left corner of the menu should be
displayed. These coordinates are relative to the entire screen, not the form. You may
need to use the CLIENTTOSCREEN function (described in the Functions and Messages
online Help file) to help you calculate this position.

RECT is an optional parameter. By default, Windows erases the pop-up menu if the user
clicks outside the menu. This behavior can be achieved by passing 0 for this parameter
instead of RECT. However, RECT can be filled with values and passed to define a
specific area of the screen the user should be allowed to click without erasing the menu.
This action overrides the default behavior.

80 Developing with Cobol-WOW
 Working with Menus

 Cobol-WOW User's Guide 81
 Debugging with COBOL DISPLAY Statements

Chapter 5: Debugging

Cobol-WOW makes Windows programming fairly straightforward, but as your
application grows in complexity, you will need to test your program and debug your
source code. This chapter discusses three different approaches to debugging a
Windows-based application created with Cobol-WOW:

• Debugging with COBOL DISPLAY Statements

• Debugging with the RM/COBOL Interactive Debugger

• Debugging with CodeWatch (Liant’s standalone source-level debugger)

Note It is possible to enable messages that aid in debugging a Cobol-WOW application
at runtime by adding the following entry to the cblwow.ini file (see page 3):

[WOWRT]
DevelopmentMode=True

Debugging with COBOL DISPLAY Statements
The RM/COBOL runtime system creates a window to use for supporting the standard
COBOL user interface. Cobol-WOW programs create their own windows, which makes
it easy to use the COBOL main window for debugging. The first way you might use this
window is by inserting DISPLAY statements in your programs. An example form named
SHOWME illustrates this process. The project name is showme.wpj; the executable
program name is showme.cbl. (For procedures on executing the SHOWME program,
see page 82.)

The SHOWME form contains a number of different controls. Every event associated
with every control on the form, as well as the form itself, has a DISPLAY statement
associated with it. When you run the example, you will see the SHOWME form and the
COBOL main window displayed. As you use the form and controls, you will see the
result of the DISPLAY statements scrolling by in the COBOL main window.

Since Cobol-WOW programs are event-driven, rather than sequential, you may wonder if
certain events occurred, or if certain sections of logic were executed. You cannot assume
that because your program is at point C, you passed points A and B. If you insert
DISPLAY statements at key points in the program, you will know whether or not those
points have been reached.

82 Debugging
 Debugging with the RM/COBOL Interactive Debugger

Unlike traditional COBOL code, event-driven coding associates instructions with a
particular event on a particular control. This, in turn, means that if there is a syntax error
at compile time, the source of the error might not be immediately apparent. To avoid this
problem, compile your project every time you put code against an event. In this way, if
there is a compile error, you know exactly where it came from. Additionally, the
compilation will save the program, which is a good safeguard against system crashes.

It is good practice to test almost as often as you compile. Text fragments as you develop,
rather than waiting to test until you’ve finished coding the entire program. Testing
fragments allows you to isolate errors in logic.

Executing the SHOWME Program

Compile and run the SHOWME program. Just starting the program generates a number
of events: Create events, Size events, even Change events when the default text is set.

Then see how many different events you can generate by working with the form and the
various controls. Windows reports lots of events, giving you many opportunities to
customize the behavior of your programs.

How the SHOWME Program Works

Every available event in the Cobol-WOW Designer for each control has a DISPLAY
statement associated with it. When the event occurs, the DISPLAY statement displays the
name of the control for which the event occurred and the name of the event.

Debugging with the RM/COBOL Interactive
Debugger

If you have been using RM/COBOL very long, you probably have used the Interactive
Debugger in the runtime system. While it is unable to display your source code as you
debug, it can be a straightforward way of quickly checking out isolated problems if you
have a listing file conveniently available.

The Interactive Debugger works better with Cobol-WOW programs than it does with
DOS, UNIX, or non-Cobol-WOW Windows programs. Because the Debugger has
exclusive access to the COBOL main window, it does not have to share it with the
program that is executing. This prevents the Debugger from being limited to operating in
a single line or from scrolling the other contents of the display out of view.

 Cobol-WOW User's Guide 83
 Debugging with the RM/COBOL Interactive Debugger

The BREAK program (located in the cobolwow\samples folder) demonstrates how the
Debugger works with a Cobol-WOW program. The project name is break.wpj; the
executable program name is break.cbl. When you run the BREAK program, you will set
a breakpoint on the event-handling code for the Size event in the form. When you reach
that breakpoint, you can use the Debugger to display the value of the Height, Left, Top,
and Width properties of the form. See the following section for procedures on how to
execute the BREAK program.

Executing the BREAK Program

Compile the BREAK program with the L and Y RM/COBOL Compile Command
options. Look at the listing file and find the line number of the following line of code:

CALL WOWGETPROP USING WIN-RETURN BREAK-H
 "Left" LEFT-VALUE
 "Top" TOP-VALUE
 "Width" WIDTH-VALUE
 "Height" HEIGHT-VALUE.

Remember the line number because you will need it to set a breakpoint.

Next, run the program with the D RM/COBOL Runtime Command option to start the
program and enable the Interactive Debugger. The COBOL main window will display
and the debug prompt will be displayed in the lower-left corner of the COBOL main
window.

Type the following command:

B NNNNN

where NNNNN is the line number of the code identified above, and press Enter. This
action sets a breakpoint at the specified line. Now, every time the runtime system is ready
to execute this line of code, execution will stop and the debug prompt will be displayed.

Type the letter R and press Enter to run the program. The breakpoint is reached
immediately because the breakpoint is associated with the Size event. A Size event is
generated when a form is created.

At this point, something very interesting happens. Based on your experience in
character-based environments, you would expect the Cobol-WOW Designer window to
freeze and no longer respond to user input. This, however, is not the case. Since
Windows — not the application program — is controlling the form, the form and controls
will continue to respond to user input events. These events are placed in a queue and will
wait for the application to retrieve them from the queue.

84 Debugging
 Debugging with the RM/COBOL Interactive Debugger

When the debug prompt is displayed, the COBOL main window is inactive. To work
with the Debugger, you must click the mouse in the COBOL main window or press
Alt+Tab until you see the COBOL main window listed. Do this now so that the COBOL
main window becomes active.

The runtime system is ready to execute the WOWGETPROP function.

Type the letter S and press Enter to tell the Debugger to step through the execution of
this line. The debug prompt is immediately redisplayed and you can examine the values.

To display the value of the fields, type the following Debug commands, pressing Enter
after each command:

LEFT-VALUE
TOP-VALUE
WIDTH-VALUE
HEIGHT-VALUE

Then type R and press Enter to resume execution of the program. If you happened to
resize the form while the runtime system was paused for debugging, you will immediately
go back to the breakpoint again. Try resizing the form several times and see how the
values change.

How the BREAK Program Works

The BREAK program works by using the COBOL main window for the Debugger and
the Cobol-WOW Designer window for the user interface. This is an ideal situation, since
the two windows do not interfere with each other.

However, there are two things to remember when debugging in this manner. First, one
window is always active, either the Debugger or the form. To work with one or the other,
you must click or press Alt+Tab to the desired window. When the Debugger reaches a
breakpoint, it will automatically display the debug prompt, but it will not make the
COBOL main window active. To type Debug commands, you must make the debug
window active.

Secondly, while the runtime system is stopped at a debug breakpoint, the form will
continue to respond to user input. You can move and resize a form, press buttons, and
even type data into input fields. The COBOL program will not, however, be made aware
of any of these events until the runtime execution is resumed. The events are not lost and
will then be processed in the order they occurred.

 Cobol-WOW User's Guide 85
 Debugging with CodeWatch

Debugging with CodeWatch
CodeWatch, Liant’s standalone source-level debugger, also can be used to debug your
program. To use CodeWatch, follow these steps:

1. From the Options menu in the Cobol-WOW Designer window, click Edit
Preferences.

2. On the Tools tab of the Preferences dialog box, enter Y=3 in the Compiler area
Command Tail text box.

The Y=3 setting places both the symbol table and the debug line table (used by
CodeWatch to display the source program) in the object file. Additionally, the Y=3
setting includes the allocation map and cross-reference information in the debug line
table if the A and/or X Options are also specified.

Preferences Dialog Box – Tools Page

3. Set the L Option in the Tools tab of the Preferences dialog box in the Compiler
Command Tail text box to get an automatic listing file to help identify the area with
the problem.

Note If you set the L Option in this manner, you must remove the entry E L from
the Compiler Command Line Arguments text box in the Project Options dialog box.
Failing to do so will cause the E L entry to take precedence over the L entry. (To

86 Debugging
 Debugging with CodeWatch

open the Project Options dialog box for the current project, click Options on the
Project menu.)

 4. Click the Run Debugger toolbar button to invoke CodeWatch.

Make sure that the CodeWatch environment can find the wowrt32.dll that
Cobol-WOW needs at runtime. You can do this either by changing the settings in the
Windows Registry or by adding the DLL in the CodeWatch wizard as you start it.

Once you have your application loaded in CodeWatch, you can step through it in the
normal manner. As you run the program, the additional code that Cobol-WOW has
generated is displayed as it is executed. If you do not wish to see this code, set a
breakpoint at a relevant place in an event code and disable animation until you reach
the breakpoint.

 Cobol-WOW User's Guide 87
 Manipulating Properties at Runtime

Appendix A: Setting Properties
and Events for Intrinsic Controls
and Forms

This appendix describes the properties and events of each of the intrinsic controls used in
the Cobol-WOW programming system as well as the properties and events for forms.

Manipulating Properties at Runtime
Unless otherwise stated, properties for intrinsic controls and forms can be manipulated at
runtime using the WOWSETPROP and WOWGETPROP functions, as described in the
examples shown on pages 51 and 52, respectively.

Intrinsic Controls
Intrinsic controls are part of the Windows operating system. They are always included in
the Cobol-WOW Toolbox when you first install Cobol-WOW, unlike ActiveX controls
(see Appendix B), which can be removed from or added to the Toolbox. During design
time, intrinsic control properties are displayed and modified through the Properties dialog
box (see page 8).

The intrinsic controls include the following:

• Animation Control. Displays an AVI clip. An AVI clip is a series of bitmap frames
that run like a movie. Only AVI files without sound can be played using the
animation control.

• Bitmap Control. Displays bitmap files. The bitmap control acts like a command
button when clicked.

• Check Box Control. Displays a Yes/No, True/False, or On/Off option. You can
check any number of check boxes on a form at one time.

• Combo Box Control. Combines a text box with a list box. Allows a user to type in a
selection or select an item from a drop-down list.

• Command Button Control. Carries out a command or action when a user chooses it.

88 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

• Date Time Picker Control. Allows the user to select a date and time, and to display
that date-time in the specified format. Note: Control is not available in this release.

• Edit Box Control. Provides an area to enter or display text.

• Ellipse Shape. Draws the geometric shape of an ellipse on the form.

• Group Box Control. Provides a visual and functional container for other controls. It
is generally used to enclose related controls (usually check boxes or option buttons).

• IP Address Control. Allows the user to enter a numeric address in Internet protocol
(IP) format. This control also allows the application to obtain the address in numeric
form rather than in text form. Note: Control is not available in this release.

• Line Shape. Draws a line on the form.

• List Box Control. Displays a list of choices from which the user can select one or
more items.

• Month Calendar Control. Displays a monthly calendar. The calendar can display
one or more months at a time. Note: Control is not available in this release.

• Option Button Control. Presents mutually exclusive options in an option control.
Option buttons are usually used with the group box control to form groups where
only one of the listed buttons can be selected at one time.

• Progress Bar Control. Displays a pattern of blocks that show the status of a long
operation.

• Rectangle Shape. Draws the geometric shape of a rectangle on the form.

• Rounded Rectangle Shape. Draws the geometric shape of a rectangle with rounded
corners on the form.

• Scroll Bar Controls. Allow a user to add scroll bars (horizontal and/or vertical) to
controls that do not automatically provide them. (These are not the same as the built-
in scroll bars that are found with many controls.)

• Static Text Control. Displays text, such as titles or captions, in regular outlines or
filled rectangles, that the user cannot interact with or modify.

• Status Bar Control. Displays status information in a horizontal window at the bottom
of an application window.

• Tab Control. Acts as a container for other controls and places a series of tabs at the
top of the container.

• Timer Control. Provides a measured time interval that can be tied to events.

• Toolbar Control. Displays a series of buttons that can be placed at the top and/or
bottom of a form.

 Cobol-WOW User's Guide 89
 Intrinsic Controls

• Trackbar Control. Displays a window containing a slider and optional tick marks
used to select a value or a set of consecutive values in a range.

• Updown Control. Consists of a pair of arrow buttons that the user can click to
increment or decrement a value, such as a scroll position or a number displayed in a
companion control.

Note The description of properties and events for forms begins on page 176.

Animation Control

An animation control is used to display an AVI clip. An AVI clip is a series of bitmap
frames that run like a movie. Only AVI files without sound can be played using the
animation control.

 To add an animation control to a form, click Animate from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

At the current time, properties unique to the animation control (AnimationFile, AutoPlay,
Center, Play, and Transparent) can be manipulated only in the Cobol-WOW Designer.
The runtime functions, WOWGETPROP and WOWSETPROP, will not recognize these
properties. Runtime handling of the animation control can be accomplished by using the
ACM- messages listed in the Event-Handling Code dialog box.

Properties

*AnimationFile Enabled Name *Transparent
*AutoPlay Height *Play Visible
*Border Left TabIndex Width
*Center Locked Top ZOrder

Events

*Start *Stop

90 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

AnimationFile Property

The AnimationFile property specifies the name of the AVI file containing the animation
to play in the control.

AutoPlay Property

The AutoPlay property determines when the animation will begin playing.

The following table lists the possible values of the AutoPlay property:

Value Description

False Causes the control to wait until it receives an ACM-PLAY
message to begin playing (the default).

True Causes the animation to begin playing as soon as the control is
created (and an animation file is specified).

Border Property

The Border property determines whether or not a border is displayed around the
animation.

The following table lists the possible values of the Border property:

Value Description

False Does not display a border around the animation.
True Displays a border around the animation (the default).

Center Property

The Center property determines whether or not the animation is centered in the control.

The following table lists the possible values of the Center property:

Value Description

False Does not center the animation (the default).
True Centers the animation.

 Cobol-WOW User's Guide 91
 Intrinsic Controls

Play Property

The Play property determines when the animation starts or stops playing.

The following table lists the possible values of the Play property:

Value Description

False Causes the animation to stop playing (the default).
True Causes the animation to start playing.

Transparent Property

The Transparent property determines whether the animation will be drawn with a
transparent background. Currently, this property does not work properly for all
animations.

The following table lists the possible values of the Transparent property:

Value Description

False Causes the animation to be drawn with an opaque background
(the default).

True Causes the animation to be drawn with a transparent
background.

Start Event

The Start event notifies an animation control’s parent window that the associated AVI
clip has started playing. This notification message is sent in the form of a WM-
COMMAND message.

Stop Event

The Stop event notifies an animation control’s parent window that the associated
AVI clip has stopped playing. This notification message is sent in the form of a
WM-COMMAND message.

92 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Bitmap Control

The bitmap control is used to display bitmapped images. The image can be displayed in
several ways, including being tiled or scaled to fit the size of the control. A bitmap
defines an image or picture as a pattern of dots (or pixels) and has the file extension
.bmp. Even though Windows does not implement or package a bitmap control, it does
provide bitmap handling. Cobol-WOW adds the bitmap control to provide a convenient
way to use bitmaps on a form.

 To add a bitmap control to a form, click Bitmap from the Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

BackColor Enabled Name Width
*Bitmap Height TabIndex *Xoffset
*BitmapMode Left Top *Yoffset
*Border Locked Visible ZOrder

Event

Click

Note The bitmap control reports one event, Click, if the mouse is clicked inside the
control. Since this control recognizes the Click event, you can use it anywhere you would
use a command button. Grouping several bitmap controls together horizontally across the
top of the screen, usually within a group box control, allows you to create a toolbar in
your application. Unlike command buttons, however, bitmap controls do not appear
pushed in when clicked, thereby providing no visual cue that the “button” is being
pushed.

Bitmap Property

The Bitmap property specifies the bitmap image that is displayed on the control. (The
BitmapMode property setting, described in the following section, determines the bitmap’s
appearance. If you set the Bitmap property for a form, the bitmap you select is displayed
on the background of the form, behind any controls you have placed on the form.)

 Cobol-WOW User's Guide 93
 Intrinsic Controls

Note The value of this property must be the complete name of a bitmap file. If a full
pathname is specified or if the file is in the working directory, the file will be opened. If
the file is not located, Cobol-WOW will attempt to open the bitmap file using each of the
directories specified in the RUNPATH environment variable. If the bitmap is not in the
working directory or in a directory specified in the RUNPATH environment variable, a
pathname is also required.

BitmapMode Property

The BitmapMode property determines how the bitmap is displayed in a control.

The following table list the possible values of the BitmapMode property:

Value Description

0 Displays the bitmap in its original size (the default). If the
bitmap is smaller than the control, the remaining space is
filled with the background color. If the bitmap is larger than
the control, only the portion of the bitmap that fits inside the
control is displayed.

1 Scales bitmap to fit exactly within the control. This may
result in some distortion of the bitmap image, especially if the
size difference between the bitmap and the control is
substantial.

2 Tiles bitmap to fit the control. If BitmapMode is set to Tile,
the bitmap, if smaller than the control, is displayed in a tiled
pattern multiple times within the control.

3 Sizes the control automatically to fit the specified bitmap
exactly.

Note Changing the value of the BitmapMode property to 1, 2, or 3 at design time or
runtime will set the values of the Xoffset and Yoffset properties to 0.

Border Property

The Border property determines whether or not a border is displayed around the bitmap.

The following table lists the possible values of the Border property:

Value Description

False Does not display a border around the bitmap.
True Displays a border around the bitmap (the default).

94 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Xoffset Property

The Xoffset property determines how far, in pixels, from the left edge of the control the
bitmap is displayed. This value is reset to zero whenever the BitmapMode property
settings change.

The Xoffset value must be in the range of 0 to the width of the control.

Yoffset Property

The Yoffset property determines how far, in pixels, from the top of the control the bitmap
is displayed. This value is reset to zero whenever the BitmapMode property settings
change.

The Yoffset value must be in the range of 0 to the height of the control.

Check Box Control

The check box control displays an option that can be turned on or off. The check box
control is similar to the command button, in that the primary method of operation is
clicking it. The check box control, however, represents data, not a request for action.

The check box solves a programming situation that has always been challenging: one in
which a user must choose between True/False, Yes/No, or On/Off options. Since check
boxes work independently of each other, a user can select any number of check boxes at
the same time. While these seem like trivial items, creating a character-based
implementation that includes validation, good user feedback, and convenient operation
are certainly not insignificant. The check box control makes these tasks effortless.

 To add a check box control to a form, click Check Box from the Toolbox.

Note If you are working with the check box field/control in an RM/Panels panel library,
see page 218.

 Cobol-WOW User's Guide 95
 Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

3D FontItalic Height Top
*Alignment FontName Left *Value
*AutoCheck FontSize Locked Visible
BackColor FontStrikethru Name Width
Caption FontUnderline TabIndex ZOrder
Enabled ForeColor TabStop
FontBold Group *ThreeState

Events

Click KeyDown KeyUp
GotFocus KeyPress LostFocus

Note The user can change the state of a check box in two ways: by clicking with the
mouse or by pressing the Spacebar while the check box has input focus. With either
method, the Click event for the check box is triggered. You may want to add event-
handling code to this event to enable or disable other controls based on the new state of
the check box.

Alignment Property

The Alignment property controls the position of the text in a check box control. By
default, the caption of a check box displays to the right of the box. The text may be
moved to the left of the box with the Alignment property. When using the 3D property,
however, the text must always be on the right.

The following table lists the possible values of the Alignment property:

Value Description

0 Displays text to the right of the check box (the default).
1 Displays text to the left of the check box.

96 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

AutoCheck Property

The AutoCheck property determines whether the state of a check box control is
automatically changed when clicked.

The following table lists the possible values of the AutoCheck property:

Value Description

False Check box will not automatically check or uncheck when
clicked.

True Check box will automatically check or uncheck when clicked
(the default).

ThreeState Property

The ThreeState property determines whether a check box control can be cycled through
two or three states.

When you create the check box, you assign it a caption that describes the option for which
the user is selecting the state (for example, Tax Exempt or Drop Ship). Initially, a check
box control has two states, checked and unchecked. These are intuitively On/Off,
Yes/No, or True/False selections of whatever the caption describes. The user toggles the
check box to the desired state. When the user presses OK, you simply check the state of
the button to see what condition to store as data.

You can determine whether you want your check box to have two states or three with the
ThreeState property. The third state (grayed) is considered to be no choice made or
undefined.

The following table lists the possible values of the ThreeState property:

Value Description

False Check box has two states, checked or unchecked (the default).
True Check box has three states, checked, unchecked and grayed.

 Cobol-WOW User's Guide 97
 Intrinsic Controls

Value Property

The Value property determines the state of a check box control.

The following table lists the possible values of the Value property:

Value Description

0 Check box is not checked (the default).
1 Check box is checked.
2 Check box is grayed (displays only if ThreeState property is set

to True).

Combo Box Control

Many times, you may want to combine the list selection capability of a list box with the
edit box’s ability to type in a value. Alternatively, to save screen space, you may wish to
show only a portion of the list box’s selections. And, there may be instances when you
would like to display the currently selected item in a static edit box area when the entire
list is not displayed. The combo box control can satisfy all these conditions since it
combines the features of a edit box (also known as an edit field) and a list box. Use this
control to give the user the choice of typing in the edit box area or selecting an item from
the list portion of the control. Combo boxes can save space on a form.

In addition, if you know how to use a edit box and a list box, you know how to use a
combo box. The properties and events available for a combo box are a composite of
those present in the edit box and list box controls. The messages you use with a combo
box also parallel those that you use with edit boxes and list boxes. These messages,
however, begin with a CB- prefix instead of an LB- or EM- prefix.

 To add a combo box control to a form, click Combo Box from the Toolbox.

Note If you are working with the combo box field/control in an RM/Panels panel library,
see page 218.

98 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

3D Enabled FontUnderline Name TabIndex
*AutoHScroll FontBold ForeColor *OEMConvert TabStop
BackColor FontItalic Group ScrollBar Top
*Count FontName Height *SelText Visible
*CurSel FontSize Left *Sort Width
*DisableNoScroll FontStrikethru Locked *Style ZOrder

Events

Click *DropDown GotFocus KeyPress LostFocus
DblClick *EditChange KeyDown KeyUp *NoSpace

Note The DblClick and DropDown and events are not supported if the Style property is
set to a value of 0 (Simple, standard combo box). The DropDown event occurs when the
user double-clicks the drop-down arrow in the text portion of the drop-down combo box
and in the drop-down list box.

AutoHScroll Property

The AutoHScroll property indicates whether the edit portion of a combo box control will
automatically scroll horizontally as text is entered. If the value of this property is set to 0,
the user will not be allowed to enter more text than fits within the width of the control.

The following table lists the possible values of the AutoHScroll property:

Value Description

False Disables horizontal scrolling.
True Enables horizontal scrolling of text when typed (the default).

 Cobol-WOW User's Guide 99
 Intrinsic Controls

Count Property

The Count property is a runtime-only property that lets you determine how many items
are included in the list box portion of the combo box. To get the number of items in the
list box:

CALL WOWGETPROP USING WIN-RETURN MYCOMBO-H "COUNT" COUNT-FIELD.

CurSel Property

The CurSel property is a runtime-only property that represents the current selection in the
list box portion of the combo box. This value can be queried to determine which item in
the list box is selected, or set to move the selection to a different item.

DisableNoScroll Property

The DisableNoScroll property determines whether a scroll bar is displayed when the list
box portion of a combo box control is not completely full.

The following table lists the possible values of the DisableNoScroll property:

Value Description

False Scroll bar disappears if combo box is not full (the default).
True Scroll bar is disabled if combo box is not full.

OEMConvert Property

The OEMConvert property converts characters entered in the edit box portion of a combo
box control from the ANSI character set to the OEM character set and then back to ANSI.
Use this property for combo box controls that are used to enter filenames. When a
character is converted from the ANSI character set to the OEM character set and back to
ANSI, the resulting character is not always the same as the original character; however,
subsequent conversions from ANSI to OEM to ANSI do result in the same character.

The following table lists the possible values of the OEMConvert property:

Value Description

False The characters are not converted (the default).
True The characters are converted from ANSI to OEM and back

to ANSI.

100 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

SelText Property

The SelText property is a runtime-only property that lets you retrieve the text of the
currently selected list box item. If no item is selected, the value returned is space.

Sort Property

The Sort property determines whether the entries in a combo box control are
automatically sorted.

The following table lists the possible values of the Sort property:

Value Description

False Entries are not sorted.
True Entries are sorted (the default).

Style Property

The Style property determines what type of combo box is created. The three types of
combo boxes are specified with the Style property. The possible values for this property
include simple (standard) combo box, drop-down combo box, and drop-down list box.

A standard combo box always displays an edit box and list box. A drop-down combo box
always displays an edit box, but only displays the list box when the drop-down arrow
displayed beside the edit box is clicked. A drop-down list box always displays a static
edit box control containing the current selection, but, like the drop-down combo box, only
displays the list box when the drop-down arrow beside the static text control is clicked.

You might question why the drop-down list box is a style for combo boxes but is not a
style for list boxes. This is the way Windows built this control; it should not cause you
any problems. Windows simply implements these three styles as one control because they
all combine two types of controls into one.

You work with the list box portion of a combo box in exactly the same way you work
with a list box. You use messages with a CB- prefix and supply the combo box handle.
Windows knows what part of the combo box to change.

For the edit box portion, work with the combo box properties, events, and messages as
you would an edit box remembering to use the CB-prefix.

 Cobol-WOW User's Guide 101
 Intrinsic Controls

The following table lists the possible values of the Style property:

Value Description

0 Simple (standard combo box). The edit box (edit field) and list
box portions are always displayed.

1 Drop-down combo box. The edit box portion is always
displayed but the list box area is only displayed when the drop-
down arrow is clicked.

2 Drop-down list box. The edit box portion is always displayed,
however, it only displays the value of the selection. The edit
box portion will not accept user input. The list box portion is
only displayed when the drop-down arrow is clicked.

DropDown Event

The DropDown event occurs when the user double-clicks the left mouse button on the
drop-down arrow in the edit box portion of the drop-down combo box and drop-down
list box.

Note This event is not supported if the Style property value is set to a value of 0 (Simple,
standard combo box).

EditChange Event

The EditChange event occurs whenever the text displayed in the edit box portion of the
combo box is changed.

NoSpace Event

The NoSpace event occurs when Windows cannot allocate enough internal space to store
the contents of the combo box.

Command Button Control

The command button (also known as push button) control causes an action to occur when
the user either clicks the button or presses a key.

The command button control is simple to use for both the user and the developer. When
you place a command button on a form, the user can perform one action: push. Unlike
other controls, the command button does not represent any data. It represents a request
for action. When a command button is pushed, an action is carried out immediately.

 To add a command button control to a form, click Command Button from the Toolbox.

102 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Note If you are working with the command button field/control in an RM/Panels panel
library, see page 220.

Cobol-WOW offers a user several ways to push a command button:

• Clicking it with the mouse.

• Pressing the Spacebar when the command button has input focus.

• Pressing an accelerator key for the command button while any control on the form
has input focus.

• Pressing the Enter key while any control on the form has input focus.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

*Accelerator FontItalic Height Top
*Bitmap FontName Left Visible
Caption FontSize Locked Width
*Default FontStrikethru Name ZOrder
Enabled FontUnderline TabIndex
FontBold Group TabStop

Events

Click KeyDown KeyUp
GotFocus KeyPress LostFocus

Accelerator Property

The Accelerator property determines what key, if any, should simulate the pressing of the
command button. This property cannot be modified or retrieved at runtime. An
accelerator key is defined for the command button by selecting one of the available keys
for the Accelerator property listed in the Properties dialog box. Function keys are
acceptable as accelerator keys. You must include the name of the accelerator key in the
text of the command button so that the user knows it is available.

 Cobol-WOW User's Guide 103
 Intrinsic Controls

Bitmap Property

The Bitmap property specifies the bitmap image that is displayed on the command button
control. (If you set the Bitmap property for a form, the bitmap you select is displayed on
the background of the form, behind any controls you have placed on the form.)

Note The value of this property must be the complete name of a bitmap file. If a full
pathname is specified or if the file is in the working directory, the file will be opened. If
the file is not located, Cobol-WOW will attempt to open the bitmap file using each of the
directories specified in the RUNPATH environment variable. If the bitmap is not in the
working directory or in a directory specified in the RUNPATH environment variable, a
pathname is also required.

Default Property

The Default property indicates that a command button control should be pressed when the
Enter (or Return) key is pressed while input focus is anywhere on the form. A command
button with the Default property set to True is displayed with a heavy border. Only one
command button on a form should be set with the Default property.

Note The value of the Default property cannot be set at runtime. The value can,
however, be retrieved at runtime.

The following table lists the possible values of the Default property:

Value Description

False Button is not a default button (the default).
True Button is a default button.

Date Time Picker Control (Not Available in this Release)

The date time picker control allows the user to select a date and time, and to display that
date-time in the specified format. An embedded month calendar control (see page 126)
displays a monthly calendar.

The date time picker control is based on the Gregorian calendar, which was introduced in
1753. It will not calculate dates that are consistent with the Julian calendar that was in
use prior to 1753.

104 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

 To add a date time picker control to a form, click Date Time Picker from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

Enabled *Format *MCFontBold *RightAlign *UpDown
FontBold Height *MCFontItalic *ShortDateCentury

Format
Visible

FontItalic Left *MCFontName *ShowNone Width
FontName Locked *MCFontSize TabIndex ZOrder
FontSize *LongDateFormat *MCFontStrikeThru TabStop
FontStrikethru MCColor *MCFontUnderline *TimeFormat
FontUnderline MCColorIndex Name Top

Event

*Change

 Cobol-WOW User's Guide 105
 Intrinsic Controls

Format Property

The Format property determines the date-time format in which the date is displayed. The
date-time format is based on the user’s regional settings in their operating system.

Date and time format elements will be replaced by the actual date and time. They are
defined by the following groups of characters:

Value Description

“d” The one- or two-digit day.
“dd” The two-digit day. Single-digit day values are preceded by a

zero.
“ddd” The three-character weekday abbreviation.
“dddd” The full weekday name.
“h” The one- or two-digit hour in 12-hour format.
“hh” The two-digit hour in 12-hour format. Single-digit values are

preceded by a zero.
“H” The one- or two-digit hour in 24-hour format.
“HH” The two-digit hour in 24-hour format. Single-digit values are

preceded by a zero.
“m” The one- or two-digit minute.
“MM” The two-digit minute. Single-digit values are preceded by a

zero.
“MMM” The three-character month abbreviation.
“MMMM” The full month name.
“t” The one-letter AM/PM abbreviation (that is, AM is displayed

as “A”).
“tt” The two-letter AM/PM abbreviation (that is, AM is displayed

as “AM”).
“yy” The last two digits of the year (that is, 1996 would be displayed

as “96”).
“yyyy” The full year (that is, 1996 would be displayed as “1996”).

To make the information more readable, you can add body text to the format string by
enclosing it in single quotes. Spaces and punctuation marks do not need to be quoted.

Note Non-format characters that are not delimited by single quotes will result in
unpredictable display by the date time picker control.

For example, to display the current date with the format "'Today is: 04:22:31 Tuesday
Mar 23, 1996", the format string is "'Today is: 'hh':'m':'s dddd MMM dd', 'yyyy". To
include a single quote in your body text, use two consecutive single quotes. For example,

106 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

"'Don''t forget' MMM dd',' yyyy" produces output that looks like: Don't forget Mar 23,
1996. It is not necessary to use quotes with the comma, so "'Don''t forget' MMM dd,
yyyy" is also valid, and produces the same output.

LongDateFormat Property

The LongDateFormat property, when set to a value of True, causes the date to display in
day, month, date, year format. For example: “Friday, April 19, 2002”.

The following table lists the possible values of the LongDateFormat property:

Value Description

False The date is displayed in short date format, for example,
“4/19/02” (the default).

True The date is displayed in long date format, for example,
“Friday, April 19, 2002”.

MCFontBold Property

The MCFontBold property determines whether the associated text for the month calendar
is displayed in bold font format.

The following table lists the possible values of the MCFontBold property:

Value Description

False Text is not displayed bold (the default).
True Text is displayed bold.

MCFontItalic Property

The MCFontItalic property determines whether the associated text of the month calendar
is displayed in italic font format.

The following table lists the possible values of the MCFontItalic property:

Value Description

False Text is not displayed in italics (the default).
True Text is displayed in italics.

 Cobol-WOW User's Guide 107
 Intrinsic Controls

MCFontName Property

The MCFontName property determines the font used to display text in the month
calendar. The font specified must be present on the system.

MCFontSize Property

The MCFontSize property determines the size of the font to be used for text displayed in
the month calendar. The size specified must be supported by the font. If the size is not
supported by the font, the system will substitute the nearest supported value.

MCFontStrikeThru Property

The MCFontStrikeThru property determines whether the associated text for the month
calendar is displayed in a strikethrough font style.

The following table lists the possible values of the MCFontStrikethru property:

Value Description

False No strikeout is used (the default).
True Strikeout is used.

MCFontUnderline Property

The MCFontUnderline property determines whether the associated text for the month
calendar is displayed in an underlined font format.

The following table lists the possible values of the MCFontUnderline property:

Value Description

False Text is not underlined (the default).
True Text is underlined.

