
 Liant Software Corporation

Business Information Server
User's Guide

Version 8

Copyright © 2003, 2004 by Liant Software Corporation. All rights reserved. Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any
form or by any means, electronic, mechanical, photocopied, recorded, or otherwise, without prior
written permission of Liant Software Corporation.

The software described in this document is furnished under license and may be copied (with
inclusion of the copyright notice) only in accordance with the terms of such license.

The information in this document is subject to change without prior notice. Liant Software
Corporation assumes no responsibility for any errors that may appear in this document.

Companies, names, and data used in examples herein are fictitious.

Liant Software Corporation
8911 N. Capital of Texas Highway

Austin, TX 78759
U.S.A.

Phone (512) 343-1010
 (800) 762-6265
Fax (512) 343-9487

Web site http://www.liant.com

Documentation Release History:

401223 Business Information Server User's Guide
Version 8

February 2004

401230 Business Information Server User's Guide
Version 8

May 2004

RM, RM/COBOL, RM/COBOL-85, RM/InfoExpress, RM/Panels, Cobol-WOW, CodeBridge,
CodeWatch, Enterprise CodeBench, InstantSQL, Liant, the Liant logo, Relativity, VanGui Interface
Builder, and Xcentrisity are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000,
Windows XP, and Windows Server 2003 are trademarks or registered trademarks of Microsoft
Corporation in the USA and other countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd.

All other products, brand, or trade names used in this publication are the trademarks or registered
trademarks of their respective trademark holders, and are used only for explanation purposes.

Liant Software Corporation May 13, 2004

Table of Contents

Chapter 1. Introducing the Liant Business Information Server ________________________ 6
1.1 Overview ___ 6
1.2 Installation on Windows___ 7

1.2.1 Prerequisites ___7
1.2.2 Installation___8
1.2.3 The License Agreement___8
1.2.4 READ ME Information ___8
1.2.5 Liant License File ___9
1.2.6 User Information __9
1.2.7 Destination Folder ___9
1.2.8 Select Features__9
1.2.9 Logon Information ___10
1.2.10 Ready to Install ___11
1.2.11 Installation Complete __11

1.3 Installation on Linux___ 12
1.3.1 Prerequisites __12
1.3.2 Installing an Apache/mod_perl Web Server for BIS______________________________________12
1.3.3 Installing BIS__13
1.3.4 Configuring Apache __13
1.3.5 Starting Apache and BIS ___14

1.4 Testing the Installation ___ 14
1.5 Uninstalling BIS for Windows ___ 14

1.5.1 Removing only the Web Application Samples __15
Chapter 2. Using BIS___ 16

2.1.1 Web Protocols: Requests/Responses__16
2.1.2 Sessions __17
2.1.3 Cookies __18
2.1.4 Timeouts ___18
2.1.5 Session Inactivity Timeout ___18
2.1.6 Setting the Session Inactivity Time___19
2.1.7 Service Timeouts___19

Chapter 3. Server Response Files ___ 21
3.1 Overview __ 21
3.2 Rendering Tags ___ 21

3.2.1 Rendering Tag Types ___22
3.3 The Rendering Process ___ 22
3.4 Processing Control Tags__ 22
3.5 Substitution Tags ___ 23
3.6 Tag Options and Parameters __ 23

3.6.1 Pathnames __23
3.6.2 Referencing Files in System Locations __23
3.6.3 Predefined BIS Environment Variables ___24
3.6.4 The RUNPATH__25
3.6.5 Troubleshooting Tags ___25

Chapter 4. Tag Reference ___ 27
4.1 The {{Handler}} Tag___ 27

Business Information Server 3

Liant Software Corporation May 13, 2004

4.1.1 Notes __27
4.2 The {{ContentType}} tag ___ 28

4.2.1 Examples ___28
4.2.2 Notes __28

4.3 The {{SessionParms}} tag___ 28
4.3.1 Notes __29

4.4 The {{StartService}} tag __ 29
4.4.1 Accessing the REQUEST from the Service Program _____________________________________30
4.4.2 Notes __30

4.5 The {{RunPath}} Tag __ 30
4.5.1 Notes __31

4.6 The {{SetEnv}} Tag__ 31
4.6.1 Examples ___31
4.6.2 Notes __31

4.7 The {{XMLExchange}} Tag ___ 32
4.7.1 Notes __32
4.7.2 The {{FormActionTarget}} Tag in {{XMLExchange}} __________________________________32

4.8 The {{StopService}} tag __ 32
4.8.1 Notes __33

4.9 The {{SessionComplete}} tag __ 33
4.9.1 Notes __33

4.10 The {{Trace}} Tag__ 33
4.10.1 Notes ___35
4.10.2 Examples __35
4.10.3 The {{Trace}} Query Parameter__35
4.10.4 The BIS_TRACE_SUFFIX environment variable ______________________________________35

4.11 The {{TraceDump}} Tag __ 36
4.11.1 Notes ___36

Chapter 5. Conditional Tags and Constructs ______________________________________ 37
5.1 The {{If}} / {{Else}} / {{EndIf}} tags __ 37

5.1.1 Notes __37
5.2 The {{While}} / {{EndWhile}} tags ___ 37

5.2.1 Notes __37
Chapter 6. Substitution Tags ___ 39

6.1 The {{Value}} tag ___ 39
6.1.1 Notes __41
6.1.2 Configuration Variables ___41

6.2 The {{ Include }} tag ___ 42
6.2.1 Notes __42

6.3 Comment tags __ 42
6.3.1 Notes __43

Chapter 7. Service Programs___ 44
7.1 Introduction__ 44
7.2 Service Program Lifetime __ 45

7.2.1 ACCEPT and DISPLAY Statements__46
7.2.2 Windows Message Boxes and Dialogs __46

Business Information Server 4

Liant Software Corporation May 13, 2004

7.3 The XML Exchange File__ 46
7.4 BIS Return Codes ___ 47
7.5 Service Program Functions ___ 49
7.6 B$ReadRequest ___ 50

7.6.1 Notes __51
7.7 B$WriteResponse ___ 52

7.7.1 Notes __54
7.8 B$Exchange __ 54
7.9 B$SetInactivityTimeout __ 55

7.9.1 Notes __56
7.10 B$SetServiceTimeout ___ 56

7.10.1 Notes ___57
Appendix A. Server Variables Reference ___ 59

Appendix B. XMLExchange Request File Format _________________________________ 64

Appendix C. Windows/UNIX Portability Considerations_____________________________ 71

Appendix D. Regular Expression Syntax ___ 72
D.1 Metacharacters___ 72
D.2 Abbreviations __ 73
D.3 Comparison to RM/COBOL LIKE condition regular expressions _____________________ 73

Appendix E. Log Files __ 75
E.1 Log File Location ___ 75
E.2 Log File Format __ 75
E.3 Log Record Types___ 76

Appendix F. BIS Troubleshooting Tips __ 81

Appendix G. Configuration after Installation (Windows) ____________________________ 83
G.1 Command Line Configuration __ 83
G.2 Manual Configuration___ 85
G.3 Setting Environment Variables ___ 86
G.4 Setting the Maximum Thread Count ___ 86
G.5 Notes ___ 87

Appendix H. Configuration after Installation (UNIX/Apache)________________________ 88
H.1 Configuring Apache___ 88
H.2 Service Engine Configuration___ 90

Appendix I. Windows Security and Authentication _________________________________ 92

Appendix J. Building and Running BIS Samples __________________________________ 93

Appendix K. Glossary___ 94

Business Information Server 5

Liant Software Corporation May 13, 2004

Chapter 1. Introducing the Liant Business Information Server

1.1 Overview
The Liant Business Information Server (BIS) is a web server environment that manages COBOL
application sessions and makes them available via any web browser that is granted access to the server.
BIS offers application developers a real opportunity to build state-of-the-art browser-based applications or
Simple Object Access Protocol (SOAP) implementations that include COBOL object programs and
COBOL data.

With BIS, remote users can access data, perform application functions and execute COBOL programs on
one or multiple servers located anywhere in the world. A sales force can check order status for customers
during the day and enter new orders in the evening as they travel. Emergency room doctors can read
patient histories on primary care physician files in another state and primary care physicians can see
insurance claim’s status. Bank customers can see account status, pay bills, transfer funds, and make
investments, all from the comfort of their own homes. Taxpayers will have access to public records from
anywhere.

Liant BIS has two major components:

• A Request Handler—a web server extension integrates with either Internet Information Server
(IIS) or Apache

• The Service Engine that executes COBOL code under the control of the request handler.

In the simplest case, an end user enters a URL into a web browser that specifies a specific web page on a
server. The web browser then formats the request using HTTP and sends the request to the server
specified in the URL. If the requested page is a reference to a simple HTML file, the contents of the file
are sent to the browser.

Some useful definitions:

User Agent /
Client

The program that is used to request information from a server. This is frequently a
web browser, but could be any program on the user’s machine.

HTTP Hypertext Transport Protocol, a standard encoding scheme used to transmit requests
to web servers and receive responses from web servers. HTTPS is a secure version
of HTTP.

URL Uniform Resource Locator, the location of a resource on the internet. A URL
consists of a scheme (in this context, HTTP or HTTPS), the name of a machine, and
a path to a file. For example, http://liant.com/bis/index.html specifies the file
named index.html from directory bis on server machine liant.com using the HTTP
scheme. When this is typed into a web browser, the browser issues a HTTP GET
request on this file.

Request An HTTP packet that contains a command issued by the user agent. A request may
simply GET a file from a web server, or may POST data (such as a form) to the
server, or may cause a program to be run on the server. GET and POST are by far
the most frequently used commands.

SOAP SOAP is an XML-based web protocol designed to operate on HTTP to facilitate

Business Information Server 6

http://liant.com/bis/index.html

Liant Software Corporation May 13, 2004

web services. It is particularly well suited to Remote Procedure Call (RPC) style
services.

Web Server A program that runs on a server and listens for HTTP requests. When a request is
received, the web server processes the request or sends it on to another program
(like BIS) for processing.

The two most common web servers are Microsoft’s Internet Information Server
(IIS) which BIS supports on Windows, and Apache, which BIS supports on UNIX.

Response A HTTP packet that contains the response to the request. The response may be text,
to be displayed in a web browser, or data encapsulated by SOAP for consumption
by the requesting program.

Session Requests are “stateless”—the web server processes each request as if it had never
received another request from the same user agent. A session is a BIS concept that
allows sequential requests from the same user agent to be grouped together and
preserves state information across requests on the server.

See the Glossary on page 94 for more definitions.

1.2 Installation on Windows
This section details installation of Business Information Server on Windows. Linux installation is
described in section 1.3.

1.2.1 Prerequisites

These are the prerequisites for BIS on Windows:

• A host machine running Windows 2000, Windows XP Professional, or Windows Server 2003
operating system. When BIS is installed on Windows 2000 Workstation or Windows XP, there are
connection limit restrictions that prevent use as a real-world web server. These systems do work well
for BIS application development and testing, however.

• Internet Information Server (IIS) must be installed. IIS is the Microsoft web server that listens for
HTTP requests on port 80 and 443, and routes BIS requests to the BIS Web Server. BIS will not
install unless IIS is already present. To install IIS, go to Start Control Panel Add or Remove
Programs. Select the Add/Remove Windows Components button and follow the instructions to
ensure Internet Information Server (IIS) is installed. A reboot will most likely be required.

• For Windows Server 2003 only, an additional step is required to allow BIS to run: ISAPI extensions
must be enabled. These are enabled by default on Windows 2000 and Windows XP, but are disabled
by default on Windows Server 2003. To enable these extensions:

1. Select

Start
 Control Panel
 Adminstrative Tools
 Internet Information Services (IIS) Manager

2. Expand Local Computer, and then click on Web Service Extensions.

Business Information Server 7

Liant Software Corporation May 13, 2004

3. In the window on the right, make sure the Extended tab at the bottom is selected. Then, click on
Add a new web service extension… Type srf for the “Extension name” and type in the path to the
BIS ISAPI plug-in DLL (usually c:\Program Files\Liant\BIS\BISISAPI.dll) in “Required files”.
Click the check box for “Set extension status to Allowed”, and then click “OK”.

4. Right-click on Local Computer, click on All Tasks, and select Restart IIS.
5. Close the Internet Information Server (IIS) Manager window. Configuration is complete.

1.2.2 Installation

The BIS installation consists of three components:

SETUPBIS.EXE The installation program.

SETUPBIS.MSI A Microsoft Installer package that contains the BIS programs and samples.

LIANT.LIC The license file required by the BIS installation. The BIS installation will ask for
this file unless it is located in the directory from which the BIS installer was
launched.

To start the BIS installer:

• If you have CD-ROM media, insert the disk in the drive. If the BIS installer does not start after a few
seconds, start it manually by using Windows Explorer to navigate to the CD drive. Then double-click
on SETUPBIS.EXE.

Figure 1-1. Installation Welcome Dialog Box.

• If you downloaded the installation
program, use Windows Explorer
to navigate to the directory that
contains SETUPBIS.EXE. Then
double-click on the program.

• At this point, you will see several
setup windows, culminating in the
dialog box in Figure 1-1.

• Note: In all BIS setup dialogs,
press Next to move forward in the
installation, and Back to revisit a
previous step. Pressing Cancel at
any point cancels the installation
without making any changes to
your system.

• Press Next.

1.2.3 The License Agreement

The license agreement is displayed when you press Next. Please read it carefully, and if you agree, click
the “I accept this license agreement” button and click Next.

1.2.4 READ ME Information

The next dialog contains important, late-breaking information about BIS. Please read it and press Next.

Business Information Server 8

Liant Software Corporation May 13, 2004

Note: if you would prefer to read this in a larger window, you can copy the text from the dialog box and
paste it into WordPad or any word processor. To do this

1. Click in the README window.
2. Press Ctrl+A to select all text, and then press Ctrl+C to copy the text to the clipboard.
3. Start the WordPad program with Start Run WordPad.
4. You can now read or print the README documentation in WordPad.

When you are ready to proceed, press Next.

1.2.5 Liant License File

BIS installation requires a Liant
license file, usually named LIANT.LIC.

Figure 1-2. Installation License File Dialog Box.

At this point, enter the name of the
license file. You can press the
Browse button to search for it.

Note that the dialog at the right is not
displayed if file LIANT.LIC is found in
the directory from which the installer
was launched.

1.2.6 User Information

Enter your name and the name of your
organization and press Next.

1.2.7 Destination Folder

Figure 1-3. Installation “Select Features” Dialog Box.

Choose the installation folder for the
BIS program files. The default is

Program Files\Liant\BIS

We recommend the default be used.
Press Next after making your
selection.

1.2.8 Select Features

This dialog allows you to choose the
features that will be installed on your
server.

• There are several features that
may be installed:

1. Server Programs includes the BIS request handler and the service engine. This is a
required feature and cannot be de-selected.

Business Information Server 9

Liant Software Corporation May 13, 2004

2. Samples is optional includes several sub-features:

• Web Applications are installed in a newly created virtual IIS directory named LiantBIS.
These sample web applications are installed by default because they can be used to
quickly verify that the BIS request handler is operational. Note: please do not change the
name of the directory or the samples will not be configured correctly.

• SOAP Client Project is a sample .NET project. It builds a Calculator client program that
calls a COBOL SOAP service in the SAMPLE3 Web Application installed above. Full
source code is included and is installed by default in this directory:

My Documents\Visual Studio Projects\Liant\BIS\SoapSample3

Note that Microsoft Visual Studio.NET (2003 or later) is a prerequisite for building this
sample project If this feature selected, a pre-built calculator client is provided in the server
programs directory and a shortcut is created under Start All Programs Liant BIS.

Additional samples may also be available.

Note that you can also:

• Change the installation location for a feature or sub feature by pressing the Browse button.

• Press the Disk Cost button to see an overview of the amount of space available on your volumes.

• Once you have selected the features that you wish to install, press Next.

1.2.9 Logon Information

This dialog selects the Windows logon ID that will be used to run BIS services.

The account chosen must have sufficient privileges to access the .COB program files, and the data files
that are required to service BIS requests.

In this dialog, you must:

Business Information Server 10

Liant Software Corporation May 13, 2004

• Enter the user name (logon ID)
and password that the BIS
service engine should
impersonate when running
programs. The installer will
validate the username and
password.

• To search for an existing user,
press the Browse button. Enter
the name of a domain, server, or
press the browse button to select
from a list. Then enter a user
name or press the browse button
to select from a list. Finally,
press the Ok button to paste the
result into the User Name field.

• To create a new user, press the
Create New User… button.
Select a domain or server, and
specify a user name to create
along with a password. Finally,
select a group for the new user
(or None).

Once the User Name and Password
have been selected, press Next. The
installer will validate the information
and report an error if the logon ID or the
password is invalid.

Note: the logon ID can be changed at
any time on the server—reinstallation is
not required. See “Configuration after
Installation (Windows)” on page 83 for
more information.

1.2.10 Ready to Install

At this point, the BIS installer has all the
information that is required to install
BIS. If you are satisfied with the preceding choices, press Next to begin the installation.

Figure 1-6. The Installation "Logon Information" Dialog Box.

Figure 1-6. Installation "Browse for User" Dialog Box

Figure 1-6. The Installation "Create New User" Dialog Box.

1.2.11 Installation Complete

If you see a dialog stating “Liant Business Information Server has been successfully installed”,
congratulations! You are ready to test the installation. If you receive another message, please see “BIS
Troubleshooting Tips” on page 81 for assistance.

Business Information Server 11

Liant Software Corporation May 13, 2004

1.3 Installation on Linux
This section details installation of Business Information Server on Linux. Windows installation is
described in section 1.2.

1.3.1 Prerequisites

BIS on Linux requires that the Apache web server be installed and that the mod_perl plug-in be statically
linked with Apache. In addition, there are several mod_perl packages that must be installed before BIS
can be successfully installed. More specifically, BIS for Linux requires:

• A host machine running the Red Hat Linux operating system versions 7.3 and above. BIS has
been tested on Red Hat versions 7.3, 9, Enterprise and Fedora and should work on any Red Hat
release with the large file kernel that can support the appropriate versions of Apache and
mod_perl (See below).

• Perl 5.8.x must be installed. If it is not installed, go here1 for more information.

• Libxml2 must be installed. If it is not installed, go here2 for more information. Be sure that the
installed version of libxml2 is compatible with XML::LibXML (the XML package for mod_perl).
As of the 1.56 version of XML::LibXML, the following versions of libxml2 have been tested and
are believed to work properly:

2.4.20, or 2.4.21, or 2.4.23, or 2.4.24, or 2.4.26, or 2.4.27, or
2.5.2 <= version < 2.5.5, or
2.5.5 < version <= 2.5.10 where
version = libxml2 version number.

If an inadequate version of libxml2 is presently installed, you must completely obliterate it and
install a compatible version before proceeding. If any remnants of the incompatible version are
left around, XML::LibXML will probably not install correctly.

• The Apache 1.3.18+ web server must be installed. BIS has been tested on version 1.3.18, 1.3.28,
1.3.29. Note that BIS has not been tested on Apache 2 and should not be expected to work
properly on that platform. Apache normally listens for HTTP requests on port 80 and 443, and
when properly configured, routes BIS requests to the BIS Request Handler. BIS will not install
unless Apache is already present. If your system does not have Apache installed, go here3 for
more information, but first, read on.

