LIANT

Retooling Enterprise Systems

CodeBridge

Calling Non-COBOL Subprograms

Version 7.5 for UNIX® and Windows ®

http://www.liant.com

This manual is areference guide for Liant Software Corporation’s CodeBridge, a
cross-language call system designed to simplify communication between RM/COBOL
programs and non-COBOL subprogram libraries written in C (or C++). It is assumed that the
reader is familiar with programming concepts and with the COBOL and C (or C++) languages
in general.

The information contained herein applies to systems running under Microsoft 32-bit Windows
and UNIX-based operating systems.

The information in this document is subject to change without prior notice. Liant Software
Corporation assumes no responsibility for any errors that may appear in this document. Liant
reserves the right to make improvements and/or changes in the products and programs
described in this guide at any time without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopied, recorded, or otherwise,
without prior written permission of Liant Software Corporation.

The software described in this document is furnished to the user under alicense for a specific
number of uses and may be copied (with inclusion of the copyright notice) only in accordance
with the terms of such license.

Copyright © 1999-2002 by Liant Software Corporation. All rights reserved. Printed in the
United States of America

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels,
VanGui Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, InstantSQL, Liant, and the
Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000,
and Windows XP are trademarks or registered trademarks of Microsoft Corporation in the USA and
other countries.

UN(I:X is aregli_séered trademark in the United States and other countries, licensed exclusively through X/Open

ompany Ltd.

All othep products, brand, or trade names used in this publication are the trademarks or registered trademarks

of their respective trademark holders, and are used only for explanation purposes.

Document Number 401208-0502

Table of Contents

o = = o = SRR Xi
Welcome to CodeBridge VErSION 7.5.....ccuiieieiee et se st eeeeeie e e st e e sae e s sre e eneeneens Xi
WWVNEE'S INBIW. ...ttt ettt st b e sttt et ettt b e st ettt sbe e s es Xi
Who Should USe COUEBIIAGEcvevveveieieeieeeie et stee ettt aesae e sre e e e enaesnenes Xii
Organization Of INfOrMELION.........coiiieie et ne e s Xiii
RelEted PUDIICALTIONS.......oeeiiitiieiiee ettt ea e Xiv
SymbolS aNd CONVENIONScc.ecieieeieieses s sr e e e se e tesaesresreereeseeneenaeneens Xiv
L 0 S 1= (o) o S XVi
QL= e a0 S o] o XVi

SUPPOIT GUIAEITINES.......eceieeie ettt ettt s ae st snesneeseeneeneeneens XVii
QL= O SRRSO XVii
ENNBNCEIMENES. ...ttt bbbt bbb b et ns b e e e e nesenes Xviii
RV 2= £ o] o A SR Xviii
RV 2= £ o] o X OSSPSR Xviii

Chapter 1: IntrodUCtiONcccvviiiiii e e e 1-1

What 1S COUEBIIAGET?ecveeeeeeee ettt e sttt st e st st seeae e e e testesresaesneenee e eneenes 1-1
COodeBIidge COMPONENES........ciieiierieiteeieeeeeeseese e steste e ee e e e tesrestesresresse e e enteseessesaesresseeneenes 1-2
Benefits of USINg COUEBIIAGE.eiiieiieiiiieeeeerees e st sre e 1-2
L o [0 1= 10101 PSS 1-3
USING thISMANUEL.........eoeeceece et st se et et sne e eneas 1-3
Developers Who are New t0 C Programimingcceeeeeereresesesesseeseessesessessesseessesseseenses 1-3
Developers Who are Evaluating CodeBridge.........oovvieverinene st 1-4
Developers Who Wish to Use Existing C Libraries or Write New
NON-COBOL SUDPIOGIaIMSc.eeveiiesiesieeieeeeeseeeseestessesseeaesaestessessesseeseessessensesssssessesssenes 1-4
Developers Who Have Written Non-COBOL Subprograms for
Previous Versions of RM/COBOLcccuveriiiienene et 1-5
Developers Who Need Assistance in Testing and Debugging........cccveeverererereeseeseeseesennens 1-5
Typical Development ProCESS OVEINVIEW.......cc.cceeeeierereesiesrestesesseseessessessestessessessessesssesessseses 1-5
Typical Development ProCcess EXAMPIE.......civiiiieieieres ettt 1-8
Example 1: Calling aStandard C Library FUNCHION.........ccccvvvrieiereerese e 1-8

CodeBridge iii

Chapter 2: CONCEPLS vt eeeeees 2-1

Using Template File COMPONENLScc.oiiieie et st ne e e seeeas 2-1
ATIITOULES ...ttt et b et b e et b e et b e e bt besne e b 2-2
ATIITOULE LESES. ..ttt st st b e e b et b e e b 2-2

Parameter AUIOULE LiSES........ooiiiieieien e 2-2
Sample Template File Using Parameter Attribute ListScocooeeereeeirieieeiceeeee, 2-4
GloDal ATIIIDULE LISES......iivieetiieiietesieeet st 2-5
Sample Template File Using Global Attribute ListS........ccooeieierenienerieeeeeeee e 2-5

Passing INformation t0 @ C FUNCLIONcouiiiiiii et 2-6

PasSing COBOL AFQUMENTS.cueteiueetereeueeaeesteseeseesteseeseeseanseseeseessesseeseensessessessessesaessesnsanes 2-6

Passing COBOL NUMENTC ATQUMENEScueiuiriirierieeeeeee e sie e saeseeeeseeseessesaesseseeneenes 2-7
Numeric Arguments with C Integer Parameters...........ccooeoererenenese s 2-7
Numeric Arguments with C Floating-Point Parameters..........ccooeoererene s 2-8
Numeric Arguments with C Numeric String Parameters.cooveveeeiencnceieeiieieene 29
Passing COBOL Non-NUMEXC ATrQUIMENLS.......cc.eiererreeiereesiesieeeeeeseesieseeseeseeseeseeseeneas 2-10
Non-Numeric Arguments with C String Parameters.........ccocoveeereneneniennieeee e 2-10
Groups With C String Parameterscoeoeeieie et 2-12
Passing COBOL POiNter AFQUIMENESccueiiiuirieeieeereesie e seeseesseesesseesseseeseessesaesseseeneas 2-12
Method 1: Passing Pointer Address and Pointer Length ..., 2-12
Method 2: Passing and Modifying Pointer Components..........cccoovereveeeeenieeneesennen 2-13
Passing Null-Valued POinter ArQUMENES.........cccorireiirerene e eeneas 2-13
Passing COBOL Argument ProPeErtieS........cooiererererieeie et eeeeesee e see e seeseseeseens 2-15
Passing COBOL DeSCriptOr Data.........ccoueeverueriirieeieiereese et 2-15
Passing String Length INformationooe oo 2-16
Passing Miscellaneous INfOrmation............cooeieeieeiene e 2-17
Managing OMiItted ATQUIMENLScc.oiiierierieeieeeeee e see et ste e eee e e see e e sbesaeeseeneeneeeeseens 2-17

REtUNING C EFTOr VAIUES......ceiiiie ettt e et s sbesaeeneenes 2-19
CoNSISLENt REIUIMN VAIUBS ...ttt 2-19
Specifying Both errno and get_18St rTOr........oo.eieeieieeee e s 2-20
Function Return Value (Status) Versus Error ValUES...........coeeoeeiereerene e neseeeeeeee e 2-20

Associating C Parameters with COBOL ArgUMENEScoereeiereeie e see e see e 2-22
EXPliCIE ASSOCIBLION.eeeteteeie ettt et b e et ae e e e e e e seesbesaesbesaeeneennans 2-22
AULOMALTC ASSOCIBLTION ...ttt sttt ettt sttt st se et b et sbe e s n e 2-23

Automatic Association of the C Function Return Value with a COBOL Argument........ 2-23
Automatic Association of C Parameters with COBOL Arguments..........ccceeeeeeveerereneens 2-23
Automatic Association with an Implied Argument...........ccocoveeeneneninieie e 2-24
Automatic Association with the Next Argumentcccooeverenenenienienesee e 2-24
Automatic Association with the Current Argument..........cooeveeerenenienieeeereeese e 2-24
Examples of Associating Parameters With Argumentscooeeeeeienieneeenceeee e 2-25
Example 1: Automatic Versus EXplicit ASSOCISLION........ccoeierirere e 2-25
Example 1a: AutOmatic ASSOCIBLION.coueieieeieerieeeeie et 2-25
Example 1b: Optional EXplicit ASSOCIALiON.crireeeereee e 2-26
Example 1c: Required EXplicCit ASSOCIBLIONevuerieieieeie e 2-26

iv Table of Contents

Example 2a: Associating a Parameter with Multiple Arguments...........cc.cooeveeveeeene. 2-26
Example 2b: In Direction Attribute for Multiple Attribute ListS........ccccooeenieieenne. 2-27
Example 2c: Compatibility between Multiple Attribute ListS........ccocovereienieieceenne. 2-28
Example 3: No Attribute List for aC Parametercooeieeeeieiene e 2-28
Working with a Variable Number of C Parameters............coeeeeieienenene e 2-29
Repeating C NUMENC ParamEters...... .o e 2-29
Repeating C String Parameters.........oo oot 2-29
010001 FToR (] o o SRR 2-29

(o1 1S = S (] oo PP 2-30

S 1] 0o PSR 2-30
MOdifying COBOL D@l ATEaS.......c.ceueeeiereiniesieeueeeeeenie sttt ste e eseeeessestesaessesaesneeneesseneeses 2-30
Using the out Direction AttHDULEcoouiiiie e 2-30
Passing the Address 0f COBOL Data..........coerueieruererieeiesieniesie e ree e eee e e 2-32
Passing BUffer AQArESSES........coiieeeeeeeee et sr e e 2-33
USING P-SCAlING ...ttt ettt e e b e e e e et e aeene e e e e e beseesbesaeeneennans 2-33
WOTKING WItH ATTAYS ...ttt ettt sttt ettt e e e s e besee st e saeeneenneneas 2-34
N U0 Lo N 4 = Y TSRS 2-34

S T 0o N g = Y TSRS 2-35
COBOL Array REFEIENCES.cueieeeeeeiieieeieie ettt s e e e 2-37
COAEBIIAGE BUITTEY ...ttt et e e et sae b e neeeen 2-38
Using the CodeBridge BUITAETcoo i 2-38
Appendix A: CodeBridge ErrorsS. ..o A-1
CodeBridge Builder Error MESSAgES........ccouerueruerierieeierieeiesiesie sttt eeeeeeseesbe e sre e e s seeseesee e A-1
CodeBridge BUilder EXit COUES.ccureieie ettt se e A-3
CodeBridge Library Error MESSAgES.ceueuerierierieeieeeeie ettt ee et see e e seesee e A-3
Appendix B: CodeBridge EXamplescccoooeeiiiiiiiiiiiiiiiieeeeeeeiin B-1
Example 1: Calling a Standard C Library FUNCHON..........ccocoiiiiriiieeesese e B-1
Example 2: Calling a Windows APl FUNCHION...........coiiiiiiiieieeee e B-2
Example 3: Accommodating a Variable Number of Parameters...........ccoooooeveninienienenene e B-5
Example 4: Accessing COBOL Pointer ArgUIMENES.........couierererererieereeseeseeseesieseeseesesesseens B-9
Example 5: Packing and Unpacking SEIUCLUIES..........cooiiieririiee e B-14
Example 6: Converting BUFfered C Data..........coceeeeereneieieneee e B-18
Example 7: Calling C++ Librariesfrom CodeBridge..........ccovireriieieiinene e B-20
EX@MPIe 8: USING EITNO0......cueiieiieiee ittt ettt eb e e e e e e s e beseesbesneeneenes B-24
Example 9: USiNg gt 1aSt @TOr ..o e B-27

CodeBridge v

Appendix C: Useful C Informationccoooeiiiiiiiiiiiiiieeeiinn C-1

Understanding C Language COMNCEPLS.........ceeeerererieereeeeieseeestesiessesiessesseseessesaessessesaesressesns C-1
CASE SENSIIVITY ..ttt ettt ettt e b e b et e e e e e e e sbesee st e saeebeene e e anes C-2
Dz 2 B 1Y 01 PRSP C-2
Dala DECIAraiONS........civieeiiitieeteri ettt C-3
Type DEfiNitioNS @N0 MACIOScoiiieieierie ettt st e e seens C-3
CalliNG CONVENTIONScueiuieieeieeeeiee sttt ettt st se et st eae e e e e eese e besaesaesseeneenee e eeenes C-4
FUNCEION PrOLOLYPES. ...ttt sttt sttt s s b et e e e e e eeseesbesneeneeneenean C-4

Compiling and Linking C FUNCLIONS..........citririeieieriee st e e C-5
ComMPIliNG ON WINAOWS.......cuiieiiieieeieeeeee ettt e e e e seeseesbesaeene e e eneenes C-6
CompPIlING ON UNIX ...ttt e et be et eae e e e e enes C-6
LinKing ON WINGOWSc..oiuiieiiieie ettt st be e e e et sneeae e e enean C-7
LiNKING ON UNDEX .ottt e et sttt ae e e e e e teseeebesnesaeeneenean C-8
MUItIPlE TEMPIALE FIES ...t e e C-8

Appendix D: Global Attributes.........ooouviiiiiii D-1

OVEIVIBIW ...ttt h bbb bt b e bR h e b e Rt b e bbb e bt n b e e st et b e D-1

DANNEN ATITTDULE. ..o bbb D-2

CONVENLION ATITDULE. ..ottt D-2

AiagNOSLIC ALIITDULEeee ettt b et se e e e e e D-3

1080 _MESSAGE ALIIIDULE ... D-3

replace type AttHIDULE ..o e s D-4

Appendix E: Parameter Attributescccoevviiiiiiiiiiiii e E-1

OVEIVIBIW ...ttt ettt h et b et b e bt et b e e s e b e e e s e bt Eehe e bt b e s e eb e e se bt sb e s e e e E-1

Argument NUMbBEr AtHIDULEScoioeee et e e E-2

DiITeCioN AIITDULES. ..ottt ettt E-2

Base and Base Modifier AtITDULES...........coiieiiiieiee e E-3
Base Modifiers Common to Base AIDULES ..o E-4
NUMENiC Base AIDULES ..o E-5

Base Modifiersthat Apply to Numeric Base Attributes............ccooeieiiiinieieiee e E-7
SHNG BASE AHITDULE. ... e se s E-11
Base Modifiersthat Apply to the String Base Attribute..........cccooeiiiiniiiinieeee, E-11
general_string Base AttrDULE ..o s E-13
String Length Base AtIHDULESoouiiiiiie e E-14
Base Modifiersthat Apply to String Length Base Attributescocoeeieieiicnieciieneenen. E-15
Pointer Base AIIDULES. ..o E-15
Base Modifiersthat Apply to Pointer Base Attributes............cooeoeiiiiiiiiiceeee, E-16
DesCriptor Base AtHDULES ..ot e E-17
Base Modifier that Appliesto Descriptor Base Attributes...........ccooceveiiiiienceiceee, E-20

Vi

Table of Contents

Error Base ATIOULES........coo ittt st e et s e e s e st e e e s eree e s sarenaas E-20

Base Modifiersthat Apply to Error Base AttribULES...........ccooeiiiieiiieeeeeee e, E-22
Parameter AttrDULES SUMMAIYcoueiiiieie ettt sae st ne e e s E-24
Parameter Attribute COmbDINALTIONScoiriririiieee e e E-31

Appendix F: CodeBridge Library FUNCLIONScvciiiiiiiiiiiiiiiiiiiin, F-1
OVEIVIBIW ..ttt b et h e e bt b e e bt e bt s oo bt e b s e b e e R e ne e b e e b e st eb e e b et eb e sbe e ebenbesrenenrenna F-1
Specifying the FIags Parametercoo oo F-3
F N < 1B T L TSP F-6
ASSEIDIGITSLERT ...ttt e b e ettt e e ne e enas F-8
ASSEDIGITSRIGNT ...ttt ettt e e s et e bt eb e aeeneene e e enseseeneesrenneas F-10
ASSEITLENGEN. ...t a et r e eaeas F-12
FN = 1S T 0o USSP F-14
ASSEITUNSIGNE. ...ttt e ettt st et et e b e et e ne e e e e e eeseeebesaeeneennenean F-15
BUFFEILENGEN ...ttt sb e sae e sre s F-16
(00] 0] VAN (o oo SF SO PRURSRR F-18
CODOIDESCIIPLOIAAAIESSeeueeeeie ettt sttt be bt st e et e seesbesaesbe s e eneaneans F-19
(00 aTe] 1B TS] o100] o 1 £ TSP F-20
CobOIDESCIIPLOIL ENGEN ...t ettt b e ae e e e e ee e F-21
CODOIDESCIIPLOISCAIE. ... ettt ettt sttt se e be et eaesae e e e e e se e besaeebesneeneaneans F-22
(00 oo 1B TS] o]0 g INY/ o= 2SSOSR F-23
CODONITIAISEAEE.veeeeeeeeeee ettt b bbb e b e ebe e e e ere F-24
CODOITOFIOBLE ...ttt ettt et et st b e et b e et b e e e b seeneere F-25
CODOI TOGENEIBISIIINGeeneente ettt ettt re et se e st st eae e e e e seesbesbesaeeae e e eneaneans F-27
(00 oTo] o] 1 g1 = o = USROS F-29
CODOI TONUMEITCSIITNG .. eente ettt ettt sttt se e ee et e sae s e e e e e seeseesbesaeebeeneeneaneens F-31
COobOI TOPOINTETAGAIESS.......c.eivireeeetertee ettt b e et b e e b e e b sreneenea F-33
CODOITOPOINTEIBESE ...ttt sttt sttt et b e e bt b e et ebeseeneene F-34
(00] oo WINe] = o T4 11= £ =g 11 o [PPSR F-35
COobOI TOPOINTENOFFSEL ...ttt b e b e b e ebesr e ene F-36
CODOITOPOINMTEI SIZE ...ttt ettt s b e e ebesr e ere F-37
(00 oo I 1015 1 o USRS F-38
CobOIWINAOWSHENAIE ...ttt F-40
CONVEISIONCIEANUPeeviteieeteeteeeeee et see st te e st e e e eeseeseeseesaeesesneenee s eseseesaesaesneeseeneansaneans F-41
(001 0\V7= = L0015 = (U] o PSRRI F-42
[DIE="s] (01 011/ oo [P F-43
EffECtiVELENGLN ... s F-44
FIOBITOCODON ...t bbbt F-46
General StriNgTOCODOLo et een F-48
(€7 (07 1= 1 o1 1 TSSOSO USSP PSPPSRI F-50
INEEIEITOCODON ... et e b et se e e b sae e eneenas F-52
NUMENCSEANGTOCODO ... b st besaesb e nes F-54

CodeBridge vii

POINtErBASETOCOBONooiiiiie ettt e e e s s ae e e s s b e e e s seabeeessabeeessesbeneeas F-56

POINEErOFfSEITOCODON ...ttt bbb F-57
POINEErSIZETOCODON ...ttt F-58
SEINGTOCODON ...ttt et b et ae e e e e seesbesaeeneenee e e e ennens F-59
Appendix G: Non-COBOL Subprogram Internals for Windows G-1
(O3S o] 0o = 0 1TSS G-1
Methods of Using NON-COBOL SUDPIOGIaMS........ccueeuereeeereeniereeseesiesesseeseesseseessessessessesssenes G-1
Calling C Subprograms from COBOLccoeiiieieieriee et see e e G-2
COBOL CALL SEBEITIENcveueeieiererieieesie et se bbb s sae e s G-2

C Subprogram Name Table SETUCLUIE...........coeeirieere e G-3
Parameters Passed to the C SUDPrOgramcoeerieieiere e G4
COBOL Argument Entry SErUCIUFrE fOr C........eoiuiiiieieeieie e e G-6
Preparing C SUDPIOOIEMS. .. .ccvoiuiie ettt ettt teseesbe s seeseeseebesaesbeeneeneeneeneaneas G-8
Special Entry Points for SUPPOrt MOAUIES ..o G-11
RM_AdAONBAENNEScveeieeieee ettt te e be e et eenaeebeesbaesbeeteennesnnas G-12
RM_AddONCancel NONCOBOLPIrOGramc.cooerueriereeeiesieeeeeeeie et sves e eeseesee e e G-12
RIM_AGAONINIT ...ttt ettt ettt ettt G-13
RM_AdAONLOBAM ESSAGE.......eueeueeeeiesiesiesie st eieeeeeeseesteseesresseeeeeeseesbeseesbesseeneeseasenseseens G-13
RM_AdAONTEIMINGLE......c..eeieeie ettt re et e e eae e be e be et e enbesaeesaeesanas G-14
RM_AddONY ErSIONCRECKeouviiiiciiecieeeteete ettt ettt e e te e snnas G-14
RM_EntryPoints and RM_ENUMENLrYPOINES........c.coiiiiiieiieeeieie e G-15
Debugging C SUDPIOGIaITIS........ccoueieirieiereeeie et sttt e e e e e e e seeseesbeseesbeseesneseesneens G-16
Calling a CodeBridge Subprogram LibDrarycoeeoeieie s G-17
Appendix H: Non-COBOL Subprogram Internals for UNIX.............. H-1
(O3S o] 0o = 0 1S F USSR H-1
Calling C Subprograms from COBOLcccoeiiirieieeiee et H-2
COBOL CALL SEBEEIMIENcviuierieiereieieesie ettt s s sbese s H-2
C Subprogram Name Table SETUCLUIE...........coeririeere et H-3
Parameters Passed to the C SUDPrOgramcoieieieieere e H-4
COBOL Argument Entry SErUCtUFrE fOr C........eoiuiiiie e e H-7
ACCESSING C SUDPIOGIAIMS. ...c.eiteitieteeieeeeeeseesteseestesseeseeeessetessessesaesseeneessssessessessessesseessenseseens H-9
Preparing C SUDPIOOIaMS.ceeeieeeie sttt ettt sttt sae s ae e e e eeseesbeseesbessesneeneeneeneeses H-11
Creating a Support Module from @ C SOUICEcoeeerieererenereeee e H-11
Creating a Support Module from a C Object (NO SOUFCE)ccereeeerirnerieniereeeeee e H-13
Special Entry Points for SUPPOrt MOAUIESoiiiiiiee e H-14
/AN (o (@ 2T 1= SRR H-14
RM_AddONCancel NONCOBOLPIrOGramcceouerierieieieiesieeeeeeeiesie e ste e sees e eeseeseesne e H-15
RIM_AGAONINIT ...ttt ettt ettt et H-15
RM_AddONLOBAM ESSAGE.......cueeueeeeiesieniesie st eieeeeeeseesteseesbesseseeseseesbeseesbesseeneesessenseseens H-16
RM_AdAONTEMUNGLE......c..eeiieie ettt re et e e e e be e be et e enbesaeesaeesanas H-16

viii

Table of Contents

RM_AddONY ErSIONCRECKoocuviieiiciiecteecte e sttt e be et re e sanas H-16

RM_EntryPoints and RM_ENUMENLrYPOINES.......cc.oooiiiiiieeieeeeesee e H-18
Calling a CodeBridge Subprogram LibDrary ... H-19
C Subprograms Performing Terminal 1/Oc.ooeiieiiiiie e H-19
Debugging C SUDPIOGIaITIS........ccoueriirieie ettt sttt e e se e e et e b e sbesbesaesbesne e H-20
C SUDPrOgram EXAMPIE..... ..ottt e st see s H-20
Runtime Functions for SUPPOrt MOAUIES..........cceieririeee et H-20

Appendix I: Calling the CodeBridge Library Directlyccccccvuunnnn... -1
g Ter 0o gl [o] o o T= X o T -2
Declaring the C Function Return Value and Parameters...........ocoevveeveeesesieeieseseseseeseesens -2
Specifying the COBOL Argument NUMDBETccoo i 1-4
Declaring C Data Items Used in the CONVErSion ProCESS........ccovrevereresesesseeeeseeseesieseessesseens I-4

NUMENTC CONVEISIONScviieneeterieiete sttt see st et st see st sbe et st esesbese b sbe e s besbe e ebesbe e ebesbeneees -4

S a0 0] 1Y/ £ o) 1S I-5

AQArESS COMNMVEISIONS.....c.citiiieietisieeeie sttt sb ettt e s b be e besbe e e sesbe e e sesbeeenesbeneens -5

Pointer Numeric Component CONVEISIONSccureiuerrerereeeeseesiessessessessessessesseesssssessessessenes -6

Other CONVEISIONS.cueitiieiiitisietesie ettt sttt s st e e s b et et sb et e st e be st enesbeseenesbeneenes -6

THIVIEl CONVEISIONSuoiiiieiiiiiieiesieeet ettt ettt sttt e st e e e st e -7
Initializing and Terminating the CONVErsion PrOCESS..........ceueieriererenese e -7

TR T2 1o OSSPSR -8

JLIC= 600010 1o TSRS -8
Converting COBOL Argumentsto C Data IltemScccvveeereereeresese et se e seeseeseesee e snens -9

Specifying the ArgCount, ArgNumber, and Arguments Parameters.........coovevveeeveveerceseesenne -9

Specifying the Parameter ParameEtercvoveeeeeereresese e seeeeesees e e e sse e esaeses e e ssesns -9

SPeCifYing the SZ€ Parameterccvov i s nen I-10

SPECifYiNG Other ParaMEterS........cccivviiieeeiecresese s st e et ee e e e sresresneeneas [-10
Converting C Data Itemsto COBOL AIQUMENEScceieeerreererieseesieseesressessesseeseessessessessenns I-11

Specifying the ArgCount, ArgNumber, and Arguments Parameters........ccooeeevvrieveseneennns I-11

Specifying the Parameter Palrameterccccveceverieieseeeeeeseseese e seseeeesee e se s ssesneenes I-11

SPeCifYiNg the SZ€ ParamELercccvcv it st nen I-12

SPECifYiNG Other ParaMEterS........ccccvviieeeeeeere e st e e e e et ere e e see e sressesnesnens [-12
Validating Properties of COBOL ANQUMENES.......cccvveieierrereeeereeseesieseessesseesesseessesseseessessessens [-13
= 0] o = I-14

o = X-1

Comments

The following last-minute changes and enhancements have been added as comments to the
CodeBridge manual:

C-Style Comments Permitted in Template Fil€S.......ccccovivvvievercecercece e 1-6 and 2-1

CodeBridge ix

Tables

Table A-1
Table A-2
Table A-3

Table E-1
Table E-2
Table E-3

Table F-1
Table F-2

Table G-1

Table H-1

CodeBridge Builder Error MESSAJEScoveeeriirierieeieeeeeesee et see e seesneeneas A-1
CodeBridge Builder EXit COUES.........ccereeieririisieieeeeeeie e A-3
CodeBridge Library EITOrS ..ot A-5
Type AttriDULE COUES.......ocueieeeieeee e E-19
Parameter AttribULES SUMMIYcoueierieieieriesie e E-24
Parameter Attribute COmbINAtIONS...........coeiieireieereree e E-31
CodeBridge Library FUNCHONS...........ooiiiieienieneeee e F-2
CodeBridge Library Flag Definitions..........cccccoerineieneneneeeeeeee s F-5
RM/COBOL Data TYpes aS NUMDENS........coiiirereeieieeie et s G-7
RM/COBOL Data TYpes aS NUMDENS........coiiirereeeeieerie et H-8

X Table of Contents

Preface

Welcome to CodeBridge Version 7.5

This document describes CodeBridge, Liant Software Corporation’s cross-language call
system that is designed to simplify communication between RM/COBOL programs and
non-COBOL subprogram libraries that are writtenin C.

CodeBridge for Windows and UNIX allows RM/COBOL programsto call
non-COBOL subprograms built from external Application Programming Interfaces
(APIs) or custom-developed C libraries without introducing “foreign” language data
dependencies into either the COBOL program or the called C functions. This means
that devel opers can write COBOL-callable C functions using C data types as usual,
without worrying about the complexities of COBOL calling conventions or data types.

CodeBridge runs on Microsoft 32-bit Windows and UNIX-based operating systems.

What's New

The following summarizes the major new features available in CodeBridge version 7.5.

Note For information on the significant enhancements in previous rel eases of
CodeBridge, see the information beginning on page xviii.

Version 7.5 of CodeBridge, Liant Software’s cross-language call system, has been
enhanced to handle 64-bit integers on most UNIX platforms, providing the C compiler
on the platform supports 64-hbit integers.

A new runtime callback, GetCallerInfo, has been added to the CodeBridge Library. This
function allows CodeBridge non-COBOL subprograms to obtain information about the
calling COBOL program. Such information is particularly useful in error messages
because it helpsidentify the offending CALL statement. See Appendix F, CodeBridge
Library Functions, for more information.

Two new parameter attributes, called error base attributes, have been added to
CodeBridge for retrieving error information set by C library and Windows API functions.
The [[errno]] attribute supports obtaining the value of the external variable errno that was
set by acall to aC library function. The[[get_last_error]] attribute supports obtaining

CodeBridge Xi
Welcome to CodeBridge Version 7.5

the value returned by the Windows API function GetL astError called immediately after
another Windows API function has been called. Prior to version 7.5, such error
information was not available to the COBOL program because the runtime system uses C
library and Windows API functions during the process of returning from the CodeBridge
called C function to the COBOL program. Editing of generated code is undesirable and
reguires advanced knowledge of the C language. The new error base attributesin version
7.5 alow return of the error information by editing the CodeBridge template instead of
the generated code. For additional information on error attributes, see “Returning C Error
Values” in Chapter 2, Concepts, and “Error Base Attributes” in Appendix E, Parameter
Attributes, of this manual.

Who Should Use CodeBridge

Xii

CodeBridge is intended for the following audiences:

1. Developers who may or may not be proficient in the C programming language
and who wish to call existing C function libraries or system APIs without writing
any additional C code.

2. Developerswho are proficient in C programming and who wish to write new
C function libraries that may be called from RM/COBOL version 7 (or later).

3. Developers who have previously written non-COBOL subprogram libraries
in the form of Windows DLLsthat are callable from RM/COBOL and who
wish to take advantage of data conversion and validation features that are available
in CodeBridge.

Preface
Who Should Use CodeBridge

Organization of Information

The following lists the topics that you will find in the CodeBridge manual and provides a
brief description of each.

Chapter 1—Introduction. This chapter provides a general overview of the CodeBridge
cross-language call system, including components, benefits, requirements, information
on how use this manual, and atypical development process with abasic, illustrative
example. More examples are provided in Appendix B, CodeBridge Examples.

Chapter 2—Concepts. This chapter describes the concepts that are central to an
understanding of CodeBridge, including using the template file components, passing
information to a C function, returning C error values, associating C parameters with
COBOL arguments, working with a variable number of C parameters, modifying COBOL
data areas, using P-scaling, working with arrays, and using the CodeBridge Builder.

Appendix A—CodeBridge Errors. Thisappendix lists and describes the messages that
can be generated during the use of either the CodeBridge Builder or the CodeBridge
Library. These messages aso include the CodeBridge Builder exit codes.

Appendix B—CodeBridge Examples. This appendix contains additional examples that
use the typical CodeBridge development process outlined in Chapter 1, Introduction. The
examples build from simple to complex, as a means of introducing CodeBridge concepts.

Appendix C—Useful C Information. The explanations in this appendix are intended to
introduce basic C concepts to devel opers who are inexperienced in C. Thisinformation is
intended to serve as a starting point for those devel opers who may not be proficient with
C programming and who wish to call existing C function libraries without writing any
additional C code.

Appendix D—Global Attributes. This appendix provides detailed descriptions of the
global attributes used in atemplate file. See Chapter 2, Concepts, for more information
about the basic components of atemplate file.

Appendix E—Parameter Attributes. Thisappendix provides detailed descriptions
of the parameter attributes used in atemplate file. See Chapter 2, Concepts, for more
information about the basic components of atemplate file.

Appendix F—CodeBridge Library Functions. This appendix describes each
function in the CodeBridge Library. These descriptionswill help you understand the
C code generated by the CodeBridge Builder and will assist you in debugging
applications developed using CodeBridge. Information on specifying the Flags
parameter is also covered.

CodeBridge Xiii
Organization of Information

Appendix G—Non-COBOL Subprogram Internalsfor Windows. This appendix
describes the internal details of how a non-COBOL subprogram is called from an
RM/COBOL program running under Microsoft 32-bit Windows. It also provides
information on preparing a non-COBOL subprogram for use by an RM/COBOL program
on 32-bit Windows.

Appendix H—Non-COBOL Subprogram Internalsfor UNIX. This appendix
describes the internal details of how a non-COBOL subprogram is called from an
RM/COBOL program running under UNIX. It also provides information on preparing a
non-COBOL subprogram for use by an RM/COBOL program on UNIX.

Appendix |—Calling CodeBridge Library Directly. Thisappendix includes guidelines
for calling the CodeBridge Library directly rather than having the CodeBridge Builder
generate the interface code from atemplate file. In order to call the CodeBridge Library
directly, you must use an alternate method for preparing non-COBOL subprograms, as
described in Appendices G and H.

The CodeBridge manual also includes an index.

Related Publications

For additional information, refer to the following publications:
RM/COBOL User’s Guide
RM/COBOL Language Reference Manual
RM/COBOL Syntax Summary

Symbols and Conventions

The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1. Wordsin all capital letters indicate COBOL reserved words, such as statements,
phrases, and clauses; acronyms; configuration keywords; environment variables, and
RM/COBOL Compiler and Runtime Command line options.

2. Text that isdisplayed in amonospaced font indicates user input or system output
(according to context as it appears on the screen). Thistype styleis also used for
sample command lines, program code and file listing examples, and sample sessions.

Xiv Preface
Related Publications

Bold, lowercase |etters represent filenames, directory names, programs, C language
keywords, and CodeBridge attributes.

Words you are instructed to type appear in bold. Bold type styleis also used for
emphasis, generally in some types of lists.

Italic type identifies the titles of other books and names of chaptersin this guide, and
it isalso used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for information you
supply, as described below.

The symbols found in the COBOL syntax charts are used as follows:
a. italicized wordsindicate items for which you substitute a specific value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown (although
not necessarily in uppercase).

.. indicates indefinite repetition of the last item.

a o

| separates alternatives (an either/or choice).
e. [] enclose optional items or parameters.
f. {} encloseaset of aternatives, one of whichisrequired.

o- {|[} surround aset of unique alternatives, one or more of which is required, but
each alternative may be specified only once; when multiple alternatives are
specified, they may be specified in any order.

All punctuation must appear exactly as shown.

Key combinations are connected by a plus sign (+), for example, Ctrl+X. This
notation indicates that you press and hold down the first key while you press the
second key. For example, “press Ctrl+X” means to press and hold down the Ctrl key
while pressing the X key. Then release both keys.

Theterm “Windows” in this document refers to 32-bit Microsoft Windows operating
systems, including Windows 95, Windows 98, Windows Me, Windows NT 4.0,
Windows 2000, or Windows XP, unless specifically stated otherwise. Asyou read
through this guide, note that Liant may use two shorthand notations when referring to
these operating systems. The term “Windows 9x class’ refersto the Windows 95,
Windows 98, or Windows Me operating system. The term “Windows NT class’
refersto the Windows NT 4.0, Windows 2000, or Windows XP operating system.

CodeBridge XV
Symbols and Conventions

9. RM/COBOL Compile and Runtime Command line options may be preceded by a
hyphen. If any option is preceded by a hyphen, then aleading hyphen must precede
all options. When assigning a value to an option, the equal sign is optional if leading
hyphens are used.

@ 10. Inthe electronic PDF file, this symbol represents a“post-it” note that allows you to

view last-minute comments about a specific topic on the page in which it occurs.
This same information is also contained in the readme text file under the section,
Documentation Changes.

Double-click on the note symbols to open them. Y ou can click the note window's
Close box after you have reviewed the contents. These notes can be viewed in the
Adobe Acrobat Reader but will not print, although you can copy and paste the text
into another application, such as Microsoft Word, if you wish.

Registration

Please take a moment to fill out and mail (or fax) the registration card you received with
RM/COBOL. Y ou can also complete this process by registering your Liant product
onlineat: http://www.liant.com.

Registering your product entitles you to the following benefits:

e Customer support. Free 30-day telephone support, including direct access to
support personnel and 24-hour message service.

e Special upgrades. Free media updates and upgrades within 60 days of purchase.

* Product information. Notification of upgrades, revisions, and enhancements as
soon as they are released, as well as news about other product devel opments.

Y ou can also receive up-to-date information about Liant and all its products via our
Web site. Check back often for updated content.

Technical Support

XVi

Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the RM/COBOL family of products. The technical support staff is
committed to providing you prompt and professional service when you have problems or
guestions about your Liant products.

These technical support services are subject to Liant’s prices, terms, and conditionsin
place at the time the service is requested.

Preface
Registration

http://www.liant.com/

Whileit is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each product. For
customers who elect not to upgrade to the most current release of the products, support is
provided on alimited basis, astime and resources allow.

Support Guidelines

When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name and contact information.

2. Liant product serial number (found on the media label, registration card, or
product banner message).

Product version number.

Operating system and version humber.
Hardware, related equipment, and terminal type.
Exact message appearing on screen.

N o o &~ w

Concise explanation of the problem and process involved when the
problem occurred.

Test Cases

Y ou may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

« Thesmaler thetest caseis, the faster we will be able to isolate the cause of
the problem.

* Do not send full applications.
* Reduce the test case to one or two programs and as few data files as possible.

* If you have very large datafiles, write a small program to read in your current data
files and to create new data files with as few records as necessary to reproduce the
problem.

e Test thetest case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. Y ou may need to include
an RM/COBOL configuration file.

CodeBridge XVii
Technical Support

When submitting your test case, please include the following items:

1. README text filethat explainsthe problems. Thisfile must include information
regarding the hardware, operating system, and versions of all relevant software
(including the operating system and all Liant products). It must also include step-by-
step instructions to reproduce the behavior.

2. Program sourcefiles. We require source for any program that is called during the
course of the test case. Be sure to include any copy files necessary for recompilation.

3. Datafilesrequired by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

Enhancements

XViii

The following sections summarize the major enhancements available in earlier versions of
CodeBridge.

Version 7.1

New to CodeBridge version 7.1 is support for UNIX. CodeBridge, Liant Software’s
cross-language call system, isin the RM/COBOL version 7.1 system. The CodeBridge
Builder uses atemplate file to produce a C source file. The C source file provides the
COBOL/C interface that may be used in an optional support module callable from
COBOL programs.

The CodeBridge Builder generates C source modules that are platform-independent.
Thus, you can use the CodeBridge Builder on a Windows platform to generate C source
files that may be used on either a Windows or UNIX system.

Version 7.0 of the CodeBridge Builder produced C source code if the template file
contained errors. Version 7.1 will not unless the -f (force) option is specified.

Version 7.0

Theinitia release of CodeBridge, version 7.0 for Windows, allows RM/COBOL
programsto call non-COBOL subprograms built from external Application Programming
Interfaces (APIs) or custom-developed C libraries without introducing “foreign” language
data dependenciesinto either the COBOL program or the called C functions. This means
that devel opers can write COBOL-callable C functions using C data types as usual,
without worrying about the complexities of COBOL calling conventions or data types.

Preface
Enhancements

Chapter 1. Introduction

Thisintroductory chapter provides an overview of CodeBridge and describes the
following topics:

« CodeBridge technology and its components

* Benefits of using CodeBridge

* Requirements for developing applications using CodeBridge
* Information on how to use this manual

* Anoverview of atypical development process and example

What is CodeBridge?

CodeBridge allows RM/COBOL applicationsto call C functions without being concerned
about the conversion between COBOL arguments and C parameters.

CodeBridge version 7.5 allows RM/COBOL programs to call non-COBOL subprograms
built from external Application Programming Interfaces (APIs) or custom-developed C
libraries without introducing “foreign” language data dependencies into either the
COBOL program or the called C functions. This means that developers can write
COBOL-callable C functions using C data types as usual, without worrying about the
complexities of COBOL calling conventions or data types.

The developer augments C function prototypes with global and parameter attributes
described in this manual to produce atemplate file. The developer uses the CodeBridge
Builder utility to generate a C source file from the template file. This generated C source
file contains the interface logic that, with the help from the CodeBridge Library, connects
the calling COBOL program to the C function. The developer compilesthis C source file,
along with the C functionsto be called, and links the generated object files together to
form the completed non-COBOL subprogram library. In many cases, existing C library
functions may be used to generate a non-COBOL subprogram library without writing any
C code.

Note For Windows platforms, the generated non-COBOL subprogram library isa
32-bit dynamic link library (DLL). For UNIX platforms, the generated non-COBOL
subprogram library is a*“shared object” (normally referred to as an optional support
module).

CodeBridge 1-1
What is CodeBridge?

CodeBridge Components

CodeBridge consists of two main components:

CodeBridge Builder. CodeBridge Builder is a standal one program that

functions like a pre-compiler by reading atemplate file to generate a C source
codefile. The template file consists of C function prototypes that have been
augmented with descriptive information. The output of the CodeBridge Builder

is compiled and linked with the C functions to produce a non-COBOL subprogram
library. The CodeBridge Builder isincluded in the RM/COBOL version 7 (or later)
development system.

CodeBridge Library. CodeBridge Library isaset of functionsthat performs
conversion operations from COBOL arguments to C parameters and back again.
The CodeBridge Library also contains functions to validate data and enforce
interface constraints. The CodeBridge Library is part of the RM/COBOL
version 7 (or later) runtime system.

Benefits of Using CodeBridge

1-2

CodeBridge provides the following benefits:

Converts between COBOL and C data formats, eliminating the need for
either the COBOL program or the C function having to deal with “foreign”
language-dependent data types.

Allows existing C libraries and standard APIs (such as the WIN32 API) to be
used, in many cases, without writing any additional C code.

Supports basic COBOL data types, including numeric, non-numeric, and pointer
dataitems.

Supports basic C data types, including integer and floating-point data items,
numeric ASCII-encoded strings, and standard null-terminated C strings.

Provides access to elements of COBOL data descriptors, which describe the
properties of COBOL arguments.

Provides C functions with the COBOL argument count, the COBOL initial state
flag, and the Windows handle of the calling program.

Provides data range and integrity checks for COBOL arguments and C parameters.
Provides support for omitted arguments and null-valued pointer arguments.

Provides limited support for calling C functions that allow a variable number
of parameters.

Introduction
Benefits of Using CodeBridge

Requirements

In order to develop applications using CodeBridge, you must have the following:

1. AnRM/COBOL version 7 (or later) development system to develop applications
using CodeBridge.

2. RM/COBOL version 7 (or later) runtime systems for deployment of applications
based on CodeBridge technology.

3. A contemporary C development system:

e For Windows, it must be capable of generating 32-bit dynamic link libraries
(DLLs). Liant Software selected Microsoft’s Visual C++ compiler for the
development of the Windows version of CodeBridge. The Windows examples
used in this manual are based on Microsoft command line syntax.

e For UNIX, the C development system must be capable of generating shared
objects. The command line syntax for the UNIX examples used in this manual
istypical of many C compilerson UNIX. A makefile is provided with the
RM/COBOL development and runtime systems that can be used or modified to
build a shared object to be used as a support module with the RM/COBOL
runtime system. For additional information, see “Preparing C Subprograms’ on
page H-11.

4. Some knowledge of C programming. The skill level varies depending on what the
developer wishes to accomplish. For those developers who are not proficient in
C programming and who wish to call existing C function libraries, only a cursory
knowledge of Cisrequired. Appendix C, Useful C Information, contains brief
explanations of some C language concepts and terminology, and may be useful for
those devel opers who are not proficient in C.

Using this Manual

Depending on your experience level and how you to plan to use CodeBridge, this section
contains information to help you learn to use CodeBridge effectively and quickly.

Developers Who are New to C Programming

A limited understanding of the C programming language is required to use CodeBridge
effectively. If you are unfamiliar with the C programming language, you will want to
refer first to Appendix C, Useful C Information. The explanationsin this appendix are

CodeBridge 1-3
Requirements

1-4

intended to introduce basic C concepts to developers who are inexperienced in C. More
in-depth information can be found in the many resources published about programming
in C. Appendix C also contains information on compiling and linking C functions.

Developers Who are Evaluating CodeBridge

It is recommended that all CodeBridge developers read and study Chapter 1,
Introduction. This chapter presents the main features of CodeBridge, and acquaints
you with an overview and general appearance of atypical CodeBridge program.

Another good way to become familiar with CodeBridge isto look at the examplesin
Appendix B, CodeBridge Examples. This appendix contains examples that introduce and
illustrate several CodeBridge concepts and features. These examples may be helpful in
generating CodeBridge template files that are based on existing C function prototypes.

In addition to these examples, several CodeBridge sample programs are included with the
development system in the CodeBridge samples subdirectory. Within the cbridge
subdirectory on Windows, the file sample.txt discusses the sample programs, including
the .bat files to compile and run them, the .tpl and .cbl files, and the output they produce.
These sample programs include a template file that contains definitions for a rich subset
of the SQL function calls defined by Microsoft's ODBC API reference. The
README.txt file in the cbsample subdirectory on UNIX discusses the CodeBridge
sample programs that are included and how to run them.

Developers Who Wish to Use Existing C Libraries or Write New
Non-COBOL Subprograms

For background information, you may wish to refer to the chapters and appendixes
recommended for devel opers who are inexperienced in C programming and those who are
evaluating CodeBridge for background information.

Then, study Chapter 2, Concepts, which focuses on the fundamentals and structure of
CodeBridge.

Appendix D, Global Attributes and Appendix E, Parameter Attributes, serve as reference
guides to the attributes and attribute lists that are used in template files while developing
CodeBridge applications.

Introduction
Using this Manual

Developers Who Have Written Non-COBOL Subprograms for
Previous Versions of RM/COBOL

For background information, please refer to the previously recommended topics for
developers who wish to use existing C libraries or who want to write new non-COBOL
subprograms.

Next, read Appendix F, CodeBridge Library Functions, and Appendix I, Calling the
CodeBridge Library Directly. Please note that the information in these two appendixesis
not intended for a general audience. Rather, it istargeted to those developers who have
previously written non-COBOL subprogram libraries in the form of Windows DLLsthat
are callable from RM/COBOL, and who wish to take advantage of the data conversion
and validation features available in CodeBridge.

Finally, review either Appendix G, Non-COBOL Subprogram Internals for Windows, or
Appendix H, Non-COBOL Subprogram Internals for UNIX. These appendices document
the interface between the RM/COBOL runtime system and a C subprogram.
Developers Who Need Assistance in Testing and Debugging

Developersin this category may refer to Appendix A, CodeBridge Errors, which lists the
error messages produced by the CodeBridge Builder and CodeBridge Library.

Theinformation in Appendix F, CodeBridge Library Functions, would aso prove useful
to devel opers who are debugging applications developed using CodeBridge.

Typical Development Process Overview

Note In order to avoid confusion, the term “argument” is used when referring to COBOL
dataitems; the term “parameter” is used when referring to C dataitems.

A typical CodeBridge development process would include the following steps:

1. Selectingthe C functions. Thefirst step isto select the C functions that are to be
caled from COBOL.

These C functions may be ones that you have written or that you have acquired from
a software vendor, or received as part of the standard C library that came with your
C compiler, or obtained as part of a standard API for your operating system or one of
its add-on components. Regardless of the source of these C functions, there will be
one or more header files that contain descriptions of the functions (using C function
prototypes), and, possibly, definitions of new data types and constants (using macros
defined with #define C preprocessor directives and data types defined with C

CodeBridge 1-5
Typical Development Process Overview

typedef statements). The information from these header files will be augmented with
additional information as described in step 2.

Creating thetemplate file. The next step isto create atemplate file that describes
the relationship between the COBOL arguments and the C parameters.

The template file (described in Chapter 2, Concepts) contains modified C function
prototypes, where the modifications provide additional information describing each
C parameter and the function return value. Each block of descriptive informationis
called an attribute list. Each attribute list contains one or more attributes. There are
two kinds of attribute lists: parameter and global. Attributes and attribute lists are
described in Appendix D, Global Attributes, and Appendix E, Parameter Attributes.

Template files are generally free format in the sense that aline break may be placed
wherever ablank may be placed. A template file line should not exceed 255
charactersin length.

In addition to the annotated C function prototypes, it is necessary to add #include

C preprocessor directives to the template file so that the C code generated by
CodeBridge Builder can correctly resolve C datatypes. For example, if you are
using the standard Windows API function, MessageBox, you must include the header
file, windows.h. (“Example 2: Calling aWindows APl Function” in Appendix B,
CodeBridge Examples, demonstrates this requirement.) If you did not write the

C functions, documentation that came with the software, your C compiler, or an SDK
(Software Devel opment Kit), should provide this information.

3. Invoking the CodeBridge Builder. The CodeBridge Builder program uses the
template file to generate C source code that contains the interface calls to connect the
calling COBOL program to the C functions, and to convert COBOL arguments to
and from C parameters.

CodeBridge Builder is normally executed from a command line or script
environment. It has two command line options. arequired input parameter (the
name of the template file) followed by an optional output parameter (the name of the
generated C sourcefile).

Template files typically have a .tpl extension. If the optional output filename is not
specified, the output is written to a file with the same name as the input file with the
extension changed to .c.

Any errors that occur are written to a file with the same name as the output file, but
with the extension changed to .err. Errors encountered by the CodeBridge Builder
should be fixed before continuing. Although the CodeBridge source codeis
generated when there are errors, it should not be considered valid.

For more information, see “CodeBridge Builder” in Chapter 2, Concepts, and
“CodeBridge Builder Error Messages” in Appendix A, CodeBridge Errors.

1-6 Introduction
Typical Development Process Overview

Liant Software Corporation
C-Style Comments Permitted in Template Files

Note that C-style comments (/* comment */) may be included in the template source file. If comments are included, they are accepted by the CodeBridge Builder, but are not placed in the C source created from the template file.

4. Building the non-COBOL subprogram library. CodeBridge Builder generates a
C source program that must be compiled. Once the generated source has been
compiled, it must be linked with the object code for the functions you wish to call
from COBOL and with any libraries required by those functions or by the operating
system. Thislinking process will produce a non-COBOL subprogram library
that your COBOL program will use. Various compilers can be used to build the
non-COBOL subprogram library, including Microsoft’s Visual C++.

Note 1 When calling existing object libraries other than the standard C library, you
must specify the libraries needed in the link command.

Note 2 When calling an existing Windows DLL, you must supply either a definition
file (.def) or an import library file in the link command.

5. Modifying or creatinga COBOL program. The next step isto modify an existing
COBOL program or create a new one that calls the C functions you have selected.

The USING phrase of the RM/COBOL CALL statement allows you to specify
arguments you wish to pass to the C function. The GIVING (RETURNING) phrase
of the RM/COBOL CALL statement allows you to specify an argument that would
normally receive the return value of the C function.

CodeBridge is designed to give maximum flexibility in choosing COBOL data
types to be converted to and from the C data types required by the C function. See
Chapter 2, Concepts, for more information.

CodeBridge also allows wide latitude in mapping C function parameters to COBOL
arguments. For more information, see “Associating C Parameters with COBOL
Arguments’ on page 2-22.