108 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

RightAlign Property

The RightAlign property determines whether the drop-down month calendar will be right-
aligned or left-aligned with the date time picker control.

The following table lists the possible values of the RightAlign property:

Value Description

False The drop-down month calendar will be left-aligned with the
control (the default).

True The drop-down month calendar will be right-aligned with the
control.

ShortDateCenturyFormat Property

The ShortDateCenturyFormat property, when set to a value of True, causes the date to
display in the MM/DD/YYYY format. For example: “4/19/2002”.

The following table lists the possible values of the ShortDateCenturyFormat property:

Value Description

False The date is displayed in short date format, for example,
“4/19/02” (the default).

True The date is displayed in short date century format, for
example, “4/19/2002”.

ShowNone Property

The ShowNone property determines whether the control displays a check box.

The following table lists the possible values of the ShowNone property:

Value Description

False No check box is displayed (the default).
True A check box is displayed.

 Cobol-WOW User's Guide 109
 Intrinsic Controls

TimeFormat Property

The TimeFormat property determines whether the time will display instead of the date.
When set to a value of True, the TimeFormat property causes the time to display in
HH/MM/SS AM or PM format. For example: “5:31:42 PM”.

The following table lists the possible values of the TimeFormat property:

Value Description

False The time is not displayed (the default).
True The time is displayed in HH/MM/SS AM or PM format. For

example, “5:31:42 PM”.

UpDown Property

The UpDown property determines whether the control displays an arrow button. If the
user clicks the arrow button, an embedded month calendar control (see page 126) drops
down. The user can select a specific date by clicking an area of the calendar.

The following table lists the possible values of the UpDown property:

Value Description

False An arrow button is displayed (the default).
True An arrow button is not displayed.

Change Event

The Change event occurs when a change has occurred within the date time picker control.

Edit Box Control

The edit box control provides an area to input or display text. This control replaces the
COBOL ACCEPT statement. The user can enter any type of alphanumeric data in an edit
box, including numeric data. Because no formatting is provided, numbers are entered in
the same manner as text. (The use of edit box controls is illustrated in Chapter 2,
Tutorial.)

 To add an edit box control to a form, click Edit Box from the Toolbox.

Note If you are working with the edit box field/control in an RM/Panels panel library,
see page 223.

110 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

3D FontBold Height *Password Visible
*Alignment FontItalic Left *PasswordChar *WantReturn
*AutoHScroll FontName Locked *ReadOnly Width
*AutoVScroll FontSize *MaxChars *ScrollBars ZOrder
BackColor FontStrikethru *Multiline TabIndex
*Border FontUnderline Name TabStop
*Case ForeColor *NoHideSel *Text
Enabled Group *OEMConvert Top

Events

*Change *HScroll KeyPress LostFocus *NoSpace
GotFocus KeyDown KeyUp *MaxText *VScroll

Alignment Property

The Alignment property determines how text is positioned in an edit box control.

Note The Alignment property has an affect only when the Multiline property (see
page 112) has a value of 1 (True).

The following table lists the possible values of the Alignment property:

Value Description

0 Normal – Performs no justification (the default).
1 Left justifies all text.
2 Center justifies all text.
3 Right justifies all text.

 Cobol-WOW User's Guide 111
 Intrinsic Controls

AutoHScroll Property

The AutoHScroll property indicates whether an edit box control will automatically scroll
horizontally as text is entered. If the value of this property is set to False, the user will not
be allowed to enter more text than fits within the width of the control.

The following table lists the possible values of the AutoHScroll property:

Value Description

False Disables horizontal scrolling.
True Enables horizontal scrolling of text when typed (the default).

AutoVScroll Property

The AutoVScroll property determines whether an edit box control will scroll vertically as
text is entered. If the value of AutoVScroll property is set to False, the user will not be
allowed to enter more text than the control will display.

Note The AutoVScroll property has an affect only when the Multiline property (see
page 112) has a value of True.

The following table lists the possible values of the AutoVScroll property:

Value Description

False Disables vertical scrolling of text when typed (the default).
True Enables vertical scrolling of text when typed.

Border Property

The Border property determines whether a border is displayed around an edit box control.

The following table lists the possible values of the Border property:

Value Description

False A border is not displayed (the default).
True A border is displayed.

112 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Case Property

The Case property determines the case conversion of alphabetic characters entered into an
edit box control.

The following table lists the possible values of the Case property:

Value Description

0 Mixed – text case is not altered; accepted as typed (the
default).

1 Converts all text to lowercase.
2 Converts all text to uppercase.

MaxChars Property

The MaxChars property determines how many characters can be entered into an edit box
control. A value of 0 will not set any limit.

Multiline Property

The Multiline property determines whether an edit box control should support single or
multiple lines of text.

The following table lists the possible values of the Multiline property:

Value Description

False Control has only one line of text (the default).
True Control can have multiple lines of text.

NoHideSel Property

The NoHideSel property determines whether the selected text remains highlighted when
an edit box control loses the input focus.

The following table lists the possible values of the NoHideSel property:

Value Description

False Selected text does not remain highlighted when the edit box
control loses input focus (the default).

True Selected text remains highlighted when the edit box control
loses input focus.

 Cobol-WOW User's Guide 113
 Intrinsic Controls

OEMConvert Property

The OEMConvert property converts characters entered in an edit box control from the
ANSI character set to the OEM character set and then back to ANSI.

This property should be used for edit box controls that are used to enter filenames. When
a character is converted from the ANSI character set to the OEM character set and back
to ANSI, the resulting character is not always the same as the original character; however,
subsequent conversions from ANSI to OEM to ANSI do result in the same character.

The following table lists the possible values of the OEMConvert property:

Value Description

False The characters are not converted (the default).
True The characters are converted from ANSI to OEM and back to

ANSI.

Password Property

The Password property determines whether the text of an edit box control or the password
character is displayed (see “PasswordChar Property” in the following section).

The following table lists the possible values of the Password property:

Value Description

False Text of the control is displayed (the default).
True The password character is displayed instead of the text.

PasswordChar Property

The PasswordChar property determines the character that is displayed if an edit box
control has the Password property set.

Set the value of the PasswordChar property with any alphanumeric character,
including space.

114 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

ReadOnly Property

The ReadOnly property determines whether the contents of an edit box control can be
modified by the user.

The following table lists the possible values of the ReadOnly property:

Value Description

False Contents may be modified (the default).
True Contents may not be modified.

ScrollBars Property

The ScrollBars property determines whether one or more scroll bars are included in an
edit box control.

Note Vertical scroll bars should only be used with edit box controls when the Multiline
property (see page 112) is set to a value of 1 (True).

The following table lists the possible values of the ScrollBars property:

Value Description

0 No scroll bars are added (the default).
1 A vertical scroll bar is added.
2 A horizontal scroll bar is added.
3 Both vertical and horizontal scroll bars are added.

Text Property

The Text property specifies the text associated with an edit box control.

Set the value of the Text property with any alphanumeric character, including space.

WantReturn Property

The WantReturn property, used in combination with the Multiline property, specifies that
a carriage return be inserted when the user presses the Enter (or Return) key while
entering text into a multi-line edit box control in a dialog box. When the user presses
Enter in a multi-line edit box control that omits this property, the dialog box’s default
command button is pressed.

 Cobol-WOW User's Guide 115
 Intrinsic Controls

The following table lists the possible values of the WantReturn property:

Value Description

False A carriage return is not inserted when the user presses the
Enter key during text entry (the default).

True A carriage return is inserted when the user presses the Enter
key during text entry.

Change Event

The Change event occurs when the value of the text in an edit box control changes. Any
of the following actions will cause this event to occur:

• A character is typed in the edit box control.

• The WOWSETPROP function (see page 52) is used to set the text.

• The edit box control is created with a text value assigned in the Designer.

HScroll Event

The HScroll event occurs when the user clicks the horizontal scroll bar for the edit
box control.

MaxText Event

The MaxText event occurs when the user attempts to enter more characters than the edit
box control will allow. This event only occurs if the AutoHScroll property is not set, or a
MaxChars property is not equal to 0.

NoSpace Event

The NoSpace event occurs when the internal Windows memory used to store the text of
the edit box control has been depleted.

VScroll Event

The VScroll event occurs when the user clicks the vertical scroll bar for the edit
box control.

116 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Ellipse Shape

The ellipse shape is used to draw the geometric shape of an ellipse on the form. A 32-bit
Windows-based application uses filled shapes in a variety of ways. Spreadsheet
applications, for example, use filled shapes to construct charts and graphs.

Technically, an ellipse is a closed curve defined by two fixed points such that the sum of
the distances from any point on the curve to the two fixed points is constant. When
calling ellipse, an application supplies the coordinates of the upper-left and lower-right
corners of the ellipse’s bounding rectangle. A bounding rectangle is the smallest
rectangle completely surrounding the ellipse. When the system draws the ellipse, it
excludes the right and lower sides if no world transformations are set. Therefore, for any
rectangle measuring x units wide by y units high, the associated ellipse measures x–1
units wide by y–1 units high.

 To add an ellipse shape control to a form, click Ellipse from the Toolbox.

Note This shape is not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. For detailed
information on these properties, see “Common Intrinsic Control Properties” on page 166.

Properties

BackBrushHatch Fill Left PenSize Top
BackBrushStyle ForeColor Locked PenStyle Width
BackColor Height Name TabIndex ZOrder

Note Because the ellipse shape allows no user interaction, no events are associated
with it.

Group Box Control

The group box control (sometimes called a group box control) is a specialized box that is
used to group other controls, such as check boxes and option (or radio) buttons.

The group box control cannot be modified or operated on by the user. Windows
implements this control in much the same way as check boxes and option buttons, and it
is commonly used to group these types of controls.

 Cobol-WOW User's Guide 117
 Intrinsic Controls

There is no need to retrieve the text of a group box, and situations in which you would
want to change its text are hard to imagine, but possible. To change the text of a group
box control at runtime with the WOWSETPROP function:

CALL WOWSETPROP USING WIN-RETURN CTL-H "CAPTION" NEW-TEXT.

CTL-H is the handle of the group box. “CAPTION” is the name of the property.
NEW-TEXT is the new text of the control.

 To add a group box control to a form, click Group Box from the Toolbox.

Note If you are working with the group box field/control in an RM/Panels panel library,
see page 224.

All of the properties for this control are listed in the following table. Note that none of
the properties for this control are unique. For information on the properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

3D FontItalic ForeColor Name Width
BackColor FontName Group TabIndex ZOrder
Caption FontSize Height TabStop
Enabled FontStrikethru Left Top
FontBold FontUnderline Locked Visible

Note Because the group box control allows no user interaction, no events are associated
with it.

IP Address Control (Not Available in this Release)

The IP address control allows the user to enter a numeric address in Internet protocol (IP)
format. This format consists of four three-digit fields. Each field is treated individually.
The field numbers are zero-based and proceed from left to right. This control also allows
the application to obtain the address in numeric form rather than in text form.

The IP address control allows only numeric text to be entered in each of the fields. Once
three digits have been entered in a given field, keyboard focus is automatically moved to
the next field. If filling the entire field is not required by the application, the user can
enter fewer than three digits. For example, if the field should only contain 21, typing 21
and pressing the Right Arrow key will take the user to the next field.

 To add an IP address control to a form, click IP Address from the Toolbox.

118 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

BackColor FontBold FontUnderline Name Visible
Enabled FontItalic ForeColor TabIndex Width
*FieldIndex FontName Height TabStop ZOrder
*FieldMax FontSize Left Top
*FieldMin FontStrikethru Locked *Value

Events

*Change GotFocus LostFocus

FieldIndex Property

The FieldIndex property controls the currently selected field of the IP address. The value
is a zero-based index to the four three-digit address fields, where 0 indicates the first
field, 1 indicates the second field, 2 indicates the third field, and 3 indicates the fourth
field.

FieldMax Property

The FieldMax property specifies the maximum range for address field. The value of the
FieldIndex property (see above) determines which field is affected. The possible range
for each field is 0 to 255, but the range can be set to any values between those limits. The
default value is 255.

FieldMin Property

The FieldMin property specifies the minimum range for address field. The value of the
FieldIndex property (see above) determines which field is affected. The possible range
for each field is 0 to 255, but the range can be set to any values between those limits. The
default value is 0.

 Cobol-WOW User's Guide 119
 Intrinsic Controls

Value Property

The Value property specifies the value of the IP address and should be in the range
specified by the settings of the FieldMin and FieldMax properties (described above).

Change Event

The Change event occurs when the value of the address fields in an IP address control
changes.

Line Shape

The line shape is used to draw a line on the form.

 To add a line shape control to a form, click Line from the Toolbox.

Note This shape is not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. For detailed
information on these properties, see “Common Intrinsic Control Properties” on page 166.

Properties

BackBrushHatch Fill Left PenSize Top
BackBrushStyle ForeColor Locked PenStyle Width
BackColor Height Name TabIndex ZOrder

Note Because the line shape allows no user interaction, no events are associated with it.

List Box Control

The list box control allows the selection of one or several items from a list of items. It is
a simple, yet versatile control. You load a list box with items at runtime. When enabled,
the user can select an item by clicking with the mouse or moving the selection bar with
the arrow keys. You send the list box a message to find out which item in the list box is
selected. For more information on using functions and messages with list boxes and the
procedures on how to use list boxes, see page 124.

 To add a list box control to a form, click List Box from the Toolbox.

Note If you are working with the list box field/control in an RM/Panels panel library, see
page 226.

120 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

3D *ExtendedSel Group ScrollBar Visible
BackColor FontBold Height *SelText *WantKeyboard
*Border FontItalic Left *Sort Width
*ColumnWidth FontName Locked *Standard ZOrder
*Count FontSize *MultipleSel TabIndex
*CurSel FontStrikethru Name TabStop
*DisableNoScroll FontUnderline *NoIntegralHeight Top
Enabled ForeColor *NoRedraw *UseTabStops

Events

Click GotFocus KeyPress LostFocus
DblClick KeyDown KeyUp

Note The event to which you are most likely to respond with a list box is the Click event.
This is the event that occurs whenever a selection changes, either by mouse click or
keyboard press, or when the Standard property is set to True. However, list boxes
generally do not take action on a selection change. A DblClick event occurs when a list
box item is double-clicked. This event is often expected to trigger some immediate
program response.

Border Property

The Border property determines whether a border is displayed around a list box control.

The following table lists the possible values of the Border property:

Value Description

False A border is not displayed.
True A border is displayed (the default).

 Cobol-WOW User's Guide 121
 Intrinsic Controls

ColumnWidth Property

The ColumnWidth property determines the width, in pixels, of the columns in a list box
control with multiple columns. If you specify a non-zero value for the ColumnWidth
property, the list box will display multiple columns.

Set the ColumnWidth property with any positive value greater than 0 but less than the
value specified in the Width property for the list box control.

Count Property

The Count property is a runtime-only property that lets you determine how many items
are contained in the list box.

Note This property can only be retrieved, not set, at runtime.

CurSel Property

The CurSel property is a runtime-only property that represents the current selection in the
list box. This value can be queried to determine which item in the list box is selected, or
set to move the selection to a different item. If no item is selected, this property has the
value LB-ERR.

DisableNoScroll Property

The DisableNoScroll property determines whether a scroll bar is displayed when a list
box control is not completely full.

The following table lists the possible values of the DisableNoScroll property:

Value Description

False Scroll bar disappears if list box is not full (the default).
True Scroll bar is disabled if list box is not full.

122 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

ExtendedSel Property

The ExtendedSel property allows selections in a multiple selection list box control by
using the mouse and the Shift key.

The following table lists the possible values of the ExtendedSel property:

Value Description

False No extended selection (the default).
True Extended selection allowed.

MultipleSel Property

The MultipleSel property allows more than one item in a list box control to be selected.

The following table lists the possible values of the MultipleSel property:

Value Description

False No multiple selection allowed (the default).
True Multiple selection allowed.

NoIntegralHeight Property

The NoIntegralHeight property determines whether the height of a list box control is
adjusted to contain an even number of items.

The following table lists the possible values of the NoIntegralHeight property:

Value Description

False List box height is adjusted (the default).
True List box height is not adjusted.

 Cobol-WOW User's Guide 123
 Intrinsic Controls

NoRedraw Property

The NoRedraw property allows a list box control to be created without updating the
screen when entries are loaded. After entries are loaded, the property can be changed to
update the screen display.

Note The value of this property cannot be retrieved at runtime. The value can, however,
be set at runtime with WOWSETPROP (see page 52).

The following table lists the possible values of the NoRedraw property:

Value Description

False List box is redrawn (the default).
True List box is not redrawn.

SelText Property

The SelText property is a runtime-only property that lets you retrieve the text of the
currently selected list box item. If no item is selected, the value returned is space.

Note This property can only be retrieved, not set, at runtime.

Sort Property

The Sort property determines whether the entries in a list box control are automatically
sorted.

The following table lists the possible values of the Sort property:

Value Description

False Entries are not sorted.
True Entries are sorted (the default).

Standard Property

The Standard property, when turned on, causes a list box control to be sorted and the
Click event to occur every time the selection changes.

The following table lists the possible values of the Standard property:

Value Description

False No sorting or Click event.
True Entries sorted and Click event on selection (the default).

124 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

UseTabStops Property

The UseTabStops property determines whether tab characters are interpreted as a spacing
technique by a list box control.

The following table lists the possible values of the UseTabStops property:

Value Description

False Tabs are not expanded (the default).
True Tabs are expanded.

WantKeyboard Property

The WantKeyboard property determines whether keystroke events are reported to the
form containing a list box control.

The following table lists the possible values of the WantKeyboard property:

Value Description

False Keystroke events are not reported to the form (the default).
True Keystrokes are reported to the form.

Using Functions and Messages with List Boxes

There are several functions and many messages that you can use with a list box. The
functions that deal with adding and removing items in a list box are WOWADDITEM,
WOWREMOVEITEM, and WOWCLEAR. Respectively, these functions add an item to
a list box, remove an item from a list box, and remove all items from a list box. The
messages you can use with a list box are too numerous to list here, but each begins with
the prefix LB-. Comprehensive information about messages can be found in the
Functions and Messages online Help file. We recommend that you take a few minutes
and browse through these topics to get an idea of the kinds of capabilities that messages
can provide.

Using a List Box

The following sections outline the basic procedures involved in using a list box.

Loading the List Box

The list box is loaded at runtime, one item at a time, with the WOWADDITEM function.
This function can be used to insert an item in a list box at a specific position or to append

 Cobol-WOW User's Guide 125
 Intrinsic Controls

it to the end of the list. To add an item to the list box, use the WOWADDITEM function
as follows:

CALL WOWADDITEM USING WIN-RETURN CTL-H NEW-ITEM INDEX.

WIN-RETURN returns 0 if the function call is successful. CTL-H is the handle of the list
box. NEW-ITEM must be an alphanumeric data item or literal that contains the item to
be added to the list box. INDEX is an optional, zero relative index of the position at
which the item should be added.

Operating the List Box

Once the list box is loaded, Windows takes care of the operation of the list box. If the
Standard property is set to True, the Click event is executed every time the user makes a
selection. Otherwise, no event is associated with making a selection. In general, no
action is taken when a selection is made, but the user should press a command button or
select a menu option to take an action. In some cases, you may want to display
information related to the selection in another part of the form as the selection changes.

Determining the Selection

At some point, you will want to determine what selection was made in the list box. This
is accomplished by checking the value of the list box’s CurSel property as follows:

CALL WOWGETPROP USING WIN-RETURN CTL-H "CURSEL" SEL-VALUE.

SEL-VALUE returns the 0 relative index of the selected item. CTL-H is the handle of the
list box. If there is no selection, SEL-VALUE will equal LB-ERR. Note that LB-ERR is
a -1 value, so SEL-VALUE must be a signed field to properly return this value.

Finding an Item

To find a specific item in a list box, use the LB-FINDSTRING or
LB-FINDSTRINGEXACT message. The LB-FINDSTRING message finds the first
entry in the list box that begins with the specified value. The LB-FINDSTRINGEXACT
message finds the first entry in the list box that exactly matches the specified value. The
messages are sent in the same manner:

CALL SENDMESSAGE USING WIN-RETURN CTL-H LB-FINDSTRING
 START-POS SEARCH-VALUE.

WIN-RETURN is the relative position of the item if found, or LB-ERR if an item is not
found. CTL-H is the handle of the list box. START-POS is the zero-relative position at
which the search should begin. SEARCH-VALUE is the alphanumeric literal or data item
for which to search.

126 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Selecting an Item

Occasionally, you will want to set the selection from inside your programs. This is
accomplished by setting the value of the list box’s CurSel property as follows:

CALL WOWSETPROP USING WIN-RETURN CTL-H "CURSEL" SEL-VALUE.

SEL-VALUE is the 0 relative index of the item to select. CTL-H is the handle of the list
box. SEL-VALUE must not be greater than the number of items in the list box - 1 (since
the value is zero relative). The number of items in the list box can be determined by
checking the value of the list box’s Count property.

Retrieving the Selection

You will undoubtedly want to retrieve the text of the selected list box item. This is
accomplished by retrieving the value of the list box’s SelText property as follows:

CALL WOWGETPROP USING WIN-RETURN CTL-H "SELTEXT" SEL-TEXT.

SEL-TEXT returns the value of the selected list box item. If no item is selected, space is
returned. CTL-H is the handle of the list box.

Removing One or All Items from the List Box

You may want to clear one or all items from the list box during the use of the form
containing the list box. To remove a single item from a list box:

CALL WOWREMOVEITEM USING WIN-RETURN CTL-H INDEX

WIN-RETURN returns 0 if the function is successful. CTL-H is the handle of the list
box. INDEX is a numeric data item or literal that specifies the zero-relative index of the
item to delete.

To remove all items from a list box, use the WOWCLEAR function as follows:

CALL WOWCLEAR USING WIN-RETURN CTL-H.

WIN-RETURN returns 0 if the function is successful. CTL-H is the handle of the list
box.

Month Calendar Control (Not Available in this Release)

The month calendar control displays a monthly calendar. The calendar can display one or
more months at a time. When a user clicks on the name of a month, a pop-up menu
appears that lists all of the months of the year. A user can select a month by clicking its
name on the menu. A user who is using the date time picker control (see page 103) can

 Cobol-WOW User's Guide 127
 Intrinsic Controls

use the Alt+Down Arrow key combination to activate the month calendar control. A user
can scroll the displayed months backward or forward, respectively, either by clicking the
left arrow or the right arrow at the top of the control, or by pressing the PageUp or the
PageDown key on the keyboard. When a user clicks the year that is displayed at the top
of the calendar next to the month, an updown control appears. A user can use this control
to change the year. A user also can use the Ctrl+PageUp or the Ctrl+PageDown key
combination to scroll from one year to another. A user can press keys on the keyboard to
navigate; the arrow keys scroll between days, the Home key moves to the beginning of a
month, and the End key moves to the end of a month. Unless the calendar has the
NoToday property (see page 129) set to False, a user can return to the current day by
tapping the “Today” label at the bottom of the month calendar control.

 To add a month calendar picker control to a form, click Month Calendar from the
Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

Enabled FontUnderline *MonthDelta Top
*FirstDayOfWeek Height *MultiSelect Visible
FontBold Left Name *WeekNumbers
FontItalic Locked *NoToday Width
FontName *MaxSelCount *NoTodayCircle ZOrder
FontSize MCColor TabIndex
FontStrikethru MCColorIndex TabStop

Event

*Change

128 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

FirstDayOfWeek Property

The FirstDayOfWeek property specifies the first day of the week for a month calendar
control.

The following table lists the possible values of the FirstDayOfWeek property:

Value Description

0 Monday (the default)
1 Tuesday
2 Wednesday
3 Thursday
4 Friday
5 Saturday
6 Sunday

MaxSelCount Property

The MaxSelCount property sets the maximum number of days that can be selected in a
month calendar control. The default value is 7 (one week).

MonthDelta Property

The MonthDelta property determines the scroll rate for a month calendar control. The
scroll rate is the number of months that the control moves its display when the user clicks
a scroll button. The default value is 1.

MultiSelect Property

The MultiSelect property allows the user to select a range of dates within the control. By
default, the maximum range is one week. You can change the maximum range that can be
selected by using the MaxSelCount property (described above).

The following table lists the possible values of the MultiSelect property:

Value Description

False The user cannot select a range of dates (the default).
True The user can select a range of dates.

 Cobol-WOW User's Guide 129
 Intrinsic Controls

NoToday Property

The NoToday property determines whether or not the month calendar control will not
display the “today” date at the bottom of the control.

The following table lists the possible values of the NoToday property:

Value Description

False Displays the “today” date at the bottom of the control (the
default).

True The “today” date does not display at the bottom of the control.

NoTodayCircle Property

The NoTodayCircle property specifies that the month calendar control will not circle the
“today” date when the NoToday property (see above) is set to False.

The following table lists the possible values of the NoTodayCircle property:

Value Description

False The “today” date, if displayed, is circled (the default).
True The “today” date, if displayed, is not circled.

WeekNumbers Property

The WeekNumbers property displays week numbers (1-52) to the left of each row of
days. Week 1 is defined as the first week that contains at least four days. The default
value is False.

The following table lists the possible values of the WeekNumbers property:

Value Description

False Week numbers are not displayed to the left of each row of days
(the default).

True Week numbers are displayed to the left of each row of days.

Change Event

The Change event occurs when a change has occurred within the month calendar control.

130 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Option Button Control

The option button (also known as radio button) control displays an option that can be
turned on or off. Option buttons are usually used in groups where turning one button on
turns the others off. For more information on how to group option buttons, see page 131.

 To add an option button control to a form, click Option Button from the Toolbox.

Note If you are working with the option button field/control in an RM/Panels panel
library, see page 232.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties and
events, see “Common Intrinsic Control Properties” on page 166 and “Common Intrinsic
Control Events” on page 175.

Properties

3D Enabled FontStrikethru Left Top
*Alignment FontBold FontUnderline Locked *Value
*AutoPress FontItalic ForeColor Name Visible
BackColor FontName Group TabIndex Width
Caption FontSize Height TabStop ZOrder

Events

Click KeyDown KeyUp
GotFocus KeyPress LostFocus

Note The user can change the state of an option button in two ways: by clicking with the
mouse or by pressing the Spacebar while the option button has input focus. With either
method, the Click event for the option button is triggered. You may want to add
event-handling code to this event in order to enable/disable other controls based on the
new state of the option button.

 Cobol-WOW User's Guide 131
 Intrinsic Controls

Alignment Property

The Alignment property controls the position of the text in an option button control.

By default, the caption of an option button displays to the right of the box. The text may
be moved to the left of the button with the Alignment property. When using the 3D
property, however, the caption must be on the right.

The following table lists the possible values of the Alignment property:

Value Description

False Displays text to the right of the option button (the default).
True Displays text to the left of the option button.

AutoPress Property

The AutoPress property determines whether the state of an option button control is
automatically changed when pressed. This behavior is similar to the AutoCheck property
of the check box control.

The following table lists the possible values of the AutoPress property:

Value Description

False Option button state will not automatically change when
pressed.

True Option button state will automatically change when pressed
(the default).

Value Property

The Value property determines the state of an option button control.

The following table lists the possible values of the Value property:

Value Description

False Option button is not pushed (the default).
True Option button is pushed.

Grouping Option Buttons

At first glance, the option button control seems similar to the check box control. Because
it has two states, pushed and unpushed, you might think that it would also be used for
True/False type conditions. However, this is not the case.

132 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

The option button is almost always used in a group with other option buttons. Together,
these option buttons represent a group of mutually exclusive choices. When one option
button is selected, it deselects whatever other button in the group was previously selected.
Only one button in the group can be selected at any time.

This control also solves another tedious programming problem very easily, that of
choosing one of a limited number of exclusive options. Since only one option button can
be selected at a time, you do not have to validate any user input. You only need to
determine which option button is selected. A group of option buttons is very similar to a
list box, which is discussed on page 119.

When you create a group of option buttons, you must indicate to Windows that they are a
group. For example, let’s say you are creating two groups of option buttons, each with
three buttons in a group. Windows needs to know which buttons go together, so that it
does not treat all six as one big group.

To group the option buttons, you use two properties together, the TabIndex and Group
properties. The TabIndex property determines the input order of controls. Option
buttons in a group must have sequential input order. If the first option button in a group
has a TabIndex setting of 3, the next option button must have a TabIndex of 4, and the
next one 5.

The Group property indicates that a control is the first control in a group. The first option
button in a group must have the Group property set to True. The other option buttons in
that group must have the Group property set to False. The first control that follows a
group of controls, that is, the control whose input order (TabIndex) is subsequent to the
last one in the group, should have its Group property set to True so that Windows knows
where the group ends.

If you have two groups of three option buttons each, the Group and TabIndex properties
should be set in the following manner:

First Group Set Group Property to Set TabIndex Property to

Button 1 True x
Button 2 False x + 1
Button 3 False x + 2

Second Group

Button 4 True y
Button 5 False y + 1
Button 6 False y + 2

 Cobol-WOW User's Guide 133
 Intrinsic Controls

Progress Bar Control

A progress bar control consists of a patterned block which can be used to show the status
of a long operation.

 To add a progress bar control to a form, click Progress Bar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties for this control is listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked
with an asterisk (*). These particular items are documented in the following sections. For
more information on the remaining properties, see “Common Intrinsic Control Properties”
on page 166.

Properties

Height *Maximum TabIndex Visible
*Increment *Minimum Top Width
Left Name *Value ZOrder
Locked

Note Because the progress bar control allows no user interaction, no events are
associated with it.

Increment Property

The Increment property value is used to increment the progress bar when it receives a
PBM-STEPIT message.

Maximum Property

The Maximum property specifies the maximum allowable value for the progress bar and
is used in determining how much of the progress bar should be filled.

Minimum Property

The Minimum property specifies the minimum allowable value for the progress bar and is
used in determining how much of the progress bar should be filled.

134 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Value Property

The Value property specifies the value of the progress bar and should be in the range
specified by the settings of the Minimum and Maximum properties.

Rectangle Shape

The rectangle shape is used to draw the geometric shape of a rectangle on the form.
Rectangles are used for the cursor clipping region, the invalid portion of the client area,
an area for displaying formatted text, or the scroll area. Your applications can also use
rectangles to fill, frame, or invert a portion of the client area with a given brush, and to
retrieve the coordinates of a window or a window’s client area.

 To add a rectangle shape control to a form, click Rectangle from the Toolbox.

Note This shape is not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

All of the properties for this shape are listed in the following table. For detailed
information on these properties, see “Common Intrinsic Control Properties” on page 166.

Properties

BackBrushHatch Fill Left PenSize Top
BackBrushStyle ForeColor Locked PenStyle Width
BackColor Height Name TabIndex ZOrder

Note Because the rectangle shape allows no user interaction, no events are associated
with it.

Rounded Rectangle Shape

The rounded rectangle shape is used to draw the geometric shape of a rectangle with
rounded corners on the form. Rectangles are used for the cursor clipping region, the
invalid portion of the client area, an area for displaying formatted text, or the scroll
area. Your applications can also use rectangles to fill, frame, or invert a portion of the
client area with a given brush, and to retrieve the coordinates of a window or a window’s
client area.

 To add a rounded rectangle shape control to a form, click Rounded Rectangle from the
Toolbox.

Note This shape is not recognized by RM/Panels. If you use the Cobol-WOW Designer
to enhance a panel, this shape will not be displayed on the Cobol-WOW Toolbox.

 Cobol-WOW User's Guide 135
 Intrinsic Controls

All of the properties for this shape are listed in the following table. Properties that apply
only to this shape, or that require special consideration when used with it, are marked with
an asterisk (*). These particular items are documented in the following sections. For
detailed information on the remaining properties, see “Common Intrinsic Control
Properties” on page 166.

Properties

BackBrushHatch Height PenStyle Width
BackBrushStyle Left *RoundnessX ZOrder
BackColor Locked *RoundnessY
Fill Name TabIndex
ForeColor PenSize Top

Note Because the rounded rectangle shape allows no user interaction, no events are
associated with it.

RoundnessX Property

The RoundnessX property specifies the width of the ellipse used to draw the
rounded corners.

RoundnessY Property

The RoundnessY property specifies the height of the ellipse used to draw the
rounded corners.

Scroll Bar Controls

A vertical scroll bar displays a vertical bar that can be used to scroll information. A
horizontal scroll bar displays a horizontal bar that can be used to scroll information. For
more information on using scroll bars, see page 139.

To add a scroll bar control to a form, click either Horizontal Scroll Bar or Vertical
Scroll Bar from the Toolbox.

Note If you are working with the scroll bar field/control in an RM/Panels panel library,
see page 234.

All of the properties and events for both these controls are listed in the following tables.
Properties and events that apply only to these controls, or that require special

136 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

consideration when used with them, are marked with an asterisk (*). These particular
items are documented in the following sections. For information on the remaining
properties, see “Common Intrinsic Control Properties” on page 166.

Properties

Enabled Locked TabIndex Width
Group *Maximum TabStop ZOrder
Height *Minimum Top
Left Name *Value
*LineChange *PageChange Visible

Events

*EndScroll *LineRight
(Horizontal)

*PageLeft
(Horizontal)

*ThumbPos

*LineDn
(Vertical)

*LineUp
(Vertical)

*PageRight
(Horizontal)

*ThumbTrk

*LineLeft
(Horizontal)

*PageDn
(Vertical)

*PageUp
(Vertical)

Note There are a number of events associated with the scroll bar, related to the different
ways in which the thumb can be moved. No matter how the thumb is moved, the
EndScroll event is always generated when the user has finished moving the thumb.
Unless the contents of some part of the form are to be scrolled while the thumb is being
dragged, the EndScroll event is the best place to respond to changes in thumb position.