• The mod_perl 1.3.28+ Apache plug-in must be statically linked into your Apache. BIS has been
tested on version 1.3.28 and 1.3.29. Note that BIS has not been tested on mod_perl2 and should
not be expected to work properly. If you do not have Apache installed, or if the Apache installed
does not have mod_perl linked in, the following steps will build a new Apache server with
mod_perl suitable for BIS:

1.3.2 Installing an Apache/mod_perl Web Server for BIS

First, assuming you are in your home directory (cd ~) and have root privileges, do the following:

1 http://www.cpan.org/src/stable.tar.gz
2 http://xmlsoft.org/downloads.html
3 http://httpd.apache.org/docs/install.html

Business Information Server 12

http://www.cpan.org/src/stable.tar.gz
http://xmlsoft.org/downloads.html
http://httpd.apache.org/docs/install.html

Liant Software Corporation May 13, 2004

mkdir bis-install
cd bis-install
perl –MCPAN –e shell

You’ll be prompted for numerous answers; you should take the default for all of them except when it asks
about your locale.

When it asks which servers you would like to use for retrieving Perl modules, just enter 1 2 3 4 5 6 7 8 9.

If all this has completed successfully then you will have a prompt that looks like:

cpan>

Type bye at this prompt to leave cpan.

Now enter the following commands:

wget http://www.apache.org/dist/httpd/apache_1.3.29.tar.gz
wget http://perl.apache.org/dist/mod_perl-1.0-current.tar.gz
tar –xvzf apach*
tar –xvzf mod_*
perl –MCPAN –e “install CGI”
cd mod_*
perl Makefile.PL DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 APACHE_PREFIX=/usr/local/apache
make && make install
perl –MCPAN –e “install Apache::Test”
perl –MCPAN –e “install XML::LibXML”

At this point, your system is ready to install BIS.

1.3.3 Installing BIS

From the directory the BIS tar.gz was unpacked into, type:

sh install

Be sure to select the correct Apache binary such as /usr/local/apache (i.e., not one from a source
directory). Use the defaults for everything. Especially, DO NOT CHANGE the /usr/local/liant/bis
default directory.

1.3.4 Configuring Apache

You should edit the main httpd.conf configuration file to include the following lines:

<IfModule mod_perl.c>
 Include conf/bis.conf

Business Information Server 13

http://perl.apache.org/dist/mod_perl-1.0-current.tar.gz

Liant Software Corporation May 13, 2004

</IfModule>

1.3.5 Starting Apache and BIS

Figure 1-7. The BIS Samples Page.

Use the following commands to start
the BIS server and Apache:

/etc/init.d/liantbis start
/usr/local/apache/bin/apache
ctl start

Use the actual location of Apache if it

1.4 Testing the Installation

is different from the above.

The samples are the best way to verify
that BIS was successfully installed.
There are two ways to launch the
samples on the server:

• For BIS installed on a Windows system, click Start All Programs Liant BIS BIS Samples.

• For BIS installed on either Windows or Linux, start a web browser on the server and enter the
following URL:

http://localhost/liantbis/samples/default.srf

• A web browser should start and you should see the “Welcome to the BIS Samples” page
illustrated in Figure 1-7.

1.5 Uninstalling BIS for Windows
To uninstall BIS for Windows, use the Add or Remove Programs control panel applet.

• Click Start Control Panel Add or Remove Programs

• Click on Liant Business Information Server

• Click the Remove button.

If you restart the SETUPBIS.EXE installation program and BIS is already installed, the installer will offer
to Modify, Repair, or Remove the server. Selecting Remove is equivalent to removing BIS with the Add
or Remove Programs control panel applet.

The web application samples are also removed, but the SOAP Client Project sample Visual Studio project
file is not removed.

Business Information Server 14

Liant Software Corporation May 13, 2004

1.5.1 Removing only the Web Application Samples

To remove the samples from a Windows IIS website after installation, log onto the server. Then:

1. Click Star t Control Panel Administrative Tools Internet Information Services

2. Expand Web Sites, then Default Web Site (or your web site, if renamed).

3. Right-click on LiantBIS and select Delete from the popup menu.

Business Information Server 15

Liant Software Corporation May 13, 2004

Chapter 2. Using BIS

BIS functions as an extension to a web server, providing additional capabilities—namely, the ability to
render and serve .srf stencil files, and the ability to quickly make both new COBOL programs and legacy
COBOL programs available on the web.

In order to understand how COBOL programs and the web interoperate, some web concepts must also be
understood. These are described in the next sections.

2.1.1 Web Protocols: Requests/Responses

Web clients and servers communicate by using a request/response protocol called HTTP, which is an
abbreviation for Hypertext Transfer Protocol. HTTP includes two interfaces for retrieving and
manipulating data: GET and POST.

GET Retrieves data from the server. The target of the request (referred to as a resource) is specified
as a URI (Uniform Resource Identifier). This is usually (but not always) an absolute reference
to a file on the server and is referred to as a URL (Uniform Resource Locator) when used in
this context. Additional parameters, called Query Parameters, can also be specified.

POST Posts data back to the server. In addition to a URL and query parameters, a POST request
includes a payload. The payload is usually form data – the aggregated contents of the various
fields (also called controls) that were in the response.

There are other interfaces (HEAD, PUT, DEBUG), but the above two are the ones used by BIS.

The general form of a URL is familiar to anyone who has used a web browser:

http:// host [:port] / [absolute_path [? query_parameters]]

Where:

http:// Indicates that the Hypertext Transfer Protocol is being used to make the request.

In a URI, this is referred to as the scheme.

host The name or location of the computer that will receive the request.

port The TCP/IP port that the web server is “listening” to. By convention, this is port 80
if omitted. By requiring this parameter, a given host can support more than one web
server.

absolute_path The absolute location of the resource being requested on the host. This frequently,
but not always is the name of a file. Note that the base directory is not the root
directory of the file system, but the root directory of the web tree that is being
served by the host on the specified port.

query_parameters Optional parameters that are made available to the web server and to the service
program.

Business Information Server 16

Liant Software Corporation May 13, 2004

To summarize, a client (web browser or program using SOAP) sends an HTTP request to the web server.
The request contains a type (GET or POST), a URI that specifies the file or resource that is being
requested, optional query parameters, and optional form data (if a POST).

If the resource being requested is a resource that is associated with BIS by the web server—for example, a
.SRF file—then all of the above information (request type, URI, query parameters, form data) is passed to
the BIS request handler, which then renders (i.e. executes) the control and substitution tags in that file. If
BIS renders a {{StartService}} tag, a COBOL service program is started. If BIS subsequently renders an
{{XMLExchange}}, the request is sent to the COBOL program, and the response is rendered into the page
that is returned to the user agent.

BIS

BIS Request Handler

.SRF File

User Agent
(Web Browser)

(SOAP program)

Web Server
(IIS)

(Apache)

HTTP
Request

HTTP
Response

.SRF
Request

COBOL Service Program

Rendered
Page

{{StartService}}
{{XMLExchange}}

XM
L

Figure 2-1. BIS Block Diagram.

2.1.2 Sessions

HTTP requests are innately stateless: the web server does not provide any built-in mechanism to group
multiple requests together. However, once a service program is started, subsequent requests from the
same user agent should probably be routed to the same service program. To make this possible, BIS
creates an object on the server called a Session when a request first arrives from a particular user agent,
and uses the Session to route subsequent requests from that user agent to the service program.

A session is automatically created when BIS receives a request that cannot be associated with an already
existing session. Once a session is created, it survives until

1. A predetermined but adjustable amount of time passes without an additional request from
the user agent—referred to as the Inactivity Timeout period.

Business Information Server 17

Liant Software Corporation May 13, 2004

2. The session is explicitly destroyed: this can be requested by either the service program or
by a special handler tag—the {{SessionComplete}} tag.

Open sessions use server resources, and if a service program is waiting for a request, this can be
significant. Because site visitors may simply close the browser window without performing any action
that indicates that they are finished with the application, BIS will free those sessions and resources after a
predetermined period of inactivity.

There are three common ways for servers to implement session tracking:

1. A unique ID may be placed into the URL of subsequent pages.
2. A unique ID may be placed in the query parameter of subsequent pages.
3. A cookie can be set in the user agent by the response. The user agent includes the cookie

with the next request.

BIS uses the third method, cookies, to identify sessions.

2.1.3 Cookies

When a client issues a request to the server, by default, BIS looks for a Cookie in the request to locate a
session created by a previous request from the same user agent. A cookie is a specially named value that
BIS includes with each response from the server to the user agent, and the UA will normally send the
cookie in the next request to the same web server. When BIS receives a request containing the specially-
named cookie, it uses the contents of the cookie to search for an existing session. If the session is located,
BIS services the request using that session. If the session is not located, a new session is created for the
request and the new session’s cookie is included with the response.

The drawback of cookies is that some user agents purposely disable cookies for privacy reasons:
unscrupulous websites can use permanent cookies to track the user agent’s repeat visits over a long period
of time. BIS uses only session cookies—a type of cookie that is automatically deleted when the user agent
terminates—to avoid these concerns. It is still conceivable that some user agents will not accept session
cookies. This will unfortunately prevent BIS applications from working with that user agent.

2.1.4 Timeouts

BIS supports two kinds of timeouts

• Session Inactivity Timeouts
• Service Timeouts

These timeouts are described in detail in the following sections.

2.1.5 Session Inactivity Timeout

Session inactivity timeouts are used to detect abandoned sessions and free server resources by deleting
those sessions. For example, each active [COBOL] service program counts against the BIS service
engine use count. If abandoned sessions are allowed to idle for an excessively long time, there may be a
number of idle service programs consuming resources that could be recycled to handle new requests. The
purpose of the session inactivity timeout is to free those resources.

To detect abandoned sessions, BIS stores the time the most recent request was received in the session. At
various intervals, BIS determines if a session has been inactive longer than the timeout period set for the
session. If so, the session is released.

Business Information Server 18

Liant Software Corporation May 13, 2004

Besides the inactivity timer, there are two ways to indicate proactively that a session is complete and may
be released:

• On the page: embed the {{SessionComplete}} tag.
• From a service program: call B$WriteResponse and specify BIS-Response-

ServiceComplete as the optional parameter.

In all cases, the session is not released until it is inactive – that is, all services within the session have
ended and there are no active requests using the session.

2.1.6 Setting the Session Inactivity Time

The default inactivity timeout value for a BIS session is 600 seconds (10 minutes). However, this default
can be changed in several ways:

• The timeout value may be globally set for all BIS sessions on the server with the
BIS_SESSION_INACTIVITY_TIMEOUT environment variable. The value must be specified in
seconds. For example:

BIS_SESSION_INACTIVITY_TIMEOUT=600

This environment variable sets the timeout to 600 seconds (10 minutes). See “Setting Environment
Variables” on page 86 for information about setting and modifying environment variables on
Windows and “Configuring Apache” on page 88 for information on configuring these variables on
UNIX.

• The timeout may be set from within a .srf file (see Section 4) by using the
{{ SessionParms(InactivityTimeout=seconds) }} tag. Note that this parameter is specified in
seconds and takes effect as soon as the tag is rendered.

• The service program may set the timeout with the B$SetInactivityTimeout(seconds) call. Note that
this call does not take effect until the next time the service program interacts with the BIS request
handler—that is, the service calls B$ReadRequest or B$Exchange and the s renders an
{{XMLExchange}} tag.

Of these, the BIS_SESSION_INACTIVITY_TIMEOUT variable has the lowest priority and is overridden
by either {{SessionParms}} or the B$SetInactivityTimeout call.

2.1.7 Service Timeouts

When the BIS request handler passes a request to a COBOL service program, page rendering is
suspended while the program performs the required processing. The service timeout value sets an upper
bound on the amount of time that page rendering will be suspended.

The default service timeout is 30 seconds. This value can be increased or decreased in the following
ways:

• The service timeout value may be globally set for all BIS sessions on the server with the
BIS_SERVICE_TIMEOUT environment variable. The value must be specified in seconds. For
example:

Business Information Server 19

Liant Software Corporation May 13, 2004

BIS_SERVICE_TIMEOUT=30

This environment variable sets the timeout to 30 seconds. See “Setting Environment Variables” on
page 86 for information about setting and modifying environment variables on Windows and
“Configuring Apache” on page 88 for information on configuring these variables on UNIX.

• The timeout may be set from within a .srf file by using the
{{ SessionParms(ServiceTimeout=seconds) }} tag. Note that this parameter is specified in seconds
and takes effect as soon as the tag is rendered.

• The [COBOL] service program may set the timeout with the B$SetServiceTimeout call. Calling this
function with a parameter of 0 restarts the timer without changing the current value. This is useful as
a “keep-alive” function when performing lengthy processing.

Of the above, the BIS_SERVICE_TIMEOUT variable has the lowest priority and is overridden by either
{{SessionParms}} or the B$SetServiceTimeout call.

Business Information Server 20

Liant Software Corporation May 13, 2004

Chapter 3. Server Response Files

3.1 Overview
The Server Response File is the key control mechanism of BIS and BIS-enabled web applications and
services. Each web application and service will contain at least one unique Server Response File,
identified by the extension “.srf”. A Server Response File is also sometimes referred to as a “stencil,”
since it acts as a stencil during the process of composing the content of an HTTP response to a request
referencing a Server Response File URI.

Server Response Files are often regular HTML files augmented by additional information to control
dynamic (program generated) content. In these cases, there are two differences between Server Response
Files and regular HTML files:

• When the user agent (usually a web browser) requests a .srf file that is contained within a directory
served by BIS, the web server automatically loads and activates the BIS Request Handler to serve
the file. A Request Handler is a component invoked by a web server such as Internet Information
Server (IIS) or Apache to service a particular type of request—in this case, a request for a Server
Response File.

• Server Response Files will normally contain additional, non-HTML Rendering Tags that direct BIS
to perform various kinds of processing and substitution while the page is being used to render the
response content. This process usually includes execution of, and interaction with, RM/COBOL-
based service programs whose execution is controlled and synchronized by BIS.

3.2 Rendering Tags
Rendering tags are text strings embedded in the server response file HTML source code. A rendering tag
has this general form:

{{ tag }}
{{ tag (parameter-list) }}

Rendering tags always begin with “{{” and end with “}}” sequence and the tag itself is not case-sensitive,
although (depending on the tag type) parameters may be. Spaces are used in the examples to increase
readability but are not required.

The optional parameter list may be formatted in a number of ways:

• As a comma-separated list of tokens:

{{ StartService (samp03, mylibrary.cob) }}

• As a comma-separated list of key-value pairs:

{{ SessionParms(InactivityTimeout=600, ServiceTimeout=30) }}

Business Information Server 21

Liant Software Corporation May 13, 2004

Except where specified, tokens may be enclosed in double or single quotation marks. This is required if a
token contains spaces or a comma.

Under Windows, the total length of a tag (from the opening brace to the closing brace) may not exceed
257 characters.

Important: both the opening “{{“ and the closing “}}” tag delimiters must be contained on the same
line—that is, a tag may not span lines. Use caution when creating tags with HTML editors that reformat
HTML and make sure that the formatted did not split a tag across multiple lines. Some strategies to avoid
line wrapping problems:

• Turn off line and word wrapping in your HTML editor for .SRF files.
• Don’t use spaces in tags.
• Embed non-rendering tags (that is, tags that do not produce HTML output) in HTML

comment sequences, as HTML editors will normally not reformat these. For example:

<!-- {{ StartService(MyVeryLongProgramName -c MyLongConfigFile.cfg) }} -->

You may have to disable word-wrapping and reformatting for .SRF files to prevent this, or create tags that
do not contain spaces.

3.2.1 Rendering Tag Types

There are two basic kinds of rendering tags:

• Processing Control Tags are tags that are completely removed from the final rendered content.

• Substitution Tags are completely replaced in the final content by new (possibly empty) text.

If a tag is not recognized, it is output unchanged.

3.3 The Rendering Process
When the user agent requests a page from the web server, and the page designates a Server Response File
(that is, the file is in a directory associated with BIS and has a .srf suffix), the page is automatically
served by the BIS request handler. The page is processed from top to bottom and tags are processed as
they are encountered.

The output placed on the page when a tag is rendered depends on the tag. Processing Control Tags are
removed from the output entirely and are never sent to the user agent. Substitution Tags are replaced by
content that is generated as each particular tag is rendered. This content may, of course, be empty.

Note that tags are order-dependent. A particular tag may affect how later tags are rendered: for example,
{{StartService}} determines the service that {{XMLExchange}} uses. In addition, the {{Handler}} tag
must be the first non-comment tag on every page, and must appear within the first 4096 characters of the
page.

3.4 Processing Control Tags
Processing Control Tags control how the page is processed by the BIS Request Handler. There is a tag
that determines the name of the service program to run to serve the page, tags that set processing options,
and tags that allow for conditional processing (for example, parts of the page may be skipped).

Business Information Server 22

Liant Software Corporation May 13, 2004

Processing control tags are always removed from the emitted response.

3.5 Substitution Tags
Substitution Tags are replaced with new text or HTML. These tags are replaced by output from the
RM/COBOL service program or by the BIS request handler directly without program interaction.

3.6 Tag Options and Parameters
A particular tag may have one or more options or parameters. If this is the case, the options are specified
in parenthesis after the tag name.

3.6.1 Pathnames

There are two kinds of pathnames used within tags:

• A fully qualified pathname begins with a slash, or a tilde (~) character. On Windows, the
slash may optionally be preceded by a drive letter specification.

• A relative pathname is any pathname that does not follow the above rules.

Relative pathnames are interpreted relative to the current directory. Under BIS, the current directory is
the directory that contains the .srf file being processed.

The current directory for the BIS Service Engine is determined when the {{StartService}} tag is
executed. If a .srf file is subsequently served from a different directory, the current directory of the
Service Engine is not changed. However, any relative pathnames in the new .srf file are still interpreted
relative to the directory that contains the .srf file.

On Windows, pathname resolution within the BIS service program is affected by the {{RunPath}} tag
and the EXPANDED-PATH-SEARCH, RESOLVE-LEADING-NAME, and RESOLVE-SUBSEQUENT-NAMES
configuration options. These may be used to great effect in conjunction with the {{SetEnv}} tag.

3.6.2 Referencing Files in System Locations

Several techniques are provided that allow files in system locations to be referenced from within a .srf
file.

The following parameters may be used in pathnames on both Windows and UNIX.

Symbol Description

~ If the pathname begins with this character followed by a slash, it is replaced by the
home directory. This is the login directory of the current user. On UNIX, this is the
same as the contents of the HOME environment variable. On Windows, it is the
concatenation of the HOMEDRIVE and HOMEPATH environment variables. If none of
these variables are set, the path is not altered.

Under Windows, the following environment variables are useful in pathnames. Note that RESOLVE-
LEADING-NAME must be set in the service configuration file for these to be useful.

Business Information Server 23

Liant Software Corporation May 13, 2004

Variable Description

ProgramFiles The location of the Windows Program Files directory.

SystemRoot The drive and directory containing the Windows operating system.

TEMP
TMP

The fully qualified path to the directory containing temporary files for the current
process. Note that TMP and TEMP normally refer to the same directory, but this is not
required.

USERPROFILE The user’s home directory.

WINDIR Same as SystemRoot.

AllUsersProfile The home directory for “All Users”.

On Windows, you can also define synonyms on the server using the RMCONFIG program, or directly
define environment variables using the SYSTEM control panel applet:

Start Control Panel System Advanced Environment Variables

For example, if you add MyPrograms=”c:\My Programs” to the environment, and have RESOLVE-
LEADING-NAME=@ in your configuration file, then you can refer to the file “abc.cob” in this directory in
a path by specifying “@MyPrograms/abc.cob”. See “Setting Environment Variables” on page 86 for
information about setting and modifying environment variables on Windows.

On UNIX, use the bis.conf configuration file to define BIS environment variables. See “Configuring
Apache” on page 88 for details.

3.6.3 Predefined BIS Environment Variables

BIS adds the following to the environment on both Windows and UNIX. Note that these variables are
dynamically set during execution and are only available in the service program. They will not be visible
in your shell environment.

