

Liant Software Corporation

XML ExtensionsTM

User’s Guide
First Edition

This manual is a user’s guide for Liant Software Corporation’s XML Extensions, a system designed to allow
RM/COBOL applications to access XML documents. It is assumed that the reader has a basic understanding of
XML. It is also assumed that the reader is familiar with programming concepts and with the COBOL language
in general.

The information contained herein applies to systems running under Microsoft 32-bit Windows and UNIX
operating systems

The information in this document is subject to change without prior notice. Liant Software Corporation assumes no
responsibility for any errors that may appear in this document. Liant reserves the right to make improvements and/or
changes in the products and programs described in this guide at any time without notice. Companies, names, and data
used in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopied, recorded, or otherwise, without prior written permission of Liant
Software Corporation.

The software described in this document is furnished to the user under a license for a specific number of uses and
may be copied (with inclusion of the copyright notice) only in accordance with the terms of such license.

Copyright © 2002-2005 by Liant Software Corporation. All rights reserved. Printed in the United States of America.

Liant Software Corporation
8911 N. Capital of Texas Highway

Austin, TX 78759
U.S.A.

Phone (512) 343-1010
(800) 762-6265

Fax (512) 343-9487

Web site http://www.liant.com

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels, VanGui Interface
Builder, CodeWatch, CodeBridge, Cobol-WOW, WOW Extensions, InstantSQL, Xcentrisity, XML Extensions, Liant,
and the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 98, Windows Me, Windows NT, Windows 2000, Windows XP, and Windows
Server 2003 are trademarks or registered trademarks of Microsoft Corporation in the USA and other countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Ltd.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark holders, and are used only for explanation purposes.

http://www.liant.com/

Documentation Release History for the XML Extensions User's Guide:

Edition
Number

Document
Part Number

Applies To
Product Version

Publication
Date

1 401229 XML Extensions version 9 and later September 2005

 Contents

 XML Extensions v
 First Edition

Contents

Preface .. 1
Welcome to XML Extensions ... 1
What's New ... 2
About Your Documentation .. 3
Related Publications.. 4
Symbols and Conventions ... 4
Registration ... 5
Technical Support ... 6

Support Guidelines... 6
Test Cases .. 6

Chapter 1: Installation and Introduction ... 9
Before You Start.. 9

System Requirements... 9
For Windows... 9
For UNIX.. 10

XML Extensions Package .. 10
Development ... 10
Deployment... 11

Installing XML Extensions ... 11
Distribution Media Options.. 11
Installing on Windows ... 12

Install the Development System on Windows .. 12
Install the Deployment System on Windows .. 13

Installing on UNIX... 14
Install the Development System on UNIX.. 14

Loading the License File.. 14
Mount the Diskette as an MS-DOS File System........................... 14
Transfer the Liant License File via FTP from a
 Windows Client ... 16

Loading the Distribution Media... 17
Performing the Installation .. 18
Unloading the Distribution Media ... 18

Install the Deployment System on UNIX ... 18
Introducing XML Extensions.. 19

What is XML?.. 20
COBOL as XML... 20
XML as COBOL... 22

Contents

vi XML Extensions
 First Edition

Chapter 2: Getting Started with XML Extensions......................... 25
Overview ... 25
Typical Development Process Example .. 26

Design the COBOL Data Structure .. 27
Compile the Program ... 27
Run the cobtoxml Utility.. 27

Model Files ... 28
Example File .. 28
Template File ... 29
Internal XSLT Stylesheet File.. 30
Schema File.. 30

Execute the COBOL Program.. 30
Making a Program Skeleton.. 31
Making a Program that Exports an XML Document 32
Populating the XML Document with Data Values 34

Deploy the Application .. 35
How XML Extensions Locates Files... 35

Chapter 3: COBOL Considerations.. 37
File Management... 37

Automatic Search for Files... 37
File Naming Conventions... 38

Model File Naming Conventions .. 38
External XSLT Stylesheet File Naming Conventions................................. 39
Other Input File Naming Conventions .. 39
Other Output File Naming Conventions ... 39

Data Conventions .. 39
Data Representation ... 40

COBOL and Character Encoding.. 40
RM_ENCODING Environment Variable .. 40
Windows Character Encoding ... 41
UNIX Character Encoding... 41

FILLER Data Items.. 42
Missing Intermediate Parent Names... 43

Unique Element Names .. 43
Unique Identifier ... 44

Sparse COBOL Records .. 45
Copy Files ... 46

Statement Definitions... 46
Displaying Status Information ... 46
Application Termination .. 47

Miscellaneous Considerations ... 47
Anonymous COBOL Data Structures .. 48
Relaxed Time Stamp Checking.. 48

Limitations .. 48
Data Items (Data Structures) .. 48
Edited Data Items... 49
Wide and Narrow Characters ... 49
Data Item Size .. 49
OCCURS Restrictions.. 49
Reading, Writing, and the Internet ... 49