LineChange Property

The LineChange property determines the change in position of a scroll bar control when
the mouse is clicked on the arrows at the end of the scroll bar.

Set the LineChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that the
LineChange setting should be less than the value specified in the PageChange property.

Maximum Property

The Maximum property determines the highest value allowed for a scroll bar position.

Set the Maximum property with any value from 0 to 65535. Note that this value should
be greater than the value specified in the Minimum property.

 Cobol-WOW User's Guide 137
 Intrinsic Controls

Minimum Property

The Minimum property determines the lowest value allowed for a scroll bar position.

Set the Minimum property with any value from 0 to 65535. Note that this value should be
less than the value specified in the Maximum property.

PageChange Property

The PageChange property determines the amount the position of a scroll bar control
changes when the mouse is clicked on the scroll bar.

Set the PageChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that the
PageChange setting should be greater than the value specified in the LineChange
property.

Value Property

The Value property, a numeric value, determines the position of the scroll bar thumb.
This value will never be lower than the value of the Minimum property, or greater than
the value of Maximum property. If the thumb is positioned at the top or left of the scroll
bar, the Value property is equal to the Minimum property. If the thumb is positioned at
the bottom or right of the scroll bar, the Value property is equal to the Maximum
property. If the thumb is positioned somewhere between the ends of the scroll bar, the
value is proportional to the position of the thumb, within the numeric range established by
the Minimum and Maximum properties.

Set the Value property with any value from that of the Minimum property to the value of
the Maximum property.

EndScroll Event

The EndScroll event occurs after every change in the scroll bar thumb position.

LineLeft Event (Horizontal)

The LineLeft event occurs when the mouse is clicked on the arrow at the left of the
horizontal scroll bar.

138 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

LineRight Event (Horizontal)

The LineRight event occurs when the mouse is clicked on the arrow at the right of the
horizontal scroll bar.

LineDn Event (Vertical)

The LineDn event occurs when the mouse is clicked on the arrow at the bottom of the
vertical scroll bar.

LineUp Event (Vertical)

The LineUp event occurs when the mouse is clicked on the arrow at the top of the vertical
scroll bar.

PageLeft Event (Horizontal)

The PageLeft event occurs when the mouse is clicked on the bar to the left of the thumb
on a horizontal scroll bar.

PageRight Event (Horizontal)

The PageRight event occurs when the mouse is clicked on the bar to the right of the
thumb on a horizontal scroll bar.

PageDn Event (Vertical)

A PageDn event occurs when the mouse is clicked on the bar to the right of or below the
thumb on a vertical scroll bar.

PageUp Event (Vertical)

A PageUp event occurs when the mouse is clicked on the bar to the left of or above the
thumb on a vertical scroll bar.

ThumbPos Event

A ThumbPos event occurs when the mouse is released after being clicked on the scroll
bar thumb.

ThumbTrk Event

A ThumbTrk event occurs when the mouse is pressed on the scroll bar thumb.

 Cobol-WOW User's Guide 139
 Intrinsic Controls

Using Scroll Bars

The scroll bar control is used to allow a numeric value to be manipulated as a thumb
position on a bar. By specifying the minimum and maximum, the value can be viewed
relative to a range of possible values. This value and the scroll bar are often used to
scroll the display of other information on a form.

For example, let’s say a form is used for order entry and displays five lines of a possible
100 on an order. The scroll bar could be used to scroll the view to include the other lines
on the order. In this case, by specifying the minimum value as 0 and the maximum value
as 95, the scroll bar value could be used directly as the offset between the displayed order
line and the actual order line.

Although scroll bars can be vertical or horizontal, they function in the same manner. The
thumb on the scroll bar can be dragged to a desired position with the mouse. The thumb
also can be moved by clicking the bar on either side of the thumb, or by clicking one of
the arrows at either end of the bar.

Clicking the body of the scroll bar or on the arrows moves the thumb in different,
configurable increments. Clicking the body of the scroll bar moves the thumb by the
increment specified in the Page property. Clicking the arrows at either end of the scroll
bar moves the thumb by the increment specified in the Line property. The Page
increment, by convention, should be larger than the Line increment. Considering the
order entry situation described previously, the Line property should be one and the Page
property should be equal to five, which is the number of lines of the order displayed on
the form at one time.

Static Text Control

The static text control is used to display text, rectangular outlines, or filled rectangles.
These features could reasonably be implemented as several different types of objects, but
Windows combines them into one since they have the same properties. See page 142 for
special considerations when using static text controls.

You use the static text control most often to display text the user is not allowed to modify,
such as labels for other controls. The static text control is also used to draw rectangles or
outlines to highlight parts of a form, group controls, or even create a design.

There is rarely a need to retrieve the contents of static text controls since the user cannot
change them. However, you may need to change the text of a static text control at
runtime. To change the text of a static text control at runtime with the WOWSETPROP
function:

CALL WOWSETPROP USING WIN-RETURN CTL-H "TEXT" NEW-TEXT.

140 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

CTL-H is the handle of the static text control. “TEXT” is the name of the property.
NEW-TEXT is the new text of the control.

 To add a static text box control to a form, click Static Text from the Toolbox.

Note If you are working with the static text field/control in an RM/Panels panel library,
see page 236.

All of the properties for this control are listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked
with an asterisk (*). These items are documented in the following sections. For
information on the remaining properties, see “Common Intrinsic Control Properties” on
page 166.

Properties

3D FontBold ForeColor *NoPrefix *WordWrap
*Alignment FontItalic Group TabIndex ZOrder
BackColor FontName Height Top
Caption FontSize Left *Transparent
*Effect FontStrikethru Locked Visible
Enabled FontUnderline Name Width

Note Because the static text control allows no user interaction, no events are associated
with it.

Alignment Property

The Alignment property determines how text is positioned in a static text control. The
Alignment property allows the text of any static text control, not just multiline controls, to
be aligned to the right, left, or center of the control.

The following table lists the possible values of the Alignment property:

Value Description

0 Normal – Performs no justification (the default).
1 Left justifies text.
2 Centers text.
3 Right justifies text.

 Cobol-WOW User's Guide 141
 Intrinsic Controls

Effect Property

The Effect property changes a static text control into an empty rectangle or a colored
group box without text. The color names actually designate one of the Windows
configuration options and may not match the color name used.

The Effect property is used to determine the type of static text control that is displayed:
text, outline, or rectangle. It is important to note that the text of a static text control is not
displayed when the outline or rectangle effect is selected. When the 3D property is set to
True, the Effect property also has different appearances.

The following table lists the possible values of the Effect property:

Value Description

0 None – Text is displayed (the default).
1 Draws a rectangle with the window group box color, usually

black.
2 Draws a rectangle with the desktop background color, usually

gray.
3 Draws a rectangle with the parent window’s background,

usually white.
4 Draws a black group box.
5 Draws a gray group box.
6 Draws a white group box.

NoPrefix Property

The NoPrefix property determines whether the ampersand (&) character causes the
subsequent character to be underlined in a static text control.

The following table lists the possible values of the NoPrefix property:

Value Description

False The ampersand character (&) causes next character to be
underlined (the default).

True The ampersand character (&) character is displayed.

142 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Transparent Property

The Transparent property determines whether the background of the form, or the
underlying control, will show through.

The following table lists the possible values of the Transparent property:

Value Description

False Causes the background of the form or the underlying control
not to show through (the default).

True Causes the background of the form or the underlying control
to show through.

WordWrap Property

The WordWrap property determines whether text is wrapped to multiple lines on a static
text control.

The following table lists the possible values of the WordWrap property:

Value Description

False Text is wrapped (the default).
True Text is not wrapped.

Special Considerations for Static Text Controls

Windows displays all disabled static text controls with gray text. While you may never
need to disable a static text control (since they do not have any events attached to them),
if you were to do so, the text would appear as gray. If the control is displayed on a form
with the default gray background, the control will not be visible.

Status Bar Control

A status bar control display status information in a horizontal window at the bottom of an
application window. Status bars are often divided into sections, called panes, and each
pane displays different status information.

When the status bar shows only one pane, it is in “simple mode.” When the text of the
window is set, the window is invalidated, but it is not redrawn until the next WM-PAINT
message. Waiting for the message reduces screen flicker by minimizing the number of
times the window is redrawn. A simple mode status bar is useful for displaying Help text
for menu items while the user is scrolling through the menu.

 Cobol-WOW User's Guide 143
 Intrinsic Controls

 To add a status bar control to a form, click Status Bar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties for this control is listed in the following table. Properties that apply
only to this control, or that require special consideration when used with it, are marked
with an asterisk (*). These particular items are documented in the following sections. For
more information on the remaining properties, see “Common Intrinsic Control Properties”
on page 166.

Properties

*CurSection *SectionNoBorders *SimpleNoBorders Visible
Height *SectionPopOut *SimplePopOut Width
Left *Sections *SimpleStatus ZOrder
Locked *SectionStatus TabIndex
Name *SectionWidth Top

Note Because the status bar control allows no user interaction, no events are associated
with it.

CurSection Property

The CurSection property controls the currently selected section (or pane) in the status
bar. The value is a zero-based index to the status bar panes, where 0 indicates the first
pane, 1 indicates the second pane, and so on. The number of panes is controlled by the
Sections property.

SectionNoBorders Property

The SectionNoBorders property specifies whether or not the text in the specified pane of
a status bar is drawn without borders. The value of CurSection determines which pane is
affected.

The following table lists the possible values of the SectionNoBorders property:

Value Description

False The text in the status bar pane is drawn with borders (the
default).

True The text in the status bar pane is drawn without borders.

144 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

SectionPopOut Property

The SectionPopOut property determines whether the text in the specified pane of a status
bar is drawn with a border to appear higher than the plane of the status bar. The value of
CurSection determines which pane is affected.

The following table lists the possible values of the SectionPopOut property:

Value Description

False The text is not drawn with a border to appear higher than the
plane of the status bar (the default).

True The text is drawn with a border to appear higher than the plane
of the status bar.

Sections Property

The Sections property indicates the number of panes into which the status bar is divided.
The number of sections cannot be greater than 256.

SectionStatus Property

The SectionStatus property specifies the text that appears in the specified pane of the
status bar. The value of CurSection determines which pane is affected.

SectionWidth Property

The SectionWidth property is a pointer to an integer array. The number of elements is
specified in the Sections property. Each element specifies the position, in client
coordinates, of the right edge of the corresponding part. If an element is -1, the right edge
of the corresponding part extends to the border of the window.

SimpleNoBorders Property

The SimpleNoBorders property specifies whether or not the text in the status bar is drawn
without borders when the status bar is in simple mode, that is, when only one pane is
visible.

The following table lists the possible values of the SimpleNoBorders property:

Value Description

False The text in the status bar pane is drawn with borders (the
default).

True The text in the status bar pane is drawn without borders.

 Cobol-WOW User's Guide 145
 Intrinsic Controls

SimplePopOut Property

The SimplePopOut property determines whether the text in the status bar is drawn with a
border to appear higher than the plane of the status bar when the status bar is in simple
mode, that is, when only one pane is visible.

The following table lists the possible values of the SimplePopOut property:

Value Description

False The text is not drawn with a border to appear higher than the
plane of the status bar (the default).

True The text is drawn with a border to appear higher than the plane
of the status bar.

SimpleStatus Property

The SimpleStatus property specifies the text that appears in the status bar when it is in
simple mode.

Tab Control

A tab control is a container control, meaning it allows other controls to be placed inside
it. The tab control has several tabs at the top of the control. When a control is added to
the tab, it is attached to the tab that is currently selected. When another tab is selected,
the controls for the other tabs are hidden and the controls for the selected tab are
displayed. This is an excellent way to organize controls by category, rather than placing a
large number of controls in a single window.

All the controls on the tab are created when the tab control is created and destroyed when
the tab control is destroyed. The controls are not created and destroyed as different tabs
are selected. This means that the controls can be initialized once when the tab is created,
and the control values retrieved once, before the tab is destroyed. There is no need to
initialize or read from the controls just because a new tab is being selected.

 To add a tab control to a form, click Tab from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, certain properties unique to the tab control (Buttons, FixedWidth,
ForceLabelLeft, GetFocus, Multiline, RightJustify, and Tabs) can be manipulated only in
the Cobol-WOW Designer. The runtime functions, WOWGETPROP and
WOWSETPROP, will not recognize these properties.

146 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

*Buttons FontName *GetFocus Name Top
*CurTab FontSize Height *RightJustify Visible
*FixedWidth FontStrikethru Left TabIndex Width
FontBold FontUnderline Locked *Tabs ZOrder
FontItalic *ForceLabelLeft *Multiline *TabText

Events

*KeyDown *SelChange *SelChanging

Buttons Property

The Buttons property controls the way the tabs are displayed. Setting its value to True
makes tabs appear as buttons. This implies that the application should take immediate
action when one of the buttons is pressed.

The following table lists the possible values of the Buttons property:

Value Description

False Causes tabs to appear as tabs (the default).
True Causes tabs to appear as buttons.

CurTab Property

The CurTab property controls the currently selected tab in the Cobol-WOW Designer.
Change this value to select the desired tab before adding controls to it, and before setting
the TabText property, which applies to each tab individually. The value is a zero-based
index to the tabs, where 0 indicates the first tab, 1 indicates the second tab, and so on.

 Cobol-WOW User's Guide 147
 Intrinsic Controls

FixedWidth Property

The FixedWidth property allows all tabs to be the same width.

The following table lists the possible values of the FixedWidth property:

Value Description

False Tabs are displayed with varying widths (the default).
True Tabs are displayed in the same width.

ForceLabelLeft Property

The ForceLabelLeft property determines whether or not tab static texts are forced to the
left. If the ForceLabelLeft property is set, the FixedWidth property must be set to True.

The following table lists the possible values of the ForceLabelLeft property:

Value Description

False Tabs are not forced to the left (the default).
True Tabs are forced to the left.

GetFocus Property

The GetFocus property determines whether or not the text of the selected tab has input
focus. Setting the GetFocus property to False on a tab control prevents input focus from
going to the text of the selected tab. It does not prevent focus from going to any of the
controls on the tab. When the tab control receives focus, the text of the tab itself gets
selected with a box.

The following table lists the possible values of the GetFocus property:

Value Description

False Prevents input focus from going to the text of the selected tab
(the default).

True Text of the selected tab has input focus.

148 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Multiline Property

The Multiline property determines whether the tabs will occupy multiple lines if the tab
control is too narrow for all the tabs to be displayed on a single line.

The following table lists the possible values of the Multiline property:

Value Description

False Prevents the tabs from occupying multiple lines (the default).
True Allows the tabs to occupy multiple lines.

RightJustify Property

Not implemented.

Tabs Property

The Tabs property determines how many tabs are displayed on the control.

TabText Property

The TabText property controls the text of each tab. The value of CurTab determines
which tab is affected.

KeyDown Event

The KeyDown event notifies a tab control’s parent window that a key has been pressed.
This message is sent in the form of a WM-NOTIFY message.

SelChange Event

The SelChange event notifies a tab control’s parent window that the currently selected tab
has changed.. This message is sent in the form of a WM-NOTIFY message.

SelChanging Event

The SelChanging event notifies a tab control’s parent window that the currently selected
tab is about to change. This message is sent in the form of a WM-NOTIFY message.

 Cobol-WOW User's Guide 149
 Intrinsic Controls

Timer Control

The timer control provides a measured time interval that can be tied to events.

 To add a time control to a form, click Timer from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

Enabled Left TabIndex Width
Height Locked Top ZOrder
*Interval Name Visible

Event

*Timer

Interval Property

The Interval property specifies the length of time between timer ticks in milliseconds.

Timer Event

The Timer event enables or disables one event per timer tick (interval).

Toolbar Control

A toolbar control consists of a series of buttons that can be placed at the top and/or
bottom of a form. You can put two toolbars on a form, one at the top and one at the
bottom. Event-handling code can be attached to each button in the toolbar. Each button
in the toolbar can contain a bitmap and/or text.

The interaction of button groups and the wrapping properties of the toolbar are somewhat
obscure. Liant Software Corporation has not fully isolated the interaction of all of these
properties, and documentation from Microsoft is sketchy.

150 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

 To add a toolbar control to a form, click Toolbar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, properties unique to the toolbar control (AlignTop, BitmapHeight,
BitmapWidth, BtnBitmap, BtnHidden, BtnStyle, BtnWrap, ButtonHeight, Buttons,
ButtonWidth, Larger, Rows, and Wrapable) can be manipulated only in the
Cobol-WOW Designer.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Note The properties that begin with the prefix “Btn” refer to a single button on the
toolbar. The button being referred to is controlled by the setting of the CurButton
property. All other properties apply to the entire toolbar.

Properties

*AlignTop *BtnState *ButtonWidth Name *Wrapable
*BitmapHeight *BtnStyle *CurButton *Rows ZOrder
*BitmapWidth *BtnText Height TabIndex
*BtnBitmap *BtnWrap Larger Top
*BtnEnabled *ButtonHeight Left Visible
*BtnHidden *Buttons Locked Width

Event

*Button-0

AlignTop Property

The AlignTop property determines the placement of the toolbar on the form.

The following table lists the possible values of the AlignTop property:

Value Description

False Places the toolbar at the bottom of the form.
True Places the toolbar at the top of the form (the default).

 Cobol-WOW User's Guide 151
 Intrinsic Controls

BitmapHeight Property

All bitmaps placed in the toolbar must be the same size. The BitmapHeight property
specifies the height of the bitmaps to be placed on the toolbar. This is not only the height
at which bitmaps are displayed, but also the height of the bitmaps as they were created.

BitmapWidth Property

All bitmaps placed in the toolbar must be the same width. The BitmapWidth property
specifies the width of the bitmaps to be placed on the toolbar. This is not only the width
at which the bitmaps are displayed, but also the width of the bitmaps as they were created.

BtnBitmap Property

The BtnBitmap property is an optional bitmap that will be displayed in the button. An
example of such a bitmap is the scissors in the Cut button.

BtnEnabled Property

The BtnEnabled property controls whether or not the button can be clicked at runtime.
Cobol-WOW provides runtime support for the BtnEnabled property using
WOWGETPROP and WOWSETPROP, which allows the enabled state of the toolbar
button to be set or retrieved at runtime. Before getting or setting the BtnEnabled property
value, the CurButton property must be set to the zero-based index of the desired button.
Setting the CurButton property has no effect on the user interface.

The following table lists the possible values of the BtnEnabled property:

Value Description

False The toolbar button cannot be clicked at runtime.
True The toolbar button can be clicked at runtime (the default).

BtnHidden Property

The BtnHidden property determines whether or not the button is displayed.

The following table lists the possible values of the BtnHidden property:

Value Description

False The toolbar button is displayed (the default).
True The toolbar button is not displayed.

152 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

BtnState Property

The BtnState property determines the initial state of the button. Cobol-WOW provides
runtime support for the BtnState property using WOWGETPROP and WOWSETPROP,
which allows the state of the toolbar button to be set or retrieved at runtime. Before
getting or setting the BtnState property value, the CurButton (see page 153) property must
be set to the zero-based index of the desired button. Setting the CurButton property has
no effect on the user interface.

The following table lists the possible values of the BtnState property:

Value Description

0 Normal – The button accepts user input.
1 Checked – The button is being clicked.
2 Pressed – The button is being clicked.
3 Indeterminate – The button is grayed.

BtnStyle Property

The BtnStyle property determines the style of the button. The check style creates a button
that stays pressed. Group and checkgroup are normal and check buttons, respectively,
that begin a group of buttons that work together. The separator style creates a button that
looks like a space between buttons and that cannot be pressed.

The following table lists the possible values of the BtnStyle property:

Value Description

0 Button – Creates a standard button.
1 Check – Creates a dual-state push button that toggles between the

pressed and nonpressed states each time the user clicks it. The
button has a different background color when it is in the pressed
state.

2 Group – Creates a button that stays pressed until another button in
the group is pressed.

3 CheckGroup – Creates a button that stays pressed until another
button in the group is pressed, similar to option buttons.

4 Separator – Creates a separator, providing a small gap between
button groups. A button that has this style does not receive user
input.

 Cobol-WOW User's Guide 153
 Intrinsic Controls

BtnText Property

The BtnText property allows optional text to display on the button.

BtnWrap Property

The BtnWrap property will allow the toolbar to wrap to the next line after the current
button. Wrapping is also done at separators, but will not be done within a group.

The following table lists the possible values of the BtnWrap property:

Value Description

False The toolbar is wrapped (the default).
True The toolbar is not wrapped.

ButtonHeight Property

The ButtonHeight property determines the displayed height of the buttons. If this value is
set less than the height required by the button’s bitmap or text, this value will be ignored.

Buttons Property

The Buttons property determines the number of buttons on the toolbar.

ButtonWidth Property

The ButtonWidth property determines the displayed width of the buttons. If this value is
set less than the width required by the button’s bitmap or text, this value will be ignored.

CurButton Property

The CurButton property specifies which button’s properties are displayed in are
accessible through the Btn-prefixed property values. Setting the CurButton property has
no effect on the user interface. Before getting or setting the either the BtnState (see
page 152) or the BtnEnabled (see page 151) property value, the CurButton property must
be set to the zero-based index of the desired button.

154 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

Larger Property

The Larger property allows the size of the toolbar to be increased.

The following table lists the possible values of the Larger property:

Value Description

False The toolbar occupies the number of rows indicated by the
Rows property.

True Allows the toolbar to occupy more rows than indicated by the
Rows property (the default).

Rows Property

The Rows property indicates how many rows can be used to display the toolbar. This
property can be ignored, based on the grouping and separation of buttons.

Wrapable Property

The Wrapable property indicates that a toolbar may be wrapped to subsequent lines if it is
too long.

Button-0 Event

The Button-0 event indicates that the user clicked on the specified button on the toolbar.

Trackbar Control

A trackbar control displays a window containing a slider and optional tick marks used to
select a value or a set of consecutive values in a range. The trackbar control can be
oriented either horizontally or vertically. Trackbars are useful when you want the user to
select a discrete value or a set of consecutive values in a range. For example, you might
use a trackbar to allow the user to set the repeat rate of the keyboard by moving the slider
to a given tick mark.

 To add a trackbar control to a form, click Trackbar from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, certain properties unique to the trackbar control (AutoTicks,
BothTicks, EnableSelRange, LeftTicks, NoThumb, NoTicks, TopTicks, SelEnd, SelStart,

 Cobol-WOW User's Guide 155
 Intrinsic Controls

and Vertical) can be manipulated only in the Cobol-WOW Designer. The runtime
functions, WOWGETPROP and WOWSETPROP, will not recognize these properties.

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

*AutoTicks *LeftTicks *NoThumb TabStop Visible
*BothTicks *LineChange *NoTicks *TickFreq Width
Enabled Locked *PageChange Top ZOrder
*EnableSelRange *Maximum *SelEnd *TopTicks
Height *Minimum *SelStart *Value
Left Name TabIndex *Vertical

Events

*Bottom *LineDown *PageDown *ThumbPos *Top
*EndTrack *LineUp *PageUp *ThumbTrk

AutoTicks Property

The AutoTicks property determines whether or not the trackbar control has tick marks for
each increment in its range of values.

The following table lists the possible values of the AutoTicks property:

Value Description

False The trackbar control does not have a tick mark for each
increment in its range of values.

True The trackbar control has a tick mark for each increment in its
range of values (the default).

156 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

BothTicks Property

The BothTicks property determines whether or not tick marks are displayed on both sides
of the trackbar control.

The following table lists the possible values of the BothTicks property:

Value Description

False The trackbar control does not display tick marks on both sides
of the control (the default).

True The trackbar control displays tick marks on both sides of the
control.

EnableSelRange Property

The EnableSelRange property determines whether or not the trackbar control displays a
selection range. A “selection range” restricts the user to a specified portion of the total
range. The logical units do not change, but only a subset of them are available for use.
The trackbar highlights the available range and displays triangular tick marks at the start
and end. Typically, an application handles the trackbar’s notification messages and sets
the trackbar’s selection range according to the user’s input.

The following table lists the possible values of the EnableSelRange property:

Value Description

False The trackbar control does not display a selection range (the
default).

True The trackbar control displays a selection range only. The tick
marks at the starting and ending positions of a selection range
are displayed as triangles (instead of vertical dashes), and the
selection range is highlighted.

LeftTicks Property

The LeftTicks property determines whether or not tick marks are displayed to the left of
the trackbar control.

The following table lists the possible values of the LeftTicks property:

Value Description

False The trackbar control does not display tick marks to the left of
the control.

True The trackbar control displays tick marks to the left of the
control (the default).

 Cobol-WOW User's Guide 157
 Intrinsic Controls

LineChange Property

The LineChange property determines the change in position of a trackbar control when
the mouse is clicked on the arrows at the end of the scroll bar.

Set the LineChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that the
LineChange setting should be less than the value specified in the PageChange property.

Maximum Property

The Maximum property determines the highest value allowed for a scroll bar position.

Set the Maximum property with any value from 0 to 65535. Note that this value should
be greater than the value specified in the Minimum property.

Minimum Property

The Minimum property determines the lowest value allowed for a scroll bar position.

Set the Minimum property with any value from 0 to 65535. Note that this value should be
less than the value specified in the Maximum property.

NoThumb Property

The NoThumb property determines whether or not the trackbar control displays a slider.

The following table lists the possible values of the NoThumb property:

Value Description

False The trackbar control displays a slider (the default).
True The trackbar control does not display a slider.

NoTicks Property

The NoTicks property determines whether or not the trackbar control displays tick marks.

The following table lists the possible values of the NoTicks property:

Value Description

False The trackbar control displays tick marks (the default).
True The trackbar control does not display any tick marks.

158 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

PageChange Property

The PageChange property determines the amount the position of a trackbar control
changes when the mouse is clicked on the trackbar.

Set the PageChange property with any value greater than 0 but less than the difference
specified between the Minimum and Maximum property values. In addition, note that the
PageChange setting should be greater than the value specified in the LineChange
property.

SelEnd Property

The SelEnd property sets the ending position of the selection range when the
EnableSelRange property is set to True.

SelStart Property

The SelStart property sets the beginning position of the selection range when the
EnableSelRange property is set to True.

TickFreq Property

The TickFreq property determines the number of tick marks to display on the control in a
range of 1 through 100. The default is 10.

TopTicks Property

The TopTicks property determines whether or not tick marks are displayed above the
control.

The following table lists the possible values of the TopTicks property:

Value Description

False The trackbar control does not display tick marks above the
control.

True The trackbar control displays tick marks above the control (the
default).

Value Property

The Value property specifies the value of the trackbar and should be in the range
specified by the settings of the Minimum and Maximum properties.

 Cobol-WOW User's Guide 159
 Intrinsic Controls

Vertical Property

The following table lists the possible values of the Vertical property:

Value Description

False The trackbar control is not oriented vertically (the default).
True The trackbar control is oriented vertically.

Bottom Event

The Bottom event occurs when the user interacts with trackbar control the using the
End key.

EndTrack Event

The EndTrack event occurs when the user stops interacting with the trackbar control,
whether by the keyboard or with the mouse.

LineDown Event

The LineDown event occurs when the user depresses the Down Arrow or PgDn keys.

LineUp Event

The LineUp event occurs when the user depresses the Up Arrow or PgUp keys.

PageDown Event

The PageDown event occurs when the user clicks the area below or to the right of the
slider with the mouse or moves to that area using the keyboard.

PageUp Event

The PageUp event occurs when the user clicks the area above or to the left of the slider
with the mouse or moves to that area using the keyboard..

ThumbPos Event

The ThumbPos event occurs when the user drags the slider and releases the mouse.

160 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

ThumbTrk Event

The ThumbTrk event occurs when the user drags the slider.

Top Event

The Top event occurs when the user interacts with trackbar control the using the
Home key.

Updown Control

An Updown control is a pair of arrow buttons that the user can click to increment or
decrement a value, such as a scroll position or a number displayed in a companion
control. The value associated with an updown control is called its current position.

An updown control is most often used with a companion control, which is called a buddy
window. To the user, an updown control and its buddy window often look like a single
control. You can specify that an updown control automatically position itself next to its
buddy window and that it automatically set the caption of the buddy window to its current
position. For example, you can use an updown control with an edit box control to prompt
the user for numeric input.

An updown control without a buddy window functions as a sort of simplified scroll bar.
For example, a tab control sometimes displays an updown control to enable the user to
scroll additional tabs into view.

 To add an updown control to a form, click Updown from the Toolbox.

Note This control is not recognized by RM/Panels. If you use the Cobol-WOW
Designer to enhance a panel, this control will not be displayed on the Cobol-WOW
Toolbox.

At the current time, certain properties unique to the updown control (Accelerators,
AccelIncrement, AccelSeconds, AlignLeft, AlignRight, ArrowKeys, BuddyInteger,
CurAccel, NoThousands, and Wrapable) can be manipulated only in the Cobol-WOW
Designer. The runtime functions, WOWGETPROP and WOWSETPROP, will not
recognize these properties.

 Cobol-WOW User's Guide 161
 Intrinsic Controls

All of the properties and events for this control are listed in the following tables.
Properties and events that apply only to this control, or that require special consideration
when used with it, are marked with an asterisk (*). These particular items are
documented in the following sections. For information on the remaining properties, see
“Common Intrinsic Control Properties” on page 166.

Properties

*Accelerators *Base *Horizontal *NoThousands Width
*AccelIncrement *Buddy Left TabIndex *Wrapable
*AccelSeconds *BuddyInteger Locked TabStop ZOrder
*AlignLeft *CurAccel *Maximum Top
*AlignRight Enabled *Minimum *Value
*ArrowKeys Height Name Visible

Events

*EndScroll *ThumbPos

Accelerators Property

The Accelerators property determines the rate at which the current position changes when
the up or down arrow is clicked.

AccelIncrement Property

The AccelIncrement property specifies the position change increment to use after the time
specified by the AccelSeconds property elapses. The value of CurAccel determines
which accelerator is affected.

AccelSeconds Property

The AccelSeconds property specifies the amount of elapsed time, in seconds, before the
position change increment specified by the AccelIncrement property is used. The value
of CurAccel determines which accelerator is affected.

162 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

AlignLeft Property

The AlignLeft property determines whether or not the updown control is aligned with the
left edge of its buddy window. The width of the buddy window is decreased to
accommodate the width of the updown control.

The following table lists the possible values of the AlignLeft property:

Value Description

False The updown control is not aligned with the left edge of its
buddy window (the default).

True The updown control is aligned with the left edge of its buddy
window.

AlignRight Property

The AlignRight property determines whether or not the updown control is aligned with
the right edge of its buddy window. The width of the buddy window is decreased to
accommodate the width of the updown control.

The following table lists the possible values of the AlignRight property:

Value Description

False The updown control is not aligned with the right edge of its
buddy window (the default).

True The updown control is aligned with the right edge of its buddy
window.

ArrowKeys Property

The ArrowKeys property provides a keyboard interface for an updown control. If this
property is set to True, the control processes the Up Arrow and Down Arrow keys. The
control also subclasses the buddy window so that it can process these keys when the
buddy window has the focus.

The following table lists the possible values of the ArrowKeys property:

Value Description

False The updown control does not process the Up Arrow and Down
Arrow keys (the default).

True The updown control processes the Up Arrow and Down Arrow
keys.

 Cobol-WOW User's Guide 163
 Intrinsic Controls

Base Property

The Base property specifies he radix base for an updown control. The base value
determines whether the buddy window displays numbers in decimal or hexadecimal
digits. Hexadecimal numbers are always unsigned, and decimal numbers are signed.

The following table lists the possible values of the Base property:

Value Description

0 The updown control’s buddy window displays numbers in
decimal digits.

1 The updown control’s buddy window displays numbers in
hexadecimal digits.

Buddy Property

The Buddy property specifies the buddy window for an updown control.

The following table lists the possible values of the Buddy property:

Value Description

0 No buddy window
1 A trackbar is the buddy window.
2 A check box is the buddy window.
6 A status bar is the buddy window.

BuddyInteger Property

The BuddyInteger property causes the updown control to set the text of the buddy
window (using the WM-SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

The following table lists the possible values of the BuddyInteger property:

Value Description

False The text of the buddy window is not set when its position
changes.

True The text of the buddy window is set when its position changes
(the default).

164 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

CurAccel Property

The CurAccel property controls the currently selected accelerator for the updown control.
Change this value to select the desired accelerator before setting the AccelSeconds and
AccelSeconds properties, which apply to each accelerator individually. The value is a
zero-based index to the accelerator, where 0 indicates the first accelerator, 1 indicates the
second accelerator, and so on.

Horizontal Property

The Horizontal property determines whether or not the updown control is used for
horizontal scrolling. If this property is set to True, the updown control’s arrows point left
and right instead of up and down.

The following table lists the possible values of the Horizontal property:

Value Description

False The updown control is not used for horizontal scrolling.
True The updown control is used for horizontal scrolling (the

default).

Maximum Property

The Maximum property sets the maximum position (range) for an updown control. The
maximum position can be less than the minimum position. Clicking the up arrow button
moves the current position closer to the maximum position, and clicking the down arrow
button moves towards the minimum position.

Minimum Property

The Minimum property sets the minimum position (range) for an updown control. The
maximum position can be less than the minimum position. Clicking the up arrow button
moves the current position closer to the maximum position, and clicking the down arrow
button moves towards the minimum position.

 Cobol-WOW User's Guide 165
 Intrinsic Controls

NoThousands Property

The NoThousands property determines whether or not the updown control inserts a
thousands separator between every three digits of a decimal string.

The following table lists the possible values of the NoThousands property:

Value Description

False A thousands separator is not inserted between every three
digits of a decimal string (the default).