Business Information Server 24

Liant Software Corporation May 13, 2004

Variable Description

BIS_PROGRAM_DIR The directory from which the BIS Service Engine is loaded. On Windows, this
will normally be the LiantBIS.exe program in “c:\program files\Liant\BIS”.

BIS_FILENAME The fully qualified name of the temporary file created for this session that will be
used to exchange data between the BIS request handler and the COBOL service
program.

• When the RM/COBOL service program calls B$WriteResponse or
B$Exchange, the BIS Web Server reads this file to obtain the content
(XML, HTML or plain text) that will replace the {{XMLExchange}} tag
in the .srf file.

• When the B$Exchange call returns or the service program calls
B$ReadRequest, the current web request document (XML) is written into
this file. This includes any content such as the the POSTed-back form
variables, the request variables, and server variables, all encoded as an
XML document.

By default, this file is created in the Windows TEMP directory. Both the BIS Web
Server and the Service Engine must have permission to create, read, and write
files in this directory. The BIS installation procedure adds the required
permissions to this directory.

3.6.4 The RUNPATH

If a relative filename is specified, the BIS service attempts to locate the file by searching the directories
specified by the RUNPATH environment variable. For full details of how the BIS service locates files,
please see “Locating RM/COBOL Files” on page 2-9 of the RM/COBOL User’s Guide. Note that the
{{RunPath}} tag may be used to insert additional directories before the default RUNPATH from the
environment.

3.6.5 Troubleshooting Tags

If a tag is not performing the expected function, the tag may be malformed or may have been altered by
an HTML editor. The following steps can help isolate this problem:

1. Is the tag visible in your web browser?

This indicates that BIS is not recognizing the tag. Check the spelling of the tag and be sure that
the HTML editor did not split the tag across multiple lines—tags may not contain line break
characters or span lines.

2. Did the tag fail to perform the requested function?

If a malformed tag is embedded in an HTML comment (see the example on page 22), the tag may
fail to render but not be visible in the rendered output. To see such tags, use your web browser’s
View Source command. Tags should never appear in the raw HTML that is sent to the web
browser.

3. Does the tag appear in the trace output?

Business Information Server 25

Liant Software Corporation May 13, 2004

• Enable tracing and examine the trace output. If you have access to the .srf file, to quickly
enable tracing, insert this tag after the {{Handler}} tag:

{{ Trace(start,page) }}

• Then request the page using your web browser. This will cause trace output to be
appended to the end of the current page. The trace output indicates when most tags are
rendered and the results of the rendering.

• On Windows, to direct trace output to a file, replace page with file (or specify both with
page,file). This will direct all trace output for the session into a file in the server’s
temporary directory (normally C:\Documents and Settings\logonID\Local
Settings\Temp), or the directory specified in the trace dir= parameter. If you use this
type of tracing, be sure to occasionally delete these files from the temporary directory.

• On UNIX, trace output is directed to a file if tracing is enabled. A separate trace file is
created for each session and is placed in the UNIX \tmp directory unless redirected with
the trace dir= parameter. So on UNIX, {{Trace(start)}} is sufficient to create a trace
file.

Note that on UNIX, the MASTER_DEBUG configuration option must be enabled before
any tracing can occur. See Appendix H.1, “Configuring Apache” in for details about
setting or clearing this option.

Of all these techniques, tracing is the most useful and should be enabled during the development process.

Business Information Server 26

Liant Software Corporation May 13, 2004

Chapter 4. Tag Reference

This section presents and discusses each tag that is implemented by Business Information Server.

Here is an example of a basic .srf file. Tags are illustrated in red.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<!-- BIS control tags (removed when page is rendered) -->
<!-- {{ handler * }} -->
<!-- {{ StartService(samp03 -v,xmlif) }} -->
<!-- {{ Trace(queryparam=trace) }} -->
<html>
<head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Liant RM/COBOL Web Server Demonstration Page</title>
</head>

<body>
 <div align="center">
 <h3>Liant RM/COBOL Web Server Demonstration Page</h3>
 </div>
 <p>--- Begin Application-Generated XHTML ---</p>
 <div>
 {{ XMLExchange(OnExit="goodbye.srf") }}
 </div>
 <p>--- End Application-Generated XHTML ---</p>
 {{ TraceDump }}
</body>
</html>

Note that the first three tags in this example are embedded in HMTL comments. This is not strictly
necessary from an operational standpoint (and may be undesirable because empty comments will be sent
to the browser), but useful to keep an HTML editor like Microsoft FrontPage® or Macromedia
Dreamweaver® from reformatting the text in the handler tag, or possibly splitting the tag across multiple
lines. Future releases of these products may support tags directly.

4.1 The {{Handler}} Tag
This tag must appear at or near the beginning of every server response file that is to be processed by BIS.
It tells the web server that this particular .srf file will be served by Liant BIS.

handler *

In this release of BIS, the only supported handler tag is {{ Handler * }}. Future versions of BIS may
support additional handlers.

4.1.1 Notes

• The handler tag must appear in every .srf file, including .srf files included in other .srf files.

• The handler tag must precede all other non-comment tags, and must appear within the first 4096
characters of the file.

Business Information Server 27

Liant Software Corporation May 13, 2004

• Only one handler tag in each .srf file is permitted.

4.2 The {{ContentType}} tag
This tag sets the content type for the HTML response.

contenttype (value)

BIS does not attempt to interpret the value, which encompasses the entire parameter, including commas
and any quotes.

4.2.1 Examples

1. {{ ContentType(text/html; charset=utf-8) }}
2. {{ ContentType(text/xml) }}

4.2.2 Notes

• If not specified, the default content type is “text/html; charset=utf-8”.

• If {{ContentType}} is specified multiple times on a page, the last instance is used.

4.3 The {{SessionParms}} tag
This tag allows various session attributes to be set.

sessionparms (InactivityTimeout=seconds|DEFAULT,
 ServiceTimeout=seconds|DEFAULT,)

Where:

Determines how long a session survives without user interaction. The default
setting is 10 minutes.

DEFAULT Resets the timeout to the default setting for the web.

InactivityTimeout

seconds is an integer that specifies the number of seconds before the
session terminates.

Determines how long the service engine is given to perform its processing when
a request is received.

DEFAULT Resets the timeout to the default setting for the web.

ServiceTimeout

seconds is an integer that specifies the number of seconds before
service engine termination processing begins.

Business Information Server 28

Liant Software Corporation May 13, 2004

4.3.1 Notes

• All parameters are optional, but at least one parameter must be specified for this tag to be useful.

• A change to the timeout takes effect as soon as either timeout parameter is parsed and the timer is
restarted at that point.

4.4 The {{StartService}} tag
Starts the execution of a service program. Options and the names of one or more libraries to be used by
the service can also be specified.

StartService (program [parms] [,library1 [,library2]…])

where:

program The name of the service program to run. If a relative path is specified, the path is relative

to the directory that contains the .srf file. If no directory is specified, the RUNPATH is
searched (see below).

Optional service engine parameters. Any text starting at the first non-blank after program
and the first comma or closing parenthesis is interpreted as a service engine option and is
passed to the service engine without further interpretation. Some useful options:

-v Causes additional trace information to be emitted if tracing is enabled. The
additional information includes the names of autoloaded DLLs.

-k Suppresses the banner in trace information.

parms

-c
-x

Specifies configuration files. Note that if a configuration filename is specified
without path information, BIS will search the RUNPATH for this file.

library A comma-separated list of service libraries. Do not include –L. If no extension is
specified, under Windows, BIS will append .dll and UNIX will append .so. Note that this
command line portability is an advantage in enumerating the libraries separately instead of
with –l.

BIS only allows one service to be active in a session.

• If no service is currently running, the new service is started.

• If the specified service is already running, this tag is ignored.

• If a service is running, and program specifies a different service, the currently running service is
stopped (as if a StopService tag had been specified) and the new service is started.

When a service is started, BIS saves the name of the program. When another service is started, BIS
compares the new program name against the name of the program currently running. If there is an exact
match (ignoring differences in letter case), the service is the same. If there is any difference, the new
StartService tag refers to a different service and the currently running service program is stopped.

Business Information Server 29

Liant Software Corporation May 13, 2004

Once the service is started, page rendering resumes. Rendering and the service program run in parallel.

Examples:

1. {{ StartService (myapp) }}
2. {{ StartService (myapp, mylibrary.cob) }}
3. {{ StartService (myapp.cob, xmlif.dll, mylibrary.cob) }}
4. {{ StartService (myapp –V –C rmtcp32.cfg, xmlif.dll) }}

In these examples, the .COB, .DLL, and .CFG files must be in the RUNPATH.

1. Starts the program in file myapp.cob.
2. Attempts to start program myapp after loading the mylibrary.cob service library. If the library

contains a program called myapp, it is run from the library. If the program is not in the library,
then the first program in myapp.cob is started.

3. Starts the program in myapp.cob after loading xmlif.dll and mylibrary.cob.
4. Starts program myapp.cob after loading xmlif.dll. The –V option causes extra information about

loaded programs to be emitted after the banner is emitted into the trace file. The rmtcp32.cfg file
is processed when the service engine is loaded.

The StartService tag follows all the regular service engine program loading rules, including the
RMAUTOLD directory. See the RM/COBOL Users’ Guide for a detailed description.

Note that example 4 demonstrates a program that uses InfoExpress®. The rmtcp32.cfg file (which can
have any name) should contain a line like this:

EXTERNAL-ACCESS-METHOD NAME=rmtcp32

On Windows, this causes rmtcp32.dll to be loaded when the service engine is loaded. This DLL
implements the InfoExpress file access method.

4.4.1 Accessing the REQUEST from the Service Program

In many cases, the service program will require access to the information transmitted in the HTTP request
message. This information is passed in the BIS Request XML document that is made available by a call
to B$ReadRequest or B$Exchange within the service program. ...

4.4.2 Notes

• A given server response file can have at most one {{StartService}} tag. Additional
{{StartService}} tags are ignored if a service is already running.

• The {{StartService}} tag must precede any tags that depend on the service program being active.
Such tags currently include {{XMLExchange}}.

4.5 The {{RunPath}} Tag
This tag is used to modify the RUNPATH environment variable that is passed to the service engine. The
BIS service engine uses the RUNPATH to locate service program files and libraries.

Business Information Server 30

Liant Software Corporation May 13, 2004

runpath ([dir [,dir]…]) }}

4.5.1 Notes

• This tag causes the specified list of directories to be prefixed before the contents of any existing
RUNPATH environment variable that is inherited from the system environment. Any number of
directories may be specified, separated by commas or semi-colons (however, note that colons are
not separators). If any dir contains spaces characters, it must be surrounded by double quotes.
Directory names may not contain commas or semicolons.

• This tag is a session attribute and remains in effect until the session ends or another RUNPATH tag
is encountered. To clear the run path, specify {{ RunPath() }}. Note that the .srf directory
cannot be removed from the RUNPATH sent to the service program.

• This tag must precede the StartService tag or it will be ignored by the application.

• Relative directories in the list are interpreted to be relative to the directory that contains the .srf
file for the page being processed. This is the current directory that is set when the service engine
begins to execute.

• To explicitly reference the directory that contains the current .srf file, add “.” (i.e. “current
directory”) to the path.

• See “Setting Environment Variables” on page 86 for information about setting and modifying
environment variables on Windows.

4.6 The {{SetEnv}} Tag
This tag is used to set a variable in the service program’s environment. Environment variables are treated
as synonyms by the service engine.

setenv (name[=value])

4.6.1 Examples

{{ setenv (printer=lpt1) }}
{{ setenv (myfile=”c:\temp\scratchfile.tmp”) }}

4.6.2 Notes

• The {{SetEnv}} tag affects only the service engine’s environment and not the BIS environment.
The {{Value(variable,ENV)}} tag will not retrieve variables set by this tag.

• Multiple SetEnv tags may be specified in a .srf file and are processed in the order in which they
occur. Note that these tags must precede the {{StartService}} tag.

Business Information Server 31

Liant Software Corporation May 13, 2004

• The scope of a {{SetEnv}} tag is the current request, not the current session.

• To unset an environment variable, omit the “=value”. Note that an unset variable is different
from a variable that has a blank (or empty) value.

• All characters to the right of the equal sign up to the first space before the right-most parenthesis
are stored as the value. If the value is quoted as in the example above, quotes will also be set in
the environment.

4.7 The {{XMLExchange}} Tag
This tag causes the web server to request an XHTML form or table from the currently running
RM/COBOL program. The XHTML form or table generated by the COBOL program replaces the
XMLExchange tag in the output stream.

XMLExchange [(OnExit=url)]

The optional OnExit parameter determines the action that BIS takes if the service program is not active or
terminates while the XMLExchange is being processed. It causes BIS to return an HTTP return code of
302 (HTTP_REDIRECT_FOUND) to the client. This causes the client to reissue the GET request against
the specified URL.

4.7.1 Notes

• Do not use OnExit with SOAP requests. SOAP clients may not be able to interpret the 302 error
that is returned.

• The OnExit in the first {{XMLExchange}} following a {{StartService}} is ignored. This allows
any service startup errors to be reported and corrected.

4.7.2 The {{FormActionTarget}} Tag in {{XMLExchange}}

This tag is replaced by a URI referencing the current page and includes a query parameter that will be
automatically checked by BIS to ensure proper sequencing of requests. BIS will check any requests to the
current session and will reject (and display an error page) any request that does not contain the query
parameter served by the {{FormActionTarget}} tag. By using this tag, the service program may assume
that any requests that return control to the service are in the sequence expected by the program.

The {{FormActionTarget}} tag should normally only be used as the value of the “action” attribute of an
HTML <form> element. In any case it must be used in such a way that the next expected request will be
directed to the URI represented by the tag.

If a response page rendered by BIS does not contain the {{FormActionTarget}} tag, no sequence
checking will be performed by BIS. The service program may, of course, perform its own checking using
other means, such as hidden fields, if required.

4.8 The {{StopService}} tag
This tag terminates the execution of the service program that is attached to the session.

Business Information Server 32

Liant Software Corporation May 13, 2004

{{ StopService }}

4.8.1 Notes

• If the service program is not awaiting a request when this tag is rendered, the program must call
B$ReadRequest or B$Exchange within ServiceTimeout seconds. The call then returns with the
BIS-Fail-ProgramTerminated return code. At that point, the program is granted an additional
ServiceTimeout seconds to terminate.

• If the program is still running when either ServiceTimeout period expires, a termination signal is
sent.

• Once the {{StopService}} tag is rendered, the service program is immediately disconnected from
the session. For example, an {{XMLExchange}} immediately after a {{StopService}} is invalid
and, if present, the OnExit parameter in that tag will be processed.

• The {{StopService}} tag may be immediately followed by a {{StartService}} tag. In this case,
a new service program is started. Once the {{StopService}} tag is rendered, the service program
is considered terminated even if it needs a few additional seconds to actually stop.

• This tag is ignored if there is no RM/COBOL program attached to this session.

4.9 The {{SessionComplete}} tag
Indicates that the current session is complete and may be released. The session cookie will be deleted
when the response for the current page is sent to the client.

{{ SessionComplete }}

4.9.1 Notes

• If a BIS service program is currently active, this tag implicitly performs a {{StopService}} at the
point this tag is rendered. See the description of the {{StopService}} tag for details about how
the service program is informed the session is ending, and the sequence of events that transpire.
Note, however, that the current or next call to B$ReadRequest returns the BIS-Fail-
SessionTerminated result code instead of BIS-Fail-ProgramTerminated.

• This tag is most useful on a “goodbye” page, but is optional because sessions are automatically
terminated after a period of inactivity. However, explicitly ending a session can be used to
release system resources, or to force a new session to be started for the active client when the next
page is requested.

4.10 The {{Trace}} Tag
Enables or disables trace logging for the current session.

{{ trace(options) }}

Business Information Server 33

Liant Software Corporation May 13, 2004

These options control the internal accumulation of trace information on UNIX. Windows always
accumulates trace information and these options are ignored.

START
STOP

Starts/stops the accumulation of TRACE information.
• START causes BIS to begin accumulating trace output.
• STOP causes BIS to stop accumulating trace output.
If tracing has been started, START has no effect. If tracing has not been started,
STOP has no effect.

OFF Turns tracing off. Equivalent to
STOP,NOPAGE,NOFILE,NOTAG,NOEXCHFILES,NOQUERYPARAM,NOIP.

These options determine where the TRACE output is emitted.

NOPAGE
PAGE
NOFILE
FILE
NOTAG
TAG
NOEXCHFILES
EXCHFILES

Controls TRACE output.
• PAGE indicates that the trace is emitted at the end of the page. NOPAGE

(the default) disables end of page trace output.
• FILE indicates that the trace is written to a file in directory DIR (see below).

NOFILE (the default) disables trace output to the file.
• TAG enables the {{TraceDump}} tag and therefore determines if trace

output is written when this tag is rendered. NOTAG (the default) causes
{{TraceDump}} tags to be ignored.

• EXCHFILES determines if a copy of the XMLExchange request/response
files for each session are copied into the trace directory on Windows or
emitted into the trace file on UNIX. NOEXCHFILES (the default) disables
the tracing of XMLExchange request/response files.

These options are independent.

If the FILE option is in effect, these options determine how the TRACE output is written to a file.

NODIR|DIR=dir

dir specifies the directory that will receive trace output if FILE is in effect. If
omitted, or if no dir is specified, but file output is enabled with either FILE or
EXCHFILES then all trace output is written into the Windows temporary
directory. If a relative directory is specified, output is written into a directory
relative to the Windows temporary directory. If an absolute path is specified,
output is written into that directory. In all cases, the specified directory is
created if it does not exist.

Business Information Server 34

Liant Software Corporation May 13, 2004

These options allow tracing to be controlled using a query parameter:

NOQUERYPARAM
NOQP
QUERYPARAM=value
QP=value
NOIP
IP=xx.xx.xx.xx
 [-x.xx.xx.xx],…

These options allow tracing to be dynamically enabled and disabled in a query
parameter. The following options can be set in the query parameter: START,
STOP, RESET, PAGE, FILE, DUMP, and EXCHFILES.
• QUERYPARAM and QP are synonymous and select a query parameter that

can be used to dynamically specify the options above. To disable the query
parameter, use NOQUERYPARAM or NOQP. Trace options set in the URL
have the highest priority. Note that, for security, the query parameter cannot
be used to set or clear IP restrictions or set the trace output directory.

• IP=xx.xx.xx.xx allows trace output to be restricted to requests originating at
one or more IP addresses. If an IP restriction is in effect, trace output is
restricted exclusively to requests from those particular IP addresses. A
comma-separated list of IP addresses or ranges may be specified.

4.10.1 Notes

• The default trace state is OFF. Note that if {{Trace(Start)}} is specified, trace accumulation
begins/continues but trace information is not output until one or more output destinations (i.e.
PAGE, FILE, TAG, EXCHFILES) are specified.

• The trace mode is part of the session and is “sticky” – that is, the trace setting persists in the
session until it is changed by either another trace tag or a query parameter (if enabled). So if you
have more than one page in your application, the trace tag is required only on your initial page.

• Only .srf files may be traced. If you follow a link to a .htm or .asp page, those pages will not be
traced. If those pages link back to a .srf file in this application’s virtual directory, then tracing
will once again resume as long as the session is still active.

• Be cautious when enabling tracing in a way that exposes the trace information to site visitors.
Trace information will reveal some information about your system that may be useful to
intruders. The QUERYPARAM is configurable to help secure your web by allowing tracing to be
turned on and off using a keyword that is not easily guessed by intruders.

4.10.2 Examples

{{ trace(page, file, notag, dir=bistrace) }}

4.10.3 The {{Trace}} Query Parameter

If the query parameter has been enabled for this session, the presence of the query parameter on a
subsequent URL acts to change the trace options at the time the request is processed.