6. Compiling the COBOL program. Usethe RM/COBOL compiler to compile your
COBOL program.

7. Running the application. Execute the COBOL program, specifying the name
of the non-COBOL subprogram library using the L Option of the RM/COBOL
Runtime Command (runcaobol). Alternatively, you may use the Command Line
Options Registry property on Windows or the command line optionsin the UNIX
resource file to specify the name of the non-COBOL subprogram library. (For more
details, see " Setting Miscellaneous Properties’ in Chapter 3, Installation and System
Considerations for Microsoft Windows, and the “UNIX Resource File” section in
Chapter 2, Installation and System Considerations for UNIX, in the RM/COBOL
User’s Guide). You may specify the name of the non-COBOL subprogram with the
appropriate file extension. See page 1-10 for an example.

Note On UNIX, thereis an option to automatically load your subprogram library
without the need to specify the L Option on the Runtime Command. Once your
subprogram library is tested to your satisfaction, you may copy the .so (support
module) to the rmcobolso subdirectory of the runtime execution directory (normally,

CodeBridge 1-7
Typical Development Process Overview

/usr/bin). For additional information, see “Preparing C Subprograms’ on
page H-11. For ageneral discussion of support modules and how RM/COBOL
uses them, see Appendix D, Support Modules (Non-COBOL Add-Ons), in the
RM/COBOL User’s Guide.

Typical Development Process Example

The following example uses the typical development process outlined in the previous
section. More examples can be found in Appendix B, CodeBridge Examples, and in the
CodeBridge sampl es subdirectory (cbridge on Windows and chsample on UNIX).

Example 1: Calling a Standard C Library Function

This example demonstrates calling a standard C library function without writing any
C code. Parameter attribute lists are also presented.

1. Start with the function prototype for the standard C library cosine function, cos:

doubl e cos(doubl e x);

2. Create atemplatefile called trig.tpl in the src directory that consists of the
following lines:

#i ncl ude <math. h>

[[float out rounded]] double cos(
[[float in]] doubl e x);

The #include C preprocessor directive is added to the template file so that the
generated C source code can correctly resolve C datatypes. Because the cosine
function is defined in the header file math.h, you should include thisfile in the
template.

Parameter attribute lists (for example, [[f| oat out rounded]]) are constructed
by placing the attributes between sets of double brackets. The parameter attribute
lists are placed just before C data type references (in this example, double).

A parameter attribute list must contain a base attribute (in this case, float, for
floating-point). A parameter attribute list may contain a direction attribute (either in
or out, or both), although a direction attribute is not always required. Optionally, a
parameter attribute list may contain base modifier attributes (in this case, rounded,
to indicate that COBOL rounding rules are to be applied).

Note Unlike COBOL, C is acase-sensitive programming language. Thus, the case is
significant for words in this example template file.

1-8 Introduction
Typical Development Process Example

Invoke the CodeBridge Builder by using the following command line:

cbridge src\trig.tpl

This command reads the input file from src\trig.tpl and writes its output file to
src\trig.c. Any errors would be written to the file src\trig.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

For Windows
cl —c -MD -Zpl src\trig.c
I i nk —nol ogo —machi ne: | X86 —section:. edata, RD —dl |

-subsystem wi ndows —out:trig.dll
trig.obj kernel32.1ib user32.1ib

For UNIX

A makefile is provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms’ on page H-11.

To compile:

cc -c src/trig.c

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, as follows:

cc -b elf -c src/trig.c
Tolink:
cc -G-otrig.sotrig.o

Note Some linkers may require that you explicitly specify the math (or
other) libraries, asfollows:

cc -G-otrig.sotrig.o-Im

CodeBridge 1-9
Typical Development Process Example

1-10

Create a COBOL programin afile called trig.cbl that contains the following
source fragments:

77 X- DEGREES PI C S999V99.

77 X-RADI ANS PI C S99V9(16) .

77 RESULT PIC S99V9(06) .

78 PI Val ue 3.14159265359.

COWPUTE X- RADI ANS = X- DEGREES / 180 * PI.
CALL "cos" USI NG X- RADI ANS G VI NG RESULT.

Note Either numeric edited or any COBOL numeric usage may be specified
in the data descriptions for X-DEGREES, X-RADIANS, and RESULT.

Compile the COBOL program with the RM/COBOL compiler by using the following
command line:

rnmcobol trig

Run the application, specifying the name of the COBOL program and the name of the
non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally known as support modules). Since the COBOL
program and the non-COBOL subprogram have the same root name (trig), itis
necessary to specify the correct file extension.

For Windows

runcobol trig -1 trig.dll

For UNIX

runcobol trig -1 trig.so

If the preceding examples had used different root names for the COBOL program
and the non-COBOL subprogram, it would not be necessary to specify thefile
extension. For example, if the COBOL program were named “myprog”, then the
following command could be used for either Windows or UNIX:

runcobol nyprog -1 trig

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

Introduction
Typical Development Process Example

Chapter 2: Concepts

This chapter describes concepts that are central to an understanding of CodeBridge,

including the following:

Using template file components (attributes and attribute lists)

Passing information to a C function (categories of information that can be
passed include COBOL arguments, COBOL argument properties, and
miscellaneous information), including passing null-valued pointer arguments
and managing omitted arguments

Returning C error values

Associating C parameters with COBOL arguments
Working with a variable number of C parameters
Modifying COBOL data areas

Using P-scaling

Working with arrays

Using the CodeBridge Builder

Using Template File Components

=

In order to use the CodeBridge Builder (see page 2-38), you must provide atemplate file
that describes each C function to be called from COBOL. Attribute lists are used in the
template file to supplement information from the C function prototypes. An attribute list
isacollection of attributes. Detailed information about attributes is provided in
Appendix D, Global Attributes, and Appendix E, Parameter Attributes.

Note Asyou read through this manual, keep in mind that the term “ parameter attribute”
is ashorthand notation for an attribute that occursin a parameter attribute list. Likewise,
“global attribute” indicates that the attribute can be found in aglobal attribute list.

CodeBridge
Using Template File Components

2-1

Liant Software Corporation
C-Style Comments Permitted in Template Files

Note that C-style comments (/* comment */) may be included in the template source file. If comments are included, they are accepted by the CodeBridge Builder, but are not placed in the C source created from the template file.

2-2

Attributes

An attribute is a keyword, such asinteger, or a keyword with an associated value in
parentheses, such as occur s(3). Attribute keywords are case-sensitive and must be
entered as shown.

The associated value is a constant. The CodeBridge Builder does not detect errorsin the
construction of the associated value.

A collection of attributes is known as an attribute list.

Attribute Lists

Two kinds of attribute lists, parameter and global, are used in atemplate file.

A parameter attribute list (described in the next section) is formed by enclosing one or
more attributes in double brackets. For example:

[[integer in occurs(3)]]

A global attribute list (see page 2-5) is formed by enclosing one or more attributes
between the characters [# and #]. For example:

[# replace_type (VO D _PTR, void *) #]
Sample template files using parameter and global attribute lists can be found on
pages 2-4 and 2-5.

Parameter Attribute Lists

A parameter attribute list is associated with a C parameter or function return value. Each
parameter attribute list describes the following:

e How COBOL arguments are to be validated and converted into C parameters before
the C function is called.

e How C parameters are to be validated and converted back to COBOL arguments
when the C function returns.

Zero or more parameter attribute lists may immediately precede the type information for
each C parameter or function return value.

Attribute lists for a parameter or function return value may be omitted if the parameter or
function return value is to be ignored.

Concepts
Using Template File Components

Within a parameter attribute list, the parameter attributes need not be presented in any
particular order. For example, [[i nteger in]] isthesameas[[in integer]].
When a parameter is used for both input and output, specify both the in and out direction
attributes in either order.

The attributes in a parameter attribute list belong to one of the following categories:

e Base. Base attributesindicate the general classification of a parameter (numeric,
string, string length, pointer, descriptor, or error). Each parameter attribute list must
contain exactly one base attribute, except that the alias(name) base modifier attribute
may be used by itself if the return valueisto beignored. Therefore, within this
document, a parameter attribute list is sometimes identified by its base attribute. For
example, the phrase “an integer attribute list” refersto an attribute list that contains
theinteger base attribute. (Base attributes are covered in more detail beginning on
page E-3.)

« BaseModifier. Base modifier attributes perform several tasks, such as. parameter
conversion, parameter validation, error handling, array processing, handling of a
variable number of C parameters, overriding the default size of a parameter, or
supplying default values for omitted arguments. (More information about the base
modifier attributes begins on page E-3.)

« Direction. A direction attribute, in and/or out, is sometimes required so that
CodeBridge knows whether to generate code to convert a COBOL argument to a
C parameter before calling the C function and/or to convert a C parameter to a
COBOL argument when returning to the COBOL program.

The base attributes, float, general_string, integer, numeric_string, pointer_base,
pointer_offset, pointer_size, and string, apply to both input parameters and output
parameters, and, therefore, require that a direction attribute be specified.

All other base attributes apply only to input parameters, and, therefore, assume the
presence of the in direction attribute. These base attributes do not allow the in
direction attribute to be specified. (For more details about direction attributes, see

page E-2.)

e Argument Number. CodeBridge provides a default automatic method of
associating the C parameters and function return value from the C function prototype
with COBOL arguments from the USING phrase and GIVING (RETURNING)
phrase of the CALL statement. This default automatic association method is able to
handle most cases. Note that for the more than 60 functions described in the file
sgl.tpl inthe cbridge subdirectory (Windows only), none required using argument
number attributes.

There are, however, situations that the default automatic association method will not
handle (see “Example 4: Accessing COBOL Pointer Arguments” in Appendix B,

CodeBridge 2-3
Using Template File Components

2-4

CodeBridge Examples, and “Associating C Parameters with COBOL Arguments’ on
page 2-22). For these cases, use the explicit association method by specifying
argument number attributes, arg_num or ret_val, to override the automatic
association method. (For more information on the argument number attributes, see

page E-2.)
For an al phabetized summary of the parameter attributes, see Table E-2 on page E-24.

Sample Template File Using Parameter Attribute Lists

The following C function prototype:

int MyFunction(char *Nanme, short NaneSi ze);

may be modified by adding parameter attribute lists to produce the following template
file

[[integer out]] int MyFuncti on(
[[string in]] char *Naneg,
[[buffer_length]] short NaneSi ze);

For each usage of adataitemin the C function prototype (either for the function return
value or for a parameter), a parameter attribute list has been added.

Since the C function returns an int, the integer base attribute and the out direction
attribute are used.

For the Name parameter, the string base attribute and the in direction attribute are used to
specify that the C function expects a string (array of char) asinput.

The buffer_length base attribute is used to specify the size (in bytes) of the buffer used to
contain the converted COBOL argument. By default, the buffer_length base attribute
refersto the same COBOL argument that was used in the attribute list that preceded the
buffer_length attribute list. Because the buffer_length base attribute may be used only
with input parameters, it is neither necessary nor allowed to add thein direction attribute
to the attribute list.

The COBOL program would call the C function with the following statement:
CALL "MyFunction" USING Nane-1, G VING Resul t-1.

Concepts
Using Template File Components

Global Attribute Lists

A global attribute list provides information about one or more C function prototypes that
is not specific to any given parameter. Thisinformation also could be used to modify the
default behavior of CodeBridge Builder.

Global attribute settings take effect at the point the global attribute list occurs and are
valid until another global attribute list alters these settings. A global attribute list is not
associated with any particular function, argument, or parameter.

Sample Template File Using Global Attribute Lists

The following C function prototype:

SQLRETURN SQL_API SQLPar anDat a(SQLHSTMT St at enent Handl e,
SQLPO NTER *Val uePtrPtr);

may be modified by adding global and parameter attribute liststo produce the following
template file:

#i ncl ude "sql types. h"

[# replace_type(SQ.PO NTER, void *) #]
[# convention(SQ._API) #]

[[integer out]] SQ.RETURN SQL_API SQLPar anDat a(
[[integer in]] SQLHSTMI St at enent Handl e,
[[address]] SQLPO NTER *Val uePtrpPtr);

Thereplace _type global attribute is used to expand the definition of SQLPOINTER to
void *. The convention global attribute is used to identify function calling conventions.

Note1l Thisexampleisbased onthe ODBC API, which is provided by Microsoft on
Windows platforms. Other companies provide ODBC API implementations for some
UNIX platforms.

Note 2 The header file, sgltypes.h, isincluded so that the C source code generated by
CodeBridge will be able to resolve the data types, SQLRETURN and SQLHSTMT.

CodeBridge 2-5
Using Template File Components

Passing Information to a C Function

2-6

CodeBridge is designed to simplify the process of calling C functions from COBOL
programs. It ispossibleto call existing C library and standard API functions without
writing additional C code. Even though no additional C code is required when using only
existing C library or standard API functions, some knowledge of C programming is
required in order to create the CodeBridge template file and to compile and link the
CodeBridge non-COBOL subprogram library. Further knowledge of C programming is
required if the developer desires to write new C programs or if intermediate functions
must be written to pack scalarsinto structure or union parameters.

CodeBridge handles the conversion between COBOL and C data formats, which
eliminates the need for either the COBOL program or the C function having to deal with
“foreign” language-dependent data types. During the conversion process, CodeBridge
can also perform data range and validity checksto verify that specified interface
constraints are maintained.

CodeBridge allows three categories of information to be passed to the C function:
e COBOL arguments (see the following topic)

e COBOL argument properties (see page 2-15)

e Miscellaneous information (see page 2-17)

Furthermore, a COBOL program may omit an argument in the information passed to a
C function, as discussed in “Managing Omitted Arguments’ on page 2-17.

Passing COBOL Arguments

COBOL arguments may be numeric, non-numeric, or pointer dataitems. COBOL
numeric arguments may be passed to C integer, floating-point, and numeric string
parameters. COBOL non-numeric arguments must be passed to C string parameters. As
aspecial casefor C functions designed to interpret a null-valued pointer as an omitted
parameter, a COBOL null-valued pointer argument may be passed in place of a numeric
or non-numeric argument and the C function parameter will be set to a null-valued
pointer. COBOL pointer data items contain three components: base address, offset, and
size. The address component must be passed to C pointer parameters; the offset and size
components must be passed to C numeric parameters.

Concepts
Passing Information to a C Function

Passing COBOL Numeric Arguments

CodeBridge supports all RM/COBOL numeric data types, including display, numeric
edited, packed, unpacked, and binary. A COBOL numeric argument may be passed to
one of three C parameter types. integer, floating-point, and string. When passed to a
string, the numeric value is converted to and from a string representation. Therefore, in
this document, this form is referred to as a numeric string.

Note While the COBOL language defines the numeric edited category as belonging to
the alphanumeric class, CodeBridge treats numeric edited data items as numeric. Itis
currently an error to pass a numeric edited argument to a parameter described with the
string base attribute. Instead, a numeric edited argument should be passed to a parameter
described with either the numeric_string or general_string base attributes.

Numeric Arguments with C Integer Parameters

A Cinteger parameter is described in the template file using the integer base attribute.
Theinteger base attribute may be used with any of the C integer data types, including
char, short, int, and long, with or without the C signed type specifier keywords signed
and unsigned. These data types can be used directly (such as “int Name”), indirectly
(“int *pName”), and with array declarations (“int ArrayName[]").

When used directly (“int Name”), the parameter is passed to the C function “by value”.
As such, it is unable to modify the value of the actual parameter. Passing a parameter “by
value’ usually meansthat it is an input parameter, which indicates that the in direction
attribute should be specified in the attribute list for the parameter.

When used indirectly (“int *pName”), the parameter is passed to the C function “by
reference”’. This means that the C function is given a pointer to the parameter and,
therefore, is able to modify the value of the actual parameter. Passing a parameter “by
reference” usually meansthat it is an output (or input/output) parameter, which indicates
that the out direction attribute (or both the in and out direction attributes) should be
specified in the attribute list for the parameter.

Asaspecial casefor C integer parameters that are passed indirectly, CodeBridge will
pass the C null pointer to the C function when the COBOL argument is a null-valued
COBOL pointer. For more information, see “Passing Null-Vaued Pointer Arguments’
on page 2-13.

When used asan array (“int ArrayName[]”), the address of the array is passed to the C
function. For more information, see “Working with Arrays’ on page 2-34.

CodeBridge 2-7
Passing Information to a C Function

2-8

The conversion process for C integer parameters may be modified by using the following
base modifier attributes: no_size error, occurs(value), repeat(value), rounded,
scaled(value), silent, unsigned, and value_if _omitted(value). For more information, see
“Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Interface constraints for C integer parameters may be specified by using the following
base modifier attributes: assert_digits(min;max), assert_digits_left(min; max),
assert_digits _right(min;max), assert_length(min;max), assert_signed,
assert_unsigned, integer_only, no_null_pointer, and optional. For more information,
see “Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Numeric Arguments with C Floating-Point Parameters

A C floating-point parameter is described in the template file using the float base
attribute. The float base attribute may be used with either of the C floating-point data
types, float or double. These data types can be used directly (such as “float Name”),
indirectly (“float *pName”), and with array declarations (“float ArrayName[]").

When used directly (“float Name”), the parameter is passed to the C function “by value”.
As such, it is unable to modify the value of the actual parameter. Passing a parameter “ by
value’ usually meansthat it is an input parameter, which indicates that the in direction
attribute should be specified in the attribute list for the parameter.

When used indirectly (“float *pName”), the parameter is passed to the C function “by
reference”’. This means that the C function is given a pointer to the parameter and,
therefore, is able to modify the value of the actual parameter. Passing a parameter “by
reference”’ usually meansthat it is an output (or input/output) parameter, which indicates
that the out direction attribute (or both the in and out direction attributes) should be
specified in the attribute list for the parameter.

Asaspecial case for C floating-point parameters that are passed indirectly, CodeBridge
will pass the C null pointer to the C function when the COBOL argument is a null-valued
COBOL pointer. For more information, see “Passing Null-Vaued Pointer Arguments’
on page 2-13.

When used as an array (“float ArrayName[]”), the address of the array is passed to the
C function. For more information, see “Working with Arrays’ on page 2-34.

The conversion process for C floating-point parameters may be modified by using the
following base modifier attributes: no_size error, occurs(value), repeat(value),
rounded, silent, and value if _omitted(value). For more information, see “Base
Modifiersthat Apply to Numeric Base Attributes’ on page E-7.

Concepts
Passing Information to a C Function

Interface constraints for C floating-point parameters may be specified by using the
following base modifier attributes: assert_digits(min;max), assert_digits_left(min;max),
assert_digits _right(min;max), assert_length(min;max), assert_signed,
assert_unsigned, no_null_pointer, and optional. For more information, see “Base
Modifiersthat Apply to Numeric Base Attributes’ on page E-7.

Numeric Arguments with C Numeric String Parameters

A C numeric string parameter is described in the template file using either the
numeric_string or the general_string base attributes. The numeric_string or
general_string base attributes may be used with any of the C string data types. char *,
signed char *, and unsigned char *.

Note 1 The C parameter declarations “char *String” and “char String[]” are equivalent.

Note 2 C strings are one-dimensional arrays of characters. C always passes array
parameters “by reference”, which means that the address of the first character of the string
is passed to the C function.

Although string parameters are always passed “by reference”, this does not mean that a

C string parameter is always an output parameter. Depending on its usein the C function,
it may be an input parameter, an output parameter, or an input/output parameter. Its use
indicates whether the in direction attribute (input), the out direction attribute (output), or
both the in and out direction attributes (input/output) should be specified in the attribute
list for the parameter.

Asaspecial case for C numeric string parameters, CodeBridge will pass the C null
pointer to the C function when the COBOL argument is a null-valued COBOL pointer.
For more information, see “Passing Null-Valued Pointer Arguments’ on page 2-13.

During the conversion process, CodeBridge dynamically allocates a buffer to hold the
converted COBOL argument (for input conversions) or hold the C string generated by the
C function (for output conversions). While processing string parameters, the C function
may need to know the size of the string or the size of the string conversion buffer.
CodeBridge provides three attributes for obtaining this string length information. The
length base attribute provides the length of the COBOL argument. The buffer_length
base attribute provides the size of the allocated string buffer. The effective_length base
attribute provides the actual number of characters stored in the string buffer, not including
the null character terminating the string.

When passing an array of C strings (“char *StringArray[]”), the address of the first string
pointer is passed to the C function. For more information, see “Working with Arrays’ on
page 2-34.

CodeBridge 2-9
Passing Information to a C Function

The conversion process for C numeric string parameters may be modified by using the
following base modifier attributes: leading_minus, leading_sign, no_size error,
occur s(value), repeat(value), rounded, silent, size(value), trailing_credit,
trailing_debit, trailing_minus, trailing_sign, and value_if _omitted(value). For more
information, see “Base Modifiers that Apply to Numeric Base Attributes’ on page E-7.

Interface constraints for C numeric string parameters may be specified by using the
following base modifier attributes: assert_digits(min;max), assert_digits_left(min;max),
assert_digits _right(min;max), assert_length(min;max), assert_signed,
assert_unsigned, no_null_pointer, and optional. For more information, see “Base
Modifiersthat Apply to Numeric Base Attributes’ on page E-7.

String base modifier attributes that are allowed when the general_string base attribute is
specified are ignored for numeric arguments.

Passing COBOL Non-Numeric Arguments

CodeBridge supports all RM/COBOL non-numeric data types, including al phabetic and
alphanumeric elementary items. CodeBridge also supports passing group items. A
COBOL non-numeric argument must be passed to a C string parameter.

Note While the COBOL language defines the numeric edited category as belonging to
the alphanumeric class, CodeBridge treats numeric edited data items as numeric. Itis
currently an error to pass a numeric edited argument to a parameter described with the
string base attribute. Instead, a numeric edited argument should be passed to a parameter
described with either the numeric_string or general_string base attributes.

Non-Numeric Arguments with C String Parameters

A C string parameter is described in the template file using either the string or the
general_string base attributes. The string or general_string base attributes may be used
with any of the C string data types. char *, signed char *, and unsigned char *.

Note1l The C parameter declarations “char *String” and “char Sring[]” are equivalent.

Note 2 C strings are one-dimensional arrays of characters. C always passes array
parameters “by reference”, which means that the address of the first character of the string
is passed to the C function.

Although string parameters are always passed “by reference”, this does not mean that aC
string parameter is always an output parameter. Depending on its use in the C function, it
may be an input parameter, an output parameter, or an input/output parameter. Its use
indicates whether the in direction attribute (input), the out direction attribute (output), or

2-10 Concepts
Passing Information to a C Function

both the in and out direction attributes (input/output) should be specified in the attribute
list for the parameter.

Asaspecial case for C string parameters, CodeBridge will pass the C null pointer to the C
function when the COBOL argument is a null-valued COBOL pointer. For more
information, see “Passing Null-Valued Pointer Arguments’ on page 2-13.

During the conversion process, CodeBridge dynamically allocates a buffer to hold the
converted COBOL argument (for input conversions) or hold the C string generated by the
C function (for output conversions). While processing string parameters, the C function
may need to know the size of the string or the size of the conversion buffer. CodeBridge
provides three attributes for obtaining this string length information. The length base
attribute provides the length of the COBOL argument. The buffer_length base attribute
provides the size of the allocated string buffer. The effective_length base attribute
provides the actual number of characters stored in the string buffer, not including the null
character terminating the string.

Note If aCOBOL non-numeric argument contains a C null character (0x00),
conversion of the argument to a C string parameter may produce unexpected results.
The input conversion process ends when all characters have been copied or a C null
character is encountered.

When passing an array of C strings (“char * StringArray[]”), the address of the first string
pointer is passed to the C function. For more information, see “Working with Arrays’ on
page 2-34.

The conversion process for C non-numeric string parameters may be modified by using
the following base modifier attributes: leading(value), leading_spaces, occur s(value),
repeat(value), silent, size(value), trailing(value), trailing_spaces, and
value_if_omitted(value). For moreinformation, see “Base Modifiersthat Apply to the
String Base Attribute” on page E-11.

Interface constraints for C non-numeric string parameters may be specified by using the
following base modifier attributes: assert_length(min;max), no_null_pointer, and
optional. For more information, see “Base Modifiers that Apply to the String Base
Attribute” on page E-11.

Numeric string base modifier attributes that are allowed when the general_string base
attribute is specified are ignored for non-numeric arguments.

CodeBridge 2-11
Passing Information to a C Function

2-12

Groups with C String Parameters

COBOL group items are hierarchical data structures that contain subordinate groups and
elementary dataitems. CodeBridge does not provide support for accessing data items
subordinate to a group.

A COBOL group is non-numeric but may contain numeric and pointer data. Because
it is non-numeric, agroup can be passed to a C string parameter. Since it may contain
numeric and pointer data, the likelihood of unexpected results from encountering a C

null character (0x00) is greater than when passing elementary non-numeric arguments.

An RM/COBOL variable-length group argument is always passed as a fixed-length group
of the maximum size so that the called program has the opportunity to increase the
variable sizeif desired. Thus, passing variable-length groups does not support passing
variable-length stringsto C.

Passing COBOL Pointer Arguments

The pointer data type is a new feature introduced in version 7.0 of RM/COBOL. A
COBOL pointer describes a block of memory and consists of three components: base
address, offset, and size.

CodeBridge provides two methods for passing COBOL pointers. The first method is
useful when the C function only wishes to access memory referenced by the pointer. The
second method is useful if the C function wishes to access the components of the COBOL
pointer dataitem directly. For more information, see “Pointer Base Attributes’ on

page E-15.

Method 1: Passing Pointer Address and Pointer Length

With this method, you can pass the address or the length of the block of memory to an
input parameter in the C function. Given the address and length of the memory to which
the pointer refers, the C function may read or modify the contents of that memory block.
It isthe C programmer’s responsibility to confine any such referencesto lie wholly within
the memory block described by the given pointer values. However, the C function cannot
change the base address, offset, or size of the COBOL pointer.

Use the pointer_addr ess base attribute in the template file to describe a C pointer
parameter and instruct CodeBridge to pass the effective address of the memory block
(base address plus offset) to the C function as the parameter value.

Usethe pointer_length base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the effective length of the memory block (size
minus offset) to the C function as the parameter value.

Concepts
Passing Information to a C Function

Method 2: Passing and Modifying Pointer Components

With this method, you can pass the base address, offset, or size of the block of memory to
an input, output, or input/output parameter in the C function. Given the base address,
offset, and size of the memory to which the pointer refers, the C function may read or
modify the contents of that memory block. It isthe C programmer’s responsibility to
confine any such references to lie wholly within the memory block described by the given
pointer values. In addition, for output and input/output parameters, the C function can
also modify the base address, offset, or size component values of the COBOL pointer.

Use the pointer _base base attribute in the template file to describe a C pointer parameter,
instruct CodeBridge to pass the base address of the memory block to the C function for
input conversions, and set the base address component of the COBOL pointer for output
conversions. The output conversion process may be modified by using the following base
modifier attributes: pointer_max_size and pointer_reset_offset. For more information,
see “Base Modifiers that Apply to Pointer Base Attributes’ on page E-16.

Usethe pointer_offset base attribute in the template file to describe a C numeric
parameter, instruct CodeBridge to pass the offset component of the COBOL pointer to the
C function for input conversions, and set the offset component of the COBOL pointer for
output conversions. The output conversion process may be modified by using the
pointer_max_size base modifier attribute.

Usethe pointer_size base attribute in the template file to describe a C numeric parameter,
instruct CodeBridge to pass the size component of the COBOL pointer to the C function
for input conversions, and set the size component of the COBOL pointer for output
conversions. The output conversion process may be modified by using the
pointer_reset_offset base modifier attribute.

Passing Null-Valued Pointer Arguments

Null-valued pointer arguments arise in one of three ways: the argument is the figurative
constant NULL (NULLYS), the argument isa COBOL pointer that has been set to NULL
(NULLS), or the argument is a pointer that has been set from another null-valued pointer.
Based on the properties of the C parameter associated with a pointer argument,
CodeBridge handles pointer arguments as follows:

e Numeric or non-numeric parameter (direct or indirect)

For related information, see “Passing COBOL Numeric Arguments’ on page 2-7 and
“Passing COBOL Non-Numeric Arguments’ on page 2-10.

A COBOL program may pass a COBOL null-valued pointer data item as an argument
that is associated with any of these base attributes: float, general_string, integer,
numeric_string, or string. Associating a null-valued pointer with a parameter

CodeBridge 2-13
Passing Information to a C Function

having one of these base attributes has meaning only when the C parameter isa
pointer (indirect) parameter.

Some C functions are designed to interpret the occurrence of a null-valued pointer
parameter to indicate that the parameter is omitted and that the function should not
read or write indirectly through the parameter pointer value. 1f a COBOL program
passes a COBOL null-valued pointer, the C function will receive a C null-valued
pointer in order to support this design.

If the C parameter is not a pointer, it is meaningless to pass a COBOL null-valued
pointer argument. For a direct numeric or non-numeric parameter, an uninitialized
variable will be passed as the parameter value when a null-valued pointer argument
isprovided. Theno_null_pointer base modifier attribute may be specified to
cause CodeBridge to return an error if a COBOL null-valued pointer is passed to
the parameter.

If anull-valued pointer argument is used for an output parameter that is numeric or
non-numeric, the parameter result value isignored as if the out direction attribute had
not been specified.

A null-valued pointer argument may not be used for a numeric or non-numeric
parameter that specifiesthe no_null_pointer base modifier attribute.

A pointer argument with a value other than null always causes an error for a numeric
or non-numeric parameter. Since COBOL pointer dataitems are not typed (that is,
they are essentially equivalent to (void *) in C), CodeBridge does not have enough
information to dereference the COBOL pointer (that is, to convert the data that the
pointer references).

* Pointer parameter, wherethe C function needsa COBOL pointer value

For related information, see “Passing COBOL Pointer Arguments’ on page 2-12.

When a COBOL program passes a pointer argument associated with a parameter
described with the pointer _address or pointer _base base attributes, the pointer
value is passed to the C function as the parameter value, regardless of whether the
pointer value is null or non-null.

The out direction attribute may be specified with the pointer _base base attribute to
modify the base address of the pointer argument upon return from the C function. It
isan error to specify either of thein or out direction attributes with the

pointer _address base attribute.

The pointer_offset, pointer_size, and pointer _base base attributes yield a zero

for anull-valued pointer argument on input to the C function but allow the
corresponding component of the pointer argument to be changed on output if the

out direction attribute is specified and the base address of the pointer is also changed
to anon-zero value.

2-14 Concepts
Passing Information to a C Function

Passing COBOL Argument Properties

CodeBridge supports two categories of COBOL argument properties, each of which may
be passed to the C function:

e COBOL descriptor data (see the following topic)

» String length information (see page 2-16)

Passing COBOL Descriptor Data

Prior to CodeBridge, if adeveloper wanted information about the properties of the
COBOL arguments, it was necessary for the C program to obtain the information for each
argument from a structure known as the COBOL data descriptor. The COBOL data
descriptor contains properties of the COBOL argument, including its address, length and
type, digit count and scale factor (for numeric arguments), and encoded picture (for
numeric edited and al phanumeric edited arguments). CodeBridge supports the passing of
all these properties except for the encoded picture. (See either Appendix G, Non-COBOL
Subprogram Internals for Windows, or Appendix H, Non-COBOL Subprogram Internals
for UNIX, for more information about the earlier method of calling non-COBOL
subprograms.)

In CodeBridge, the following descriptor base attributes (which are described in detail on
page E-17) may be used to pass a component of the COBOL argument to the C function.

Use the addr ess base attribute in the template file to describe a C pointer parameter and
instruct CodeBridge to pass the address of the COBOL argument to the C function as the
parameter value.

Note Passing the address of the COBOL argument dataitem to a C function asa
parameter val ue should be arare occurrence when using CodeBridge. Use of the data
item address requires the C function to know the details of COBOL dataformatsand is
not subject to the data validation and interface constraints that CodeBridge provides.

Use the digits base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the digit count, that is, the number of 9'sin the PICTURE
character-string, of the COBOL numeric argument to the C function as the parameter
value. For non-numeric arguments, the valueis not defined.

Use the length base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the length of the COBOL argument to the C function as the
parameter value.

CodeBridge 2-15
Passing Information to a C Function

2-16

Use the scale base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the scale factor of the COBOL numeric argument to the C
function as the parameter value. For non-numeric arguments, the value is not defined.
The value of the scale passed is the arithmetic complement of the value in the COBOL
argument descriptor.

Use the type base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the type of the COBOL argument to the C function as the
parameter value.

See also the discussion of passing miscellaneous information to a C function on
page 2-17.

Passing String Length Information

In addition to COBOL data descriptor components, CodeBridge can supply string length
information for input conversions. The C function can be supplied the length of the
COBOL argument (from the COBOL data descriptor), the length of the conversion buffer,
or the effective length of the C string (after conversion).

Use the length base attribute (for more information, see “ Descriptor Base Attributes’ on
page E-17) in the template file to describe a C numeric parameter and instruct
CodeBridge to pass the length of the COBOL argument to the C function as the
parameter value.

Use the buffer_length base attribute (for more information, see “ String Length Base
Attributes’” on page E-14) in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the length of the conversion buffer to the C function as the
value of the parameter. The length of the buffer is determined by the base attribute that is
used to describe the string parameter associated with the same argument, as follows:

» For the string base attribute, the buffer length defaults to one more than the length of
the passed COBOL argument, which allows space for the characters of the argument
value and a null-termination character.

e For thenumeric_string base attribute, the buffer length defaults to four more than
the digit length of the passed COBOL argument, which allows space for the digits of
the argument value and the sign, decimal-point, and null-termination characters.

» For thegeneral_string base attribute, the buffer length defaults to the greater of one
more than the length of the passed COBOL argument and four more than the digit
length of the passed COBOL argument, which allows space for either a non-numeric
Or numeric argument conversion.

Concepts
Passing Information to a C Function

The default values for buffer _length may be overridden by using the size(value) base
modifier attribute (see page E-12) in the attribute list that contains the string,
numeric_string, or general_string base attribute that is associated with the same
argument as buffer_length.

Use the effective_length base attribute (see also page E-14) in the template file to
describe a C numeric parameter and instruct CodeBridge to pass the actual number of
characters stored in the conversion buffer, not including the null character that terminates
the string (after the input conversion process is complete), to the C function as the
parameter value.

Passing Miscellaneous Information

CodeBridge also can supply the number of COBOL arguments specified in the USING
phrase of the CALL statement, the COBOL initial state flag, and the Windows handle
for the COBOL program. For more information, see “ Descriptor Base Attributes’ on
page E-17.

Use the arg_count base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the number of COBOL arguments to the C function as
the parameter value.

Usetheinitial_state base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the COBOL initia state flag to the C function asthe
parameter value.

Use the windows_handle base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the Windows handle for the COBOL program
to the C function as the parameter value.

Managing Omitted Arguments

A COBOL program may omit an argument by specifying fewer argumentsin the USING
phrase of the CALL statement than expected by the C function or by explicitly specifying
the OMITTED keyword for an argument in the USING phrase of the CALL statement.
The GIVING argument may be omitted by not specifying the GIVING (RETURNING)
phrase in the CALL statement.

An omitted argument will cause an error if it is passed to a numeric or non-numeric
parameter that does not also specify either the optional or value if _omitted base
modifier attributes. The descriptor base attributes are implicitly optional and return
default values for an omitted argument; the optional base modifier attribute is not
allowed with the descriptor base attributes.

CodeBridge 2-17
Passing Information to a C Function

2-18

For an omitted argument passed to a parameter described with the optional in attributes,
an appropriate default is passed to the C function as the parameter value. The default
value associated with an integer or float base attribute is a numeric zero. The default
value associated with ageneral_string, numeric_string, or string base attribute is an
empty string (the first character of the string isanull character). If the
value_if_omitted(value) base modifier attribute has been specified, value is passed
instead of the default value.

An omitted argument is assumed to satisfy any of the assertion base modifier attributes.
If adefault value is provided with the value_if _omitted(value) base modifier attribute, it
isthe user’s responsihility to provide a default value that satisfies all interface constraints.

For the descriptor base attributes, an omitted argument has the following results,
regardless of whether the argument is missing from the USING phrase or explicitly
specified asOMITTED:

* The address base attribute for an omitted argument supplies the value NULL.
» Thedigits base attribute for an omitted argument supplies zero.

* Thelength base attribute for an omitted argument supplies zero.

* The scale base attribute for an omitted argument supplies zero.

e Thetype base attribute for an omitted argument supplies the value RM_OMITTED,
which has the value 32 as shown in Table E-1 on page E-19.

If an argument is omitted for a parameter described with the optional out attributes, the
parameter result valueisignored. However, CodeBridge Builder does not currently allow
this combination of attributes. That is, output arguments are required in the current
implementation of CodeBridge.

Concepts
Passing Information to a C Function

Returning C Error Values

Two base attributes called error base attributes, support returning C error valuesto the
COBOL program. The errno error base attribute returns the value of the external
variable errno, which is set by many C library functions. Theget_last_error error base
attribute returns the value returned by the Windows API function GetLastError. The error
base attributes are necessary because the RM/COBOL runtime system uses C library
functions, and, on Windows, Windows API functions, during the return to the COBOL
program that modifies the error values. Thus, any error values set by the CodeBridge
called C function are modified before the COBOL program has a chance to obtain them.
The error base attributes solve this problem by causing the CodeBridge Builder to
generate code to preserve the error value set by the C function specified in the
CodeBridge template. The preserved valueis returned in an associated COBOL
argument for access by the calling COBOL program. Complete details regarding the
error base attributes are found in the section “Error Base Attributes’ on page E-20. In
addition, some general concepts and examples of error base attributes are provided in
the sections that follow.

Consistent Return Values

For those C library functions that set the external variable errno, it is considered correct
behavior not to modify the value of errno if no error occurs. In other words, if no error is
detected, the external variable errno will have the same value that it had before the C
function was called. The code sequence that is generated by CodeBridge Builder
guarantees the value of errno is zero just prior to the C function call. The generated code
sequenceis asfollows:

errno = 0;
__RETURN__open = open(filenane, oflag);
__save_errno = errno;

Similarly, for those Windows API functions that set a value to be returned by the function
GetLastError, it isalso considered correct behavior not to modify the last error value if no
error occurs. In other words, if no error is detected by the C function, the call to
GetLastError will return the same value it would have if it were called just prior to the C
function. The code sequence that is generated by CodeBridge Builder guarantees that the
value returned by GetlL astError will be zero if no error is detected by the C function call.
The generated code sequence is as follows:

Set Last Error (0);
__RETURN__CreateDirectory = CreateDirectory(Di rNane, SecAttr);
__save_lastError = GetlLastError();

CodeBridge 2-19
Returning C Error Values

Specifying Both errno and get_last_error

It is possible to use the error base attributes errno and get_last_error in the same
function description. Functions that return an error code in the external variable errno
have a function return value of -1. Functions that return an error through GetL astError
have a function return value of FALSE (zero). On the surface, this seems meaningless
(and in most cases, it probably is); however, there is no reason to disallow this behavior.
It is possible for a Windows API function to call a C library function that could set a
value in the external variable errno. It may be of value to the COBOL program to
interrogate both error conditions. The generated code sequence when both attributes are
specified is as follows:

Set Last Error (0);

errno = 0;

__RETURN__CreateDirectory = CreateDirectory(DirName, SecAttr);
__save_errno = errno;

__save_lastError = GetlLastError();

Function Return Value (Status) Versus Error Values

In many cases, the return value from a C library function or a Windows API functionis
merely asimple binary indication of success or failure.

C library functions that set the external variable errno generally return —1 as the function
return value. If thereturn valueis not —1, the value may or may not indicate anything of
significance. For example, the C library function, mkdir, always returns O (for success)
or -1 (for failure). On the other hand, the C library function, open, returns afile handle if
the operation succeeded or —1 if the operation failed. Windows API functions normally
return non-zero to indicate success and zero to indicate an error.

For those C library and Windows API functions where the return value isasimple
indication of success or failure, it may be inefficient to have the COBOL program
examine both the return value and the value of the argument associated with the errno or
get_last_error attribute.

2-20 Concepts
Returning C Error Values

If you are certain that the C function return value is not needed—except to show success
or failure—you need not access this parameter from COBOL. The following template
illustrates how to obtain the _mkdir function return value and the value of the external
variable errno:

[[integer out]] int _nkdir(
[[string in trailing_spaces]] const char *Di r Nane
[[errno]]);

This function could be called from COBOL with this statement:

CALL " _nkdir" USING Fil e-Nane Err-No
A VI NG Ret ur n- St at us.

Thereisno real need to examine Ret ur n- St at us inthe COBOL program, since
examining Er r - No is sufficient (it is guaranteed that Er r - No will be zero if no error
occurred). You may alter the template so that Er r - No becomes the return value with a
template similar to the following:

int _nkdir(
[[string in trailing_spaces arg_num(1)]]
const char *DirNane
[[errno ret_val]l]);

The COBOL calling sequence could then be simplified as follows:

CALL " _nkdir" USING Fil e- Nane
G VI NG Err- No.

Besides making the COBOL calling sequence simpler, this technique also simplifies the
C source code that is generated by CodeBridge Builder.

CodeBridge 2-21
Returning C Error Values

Associating C Parameters with COBOL
Arguments

2-22

Using CodeBridge, asingle C parameter or return value may be associated with multiple
COBOL arguments by the use of more than one attribute list, but each attribute list
associates a parameter with, at most, one argument from the COBOL CALL statement.
Also, multiple C parameters may be associated with asingle COBOL argument. That is,
the CodeBridge association of C parameters with COBOL arguments allows a many-to-
many relationship.

CodeBridge has two methods of associating C parameters with COBOL arguments:
explicit association and automatic association. Y ou can explicitly specify the association
of a C parameter with a COBOL argument, or you can have CodeBridge automatically
associate C parameters with COBOL arguments for you. If you do not use the explicit
association method, CodeBridge will use the automatic association method by default.

If the attribute list for any parameter of a function specifies explicit association of the

C parameter to a COBOL argument, the attribute lists for all parameters for that
function—except those attribute lists containing a base attribute that does not refer to

an argument in the COBOL CALL statement—must specify explicit association.
Different functions within a single template file may use different association methods.

Explicit Association

CodeBridge is designed to handle most C-parameter-to-COBOL -argument association
situations without requiring you to explicitly specify the associations in the attribute lists
of your template file. For those situations where the CodeBridge automatic association
method does not produce the desired result, you must use the explicit association method.
Even when the automatic association method produces the correct result, you may use the
explicit association method. For instance, you might elect to use the explicit association
method to clearly document the association of parameters with arguments.

To explicitly specify the association of the C function return value or a C parameter to a
particular COBOL argument, you include either theret_val or the arg_num(value)
argument number attribute in the attribute list for the return value or parameter (for more
information, see “ Argument Number Attributes’ on page E-2). If you explicitly specify
an argument number attribute in any attribute list for an individual C function, you must
do so for every attribute list for that function—except for those attribute lists containing a
base attribute that does not refer to an argument.

Concepts
Associating C Parameters with COBOL Arguments

Automatic Association

The following material explains automatic association of C parameters with COBOL
arguments. Each attribute list refers either to the C function return value or to asingle
C parameter.

Automatic Association of the C Function Return Value with a COBOL
Argument

When there is no attribute list associated with the C function return value, the function
return value isignored.

If thereis an attribute list for the C function return value, the return value is associated
with the argument specified by the GIVING (RETURNING) phrase of the RM/COBOL
CALL statement. In the automatic association method, if there are multiple attribute lists
associated with the C function return value, they all associate the return value with the
GIVING argument. If the return value isto be stored other than in the GIVING
argument, the explicit association method must be used.

Note Only base attributes that allow the out direction attribute may be used in the
attribute list associated with the function return value. These base attributes include float,
general_string, integer, numeric_string, pointer_base, pointer _offset, pointer_size,
and string.

Automatic Association of C Parameters with COBOL Arguments

When there is no attribute list associated with a C parameter, there is no associated
COBOL argument. For such a parameter there are no input conversions, so the parameter
is passed an uninitialized variable, and there are no output conversions, so the final value
of the parameter isignored.

If there are one or more attribute lists associated with a C parameter, CodeBridge uses the
required base attribute of each attribute list to determine the association with a COBOL
argument. For each attribute list, CodeBridge associates the parameter with a COBOL
argument in one of three ways. The parameter may associate with one of the following:

e Animplied argument
e The next argument

e The current argument

CodeBridge 2-23
Associating C Parameters with COBOL Arguments

Automatic Association with an Implied Argument

Thearg_count, initial_state, and windows_handle base attributes do not refer to a
COBOL argument specified in the CALL statement. The CodeBridge Library supplies
the value for the C parameter from an implied argument provided by the runtime
environment at the time the CALL statement is executed.

Automatic Association with the Next Argument

The address, float, general_string, integer, numeric_string, pointer_address,
pointer _base, and string base attributes refer to the next COBOL argument not yet
associated with a C parameter. The first parameter attribute list (ignoring any attribute
lists specified for the function return value) that contains one of these base attributes will
associate the described C parameter with the first argument in the USING phrase of the
COBOL CALL statement. The second such parameter attribute list will associate the
described C parameter with the second argument in the USING phrase, and so forth.

A single C parameter may be associated with multiple COBOL arguments by the use of
multiple attribute lists for that parameter.

Automatic Association with the Current Argument

The buffer_length, digits, effective length, length, pointer_length, pointer _offset,
pointer_size, scale, and type base attributes associate the described C parameter with the
current COBOL argument. This behavior makesit possible to have asingle COBOL
argument supply values for severa contiguous C parameters. The current COBOL
argument is the one last used by the automatic association method for the next argument
as described in the previous topic, “ Automatic Association with the Next Argument.” If
an attribute list containing a base attribute that associates with the next argument has not
yet been specified, the current COBOL argument is the argument in the GIVING
(RETURNING) phrase.

2-24 Concepts
Associating C Parameters with COBOL Arguments

Examples of Associating Parameters with Arguments

Example 1: Automatic Versus Explicit Association

The following set of examples illustrates methods of associating parameters with
arguments.

Example 1a: Automatic Association

In the following example, the C function moves the value of the parameter named Floatin
to the parameter named FloatOut after checking that the value will fit (using the values

of the parameters named Digits and Scale). The function return value indicates success
or failure.

The template file for the C function contains the following lines:

[[integer out]] int fn(

[[fl oat out]] float *Fl oatQut,
[[digits]] i nt Digits,
[[scal e]] i nt Scal e,
[[fl oat in]] float Floatln);

The C function is called using the following COBOL statement:
CALL "fn" USING Float-Qut, Float-In G VING Fn- St at us.

CodeBridge uses the automatic association method to associate the function return value
with the GIVING argument named Fn-Status. The first three C parameters associate with
the first USING argument named Float-Out, as follows:

» Thefirst float base attribute causes the C parameter named FloatOut to be associated
with the next (that is, in this case, the first) unassociated COBOL argument named
Float-Out.

» Thedigits base attribute associates the C parameter named Digits with the current
COBOL argument, which is the first argument named Float-Out.

« Similarly, the scale base attribute associates the parameter named Scale with the
current argument, which isthe first argument named Float-Out.

Finally, the second float base attribute associates the C parameter named Floatln with the
next (that is, in this case, the second) COBOL argument named Float-In.

CodeBridge 2-25
Associating C Parameters with COBOL Arguments

Example 1b: Optional Explicit Association

The following template file accomplishes the same associations as in Example 1a, but by
using the explicit association method:

[[integer out ret_val]] int fn(

[[fl oat out arg_num(1)]] float *Fl oatQut,
[[digits arg_nunm(1)]] i nt Digits,
[[scal e arg_num(1)]] i nt Scal e,
[[fl oat in arg_num(2)]] float Floatln);

Example 1c: Required Explicit Association

The automatic association method is possible only when the C parameters occur in the
same order as the COBOL arguments. When they do not and you cannot change the C
function, then the explicit association method is required. If the function in Example 1a
were changed by moving the output floating-point parameter from first to last, then there
would be no automatic association method that could achieve the desired result. Inthis
case, the following explicit association method template file would be required:

[[integer out ret_val]] int fn(

[[digits arg_nun(1)]] i nt Digits,
[[scal e arg _nun(1)]] i nt Scal e,
[[fl oat in arg_num(2)]] float Floatln,
[[fl oat out arg_num(1)]] float *Fl oatQut);

Example 2: Multiple Attribute Lists for a C Parameter

The following group of examplesillustrates how to associate multiple attribute lists with a
single C parameter.

Example 2a: Associating a Parameter with Multiple Arguments

In the following example, the C function has a single input/output parameter, but the
COBOL program wishes to pass the C function one input argument and two output
arguments. Thiswould allow one copy of the result to be stored in binary form while the
other is stored in numeric edited form.

The template file for the C function contains the following lines:

void fn([[float in]]
[[float out]]
[[float out]] float *FloatlnQut);

2-26 Concepts
Associating C Parameters with COBOL Arguments

The C function is called using the following COBOL statement:
CALL "fn" USING Float-In, Binary-Qut, Numeric-Edited-Qut.

CodeBridge uses the automatic association method to associate each float base attribute
with the next unassociated COBOL argument. Thisresultsin the C parameter named
FloatInOut being associated with the first USING argument, named Float-1n, during the
input conversion process, and with the second and third arguments, named Binary-Out
and Numeric-Edited-Out, respectively, during the output conversion process. The final
value of the parameter named FloatlnOut is converted by CodeBridge, during the output
conversion process after the C function returns, to a COBOL binary number (assuming
argument Binary-Out was described as a binary dataitem) and to a COBOL numeric
edited number (assuming argument Numeric-Edited-Out was described as a numeric
edited data item).

The following template file shows the equivalent explicit association method for this
example:

voi d fn(oat in arg_num

[[f] 1I]
[[float out arg_num(2)]]
[[float out arg nun(3)]] float *FloatlnQut);

Example 2b: In Direction Attribute for Multiple Attribute Lists

Normally, when using multiple attribute lists with a single C parameter, only one of the
attribute lists should contain the in direction attribute for a given C parameter. Consider
the following modified template file:

voi d fn(oat in arg_num1l

fl
Hfloat in arg_nun(ng
[[float out arg_nun(3)]] float *FloatlnCut);

Now there are two input arguments and only one output argument. The C function is
called by the following COBOL statement:

CALL "fn" USING Float-In-1, Float-In-2, Binary-Qut.

During the input conversion process, CodeBridge first converts the argument named
Float-1n-1 and stores the result in the parameter named FloatlnOut, and second converts
the argument named Float-In-2 and stores it in the parameter named FloatinOut. The
value of argument Float-In-1 previoudly stored in parameter FloatinOut islost. This may
be useful in afew circumstances where the side effects of the first conversion are desired
(for example, checking the data type), but is probably almost never what was intended.

CodeBridge 2-27
Associating C Parameters with COBOL Arguments

2-28

Example 2c: Compatibility between Multiple Attribute Lists

When using multiple attribute lists with a single C parameter, you must make sure that the
attribute lists are compatible. Consider the following template file:

void fn([[float in arg_nunm(1)]]
[[float out arg_num(2)]]
)11

string out arg num(3 float *Fl oatl| nCut);
g g_

The first two attribute lists describe a parameter that must be described with the C type
specifiersfloat or double. The third attribute list describes a parameter that must be a

C string parameter, that is, an array of type char. A single C parameter cannot be both
types of data at the same time. Because the base attribute also determines the allowed
types of COBOL arguments (in this case, a numeric argument is required), an error would
occur when trying to convert the floating-point parameter, named FloatlnOut, to the non-
numeric argument, named String-Out, of the following COBOL statement:

CALL "fn" USING Float-In, Binary-Qut, String-Qut.