True A thousands separator is not inserted between every three
digits of a decimal string.

Value Property

The Value property specifies the value of the updown control and should be in the range
specified by the settings of the Minimum and Maximum properties.

Wrapable Property

The Wrapable property causes the position of the updown control to wrap if it is
incremented or decremented beyond the ending or beginning of the range. By default, the
current position does not change if the user attempts to increment it or decrement it
beyond the maximum or minimum value. You can change this behavior by using the
Wrapable property, so the position wraps to the opposite extreme. For example,
incrementing past the upper limit wraps the position back to the lower limit.

The following table lists the possible values of the Wrapable property:

Value Description

False The current position of the updown control does not change if
the user attempts to increment it or decrement it beyond the
maximum or minimum value (the default).

True The current position of the updown control changes if the user
attempts to increment it or decrement it beyond the maximum
or minimum value.

166 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

EndScroll Event

The EndScroll event occurs when the user stops scrolling.

ThumbPos Event

The ThumbPos event occurs when the user drags the slider and releases the mouse.

Common Intrinsic Control Properties

This section summarizes the common properties that may be implemented in an intrinsic
control. Refer to the specific control in the preceding sections to determine the unique
properties available for the control.

The following properties are used by several types of intrinsic controls.

Properties

3D Fill FontUnderline MCColor TabIndex
BackBrushHatch FontBold ForeColor MCColorIndex TabStop
BackBrushStyle FontItalic Group Name Top
BackColor FontName Height PenSize Visible
Caption FontSize Left PenStyle Width
Enabled FontStrikethru Locked ScrollBar ZOrder

3D Property

The 3D property controls the appearance of a control. If this property is set to True, the
control will have a three-dimensional effect.

The following table lists the possible values of the 3D property:

Value Description

False A three-dimensional control is not displayed (the default).
True A three-dimensional control is displayed.

Note Setting the 3D property to a value of True for the check box (see page 94) and
option (radio) button (see page 130) controls is compatible only if the Alignment property
for these particular controls is set to the default. (The default setting displays text to the
right of the check box or option button, respectively.) The 3D property is not available
for the command button control because the three-dimensional effect is already

 Cobol-WOW User's Guide 167
 Intrinsic Controls

implemented by Windows. Windows always displays check box and option button
controls in 3D, regardless of the property settings.

The form 3D property settings of 1 (All 3D) and 2 (No 3D) will override the 3D property
settings of individual controls. (For more information, see the 3D property description on
page 177.)

BackBrushHatch Property

The BackBrushHatch property specifies the hatch style of the brush used to paint the
interior of the geometric shape (ellipse, line, rectangle, or rounded rectangle control).

The following table lists the possible values of the BackBrushHatch property:

Value Description

0 Horizontal hatch
1 Vertical hatch
2 Forward diagonal (a 45-degree downward, left-to-right hatch)
3 Backward diagonal (a 45-degree upward, left-to-right hatch)
4 Horizontal and vertical cross-hatch (the default)
5 45-degree diagonal cross-hatch

BackBrushStyle Property

The BackBrushStyle property specifies the style of the brush used to paint the interior of
the geometric shape (ellipse, line, rectangle, or rounded rectangle control).

The following table lists the possible values of the BackBrushStyle property:

Value Description

0 Solid brush
1 Hollow brush
2 Hatched brush

BackColor Property

The BackColor property determines the background color of a control. The property is a
numeric value with nine digits specifying colors as RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from 0 through
255, with 0 indicating the minimum intensity and 255 indicating the maximum intensity.
Set the BackColor property with any value in the range from 000 to 255255255.

168 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

Caption Property

The Caption property specifies the caption (or static text) associated with a control.

Set the value of the Caption property with any alphanumeric character, including space.

Enabled Property

The Enabled property determines whether the control can respond to user-generated input
(or events).

The following table lists the possible values of the Enabled property:

Value Description

False Control is disabled for user input.
True Control is enabled for user input (the default).

Fill Property

The Fill property determines whether the geometric shape (ellipse, line, rectangle, or
rounded rectangle control) is filled by the current brush.

The following table lists the possible values of the Fill property:

Value Description

False The shape is not filled by the brush.
True The shape is filled by the brush (the default).

 Cobol-WOW User's Guide 169
 Intrinsic Controls

FontBold Property

The FontBold property determines whether the associated text for the control is displayed
in bold font format.

The following table lists the possible values of the FontBold property:

Value Description

False Text is not displayed bold (the default).
True Text is displayed bold.

FontItalic Property

The FontItalic property determines whether the associated text of the control is displayed
in italic font format.

The following table lists the possible values of the FontItalic property:

Value Description

False Text is not displayed in italics (the default).
True Text is displayed in italics.

FontName Property

The FontName property determines the font used to display text in a control. The font
specified must be present on the system.

FontSize Property

The FontSize property determines the size of the font to be used for text displayed in a
control. The size specified must be supported by the font. If the size is not supported by
the font, the system will substitute the nearest supported value.

170 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

FontStrikethru Property

The FontStrikethru property determines whether the associated text for the control is
displayed in a strikethrough font style.

The following table lists the possible values of the FontStrikethru property:

Value Description

False No strikeout is used (the default).
True Strikeout is used.

FontUnderline Property

The FontUnderline property determines whether the associated text for the control is
displayed in an underlined font format.

The following table lists the possible values of the FontUnderline property:

Value Description

False Text is not underlined (the default).
True Text is underlined.

ForeColor Property

The ForeColor property determines the color of text in a control. The property is a
numeric value with nine digits specifying colors as RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from 0 to 255,
with 0 indicating the minimum intensity and 255 indicating the maximum intensity. Set
the ForeColor property with any value in the range from 000 to 255255255.

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

 Cobol-WOW User's Guide 171
 Intrinsic Controls

Group Property

The Group property determines whether a control is the start of a group.

The following table lists the possible values of the Group property:

Value Description

False Control is not the start of a group (the default).
True Control is the start of a group.

Height Property

The Height property determines, in pixels, the height of the control.

Set the Height property with any value from 0 to the value specified in the Height
property of the form less the value specified in the Top property of the control.

Left Property

The Left property determines, in pixels, the location of the left side of the control. This
value is relative to the client area of the form containing the control.

Set the Left property with any value from 0 to the value specified in the Width property
for the form.

Locked Property

The Locked property determines whether or not a lock is placed on the control in order to
prevent the control from being moved accidentally on the form.

The following table lists the possible values of the Locked property:

Value Description

False Control is not locked (the default).
True Control is locked.

MCColor Property

The MCColor property determines the color of various background or text areas of the
month calendar control, based on the value specified in the MCColorIndex property (see
below). The property is a numeric value with nine digits specifying colors as
RRR,GGG,BBB.

172 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

In the RGB color model, valid red, green, and blue values are in the range from 0 through
255, with 0 indicating the minimum intensity and 255 indicating the maximum intensity.
Set the BackColor property with any value in the range from 000 to 255255255.

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

MCColorIndex Property

The MCColorIndex property determines the color of the various background or text areas
of the month calendar control. The color is specified as an index value into the color
selected in the MCColor property (see above).

The following table lists the possible values of the MCColorIndex property:

Value Description

0 Returns or sets the background color behind the calendar (the
default).

1 Returns or sets the color of the calendar text.
2 Returns or sets the background color of the calendar title.
3 Returns or sets the color of the calendar title text.
4 Returns or sets the background color of the calendar text.
5 Returns or sets the color of the trailing text in the calendar.

Name Property

The Name property identifies the control to the underlying program, and is the name
shown in your code. Because every control in a form must have a unique name, Cobol-
WOW assigns default names and numbers them sequentially as you add them to a form.
For example, if you add three check boxes to a form, Cobol-WOW names them CB1,
CB2, and CB3.

Note When you have more than one form in a project, and the same control name exists
within more than one of those forms, you must distinguish those names in the event-
handling code in the following manner:

control-name1 of form-name1, control-name1 of form-name2, and so forth.

We recommend that you change the Name property so that it describes the control’s
function, rather than simply accepting the default name. You cannot set or retrieve the
value of this property at runtime (that is, while the application is running).

 Cobol-WOW User's Guide 173
 Intrinsic Controls

PenSize Property

The PenSize property specifies the width of the pen used to draw the outline of the
geometric shape (ellipse, line, rectangle, or rounded rectangle control) in logical units.
The default value is 1.

PenStyle Property

The PenStyle property specifies the style of the pen used to draw the outline of the
geometric shape (ellipse, line, rectangle, or rounded rectangle control).

The following table lists the possible values of the PenStyle property:

Value Description

0 The pen is solid.
1 The pen is dashed.
2 The pen is dotted.
3 The pen has alternating dashes and dots.
4 The pen has dashes and double dots.

ScrollBar Property

The ScrollBar property determines whether a scroll bar is included on a combo box or list
box control.

The following table lists the possible values of the ScrollBar property:

Value Description

False No scroll bar is included.
True A scroll bar is included (the default).

TabIndex Property

The TabIndex property determines the tab order, that is the order in which Tab and
Shift+Tab key presses will move input focus between controls (see page 19 for more
information). Controls that have the same TabIndex property value will have undefined
tab sequencing. Set the TabIndex property to a value of 1 or greater.

Note The TabIndex property cannot be changed or retrieved at runtime (with the
WOWGETPROP and WOWSETPROP functions) and can only be set in the Cobol-
WOW Designer.

174 Setting Properties and Events for Intrinsic Controls and Forms
 Intrinsic Controls

TabStop Property

The TabStop property determines whether a user can use the Tab key to set the focus to a
control in a form.

The following table lists the possible values of the TabStop property:

Value Description

False Control is not a tab stop.
True Control is a tab stop (the default).

Top Property

The Top property determines, in pixels, the location of the top of the control. This value
is relative to the client area of the form containing the control.

Set the Top property with any value from 0 to the value specified in the Height property
of the form.

Visible Property

The Visible property determines whether the control is visible or hidden at runtime.

The following table lists the possible values of the Visible property:

Value Description

False Control is hidden.
True Control is visible (the default).

Width Property

The Width property determines, in pixels, the width of the control.

Set the Width property with any value from 0 to the value specified in the Width property
of the form less the value specified in the Left property of the control.

 Cobol-WOW User's Guide 175
 Intrinsic Controls

ZOrder Property

The ZOrder property determines and changes the control stacking order, that is, the order
in which controls are created. The controls with the smaller numbers are stacked
“behind” the controls with the larger numbers. The controls with the larger numbers are
“on top” of all the other controls. The ZOrder property can be manipulated using the
Bring To Front and Send To Back commands on the Control menu.

The value is a one-based index to the z-order of the controls, where 1 indicates the first
control, 2 indicates the second control, and so on. Cobol-WOW initially sets the z-order
for each control to correspond to the order in which they were added to the form. You
can also change the z-order by choosing the Z-Order command on the Control menu.
(For more information, see page 20 or the Designer online Help file.)

Note The ZOrder property cannot be changed or retrieved at runtime (with the
WOWGETPROP and WOWSETPROP functions) and can only be set in the Cobol-
WOW Designer.

Common Intrinsic Control Events

The following common events are implemented by one or more of the intrinsic controls.

Events

Click GotFocus KeyPress LostFocus
DblClick KeyDown KeyUp

Click Event

The Click event occurs when the user clicks a mouse button on a control.

DblClick Event

The DblClick event occurs when the user double-clicks a mouse button on a control.

Note This event has an affect for a combo box control only when the Style property (see
page 100) is set to a value of 0 (Simple, standard combo box).

GotFocus Event

The GotFocus event occurs when the control receives the focus.

176 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

KeyDown Event

The KeyDown event occurs when the user presses a key while the control has input
focus. The value of the key pressed is contained in the WIN-CHAR variable declared
in windows.cpy.

KeyPress Event

The KeyPress event occurs when the user presses and releases a key (or the key is held
down for repeat) while the control has input focus. The value of the key pressed is
contained in the WIN-CHAR variable declared in windows.cpy.

KeyUp Event

The KeyUp event occurs when the user releases a key while the control has input focus.
The value of the key pressed is in the WIN-CHAR variable declared in windows.cpy.

LostFocus Event

The LostFocus event occurs when the control loses input focus, either by user action,
such as tabbing to or clicking another control, or by changing the focus in code.

Forms
Forms are the containers within which you group controls. In traditional programming,
you place fields on the screen or in a pop-up window. With Cobol-WOW, you place
fields (that is, controls) in a form. Although forms are quite versatile, most of your
programming will be involved with manipulating controls, not forms. The form has only
default properties associated with it.

Note If you are working with forms in an RM/Panels panel library, see page 259.

 Cobol-WOW User's Guide 177
 Forms

All the properties and events for a form are listed in the following tables and are
documented in the following sections (details on the events begin on page 187).

Properties

3D Caption Icon Parent Title
AllowEventFilter ClipControls IconIndex ScrollBars Top
BackColor Cursor Left ShowState Visible
Bitmap DialogMotion MaxButton Style Width
BitmapMode Enabled MinButton SysKeyMode
Border Height Modal SystemMenu

Events

Activate GetFocus LButtonDown MButtonUp Show
Close KeyDown LButtonUp Paint
Create KeyPress LoseFocus RButtonDown
Enable KeyUp MButtonDown RButtonUp

3D Property

The 3D property controls the three-dimensional appearance of intrinsic controls in a form.

The following table lists the possible values of the 3D property:

Value Description

0 Mixed – Allows two-dimensional and three-dimensional
settings of individual intrinsic controls in a form (the default).

1 All 3D – Forces all intrinsic controls to a three-dimensional
appearance.

2 No 3D – Forces all intrinsic controls to a two-dimensional
appearance.

Note The form 3D property settings of 1 (All 3D) or 2 (No 3D) will override the 3D
property settings of individual controls (see page 166).

AllowEventFilter Property

The AllowEventFilter property determines whether Cobol-WOW performs filtering on
events returned to the COBOL program.

Cobol-WOW returns the messages generated by Windows to the COBOL program to be
handled as events by the form and controls. Windows generates many messages, and in

178 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

most cases a small minority of these messages are actually acted upon by the COBOL
program. To maximize performance, particularly in networked environments, Cobol-
WOW filters the messages (events) returned to the COBOL program. This can be done
because the Cobol-WOW Designer knows which events have code associated with them.
If the AllowEventFilter property is set to True, this filtering is performed for the form and
all controls on it.

In some cases, you may add code to your COBOL program that acts on additional
messages. Since Cobol-WOW is not aware of this code, it would filter out the associated
messages and the code would never be invoked. To prevent this, set the AllowEventFilter
property to False when adding additional message handling code directly to your
programs.

Note The AllowEventFilter property can be overridden at runtime by selecting the Do
Not Filter Events option on the Runtime page of the Preferences dialog box or by
customizing the [WOWRT] section (see page 3) of the cblwow.ini file.

The following table lists the possible values of the AllowEventFilter property:

Value Description

False Filtering is not performed for the form and all controls on it.
True Filtering is performed for the form and all controls on it (the

default).

BackColor Property

The BackColor property determines the background color of a form. The property is a
numeric value with nine digits specifying colors as RRR,GGG,BBB.

In the RGB color model, valid red, green, and blue values are in the range from 0 through
255, with 0 indicating the minimum intensity and 255 indicating the maximum intensity.
Set the BackColor property with any value in the range from 000 to 255255255.

When you click on the value area of the property, an ellipsis appears. Clicking on the
ellipsis causes a variation of the standard Windows Color dialog box to open so that you
can define the basic colors, custom colors, and system colors for the foreground color of
the control(s).

 Cobol-WOW User's Guide 179
 Forms

Bitmap Property

The Bitmap property specifies that a bitmap is displayed as the background of the form.
The BitmapMode property setting, described in the following section, determines the
bitmap’s appearance. All controls on the form will be displayed on top of the bitmap.

Note The value of this property must be the complete name of a bitmap file. If the
bitmap is not in the working directory or in a directory specified in the RUNPATH
environment variable, a pathname is also required.

BitmapMode Property

The BitmapMode property determines how a bitmap is displayed in a form. Very rarely
will the size of a form and bitmap match exactly. The bitmap can be displayed in its
original size, which may not completely fill the form or may truncate part of the bitmap.
The bitmap can also be scaled to match the exact size of the form. You can choose the
most appropriate technique. Results will vary depending on the original size of the
bitmap, the size of the form, and the nature of the bitmap. (See also “Bitmap Property”
described in the previous section.)

The following table lists the possible values of the BitmapMode property:

Value Description

0 Displays the bitmap in its original size (the default). If the
bitmap is smaller than the form, the bitmap will be displayed in
the upper-left corner of the form, and the remainder of the form
will be filled with the background color of the form. If the
bitmap is larger than the form, only the portion of the bitmap
that will fit in the form will be displayed.

1 Scales the bitmap to fit the exact size of the form. This setting
may distort the bitmap image, especially if the size difference
between the bitmap and the form is dramatic.

2 Arranges (tiles) the bitmap in multiple images side by side on
the form.

180 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

Border Property

The Border property determines whether the form displays a border.

The following table lists the possible values of the Border property:

Value Description

0 Form does not have a border (the default).
1 Form has a thin border.
2 Form has a thick, sizable border.
3 Form has a thick, sizable, dialog-box-style border.

Caption Property

The Caption property determines whether a form has a title bar.

The following table lists the possible values of the Caption property:

Value Description

False Form does not have a title (the default).
True Form has a title bar.

ClipControls Property

The ClipControls property determines whether child controls can extend past the
boundaries of a form.

The following table lists the possible values of the ClipControls property:

Value Description

False Child controls can extend outside the form (the default).
True Child controls cannot extend outside the form.

 Cobol-WOW User's Guide 181
 Forms

Cursor Property

The Cursor property sets the default state (shape) of the cursor to display as the mouse
pointer moves over the form. Each form can have one cursor shape. This value can be
set and retrieved at runtime.

The following table lists the possible values of the Cursor property:

Value Description

0 ARROW — Cursor shape is a diagonal arrow.
1 IBEAM — Cursor shape is an I-bar, indicating editable text.
2 WAIT — Cursor shape is an hourglass, indicating that the

program is busy and the user should wait.
3 CROSS — Cursor shape is a simple crosshair.
4 UPARROW — Cursor shape is an up arrow.
5 SIZENWSE — Cursor shape is arrows with a diagonal bar

separating them, indicating the northwest and southeast edges
of the form are to be resized.

6 SIZENESW — Cursor shape is arrows with a diagonal bar
separating them, indicating the northeast and southwest edges
of the form are to be resized.

7 SIZEWE — Cursor shape is arrows pointing left and right with
a horizontally bar separating them, indicating the form is to be
resized horizontally.

8 SIZENS — Cursor shape is arrows pointing up and down with
a vertical bar separating them, indicating the form is to be
resized vertically.

9 SIZEALL — Cursor shape is arrows with a diagonal bar
separating them, indicating the northeast and southwest edges
of the form are to be resized.

10 NO — Cursor shape is a circle with a slash through it.
11 APPSTARTING — Cursor shape is an arrow with an

hourglass.
12 HELP — Cursor shape is an arrow with question mark,

indicating help is available.

182 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

DialogMotion Property

The DialogMotion property determines whether Tab key motion between fields and arrow
key motion within groups should automatically be performed for a form.

The following table lists the possible values of the DialogMotion property:

Value Description

False Dialog motion should not automatically be performed.
True Dialog motion should automatically be performed (the default).

Enabled Property

The Enabled property determines whether a form can respond to user-generated input (or
events).

The following table lists the possible values of the Enabled property:

Value Description

False Form is not enabled for user input.
True Form is enabled for user input (the default).

Height Property

The Height property determines the height, in pixels, of a form.

Set the Height property with any value from 0 to the height of the screen display less the
value specified in the Top property.

Icon Property

The Icon property determines the icon to be used for a form when the form is minimized.
This property cannot be retrieved or modified at runtime.

Note The Icon property must be specified in the Designer, and it must be the complete
name of an icon (.ico) file. If the icon file is not in the working directory or in a directory
specified in the RUNPATH environment variable, a pathname is also required.

 Cobol-WOW User's Guide 183
 Forms

IconIndex Property

The IconIndex property determines the icon to be used for a form when the form is
minimized and when more than one icon exists in the icon (.ico) file. The value is a zero-
based index to the icons, where 0 indicates the icon, 1 indicates the second icon, and so
on.

Left Property

The Left property determines, in pixels, the location of the left side of a form. This value
is relative to the entire desktop area.

Set the Left property with any value from 0 to the width of the screen display.

MaxButton Property

The MaxButton property determines whether a Maximize button is included on a form.

The following table lists the possible values of the MaxButton property:

Value Description

False Form does not have a maximize button (the default).
True Form has a maximize button.

MinButton Property

The MinButton property determines whether a Minimize button is included on a form.

The following table lists the possible values of the MinButton property:

Value Description

False Form does not have a minimize button (the default).
True Form has a minimize button.

184 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

Modal Property

The Modal property determines whether or not the form is the only form the user can
operate for the application. If the value of the Modal property is set to True, all other
forms will be unavailable to the user until the form is removed, or the value of the Modal
property is set to False, or another modal form is displayed.

The following table lists the possible values of the Modal property:

Value Description

False The form is not modal (the default).
True The form is modal.

Parent Property

The Parent property designates the form that serves as the parent of the current form.
This property cannot be set or retrieved at runtime.

The Parent property value should be specified in the Designer, using the name of another
form in the project. Leaving the value blank indicates that there is no parent form. If a
parent is specified, the current form will be positioned relative to the parent and
minimized with the parent.

ScrollBars Property

The ScrollBars property determines whether one or more scroll bars are attached to a
form.

The following table lists the possible values of the ScrollBars property:

Value Description

0 No scroll bars are added (the default).
1 A vertical scroll bar is added.
2 A horizontal scroll bar is added.
3 Both vertical and horizontal scroll bars are added.

 Cobol-WOW User's Guide 185
 Forms

ShowState Property

The ShowState property determines the manner in which a form is displayed.

The following table lists the possible values of the ShowState property:

Value Description

0 Form is displayed normally (the default).
1 Form is displayed as maximized, that is, it fills the entire

desktop area.
2 Form is displayed as an icon.

Style Property

The Style property is used to determine the type of a form.

The following table lists the possible values of the Style property:

Value Description

1 Specifies the form as overlapped, which means that the form is
a top-level window that has a title bar, border, and client area.
It is meant to serve as an application’s main window. It can
also have a menu, minimize and maximize buttons, and scroll
bars. Overlapped windows may own other top-level windows
or be owned by other top-level windows or both. (This is the
default value.)

2 Specifies the form as a child, which means that the form has a
parent. The parent-child relationship determines where a
window can be drawn on the screen. A child window can be
drawn only within its parent’s client area, and is destroyed
along with its parent.

3 Specifies the form as a pop-up, which means that the form is a
pop-up window. A pop-up window does not have a parent by
default (although a parent can be set for it); a pop-up window
can be drawn anywhere on the screen. The main differences
between a pop-up window and an overlapped window is that a
pop-up window can be displayed outside the border of its
parent window.

186 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

SysKeyMode Property

The SysKeyMode property specifies the way in which a Cobol-WOW application
processes WM-SYSKEY messages (controlled on a form-by-form basis). The Windows
operating system makes a distinction between system keystrokes and non-system
keystrokes. System keystrokes produce system keystroke messages, such as WM-
SYSKEYDOWN and WM-SYSKEYUP. Non-system keystrokes produce non-system
keystroke messages, such as WM-KEYDOWN and WM-KEYUP. Windows generates a
WM-KEYDOWN or a WM-SYSKEYDOWN message when the user presses a key.
When the user releases a key, the system generates a WM-KEYUP or a WM-
SYSKEYUP message.

The following table lists the possible values of the SysKeyMode property:

Value Description

0 WantSysKey — The application receives WM-SYSKEY
system messages (the default).

1 WantKey — The application receives WM-KEY messages that
have been translated from WM-SYSKEY messages.

2 WantKeyandSysKey — The application receives both WM-
SYSKEY and WM-KEY messages.

3 None — The application receives neither WM-SYSKEY nor
WM-KEY messages.

SystemMenu Property

The SystemMenu property determines whether a form contains a System menu.

The following table lists the possible values of the SystemMenu property:

Value Description

False Form does not contain a System menu (the default).
True Form contains a System menu.

Title Property

The Title property determines whether a form contains a title in the title bar.

Set the Title property with any alphanumeric characters, including spaces.

The title will be displayed only if the value of the Caption property is set to True. See
Caption property on page 180.

 Cobol-WOW User's Guide 187
 Forms

Top Property

The Top property determines, in pixels, the location of the top of a form. This value is
relative to the entire desktop area.

Set the Top property with any value from 0 to the height of the screen display.

Visible Property

The Visible property determines whether a form is hidden or visible at runtime.

The following table lists the possible values of the Visible property:

Value Description

False Form is hidden.
True Form is visible (the default).

Width Property

The Width property determines, in pixels, the width of a form.

Set the Width property with any value from 0 to the width of the screen display less the
value specified in the Left property.

Activate Event

The Activate event occurs whenever the form becomes active or inactive.

Close Event

The Close event occurs when the form is destroyed.

Create Event

The Create event occurs when the form is created.

Enable Event

The Enable event occurs when the form is enabled or disabled.

188 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

GetFocus Event

The GetFocus event occurs when the form gets input focus.

KeyDown Event

The KeyDown event occurs when the form has input focus and a key is pressed down.
This event does not occur if a control on the form has input focus. The value of the key
pressed is contained in the WIN-CHAR variable declared in windows.cpy.

KeyPress Event

The KeyPress event occurs when the form has input focus and a key is pressed and
released. This event does not occur if a control on the form has input focus. The value of
the key pressed is contained in the WIN-CHAR variable declared in windows.cpy.

KeyUp Event

The KeyUp event occurs when the form has input focus and a key is released. This event
does not occur if a control on the form has input focus. The value of the key pressed is
contained in the WIN-CHAR variable declared in windows.cpy.

LButtonDown Event

The LButtonDown event occurs when the form has input focus and the left mouse button
is depressed.

LButtonUp Event

The LButtonUp event occurs when the form has input focus and the left mouse button is
released.

LoseFocus Event

The LoseFocus event occurs when the form loses input focus.

MButtonDown Event

The MButtonDown event occurs when the form has input focus and the middle mouse
button is depressed.

 Cobol-WOW User's Guide 189
 Forms

MButtonUp Event

The MButtonUp event occurs when the form has input focus and the middle mouse button
is released.

Paint Event

The Paint event occurs when the form receives a WM-PAINT message (see the Functions
and Messages online Help file). Although Cobol-WOW and the COBOL runtime
together automatically draw whatever image is required within the form, if you want to
dynamically draw something else, the Paint event provides notification that it is
permissible to do so.

RButtonDown Event

The RButtonDown event occurs when the form has input focus and the right mouse
button is depressed.

RButtonUp Event

The RButtonUp event occurs when the form has input focus and the right mouse button is
released.

Show Event

The Show event occurs when the form is hidden or displayed.

190 Setting Properties and Events for Intrinsic Controls and Forms
 Forms

 Cobol-WOW User's Guide 191
 ActiveX Controls and Cobol-WOW

Appendix B: Working with
ActiveX Controls

This appendix describes special considerations for using ActiveX controls with
Cobol-WOW.

ActiveX Controls and Cobol-WOW
Wouldn’t it be nice if you weren’t limited to using the controls built into the Windows
operating system? Wouldn’t it be great if you could license specialized controls and plug
them right into your development environment, using them as if they were a part of
Windows?

That idea has been pursued with varying degrees of success for many years. The latest
implementation of this idea is ActiveX controls, and with Cobol-WOW you can use
ActiveX controls on 32-bit platforms. What’s more, you can use them just like the
intrinsic Windows controls.

History of ActiveX Controls
ActiveX controls have an interesting history. They were preceded by VBX controls.
VBX controls were a successful implementation of component technology for 16-bit
Microsoft Visual Basic. VBX controls could be created by third-party developers, but
used within Visual Basic just like the intrinsic Windows controls. This idea of “plug-in”
components sparked the creation of hundreds of third-party controls, and contributed
significantly to the popularity of Visual Basic.

But VBX controls have two shortcomings. The first is that they are tied closely to a
16-bit architecture, which prevents moving VBX control technology to the 32-bit
environment. The second problem is that VBX controls are tied very closely to Visual
Basic. This makes it difficult to provide support for VBX controls in other systems.

The designers at Microsoft set out to solve both problems with a new specification for the
creation of third-party controls. They started by using two technologies: COM
(Component Object Model) and OLE (Object Linking and Embedding). Based on these
technologies, Microsoft came up with a specification for OLE Controls, which were later

192 Working with ActiveX Controls
 Adding and Removing ActiveX Controls to the Cobol-WOW Designer

renamed to OCX controls. With the popularity of the Internet came another modification
to the specification and a final rename: ActiveX controls.

Microsoft provides the COM and OLE technologies used by ActiveX controls as part of
Windows, but ActiveX is really a specification of how the ActiveX control is created and
how it interfaces with the software that uses the control. The real “magic” is in this
specification. By knowing the specification, a program that uses an ActiveX control
(called a container) can work with the control without having prior knowledge of the
control. The application can learn what it needs to know about the control at runtime.

Adding and Removing ActiveX Controls to the
Cobol-WOW Designer

The first step in using ActiveX controls with Cobol-WOW is adding them to the Toolbox.
To add ActiveX controls to the Toolbox, click the Select ActiveX Controls command on
the Cobol-WOW Designer’s Options menu to display the Select ActiveX Controls dialog
box..

The Select ActiveX Controls dialog box lists the ActiveX controls that are installed on
your system and that appear to be compatible with Cobol-WOW. Cobol-WOW
determines what controls to list here by searching the Windows Registry entries on the
computer to find the registered ActiveX controls. When Cobol-WOW finds a control, it
looks to see if the necessary Registry entries are there to allow it to use the control, and
also checks to see if the control requires any features not provided by Cobol-WOW.
If an expected control does not appear the dialog box list, see the troubleshooting tips on
page 193.

To add any listed control to your Toolbox, just click on the control to select it. When you
have selected all the controls you want, click OK. The Toolbox will be reformatted to
display the controls you have selected. The controls also will be recorded in the
cblwow.ini file (see page 3). An ActiveX control is added to a form in the same manner
as an intrinsic control. Simply select the control in the Toolbox, and then click and drag
it on the form.

In some cases, several controls will be added to the Toolbox by selecting a single entry in
the list box. This is because some controls are distributed and registered as a group.

To remove a control from the Toolbox, deselect the control in the Select ActiveX
Controls dialog box and click OK.

 Cobol-WOW User's Guide 193
 Using ActiveX Controls on a Form

Troubleshooting Tips

If an expected control does not appear in the list box, there are several possible reasons:

1. The control has not been registered. It is not enough simply to copy the control’s
implementation file (.OCX, .DLL) to the system. The control must be described
through Windows Registry entries. This is what allows OLE and COM to work with
the control. Check the documentation for your control to see how it should be
registered. Most controls will be registered by their installation software. The
RegEdit program also provides facilities for registering controls.

2. The control’s Registry information is incomplete. The following entries are required
for the control under HKEY_CLASSES_ROOT\CLSID:

 CLSID
 ProgID
 Control
 TypeLib

In addition, the TypeLib must also be registered under
HKEY_CLASSES_ROOT\TypeLib.

3. The control has a RequiredCategories entry in its Registry entry. This will prevent
Cobol-WOW from displaying the control.

Using ActiveX Controls on a Form
An ActiveX Control is added to a form in the same manner as a intrinsic control. Simply
select the control in the Toolbox and click and drag on the form to establish the outline of
the control.

194 Working with ActiveX Controls
 ActiveX Control Properties

ActiveX Control Properties
ActiveX control properties are displayed and modified through the Properties dialog box
(see page 8) in the same manner as intrinsic controls. Font, color, and True/False
properties work just like intrinsic controls. Other properties have values that are
described in the documentation for the control.

ActiveX control properties can be queried and modified at runtime using the
WOWSETPROP and WOWGETPROP functions (see pages 51 and 52, respectively).
Note that True/False properties of ActiveX controls have slightly different values. With
an ActiveX control, False is zero, but True is -1.

ActiveX Indexed Properties

Some ActiveX control properties occur multiple times and are described as indexed.

Two special functions must be used to get and set indexed properties for ActiveX
controls. These functions are AXGETINDEXPROP and AXSETINDEXPROP. They
are used as follows.

To retrieve an indexed property:

CALL AXGETINDEXPROP USING WIN-RETURN AXCTIVEXCTL-H PROPNAME
 RET-VALUE INDEX-1 INDEX-2 ...

WIN-RETURN is a numeric data item that is set to 0 if the function succeeds or to an
error code if the function fails.

AXCTIVEXCTL-H identifies the handle generated for the ActiveX control by
Cobol-WOW.

PROPNAME is an alphanumeric literal or data item containing the property name.

RET-VALUE is an alphanumeric or numeric data item that will receive the
property value.

INDEX-1 INDEX-2 are numeric literals or data items that are the index(es) for the
property. If more than one index is specified, the most significant index should be
placed first.

 Cobol-WOW User's Guide 195
 ActiveX Control Events

To set an indexed property:

CALL AXSETINDEXPROP USIGN WIN-RETURN AXCTL-H PROPNAME
 PROP-VALUE INDEX-1 INDEX-2 ...

WIN-RETURN is a numeric data item that is set to 0 if the function succeeds or to an
error code if the function fails.

AXCTIVEXCTL-H identifies the handle generated for the ActiveX control by
Cobol-WOW.

PROPNAME is an alphanumeric literal or data item containing the property name.

PROP-VALUE is an alphanumeric or numeric literal or data item containing the property
value to be set

INDEX-1 INDEX-2 are numeric literals or data items which are the index(es) for the
property. If more than one index is specified, the most significant index should be
placed first.