 Contents

 XML Extensions vii
 First Edition

Optimizations .. 50
Occurs Depending.. 50
Empty Occurrences .. 50
Cached XML Documents... 51

Chapter 4: XML Considerations... 53
XML and Character Encoding... 53
Document Type Definition Support .. 53
XSLT Stylesheet Files... 55
Schema Files ... 55

Chapter 5: cobtoxml Utility Reference .. 57
What is the cobtoxml Utility? ... 57
Command Line Interface... 58

Command Line Options ... 59
Banner Options ... 59
Name Options ... 59
Schema Options .. 60

Referencing XML Model Files ... 61

Chapter 6: xmlif Library Reference.. 63
What is the xmlif Library? .. 63
Document Processing Statements.. 64

XML EXPORT FILE... 64
XML EXPORT TEXT ... 66
XML IMPORT FILE ... 67
XML IMPORT TEXT.. 68
XML TEST WELLFORMED-FILE.. 69
XML TEST WELLFORMED-TEXT .. 70
XML TRANSFORM FILE .. 70
XML VALIDATE FILE .. 71
XML VALIDATE TEXT... 72

Document Management Statements .. 72
XML FREE TEXT... 73
XML GET TEXT... 73
XML PUT TEXT ... 74
XML REMOVE FILE.. 74

Directory Management Statements ... 75
XML FIND FILE ... 76
XML GET UNIQUEID.. 77

State Management Statements... 78
XML INITIALIZE... 79
XML TERMINATE... 80
XML DISABLE ALL-OCCURRENCES .. 80
XML ENABLE ALL-OCCURRENCES ... 81
XML DISABLE ATTRIBUTES.. 81
XML ENABLE ATTRIBUTES... 82
XML DISABLE CACHE... 82
XML ENABLE CACHE.. 83
XML FLUSH CACHE... 83
XML GET STATUS-TEXT... 84
XML SET ENCODING... 85
XML SET FLAGS ... 86

Contents

viii XML Extensions
 First Edition

Appendix A: XML Extensions Examples....................................... 87
Example 1: Export File and Import File... 88

Development .. 88
Batch File ... 89
Program Description .. 89
Data Item.. 90
Other Definitions.. 90
Program Structure .. 91
Execution Results for Example 1 ... 93

Example 2: Export File and Import File with XSLT Stylesheets 94
Development .. 94
Batch File ... 95
Program Description .. 95
Data Item.. 96
Other Definitions.. 96
Program Structure .. 97
XSLT Stylesheets for Example 2 ... 98
Execution Results for Example 2 ... 101

Example 3: Export File and Import File with OCCURS DEPENDING 102
Development .. 102
Batch File ... 103
Program Description .. 103
Data Item.. 104
Other Definitions.. 104
Program Structure .. 105
Execution Results for Example 3 ... 107

Example 4: Export File and Import File with Sparse Arrays 108
Development .. 109
Batch File ... 109
Program Description .. 110
Data Item.. 110
Other Definitions.. 111
Program Structure .. 111
Execution Results for Example 4 ... 114

Example 5: Export Text and Import Text... 119
Development .. 119
Batch File ... 120
Program Description .. 120
Data Item.. 121
Other Definitions.. 121
Program Structure .. 122
Execution Results for Example 5 ... 124

Example 6: Export File and Import File with Directory Polling 125
Development .. 126
Batch File ... 126
Program Description .. 127
Data Item.. 127
Other Definitions.. 127
Program Structure .. 128
Execution Results for Example 6 ... 130

 Contents

 XML Extensions ix
 First Edition

Example 7: Export File, Test Well-Formed File, and Validate File....................... 132
Development .. 133
Batch File ... 133
Program Description .. 134
Data Item.. 134
Other Definitions.. 135
Program Structure .. 135
Execution Results for Example 7 ... 138

Example 8: Export Text, Test Well-Formed Text, and Validate Text.................... 139
Development .. 139
Batch File ... 140
Program Description .. 140
Data Item.. 141
Other Definitions.. 141
Program Structure .. 142
Execution Results for Example 8 ... 144

Example 9: Export File, Transform File, and Import File 145
Development .. 146
Batch File ... 146
Program Description .. 147
Data Item.. 147
Other Definitions.. 148
Program Structure .. 148
Execution Results for Example 9 ... 151

Example A: Diagnostic Messages .. 153
Development .. 153
Batch File ... 153
Program Description .. 154
Data Item.. 155
Other Definitions.. 155
Program Structure .. 156
Execution Results for Example A .. 157

Example B: Import File with Missing Intermediate Parent Names........................ 160
Development .. 161
Batch File ... 161
Program Description .. 162
Data Item.. 163
Other Definitions.. 163
Program Structure .. 163
Execution Results for Example B .. 165

Example C: Export File with Document Prefix.. 167
Development .. 167
Batch File ... 167
Program Description .. 168
Data Item.. 169
Document Prefix .. 169
Other Definitions.. 169
Program Structure .. 170
Execution Results for Example C .. 172