4.10.4 The BIS_TRACE_SUFFIX environment variable

The BIS_TRACE_SUFFIX environment variable allows trace parameters to be injected into every trace
statement. While this requires administrative access to the web server, this is useful for globally
providing specific clients access to trace information.

For example, if your trace statements look like this:

Business Information Server 35

Liant Software Corporation May 13, 2004

{{ trace(page, noip) }}

and you wish to view trace data from the machine at 192.168.3.54, and control such tracing with the
MySecretTrace query parameter, place this into the server environment:

BIS_TRACE_SUFFIX=ip=192.168.3.54,queryparam=MySecretTrace

• This will effectively append these parameters to every {{Trace}} tag executed on the server
without requiring the actual .SRF file to be edited. Note that the .SRF files must contain a
{{Trace}} tag for this feature to take effect.

• See “Setting Environment Variables” on page 86 for information about setting and modifying
environment variables on Windows.

4.11 The {{TraceDump}} Tag
This tag directs BIS to output the contents of the trace buffer.

{{ tracedump }}

4.11.1 Notes

• This tag is ignored (i.e. removed from the output) if tracing is not being performed.

• Because trace information is accumulated as the page is rendered, it is most useful for
{{TraceDump}} to be specified near the end of the page.

• If this tag is omitted and tracing is enabled, BIS for Windows appends trace output to the end of
the response (that is, after the </html> tag).

• {{DumpTrace}} is an alias for {{TraceDump}}.

Business Information Server 36

Liant Software Corporation May 13, 2004

Chapter 5. Conditional Tags and Constructs

Conditional tags evaluate a condition and return either true or false. They are used in the following
constructs.

5.1 The {{If}} / {{Else}} / {{EndIf}} tags
These tags can be used to conditionally show or hide sections of the .srf file.

{{ if tag }}
 if-content
{{ else }}
 else-content
{{ endif }}

5.1.1 Notes

• The {{Value}} tag is the only replacement tag currently supported in the {{if}} tag.

• The definition of content includes both HTML and replacement tags.

• Any HTML code in a skipped section is ignored and is not transmitted to the user agent.
Rendering tags in a skipped section are ignored and are not evaluated.

• No special flow layout is implied by this tag: the if, else, and endif tags can be on one line, or can
span multiple lines. These blocks can also be nested.

• Blocks may be nested but must be completely nested. It is not permissible to place a {{while}}
tag in an if block and have the {{EndWhile}} tag in a different block.

• To render on an inverted condition, just omit the if-content:
{{ if tag }}{{ else }}content{{ endif }}

5.2 The {{While}} / {{EndWhile}} tags
This tag can be used to omit or duplicate a section of HTML code.

{{ while tag }}
 content
{{ endwhile }}

5.2.1 Notes

• The {{Value}} tag is the only replacement tag currently supported in the {{while}} tag.

• The definition of content includes both HTML and replacement tags.

• No special flow layout is implied by this tag: the while and endwhile tags can be on one line, or
can span multiple lines. These blocks can also be nested.

Business Information Server 37

Liant Software Corporation May 13, 2004

• A while block must be completely enclosed within another while block, or the true or false
section of an if block. It is not permissible to use an if block to conditionally render an
{{EndWhile}} tag unless the {{while}} tag is in the same block.

Business Information Server 38

Liant Software Corporation May 13, 2004

Chapter 6. Substitution Tags

Substitution tags are replaced in the output stream. These tags can appear anywhere in the .srf file – even
before the handler tag.

6.1 The {{Value}} tag
This tag looks up a value on the server and the tag is replaced with that value.

{{ VALUE (variable [, source] [,operations]…) }}

By default, variable is a server variable or a special variable (described below). However, options can
direct that the value be obtained from the environment, or the server configuration.

The source option determines from where the variable is obtained.

SERVER Specifies that variable is a server variable. This is the default if none of the other

sources below are specified. Under Apache, ENV and SERVER are identical.

CONFIG Specifies that variable is a special server configuration value. A list of these
variables appears at the end of this section.

COOKIE Specifies that variable is a cookie.

ENV Specifies that variable is an environment variable instead of a server variable. Note
that, on Apache servers, ENV and SERVER are identical. See “Setting Environment
Variables” on page 86 for information about setting and modifying environment
variables on Windows.

FORM Specifies that variable is a <form> variable.

QUERYPARAM Specifies that variable is a URL query parameter.

These operations modify the retrieved value and are applied from left to right and may be applied
multiple times.

DEFAULT=value Specifies a default value if the variable is not defined.

• If DEFAULT is not specified and no regular expression is
specified, the tag is simply removed from the output.

• If DEFAULT is specified, the tag is replaced by value.

Note that, since value must be specified as a constant, additional
operations (i.e. GETDIR, TOUPPER, URLENCODE) are not performed on
value.

GETDIR If variable is a pathname, this option extracts the directory portion of
the pathname using the following algorithm:

Business Information Server 39

Liant Software Corporation May 13, 2004

• Any query parameter is removed. This consists of truncating the
pathname at the left-most question mark (?) character.

• The right-most forward or backwards slash is located. If found, the
pathname is truncated at that point (note the slash is removed as
well).

Note that, since GETDIR assumes that the variable may be a URL, it
will not work as expected on pathnames that have embedded question
marks. The results are undefined if the variable does not contain a
pathname.

GETNAME If variable is a pathname, this option extracts the filename portion of
the pathname. The processing is the same as GETDIR except all
characters after the directory but preceding the query parameter are
returned. The results are undefined if the variable does not contain a
pathname.

SUBSTITUTE=
/pattern/replacement/
SUB=/pat ern/replacement/ t

Allows you to substitute all occurrences of pattern in the value with a
replacement pattern. The operation is performed on the current value
after all transforms to the left have been performed. Processing
continues with the modified value. SUB is accepted in place of
SUBSTITUTE for brevity. Both pattern and replacement are regular
expressions: see 72

TOUPPER Converts the value to all upper-case characters. Equivalent to
CHANGE=”/.*/\U&/”.

TOLOWER Converts the value to all lower-case characters. Equivalent to
CHANGE=”/.*/\L&/”.

URLDECODE Decodes a string that has been URL-encoded. This is primarily useful
when retrieving a server variable.

URLENCODE Encodes a string for reliable HTTP transmission from the Web server to
a client as a URL. For example:

“This is a <Test String>.”
Will be encoded as

“This%20is%20a%20%3cTest%20String%3e.”

HTMLDECODE Decodes a string that has been HTML-encoded. This is primarily
useful when retrieving a server variable.

HTMLENCODE Encodes a string for reliable HTTP transmission from the Web server to
a client as HTML. For example:

“This is a <Test String>.”
Will be encoded as

“This is a <Test String>.”

Processing stops when the following option is encountered and the tag always renders as an empty string.

Business Information Server 40

Liant Software Corporation May 13, 2004

MATCH=regexp Applies the regular expression against the current value and returns true if it
matches and false if it does not match but does not return any text for rendering.
This allows {{Value}} to be used in {{If}} tags. See Appendix D.

For example, the tag

{{ VALUE (HTTP_URL, GETDIR, TOLOWER, URLENCODE) }}

is replaced by the directory that contains the page that is currently being served. The name of the
directory is converted to lowercase and the directory name is URL-encoded (for example, recommended
if the value will be substituted into an HREF attribute).

On WindowsXP,

{{ VALUE (PROCESSOR_IDENTIFIER, ENV, DEFAULT=”Unknown”, HTMLENCODE) }}

is replaced by the contents of the PROCESSOR_IDENTIFIER environment variable. If this variable is not
defined, the text Unknown (without quotes) is output instead. The output is HTML-encoded so any ‘<’
or ‘>’ characters in the environment variable are properly converted.

6.1.1 Notes

• The {{Value}} tag can be referenced in an {{If}} tag if the MATCH operation is used, but cannot be
nested within any other tags. It can, however, appear anywhere else in the HTML as long as it
follows the {{Handler}} tag. This tag can therefore be used to provide content for any HTML
element.

• When used in an {{If}} tag without the FIND option, the condition is TRUE if {{Value}} evaluates to
a non-empty string; otherwise, FALSE.

• Regular expressions must be delimited. The first nonblank character after the ‘=’ is the delimiter for
the regular expression. The expression begins at the character following the delimiter and extends up
to, but not including the next occurrence of that character.

Single or double quotes are common delimiters, but the delimiter may be any character. Examples:

{{ VALUE (QUERY_STRING, FIND=”?userid=fred\s”, URLENCODE) }}
{{ VALUE (QUERY_STRING, FIND=/?userid=”fred\s/, URLENCODE) }}

The second regular expression includes quotes, so a delimiter (“/”) was chosen that does not occur in
the expression.

6.1.2 Configuration Variables

In addition to server variables and environment variables, some special variables are supported. These
variables may not be implemented on all platforms.

Business Information Server 41

Liant Software Corporation May 13, 2004

HOSTSERVER Returns “IIS” or “Apache”. Note that under IIS, the SERVER_SOFTWARE server
variable can be used to retrieve the version number. This server variable may be
undefined under Apache.

MAXTHREADS [IIS Only] Resolves to the number of threads configured in the BIS thread pool.
This is the number of threads that are available for requests. Under Apache, this is
undefined (use DEFAULT=1 if portability is desired).

STARTSERVICE Returns the entire argument list of the currently active {{StartService}} tag,
including commas. If there is no active service program, the value is considered
undefined and may be overridden with the DEFAULT keyword.

SERVICENAME Retrieves the name of the currently active service. If there is no active service
program, the value is considered undefined and may be overridden with the
DEFAULT keyword.

VERSION Retrieves BIS version information. The format of the version number is
aa.bb.cc.yyyy/mm/dd, where aa.bb.cc indicates the numeric major/minor/patch
level version, and yyyy/mm/dd is the build date.

6.2 The {{ Include }} tag
This tag is replaced by the content of the specified file.

{{ include filepath }}

Where filepath is the path to the file whose content will be included in the response at the position of the
include tag. You may specify an absolute path or a path relative to the physical location of the .srf file.

If the included file is a .srf file, tags in that file will also be expanded. However, the scope of a handler
tag only encompasses the .srf file that contains the handler tag. This means that any included .srf file
must also contain a handler tag (specified relative to the location of that .srf file) in order for its tags to be
recognized and processed. Normally, specifying {{Handler *}} in each .srf file is sufficient.

6.2.1 Notes

• If filepath specifies a server response file, tags in that .srf file are also processed.

• Relative pathnames in filepath are interpreted as relative to the location of the top-level .srf file.

• An include tag can appear anywhere in the .srf file—even before the handler tag.

6.3 Comment tags
This tag is ignored and is simply removed from the output. This differs from HTML comments, which
remain in the output and can be viewed with the browser’s View Source command.

There are two ways to specify a BIS comment:

Business Information Server 42

Liant Software Corporation May 13, 2004

{{ // comment }}
{{ !-- comment }}

6.3.1 Notes

• A comment tag can appear anywhere in the .srf file—even before the handler tag.

• If a comment tag is immediately followed by the end-of-line character, BIS removes the end-of-
line character along with the comment tag from the output. This is useful when placing tags into a
file where white space is significant. For example, the default.srf file in SAMPLE2 is coded like
this:

{{//There must be no whitespace rendered before the exchange tag, }}
{{// hence the newline-eating comment tags }}
{{ Handler * }}{{//}}
{{ Trace(start,queryparam=trace,ip=127.0.0.1) }}{{//}}
{{ RunPath(bin,../common) }}{{//}}
{{ StartService(webappsample2 -v) }}{{//}}
{{ XMLExchange(OnExit="gotit.srf") }}

Here, the comment tags and the Handler, Trace, RunPath, and StartService tags are completely
removed from the output, while the XMLExchange is replaced by the XML produced by the COBOL
program. However, the new line character that follows each of these tags would remain in the output,
resulting in six blank lines before the start of the XML produced by the XMLExchange tag.

To avoid this in this sample, the non-comment Handler, RunPath, and StartService tags are followed
by empty comments, which suppress the new characters. The XMLExchange is not followed by a
newline-consuming comment because a newline is desirable before the end of the file and, in this
case, the emitted XML does not contain any newline characters.

Business Information Server 43

Liant Software Corporation May 13, 2004

Chapter 7. Service Programs

7.1 Introduction
The Service Engine is the BIS component that starts and runs service programs in response to requests.
Currently, all BIS service programs are RM/COBOL programs.

The service engine is started when a BIS {{StartService}} tag is rendered, and runs asynchronously from
the BIS web components. BIS and the service engine synchronize when:

1. BIS renders an {{XMLExchange}} tag and
2. The service engine calls either B$ReadRequest or B$Exchange.

The simplified flow of control is depicted below.

Request
Received

{{StartService}}
Tag Start Service (ignored if this service is running) Start Service

for Session

{{XMLExchange}}
Tag

B$ReadRequest
(wait for request)

Service Complete

XML Request Received

Page Complete

Response Received

BIS requested
termination?

Yes

B$WriteResponse No

Not Final Response

Request and Form Data

Response
Data

(Read XML)
(Process Data)

(Write XML)

Final Response

Connect to
Existing Service

for Session
If Service Running

Figure 7-1

The BIS request handler and the BIS service engine synchronize when the request handler renders an
{{XMLExchange}} tag and the service engine calls either B$ReadRequest or B$Exchange. Ideally, the

Business Information Server 44

Liant Software Corporation May 13, 2004

service engine will be waiting at a synchronization point when BIS is ready to provide a request. To
avoid deadlocks, once BIS begins to process the {{XMLExchange}} tag:

• The service program must call one of the above B$ functions within ServiceTimeout
seconds.

• Alternatively, the program may request additional time by calling
“B$SetServiceTimeout” using 0 to reset the timer.

Once the service engine has read the request, it is granted a new ServiceTimeout interval to read the XML
request, compute the response, write the XML response, and call B$WriteResponse or B$Exchange.
Alternatively, the service program can terminate, which will cause the BIS service handler to redirect if
an OnExit parameter was specified in the {{XMLExchange}} tag. If the response cannot be provided
within this interval, the service program must request more time as described above.

When BIS receives the response, it is placed into the page output stream and processing continues. At
this point, the service engine may

• Wait for the next request for the current session by calling B$ReadRequest or
B$Exchange.

• Terminate (for example, with STOP RUN.)4

If neither of the above two events occurs, BIS will terminate the service engine.

7.2 Service Program Lifetime
A service program is started when BIS processes a {{StartService}} tag on a .srf page. A service
program is considered to be finished when:

• The program terminates by executing a STOP RUN (or equivalent).

• The program responds to a request by calling B$WriteResponse with an “end program” or “end
program and session” disposition parameter (described in detail in “BIS Return Codes”, below).

• A {{StopService}} tag is rendered. The service program is disconnected from the session, so a
subsequent {{StartService}} can be processed on the same page.

• A {{SessionComplete}} tag is rendered. The service program and session both end when the page is
complete. Note that a {{StopService}} can also be specified if the service program must stop
immediately.

• The number of seconds specified in the InactivityTimeout pass without a request. Both the service
program and the session are terminated.

• An {{XMLExchange}} tag is rendered and the number of seconds specified in the ServiceTimeout
interval pass without a response from the service program. If a service program needs a longer
amount of time to complete processing, it should lengthen the ServiceTimeout interval by calling
B$SetServiceTimeout(), or call this function with a parameter of zero to reset the timer.

4 Termination between requests in this way is not recommended because this is not deterministic—ideally, the program will
terminate before BIS renders another {{XMLExchange}}, but this cannot be guaranteed. It is much better to inform the BIS
service handler that the program is complete by setting the ProgramDisposition or SessionDisposition parameter in the final call
to B$WriteResponse.

Business Information Server 45

Liant Software Corporation May 13, 2004

The following general rules apply to service programs:

• A given BIS session may have only one active service program at any time.

• When a service program enters the termination state, it is immediately disconnected from the session
but is given ServiceTimeout seconds to clean up and perform a STOP RUN. If the program exceeds
the allotted time, BIS requests that the program stop at the next statement boundary and the service
timer is started again5. If, at the end of the allotted time the program has still not terminated, the
process is forcibly terminated and unloaded from memory.

• A new service program may be started as soon as the current service program is disconnected from
the session. In other words, {{StopService}} {{StartService(…)}} is allowed.

7.2.1 ACCEPT and DISPLAY Statements

DISPLAY statements are allowed in service programs and the data that would normally be displayed on
the console is instead placed into the BIS trace output. This is a useful way to debug the service program
but this technique cannot be used to communicate with end users.

Because the service program does not have access to the console or the Windows desktop, ACCEPT
statements are ignored and are treated as if the console operator pressed the Return or Enter key without
actually entering any data. Otherwise, the service program would stop on an ACCEPT, waiting for a
response that cannot come.

Note that it is still possible for a service program that uses ACCEPT statements to hang, if the program
loops back to repeat the ACCEPT upon receiving a zero-length response. For this reason, it is best to add
code to skip around ACCEPT statements if the program is running under BIS.6

7.2.2 Windows Message Boxes and Dialogs

Because the service program does not have access to the Windows desktop, it is not appropriate to display
a message box or a dialog box. If the service program did attempt to interact with the user in this way, it
will suspend waiting for a response that cannot ever come. To avoid this problem, BIS detects that the
service program is attempting to create a dialog or message box and denies the request.

7.3 The XML Exchange File
The service engine is started with a special parameter that specifies the name of the file that will be used
for all XML exchange operations. BIS takes the current request, encodes it using XML, and places the
request into this file when the service program calls B$ReadRequest or B$Exchange.

Important: the file is not created until one of the above two functions is called.

BIS places the fully qualified name of this file into the BIS_FILENAME environment variable when the
service engine is started. It is therefore accessible to the RM/COBOL program via the C$GetEnv
function:

5 Note that, in this mode, the service engine will close any open files.
6 Such a program will be automatically terminated by BIS if it does not call B$ReadRequest or B$Exchange within
ServiceTimeout seconds after being started.

Business Information Server 46

Liant Software Corporation May 13, 2004

01 BIS-Exchange-File-Info.
 05 BIS-Exchange-File-Result PIC 9 BINARY.
 05 BIS-Exchange-File-Name.
 10 FILLER PIC X OCCURS 200 TIMES.
CALL "C$GetEnv" USING "BIS_FILENAME",
 BIS-Exchange-File-Name, BIS-Exchange-File-Result.

The value of this variable is the fully qualified pathname of the file and, on Windows, has this form:

XMLExchange-hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh.xml

The file is created in the Windows TEMP directory. The h characters are replaced by hexadecimal digits,
and the name is guaranteed to be globally unique.

Some notes:

• You do not provide this environment variable. BIS will automatically create this file and set the
environment variable when a service program is started.

• A separate file is created for each service program, and the same file is used by

 B$ReadRequest to receive requests from BIS
 B$WriteResponse to transmit responses to BIS.
 B$Exchange to both receive requests and write responses.

• The file is not created until B$ReadRequest or B$Exchange is called for the first time by the
service program.

7.4 BIS Return Codes
Here are the return codes for the B$ functions. These codes are defined in the BISDEF.CPY COPY file.

Success! For B$ReadRequest and B$Exchange, the request data is available in the XML
exchange file. For B$WriteResponse, the response was accepted by the server.

BIS-Success

00-09

00

The data transfer succeeded and the XML file contains the result of the operation.

10-19 A non-fatal event occurred, and recovery is possible.

A failure occurred and the program may be able to recover. The XML file was not updated.
These are less serious than later return codes.

BIS-Warn-RequestTimeExpired

20-29

20

A timeout parameter was specified on the B$ReadRequest or B$Exchange call and the
timeout expired. To avoid a potential race condition, the service program should not
terminate when this occurs – instead, it can do some work and then reissue the request.