ActiveX Control Events
ActiveX control events are listed in the Events/Code Sections list of the Event-Handling
Code dialog box. Code added to the events in the dialog box will be automatically
executed when the control triggers the event.

196 Working with ActiveX Controls
 ActiveX Control Methods

ActiveX Control Methods
Some ActiveX controls provide special capabilities that are invoked as methods. These
methods can be thought of as functions or procedures built into the control. These
methods can be executed using the AXDOMETHOD function as follows:

CALL AXDOMETHOD USING WIN-RETURN ACTIVEXCTL-H METHOD-NAME
 PARAM-1 PARAM-2 ... [GIVING PARAM-RESULT]

Note Information about methods and parameters can be found in the control’s
documentation. When supplying parameters to a method you do not need to worry about
the data types being used. Cobol-WOW will convert the data to the proper format based
on information contained in the control. Simply supply the parameters in the proper
order. Parameters identified by the control’s documentation as optional may be omitted.

WIN-RETURN is a numeric data item that is set to 0 if the method succeeds or to an
error code if the method fails.

ACTIVEXCTL-H identifies the handle generated for the ActiveX control by
Cobol-WOW.

METHOD-NAME is an alphanumeric literal or data item containing the control name.

PARAM-1 PARAM-2 are the parameters for the method. Multiple parameters may be
specified. The reserved word, OMITTED, may be used to designate an unspecified
optional parameter when parameter(s) to the right of the OMITTED parameter are to be
specified. (Do not use OMITTED for unspecified trailing parameters.)

PARAM-RESULT is an optional parameter to receive the value returned by the method.
Note that not all methods return values. This is not the same as the WIN-RETURN
parameter; PARAM-RESULT is only valid if the WIN-RETURN value is 0.

Note Some methods may change the content of parameters as an undocumented side
effect. Use the BY CONTENT reserved word to protect values in the calling program
from such an outcome.

Example

Many controls provide an AboutBox method that will display an About Box identifying
the control. This method generally requires no parameters. The AboutBox method for a
control with the name MYACTIVEX would be invoked as follows:

CALL AXDOMETHOD USING WIN-RETURN MYACTIVEX-H "ABOUTBOX".

 Cobol-WOW User's Guide 197
 Limitations

Limitations
ActiveX controls have the following limitations when used with Cobol-WOW:

• Some control properties may not be available for querying or modification at
runtime. This is determined by the control. If this occurs, a message box will be
displayed.

• An ActiveX control handle is NOT a window handle. You cannot pass an
ActiveX control handle to a function that expects a window handle, such as
GETWINDOWTEXT. An attempt to do this will result in a message box being
displayed. Some ActiveX controls will expose a window handle as a property to
allow you to use Windows API functions on the control.

• ActiveX controls that function as containers are not supported. You cannot place one
ActiveX control inside another.

• ActiveX controls that require data binding are not supported.

Distribution Issues
If you use ActiveX controls to develop your application, these controls will have to be
distributed with your application. Pay attention to the licensing issues associated with any
controls you use. Some controls will require a license only for development use, others
require a license for development and deployment.

198 Working with ActiveX Controls
 Distribution Issues

 Cobol-WOW User's Guide 199
 Initial Creation of a Cobol-WOW Program

Appendix C: Understanding the
Application Architecture

This appendix defines the architecture for integrating the graphical user interface of an
application for Windows with the Cobol-WOW application development framework.

Initial Creation of a Cobol-WOW Program
When you create a new Cobol-WOW program, many files are created and processed.
The following figure illustrates the files and components involved in the initial creation of
a Cobol-WOW program having two forms. In this example, the program is called
MyApp, and the forms are named form1 and form2.

COBOL Compiler

myapp

myapp.wpj

Cobol-WOW
Designer

form1.wow form2.wow

form1.wpr form1.wws

form2.wpr form2.wwsmyapp.cbl

Initial Creation of a Cobol-WOW Program

200 Understanding the Application Architecture
 Initial Creation of a Cobol-WOW Program

Project File (.wpj)

The Cobol-WOW Designer creates a project file to store project information, in
particular, a list of the forms included in the project. This file, which has the extension
.wpj, is needed only at design time. As you add or rename forms from the project, this
file is automatically updated. For more information, see “Cobol-WOW Projects” on
page 57.

Form File (.wow)

The Cobol-WOW Designer component manages the entire process of creating a form.
When you first save a new form, the Designer creates a file that stores the definition of
the form. This type of file is known as a Cobol-WOW form file and has a default
extension of .wow. The .wow file is read and written to by the Designer, but it is not
needed during runtime. As you edit a form, the modifications are stored in the .wow file.
This file is similar to a word processing file, in that just as a word processing file contains
a single document, a .wow file contains the definition of a single form. See page 46 for
additional information.

Working Storage Copy File (.wws)

The Cobol-WOW Designer generates a copy file for each form that contains a binary
definition of the form. This binary definition is declared as a COBOL data item. This
type of copy file is known as a Cobol-WOW Working Storage file and has a default
extension of .wws. Any program that uses the form must contain this copy file so that it
has a definition of the form. Since the form definition is in the COBOL Working-Storage
Section, it is loaded into memory when the program is loaded. This allows the form to be
created quickly at runtime by a single call with no disk access.

Procedure Division Copy File (.wpr)

The Cobol-WOW Designer also generates a Procedure Division copy file for each form
with a default extension of .wpr. This copy file contains the event-handling logic for the
form and the message interpretation logic that will make the event-handling code execute.
This copy file must be included in any program that uses the form.

 Cobol-WOW User's Guide 201
 Initial Creation of a Cobol-WOW Program

COBOL Skeleton Program File (.cbl)

The Cobol-WOW Designer generates a skeleton program, based on the project file, with
enough logic to display, use, and remove the forms. This type of file is known as an
RM/COBOL source file and has a default extension of .cbl. This skeleton program
provides enough COBOL code to begin your program. As you enhance the program, you
will probably want to add additional functionality, such as file access, to the main
program.

COBOL Executable Program File (.cob)

The files generated by the Cobol-WOW Designer combine to make a compilable and
executable program. This file type is known as an RM/COBOL object file and has a
default extension of .cob. The Designer executes the COBOL compiler on the skeleton
program, which includes the two copy files. This file is created when you compile the
source code with the Build command on the Project menu. Once the program is
compiled, it can be run like any other COBOL program.

202 Understanding the Application Architecture
 Ongoing Maintenance of a Cobol-WOW Program

Ongoing Maintenance of a Cobol-WOW
Program

As you continue to modify and maintain a Cobol-WOW program, the process is
illustrated below.

 User Interface

 Application
 Logic

myapp.wpj

Cobol-WOW
Designer

form1.wow form2.wow

form1.wws form1.wpr form2.wprform2.wws

myapp.cbl

Editor

COBOL Compiler

myapp

Enhancement and Modification of a Cobol-WOW Program

The Cobol-WOW design tool, the Cobol-WOW Designer, defines the user interface. The
user interface logic is included in the form and the Designer generates only the .wws and
.wpr copy files. The Designer no longer continues to regenerate the skeleton program.

In fact, the skeleton program has now become something much more. It has become the
repository for the application logic. The program can be edited with any editor.

 Cobol-WOW User's Guide 203
 How a Cobol-WOW Program Works

Whenever the form is modified, the copy files must be regenerated. The program then
can be recompiled.

In some circumstances you may want to edit event-handling code outside the
Cobol-WOW Designer. This will work satisfactorily. The Designer will detect the
changes during the editing session and preserve the modifications.

How a Cobol-WOW Program Works
You can understand how a Cobol-WOW program works by looking at four files:
windows.cpy, formname.wws, formname.cbl, and formname.wpr.

WINDOWS.CPY

The windows.cpy copy file, supplied with the Cobol-WOW DLL, declares the data items
needed to interface to Windows. Windows was created to recognize many numerical
constants. This file declares these values as COBOL data items with names that are
meaningful and consistent with Windows programming constructs. This file should never
be modified.

Let’s examine a few of the data items declared in windows.cpy.

Many Windows API functions require a true or false value. In Windows, TRUE = 1 and
FALSE = 0. Because TRUE and FALSE have an entirely different meaning in COBOL,
the windows.cpy file includes the following declaration:

01 WIN-BOOLEAN-VALUES.
 03 WIN-TRUE PIC 9(4) COMP-4 VALUE 1
 03 WIN-FALSE PIC 9(4) COMP-4 VALUE 0.

In writing Cobol-WOW programs, you can use WIN-TRUE for TRUE and WIN-FALSE
for FALSE. In the following examples, the first line of code enables a window; the
second disables it.

CALL ENABLEWINDOW USING WIN-RETURN WND-H WIN-TRUE.
CALL ENABLEWINDOW USING WIN-RETURN WND-H WIN-FALSE.

204 Understanding the Application Architecture
 How a Cobol-WOW Program Works

The windows.cpy file also declares the data items needed to store Windows messages.

01 WIN-MSG-WS.

 03 WIN-MSG-HANDLE PIC 9(10) COMP-4.
 03 WIN-MSG-HANDLE-A REDEFINES WIN-MSG-HANDLE PIC X(8).
 03 WIN-WPARAM-H PIC S9(10) COMP-4.
 03 WIN-WPARAM-L PIC S9(10) COMP-4.
 03 WOW-KEY-VALUE REDEFINES WIN-WPARAM-L PIC 9(10) COMP-4.
 03 WIN-LPARAM PIC S9(10) COMP-4.
 03 WIN-LPARAM-A REDEFINES WIN-LPARAM PIC X(8).
 03 WIN-MSG-ID PIC 9(10) COMP-4.
 03 WIN-MSG-ID-RED REDEFINES WIN-MSG-ID.
 05 FILLER PIC X(6).
 05 WIN-MSG-ID-A PIC XX.

This file also contains the declarations for all the Windows API functions and messages
that can be used with Cobol-WOW.

FORMNAME.WWS

As discussed in the section “Initial Creation of a Cobol-WOW Program” on page 199, the
formname.wws copy file contains a binary definition of a form. It also contains special
variables for use in event-handling code.

Create a sample form with the Name property CUSTINFO and two edit controls, CUST-
NAME and CUST-ADDRESS. The first data item you will see in the custinfo.wws copy
file is the data item used to store the handle of the form after it is created. This handle is
needed to perform operations on the form, such as hiding or disabling it. For example:

01 CUSTINFO-H PIC 9(5) COMP-4 VALUE 0.

The next data items in custinfo.wws define the ID numbers of the controls on the form.
If the form contains a pulldown menu, ID numbers for the menu controls would also be
defined. These ID numbers are required for some Windows API functions and for the
event-handling code generated by the Cobol-WOW Designer. For example:

01 CUSTINFO-IDS.
 03 CUST-NAME-ID PIC 9(5) COMP-4 VALUE 1.
 03 CUST-ADDRESS-ID PIC 9(5) COMP-4 VALUE 2.

You will then see the data items that contain the handles of the individual controls on the
form after the form is created. The handles are required for most Windows API functions
and for the event-handling code generated by the Cobol-WOW Designer. For example:

01 CUSTINFO-HS.
 03 CUST-NAME-H PIC 9(5) COMP-4 VALUE 0.
 03 CUST-ADDRESS-H PIC 9(5) COMP-4 VALUE 0.

 Cobol-WOW User's Guide 205
 How a Cobol-WOW Program Works

Note All handles are initialized with the value 0, while the IDs are initialized with the
correct values. The handle data items will receive values when the form is created.

Finally, you will see the data item that is the binary definition of the form. It may or may
not include comments describing the form contents, depending on how the form was
generated. This definition begins with the following:

01 CUSTINFO-DEF.

FORMNAME.CBL

The formname.cbl file is the COBOL skeleton program file generated by the Cobol-
WOW Designer. This program contains the logic necessary to create, use, and destroy
the form.

The Working-Storage Section of the skeleton program contains only the two copy files,
described on page 200. The Procedure Division is more complex.

The high-level control of the skeleton program is MAIN-FUNCTION.

The first statement in MAIN-FUNCTION is as follows:

PERFORM PROGRAM-INITIALIZATION.

This procedure contains only an EXIT statement. It is a placeholder intended to indicate
a place in the program where you could open files or perform other initialization
associated with the application logic.

The second statement in MAIN-FUNCTION

PERFORM CREATE-WINDOWS.

executes the following procedure:

CREATE-WINDOWS.
 PERFORM WOW-CREATE-FORMNAME.

This procedure creates any form that should be created at the start of the program. In the
currently generated skeleton program, you have only one form, even though more could
be added. (The procedure, WOW-CREATE-FORMNAME, is declared in
formname.wpr, discussed on page 207.)

The third and fourth statements in MAIN-FUNCTION

SET WOW-QUIT TO FALSE.
PERFORM PROCESS-EVENTS UNTIL WOW-QUIT.

206 Understanding the Application Architecture
 How a Cobol-WOW Program Works

combine to execute PROCESS-EVENTS until the condition WOW-QUIT. The event
handling for the form is performed in a loop, which is terminated only when this condition
is set to TRUE by some part of the event-handling code, such as the Quit option on a File
menu or a Cancel button.

The fifth statement in MAIN-FUNCTION

PERFORM DESTROY-WINDOWS.

executes the following procedure:

DESTROY-WINDOWS.
 PERFORM WOW-DESTROY-FORMNAME.

This procedure destroys any forms that were created at the start of the program. Although
there is only one form, more may be added. (The procedure, WOW-DESTROY-
FORMNAME, is declared in formname.wpr, described on page 207.)

The sixth statement in MAIN-FUNCTION

PERFORM PROGRAM-SHUTDOWN.

executes a procedure that contains only an EXIT statement. It serves as a placeholder to
indicate a place in the program where you can close files or do other cleanup associated
with the application logic.

The last statement in MAIN-FUNCTION is GOBACK, which exits the program.

PROCESS-EVENTS is the other procedure in formname.cbl that you should examine.

PROCESS-EVENTS.
 CALL WOWGETMESSAGE USING WIN-RETURN WIN-MSG-WS
 ACTIVEXX-EVENT-WS.
 EVALUATE WIN-MSG-HANDLE
 WHEN FORMNAME-H PERFORM WOW-FORMNAME-EVENTS
 END-EVALUATE.

This procedure retrieves the Windows messages from the message queue and dispatches
them to the appropriate form. The CALL statement retrieves the message information.
The EVALUATE statement checks the message handle against the handle of each form
used by the program and performs WOW-FORMNAME-EVENTS for the appropriate
form. (Remember, there is only one form in the skeleton program.)

The procedure, WOW-FORMNAME-EVENTS, declared in formname.wpr, is discussed
in the following section.

 Cobol-WOW User's Guide 207
 How a Cobol-WOW Program Works

FORMNAME.WPR

The formname.wpr copy file contains the event-handling code defined for the form.

Let’s examine the form you created with the name CUSTINFO, two edit controls, and an
OK command button called OK-BTN, with code attached to the Click event for the
command button.

This first items in the custinfo.wpr copy file are the declarations of all the event-handling
code defined for the form. The following procedure is responsible for connecting the
event-handling code to the correct Windows message:

WOW-CUSTINFO-EVENTS.
 EVALUATE WIN-MSG-ID
 WHEN WM-COMMAND
 EVALUATE WIN-LPARAM-L
 WHEN OK-BTN-H OF CUSTINFO-CTL-HS
 EVALUATE WIN-LPARAM-H
 WHEN BN-CLICKED PERFORM
OK-BTN-CLICK
 END-EVALUATE
 END-EVALUATE
END-EVALUATE.

This procedure evaluates a Windows message and compares the parameters to those of
the form and its controls. When the procedure finds a message that corresponds to an
event with event-handling code, it performs that event-handling code, in this case,
OK-BTN-CLICK. The size and complexity of this procedure will vary greatly depending
upon the size and complexity of the form. This code is generated entirely by the Cobol-
WOW Designer, and since it is built on the EVALUATE statement, the execution time
does not degrade as additional controls and events are added.

The next item in the form procedure copy file, custinfo.wpr, is the procedure that creates
the form with the controls defined in the Designer. This procedure also loads the handles
for each of the form’s controls into CUSTINFO-CTL-HS.

WOW-CREATE-CUSTINFO.
 INITIALIZE WIN-STYLE.
 CALL WOWCREATEWINDOW USING CUSTINFO-H
 CUSTINFO-DEF WIN-STYLE 0 CUSTINFO-CTL-HS.

Finally, you will see the procedure that destroys the form:

WOW-DESTROY-CUSTINFO.
 CALL DESTROYWINDOW USING WIN-RETURN CUSTINFO-H.

208 Understanding the Application Architecture
 How a Cobol-WOW Program Works with Windows

How a Cobol-WOW Program Works with
Windows

The Cobol-WOW DLL adds a thin layer of logic between the COBOL runtime system
and Windows, which makes Windows presume that it was designed to work with
COBOL. This thin layer of logic processes function calls and messages to make them
“feel” like COBOL (on the COBOL side) and feel like C (on the Windows side).

The following figure illustrates the flow of this process.

Cobol-WOW DLL Windowsmyprog

Execution of a Cobol-WOW Program

You can see that the COBOL program does not directly communicate with Windows.
When you call Windows, the call goes to the Cobol-WOW DLL, then the Cobol-WOW
DLL calls Windows. Notice that the arrow goes in both directions between Windows and
the Cobol-WOW DLL.

The Windows operating system was designed to call application code directly in order to
pass messages to a program. Although Windows cannot call the interpretive COBOL
code, it can call the Cobol-WOW DLL and gives it the messages. The Cobol-WOW DLL
stores the messages in a message queue and gives them to the COBOL program when the
WOWGETMESSAGE function is executed.

In addition to receiving messages, this approach also provides Cobol-WOW with the
ability to encapsulate the event-driven architecture of Windows within the traditional
structure of COBOL programs. Instead of making the programs respond to events at all
times, the program can choose when to go into event-driven operation and when to
sequentially process operations like traditional COBOL programs. By preserving the type
of set-up and shut-down logic typically used by COBOL programs, it is easier to create
report and posting programs, and to migrate legacy programs.

 Cobol-WOW User's Guide 209
 Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs

Using Cobol-WOW Programs with Non-Cobol-
WOW COBOL Programs

How do Cobol-WOW programs coexist with non-Cobol-WOW programs? Since Cobol-
WOW programs are regular COBOL programs, there are several issues to consider.

Calling To and From Cobol-WOW Programs

Cobol-WOW programs can be called by, as well as call, legacy COBOL programs.
Cobol-WOW programs can be passed Linkage Section parameters, and can pass
Linkage Section parameters to legacy COBOL programs. The following figure illustrates
this process.

Cobol-WOW
Program

Ordinary
COBOL Program

Ordinary
COBOL Program

Cobol-WOW Program Calling and Called by a Non-Cobol-WOW COBOL Program

Because Cobol-WOW programs do not require any special Linkage Section parameters,
they can be plugged into legacy applications and called by legacy programs as easily as
any other COBOL program. Additionally, since Cobol-WOW programs can call legacy
programs, existing utility programs and subroutine programs can be called in the same
manner as they are called by legacy programs.

210 Understanding the Application Architecture
 Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs

Visual Considerations of Cobol-WOW and Non-Cobol-WOW
Programs

All non-Cobol-WOW programs use the standard COBOL main window to display and
enter information. Cobol-WOW programs create their own windows. These windows
will not interfere with each other; in fact, a Cobol-WOW program can also display
information in the standard COBOL main window with a DISPLAY statement. The
standard COBOL main window can also be hidden and displayed using the C$SHOW
subprogram. For more information about the C$SHOW subprogram, see the RM/COBOL
User’s Guide.

 Cobol-WOW User's Guide 211
 Enhancing Existing Panel Libraries

Appendix D: Using Cobol-WOW
with RM/Panels

This appendix describes how to use Cobol-WOW with RM/Panels to enhance existing
panel libraries and also discusses how to migrate panels to Cobol-WOW forms.

Enhancing Existing Panel Libraries
For those RM/Panels users who would like to improve their Windows presentation
without modifying application code, the Cobol-WOW Designer can be used to enhance
existing panels to use the full spectrum of Windows fonts and colors. Developers are no
longer restricted to using a single, fixed-width font nor to a limited color palette.

These enhanced panels can be used by existing programs without source code changes,
simply by using the RM/Panels runtime (supplied with RM/COBOL for Windows,
version 7.00.02 and higher) supplemented with a Cobol-WOW panel runtime-based DLL
(wowpanrt.dll). Enhancing a panel in this manner for Windows does not limit
portability, or prevent the panel or panel library from continued use in DOS or UNIX.
Nor is it necessary to enhance every panel in the application.

Key features for enhancing existing panel libraries include the following:

• Ability to edit RM/Panels screens with the Cobol-WOW Designer.

• No need to change RM/Panels source code.

• Cobol-WOW editing of panels does not create additional files.

• Ability to test panels from the Cobol-WOW Designer.

For more information about opening and modifying an existing panel, see page 213.

212 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Character-Based GUI Portability and Cross Development

The move to a full graphical user interface (GUI) does not sacrifice the ability to continue
to deploy an application in a character-based form. However, there are some issues that
must be considered in order to continue application development with an interface
optimized for both environments.

When a panel is enhanced, the data fields/controls added to the panel (see page 215) will
be present on both the character-based and graphical representations of the panel. There
are some properties of the controls that are specific to either the graphical or character-
based environment. For example, each field/control has a Line and Column property, and
Top and Left properties. The Top and Left properties are used in Windows only. The
Line and Column properties are used in DOS and UNIX only.

The character-based RM/Panels Library Manager does not allow access to the Windows-
only properties. The Cobol-WOW Designer, however, does allow you to edit the
character-only properties. The effects of the character-only properties are not visible
from the Cobol-WOW Designer.

New fields/controls can be added to a panel using either the RM/Panels Library Manager
or the Cobol-WOW Designer. Theoretically, if you added a control in the Cobol-WOW
Designer, you could set its character properties and immediately use the panel in the
character environment. Practically speaking, though, you will want to edit the panel using
the RM/Panels Library Manager to accurately tailor the panel before deploying the panel
in the character environment.

Note After adding controls to a panel using the RM/Panels Library Manager, you will
have to edit the panel using the Cobol-WOW Designer before running a Cobol-WOW
enhanced panel in RM/Panels. Failure to do so will result in the panel being displayed
without the Cobol-Wow enhancements.

Communicating with RM/Panels

The Cobol-WOW Designer must interface to the RM/Panels COBOL programs. This is
done via TCP/IP using Cobol-RPC, which paves the way for client/server
implementations. Two files, which are included with Cobol-WOW, are specifically
required to handle this communication. These files are rmrpc32s.dll and cobolrpc.ini.

The Cobol-RPC DLL, rmrpc32s.dll, allows the RM/Panels COBOL programs to be
invoked by the Cobol-WOW Designer. When the Designer needs to invoke a COBOL
program, it starts a new process. This process executes the RM/COBOL runtime and
includes rmrpc32s.dll on the command line with the L= option.

 Cobol-WOW User's Guide 213
 Enhancing Existing Panel Libraries

The Windows initialization file, cobolrpc.ini, contains configuration information for
rmrpc32s.dll. If problems occur, the following two entries can be manually changed:

[ServerConfig]
Port=5000
StartupCommand=runcobol rpcinit.cob l=rmrpc32S.DLL l=wowpan.obj

The Port value can be changed if port 5000 is already in use on the system. Any value
can be used, but values over 1024 are best.

The StartupCommand entry must be changed if the runcobol.exe file is not in the path.

Modifying an Existing Panel Library

The first step in the process is modifying an existing panel to create a more typical
Windows “look-and-feel.” This process begins the same way as any Cobol-WOW
session. The supplied sample library, sample.lib (located in cobolwow\pansmple), can be
used to follow these exercises exactly.

Open the library

To open an existing panel library, take the following steps:

1. Start the Cobol-WOW Designer.

2. From the Panels menu, click Open.

Any open project is closed automatically and the Open Panel dialog box appears.

Open Panel Dialog Box

214 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

3. In the Open Panel dialog box, find the desired panel library and open it. Panel
libraries have the extension .lib. (For this exercise, you will use sample.lib, which,
by default, is located in C:\CobolWOW\PANSMPLE\.) The Select Panel
dialog box opens.

Note Cobol-WOW must interface to the RM/Panels COBOL programs via TCP/IP
using Cobol-RPC.

Select Panel Dialog Box

4. Select the panel to be modified and click OK.

The panel will be opened in the Cobol-WOW Designer. A default graphical
representation will be displayed. The size, shape, location, color, fonts, and other
properties of the controls and overall window can then be modified.

Change controls

Note RM/Panels refers to the objects called “controls” in Cobol-WOW as “data fields.”
All types of RM/Panels data fields can be added to the panel using the Cobol-WOW
Toolbox.

The properties of each field/control are displayed in the Cobol-WOW Properties dialog
box. Each of the properties listed can be modified. Some properties, such as Column and
Line, affect only the character implementation of the panel. Others, such as ForeColor,
affect only the Windows implementation.

 Cobol-WOW User's Guide 215
 Enhancing Existing Panel Libraries

Remember that it is possible to modify several fields/controls at once by selecting
multiple fields/controls, and using the Background Color, Foreground Color, and Font
options from the Control menu.

Add controls

Note RM/Panels refers to the objects called “controls” in Cobol-WOW as “data fields.”
All types of RM/Panels data fields can be added to the panel using the Cobol-WOW
Toolbox.

When you open a panel in Cobol-WOW, the Cobol-WOW Toolbox automatically
displays only the RM/Panels data fields (see page 217) that can be added to the panel.
All types RM/Panels fields/controls can be added to the panel using the Cobol-WOW
Toolbox. If you add a field/control to a panel, you will want to use the Character Panel
Editor to adjust the size, location, and color of the field/control before executing the panel
in a character-based environment.

Note ActiveX controls (see page 191) cannot be added to an enhanced panel. The
following intrinsic controls (see page 87) also cannot be added to an enhanced panel:
animation, date time picker, IP address, month calendar, progress bar, status bar, tab,
timer, toolbar, trackbar, and updown, as well as any shapes (ellipse, line, rectangle, and
rounded rectangle). Date time picker, IP address and month calendar are not available.

Delete controls

Note RM/Panels refers to the objects called “controls” in Cobol-WOW as “data fields.”
All types of RM/Panels data fields can be added to the panel using the Cobol-WOW
Toolbox.

Panel fields/controls may be deleted from within the Cobol-WOW Designer. The
modified .ws file will be generated automatically when the panel is saved. Be sure to
recompile any programs that use the panel.

Save a panel

An enhanced panel can be saved at any time during the editing session using the Save
command on the Panels menu. When the enhanced panel is saved in this manner, the
description of the panel is written back into the standard panel library. No Cobol-WOW-
specific files are created. The panel library must be used to re-open the panel in the
Cobol-WOW Designer and to operate the panel at runtime.

When the enhanced panel is saved, the panel copy files are automatically (re)generated.
This is a slight variation in behavior from the DOS or UNIX versions of RM/Panels v2

216 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

where the copy files could be generated optionally. Always generating these files
preserves the integrity of the relationship between the copy files and the actual panel
definition in the RM/Panels library and helps prevent undesirable problems, such as
104 errors.

The copy file generation is done based on the definition in the panel library (maintained
through the RM/Panels Library Manager’s Code Generation dialog box). This includes
the path used for placing the generated files.

If you do not wish to save your edits, use the Recreate GUI command on the Panels
menu.

Test a panel

The Test command on the Panels menu enables testing of panels during editing. There is
a small difference from the way in which previous versions of Cobol-WOW performed
this task. Before testing the panel, any editing changes that have been made are
permanently saved to the panel library.

Run an application with an enhanced panel

To use the enhanced panel, take the following steps:

1. Run the program using runpan2.cob, which is shipped with Cobol-WOW v2.26 and
higher.

2. Load the Cobol-WOW panel runtime (wowpanrt.dll) by adding the following line to
the command line:

l=wowpanrt.dll

Any panel that has been edited with Cobol-WOW will be displayed using the full
Windows appearance. Any panels that have not been edited with Cobol-WOW will
continue to be displayed in the same manner as RM/Panels v2.x.

 Cobol-WOW User's Guide 217
 Enhancing Existing Panel Libraries

Setting Properties for RM/Panels Data Fields

RM/Panels refers to the objects called “controls” in Cobol-WOW as “data fields.” All
types RM/Panels data fields can be added to the panel using the Cobol-WOW Toolbox.

Data fields/controls have a number of configurable characteristics. These characteristics
are called properties. Properties are the primary means by which fields/controls are
manipulated. Setting properties defines how fields/controls are displayed and how they
function in the running application.

When you open a panel in the Cobol-WOW Designer, you use the Properties dialog box
(see page 8), which lists each property and its value, to set the default (initial) properties
of a selected field/control.

The following list summarizes the data fields found in the Toolbox when you open an
RM/Panels panel in the Cobol-WOW Designer.

• Check Box. Displays a Yes/No, True/False, or On/Off option. You can check any
number of check boxes on a form at one time.

• Combo Box. Combines a text box with a list box. Allows a user to type in a
selection or select an item from a drop-down list.

• Command Button. Carries out a command or action when a user chooses it.

• Date Edit Box. Provides an area in which a date can be displayed or entered.

• Edit Box. Provides an area to enter or display text.

• Group Box. Provides a visual and functional container for other controls. It is
generally used to enclose related controls (usually check boxes or option buttons).

• List Box. Displays a list of choices from which the user can select one or more
items.

• Multi-Line Edit Box. Provides a small, fixed space into which a user can enter
several lines of text, a portion of which is hidden until the user scrolls its contents
using scroll bars.

• Numeric Edit Box. Provides an area to input or display numeric data.

• Option Button. Presents mutually exclusive options in an option control. Option
buttons are usually used with the group box control to form groups where only one of
the listed buttons can be selected at one time.

• Scroll Bar. Allows a user to add scroll bars to controls that do not automatically
provide them. (These are not the same as the built-in scroll bars that are found with
many controls.)

218 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

• Static Text. Displays text, such as titles or captions, in regular outlines or filled
rectangles, that the user cannot interact with or modify.

• Time Edit Box. Provides an area in which the time can be displayed or entered.

Check Box Field/Control

 To add a check box field/control to a panel/form, click Check Box from the Toolbox.

The check box data field/control displays an option that can be turned on or off. The
check box is similar to the command button, in that the primary method of operation is
clicking it. The check box, however, represents data, not a request for action.

All of the properties for this field/control are listed in the following table. For a
description of these properties, see “Common Data Field Properties” on page 241.

Properties

3D EntryOrder ForeColor PromptText
Accelerator ErrorMessage Height SelectedAttr
BackColor FontBold HelpMessage StartOfGroup
Beep FontItalic Left TimeOut
Column FontName Length TimeOutValue
DefaultToPressed FontSize Line Title
DisabledAttr FontStrikethru MnemonicAttr Top
EnabledAttr FontUnderline Name Width

Combo Box Field/Control

 To add a combo box field/control to a panel/form, click Combo Box from the Toolbox.

The combo box field/control combines the list selection capability of a list box with the
edit box’s ability to type in a value. Alternatively, to save screen space, you may wish to
show only a portion of the list box’s selections. And, there may be instances when you
would like to display the currently selected item in a static text box area when the entire
list is not displayed. The combo box control can perform both tasks.

 Cobol-WOW User's Guide 219
 Enhancing Existing Panel Libraries

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D CurChoice FontSize PromptText
BackColor DisabledAttr FontStrikethru ScrollBar
Beep DoubleClick FontUnderline SelectedAttr
Border DropDown ForeColor StartOfGroup
BorderAttr EnabledAttr Height StaticChoices
ChoiceHelp EnabledForInput HelpMessage TimeOut
ChoicesToDisplay EntryOrder *InputField TimeOutValue
ChoicesToStore ErrorMessage Left Top
ChoiceValue FontBold Length Width
ChoiceWidth FontItalic Line
Column FontName Name

InputField Property

The InputField property determines whether an input field is to be attached to a list box,
making the field/control a combo box.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the InputField property:

Value Description

False An input field/control is not attached to the list box.
True An input field/control is attached to the list box (the default).

220 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Command Button Field/Control

To add a command button field/control to a panel/form, click Command Button from
the Toolbox.

The command button (also known as push button) field/control causes an action to occur
when the user either clicks the button or presses a key.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D EntryOrder Height SelectedAttr
Accelerator ErrorMessage HelpMessage *SizeType
BackColor FontBold Left *SizeValue
Beep FontItalic Length StartOfGroup
Column FontName Line TimeOut
DefaultValue FontSize MnemonicAttr TimeOutValue
DisabledAttr FontStrikethru Name Title
EnabledAttr FontUnderline PromptText Top
EnabledForInput ForeColor *PushedAttr Width

PushedAttr Property

The PushedAttr property indicates the attribute that should be used to display the
command button while it is depressed. Valid values are blank (the library default) or A
through P (as defined by the attribute code assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 221
 Enhancing Existing Panel Libraries

SizeType Property

The SizeType property specifies the size of the button displayed for the command button.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the SizeType property:

Value Description

Auto The button is just wide enough to hold the title.
Small Refers to the default set for the panel library.
Medium Refers to the default set for the panel library.
Large Refers to the default set for the panel library.
Explicit You can enter a number that specifies the size of the button in

characters.

SizeValue Property

The SizeValue property specifies the width of the button in character positions. This
value is valid only if the SizeType property value is set to explicit (see above).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Date Edit Box Field/Control

 To add a date edit box field/control to a panel/form, click Date Edit Box from the
Toolbox.