Example 3: No Attribute List for a C Parameter

In addition to allowing one or more attribute lists for a single C parameter, CodeBridge
also allows C parameters without an attribute list. For such a parameter there are no input
conversions, so the parameter is passed an uninitialized variable, and there are no output
conversions, so the final value of the parameter is ignored.

In the following example, the C function takes a floating-point value as input and returns
two output parameters, the integer part and the fractional part of the input parameter. The
function return value indicates whether the fractional part is zero. If your COBOL
program needs only the integer part, use the following template file:

int fn([[float in]] float Floatln,

[[integer out]] long *IntegerPartCut,
long *FractionPartCut);

Call the C function using the following COBOL statement:
CALL "fn" USING Float-In, Integer-Part-Qut.

Concepts
Associating C Parameters with COBOL Arguments

Working with a Variable Number of C
Parameters

When using a variable number of parametersin a C function prototype, the last parameter
in the parameter list (the parameter that precedes the ellipsis) is used as a model for the
additional parameters that may occur. In effect, the last listed parameter is treated as the
first element of an array that contains a variable number of elements.

All attributes in the template file that apply to the last listed parameter also apply to the
additional parameters. Use the r epeat(value) base modifier attribute (see pages E-9
and E-12) in the attribute list for the last listed parameter to specify that there are
additional C parameters. (For an illustration, see “Example 3: Accommodating a
Variable Number of Parameters’ in Appendix B, CodeBridge Examples.)

The following limitations apply when using a variable number of C parameters:

* Neither thelast listed parameter nor any of the additional parameters may be arrays.

e All additional parameters must be of the same C data type as the last listed parameter.

* The ANSI C convention for variable number of parametersis supported. The older
UNIX convention is not supported.

CodeBridge has limited support for C functions with a variable number of parameters.
The following sections describe that support for numeric and string C parameters.

Repeating C Numeric Parameters

For numeric parameters that use the float and integer base attributes, all additional
parameters must be the same type and size as the last listed parameter.

Repeating C String Parameters

numeric_string

For C string parameters that use the numeric_string base attribute, the last listed
parameter and all additional parameters must be numeric strings. The size of the last
listed parameter is used as the size of all additional parameters. For parameters with the
numeric_string base attribute, the default size is four more than the digit length of the
passed COBOL argument. However, the size(value) base modifier attribute (see

page E-10) may be used to modify the default size as necessary.

CodeBridge 2-29
Working with a Variable Number of C Parameters

general_string

For C string parameters that use the general_string base attribute, the last listed
parameter and all additional parameters must be strings. The general_string base
attribute allows some of the additional string parameters to be passed as numeric
arguments while others are passed as non-numeric arguments. The size of the last listed
parameter is used as the size of all additional parameters. For parameters with the
general_string base attribute, the default size is the greater of one more than the length
and four more than the digit length of the passed COBOL argument. The size(value) base
modifier attribute (see page E-12) may be used to modify the default size as necessary.

string

For C string parameters that use the string base attribute, the last listed parameter and all
additional parameters must be non-numeric strings. The size of the last listed parameter
isused asthe size of all additional parameters. For parameters with the string base
attribute, the default size is one more than the length of the passed COBOL argument.
The size(value) base modifier attribute (see page E-12) may be used to modify the default
Size as necessary.

Modifying COBOL Data Areas

CodeBridge allows two ways of modifying COBOL data areas. Y ou can use the out
direction attribute to tell CodeBridge to convert a C output (or input/output) parameter
and store the resultsin the COBOL argument. Alternatively, you can pass the address of
the COBOL data areato a C pointer.

The preferred method is using the out direction attribute to have CodeBridge store the
result in the COBOL argument dataitem. The alternative method of passing the address
requires the C function to know the details of COBOL data formats, thus negating one of
the major benefits of using CodeBridge. Passing the address of the COBOL argument
dataitem to your C function allows the C function to directly modify the value of the
COBOL argument, even for input parameters.

Using the out Direction Attribute

Using the out direction attribute, possibly in conjunction with the in direction attribute, is
the preferred method of modifying COBOL data areas. It provides al the flexibility of
CodeBridge data conversion as well as the safety afforded by CodeBridge error checking
and data validation. There are, however, several ways where you may not get the results
you were expecting.

2-30 Concepts
Modifying COBOL Data Areas

By way of review, the CodeBridge-generated code performs the following steps when a
COBOL program calls a C function:

1. If requested, the code performs input argument validation.

2. For parameters with the in direction attribute specified or assumed, CodeBridge
converts input arguments from COBOL to C data formats (performing error checks
in the process) and stores the result in atemporary C data item.

3. CodeBridge callsthe C function, passing to each parameter either the value or
address of itstemporary C dataitem.

4. If requested, the code performs output parameter validation.

5. For parameters with the out direction attribute specified, CodeBridge converts the
final value for the temporary C dataitem from C to COBOL data format (performing
error checks in the process) and stores the result in the COBOL argument.

There are several ways that the C function will fail to change the value of the COBOL
argument:

e Thefirstisthat if step 3 passes the temporary C dataitem “by value” tothe C
function, the function cannot change the value of the temporary C dataitem, which
will, therefore, be unchanged even if it is stored in step 5.

e Thesecond isthat if the parameter does not have the out direction attribute specified,
step 5 is skipped and any change to the temporary C dataitem is discarded.

e Thethird isthat if the COBOL program passed the COBOL argument using the BY
CONTENT phrase (analogous to a C call “by value”), then step 5 will modify the
contents of the temporary COBOL data area for the argument, which will then be
discarded, leaving the original COBOL argument val ue unchanged.

e Thefourthisthat if the CALL statement omits the argument (either by specifying the
OMITTED reserved word or specifying fewer arguments than expected) or if the
COBOL argument is a null-valued pointer passed to a numeric or string parameter,
step 5 has no place to store the modified value. (However, CodeBridge Builder does
not currently allow the optional base modifier attribute with the out direction
attribute.)

In summary, you must do all of the following to modify a COBOL argument with the C
function:

1. Inthe COBOL CALL statement, passthe COBOL argument BY REFERENCE
rather than BY CONTENT. Sincethe BY REFERENCE phraseis the default for
RM/COBOL, it does not have to be explicitly specified unless a preceding BY
CONTENT phrase has overridden the default. RM/COBOL aways passes the

CodeBridge 2-31
Modifying COBOL Data Areas

2-32

argument in the GIVING (RETURNING) phrase BY REFERENCE. Also, do not
pass a null-valued pointer (see page 2-13) or omit the argument (see page 2-17).

2. Inthe CodeBridge template file, specify the out direction attribute for the C
parameter. For the function return value, out is assumed.

3. Inthe C function, specify the parameter as call “by reference” so that the address of
the temporary C dataitemis passed in step 3. In the following example, the first
parameter is passed “by value”’ (asthe value of an integer), while the second is
passed “by reference” (as apointer to an integer):

fn(int byValue, int *byReference);

Passing the Address of COBOL Data

There are times when you may choose to pass the address of the argument or the address
of memory that is accessible by the COBOL run unit through a pointer data item.
CodeBridge provides three base attributes that may be used for this purpose.

« Using the addr ess base attribute passes the address of a COBOL argument to the C
function as the parameter value and allows the C function to modify the COBOL data
areadirectly. Inthe case of apointer argument, the addr ess base attribute returns the
address of the pointer data item, which is not the address referred to by the pointer
dataitem. Thelength base attribute may be used to determine the size of the
COBOL argument.

« Using the pointer_addr ess base attribute passes the effective address (base address
plus offset) of a COBOL pointer argument to the C function as the parameter value
and allows it to manipulate the contents of the block of memory directly. However,
using the pointer_addr ess base attribute prevents the C function from changing the
value of the COBOL pointer. The pointer_length base attribute may be used to
determine the effective length (size minus offset) of the memory block.

e Using the pointer _base base attribute passes the base address component value of a
COBOL pointer argument to the C function as the parameter value and allows the C
function to change the value of the pointer base address component as well as the
contents of the block of memory. The pointer_offset and pointer_size base
attributes may be used to manipulate the offset and size components of the COBOL
pointer argument.

Note The C function may save in static storage the address obtained by using any of
the three base attributes described above. The saved address may then be used in
subsequent calls. It isthe developer’s responsibility to avoid use of a saved address that
pointsto adataitem in a COBOL program that has been canceled or to a dynamically
allocated memory block that the COBOL program has subsequently deall ocated.

Concepts
Modifying COBOL Data Areas

Passing Buffer Addresses

In some existing APIs, it is necessary to pass a buffer addressto a C function. Later, that
buffer addressis used by another C function in the API to store aresult value as a C data
item. Insuch cases, the preferred method of using the out direction attribute cannot be
used and the address of the buffer must be passed instead. CodeBridge may still be used
in such cases to convert the C dataitem to a COBOL data format after the result has been
stored in the buffer. See “Example 6: Converting Buffered C Data” in Appendix B,
CodeBridge Examples, for details on the CodeBridge solution to this problem for a

C string result in the buffer.

Using P-Scaling

In COBOL, P-scaling is used when working with large integers that have several trailing
zero digits before the decimal point or with small fractions that have several leading zero
digits after the decimal point. It is commonly used to store values representing thousands,
millions, or billions. For example, the PICTURE clause “PIC 9(4)P(3)” is used to
represent all integers from 0 to 9,999,000 in units of 1000. The value 1,234,000 would
be stored as 1,234, but would continue to mean 1,234,000.

For input conversions of P-scaled numbers, CodeBridge supplies the missing zero digits.
For output conversions, the extra digits are eliminated by truncation or rounding.
Continuing with the example in the preceding paragraph and using the attribute list
[[float in out rounded]] for theinput conversion, CodeBridge would convert the
stored value (1,234) and pass the floating-point representation of 1,234,000 to the C
function. If the C function added 999 to its parameter, then the output conversion would
round 1,234,999 to 1,235,000 and store 1,235 in the COBOL argument. Adding any
number up to 499 would leave the COBOL argument unchanged. When the rounded
base modifier attribute is not present, CodeBridge truncates the result on output,
converting 1,234,999 to 1,234,000 and storing 1,234 in the COBOL argument.

P-scaling also affects the scale base attribute. Because of P-scaling, the scale of the
COBOL argument in our example is minus three (-3). As another example, the PICTURE
character-string “VP(3)9(3)” has a scale of six (6), even though the digit count isonly
three (3).

Any P-scaling specified in the PICTURE character-string is counted in the digit length
used by CodeBridge when allocating a conversion string buffer for a parameter described
with the general_string or numeric_string base attribute. That is, the digit length used
by CodeBridge is the sum of the number of 9 and P symbols specified in the PICTURE
character-string used to describe the argument dataitem.

CodeBridge 2-33
Using P-Scaling

Working with Arrays

Data items having numeric or string base attributes may be one-dimensional arrays.
Data items with string base attributes may be arrays of char *, which are similar to
two-dimensional arrays.

Numeric Arrays

For simple numeric types, such as integer or floating-point, the implementation is
straightforward. Examples of valid C numeric array parameters are as follows:

fn(char P1[10],
char *P2,
int P3[407,
float *P4,
float P5[]);

The first two parameters, which use the char data type, are normally used to represent
character strings. However, you can have a numeric array of characters. The difference
is how the called function interprets the data.

To specify the template file for the preceding C function prototype, you might start with
the following, for example:

fn([[integer in]] char P1[10],
[[integer in]] char *P2,
[[integer in]] i nt P3[40] ,
[[fl oat in]] float *P4,
[[fl oat in]] float P5[]);

Although the attribute lists for the variables P2, P4, and P5 are valid C code, CodeBridge
needs to know the size of the array. Y ou could modify the template file by changing the
following:

char *P2 to char P2[20]
float *P4 to float P4[20]
float P5[] to float P5[10]

However, the template file would no longer match the C function prototype.

2-34 Concepts
Working with Arrays

An aternate method is to specify an occurs count in the attribute list by modifying the
template file as follows:

integer in occurs(10)]] char P1[10],
integer in occurs(20)]] char *P2,
integer in occurs(20)]] int P3[40] ,
fl oat in occurs(20)]] float *P4,

fl oat in occurs(10)]] float P5[]);

The attribute lists for variables P2, P3, and P4 now have an array size of 20 elements.

For variables P1 and P3, the occur s(value) base modifier attribute overrides the value
specified in the function prototype. For variables P2, P4, and P5, the occur s(value) base
modifier attribute provides a value that was missing in the function prototype. Note that
the attribute list for variable P1 did not change the size of the array, while the attribute list
for variable P3 reduced the size of the array. Reducing the size of the array isrequired if
the COBOL program passes a smaller array since CodeBridge will convert the number of
array elements indicated by the template.

String Arrays

The implementation of these types of arraysis more complex because strings are already
arrays of characters. One-dimensional arrays of C parameters with a string base attribute
are allowed (this means that, as a special case, two-dimensional arrays of characters are
allowed). Examples of valid C string array parameters are as follows:

fn(char *P1[10],
char *P2[],
char **P3);

To specify the template file for the preceding C function prototype, you might start with
the following, for example:

fn([[string in]] char *P1[10],
[[nunmeric_string in]] char *P2[],
[[general _string in]] char **P3);

Note that a difference between string and numeric_string attribute listsis how the
dataisinterpreted by the called function. However, both provide null-terminated arrays
of characters. A general_string base attribute may be used to allow numeric and
non-numeric arguments to be converted to null-terminated arrays of characters. A
general_string base attribute applies the rules for the numeric_string base attribute
when the argument is numeric and the rules for the string base attribute when the
argument is non-numeric.

CodeBridge 2-35
Working with Arrays

2-36

Y ou must modify the attribute list for the variables P2 and P3 because CodeBridge must
know how many string pointersto allocate. Add an occur s(value) base modifier attribute
for variables P2 and P3 and then modify the C function prototype to make it work
correctly (note that you only need to make these changes in the template file, not in the
actual C header file). For example, modify the template file as follows:

fn([[string in 11 char *P1[10],
[[nunmeric_string in occurs(10)]] char *P2[],
[[general _string in occurs(10)]] char *P3[]);

For variables P2 and P3, the occur s(value) base modifier attribute provides information
needed to alocate the string pointer arrays. The definition of parameter P3 was changed
from “char **P3" to the equivalent form “char *P3[]".

CodeBridge allocates memory for strings (or arrays of strings) with a single memory
alocation call. The generated code contains declarations in the form:

char *P1[10];
char *P2[10];
char *P3[10];

Each element of the array isinitialized to point to the correct offset within the
allocated block.

The number of elementsin the array and the size of each element determine the size of the
allocated block. For anumeric_string, the size of each element is equal to four more
than the digit length of the COBOL argument. For astring, the size of each element is
equal to one more than the length of the COBOL argument. For ageneral_string, the
size of each element is equal to the greater of four more than the digit length and one
more than the length of the COBOL argument.

Y ou may override these default element sizes by using the size(value) base modifier
attribute as follows:

fn([[string in size(30)]] char *P1[10],
[[nunmeric_string in occurs(10) size(35)]] char *P2[],
[[general _string in occurs(10) size(20)]] char *P3[]);

Concepts
Working with Arrays

COBOL Array References

When passing an array reference from COBOL to C, you must pass the first item of the
COBOL array. For example:

CALL "fn" USING Data-ltem (1).

The OCCURS information for a COBOL dataitem is not passed to a non-COBOL
subprogram. This means that CodeBridge cannot determine the number of elements

ina COBOL array from the COBOL descriptor for that item. Thisistrue for both the
maximum occurs value and the depending value. If desired, the COBOL program
could pass either of these values as separate parameters. The COBOL specia registers
COUNT, COUNT-MAX, and COUNT-MIN may be used to obtain the current

number of occurrences, the maximum number of occurrences specified in the COBOL
OCCURS clause, and the minimum number of occurrences specified in the COBOL
OCCURS clause.

CodeBridge converts the number of COBOL occurrences specified in the template file
regardless of the number of actual occurrencesin the COBOL program or any occurrence
count parameter. Therefore, the COBOL program that calls the function described by the
template must always pass an array that has at least as many occurrences as specified by
the template. If the COBOL program defines fewer occurrences than specified in the
template, CodeBridge will convert data following the array argument in the COBOL data
area. In such cases, output conversion will overwrite data following the array argument,
possibly destroying the integrity of the COBOL program.

CodeBridge only handles COBOL table references that are not SYNCHRONIZED. That
is, Data-1tem in the preceding example must be described with the OCCURS clause and
must not be described with the SYNCHRONIZED (SYNC) clause. CodeBridge supports
only singly dimensioned tables of COBOL arguments. A multidimensional table may be
passed, but only the last subscript will be varied by CodeBridge. Further, the table must
contain contiguous elementary items. That is, the last subscript must be for an OCCURS
clause in the argument item description rather than a group item that contains the
argument item.

CodeBridge 2-37
Working with Arrays

CodeBridge Builder

This section describes the CodeBridge Builder, which reads atemplate file as input and
generates C source as output. This generated source provides the interface between the
COBOL program and the C function by calling functionsin the CodeBridge Library to
convert between COBOL arguments and C parameters, as needed, before and after calling
the target C function.

For each C function prototype in the template file, a corresponding function is generated
inthe DLL interface code. Each function contains all of the logic needed to do the
following:

* Produce an exportable DLL function

e Optionaly perform input argument validation

« Convert input arguments from COBOL to C

* Cadl the Cfunction

e Optionally perform output parameter validation

« Convert output parameters from C to COBOL

Using the CodeBridge Builder

The CodeBridge Builder is a command line program (for Windows, a console
application). The application program fileis named cbridge.exe.

To start the CodeBridge Builder from the command line, enter:
cbridge <input file> [<output file>] [-f (-F)]
where:

<input file> is the pathname of the template file. This parameter isrequired. If you
do not supply an extension, the CodeBridge Builder will add the extension .tpl.

<output file> is the pathname for the generated source file. This parameter is
optional. If it is not specified, the value of <input file> will be used with the
extension changed to .c.

-f (or -F) isa command line option that may be used to force CodeBridge Builder to
generate C source code, even if errors are encountered. This parameter is optional.
If it is specified, any error messages will be concatenated to the end of the generated

2-38 Concepts
CodeBridge Builder

source in addition to appearing in the error file. The error file is aways generated,
regardless of whether the -f option is specified.

Note The generated C source contains a#include C preprocessor directive that
refersto the additional header files: rme85cal.h, rmport.h, rtarg.h, rtcallbk.h, and
standdef.h. All of these files are installed with CodeBridge.

If errors are encountered, an error fileis generated (see “CodeBridge Builder Error
Messages” in Appendix A, CodeBridge Errors). The error file uses the same pathname
as <output file> with the extension changed to .err.

For example, the command:

cbridge src\nyfile.tpl

reads src\myfile.tpl, writes the generated source to src\myfile.c, and writes any error
messages to src\myfile.err.

The command:

cbridge tpl\nyfile src\nyfile.src

reads tpl\myfile.tpl, writes the generated source to src\myfile.src, and writes any error
messages to src\myfile.err.

The CodeBridge Builder checks for errorsin the template file and if any errors are
present, it produces afile that contains diagnostic information. |If there are errorsin the
template file, however, no output file will be generated. When there are errorsin the
template, the resultant source file should be considered unusable even though aC
compiler might compile it without errors.

Note The CodeBridge Builder exit codes are also described in Appendix A,
CodeBridge Errors.

CodeBridge 2-39
CodeBridge Builder

2-40 Concepts
CodeBridge Builder

Appendix A: CodeBridge Errors

This appendix lists and describes the messages that can be generated during the use of

either the CodeBridge Builder or the CodeBridge Library. These messages also include

the CodeBridge Builder exit codes.

CodeBridge Builder Error Messages

CodeBridge Builder error messages have the following form:

<file>(<line>) <severity> - <message nunber>: <nessage text>
where severity can be either “inform™ or “error”.
Table A-1 lists the error messages produced by the CodeBridge Builder.

Table A-1: CodeBridge Builder Error Messages

Message Number Message Text

100010 The template element is not correctly formed.

100020 The #include directiveis not correctly formed.

100030 The user function is not correctly formed.

100040 The attribute is not correctly formed.

100045 The attributes are not correctly formed.

100050 The attribute expression’s element is not correctly formed.
100060 The attribute value clause is not correctly formed.
100070 The attribute clause is not correctly formed.

100080 The C function’s header is not correctly formed.

100090 The name declaration is not correctly formed.

100100 The array declaration is not correctly formed.

100110 The argument list is not correctly formed.

100120 The argument is not correctly formed.

100130 Thereisno such attribute[[at t ri but e_nane]] .
100140 Theattribute[[at t ri but e_nanme]] can’'t have avalue.

CodeBridge
CodeBridge Builder Error Messages

A-1

Table A-1: CodeBridge Builder Error Messages (Cont.)

Message Number Message Text

100150 Theattributes[[attri bute_name]] and[[attribute_nane]] are
incompatible.

100160 One of the minimal attribute combinations must be present:
[[attribute conmbinations]].

100180 Either the[[arg_nuni] or[[ret _val]] attribute must not be used,
sinceit wasn't used on a previous parameter.

100190 Either the[[arg_nunj] or[[ret _val]] attribute must be used,
since it was used on a previous parameter.

100210 The global attributes are not correctly formed.

100220 The global attribute is not correctly formed.

100230 Thereisno such global attribute[[attri but e_name]] .

100240 Theattribute[[at t ri but e_nane]] must have number value(s).

100250 The global attribute' s convention value clause is not correctly formed.

100260 The global attribute’ s replace value clause is not correctly formed.

100270 The global attribute’ s normal value clauseis not correctly formed.

100280 The global name declaration is not correctly formed.

100285 Duplicate global attribute: [# attri bute_nane #]

100290 Thereis no such diagnostic value: (value).

100300 The number of the argument with [[repeat]] attributeis not
the highest.

The CodeBridge Builder uses the following datafiles: dllgen.in, dligen.out, dligen.p01,
and dllgen.sym. Occasionally, if these files are write-protected, the CodeBridge Builder
may not be able to open them, and an error message similar to the following will be
displayed:

C.\ TOOLS\ SCANNER. EXE: FAI LURE
- Unable to open file ' C \TOOLS\ DLLGEN. xxx" .

If this occurs, modify the attributes of these four files so that they are not write-protected.

CodeBridge Errors
CodeBridge Builder Error Messages

CodeBridge Builder Exit Codes

The CodeBridge Builder will return a completion status (or exit code). This status can be
interrogated by the batch stream or shell script. Table A-2 lists the CodeBridge Builder
exit codes.

Table A-2: CodeBridge Builder Exit Codes

Code Description
0 Normal program termination with no diagnostic messages produced.
1 Normal program termination with some diagnostic messages produced.
253 Abnormal program termination—error creating temporary file.
254 Abnormal program termination—error executing program.
255 Abnormal program termination—an internal error occurred.

CodeBridge Library Error Messages

An execution error in the CodeBridge Library causes the called C subprogram to exit and
the COBOL run unit to terminate.

When a CodeBridge Library function detects an error during conversion or validation, it
displays an error message before returning to the calling program.

Note The errors displayed by the CodeBridge Library are in addition to errors that may
subsequently be displayed by the RM/COBOL runtime system. See Appendix A,
Runtime Messages, in the RM/COBOL User’s Guide.

A CodeBridge Library error message contains the following information:

Function: <calling function hame>

Argument Number: <number> (or Argument: Return Value)
Operation: <library function name>

Error: <error number> - <message text>

<calling function name> is the Name parameter from the last call to ConversionStartup
(see page F-42).

<number> is the one-based argument number of the argument in the USING phrase.
When the alternative, Return Value, is shown, it indicates the argument in the GIVING
(RETURNING) phrase.

CodeBridge A-3
CodeBridge Builder Exit Codes

<library function name> is the conversion or validation operation specified as one of
the names listed in the “Function Name” column of Table F-1 on page F-2. For
example, Cobol Tolnteger, which is described beginning on page F-29, would be
specified if the error occurred during conversion of a COBOL numeric argument to a
C integer parameter.

<error number> isthe “Error Code” and <message text> isthe “Error Text” listed in
Table A-3 on page A-5.

For Windows platforms, a message box with the error message is displayed. The
following shows an example of a CodeBridge Library error message on Windows:

CodeBridge Library Error %]

Function: COE

Argument: ReturnValue
Cperation: CobolT oFloat

Etrror: 317 - Humeric data expected

For UNIX platforms, the message iswritten to stderr. The following shows an example
of a CodeBridge Library error message on UNIX:

CodeBri dge Library Error
Function: Cl NT2I NTEGER
Argunent Nunber: 2
Oper ation: Cobol ToString
Error: 515 - Non-numeric data expected

A-4 CodeBridge Errors
CodeBridge Library Error Messages

Table A-3:

CodeBridge Library Errors

Error
Code

Error Text

Description

501

Digits count too large

One of the base modifier attributes (assert_digits,
assert_digits left, or assert_digits right) was
specified and the corresponding number of digits
in the passed COBOL argument was greater than
the indicated maximum.

502

Digits count too small

One of the base modifier attributes (assert_digits,
assert_digits_left, or assert_digits right) was
specified and the corresponding number of digits
in the passed COBOL argument was less than the
indicated minimum.

503

Initialization needed

A call was made to a CodeBridge Library function
prior to calling the ConversionStartup function.
This error should never occur when using the
CodeBridge Builder.

504

Integer data expected

Theinteger_only base modifier attribute was
specified and the COBOL argument contains digits
to theright of the decimal point.

505

Internal logic — Argument
setup

This indicates an incompatibility between the
RM/COBOL compiler and runtime. The descriptor
of the COBOL argument contained unexpected
values.

506

Internal logic — Datatype

Thisindicates an incompatibility between the
RM/COBOL compiler and runtime. The type of
the COBOL argument contained an unexpected
value.

507

Internal logic — Parameter
setup

Thisindicates alogic error in the CodeBridge
Library. While setting up a description of the C
parameter, an unexpected condition was
encountered.

508

Invalid argument number

The argument number supplied was not valid. This
could indicate an internal error with the
CodeBridge Builder or that the developer used a
bad value when calling a CodeBridge Library
function directly.

509

Invalid C numeric string

[[nunmeric_string out]] wasspecified and the
C string is not numeric.

CodeBridge
CodeBridge Library Error Messages

A-5

Table A-3: CodeBridge Library Errors (Cont.)

Error

Code Error Text Description

510 Invalid data type The COBOL argument contains an unsupported
datatype.

511 Invalid sign specification The COBOL argument contains an invalid sign.

512 Length too large The assert_length base modifier attribute was
specified and the corresponding length of the
passed COBOL argument was greater than the
indicated maximum.

513 Length too small The assert_length base modifier attribute was
specified and the corresponding length of the
passed COBOL argument was less than the
indicated minimum.

514 Memory allocation error The CodeBridge Library attempted to allocate
memory and encountered an error.

515 Non-numeric data expected A numeric COBOL argument was used with the
string base attribute.

516 Null pointer not allowed The COBOL program passed a null pointer when
the no_null_pointer base modifier attribute was
used.

517 Numeric data expected A non-numeric COBOL argument was used with
one of the following numeric base attributes: float,
integer, or numeric_string.

518 Omitted argument not The COBOL argument was omitted for an

alowed argument that was not optional.

519 Pointer data expected The COBOL argument was not a POINTER when
apointer base attribute was used.

520 Signed argument expected An unsigned numeric COBOL argument was used
when the signed base modifier attribute was set.

521 Size error A size error occurred during numeric data
conversion and the no_size error base modifier
attribute was not set.

522 Size not supported The size of the C parameter does not conform to
one of the supported C numeric data types (such as
int or float).

523 Unsigned argument expected | A signed numeric COBOL argument was used
when the unsigned base modifier attribute was set.

A-6

CodeBridge Errors

CodeBridge Library Error Messages

Table A-3:

CodeBridge Library Errors (Cont.)

large

Error

Code Error Text Description

524 Version level mismatch This version of the CodeBridge Library does not
support the minimum level of conversion and
validation featuresindicated by the Version
parameter of the ConversionStartup call.

525 Effective_length occurstoo The occurs count for an effective_length base

attribute is larger than the occurs count for the C
parameter associated with the same argument
number. The occurs count for the effective_length
base attribute must be less than or equal to the
occurs count for the associated C parameter.

CodeBridge A-7
CodeBridge Library Error Messages

A-8 CodeBridge Errors
CodeBridge Library Error Messages

Appendix B: CodeBridge
Examples

This appendix contains examples that use the typical CodeBridge devel opment process
outlined in Chapter 1, Introduction. The examples build from simple to complex, asa
means of introducing CodeBridge concepts, which are discussed in Chapter 2, Concepts.

In addition to these examples, there are several CodeBridge sample programs that are
included with the development system in the CodeBridge samples subdirectory (cbridge
on Windows and cbhsample on UNIX). Seethe appropriate README file (and the
samples.itxt file on Windows) for additional information about the CodeBridge sample
programs that are included.

Note 1 Inthefollowing example template files, bold typeis used to indicate the

first instance of a CodeBridge attribute that is being introduced. Detailed information
about attributes and attribute listsis provided in Appendix D, Global Attributes, and
Appendix E, Parameter Attributes.

Note2 Unlike COBOL, C is acase-sensitive programming language. Thus, the caseis
significant for words in these example template files.

Example 1: Calling a Standard C Library
Function

This example demonstrates calling a standard C library function without writing any C
code. Parameter attribute lists are also presented. See the details of this example on
page 1-8 in the “ Typical Development Process Example” section.

CodeBridge B-1
Example 1: Calling a Standard C Library Function

Example 2: Calling a Windows API Function

B-2

This example demonstrates calling a Windows API function to display a message box.
Both global attribute lists and parameter attribute lists are used.

Note Since this example deals with a Windows API function, it isfully elaborated only
for Windows, where the ODBC API isreadily available from Microsoft. However, the
CodeBridge techniques illustrated are general in nature and may be instructive to
developers creating templates for C subprograms on UNIX systems.

1. Start with the function prototype for the Windows API function, MessageBox:

W NUSERAPI i nt W NAPI MessageBox(HWND hwid,
LPCSTR | pText, LPCSTR | pCaption, U NT uType);

2. Create atemplate file named mbox.tpl in the src directory that consists of the
following lines:

#i ncl ude <w ndows. h>
#i ncl ude <w nuser. h>

[# replace_type(LPCSTR char *)
convent i on(W NUSERAPI)
conventi on(W NAPI) #]

[[integer out]] W NUSERAPI
int WNAPI MessageBox(

[[wi ndows_handl e]] HWAD hwhd,
[[string in trailing_spaces]] LPCSTR | pText,
[[string in trailing_spaces]] LPCSTR | pCapti on,
[[integer in unsigned]] Ul NT uType) ;

The template file needs #include C preprocessor directives for files that contain any
reguired defined data types (using macros defined with the #define C preprocessor
directives and C data types defined with typedef statements). In this example, the
windows.h and winuser.h header files are included.

Global attribute lists (for example, [# repl ace_t ype(LPCSTR; char *) #])
are constructed by placing the attributes between the characters [# and #]. The two
global attributes used in this example are replace_type and convention.

Thereplace_type global attribute causes CodeBridge to replace a defined C type
with the specified value. In this example, the type LPCSTR is replaced with the
value char *, which is required whenever the definition of a pointer is hidden within
adefined type. The number of levels of indirection (indicated by asterisks) inaC
data type tells CodeBridge Builder how to correctly build calls to the C function.

CodeBridge Examples
Example 2: Calling a Windows API Function

The convention global attribute informs the CodeBridge Builder that a particular text
string represents a calling convention to a C function. CodeBridge must preserve the
calling convention in the constructed external reference to the C function while
removing it from the definition of the generated variable used to hold the function
return value.

Several new parameter attributes are introduced. The integer base attribute is used
when the type of the C parameter is an integer (such as char, short, int, unsigned, or
long). The string base attribute is used when the type of the C parameter is a string
(an array of characters) and the type of the COBOL argument is non-numeric.

Some parameter base attributes do not obtain information directly from a COBOL
argument. One of these isthe windows_handle base attribute, which obtainsits
value from the Windows handle associated with the calling program (in this case, the
Windows handle of the RM/COBOL runtime system).

There are two input strings in this example. The attributelist[[string in
trailing_spaces]] isused for both of them. When aninput string is
encountered, a conversion buffer is allocated to contain the string. The datais copied
from the COBOL argument and atrailing null is appended. Thetrailing_spaces
base modifier attribute causes trailing spaces to be removed before the null character
isadded for input conversions (for output conversions, the null character is removed
and trailing spaces are appended).

One of the C parametersis of type UINT, which has a value of unsigned integer. The
unsigned base modifier attribute ensures that the CodeBridge Library treats the data
as unsigned.

Invoke the CodeBridge Builder by using the following command line:

cbridge src\nbox.tpl

This command reads the input file from src\mbox.tpl and writesits output file to
sre\mbox.c. Any errors would be written to file src\mbox.err

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

cl -c -MD -2Zpl src\nbox.c
i nk -nol ogo -nachine: | X86 -section:.edata, RD —dl |

-subsyst em wi ndows - out: nbox. dl |
nbox. obj kernel 32.1ib user32.1ib

CodeBridge B-3
Example 2: Calling a Windows API Function

B-4

5. CreateaCOBOL program in afile named mbox.cbl that contains the following
source fragments:

77 NUMBER-1 PIC 99.
77 NUMBER-2 PIC 99.
77 NUMBER-3 PI C 99.
77 NUMBER-4 PI C 99.
77 NUMBER-5 PI C 99.
77 NUMBER-6 PI C 99.
77 TEXT-1 PIC X(256).
77 RESULT PIC 99.

78 CR-LF Val ue X'ODOA".

78 MB-OK-BUTTON Value 0.

78 MB-1NFO- | CON Val ue 64.

78 MB- STYLE Val ue MB- OK- BUTTON + MB- | NFO- | CON.
78 MB- CAPTI ON Val ue "LOTTERY".

STRING "Today's wi nning lottery nunbers" CR LF
NUMBER-1 " — " NUMBER-2 " — " NUMBER-3 " - "
NUMBER-4 " — " NUMBER-5 " — " NUMBER- 6
DELI M TED BY SI ZE | NTO TEXT- 1.

CALL "MessageBox" USING TEXT-1 MB- CAPTI ON MB- STYLE

G VI NG RESULT.

The COBOL code creates a message box containing the text, “ Today’ s winning
lottery numbers xx — xx — xx — xx — XX — X", where xx represents one of the six lottery
numbers. (The code for setting NUMBER-1 through NUMBER-6 is not shown.)

Note The value of the Windows handle parameter, named hWnd, is supplied by the
RM/COBOL runtime system. It does not have an associated COBOL argument.

6. Compilethe COBOL program with the RM/COBOL compiler by using the following
command line:

r ncobol nbox
7. Runthe application with the following command line:

runcobol nbox -1 nbox.dll

CodeBridge Examples
Example 2: Calling a Windows API Function

Example 3: Accommodating a Variable
Number of Parameters

This example uses an alternate method to create the same message box that was presented
in Example 2. It also demonstrates calling a C function that accepts a variable number of

parameters.

Note Since this example deals with a Windows API function, it isfully elaborated only
for Windows. However, the CodeBridge techniquesillustrated are general in nature and
may be instructive to devel opers creating templates for C subprograms on UNIX systems.

1. CreateaC function, message box (which calls the Windows API function,
MessageBox), in afile named mbox2fn.c in the src directory that consists of the
following lines:

#i ncl ude <w ndows. h>
#i ncl ude <w nuser. h>

i nt message_box(HWD hwWhd, int ArgCount,

{

}

int Options, char *Title, char *Text, ...)

int i;
char MessageText[512];
va_list Marker;

strcpy(MessageText, Text);
va_start(Marker, Text);
for (i = 4; i <= ArgCount; i++)
strcat (MessageText, va_arg(Marker, char*));
va_end(Mar ker) ;

ret urn(MessageBox(hwid, MessageText, Title, Options));

Note 1 The function has a variable number of string parameters (represented on the
function prototype by the ellipsis“..."), which are concatenated to form a single text
string. This allows the calling COBOL program to pass these strings separately
instead of using a STRING statement to concatenate them as was done in Example 2.

Note 2 Although it would seem logical to name the file that contains the

message box function mbox2.c and the file that contains the template mbox2.tpl,
the CodeBridge Builder names its output file mbox2.c and thus would overwrite the
file containing message _box were it also named mbox2.c.

CodeBridge B-5
Example 3: Accommodating a Variable Number of Parameters

2. Create atemplate file named mbox2.tpl in the src directory that consists of the
following lines:

[[integer out]] int nessage_box(

[[wi ndows_handl e]] HWD hwhd,
[[arg_count]] i nt Ar gCount ,
[[integer in unsigned]] i nt Opt i ons,
[[string in trailing_spaces]] char *Title,
[[general _string in

trailing_spaces
| eadi ng_m nus repeat (20)]] char *Text, ...);

Thearg_count base attribute (like the windows_handle base attribute introduced in
Example 2) is not associated with a COBOL argument. It isused to pass the actual
number of COBOL arguments to the C function. This allows the message box
function to determine, for each call, how many strings have been passed.

CodeBridge offers several ways to passa string to a C function:;
e Thestring base attribute is used when the COBOL argument is non-numeric.

e Thenumeric_string base attribute is used when the COBOL argument is
numeric.

e Thegeneral_string base attribute is used in those cases when it is desirable to
allow a C string parameter to accept either a numeric COBOL argument or a
non-numeric COBOL argument. When a numeric argument is passed to a
parameter described with the general_string base attribute, the argument is
converted as if the parameter were described with the numeric_string base
attribute; otherwise, the argument is converted as if the parameter were described
with the string base attribute. An attribute list containing the general_string
base attribute allows any additional attributes that may be used with either a
string base attribute or anumeric_string base attribute. For each call and for
each argument passed to a parameter within a set of a variable number of
parameters, attributes that do not apply to the COBOL argument actually passed
areignored for the conversion of that argument. That is, for a numeric
argument, base modifier attributes not applicable to the numeric_string base
attribute are ignored and for a non-numeric argument, base modifier attributes
not applicable to the string base attribute are ignored.

In this example, when a non-numeric argument is passed to the parameter named
Text, thetrailing_spaces base modifier attribute will be acted upon and the
leading_minus base modifier attribute will be ignored. When a numeric argument is
passed, the opposite will occur.

B-6 CodeBridge Examples
Example 3: Accommodating a Variable Number of Parameters

The leading_minus base modifier attribute is used in numeric_string and
general_string parameter attribute lists to specify that a minus sign character should
be placed before the digits of the parameter value when the COBOL argument isa
negative number. For more information, see the discussion of the leading_minus
base modifier attribute in the “Base Modifiers that Apply to Numeric Base
Attributes’ section on page E-7.

The repeat(value) base modifier attribute provides partial support for C functions
with a variable number of parameters. The message box function uses the ellipsis
(...) toindicate that it can accept any number of parameters following the parameter
named Text. While CodeBridge Builder does not allow an unspecified number of
trailing parameters, it does support a fixed number of extra parameters (in this
example, repeat(20) specifies up to 20 extra string parameters, which may be
associated with numeric or non-numeric arguments because of the general_string
base attribute).

Invoke the CodeBridge Builder by using the following command line:

cbridge src\nbox2.tpl

This command reads the input file from src\mbox2.tpl and writes its output file to
src\mbox2.c. Any errors would be written to file src\mbox2.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice. There are now two C filesto compile:

* Themessage box function (created in step 1) in the file named mbox2fn.c.

* Thefile named mbox2.c (created in step 3 by CodeBridge Builder when it
processed the file named mbox2.tpl, created in step 2).

Use commands similar to the following:

cl -c -MD -2Zpl src\nmbox2fn.c
cl -c —MD -2Zpl src\nbox2.c

i nk -nol ogo -nachine: |1 X86 -section:.edata, RD —dl |
-subsyst em wi ndows -out: nbox. dl |
nbox2. obj nbox2fn.obj kernel 32.1ib user32.1ib

CodeBridge B-7
Example 3: Accommodating a Variable Number of Parameters

5. CreateaCOBOL program in afile named mbox2.cbl that contains the following

source fragments:

77 NUMBER-1 PIC
77 NUMBER-2 PIC
77 NUMBER-3 PIC
77 NUMBER-4 PIC
77 NUMBER-5 PIC
77 NUMBER-6 PIC
77 TEXT-1 PIC
77 RESULT PIC

78 CR-LF

78 MB- OK- BUTTON
78 MB-1 NFO-| CON
78 MB- STYLE

78 MB- CAPTI ON

99.
99.
99.
99.
99.
99.
X(256) .
99.

Val ue X"'ODOA".

Val ue 0.

Val ue 64.

Val ue MB- OK- BUTTON + MB- | NFO- | CON.
Val ue "LOTTERY".

CALL "nessage_box" USI NG MB- STYLE MB- CAPTI ON
"Today's winning lottery nunbers" CR-LF

NUMBER-1 " - "
NUMBER-4 " - "

NUMBER-2 " — " NUMBER-3 " - "
NUMBER-5 " — " NUMBER- 6

G VI NG RESULT.

The COBOL code creates a message box containing the text, “ Today’ s winning
lottery numbers xx — xx — xx — xx — XX — X", where xx represents one of the six lottery
numbers. (The code for setting NUMBER-1 through NUMBER-6 is not shown.)

Note The parametersto message box have been reordered so that the variable
parameters occur at the end. For this reason, the arguments of the COBOL CALL
have been similarly reordered. Valuesfor the Windows handle and argument count
parameters, named hwnd and ArgCount, respectively, are supplied by the
RM/COBOL runtime system.

6. Compilethe COBOL program with the RM/COBOL compiler by using the following

command line:

rmcobol nbox2

7. Runthe application with the following command line:

runcobol nbox2 -1 nbox2.dl |l

B-8 CodeBridge Examples

Example 3: Accommodating a Variable Number of Parameters

Example 4: Accessing COBOL Pointer
Arguments

This example shows how to access data described by pointer data items and demonstrates
how dynamic memory management can be implemented. It also illustrates that a COBOL
pointer argument can be used with both the C function return value and a C parameter.
Finaly, it shows the use of more than one attribute list for asingle C parameter.

Note While the C functionsillustrated in this example could be used for providing
dynamic memory allocation, RM/COBOL supplies the subprograms C$MemoryAllocate
and C$MemoryDeallocate in its subprogram library as described in Appendix F,
Subprogram Library, of the RM/COBOL User's Guide. Those subprograms, in most
circumstances, should be used to provide dynamic memory allocation in RM/COBOL.

A COBOL pointer data item describes a block of memory. It contains three components:
base address, offset, and size. When a pointer dataitem isinitialized, the base address
contains the starting address of the block, the offset is set to 0, and the size contains the
total length of the block.

CodeBridge pointer base attributes are used when COBOL pointer arguments are being
passed to the C function. CodeBridge provides two approaches for accessing data
described by a pointer dataitem. The first approach is used when the C function only
needs to access the data referenced by the pointer. The second approach is used when the
C function a so needs to access the components of the pointer argument itself. The
following example demonstrates the second approach.

1. Start with the function prototypes for the standard C library memory allocation
functions, free, malloc, and realloc:

voi d free(void *nenbl ock) ;
void *malloc(size_t size);
voi d *reall oc(void *menbl ock, size_t size);

CodeBridge B-9
Example 4: Accessing COBOL Pointer Arguments

2. Create atemplate file named mem.tpl in the src directory that consists of the
following lines:

#i ncl ude <stdlib. h>
#i ncl ude <mal | oc. h>

voi d free(
[[poi nter_base in]] voi d *menbl ock) ;

[[poi nter_base out
poi nter _reset_offset
ret_val]] void *malloc(
[[integer inarg_num1)]]
[[poi nter_size out ret_val]] size_t size);

[[poi nter_base out ret _val
[[poi nter_base in arg_nun(1)
[[integer in arg_num 2)
[[poi nter_size out ret _val

] void *reall oc(

] voi d *nmenbl ock,
]

]

——

size_t size);

Thearg _num and ret_val argument number attributes are used to refer to COBOL
arguments when they are passed by the calling program in an order that differs from
the parameter order of the C function. For more information on associating C
parameters with COBOL arguments, see “Associating C Parameters with COBOL
Arguments’ on page 2-22.

Note Whenthearg_num or ret_val argument number attributes are used for any
attribute list, they must be used for every attribute list of that function.

The pointer_base and pointer_size base attributes refer to the base address
component and size component, respectively, of a COBOL pointer argument. The
pointer_reset_offset base modifier attribute is used with pointer _base base attribute
to set the offset component to zero.

The free function, which deall ocates memory, uses the pointer _base base attribute
to describe an input parameter that provides the base address of the memory block
that will be freed.

The malloc function, which allocates memory, uses the pointer _base base attribute
to describe an output parameter that receives the base address of the allocated
memory using the function return value. The pointer_reset_offset base modifier
attribute sets the offset component to zero. The malloc function also uses the
pointer_size base attribute to describe an output parameter that sets the pointer size
component from the input parameter named size.

B-10 CodeBridge Examples
Example 4: Accessing COBOL Pointer Arguments

The realloc function, which changes the size and possibly the address of the block of
memory, differs from the malloc function in three ways. It does not reset the pointer
offset component to zero (the old value is retained). 1t also expects the address of the
current memory block as an input parameter (in this case, the pointer _base base
attribute is used with argument 1 to satisfy this expectation).

Finally, the parameter named size has two attribute lists. The first attribute list
supplies the new block size from the second COBOL argument in the USING phrase
to the size parameter. The second attribute list sets the size component of the
argument in the GIVING (RETURNING) phrase from the size parameter.

Invoke the CodeBridge Builder by using the following command line:

cbridge src\nemtpl

This command reads the input file from src\mem.tpl and writes its output file to
src\mem.c. Any errors would be written to file src\mem.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

For Windows
cl -c -MD -Zpl src\nemc
i nk -nol ogo -nachine: | X86 -section:.edata, RD —dl |

-subsyst em wi ndows -out:memdl |
mem obj kernel 32.1ib user32.1ib

For UNIX

A makefile is provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms’ on page H-11.

To compile:
cc -c src/nmemc

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, as follows:

cc -b elf -c src/nmemc
To link:

cc -G -0 nemso nemo

CodeBridge B-11
Example 4: Accessing COBOL Pointer Arguments

5. CreateaCOBOL program in afile named mem.cbl that contains the following
source fragments:

01 Pointer-1 USAGE PO NTER
01 Pointer-2 USAGE PO NTER

CALL "mall oc" USI NG 4096 G VING Pointer-1.
CALL "realloc" USING Pointer-1 8192 @ VING Pointer-2.
| F Pointer-2 NOT = NULL
SET Pointer-1 TO Pointer-2
END- | F.
CALL "free" USI NG Poi nter-1.

The COBOL code allocates a block of memory that is 4096 byteslong. After the
malloc call, the base address component of Pointer-1 contains the address of the
allocated memory block (or NULL if malloc was unable to allocate the memory).
The offset component of Pointer-1 is zero and its size component is 4096. Next, the
realloc call increases the size of the memory block to 8192 bytes (or possibly
allocates a new block, copies the data, and frees the original block; also, aNULL
may be returned if the request cannot be satisfied). Finally, the free call deallocates
the 8192-byte block of memory (or the original 4096-byte block if the call to
realloc fails).

6. Compilethe COBOL program with the RM/COBOL compiler by using the following
command line:

rmcobol nmem

7. Run the application, specifying the name of the COBOL program and the name of the
non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally referred to as optional support modules). Since
the COBOL program and the non-COBOL subprogram have the same root name
(mem), it is necessary to specify the correct file extension.

For Windows

runcobol nmem -1 nmemdl|

For UNIX

runcobol nem-1 nem so

B-12 CodeBridge Examples
Example 4: Accessing COBOL Pointer Arguments

If the preceding examples had used different root names for the COBOL program
and the non-COBOL subprogram, it would not be necessary to specify the file
extension. For example, if the COBOL program were named “myprog”, then the
following command could be used for either Windows or UNIX:

runcobol myprog -1 nmem

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge
Example 4: Accessing COBOL Pointer Arguments

B-13

Example 5: Packing and Unpacking
Structures

When a C function uses structures or unions as parameters, you must use an intermediate
function that packs scalars into structure and union parameters. This example illustrates
that process. No new attributes or attribute lists are presented.

1. Start with the function prototypes for the two standard C library functions, time and
localtime:

time_t time(time_t *tiner);
struct tm*localtinme(const time_t *tiner);

The return value for localtime is a C structure named tm, which is defined as:

struct tm {int tmsec; /| seconds [0, 59]
int tmmn; /1 m nutes [0, 59]
int tmhour; /I hours [0, 23]
int tmnday; //day of nonth [1,31]
int tmnon; /I mont h [0, 11]
int tmyear; /lyears since 1900!
int tmwday; //day of week [0, 6]
int tmyday; //day of year [0, 365]

int tmisdst; //daylight savings flag};

Create a C function, time_function, in afile named timefn.c in the src directory that
consists of the following lines:

#i ncl ude <tine. h>

time_function(short *sec, short *min, short *hour)

{
time_t ti me_of _day;
struct tm *tnbuf;
time_of _day = time(NULL);
tnmbuf = localtine(&inme_of _day);
*sec = tnbuf->tmsec;
*mn = tnbuf->tmmn;
*hour = tnbuf->tm hour;
}

This function calls time and localtime and extracts the structure members
named tm_sec, tm_min, and tm_hour, into scalar output parameters named sec,
min, and hour.

B-14 CodeBridge Examples
Example 5: Packing and Unpacking Structures

Create atemplate file named mytime.tpl in the src directory that consists of the
following lines:

time_function(

[[integer out]] short *sec,
[[integer out]] short *mn,
[[integer out]] short *hour);

Invoke the CodeBridge Builder by using the following command line:
cbridge src\nytine.tpl

This command reads the input file from src\mytime.tpl and writes its output file to
src\mytime.c. Any errors would be written to file src\mytime.err.

Compile and link the non-COBOL subprogram library with the C compiler of your
choice. There aretwo C filesto compile:

e Thetime_function function (created in step 1) in the file named timefn.c.

e Thefile named mytime.c (created in step 3 by CodeBridge Builder when it
processed the file named mytime.tpl, created in step 2).

Use commands similar to the following:

For Windows
cl -c -MD -Zpl src\tinmefn.c
cl -c -MD -Zpl src\nytine.c

i nk -nol ogo -nmachi ne: |1 X86 -section:.edata, RD —dl |
-subsyst em wi ndows -out:mytime. dll
mytime.obj tinefn.obj kernel32.1ib user32.1ib

CodeBridge B-15
Example 5: Packing and Unpacking Structures

For UNIX

A makefile is provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms’ on page H-11.

To compile:

cc -c src/mytine.c
cc -c src/tinmefn.c

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, as follows:

cc -b elf -c src/nytinme.c
cc -b elf -c src/timefn.c

To link:

cc -G-o0 nytine.so nytine.o tinefn.o
Create a COBOL program in afile named mytime.cbl that contains the following
source fragments:

01 GROUP-1.
02 TMSEC PIC 9(2).
02 TMMN PIC 9(2).
02 TMHOUR PIC 9(2).

CALL "time_function" USING TM SEC TM M N TM HOUR.
Compile the COBOL program with the RM/COBOL compiler by using the following
command line:

rmcobol mytime

B-16 CodeBridge Examples
Example 5: Packing and Unpacking Structures

Run the application, specifying the name of the COBOL program and the name of the
non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally referred to as optional support modules). Since
the COBOL program and the non-COBOL subprogram have the same root name
(mytime), it is necessary to specify the correct file extension.