Business Information Server 47

Liant Software Corporation May 13, 2004

BIS-Warn-RequestOutstanding 21

A request has already been received by B$ReadRequest and the service program has not
responded.

BIS-Warn-ResponseUnexpected 22

The service program called B$WriteResponse without a pending request.

BIS-Warn-CallNotImplemented 23

A function was called that is not implemented in this version of BIS.

A failure occurred and the program may or may not be able to recover. The XML file was not
updated.

BIS-Fail-FileOpen 30

BIS could not open the XML Exchange file.

BIS-Fail-FileRead 31

BIS could not read the XML Exchange file.

BIS-Fail-FileWrite 32

BIS could not write the XML Exchange file.

BIS-Fail-FileClose 33

BIS could not close the XML Exchange file.

BIS-Fail-FileSize 34

The XML Exchange file size is too large to load into memory.

BIS-Fail-FileTraceFileIO 39

BIS could open or write the trace file.

BIS-Fail-FileFormat

30-49

49

The XML Exchange file format is invalid.

A failure occurred and the program cannot continue. The XML file was not updated and the
program should terminate.

BIS-Fail-SessionAbandoned 50

The session timed out.

BIS-Fail-SessionComplate

50-79

51

The user logged out or ended the session. Note that this does not necessarily indicate a
failure—a {{SessionComplete}} tag may have been processed.

Business Information Server 48

Liant Software Corporation May 13, 2004

BIS-Fail-ServiceComplete 52

The user logged out or ended the session. Note that this does not necessarily indicate a
failure—an {{StopService}} tag may have been processed.

A serious error occurred. The XML file was not updated and the program must terminate.

BIS-Fail-ServerUnavailable 80

The service program is not running in the BIS server environment.

BIS-Fail-ServerUnspecified 81

An unspecified error occurred while the service program was communicating with the BIS
server.

BIS-Fail-ServerInternalError 88

An internal error occurred while the service program was communicating with the BIS
server.

BIS-Fail-ServerMemoryManagement 89

A memory management failure occurred in the BIS service program.

BIS-Fail-ServerBadMessage 90

An internal error occurred while the service program was communicating with the BIS
server.

BIS-Fail-ServerBadLength 91

An internal error occurred while the service program was communicating with the BIS
server.

BIS-Fail-ServerBadParameter 92

An internal error occurred while the service program was communicating with the BIS
server.

BIS-Fail-ServerWrongMsg 93

An internal error occurred while the service program was communicating with the BIS
server.

BIS-Fail-ServerConnectionLost

80-99

99

The connection between the BIS service program and the BIS server failed.

7.5 Service Program Functions
The following COBOL-callable functions may be used in BIS service programs to communicate with
BIS.

• B$ReadRequest

Business Information Server 49

Liant Software Corporation May 13, 2004

• B$WriteResponse
• B$Exchange
• B$SetInactivityTimeout
• B$SetServiceTimeout

These functions are detailed in the following sections.

7.6 B$ReadRequest
This function call retrieves the current BIS request for processing by the service program. The syntax of
this function call is:

Call "B$ReadRequest" [using TimeoutInSeconds] giving BIS-Status.

When this function is called, execution of the service program is suspended until one of the following
events occurs:

Event Action

BIS renders an
{{XMLExchange}} tag for
the current session

This tag causes the current request data to be encoded into XML and placed
into the file specified by the BIS_FILENAME environment variable.

BIS renders a
{{StopService}} or
{{SessionComplete}} tag
for the current session

This indicates that the service is no longer required. The service program
should terminate and is granted ServiceTimeout seconds to do so.

The optional
TimeoutInSeconds
parameter expires

This timeout allows the BIS service program to regain control and perform
some work. When complete, the program should call B$ReadRequest
again.

The InactivityTimeout
period expires

This indicates that the end user has abandoned the session. The service
program should terminate and is granted ServiceTimeout seconds to do so.

The most common result codes (see BIS Return Codes for a complete table):

Business Information Server 50

Liant Software Corporation May 13, 2004

BIS-Status Code Event Description

BIS-Success A valid request was received.

BIS-Warn-RequestTimeExpired The TimeoutInSeconds parameter was specified and no request was
received before the time elapsed.

BIS-Warn-RequestOutstanding A request is outstanding. The service program must write a response
before another request can be received.

BIS-Fail-SessionAbandoned Service termination is being requested because the BIS session
inactivity time has elapsed without a request.

BIS-Fail-SessionComplete Service termination is being requested because a {{StopService}} tag
was rendered.

BIS-Fail-ServiceComplete Service termination is being requested because a
{{SessionComplete}} tag was rendered.

(These values are defined in file BISDEF.CPY). Other codes may also be returned, but that normally
indicates a serious problem has occurred.

When execution resumes and the result code is BIS-Success, the file specified by the BIS_FILENAME
environment variable contains the request in XML format. The exact format of the request is described in
“Format of a Request” later in this section.

7.6.1 Notes

• BIS starts the service timer when this function returns. The program is then given ServiceTimeout
seconds to process the request and perform one of these actions:

Call B$WriteResponse
Call B$Exchange (a shorthand way of calling B$WriteResponse followed by a

call to B$ReadRequest)
Call B$SetServiceTimeout. In particular, a parameter of 0 will reset the timer, and start

another ServiceTimeout interval.
Terminate the program.

If the service program processes for more than the ServiceTimeout interval without performing one of
the above functions, BIS assumes the service program is lost and begins termination processing (as if
a {{StopService}} tag had been rendered).

• If the optional TimeoutInSeconds parameter is specified, and a request does not arrive within the
specified amount of time, the function returns with a BIS-Warn-RequestTimeExpired status code.
The program can then perform some processing and either exit or reissue the B$ReadRequest.

Note that specifying a timeout of 0 causes this function to return immediately unless a request is
waiting. The routine use of a timeout value of 0 to poll for requests is strongly discouraged as it may
significantly impact server performance.

• If TimeoutInSeconds is not specified, this function does not return until one of the other termination
events occur—that is, the default timeout is infinite.

Business Information Server 51

Liant Software Corporation May 13, 2004

7.7 B$WriteResponse
This function call transmits a response to BIS to be inserted into the output stream, replacing the
{{XMLExchange}} tag in the output stream. The response must be written into the request file (specified
by the BIS_FILENAME environment variable) before B$WriteResponse is called.

The response file will typically contain an HTML or XHTML block to be inserted into the .srf file that
was requested but it may also contain a SOAP result or anything else that is meaningful to the HTML
client program that issued the request.

The syntax of this function call is:

Call "B$WriteResponse" [using ProgramDisposition] giving BIS-Status.

If this is the final call to B$WriteResponse by this service, the optional ProgramDisposition parameter
should be used to inform BIS that the service program is finished and optionally if the session should be
destroyed. Here are the values:

 78 BIS-Response-Normal Value 0. *> Default: normal response
 78 BIS-Response-ServiceComplete Value 1. *> End program only
 78 BIS-Response-SessionComplete Value 2. *> End program and session
*78*BIS-Response-RecycleService Value 3. *> RESERVED FOR FUTURE USE

The most common result codes (see BIS Return Codes for a complete table):

Business Information Server 52

Liant Software Corporation May 13, 2004

BIS-Status Code Event Description

BIS-Response-Normal The default: BIS makes no assumptions about what the service
program will do next. However, the service program is granted
only ServiceTimeout seconds to exit or to read the next request.

BIS-Response-ServiceComplete BIS assumes that the service is about to terminate. If the
{{XMLExchange}} tag contains an OnExit parameter, the
OnExit is taken immediately and any XML output is ignored. If
there is no OnExit, the XML output is written to the output
stream, completely replacing the {{XMLExchange}} tag. In
both cases, the service program is then “disconnected” from the
session and allowed to run to completion. If the service
program subsequently calls B$ReadRequest or B$Exchange, it
receives a BIS-Fail-ServiceComplete error status.

Note that the session is not destroyed, and if a {{StartService}}
tag is executed before the session expires, the new service
program will run under the current session.

This is logically the same as processing a {{StopService}} tag
in the .SRF file.

BIS-Response-SessionComplete BIS assumes that the both the service and the session are
complete. If the {{XMLExchange}} contains an OnExit, the
OnExit is taken immediately and any XML output is ignored. If
there is no OnExit, the XML output is written to the output
stream, completely replacing the {{XMLExchange}} tag. In
both cases, the service program is “disconnected” from the
session and allowed to run to completion. If the service program
subsequently calls B$ReadRequest or B$Exchange, it receives a
BIS-Fail-SessionComplete error status..

Note that, in this case, the session is destroyed, and a new
session is created if another .srf file is requested.

This is logically the same as processing a {{EndSession}} tag
in the .SRF file.

BIS-Response-RecycleService Reserved for future use.

The BIS-Status result field and the result codes are defined in BISDEF.CPY. Here are the most common
return codes:

Business Information Server 53

Liant Software Corporation May 13, 2004

BIS-Status Code Event Description

BIS-Success BIS accepted the response. This does not mean that it was
delivered to the user agent. However, the service program
should presume success and resume processing.

BIS-Warn-ResponseUnexpected There is no pending request to respond to.

7.7.1 Notes

• Unlike B$ReadRequest, this call returns as soon BIS accepts the output file. This function call does
not block waiting for a response from BIS.

• After writing a response, the service program will normally either call B$ReadRequest or terminate.

• BIS starts the service timer when this function returns. The program has ServiceTimeout seconds to
perform one of these actions:

• Call B$ReadRequest
• Call B$Exchange
• Call B$SetServiceTimeout. A parameter of 0 will restart the service timer.
• Terminate.

If the service program processes for more than the ServiceTimeout interval without performing one of
the above functions, BIS assumes the service program is lost and begins termination processing (as if
a {{StopService}} tag had been rendered).

• Other codes may also be returned, but that normally indicates a serious problem has occurred.

7.8 B$Exchange
This function call is equivalent to calling B$WriteResponse immediately followed by B$ReadRequest.
This function should be used only for the simplest programs because it is not possible to specify the
program disposition parameter.

The syntax of this function call is:

Call "B$Exchange" using TimeoutInSeconds giving BIS-Status.

This is logically equivalent to this sequence:

call “B$WriteResponse” giving BIS-Status
if BIS-Status = BIS-Success or BIS-Status = BIS-Warn-ResponseUnexpected then
 call “B$ReadRequest” using TimeoutInSeconds giving BIS-Status
endif

Business Information Server 54

Liant Software Corporation May 13, 2004

If only B$Exchange calls are used in a service program, the first call to B$WriteResponse will be
performed in the absence of a request and an error will be returned. This error is ignored and the result
code of the call to B$Exchange reflects the result of the B$ReadRequest.

See the description of “B$ReadRequest” on page 50 for a table of result codes and their interpretation.

7.9 B$SetInactivityTimeout
This function allows the service program to control the length of time that BIS waits for a request before
considering a session to be abandoned.

A timer is started in a session when each request is processed for that session. If a new request is not
received before the timer elapses, any active services in that session are terminated and the session is
terminated.

If a request is subsequently received for a terminated session, BIS creates a new session.

The syntax of this function call is:

Call "B$SetInactivityTimeout" using TimeoutInSeconds giving BIS-Status.

Where TimeoutInSeconds may be:

• The actual number of seconds this session will wait for a new request. Note that the
value may range from 10 to 3600 seconds (1 hour). All values out of this range other
than 0 are treated as if -1 was specified.

• 0 to restart the inactivity timer without changing the number of seconds allowed between
requests.

• -1 to reset the timeout value to the default value of 600 seconds (10 minutes).

The BIS-Status result field and the result codes are defined in BISDEF.CPY. Here are the most common
return codes:

BIS-Status Code Event Description

BIS-Success The call was successful.

BIS-Fail-SessionAbandoned Service termination is already being requested because the BIS
session inactivity timeout period has elapsed without a request.
This function call had no effect.

BIS-Fail-SessionComplete Service termination is already being requested because a
{{StopService}} tag was rendered. This function call had no
effect.

BIS-Fail-ServiceComplete Service termination is already being requested because a
{{SessionComplete}} tag was rendered. This function call had no
effect.

Business Information Server 55

Liant Software Corporation May 13, 2004

7.9.1 Notes

• The default inactivity timeout period is 600 seconds (10 minutes). The section entitled “Session
Inactivity Timeout on page 19 describes how the default may be changed for all BIS sessions on this
server.

• The inactivity timeout may also be set in a .srf file with the {{SessionParms}} tag.

• All calls to this function will restart the timer. Specify 0 to restart the timer without changing the
value currently in effect.

• BIS for Windows defers processing of this function until an {{XMLExchange}} tag is processed. The
main implication of this restriction is that if the client starts the program and then browses pages that
do not include an {{XMLExchange}} tag while the program calls B$SetInactivityTimeout() followed
by B$ReadRequest(), the updated inactivity timeout interval will not take effect until an
{{XMLExchange}} tag is processed. This is an unlikely scenario because there is no reason to start a
service program if an {{XMLExchange}} is not imminent.

7.10 B$SetServiceTimeout
This function allows the service program to control the length of time that the service program is
permitted to run without interacting with BIS.

The service timer is reset when

• The service program is started
• The service program calls any B$ function

If the timer elapses, the service program is terminated. The default service timeout interval is 30 seconds.

The syntax of this function call is:

Call "B$SetServiceTimeout" using TimeoutInSeconds giving BIS-Status.

Where TimeoutInSeconds may be:

• The actual number of seconds allowed between calls to BIS B$ functions. Note that the
value may range from 10 to 3600 seconds (1 hour). All values out of this range other
than 0 are treated as if -1 was specified.

• 0 to restart the service timer without changing the number of seconds allowed between
calls to B$ functions.

• -1 to reset the timeout value to the default value of 30 seconds.

The BIS-Status result field and the result codes are defined in BISDEF.CPY. Here are the most common
return codes:

Business Information Server 56

Liant Software Corporation May 13, 2004

BIS-Status Code Event Description

BIS-Success The call was successful.

BIS-Fail-SessionAbandoned Service termination is already being requested because the BIS
session inactivity time has elapsed without a request. This
function call had no effect.

BIS-Fail-SessionComplete Service termination is already being requested because a
{{StopService}} tag was rendered. This function call had no
effect.

BIS-Fail-ServiceComplete Service termination is already being requested because a
{{SessionComplete}} tag was rendered. This function call had no
effect.

7.10.1 Notes

• The default service timeout period is 30 seconds. The section entitled “Service Timeouts” on page 19
describes how the default may be changed for all BIS services on this server.

• The service timeout may also be set in a .srf file with the {{SessionParms}} tag.

• All calls to this function will restart the timer. Specify 0 to restart the timer without changing the
value currently in effect.

• BIS for Windows defers processing of this function until an {{XMLExchange}} tag is processed. The
main implication of this restriction is that if the client starts the program and then browses pages that
do not include an {{XMLExchange}} tag while the program calls B$SetServiceTimeout() followed
by B$ReadRequest(), the updated service timeout interval will not take effect until an
{{XMLExchange}} tag is processed. This is an unlikely but possible scenario because there is no
reason to start a service program if an {{XMLExchange}} is not imminent.

Business Information Server 57

Liant Software Corporation May 13, 2004

Appendix A. Server Variables Reference

The following table describes the server variables that may be inspected with the {{Value}} tag. Note
that the descriptions are taken from Microsoft’s IIS SDK documentation and not all server variables are
displayed in the TRACE output if empty.

Variable Platform Description

ALL_HTTP IIS All HTTP headers sent by the client.

ALL_RAW IIS Retrieves all headers in raw form. The difference between
ALL_RAW and ALL_HTTP is that ALL_HTTP places an HTTP_
prefix before the header name and the header name is always
capitalized. In ALL_RAW the header name and values appear
as they are sent by the client.

APPL_MD_PATH IIS Retrieves the metabase path for the Application for the
ISAPI DLL.

APPL_PHYSICAL_PATH IIS Retrieves the physical path corresponding to the metabase
path. IIS converts the APPL_MD_PATH to the physical
(directory) path to return this value.

AUTH_PASSWORD IIS The value entered in the client's authentication dialog. This
variable is available only if Basic authentication is used.

AUTH_TYPE IIS The authentication method that the server uses to validate
users when they attempt to access a protected script.

AUTH_USER IIS The name of the user as it is derived from the authorization
header sent by the client, before the user name is mapped to
a Windows account. This variable is no different from
REMOTE_USER. If you have an authentication filter installed
on your Web server that maps incoming users to accounts,
use LOGON_USER to view the mapped user name.

CERT_COOKIE IIS Unique ID for the client certificate, returned as a string. This
can be used as a signature for the whole client certificate.

CERT_FLAGS IIS Bit 0 set to 1 if the client certificate is present.

Bit 1 is set to 1 if the certification authority of the client
certificate is invalid (that is, it is not in the list of recognized
certification authorities on the server).

CERT_ISSUER IIS Issuer field of the client certificate (O=MS, OU=IAS,
CN=user name, C=USA).

CERT_KEYSIZE IIS Number of bits in the Secure Sockets Layer (SSL)
connection key size. For example, 128.

Business Information Server 59

Liant Software Corporation May 13, 2004

Variable Platform Description

CERT_SECRETKEYSIZE IIS Number of bits in server certificate private key. For example,
1024.

CERT_SERIALNUMBER IIS Serial number field of the client certificate.

CERT_server_ISSUER IIS Issuer field of the server certificate.

CERT_server_SUBJECT IIS Subject field of the server certificate.

CERT_SUBJECT IIS Subject field of the client certificate.

CONTENT_LENGTH IIS The length of the content as given by the client.

CONTENT_TYPE IIS The data type of the content. Used with queries that have
attached information, such as the HTTP queries GET, POST,
and PUT.

GATEWAY_INTERFACE IIS The revision of the CGI specification used by the server. The
format is CGI/revision. Example: CGI/1.1.

HEADER_HeaderName IIS The value stored in the header HeaderName. Any header
other than those listed in this table must be preceded by
"HEADER_" in order for the {{Value(variable, Server)}} tag
to retrieve its value. This is useful for retrieving custom
headers.

Unlike HTTP_HeaderName, all characters in
HEADER_HeaderName are interpreted as-is. For example, if
you specify HTTP_MY_HEADER, the server searches for a
request header named MY_HEADER.

HTTP_HeaderName IIS The value stored in the header HeaderName. Any header
other than those listed in this table must be preceded by
"HTTP_" in order for the {{Value(variable, Server)}}
collection to retrieve its value. This is useful for retrieving
custom headers.

The server interprets any underscore (_) characters in
HeaderName as dashes in the actual header. For example, if
you specify HTTP_MY_HEADER, the server searches for a
request header named MY-HEADER.

HTTP_ACCEPT IIS Returns the value of the Accept header.

HTTP_ACCEPT_LANGUAGE IIS Returns a string describing the language to use for displaying
content.

HTTP_COOKIE IIS Returns the cookie string that was included with the request.

Business Information Server 60

Liant Software Corporation May 13, 2004

Variable Platform Description

HTTP_HOST IIS Returns the name of the Web server. This may or may not be
the same as SERVER_NAME, depending on type of name
resolution you are using on your Web server (IP address or
host header).

HTTP_REFERER IIS Returns a string that contains the URL of the page that
referred the request to the current page by using an HTML
<A> tag. Note that the URL is the one that the user typed
into the browser address bar, which may not include the
name of a default document.

If the page is redirected, HTTP_REFERER is empty.
HTTP_REFERER is not a mandatory member of the HTTP
specification.

HTTP_USER_AGENT IIS Returns a string describing the browser that sent the request.

HTTPS IIS Returns ON if the request came in through a secure channel
(for example, SSL); or it returns OFF, if the request is for an
insecure channel.