The date edit box field/control provides an area on a panel/form in which a date can be
displayed or entered.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following

222 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D DoubleClick FontUnderline OccYOffset
AlwaysDisabled EnabledAttr ForeColor PromptText
AutoExit EnabledForDisplay Height Protected
BackColor EnabledForInput HelpMessage SelectedAttr
Beep EntryFormat Left StartOfGroup
BlankWhenZero EntryOrder Length *StorageFormat
Border ErrorMessage Line TimeOut
Column FontBold Name TimeOutValue
DefaultToSystem FontItalic OccColOffset Top
DefaultValue FontName OccLineOffset Update
DisabledAttr FontSize Occurrences Validation
DisplayFormat FontStrikethru OccXOffset Width

StorageFormat Property (Date Edit Box)

The StorageFormat property specifies the format to be used when storing this
field/control, based on years, months, and days, which are represented as follows:

• YYYY is a four-digit numeric representation of the year (for example, 2001)

• YY is a two-digit numeric representation of the year (for example, 01)

• MM is a two-digit numeric representation of the month (for example, 12)

• DD is a two-digit numeric representation of the day (for example, 30)

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 223
 Enhancing Existing Panel Libraries

The following table lists the possible values of the StorageFormat property for a date edit
box field/control:

Value Description

1 Date is displayed as YYYYMMDD.
2 Date is displayed as YYMMDD.
3 Date is displayed as MMDDYYYY.
4 Date is displayed as MMDDYY.

Edit Box Field/Control

 To add an edit box field/control to a panel/form, click Edit Box from the Toolbox.

The edit box field/control provides an area to input or display text. This field/control
replaces the COBOL ACCEPT statement. The user can enter any type of alphanumeric
data in an edit box, including numeric data. Because no formatting is provided, numbers
are entered in the same manner as text.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D EnabledAttr Height Prompt
AlwaysDisabled EnabledForDisplay HelpMessage PromptText
AutoExit EnabledForInput *Justify Protected
BackColor EntryOrder Left SelectedAttr
Beep ErrorMessage Length StartOfGroup
Border FontBold Line TimeOut
Case FontItalic Name TimeOutValue
*Class FontName OccColOffset Top
Column FontSize OccLineOffset Update
DefaultValue FontStrikethru Occurrences Validation
DisabledAttr FontUnderline OccXOffset Width
DoubleClick ForeColor OccYOffset

224 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Class Property

The Class property indicates the categories that RM/Panels allows for defining character
sets. Valid values are blank or 1–5.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Justify Property

The Justify property indicates whether left, right, or center justification is required. This
affects user input and values placed into the field/control with a MOVE statement.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Prompt Property

The Prompt property indicates whether prompt characters are to be provided for this
field/control during input.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Group Box Field/Control

 To add a group box field/control to a panel/form, click Group Box from the Toolbox.

The group box is a specialized box that is used to group other fields/controls, such as
check boxes and option buttons.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following

 Cobol-WOW User's Guide 225
 Enhancing Existing Panel Libraries

sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D FontItalic ForeColor Name
BackColor FontName *Group *TabStop
Caption FontSize Height Top
*Enabled FontStrikethru Left Width
FontBold FontUnderline *Locked

Enabled Property

The Enabled property determines whether the field/control can respond to user-generated
input (or events).

The following table lists the possible values of the Enabled property:

Value Description

False The field/control is disabled for user input.
True The field/control is enabled for user input (the default).

Group Property

The Group property determines whether a field/control is the start of a group.

The following table lists the possible values of the Group property:

Value Description

False The field/control is not the start of a group (the default).
True The field/control is the start of a group.

Locked Property

The Locked property determines whether or not a lock is placed on the field/control in
order to prevent the field/control from being moved accidentally on the form.

The following table lists the possible values of the Locked property:

Value Description

False The field/control is not locked (the default).
True The field/control is locked.

226 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

TabStop Property

The TabStop property is described on page 174.

List Box Field/Control

 To add a list box field/control to a panel/form, click List Box from the Toolbox.

The list box field/control allows the selection of one or several items from a list of items.

All of the properties for this field/control are listed in the following table. For a
description of these properties, see “Common Data Field Properties” on page 241.

Properties

3D CurChoice FontSize ScrollBar
BackColor DisabledAttr FontStrikethru SelectedAttr
Beep DoubleClick FontUnderline StartOfGroup
Border DropDown ForeColor StaticChoices
BorderAttr EnabledAttr Height TimeOut
ChoiceHelp EnabledForInput HelpMessage TimeOutValue
ChoicesToDisplay EntryOrder Left Top
ChoicesToStore ErrorMessage Length Width
ChoiceValue FontBold Line
ChoiceWidth FontItalic Name
Column FontName PromptText

Multi-Line Edit Box Field/Control

To add a multi-line edit box field/control to a panel/form, click Multi-Line Edit Box
from the Toolbox.

Sometimes you need to store a lot of text, but you do not want to use up a lot of screen
space in your display. You can create a multi-line edit field/control that lets users enter
several lines of text into a small, fixed space. Because the text box is smaller than the
amount of information stored, part of the information is hidden. The user uses scroll bars
to display the hidden information. You can design the text box to scroll its contents
vertically or horizontally.

 Cobol-WOW User's Guide 227
 Enhancing Existing Panel Libraries

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D EnabledAttr Height SelectedAttr
BackColor EnabledForInput HelpMessage StartOfGroup
Beep EntryOrder Left *Stream
Border ErrorMessage Length TimeOut
Case FontBold Line TimeOutValue
*ColsToDisplay FontItalic *LinesToDisplay Top
*ColsToStore FontName *LinesToStore Width
Column FontSize Name *Wrap
DefaultValue FontStrikethru PromptText
DisabledAttr FontUnderline Protected
DoubleClick ForeColor *Required

ColsToDisplay Property

The ColsToDisplay property specifies the number of columns to display for the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ColsToStore Property

The ColsToStore property specifies the number of columns to store for the field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

228 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

LinesToDisplay Property

The LinesToDisplay property specifies the number of lines to display for the field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

LinesToStore Property

The LinesToStore property specifies the number of lines to store for the field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Required Property

The Required property determines whether the user must enter data into field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Required property:

Value Description

False The field/control is not required (the default).
True The field/control is required.

Stream Property

The Stream property indicates that insert and delete operations should affect the entire
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the

 Cobol-WOW User's Guide 229
 Enhancing Existing Panel Libraries

appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Stream property:

Value Description

False Insert and delete operations should not affect the entire
field/control (the default).

True Insert and delete operations should affect the entire
field/control.

Wrap Property

The Wrap property indicates that words automatically wrap to the succeeding line when
they are typed, inserted, or deleted.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Wrap property:

Value Description

False Words do not automatically wrap to the succeeding line (the
default).

True Words automatically wrap to the succeeding line.

230 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Numeric Edit Box Field/Control

To add a numeric edit box field/control to a panel/form, click Numeric Edit Box from
the Toolbox.

The numeric edit box field/control provides an area to input or display numeric data.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D DisplayFormat FontUnderline OccYOffset
AlwaysDisabled DoubleClick ForeColor PromptText
*AssumeDecimal EnabledAttr Height Protected
AutoExit EnabledForDisplay HelpMessage SelectedAttr
BackColor EnabledForInput IntegerDigits *Signed
Beep EntryFormat Left StartOfGroup
BlankWhenZero EntryOrder Length TimeOut
Border ErrorMessage Line TimeOutValue
*CalculatorEntry FontBold Name Top
Column FontItalic OccColOffset Update
DecimalDigits FontName OccLineOffset Validation
DefaultValue FontSize Occurrences Width
DisabledAttr FontStrikethru OccXOffset

AssumeDecimal Property

The AssumeDecimal property specifies that input to this field/control should be assumed
to contain decimal digits even if no decimal is present.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 231
 Enhancing Existing Panel Libraries

The following table lists the possible values of the AssumeDecimal property:

Value Description

False A decimal is not assumed.
True A decimal is assumed (the default).

CalculatorEntry Property

The CalculatorEntry property determines whether input to this field/control should be
fully formatted while being input, with digits inserting to the left of the decimal point as
with a calculator.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the CalculatorEntry property:

Value Description

Default The default set for the panel library applies to the field/control.
Yes Input to the field/control is fully formatted while being input,

overriding any default set for the panel library.
NO Input to the field/control is not fully formatted while being

input, overriding any default set for the panel library.

Signed Property

The Signed property specifies whether the field/control includes a plus (+) or
minus (-) sign.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Signed property:

Value Description

False The field/control is not signed.
True The field/control is signed (the default).

232 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Option Button Field/Control

To add an option button field/control to a panel/form, click Option Button from
the Toolbox.

The option button (also known as radio button) field/control displays an option that can
be turned on or off. Option buttons are usually used in groups where turning one button
on turns the others off. For more information on grouping option buttons, see page 131.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D DisabledAttr FontUnderline *NumericData
Accelerator EnabledAttr ForeColor PromptText
BackColor EnabledForInput Height SelectedAttr
Column EntryOrder HelpMessage StartOfGroup
*DataItemName ErrorMessage IntegerDigits TimeOut
*DataSigned FontBold Left TimeOutValue
*DataSize FontItalic Length Top
*DataValue FontName Line Width
DecimalDigits FontSize MnemonicAttr
DefaultToPressed FontStrikethru Name

DataItemName Property

The DataItemName property specifies the data item name to be associated with the
COBOL representation of this option button group.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 233
 Enhancing Existing Panel Libraries

DataSigned Property

The DataSigned property specifies whether this field, if numeric, stores signed numbers.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the DataSigned property:

Value Description

False The field/control does not store signed numbers.
True The field/control stores signed numbers (the default).

DataSize Property

The DataSize property specifies the size of the data item.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DataValue Property

The DataValue property specifies the value to be given to the data item representing this
group of option buttons when this button is pressed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

NumericData Property

The NumericData property specifies whether this field/control is a represented by a
numeric data item.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,

234 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the NumericData property:

Value Description

False The field/control is not represented by a numeric data item.
True The field/control is represented by a numeric data item (the

default).

Scroll Bar Field/Control

To add a scroll bar field/control to a panel/form, click either Horizontal Scroll or
Vertical Scroll from the Toolbox. A horizontal scroll bar displays a horizontal bar that
can be used to scroll information. A vertical scroll bar displays a vertical bar that can be
used to scroll information.

The scroll bar field/control is used to allow a numeric value to be manipulated as a thumb
position on a bar. By specifying the minimum and maximum, the value can be viewed
relative to a range of possible values. This value and the scroll bar are often used to
scroll the display of other information on a panel. For more information on using scroll
bars, see page 139.

All of the properties for both the horizontal and vertical scroll bar are listed in the
following table. Properties that apply only to these fields/controls, or that require special
consideration when used with them, are marked with an asterisk (*). These particular
items are documented in the following sections. For information on the remaining
properties, see “Common Data Field Properties” on page 241.

Properties

Border EnabledForInput *MaximumValue *StepSize
Column EntryOrder *MinimumValue *ThumbAttr
DefaultValue Height Name Top
DisabledAttr Left *PageSize Width
EnabledAttr Line *Size

 Cobol-WOW User's Guide 235
 Enhancing Existing Panel Libraries

MaximumValue Property

The MaximumValue property specifies the maximum value associated with the scroll bar.
Valid values are 0–999.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

MinimumValue Property

The MinimumValue property specifies the minimum value associated with the scroll bar.
Valid values are 0–999.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

PageSize Property

The PageSize property specifies the change in value to be associated with clicking on the
scroll bar, above or below the thumb object, but not on the end-arrows.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Size Property

The Size property specifies the size of the scroll bar in characters.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

236 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

StepSize Property

The StepSize property specifies the change in value to be associated with clicking on the
scroll bar end-arrows.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ThumbAttr Property

The ThumbAttr property specifies the attribute code associated with the thumb object of
the scroll bar. Valid values are blank (the library default) or A through P (as defined by
the attribute code assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Static Text Field/Control

 To add a static text field/control to a panel/form, click Static Text from the Toolbox.

The static text field/control is used to display text, rectangular outlines, or filled
rectangles. The static text control is also used to draw rectangles or outlines to highlight
parts of a panel, group controls, or even create a design.

 Cobol-WOW User's Guide 237
 Enhancing Existing Panel Libraries

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

3D FontBold ForeColor Top
*Alignment FontItalic Height Width
BackColor FontName Left *WordWrap
Caption FontSize Length
Column FontStrikethru Line
*Effect FontUnderline *NoPrefix

Alignment Property

The Alignment property determines how text is positioned in a static text field/control.
The Alignment property allows the text of any static text control, not just multiline
controls, to be aligned to the right, left, or center of the control.

The following table lists the possible values of the Alignment property:

Value Description

0 Normal – Performs no justification (the default).
1 Left justifies text.
2 Centers text.
3 Right justifies text.

Effect Property

The Effect property changes a static text field/control into an empty rectangle or a
colored group box without text. The color names actually designate one of the Windows
configuration options and may not match the color name used.

The Effect property is used to determine the type of static text field/control that is
displayed: text, outline, or rectangle. It is important to note that the text of a static text
field/control is not displayed when the outline or rectangle effect is selected. When the
3D property (see page 241) is set to True, the Effect property also has different
appearances.

238 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

The following table lists the possible values of the Effect property:

Value Description

0 None – Text is displayed (the default).
1 Draws a rectangle with the window group box color, usually

black.
2 Draws a rectangle with the desktop background color, usually

gray.
3 Draws a rectangle with the parent window’s background,

usually white.
4 Draws a black group box.
5 Draws a gray group box.
6 Draws a white group box.

NoPrefix Property

The NoPrefix property determines whether the ampersand (&) character causes the
subsequent character to be underlined in a static text control.

The following table lists the possible values of the NoPrefix property:

Value Description

False The ampersand character (&) causes next character to be
underlined (the default).

True The ampersand character (&) character is displayed.

WordWrap Property

The WordWrap property determines whether text is wrapped to multiple lines on a static
text field/control.

The following table lists the possible values of the WordWrap property:

Value Description

False Text is wrapped (the default).
True Text is not wrapped.

 Cobol-WOW User's Guide 239
 Enhancing Existing Panel Libraries

Time Edit Box Field/Control

 To add a time edit box field/control to a panel/form, click Time Edit Box from
the Toolbox.

The time edit box field/control provides an area on a panel in which the time can be
displayed or entered.

All of the properties for this field/control are listed in the following table. Properties that
apply only to this field/control, or that require special consideration when used with it, are
marked with an asterisk (*). These particular items are documented in the following
sections. For information on the remaining properties, see “Common Data Field
Properties” on page 241.

Properties

*24HourFormat DoubleClick ForeColor Protected
3D EnabledAttr Height SelectedAttr
AlwaysDisabled EnabledForDisplay HelpMessage StartOfGroup
AutoExit EnabledForInput Left *StorageFormat
BackColor EntryFormat Length TimeOut
Beep EntryOrder Line TimeOutValue
BlankWhenZero ErrorMessage Name Top
Border FontBold OccColOffset Update
Column FontItalic OccLineOffset Validation
DefaultToSystem FontName Occurrences Width
DefaultValue FontSize OccXOffset
DisabledAttr FontStrikethru OccYOffset
DisplayFormat FontUnderline PromptText

24HourFormat Property

The 24HourFormat property specifies whether the field/control displays information in
12-hour or 24-hour format.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

240 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

The following table lists the possible values of the 24HourFormat property:

Value Description

False Time is not displayed in 24-hour format, but rather in 12-hour
format (the default).

True Time is displayed in 24-hour format.

StorageFormat Property (Time Edit Box)

The StorageFormat property specifies the format to be used for the storage of this
field/control, based on hours, minutes, and seconds, which are represented by HH, MM,
and SS, respectively.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the StorageFormat property for a time edit
box field/control:

Value Description

1 Time is displayed as HHMMSS.
2 Time is displayed as HHMM.
3 Time is displayed as HH.

 Cobol-WOW User's Guide 241
 Enhancing Existing Panel Libraries

Common Data Field Properties

This section summarizes the common properties that may be implemented in a
field/control on a panel/form. Refer to the specific field/control in the preceding sections
to determine the unique properties available for the field/control.

The following properties are used by several types of fields/controls.

Properties

3D CurChoice FontName OccYOffset
Accelerator DecimalDigits FontSize PromptText
AlwaysDisabled DefaultToPressed FontStrikethru Protected
AutoExit DefaultToSystem FontUnderline ScrollBar
BackColor DefaultValue ForeColor SelectedAttr
Beep DisabledAttr Height StartOfGroup
Border DisplayFormat HelpMessage StaticChoices
BorderAttr DoubleClick IntegerDigits TimeOut
BlankWhenZero DropDown Left TimeOutValue
Caption EnabledAttr Length Title
Case EnabledForDisplay Line Top
ChoiceHelp EnabledForInput MnemonicAttr Update
ChoicesToDisplay EntryFormat Name Validation
ChoicesToStore EntryOrder OccColOffset Width
ChoiceValue ErrorMessage OccLineOffset
ChoiceWidth FontBold Occurrences
Column FontItalic OccXOffset

3D Property

The 3D property controls the appearance of a field/control. If this property is set to True,
the field/control will have a three-dimensional effect.

The following table lists the possible values of the 3D property:

Value Description

False A three-dimensional control is not displayed (the default).
True A three-dimensional control is displayed.

Note The panel/form 3D property settings of 1 (All 3D) and 2 (No 3D) will override the
3D property settings of individual controls. See page 260.

242 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Accelerator Property

The Accelerator property specifies the accelerator key to be associated with this
field/control. The value is an RM/COBOL termination code in the range 1–98. Pressing
a key that generates this value while operating the panel is equivalent to pressing the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

AlwaysDisabled Property

The Always Disabled property indicates that the field/control will never be enabled for
input. In a GUI environment, this enables the field/control to be created as a static text
control, rather than an edit box, which allows you to control the foreground color, rather
than having Windows force a gray text color.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

AutoExit Property

The AutoExit property indicates whether the input cursor should move to the next
field/control if the current field/control has had input that is of maximum length, as
specified by its Length property (see page 252).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

BackColor Property

The BackColor property is described on page 167.

 Cobol-WOW User's Guide 243
 Enhancing Existing Panel Libraries

Beep Property

The Beep property determines whether a beep should be sounded when this field/control
has input focus.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Beep property:

Value Description

Default The default set for the panel library applies to the field/control.
Yes A beep sounds when the field/control has input focus,

overriding any default set for the panel library.
No No beep sounds when the field/control has input focus,

overriding any default set for the panel library.

BlankWhenZero Property

The BlankWhenZero property causes the field/control to display as blank when the value
of the field/control is 0.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

244 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Border Property

The Border property determines whether this field/control is to have a border
when displayed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Border property:

Value Description

False A border is not displayed (the default).
True A border is displayed.

BorderAttr Property

The BorderAttr property determines whether a border will be displayed around a list box
or the list box portion of a combo box field/control. Valid values are blank (the library
default) or A through P (as defined by the attribute code assigned to a block of text within
a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Caption Property

The Caption property is described on page 168.

 Cobol-WOW User's Guide 245
 Enhancing Existing Panel Libraries

Case Property

The Case property determines the case conversion of alphabetic characters entered into an
edit box or multi-line edit box field/control.

The following table lists the possible values of the Case property:

Value Description

0 Mixed – text case is not altered; accepted as typed (the
default).

1 Converts all text to lowercase.
2 Converts all text to uppercase.

ChoiceHelp Property

The ChoiceHelp property determines whether a help message is specified for a choice in a
list box or the list box portion of a combo box field/control. For example, in a list box
displaying country names, “America” might be the list box choice and USAHELP might
be the name of the help message.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the ChoiceHelp property:

Value Description

False A help message is not displayed (the default).
True A help message is displayed.

ChoicesToDisplay Property

The ChoicesToDisplay property specifies the number of choices to display in a list box or
combo box field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

246 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

ChoicesToStore Property

The ChoicesToStore property specifies the number of choices to be stored for a list box
or the list box portion of a combo box field/control. If the value in the ChoicesToStore
property is greater than the value in the ChoicesToDisplay property (see page 245), a
scroll bar is created automatically. If at runtime execution, the list box or combo box
does not contain more choices than can be displayed at one time, the scroll bar is
disabled. The scroll bar does not change attributes.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ChoiceValue Property

The ChoiceValue property specifies the initial value of a list box or the list box portion of
a combo box field/control when it is displayed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ChoiceWidth Property

The ChoiceWidth property specifies the width of the entry in characters and also the size
of the data item in a list box or the list box portion of a combo box field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 247
 Enhancing Existing Panel Libraries

Column Property

The Column property determines the number of columns that each occurrence of a
field/control is offset from the previous occurrence. Valid values are 0 to the maximum
width of the panel.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

CurChoice Property

The CurChoice property specifies the subscript of the value in the ChoiceValue property
(see page 246) of a list box or the list box portion of a combo box field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DecimalDigits Property

The DecimalDigits property indicates the number of digits that can be entered to the right
of the decimal point in a numeric field.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DefaultToPressed Property

The DefaultToPressed property determines whether this field/control is to default to
having the appearance of being pressed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

248 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

The following table lists the possible values of the DefaultToPressed property:

Value Description

False The field/control is not pressed (the default).
True The field/control is pressed.

DefaultToSystem Property

The DefaultToSystem property causes the default value of the field/control to be set to the
system date of the computer.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DefaultValue Property

The DefaultValue property specifies the default value for the field/control that is set if the
RM/Panels standard runtime function, INITIALIZE FIELD, is executed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DisabledAttr Property

The DisabledAttr property determines whether the field/control is disabled for data entry.
Valid values are blank (the library default) or A through P (as defined by the attribute
code assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 249
 Enhancing Existing Panel Libraries

DisplayFormat Property

The DisplayFormat property specifies the COBOL picture format to be used when
displaying this field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DoubleClick Property

The DoubleClick property indicates whether the double click of a mouse should be
reported on the field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the DoubleClick property:

Value Description

False A double click is not reported on the field/control (the default).
True A double click is reported on the field/control.

DropDown Property

The DropDown property specifies that a drop-down list box is supported in a list box or
the list box portion of a combo box field/control. A drop-down list box displays only one
item until the user takes an action to display the other choices. A drop-down list box
appears initially as a rectangular box showing the current choice with a down arrow.
When you choose the down arrow, a list of available choices appears.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

250 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

The following table lists the possible values of the DropDown property:

Value Description

False A drop-down list box is not supported (the default).
True A drop-down list box is supported.

EnabledAttr Property

The EnabledAttr property determines whether the field/control is enabled for data entry.
Valid values are blank (the library default) or A through P (as defined by the attribute
code assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

EnabledForDisplay Property

The EnabledForDisplay property, when marked with an X, indicates that this field/control
is enabled to display values.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

EnabledForInput Property

The EnabledForInput property, when marked with an X, indicates that this field/control is
enabled to accept data entry.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 251
 Enhancing Existing Panel Libraries

EntryFormat Property

The EntryFormat property specifies the COBOL picture format to be used during
data entry.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

EntryOrder Property

The EntryOrder property determines the order in which the fields/controls are operated,
with 1 being first, 2 being next, and so on. Any number between 1 and 150 is valid. The
value cannot be greater than the number of fields/controls on the panel. Be default, the
value is calculated and set by RM/Panels, but you may change it. This property is
required.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ErrorMessage Property

The ErrorMessage property specifies the error message associated with this field/control.
The RM/Panels Message Editor appears when the cursor is on this field/control and you
press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Font Bold, FontItalic, FontName, FontSize, FontStrikethru, and
FontUnderline Properties

These properties are described beginning on page 169.

252 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

ForeColor Property

The ForeColor property is described on page 170.

Height Property

The Height property is described on page 171.

HelpMessage Property

The HelpMessage property specifies the help message associated with this field/control.
The RM/Panels Message Editor appears when the cursor is on this field/control and you
press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

IntegerDigits Property

The IntegerDigits property indicates the number of digits that can be entered to the left of
the decimal point in a numeric field.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Left Property

The Left property is described on page 171.

Length Property

The Length property specifies the number of characters in the field/control. The values
must be in the range of 1 to the maximum width of the panel, as specified by its Width
property (see page 259).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,

 Cobol-WOW User's Guide 253
 Enhancing Existing Panel Libraries

however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Line Property

The Line property indicates the number of lines that each occurrence of the field/control
is offset from the previous occurrence. Valid values are 1 to the maximum length of a
panel, as specified by its Length property (see above).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

MnemonicAttr Property

The MnemonicAttr property identifies the mnemonic character associated with the
field/control.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Name Property

The Name property is described on page 172.

OccColOffset Property

The OccColOffset property indicates the number of columns that each occurrence of a
field/control is offset from the previous occurrence. Valid values are 0 to the maximum
width of a panel, as specified by its Width property (see page 259).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

254 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

OccLineOffset Property

The OccLineOffset property indicates the number of lines that each occurrence of a
field/control is offset from the previous occurrence. Valid values are 1 to the maximum
length of a panel, as specified by its Length property (see page 252).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Occurrences Property

The Occurrences property indicates the number of times this field/control occurs on
the panel/form.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

OccXOffset Property

The OccXOffset property specifies the number of pixels that multiple occurrences of the
field/control should be offset from each other horizontally. This property affects the
display of the panel only when using Cobol-WOW.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

OccYOffset Property

The OccYOffset property specifies the number of pixels that multiple occurrences of the
field/control should be offset from each other vertically. This property affects the display
of the panel only when using Cobol-WOW.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the

 Cobol-WOW User's Guide 255
 Enhancing Existing Panel Libraries

appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

PromptText Property

The PromptText property specifies the text that is displayed on the panel/form to prompt
the user to enter a correct value.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Protected Property

The Protected property, when marked with an X, indicates that while the input cursor
moves into this field/control, the value may not be changed by the user.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ScrollBar Property

The ScrollBar property is described on page 173.

SelectedAttr Property

The SelectedAttr property determines whether the field/control has input focus. Valid
values are blank (the library default) or A through P (as defined by the attribute code
assigned to a block of text within a panel).

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

256 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

StartOfGroup Property

The StartOfGroup property, when marked with an X, indicates that this field/control is the
start of a number of fields/controls (for example, a group of option buttons) that is to be
treated as a group. A group includes all fields/controls having contiguous entry order
numbers until the next StartOfGroup property is encountered.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

StaticChoices Property

The StaticChoices property determines whether the choices in a list box or the list box
portion of a combo box field/control are specified on the panel or are supplied by the
application program.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the StaticChoices property:

Value Description

False Choices in a list box are supplied by the application program
(the default).

True Choices in a list box are specified on the panel.

TimeOut Property

The TimeOut property determines whether this field/control should wait a maximum time
for input, when input is needed.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

 Cobol-WOW User's Guide 257
 Enhancing Existing Panel Libraries

The following table lists the possible values of the TimeOut property:

Value Description

Default The default set for the panel library applies to the field/control.
Yes The field/control should wait for input, overriding any default

set for the panel library.
No The field/control should not wait for input, overriding any

default set for the panel library.

TimeOutValue Property

The TimeOutValue property specifies the amount of time to wait for input when the
TimeOut property is set to Yes or if the default for the panel library is set to Yes.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Title Property

The Title property specifies the text that appears with the field/control. Note that for the
check box field/control (see page 218), the Title property specifies the text that appears to
the right of the check box.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Top Property

The Top property is described on page 174.

Update Property

The Update property indicates whether the current value of this field/control should be
updated or completely replaced by new input.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,

258 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the Update property:

Value Description

Default The default set for the panel library applies to the field/control.
Yes The field/control should wait for input, overriding any default

set for the panel library.
No The field/control should not wait for input, overriding any

default set for the panel library.

Validation Property

The Validation property specifies the type of validation to be applied upon input to a
field/control. The following types of validation are possible:

• List of values. A list of values, separated with commas, for example: 1,4,47. If a
space is included as a valid value, it cannot be the last entry on the list.

• Range of values. A range of values, specified by separating the lowest value and the
highest value with two periods, for example: 5..30. Ranges are inclusive by default.
Ranges can be made exclusive by inserting greater than and less than symbols before
the beginning and ending values, for example: >A..<Z.

• Conditions. The following operators can be used to specify conditions:

Equal = Greater than >

Not equal != Not greater than !>

Less than < Greater than or equal to >=

Not less than !< Less than or equal to <=

You can combine a list of values, a range of values, and a condition in a single validation
by separating them with commas.

When validating date edit box fields/controls (see page 221), the following special names
can be used to validate the field/control against the system date:

• DATE (the system date)

• YEAR (the system year)

• MONTH (the system month)

• DAY (the system day)

 Cobol-WOW User's Guide 259
 Enhancing Existing Panel Libraries

DATE is the only name that contains all components of the system date. The following
validation allows only the entry of a date greater than the system date: >DATE. The
other three names can be used to validate a numeric edit box field/control (see page 230)
against a single component of the system date. The following validation forces entry of a
year that is smaller than the system year: <YEAR.

When validating time edit box fields/controls (see page 237), a special name, TIME, can
be used to validate the field/control against the system time.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Width Property

The Width property determines, in pixels, the width of the field/control.

Set the Width property with any value from 0 to the value specified in the Width
property of the form less the value specified in the Left property (see page 252) of the
field/control.

Setting Properties for RM/Panels Panels

RM/Panels refers to the objects called “forms” in Cobol-WOW as “panels.” Panels are
the containers within which you group fields/controls.

Like fields/controls, panels/forms have a number of configurable characteristics called
properties. When you open a panel/form in the Cobol-WOW Designer, you use the
Properties dialog box (see page 8), which lists each property and its value, to set the
default (initial) properties of a selected panel/form.

The following properties are used by panels/forms:

Properties

3D BorderType GeographicMotion Prefix
BackColor Description Height StoreByName
BackgroundAttr DropShadow HelpAttr Title
Bitmap EndUserEditing HelpMessage Top
BitmapMode ErrorAttr Icon Width
BorderAttr ErrorMessage Left Windowed

260 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

3D Property

The 3D property controls the three-dimensional appearance of fields/controls in a
panel/form.

Note The form 3D property settings of 1 or 2 will override the 3D property settings of
individual fields/controls.

The following table lists the possible values of the 3D property:

Value Description

0 Mixed — Allows two-dimensional and three-dimensional
settings of individual fields/controls in a form (the default).

1 All 3D — Forces all fields/controls to a three-dimensional
appearance.

2 No 3D — Forces all fields/controls to a two-dimensional
appearance.

BackColor Property

The BackColor property is described on page 178.

BackgroundAttr Property

The BackgroundAttr property indicates the default attribute code for the background of
the panel/form. Valid values are blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Bitmap Property

The Bitmap property is described on page 179.

BitmapMode Property

The BitmapMode property determines how the bitmap is displayed in a panel/form.

Note Single and double borders are identical when running a program with a Cobol-
WOW panel runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll).

 Cobol-WOW User's Guide 261
 Enhancing Existing Panel Libraries

The following table list the possible values of the BitmapMode property:

Value Description

0 Displays the bitmap in its original size (the default). If the
bitmap is smaller than the panel, the remaining space is filled
with the background color. If the bitmap is larger than the
panel, only the portion of the bitmap that fits inside the panel
is displayed.

1 Stretches the bitmap to fit exactly within the panel. This may
result in some distortion of the bitmap image, especially if the
size difference between the bitmap and the panel is
substantial.

2 Tiles bitmap to fit the panel. If BitmapMode is set to Tile, the
bitmap, if smaller than the panel, is displayed in a tiled pattern
multiple times within the panel.

BorderAttr Property

The BorderAttr property determines whether a border will be displayed around a
panel/form if the Windowed property (see page 266) is set to True. Valid values are
blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

BorderType Property

The BorderType property specifies the kind of border that will be displayed around the
panel/form if the Windowed property (see page 266) is set to True.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

262 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

The following table list the possible values of the BorderType property:

Value Description

S Panel is bordered by a single line (the default).
D Panel is bordered by a double line.
N Panel has no border.

Description Property

The Description property describes the panel/form and is displayed on the RM/Panels
Library Manager screen.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

DropShadow Property

The DropShadow property determines whether a shaded edge should be displayed around
the lower and right borders of the panel/form if the Windowed property (see page 266) is
set to True.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the DropShadow property:

Value Description

False A shaded edge is not displayed around the windowed panel
(the default).

True A shaded edge is not displayed around the windowed panel.

EndUserEditing Property

The EndUserEditing property determines whether the end-user can edit the panel/form.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,

 Cobol-WOW User's Guide 263
 Enhancing Existing Panel Libraries

however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the EndUserEditing property:

Value Description

False The end-user cannot edit the panel.
True The end-user can edit the panel (the default).

ErrorAttr Property

The ErrorAttr property indicates the default attribute code for error messages. Valid
values are blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

ErrorMessage Property

The ErrorMessage property specifies the error message associated with this panel/form
when the end-user enters an invalid value. The RM/Panels Message Editor appears when
the cursor is on this panel and you press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

GeographicMotion Property

The GeographicMotion property determines whether the movement of the cursor between
fields/controls on the panel/form during input is based on the field/control sequence
number of their physical location on the monitor.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the

264 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the GeographicMotion property:

Value Description

False Cursor motion is not based on the physical location of
fields/controls on the monitor (the default).

True Cursor motion is based on the physical location of
fields/controls on the monitor.

Height Property

The Height property is described on page 182.

HelpAttr Property

The HelpAttr property indicates the default attribute code for error messages. Valid
values are blank (the library default) or A through P.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

HelpMessage Property

The HelpMessage property specifies the help message associated with this panel/form
when the end-user requests help. The RM/Panels Message Editor appears when the
cursor is on this panel/form and you press F3 or double-click the mouse.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

Icon Property

The Icon property is described on page 182.

 Cobol-WOW User's Guide 265
 Enhancing Existing Panel Libraries

Left Property

The Left property is described on page 183.