For Windows

runcobol nytine -1 nytinme.dll

For UNIX

runcobol nmytine -1 nytine.so

If the preceding examples had used different root names for the COBOL program
and the non-COBOL subprogram, it would not be necessary to specify the file
extension. For example, if the COBOL program were named “myprog”, then the
following command could be used for either Windows or UNIX:

runcobol myprog -1 nytine

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge B-17
Example 5: Packing and Unpacking Structures

Example 6: Converting Buffered C Data

When an existing C API uses one C function to establish a buffer address and another
C function to store data into the buffer, the preferred method of using the out direction
attribute to modify COBOL data areas cannot be used (see “Modifying COBOL Data
Areas’ on page 2-30).

Note Thisexampleisfully elaborated only for Windows, where the ODBC API is
readily available from Microsoft. However, the CodeBridge techniquesillustrated are
general in nature and may be instructive to devel opers creating templates for C
subprograms on UNIX, including use of the ODBC API provided by other companies
for some UNIX systems.

An example of this situation occurs in the Microsoft ODBC API. A buffer location is
established with the function SQLBindCol, which binds a result set column to a storage
location. Later, acall to the function SQL Fetch obtains data from the result set and
returns the data for each column previously bound to a storage location with the function
SQLBindCol. The data obtained by the function SQL Fetch is stored as C format data, not
COBOL format data. For example, a string would be stored as a null-terminated C string.
If aCOBOL program is using CodeBridge to make the calls to the functions,

SQLBindCol and SQL Fetch, amethod is needed to convert the C format datato COBOL
format data. Such a conversion function can be written using CodeBridge and a minimal
C function supplied by the developer.

This exampleillustrates a conversion routine that converts a C null-terminated string into
a space-filled COBOL aphanumeric data item.

1. Start by writing a simple C function that copies one C string to another:

#i ncl ude <string. h>

voi d cstring2text(char *plnput, char *pQutput)
{ (voi d)strcpy(pQutput, plnput);
}

2. Create atemplate file named strcvt.tpl in the src directory that consists of the
following lines:

voi d cstring2text(
[[address]] char *pl nput,
[[string out trailing_spaces]] char *pCQutput);

B-18 CodeBridge Examples
Example 6: Converting Buffered C Data

Invoke the CodeBridge Builder by using the following command line:

cbridge src\strcvt.tpl

This command reads the input file from src\strcvt.tpl and writesits output file to
src\strevt.c. Any errors would be written to file src\strevt.err.

CodeBridge Builder generates a C function from the template file. The generated

C function will add trailing space characters to the output string argument because of
the trailing_spaces base modifier attribute specified in the template file. All the
work of the conversion is performed in the call to StringToCobol in the generated
function (see page F-59 for a description of StringToCobol).

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

cl -c -MD -2Zpl src\strcvt.c

i nk -nol ogo -nachine: | X86 -section:.edata, RD —dl |
-subsystem wi ndows -out:strcvt.dll
strcvt.obj kernel32.1ib user32.1ib

Create a COBOL program in afile named strcvt.cbl that contains the following
source fragments:

01 | N-STRING Pl C X(257).
01 OUT- STRI NG Pl C X(256).

CALL "cstring2text" USING | N-STRI NG OUT- STRI NG

In this example, it is assumed that the address of IN-STRING was passed to a

C function, for example, the function SQLBindCol, and then subsequently a

C function was called that used this address to store a string, for example, the
function SQLFetch. See “Passing the Address of COBOL Data’ on page 2-32 for
an explanation of how the address of a dataitem is passed using CodeBridge. These
fragments of the COBOL program are not illustrated here. In this example the data
item named IN-STRING would contain a null-terminated C string and thus should
not be used by the COBOL program other than in the call to the function that uses it
as a buffer address and to the conversion function, cstring2text.

Compile the COBOL program with the RM/COBOL compiler by using the following
command line:

rmcobol strcevt

Run the application with the following command line:

runcobol strcvt -1 strcvt.dll

CodeBridge B-19
Example 6: Converting Buffered C Data

Example 7: Calling C++ Libraries from
CodeBridge

The following example demonstrates how to resolve external references between the ways
that C external names and C++ external names are represented.

The special techniques described in this example are necessary because the external
function and variable names generated by C and C++ compilers do not match. C++
embeds type information in the external name that C cannot use. Thistype information is
present even in C++ code that does not use C++ features. The linker, therefore, cannot
resolve acall from C into C++ unless the C++ function or variable declaration explicitly
specifies that the function or variable be made compatible with C.

To correct this situation, the C++ function definition in the C++ library must include the
notation ext ern " C' inthe definition. For example, modifying

int FunctionNane (...)

to

extern"C' int FunctionNane (...)

instructs the C++ compiler to generate a function name that is compatible with both
C and C++.

In many instances, the CodeBridge developer will not have access to the source for
libraries that are written in C++. In such cases, it is hecessary to create intermediate or
mapping functions that include the ext ern " C' notation.

Within this example, a naming convention is used. Entitiesthat are a part of the C++
library have names that begin with libfunc or LibFunction, while entities that are related
to the C++ intermediate functions that you write have names that begin with maplib or
MapFunction. The normal C/C++ file extension name convention is followed throughout
this example (that is, .cpp indicates a C++ file; .c indicates a Cfile).

This example, while very simplified, illustrates how you can use CodeBridge to call
programs that are written in C++. Since the C++ programming language is not the same
as C, some expertise in C++ on the developer’ s part will be required. In practice, the
intermediate or mapping functions that you write will be “driver” functions that perform
several steps. When dealing with C++ class libraries or methods, the intermediate
program will have to deal with these C++ language constructs.

B-20 CodeBridge Examples
Example 7: Calling C++ Libraries from CodeBridge

1. Inthisexample, the following C++ source files represent the C++ library. Thefiles
named libfunc.cpp and libfunc.h represent components of the C++ library. The
C++ library contains functions named LibFunctionl and LibFunction2.

Thefilelibfunc.cpp represents the source code that is used to build a C++ library
and contains the following lines:

nt Li bFunctionl()

return(l);

i
{
. .
i nt Li bFunction2()

{ return(2);
}

Thefile libfunc.h makes function definitions available externally and contains the
following lines:

int LibFunctionl();
i nt Li bFunction2();

Create a C++ source file that will map the function from C++ namesto C names.
The file maplib.cpp contains the following lines:

#i nclude "libfunc. h”
extern "C' int MapFunctionl()

return(Li bFunctionl());

}
extern "C' int MapFunction2()

return(Li bFunction2());
}

2. Create atemplate file named maplibcb.tpl that consists of the following lines:

[[integer out]] int MapFunctionl();
[[integer out]] int MapFunction2();

3. Additionally, create a COBOL program in afile named myprog.cbl that calls the
functions “MapFunction1” and MapFunction2”. Thisfile would include the
following lines:

CALL "MapFunctionl" d VING Result
CALL "MapFunction2" d VING Resul t

CodeBridge B-21
Example 7: Calling C++ Libraries from CodeBridge

4. Invoke the CodeBridge Builder by using the following command line:
cbridge maplibchb. tpl

5. Compile and link the non-COBOL subprogram library with the C and C++
compilers, using commands similar to the following:

For Windows

cl —c —-MD —Zpl src\maplibch.c
cl —c -MD -Zpl src\maplib. cpp
cl —c —-MD —-Zp1l src\libfunc.cpp

i nk —nol ogo - nachi ne: | X86 -section:.edata, RD —dl |
-subsyst em wi ndows -out: MapLi b. dl |
mapl i b. obj 1ibfunc.obj maplibcb. obj

For UNIX

A makefile is provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
“Preparing C Subprograms’ on page H-11.

To compile:

cc -c src/ maplibch.c
CC -c src/maplib.cpp
CC -c src/libfunc.cpp

Note Some compilers may require that the ELF (Executable and Linking
Format) be specified, as follows:

cc -b elf -c src/maplibch.c
CC -b elf -c src/maplib.cpp
CC -b elf -c¢ src/libfunc.cpp

To link:

cc -G -0 nmaplib.so maplibcb.o maplib.o Iibfunc.o

Note Uppercase CC is used to represent the name of the C++ compiler. On
some systems, it may be CC (uppercase) while on othersit may be cc
(lowercase). For Gnu C++, the nameisg++. Be sureto check your system
documentation for the name used on your system.

B-22 CodeBridge Examples
Example 7: Calling C++ Libraries from CodeBridge

Compile the COBOL program mypr og.cbl that calls “MapFunctionl” and
“MapFunction2” by using the following command line:

rncobol nmnyprog

Run the application, specifying the name of the COBOL program and the name of the
non-COBOL subprogram library, with the following command line:

runcobol myprog -I maplib

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge B-23
Example 7: Calling C++ Libraries from CodeBridge

Example 8: Using errno

This example demonstrates how to use the error base attribute, errno. The errno
attribute supports obtaining the value of the external variable errno that was set by a call
toaC library function. It allows return of the error information by editing the
CodeBridge template instead of the generated code.

1. Start with the function prototype for the C standard library function, mkdir.
For Windows
int _nkdir(const char *dirname);
For UNIX
int nkdir (const char *filename, node_t node);

2. Create atemplate file named mkdir .tpl in the src directory that consists of the
following lines:

For Windows

[[integer out]] int _nkdir(
[[string in trailing_spaces]] const char *Di r Nane
[[errno]]);
For UNIX
[[integer out]] int _nkdir(
[[string in trailing_spaces]] const char *Di r Nane,
[[integer in]] nmode_t Mode

[[errno]]);

The errno error base attribute associates a COBOL argument with the value
associated with the external C global variable errno. There is no corresponding
parameter in the underlying C function parameter list.

Note Inthisexample, the errno error base attribute is placed after the last C
parameter. Thisisalegal operation. The attribute could also have been placed
anywhere any other attribute could have been placed.

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\nkdir.tpl

B-24 CodeBridge Examples
Example 8: Using errno

Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

For Windows
cl —c -MD —-Zpl src\nkdir.c
link —nologo —machi ne: | X86 —section:.edata, RD —dl |

-subsyst em wi ndows —out: nkdir.dl |
nkdir.obj kernel 32.1ib user32.1ib

For UNIX
cc —c src/nkdir.c

cc -G -0 nkdir.so nmakdir.o

Create a COBOL program in afile named mkdir .cbl that contains the following
source fragments:

For Windows

01 Err-No PI C S9(9).
01 File-Nane PI C X(64) Value "TenpFile".
01 Return-Status PI C S9(9).

CALL " _nkdir"
USI NG Fi |l e- Nanme Err-No
A VI NG Ret ur n- St at us.

For UNIX
01 Err-No PI C S9(9).
01 File-Nanme PI C X(64) Value "TenpFile".
01 Mbde PIC S9(9) Value 1638.

01 Return-Status Pl C S9(9).

CALL "nkdir"
USI NG Fi | e- Nanme Mode Err-No
A VI NG Ret ur n- St at us.

CodeBridge B-25
Example 8: Using errno

6. Compilethe COBOL program with the RM/COBOL compiler by using the following
command line:

rmcobol src\nkdir

7. Run the application, specifying the name of the COBOL program and the name of the
non-COBOL subprogram library:

Y ou may specify the name of the non-COBOL subprogram with the appropriate file
extension. The following two commands illustrate how to specify a Windows DLL
or aUNIX shared object (generally referred to as optional support modules). Since
the COBOL program and the non-COBOL subprogram have the same root name
(mkdir), it is necessary to specify the correct file extension.

For Windows

runcobol src\nkdir.cob -l nkdir.dll

For UNIX

runcobol src/nkdir.cob -l nkdir.so

B-26 CodeBridge Examples
Example 8: Using errno

Example 9: Using get_last_error

This example demonstrates how to usethe get_last_error error base attribute. The
get_last_error attribute supports obtaining the value returned by the Windows API

function GetLastError called immediately after another Windows API function has

been called.

Note The following discussion appliesto using this attribute on the Windows platform
only. Some Windows APIs have been ported to UNIX. In such cases, it may be
appropriate to usethe get_last_error attribute on UNIX. (CodeBridge Builder does
support the get_last_error attribute on UNIX.) However, if the Setl astError and
GetLastError functions are not available, the generated program will probably not
compile and would certainly not link without errors.

1. Start with the function prototype for the Windows API function, CreateDirectory.

W NBASEAPI BOOL W NAPI CreateDirectory(LPCTSTR Di r Nane,
LPSECURI TY_ATTRI BUTES SecAttr);

2. Create atemplate file named Dir.tpl in the src directory that consists of the following
lines:

#i ncl ude <w ndows. h>

[# replace_type(LPCTSTR;, char *)
repl ace_t ype(LPSECURI TY_ATTRI BUTES; void *)
convent i on(W NBASEAPI)
conventi on(W NAPI) #]

[[integer out]] W NBASEAPI BOOL W NAPI CreateDirectory(
[[string in trailing_spaces]] LPCTSTR Di r Nane,
[[string in trailing_spaces value_if_omtted(NULL)]]

LPSECURI TY_ATTRI BUTES SecAttr
[[get _last_error]]);

Theget_last_error error descriptor attribute associates a COBOL argument with the
value associated with the GetLastError Windows function. Thereisno
corresponding parameter in the underlying C function parameter list.

Note Inthisexample, the get_last_error attributeis placed after the last C
parameter. Thisisalegal operation. The attribute could also have been placed
anywhere any other attribute could have been placed.

CodeBridge B-27
Example 9: Using get_last_error

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\Dir.tpl

4. Compile and link the non-COBOL subprogram library with the C compiler of your
choice, using commands similar to the following:

cl -c—MD —Zp1 src\Dir.c

link —nologo —machine:1 X 86 —section:.edata,RD —dl|
-subsystem:windows —out:Dir.dll
Dir.obj kernel32.lib user32.lib

5. CreateaCOBOL program in afile named Dir.cbl in the src directory that contains
the following source fragments:
01 Last-Error PIC 9(9).
01 File-Nane PI C X(64) Value "TenpFile".
01 Return-Status PI C S9(9).
CALL "CreateDirectory"

USI NG Fi |l e- Nane Last-Error
A VI NG Ret ur n- St at us.

6. Compilethe COBOL program with the RM/COBOL compiler by using the following
command line:

rncobol src\Dir
7. Runthe application with the following command line:

runcobol src\Dir.cob —I Dir.dll

B-28 CodeBridge Examples
Example 9: Using get_last_error

Appendix C: Useful C Information

To develop applications using CodeBridge, it is necessary to have a fundamental
understanding of certain C concepts as well as the ability to use a C compiler and linker.
The information provided in this appendix is intended to serve as a starting point for those
developers who may not be proficient with C programming and who wish to call existing
C function libraries without writing any additional C code. This material should not be
viewed as aformal or complete definition of the language. Theideas and concepts
presented here arein an informal format. The developer is encouraged to acquire
additional C reference information, as necessary.

The topics presented here include:
« Understanding C language concepts (see the following topic)

e Compiling and linking C functions (see page C-5)

Understanding C Language Concepts

In order to construct atemplate file, you must understand the concept of a C function
prototype. Thetemplate fileis based on a“marked-up” C function prototype.
Conceptually, a C function prototype is similar to a COBOL LINKAGE SECTION.
While the LINKAGE SECTION describes the interface to a COBOL subprogram, a
function prototype describes the interface to a C function.

When using C, it isthe preferred practice to use header filesto contain the function
prototypes (along with other information that is needed to describe the interface to a
function). Header files are similar to copy filesin COBOL. Providers of C function
libraries will normally provide one or more header files to describe the interface to their
libraries. Typically, aheader filename will have a suffix of .h. For example, a provider
of a statistics package may provide a header file named statistics.h. Header filesare
included in the source to be compiled with the #include C preprocessor directive and are
thus sometimes referred to as includefiles.

Before discussing function prototypes in more detail (see page C-4), let’sexplain

several concepts that are integral to the construction of function prototypes. These topics
include case sensitivity, data types, data declarations, type definitions and macros, and
calling conventions.

CodeBridge C-1
Understanding C Language Concepts

C-2

Case Sensitivity

The COBOL programming language is mostly case-insensitive. With afew exceptions
(such as non-numeric literals), the uppercase and lowercase representations of a given
letter are treated as equivalent. On the other hand, the C programming language is
predominately case-sensitive. The attribute keywords used in the template file are also
case-sensitive. This means that the uppercase and lowercase representations of a given
letter are not equivalent.

For example, the following names are treated as separate entities by C, but treated as the
same entity by COBOL: name, Name, and NAME.

Data Types

C includes predefined data types that may be categorized as integer, floating-point,
pointer, and void.

Integer data typesinclude char, short, int and long. These data types may be prefixed
with the keywords signed or unsigned. Normally, integer types default to signed. Asa
shorthand notation, when signed or unsigned appear without the corresponding integer
datatype, then int isimplied (that is, unsigned is the same as unsigned int).

C aso includes the floating-point data types float and double. Floating-point isthe
computer representation of scientific notation. It allows numbers with alarge scale or
small scale to be represented with an approximate value. For the | EEE representation of
floating-point, the float type is normally limited to about 6 or 7 digits of precision with an
exponent (scale) of —38 to +38. Also, the double type is normally limited to about 15 or
16 digits of precision with an exponent (scale) of —308 to +308.

A pointer data type contains the address of a typed dataitem and is represented by the
asterisk character (*) in the data declaration or type definition (these terms are described
in the following sections).

The void data type, void, is used to represent untyped or sometimes omitted data.

Note that other keywords, such asfar and near also exist, although their meaning is
mostly historical. Depending on the compiler, one or two underscore characters may
precede some keywords (_far or __far instead of far).

Useful C Information
Understanding C Language Concepts

Data Declarations

A data declaration associates data type information with the name of avariable. For
example:
int P1

declares avariable named P1 with atype of int. Additional examples are shown in the
following table:

Declaration Variable Name Type

unsi gned short P2; P2 unsigned short

float P3; P3 float

int * P4; P4 pointer to an int

char P5[30]; P5 array of char (30 elementsin the array)
void * P6; P6 pointer to avoid (that is, a generic pointer)

When an array is passed to a C function, the address of (pointer to) the array isused. In
a C function prototype, a pointer reference and an array reference are equivalent. That is,
char P5[30] is treated the same as char * P5 (with the exception that the compiler can do
some compile time range checking if the number of elementsin the array is explicitly
declared).

Type Definitions and Macros

In addition to the standard data types described previously, you can define additional
types that are based on combinations of existing types. Two techniques are used: type
definitions (typedef) and macros.

A typedef defines anew datatype. Consider the following examples:

typedef int |NT;
t ypedef unsigned char UCHAR
typedef char * CHARPTR;

Thefirst definition defines INT to be equivalent to int. That is, the two definitions of
INT and int areidentical. The second definition defines UCHAR to be equivalent to

unsigned char. The third definition defines CHARPTR to be equivalent to char * (a
pointer to a char).

A typedef “hides’ the underlying data type so that programs may be paramaterized
against portability problems. Type definitions also provide better documentation for
aprogram.

CodeBridge C-3
Understanding C Language Concepts

c-4

Although amacro is similar to atypedef, there are some important, yet subtle,
differences. Thefirst two previous examples may be defined as macros with the #define
C preprocessor directive, asfollows:

#define INT int
#def i ne UCHAR unsi gned char

Macros are implemented as part of the C compiler preprocessor. If INT isdefinedin a
macro, the compiler will never see INT as a datatype; it will already have been replaced
with int.

Additionally, macros provide a powerful text replacement feature that can be used for
more than type redefinition. Macros may contain parameters and can be used to
implement inline functions. For example:

#define MAX(A B) (A+B)/2 + abs(A-B)/2

Macros are presented here to familiarize you with concepts that might occur in a header
file. Since complex macros tend to be fragile, it is recommended that the modification of
these macros be done with care.

Calling Conventions

A calling convention defines additional type information. It directs how the compiler
generates function-calling sequences and is an optional part of a function prototype.
Examplesinclude __cdecl (or RM_CDECL when writing code for both Windows and
UNIX), _stdcall, and __pascal. Often a calling convention is hidden with atype
definition or amacro. For example, the following macro definition defines the macro,
SQL_API to bethe __stdcall calling convention:

#define SQL_API _ stdcall

Function Prototypes

A function prototype may contain or refer to any of the concepts that have been
previously presented (data types, data declarations, type definitions and macros, and
calling conventions).

A function prototype consists of the function name and alist of parameter names. The
name of the function and the name of each parameter are prefaced with type information
to form a data declaration. For example:

doubl e RM CDECL pow doubl e X, double Y);

Useful C Information
Understanding C Language Concepts

In this example, the type of the function is double, which indicates that the function
returns a value of type double. The parameters are also of type double. Notice that the
calling convention RM_CDECL isincluded with the function type information.

An older style of prototype may be encountered. In this case, the function prototype
omits the parameter names since they are only placeholders. The prototype for the
function presented above may appear as follows (depending on platform and compiler):

doubl e pow(doubl e, double);

Placeholder names must be provided in the template file that is based on one of these
older style prototypes. Any unique (to the function) names will do. For example:

[[float out rounded]] double pow
[[float in rounded]] doubl e X,
[[float in rounded]] doubl e Y);

Compiling and Linking C Functions

Throughout the CodeBridge manual, examples of compiling and linking are presented.
The syntax of the Windows examples uses Microsoft’s compiler and linker conventionsto
generate 32-bit Windows dynamic link libraries (DLLS).. The syntax of the UNIX
examples uses conventions that are common to many compilers and linkers on UNIX to
generate shared objects.

Note A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support module with
the RM/COBOL runtime system. For additional information, see “Preparing C
Subprograms’ on page H-11.

This section also includes an example of how to generate multiple template files.

CodeBridge C-5
Compiling and Linking C Functions

C-6

Compiling on Windows

The following illustrates an example of invoking Microsoft’s Visual C++ compiler to
generate Windows abject files:

cl -c -MD -2Zpl src\trig.c
where:
cl indicates the name of the compiler.
-C suppresses the implicit call to LINK that normally occurs.

-M D selects the Multithread and DLL options. The developer may choose -MDd in
order to select the debugging option also.

-Zp1 specifies structure member alignment of 1 byte.

Note A structureisthe C equivalent of a COBOL group. The-Zpl optionis
recommended because the ARGUMENT_ENTRY structure passed from the
RM/COBOL runtime system is built using the -Zp1 option.

sre\trig.c indicates the name of the C source program to be compiled.

Note Thisexample uses the hyphen (-) character to denote compiler options. Microsoft’s
Visual C++ compiler also alows aforward slash (/) character to be used (for example, /c
instead of —).
Compiling on UNIX
The following illustrates an example of producing object files on UNIX:

cc -c src/trig.c
where:

cc indicates the name of the compiler/linker.

-C suppresses the linking stage and does not produce an executablefile.

src/trig.c indicates the name of the C source program to be compiled.

Useful C Information
Compiling and Linking C Functions

Linking on Windows

The following shows an example involving the Microsoft linker to generate a
Windows DLL:

i nk -nol ogo -nachine: |1 X86 -section:.edata, RD —dl |
-subsystem wi ndows -out:trig.dll trig.obj

where:
link indicates the name of the linker.
-nologo suppresses the startup banner.

-machine:| X86 specifies the target platform. While this option is not required, it is
good practiceto includeit. (It also eliminates a warning message.)

-section:.edata,RD specifies Section Attributes, which force the linker to include the
edata section in the generated DLL. The RM/COBOL runtime system uses this
information to load the DLL.

-dll buildsaDLL asthe main output file.
-subsystem:windows specifies the subsystem being supported.
-out:trig.dll names the output file.

trig.obj specifies the name of the object file that isto be included in the link.

Note In addition to naming the object file(s) that are to be included, the necessary
libraries also should be included. The names of the libraries are normally provided
by the provider of the library functions or by the C compiler. The default link
libraries for Win32 DLLsinclude:

+ kernel32lib « shell32lib

o userd2lib « ole32lib

« gdi32lib + oleaut32.lib
e winspool.lib e uuid.lib

« comdig32.lib e odbc32.lib

e advapi32.lib e odbcep32.lib

Note This example uses the hyphen (-)character to denote compiler options. Microsoft’s
linker also allows a forward dlash (/) character to be used.

CodeBridge C-7
Compiling and Linking C Functions

Linking on UNIX
The following illustrates an example of linking a shared object on UNIX:
cc -G-otrig.sotrig.o-Im
where:
cc indicates the name of the compiler/linker.
-G produces a shared object.
-0 trig.so names the output file.
trig.o specifies the name of the object file that is to be included in the link.

-Im indicates that the math library isto be included in the link.

Multiple Template Files

The normal practice isto generate only one template file for each non-COBOL
subprogram library that is being constructed. However, some devel opers may choose
to generate more than one template file.

For Windows platforms, the source generated by CodeBridge Builder contains a
definition for DIIMain. If CodeBridge Builder generates multiple files, then errorsin
linking the DLL will occur because of multiple definitions. This can be resolved by
defining the symbol RM_NO_DLL_MAIN for all but one of the compilations of
generated sourcefiles.

For example:
cl -1 -MD -2Zpl src\cbfuncl. c
cl -1 -MD -Zpl -DRM NO DLL_MAIN src\cbfunc2.c
cl -1 -MD -Zpl -DRM NO DLL_MAIN src\cbfunc3.c

C-8 Useful C Information
Compiling and Linking C Functions

Appendix D: Global Attributes

This appendix provides detailed descriptions of the attributes used in aglobal attribute list
in atemplate file. See Chapter 2, Concepts, for more information about the basic
components of atemplate file. The attributes used in a parameter attribute list are
discussed in Appendix E, Parameter Attributes. More information about C language
concepts and terms may be found in Appendix C, Useful C Information.

Note Asyou read through this manual, keep in mind that the term “ parameter attribute”
is ashorthand notation for an attribute that occursin a parameter attribute list. Likewise,
“global attribute” indicates that the attribute can be found in aglobal attribute list.

Overview

A global attribute list provides information about one or more C function prototypes that
is not specific to any given parameter. Thisinformation also could be used to modify the
default behavior of CodeBridge Builder.

A global attribute takes effect from the point at which it occursin atemplate file and
remains in effect until another global attribute in that template file alters those settings.
There are five global attributes: banner, convention, diagnostic, load_message, and
replace type.

Attributes are case-sensitive and must be entered as shown.

Note The discussions and examples of the global attributes, replace type and
convention, use SQL_API and SQLPOINTER, which are a macro and data type,
respectively, defined in the Microsoft Visual C++ header file, sgltypes.h. Their
definitions are:

#define SQL_API _ stdcall
typedef void * SQ.PO NTER

SQL_API isacalling convention macro defined by the C preprocessor directive, #define.
SQLPOINTER is adatatype defined by a C type definition (that is, atypedef statement).

CodeBridge D-1
Overview

banner Attribute

Use the banner global attribute to display atext string when a non-COBOL subprogram
built with CodeBridge is loaded by the RM/COBOL runtime system.

The format of the banner global attribute is as follows:
[# banner (val ue) #]
where value is a character string. For example:
[# banner (" Copyright (c) 2000, by ne.") #]

Such banners are displayed only on UNIX systems when the K Option of the
RM/COBOL Runtime Command (runcobal) is not specified or configured. For example:

runcobol myprog -1 ./nylib.so

This causes a message similar to the following to be displayed:
Copyright (c) 2000, by ne.

No banner message is produced by the RM/COBOL for Windows runtime.

convention Attribute

D-2

Use the convention attribute to declare C calling conventions (for example, SQL_API).
Calling conventions cannot be placed in the CodeBridge-generated declarations of
variables; however, they must be preserved in the external function prototype that is used
to call the C function.

The format of the convention global attribute is as follows:
[# convention(nanme) #]

where name is the name of a call convention.

SQL_API can be resolved as follows:

[# convention(SQ._API) #]

SQL_API isremoved from variable declarations, but is preserved as part of the external
function prototype.

Global Attributes
banner Attribute

diagnostic Attribute

Use the diagnostic attribute to control error reporting.

The format of the diagnostic global attributeis as follows:
[# diagnostic(val ue) #]

where value may be one of the following:

« silent. Usethesilent value to instruct CodeBridge not to display diagnostic
messages.

e verbose. Usethe verbose value to instruct CodeBridge to display diagnostic
messages even if the silent base modifier attribute (described on page E-4) is set for
an individual parameter attribute list.

e normal. Usethenormal value to instruct CodeBridge to display diagnostic messages
unless the silent base modifier attribute (described on page E-4) is specified for an
individual parameter attribute list.

load _message Attribute

Use the load_message attribute to display atext string when a non-COBOL subprogram
built with CodeBridge is loaded by the RM/COBOL runtime system.

The format of the load_message global attribute is as follows:

[# | oad_nessage(val ue) #]

where value is a character string. For example:

[# | oad_nessage("My math package - Version 1.13") #]

Load messages are displayed only on UNIX systems when the V Option of the
RM/COBOL Runtime Command (runcobal) is specified or configured. For example:

runcobol myprog -v -1 ./nylib.so

This causes a message similar to the following to be displayed:

RM COBOL: Dynamic library loaded - ./nylib.so - My math package - Version 1.13

No load message is produced by the RM/COBOL for Windows runtime.

CodeBridge D-3
diagnostic Attribute

replace_type Attribute

D-4

The CodeBridge Builder program does not resolve C datatypes. Freguently, necessary
data type information may be hidden in a macro or a type definition construct (as shown
in the definitions above). Specifically, CodeBridge must know whether adataitemisa
pointer datatype. It is necessary, therefore, for the template file to resolve some type
definitions for CodeBridge.

Use thereplace_type global attribute to allow CodeBridge to resolve pointer data
declarations that hide the C unary pointer operator (*) within the data type name (for
example, SQLPOINTER).

Y ou may choose to use the replace_type attribute as a form of self-documentation
to expand any defined data type, even if the expansion does not reveal any levels
of indirection.

The format of the replace_type global attribute is as follows:

[# replace_type(name;val ue) #]
where value is the character string that replaces the data type specified by name.

The SQLPOINTER data type can be resolved as follows:

[# replace_type(SQLPO NTER, void *) #]
The user-supplied entry for name must be a single token. The user-supplied entry for
value may be any string of characters. The following are all equivalent:

[# replace_type(SQ.PO NTER; voi d*) #]

[# replace_type(SQ.PO NTER; voi d *) #]

[# replace_type(SQ.PO NTER, void *) #]

Global Attributes
replace_type Attribute

Appendix E: Parameter Attributes

This appendix provides detailed descriptions of the attributes used in a parameter attribute
listin atemplate file. See Chapter 2, Concepts, for more information about the basic
components of atemplate file. The attributes used in aglobal attribute list are discussed
in Appendix D, Global Attributes. More information about C language concepts and
terms may be found in Appendix C, Useful C Information.

Note Asyou read through this manual, keep in mind that the term “ parameter attribute”
is ashorthand notation for an attribute that occursin a parameter attribute list. Likewise,
“global attribute” indicates that the attribute can be found in aglobal attribute list.

Overview

The parameter attributes are organized into the following three groups:
e Argument number

+ Direction

* Base and base modifier

Each group is described in the following sections. An alphabetical summary of all
available parameter attributesis shown in Table E-2 beginning on page E-24.

Attributes are case-sensitive and must be entered as shown.

CodeBridge E-1
Overview

Argument Number Attributes

The two argument number parameter attributes, arg_num(value) and ret_val,

specify explicitly the COBOL argument number. Thisinvokes the explicit method of
associating C parameters with COBOL arguments rather than using the default automatic
association method.

In the arg_num(value) argument number attribute, val ue specifies the argument number
as 1 for the first argument in the USING phrase, 2 for the second argument in the USING
phrase, and so forth. The value must be specified as an integer constant; a macro or
constant expression may not be specified here.

Theret_val argument number attribute specifies the argument in the GIVING
(RETURNING) phrase.

For more information, see “Associating C Parameters with COBOL Arguments’ on
page 2-22.

Direction Attributes

E-2

The direction attributes are in and out. Thein direction attribute specifies an input
parameter to the C function. The out direction attribute specifies an output parameter
from the C function.

Both the in and out direction attributes may be specified in a parameter attribute list.
Within a parameter attribute list, you may present the attributes in any order. For
example, [[i nteger in]] isthesameas[[in integer]]. Whenaparameteris
used for both input and output, both the in and out direction attributes are specified in
either order.

The direction attributes may be used to protect the calling COBOL program from
unintended modification of data. For example, when the out direction attribute is not
used, then the datain the C parameter is not converted to COBOL format, and the datais
not placed in the address space of the COBOL program.

For a given parameter, if none of its attribute lists contain the in direction attribute, an
uninitialized value may be passed to the function. No more than one attribute list (for any
given parameter) should be used for input; however, several output attribute lists may be
assigned to the same parameter.

Some base attributes imply a direction and thus do not allow either of the direction
attributes. The error base attributes, errno and get_last_error (see page E-20), imply

Parameter Attributes
Argument Number Attributes

the out direction attribute. The descriptor base attributes (see page E-17), two of the
pointer base attributes, pointer _address and pointer_length (see page E-15), and the
string length base attributes (see page E-14) imply thein direction attribute.

Base and Base Modifier Attributes

Base attributes may be categorized as follows:

e Numeric. Numeric base attributes (see page E-5) are used when passing COBOL
numeric arguments to the C function.

e String. The string base attribute (see page E-11) is used when passing COBOL non-
numeric arguments to the C function.

* String Length. String length base attributes (see page E-14) are used when passing
the length of a string or numeric string parameter as a separate C parameter.

» Pointer. Pointer base attributes (see page E-15) are used when passing COBOL
pointer dataitems to the C function.

e Descriptor. Descriptor base attributes (see page E-17) are used when passing a
component of a COBOL data descriptor, the argument count, the COBOL initia state
flag, or the Windows handle to the C function.

e Error. Error base attributes (see page E-20) are used to retrieve error information
froma C library or Windows API function that is returned separately from the calling
C function.

Note1l Thenumeric_string base attribute (see page E-6) is unique because it associates
a C string parameter, rather than a C numeric parameter, with a COBOL numeric
argument. This base attribute refersto a COBOL numeric argument (whose USAGE
clause specifies DISPLAY, PACKED-DECIMAL, BINARY, and so forth) and is,
therefore, a numeric base attribute. However, the argument value is represented as an
ASCII character string in the C function.

Note2 Thegeneral_string base attribute (see page E-13) converts numeric and
non-numeric arguments to null-terminated arrays of characters. If the COBOL argument
is numeric, the conversion behaves asif numeric_string had been specified as the base
attribute. If the COBOL argument is non-numeric, the conversion behaves asif string
had been specified as the base attribute.

Base attributes can be supplemented with additional information by specifying base
modifier attributes. While some base modifier attributes are common to several

CodeBridge E-3
Base and Base Modifier Attributes

E-4

categories of base attributes, as discussed in the following section, others are specific
to a base attribute category. The latter are described in each base attribute category
section to which they apply.

Base Modifiers Common to Base Attributes

Two base modifier attributes, silent and alias(name), are common to several categories of
base attributes:

« dlent. Thesilent base modifier is used with any base attribute to prevent
CodeBridge from displaying diagnostic messages during CodeBridge Library calls
generated for that attribute list. The global attribute, diagnostic(value), may be used
to alter default behavior for every CodeBridge Library call (see page D-3).

« alias(name). The alias(name) base modifier is used in any parameter attribute list
that refersto the function return value (that is, it should not be used with function
parameters). The alias(name) base modifier may be used in a parameter attribute list
with other attributes, or it may be the only attribute in an attribute list.

If it isthe only attribute in a parameter attribute list, no value will be returned to the
calling COBOL program.

Normally, the CodeBridge Builder generates its interface function name from the C
function name. The alias(name) base modifier attribute makes it possible for the
COBOL program to call the C function using a different name. The following
example shows how to implement two functions, INTEGER_PART and
FRACTION_PART, from the standard C library function, modf.

Use the following template file to construct an interface to the standard C library
function, modf. This function returns the integer part of A in IntPart and the fraction
part of A asthe return value.

[[float out]] doubl e nodf (
[[float in]] double A
[[float in out]] double *IntPart);

Use the following template file to return only the integer part:

doubl e nodf (
[[float in arg_nun(1)]] double A
[[float out ret_val]] double *IntPart);

Parameter Attributes
Base and Base Modifier Attributes

A problem with this example is that the COBOL program must call modf instead of
integer_part. To resolve this problem, use the alias(name) base modifier attribute
asfollows:

[[alias(integer_part)]] doubl e nodf (
[[float in arg_nun(1)]] double A
[[float out ret_val]] double *IntPart);

A similar function, called fraction_part, uses the return value of the modf function,
asfollows:

[[alias(fraction_part)
float out]] doubl e nodf (
[[float in]] double A
double *IntPart);

Numeric Base Attributes

Three numeric base attributes are used to convert between COBOL numeric data items
and C data items:

« integer. Usetheinteger base attribute with C integer data types (such as char,
short, int, and long).

On input, the COBOL numeric argument is converted to an integer C parameter.
If the argument value contains a fractional component after application of the
scaled(value) base modifier attribute, if specified, it will be truncated (or rounded,
if the rounded base modifier isused). On output, the C parameter is converted

to aCOBOL numeric argument. |f the argument is described using P-scaling

(see page 2-33), truncation may occur (or rounding, if the rounded base modifier
is used).

« float. Usethefloat base attribute with C floating-point data types (float and
double).

On input, the COBOL numeric argument is converted to afloating-point C
parameter. |f the argument contains more trailing digits than are supported by the
floating-point representation, it is truncated (or rounded if the rounded base modifier
isused). On output, the C parameter is converted to a COBOL numeric argument.
Truncation may occur (or rounding, if the rounded base modifier is used).

CodeBridge E-5
Base and Base Modifier Attributes

E-6

e numeric_string. Usethe numeric_string base attribute to pass COBOL numeric
arguments to null-terminated C string parameters, called a numeric string in this
document.

A numeric string is created in a dynamically allocated buffer. By default, the buffer
length is four more than the digit length of the COBOL argument. This ensures
enough room in the buffer to contain the numeric value, the decimal point character,
one or two sign characters, and atrailing null character. This default length may be
overridden using the size(value) base modifier attribute.

Note Numeric base attributes may be used with arrays. For more information, see
“Numeric Arrays’ on page 2-34.

Numeric String Formatting and Conversion Rules

A numeric string parameter is a parameter for which either the numeric_string or the
general_string base attribute has been specified and for which the COBOL argument is
numeric. For use with a C function, a numeric string is formatted according to the
following rules:

1. Thestring is composed of two parts. an optional sign and a numeric value.

2. Thesign may be aleading sign (occurring before the numeric value) or atrailing sign
(occurring after the numeric value). A leading sign may be a single character (either
“+” or “-"). A trailing sign may be either one character (either “+” or “-") or two
characters (the debit symbol “DB” or the credit symbol “CR”).

Note On input conversion before calling the C function, the sign representation will
be placed in the string according to the leading or trailing sign base modifiers that are
selected. On output conversion (after returning from the C function), any supported
sign representation is allowed. See “leading or trailing signs’ on page E-10 for the
supported sign representations.

3. Thenumeric value is represented as a string of numeric characters (‘0" through ‘9)
with an embedded decimal point character point, as needed.

Note On input conversion, if the dataitem contains an integer value, the resultant
numeric string does not contain a decimal point character or trailing zero characters.
Also, on input conversion, if the dataitem contains only afraction value (the absolute
value of the dataitem is non-zero and less than 1), the resultant numeric string will
contain aleading zero character followed by a decimal point character.

4. Space characters may occur before and after both the numeric value and the sign.
They areignored.

Parameter Attributes
Base and Base Modifier Attributes

Note On input conversion to the C function, CodeBridge will not place any space
charactersin anumeric string. On output conversion from the C function,
CodeBridge will tolerate embedded spaces.

Some examples of numeric strings are:

b

' 2.34 CR'

Base Modifiers that Apply to Numeric Base Attributes

Numeric base attributes can be supplemented with additional information by the base
modifier attributes that are listed below. Some of the base modifier attributes apply to all
numeric base attributes, while others apply only to a particular numeric base attribute.

The following base modifier attributes may be used with any numeric base attributes:

« alias(name). For adescription of this base modifier, see page E-4. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

e assert_digits(min;max). Usethisbase modifier attribute to verify that the digit
length of the passed COBOL argument is within the range specified by min and max.
For example, [[i nteger out assert _digits(5;5)]] indicatesthat the
COBOL dataitem must contain exactly five digits.

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example, all of
the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a dataitem
with adigit length of eight for CodeBridge.

« assert_digits left(min;max). Usethis base modifier attribute to verify that the
number of digitsto the left of the decimal point in the passed COBOL argument is
within the range specified by min and max. For example, [[f | oat
assert_digits_left(5;~0)]] indicatesthat the COBOL dataitem must contain
five or more digits to the left of the decimal point, or equivalently, no less than five
digits before the decimal point.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. This usageis preferable to other
choices such as Oxffff (which requires knowing the number of f'sto write) and -1
(whichis not allowed C for unsigned data types).

CodeBridge E-7
Base and Base Modifier Attributes

E-8

The use of P-scaling in the COBOL program will increase the number of digitsto the
left of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the left of the decimal point. For example, both of the
PICTURE character-strings 9(8) and 9(5)P(3) describe a data item with eight digits
to the left of the decimal point for CodeBridge.

assert_digits right(min;max). Use this base modifier attribute to verify that the
number of digits to the right of the decimal point in the passed COBOL argument is
within the range specified by min and max. For example, [[f | oat
assert_digits_right(0;2)]] indicatesthat the COBOL dataitem must contain
no more than two digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of digitsto the
right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and VP(3)9(5) describe a data item with eight
digitsto the right of the decimal point for CodeBridge.

assert_length(min;max). Use this base modifier attribute to verify that the actual
length of the passed COBOL argument is within the range specified by min and max.
For example, [[i nt eger out assert_I| engt h(10; ~0)]] indicatesthat the
COBOL dataitem must contain at |east ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. This usageis preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(whichis not allowed C for unsigned data types).

assert_signed. Use this base modifier attribute to verify that the passed COBOL
argument contains a sign.

assert_unsigned. Use this base modifier attribute to verify that the passed COBOL
argument does not contain asign.

no_null_pointer. The calling COBOL program may pass a pointer with a null value
as an argument either by specifying the figurative constant NULL (NULLS) or by
specifying a COBOL pointer argument that has been set to NULL (NULLS). Inthis
case, CodeBridge would normally pass a null pointer as a parameter to the C
function. If theno_null_pointer base modifier attribute is used, an error condition
will be generated instead.

no_size error. During conversion (either COBOL to C or Cto COBOL), itis
possible that leading digits will be lost. If this occurs, the normal behavior isto
generate an error condition. If theno_size error base modifier attribute is used, the
error condition will be ignored.

Parameter Attributes
Base and Base Modifier Attributes

occur s(value). Arrays of COBOL numeric arguments may be passed to a C function.
Use the occur s(value) base modifier attribute to specify the array size. If theC
function prototype specifies the array size, it is not necessary to use the occur s(value)
base modifier attribute unless you need to override the value specified in the function
prototype.

optional. The calling COBOL program may omit the associated argument (see
“Managing Omitted Arguments’ beginning on page 2-17 for more information on
omitted arguments and this attribute), in which case CodeBridge would normally
generate an error condition. If the optional base modifier attribute is used, then a
default value is generated and passed to the C function. The default value associated
with aninteger or float base attribute is anumeric zero. The default value
associated with ageneral_string or numeric_string base attribute is an empty string
(the first character of the string isa null character). If avalue other than the
CodeBridge supplied default value is desired, see the value_if _omitted(value) base
modifier attribute description.

Note The current implementation of CodeBridge Builder only alows input optional
parameters. Output parameters are required by default.

repeat(value). Use this base modifier attribute with the C parameter before the
ellipsis when a variable number of C parametersis used. valueindicatesthe
maximum number of additional C parameters.

rounded. Use this base modifier attribute to cause rounding in those cases where
truncation would normally occur (on either input or output). Rounding is performed
using COBOL rounding rules.

silent. For adescription of this base modifier, see page E-4.

value_if_omitted(value). Use thisbase modifier attribute to specify avalueto

be used when the calling COBOL program omits the associated argument (see
“Managing Omitted Arguments’ beginning on page 2-17 for more information on
omitted arguments and this attribute). When this attribute is used, it is not necessary
to also use the optional base modifier attribute. Aninteger attribute list must
specify an integer value (for example, val ue_i f _omi tt ed(3)); afloat attribute list
must specify a floating-point value (for example, val ue_i f _oni tted(3.0)); and a
numeric_string attribute list must specify a string value (for example,
value_if_onmitted("3.0")).

CodeBridge E-9
Base and Base Modifier Attributes

In addition to the base modifier attributes that apply to all numeric base attributes, the
following modifiers are specific to the integer base attribute:

« integer_only. Usethisbase modifier attribute to verify that the passed COBOL
argument represents an integer value (that is, no digits are allowed to the right of the
decimal point). Thisattribute is equivalent to the assert_digits right(0;0) base
modifier attribute specification.

» scaled(value). Use this base modifier attribute to scale integer values during the
conversion process. On input, the COBOL argument is multiplied by 104", On
output, the C parameter is divided by 10",

For example, if the attributelistis[[i nteger in out scal ed(2)]] andthe
COBOL program supplied a value of 1.53, the C function would receive a value of
153. If the C function changed the value to 4, the COBOL program would receive
.04 back.

« unsigned. Use this base modifier attribute to force CodeBridge to treat the C
parameter as unsigned. The default isto treat C parameters as signed.

In addition to the modifiers that apply to all numeric base attributes, the following
modifiers are specific to the numeric_string base attribute:

e dize(value). Usethisbase modifier attribute with the numeric_string base attribute
to specify avalue that overrides the default length when the conversion string buffer
isdynamically allocated.

« leading or trailing signs. One of the following leading or trailing sign base modifier
attributes may be used with for the numeric_string base attribute. The default base
modifier attribute isleading_sign.

Attribute Sign if positive Sign if negative
leading_sign ‘4 “r
leading_minus none
trailing_sign ‘4 “r
trailing_minus none
trailing_credit none “CR"
trailing_debit none “DB”

E-10 Parameter Attributes
Base and Base Modifier Attributes

string Base Attribute

C strings are a null-terminated array of characters. Although there are many standard C
library functions that deal with C strings, there is no corresponding COBOL data type.
The string base attribute is used to convert between COBOL non-numeric arguments and
null-terminated C string parameters.

Oninput, datais copied to a dynamically allocated buffer and atrailing null character is
added. On output, datais copied from the buffer and the trailing null character is
removed. By default, the data buffer is one byte larger that the length of the COBOL
argument so that there is room for the trailing null character. This default may be
overridden using the size(value) base modifier attribute.

Note1 On Windows platforms, CodeBridge allocates the intermediate buffer using the
SysAllocStringBytel en function. This places additional overhead information before the
start of the string. The SysStringBytel en function may be used to obtain the length of the
buffer. Usethe standard C library function, strlen, to retrieve the length of the string in
the buffer.

Note 2 A string base attribute may be used with arrays. For more information, see
“String Arrays’ on page 2-35.

Base Modifiers that Apply to the String Base Attribute

One leading character and one trailing character base modifier attribute may be specified
for each parameter. On input, leading and/or trailing characters are removed as specified.
On output, trailing characters (if selected) are added to | eft-justified data items, while
leading characters (if selected) are added to right-justified dataitems.

The string base attribute can be supplemented with additional information by the base
modifier attributes that are listed below.

The following base modifier attributes may be used with the string base attribute:

« alias(name). For adescription of this base modifier, see page E-4. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

e assert_length(min;max). Use this base modifier attribute to verify that the actual
length of the passed COBOL argument is within the range specified by min and max.
For example, [[string out assert_|ength(10;~0)]] indicatesthat the
COBOL dataitem must contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. This usageis preferable to other

CodeBridge E-11
Base and Base Modifier Attributes

choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(whichis not allowed C for unsigned data types).

» leading_spaces. Usethisbase modifier attribute to instruct CodeBridge to remove
leading space characters on input, and for right-justified arguments, add leading
space characters on output.

« leading(value). Thisbase modifier attribute is the same as the leading_spaces base
modifier, except that the character represented by value is used instead of a space
character.

e no_null_pointer. The calling COBOL program may pass a pointer with anull value
as an argument either by specifying the figurative constant NULL (NULLS) or by
specifying a COBOL pointer argument that has been set to NULL (NULLS). Inthis
case, CodeBridge would normally pass a null pointer as a parameter to the C
function. If theno_null_pointer base modifier attribute is used, an error condition
will be generated instead.

e occurs(value). Arraysof COBOL non-numeric arguments may be passedtoaC
function. Use the occur s(value) base modifier attribute to specify the array size. If
the C function prototype specifies the array size, it is not necessary to use the
occur s(value) base modifier attribute unless you need to override the value specified
in the function prototype.

e optional. Thecaling COBOL program may omit the associated argument
(see “Managing Omitted Arguments’ beginning on page 2-17 for more information
on omitted arguments and this attribute), in which case CodeBridge would normally
generate an error condition. If the optional base modifier attribute is used, then a
default value is generated and passed to the C function. The default value associated
with ageneral_string or string base attribute is an empty string (the first character
of the string isa null character). If avalue other than the CodeBridge supplied
default value is desired, see the value_if_omitted(value) base modifier attribute
description.

Note The current implementation of CodeBridge Builder only allows input optional
parameters. Output parameters are required by default.

e repeat(value). Usethisbase modifier attribute with the C parameter before the
ellipsis when a variable number of C parametersis used. valueindicatesthe
maximum number of additional C parameters.

« dlent. For adescription of this base modifier, see page E-4.

e dize(value). Use thisbase modifier attribute with the string base attribute to specify
avalue that overrides the default length when the conversion string buffer is
dynamically allocated.

E-12 Parameter Attributes
Base and Base Modifier Attributes

« trailing_spaces. Use this base modifier attribute to instruct CodeBridge to remove
trailing space characters on input and, for left-justified arguments, add trailing space
characters on output.

« trailing(value). Thisbase modifier attribute is the same asthe trailing_spaces
modifier, except that the character represented by value is used instead of a space
character.

« value_ if omitted(value). Use thisbase modifier attribute to specify avalueto be
used when the calling COBOL program omits the associated argument (see
“Managing Omitted Arguments’ beginning on page 2-17 for more information on
omitted arguments and this attribute). When this base modifier attribute is used, it is
not necessary to also use the optional base modifier attribute. A string attribute list
must specify a string value (for example, val ue_i f _oni tted("Defaul t")).

general_string Base Attribute

The general_string base attribute is used in those cases when it is desirable to allow a

C string parameter to accept either a numeric COBOL argument or a non-numeric
COBOL argument. When a numeric argument is passed to a parameter described with
the general_string base attribute, the argument is converted as if the parameter were
described with the numeric_string base attribute; otherwise, the argument is converted as
if the parameter were described with the string base attribute. An attribute list containing
the general_string base attribute allows any additional attributes that may be used with
either a string base attribute or anumeric_string base attribute. For each call and for
each argument passed to a parameter within a set of a variable number of parameters,
attributes that do not apply to the COBOL argument actually passed are ignored for the
conversion of that argument. That is, for a numeric argument, base modifier attributes not
applicable to the numeric_string base attribute are ignored and for a non-numeric
argument, base modifier attributes not applicable to the string base attribute are ignored.
Refer to “Numeric Base Attributes’ on page E-5 and “string Base Attribute” on

page E-11 for further information.