HTTPS_KEYSIZE IIS Number of bits in the SSL connection key size. For example,
128.

HTTPS_SECRETKEYSIZE IIS Number of bits in the server certificate private key. For
example, 1024.

HTTPS_SERVER_ISSUER IIS Issuer field of the server certificate.

HTTPS_ SERVER _SUBJECT IIS Subject field of the server certificate.

INSTANCE_ID IIS The ID for the IIS instance in textual format. If the instance
ID is 1, it appears as a string. You can use this variable to
retrieve the ID of the Web server instance (in the metabase)
to which the request belongs.

INSTANCE_META_PATH IIS The metabase path for the instance of IIS that responds to the
request.

LOCAL_ADDR IIS Returns the server address on which the request came in.
This is important on computers where there can be multiple
IP addresses bound to the computer, and you want to find
out which address the request used.

LOGON_USER IIS The Windows account that the user is impersonating while
connected to your Web server. Use REMOTE_USER,
UNMAPPED_REMOTE_USER, or AUTH_USER to view the raw
user name that is contained in the request header. The only
time LOGON_USER holds a different value than these other
variables is if you have an authentication filter installed.

Business Information Server 61

Liant Software Corporation May 13, 2004

Variable Platform Description

PATH_INFO IIS Extra path information, as given by the client. You can
access scripts by using their virtual path and the PATH_INFO
server variable. If this information comes from a URL, it is
decoded by the server before it is passed to the CGI script.

PATH_TRANSLATED IIS A translated version of PATH_INFO that takes the path and
performs any necessary virtual-to-physical mapping.

QUERY_STRING IIS Query information stored in the string following the question
mark (?) in the HTTP request.

REMOTE_ADDR IIS The IP address of the remote host that is making the request.

REMOTE_HOST IIS The name of the host that is making the request. If the server
does not have this information, it will set REMOTE_ADDR
and leave this empty.

REMOTE_IDENT IIS If the HTTP server supports RFC 931 identification, then
this variable will be set to the remote user name retrieved
from the server. Usage of this variable should be limited to
logging only.

REMOTE_PORT IIS The client port number of the TCP connection.

REMOTE_USER IIS The name of the user as it is derived from the authorization
header sent by the client, before the user name is mapped to
a Windows account. If you have an authentication filter
installed on your Web server that maps incoming users to
accounts, use LOGON_USER to retrieve the mapped user
name.

REQUEST_METHOD IIS The method used to make the request. For HTTP, this can be
GET, HEAD, POST, and so on.

SCRIPT_NAME IIS A virtual path to the script being executed. This is used for
self-referencing URLs.

SERVER_NAME IIS The server's host name, DNS alias, or IP address as it would
appear in self-referencing URLs.

SERVER_PORT IIS The server port number to which the request was sent.

SERVER_PORT_SECURE IIS A string that contains either 0 or 1. If the request is being
handled on the secure port, then this is 1. Otherwise, it is 0.

SERVER_PROTOCOL IIS The name and revision of the request information protocol.
The format is protocol/revision. Example: HTTP/1.1.

SERVER_SOFTWARE IIS The name and version of the server software that answers the
request and runs the gateway. The format is name/version.
Example: Microsoft-IIS/5.0

Business Information Server 62

Liant Software Corporation May 13, 2004

Variable Platform Description

TEMP IIS The location of the Windows temporary directory.

TMP IIS The location of the Windows temporary directory.

UNMAPPED_REMOTE_USER IIS The name of the user as it is derived from the authorization
header sent by the client, before the user name is mapped to
a Windows account. This variable is no different from
REMOTE_USER. If you have an authentication filter
installed on your Web server that maps incoming users to
accounts, use LOGON_USER to view the mapped user
name.

URL IIS Gives the base portion of the URL.

Business Information Server 63

Liant Software Corporation May 13, 2004

Appendix B. XMLExchange Request File Format

Here is a sample request, as written to the file specified by the BIS_FILENAME environment variable. The
request is transmitted in XML and is wrapped in the following top-level element:

<?xml version="1.0" encoding="UTF-8" ?>
< bis:request xmlns:bis=http://www.xcentrisity.com/2003/bis/request >
 content, cookies, queryparams, server variables
</ bis:request >

The payload contains the four elements described in the following table.

< bis:content >
 payload data
</ bis:content >

Contains the content part of the request (such as form
variables POSTed back to the server). This element will be
empty if there is no content data in the request—as is
typically true of the first (GET) request.

< bis:cookies >
 < bis:cookie name=name >
 cookie data
 < /bis:cookie >
 …
</ bis:cookies >

Contains an attributed <bis:cookie> element for each cookie
that was transmitted with the request.

< bis:query-params >
 < bis:query-param name=name >
 parameter data
 </ bis:query-param >
 …
</ bis:query-params >

Contains an attributed <bis:query-param> element for each
query parameter that was transmitted with the request.

< bis:server-variables >
 < bis:server-variable name=name >
 server variable data
 </ bis:server-variable >
 …
</ bis:server-variables >

Contains an attributed <bis:server-variable> element for
each server variable associated with this request.

The content of a sample request file is below. Note that this is also visible in the trace output, if tracing is
enabled. Also note that the <bis:content> section is application-dependent. This particular example is
from the http://localhost/liantbis/samples/sample1 application with the following data entered into the
form fields:

Business Information Server 64

http://www.xcentrisity.com/2003/bis/request
http://localhost/liantbis/samples/sample1

Liant Software Corporation May 13, 2004

Containing
Element

Element Attribute Value

firstname.Q12 George

lastname.Q20 Bush

email.Q33 George.Bush@WhiteHouse.gov

bis:content

gender.Q52 Male

bis:cookies cookie Name=”BISKIT” iJz3tShlWSNGK2220EUbZWnwR1Xh

bis:query-params query-param Name=”__xmlexch” sv3k

The form fields are stored directly into elements contained in the <bis:content> element, while the
cookies and query parameters are stored as attributed elements into the <bis:cookies> and <bis:query-
params> sections, respectively. Finally, all server variables are output into the <bis:server-variables>
section (not depicted above). Using the RM/COBOL XML extensions and XSLT, the service program
can selectively extract any or all of these elements and ignore elements that are not important to the
application.

Here is the complete XML exchange file for this example.

 <?xml version="1.0" encoding="UTF-8" ?>
- <bis:request xmlns:bis="http://www.xcentrisity.com/2003/bis/request">
- <bis:content>
 <s..LINKARGUMENT />
- <gender.Q52>
- <![CDATA[
Male
]]>
 </gender.Q52>
 <s..LINKTARGET />
 <s..idStamp />
- <lastname.Q20>
- <![CDATA[
Bush
]]>
 </lastname.Q20>
- <email.Q33__1>
- <![CDATA[
George.Bush@WhiteHouse.gov
]]>
 </email.Q33__1>
- <firstname.Q12>
- <![CDATA[
George
]]>
 </firstname.Q12>
 </bis:content>
- <bis:cookies>
- <bis:cookie name="BISKIT">
- [<![CDATA

Business Information Server 65

mailto:George.Bush@WhiteHouse.gov

Liant Software Corporation May 13, 2004

iJz3tShlWSNGK2220EUbZWnwR1Xh
]]>
 </bis:cookie>
 </bis:cookies>
- <bis:query-params>
- <bis:query-param name="__xmlexch">
- <![CDATA[
sv3k
]]>
 </bis:query-param>
 </bis:query-params>
- <bis:server-variables>
- <bis:server-variable name="ALL_HTTP">
- <![CDATA[
HTTP_ACCEPT:image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/msword, applicati kw e-flash, application/vnd.ms-excel, on/x-shoc av
application/vnd.ms-powerpoint, */*
HTTP_ACCEPT_LANGUAGE:en-us
HTTP_CONNECTION:Keep-Alive
HTTP_HOST:localhost
HTTP_REFERER:http://localhost/liantbis/samples/sample1/
HTTP_USER_AGENT:Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR
1.0.3705; .NET CLR 1.1.4322)
HTTP_COOKIE:BISKIT=iJz3tShlWSNGK2220EUbZWnwR1Xh
HTTP_CONTENT_LENGTH:138
HTTP_CONTENT_TYPE:application/x-www-form-urlencoded
HTTP_ACCEPT_ENCODING:gzip, deflate
HTTP_CACHE_CONTROL:no-cache
]]>
 </bis:server-variable>
- <bis:server-variable name="ALL_RAW">
- <![CDATA[
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/msword, applicati ck ve-flash, application/vnd.ms-excel, on/x-sho wa
application/vnd.ms-powerpoint, */*
Accept-Language: en-us
Connection: Keep-Alive
Host: localhost
Referer: http://localhost/liantbis/samples/sample1/
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR
1.0.3705; .NET CLR 1.1.4322)
Cookie: BISKIT=iJz3tShlWSNGK2220EUbZWnwR1Xh
Content-Length: 138
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
Cache-Control: no-cache
]]>
 </bis:server-variable>
- <bis:server-variable name="APPL_MD_PATH">
- <![CDATA[
/LM/W3SVC/1/root/LiantBIS
]]>
 </bis:server-variable>
- <bis:server-variable name="APPL_PHYSICAL_PATH">
- <![CDATA[
D:\Inetpub\wwwroot\LiantBIS\
]]>
 </bis:server-variable>

Business Information Server 66

Liant Software Corporation May 13, 2004

 <bis:server-variable name="AUTH_PASSWORD" />
 <bis:server-variable name="AUTH_TYPE" />
 bis:server-variable name="AUTH_USER" /> <
 <bis:server-variable name="CERT_COOKIE" />
 bis:server-variable name="CERT_FLAGS < " />
 <bis:server-variable name="CERT_ISSUER" />
 <bis:server-variable name="CERT_KEYSIZE" />
 <bis:server-variable name="CERT_SECRETKEYSIZE" />
 <bis:server-variable name="CERT_SERIALNUMBER" />
 <bis:server-variable name="CERT_SERVER_ISSUER" />
 <bis:server-variable name="CERT_SERVER_SUBJECT" />
 <bis:server-variable name="CERT_SUBJECT" />
- <bis:server-variable name="CONTENT_LENGTH">
- <![CDATA[
138
]]>
 </bis:server-variable>
- <bis:server-variable name=" CONTENT_TYPE">
- <![CDATA[
application/x-www-form-urlencoded
]]>
 </bis:server-variable>
- <bis:server-variable name=" F E"> GATEWAY_INTER AC
- <![CDATA[
CGI/1.1
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_ACCEPT">
- <![CDA TA[
image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/msword,
application/x-shockwave-flash, application/vnd.ms-excel, application/vnd.ms-
powerpoint, */*
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_ACCEPT_ENCODING">
- <![CDATA[
gzip, deflate
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_ACCEPT_LANGUAGE">
- <![CDATA[
en-us
]]>
 </bis:server-variable>
- <bis:server-variable name=" HTTP_CACHE_CONTROL">
- <![C DATA[
no-cache
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_CONNECTION">
- <![CDAT A[
Keep-Alive
]]>
 </bis:server-variable>
- <bis:server-variable name=" "> HTTP_CONTENT_LENGTH
- <![CDATA[

Business Information Server 67

Liant Software Corporation May 13, 2004

138
]]>
 </bis:server-variable>
- <bis:server-variable name=" HTTP_CONTENT_TYPE">
- <![CDATA[
application/x-www-form-urlencoded
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_COOKIE">
- <![CDATA[
BISKIT=iJz3tShlWSNGK2220EUbZWnwR1Xh
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_HOST">
- <![CDATA[
localhost
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_REFERER">
- <![CDATA[
http://localhost/liantbis/sam e1ples/sampl /
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_URL">
- <![CDATA[
/liantbis/samples/sample1/Def le h=sv3k ault.srf?__xm xc
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_USER_AGENT">
- <![CDATA[
Mozilla/4.0 (compatible; MSIE do NT 5.1; .NET CLR 1.0.3705; .NET CLR 6.0; Win ws
1.1.4322)
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTP_VERSION">
- <![CDATA[
HTTP/1.1
]]>
 </bis:server-variable>
- <bis:server-variable name="HTTPS">
- <![CDATA[
off
]]>
 </bis:server-variable>
 <bis:server-variable name="HTTPS_KEYSIZE" />
 <bis:server-variable name="HTTPS_SECRETKEYSIZE" />
 <bis:server-variable name= _S VER_ISSUER" /> "HTTPS ER
 <bis:server-variable name="HTTPS_SERVER_SUBJECT" />
- <bis:server-variable name="INSTANCE_ID">
- <![CDATA[
1
]]>
 </bis:server-variable>
- <bis:server-variable name="INSTANCE_META_PATH">
- <![CDATA[
/LM/W3SVC/1

Business Information Server 68

Liant Software Corporation May 13, 2004

]]>
 </bis:server-variable>
- <bis:server-variable name=" ">LOCAL_ADDR
- <![CDATA[
127.0.0.1
]]>
 </bis:server-variable>
 <bis:server-variable name="LOGON_USER" />
- <bis:server-variable name="NUMBER_OF_PROCESSORS">
- <![CDATA[
1
]]>
 </bis:serv -variable> er
- <bis:server-variable name="OS">
- <![CDATA[
Windows_NT
]]>
 </bis:server-variable>
- <bis:server-variable name="PATH_INFO">
- <![CDATA[
/liantbis/samples/sample1/Default.srf
]]>
 </bis:server-variable>
- <bis:server-variable name="PATH_TRANSLATED">
- <![CDATA[
D:\Inetpub\wwwroot\LiantBIS\samples\sample1\Default.srf
]]>
 </bis:server-variable>
- <bis:server-variable name="QUERY_STRING">
- <![CDATA[
__xmlexch=sv3k
]]>
 </bis:server-variable>
- <bis:server-variable name="REMOTE_ADDR">
- <![CDATA[
127.0.0.1
]]>
 </bis:server-variable>
- <bis:server-variable name="REMOTE_HOST">
- <![CDATA[
127.0.0.1
]]>
 </bis:server-variable>
 <bis:server-variable name="REMOTE_USER" />
- <bis:server-variable name="REQUEST_METHOD">
- <![CDATA[
POST
]]>
 </bis:serv -variable> er
- <bis:server-variable name="SCRIPT_NAME">
- <![CDATA[
/liantbis/samples/sample1/Default.srf
]]>
 </bis:server-variable>
- <bis:server-variable name="SERVER_NAME">
- <![CDATA[

Business Information Server 69

Liant Software Corporation May 13, 2004

localhost
]]>
 </bis:server-variable>
- <bis:server-variable name="SERVER_PORT">
- <![CDATA[
80
]]>
 </bis:server-variable>
- <bis:server-variable name="SERVER_PORT_SECURE">
- <![CDATA[
0
]]>
 </bis:server-variable>
- <bis:server-variable name="SERVER_PROTOCOL">
- <![CDATA[
HTTP/1.1
]]>
 </bis:server-variable>
- <bis:server-variable name="SERVER_SOFTWARE">
- <![CDATA[
Microsoft-IIS/5.1
]]>
 </bis:server-variable>
- <bis:server-variable name="TEMP">
- <![CDATA[
D:\DOCUME~1\Uwe\LOCALS~1\Temp
]]>
 </bis:server-variable>
- <bis:server-variable name="TMP">
- <![CDATA[
D:\DOCUME~1\Uwe\LOCALS~1\Temp
]]>
 </bis:server-variable>
- <bis:server-variable name="URL">
- <![CDATA[
/liantbis/samples/sample1/Default.srf
]]>
 </bis:server-variable>
 </bis:server-variables>
 </bis:request>

Business Information Server 70

Liant Software Corporation May 13, 2004

Appendix C. Windows/UNIX Portability Considerations

BIS is designed to allow web applications and services to be portable between Windows and UNIX-based
web servers and operating systems. This means that, with some care, the developer can produce stencils
(that is, .srf files) and service programs that do not depend on platform-specific features or characteristics
and are, thus, portable. If a portable application is the goal, the following issues must be considered.

• The {{ Handler }} tag is required for all platforms; however the parameter has no effect when
rendered on UNIX. For portability, specify {{ Handler * }}.

• Pathnames referenced by Stencils and Service Programs are subject to the differences between
Windows and UNIX file naming conventions/rules. If portability is an objective, they must be chosen
carefully. In particular, UNIX file naming is case-sensitive, and Windows is not. This means that a
portable application should be consistent in its use of case within file names, and the files themselves
should be named in accordance with that consistent use.

If there is any possibility that a BIS application will be moved between UNIX and Windows, it is a
good practice to restrict filenames to all lower-case names without any embedded spaces.

• Pathnames are also subject to the different conventions regarding the directory edge-name separator
(“/” vs. “\”). In order to enable portable .srf files, BIS allows the “/” to be used on both Windows and
UNIX everywhere except in the {{ Handler }} tag. If portability is the goal, the “\” should not be
used as a pathname separator.

No application should be assumed to be portable unless it has been tested in every environment to which
it is expected to be deployed.

Business Information Server 71

Liant Software Corporation May 13, 2004

Appendix D. Regular Expression Syntax

Regular expressions may be used in the FIND and CHANGE parameters of the {{Value}} tag.

D.1 Metacharacters

This table lists the metacharacters that may be used in {{Value(…FIND= regexp)}} and
{{Value(…CHANGE=regexp)}}.

Metacharacter Meaning

. Matches any single character.

[] Indicates a character class. Matches any character inside the brackets (for example,
[abc] matches "a", "b", and "c").

^ If this metacharacter occurs at the start of a character class, it negates the character
class. A negated character class matches any character except those inside the brackets
(for example, [^abc] matches all characters except "a", "b", and "c").
If ^ is at the beginning of the regular expression, it matches the beginning of the input
(for example, ^[abc] will only match input that begins with "a", "b", or "c").

- In a character class, indicates a range of characters (for example, [0-9] matches any of
the digits "0" through "9").

? Indicates that the preceding expression is optional: it matches once or not at all (for
example, [0-9][0-9]? matches "2" and "12").

+ Indicates that the preceding expression matches one or more times (for example, [0-
9]+ matches "1", "13", "666", and so on).

* Indicates that the preceding expression matches zero or more times.

??, +?, *? Non-greedy versions of ?, +, and *. These match as little as possible, unlike the greedy
versions which match as much as possible. Example: given the input "<abc><def>",
<.*?> matches "<abc>" while <.*> matches "<abc><def>".

() Grouping operator. Example: (\d+,)*\d+ matches a list of numbers separated by
commas (such as "1" or "1,23,456").

{ } Indicates a match group.

\ Escape character: interpret the next character literally (for example, [0-9]+ matches
one or more digits, but [0-9]\+ matches a digit followed by a plus character). Also
used for abbreviations (such as \a for any alphanumeric character; see table below).
If \ is followed by a number n, it matches the nth match group (starting from 0).
Example: <{.*?}>.*?</\0> matches "<head>Contents</head>".

$ At the end of a regular expression, this character matches the end of the input.
Example: [0-9]$ matches a digit at the end of the input.

Business Information Server 72

Liant Software Corporation May 13, 2004

Metacharacter Meaning

| Alternation operator: separates two expressions, exactly one of which matches (for
example, T|the matches "The" or "the").

! Negation operator: the expression following ! does not match the input. Example: a!b
matches "a" not followed by "b".