Prefix Property

The Prefix property specifies the prefix to be used when generating .ws and .prc files.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

StoreByName Property

The StoreByName property determines whether fields/controls on the panel/form are
stored by name or by sequence number in the generated .ws file.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

The following table lists the possible values of the StoreByName property:

Value Description

False Fields/controls are stored by sequence number in the generated
.ws file.

True Fields/controls are stored by name in the generated .ws file (the
default).

Title Property

The Title property specifies the title to be associated with the panel/form if the Windowed
property (see page 266) is set to True.

Note This property has no effect when running a program with a Cobol-WOW panel
runtime that uses a Cobol-WOW DLL (wowpanrt.dll or wowrt.dll). It is possible,
however, to edit this property in the Cobol-WOW Designer in order to tailor the
appearance of the application for situations when the panel is not used with a Cobol-
WOW-enabled panel runtime.

266 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

Top Property

The Top property is described on page 187.

Width Property

The Width property is described on page 187.

Windowed Property

The Windowed property determines whether the panel/form should be displayed and
removed as a window. The following properties pertain to windowed panels only:
BorderAttr (see page 261), BorderType (see page 261), DropShadow (see page 262), and
Title (see page 265).

The following table lists the possible values of the Windowed property:

Value Description

False The panel is not displayed and removed as a window.
True The panel is displayed and removed as a window (the default).

Configuring Function Keys

The following sections compare how to configure function keys with RM/Panels and
Cobol-WOW.

How to Configure Function Keys with RM/Panels

With RM/Panels 2.x, keyboard input was done through a COBOL ACCEPT statement in
the RM/Panels runtime module (runpan2.cob). Because of this, the keys that terminated
input and the exception numbers generated by those keys were configured through the
RM/COBOL configuration file. In this configuration file, a key was specified as
terminating input and returning a specific exception number. The following is a sample
entry from an RM/COBOL configuration file that assigns an exception value of 27 to the
Escape key:

TERM-INPUT Action=Screen-Escape Code=27 ESC

 Cobol-WOW User's Guide 267
 Enhancing Existing Panel Libraries

When a user pressed the Escape key from an RM/Panels 2.x application, the ACCEPT
statement terminated and returned the value of 27. runpan2.cob stored this exception
value in RMP––EXCEPTION-NUMBER. Typically, condition names assigned to
RMP––EXCEPTION-NUMBER were then used to determine which function key was
pressed. Here is an excerpt from rmpanels.ws that shows how this is declared:

05 RMP--EXCEPTION-NUMBER PIC 9(3) VALUE 0.
 88 F10-KEY VALUE 10.
 88 ESCAPE-KEY VALUE 27.

In application code, the developer can then do something like the following to take action
when the Escape key is pressed:

IF ESCAPE-KEY
 PERFORM CANCEL-INPUT.

How to Configure Function Keys with Cobol-WOW

Cobol-WOW does not use COBOL ACCEPT statements for keyboard input. The
runpan2.cob shipped with Cobol-WOW 2.26 and higher uses the Cobol-WOW runtime
to receive and monitor the messages generated by Windows, including the keystroke
messages. This means that the COBOL runtime system does not do any function key
interpretation. This also means that the entries in the RM/COBOL configuration file will
have no effect.

Because of this, a different mechanism is required in order to associate exception
numbers with keyboard keys. The same mechanism of returning numeric values in
RMP—EXCEPTION-NUMBER should be preserved, however, so that application code
does not have to be altered. The Cobol-WOW runtime must be notified, for example, that
an exception number of 27 is expected when the Escape key is pressed.

This is accomplished through a section added to the Cobol-WOW initialization file
(cblwow.ini). The [RMPanelsFunctionKeys] section contains entries that specify
exception numbers for each key that needs to be detected. The following sample shows
how to associate an exception value of 27 with the Escape key:

[RMPanelsFunctionKeys]
ESC=27

The left half of the entry is the name of the key as labeled on the keyboard. The right half
of the entry is the exception number the key should return.

RM/Panels function keys can be configured using the Windows key names or the
RM/COBOL key names.

268 Using Cobol-WOW with RM/Panels
 Enhancing Existing Panel Libraries

The following sample entries illustrate these approaches. These approaches can be mixed
in the same configuration file. The F1 and F2 entries rely on the names used internally by
Windows for the keys. The entries WF4 and WF5 are names used by RM/COBOL.

Sample Cobol-WOW Configuration File Entry

[RMPanelsFunctionKeys]

; Windows key names
F1=1
F2=2
F3=3
F4=4
F5=5
F6=6
F7=7
F8=8
F9=9
F10=10
ESC=27
LEFT=65
RIGHT=66
UP=52
DOWN=53
ENTER=13
Shift+F1=11
Shift+F2=12
Control+F1=21
Control+F2=22
; RM/COBOL key names
WF4=4
WF5=5
WSFT+WF4=14
WSFT+WF5=15
WCNT+WF4=24
WCNT+WF5=25

The cblwow.ini file must be present on a system to run a Cobol-WOW-enhanced
RM/Panels application so that the function key information can be loaded by the Cobol-
WOW runtime. The following examples show corresponding entries between a typical
RM/COBOL runtime configuration file and the new [RMPanelsFunctionKeys] section in
the cblwow.ini file.

 Cobol-WOW User's Guide 269
 Enhancing Existing Panel Libraries

Sample RM/COBOL Configuration File Entry

TERM-INPUT Action=Screen-Terminate CODE=13 CR

TERM-INPUT Action=Screen-Terminate CODE=1 NUL 59

TERM-INPUT Action=Screen-Terminate CODE=2 NUL 60

TERM-INPUT Action=Screen-Terminate CODE=3 NUL 61

TERM-INPUT Action=Screen-Terminate CODE=4 NUL 62

TERM-INPUT Action=Screen-Terminate CODE=5 NUL 63

TERM-INPUT Action=Screen-Terminate CODE=6 NUL 64

TERM-INPUT Action=Screen-Terminate CODE=7 NUL 65

TERM-INPUT Action=Screen-Terminate CODE=8 NUL 66

TERM-INPUT Action=Screen-Terminate CODE=9 NUL 67

TERM-INPUT Action=Screen-Terminate CODE=10 NUL 68

TERM-INPUT ACTION=SCREEN-PREVIOUS-FIELD CODE=52 NUL 72

TERM-INPUT ACTION=LEFT-ARROW CODE=65 NUL 75

TERM-INPUT ACTION=RIGHT-ARROW CODE=66 NUL 77

TERM-INPUT CODE=53 NUL 80

Using Global Default Property Settings

Many characteristics of the standard (intrinsic) Windows controls that are created are
controlled by the Cobol-WOW defaults, established as global defaults using the Save
Properties command options on the Control, Form, or Options menus, and stored in the
cblwow.ini file. For example, if you have saved global defaults for a static text field,
including font information, all static fields that are created will have that font. The same
applies to background and foreground colors. This applies to all control types, not just
static text fields. Therefore, by manipulating the global default property settings using
commands on the Control, Form, or Options menus in a Cobol-WOW session before
editing the panel with Cobol-WOW, you can eliminate much of the work you would
otherwise have to do manually in the Cobol-WOW Designer to alter font and color
settings. As Cobol-WOW creates the GUI versions of the controls for the first time, it
will follow these defaults.

You may want to establish the FixedSys font as the global default for static text fields.
This will create the panels in the Cobol-WOW Designer with the closest representation of

270 Using Cobol-WOW with RM/Panels
 Migrating Panel Libraries to Cobol-WOW Forms

the existing character layout. However, you will almost certainly want to change this font
to something that is more typical of Windows, such as MS Sans Serif.

Restrictions

The following restrictions apply to using panels with Cobol-WOW:

• Since panels that are displayed by Cobol-WOW are displayed in their own windows,
COBOL ACCEPT and DISPLAY statements cannot be used to affect these windows.
Programs that use ACCEPT and DISPLAY statements should be modified to replace
the statements with RM/Panels functions, such as RMP—DF—fieldname.

• The RM/COBOL C$ routines for reading and writing to the screen function in the
COBOL main window. Cobol-WOW-enhanced panels do not use the COBOL
window, so these C$ routines cannot be used with these panels.

• RM/Panels version 2.1 allowed RM/Panels applications to generate panels
dynamically. Dynamically-generated panels are not stored in a panel library,
however, which means they cannot be opened in the Cobol-WOW Designer.
You cannot make dynamic changes to a Cobol-WOW-enhanced panel. Dynamic
modifications of panels are not compatible with the Cobol-WOW method
of displaying.

Migrating Panel Libraries to Cobol-WOW
Forms

For those users who want to take advantage of all the capabilities of Cobol-WOW,
it is not necessary to manually recreate your panels as Cobol-WOW forms. You can
immediately begin programming with the form using Cobol-WOW. Moreover,
RM/Panels panels and Cobol-WOW forms can coexist in the same application, which
provides a gradual migration path for those who want it.

Note Panels that are generated dynamically by an RM/Panels application cannot be
migrated to Cobol-WOW forms. Dynamically-generated panels are not stored in a panel
library, which means they cannot be opened in the Cobol-WOW Designer.

 Cobol-WOW User's Guide 271
 Migrating Panel Libraries to Cobol-WOW Forms

Migrate a Panel Library

To migrate a panel library to Cobol-WOW forms, take the following steps:

1. Start the Cobol-WOW Designer.

2. On the Panels menu, click Open.

Any open project will be closed automatically. The Open Panel dialog box appears.

3. From the Open Panel dialog box, find the desired panel library and open it. Panel
libraries have the extension .lib. Cobol-WOW must interface to the RM/Panels
COBOL programs via TCP/IP using Cobol-RPC.

The Select Panel dialog box opens.

4. Select the panel to be modified and click OK.

The panel will be opened in the Cobol-WOW Designer. A default graphical
representation will be displayed. The size, shape, location, color, fonts, and other
properties of the controls and overall window can then be modified.

5. Edit the panel as desired.

6. On the Panels menu, click Export. The panel will be saved as a Cobol-WOW form
with the extension .wow.

7. On the Panels menu, click Close.

8. On the Project menu, click either Open or New and open or create the project to
which you want to add the form.

The former panel can be edited in the same manner as any other Cobol-WOW form.

272 Using Cobol-WOW with RM/Panels
 Migrating Panel Libraries to Cobol-WOW Forms

 Cobol-WOW User's Guide 273
 Understanding Cobol-WOW Thin Client

Appendix E: Using Cobol-WOW
Thin Client

This appendix describes how to install and use Cobol-WOW Thin Client, which allows
the user interface to exist on the Windows client machine and the COBOL program (data
processing) to occur on the server.

Understanding Cobol-WOW Thin Client
Cobol-WOW Thin Client provides the ability to execute Cobol-WOW programs in a
client/server architecture over a LAN or the Internet. All programs and data reside and
execute on the server, but the Windows user interface is presented on a Windows
workstation. This client/server implementation is carried out by integrating RPC+
(formerly Cobol-RPC) technology with Cobol-WOW.

From a conceptual standpoint, you can consider a Thin Client application in the following
manner. The Windows client workstation executes a small .exe program (tclient.exe) on
Windows that connects to the server. The server, upon receiving this connection request,
begins execution of the application on the server. The application runs as a normal
RM/COBOL program on the server until a Cobol-WOW function is invoked. All Cobol-
WOW functions are intercepted by special logic in the runtime, which routes the requests
back to the client, where they are executed. This causes the user-interface to be presented
on the client. When the Cobol-WOW function completes execution, control is returned
back to the server.

Only a few files are installed on the client workstation. These files allow the client to
initiate the connection to the server and to carry out the Windows user interface
functionality. The bulk of the installation is on the server. The server must host the
facilities for receiving the connection request, executing the application, and forwarding
the Windows user interface requests to the client. For more information on installing and
configuring Cobol-WOW Thin Client, see page 274.

274 Using Cobol-WOW Thin Client
 Benefits of Cobol-WOW Thin Client

Benefits of Cobol-WOW Thin Client
Cobol-WOW Thin Client provides benefit in a variety of ways, including:

• Simplified management. Simplified computing means lower ownership costs and
increased resource efficiency of each end-user.

• Access to legacy systems. Extends the life of a COBOL application. Customers can
retain the access to existing legacy systems, databases, and applications, while
benefiting from popular, Windows-based applications.

• Reduced cost of ownership. Thin clients do not require many of the features of a
PC because network servers do most of the work running programs and storing data.

Installing and Configuring Cobol-WOW Thin
Client

To use Cobol-WOW Thin Client, you must install both the Cobol-WOW Thin Client and
the RPC+ server software. These are supplied on different distribution disks and must be
installed individually. Both may be installed on the same computer, allowing that
computer to function as both client and server. This is useful for testing and debugging
purposes and an application can be deployed in this manner as well.

Please refer to the installation instructions included on the distribution media for specific
instructions on installing the client and server software.

Once Cobol-WOW Thin Client is installed, some configuration must be done before it
can be used. Since using the Thin Client portion of Cobol-WOW involves little or no
additional coding, configuration of the client and server are the primary issues in its use.
Configuration information for both the client and server are stored in the cobolrpc.ini
file. Configuration information can be changed by editing this file.

For more information on configuring Cobol-WOW Thin Client, see one of the following
topics:

• Files Installed on the Windows Client Workstation

• Files Installed on a Windows Server

• Files Installed on a UNIX Server

 Cobol-WOW User's Guide 275
 Installing and Configuring Cobol-WOW Thin Client

Files Installed on the Windows Client Workstation

The following list describes each file that must be installed on the Windows client
workstation in order to use the Thin Client portion of Cobol-WOW.

Files Description

tclient.exe The Cobol-WOW Thin Client executable program. It is

the module that must be executed to begin the Thin Client
session. It will load the required DLLs and read the
configuration file, RpcPlus.ini. The tclient.exe file may
be placed in any location.

wowrt.dll The same Cobol-WOW runtime DLL that is used with
standalone Cobol-WOW programs. Instead of being
invoked by the RM/COBOL runtime, it is invoked by
tclient.exe. This DLL must be placed in the same (or
working) directory as tclient.exe or in a directory specified
in the PATH environment variable.

RpcPlusRM.dll The RM/COBOL interface to the RPC+ DLL
(RpcPlus.dll). Since tclient.exe is built using the same
parameter-passing mechanisms as an RM/COBOL
program, this DLL must be used to interface to the RPC+
routines. This DLL must be placed in the same (or
working) directory as tclient.exe or in a directory specified
in the PATH environment variable.

RpcPlus.dll The RPC+ DLL. It handles communications with the
server. This DLL must be placed in the same (or working)
directory as tclient.exe or in a directory specified in the
PATH environment variable.

RpcPlus.ini A configuration file that tells RPC+ what server to
connect to and what port to use. The contents of the file
look like this:

[ClientConfig]
DefaultServer=xxx.xxx.xxx.xxx

[ServerConfig]
Port=portnumber

The DefaultServer entry specifies the IP address or the
name of the Cobol-WOW Thin Client Server. The Port
entry specifies the port number on the server associated
with this service. These entries can be changed as needed
for your installation.

The RpcPlus.ini file must be in the same (or working)
directory as tclient.exe or in the Windows directory.

276 Using Cobol-WOW Thin Client
 Installing and Configuring Cobol-WOW Thin Client

Files Installed on a Windows Server

The following list describes each file that must be installed on a Windows server in order
to use the Thin Client portion of Cobol-WOW.

Files Description

RpcPlusServer.exe This program performs the important function of

listening for a connection request, then starting the
RM/COBOL runtime and application. This file can be
installed in any location.

RpcPlusWOW.dll The Cobol-WOW interface to RPC+ (RpcPlus.dll). The
application programs make calls to functions such as
WOWSETPROP and WOWGETPROP. The
RpcPlusWOW.dll intercepts those calls and uses RPC+
to route them to the Windows client. This DLL may be
placed in any location, because it must be specifically
loaded in the runcobol command line with the L=
option. A path can be included if the RpcPlusWOW.dll
is located in a directory other than the working
directory.

RpcPlus.dll The RPC+ DLL. It handles communications with the
Windows client. This DLL must be placed in the
working directory for the application or in a directory
specified in the PATH environment variable.

RpcPlus.ini A configuration file with important information for
RPC+. See the following example of the contents of
this file.

Sample Contents of RcpPlus.ini for a Windows Server

[ClientConfig]
DefaultServer=CLIENT

[ServerConfig]
CobolType=rmcobol
StartupCommand=runcobol myapp.cob
L=rpcpluswow.dll
Port=5010
LogActivity=TRUE
LogFileName=rpcplus.log
WorkingDir=\myapp

In the configuration file installed on a Windows server, the only entry required in the
[ClientConfig] section is DefaultServer. The DefaultServer entry must specify CLIENT.

 Cobol-WOW User's Guide 277
 Installing and Configuring Cobol-WOW Thin Client

In the Thin Client architecture, CALLs made by code executing on the server must be
routed back to the CLIENT. This entry causes that to happen.

The first three entries in the [ServerConfig] section are required. The CobolType entry
must specify rmcobol. This causes the RpcPlusServer program to use the correct
command line format when starting the RM/COBOL runtime.

The StartupCommand entry can be edited to suit your installation. You may need to add
a path to the runcobol command, but the runcobol command must be invoked here. You
can specify whichever application program should be started for the application,
presumably your main program. This program can call any number of subprograms in the
normal COBOL manner. You can specify a path to this program. The RUNPATH
environment variable or Windows Registry setting will be used to locate any called
subprograms, but not the initial program. Finally, you may need to add a path to the L=
option which loads RpcPlusWOW.dll, depending on where you installed that file.

The Port entry is required, and must specify the same port number that is contained in the
RpcPlus.ini file on the client.

The last three entries are optional. The LogActivity=TRUE option tells RPC+ to record
all connections in a log file. The LogFileName entry specifies the name of the log file. A
path may be added to this file name.

It is highly recommended that you specify a LogFileName. Any communication errors or
other problems detected by RPC+ will be written to this file. If no file is specified, these
errors will be displayed in a message box. This will require a user to dismiss the message
box before the RM/COBOL runtime can terminate.

The WorkingDir entry specifies a directory that will be established as the working
directory for the RM/COBOL runtime, and therefore your application. If this entry is not
specified, the working directory will be the working directory associated with the
execution of RpcPlusServer.exe

Obviously, the most important item to install on your Windows server is your application,
which can be placed in any location. There is no need to install it in the same location as
any of the Cobol-WOW Thin Client files, although you certainly can. If you want to load
your application in a separate area, the WorkingDir entry is a handy way to “move” to
your application’s directory.

278 Using Cobol-WOW Thin Client
 Installing and Configuring Cobol-WOW Thin Client

Files Installed on a UNIX Server

The following list describes each file that must be installed on a UNIX server in order to
use the Thin Client portion of Cobol-WOW. The first two files in the table, /etc/services
and /etc/inetd.conf, are UNIX system files that must be edited to enable the built-in
service, inetd, to handle accepting the connection requests from tclient.exe and launching
the COBOL application.

Files Description

/etc/services The file that contains a list of service names and

TCP/IP configuration information. An entry must be
added to the /etc/services file as follows:

rpcplus 5000/tcp

This entry defines rpcplus as a service using tcp
protocol on port 5000. Do not change the service
name or protocol. You can, however, select a different
port number. Just be certain that the port number you
select is not used by any other service on the server and
matches the port number used by the Cobol-WOW
Thin Client.

/etc/inetd.conf
The file that contains a list of services for which inetd
should handle connection requests. An entry must be
added to the /etc/inetd.conf file as follows:

rpcplus stream tcp nowait root /bin/sh
 /bin/sh/rpcplus/rpcstart

where rpcplus is the name of the service inetd is
supposed to listen for. This service must be described
in /etc/services, as discussed above. You should not
need to change this.
stream tcp nowait describe the type of network
communication needed. Do not change these options.
root indicates the user for which the server process
will be initiated. You may want to have your
application executed under a different user name. Be
certain that the user name used here has adequate
permissions to find and execute the application.
/bin/sh is the name of the program that inetd should
initiate for the service. /bin/sh is specified because
a shell script is used to start the application. This entry
is repeated and should not be changed.
/rpcplus/rpcstart is a shell script that starts the
RM/COBOL runtime system. The rpcstart script can be
edited to set additional environment variables required
by the application, or to set a working directory.

 Cobol-WOW User's Guide 279
 Installing and Configuring Cobol-WOW Thin Client

Files Description

libetsrpc.so The Cobol-WOW Thin Client shared object module.
This file should be placed in the rmcobolso
subdirectory of the RM/COBOL runtime installation.
This shared object is the Cobol-WOW interface to the
RpcPlus.dll. The application programs make calls to
functions such as WOWSETPROP and
WOWGETPROP. The RpcPlusWOW.dll intercepts
those calls and uses RPC+ to route them to the
Windows client.

rpcstart A file that is a shell script, which starts the application.
It must contain at least the following:

 TERM=ansi
export TERM
runcobol myapp.cob K

This script can be expanded to set environment
variables or to establish the current working directory.
It is advisable to add a full path to runcobol and also to
myapp. Myapp is the first RM/COBOL program in
your application. It can, however, have any name you
wish. The K option is required on the runcobol
command line to suppress the banner. Displaying the
banner would result in corruption of the client/server
communications stream.

RpcPlus.ini A configuration file with important information for
RPC+. See the following example of the contents of
this file.

Sample Contents of RcpPlus.ini for a UNIX Server

[ClientConfig]
DefaultServer=CLIENT

[ServerConfig]
Port=5010
LogActivity=TRUE
LogFileName=rpcplus.log

In the configuration file installed on a UNIX server, the only entry required in the
[ClientConfig] section is DefaultServer. The DefaultServer entry must specify CLIENT.
In the Thin Client architecture, CALLs made by code executing on the server must be
routed back to the CLIENT. This entry causes that to happen.

280 Using Cobol-WOW Thin Client
 Installing and Configuring Cobol-WOW Thin Client

The Port entry is required, but it is not used during normal operation. It can be used in
some debugging situations.

The last two entries are optional. The LogActivity=TRUE option tells RPC+ to record all
connections in a log file. The LogFileName entry specifies the name of the log file. A
path may be added to this file name. It is highly recommended that you specify a
LogFileName. Any communication errors or other problems detected by RPC+ will be
written to this file. If no file is specified, these errors will be displayed in a message box.
This will require a user to dismiss the message box before the RM/COBOL runtime can
terminate.

Obviously, the most important item to install on your UNIX server is your application,
which can be placed in any location. There is no need to install the application in the
same location as any of the Cobol-WOW Thin Client files, although you certainly can. If
you want to load your application in a separate area, adding a cd command to the rpcstart
script is a handy way to “move” to your application’s directory.

 Cobol-WOW User's Guide 281
 Running the Application with Cobol-WOW Thin Client

Running the Application with Cobol-WOW
Thin Client

The following list describes each of the actions necessary to run your application with
Cobol-WOW Thin Client on the server and Windows client workstation.

On this type of hardware Do this

UNIX server After editing the configuration files for inetd, the

inetd daemon must be refreshed. This can be
accomplished on all servers by rebooting the
machine, but also can be accomplished on most
systems with the following command:

kill –HUP pid

Where pid is the process id of the inetd process.
This command causes inetd to reread its
configuration files.
You can use the following command to determine
whether inetd is listening for a connection on the
rpcplus service port:

etstat –a | grep “rpcplus”

This command should show an rpcplus port in a
LISTEN state. Once that is shown, you are ready to
start the client with the following command:

netstat –a | grep “rpcplus”

This command should show an rpcplus port in a
LISTEN state. Once that is shown, you are ready to
start the client.

Windows server After you have installed your files, you need to
execute RPCPlusServer.exe on the server. This will
cause the server to start listening for connections
from the client workstation. When a connection is
received, the server will automatically start the
application.

Windows client workstation Once a server is listening for connections, you can
execute tclient.exe on the client workstation. The
application’s interface will appear on the client.

282 Using Cobol-WOW Thin Client
 Running the Application with Cobol-WOW Thin Client

 Cobol-WOW User's Guide 283

Index

A

ACCEPT statements, 46, 48, 58, 109, 223,
266, 270

ActiveX controls, 48, 191. See also Controls
adding, 192
distributing, 197
events, 195
indexed properties, 194
limitations, 197
methods, 196
properties, 194
troubleshooting, 193

Aligning controls, 18
All caps, as a document convention, xxiv
Animation control

defined, 89
events, unique

Start, 91
Stop, 91

properties, common
Enabled, 168
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
AnimationFile, 90
AutoPlay, 90
Border, 90
Center, 90
Play, 91
Transparent, 91

ANSI character set, 4, 99, 113

AXDOMETHOD function, 196
AXGETINDEXPROP function, 194
AXSETINDEXPROP function, 194

B

Bitmap control
defined, 92
events, common

Click, 175
properties, common

BackColor, 167
Enabled, 168
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Bitmap, 92
BitmapMode, 93
Border, 93
Xoffset, 94
Yoffset, 94

Bold type, as a document convention, xxiv
BREAK program, debugging, 83

C

C$Show subprogram, 27, 210
cblwow.ini (initialization file), 3, 44, 81,

178, 192, 267
Character-based applications, 212
Check box control

defined, 94
events, common

Click, 175

284 Index

GotFocus, 175
KeyDown, 176
KeyUp, 176
LostFocus, 176

properties, common
3D, 166
BackColor, 167
Caption, 168
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Alignment, 95
AutoCheck, 96
ThreeState, 96
Value, 97

Check box field/control (RM/Panels)
properties, common, 218

3D, 241
Accelerator, 242
Beep, 243
Column, 247
DefaultToPressed, 247
DisabledAttr, 248
EnabledAttr, 250
EntryOrder, 251
ErrorMessage, 251

FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
MnemonicAttr, 253
Name, 253
PromptText, 255
SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Title, 257
Top, 257
Width, 259

properties, unique
InputField, 219

Client/server, 273
COBOL main window

controlling, 27, 210
displaying debugging information, 81

Cobol skeleton program file (.cbl), 201
Cobol-RPC, 212, 273
Cobol-WOW

ActiveX controls, 48, 191
application architecture, 199
components, 43
customizing initialization file, 3
data entry programs, issues in, 60
debugging, 81
Designer, 43
development process, overview, 45
enhancements, xxi
event-driven applications, examples of, 58
features, xxi, xxvii
file types, 199

 Cobol-WOW User's Guide 285

forms, 46, 176
installing, 1
intrinsic controls, 48, 87
menus, working with, 76
projects, 57
properties and events, setting, 87
runtime system, 44
Thin Client program, 44, 273
tutorial, 5
using with RM/Panels, 211
windows graphical operating environment

elements, 46
windows.cpy file, 203

CodeWatch, debugging with, 85
Combo box control

defined, 97
events, common

Click, 175
DblClick, 175
GotFocus, 175
KeyDown, 176
KeyUp, 176
LostFocus, 176

events, unique
DropDown, 101
EditChange, 101
NoSpace, 101

properties, common
3D, 166
BackColor, 167
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172

ScrollBar, 173
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
AutoHScroll, 98
Count, 99
CurSel, 99
DisableNoScroll, 99
OEMConvert, 99
SelText, 100
Sort, 100
Style, 100

Combo box field/control (RM/Panels)
properties, common, 218

3D, 241
Beep, 243
Border, 244
BorderAttr, 244
ChoiceHelp, 245
ChoicesToDisplay, 245
ChoicesToStore, 246
ChoiceValue, 246
ChoiceWidth, 246
Column, 247
CurChoice, 247
DisabledAttr, 248
DoubleClick, 249
DropDown, 249
EnabledAttr, 250
EnabledForInput, 250
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252

286 Index

Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
Name, 253
PromptText, 255
ScrollBar, 255
SelectedAttr, 255
StartOfGroup, 256
StaticChoices, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Width, 259

Command button control
defined, 101
events, common

Click, 175
GotFocus, 175
KeyDown, 176
KeyUp, 176
LostFocus, 176

properties, common
Caption, 168
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Accelerator, 102
Bitmap, 103
Default, 103

Command button field/control (RM/Panels)
properties, common, 220

3D, 241
Accelerator, 242
Beep, 243
Column, 247
DefaultValue, 248
DisabledAttr, 248
EnabledAttr, 250
EnabledForInput, 250
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
MnemonicAttr, 253
Name, 253
PromptText, 255
SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Title, 257
Top, 257
Width, 259

properties, unique
PushedAttr, 220
SizeType, 221
SizeValue, 221

 Cobol-WOW User's Guide 287

Configuration
cblwow.ini (initialization file), 3, 44, 81,

178, 192, 267
function keys (RM/Panels), 266
in menu controls, 13
in projects, 6
RM/COBOL Configuration utility

(rmconfig), 27
Thin Client program, 44
tools, required, 2

Controls. See also ActiveX controls;
Intrinsic controls
aligning, 18
defined, 48
menus, 12, 76
moving, 18
naming, 13, 15, 22, 172
selecting, 17
sizing, 18
spacing, 18
tab order, 19, 69
z-order, 20

Conventions and symbols used in this
manual, xxiv

Currency editing, 4

D

Data entry programs, issues in, 60
Date edit box field/control (RM/Panels)

properties, common, 221
3D, 241
AlwaysDisabled, 242
AutoExit, 242
Beep, 243
BlankWhenZero, 243
Border, 244
Column, 247
DefaultToSystem, 248
DefaultValue, 248
DisabledAttr, 248
DisplayFormat, 249
DoubleClick, 249
EnabledAttr, 250

EnabledForDisplay, 250
EnabledForInput, 250
EntryFormat, 251
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
Name, 253
OccColOffset, 253
OccLineOffset, 254
Occurrences, 254
OccXOffset, 254
OccYOffset, 254
PromptText, 255
Protected, 255
SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Update, 257
Validation, 258
Width, 259

properties, unique
StorageFormat, 222

Date time picker control
defined, 103
event, unique

Change, 109
properties, common

Enabled, 168
FontBold, 169
FontItalic, 169

288 Index

FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
Height, 171
Left, 171
Locked, 171
MCColor, 171
MCColorIndex, 172
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Format, 105
LongDateFormat, 106
MCFontBold, 106
MCFontItalic, 106
MCFontName, 107
McFontSize, 107
MCFontStrikeThru, 107
MCFontUnderline, 107
RightAlign, 108
ShortDateCenturyFormat, 108
ShowNone, 108
TimeFormat, 109
UpDown, 109

Debugging
with COBOL DISPLAY statements, 81
with CodeWatch, 85
with RM/COBOL Interactive Debugger,

82
DISPLAY statements, 46, 48, 210, 270

debugging with, 81

E

Edit box control
defined, 109
events, common

GotFocus, 175

KeyDown, 176
KeyUp, 176
LostFocus, 176

events, unique
Change, 115
HScroll, 115
MaxText, 115
NoSpace, 115
VScroll, 115

properties, common
3D, 166
BackColor, 167
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Alignment, 110
AutoHScroll, 111
AutoVScroll, 111
Border, 111
Case, 112
MaxChars, 112
Multiline, 112
NoHideSel, 112
OEMConvert, 113
Password, 113
PasswordChar, 113

 Cobol-WOW User's Guide 289

ReadOnly, 114
ScrollBars, 114
Text, 114
WantReturn, 114

Edit box field/control (RM/Panels)
properties, common, 223

3D, 241
AlwaysDisabled, 242
AutoExit, 242
Beep, 243
Border, 244
Case, 245
Column, 247
DefaultValue, 248
DisabledAttr, 248
DoubleClick, 249
EnabledAttr, 250
EnabledForDisplay, 250
EnabledForInput, 250
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
Name, 253
OccColOffset, 253
OccLineOffset, 254
Occurrences, 254
OccXOffset, 254
OccYOffset, 254
PromptText, 255
Protected, 255
SelectedAttr, 255
StartOfGroup, 256

TimeOut, 256
TimeOutValue, 257
Top, 257
Update, 257
Validation, 258
Width, 259

properties, unique
Class, 224
Justify, 224
Prompt, 224

Ellipse shape
defined, 116
properties, common

BackBrushHatch, 167
BackBrushStyle, 167
BackColor, 167
Fill, 168
ForeColor, 170
Height, 171
Left, 171
Locked, 171
Name, 172
PenSize, 173
PenStyle, 173
TabIndex, 173
Top, 174
Width, 174
ZOrder, 175

Enhancements to Cobol-WOW, xxi, xxvii
Event-driven applications, examples of, 58
Events

event-driven applications, examples of, 58
filtering, 4, 177
setting

ActiveX controls, 195
forms, 87, 177
intrinsic controls, 87, 175

writing (attaching) code for, 25

F

Filenames, conventions for, xxiv
Filtering events, 4, 177
Form file (.wow), 200

290 Index

Forms
creating, 7
defined, 46
events, setting

Activate, 187
Close, 187
Create, 187
Enable, 187
GetFocus, 188
KeyDown, 188
KeyPress, 188
KeyUp, 188
LButtonDown, 188
LButtonUp, 188
list of, 177
LoseFocus, 188
MButtonDown, 188
MButtonUp, 189
Paint, 189
RButtonDown, 189
RButtonUp, 189
Show, 189

file definition (.wow), 200
panels (RM/Panels), 259
properties, setting

3D, 177
AllowEventFilter, 177
BackColor, 178
Bitmap, 179
BitmapMode, 179
Border, 180
Caption, 180
ClipControls, 180
Cursor, 181
DialogMotion, 182
Enabled, 182
Height, 182
Icon, 182
IconIndex, 183
Left, 183
list of, 177
MaxButton, 183
MinButton, 183