In general_string attribute lists, base modifier attributes that apply to anumeric_string
or string base attribute may be used together. Those base modifier attributes that do not
apply for a given passed argument are ignored (for example, trailing_sign for a
non-numeric COBOL argument).

CodeBridge E-13
Base and Base Modifier Attributes

String Length Base Attributes

The string length base attributes, buffer _length and effective_length, are used to pass
length information about a string parameter as a separate parameter to a C function.
Attribute lists formed with these base attributes are used with the attribute lists formed
with the general_string, numeric_string, and string base attributes. By default, these
length attributes refer to the same COBOL argument number as the base attribute in the
preceding attribute list. If the length attribute list does not immediately follow the
associated attribute list, then the arg_num(value) argument number attribute must be
used, where value must be the same as used in an arg_num(value) attribute of the
associated general_string, numeric_string, or string base attribute.

The string length base attributes include the following:

« buffer_length. The buffer_length base attribute describes a C numeric parameter
and instructs CodeBridge to pass the length of the conversion buffer to the C function
asthe value of the parameter. The length of the buffer is determined by the base
attribute that is used to describe the string parameter associated with the same
argument, as follows:

— For the string base attribute, the buffer length defaults to one more than the
length of the passed COBOL argument, which allows space for the characters
of the argument value and a null-termination character.

— For thenumeric_string base attribute, the buffer length defaults to four more
than the digit length of the passed COBOL argument, which allows space for the
digits of the argument value and the sign, decimal-point, and null-termination
characters.

— For the general_string base attribute, the buffer length defaults to the greater of
one more than the length of the passed COBOL argument and four more than the
digit length of the passed COBOL argument, which allows space for either a
non-numeric or NuMeric argument conversion.

The default values for buffer_length may be overridden by using the size(value)
base modifier attribute in the attribute list that contains the string, numeric_string,
or general_string base attribute that is associated with the same argument as
buffer_length.

« effective_length. The effective length base attribute returns the actual number of
characters stored in the conversion string buffer after the input conversion processis
complete. (Thisissimilar to the standard C library function, strlen.) Thisbase
attribute is used for obtaining the length of input string parameters denoted by
general_string, numeric_string, or string base attributes.

Note To obtain the length of the COBOL argument, use the length base attribute
described on page E-18.

E-14 Parameter Attributes
Base and Base Modifier Attributes

Base Modifiers that Apply to String Length Base Attributes

The following base modifier attributes may be used with the string length base attributes:

e occurs(value). Arraysof COBOL non-numeric arguments (or numeric arguments
converted by numeric_string) may be passed to a C string parameter. Usethe
occur s(value) base modifier attribute to specify the array size. If the C function
prototype specifies the array size, it is not necessary to use the occur s(value) base
modifier attribute unless you need to override the value specified in the function
prototype.

Note Thearray size for the string length base attributes must be less than or equal to
the array size of the C string parameter associated with the same argument number.

« silent. For adescription of this base modifier, see page E-4.

Pointer Base Attributes

Pointer base attributes are used when passing a component of a COBOL pointer argument
to the C function. These attributes are associated with the RM/COBOL POINTER data
type, anew feature introduced in RM/COBOL version 7.0. A COBOL pointer describes
ablock of memory and has three components. base address, offset, and size. When a
pointer dataitem isinitialized, the base address contains the starting address of the block
of memory, the offset is set to zero, and the size contains the total length of the block.
The offset may be modified in an RM/COBOL program by using the Format 6 SET
statement (see the RM/COBOL Language Reference Manual).

CodeBridge provides two approaches for accessing data described by a COBOL pointer
dataitem. The first method is useful when the C function wishes to access or modify
memory referenced by the pointer. This approach uses the following two pointer base
attributes, both of which are defined for input to the C function but not for output:

e pointer_address. Usethe pointer_address base attribute to pass the effective
address (base address plus offset) of a passed COBOL pointer argument to the
C function.

e pointer_length. Usethe pointer_length base attribute to pass the effective length
(size minus offset) of a passed COBOL pointer argument to the C function. Thisis
the amount of data between the current value of the pointer and the end of the block
of memory described by the pointer.

The second approach is useful if the C function wishes to access the components of the
COBOL pointer dataitem directly. This method is useful when the C function wishes to
change one of the components of a COBOL pointer.

CodeBridge E-15
Base and Base Modifier Attributes

Note Although CodeBridge provides the ability to change the value of COBOL data
areas or COBOL pointers, caution should be used due to the potential risk of corrupting
the COBOL program.

The second approach uses the following three pointer base attributes, all of which may be
used for both input and output:

e pointer_base. Usethe pointer_base base attribute to pass the base address
component of a passed COBOL pointer argument to and from the C function.

e pointer_offset. Usethe pointer_offset base attribute to pass the offset component
of apassed COBOL pointer argument to and from the C function.

e pointer_size. Usethe pointer_size base attribute to pass the size component of a
passed COBOL pointer argument to and from the C function.

Note A COBOL pointer data item with a zero base address component is aways a null
pointer, regardless of the offset and size values. If the base address of a pointer is set to a
zero value or remains a zero value, the pointer offset and size components cannot be set
to non-zero values. When a COBOL pointer data item with a zero base address
component is stored, the pointer offset and size components will be set to zero.

Base Modifiers that Apply to Pointer Base Attributes

In addition to the alias(name) and silent base modifier attributes (see page E-4), two
other base modifier attributes are available for the second approach described above:

e pointer_max_size. Usethisbase modifier attribute when either the pointer _base or
pointer_offset base attribute is used for output to force the pointer size component to
avalue of al ones.

e pointer_reset_offset. Use thisbase modifier attribute when either the pointer _base
or pointer_size base attribute is used for output to force the pointer _offset
component to avalue of zero. For an example of using pointer_reset offset, see
“Example 4: Accessing COBOL Pointer Arguments’, which begins on page B-9.

E-16 Parameter Attributes
Base and Base Modifier Attributes

Descriptor Base Attributes

Sometimes it may be necessary to pass individual data descriptor components for a
COBOL argument, as well as the argument count, the COBOL initial state flag, or the
Windows handle, directly as C parameters. (See “Passing COBOL Descriptor Data’ on
page 2-15 and “Passing Miscellaneous Information” on page 2-17.)

The following lists the descriptor base attributes:

address. Use the addr ess base attribute when passing the address of a passed
COBOL argument to the C function. By using this attribute, the C function may
modify the COBOL data area directly. When the address of a COBOL dataitemis
passed in this way, the C function is responsible for any parameter conversion that is
required. The address may be saved by the C function and used by this or other
functions in the non-COBOL subprogram later in the run unit. However, if the
addressrefersto adataitem in a COBOL program that is later canceled, the saved
address may no longer be valid. It isthe programmer’s responsibility to prevent such
situations.

arg_count. Usethe arg_count base attribute to pass the actual number of COBOL
arguments to the C function. The arg_count base attribute does not refer to a
COBOL argument.

The argument count is the number of actual arguments specified in the USING
phrase of the CALL statement, including any arguments explicitly specified by the
OMITTED keyword. The count does not include the argument specified in the
GIVING (RETURNING) phrase.

Note When using the explicit argument association method, it is an error to specify
the argument number attribute, arg_num(value), with the arg_count base attribute
since this base attribute does not refer to a COBOL argument.

digits. Use the digits base attribute when passing the digit count, that is, the number
of 9'sin the PICTURE character-string, of a passed COBOL numeric argument to
the C function. If the item is not numeric, the results are undefined.

CodeBridge E-17
Base and Base Modifier Attributes

e initial_state. Usetheinitial_state base attribute to pass the COBOL initial state flag
to the C function. Theinitial_state base attribute does not refer to a COBOL
argument. It returns information about the state of the called program within the run
unit.

When the COBOL initial state flag is zero, the C function may choose to reinitialize
any “state” variablesit contains. When it is non-zero, the C function uses the
current values of any “state” variables. For more information, see item number 4 on
page G-5.

Notel A “state” variable isone whose contents are normally preserved between
function calls.

Note 2 When using the explicit argument association method, it is an error to specify
the argument number attribute, arg_num(value), with theinitial_state base attribute
since this base attribute does not refer to a COBOL argument.

« length. Usethelength base attribute when passing the length (in bytes) of a passed
COBOL argument to the C function. The length attribute may be used for the same
argument as the addr ess base attribute to allow a C function to modify the COBOL
data area directly. Other uses also exist; for example, the length base attribute may
be used for the same argument as the string base attribute to pass the maximum size
that a string may occupy (it does not include space for the trailing null character).

» scale. Usethe scale base attribute when passing the digit count of the number of
digitsto the right of the decimal point in a passed COBOL numeric argument to the
C function. If theitemis not numeric, the results are undefined. The scalevalueis
the arithmetic complement of the scale value in the COBOL argument descriptor.

Note If the COBOL dataitem uses P-scaling, the scaling factor may be negative.
For example, for a PIC 9(7)P(3) dataitem, using this attribute will pass -3 to the
C function; for aPIC P(3)9(7) dataitem, using this attribute will pass 10 to the

C function.

e type. Usethetype base attribute when passing the type code of a passed COBOL
argument to the C function. Type codes, which are defined in the header file
rmce85cal.h, are included in Table E-1 for easy reference. Note that some values are
classified as “reserved” in the “ Classification” column. They either refer to internal
formats that are not used by CodeBridge or to values that are reserved for future use.

E-18 Parameter Attributes
Base and Base Modifier Attributes

Table E-1: Type Attribute Codes

Name Value Classification Description
RM_NSE 0 Numeric Numeric Edited
RM_NSU 1 Numeric Display Unsigned
RM_NTS 2 Numeric Display Trailing Separate
RM_NTC 3 Numeric Display Trailing Combined
RM_NLS 4 Numeric Display Leading Separate
RM_NLC 5 Numeric Display Leading Combined
RM_NCS 6 Numeric Unpacked Signed
RM_NCU 7 Numeric Unpacked Unsigned
RM_NPP 8 Numeric Packed Positive
RM_NPS 9 Numeric Packed Signed
RM_NPU 10 Numeric Packed Unsigned
RM_NBS 11 Numeric Binary Signed
RM_NBU 12 Numeric Binary Unsigned or Index
13-15 Reserved
RM_ANS 16 Non-numeric Alphanumeric
RM_ANSR 17 Non-numeric Alphanumeric (Right Justified)
RM_ABS 18 Non-numeric Alphabetic
RM_ABSR 19 Non-numeric Alphabetic (Right Justified)
RM_ANSE 20 Non-numeric Alphanumeric Edited
RM_ABSE 21 Non-numeric Alphabetic Edited
RM_GRPF 22 Non-numeric Group
23-24 Reserved
RM_PTR 25 Pointer COBOL Pointer
26-31 Reserved
RM_OMITTED | 32 Omitted Omitted argument

CodeBridge E-19

Base and Base Modifier Attributes

« windows handle. Usethewindows_handle base attribute to pass the Windows
handle associated with the run unit to the C function. This attribute, whichis
available only for Windows systems, is useful when calling some Windows APIs.
For example, when opening a new window, it may be necessary to supply the handle
of the parent’swindow. The windows_handle base attribute does not refer to a
COBOL argument.

Note1 Thewindows _handle base attribute is not available on UNIX platforms as it
can cause compilation errors.

Note 2 When using the explicit argument association method, it is an error to specify
the argument number attribute, arg_num(value), with the windows_handle base
attribute since this base attribute does not refer to a COBOL argument.

Base Modifier that Applies to Descriptor Base Attributes

Only one base modifier attribute, silent, is used with descriptor base attributes. For a
description of this base modifier, see page E-4.

Error Base Attributes

Occasionally, either the C library or one of the Windows API functions will return error
information that must be retrieved separately from the C function that is called.

The C library often places error information in the external variable, errno. If the called
function returns avalue of —1, then in the calling program value of the external variable
errno isthe error code. In releases prior to version 7.1, CodeBridge had no means of
accessing this variable.

Some Windows APIs return error information that must be retrieved by calling the C
function, GetLastError. If the called function returns a status of FALSE (numeric zero),
then the calling program must call the function GetL astError to obtain the error number.
In many cases, however, the value that would have been returned by GetLastError likely
will be modified by the RM/COBOL runtime between successive calls from the COBOL
program, making it impossible to call GetLastError as a separate function.

E-20 Parameter Attributes
Base and Base Modifier Attributes

Error base attributes associate with a COBOL argument for which there is no
corresponding C function return or parameter. Two error base attributes have been added
to CodeBridge that deal with these situations:

* erno. Usetheerrno base attribute to retrieve the contents of the external variable,
errno. Specifying the base attribute errno is similar to specifying integer out, except
that it does not associate with a C function return or parameter. While this attribute
does not associate with the C function return or any parameter, the position of the
attribute list within the C function prototype in which it appearsis significant for
determining the COBOL argument number when automatic argument association is
used, as described on page 2-23. The externa variable errno, which is the source
item for the attribute errno, has the C type of int, which issigned. The assumed
direction attribute is out; a direction attribute is not allowed with the attribute errno.

 get_last_error. Usetheget last_error base attribute to retrieve the contents
returned by the C function, GetLastError. Specifying get_last_error issimilar to
specifying integer out unsigned, except that it does not associate with a C function
return or parameter. While this attribute does not associate with the C function return
or any parameter, the position of the attribute list within the C function prototype in
which it appearsis significant for determining the COBOL argument number when
automatic argument association is used, as described on page 2-23. Thereturn value
of GetLastError, which is the source item for the attribute get_last_error, hasthe
Windows type of DWORD, which isunsigned. The assumed direction attribute is
out; adirection attribute is not allowed with the attribute get_last_error.

Error base attributes refer to an argument in the COBOL CALL statement, but do not
refer to any C function return value or parameter. These attributes cause the CodeBridge
Builder to generate separate code sequences to return the value of the external variable
errno or the return value of the Windows GetLastError function. For additional
information, see “Returning C Error Values’ on page 2-19.

Error base attributes are, in a certain sense, the opposite of descriptor base attributes
(theseinclude arg_count, initial_state, and windows_handle). The error base attributes
describe a COBOL argument for which there is no corresponding C parameter, because
the source item for these attributes is not described in the C function prototype, and are
output (to the COBOL argument) only. The descriptor base attributes are used to develop
input values for C parameters from a source other than a COBOL argument or from the
description of a COBOL argument.

CodeBridge E-21
Base and Base Modifier Attributes

Base Modifiers that Apply to Error Base Attributes

The error base attributes may be used in an attribute list with the same base modifier
attributes as for the base attribute integer with the following exception:

e Theunsigned attribute is not allowed. It would be incorrect for errno and isimplied
for get_last_error.

The error base attributes can be supplemented with additional information by the base
modifier attributes listed below:

« alias(name). For adescription of this base modifier, see page E-4. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

e assert_digits(min;max). Usethisbase modifier attribute to verify that the digit
length of the passed COBOL argument is within the range specified by min and max.
For example, [[errno assert _digits(9; 18)]] indicatesthat the COBOL data
item must contain from 9 to 18 digits.

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example, all of
the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a dataitem
with adigit length of eight for CodeBridge.

e assert_digits left(min;max). Usethis base modifier attribute to verify that the
number of digitsto the left of the decimal point in the passed COBOL argument is
within the range specified by min and max. For example, [[get _| ast _error
assert_digits_left(5;~0)]] indicatesthat the COBOL dataitem must contain
five or more digits to the left of the decimal point, or equivalently, no less than five
digits before the decimal point.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. This usageis preferable to other
choices such as Oxffff (which requires knowing the number of f'sto write) and -1
(whichis not allowed C for unsigned data types).

The use of P-scaling in the COBOL program will increase the number of digitsto the
left of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the left of the decimal point. For example, both of the
PICTURE character-strings 9(8) and 9(5)P(3) describe a data item with eight digits
to the left of the decimal point for CodeBridge.

E-22 Parameter Attributes
Base and Base Modifier Attributes

assert_digits right(min;max). Use this base modifier attribute to verify that the
number of digits to the right of the decimal point in the passed COBOL argument
is within the range specified by min and max. For example, [[errno
assert_digits_right(0;0)]] indicatesthat the COBOL dataitem must
contain no digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of digitsto
the right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and VP(3)9(5) describe a data item with eight
digitsto the right of the decimal point for CodeBridge.

assert_length(min;max). Use this base modifier attribute to verify that the actual
length of the passed COBOL argument is within the range specified by min and max.
For example, [[get _| ast _error assert_| engt h(10; ~0)]] indicatesthat the
COBOL data item must contain at |east ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the largest
positive value that can be stored in adataitem. This usage is preferable to other
choices such as Oxffff (which requires knowing the number of f’sto write) and -1
(whichis not allowed C for unsigned data types).

assert_signed. Use this base modifier attribute to verify that the passed COBOL
argument contains a sign.

assert_unsigned. Use this base modifier attribute to verify that the passed COBOL
argument does not contain asign.

no_size error. During conversion (either COBOL to C or Cto COBOL), itis
possible that leading digits will be lost. If this occurs, the normal behavior isto
generate an error condition. If theno_size error base modifier attribute is used, the
error condition will be ignored.

rounded. Use this base modifier attribute to cause rounding in those cases where
truncation would normally occur (on either input or output). Rounding is performed
using COBOL rounding rules.

scaled(value). Use this base modifier attribute to scale integer values during the
conversion process. On output, the C value is divided by 10",

For example, if the attributelistis[[errno scal ed(2)]] and the C function
changed the value of the external variable errno to 123, the COBOL program would
receive 1.23 back.

silent. For adescription of this base modifier, see page E-4.

CodeBridge E-23
Base and Base Modifier Attributes

Parameter Attributes Summary

Table E-2 lists all available parameter attributesin aphabetical order. The “Attribute
Category” column contains the category of the parameter attribute as one of the
categories: Argument Number, Direction, Base or Base Modifier, as discussed in earlier
sections. The “Modifier Usage” column indicates whether base modifier attributes affect
the COBOL argument, the C dataitem, or the C function name. The “Description”
column presents a brief overview of the function of the parameter attribute.

Table E-2: Parameter Attributes Summary

Parameter Attribute Modifier
Attribute Category Usage Description
address Base Passes the address of a passed COBOL
(Descriptor) argument to the C function. See
page E-17.
dias(name) Base C Function | Changes the generated function name to
Modifier Name be the name specified by name. See
page E-4.
arg_count Base Passes the actual number of COBOL
(Descriptor) arguments to the C function. See
page E-17.
arg_num(value) Argument Explicitly specifiesthe COBOL argument
Number number of an argument in the USING
phrase rather than accepting the default
argument association. See page E-2.
assert_digits Base COBOL Insures that the number of digitsin the
(min; max) Modifier Argument passed COBOL argument is within the
range specified by min and max. This
modifier is used with numeric base
attributes. See page E-7.
assert_digits_left Base COBOL Insures that the number of digitsto the
(min; max) Modifier Argument left of the decimal point in the passed
COBOL argument is within the range
specified by min and max. This modifier
is used with numeric base attributes. See
page E-7.
assert_digits_right Base COBOL Insures that the number of digitsto the
(min; max) Modifier Argument right of the decimal point in the passed

COBOL argument is within the range
specified by min and max. This modifier
is used with numeric base attributes. See
page E-8.

E-24 Parameter Attributes

Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
assert_length Base COBOL Insures that the length of the passed
(min; max) Modifier Argument COBOL argument is within the range
specified by min and max. This modifier
is used with numeric or string base
attributes. See pages E-8 and E-11.
assert_signed Base COBOL Insures that the passed COBOL argument
Modifier Argument issigned. Thismodifier is used with
numeric base attributes. See page E-8.
assert_unsigned Base COBOL Insures that the passed COBOL argument
Modifier Argument isunsigned. This modifier is used with
numeric base attributes. See page E-8.
buffer_length Base Passes the size (in bytes) of the string
(String buffer to the C function. buffer_lengthis
Length) one greater than the length of anon-
numeric COBOL argument or four greater
than the digit length of anumeric COBOL
argument. See page E-14.
digits Base Passes the number of digitsin a passed
(Descriptor) COBOL numeric argument to the C
function. See page E-17.
effective_length Base Passes the effective size (in bytes) of the
(String string buffer to the C function. Thisis
Length) similar to the standard C library function,
strlen. See page E-14.
errno Base Causes the external variable errno to be
(Error) set to zero before the function call and
the value of the external variable errno
after the function call to be returned to
aCOBOL numeric argument. See
page E-20.
float Base Converts COBOL numeric arguments to
(Numeric) C floating-point parameters (such as float

or double). See page E-5.

CodeBridge E-25
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
genera_string Base Converts numeric and non-numeric
(Numeric or COBOL arguments to null-terminated
String) C strings. Numeric COBOL arguments
aretreated asif the numeric_string base
attribute were specified. Non-numeric
COBOL arguments are treated asif the
string base attribute were specified. See
page E-13.
get_last_error Base Causes the Windows error code to be set
(Error) to zero by acall to SetL astError before the
function call and the value returned from
acall to GetLastError after the function
call to be returned to a COBOL numeric
argument. See page E-20.
in Direction Specifies an input parameter to the C
function. See page E-2.
initial_state Base Passes the COBOL initial state flag to the
(Descriptor) C function. See page E-18.
integer Base Converts COBOL numeric arguments to
(Numeric) C integer parameters (such as char, short,
int, or long). See page E-5.
integer_only Base COBOL Insures that the passed COBOL argument
Modifier Argument isan integer (no digits are allowed to the
right of the decimal point). This modifier
is used with the integer base attribute.
See page E-10.
leading(val ue) Base C Specifies the use of leading strip/fill
Modifier Parameter charactersindicated by value. This
modifier is used with the string base
attribute. See page E-12.
leading_minus Base C Forces a minus sign character (“-") to be
Modifier Parameter placed before the numeric value when the
valueis negative. Positive values do not
contain asign character. Thismodifier is
used with the numeric_string base
attribute. See page E-10.

E-26 Parameter Attributes
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
leading_sign Base C Forces asign character, either aplus (“+”
Modifier Parameter or aminus (“-"), depending on the sign of
the value, to be placed before the numeric
value. Thismodifier is used with the
numeric_string base attribute. See
page E-10.
leading_spaces Base C Specifies the use of leading strip/fill space
Modifier Parameter characters. This modifier is used with the
string base attribute. See page E-12.
length Base Passes the size (in bytes) of a passed
(Descriptor) COBOL argument to the C function. See
page E-18.
no_null_pointer Base COBOL Returns an error if the COBOL program
Modifier Argument passes a pointer with anull value as an
argument. This modifier is used with
numeric or string base attributes. See
pages E-8 and E-12.
no_size error Base COBOL Causes numeric conversion errorsto be
Modifier Argument ignored. This modifier is used with
numeric base attributes. See page E-8.
numeric_string Base Converts COBOL numeric arguments to
(Numeric) null-terminated C strings. See page E-6.
occurs(value) Base C Specifies that the parameter is an array
Modifier Parameter containing value elements. This modifier
is used with numeric or string base
attributes. 1t isaso used with the
buffer_length and effective_length base
attributes. See pages E-9 and E-12.
optional Base COBOL Allows the COBOL program to omit an
Modifier Argument input argument even though aC
parameter is associated with that
argument. This modifier isused with
numeric or string base attributes. See
pages E-9 and E-12.
out Direction Specifies an output parameter from the C

function and causes an output conversion
into the associated COBOL argument.
See page E-2.

CodeBridge E-27
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
pointer_address Base Passes the effective address (base address
(Pointer) component plus offset component) of a
passed COBOL pointer argument to the C
function. See page E-15.
pointer_base Base Passes the base address component of a
(Pointer) passed COBOL pointer argument to the C
function. See page E-16.
pointer_length Base Passes the effective length (size
(Pointer) component minus offset component) of a
passed COBOL pointer argument to the C
function. See page E-15.
pointer_max_size Base COBOL Sets the size component of a passed
Modifier Argument COBOL pointer argument to the
maximum value (all ones) on output. This
modifier is used with the pointer_base or
pointer_offset base attributes. See
page E-16.
pointer_offset Base Passes the offset component of a passed
(Pointer) COBOL pointer argument to the C
function. See page E-16.
pointer_reset offset | Base COBOL Sets the offset component of a passed
Modifier Argument COBOL pointer argument to zero on
output. This modifier is used with the
pointer_base or pointer_size base
attributes. See page E-16.
pointer_size Base Passes the size component of a passed
(Pointer) COBOL pointer argument to the C
function. See page E-16.
repeat(value) Base cC Used when the C function expects a
Modifier Parameter variable number of parameters. This
modifier is used for numeric or string base
attributes. See pages E-9 and E-12.
ret_val Argument Explicitly specifiesthe COBOL argument
Number in the GIVING (RETURNING) phrase

rather than accepting the default argument
association. See page E-2.

E-28 Parameter Attributes
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
rounded Base COBOL Causes rounding (instead of truncation) to
Modifier Argument occur during parameter conversion when
trailing digits must be removed. This
modifier is used with numeric base
attributes. See page E-9.
scale Base Passes the scale of a passed COBOL
(Descriptor) numeric argument to the C function. If a
COBOL argument had a picture of
999V 99, the scale used by COBOL is—2.
Thisvalueis negated and passed as +2 to
the C function. If the picture contains“P”
characters, this value may appear unusual.
See page E-18.
scaled(value) Base C On input, multiplies the passed COBOL
Modifier Parameter argument by a10*¥“®. On output, divides
the C parameter by a10"**®. This
modifier is used with the integer base
attribute. See page E-10.
silent Base C Suppresses display of errors detected
Modifier Parameter during conversion or validation. See
page E-4.
size(value) Base C Used with numeric_string and string base
Modifier Parameter attributes to override the default length
(itssize or precision) of the passed
COBOL argument. See pages E-10 and
E-12.
string Base Converts COBOL non-numeric
(String) arguments to null-terminated C strings.
See page E-11.
trailing(value) Base C Specifies the use of trailing strip/fill
Modifier Parameter charactersindicated by value. This
modifier is used with the string base
attribute. See page E-13.
trailing_credit Base C Forces a credit symbol (“CR”) to be
Modifier Parameter placed after the numeric value when the

valueisnegative. Positive values do not
contain asign representation. This
modifier is used with the numeric_string
base attribute. See page E-10.

CodeBridge E-29
Parameter Attributes Summary

Table E-2: Parameter Attribute Summary (Cont.)

Parameter Attribute Modifier
Attribute Category Usage Description
trailing_debit Base C Forces a debit symbol (“DB”) to be
Modifier Parameter placed after the numeric value when the
valueis negative. Positive values do not
contain asign representation. This
modifier is used with the numeric_string
base attribute. See page E-10.
trailing_minus Base C Forces aminus sign character (“-") to be
Modifier Parameter placed after the numeric value when the
valueisnegative. Positive values do not
contain asign character. Thismodifier is
used with the numeric_string base
attribute. See page E-10.
trailing_sign Base C Forces sign character, either aplus (“+”
Modifier Parameter or aminus (“-") sign character, depending
on the sign of the value, to be placed after
the numeric value. This modifier isused
with the numeric_string base attribute.
See page E-10.
trailing_spaces Base C Specifies the use of trailing strip/fill space
Modifier Parameter characters. This modifier is used with the
string base attribute. See page E-13.
type Base Passes the type-code of a passed
(Descriptor) COBOL argument to the C function.
See page E-18.
unsigned Base C Indicates that the C parameter is unsigned.
Modifier Parameter If this attribute is not used, all integer C
parameters are treated as signed. This
modifier is used with the integer base
attribute. See page E-10.
value if_omitted Base COBOL Assigns a default value when the COBOL
(value) Modifier Argument program omits the associated argument.
This modifier is used with the numeric or
string base attributes. See pages E-9
and E-13.
windows_handle Base Passes the Windows handl e of the current
(Descriptor) COBOL CALL totheC function. This
attribute is avail able only for Windows
systems. See page E-20.

E-30 Parameter Attributes
Parameter Attributes Summary

Parameter Attribute Combinations

CodeBridge Builder recognizes various parameter attribute combinations. Table E-3isa
quick reference that lists the allowed combinations. For instance, some base modifier

attributes make sense only for input or output. 1n those cases, there are separate rows for
“inonly” and “out only”.

Note When the “Direction” column contains “in (assumed)”, the direction is aways
assumed to be “in”, but the in direction attribute is not allowed.

Table E-3: Parameter Attribute Combinations

assert_digits left
assert_digits right
assert_length
assert_signed
assert_unsigned

Argument
Base Direction Number Modifiers
address in (assumed) arg_num silent
arg_count in (assumed) none silent
buffer_length in (assumed) arg_num occurs silent
digits in (assumed) arg_num silent
effective_length | in (assumed) arg_num occurs silent
errno out (assumed) | ret_val dias assert_unsigned
assert_digits no_size error
assert_digits_left rounded
assert_digits right scaled
assert_length silent
assert_signed
out (assumed) | arg_num assert_digits assert_unsigned
assert_digits left no_size error
assert_digits right rounded
assert_length scaled
assert_signed silent
float inonly optional value if_omitted
out only ret_va dias
either arg_num assert_digits no_null_pointer

no_size error
occurs

repeat
rounded
silent

CodeBridge E-31

Parameter Attribute Combinations

Table E-3: Parameter Attribute Combinations (Cont.)

Argument
Base Direction Number Modifiers
genera_string inonly leading_minus trailing_debit
leading_sign trailing_minus
optional trailing_sign
trailing_credit value if_omitted
out only ret_va aias
either arg_num assert_digits no_size error
assert_digits left occurs
assert_digits right repeat
assert_length rounded
assert_signed silent
assert_unsigned size
leading trailing
leading_spaces trailing_spaces
no_null_pointer
get_last_error out (assumed) | ret_va dias assert_unsigned
assert_digits no_size error
assert_digits |eft rounded
assert_digits right scaled
assert_length silent
assert_signed
out (assumed) | arg_num assert_digits assert_unsigned
assert_digits_left no_size error
assert_digits right rounded
assert_length scaled
assert_signed silent
initial_state in (assumed) none silent
integer inonly integer_only value if_omitted
optional
out only ret_va dias
either arg_num assert_digits no_size error
assert_digits left occurs
assert_digits right repeat
assert_length rounded
assert_signed scaled
assert_unsigned silent
no_null_pointer unsigned

E-32 Parameter Attributes

Parameter Attribute Combinations

Table E-3: Parameter Attribute Combinations (Cont.)

Argument
Base Direction Number Modifiers
length in (assumed) arg_num silent
numeric_string inonly leading_minus trailing_debit
leading_sign trailing_minus
optional trailing_sign
trailing_credit value if_omitted
out only ret_va dias
either arg_num assert_digits no_size error
assert_digits left occurs
assert_digits right repeat
assert_length rounded
assert_signed silent
assert_unsigned size
no_null_pointer
pointer_address | in (assumed) arg_num silent
pointer_base inonly
out only ret_va dias pointer_reset_offset
pointer_max_size
either arg_num silent
pointer_length in (assumed) arg_num silent
pointer_offset inonly
out only ret_val dias pointer_max_size
either arg_num silent
pointer_size inonly
out only ret_val dias pointer_reset_offset
either arg_num silent
scae in (assumed) arg_num silent

CodeBridge E-33

Parameter Attribute Combinations

Table E-3: Parameter Attribute Combinations (Cont.)

(This attribute is
available only
for Windows
systems. See
page E-20.)

Argument
Base Direction Number Modifiers
string inonly optional value if_omitted
out only ret_val aias
either arg_num assert_length repeat
leading silent
leading_spaces size
no_null_pointer trailing
ocecurs trailing_spaces
type in (assumed) arg_num silent
windows_handle | in (assumed) none silent

E-34 Parameter Attributes
Parameter Attribute Combinations

Appendix F: CodeBridge Library
Functions

The CodeBridge Library is a collection of functions that are included in the
RM/COBOL runtime system. These functions are used to convert input data from
COBOL arguments to C parameters on entry and from C parametersto COBOL
arguments just prior to exit. The CodeBridge Library also contains functions that
perform data range and integrity checks.

This appendix describes each function in the CodeBridge Library. These descriptions
will help you understand the C code generated by the CodeBridge Builder. Information
on specifying the Flags parameter is also covered. The information in this appendix
will also prove useful if you are debugging applications developed using CodeBridge.

Note Theinformation presented here assumes a working knowledge of the C
programming language. The materia in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

Overview

The CodeBridge Library consists of the conversion and validation functions shown in
Table F-1. (These functions are described in detail beginning on page F-6.) Input
functions are called before the C function is called. Output functions are called after the
C function is called but before returning to the calling COBOL program.

Note Each of these routines returns FAL SE if an error condition occurs. Logicinthe C
source code file (generated by the CodeBridge Builder) will terminate the DLL and return
an error to the RM/COBOL runtime system, which will terminate the calling COBOL
program. See Appendix A, CodeBridge Errors, for alist of these errors.

CodeBridge F-1
Overview

Table F-1: CodeBridge Library Functions

Function Name Input or Output | Used For

AssertDigits Either [[numeric assert_digits]]

AssertDigitsLeft Either [[numeric assert_digits I€ft]]

AssertDigitsRight Either [[numeric assert_digits right]]

AssertLength Either [[numeric assert_length]] or
[[string assert_length]]

AssertSigned Either [[numeric assert_signed)]]

AssertUnsigned Either [[numeric assert_unsigned]]

BufferLength Input [[buffer_length]]

Cobol ArgCount Input [[arg_count]]

Cobol DescriptorAddress Input [[address]]

CobolDescriptorDigits Input [[digits]]

Cobol DescriptorLength Input [[length]]

CobolDescriptorScae Input [[scale]]

Cobol DescriptorType Input [[typel]

Cobollnitial State Input [[initia_state]]

Cobol ToFloat Input [[float]]

Cobol ToGenera String Input [[general_string]]

Cobol Tol nteger Input [[integer]]

Cobol ToNumericString Input [[numeric_string]]

Cobol ToPointerAddress Input [[pointer_address]]

Cobol ToPointerBase Input [[pointer_basein]]

Cobol ToPointerLength Input [[pointer_length]]

Cobol ToPointerOffset Input [[pointer_offsetin]]

Cobol ToPointerSize Input [[pointer_sizein]]

Cobol ToString Input [[string]]

CobolWindowsHandle Input [[windows_handl€]]

ConversionCleanup Neither Cleanup during conversion exit.

ConversionStartup Neither Initialization of conversion process.

DiagnosticMode Global [# diagnostic(flag) #]

F-2 CodeBridge Library Functions
Overview

Table F-1: CodeBridge Library Functions (Cont.)

Function Name Input or Output | Used For
EffectiveLength Input [[effective_length]]
FloatToCaobol Output [[float out]]
General StringToCobol Output [[general _string out]]
GetCallerInfo Neither Obtaining information about the calling
COBOL program.
IntegerToCaobol Output [[integer out]]
NumericStringToCobol Output [[numeric_string out]]
PointerBaseToCobol Output [[pointer_base out]]
PointerOffsetToCobol Output [[pointer_offset out]]
PointerSizeToCaobol Output [[pointer_size out]]
StringToCobol Qutput [[string out]]

The series of functions that begin with “ Assert” are designated as “Either” in the Input or
Output column. It is recommended that these functions be called prior to the execution of
the C function.

The ConversionStartup, ConversionCleanup, and GetCallerInfo functions are designated
as“Neither” in the Input or Output column. The ConversionStartup function should be
called once just after entry from COBOL. The ConversionCleanup function should be
called once just prior to returning to COBOL. The GetCallerInfo function may be called
at any time; it isusually called after an error is detected in order to add calling program
information to an error message.

The DiagnosticMode function is designated as “Global” in the Input or Output column.
This function may be called at any time, including multiple times, after the call to
ConversionStartup and prior to the call to ConversionCleanup.

Specifying the Flags Parameter

The behavior of the CodeBridge Library conversion and validation functionsis
determined by flag settingsin the Flags parameter. |n some cases, the behavior requested
by aflag requires that additional information be passed in another parameter. For
example, when passing an array, you must set both the PF. OCCURS flag and pass the
array sizein the Occurs parameter.

CodeBridge F-3
Specifying the Flags Parameter

F-4

Values for the Flags parameter, which is used with most of the CodeBridge Library
functions, are defined in cbridge.h. These values correspond to the base modifier
attributes that can be specified in template files. See Table F-2 on page F-5 for alist of
flag definitions.

Normally, the PF_IN flag is used only for documentation purposes. However, when a
Numeric or String output conversion function (FloatToCobol, Genera StringToCobol,
IntegerToCobol, NumericStringToCobol, and StringToCabol) is used, the corresponding
Numeric or String input conversion function (Cobol ToFloat, Cobol ToGeneral String,
Cobol Tol nteger, Cobol ToNumericString, and Cobol ToString) must also be called. This
is true even when the COBOL argument is not used as an input to the C function. For
these reasons, the setting of the PF_IN flag is critical for Numeric and String input
conversions. When the PF_IN flag is not set, initialization of the C dataitemis not
performed, but the initialization necessary for the output conversion is performed.

The PF_OCCURS, PF_OUT, and PF_RETURN_VALUE flags are not used in the
current implementation of the CodeBridge Library and, therefore, are used only for
documentation purposes. However, because of possible changes to future versions of the
CodeBridge Library, we recommend that these flags be set whenever appropriate. That
is, callsto the CodeBridge Library output functions (FloatToCobol,

General StringToCobol, IntegerToCaobol, NumericStringToCobol, PointerBaseT oCaobol,
PointerOffsetToCobol, PointerSizeToCobol, and StringToCobol) should set the PF_OUT
flag. When associated with the C function return value, calls to these same output
functions should set the PF_ RETURN_VALUE flag in addition to the PF_OUT flag.
The PF_OCCURS flag should be set whenever an array is specified.

Although the following masks are neither used nor required in any CodeBridge Library
call, they are provided for convenience and completeness:

 PF_LEADING. Thismask isacombination of the PF_L EADING_SPACES flag and
the PF_LEADING_VALUE flag.

e PF_TRAILING. Thismask isacombination of the PF_TRAILING_SPACESflag
and the PF_TRAILING_VALUE flag.

« PF_NUMERIC_STRING_MASK. This mask may be used to isolate the following
flags: PF_LEADING_MINUS, PF_LEADING_SIGN, PF_TRAILING_CREDIT,
PF_TRAILING_DEBIT, PF_TRAILING_MINUS, and PF_TRAILING_SIGN.

CodeBridge Library Functions
Specifying the Flags Parameter

Table F-2: CodeBridge Library Flag Definitions

Name Value Description
PF_ASSERT_SIGNED 0x00000008 COBOL argument must be signed.
PF_ASSERT_UNSIGNED 0x00000010 COBOL argument must be unsigned.
PF_IN 0x00000020 Input argument for C function.
PF_INTEGER_ONLY 0x00000040 COBOL argument must be an integer.
PF_LEADING 0x00000180 Mask for leading strip/fill.
PF_LEADING_MINUS 0x00000001 Place “-" before negative value.
PF_LEADING_SIGN 0x00000000 Place“+” or “-" before value.
PF_LEADING_SPACES 0x00000080 Strip/fill leading spaces.
PF_LEADING_VALUE 0x00000100 Strip/fill leading value.
PF_NO_NULL_POINTER 0x00000200 Disallow NULL value for pointer.
PF_NO_SIZE_ERROR 0x00000400 Ignore numeric size errors.
PF_NUMERIC_STRING_MASK | 0x00000007 numeric_string sign handling mask.
PF_OCCURS 0x00000800 Parameter is an array.
PF_OPTIONAL 0x00001000 Parameter is optional.
PF_OUT 0x00002000 Output parameter from C function.
PF_POINTER_MAX_SIZE 0x00004000 Maximize pointer size (all ones).
PF_POINTER_RESET_OFFSET | 0x00008000 Clear pointer offset.
PF_REPEAT 0x00010000 Parameter repeated multiple times.
PF_RETURN_VALUE 0x00020000 Return vaue of the C function.
PF_ROUNDED 0x00040000 Round last digit if lost precision.
PF_SCALED 0x00080000 On input, multiply by 10%3%;

on output, divide by 10%3.
PF_SILENT 0x00100000 Suppress error message display.
PF_SIZE 0x00200000 Override default size of string.
PF_TRAILING 0x00C00000 Mask for trailing strip/fill.
PF_TRAILING_CREDIT 0x00000006 Place “CR” after negative value.
PF_TRAILING_DEBIT 0x00000007 Place “DB” after negative value.
PF_TRAILING_MINUS 0x00000005 Place “-" after negative value.
PF_TRAILING_SIGN 0x00000004 Place“+" or “-" after value
PF_TRAILING_SPACES 0x00400000 Strip/fill trailing spaces.
PF_TRAILING_VALUE 0x00800000 Strip/fill trailing value.
PF_UNSIGNED 0x01000000 C parameter is unsigned.
PF_VALUE_IF_ OMITTED 0x02000000 Override value for omitted argument.

CodeBridge
Specifying the Flags Parameter

F-5

AssertDigits

F-6

AssertDigits returns TRUE if the number of digits for the COBOL argument isin the
range specified by MinValue and MaxValue; otherwise, the function returns FAL SE.
This function also returns FAL SE if the argument is not numeric.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments’
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

The use of P-scaling in the COBOL program will increase the digit length by the number
of P symbols specified in the PICTURE character-string. For example, all of the
PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a dataitem with a
digit length of eight for CodeBridge.

Calling Sequence

int rndl|l_RtCall->pAssertDigits
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents,
int Flags,
unsi gned short MaxVal ue,
unsi gned short M nVal ue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertDigits are:

« PF_OPTIONAL
* PF_SILENT

« PF_VALUE_IF_OMITTED

CodeBridge Library Functions
AssertDigits

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the same
as the corresponding conversion call (such as Cobol ToFloat or FloatToCaobol, described
on pages F-25 and F-46, respectively) for that argument.

MaxValue is the maximum allowed length, in digits.
MinValue is the minimum allowed length, in digits.
Note1l The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their valuesif necessary.

CodeBridge F-7
AssertDigits

AssertDigitsLeft

F-8

AssertDigitsLeft returns TRUE if the number of digits to the left of the decimal point for
the COBOL argument isin the range specified by MinValue and MaxValue; otherwise,
the function returns FALSE. This function also returns FALSE if the argument is not
numeric.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments’
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

The use of P-scaling in the COBOL program will increase the number of digits to the left
of the decimal point by the number of P symbols specified in the PICTURE character-
string that occur to the left of the decimal point. For example, both of the PICTURE
character-strings 9(8) and 9(5)P(3) describe a data item with eight digits to the left of the
decimal point for CodeBridge.

Calling Sequence

int rndll_RtCall->pAssertDi gitsLeft
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents,
int Flags,
unsi gned short MaxVal ue,
unsi gned short M nVal ue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertDigitsLeft are:

+ PF_OPTIONAL
* PF_SILENT

« PF_VALUE_IF_OMITTED

CodeBridge Library Functions
AssertDigitsLeft

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCobol,
described on pages F-25 and F-46, respectively) for that argument.

MaxValue is the maximum allowed digits to the left of the decimal point.
MinValue is the minimum allowed digits to the left of the decimal point.
Note1l The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their valuesif necessary.

CodeBridge
AssertDigitsLeft

F-9

AssertDigitsRight

AssertDigitsRight returns TRUE if the number of digits to the right of the decimal point
for the COBOL argument isin the range specified by MinValue and MaxValue;

otherwise, the function returns FALSE. This function also returns FALSE if the argument
iS not numeric.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments’
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

The use of P-scaling in the COBOL program will increase the number of digitsto the
right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and VP(3)9(5) describe a data item with eight digits to
the right of the decimal point for CodeBridge.

Calling Sequence

int _rndll_RtCall->pAssertDigitsRi ght
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents,
int Flags,
unsi gned short MaxVal ue,
unsi gned short M nVal ue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertDigitsRight are:

 PF_OPTIONAL
* PF_SILENT

« PF_VALUE_IF_OMITTED

F-10 CodeBridge Library Functions
AssertDigitsRight

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCobol,
described on pages F-25 and F-46, respectively) for that argument.

MaxValue is the maximum allowed digitsto the right of the decimal point.
MinValue is the minimum allowed digits to the right of the decimal point.
Note1l The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their valuesif necessary.

CodeBridge
AssertDigitsRight

F-11

AssertLength

AssertLength returns TRUE if the length of the COBOL argument (in bytes) isin the
range specified by MinValue and MaxValue; otherwise, the function returns FAL SE.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments’
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

Calling Sequence

int rndll_RtCall->pAssertlLength
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents,
int Flags,
unsi gned short MaxVal ue,
unsi gned short M nVal ue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertLength are:

« PF_OPTIONAL
« PF_SILENT
« PF_VALUE_IF_OMITTED

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the same
as the corresponding conversion call (such as Cobol ToFloat or FloatToCaobol, described
on pages F-25 and F-46, respectively) for that argument.

F-12 CodeBridge Library Functions
AssertLength

MaxValue is the maximum allowed length, in bytes.
MinValue is the minimum allowed length, in bytes.
Note1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their valuesif necessary.

CodeBridge F-13
AssertLength

AssertSigned

AssertSigned returns TRUE if the COBOL argument is signed; otherwise, the function
returns FALSE.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments’
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

Calling Sequence

int _rndll _RtCall->pAssertSi gned
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents,
int Flags);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertSigned are:

- PF_OPTIONAL
« PF_SILENT
« PF_VALUE_IF_OMITTED

The value of the PF_OPTIONAL and PF_ VALUE_IF_OMITTED flags must be the same
as the corresponding conversion call (such as Cobol ToFloat or FloatToCobol, described
on pages F-25 and F-46, respectively) for that argument.

F-14 CodeBridge Library Functions
AssertSigned

AssertUnsigned

AssertUnsigned returns TRUE if the COBOL argument is unsigned; otherwise, the
function returns FAL SE.

If the COBOL CALL statement omits an argument (see “Managing Omitted Arguments’
on page 2-17), the value that is substituted for the omitted argument is not checked by
this function.

Calling Sequence

int _rndll_RtCall->pAssert Unsi gned
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents,
int Flags);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values (see Table F-2 on
page F-5) for AssertUnsigned are:

« PF_OPTIONAL
« PF_SILENT
« PF_VALUE_IF_OMITTED

The value of the PF_OPTIONAL and PF_VALUE_IF_ OMITTED flags must be the
same as the corresponding conversion call (such as Cobol ToFloat or FloatToCobol,
described on pages F-25 and F-46, respectively) for that argument.

CodeBridge F-15
AssertUnsigned

BufferLength

BufferLength obtains the length (in bytes) of the data buffer that has been allocated for
conversion to and from the COBOL argument. For COBOL non-numeric arguments, this
normally would be one more than the length of the argument. For COBOL numeric
arguments, this normally would be four more than the digit length of the argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

Note The BufferLength function may be used only in combination with one of the input
string functions: Cobol ToGeneral String (see page F-27), Cobol ToNumericString (see
page F-31), or Cobol ToString (see page F-38). ArgNumber must have the same valuein
the BufferLength function call and the corresponding input string function call. The call
to BufferLength may precede or follow the call to the corresponding input string function.

Calling Sequence

int rndll_RtCall->pBufferLength
(short ArgCount,
short ArgNunber,
CONV_TABLE *ConvTabl e,
int Flags,
int Cccurs,
voi d *Paraneter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by the ConversionStartup function
(see page F-42).

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for BufferLength are:

* PF_OCCURS
* PF_SILENT

F-16 CodeBridge Library Functions
BufferLength

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Note For any given argument, the buffer length is a constant regardless of whether the

argument isascalar or an array. Thus, if you are writing you own C routine, thereis no
reason to have a buffer length parameter that is an array, even when the related C string
parameter is an array.

Parameter is the address of the C parameter where the buffer length will be stored.

Szeisthe size of the C parameter.

CodeBridge F-17
BufferLength

CobolArgCount

Cobol ArgCount obtains that actual number of arguments passed from the calling COBOL
program. This function returns TRUE if it is successful and FALSE if thereis an error.

Note The Cobol ArgCount function is one of thetrivial conversion functions described on
page|-7.

Calling Sequence

int _rndl|_RtCall->pCobol ArgCount
(short ArgCount,
int Flags,
voi d *Paraneter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

Flags modify the behavior of the conversion. The only valid flag value for
CobolArgCount is PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the argument count will be stored.

Szeisthe size of the C parameter.

F-18 CodeBridge Library Functions
CobolArgCount

CobolDescriptorAddress

Cobol DescriptorAddress obtains the address of the COBOL argument. This function
returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rndl | _RtCall->pCobol Descri pt or Addr ess
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d **Paraneter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorAddressis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C pointer where the address of the COBOL argument
will be stored.

CodeBridge F-19
CobolDescriptorAddress

CobolDescriptorDigits

CobolDescriptorDigits obtains the digit count for the COBOL argument. This function
returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int rndll_RtCall->pCobol DescriptorDigits
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Paraneter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorDigitsis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the digit count will be stored.

Szeisthe size of the C parameter.

F-20 CodeBridge Library Functions
CobolDescriptorDigits

CobolDescriptorLength

CobolDescriptorL ength obtains the length (in bytes) of the COBOL argument. This
function returns TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rndl| _RtCall->pCobol Descri ptorLength
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Paraneter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorLengthis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the length will be stored.

Szeisthe size of the C parameter.

CodeBridge F-21
CobolDescriptorLength

CobolDescriptorScale

Cobol DescriptorScal e obtains the scale (the number of digits to the right of the decimal
point) of the COBOL argument. This function returns TRUE if it is successful and
FALSE if thereisan error.

Calling Sequence

int _rndll_RtCall->pCobol Descri ptorScal e
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Paraneter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorScaleis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the scale will be stored. The scale
value returned is the arithmetic complement of the value in the COBOL descriptor.

Szeisthe size of the C parameter.

F-22 CodeBridge Library Functions
CobolDescriptorScale

CobolDescriptorType

Cobol DescriptorType obtains the type of the COBOL argument. This function returns
TRUE if it is successful and FALSE if there isan error.

Calling Sequence

int _rndl|_RtCall->pCobol Descri pt or Type
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Paraneter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorTypeis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the Type value will be stored (see the
discussion of “String Arrays’ on page 2-35).

Szeisthe size of the C parameter.

CodeBridge F-23
CobolDescriptorType

CobollnitialState

Cobollnitial State obtains the value of the initial state flag from the current COBOL
CALL. Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

Note The Cobollnitia State function is one of the trivial conversion functions described
on page |-7.

When Sate is zero, the C function may choose to (re)initialize any “state” variables it
contains. When Sate is non-zero, the C function may choose to use the current values of
any “state” variables.

Note A “state” variable is one whose contents are normally preserved between
function calls.

Calling Sequence

int rndll_RtCall->pCobollnitial State
(int Flags,
voi d *Paraneter,
int Size),
short State);

Flags modify the behavior of the conversion. The only valid flag value for
Cobollnitial Stateis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the initial state flag will be stored.
It may also be the address of an array of floating-point valuesif the PF_ OCCURS flag
IS set.

Szeisthe size of the C parameter.

Sateistheinitial state flag for the current COBOL CALL.