D.2 Abbreviations
Abbreviations such as \d instead of [0-9] are allowed. The following abbreviations are recognized:

Abbreviation Expansion Matches

\a ([a-zA-Z0-9]) Any alphanumeric character

\b ([\\t]) White space (blank)

\c ([a-zA-Z]) Any alphabetic character

\d ([0-9]) Any decimal digit

\h ([0-9a-fA-F]) Any hexadecimal digit

\n (\r|(\r?\n)) Newline (both Windows and UNIX)

\q (\"[^\"]*\")|(\'[^\']*\') A quoted string (either single or double quotes)

\w ([a-zA-Z]+) A simple word

\z ([0-9]+) An integer

D.3 Comparison to RM/COBOL LIKE condition regular expressions

• Forms that are common to both Windows expressions and RM/COBOL LIKE expressions are as
follows:

a. Use of “.” for matching any character. There may or may not be a difference here. In Windows
expressions, it simply says “any character”, but they probably intended to exclude newline and
possibly return. In RM/COBOL LIKE expressions, “.” is actually an abbreviation for the class
“[^\r\n]”, that is, any character except newline or return.

b. Simple forms of class expressions using brackets, with or without negation using the “^” and
with sequences specified with a joining “-“.

c. Repetition operators “?”, “+”, and “*” are the same and have the same effect in both kinds of
expressions.

d. Use of the “\” as an escape for characters that would otherwise be operators and to introduce
class abbreviations.

e. Grouping using parentheses.

f. Alternatives using “|”.

Business Information Server 73

Liant Software Corporation May 13, 2004

g. The class abbreviation “\d” for decimal digits is common.

h. The class abbreviation “\n” (newline), but the definitions differ. In Windows expressions, it
means “(\r|(\r?\n))”, where “\r” is undefined but is probably 0x0d (return) and “\n” is recursive
but in this context is probably simply 0x0a (newline). In RM/COBOL LIKE expressions, “\n” is
simply 0x0a (newline).

• Forms in Windows expressions that are not in RM/COBOL LIKE expressions are as follows:

a. Use of “^” or “$” to match the beginning or end of an expression. RM/COBOL LIKE
expressions (from XML Schema) must match the entire string, so these are neither needed nor
supported.

b. The non-greedy operators using “??”, “+?”, and “*?”.

c. Match groups specified in braces. This form conflicts with the repetition operator in braces in
RM/COBOL LIKE expressions.

d. Use of “\” followed by one or more digits for referencing a previously specified match group
value, that is, the value captured by the specified match group.

e. The negation operator “!”.

f. The abbreviations “\a” (alphanumeric), “\b” (white space), “\c” (alphabetic), “\h” (hexadecimal
digit), “\q” (quoted string), “\w” (simple word), “\z” (integer). Note that “\c” and “\w” are in
RM/COBOL LIKE expressions, but have conflicting meanings.

g. The order of precedence of operators is not described and thus may differ from RM/COBOL
LIKE expressions.

• Forms in RM/COBOL LIKE expressions that are not in Windows expressions are as follows:

a. Class expressions, that is, the ability in a class to subtract another class to form a result class that
is the difference of two classes.

b. The repetition operator using braces and counts. This conflicts with match groups in Windows
expressions.

c. Recognition of XML entities such as “&” and character references such as “&#xh”, where h
represents one or more hexadecimal digits, although these may have already been resolved by
their appearance in XML pages for BIS purposes.

d. Regular expression single-character escape sequences (called abbreviations in Windows
expressions) “\r” (return) and “\t” (horizontal tab).

e. Multi-character escapes (called abbreviations in Windows expressions) “\s” (white space), “\S”
(not white space), “\i” (initial name characters of XML), “\I” (not initial name characters of
XML), “\c” (name characters of XML), “\C” (not name characters of XML), “\w” (all characters
except punctuation, separator, symbol and other characters), “\W” (punctuation, separator,
symbol and other characters). Note that “\c” and “\w” are in Windows expressions but have
conflicting meanings.

f. Category escapes that match sets of characters based on their Unicode category (“\p{X}” and
“\P{X}”, where X represents a Unicode character property designator, for example, L for letters,
Lu for uppercase letters, etc., or a Unicode character block, for example, IsBasicLatin.

Business Information Server 74

Liant Software Corporation May 13, 2004

Appendix E. Log Files

In order to provide usage information over a long period of time, BIS keeps a set of log files in a specific
directory. The log files can also be used by the web server administrator or BIS application developer to
determine usage patterns of web applications on a BIS server system. The BIS log files consist of
variable-length records comprised of space-separated fields. If a field contains spaces or special
characters, the field is quoted.

E.1 Log File Location
Under Windows IIS, the log files is written to the BIS application data directory, normally

 C:\Documents and Settings\All Users\Application Data\Liant\BIS\LogFiles

Each log file has the following name:

 yyyymmdd.log

E.2 Log File Format
Each record begins with a timestamp followed by a record type. The content of the record varies and is
dependent on the record type. The general format of each log record is:

timeStamp recordType field1 field2 field3…

where:

timeStamp The UTC time when this record was created. The format is

 yyyymmddhhmmss

This is a sortable format. Note that the loggerBegin record contains a timeLocal local time
field, and this may be used to determine the UTC offset.

recordType A single character that encodes the record type. See the table below.

fields One or more space-separated, variable length fields.
• The type and order of the fields varies with recordType.
• If a field contains spaces, the field will be surrounded by double quotes.
• An embedded double quote character is coded with two consecutive double quotes.
• A single dash replaces any field with an undefined or unknown value.
• Numeric values have leading and trailing insignificant zeroes suppressed.

The following table lists the record types, the log level of that type, and the values that each record of the
specified type contains. The value codes are defined below.

Business Information Server 75

Liant Software Corporation May 13, 2004

Code Level Record Type Fields

L 1 loggerBegin versionBIS, versionLog, timeLocal

S 2 sessionBegin idSession, countUses, ipUA, idUA, typeIdUA

V 3 serviceBegin idSession, countUses, ipUA, idUA, typeIdUA, idService, nameService

R 4 serviceRequest idSession, countUses, ipUA, idUA, typeIdUA, idService,
lengthRequest

r 4 serviceResponse idSession, countUses, ipUA, idUA, typeIdUA, idService,
lengthResponse

v 3 serviceEnd idSession, countUses, ipUA, idUA, typeIdUA, idService,
tallyRequests, tallyLengthReq, tallyLengthResp, timeCPU, histIO

s 2 sessionEnd idSession, countUses, ipUA, idUA, typeIdUA, tallyRequests,
tallyLengthReq, tallyLengthResp, timeCPU, histIO

l 1 loggerEnd tallyRequests, tallyLengthReq, tallyLengthResp, timeCPU, histIO

where:

Code A character that indicates the record type.

Record Type The type of record. Each type is discussed in the table below.

Level The level of this record type. Future versions of BIS will allow logging to be restricted
by level.

Fields The fields that appear in this type of record. The fields are described in the table below.

E.3 Log Record Types
Here are complete definitions of the various record types

Record Type Field Description

versionBIS The BIS version number, set to 08.02.00 for the first release

versionLog The version number of the log. Set to 1 for the first release

loggerBegin

timeLocal The local time, in yyyymmddhhmmss format

Business Information Server 76

Liant Software Corporation May 13, 2004

Record Type Field Description

idSession The cookie value of the session

countUses The current use count

ipUA The IP address of the user agent in dotted quad notation (normally
the same as the HTTP_REMOTE_ADDR server variable)

idUA An MD5 digest of user entity identification information
(CERT_SUBJECT, AUTH_USER, or - in order of preference, see
typeIdUA)

sessionBegin

typeIdUA A two digit code that indicates the degree of
authentication/specificity of the user ID, as follows:
00 No AUTH_USER and no CERT_SUBJECT
10 AUTH_USER and (HTTPS = = off)
20 AUTH_USER and (HTTPS = = on) and no
 CERT_SUBJECT
30 CERT_SUBJECT and no AUTH_USER
40 CERT_SUBJECT and AUTH_USER

idSession The cookie value of the session

countUses The current use count

ipUA The IP address of the user agent in dotted quad notation (normally
the same as the HTTP_REMOTE_ADDR server variable)

idUA An MD5 digest of user entity identification information
(CERT_SUBJECT, AUTH_USER, or - in order of preference, see
typeIdUA)

typeIdUA A two digit code that indicates the degree of
authentication/specificity of the user ID, as follows:
00 No AUTH_USER and no CERT_SUBJECT
10 AUTH_USER and (HTTPS = = off)
20 AUTH_USER and (HTTPS = = on) and no
 CERT_SUBJECT
30 CERT_SUBJECT and no AUTH_USER
40 CERT_SUBJECT and AUTH_USER

idService ID distinguishing different service instances within the current
session

serviceBegin

nameService Service program name

Business Information Server 77

Liant Software Corporation May 13, 2004

Record Type Field Description

idSession The cookie value of the session

countUses The current use count

ipUA The IP address of the user agent in dotted quad notation (normally
the same as the HTTP_REMOTE_ADDR server variable)

idUA An MD5 digest of user entity identification information
(CERT_SUBJECT, AUTH_USER, or - in order of preference, see
typeIdUA)

typeIdUA A two digit code that indicates the degree of
authentication/specificity of the user ID, as follows:
00 No AUTH_USER and no CERT_SUBJECT
10 AUTH_USER and (HTTPS = = off)
20 AUTH_USER and (HTTPS = = on) and no
 CERT_SUBJECT
30 CERT_SUBJECT and no AUTH_USER
40 CERT_SUBJECT and AUTH_USER

idService ID distinguishing different service instances within the current
session

serviceRequest

lengthRequest Length (in bytes) of the BIS exchange file passed by
B$ReadRequest or B$Exchange

idSession The cookie value of the session

countUses The current use count

ipUA The IP address of the user agent in dotted quad notation (normally
the same as the HTTP_REMOTE_ADDR server variable)

idUA An MD5 digest of user entity identification information
(CERT_SUBJECT, AUTH_USER, or - in order of preference, see
typeIdUA)

typeIdUA A two digit code that indicates the degree of
authentication/specificity of the user ID, as follows:
00 No AUTH_USER and no CERT_SUBJECT
10 AUTH_USER and (HTTPS = = off)
20 AUTH_USER and (HTTPS = = on) and no
 CERT_SUBJECT
30 CERT_SUBJECT and no AUTH_USER
40 CERT_SUBJECT and AUTH_USER

idService ID distinguishing different service instances within the current
session

serviceResponse

lengthResponse Length (in bytes) of the BIS exchange file passed by
B$WriteResponse or B$Exchange

Business Information Server 78

Liant Software Corporation May 13, 2004

Record Type Field Description

idSession The cookie value of the session

countUses The current use count

ipUA The IP address of the user agent in dotted quad notation (normally
the same as the HTTP_REMOTE_ADDR server variable)

idUA An MD5 digest of user entity identification information
(CERT_SUBJECT, AUTH_USER, or - in order of preference, see
typeIdUA)

typeIdUA A two digit code that indicates the degree of
authentication/specificity of the user ID, as follows:
00 No AUTH_USER and no CERT_SUBJECT
10 AUTH_USER and (HTTPS = = off)
20 AUTH_USER and (HTTPS = = on) and no
 CERT_SUBJECT
30 CERT_SUBJECT and no AUTH_USER
40 CERT_SUBJECT and AUTH_USER

idService ID distinguishing different service instances within the current
session

tallyRequests The number of requests processed by the service

tallyLengthReq Total length (in bytes) of the BIS exchange files passed by
B$ReadRequest or B$Exchange

tallyLengthResp Total length (in bytes) of the BIS exchange files passed by
B$WriteResponse or B$Exchange

timeCPU Total CPU time in milliseconds used by this service or – if not
available

serviceEnd

histIO IO request counts used by this service represented by three
integers: # of open operations, # of read operations, # of
writes/rewrites/delete operations

Business Information Server 79

Liant Software Corporation May 13, 2004

Record Type Field Description

idSession The cookie value of the session

countUses The current use count

ipUA The IP address of the user agent in dotted quad notation (normally
the same as the HTTP_REMOTE_ADDR server variable)

idUA An MD5 digest of user entity identification information
(CERT_SUBJECT, AUTH_USER, or - in order of preference, see
typeIdUA)

typeIdUA A two digit code that indicates the degree of
authentication/specificity of the user ID, as follows:
00 No AUTH_USER and no CERT_SUBJECT
10 AUTH_USER and (HTTPS = = off)
20 AUTH_USER and (HTTPS = = on) and no
 CERT_SUBJECT
30 CERT_SUBJECT and no AUTH_USER
40 CERT_SUBJECT and AUTH_USER

tallyRequests The number of requests processed by the session

tallyLengthReq Total length (in bytes) of the BIS exchange file passed by
B$ReadRequest or B$Exchange since the start of this session

tallyLengthResp Total length (in bytes) of the BIS exchange file passed by
B$WriteResponse or B$Exchange since the start of this session

timeCPU Total CPU time in milliseconds used by services since the start of
this session or – if not available

sessionEnd

histIO IO request counts accumulated since the start of this session
represented by three integers: # of open operations, # of read
operations, # of writes/rewrites/delete operations

tallyRequests The number of requests processed since the start of this log

tallyLengthReq Total length (in bytes) of the BIS exchange file passed by
B$ReadRequest or B$Exchange since the start of this log

tallyLengthResp Total length (in bytes) of the BIS exchange file passed by
B$WriteResponse or B$Exchange since the start of this log

timeCPU Total CPU time in milliseconds used by services since the start of
this log or – if not available

loggerEnd

histIO IO request counts accumulated since the start of this log
represented by three integers: # of open operations, # of read
operations, # of writes/rewrites/delete operations

Business Information Server 80

Liant Software Corporation May 13, 2004

Appendix F. BIS Troubleshooting Tips

This Appendix outlines the symptoms of some common abnormal conditions, and provides insight as to
the possible cause(s) and corrective action(s).

• Symptom:

Liant Business Information Server Error
An error occurred while BIS was processing your request. Additional
information is below.
XMLExchange failed: the service program returned error
"80004004", which is "Operation aborted". The session has ended.

• Possible Cause: Indicates that there was a problem starting the service engine.

• Suggestion: To narrow the problem, turn on tracing by adding this tag to your .srf file:

{{ Trace(start, page) }}

Then refresh the page. You should now see a table headed Request Details at the end of the page.
Scroll down to Trace Information and look for Service in the left-most column.

The BIS samples are pre-configured for tracing and tracing may be turned on and off with a query
parameter defined in the {{Trace}} tag. For example, if the problem occurred running the
VERIFYBIS program, log into the server running BIS and use this URL:

http://localhost/liantbis/verify/default.srf?trace=page

Trace output will appear at the bottom of the page, and this will include the BIS service engine
startup messages that should reveal the problem.

• Symptom: An error 500 occurs

• Possible Cause: A replacement tag precedes the {{handler}} tag.

• Suggestion: The only tags allowed before the {{handler}} tag are comment tags. Move all tags
that precede the {{handler}} tag to follow.

• Symptom: one of the following error messages is reported:

Business Information Server 81

http://localhost/liantbis/verify/default.srf?trace=page

Liant Software Corporation May 13, 2004

Cannot create the trace file for session "nH6shZykCtbZmdDZHo0LhJhiVSq5" (the last
attempted filename is "D:\DOCUME~1\Uwe\LOCALS~1\Temp\LiantBIS-nH6s-trace.txt"). The
last error code was 80070005

Cannot reopen the trace file for session "nH6shZykCtbZmdDZHo0LhJhiVSq5" (the last
attempted filename is "D:\DOCUME~1\Uwe\LOCALS~1\Temp\LiantBIS-nH6s-trace.txt"). The
last error code was 80070005

Could not write the trace file to the directory
"D:\DOCUME~1\Uwe\LOCALS~1\Temp\": the error code was 80004005.

• Suggestion: To correct this error, give the IWAM_* account write access to this directory. See
the “Troubleshooting” appendix in the User’s Guide for more information.

Business Information Server 82

Liant Software Corporation May 13, 2004

Appendix G. Configuration after Installation (Windows)

The Business Information Server service engine must be registered with Windows. If it becomes
necessary to re-register the server, registration can be performed

 by reinstalling BIS (choose the “Repair” option)
 from the command line

This Appendix describes how to configure the BIS service engine manually from the command line.

G.1 Command Line Configuration
BIS is self-registering. The server registration syntax is

LIANTBIS registration-options

The registration options are detailed below

/REGSERVER Registers the BIS and the service engine located in the same directory.
/UNREGSERVER Unregisters the BIS and the service engine.
/SHOWSERVER Displays a dialog box that shows the location of the currently registered BIS and

service engine.

The server registration option has three additional variations:

/REGSERVERQ Quietly registers the BIS and the service engine located in the same directory. No

confirmation dialog is displayed.
/REGSERVERO Only registers the BIS. The service engine’s registration remains unchanged. This

is useful if you want to locate your service engine system in a directory separate
from the BIS.

/REGSERVERQO Combines the above two options.

The /REGSERVER and /REGSERVERQ options have an additional optional parameter: the pathname of
the service engine DLL or the directory containing the server DLL. It is specified like this:

/REGSERVER:pathname
/REGSERVERQ:pathname
/REGSERVER:directory

If the pathname or directory is specified, the specified file or the server in the specified directory is
registered and BIS does not search for the service engine in the path.

Note that if a directory is specified, it may end with a trailing
backslash to differentiate it from a filename. Also note that if the
specified name contains spaces, it must be surrounded by single or
double quotes.

The Business Information Server’s identity can be configured during
installation by specifying options on the command line. If none of

Business Information Server 83

Liant Software Corporation May 13, 2004

the following options are specified, the server displays the dialog on the right even if /REGSERVERQ is
specified.

The dialog has three options that determine the context in which BIS will execute. The option can also be
selected on the command line, thereby avoiding the dialog.

The options are:

/RUNASI
/RUNASIP

Causes the server to run as the “INTERACTIVE USER”. This is the identity of the
user that is logged on to the server’s console. This is most useful for developers
but not recommended for deployment.
If the P suffix is specified, BIS prompts again if an error occurs.

/RUNASL
/RUNASLP

Runs the server under the identity of the launching (usually anonymous) user. This
will normally be the account named IUSR_machinename, where machinename is
the name assigned to the machine.
For example, if your machine is named HILO, the anonymous user’s name is
IUSR_HILO. It is possible for a system administrator to change this, either for all
IIS accounts or for just the BIS. If the name of the machine was changed after IIS
was installed, this will be the original name of the machine, not the current name.
In this case, please see “Manual Configuration”, below.
Note that this account usually has very limited privileges and BIS will not even be
able to start unless you manually give this account write permission in the BIS
installation directory. BIS will not be able to access files in other directories,
unless you also give it access to those directories, and will not be able to access
files on any network volumes unless your machine is joined to a domain and this
name is known to the domain server. See your system administrator for details.
If the P suffix is specified, BIS prompts again if an error occurs.

/RUNAS:id,pw
/RUNASP:id,pw

Runs the server under the specified identity. This is the recommended option. Id is
the login ID and pw is the password. The password is encrypted by Windows, is
stored in the registry, and is not retrievable as plain text once the server is
registered. However, caution is required when embedding a clear-text password in
the file issuing the /RUNAS command.
Note: the BIS installation does not presently check that the specified credentials
are valid. They are encrypted, stored, and not used until BIS is invoked by the web
server.
If an id is specified without a pw, the program prompts for the password. This may
be a good compromise between convenience and security.
Either the id or the pw may be quoted with single or double quotes (required if
either contains spaces). The entire parameter string may also be quoted.
Examples:

/RUNAS:myuserid, mypassword
/RUNAS:”my user id”,”my password”
/RUNAS:”my user id,my password”
/RUNAS:”INTERACTIVE USER”

As a special case, the special logon ID of “INTERACTIVE USER” is recognized and
handled as if /RUNASI were specified. Any password is ignored, and quotes are
required due to the embedded space.
If the P suffix is specified, BIS prompts again if an error occurs.

Business Information Server 84

Liant Software Corporation May 13, 2004

G.2 Manual Configuration
To manually change the user ID and password that the service engine uses to execute programs, follow
these steps after completing the installation:

1. Select Start Control Panel Adminstrative Tools Component Services.

Alternatively, select Start Run, enter dcomcnfg in the “Open” box, and click the OK button.