Modal, 184
Parent, 184
ScrollBars, 184
ShowState, 185
Style, 185
SysKeyMode, 186
SystemMenu, 186
Title, 186
Top, 187
Visible, 187
Width, 187

with ActiveX controls, 193
Function keys, configuring with RM/Panels

and Cobol-WOW, 266
Functions

defined, 55
online Help file, xxii
sample program, 56
Windows API, 26, 44
WOWADDITEM, 28, 124
WOWCLEAR, 124
WOWGETMESSAGE, 208
WOWGETNUM, 4
WOWGETPROP, 4, 35, 52, 87

data entry program examples, 60
with ActiveX control properties, 194

WOWMESSAGEBOX, 41
WOWREMOVEITEM, 37, 124
WOWSETPROP, 4, 51, 87

data entry program examples, 60
with ActiveX control properties, 194

G

Global default property settings, 269
Group box control

defined, 116
properties, common

3D, 166
BackColor, 167
Caption, 168
Enabled, 168
FontBold, 169
FontItalic, 169

 Cobol-WOW User's Guide 291

FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

Group box field/control (RM/Panels)
properties, common, 224

3D, 241
BackColor, 242
Caption, 244
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
Left, 252
Name, 253
Top, 257
Width, 259

properties, unique
Enabled, 225
Group, 225
Locked, 225
TabStop, 226

H

Handles
identifiers, 53, 204
sizing, 18

I

IDs
defined, 54
example, 205

Initialization file (cblwow.ini), 3, 44, 81,
178, 192, 267

Installation, 1
Interactive Debugger. See RM/COBOL

Interactive Debugger
Intrinsic controls, 48. See also Controls

aligning, 18
events, common, 175
list of, 87
moving, 18
naming, 13, 15, 22, 172
properties, common, 166
selecting, 17
setting properties and events, 87
sizing, 18
spacing, 18
tab order, 19, 69
types

animation, 89
bitmap, 92
check box, 94
combo box, 97
command button, 101
date time picker, 103
edit box, 109
ellipse shape, 116
group box, 116
IP address, 117
line shape, 119
list box, 119
month calendar, 126
option button, 130
progress bar, 133
rectangle shape, 134
rounded rectangle shape, 134
scroll bars, 135
static text, 139
status bar, 142
tab, 145

292 Index

timer, 149
toolbar, 149
trackbar, 154
updown, 160

z-order, 20
IP address control

defined, 117
events, common

GotFocus, 175
LostFocus, 176

events, unique
Change, 119

properties, common
BackColor, 167
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
FieldIndex, 118
FieldMax, 118
FieldMin, 118
Value, 119

Italic type, as a document convention, xxiv

K

Key combinations, document convention for,
xxiv

L

Line shape
defined, 119
properties, common

BackBrushHatch, 167
BackBrushStyle, 167
BackColor, 167
Fill, 168
Height, 171
Left, 171
Locked, 171
Name, 172
PenSize, 173
PenStyle, 173
TabIndex, 173
Top, 174
Visible, 174
ZOrder, 175

List box control
defined, 119
events, common

Click, 175
DblClick, 175
GotFocus, 175
KeyDown, 176
KeyUp, 176
LostFocus, 176

how to use, 124
properties, common

3D, 166
BackColor, 167
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Group, 171
Height, 171
Left, 171
Locked, 171

 Cobol-WOW User's Guide 293

Name, 172
ScrollBar, 173
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Border, 120
ColumnWidth, 121
Count, 121
CurSel, 121
DisableNoScroll, 121
ExtendedSel, 122
MultipleSel, 122
NoIntegralHeight, 122
NoRedraw, 123
SelText, 123
Sort, 123
Standard, 123
UseTabStops, 124
WantKeyboard, 124

using functions and messages with, 124
List box field/control (RM/Panels)

properties, common, 226
3D, 241
BackColor, 242
Beep, 243
Border, 244
BorderAttr, 244
ChoiceHelp, 245
ChoicesToDisplay, 245
ChoicesToStore, 246
ChoiceValue, 246
ChoiceWidth, 246
Column, 247
CurChoice, 247
DisabledAttr, 248
DoubleClick, 249
DropDown, 249
EnabledAttr, 250
EnabledForInput, 250

EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
Name, 253
PromptText, 255
ScrollBar, 255
SelectedAttr, 255
StartOfGroup, 256
StaticChoices, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Width, 259

M

Main Window Type property, Microsoft
Windows, 27

Menus
checking and unchecking menu items, 77
creating, 12
enabling and disabling menu items, 78
popping up, 78
working with, 76

Messages
defined, 55
online Help file, xxii
sample program, 56
WM-SETREDRAW, 28

Microsoft Windows
Registry file, 27, 86, 192, 277
rmconfig utility, 27

294 Index

Month calendar control
defined, 126
event, unique

Change, 129
properties, common

Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
Height, 171
Left, 171
Locked, 171
MCColor, 171
MCColorIndex, 172
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
FirstDayOfWeek, 128
MaxSelCount, 128
MonthDelta, 128
MultiSelect, 128
NoToday, 129
NoTodayCircle, 129
WeekNumbers, 129

Moving controls, 18
Multi-line edit box field/control

(RM/Panels)
properties, common, 226

3D, 241
BackColor, 242
Beep, 243
Border, 244
Case, 245
Column, 247
DefaultValue, 248

DisabledAttr, 248
DoubleClick, 249
EnabledAttr, 250
EnabledForInput, 250
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
Name, 253
PromptText, 255
Protected, 255
SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Width, 259

properties, unique
ColsToDisplay, 227
ColsToStore, 227
LinesToDisplay, 228
LinesToStore, 228
Required, 228
Stream, 228
Wrap, 229

N

Numeric edit box field/control (RM/Panels)
properties, common, 230

3D, 241
AlwaysDisabled, 242
AutoExit, 242
BackColor, 242

 Cobol-WOW User's Guide 295

Beep, 243
BlankWhenZero, 243
Border, 244
Column, 247
DecimalDigits, 247
DefaultValue, 248
DisabledAttr, 248
DisplayFormat, 249
DoubleClick, 249
EnabledAttr, 250
EnabledForDisplay, 250
EnabledForInput, 250
EntryFormat, 251
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
InterDigits, 252
Left, 252
Length, 252
Line, 253
Name, 253
OccColOffset, 253
OccLineOffset, 254
Occurrences, 254
OccXOffset, 254
OccYOffset, 254
PromptText, 255
Protected, 255
SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Update, 257

Validation, 258
Width, 259

properties, unique
AssumeDecimal, 230
CalculatorEntry, 231
Signed, 231

O

OEM character set
OEMConvert property, 99, 113
UseOEMConversion keyword, 4

Option button control
defined, 130
events, common

Click, 175
GotFocus, 175
KeyDown, 176
KeyUp, 176
LostFocus, 176

how to use, 131
properties, common

3D, 166
BackColor, 167
Caption, 168
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
ForeColor, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

296 Index

properties, unique
Alignment, 131
AutoPress, 131
Value, 131

Option button field/control (RM/Panels)
properties, common, 232

3D, 241
Accelerator, 242
Column, 247
DecimalDigits, 247
DefaultToPressed, 247
DisabledAttr, 248
EnabledAttr, 250
EnabledForInput, 250
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
InterDigits, 252
Left, 252
Length, 252
Line, 253
MnemonicAttr, 253
Name, 253
PromptText, 255
SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Width, 259

properties, unique
DataItem, 232
DataSigned, 233
DataSize, 233
DataValue, 233
NumericData, 233

P

Portability, 48, 211, 212
Preferences

aligning controls, 47
filtering events, 178
for CodeWatch, 85
for runtime system, 3, 44
generating menu names, 14
handling code, 56
locating required tools, 2
spacing controls, 19

Procedure Division copy file (.wpr), 200
Product registration, xxv
Progress bar control

defined, 133
properties, common

Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Increment, 133
Maximum, 133
Minimum, 133
Value, 134

Project file (.wpj), 200
Projects

creating, 6
overview, 57

 Cobol-WOW User's Guide 297

Properties
ActiveX controls, 194
defined, 50
displaying, 9, 18
forms

list of, 177
intrinsic controls

list of common, 166
setting at runtime, 87

RM/Panels data fields
list of common, 241

sample program, 53
setting

forms, 87
intrinsic controls, 87

shared, 18
using WOWGETPROP, 35, 52
using WOWSETPROP, 51

Properties dialog box, 9, 18

R

Rectangle shape
defined, 134
properties, common

BackBrushHatch, 167
BackBrushStyle, 167
BackColor, 167
Fill, 168
ForeColor, 170
Height, 171
Left, 171
Locked, 171
Name, 172
PenSize, 173
PenStyle, 173
TabIndex, 173
Top, 174
Width, 174
ZOrder, 175

Registration, xxv
Registry file, 27, 86, 192, 277

RM/COBOL Configuration utility
(rmconfig), 27

RM/COBOL Configuration utility
(rmconfig), 27

RM/COBOL Interactive Debugger,
debugging with, 82

RM/COBOL object file (.cob), 201
RM/Panels

data fields/controls, listed, 217
enhance existing panel libraries, 211
migrating panel libraries to Cobol-WOW

forms, 270
using with Cobol-WOW, 211

rmconfig utility, 27
Rounded rectangle shape

defined, 134
properties, common

BackBrushHatch, 167
BackBrushStyle, 167
BackColor, 167
Fill, 168
ForeColor, 170
Height, 171
Left, 171
Locked, 171
Name, 172
PenSize, 173
PenStyle, 173
TabIndex, 173
Top, 174
Width, 174
ZOrder, 175

properties, unique
RoundnessX, 135
RoundnessY, 135

RPC+, 273

S

Scroll bar control
defined, 135
events, unique

EndScroll, 137
LineDn (Vertical), 138
LineLeft (Horizontal), 137
LineRight (Horizontal), 138

298 Index

LineUp (Vertical), 138
PageDn (Vertical), 138
PageLeft (Horizontal), 138
PageRight (Horizontal), 138
PageUp (Vertical), 138
ThumbPos, 138
ThumbTrk, 138

how to use, 139
properties, common

Enabled, 168
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
LineChange, 136
Maximum, 136
Minimum, 137
PageChange, 137
Value, 137

Scroll bar field/control (RM/Panels)
properties, common, 234

Border, 244
Column, 247
DefaultValue, 248
DisabledAttr, 248
EnabledAttr, 250
EnabledForInput, 250
EntryOrder, 251
Height, 252
Left, 252
Line, 253
Name, 253
Top, 257
Width, 259

properties, unique
MaximumValue, 235
MinimumValue, 235
PageSize, 235
Size, 235
StepSize, 236
ThumbAttr, 236

Selecting controls, 17
Show Grid, 18, 47
Sizing controls, 18
Snap to Grid, 18, 47
Spacing controls, 18
Static text control

defined, 139
properties, common

3D, 166
BackColor, 167
Caption, 168
Enabled, 168
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
Group, 171
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Alignment, 140
Effect, 141
NoPrefix, 141
Transparent, 142
WordWrap, 142

 Cobol-WOW User's Guide 299

Static text field/control (RM/Panels)
properties, common, 236

3D, 241
BackColor, 242
Caption, 244
Column, 247
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
Left, 252
Length, 252
Line, 253
Name, 253
Top, 257
Width, 259

properties, unique
Alignment, 237
Effect, 237
NoPrefix, 238
WordWrap, 238

Status bar control
defined, 142
properties, common

Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
CurSection, 143
SectionNoBorders, 143
SectionPopOut, 144
Sections, 144
SectionStatus, 144

SectionWidth, 144
SimpleNoBorders, 144
SimplePopOut, 145
SimpleStatus, 145

Support, xxv
Symbols and conventions used in this

manual, xxiv
SysKeyMode property, 186

T

Tab control
defined, 145
events, unique

KeyDown, 148
SelChange, 148
SelChanging, 148

properties, common
FontBold, 169
FontItalic, 169
FontName, 169
FontSize, 169
FontStrikethru, 170
FontUnderline, 170
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Buttons, 146
CurTab, 146
FixedWidth, 147
ForcelabelLeft, 147
GetFocus, 147
Multiline, 148
Tabs, 148
TabText, 148

Tab order, 19, 69
TCP/IP, 212

300 Index

Technical support, xxv
Thin Client program, 273
Time edit box field/control (RM/Panels)

properties, common, 239
3D, 241
AlwaysDisabled, 242
AutoExit, 242
BackColor, 242
Beep, 243
BlankWhenZero, 243
Border, 244
Column, 247
DefaultToSystem, 248
DefaultValue, 248
DisabledAttr, 248
DisplayFormat, 249
DoubleClick, 249
EnabledAttr, 250
EnabledForDisplay, 250
EnabledForInput, 250
EntryFormat, 251
EntryOrder, 251
ErrorMessage, 251
FontBold, 251
FontItalic, 251
FontName, 251
FontSize, 251
FontStrikethru, 251
FontUnderline, 251
ForeColor, 252
Height, 252
HelpMessage, 252
Left, 252
Length, 252
Line, 253
Name, 253
OccColOffset, 253
OccLineOffset, 254
Occurrences, 254
OccXOffset, 254
OccYOffset, 254
PromptText, 255
Protected, 255

SelectedAttr, 255
StartOfGroup, 256
TimeOut, 256
TimeOutValue, 257
Top, 257
Update, 257
Validation, 258
Width, 259

properties, unique
24HourFormat, 239
StorageFormat, 240

Timer control
defined, 149
event, unique

Timer, 149
properties, common

Enabled, 168
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Interval, 149

Toolbar control
defined, 149
event, unique

Button-0, 154
properties, common

Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
Top, 174
Visible, 174
Width, 174
ZOrder, 175

 Cobol-WOW User's Guide 301

properties, unique
AlignTop, 150
BitmapHeight, 151
BitmapWidth, 151
BtnBitmap, 151
BtnEnabled, 151
BtnHidden, 151
BtnState, 152
BtnStyle, 152
BtnText, 153
BtnWrap, 153
ButtonHeight, 153
Buttons, 153
ButtonWidth, 153
CurButton, 153
Larger, 154
Rows, 154
Wrapable, 154

Trackbar control
defined, 154
events, unique

Bottom, 159
EndTrack, 159
LineDown, 159
LineUp, 159
PageDown, 159
PageUp, 159
ThumbPos, 159
ThumbTrk, 160
Top, 160

properties, common
Enabled, 168
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
AutoTicks, 155
BothTicks, 156
EnableSelRange, 156
LeftTicks, 156
LineChange, 157
Maximum, 157
Minimum, 157
NoThumb, 157
NoTicks, 157
PageChange, 158
SelEnd, 158
SelStart, 158
TickFreq, 158
TopTicks, 158
Value, 158
Vertical, 159

Troubleshooting, ActiveX controls, 193
Tutorial, 5

adding controls, 12
controls

aligning, 18
moving, 18
selecting, 17
sizing, 18

creating a list box, 15
creating a menu, 12
creating the command buttons, 16
designing forms, 7
specifying tab order, 19
specifying z-order, 20
using projects, 6
using the file maintenance program, 5
writing code, 25

U

Updown control
defined, 160
events, unique

EndScroll, 166
ThumbPos, 166

302 Index

properties, common
Enabled, 168
Height, 171
Left, 171
Locked, 171
Name, 172
TabIndex, 173
TabStop, 174
Top, 174
Visible, 174
Width, 174
ZOrder, 175

properties, unique
Accelerators, 161
AccelIncrement, 161
AccelSeconds, 161
AlignLeft, 162
AlignRight, 162
ArrowKeys, 162
Base, 163
Buddy, 163
BuddyInteger, 163
CurAccel, 164
Horizontal, 164
Maximum, 164
Minimum, 164
NoThousands, 165
Value, 165
Wrapable, 165

Utilities
RM/COBOL Configuration (rmconfig),

27

W

Web site, xxv
window. See Forms
Windows operating system, 46
windows.cpy file, 203
WM-SYSKEY messages, 186
Working Storage copy file (.wws), 200
WOWADDITEM function, 28, 124
WOWCLEAR function, 124
WOWGETMESSAGE function, 208
WOWGETNUM function, 4
WOWGETPROP function, 4, 35, 52, 87

data entry program examples, 60
with ActiveX control properties, 194

WOWMESSAGEBOX function, 41
WOWREMOVEITEM function, 37, 124
[WOWRT] section, initialization file, 3, 44,

81, 178
WOWSETPROP function, 4, 51, 87

data entry program examples, 60
with ActiveX control properties, 194

Z

Z-order, 20, 175

	Cobol-WOW User's Guide v3.1
	Copyright
	Contents
	Preface
	What's New in Version 3.10
	Cobol-WOW Documentation
	How This Manual is Organized

	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Enhancements
	Version 3.0

	Chapter 1: Installing Cobol-WOW
	System Requirements
	Required Hardware
	Required Software

	System Installation
	Locating Required Tools
	Customizing the Initialization File (cblwow.ini)
	[WOWRT] Section

	Chapter 2: Tutorial
	Using the File Maintenance Program
	Using Projects
	Create a New Project

	Designing Forms
	Create the FIRSTAPP Form
	Setting Form Properties
	Style Property
	Title Property
	Border, Caption, MinButton, and SystemMenu Properties

	Moving and Sizing a Form

	Add Controls to the FIRSTAPP Form
	Creating a Menu
	Creating a List Box
	Creating the Command Buttons

	Arrange Controls on the FIRSTAPP Form
	Selecting
	Resizing
	Moving
	Aligning and Spacing
	Specifying Tab Order
	Specifying Z-order

	Save the FIRSTAPP Form
	Name Property

	Create the CUSTINFO Form
	Setting Form Properties

	Add Controls to the CUSTINFO Form
	Save the CUSTINFO Form

	Writing Code
	Step 1 — Exiting Methods
	Writing Code for Menu Controls
	Compiling and Running Program
	Controlling the COBOL Main Window

	Step 2 — Loading the List Box
	Using the WOWADDITEM Function
	Creating Logic to Load the List Box
	Project Code Sections
	Procedure Division Logic
	Working-Storage Section Logic

	Saving, Generating, Compiling, and Running

	Step 3 — Adding the Second Window
	Adding Logic to the Add Command Button
	Declaring ADD-MODE
	Declaring POPUP-RTN
	Removing the CUSTINFO Window
	Saving, Compiling, and Running

	Step 4 — Adding Customers
	Using the WOWGETPROP Function
	Adding Logic to the OK Command Button
	Saving, Building, and Running

	Step 5 — Changing Customers
	Working with List Box Selections
	Adding Logic to the Change Command Button
	Adding Code to the Procedure Division
	Modifying the POPUP-RTN Procedure
	Modifying the OK Command Button Procedure
	Adding the Delete List Box Entry Procedure
	Saving, Building, and Running

	Step 6 — Deleting Customers
	WOWMESSAGEBOX Function
	Adding Logic to the Delete Command Button
	Saving, Building, and Running

	Chapter 3: Introducing Cobol-WOW
	Cobol-WOW Components
	Cobol-WOW Designer
	Cobol-WOW Runtime System
	Cobol-WOW Thin Client

	Cobol-WOW Development Process Overview
	Windows Graphical Operating Environment
	Forms and Controls
	Forms
	Controls

	Properties
	Setting a Property Value at Runtime
	Getting a Property Value at Runtime
	Benefits of Using WOWSETPROP and WOWGETPROP
	Sample Program — Setting Properties

	Handles
	IDs
	Functions and Messages
	What are Functions?
	What are Messages?
	Using Functions and Messages
	Sample Program — Using Functions and Messages

	Chapter 4: Developing with Cobol-WOW
	Cobol-WOW Projects
	Event-Driven Applications
	Example 1
	Example 2

	Addressing Issues in Data Entry Programs
	Handling Data
	Example 1: Loading a Form with COBOL Data
	Example 2: Retrieving Information from a Form and Storing It in COBOL Data Items

	Handling Different Types of Data
	Example 1: Basic Numeric Data for an Edit Box Control
	Example 2: Formatted Numeric Data for an Edit Box Control
	Example 3: Handling Numeric Data with Scroll Bar Controls
	Example 4: Handling Numeric Data with Check Box Controls

	Managing User Interaction
	Example 1: Handling an Invalid Value
	Example 2: Dictating Entry Order for Controls
	Example 3: Preventing Data Entry on a Control
	Example 4: Switching to Another Windows Application
	Example 5: Disabling and Enabling a Validated Control

	Using Function Keys for Special Options
	Implementing Function Keys in Cobol-WOW

	Sample Program

	Working with Menus
	Using Menus
	Checking and Unchecking Menu Items
	Enabling and Disabling Menu Items
	Popping Up Menus

	Chapter 5: Debugging
	Debugging with COBOL DISPLAY Statements
	Executing the SHOWME Program
	How the SHOWME Program Works

	Debugging with the RM/COBOL Interactive Debugger
	Executing the BREAK Program
	How the BREAK Program Works

	Debugging with CodeWatch

	Appendix A: Setting Properties and Events for Intrinsic Controls and Forms
	Manipulating Properties at Runtime
	Intrinsic Controls
	Animation Control
	AnimationFile Property
	AutoPlay Property
	Border Property
	Center Property
	Play Property
	Transparent Property
	Start Event
	Stop Event

	Bitmap Control
	Bitmap Property
	BitmapMode Property
	Border Property
	Xoffset Property
	Yoffset Property

	Check Box Control
	Alignment Property
	AutoCheck Property
	ThreeState Property
	Value Property

	Combo Box Control
	AutoHScroll Property
	Count Property
	CurSel Property
	DisableNoScroll Property
	OEMConvert Property
	SelText Property
	Sort Property
	Style Property
	DropDown Event
	EditChange Event
	NoSpace Event

	Command Button Control
	Accelerator Property
	Bitmap Property
	Default Property

	Date Time Picker Control
	Format Property
	LongDateFormat Property
	MCFontBold Property
	MCFontItalic Property
	MCFontName Property
	MCFontSize Property
	MCFontStrikeThru Property
	MCFontUnderline Property
	RightAlign Property
	ShortDateCenturyFormat Property
	ShowNone Property
	TimeFormat Property
	UpDown Property
	Change Event

	Edit Box Control
	Alignment Property
	AutoHScroll Property
	AutoVScroll Property
	Border Property
	Case Property
	MaxChars Property
	Multiline Property
	NoHideSel Property
	OEMConvert Property
	Password Property
	PasswordChar Property
	ReadOnly Property
	ScrollBars Property
	Text Property
	WantReturn Property
	Change Event
	HScroll Event
	MaxText Event
	NoSpace Event
	VScroll Event

	Ellipse Shape
	Group Box Control
	IP Address Control
	FieldIndex Property
	FieldMax Property
	FieldMin Property
	Value Property
	Change Event

	Line Shape
	List Box Control
	Border Property
	ColumnWidth Property
	Count Property
	CurSel Property
	DisableNoScroll Property
	ExtendedSel Property
	MultipleSel Property
	NoIntegralHeight Property
	NoRedraw Property
	SelText Property
	Sort Property
	Standard Property
	UseTabStops Property
	WantKeyboard Property
	Using Functions and Messages with List Boxes
	Using a List Box
	Loading the List Box
	Operating the List Box
	Determining the Selection
	Finding an Item
	Selecting an Item
	Retrieving the Selection
	Removing One or All Items from the List Box

	Month Calendar Control
	FirstDayOfWeek Property
	MaxSelCount Property
	MonthDelta Property
	MultiSelect Property
	NoToday Property
	NoTodayCircle Property
	WeekNumbers Property
	Change Event

	Option Button Control
	Alignment Property
	AutoPress Property
	Value Property
	Grouping Option Buttons

	Progress Bar Control
	Increment Property
	Maximum Property
	Minimum Property
	Value Property

	Rectangle Shape
	Rounded Rectangle Shape
	RoundnessX Property
	RoundnessY Property

	Scroll Bar Controls
	LineChange Property
	Maximum Property
	Minimum Property
	PageChange Property
	Value Property
	EndScroll Event
	LineLeft Event (Horizontal)
	LineRight Event (Horizontal)
	LineDn Event (Vertical)
	LineUp Event (Vertical)
	PageLeft Event (Horizontal)
	PageRight Event (Horizontal)
	PageDn Event (Vertical)
	PageUp Event (Vertical)
	ThumbPos Event
	ThumbTrk Event
	Using Scroll Bars

	Static Text Control
	Alignment Property
	Effect Property
	NoPrefix Property
	Transparent Property
	WordWrap Property
	Special Considerations for Static Text Controls

	Status Bar Control
	CurSection Property
	SectionNoBorders Property
	SectionPopOut Property
	Sections Property
	SectionStatus Property
	SectionWidth Property
	SimpleNoBorders Property
	SimplePopOut Property
	SimpleStatus Property

	Tab Control
	Buttons Property
	CurTab Property
	FixedWidth Property
	ForceLabelLeft Property
	GetFocus Property
	Multiline Property
	RightJustify Property
	Tabs Property
	TabText Property
	KeyDown Event
	SelChange Event
	SelChanging Event

	Timer Control
	Interval Property
	Timer Event

	Toolbar Control
	AlignTop Property
	BitmapHeight Property
	BitmapWidth Property
	BtnBitmap Property
	BtnEnabled Property
	BtnHidden Property
	BtnState Property
	BtnStyle Property
	BtnText Property
	BtnWrap Property
	ButtonHeight Property
	Buttons Property
	ButtonWidth Property
	CurButton Property
	Larger Property
	Rows Property
	Wrapable Property
	Button-0 Event

	Trackbar Control
	AutoTicks Property
	BothTicks Property
	EnableSelRange Property
	LeftTicks Property
	LineChange Property
	Maximum Property
	Minimum Property
	NoThumb Property
	NoTicks Property
	PageChange Property
	SelEnd Property
	SelStart Property
	TickFreq Property
	TopTicks Property
	Value Property
	Vertical Property
	Bottom Event
	EndTrack Event
	LineDown Event
	LineUp Event
	PageDown Event
	PageUp Event
	ThumbPos Event
	ThumbTrk Event
	Top Event

	Updown Control
	Accelerators Property
	AccelIncrement Property
	AccelSeconds Property
	AlignLeft Property
	AlignRight Property
	ArrowKeys Property
	Base Property
	Buddy Property
	BuddyInteger Property
	CurAccel Property
	Horizontal Property
	Maximum Property
	Minimum Property
	NoThousands Property
	Value Property
	Wrapable Property
	EndScroll Event
	ThumbPos Event

	Common Intrinsic Control Properties
	3D Property
	BackBrushHatch Property
	BackBrushStyle Property
	BackColor Property
	Caption Property
	Enabled Property
	Fill Property
	FontBold Property
	FontItalic Property
	FontName Property
	FontSize Property
	FontStrikethru Property
	FontUnderline Property
	ForeColor Property
	Group Property
	Height Property
	Left Property
	Locked Property
	MCColor Property
	MCColorIndex Property
	Name Property
	PenSize Property
	PenStyle Property
	ScrollBar Property
	TabIndex Property
	TabStop Property
	Top Property
	Visible Property
	Width Property
	ZOrder Property

	Common Intrinsic Control Events
	Click Event
	DblClick Event
	GotFocus Event
	KeyDown Event
	KeyPress Event
	KeyUp Event
	LostFocus Event

	Forms
	AllowEventFilter Property
	BackColor Property
	Bitmap Property
	BitmapMode Property
	Border Property
	Caption Property
	ClipControls Property
	Cursor Property
	DialogMotion Property
	Enabled Property
	Height Property
	Icon Property
	IconIndex Property
	Left Property
	MaxButton Property
	MinButton Property
	Modal Property
	Parent Property
	ScrollBars Property
	ShowState Property
	Style Property
	SysKeyMode Property
	SystemMenu Property
	Title Property
	Top Property
	Visible Property
	Width Property
	Activate Event
	Close Event
	Create Event
	Enable Event
	GetFocus Event
	KeyDown Event
	KeyPress Event
	KeyUp Event
	LButtonDown Event
	LButtonUp Event
	LoseFocus Event
	MButtonDown Event
	MButtonUp Event
	Paint Event
	RButtonDown Event
	RButtonUp Event
	Show Event

	Appendix B: Working with ActiveX Controls
	ActiveX Controls and Cobol-WOW
	History of ActiveX Controls
	Adding and Removing ActiveX Controls to the Cobol-WOW Designer
	Troubleshooting Tips

	Using ActiveX Controls on a Form
	ActiveX Control Properties
	ActiveX Indexed Properties

	ActiveX Control Events
	ActiveX Control Methods
	Limitations
	Distribution Issues

	Appendix C: Understanding the Application Architecture
	Initial Creation of a Cobol-WOW Program
	Project File (.wpj)
	Form File (.wow)
	Working Storage Copy File (.wws)
	Procedure Division Copy File (.wpr)
	COBOL Skeleton Program File (.cbl)
	COBOL Executable Program File (.cob)

	Ongoing Maintenance of a Cobol-WOW Program
	How a Cobol-WOW Program Works
	WINDOWS.CPY
	FORMNAME.WWS
	FORMNAME.CBL
	FORMNAME.WPR

	How a Cobol-WOW Program Works with Windows
	Using Cobol-WOW Programs with Non-Cobol-WOW COBOL Programs
	Calling To and From Cobol-WOW Programs
	Visual Considerations of Cobol-WOW and Non-Cobol-WOW Programs

	Appendix D: Using Cobol-WOW with RM/Panels
	Enhancing Existing Panel Libraries
	Character-Based GUI Portability and Cross Development
	Communicating with RM/Panels
	Modifying an Existing Panel Library
	Open the library
	Change controls
	Add controls
	Delete controls
	Save a panel
	Test a panel
	Run an application with an enhanced panel

	Setting Properties for RM/Panels Data Fields
	Check Box Field/Control
	Combo Box Field/Control
	InputField Property

	Command Button Field/Control
	PushedAttr Property
	SizeType Property
	SizeValue Property

	Date Edit Box Field/Control
	StorageFormat Property (Date Edit Box)

	Edit Box Field/Control
	Class Property
	Justify Property
	Prompt Property

	Group Box Field/Control
	Enabled Property
	Group Property
	Locked Property
	TabStop Property

	List Box Field/Control
	Multi-Line Edit Box Field/Control
	ColsToDisplay Property
	ColsToStore Property
	LinesToDisplay Property
	LinesToStore Property
	Required Property
	Stream Property
	Wrap Property

	Numeric Edit Box Field/Control
	AssumeDecimal Property
	CalculatorEntry Property
	Signed Property

	Option Button Field/Control
	DataItemName Property
	DataSigned Property
	DataSize Property
	DataValue Property
	NumericData Property

	Scroll Bar Field/Control
	MaximumValue Property
	MinimumValue Property
	PageSize Property
	Size Property
	StepSize Property
	ThumbAttr Property

	Static Text Field/Control
	Alignment Property
	Effect Property
	NoPrefix Property
	WordWrap Property

	Time Edit Box Field/Control
	24HourFormat Property
	StorageFormat Property (Time Edit Box)

	Common Data Field Properties
	3D Property
	Accelerator Property
	AlwaysDisabled Property
	AutoExit Property
	BackColor Property
	Beep Property
	BlankWhenZero Property
	Border Property
	BorderAttr Property
	Caption Property
	Case Property
	ChoiceHelp Property
	ChoicesToDisplay Property
	ChoicesToStore Property
	ChoiceValue Property
	ChoiceWidth Property
	Column Property
	CurChoice Property
	DecimalDigits Property
	DefaultToPressed Property
	DefaultToSystem Property
	DefaultValue Property
	DisabledAttr Property
	DisplayFormat Property
	DoubleClick Property
	DropDown Property
	EnabledAttr Property
	EnabledForDisplay Property
	EnabledForInput Property
	EntryFormat Property
	EntryOrder Property
	ErrorMessage Property
	Font Bold, FontItalic, FontName, FontSize, FontStrikethru, and FontUnderline Properties
	ForeColor Property
	Height Property
	HelpMessage Property
	IntegerDigits Property
	Left Property
	Length Property
	Line Property
	MnemonicAttr Property
	Name Property
	OccColOffset Property
	OccLineOffset Property
	Occurrences Property
	OccXOffset Property
	OccYOffset Property
	PromptText Property
	Protected Property
	ScrollBar Property
	SelectedAttr Property
	StartOfGroup Property
	StaticChoices Property
	TimeOut Property
	TimeOutValue Property
	Title Property
	Top Property
	Update Property
	Validation Property
	Width Property

	Setting Properties for RM/Panels Panels
	3D Property
	BackColor Property
	BackgroundAttr Property
	Bitmap Property
	BitmapMode Property
	BorderAttr Property
	BorderType Property
	Description Property
	DropShadow Property
	EndUserEditing Property
	ErrorAttr Property
	ErrorMessage Property
	GeographicMotion Property
	Height Property
	HelpAttr Property
	HelpMessage Property
	Icon Property
	Left Property
	Prefix Property
	StoreByName Property
	Title Property
	Top Property
	Width Property
	Windowed Property

	Configuring Function Keys
	How to Configure Function Keys with RM/Panels
	How to Configure Function Keys with Cobol-WOW
	Sample Cobol-WOW Configuration File Entry
	Sample RM/COBOL Configuration File Entry

	Using Global Default Property Settings
	Restrictions

	Migrating Panel Libraries to Cobol-WOW Forms
	Migrate a Panel Library
	
	
	
	
	
	Using Cobol-WOW Thin Client

	Appendix E: Using Cobol-WOW Thin Client
	Understanding Cobol-WOW Thin Client
	Benefits of Cobol-WOW Thin Client
	Installing and Configuring Cobol-WOW Thin Client
	Files Installed on the Windows Client Workstation
	Files Installed on a Windows Server
	Sample Contents of RcpPlus.ini for a Windows Server

	Files Installed on a UNIX Server
	Sample Contents of RcpPlus.ini for a UNIX Server

	Running the Application with Cobol-WOW Thin Client

	Index