F-24 CodeBridge Library Functions
CobollnitialState

CobolToFloat

Cobol ToFloat converts the COBOL numeric argument to a C floating-point value. This
function returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the FloatToCobol (see page F-46)
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to this function may perform memory management
operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rndl | _RtCall->pCobol ToFl oat
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
int Cccurs,
doubl e Omtted,
voi d **Paraneter,
i nt Repeat,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToFloat are:

 PF_ASSERT_SIGNED « PF_OPTIONAL

« PF_ASSERT_UNSIGNED « PF_REPEAT

« PFIN « PF_ROUNDED

« PF_NO _NULL_POINTER « PF SILENT

« PF_NO_SIZE ERROR PF_VALUE_IF_ OMITTED
« PF_OCCURS

CodeBridge F-25
CobolToFloat

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Omitted is the default value for omitted arguments if either of the PF_OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is a pointer to the address of the C parameter where the floating-point value
will be stored.

Repeat isthe repeat count if PF_REPEAT is set.

Szeisthe size of the C parameter.

F-26 CodeBridge Library Functions
CobolToFloat

CobolToGeneralString

Cobol ToGeneral String converts the COBOL argument to a null-terminated C string.
For COBOL numeric arguments, this function has the same behavior as

Cobol ToNumericString (see page F-31). For COBOL non-numeric arguments,

this function has the same behavior as Cobol ToString (see page F-38). Thisfunction

returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the General StringT oCaobol (see

page F-48) function for the same argument number. Do not set the PF_IN flag for output-
only conversions. Because the call to this function may perform memory management

operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rndll_RtCall->pCobol ToGeneral String
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Arguments|],
CONV_TABLE *ConvTabl e,
int Flags,
int Cccurs,
char *Om tted,
voi d **Paraneter,
i nt Repeat,
int Size,
short Val uel,
short Val ue2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by ConversionStartup (see

page F-42).

CodeBridge

CobolToGeneralString

F-27

Flags modify the behavior of the conversion. The flags available for

Cobol ToGeneral String are the union of the flags for Cobol ToNumericString and
CobolToString. Some flags, such as PF_LEADING_MINUS, are ignored for non-
numeric strings. Other flags, such as PF_LEADING_SPACES are ignored for numeric
strings. Valid flag values (see Table F-2 on page F-5) for Cobol ToGeneral String are:

 PF_ASSERT_SIGNED . PF_REPEAT
« PF_ASSERT_UNSIGNED « PF_ROUNDED

« PFIN PF_SILENT

« PF_LEADING MINUS - PF SIZE
 PF_LEADING_SIGN PF_TRAILING_CREDIT
« PF_LEADING_SPACES « PF_TRAILING_DEBIT
 PF_LEADING_VALUE « PF_TRAILING_MINUS
« PF_NO _NULL_POINTER « PF_TRAILING_SIGN

.+ PF_NO_SIZE ERROR « PF_TRAILING_SPACES
« PF_OCCURS « PF_TRAILING_VALUE
- PF_OPTIONAL PF_VALUE_IF_ OMITTED

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURS flag be set, athough it is documentary only.

Omitted isthe default value for omitted argumentsiif either of the PF_OPTIONAL or
PF_VALUE_IF OMITTED flagsis set.

Parameter is the address of the C pointer where the address of the string will be stored.
It may also be the address of an array of string valuesif the PF_ OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. Thedigit length of a COBOL argument is the sum of the number of 9
and P symbols used in its PICTURE character-string.

Valuel isthe strip/fill character value if the PF_LEADING_VALUE flag is set.
Value2 isthe strip/fill character valueif the PF_ TRAILING _VALUE flag is set.

F-28 CodeBridge Library Functions
CobolToGeneralString

CobolTolnteger

Cobol Tolnteger converts the COBOL numeric argument to a C integer value. This
function returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the IntegerToCobol (see page F-52)
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to this function may perform memory management
operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rndl | _RtCall->pCobol Tol nt eger
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
int Cccurs,
long Onmitted,
voi d **Par anet er,
i nt Repeat,
int Scal e,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol Tolnteger are;

+ PF_ASSERT_SIGNED « PF_OPTIONAL
 PF_ASSERT_UNSIGNED PF_REPEAT

« PFIN « PF_ROUNDED

+ PF_INTEGER ONLY .« PF_SCALED

« PF_NO_NULL_POINTER « PF_SILENT

« PF_NO_SIZE_ERROR « PF_UNSIGNED

« PF_OCCURS « PF_VALUE_IF_OMITTED

CodeBridge F-29
CobolTolnteger

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Omitted is the default value for omitted arguments if either of the PF_OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is a pointer to the address of the C parameter where the integer value will
be stored. It may also be the address of an array of integer valuesif the PF_ OCCURS
flagisset.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Scaleisthe scale value if the PF_SCALED flag isset. It represents the power of ten by
which to multiply the COBOL argument.

Szeisthe size of the C parameter.

F-30 CodeBridge Library Functions
CobolTolnteger

CobolToNumericString

Cobol ToNumericString converts the COBOL numeric argument to a null-terminated
C string. This function returns TRUE if it is successful and FALSE if there isan error.

By convention, this function should be called prior to the NumericStringToCobol (see
page F-54) function for the same argument number. Do not set the PF_IN flag for output-
only conversions. Because the call to this function may perform memory management
operations that are not needed for output-only conversions, this call may be omitted.

Calling Sequence

int _rndl|_RtCall->pCobol ToNunmericString

(short ArgCount,

short ArgNunber,

struct ARGUMENT_ENTRY Argunents[],
CONV_TABLE *ConvTabl e,

int Flags,

int Cccurs,

char *Onmtted,

voi d **Par anet er,

i nt Repeat,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by ConversionStartup
(see page F-42).

CodeBridge F-31
CobolToNumericString

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToNumericString are:

 PF_ASSERT_SIGNED . PF_REPEAT
« PF_ASSERT_UNSIGNED « PF_ROUNDED

« PFIN PF_SILENT

« PF_LEADING MINUS - PF SIZE

« PF_LEADING_SIGN « PF_TRAILING_CREDIT
« PF_NO _NULL_POINTER « PF_TRAILING_DEBIT

.« PF_NO_SIZE_ERROR « PF_TRAILING_MINUS

« PF_OCCURS « PF_TRAILING_SIGN

- PF_OPTIONAL PF_VALUE_IF_ OMITTED

Occursisthearray size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURS flag be set, although it is documentary only.

Omitted is the default value for omitted arguments if either of the PF_OPTIONAL or
PF_VALUE_IF OMITTED flagsis set.

Parameter is the address of the C pointer where the address of the string will be stored.
It may also be the address of an array of string valuesif the PF_ OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. Thedigit length of a COBOL argument is the sum of the number of 9
and P symbols used in its PICTURE character-string.

F-32 CodeBridge Library Functions
CobolToNumericString

CobolToPointerAddress

Cobol ToPointerAddress obtains the effective address of the COBOL pointer argument by
adding its offset and base address components. This function returns TRUE if it is
successful and FALSE if there isan error.

Calling Sequence

int _rndl | _RtCall->pCobol ToPoi nt er Addr ess
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents|],
int Flags,
voi d **Paraneter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
Cobol ToPointerAddressis PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C pointer where the effective address of the COBOL
pointer argument will be stored.

CodeBridge F-33
CobolToPointerAddress

CobolToPointerBase

Cobol ToPointerBase obtains the base address component of the COBOL pointer
argument. This function returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

int _rndll_RtCall->pCobol ToPoi nt er Base
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Arguments|],
int Flags,
voi d **Paraneter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToPointerBase are:

.« PFIN
. PF_SILENT

Parameter isthe address of the C pointer where the base address component of the
COBOL pointer argument will be stored.

F-34 CodeBridge Library Functions
CobolToPointerBase

CobolToPointerLength

Cobol ToPointerL ength obtains the effective length of the COBOL pointer argument by
subtracting its offset component from its size component. This function returns TRUE if
it issuccessful and FALSE if thereisan error.

Calling Sequence

int _rndl|_RtCall->pCobol ToPoi nt erLength
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Par anet er,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolToPointerLength is PF_SILENT (see Table F-2 on page F-5).

Parameter isthe address of the C parameter where the effective length of the COBOL
pointer argument will be stored.

Szeisthe size of the C parameter.

CodeBridge F-35
CobolToPointerLength

CobolToPointerOffset

Cobol ToPointerOffset obtains the offset component of the COBOL pointer argument.
Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rndl | _RtCall->pCobol ToPoi nter O f set
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d **Par anet er,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToPointerOffset are;

.« PFIN
. PF_SILENT

Parameter is a pointer to the address of the C parameter where the offset component of
the COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

F-36 CodeBridge Library Functions
CobolToPointerOffset

CobolToPointerSize

Cobol ToPointerSize obtains the size component of the COBOL pointer argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rndl | _RtCall->pCobol ToPoi nterSize
(short ArgCount,
short ArgNunber,
struct ARGUVMENT_ENTRY Argunents[],
int Flags,
voi d **Par anet er,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToPointerSize are:

.« PFIN
. PF_SILENT

Parameter is apointer to the address of the C parameter where the size component of the
COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

CodeBridge F-37
CobolToPointerSize

CobolToString

Cobol ToString converts the COBOL non-numeric argument to a null-terminated
C string. Thisfunction returns TRUE if it is successful and FALSE if there isan error.

By convention, this function should be called prior to the StringToCobol (see page F-59)
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to this function may perform memory management
operations that are not heeded for output-only conversions, this call may be omitted.

Calling Sequence

int _rndll_RtCall->pCobol ToString
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Arguments|],
CONV_TABLE *ConvTabl e,
int Flags,
int Cccurs,
char *Omtted,
void **Paraneter,
i nt Repeat,
int Size,
short Val uel,
short Val ue2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by ConversionStartup (see
page F-42).

F-38 CodeBridge Library Functions
CobolToString

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Cobol ToString are:

« PFIN . PF_REPEAT
« PF_LEADING_SPACES « PF SILENT
 PF_LEADING_VALUE - PF SIZE

« PF_NO _NULL_POINTER « PF_TRAILING_SPACES
« PF_OCCURS PF_TRAILING_VALUE
« PF_OPTIONAL « PF_VALUE_IF OMITTED.

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURS flag be set, although it is documentary only.

Omitted is the default value for omitted arguments if either of the PF_OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is the address of the C pointer where the address of the string will be stored.
It may also be the address of an array of string valuesif the PF_OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is one more than the length
of the COBOL argument.

Valuel isthe strip/fill character valueif the PF_LEADING_VALUE flag is set.
Value2 isthe strip/fill character valueif the PF_TRAILING_VALUE flag is set.

CodeBridge F-39
CobolToString

CobolWindowsHandle

CobolWindowsHandle obtains the Windows handle of the current COBOL CALL. This
function returns TRUE if it is successful and FALSE if thereis an error.

Note The CobolWindowsHandle function is one of the trivial conversion functions
described on page |-7.

Calling Sequence

int _rndl|l_RtCall->pCobol WndowsHandl e
(int Flags,
voi d *Paraneter,
int Size,
HWD W ndowsHandl e) ;

Flags modify the behavior of the conversion. The only valid flag value for
CobolWindowsHandleis PF_SILENT (see Table F-2 on page F-5).

Parameter is the address of the C parameter where the Windows handle will be stored.
Szeisthe size of the C parameter.

WindowsHandle is the Windows handle for the current COBOL CALL. Thisattributeis
not available on UNIX platforms as it can cause compilation errors.

F-40 CodeBridge Library Functions
CobolWindowsHandle

ConversionCleanup

ConversionCleanup must be called just prior to returning to the calling COBOL program.
It releases all memory that has been allocated by other conversion functions.

Note ConversionCleanup must be called for every exit back to the calling COBOL
program when the C function has multiple return paths.

Calling Sequence

void _rmdl | _RtCal |l ->pConversi ond eanup
(short ArgCount,
CONV_TABLE *ConvTabl e) ;

ArgCount is the argument count for the current COBOL CALL.

ConvTableistheinternal conversion table allocated by ConversionStartup (see
page F-42).

CodeBridge F-41
ConversionCleanup

ConversionStartup

ConversionStartup must be called once at the beginning of the C function called from
COBOL and should precede all callsto other conversion functions. It allocates a block
of memory for each COBOL argument (based on the value of ArgCount). This block
contains information that must be preserved between calls to other conversion functions.
This function returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rndl|l_RtCall->pConversionStartup
(short ArgCount,
CONV_TABLE **ConvTabl e,
char *Nane,
short Version);

ArgCount is the argument count for the current COBOL CALL.

ConvTableisthe address of a C pointer where the address of the internal conversion
table will be stored.

Name is name of the C function that was called by the COBOL program.

Version is the minimum version of the CodeBridge Library that can provide all the
conversion and validation features required by the C function. To specify that the

CodeBridge Library for RM/COBOL version 7.0 isrequired, the value for Version
should be 0x700.

F-42 CodeBridge Library Functions
ConversionStartup

DiagnosticMode

DiagnosticM ode controls the display of error messages during execution. If Flag
contains the value, DF_SILENT, no error messages will be displayed. If Flag contains
the value, DF_VERBOSE, error messages will always be displayed. If Flag containsthe
value, DF_NORMAL, the display of error messagesis governed by the PF_SILENT flag
in each call to the CodeBridge Library.

Note DiagnosticMode has global scope. It affectsall conversion and validation calls
until another DiagnosticMode call is made. Before thefirst call to DiagnosticM ode,
the display of error messagesis governed by the PF_SILENT flag in each call to the
CodeBridge Library asif DiagnosticM ode had been called with the DF_ NORMAL
flag value.

Calling Sequence

void _rndl | _RtCal |l ->pDi agnosti chbde
(short Flag);

Flag modifies the display of the error message. Valid flag values for DiagnosticM ode
are the following:

Name Value Description
DF_SILENT -1 Diagnostic messages are never displayed.
DF_NORMAL 0 Diagnostic messages are displayed unless the

PF_SILENT flag is set in the CodeBridge
Library function call.

DF_VERBOSE 1 Diagnostic messages are always displayed.

CodeBridge F-43
DiagnosticMode

EffectiveLength

Effectivelength obtains the length of the C string after conversion from the COBOL
argument. Thisincludes removal of leading and/or trailing characters. The valueisthe
same as the value that would be returned by the C library function, strlen. This function
returns TRUE if it is successful and FALSE if there isan error.

Note The Effectivel ength function may be used only in combination with one of the
input string functions: Cobol ToGeneral String (see page F-27), Cobol ToNumericString
(see page F-31), or Cobol ToString (see page F-38). ArgNumber must have the same
value in the Effectivel ength function call and the corresponding input string function call.
The call to Effectivel.ength may precede or follow the call to the corresponding input
string function.

Calling Sequence

int _rndll_RtCall->pEffectivelLength
(short ArgCount,
short ArgNunber,
CONV_TABLE, *ConvTabl e,
int Flags,
int Cccurs,
voi d *Par anet er,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

ConvTableistheinternal conversion table allocated by ConversionStartup (see
page F-42).

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for Effectivelength are:

« PF_OCCURS

* PF_SILENT

F-44 CodeBridge Library Functions
EffectiveLength

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Parameter is the address of the C parameter where the effective length will be stored.

Szeisthe size of the C parameter.

CodeBridge F-45
EffectiveLength

FloatToCobol

FloatToCobol converts from a C floating-point value to the COBOL numeric argument.
This function returns TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol ToFloat function (see page F-25) should be called prior to this
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol ToFloat function may perform memory
management operations that are not needed for output-only conversions, this call may be
omitted.

Calling Sequence

int _rndl | _RtCall->pFl oat ToCobol
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
int Cccurs,
voi d *Par anet er,
i nt Repeat,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for FloatToCobol are:

 PF_ASSERT_SIGNED PF_REPEAT

« PF_ASSERT_UNSIGNED « PF_RETURN_VALUE
« PF_NO_SIZE ERROR -+ PF_ROUNDED

« PF_OCCURS « PF SILENT

- PF.OUT

F-46 CodeBridge Library Functions
FloatToCobol

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Parameter isthe address of the C parameter. It may also be the address of an array of
floating-point values if the PF_ OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe size of the C parameter.

CodeBridge F-47
FloatToCobol

GeneralStringToCobol

General StringToCobol converts a null-terminated C string to the COBOL argument. For
COBOL numeric arguments, this function has the same behavior as
NumericStringToCobol (see page F-54). For COBOL non-numeric arguments, this
function has the same behavior as StringToCaobol (see page F-59). This function returns
TRUE if it is successful and FALSE if there isan error.

By convention, the Cobol ToGeneral String function (see page F-27) should be called prior
to this function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol ToGenera String function may perform
memory management operations that are not needed for output-only conversions, this call
may be omitted.

Calling Sequence

int _rndll_RtCall->pGeneral StringToCobol
(short ArgCount,
short ArgNunber,
struct ARGUMENT _ENTRY Argunents[],
int Flags,
int Cccurs,
voi d *Paraneter,
i nt Repeat,
int Size,
short Val uel,
short Val ue2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

F-48 CodeBridge Library Functions
GeneralStringToCobol

Flags modify the behavior of the conversion. The flags available for

General StringToCobol are the union of the flags for NumericStringToCobol and
StringToCobol. Some flags, such as PF_LEADING_MINUS, are ignored for non-
numeric strings. Other flags, such as PF_LEADING_SPACES are ignored for numeric
strings. Valid flag values (see Table F-2 on page F-5) for General StringToCobol are:

 PF_ASSERT_SIGNED . PF_REPEAT
« PF_ASSERT_UNSIGNED « PF_RETURN_VALUE
« PFIN -+ PF_ROUNDED

« PF_LEADING_SPACES « PF SILENT
 PF_LEADING_VALUE - PF SIZE

« PF_NO_SIZE ERROR « PF_TRAILING_SPACES
« PF_OCCURS PF_TRAILING_VALUE
« PFOUT

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Parameter isthe address of the C parameter. It may also be the address of an array of
string values if the PF_OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. The digit length of a COBOL argument is the sum of the number of
9 and P symbols used in its PICTURE character-string. The setting of the PF_SIZE flag
and the value of the Size parameter must be the same as specified in the call to

Cobol ToGeneral String (described on page F-27) for the same argument.

Valuel isthe strip/fill character valueif the PF_LEADING_VALUE flagis set.
Value2 isthe strip/fill character valueif the PF_TRAILING_VALUE flag is set.

CodeBridge F-49
GeneralStringToCobol

GetCallerinfo

GetCallerInfo obtains information about the calling COBOL program. Such information
is particularly useful in error messages because it helps identify the offending CALL
statement. This function returns a pointer to a structure that contains the information
about the calling program.

Calling Sequence

CALLER INFO* rmdl|l _RtCall->pGetCallerlnfo();

The function has no arguments.

The structure pointed to by the return value is described by atype definition in the
supplied header filertcallbk.h, which isincluded by the supplied header file cbridge.h.
For reference, the structureis as follows:

typedef struct tagCallerlnfo

-~
*

BI T16 Version; structure version; 0x0001 is first version */

Bl T16 Fl ags; /* flags; see #define CIF_... below */
char *ProgranlLocati on; /* line nunber of CALL or
segnment/ of fset of statenment after
CALL */
char *ProgranmNane; /* calling programnanme */
char *ProgranfFi | eNane; /* calling programobject file nane
(i ncluding pathnane) */
char *ProgranDat eTi ne; /* calling programdate and tine conpiled */

} CALLER I NFO

The Flagsfieldsin the CALLER_INFO structure have the following meanings (as defined
inrtcallbk.h):

#define Cl F_LOCATI ON_ADDRESS 0x8000 /* indicates ProgranlLocation

is segment/offset */
#defi ne Cl F_NESTED PROGRAM 0x4000 /* indicates calling program

is a nested program */

The CIF_LOCATION_ADDRESS flag is set when the calling program was compiled
with the Q Compile Command Option, thus making line numbers unavailable at runtime.
In this case, the ProgramLocation entry points to a string giving the segment/offset of

F-50 CodeBridge Library Functions
GetCallerInfo

the return location for the CALL statement as shown in the DEBUG column of a
compilation listing. When the flag is not set, the ProgramL ocation entry pointsto a
string giving the source line number of the CALL statement.

Note Thereisno global or parameter attribute that can be placed in atemplate file to
cause the CodeBridge Builder to produce acall to GetCallerInfo. The CodeBridge
Library will automatically call GetCallerlnfo when displaying any error messages caused
by conversion errors. A user-written function, whether or not it uses other CodeBridge
Library calls, may call GetCallerInfo to add this information to its own error messages.

CodeBridge F-51
GetCallerInfo

IntegerToCobol

IntegerToCobol converts from a C integer value to the COBOL numeric argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol Tol nteger function (see page F-29) should be called prior to
this function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol Tolnteger function may perform memory
management operations that are not needed for output-only conversions, this call may
be omitted.

Calling Sequence

int _rndl|_RtCall->plnteger ToCobol
(short ArgCount,
short ArgNunber,
struct ARGUVMENT_ENTRY Arguments[],
int Flags,
int Cccurs,
voi d *Paraneter,
i nt Repeat,
int Scal e,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for IntegerToCobol are:

+ PF_ASSERT_SIGNED « PF_RETURN_VALUE
 PF_ASSERT_UNSIGNED « PF_ROUNDED

« PF_NO_SIZE_ERROR « PF_SCALED

« PF_OCCURS « PF_SILENT

« PF.OUT « PF_UNSIGNED

« PF_REPEAT

F-52 CodeBridge Library Functions
IntegerToCobol

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Parameter is the address of the C parameter. It may also be the address of an array of
integer valuesif the PF_ OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Scaleisthe scale value if the PF_SCALED flag is set. It represents the power of ten by
which to divide the C parameter.

Szeisthe size of the C parameter.

CodeBridge F-53
IntegerToCobol

NumericStringToCobol

NumericStringToCobol converts a null-terminated C string to the COBOL numeric
argument. This function returns TRUE if it is successful and FALSE if thereisan error.

By convention, the Cobol ToNumericString function (see page F-31) should be called
prior to this function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to the Cobol ToNumericString function may
perform memory management operations that are not needed for output-only conversions,
this call may be omitted.

Calling Sequence

int _rndll_RtCall->pNumericStringToCobol

(short ArgCount,

short ArgNunber,

struct ARGUMENT_ENTRY Argunents[],
int Flags,

int Cccurs,

voi d *Paraneter,

i nt Repeat,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for NumericStringToCobol are:

« PF_ASSERT_SIGNED « PF_REPEAT
 PF_ASSERT_UNSIGNED « PF_RETURN_VALUE
« PF_NO_SIZE_ERROR « PF_ROUNDED

« PF_OCCURS « PF_SILENT

« PF_OPTIONAL - PF_SIZE

- PF.OUT

F-54 CodeBridge Library Functions
NumericStringToCobol

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Parameter isthe address of the C parameter. It may also be the address of an array of
string valuesif the PF_OCCURS flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one more
than the length of the COBOL argument and four more than the digit length of the
COBOL argument. Thedigit length of a COBOL argument is the sum of the number of 9
and P symbols used in its PICTURE character-string. The setting of the PF_SIZE flag
and the value of the Size parameter must be the same as specified in the call to

Cobol ToNumericString (described on page F-31) for the same argument.

CodeBridge F-55
NumericStringToCobol

PointerBaseToCobol

PointerBaseT oCobol modifies the COBOL pointer argument. The contents of the C
pointer are moved to the base address component. If the PF_POINTER_MAX_SIZE flag

is set, binary ones are moved to the size component. |f the PF_POINTER_RESET_OFFSET
flagis set, avalue of 0 is moved to the offset component. This function returns TRUE if it
is successful and FALSE if thereis an error.

Calling Sequence

int _rndl|_RtCall->pPoint er BaseToCobol
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d **Paraneter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for PointerBaseToCobol are:

« PF.OUT « PF_RETURN_VALUE
« PF_POINTER MAX_SIZE « PF_SILENT
« PF_POINTER_RESET_OFFSET

Parameter isthe address of the C pointer.

F-56 CodeBridge Library Functions
PointerBaseToCobol

PointerOffsetToCobol

PointerOffsetToCobol modifies the COBOL pointer argument. The contents of the C
parameter are moved to the offset component. If the PF_POINTER_MAX_SIZE flagis
set, binary ones are moved to the size component. This function returns TRUE if it is
successful and FALSE if there isan error.

Calling Sequence

int _rmdl | _RtCall->pPointerfset ToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Par anet er,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for PointerOffsetToCoboal are;

- PF.OUT « PF_RETURN_VALUE
« PF_POINTER MAX_SIZE « PF_SILENT

Parameter is the address of the C parameter.

Szeisthe size of the C parameter.

CodeBridge F-57
PointerOffsetToCobol

PointerSizeToCobol

PointerSizeToCobol modifiesthe COBOL pointer argument. The contents of the C
parameter are moved to the size component. If the PF_POINTER_RESET_OFFSET flagis
set, avalue of zero is moved to the offset component. This function returns TRUE if it is
successful and FALSE if there isan error.

Calling Sequence

int _rndl|_RtCall->pPointerSi zeToCobol
(short ArgCount,
short ArgNunber,
struct ARGUMENT_ENTRY Argunents[],
int Flags,
voi d *Par anet er,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for PointerSizeToCobol are:

- PF.OUT « PF_RETURN_VALUE
« PF_POINTER RESET OFFSET « PF SILENT

Parameter is the address of the C parameter.

Szeisthe size of the C parameter.

F-58 CodeBridge Library Functions
PointerSizeToCobol

StringToCobol

StringToCobol converts a C null-terminated string to the COBOL non-numeric argument.
Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol ToString function (see page F-38) should be called prior to this
function for the same argument number. Do not set the PF_IN flag for output-only
conversions. Because the call to the Cobol ToString function may perform memory
management operations that are not needed for output-only conversions, this call may

be omitted.

Calling Sequence

int _rndll_RtCall->pStringtoCobol

(short ArgCount,

short ArgNunber,

struct ARGUMENT_ENTRY Argunents|],
int Flags,

int Cccurs,

voi d *Paraneter,

i nt Repeat,

int Size,

short Val uel,

short Val ue2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table F-2 on
page F-5) for StringToCobol are:

« PF_LEADING_SPACES « PF_RETURN_VALUE
« PF_LEADING_VALUE « PF_SILENT

« PF_OCCURS - PF_SIZE

- PF.OUT PF_TRAILING_SPACES
« PF_REPEAT « PF_TRAILING_VALUE

CodeBridge F-59
StringToCobol

Occursisthe array size if the C parameter isan array. A value of zero may be specified if
the C parameter is a scalar; negative values for the Occurs parameter are allowed, but are
treated as equivalent to zero. If the valueis greater than 1, we recommend the
PF_OCCURSflag be set, although it is documentary only.

Parameter isthe address of the C parameter. It may also be the address of an array of
string valuesif the PF_OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is one more than the length
of the COBOL argument. The setting of the PF_SIZE flag and the value of the Sze
parameter must be the same as specified in the call to Cobol ToString (described on
page F-38) for the same argument.

Valuel isthe strip/fill character value if the PF_LEADING_VALUE flag is set.
Value2 isthe strip/fill character valueif the PF_TRAILING_VALUE flag is set.

F-60 CodeBridge Library Functions
StringToCobol

Appendix G: Non-COBOL
Subprogram Internals for
Windows

This appendix describes the internal details of how a non-COBOL subprogramis called
from an RM/COBOL program running under 32-bit Windows. Whileit ispossibleto
write non-COBOL subprograms that directly use this information to handle COBOL
argument conversions, it is highly recommended that CodeBridge be used for this purpose
instead. This appendix also provides information on preparing a non-COBOL
subprogram for use by an RM/COBOL program on 32-bit Windows. (For additional
information, see the “CALL Statement” section of Chapter 6, Procedure Division
Satements, in the RM/COBOL Language Reference Manual.)

Note Theinformation presented here assumes a working knowledge of the C
programming language. The material in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

C Subprograms

To modify or write a C subprogram that can be called from the RM/COBOL runtime
system requires an understanding of the fundamental tasksinvolved. First, in order to
access C language subprograms from the RM/COBOL runtime system, you must build a
dynamic link library (DLL), normally referred to as an “optional support module.” (For
more information on DLLs and optional support modules, see Appendix D, Support
Modules (Non-COBOL Add-Ons), of the RM/COBOL User’s Guide.)

Methods of Using Non-COBOL Subprograms

Two methods of using non-COBOL subprograms are supported:

1. A single subprogram can be dynamically loaded by the Runtime Command
(runcobol) when that subprogramis called from the RM/COBOL program. The
subprogram remains resident until canceled by the RM/COBOL program or until the
end of the run unit. This method is sometimes referred to as the “call-by-filename’

CodeBridge G-1
C Subprograms

method since the program is loaded because its file name matches the called program
name.

2. One or more subprograms can be linked into a non-COBOL subprogram library
(DLL) and loaded by the Runtime Command upon run unit initialization. The library
isloaded either because it is referenced in an L Runtime Command Option or
because it is present in the rmautold subdirectory of the execution directory. The
library remains resident until the end of the run unit.

Calling C Subprograms from COBOL

This section describes the COBOL CALL syntax and explains how a C programmer can
write a subprogram that can be called from RM/COBOL. The COBOL CALL statement
explains the use of the non-COBOL subprogram from the COBOL programmer’s
perspective while the other topics describe the structures and the function prototype that
the C programmer needs to understand.

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL program is as follows:

0 0 Oidentifier-2 0 O |0

i o[BY REFERENCE] O 00 |C

. 0 HomiTTep '8 |5

O 0 0 g

: 0 Hidentifier-2 0 5
00 USING [BY CONTENT (literal-2 -+ [+ |30
Jidentifir-1] OH e HOMITTED H 0 oo

raentitier- . e

CALL Hliteral-l H DE 0 |Fimt|f|er-25 O BD
[I[Ogliteral-2 -+~ O 0 O
Eh HEOMITTED H H |gB

i 0

i O

i 0

g JEVING O enifier-3 0

H HRETURNING A

[ON EXCEPTION imperative-statement-1 |

[NOT ON EXCEPTION imperative-statement-2 |

[END-CALL |

G-2 Non-COBOL Subprogram Internals for Windows
Calling C Subprograms from COBOL

The value of the contents of the data item specified by identifier-1 or the value of
literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the called
program. If the BY CONTENT phrase applies to an argument, a temporary copy of
the item is passed, thus preventing the subprogram from modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the purposes
of returning aresult to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-name
specified by literal-1 or the value of the data item referenced by identifier-1. Seethe
discussion of “Subprogram Loading” in Chapter 8, RM/COBOL Features, of the
RM/COBOL User’s Guide, for additional information on locating subprograms.

The subprogram also must be a dynamic link library file (.dll) and is loaded with the
Windows LoadL ibrary function.

C Subprogram Name Table Structure

The RM/COBOL runtime system can locate the C subprograms only if their names are
exported and either (1) their names appear in the subprogram nametable, or (2) the DLL
contains an .EDATA section. The subprogram nametable is an array of name table
entries. Each nametable entry isa C structure that is defined as follows:

typedef struct EntryTable
{

char *Ent r yPoi nt Cobol Nane; /* nane of subroutine as in call */
i nt (*EntryPoi nt Address)(); /* entry point address */
char *Ent r yPoi nt Naneg; /* nane of entry point in object */

} ENTRYTABLE;

Character-strings must be null terminated. The last array entry must consist of NULLS.
The name of the subprogram name table must be RM _EntryPoints and this name must
be exported, but an .EDATA section is not required in the DLL when the subprogram
name table exists. When the subprogram name table exists, any .EDATA sectionin the
DLL, if present, isignored.

The RM/COBOL runtime system does not use the EntryPointAddress entry in this
structure. Instead, the EntryPointName entry is used to find the procedure address for the
procedure that has the given name. Thus, each value supplied in an EntryPointName
entry must match that of an exported symbol inthe DLL. When the DLL isloaded, the
runtime system looks up the procedure address for each entry using the supplied name; if
the name is not found, an error occurs and the runtime system is terminated with an
appropriate message. The exported symbol may be different than the function namein

CodeBridge G-3
Calling C Subprograms from COBOL

G-4

the C source when a .def file is used during linking since .def files can contain an exports
list that specifies different names to be exported for the C functions.

RM _EntryPointsis one of the predefined symbolsin an optional support module. For
complete information about all of the predefined symbols, see “ Special Entry Points for
Support Modules’ on page G-11.

Note The ENTRY TABLE typedef is defined in rmc85cal.h, which is provided with
RM/COBOL systems. This header file should be included (with a preprocessor #include
statement) in C source that defines COBOL -callable subprograms. Inclusion of this
header file will also cause RM _EntryPoints symbol to be exported. Other header files
(rtarg.h, standdef.h, and rmport.h) are referenced by rmc85cal.h. Thesefiles are also
provided with RM/COBOL systems. When using CodeBridge Library functions, it is
generally sufficient to include cbridge.h, which includes these other header files.

Example
ENTRYTABLE RM EntryPoints[] =
{" SUBLNAME", subl, "subl"},
{" SUB2NANME", sub2, "sub2"},
{NULL, NULL, NULL }
s

In this example, “SUBINAME” and “SUB2NAME" are the COBOL-callable program-names,
subl and sub2 are the addresses of the C subprograms (functions), and “sub1” and “sub2”
are the exported names of the C subprograms (functions). In this example, it is assumed
that a .def file, if used, does not rename the C functionsin the exports list.

Parameters Passed to the C Subprogram

The RM/COBOL runtime system passes six parameters on the stack to the called C
subprogram. The following is a sample COBOL-callable C subprogram function
prototype:

RM DLLEXPORT int RM CDECL subl
(

char *namne, [* paranl */
unsi gned short arg_count, /* paranR */
ARGUMENT _ENTRY arg_vector[], /* paranB */
unsi gned short initial _state [* param} */
RM_HWAD wi ndow_handl e, /* paranb */
RUNTI ME_CALLS TABLE cal | backt abl e /* paranb */

Non-COBOL Subprogram Internals for Windows
Calling C Subprograms from COBOL

The six parameters are described as follows:

1.

Pointer to the called program-name, which is a null-terminated ASCI| string
containing the name used by the run unit to identify the called subprogram. The
called program-name is always uppercase-only, regardless of the case of the namein
the calling COBOL program.

Argument count, which is the number of arguments, including arguments explicitly
specified with the OMITTED keyword, specified in the USING phrase of the CALL
statement. The argument in the GIVING (RETURNING) phrasg, if specified, is not
included in the count.

Pointer to the argument array, which is an array of structures describing each of the
actual arguments passed in the GIVING (RETURNING) and USING phrases of the
CALL statement. The structure of an argument description entry is described in
“COBOL Argument Entry Structure for C” on page G-6 and is defined in the
rmc85cal.h header file, which is provided with RM/COBOL systems.

Initial state flag, which contains a zero to indicate that the subprogram is being called
for thefirst timein the run unit or the first time since a CANCEL statement has been
executed for the subprogram name. A nonzero value indicates that the subprogram
should remain inits last used state. It isthe responsibility of the called subprogram
(rather than the runtime system) to examine theinitia state flag and decide which
variables need to bereinitialized. In any case, on each call, all C automatic variables
arereallocated on the stack without being initialized to any particular value (that is, C
automatic variables have arbitrary values).

Windows handle of the calling program window (runtime window), which is needed
for some calls to the Windows Application Programming Interface (API).

Pointer to the runtime call-back table, which is a structure that contains the size of the
table, the version number of the table, and alist of subprogram addressesin the
runtime. The CodeBridge Builder uses the call-back table to obtain access to some
utility subprograms in the runtime system. The description of thistable is available
in cbridge.h, a header file provided with CodeBridge. The table is named
RUNTIME_CALLS TABLE.

Note The fifth and sixth parameters are optional. Although the runtime system will
always pass these values, the called subprogram does not have to declare them. The
prototype for the called function may omit the sixth or both the fifth and sixth parameters.
The runtime call-back table isrequired if the subprogram uses any of the CodeBridge
Library functions.

The called subprogram must set an integer return value before returning control to the
runtime system. A value of RM_FND (defined as 0 in rmc85cal.h) indicates that the

CodeBridge G-5
Calling C Subprograms from COBOL

G-6

subprogram was found and that the runtime should continue executing the COBOL
program. A value of RM_STOP (defined as 1 in rmc85cal .h) indicates that the
subprogram terminated because of afatal error, such asincorrect parameters, and that the
runtime should terminate the run unit. An explicit return statement should be used to set
the return value since otherwise the run unit might be unintentionally terminated. The
subprogram must not terminate with the system function exit(), since the runtime could
not do an orderly shutdown of the run unit in this case.

The argument entry table (arg_vector) contains descriptions of the actual arguments
specified in the CALL statement. The arg_vector[0] entry describes the first actual
argument in the USING phrase of the CALL statement. The arg_vector[arg_count - 1]
entry describes the last actual argument in the USING phrase of the CALL statement.
The arg_vector[-1] entry describes the argument specified in the GIVING (RETURNING)
phrase of the CALL statement. If the GIVING (RETURNING) phrase is omitted from
the CALL statement, or if any actual argument is specified as OMITTED in the USING
phrase of the CALL statement, the corresponding arg_vector entry contains atype value
32 (OMITTED, as shown in Table G-1 on page G-7) and the remaining fields are zero.

C subprograms that access the GIVING argument in arg_vector[-1] will function correctly
only for RM/COBOL version 7 (or later) runtimes because prior runtimes did not make a
GIVING argument entry availablein arg_vector[-1]. A subprogram that usesthe
GIVING argument should verify that it is available by use of the version number in the
runtime call-back table, the address of which is provided by the sixth parameter to the
subprogram. The version number must be 0x0700 or greater for a GIVING argument to
be available.

COBOL Argument Entry Structure for C

To asubprogram written in C, an argument entry is defined by the following structure,
which isincluded in the rmc85cal.h header file:

typedef struct ArgunmentEntry
{

char *a_address; /* pointer to start of argunent */
unsigned long a_length; /* length of argument */

short a_type; /* type of argunent (RM COBCL data type) */
char a_digits; /* digit count (0-30) */

char a_scal e; /* inplied decinal |ocation (signed) */
char *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest addressed byte of the argument.

a length specifies the number of bytes allocated to the argument.

Non-COBOL Subprogram Internals for Windows
Calling C Subprograms from COBOL

a_type specifies the RM/COBOL data type as a humber from Table G-1 (see page G-7).
Names for these type numbers are defined in rme85cal.h. (For an explanation of the data
type abbreviations and a description of the RM/COBOL datatypeslisted in Table G-1,
see Table 9-2 in Chapter 9, Debugging, and Appendix C, Internal Data Formats, of the
RM/COBOL User’s Guide.)

a digits specifies the actual number of digitsin a numeric dataitem (where the type of
argument isin the range O through 12). It is set to zero for nonnumeric dataitems.

a_scale specifies the power of 10 by which the digitsin a numeric dataitem (where the
type of argument isin the range O through 12) must be multiplied to obtain the numeric
value of the dataitem. The power of 10 is represented as a signed, 2's complement
number. It isset to zero for nonnumeric dataitems.

a picture specifies the lowest addressed byte of the encoded picture for edited items (type
of argument equals 0, 20 or 21). It isset to zero for all other types.

Table G-1: RM/COBOL Data Types as Numbers

Type RM/COBOL Type RM/COBOL
Number Data Type Number Data Type

0 NSE 12 NBU

1 NSU 16 ANS

2 NTS 17 ANS (justified right)
3 NTC 18 ABS

4 NLS 19 ABS (justified right)
5 NLC 20 ANSE

6 NCS 21 ABSE

7 NCU 22 GRP (fixed length)
8 NPP 23 GRPV (variable length)
9 NPS 25 PTR

10 NPU 32 OMITTED

11 NBS

Note The datatype GRPV (23) occurs only when C$CARG (see Appendix F,
Subprogram Library, of the RM/COBOL User's Guide) is called with the formal
argument in the main program. In all other cases, RM/COBOL passes variable-length
group actual arguments asif they were afixed-length group of the maximum length.

CodeBridge G-7
Calling C Subprograms from COBOL

Preparing C Subprograms

G-8

One or more dynamic link libraries (DLLS) may be loaded and called by the RM/COBOL
runtime system. The DLL may be specified on the command line by using the L Runtime
Command Option, described in the section “Runtime Command Options’ in Chapter 7,
Running, of the RM/COBOL User's Guide. DLL files may also be placed in the
rmautold subdirectory of the execution directory for automatic loading when the runtime
system is started. The runtime system reads the DLL, locates the entry points, and makes
each entry point available to be called as a subprogram.

If aprogram-name used in a CALL statement cannot be resolved asa COBOL routine and
isnot found in any already loaded non-COBOL library, a search is made for afile with
that name and an extension of .dll. If such afileisfound, it isloaded and one of the
following occurs:

« |f the DLL exports either of the symbols RM_EnumEntryPoints or
RM _EntryPoints, then the first specified entry point is called. For adefinition
of these symbols, see “ Specia Entry Points for Support Modules’ that begins on
page G-11. Any additional entry points that these symbols may define are ignored
when the DLL isloaded by this method;

e Otherwise, if the DLL containsan .EDATA section that specifies an entry point
exported as nonresident ordinal one, then that entry point is called. Any other
exported entry points are ignored when the DLL is loaded by this method;

« Otherwise, aprocedure error 204 occurs.

This method of loading aDLL is sometimes referred to as “call-by-filename” to contrast
it with the method of calling a program-name defined in a library loaded because an

L Runtime Command Option refersto it or the presence of the library in the rmautold
subdirectory of the execution directory.

Note Old 16-bit DLLs are still supported for backward compatibility on Windows 9x-class
operating systems; however, some of the new features discussed in this appendix do not apply
to 16-bit DLLs. Specificaly, the special entry points, described in “Specia Entry Points for
Support Modules" on page G-11, are not recognized in a 16-bit DLL. To make use of the
special entry points, the DLL must be rewritten asa 32-bit DLL. A 16-bit DLL may be
loaded by any of the three methods discussed in this appendix, including its being present

in the RmAutoL d subdirectory of the execution directory.

Non-COBOL Subprogram Internals for Windows
Preparing C Subprograms

The following steps may be used to prepare a non-COBOL subprogram for calls from a
COBOL program (compiler-specific comments are included):

1. Generate anon-COBOL source file(s) containing one or more subprograms that will
serve as entry points for the COBOL program. Entry points that are normally
associated with aDLL, such as LibMain (or DIIMain or DIIEntryPoint), should be
defined and may contain minimal code. These entry points and the additional entry
points that you define must be exported in the manner described for your compiler.

Use C calling conventions (instead of PASCAL conventions). Stack-based parameter
passing aso should be used.

2. Trandatethe sourcefileinto avalid object file (.obj) with your compiler.

3. Create the dynamic link library using the linker in your C development system.
Use linker options to assign an ordinal value of one to an entry point. The
RM/COBOL runtime system will associate the DLL filename with entry point
one. The proceduresin the DLL are now ready to be called as a subprogram
from RM/COBOL.

Note While some C compilers produce case-insensitive entry point names,
others produce case-sensitive entry point names. In addition, some C compilers
may pre-pend or append an underscore character to the entry point name.

Parameters are passed to the DLL as described in “ Parameters Passed to the C
Subprogram” on page G-4.

The following code sequencesiillustrate how a COBOL -callable DLL may be written

in C. Include the standdef.h header file (provided by Liant) to access RM/COBOL
standard definitions. On Windows systems, inclusion of standdef.h will cause inclusion
of the Microsoft windows.h file, which provides access to Windows operating system
functions such as MessageBox(). Define RMLittleEndian with avalue of 1 for the Intel
80x86 architecture. Include the rmc85cal.h header file to obtain ARGUMENT_ENTRY
structure definition, various type definitions, and LDLONG, LDSHORT, STLONG,
STSHORT macros. Include the cbridge.h header file if the CodeBridge Library is used
by the subprogram. Since cbridge.h includes standdef.h and rmc85cal .h, it is not
necessary to include these header files when cbridge.h isincluded.

Thefollowing is a sample RM/COBOL-callable DLL file written in C, named msgbox.c.

CodeBridge G-9
Preparing C Subprograms

#i ncl ude "standdef.h"
#define RMLittl eEndian 1
#i ncl ude "rnt85cal . h"

RM DLLEXPORT i nt RM CDECL

MsgBox(char *Name, unsigned short ArgCount, ARGUVENT_ENTRY *ArgEntry,
unsi gned short State)

{

short sButton;
| ong | Button;
char Buf[64];
short i;
char *p;
short n;

if (ArgCount != 2)
return (RM_STOP);

/* -- check argunents */
switch (ArgEntry[0].a_type)
{

/* -- various displayable types */
case RM _ANS: case RM _ANSR
case RM ABS: case RM ABSR
case RM NSE:
case RM GRPF:

br eak;

defaul t:
return (RM_STOP);
}

switch (ArgEntry[1].a_type)

/* -- only return binary types size 2 or 4 */
case RM NBS: case RM NBU:
if ((ArgEntry[1].a length == 2)
|| (ArgEntry[1].a_length == 4))
br eak;

defaul t:
return (RM STOP);

_address;
try[0].a_l ength;
1 ++)

E

TSS9

| Button
sButton

MessageBox(NULL, Buf, NULL, MB_YESNO |
MB_| CONQUESTI ON |
MB_SETFOREGROUND) ;

/* -- return value in second argunment */
p = ArgEntry[1].a_address;
1f (ArgEntry[1].a_length == 4)
STLONG (I Button, p);
else if (ArgEntry[1l].a_length == 2)
STSHORT (sButton, p);
return (RM_FND);

G-10 Non-COBOL Subprogram Internals for Windows
Preparing C Subprograms

This sample DLL can be compiled using the 32-bit Microsoft Visual C++ compiler with
the following command:

cl megbox.c -Zpl /link -out:msgbox.dll -dll -export:MgBox, @
-section:.edata, | RD user32.1ib

It also can be built using the 32-hit Watcom C compiler, version 10.6 or later, with the
following command:

wel X86 -1=nt_dll -bd nsgbox.c -"export MSGBOX. 1=_MsgBox"

The following source fragments from a COBOL program could be used to call the DLL:
DATA DI VI SI ON.
WORKI NG STORAGE SECTI ON.
01 RETURN-BINARY PIC 9(4) Binary(2) Value Zero.
01 DI SPLAY- TEXT PI C X(24) Value "Do you wish to continue?".

PROCEDURE DI VI SI ON.
CALL "MsSGBOX" USI NG DI SPLAY- TEXT RETURN- Bl NARY.

Special Entry Points for Support Modules

When the runtime system (or other RM/COBOL component) loads an optional support
module, it looks for certain predefined symbols (entry points and variable names), and
variesits actions based on the presence or absence of these symbols. One such variable
nameis RM_EntryPoints (discussed in “ C Subprogram Name Table Structure” on
page G-3). The example subprogram, msgbox.c, which is distributed with the
RM/COBOL system, contains examples of all of these entry points and symbols, except
for RM_EnumEntryPoints. Thisexample can be used as a starting point when
developing optional support modules for Windows.

The complete list of these special namesis as follows:
¢ RM_AddOnBanner

« RM_AddOnCancelNonCOBOL Program

¢ RM_AddOninit

* RM_AddOnLoadMessage

« RM_AddOnTerminate

¢ RM_AddOnVersionCheck

« RM_EntryPointsand RM_EnumEntryPoints

CodeBridge G-11
Special Entry Points for Support Modules

Note On Windows, all these entry points are optional if the DLL islinked such that an
.EDATA sectionis produced. If the DLL islinked without producing an .EDATA
section, the RM _EntryPoints or RM_EnumEntryPoints symbols must be defined for
there to be any COBOL callable routinesinthe DLL.

The following sections describe these entry points and special variables.

RM_AddOnBanner

Thisentry point, if present, should return a pointer to a character string. This character
string will be displayed along with the runtime system banner message. The support
module banner may be used to display any required copyright notice. The support
module banner is displayed only if the K Option of the Runtime Command is not present.

Note The Windows runtime supports the “call-by-filename” loading of DLLs as
described in “Methods of Using Non-COBOL Subprograms” on page G-1. For DLLs
loaded in this manner, the RM_AddOnBanner entry point is not called and no banner is
produced. Theentry point is called and a banner is produced if the DLL isloaded
because of the L Runtime Command Option or because the DLL is present in the
rmautold subdirectory of the execution directory.

Function declaration for RM_AddOnBanner:
char* RM_AddOnBanner (voi d) ;

RM_AddOnCancelNonCOBOLProgram

Thisentry point, if present, is called by the runtime system when a CANCEL verb is
executed for a program-name that is defined in the optional support module. It alowsthe
support module to do any cleanup actions that may be necessary. For example, this entry
point might be specified to allow the support module to close any open files when the
COBOL program cancels the associated non-COBOL subprogram. The program-name of
the non-COBOL subprogram for which a CANCEL has been performed is passed as a
parameter to the entry point.

Function declaration for RM_AddOnCancelNonCOBOL Program:
voi d RM_AddOnCancel NonCOBOLPr ogr an{ char* Pr ogr anNane) ;

G-12 Non-COBOL Subprogram Internals for Windows
Special Entry Points for Support Modules

RM_AddOnlInit

Thisentry point, if present, is called to initialize the optional support module. All support
modules will be initialized (if initialization is requested) before the runtime system begins
executing the first COBOL program, except that DLLs loaded by the “call-by-filename”
method (as described in “Methods of Using Non-COBOL Subprograms’ on page G-1)
will beinitialized when they are loaded at the time they are referenced by a CALL
statement.

The entry point should return zero to indicate successful initialization or a non-zero value
to indicate that the support moduleinitialization failed. If the initialization fails, the
runtime system will display an appropriate message and then terminate.

Note If the support module determines that successful initialization is not possible, the
support module should produce appropriate messages to allow the user to correct the
problem.

The support module is passed the Runtime Command line arguments in the arguments
Argc (the argument count) and Argv (the argument vector). The support moduleis also
passed a pointer to the runtime call back table.

Function declaration for RM _AddOnl nit:

i nt RM AddOnl nit (i nt Argc,
char** Argv,
RUNTI ME_CALLS TABLE *pRt Cal |);

RM_AddOnLoadMessage

Thisentry point, if present, should return a pointer to a character string that is displayed
along with the load messages of other optional support modules. These load messages
allow the user to verify which support modules the runtime system has loaded. The
message may contain text to identify the support module and, if desired, the version
number or the build date. Load messages are displayed only if the V Runtime Command
Option is present, the V=DISPLAY keyword-value pair is specified in the RUN-OPTION
configuration record, or the RM_DYNAMIC_LIBRARY _TRACE environment variable
is defined.

If load messages are being displayed, the runtime system generates aload message
consisting of the complete pathname for the support module regardless of whether the
RM _AddOnL ocadM essage entry point is defined or not defined in the support module.
If the RM _AddOnL oadM essage entry point is defined, the returned string is appended
to the pathname in this load message.

CodeBridge G-13
Special Entry Points for Support Modules

Note The Windows runtime supports the “call-by-filename” loading of DLLs as
described in “Methods of Using Non-COBOL Subprograms” on page G-1. For DLLs
loaded in this manner, the RM_AddOnL oadM essage entry point is not called and no load
message is produced. The entry point is called and aload message is produced if the
DLL isloaded because of the L Runtime Command Option or because the DLL is present
in the rmautold subdirectory of the execution directory.