2. Expand Console Root Component Services My Computer DCOM Config.

3. Right-click Liant Business Information Server 8 and select Properties from the popup menu.

4. Click the Identity tab, then This user. Enter the user ID and the password that you want to
use to run COBOL programs under Business Information Server. Then click the Apply
button.

5. Click the Security tab and under Launch Permissions, click Customize and then click Edit.
Click Add, enter the name of your anonymous internet account (see below). Click the Add
button; make sure Allow is checked next to Launch Permission, then click OK. Then click
Apply.

6. Still on the Security tab, repeat the above step for Access Permissions.

7. You do not need to change Configuration Permissions. Click OK to close the dialog.

The name of your anonymous internet account is normally IUSR_machine, where machine is the hostname
assigned to your machine. However, the system administrator can change the name of this account, and
this is common if you are running more than one website.

To determine the name of your anonymous internet account:

1. Select Start Control Panel Adminstrative Tools Internet Information Services.

2. Expand Internet Information Services Local Computer Web Sites Default Web Site. Replace
the last node with your site if IIS is serving multiple web sites).

3. Find the virtual directory that was created to contain the RM/COBOL program. This will
be RMXML for the sample program. Right-click on that node and select Properties.

4. Click Directory Security, then Edit.

5. The User Name box contains the name of the anonymous account that you can enter above.

Note that the above configuration is very flexible. You can control what users will have access to the
COBOL program on a site-by-site, or even a directory-by-directory basis on your website.

Alternatively, instead of specifying IUSR_machine, you can specify GUEST, or any other group that contains
all your anonymous access accounts. However, be cautious before granting too many privileges to too
many anonymous processes.

Business Information Server 85

Liant Software Corporation May 13, 2004

G.3 Setting Environment Variables
Some BIS settings are set from the server environment. To set a BIS environment variable:

Figure G-1. The Environment Variables Dialog

• Log in as Administrator, or an account that is a
member of the Administrators group.

• Click Start Control Panel System.

• Click the Advanced tab.

• Click the Environment Variables button.

• Under System Variables, click the New button.
Alternatively, if the environment variable has
already been set, click the variable name in the
list box and then click the Edit button.

• Enter the variable name and the value and select
OK.

• When done, click OK to dismiss the dialog.

The changes take effect immediately.

G.4 Setting the Maximum Thread Count

BIS uses a system resource called a Thread to render pages. For efficiency, BIS maintains an internal
pool of threads, and when a request for a BIS page arrives, a thread from the pool is dispatched to serve
the page. When the page is completely rendered, the thread returns to the pool to await the next request.

If there are no available threads in the pool, the request must wait for a thread to become available. A
request will wait for some period of time (normally about 60 seconds) before being denied with a “server
too busy” error page.

BIS pages that do not communicate with the service engine normally execute very quickly. However, if a
page contains an {{XMLExchange}} tag, the BIS thread serving that page must wait until the service
engine provides the replacement text for the {{XMLExchange}} tag. If this is a lengthy process, it is
conceivable that BIS will not have enough threads to serve all pending requests. In this case, it may be
desirable to increase the size of the BIS thread pool so more pages can be rendered simultaneously.

The BIS_MAX_THREADS environment variable may be used to increase (or decrease) the size of the
thread pool. The syntax is:

BIS_MAX_THREADS=value

where:

Business Information Server 86

Liant Software Corporation May 13, 2004

n is an integer that specifies the number of threads that will be used by BIS to service
requests.

G.5 Notes

• Each BIS thread does require system resources, even when idle, so it is not desirable to set this
value to a large number. The default value, 5 threads, is sufficient for a moderately busy server
and should only be increased if requests are being denied or users are waiting for their requests to
be serviced.

• BIS dynamically creates additional threads for each service engine started by {{StartService}}.
These service engine threads do not count against the BIS_MAX_THREADS value.

• The BIS_MAX_THREADS option is only examined when the BIS request handler is loaded. The
handler is loaded on demand—for example, when the first BIS request arrives after a server
restart, and then handler is automatically unloaded after about 20 minutes of inactivity.

• The current setting can be retrieved with {{Value(MaxThreads, Config)}}. On UNIX, this
always return---s “1”.

Business Information Server 87

Liant Software Corporation May 13, 2004

Appendix H. Configuration after Installation (UNIX/Apache)

H.1 Configuring Apache
The Apache configuration file for BIS is named bis.conf and is included in the Apache server
configuration by an Include directive placed in the main httpd.conf configuration file.

<IfModule mod_perl.c>
 Include conf/bis.conf
</IfModule>

This isolates all Apache configuration changes for BIS to bis.conf, which is described below.

The BIS configuration file contains several sets of Apache configuration directives. The first set of
directives creates server variables which are used internally by BIS, and which may also be used in Server
Response Files.

PerlSetEnv MASTER_DEBUG 0
PerlSetEnv STENCIL_DEBUG 0
PerlSetEnv MESSAGE_DEBUG 0
PerlSetEnv MAIN_DEBUG 0
PerlSetEnv LOG_TRACE_FILES 0
PerlSetEnv KEEP_TRACE_FILES 0
PerlSetEnv BIS_TRACE_SUFFIX tag
PerlSetEnv RUNBIS_TRACE_FILE /tmp/bistrace

These directives affect the amount and location of trace information produced by BIS. The first five
directives set a Boolean flag to control trace levels.

MASTER_DEBUG is a master switch that, when set to 0, disables almost all tracing activity. This may be
appropriate in a stable production environment. MASTER_DEBUG must be set to 1 before most other trace
directives will have any effect.

Setting STENCIL_DEBUG to 1 causes session level trace messages to appear as BIS processes each of the
tags in a Server Response File.

Setting MESSAGE_DEBUG to 1 causes session level trace messages to appear as BIS uses IPC
(interprocess communications) to coordinate the work of the Apache add-in (which runs as the Apache
child user) with the BIS service engine process. Setting MAIN_DEBUG to 1 causes internal trace messages
to be placed in the file named by the RUNBIS_TRACE_FILE directive. These switches can create large
amounts of data and should be used only when directed to do so by technical support.

Setting LOG_TRACE_FILES to 1 causes session level trace messages to be placed in the Apache error log
as the messages are created. This may lead to extremely large error logs and should be used only when
directed to do so by technical support.

Setting KEEP_TRACE_FILES to 1 causes session level trace message files to be retained after a session is
terminated.

Business Information Server 88

Liant Software Corporation May 13, 2004

BIS_TRACE_SUFFIX is used in conjunction with the {{TRACE}} tag described earlier.

PerlSetEnv REFRESH_DIRECTORY /var/tmp/bishist

REFRESH_DIRECTORY names a directory where server responses that may be needed if the client agents
(web browsers) request a refresh are stored temporarily. The indicated directory should have permissions
which permit create, reading, write and delete access by the Apache child process. If no directory is
named, or if this directive is omitted, BIS will not attempt to provide correct responses to refresh requests
which will lead to unnecessary session sequence errors.

PerlSetEnv BIS_SESSION_INACTIVITY_TIMEOUT 600
PerlSetEnv BIS_SERVICE_TIMEOUT 30

BIS_SESSION_INACTIVITY_TIMEOUT and BIS_SERVICE_TIMEOUT set the default values to be used
when establishing a session or when the DEFAULT keyword is used in the {{SessionParms}} tag. Note,
however, that BIS_SERVICE_TIMEOUT is usually unnecessary; the -T option described below in Service
Engine Configuration should be used.

#PerlSetVar BISErrorTextConfig conf/biserror.conf
#PerlSetVar BISErrorHTML conf/BISHTML.conf

BISErrorTextConfig and BISErrorHTML may be used to configure the error messages displayed in a client
browser. Such configuration may be desirable to provide error messages in a national language, or to
provide an error display consistent with other parts of a web site. BISErrorTextConfig sets the filename of
a file which contains lines each of which represent the key and text value of a BIS error message.
BISErrorHTML sets the filename of an HTML template file which will be used to serve an error page
when BIS detects an error that is to be reported to the client browser. Note that, as installed, these
configuration directives are comments and must have the ‘#’ character removed from the beginning of
each line to become effective. The default behavior is to use the English error message text built in to
BIS, and to use the HTML template found at conf/BISHTML.conf. Note that the error messages placed in
log and trace files on the server may not be configured. Note also that BISErrorHTML has no effect on
SOAP fault responses.

<Files ~ "\.srf$>
 SetHandler perl-script
 PerlHandler Apache::Stencil
</Files>

This set of Apache configuration directives cause all URIs that request files that end with .srf to be
processed by the BIS Apache add-in.

AddType text/html .srf

This directive causes the default content type of a response for a URI ending with .srf to be text/html.

Business Information Server 89

Liant Software Corporation May 13, 2004

<Location /BISERROR>
 SetHandler perl-script
 PerlHandler Apache::BISError
</Location>

This set of Apache configuration directives define the BIS Apache add-in module that will be invoked
when BIS determines that an error page, or SOAP error response, must be served.

<Location /BISSTATUS>
 SetHandler perl-script
 PerlHandler Apache::BISStatus
</Location>

This set of Apache configuration directives define an optional BIS Apache add-in module that may be
invoked to view the internal status data maintained by the BIS Apache add-in. This data contains the
session information and may be useful in diagnosing server problems and evaluating usage. However,
since the session data contains information about clients that are using the server, the Apache server
administrator should take measures to secure the access to this Location or remove (or ‘comment out’)
these directives in a production server environment.

H.2 Service Engine Configuration
The BIS Service Engine runs as a UNIX daemon process and one or more service processes which the
daemon creates, as needed. There are always one or more idle service processes waiting for the Request
Handler (the Apache part) to process a {{StartService}} tag.

Because the Service Engine runs as daemon, it normally starts when the operating starts, without any
direct user interaction. It gets all of its options from its command line and its environment. The
command-line options are in a string that is assigned to an environment variable named OPTIONS. All of
the Service Engine’s environment variables, including OPTIONS, are set in a file named
/etc/sysconfig/liantbis. This file is created during the install of BIS.

The command-line options are:

-c count Specifies the maximum number of service (child) processes.

This is normally set to 9999 to indicate that the number of service processes is limited only
by the license, but it may be set to a smaller value as a “throttle.”

-i count Specifies the number of idle service (child) processes.
This is normally set to 1 but a small increase in this may improve response time on a server
which receives many requests in rapid succession.

-T timeout Default service timeout, in seconds.
This is the preferred way to set the default service timeout. If BIS_SERVICE_TIMEOUT is
set in the Apache configuration file for BIS (bis.conf), the Request Handler uses that value
to override the value of the -T option. Doing so delays the start of each service program
slightly.

-u user Specifies the UNIX user name used by each service (child) processes.
Although the Service Engine daemon process runs as root, each of the child service
processes runs as the user specified by this option. This determines the files that a service
process can read and write, as well as the home directory of each service process.

-t dir Specifies the name of the directory where temporary files are created.

Business Information Server 90

Liant Software Corporation May 13, 2004

-r If specified, copies of all request and response files are saved in the temporary directory.
This is a debugging tool, typically used during development of a web site.

-A If specified, the name of the temporary file is passed to the service program in the
LINKAGE SECTION, just as if the the A parameter was includedn the {{StartService}}
tag.
This is an obsolete option which will be removed in a future release. The BIS_FILENAME
environment variable is now used for this purpose.

-L file Specifies the name of the Service Engine event log file.
The Service Engine records certain important events in this file. This is a debugging tool.

-s file Specifies the name of the socket used by the Request Handler to communicate with the
Service Engine daemon.
There is no reason for a user to alter this parameter after installation.

-U file Specifies the name of a file used by the Service Engine daemon to communicate with the
Request Handler.
There is no reason for a user to alter this parameter after installation.

If the BIS Service Engine options need to be changed, the configuration file (/etc/sysconfig/liantbis)
may be edited. However, the Service Engine does not read this file directly. Instead, the shell script
which starts the Service Engine reads this file. For any changes to take effect, the Service Engine must be
restarted, either by restarting the operating system, by changing the runlevel, or by executing the shell
script which starts the Service Engine (/etc/init.d/liantbis). This script accepts one parameter, which
must be one of the following:

start Starts the BIS Service Engine.
stop Stops the BIS Service Engine.
restart Stops the BIS Service Engine, then starts it again.
condrestart If the Service Engine is running, stop it, then start it again. Otherwise, do nothing
status Displays the status of the Service Engine

Note that stopping the Service Engine stops all of the service processes immediately, terminating any
running service programs. This should not be used when users are connected to the server.

Business Information Server 91

Liant Software Corporation May 13, 2004

Appendix I. Windows Security and Authentication

In a Windows Internet Information Server (IIS) environment, the security for your BIS web application
and its program (service) and data files is provided by the built-in security mechanisms of IIS. These are
based on the Virtual Directory system maintained by IIS and can be manipulated by any user with
sufficient Administrator privileges. For this Appendix, Windows Server 2003 is assumed to be the host
system, although the procedures for Windows Server 2000 and Windows XP Professional are very
similar.

Within the IIS 6.0 Help system, go to Internet Information Services, Server Administration Guide,
Security section. There you will find an extensive description of the Windows web security mechanism.

Business Information Server 92

Liant Software Corporation May 13, 2004

Appendix J. Building and Running BIS Samples

The BIS Samples include an installation verification application and several simple applications that
illustrate the major Xcentrisity techniques for constructing web applications and services using BIS.
These samples include complete source code as well as all of the XSLT transforms necessary to run them.
In addition, each includes a batch file (or shell script) that will build the operational web application from
source. This is convenient if you wish to experiment with modifications to the samples, or if you want to
use the samples as the basis for your own web application.

If you choose to build a sample from source you must be sure that the environment variable
RM_PROGRAM_DIR is set to the directory on your machine containing the RM/COBOL development
system (with XML Extensions) that you wish to use. This is usually not the same directory as the one
BIS is installed into. This environment variable may be set by the RM/COBOL installation process, or it
might have to be set manually prior to building the sample BIS application.

After verifying and setting RM_PROGRAM_DIR if necessary, be sure that a command prompt is present
and the current directory is the src directory for the sample you are building. At this point the sample
may be built by typing (for Windows):

build.bat

or (for Linux):

build.sh

After the processing has been completed and a command prompt appears, you will have rebuilt the
sample and generated new files in the bin directory.

Business Information Server 93

Liant Software Corporation May 13, 2004

Appendix K. Glossary

BIS Request Handler – see the BIS Web Server.

BIS Web Server – also referred to as the BIS Request Handler, the BIS components activated when a
Stencil (Server Response File) is the target of an HTTP request. The BIS Web Server performs the
processing of the Stencil, including the management of Sessions and the creation and destruction of
Service Instances.

HTTP -- HyperText Transport Protocol, a standard protocol and encoding scheme used to transmit
requests to web servers and receive responses from web servers. HTTPS is a secure version of HTTP.

Response Content – the data included in the content area of an HTTP Response message.

Request Content – the data included in the content area of an HTTP Request message.

Request Document – an XML document produced by the BIS Web Server and including the information
contained in an HTTP Request message as well as various values indicating the user agent and server
environment in which the request was issues and is being processed.

Server Response File – a file, usually with the extension “.srf” that is used to direct the BIS Web Server
in responding to a request. Also referred to as a Stencil.

Service Engine – the BIS components responsible for performing the execution of a user-supplied
Service Program and the synchronization and interaction between the Service Program and the BIS Web
Server.

Service Instance – an execution of a Service Program within a particular Session.

Service Program – a user-supplied RM/COBOL program object file that is invoked by the BIS Web
Server and executed by the Service Engine.

Session – a “stateful” sequence of HTTP request/response interactions between a web user agent (e.g.,
browser) and a BIS Web Server. The session identification is preserved in the user agent by means of a
session cookie provided in the response to the first request of the session. All subsequent requests
containing that cookie are assumed to be for the designated session.

Stencil – a file, usually with the extension “.srf” that is used to direct the BIS Web Server in responding
to a request. Also referred to as a Server Response File.

URL – a Uniform Resource Locator, the location of a resource on the internet. A URL is a type of URI,
and consists of a scheme (in this context, HTTP or HTTPS), the name of a machine, and a path to a
resource (e.g., a file). For example, http://liant.com/bis/index.html specifies the file named index.html
from directory bis on server machine liant.com using the HTTP scheme. When this is typed into a web
browser, the browser issues an HTTP GET request on this resource.

Business Information Server 94

http://liant.com/bis/index.html

	Table of Contents
	Introducing the Liant Business Information Server
	Overview
	Installation on Windows
	Prerequisites
	Installation
	The License Agreement
	READ ME Information
	Liant License File
	User Information
	Destination Folder
	Select Features
	Logon Information
	Ready to Install
	Installation Complete

	Installation on Linux
	Prerequisites
	Installing an Apache/mod_perl Web Server for BIS
	Installing BIS
	Configuring Apache
	Starting Apache and BIS

	Testing the Installation
	Uninstalling BIS for Windows
	Removing only the Web Application Samples

	Using BIS
	Web Protocols: Requests/Responses
	Sessions
	Cookies
	Timeouts
	Session Inactivity Timeout
	Setting the Session Inactivity Time
	Service Timeouts

	Server Response Files
	Overview
	Rendering Tags
	Rendering Tag Types

	The Rendering Process
	Processing Control Tags
	Substitution Tags
	Tag Options and Parameters
	Pathnames
	Referencing Files in System Locations
	Predefined BIS Environment Variables
	The RUNPATH
	Troubleshooting Tags

	Tag Reference
	The {{Handler}} Tag
	Notes

	The {{ContentType}} tag
	Examples
	Notes

	The {{SessionParms}} tag
	Notes

	The {{StartService}} tag
	Accessing the REQUEST from the Service Program
	Notes

	The {{RunPath}} Tag
	Notes

	The {{SetEnv}} Tag
	Examples
	Notes

	The {{XMLExchange}} Tag
	Notes
	The {{FormActionTarget}} Tag in {{XMLExchange}}

	The {{StopService}} tag
	Notes

	The {{SessionComplete}} tag
	Notes

	The {{Trace}} Tag
	Notes
	Examples
	The {{Trace}} Query Parameter
	The BIS_TRACE_SUFFIX environment variable

	The {{TraceDump}} Tag
	Notes

	Conditional Tags and Constructs
	The {{If}} / {{Else}} / {{EndIf}} tags
	Notes

	The {{While}} / {{EndWhile}} tags
	Notes

	Substitution Tags
	The {{Value}} tag
	Notes
	Configuration Variables

	The {{ Include }} tag
	Notes

	Comment tags
	Notes

	Service Programs
	Introduction
	Service Program Lifetime
	ACCEPT and DISPLAY Statements
	Windows Message Boxes and Dialogs

	The XML Exchange File
	BIS Return Codes
	Service Program Functions
	B$ReadRequest
	Notes

	B$WriteResponse
	Notes

	B$Exchange
	B$SetInactivityTimeout
	Notes

	B$SetServiceTimeout
	Notes

	Server Variables Reference
	XMLExchange Request File Format
	Windows/UNIX Portability Considerations
	Regular Expression Syntax
	Metacharacters
	Abbreviations
	Comparison to RM/COBOL LIKE condition regular expressions

	Log Files
	Log File Location
	Log File Format
	Log Record Types

	BIS Troubleshooting Tips
	Configuration after Installation (Windows)
	Command Line Configuration
	Manual Configuration
	Setting Environment Variables
	Setting the Maximum Thread Count
	Notes

	Configuration after Installation (UNIX/Apache)
	Configuring Apache
	Service Engine Configuration

	Windows Security and Authentication
	Building and Running BIS Samples
	Glossary