Function declaration for RM _AddOnL oadM essage:
char* RM AddOnLoadMessage(voi d);

RM_AddOnTerminate

Thisentry point, if present, is called by the runtime system during termination. Execution
of all COBOL programs is complete when the runtime system calls this entry point. It
allows the optional support module to perform any cleanup actions that may be necessary.

Note The Windows runtime supports the “call-by-filename” loading of DLLs as
described in “Methods of Using Non-COBOL Subprograms’ on page G-1. DLLs loaded
with this method will be unloaded when a CANCEL statement references them. Inthis
case, the RM_AddOnTerminate entry point is called just prior to unloading the DLL,
after having called RM_AddOnCancelNonCOBOL Program, and the runtime systemis
not necessarily about to terminate.

The RM_AddOnTerminate function is called when the module is unloaded, even if the
RM _AddOnlnit function (see page G-13) for the module did not succeed. Thus, the
code for this function must not depend on the success of the RM _AddOnI nit function.

Function declaration for RM_AddOnTerminate:
voi d RM_AddOnTer m nat e(voi d) ;

RM_AddOnVersionCheck

Thisentry point, if present, provides a method of verifying that the runtime system and
the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to support
the current interface version of the runtime system that calls the support module.

If RM_AddOnVersionCheck is present, it will be passed a version string, two support
module interface versions, and a pointer for the support module to store a desired
interface version. The version string (for example, 7.5n.nn) is defined by the VERSION
macro in the header file ver sion.h (provided with the RM/COBOL system). The runtime
support module interface versions indicate the minimum and maximum versions that the

G-14 Non-COBOL Subprogram Internals for Windows
Special Entry Points for Support Modules

runtime system can support. The version 7.50 runtime system supports support module
interface versions 1 and 2. For Windows, these two interface versions areidentical. In
the future, the runtime system may support other, partially or completely incompatible,
interface versions.

It isthe responsibility of the support module to verify that it supports one of the interface
versions supported by the runtime system and to return the interface version it supports.

If the support module does not support any of the interfaces supported by the runtime
system, the support module should return FALSE (0). Inthis case, or if the support
module returns an invalid interface version, the runtime system will display an
appropriate message and then terminate. Returning TRUE (1) and an interface version in
the range supported by the runtime system allows the runtime system to continue. The
support module may use the current interface version by returning the value
CURRENT_SUPPORT_MODULE_INTERFACE_VERSION (defined in the supplied
header file, rmc85cal.h).

The support module may also use the value of the version string to verify compatibility
with the runtime system. If the support module determines that it is not compatible with
the runtime system, it should return FALSE. In this case, the support module might
display a meaningful message before the runtime system displays its message and
terminates.

Function declaration for RM_AddOnVer sionCheck:

BOOLEAN RM _AddOnVer si onCheck(char* Versi on,
int M nRuntimel nterfaceVersion,
int MaxRunti el nt erf aceVer si on,
int* DesiredlnterfaceVersion);

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the exported
symbols RM _EntryPointsand RM_EnumEntryPoints to determine whether the
support module contains any COBOL -callable functions. Each optional support module
defines only those COBOL -callable functions defined in that support module using either
the RM _EntryPoints symbol declaration or the RM_EnumEntryPoints entry point. If
neither of these symbolsis exported, then the runtime system looks for an .EDATA
sectioninthe DLL. If the .EDATA section isfound, the exported names listed in the
.EDATA section are considered to be COBOL-callable functions; otherwise, the DLL is
considered not to contain any COBOL -callable functions.

The use of the subprogram name table RM _EntryPointsis described on page G-3.

CodeBridge G-15
Special Entry Points for Support Modules

If the entry point RM_EnumEntryPointsis found, it is called repeatedly to obtain
the COBOL-callable names, function addresses, and function names of the COBOL-
callable functions in the support module. This function should return a pointer to a
structure that is equivalent to one entry in the RM_EntryPointstable. The end of the
entry pointsisindicated by returning a null pointer or a structure whose first pointer
iSNULL. Theindex parameter starts at zero for the first call and isincremented for
each subsequent call.

If both symbols are present, RM_EnumEntryPoints takes precedence.
See the example on page G-4 for the symbol declaration for RM _EntryPoints.

Function declaration for RM _EnumEntryPoints:

ENTRYTABLE* RM_EnunEnt ryPoi nt s(i nt i ndex);

Debugging C Subprograms

Non-COBOL subprograms can be debugged using the debugger supplied with the C
compiler used to build the DLL.

In order to include debugging information in the DLL, use the following command for the
32-bit Microsoft Visual C++ compiler:

cl msgbox.c -Zpl -Zi /link -out:nsgbox.dl |l -dll -export:MgBox, @
-section:.edata, | RD user32.1ib

Alternatively, use the following command for the 32-bit Watcom C compiler, version
10.6 or later:

wel X86 -1=nt_dlIl -bd -d2 nsgbox.c -"export MSGBOX. 1=_MsgBox"

After creating aversion of the DLL containing debugging information, start the debugger
on runcobol.exe. The Microsoft debugger allows you to add both runcobol.exe and the
DLL fileto aproject and then set a breakpoint in the DLL before beginning execution.

The Watcom debugger allows you to set a breakpoint that is triggered when the module
containing the DLL isloaded. Once it has been loaded, the source for the module can be
viewed and additional breakpoints can be set. For more information, see the
documentation supplied with the debugger you are using.

G-16 Non-COBOL Subprogram Internals for Windows
Debugging C Subprograms

Calling a CodeBridge Subprogram Library

It is possible to use non-COBOL subprogram libraries built using CodeBridge and call
them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by RM/COBOL. These
generated functions then call the C functions that are described in the templatefile.

The name of the generated function is the same as the C function name with a prefix of
“RMDLL" added to it. For example, if the name of the C function is MessageBox, the
name of the generated function is RMDLL MessageBox.

It is possible for a C function that calls the CodeBridge Library functions directly also
to call functions that were built by CodeBridge Builder. A C function could call
RMDLLMessageBox directly either by using the ARGUMENT_ENTRY structure
that was passed from RM/COBOL or by constructing one that suited the needs of the
C function.

One use of this capability would be to hide conversions of C dataitemsto COBOL
dataitems. “Example 6: Converting Buffered C Data” in Appendix B, CodeBridge
Examples, describes a case in which such conversions are necessary even though
CodeBridge is being used. In that example, the function cstring2text is called from
COBOL to convert data stored in a buffer by a C function call. This conversion could be
hidden from the RM/COBOL program by embedding the conversion in a C function that
first calls the C function to store the data in the buffer and then also calls the generated C
function, RMDL L cstring2text.

CodeBridge G-17
Calling a CodeBridge Subprogram Library

G-18 Non-COBOL Subprogram Internals for Windows
Calling a CodeBridge Subprogram Library

Appendix H: Non-COBOL
Subprogram Internals for UNIX

This appendix describes the internal details of how anon-COBOL subprogramis called
from an RM/COBOL program running under UNIX. Whileit is possible to write
non-COBOL subprograms that directly use this information to handle COBOL argument
conversions, it is highly recommended that CodeBridge be used for this purpose instead.
This appendix also provides information on preparing a non-COBOL subprogram for use
by an RM/COBOL program on UNIX. (For additional information, see the “CALL
Statement” section of Chapter 6, Procedure Division Satements, in the RM/COBOL
Language Reference Manual.)

Note Theinformation presented here assumes a working knowledge of the C
programming language. The materia in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

C Subprograms

To modify or write a C subprogram that can be called from the RM/COBOL runtime
system requires an understanding of the fundamental tasks involved. First, in order to
access C language subprograms from the RM/COBOL runtime system, you must build a
shared object, normally referred to as an “optional support module.” (For more
information on shared objects and optional support modules, see Appendix D, Support
Modules (Non-COBOL Add-Ons), of the RM/COBOL User’s Guide.) The shared object
must then be placed so that the RM/COBOL runtime system can locate it, either by
looking in a special subdirectory (rmcobolso) of the runtime execution directory
(normally /usr/bin) or by using the L Option on the Runtime Command. Finally, you
must provide information about what entry points you wish the runtime system to use.

CodeBridge H-1
C Subprograms

Calling C Subprograms from COBOL

This section describes the COBOL CALL syntax and explains how a C programmer can
write a subprogram that can be called from RM/COBOL. The COBOL CALL statement
explains the use of the non-COBOL subprogram from the COBOL programmer’s
perspective while the other topics describe the structures and the function prototype that
the C programmer needs to understand.

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL programis as follows:

§ 0 Oidentifier-2 0 O |0

i g[BY REFERENCE| O 0 g |0

i o —_ _ooMITED [5 |o

O 0 0 g

: | Hidentifier-2 0 5
00 USING OBY CONTENT gliteral-2 -+ 0 oo
o 0g 0 HOMITTED H 0 |oo
CALL Oidentifier-1 DE 0 identifier-2 - O E[I
=2 Hiiteral-1 [O BBII't b= 0O |gc
i Oliter 0O 0 0 0
Eh HEOMITTED H H |gB

i 0

i O

§ 0

g JEVING O enifier-3 0

H HRETURNING A

[ON EXCEPTION imperative-statement-1 |

[NOT ON EXCEPTION imperative-statement-2 |

[END-CALL |

H-2 Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

The value of the contents of the data item specified by identifier-1 or the value of
literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the called
program. If the BY CONTENT phrase applies to an argument, a temporary copy of
the item is passed, thus preventing the subprogram from modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the purposes
of returning aresult to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-name
specified by literal-1 or the value of the data item referenced by identifier-1. Seethe
discussion of “Subprogram Loading” in Chapter 8, RM/COBOL Features, of the
RM/COBOL User's Guide, for additional information on locating subprograms.

C Subprogram Name Table Structure

The RM/COBOL runtime system can locate the C subprograms only if their names appear
in the subprogram name table. The subprogram name table is an array of name table
entries. Each nametable entry isa C structure that is defined as follows:

typedef struct EntryTable
{

char *Ent r yPoi nt Cobol Nane; /* nane of subroutine as in call */
i nt (*EntryPoi nt Address)(); /* entry point address */
char *Ent r yPoi nt Naneg; /* nane of entry point in object */

} ENTRYTABLE;

Character strings must be null terminated. The last array entry must consist of NULLSs.
The name of the subprogram name table must be RM _EntryPoints.

The RM/COBOL runtime system does not use the EntryPointAddress entry in this
structure. Instead, the EntryPointName entry is used to find the procedure address for the
procedure that has the given name. Thus, each value supplied in an EntryPointName
entry must match that of an external symbol in the shared object. When the shared object
isloaded, the runtime system looks up the procedure address for each entry using the
supplied name; if the name is not found, an error occurs and the runtime system is
terminated with an appropriate message.

RM _EntryPointsis one of the predefined symbolsin an optional support module. For
complete information about all of the predefined symbols, see “ Special Entry Points for
Support Modules’ on page H-14.

Note The ENTRY TABLE typedef is defined in rmc85cal.h, which is provided with
RM/COBOL systems. This header file should be included (with a preprocessor #include
statement) in C source that defines COBOL -callable subprograms. Other header files

CodeBridge H-3
Calling C Subprograms from COBOL

(rtarg.h, standdef.h, and rmport.h) are referenced by rmc85cal.h. Thesefiles are also
provided with RM/COBOL systems.

Example
ENTRYTABLE RM EntryPoints[] =
{" SUBLNAME", subl, "subl"},
{" SUB2NAME" , sub2, "sub2"},
{NULL, NULL, NULL }
H

In this example, “SUBINAME” and “SUB2NAME" are the COBOL-callable program-names,
subl and sub2 are the addresses of the C subprograms (functions), and “subl” and “sub2”
are the names of the C subprograms (functions).

Parameters Passed to the C Subprogram

The RM/COBOL runtime system passes six parameters on the stack to the called
C subprogram. The following is a sample COBOL-callable C subprogram function

prototype:
int subl
(
char *nane, /* paranl */
unsi gned short arg_count, /* paranR */
ARGUVENT _ENTRY arg_vector[], /* paranB8 */
unsi gned short initial _state, /* paramd */
voi d *reserved, /* paranb */
*

RUNTI ME_CALLS TABLE cal | backt abl e /* parant */

);

Note The above function prototype does not work on Windows. See page I-2 for a
function that does work for either Windows or UNIX.

H-4 Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

The six parameters are described as follows:

1.

Pointer to the called program-name, which is a null-terminated ASCI| string
containing the name used by the run unit to identify the called subprogram. The
called program-name is always uppercase-only, regardless of the case of the namein
the calling COBOL program.

Argument count, which is the number of arguments, including arguments explicitly
specified with the OMITTED keyword, specified in the USING phrase of the CALL
statement. The argument in the GIVING (RETURNING) phrasg, if specified, is not
included in the count.

Pointer to the argument array, which is an array of structures describing each of the
actual arguments passed in the GIVING (RETURNING) and USING phrases of the
CALL statement. The structure of an argument description entry is described in
“COBOL Argument Entry Structure for C” on page H-7 and is defined inthe rtarg.h
header file, which is provided with RM/COBOL systems.

Initial state flag, which contains a zero to indicate that the subprogram is being called
for thefirst timein the run unit or the first time since a CANCEL statement has been
executed for the subprogram name. A nonzero value indicates that the subprogram
should remain inits last used state. It isthe responsibility of the called subprogram
(rather than the runtime system) to examine theinitia state flag and decide which
variables need to bereinitialized. In any case, on each call, all C automatic variables
arereallocated on the stack without being initialized to any particular value (that is, C
automatic variables have arbitrary values).

Pointer value NULL (for compatibility with Windows non-COBOL subprograms).

Pointer to the runtime call-back table, which is a structure that contains the size of the
table, the version number of the table, and alist of subprogram addressesin the
runtime system. The CodeBridge Builder uses the call-back table to obtain access to
some utility subprograms in the runtime system. The description of thistableis
availablein rtcallbk.h, a header file provided with RM/COBOL systems. Thetable
isnamed RUNTIME_CALLS TABLE.

Note The fifth and sixth parameters are optional. Although the runtime system will
always pass these values, the called subprogram does not have to declare them. The
prototype for the called function may omit the sixth or both the fifth and sixth parameters.
The runtime call-back table isrequired if the subprogram uses any of the CodeBridge
Library functions.

The called subprogram must set an integer return value before returning control to the
runtime system. A value of RM_FND (defined as 0 in rtarg.h) indicates that the
subprogram was found and that the runtime system should continue executing the

CodeBridge H-5
Calling C Subprograms from COBOL

H-6

COBOL program. A value of RM_STOP (defined as 1 in rtarg.h) indicates that the
subprogram terminated because of afatal error, such asincorrect parameters, and that the
runtime system should terminate the run unit. An explicit return statement should be used
to set the return value since otherwise the run unit might be unintentionally terminated.
The subprogram must not terminate with the system function exit(), since the runtime
system could not do an orderly shutdown of the run unit in this case.

Once an optional support module isloaded, it remains loaded until the runtime system
terminates. Use of the CANCEL statement to cancel a C subprogram setstheinitial flag
to zero on the next entry into the subprogram, but has no effect on the values of the
external and static variables used in the C subprogram.

The argument entry table (arg_vector) contains descriptions of the actual arguments
specified in the CALL statement. The arg_vector[0] entry describes the first actual
argument in the USING phrase of the CALL statement. The arg_vector[arg_count - 1]
entry describes the last actual argument in the USING phrase of the CALL statement.
The arg_vector[-1] entry describes the argument specified in the GIVING (RETURNING)
phrase of the CALL statement. If the GIVING (RETURNING) phrase is omitted from
the CALL statement, or if any actual argument is specified as OMITTED in the USING
phrase of the CALL statement, the corresponding arg_vector entry contains atype value
32 (OMITTED, as shown in Table H-1 on page H-8) and the remaining fields are zero.

C subprograms that access the GIVING argument in arg_vector[-1] will function correctly
only for RM/COBOL version 7 (or later) runtimes because prior runtimes did not make a
GIVING argument entry availablein arg_vector[-1]. A subprogram that usesthe
GIVING argument should verify that it is available by use of the version number in the
runtime call-back table, the address of which is provided by the sixth parameter to the
subprogram. The version number must be 0x0700 or greater for a GIVING argument to
be available.

Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

COBOL Argument Entry Structure for C

To asubprogram written in C, an argument entry is defined by the following structure,
which isincluded in the rtarg.h header file:

typedef struct ArgunmentEntry
{

char *a_address; /* pointer to start of argunent */

Bl T32 a_l engt h; /* length of argument */

Bl T16 a_type; /* type of argunent (RM COBCL data type) */
char a_digits; /* digit count (0-30) */

char a_scal e; /* inplied decinal |ocation (signed) */
BYTE *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest address byte of the argument.
a length specifies the number of bytes allocated to the argument.

a type specifies the RM/COBOL data type as a number from Table H-1 (see page H-8).
Names for these type numbers are defined in rtarg.h. (For an explanation of the data
type abbreviations and a description of the RM/COBOL datatypeslisted in Table H-1,
see Table 9-2 in Chapter 9, Debugging, and Appendix C, Internal Data Formats, of the
RM/COBOL User's Guide.)

a digits specifies the actual number of digitsin a numeric data item (where the type of
argument isin the range O through 12). It is set to zero for nonnumeric dataitems.

a_scale specifies the power of 10 by which the digitsin a numeric dataitem (where the
type of argument isin the range O through 12) must be multiplied to obtain the numeric
value of the dataitem. The power of 10 is represented as a signed, 2's complement
number. It isset to zero for nonnumeric dataitems.

a picture specifies the lowest addressed byte of the encoded picture for edited items (type
of argument equals 0, 20 or 21). It isset to zero for all other types.

CodeBridge H-7
Calling C Subprograms from COBOL

H-8

Table H-1: RM/COBOL Data Types as Numbers

Type RM/COBOL Type RM/COBOL
Number Data Type Number Data Type

0 NSE 12 NBU

1 NSU 16 ANS

2 NTS 17 ANS (justified right)
3 NTC 18 ABS

4 NLS 19 ABS (justified right)
5 NLC 20 ANSE

6 NCS 21 ABSE

7 NCU 22 GRP (fixed length)
8 NPP 23 GRPV (variable length)
9 NPS 25 PTR

10 NPU 32 OMITTED

11 NBS

Note The datatype GRPV (23) occurs only when C$CARG (see Appendix F, Subprogram
Library, of the RM/COBOL User’s Guide) is called with the formal argument in the main
COBOL program. In all other cases, RM/COBOL passes variable-length group actual
arguments as if they were a fixed-length group of the maximum length.

For example, suppose a CALL statement specifies one argument in its USING list and
this argument refers to a three-byte numeric unsigned (NSU) dataitem with a PICTURE
character-string of 99V9. The following is a diagram of the structurein C.

argument address
argument length
type

digit count

implied decimal

picture address

NULL

Non-COBOL Subprogram Internals for UNIX
Calling C Subprograms from COBOL

. pointer to char

Accessing C Subprograms

Y ou can access a C language subprogram from the RM/COBOL runtime system by either
of the following two methods:

* Giveeach C subprogram a unique name and entry point. Source module usrsub.c
(delivered with the RM/COBOL system) provides an example of this method.

» Giveeach C subprogram a unique name and share the same entry point.

In the second case, it is necessary to determine which C subprogram has been called. The
following example illustrates one way this might be accomplished.

CodeBridge H-9
Accessing C Subprograms

#i ncl ude "rnt85cal . h"

int library
(
char *nane,
unsi gned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state

)
ENTRYTABLE RM EntryPoints[] =
{"SuBA", (int (*)())library, "library" },
{"suBB", (int (*)())library, "library" },
{ NULL, (int (*)())NuLL, NULL }
h
int library
(
char *nane,
unsi gned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state
)
o
int entry_no;
const int MAX_ENTRIES =
(sizeof (RM_EntryPoi nts)/sizeof (RM EntryPoints[0])) - 1;
for (entry_no = 0; entry_no < MAX_ENTRIES; entry_no++)
{
if (
I'strcnp
RM _Ent r yPoi nt s[entry_no] . Ent r yPoi nt Cobol Narme, nane
)
break; /* matching nanme found */
}
switch (entry_no)
{
case 0: /* "SUBA" called */
/*
* "SUBA" code goes here
*/
return RM_FND;
case 1: /* "SUBB" called */
/*
* "SUBB" code goes here
*/
return RM_FND;
defaul t:
return RMSTOP;, /* logic error, stop run unit */
}
}

H-10 Non-COBOL Subprogram Internals for UNIX
Accessing C Subprograms

Preparing C Subprograms

This section explains how to create an optional support module using either anew C
subprogram or an existing object for a C subprogram that was previously being linked
into the RM/COBOL runtime system using the customiz script.

Creating a Support Module from a C Source

C subprograms must be compiled and linked to produce a shared object to be used asa
support module. In the discussion below, C source files are assumed to have an extension
of .c and C object files are assumed to have an extension of .0. Optional support modules
must have an extension of .so.

A makefileis provided with the RM/COBOL development and runtime systems that can
be used or modified to build a shared object. Y ou may modify the makefile by adding a
new target for your support module or you may modify module usr sub.c (delivered with
the RM/COBOL system). The makefile includes the C compiler options used by Liant
Software to build the optional support modules shipped with the RM/COBOL release on
your particular platform.

Note These C compiler optionsin the makefile may not be appropriate or correct for
your C compiler. In order to build a shared object to be used as a support module with
the RM/COBOL runtime system, you must specify options to tell the compiler and linker
that you want to produce an ELF (Executable and Linking Format) object file (for
example, -b elf), that you want to produce a dynamically-linked executable (for example,
-dy), and that you want the linker to produce a shared object (for example, -G).

Producing a support module for use on HP/UX version 10.20 and later requires that you
specify an additional C compiler option to generate position-independent code. Other
UNIX systems do not require position-independent code for support modules. The
makefile includes the appropriate compiler option to generate position-independent code
on HP/UX.

Linking a support module for IBM AlX 4.2 requires both an “import” file, runcobol.imp,
to make RM/COBOL runtime system symbols available and an “export” file to make
support module symbols available. The runcobol.imp fileis supplied with the
RM/COBOL development and runtime systems for IBM AIX 4.2. The “export” file must
be provided by the user. A sample export file, libusr.exp, is aso provided with the
RM/COBOL release as an example of what the user must provide. The makefile includes
appropriate loader options to use the import and export files when building support
modules on IBM AlX 4.2

CodeBridge H-11
Preparing C Subprograms

A separate “samples’ makefileis provided with the RM/COBOL development system in
the cbsample subdirectory. This makefile has targets that are called by the various script
files used to demonstrate CodeBridge. Additional information about the CodeBridge
samples may be found in the READM E.txt file in the CodeBridge samples directory.
For the remainder of this section, makefile refers to the makefile that is present in the
main installation directory (normally, /usr/rmcobol) rather than the special CodeBridge
“samples’ makefile.

Assuming a C source file named usrsub.c, the following command generates the
subprogram object file and links a shared object to be used as an optional support module
with the runtime system:

make |ibusr MODULES=usrsub. o

The makefile compiles and links the default subprogram module usrsub.c. The resulting
optional support module libusr.so is then copied into the rmcobolso subdirectory of the
current directory. The following describes each of the files involved in the process:

e usrsub.cisyour C subprogram source file that will be compiled to produce usrsub.o.
e usrsub.oisthe C subprogram object file that is linked to create libusr.so.

» libusr.soistheresulting shared object (optional support module). Althoughitis
unnecessary to name your support module libusr.so, the name chosen must have an
extension of .so.

Note Filenames of optional support modules must be unique even if the modules are
located in different directories. The runtime system assumes that support modules with
the same name are the same and, therefore, ignores all subsequent support modules with
the same name as one already |oaded.

If your optional support module uses functions from the C library that are not also used by
the runtime system, you will see a message similar to the following when the runtime
system tries to load the support module:

dynam c |inker: runcobol: relocation error: synbol not found: synbol

Y ou will need to add the C library name to the compile/link command (for example, cc).
Depending on your particular support module, other library names may also need to be
added.

Y ou can test the newly built shared object by using the L (Library) Option on the
RM/COBOL Runtime Command (see Chapter 7, Running, in the RM/COBOL User’s
Guide) to specify the location of the support module in the test subdirectory. After testing
is complete, you should copy the support module into the r mcobolso subdirectory of the
executable directory (normally /usr/bin) so that the runtime system will automatically

H-12 Non-COBOL Subprogram Internals for UNIX
Preparing C Subprograms

load your support module. Once this has been done, your support module will be
available for use in production mode.

Creating a Support Module from a C Object (No Source)

If you have old C subprograms that you have been linking into the runtime system, but no
longer have the source (to be able to build a shared object), it may still be possible to
build a shared object from the old object (.0) file. Y ou will need to write a C wrapper
module. Y ou can use usrsub.c as a starting point, which is the method used in the
remainder of thistopic. Modify the entry points table to include the COBOL -callable
name(s) of the C functions you wish to accessin the old object. Then modify the entry
points table to reference the proper C function(s) name(s) (the UNIX command nm may
help you determine the function names). Finally, include an ext er n declaration for the
C function namesin the usr sub.c source as follows:

extern int oldcfunction();
Use the following command to build the shared object:
make |ibusr MODULES="usrsub. o ol dcobject. 0"

If you want to modify the makefile to change the name of the shared object, simply
duplicate the libusr section of the makefile and change the names as appropriate or
rename file libusr.so to the desired filename.

CodeBridge H-13
Preparing C Subprograms

Special Entry Points for Support Modules

When the runtime system (or other RM/COBOL component) loads an optional support
module, it looks for certain predefined symbols (entry points and variable names), and
variesits actions based on the presence or absence of these symbols. One such variable
nameis RM _EntryPoints (discussed in “ C Subprogram Name Table Structure” on
page H-3). The example subprogram, usrsub.c, which is distributed with the
RM/COBOL system, contains examples of all of these entry points and symbols. It can
be used as a starting point when developing optional support modules.

The complete list of these special namesis as follows:
e RM_AddOnBanner

* RM_AddOnCancelNonCOBOL Program

¢ RM_AddOninit

* RM_AddOnLoadMessage

« RM_AddOnTerminate

« RM_AddOnVersionCheck

* RM_EntryPoints and RM_EnumEntryPoints

Note On UNIX, only the RM _EntryPoints symbol declaration (or the
RM _EnumEntryPoints entry point) isrequired for an optional support module. All
other entry points are optional .

The following sections describe these entry points and special variables.

RM_AddOnBanner

Thisentry point, if present, should return a pointer to a character string that will be
displayed along with the runtime system banner message. The support module banner
may be used to display any required copyright notice. The support module banner is
displayed only if the K Option of the Runtime Command is not present.

Function declaration for RM_AddOnBanner:
char* RM _AddOnBanner ();

H-14 Non-COBOL Subprogram Internals for UNIX
Special Entry Points for Support Modules

RM_AddOnCancelNonCOBOLProgram

Thisentry point, if present, is called by the runtime system when a CANCEL verb is
executed for a program-name that is defined in the optional support module. It alowsthe
support module to do any cleanup actions that may be necessary. For example, this entry
point might be specified to allow the support module to close any open files when the
COBOL program cancels the associated non-COBOL subprogram. The program-name of
the non-COBOL subprogram for which a CANCEL has been performed is passed as a
parameter to the entry point.

Function declaration for RM_AddOnCancelNonCOBOL Program:
voi d RM_AddOnCancel NonCOBCLPr ogr am (char* ProgranNane) ;

RM_AddOnlInit

Thisentry point, if present, is called to initialize the optional support module. All support
modules will be initialized (if initialization is requested) before the runtime system begins
executing the first COBOL program. The entry point should return zero to indicate
successful initialization or a non-zero value to indicate that the support module
initialization failed. If theinitialization fails, the runtime system will display an
appropriate message and then terminate.

Note If the support module determines that successful initialization is not possible, the
support module should produce appropriate messages to allow the user to correct the
praoblem.

The support module is passed the shell command line arguments in the arguments

Argc (the argument count) and Argv (the argument vector). The support moduleis also
passed a pointer to the runtime call back table if the support module interface version is
setto 2.

Function declaration for RM _AddOnl nit for interface version 1:

i nt RM AddOnlnit (int Argc, char** Argv);

Function declaration for RM _AddOnl nit for interface version 2:

i nt RM AddOnl nit (i nt Argc,
char** Argv,
RUNTI ME_CALLS TABLE *pRt Cal |);

CodeBridge H-15
Special Entry Points for Support Modules

RM_AddOnLoadMessage

Thisentry point, if present, should return a pointer to a character string that is displayed
along with the load messages of other optional support modules. These load messages
allow the user to verify which support modules the runtime system has loaded. The
message may contain text to identify the support module and, if desired, the version
number or the build date. Load messages are displayed only if the V Runtime Command
Option is present, the V=DISPLAY keyword-value pair is specified in the RUN-OPTION
configuration record, or the RM_DYNAMIC_LIBRARY _TRACE environment variable
is defined.

If load messages are being displayed, the runtime system generates aload message
consisting of the complete pathname for the support module regardless of whether the
RM _AddOnL ocadM essage entry point is defined or not defined in the support module.
If the RM _AddOnL oadM essage entry point is defined, the returned string is appended
to the pathname in this load message.

Function declaration for RM _AddOnL oadM essage:
char* RM AddOnLoadMessage ();

RM_AddOnTerminate

Thisentry point, if present, is called by the runtime system during termination. Execution
of all COBOL programs is complete when the runtime system calls this entry point. It
allows the optional support module to perform any cleanup actions that may be necessary.

The RM_AddOnTerminate function is called when the module is unloaded, even if the
RM _AddOnlnit function (see page H-15) for the module did not succeed. Thus, the
code for this function must not depend on the success of RM _AddOnl nit function.

Function declaration for RM_AddOnT erminate:
voi d RM _AddOnTerm nate ();

RM_AddOnVersionCheck

Thisentry point, if present, provides a method of verifying that the runtime system and
the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to support
the current interface version of the runtime system that calls the support module.

If RM_AddOnVersionCheck is present, it will be passed a version string, two support
module interface versions, and a pointer for the support module to store a desired

H-16 Non-COBOL Subprogram Internals for UNIX
Special Entry Points for Support Modules

interface version. The version string (for example, 7.5n.nn) is defined by the VERSION
macro in the header file ver sion.h (provided with the RM/COBOL system). The runtime
support module interface versions indicate the minimum and maximum versions that the
runtime system can support. The version 7.50 runtime system supports support module
interface versions 1 and 2. For UNIX, these two interface versions differ only in the
arguments passed to RM _AddOnl nit, as documented in the description of that special
entry point (see page H-15). Interface version 1 was the support module interface version
supported by version 7.10 runtime systems. Interface version 2 isthe new current support
module interface version supported by version 7.50 runtime systems. In the future, the
runtime system may support other, partially or completely incompatible, interface
versions.

It isthe responsibility of the support module to verify that it supports one of the interface
versions supported by the runtime system and to return the interface version it supports.

If the support module does not support any of the interfaces supported by the runtime
system, the support module should return FALSE (0). Inthis case, or if the support
module returns an invalid interface version, the runtime system will display an
appropriate message and then terminate. Returning TRUE (1) and an interface version in
the range supported by the runtime system allows the runtime system to continue. The
support module may use the current interface version by returning the value
CURRENT_SUPPORT_MODULE_INTERFACE_VERSION (defined in the supplied
header file, rmc85cal.h).

The support module may also use the value of the version string to verify compatibility
with the runtime system. If the support module determines that it is not compatible with
the runtime system, it should return FALSE. In this case, the support module might
display a meaningful message before the runtime system displays its message and
terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM AddOnVer si onCheck (char* Version,
int MnRuntinelnterfaceVersion,
i nt MaxRunti nel nterfaceVersion,
i nt* DesiredlnterfaceVersion);

CodeBridge H-17
Special Entry Points for Support Modules

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the symbols

RM _EntryPoints and RM_EnumEntryPoints to determine whether the support module
contains any COBOL -callable functions. Each optional support module defines only
those COBOL -callable functions defined in that support module using either the

RM _EntryPoints symbol declaration or the RM _EnumEntryPoints entry point.

The use of the subprogram name table RM _EntryPointsis described on page H-3.

If the entry point RM _EnumEntryPointsis found, it is called repeatedly to obtain the
COBOL-callable names, function addresses, and function names of the COBOL -callable
functions in the support module. This function should return a pointer to a structure that
is equivalent to one entry inthe RM _EntryPointstable. The end of the entry pointsis
indicated by returning a null pointer or a structure whose first pointer isSNULL. The
index parameter starts at zero for the first call and isincremented for each subsequent
call.

If both symbols are present, RM_EnumEntryPoints takes precedence.
See the example on page H-3 for the symbol declaration for RM _EntryPoints.

Function declaration for RM _EnumEntryPoints:

ENTRYTABLE* RM _EnunEntryPoints (int index);

H-18 Non-COBOL Subprogram Internals for UNIX
Special Entry Points for Support Modules

Calling a CodeBridge Subprogram Library

It is possible to use non-COBOL subprogram libraries built using CodeBridge and call
them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by RM/COBOL. These
generated functions then call the C functions that are described in the template file. The
name of the generated function is the same as the C function name with a prefix of
“RMDLL" added to it. For example, if the name of the C function is MessageBox, the
name of the generated function is RMDLL MessageBox.

It is possible for a C function that calls the CodeBridge Library functions directly also
to call functions that were built by CodeBridge Builder. A C function could call
RMDLLMessageBox directly either by using the ARGUMENT_ENTRY structure
that was passed from RM/COBOL or by constructing one that suited the needs of the
C function.

One use of this capability would be to hide conversions of C dataitemsto COBOL
dataitems. “Example 6: Converting Buffered C Data” in Appendix B, CodeBridge
Examples, describes a case in which such conversions are necessary even though
CodeBridge isbeing used. In that example, the function cstring2text is called from
COBOL to convert data stored in a buffer by a C function call. This conversion could be
hidden from the RM/COBOL program by embedding the conversion in a C function that
first calls the C function to store the data in the buffer and then also calls the generated C
function, RMDL L cstring2text.

C Subprograms Performing Terminal 1/0

The RM/COBOL runtime system changes terminal characteristics before passing control
to a C language subprogram. If any processing requiring terminal 1/O occurred (including
operating system commands that use the terminal), you must reset the terminal to its
original state by making a call to the routine resetunit(). If resetunit() was called, acall
to setunit() must be made before control is returned to the run unit. Both functions are
part of the runtime system and are described in the section * Runtime Functions for
Support Modules’ that begins on page H-20.

CodeBridge H-19
Calling a CodeBridge Subprogram Library

Debugging C Subprograms

It is recommended that subprogramsinitially be tested using a C main program that sets
up the RM/COBOL argument entries and calls the subprogram. Once the subprograms
are functioning properly, then build the shared object and test with the COBOL program.

C Subprogram Example

The C subprogram usr sub.c has been provided with your distribution media as an
example of the predefined symbols and entry points used in creating optional support
modules (shared objects). Asdistributed, usrsub.c does nothing of interest, but does
serve as atemplate for developing an optional support module of your own. Remember,
only the RM _EntryPoints symbol declaration (or the RM _EnumEntryPoints entry
point) isrequired. All other entry points are optional.

Note The special entry points, SY STEM, DELETE, and RENAME, which were included
in the C source sub.c on previous releases of RM/COBOL, are not present in usrsub.c.
These COBOL -callable functions are now part of the runtime system and are fully
documented in Appendix F, Subprogram Library, of the RM/COBOL User’s Guide.

Runtime Functions for Support Modules

RM/COBOL provides user-supplied C subprograms with entry points to some COBOL
functions. The following routines use the standard C calling and parameter passing
conventions:

« RmForget (int y1, int x1, int y2, int x2). Thisfunction marks the indicated area of
screen memory as unknown. By doing so, the next COBOL display to that area will
not be optimized based on the screen contents. This allows COBOL output to be
correctly displayed over C subprogram output, which is not stored in the
in-memory screen image.

This routine requires four int parameters (two line and position pairs), which specify
the upper-left (y1,x1) and lower-right (y2,x2) coordinates of the area of the screen to
be marked as unknown. Valid values range from O to the line or position limit of the
screen. Passing zero values mark the entire screen as being unknown. See the
“C$Forget” sectionin Appendix F of the RM/COBOL User's Guide for more
information. The function returns an int value of O for success.

H-20 Non-COBOL Subprogram Internals for UNIX
Debugging C Subprograms

RmRepaintScreen(). This function causes the RM/COBOL runtime system to
redraw the entire current screen from an in-memory image. C routine output is
erased. Thisfunction requires no parameters and does not return avalue. Seethe
REPAINT-SCREEN keyword of the CONTROL phrase in Chapter 8, RM/COBOL
Features, of the RM/COBOL User's Guide for more information.

RmRefreshCwd(). This function causes the RM/COBOL runtime system to refresh
itsinternal copy of the current working directory. Thisinternal copy is used to
construct complete filenames from any filename that is not fully qualified. This
function should be called before returning to the COBOL program if a non-COBOL
subprogram changes the current working directory with the chdir () C library routine.
The RmRefreshCwd() routine has no parameters and does not return a value.

setunit(). Thisfunction restores the terminal to the state the RM/COBOL runtime
system requires for terminal 1/O. If the resetunit() function is called, the setunit()
function must be called before returning to the runtime system. This function
reguires no parameters and does not return a value.

resetunit(). Thisfunction placestheterminal ina“normal state” (that is, the

state before the RM/COBOL runtime system was executed). This function should
be used if any terminal 1/O is going to be performed, including operating system
commands that use the terminal. This function requires no parameters and does not
return avalue.

CodeBridge H-21
Runtime Functions for Support Modules

H-22 Non-COBOL Subprogram Internals for UNIX
Runtime Functions for Support Modules

Appendix I: Calling the
CodeBridge Library Directly

This appendix provides guidelines for calling the CodeBridge Library directly rather than
having the CodeBridge Builder generate the interface code from atemplate file. In order
to call the CodeBridge Library directly, you must use an alternate method for preparing
non-COBOL subprograms, as described in either Appendix G, Non-COBOL Subprogram
Internals for Windows, or Appendix H, Non-COBOL Subprogram Internals for UNIX.

Note Theinformation presented here assumes a working knowledge of the C
programming language. The material in Appendix C, Useful C Information, is not
comprehensive enough to provide this necessary background.

Overview

In describing direct calls to the CodeBridge Library, the following topics are covered:

Including cbridge.h

Declaring the C function return value and parameters
Specifying the COBOL argument number

Declaring C data items used in the conversion process
Initializing and terminating the conversion process
Converting COBOL arguments to C dataitems
Converting C dataitemsto COBOL arguments

Validating properties of COBOL arguments

Following these discussions, an example of calling the CodeBridge Library directly is
given on page |-14.

CodeBridge -1
Overview

Including cbridge.h

Instead of including rme85cal.h, include cbridge.h (which includes rme85cal.h).
cbridge.h defines the following:

* Valuesfor the Flags parameter used for most CodeBridge Library functions
» CodeBridgeinternal conversion table (CONV_TABLE)

e Runtime entry point table (RUNTIME_CALLS TABLE)

» Function prototype of each CodeBridge Library function

« Initialization and termination logic for the generated interface DLL (for Windows)

Declaring the C Function Return Value and
Parameters

The function is called with six parameters. The function should have the form specified
on page G-4 for Windows or the form specified on page H-4 for UNIX. The following
form may be used if the function is to work under either Windows or UNIX:

RM DLLEXPORT i nt RM CDECL

Functi onNane(char *pCal | edNarre,
unsi gned short Ar gCount ,
ARGUMENT _ENTRY Argunents[],
unsi gned short Initial State,
RM_HWAD hRt W ndow,

RUNTI ME_CALLS _TABLE *pRtCall)

/* function inmplenentati on goes here */
return RM _FND;

FunctionName is the name of the C function. The function return value must be
declared asan int. The value returned to the calling COBOL program must be either
RM_FND or RM_STOP (see pages G-5 and H-5).

pCalledName is the Name parameter used for the ConversionStartup library function
(see page F-42).

1-2 Calling the CodeBridge Library Directly
Including cbridge.h

ArgCount is the ArgCount parameter used for most CodeBridge Library functions.
Arguments is the Arguments parameter used for most CodeBridge Library functions.

Initial Sate could be used as the Flags parameter for the Cobol Initial State library
function (see page F-24), but normally would be used directly by the code.

hRtWindow is the window handle for the runtime on Windows and could be used as
the WindowsHandle parameter for the CobolWindowsHandle CodeBridge library
function (see page F-40), but normally would be used directly by the code. On
UNIX, hRtWindow is a placeholder that should not be used since there is no window
handle on UNIX.

pRtCall points to the runtime entry point table and is used to locate CodeBridge
Library functions. For example, you could call DiagnosticM ode (see page F-43)
asfollows:

pRt Cal | - >pDi agnost i cMbde(DF_SI LENT) ;

The C subprogram table structure, which defines the COBOL -callable entry points,
references the function name as follows:

RM DLLEXPORT ENTRYTABLE RM Ent ryPoi nts[] =

{
{"ProgramNanme", (int (RM_CDECL *)())FunctionNane, "FunctionNane"},
{ NULL, (int (RM.CDECL *)()) NULL, NULL}

h

ProgramName is the name used in the COBOL program to call the C function. For

more information on the C subprogram name table, see page G-3 (for Windows) or
page H-3 (for UNIX).

Note The macrosRM_DLLEXPORT, RM_CDECL, and RM_HWND, are defined in
rmce85cal.h (which isincluded by cbridge.h) to aid in writing code that will compile on
both Windows and UNIX.

CodeBridge 1-3
Declaring the C Function Return Value and Parameters

Specifying the COBOL Argument Number

The value of the Arguments parameter used for most CodeBridge Library functionsis
zero-relative. The first argument in the USING phrase of the RM/COBOL CALL
statement is argument zero. RM/COBOL alows up to 255 argumentsin the USING
phrase (numbered O through 254). The argument in the GIVING (RETURNING) phrase
of the RM/COBOL CALL statement is argument -1 (minus one).

Declaring C Data Items Used in the
Conversion Process

This section describes requirements for declaring a C dataitem that will receive a
converted COBOL argument value or whose converted value will be returned to a
COBOL argument.

Numeric Conversions

C numeric dataitems can receive and supply values for Numeric conversions

(Cobol ToFloat, Cobol Tolnteger, FloatToCabol, and Integer ToCobol). For C numeric
dataitems, you must define both the data item and a pointer to the dataitem. The pointer
must be initialized with the address of the dataitem as follows:

type Nane; type *pNane = &Nane,

where:
type isa C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric data item.

pName is the name of the pointer to the C numeric data item.

The pointer is required so that null-valued COBOL pointers can be passed to the C
function and converted properly.

Note Because of the way numeric data items are declared (to handle null-valued
pointers), you must adjust the way you pass C numeric data items by reference to other C
functions. Normally you would pass & Name, but when using CodeBridge you must pass
pName instead.

-4 Calling the CodeBridge Library Directly
Specifying the COBOL Argument Number

If an array of numbersisto be passed, you must define a numeric array. To pass an array
of five long integers, use the following definition:

| ong MyLongArray[5]; long *pM/LongArray = MyLongArray;

String Conversions

C strings can receive and supply values for String conversions (Cobol ToGeneral String,
Cobol ToNumericString, Cobol ToString, General StringToCobol, NumericStringToCobol,
and StringToCobol). To use C stringsin the conversion process, define an uninitialized
string pointer as follows:

type *pString;
where:
typeisaC string type (such as char, signed char, or unsigned char).

pString is the name of the string pointer.

Because the actual storage for each C string is alocated dynamically by the CodeBridge
Library, it is not necessary to define storage for the string.

If an array of stringsisto be passed, you must define an array of string pointers. To pass
an array of five strings, use the following definition:

char *pMyStringArray[5];

Address Conversions

C pointers can receive and supply values for Address conversions
(Cobol DescriptorAddress, Cobol ToPointerAddress, Cobol ToPointerBase, and
PointerBaseToCobol). For Address conversions, define a C pointer as follows:

type *pCobol Dat a;

where:
type isthe C data type used for references to the COBOL data.
pCobolData is the name of the pointer to the COBOL data.

Note Be careful when using Address conversions. The address returned in pCobolData
may be used to directly manipulate COBOL data. It is better to use Numeric and String
conversions, which require less knowledge of COBOL data formats to accomplish the
same purpose.

CodeBridge I-5
Declaring C Data Items Used in the Conversion Process

Pointer Numeric Component Conversions

Pointer Numeric Component conversions (Cobol ToPointerOffset, Cobol ToPointerSize,
PointerOffsetToCobol, and PointerSizeToCobol) do not convert to and from COBOL
arguments. Instead, they obtain (or set) auxiliary information about the components of
RM/COBOL pointer arguments. They are handled in the same manner as Numeric
conversions (see page |-4). For Pointer Numeric Component conversions, define both
a C dataitem and a pointer to the data item as follows:

type Nane; type *pNane = &Nane,

where:
type isa C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric data item.

pName is the name of the pointer to the C numeric data item.

Other Conversions

Other conversions (BufferLength, Cobol DescriptorDigits, Cobol DescriptorLength,

Cobol DescriptorScale, Cobol DescriptorType, Cobol ToPointerL ength, and
Effectivelength) do not convert to and from COBOL arguments. Instead, they obtain

(or set) auxiliary information about COBOL arguments or components of RM/COBOL
pointer arguments. They are handled in the same manner as Numeric conversions without
requiring the additional pointer definition. To use Other conversions, define a C numeric
dataitem as follows:

type Nane,

where:
type isa C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric dataitem.

BufferLength and Effectivel ength conversions allow arrays to be passed.

1-6 Calling the CodeBridge Library Directly
Declaring C Data Items Used in the Conversion Process

Trivial Conversions

You can call the CodeBridge Library conversion functions (Cobol ArgCount,

Cobollnitial State, or CobolWindowsHandl€) to convert ArgCount, Initial Sate, or
hRtWindow to a C dataitem. However, thisisatrivial conversion because you must pass
the value to the corresponding library function so that the function can storeitinthe C
dataitem you provide. For example:

short W ndowsHandl e2;

if (!RtCall->pCobol WndowsHandl e (O,
(void *)W ndowsHandl e2,
si zeof (W ndowsHandl e2),
W ndowsHandl e))
{ RtCall->pConversionC eanup(ArgCount, pConvTabl e);
return(RM STOP) ;

is equivalent to (though dower and more difficult to understand than):

short W ndowsHandl e2 = hRt W ndow,

The only benefit to using the conversion routines in this situation is that size error
checking may be performed. In the example above, a short data type is used instead of
HWND. If the actual value of the handle does not fit into a short data item, then an error
would be returned.

Initializing and Terminating the Conversion
Process

CodeBridge uses a dynamically allocated table to hold information about the conversion
process. The size of this table depends on the actual number of arguments (ArgCount)
passed from COBOL to C. Thetableisallocated by ConversionStartup (see page F-42)
and deallocated by ConversionCleanup (see page F-41). Several other CodeBridge
Library functions use thistable. The C function must declare alocal variable to hold a
pointer to this table as follows:

CONV_TABLE *pConvTabl e;

CodeBridge -7
Initializing and Terminating the Conversion Process

1-8

Initialization

Before calling any other CodeBridge Library functions, the C function must initialize the
conversion process by calling ConversionStartup as follows:

i f(!RtCall->pConversionStartup(ArgCount, &ConvTabl e,

pCal | edNane, Version))
return(RM STOP) ;

Note Version isthe CodeBridge Library version (for version 7.0, use 0x700).

The ConversionStartup call illustrates two general properties of calling CodeBridge
Library functions. First, CodeBridge Library functions are called indirectly through
pointersinthe RUNTIME_CALLS TABLE, RtCall. Adding the prefix “p” to the
CodeBridge Library function name forms the name of the pointer. In the code above, the
full referenceis:

Rt Cal | - >pConver si onSt artup(..)
Second, most CodeBridge Library functions return TRUE to indicate success or FALSE

toindicate failure. A failure condition indicates that processing should not continue.
Hence, the previoudly listed sequence:

i f(!RtCall->pConversionStartup(..))
return(RM STOP) ;

Termination
Just before returning to the calling COBOL program, the C function must terminate the
conversion process by calling ConversionCleanup as follows:

Rt Cal | - >pConver si onC eanup(ArgCount, pConvTabl e);

Note Because a program may have many exits, be sure that ConversionCleanup is called
prior to each exit.

For example, the code will typically contain sequences such as:

i f(!RtCall->pCodeBridgelLi braryFunction(..))

{ RtCall->pConversionC eanup(ArgCount, pConvTabl e);
return(RM STOP) ;

}

Calling the CodeBridge Library Directly

Initializing and Terminating the Conversion Process

Converting COBOL Arguments to C Data
ltems

CodeBridge Library input conversion functions are used to initialize C data items with
information from the calling COBOL program (see “Declaring C Data Items Used in the
Conversion Process’ on page |-4). For input conversions, the input conversion function
must be called before the C function uses the target C data item.

For Numeric and String conversions (see pages |-4 and |-5, respectively), the input
conversion function must be called if the corresponding output conversion function will
be called. Thisalows CodeBridge to handle null-valued COBOL pointer arguments and
to supply default values for omitted COBOL arguments. Note that for String conversions,
abuffer is alocated to hold the string. If only output conversion is needed, do not set the
PF_IN flag for the input conversion call.

Specifying the ArgCount, ArgNumber, and Arguments
Parameters

The ArgCount and Arguments parameters are presented in “Declaring the C Function
Return Vaue and Parameters’ on page [-2. The ArgNumber parameter isexplained in
“Specifying the COBOL Argument Number” on page |-4.

Specifying the Parameter Parameter

For Cobol ToFloat, Cobol Tolnteger, Cobol ToPointerOffset, and Cobol ToPointerSize
conversions, the Parameter parameter must be:

(void **) &pNane /* address of pointer to C data item*/

where pName is defined as described in “Numeric Conversions’ on page |-4 and “Pointer
Numeric Component Conversions’ on page |-6.

For Cobol ToGeneral String, Cobol ToNumericString, and Cobol ToString conversions, the
Parameter parameter must be:

(void **) &pString /* address of C string pointer */

where pString is defined as described in “ String Conversions’ on page |-5.

CodeBridge 1-9
Converting COBOL Arguments to C Data Items

1-10

For Cobol DescriptorAddress, Cobol ToPointerAddress, and Cobol ToPointerBase
conversions, the Parameter parameter must be:

(void **) &pCobolData /* address of C pointer to COBOL data*/
where pCobolData is defined as described in “ Address Conversions’ on page |-5.

For all other input conversions, the Parameter parameter must be:

(void *) &Nane /* address of C nuneric data item?*/

where Name is defined as described in “ Other Conversions’ on page |-6.

Specifying the Size Parameter

When the target C data item is numeric, CodeBridge supports multiple C numeric data
types with each input conversion function. For instance, Cobol Tolnteger can store a
converted COBOL numeric argument value in any C integer data type supported by the C
compiler. The CodeBridge Library conversion routines determine the size of the C data
item using the value of the Size parameter, typically sizeof(Name). For example, to store
aCOBOL numeric argument in the C dataitem, short My Short, call Cobol Tolnteger
specifying the Sze parameter assi zeof (MyShort) .

If thetarget C dataitem is a string, the Size parameter overrides the default string size
when the PF_SIZE flag is set. The default size for numeric strings is four more than the
digit length of the COBOL argument; for non-numeric strings, it is one more than the
length of the COBOL argument.

Specifying Other Parameters

Input String conversion functions, as well as BufferL ength and Effectivelength, require
that pConvTable, the pointer to the CodeBridge conversion table (see page |-7), be passed
in the ConvTable parameter.

For a discussion of the Flags parameter, see page F-3.

For conversion functions that support passing arrays, the Occurs parameter is the
array size. The PF_OCCURS flag should be set if the value of this parameter is greater
than one.

For Numeric and String conversions, the Omitted parameter is the default value for
omitted COBOL arguments when the PF_VALUE_IF_ OMITTED flag isset. Otherwise,
if the PF_OPTIONAL flag is set, the default value for Numeric conversionsis zero and
the default value for String conversionsis the empty string(""). If neither the

Calling the CodeBridge Library Directly
Converting COBOL Arguments to C Data Items

PF_VALUE_IF_OMITTED flag nor the PF_OPTIONAL flag is set, an error occurs for
an omitted argument.

For Numeric and String conversions, the Repeat parameter specifies the repeat count
when the PF_REPEAT flag is set.

See Cobol Tolnteger on page F-29 for a discussion of the Scale parameter.

For non-numeric String conversions, the Valuel parameter specifies the strip/fill character
when the PF_LEADING_VALUE flagisset. Likewise, the Value2 parameter specifies
the strip/fill character when the PF_TRAILING_VALUE flag is set.

Converting C Data Items to COBOL
Arguments

CodeBridge Library output conversion functions are used to pass information from C data
items back to the calling COBOL program (see “Declaring C Data Items Used in the
Conversion Process’ on page |-4). For output conversions, the output conversion
function must be called after the C function last uses the source C dataitem and before
returning to the calling COBOL program.

Specifying the ArgCount, ArgNumber, and Arguments
Parameters

The ArgCount and Arguments parameters are presented in “Declaring the C Function
Return Vaue and Parameters’ on page [-2. The ArgNumber parameter isexplained in
“Specifying the COBOL Argument Number” on page |-4.

Specifying the Parameter Parameter

For FloatToCobol and IntegerToCobol conversions, the Parameter parameter must be:
(void *) pNanme /* value of pointer to C data item*/
where pName is defined as described in “Numeric Conversions’ on page |-4.

For General StringToCobol, NumericStringToCobol, and StringToCobol conversions, the
Parameter parameter must be:

(void *) pString /* value of C string pointer */

where pString is defined as described in “ String Conversions’ on page |-5.

CodeBridge I-11
Converting C Data Items to COBOL Arguments

1-12

For PointerBaseToCobol conversions, the Parameter parameter must be:

(void *) pCobolData /* value of C pointer to COBOL data*/

where pCobolData is defined as described in “ Address Conversions’ on page |-5.

For PointerOffsetToCobol and PointerSizeToCobol conversions, the Parameter
parameter must be:

(void *) pNane /* value of C nuneric data item */

where pName is defined as described in “ Pointer Numeric Component Conversions’ on
page |-6.

Specifying the Size Parameter

When the source C dataitem is numeric, CodeBridge supports multiple C numeric data
types with each output conversion function. For instance, IntegerToCobol can convert
any C integer data type supported by the C compiler to a COBOL numeric argument. The
CodeBridge Library conversion routines determine the size of the C dataitem using the
value of the Size parameter, typically sizeof(Name). For example, to convert the C data
item, short MyShort, to aCOBOL numeric argument, call IntegerToCobol specifying
the Size parameter assi zeof (MyShort).

If the source C dataitem is a string, the Size parameter overrides the default string size
when the PF_SIZE flag is set. The default size for numeric strings is four more than the
digit length of the COBOL argument; for non-numeric strings, it is one more than the
length of the COBOL argument.

Specifying Other Parameters

For a discussion of the Flags parameter, see page F-3.

For conversion functions that support passing arrays, the Occurs parameter isthe
array size. The PF_OCCURS flag should be set if the value of this parameter is greater
than one.

For Numeric and String conversions, the Repeat parameter specifies the repeat count
when the PF_REPEAT flag is set.

See IntegerToCobol on page F-52 for a discussion of the Scale parameter.

For non-numeric String conversions, the Valuel parameter specifies the strip/fill character
when the PF_LEADING_VALUE flagisset. Likewise, the Value2 parameter specifies
the strip/fill character when the PF_TRAILING_VALUE flag is set.

Calling the CodeBridge Library Directly
Converting C Data Items to COBOL Arguments

Validating Properties of COBOL Arguments

In addition to the input and output conversion functions, the CodeBridge Library also
contains functions to validate properties of COBOL arguments. These include the
following:

» AssertDigits validates the number of digitsin a COBOL numeric argument.
* AssertDigitslL eft validates the number of digits before the decimal point.

* AssertDigitsRight validates the number of digits after the decimal point.

* AssertLength validates the number of bytesin a COBOL argument.

* AssertSigned verifiesthat a COBOL argument is signed.

* AssertUnsigned verifiesthat a COBOL argument is unsigned.

These functions may be used with either input or output arguments. The functions can be
called anytime after the call to ConversionStartup and before ConversionCleanup.

Follow the guidelines for conversion functions when specifying parameters for validation
functions (see “ Converting COBOL Argumentsto C Data ltems’ on page I-9 and
“Converting C Data Itemsto COBOL Arguments’ on page |-11.)

Note Instead of calling AssertSigned or AssertUnsigned, the following functions may set
the PF_ASSERT_SIGNED or PF_ASSERT_UNSIGNED flags to verify that the COBOL
argument is signed or unsigned: Cobol ToFloat, Cobol ToGeneral String, Cobol Tol nteger,
Cobol ToNumericString, FloatToCobol, General StringT oCobol, Integer ToCobol, and
NumericStringToCobol.

CodeBridge I-13
Validating Properties of COBOL Arguments

Example

1-14

The following example illustrates calling the CodeBridge Library directly.

#i ncl ude "cbridge. h"

#defi ne CLEANUP pRt Cal | - >pConver si onC eanup(ArgCount, pConvTabl e)
extern void DoTest01(int *Qutlnteger, char *InQutString);

RM DLLEXPORT int RM CDECL TestOl(char *pCall edNane,

unsi gned short ArgCount,
ARGUMENT_ENTRY Argunents[],
unsigned short Initial State,
RM HWD hRt W ndow,
RUNTI ME_CALLS_TABLE *pRt Cal |')

int Qutlnteger; int *pQutlnteger = &utlnteger;

char *InCut String;

CONV_TABLE *pConvTabl e;

if (pRCall->table_version < 700)
return RV _STOP;

if(!pRtCall->pConversionStartup(ArgCount, &pConvTabl e,
pCal | edNane, 0x700))
return RV _STOP;

if(!pRtCall->pCobol Tol nt eger (ArgCount, 0, Arguments, PF_IN, 0, O,
(void **) &pQutlinteger, 0, O,
si zeof (Qutl nteger)))

{ CLEANUP; return RM STOP; }

if(!pRtCall->pCobol ToString(ArgCount, 1, Arguments, pConvTabl e,
(PF_IN | PF_TRAILING SPACES), 0, (""),
(void **) & nQutString, O,
0, '\0', '"\0"))

{ CLEANUP; return RM STOP; }

DoTest 01(pQut I nteger, InQutString);

if(!pRtCall->plnteger ToCobol (ArgCount, 0, Arguments, PF_QOUT, O,
(void *) pQutlnteger, 0, O,
si zeof (Qutl nteger)))

{ CLEANUP; return RM STOP; }

if(!pRtCall->pStringToCobol (ArgCount, 1, Arguments,
(PF_QUT | PF_TRAI LI NG_SPACES), O,
InQutString, 0, 0, "\0', "\0"))

{ CLEANUP; return RM STOP; }

CLEANUP; return RM_FND;

Calling the CodeBridge Library Directly

Example

Index

Special Characters

[1 (brackets), use of
in COBOL syntax, xv
in global attribute lists, 2-2
in parameter attribute lists, 2-2

... (ellipsis), use of, in variable number of
C parameters, 2-29, E-9, E-12

/ (forward slash), use of, in C compiler
options, C-6

- (hyphen), use of
in C compiler options, C-6
optional, in RM/COBOL compilation and

runtime options, xvi

(pound sign), use of, in global attribute

lists, 2-2

A

ACCEPT statement, Terminal [-O
CONTROL phrase
REPAINT-SCREEN keyword, H-21
address base attribute
allowed combinations (table), E-31
defined, E-17
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-15
passing the address of the COBOL
data, 2-32
Address component, COBOL pointer
argument, 2-6, 2-12, 2-32, E-15
alias(name) base modifier
defined, E-4
for error base attributes, E-22
for numeric base attributes, E-7
for pointer base attributes, E-16
for the general_string base attribute, E-13
for the string base attribute, E-11
All caps, as a document convention, xiv

arg_count base attribute
allowed combinations (table), E-31
associating an implied argument, 2-24
defined, E-17
passing information to a C function, 2-17
arg_num(value) argument number attribute
allowed combinations (table), E-31
associating C parameters with COBOL
arguments, 2-4, 2-22
defined, E-2
Argument number attributes, 2-3, E-31
arg_num(value), E-2
associating C parameters with COBOL
arguments, 2-3, 2-22
ret val, E-2
Arguments, COBOL
argument number attributes, 2-3,
E-2, E-31
argument properties, passing to a
C function
COBOL descriptor data, 2-15
string length information, 2-16, E-18
C parameters, associating with, 2-3, E-2
autometic, 2-23
examples of, 2-25
explicit, 2-22
defined, 1-5
digit length, 2-16, 2-29, 2-36
group
fixed-length, 2-12
variable-length, 2-12
miscellaneous information, passing to a
C function, 2-17
omitted arguments, managing, 2-17
passing to a C function
non-numeric arguments, 2-10
null-valued pointer arguments, 2-13
numeric arguments, 2-7
pointer arguments, 2-12, E-15

CodeBridge X-1

Arrays
converting C
floating-point parameters, 2-8
integer parameters, 2-7
numeric string parameters, 2-9
string parameters, 2-11
working with
COBOL array references, 2-37
numeric, 2-34, E-6
string, 2-35, E-11
assert_digits(min,max) base modifier
defined, E-7
assert_digits _left(min,max) base modifier
defined, E-7
assert_digits _right base modifier
defined, E-8, E-23
assert_length(min,max) base modifier,
defined
for error, E-23
for numeric, E-8
for string, E-11
assert_signed base modifier
defined, E-8
assert_unsigned base modifier
defined, E-8
AssertDigits library function, F-6
AssertDigitsLeft library function, F-8
AssertDigitsRight library function, F-10
AssertLength library function, F-12
AssertSigned library function, F-14
AssertUnsigned library function, F-15
Associating C parameters with COBOL

arguments, 2-22, E-2. See also Argument

number attributes
automatic, 2-23
examples of, 2-25
explicit, 2-22

X-2 Index

Attribute lists. See also Global attributes;
Parameter attributes
associating C parameters with COBOL
arguments, 2-22
association of arguments and parameters
missing lists, 2-28
multiple lists, 2-26
attributes
defined, 2-2
use of, in attribute lists, 2-2
modifying COBOL data areas, 2-30
passing information to a C function, 2-6
types
global, 2-2, 2-5, D-1
parameter, 2-2, E-1
use of, intemplate files, 2-2. See also
Template files
using P-scaling, 2-33
working with a variable number of C
parameters, 2-29
working with arrays, 2-34
Attributes. See also Attribute lists; Global
Attributes; Parameter attributes
defined, 2-2
use of, in attribute lists, 2-2

B

banner global attribute, D-2

Banner messages, D-2, G-12, H-14

Base attributes, 2-3, E-3. See also Base
modifiers;, Parameter attributes
descriptor, 2-15, 2-17, E-3, E-17
error, 2-19, E-3, E-20
general_string, 2-7, 2-9, 2-10, 2-13,

2-30, E-13

numeric, 2-7, 2-8, 2-29, E-3, E-5
numeric_string, 2-7, 2-9, 2-10, 2-13, 2-29
pointer, 2-12, E-3, E-15
string, 2-7, 2-10, 2-30, E-3, E-11
string length, 2-9, E-3, E-14

Base modifiers, 2-3, E-3, F-2. Seealso Base
attributes; Parameter attributes
common, for several base attributes, E-4
converting C

floating-point parameters, 2-8
integer parameters, 2-8
numeric string parameters, 2-10
for descriptor base attributes, E-20
for error base attributes, E-20, E-22
for numeric base attributes, 2-8, 2-10, E-7
for pointer base attributes, 2-13, E-16
for string length base attributes, E-15
for the general_string base attribute, E-13
for the string base attributes, E-11

.bat filename extension, 1-4

Bold type, use of
as a document convention, xv
in CodeBridge examples, B-1

Brackets ([]), use of
in COBOL syntax, xv
in global attribute lists, 2-2
in parameter attribute lists, 2-2

Buffer addresses
converting buffered C data,

example of, B-18
passing, 2-33

buffer_length base attribute
allowed combinations (table), E-31
associating with the current

argument, 2-24
converting
C numeric string parameters, 2-9
C string parameters, 2-11
defined, E-14
passing string length information, 2-16
BufferLength library function, F-16

C

C Compile Command Option,
RM/COBOL, F-50
C compiler, 1-7, C-1-C-8, G-9
C datatypes. See Datatypes, C
C entry points for COBOL functions
resetunit(), H-21
RmForget(int y1, int x1, int y2, int x2),
H-20
RmRefreshCwd(), H-21
RmRepaintScreen(), H-21
setunit(), H-21
.c filename extension, 1-6, 2-38
C functions, 1-5, 2-6, C-1, C-5. Seealso
Function prototypes
C parameters. See Parameters, C
C$CARG, G-7, H-8
C$Forget subprogram, H-20
C$MemoryAllocate, B-9
C$MemoryDeallocate, B-9
CALL statement
GetCallerInfo library function, F-50
GIVING (RETURNING) phrase, 1-7,
2-17, E-2, G-5, H-5
linking C language subprograms into the
runtime system, H-13
non-COBOL subprograms, G-2, H-2
USING phrase, 1-7
OMITTED keyword, 2-17, G-5, H-5
Calling conventions, 1-1, C-4. Seealso
convention global attribute
Calling non-COBOL programs from
RM/COBOL programs, G-2, H-2
Case senditivity, 2-2, C-2, D-1, E-1
.cbl filename extension, 1-4
cbridge subdirectory, 1-8, 2-3, B-1
cbridge.h header file, F-4, G-9, I-2
cbsampl e subdirectory, 1-8, B-1
COBOL array references, working
with, 2-37
Cobol ArgCount library function, F-18
CobolDescriptorAddress library
function, F-19

CodeBridge X-3

CobolDescriptorDigits library function, F-20
CobolDescriptorLength library
function, F-21
CobolDescriptorScale library function, F-22
CobolDescriptorType library function, F-23
Cobollnitial State library function, F-24
Cobol ToFloat library function, F-25
Cobol ToGeneral String library function, F-27
Cobol Tolnteger library function, F-29
Cobol ToNumericString library function,
F-31
Cobol ToPointerAddress library
function, F-33
Cobol ToPointerBase library function, F-34
Cobol ToPointerLength library
function, F-35
Cobol ToPointerOffset library function, F-36
Cobol ToPointerSize library function, F-37
Cobol ToString library function, F-38
CobolWindowsHandle library function, F-40
CodeBridge
benefits, 1-2
components
CodeBridge Builder, 1-2, 1-6,
2-38, A-3
CodeBridge Library, 1-2, A-3, F-1, I-1
concepts
associating C parameters with COBOL
arguments, 2-22, E-2
automatic, 2-23
examples of, 2-25
explicit, 2-22
managing omitted arguments, 2-17
modifying COBOL data areas
passing the address, 2-32
using the out direction attribute, 2-30
passing information to a C function, 2-6
miscellaneous information, 2-17
null-valued pointer arguments, 2-13
returning C error values, 2-19
using P-scaling, 2-33, E-5, E-18

X-4 Index

using template file components, 2-1
atribute lists, 2-2, D-1, E-1
attributes, 2-2

using the CodeBridge Builder, 1-2, 1-6,
2-38, A-3

working with a variable number of
C parameters, 2-29
numeric, 2-29
string, 2-29

working with arrays. See also Arrays
COBOL array references, 2-37
numeric, 2-34, E-6
string, 2-35, E-11

development process, overview

building (compiling and linking) the
non-COBOL subprogram library, 1-7

compiling the COBOL program, 1-7

creating atemplatefile, 1-6, 2-1, 2-38.
See also Template files

example, 1-8. See also Examples

invoking CodeBridge Builder program,
1-6, 2-38. See also CodeBridge
Builder

modifying or creating a COBOL
program, 1-7

running the application, 1-7

selecting the C functions, 1-5

dynamic link libraries (DLLS), 1-1, 1-10,
2-38, B-12, B-17, B-23, C-5, G-3,
G-8, G-12

error messages, A-1, A-3

examples, 1-8, B-1

features, xi, xviii

non-COBOL subprogram internals
UNIX, H-1
Windows, G-1

overview, 1-1

preparing non-COBOL subprograms,
alternate method, G-1, H-1

requirements, 1-3

support modules, 1-1, 1-10, G-1, G-4,
G-8, G-11, H-1, H-3, H-9, H-11, H-14

using this manual, 1-3

CodeBridge Builder, 1-2, 1-6, 2-38
error messages, A-1
exit codes, A-3
using templatefiles, 2-1
CodeBridge Library, 1-2, F-1. See also
Library functions
caling directly, 1-1
error messages, A-3
Flags parameter, specifying, F-3,
[-10, 1-12
functions
list of, F-2
overview, F-1
RtCall table, reference to, F-43
Compile Command, RM/COBOL
options
specify object file pathname (O), F-50
Configuration records
RUN-OPTION, G-13, H-16
convention global attribute, 2-5, D-2
Conventions and symbols, xiv. See also
Specia Characters
Conversion, 2-6
input, 2-9, 2-11, 2-13, 2-16, 2-23, 2-33
output, 2-9, 2-11, 2-13, 2-16, 2-23, 2-30,
2-33, 2-37
ConversionCleanup library function, F-41
ConversionStartup library function, F-42
Converting
C floating-point parameters, 2-8
C integer parameters, 2-7
C numeric string parameters, 2-9
C string parameters, 2-10
structures and unions, B-14
COUNT special register, 2-37
COUNT-MAX special register, 2-37
COUNT-MIN special register, 2-37
customiz script, H-11

D

Data areas, COBOL, modifying, 2-30
Data declarations, C-3
Data descriptors, COBOL, 2-15

Datatypes, C, C-2
floating-point, 2-8, 2-34
integer, 2-7, 2-34
string, 2-9, 2-10, 2-35
Data types, COBOL
non-numeric, 2-10
numeric, 2-7
numeric edited, 2-7
Debugging an application, F-1
.def filename extension, 1-7
Descriptor base attributes, 2-17, E-3, E-17.
See also Descriptor base modifier;
Parameter attributes
address, E-17
arg_count, E-17
associating C parameters with COBOL
arguments, 2-24
initial_state, E-18
length, E-18
managing omitted arguments, 2-18
passing
COBOL descriptor data, 2-15
string length information, 2-16
the address of the COBOL data, 2-32
scale, E-18
using P-scaling, 2-33
windows_handle, E-20
Descriptor base modifier
silent, E-4
diagnostic global attribute, D-3, E-4, F-2
DiagnosticMode library function, F-43
Digit length, 2-29, 2-33, 2-36, E-6,
E-7,E-14
for error base attributes, E-22
for general _string base attribute, 2-16
for numeric_string base attribute, 2-16
digits base attribute
allowed combinations (table), E-31
associating with the current argument,
2-24
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-15
Direct (by value), 2-7, 2-8, 2-31

CodeBridge X-5

Direction attributes, 2-3, E-2. Seealsoin

direction attribute; out direction attribute;

Parameter attributes
DISPLAY statement
CONTROL phrase
REPAINT-SCREEN keyword, H-21
.dll filename extension, 1-10, B-12, B-17,
B-23
DLLs. See Dynamic link libraries (DLLS)
Dynamic link libraries (DLLS), 1-1, 1-10,
2-38, B-12, B-17, B-23, C-5, G-1, G-3,
G-8, G-12

E

effective_length base attribute
allowed combinations (table), E-31
associating with the current
argument, 2-24
converting
C numeric string parameters, 2-9
C string parameters, 2-11
defined, E-14
passing string length information, 2-17
Effectivelength library function, F-44
ELF. See Executable and Linking Format
(ELF) object file
Ellipsis(...), use of, in variable number of
C parameters, 2-29, E-9, E-12
Embedded spaces, E-7
Enhancements to CodeBridge, xi, xviii
Entry point table, 1-1-1-3
Entry points
for UNIX, H-20
special for support modules, H-3,
H-9, H-14
for Windows, G-8-G-9

special for support modules, G-4, G-11

Environment variable,
RM_DYNAMIC _LIBRARY_TRACE,
G-13, H-16

.err filename extension, 2-39

X-6 Index

errno base attribute
allowed combinations (table), E-31
defined, E-21
returning C error values, 2-20
Error base attributes, 2-19, E-3, E-20. See
also Error base modifiers; Parameter
attributes
errno, E-21
get_last_error, E-21
Error base modifiers. See also Error base
attributes
alias, E-22
alias(name), E-4
assert_digits(min,max), E-22
assert_digits left(min,max), E-22
assert_digits right, E-23
assert_length(min,max), E-23
assert_signed, E-23
assert_unsigned, E-23
no_size error, E-23
rounded, E-23
scaled(value), E-23
silent, E-4, E-23
Error message reporting
DiagnosticMode library function, F-43
GetCallerInfo library function, F-50
Error messages, A-1-A-7
control reporting of, diagnostic global
attribute, D-3

Examples
accessing COBOL pointer arguments, B-9
accommodating a variable number of
parameters, B-5
associating C parameters with COBOL
arguments, 2-25
calling astandard C library function, 1-8
calling a Windows API function, B-2
calling C++ libraries from CodeBridge,
B-20
converting buffered C data, B-18
packing and unpacking structures, B-14
using errno error base attribute, B-24
using get_last_error error base
attribute, B-27
Executable and Linking Format (ELF)
object file, 1-9, B-11, B-16, B-22, H-11
Exit codes, CodeBridge Builder, A-3
extern declaration, H-13

F

Figurative constant, NULL (NULLS), 2-13,
E-8, E-12
Filenames, conventions for, xv
Flags parameter, specifying, F-4, 1-2
float base attribute
allowed combinations (table), E-31
and direction attributes, 2-3
associating the C function return
value, 2-23
converting C floating-point
parameters, 2-8
defined, E-5
passing null-valued pointer
arguments, 2-13
working with a variable number of
C parameters, 2-29
working with arrays, 2-34
Floating-point parameters, 2-8
FloatToCoboal library function, F-46

Forward dash (/), use of, in C compiler

options, C-6

Function prototypes, 2-1, C-1, C-4. Seealso

C functions

genera_string base attribute

allowed combinations (table), E-32

and direction attributes, 2-3

and numeric edited data items, 2-7, 2-10

associating the C function return
value, 2-23

converting
C numeric string parameters, 2-9
C gtring parameters, 2-10

defined, E-3, E-13

passing null-valued pointer
arguments, 2-13

working with a variable number of
C parameters, 2-30

working with arrays, string, 2-35

General StringToCobol library function, F-48
get_last_error base attribute

allowed combinations (table), E-32
defined, E-21
returning C error values, 2-20

GetCallerInfo library function, F-50
GIVING (RETURNING) phrase, CALL

statement, 1-7, 2-17, E-2, G-5, H-5

Global attributes. See also Parameter

attributes

banner, D-2

convention, 2-5, D-2

diagnostic, D-3, E-4, F-2
load_message, D-3

overview, D-1

replace_type, 2-5, D-4

use of, in global attribute lists, 2-2

CodeBridge X-7

H

.h filename extension, C-1
Header files, 1-5
cbridge.h, F-4, G-9, I-2
defined, C-1
rmc85cal.h, 2-39, E-18, G-4, G-5, G-9,
H-3, H-5,1-2
rmport.h, 2-39, G-4, H-3
rtarg.h, 2-39, G-4, H-3
rtcallbk.h, 2-39, H-5
standdef.h, 2-39, G-4, H-3
version.h, G-14, H-17
Hyphen (-), use of
in C compiler options, C-6
optional, RM/COBOL compilation and
runtime options, xvi

#include C preprocessor directives, 2-6,
2-39,A-1,C-1
in direction attribute, 2-3
allowed combinations (table), E-31
convertingto C
floating-point parameters, 2-8
integer parameters, 2-7
numeric string parameters, 2-9
string parameters, 2-11
defined, E-2
Includefiles. See Header files
Indirect (by reference), 2-7, 2-8, 2-11, 2-32
Initial entry flag, F-24
Initial state flag, G-5, H-5
initial_state base attribute
allowed combinations (table), E-32
associating an implied argument, 2-24
defined, E-18
passing information to a C function, 2-17

X-8 Index

integer base attribute, E-10
allowed combinations (table), E-32
and direction attributes, 2-3
associating the C function return
value, 2-23
converting C integer parameters, 2-7
defined, E-5
passing null-valued pointer
arguments, 2-13
working with a variable number of C
parameters, 2-29
working with arrays, 2-34
Integer parameters, 2-7
integer_only base modifier, defined, for
integer numeric only, E-10
IntegerToCobol library function, F-52
Italic, as a document convention, xv

K

K Runtime Command Option, RM/COBOL,
D-2, G-12, H-14

Key combinations, document convention
for, xv

L

L Runtime Command Option, RM/COBOL,
1-7, G-8, H-1
leading signs base modifiers
converting C, numeric string parameters,
2-10
defined, for numeric_string only, E-10
leading(value) base modifier
defined, E-12
leading_spaces base modifier
defined, E-12
Length
assert_length(min,max) base modifier,
E-8, E-11, E-23
BufferLength library function, F-16
Effectivelength library function, F-44
length base attribute, E-18
numeric_string base attribute, E-6

passing
COBOL descriptor data, 2-15
pointer length, 2-12
string length information, 2-16
size(value) base modifier, E-10, E-12
string base attribute, E-11
string length base attributes, E-3
buffer_length, E-14
effective_length, E-14
length base attribute
allowed combinations (table), E-33
associating with the current
argument, 2-24
converting
C numeric string parameters, 2-9
C string parameters, 2-11
defined, E-18
managing omitted arguments, 2-18
passing string length information, 2-16

Library functions, F-1. See also CodeBridge

Library

AssertDigits, F-6
AssertDigitsLeft, F-8
AssertDigitsRight, F-10
AssertLength, F-12
AssertSigned, F-14
AssertUnsigned, F-15
BufferLength, F-16

Cobol ArgCount, F-18
CobolDescriptorAddress, F-19
Cobol DescriptorDigits, F-20
CobolDescriptorLength, F-21
Cobol DescriptorScale, F-22
CobolDescriptorType, F-23
Cobollnitial State, F-24
Cobol ToFloat, F-25

Cobol ToGeneral String, F-27
Cobol Tolnteger, F-29

Cobol ToNumericString, F-31
Cobol ToPointerAddress, F-33
Cobol ToPointerBase, F-34
Cobol ToPointerLength, F-35
Cobol ToPointerOffset, F-36

Cobol ToPointerSize, F-37
CobolToString, F-38
CobolWindowsHandle, F-40
ConversionCleanup, F-41
ConversionStartup, F-42
DiagnosticMode, F-43
EffectiveLength, F-44
FloatToCobol, F-46
General StringToCobol, F-48
GetCallerInfo, F-50
IntegerToCobol, F-52
list of, F-2
NumericStringToCobol, F-54
PointerBaseToCobol, F-56
PointerOffsetToCobol, F-57
PointerSizeToCobol, F-58
RtCall table, reference to, F-43
StringToCabol, F-59

Linking, 1-7, C-7

load_message global attribute, D-3

M

Macros, C-4
Makefile, 1-3
Messages
error, A-1, A-3
exit codes, CodeBridge Builder, A-3
Modifying COBOL data areas, 2-30

N

no_null_pointer base modifier
defined
for numeric, E-8
for string, E-12
passing null-valued pointer
arguments, 2-14
no_size error base modifier
defined
for numeric, E-8

CodeBridge

X-9

Non-COBOL subprograms
under UNIX
accessing, H-9
calling a CodeBridge non-COBOL
subprogram library, H-19
calling sequence, H-2
debugging, H-20
preparing C programs, H-11
restrictions to C subprograms
performing terminal 1/0, H-19
runtime functions for support
modules, H-20
special entry points, H-14
under Windows
calling a CodeBridge non-COBOL
subprogram library, G-17
calling sequence, G-2
debugging, G-16
methods of use, G-1
preparing, G-8
special entry points, G-11
NULL (NULLYS) figurative constant, 2-13,
E-8, E-12
Null-valued pointers, 2-7-2-11, 2-13
Numeric base attributes, E-3. See also
Numeric base modifiers; Parameter
attributes
float, E-5
integer, E-5, E-10
numeric_string, E-6, E-10
working with arrays, 2-34
Numeric base modifiers, E-7. Seealso
Numeric base attributes; Parameter
attributes
alias(name), E-4
assert_digits(min,max), E-7
assert_digits left(min,max), E-7
assert_digits right, E-8
assert_length(min,max), E-8
assert_signed, E-8
assert_unsigned, E-8
integer_only, E-10
leading signs, E-10

X-10 Index

no_null_pointer, E-8
no_size error, E-8
occurs(value), E-9
optional, E-9
repeat(value), E-9
rounded, E-9
scaled(value), E-10
silent, E-4
size(value), E-6, E-10
trailing signs, E-10
unsigned, E-10
value_ if _omitted(value), E-9
Numeric edited dataitems, 2-7, 2-10
Numeric string parameters, 2-9
passing COBOL numeric arguments, 2-7
numeric_string base attribute
allowed combinations (table), E-33
and direction attributes, 2-3
and numeric edited data items, 2-7, 2-10
associating the C function return
value, 2-23
base modifiers, specific to, E-10
converting C numeric string
parameters, 2-9
defined, E-3, E-6
passing null-valued pointer
arguments, 2-13
working with a variable number of
C parameters, 2-29
working with arrays, 2-35
NumericStringToCobol library function,
F-54

)

occurs(value) base modifier
defined
for numeric, E-9
for string, E-12
for string length, E-15
working with arrays
numeric, 2-35
string, 2-36

offset component, COBOL pointer
argument, E-16
Offset component, COBOL pointer
argument, 2-6, 2-12, 2-32
Omitted arguments, 2-17, E-9, E-12, E-13,
G-5, H-5
OMITTED keyword, USING phrase, CALL
statement, 2-17, G-5, H-5
Online services, xvi
optional base modifier
defined
for numeric, E-9
for string, E-12
managing omitted arguments, 2-17
Organization of this manual, xiii, 1-3
out direction attribute, 2-3
allowed combinations (table), E-31
associating the C function return
value, 2-23
converting from C
floating-point parameters, 2-8
integer parameters, 2-7
numeric string parameters, 2-9
string parameters, 2-11
defined, E-2
modifying COBOL data areas, 2-30

P

Packing and unpacking structures or unions,
example of, B-14
Parameter attributes. See also Global

scale, E-18

windows_handle, E-20
error, 2-19, E-3

erro, E-21

get_last_error, E-21
genera_string, E-3, E-13
numeric, E-3

float, E-5

integer, E-5

numeric_string, E-3, E-6
pointer, E-3

pointer_address, E-15

pointer_base, E-16

pointer_length, E-15

pointer_offset, E-16

pointer_size, E-16
string, E-3

string, E-11
string length, E-3

buffer_length, E-14

effective_length, E-14

base modifiers, 2-3
common, for several base attributes,

E-4
alias(name), E-4
silent, E-4

for descriptor base attributes, E-20

silent, E-4

for error base attributes
alias, E-22
alias(name), E-4

assert_digits(min,max), E-22
assert_digits left(min,max), E-22
assert_digits right(min,max), E-23
assert_length(min,max), E-23
assert_signed, E-23
assert_unsigned, E-23

attributes
allowed combinations (table), E-31
categories
argument number, 2-3
arg_num(value), E-2

ret val, E-2 .
= no _size error, E-23
bass, 2-3, E-3 rounded, E-23
descriptor, 2-15, 2-17, E-3, E-17 ’
address. E-17 scaled(value), E-23
’ silent, E-4, E-23

arg_count, E-17
initial_state, E-18
length, E-18

CodeBridge X-11

for numeric base attributes
alias(name), E-4
assert_digits(min,max), E-7
assert_digits left(min,max), E-7
assert_digits right(min,max), E-8
assert_length(min,max), E-8
assert_signed, E-8
assert_unsigned, E-8
integer_only, E-10
leading signs, E-10
no_null_pointer, E-8
no_size error, E-8
occurs(value), E-9
optional, E-9
repeat(value), E-9
rounded, E-9
scaled(value), E-10
silent, E-4
size(value), E-10
trailing signs, E-10
unsigned, E-10
value_if _omitted(value), E-9
for pointer base attributes
pointer_max_size, E-16
pointer_reset_offset, E-16
for string length base attributes
occurs(value), E-15
silent, E-4
for the general _string base attribute,
E-13
for the string base attribute
alias(name), E-4
assert_length(min,max), E-11
leading(value), E-12
leading_spaces, E-12
no_null_pointer, E-12
occurs(value), E-12
optional, E-12
repeat(value), E-12
silent, E-4
size(value), E-12
trailing(value), E-13
trailing_spaces, E-13

X-12 Index

value_ if _omitted(value), E-13
direction, 2-3
in, E-2
out, E-2
list of, alphabetical (table), E-24
use of, in parameter attribute lists, 2-2
Parameters, C
associating with COBOL arguments, E-2
automatic, 2-23
examples of, 2-25
explicit, 2-22
defined, 1-5
working with a variable number of,
2-29,B-5
Pointer arguments, accessing
example, B-9
Pointer base attributes, 2-12, E-3. See also
Parameter attributes; Pointer base
modifiers
passing
and modifying pointer components,
2-13
null-valued pointer arguments, 2-14
pointer address and pointer length, 2-12
the address of COBOL data, 2-32
pointer_address, 2-12, 2-14, 2-32, E-15
pointer_base, 2-13, 2-14, 2-32, E-16
pointer_length, 2-12, 2-32, E-15
pointer_offset, 2-13, 2-14, 2-32, E-16
pointer_size, 2-13, 2-14, 2-32, E-16
Pointer base modifiers
alias(name), E-4
passing and modifying pointer
components, 2-13
pointer_max_size, 2-13, E-16
pointer_reset_offset, 2-13, E-16
silent, E-4
Pointer data types
passing COBOL pointer arguments, 2-12
pointer base attributes, E-3, E-15
pointer_address base attribute
allowed combinations (table), E-33
defined, E-15

passing
null-valued pointer arguments, 2-14
pointer address and pointer length, 2-12
the address of the COBOL data, 2-32
pointer_base base attribute
allowed combinations (table), E-33
and direction attributes, 2-3
associating the C function return
value, 2-23
defined, E-16
passing
and modifying pointer components,
2-13
null-valued pointer arguments, 2-14
the address of the COBOL data, 2-32
pointer_length base attribute
allowed combinations (table), E-33
associating with the current
argument, 2-24
defined, E-15
passing pointer address and pointer
length, 2-12
passing the address of the COBOL
data, 2-32
pointer_max_size base modifier
defined, E-16
passing and modifying pointer
components, 2-13
pointer_offset base attribute
allowed combinations (table), E-33
and direction attributes, 2-3
associating the C function return
value, 2-23
associating with the current
argument, 2-24
defined, E-16
passing
and modifying pointer
components, 2-13
null-valued pointer arguments, 2-14
the address of the COBOL data, 2-32

pointer_reset offset base modifier
defined, E-16
passing and modifying pointer
components, 2-13
pointer_size base attribute
allowed combinations (table), E-33
and direction attributes, 2-3
associating the C function return
value, 2-23
associating with the current
argument, 2-24
defined, E-16
passing
and modifying pointer
components, 2-13
null-valued pointer arguments, 2-14
the address of the COBOL data, 2-32
PointerBaseToCobol library function, F-56
PointerOffsetToCobol library function, F-57
Pointers
COBOL, 2-12
null-valued, 2-7-2-11, 2-13
pointer base attributes, 2-12, E-3, E-15
PointerSizeToCobol library function, F-58
Pound sign (#), use of, in global attribute
lists, 2-2
P-scaling, 2-33, E-5, E-18

R

Registration, xvi
Related publications, xiv
REPAINT-SCREEN keyword, CONTROL
phrase, ACCEPT and DISPLAY
statements, H-21
repeat(value) base modifier
defined
for numeric, E-9
for string, E-12
working with a variable number of C
parameters, 2-29
replace_type global attribute, 2-5, D-4

CodeBridge X-13

ret_val argument number attribute
allowed combinations (table), E-31
associating C parameters with COBOL
arguments, 2-4, 2-22
defined, E-2
RETURNING phrase (CALL statement).
See GIVING (RETURNING) phrase,
CALL statement
RM/COBOL
development system, 1-2, 2-38
runtime, CodeBridge Library
functions, 1-2, F-1
RM_AddOnBanner entry point, G-12, H-14
RM_AddOnCancelNonCOBOL Program
entry point, G-12, H-15
RM_AddOnlInit entry point, G-13, H-15
RM_AddOnL oadM essage entry point,
G-13, H-16
RM_AddOnTerminate entry point,
G-14, H-16
RM_AddOnV ersionCheck entry point,
G-14, H-16
RM_DYNAMIC_LIBRARY_TRACE
environment variable, G-13, H-16
RM_EntryPoints entry point, G-4, G-11,
G-15, H-3, H-14, H-18
RM_EnumEntryPoints entry point, G-15,
H-18
rmc85cal.h header file, 2-39, E-18, G-4,
G-5,G-9,H-5,1-2
rmport.h header file, 2-39, G-4, H-4
rounded base modifier
defined, for numeric, E-9
used with integer base attribute, E-5
using P-scaling, 2-33
Rounding, 2-33, E-5, E-9
rtarg.h header file, 2-39, G-4, H-4
RtCall table, reference to, F-43
rtcallbk.h header file, 2-39, H-5
runcobol (Runtime Command),
RM/COBOL, 1-7, D-2, D-3, G-8, G-12,
G-13, H-1, H-14, H-16

X-14 Index

RUN-OPTION configuration record
V keyword, G-13, H-16
Runtime Command, RM/COBOL
options
banner and STOP RUN message
suppression (K), D-2, G-12, H-14
list support modules loaded by the
runtime (V), D-3, G-13, H-16
object or non-COBOL program
libraries (L), 1-7, G-8, H-1

S

scale base attribute
allowed combinations (table), E-33
associating with the current
argument, 2-24
defined, E-18
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-16
using P-scaling, 2-33
scaled(value) base modifier, defined, for
integer numeric only, 2-8, E-5, E-10, E-23
Shared objects, 1-1, 1-3, 1-10, H-1, H-11,
H-13. See also Support modules
Signs, in numeric strings. See leading signs
base modifiers; trailing signs base
modifiers
silent base modifier
defined, E-4
for descriptor base attributes, E-20
for numeric base attributes, E-9, E-23
for pointer base attributes, E-16
for string length base attributes, E-15
for the general_string base attribute, E-13
for the string base attribute, E-12
using with diagnostic global attribute, D-3
Size component, COBOL pointer argument,
2-6, 2-12, 2-32, E-15, E-16

size(value) base modifier
defined
for numeric_string only, E-6, E-10
for string, E-11, E-12
passing string length information, 2-17
working with a variable number of
C parameters, 2-30
.so filename extension, 1-7, 1-10, B-12,
B-17, H-11
Source modules
creating from a C object (ho source),
H-13
creating from a C source, H-11
Special registers
COUNT, 2-37
COUNT-MAX, 2-37
COUNT-MIN, 2-37
standdef.h header file, 2-39, G-4, H-4
string base attribute. See also Parameter
attributes; String base modifiers
allowed combinations (table), E-34
and direction attributes, 2-3
and numeric edited data items, 2-7, 2-10
associating the C function return
value, 2-23
converting C string parameters, 2-10
defined, E-11
passing null-valued pointer
arguments, 2-13
working with a variable number of
C parameters, 2-30
working with arrays, 2-35
String base attribute, E-3
String base modifiers. See also string base
attribute
alias(name), E-4
assert_length(min,max), E-11
leading spaces, E-12
leading(value), E-12
no_null_pointer, E-12
occurs(value), E-12
optional, E-12

repeat(value), E-12
silent, E-4
size(value), E-11, E-12
trailing spaces, E-13
trailing(value), E-13
value_ if _omitted(value), E-13
String length base attributes, 2-16, E-3. See
also Parameter attributes; String length
base modifiers
buffer_length, E-14
effective_length, E-14
passing string length information, 2-16
String length base modifiers. See also String
length base attributes
occurs(value), E-15
silent, E-4
String parameters, 2-10
and COBOL groups, 2-12
StringToCobol library function, F-59
Structures or unions, as parameters, 2-6
example of packing and unpacking, B-14
Subprogram loading, G-3, H-3
Support modules, 1-1, 1-3, 1-10, G-1, H-1
special entry points, G-11, H-14
Support services, technical, xvi
Symbols and conventions, xiv. See also
Specia Characters

T

Technical support services, xvi
Template files
associating C parameters with COBOL
arguments, 2-22
attribute lists. See also Global attributes;
Parameter attributes
global, 2-2, 2-5, D-1
parameter, 2-2, E-1, E-24, E-31
samples of, 2-4, 2-5
attributes, defined, 2-2
creating, 1-6, 2-1, 2-38
examples of, in, 1-8
accessing COBOL pointer
arguments, B-9

CodeBridge X-15

accommodating a variable number of
parameters, B-5
calling a Windows API function, B-2
converting buffered C data, B-18
packing and unpacking structures or
unions, B-14
resolving external differences between
C and C++ external names, B-20
using errno error base attribute, B-24
using get_last_error error base
attribute, B-27
function prototypes, 2-1
generating multiple, C-8
tpl filename extension, 2-6
trailing signs base modifiers
converting C, numeric string parameters,
2-10
defined, for numeric_string only, E-10
trailing spaces base modifier, defined, for
string, E-13
trailing(value) base modifier, defined, for
string, E-13
type base attribute
allowed combinations (table), E-34
associating with the current argument,
2-24
managing omitted arguments, 2-18
passing COBOL descriptor data, 2-16
Type definitions (typedef), 1-5, B-2, C-3,
D-1, G4, G-6, H-3
typedef statements, 1-5, B-2, C-3, D-1, G-4,
G-6, H-3

X-16 Index

U

Unions or structures, as parameters, 2-6
example of, B-14

unsigned base modifier, defined, for integer
numeric only, E-10

USING phrase, CALL statement, 1-7, E-2
OMITTED keyword, 2-17, G-5, H-5

Using this manual, 1-3

Vv

V keyword
RUN-OPTION configuration record,
G-13, H-16
V Runtime Command Option, D-3
V Runtime Command Option, RM/COBOL,
G-13, H-16
value_if _omitted(value) base modifier
defined
for numeric, E-9
for string, E-13
managing omitted arguments, 2-17
version.h header file, G-14, H-17

w

Web site, xvi
Windows 9x class, defined, xv
Windows NT class, defined, xv
windows_handle base attribute
allowed combinations (table), E-34
associating an implied argument, 2-24
defined, E-20
passing information to a C function, 2-17

	CodeBridge (Calling Non-COBOL Subprograms)
	Copyright Page
	Table of Contents
	Comments

	Preface
	Welcome to CodeBridge Version 7.5
	What's New
	Who Should Use CodeBridge
	Organization of Information
	Related Publications
	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Enhancements
	Version 7.1
	Version 7.0

	Chapter 1: Introduction
	What is CodeBridge?
	CodeBridge Components

	Benefits of Using CodeBridge
	Requirements
	Using this Manual
	Developers Who are New to C Programming
	Developers Who are Evaluating CodeBridge
	Developers Who Wish to Use Existing C Libraries or Write New Non-COBOL Subprograms
	Developers Who Have Written Non-COBOL Subprograms for Previous Versions of RM/COBOL
	Developers Who Need Assistance in Testing and Debugging

	Typical Development Process Overview
	Typical Development Process Example
	Example 1: Calling a Standard C Library Function

	Chapter 2: Concepts
	Using Template File Components
	Attributes
	Attribute Lists
	Parameter Attribute Lists
	Sample Template File Using Parameter Attribute Lists

	Global Attribute Lists
	Sample Template File Using Global Attribute Lists

	Passing Information to a C Function
	Passing COBOL Arguments
	Passing COBOL Numeric Arguments
	Numeric Arguments with C Integer Parameters
	Numeric Arguments with C Floating-Point Parameters
	Numeric Arguments with C Numeric String Parameters

	Passing COBOL Non-Numeric Arguments
	Non-Numeric Arguments with C String Parameters
	Groups with C String Parameters

	Passing COBOL Pointer Arguments
	Method 1: Passing Pointer Address and Pointer Length
	Method 2: Passing and Modifying Pointer Components

	Passing Null-Valued Pointer Arguments

	Passing COBOL Argument Properties
	Passing COBOL Descriptor Data
	Passing String Length Information

	Passing Miscellaneous Information
	Managing Omitted Arguments

	Returning C Error Values
	Consistent Return Values
	Specifying Both errno and get_last_error
	Function Return Value (Status) Versus Error Values

	Associating C Parameters with COBOL Arguments
	Explicit Association
	Automatic Association
	Automatic Association of the C Function Return Value with a COBOL Argument
	Automatic Association of C Parameters with COBOL Arguments
	Automatic Association with an Implied Argument
	Automatic Association with the Next Argument
	Automatic Association with the Current Argument

	Examples of Associating Parameters with Arguments
	Example 1: Automatic Versus Explicit Association
	Example 1a: Automatic Association
	Example 1b: Optional Explicit Association
	Example 1c: Required Explicit Association

	Example 2: Multiple Attribute Lists for a C Parameter
	Example 2a: Associating a Parameter with Multiple Arguments
	Example 2b: In Direction Attribute for Multiple Attribute Lists
	Example 2c: Compatibility between Multiple Attribute Lists

	Example 3: No Attribute List for a C Parameter

	Working with a Variable Number of C Parameters
	Repeating C Numeric Parameters
	Repeating C String Parameters
	numeric_string
	general_string
	string

	Modifying COBOL Data Areas
	Using the out Direction Attribute
	Passing the Address of COBOL Data
	Passing Buffer Addresses

	Using P-Scaling
	Working with Arrays
	Numeric Arrays
	String Arrays
	COBOL Array References

	CodeBridge Builder
	Using the CodeBridge Builder

	Appendix A: CodeBridge Errors
	CodeBridge Builder Error Messages
	CodeBridge Builder Exit Codes
	CodeBridge Library Error Messages

	Appendix B: CodeBridge Examples
	Example 1: Calling a Standard C Library Function
	Example 2: Calling a Windows API Function
	Example 3: Accommodating a Variable Number of Parameters
	Example 4: Accessing COBOL Pointer Arguments
	Example 5: Packing and Unpacking Structures
	Example 6: Converting Buffered C Data
	Example 7: Calling C++ Libraries from CodeBridge
	Example 8: Using errno
	Example 9: Using get_last_error

	Appendix C: Useful C Information
	Understanding C Language Concepts
	Case Sensitivity
	Data Types
	Data Declarations
	Type Definitions and Macros
	Calling Conventions
	Function Prototypes

	Compiling and Linking C Functions
	Compiling on Windows
	Compiling on UNIX
	Linking on Windows
	Linking on UNIX
	Multiple Template Files

	Appendix D: Global Attributes
	Overview
	banner Attribute
	convention Attribute
	diagnostic Attribute
	load_message Attribute
	replace_type Attribute

	Appendix E: Parameter Attributes
	Overview
	Argument Number Attributes
	Direction Attributes
	Base and Base Modifier Attributes
	Base Modifiers Common to Base Attributes
	Numeric Base Attributes
	Base Modifiers that Apply to Numeric Base Attributes

	string Base Attribute
	Base Modifiers that Apply to the String Base Attribute

	general_string Base Attribute
	String Length Base Attributes
	Base Modifiers that Apply to String Length Base Attributes

	Pointer Base Attributes
	Base Modifiers that Apply to Pointer Base Attributes

	Descriptor Base Attributes
	Base Modifier that Applies to Descriptor Base Attributes

	Error Base Attributes
	Base Modifiers that Apply to Error Base Attributes

	Parameter Attributes Summary
	Parameter Attribute Combinations

	Appendix F: CodeBridge Library Functions
	Overview
	Specifying the Flags Parameter
	AssertDigits
	AssertDigitsLeft
	AssertDigitsRight
	AssertLength
	AssertSigned
	AssertUnsigned
	BufferLength
	CobolArgCount
	CobolDescriptorAddress
	CobolDescriptorDigits
	CobolDescriptorLength
	CobolDescriptorScale
	CobolDescriptorType
	CobolInitialState
	CobolToFloat
	CobolToGeneralString
	CobolToInteger
	CobolToNumericString
	CobolToPointerAddress
	CobolToPointerBase
	CobolToPointerLength
	CobolToPointerOffset
	CobolToPointerSize
	CobolToString
	CobolWindowsHandle
	ConversionCleanup
	ConversionStartup
	DiagnosticMode
	EffectiveLength
	FloatToCobol
	GeneralStringToCobol
	GetCallerInfo
	IntegerToCobol
	NumericStringToCobol
	PointerBaseToCobol
	PointerOffsetToCobol
	PointerSizeToCobol
	StringToCobol

	Appendix G: Non-COBOL Subprogram Internals for Windows
	C Subprograms
	Methods of Using Non-COBOL Subprograms
	Calling C Subprograms from COBOL
	COBOL CALL Statement
	C Subprogram Name Table Structure
	Parameters Passed to the C Subprogram
	COBOL Argument Entry Structure for C

	Preparing C Subprograms
	Special Entry Points for Support Modules
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Debugging C Subprograms
	Calling a CodeBridge Subprogram Library

	Appendix H: Non-COBOL Subprogram Internals for UNIX
	C Subprograms
	Calling C Subprograms from COBOL
	COBOL CALL Statement
	C Subprogram Name Table Structure
	Parameters Passed to the C Subprogram
	COBOL Argument Entry Structure for C

	Accessing C Subprograms
	Preparing C Subprograms
	Creating a Support Module from a C Source
	Creating a Support Module from a C Object (No Source)

	Special Entry Points for Support Modules
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Calling a CodeBridge Subprogram Library
	C Subprograms Performing Terminal I/O
	Debugging C Subprograms
	C Subprogram Example
	Runtime Functions for Support Modules

	Appendix I: Calling the CodeBridge Library Directly
	Overview
	Including cbridge.h
	Declaring the C Function Return Value and Parameters
	Specifying the COBOL Argument Number
	Declaring C Data Items Used in the Conversion Process
	Numeric Conversions
	String Conversions
	Address Conversions
	Pointer Numeric Component Conversions
	Other Conversions
	Trivial Conversions

	Initializing and Terminating the Conversion Process
	Initialization
	Termination

	Converting COBOL Arguments to C Data Items
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Converting C Data Items to COBOL Arguments
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Validating Properties of COBOL Arguments
	Example

	Index
	Comments