Example Batch Files.. 173
Cleanup.bat .. 173
Example.bat.. 173
Examples.bat .. 174

Contents

x XML Extensions
 First Edition

Appendix B: XML Extensions Sample Application Programs... 175
Accessing the Sample Application Programs.. 175

Appendix C: XML Extensions Error Messages........................... 177
Error Message Format ... 177

Message Text ... 177
COBOL Traceback Information... 178
Filename or Data Item in Error .. 178
Parser Information.. 178

Summary of Error Messages ... 179

Appendix D: Summary of Enhancements 185
Version 2 ... 185
Version 1 ... 186

Glossary of Terms.. 187
Terminology and Definitions .. 187

Index.. 191

List of Tables

Table 1: XML Extensions Error Messages.. 179

 Welcome to XML Extensions
Preface

 XML Extensions 1
 First Edition

Preface

Welcome to XML Extensions
XML Extensions for RM/COBOL is Liant Software Corporation’s facility that
allows RM/COBOL applications to access Extensible Markup Language (XML)
documents. XML is the universal format for structured documents and data on the
Web. Adding “structure” to documents facilitates searching, sorting, or any one of a
variety of operations that can be performed on an electronic document.

Note Beginning with the version 9 release, the name of this product changed from
XML Toolkit to XML Extensions.

XML Extensions has many capabilities. The major features support the ability to
import and export XML documents to and from COBOL working storage.
Specifically, XML Extensions allows data to be imported from an XML document
by converting data elements (as necessary) and storing the results into a matching
COBOL data structure. Similarly, data is exported from a COBOL data structure by
converting the COBOL data elements (as necessary) and storing the results in an
XML document.

Version 9 of XML Extensions for RM/COBOL runs on Microsoft Windows 32-bit
operating systems and selected UNIX platforms. It requires RM/COBOL version 8
or later.

Note Microsoft Windows 95 is not supported because the underlying XML parser
(Microsoft’s MSXML 4.0) is not supported on Windows 95. Certain UNIX
platforms are not supported because the underlying XML parser (from the Gnome
project) has not yet been ported to those platforms.

What's New
Preface

2 XML Extensions
 First Edition

What's New
The following improvements have been incorporated into the version 9 release of
XML Extensions for RM/COBOL on Windows and UNIX. Many of these
enhancements have also been distributed with various releases of Business
Information Server (BIS).

Note For information on the significant enhancements in previous releases of XML
Extensions, see Appendix D: Summary of Enhancements (on page 185).
Deficiencies that are version-specific or are discovered after publication are
described in the README files contained on the delivered media.

• RM/COBOL Object Version 12 Support. XML Extensions now supports
RM/COBOL object version 12, which was introduced with RM/COBOL
version 9. For more information, see What is the cobtoxml Utility? (on
page 57).

• UNIX Diagnostics. Better diagnostic information is returned when XML
IMPORT FILE/TEXT statements, discussed in Document Processing Statements
(on page 64), fail due to an XSLT transform error.

• Windows XSLT Stylesheet Processing. XSLT stylesheets that used a literal
result element were incorrectly encoded in UTF-16 on Windows. The encoding
for the literal result was fixed to be UTF-8.

• Missing Windows MSXML Parser. A more descriptive diagnostic is returned
if Microsoft's MSXML 4.0 parser is not installed. See System Requirements for
Windows (on page 9) for further details.

• Buffer Overrun Problem. The XML import statements now verify that input
data will fit in selected data structure.

• URL Recognition. Previously, only file names that began with "http://" were
recognized as URLs. This has been expanded to include "https://".

• Filename Extensions. Normally, if a filename extension is not present, one is
added. However, with URLs (especially on the Internet), the filename must be
used exactly as it is specified. Consequently, the processing of filename
extensions has been modified so that a filename extension is never added to a
filename that is a URL.

• RUNPATH Search. The RUNPATH search sequence has been modified to
ignore directory names that use the Universal Naming Convention (UNC)
notation (for example, "//system/directory"). UNC names are normally used in
an application that uses RM/InfoExpress. XML Extensions cannot access files
directly through RM/InfoExpress. By ignoring UNC directory names,
unnecessary time delays are avoided when performing a RUNPATH search. For
further information, see Automatic Search for Files (on page 37).

• cobtoxml Banner. The cobtoxml utility has been modified to display the
banner when necessary command line parameters are omitted. For more
information, see Command Line Interface (on page 58) in Chapter 5: cobtoxml
Utility Reference.

• XML Export Blank Suppression. In prior versions, the XML EXPORT
FILE/TEXT statements would strip leading spaces from all non-numeric data
items. Leading spaces are now stripped only from data items that are defined
with the JUSTIFIED phrase.

 About Your Documentation
Preface

 XML Extensions 3
 First Edition

• XSLT Stylesheets with DTD. The loading of XSLT stylesheets has been
improved to allow the stylesheet to contain a document type definition (DTD).
Previously, the presence of a DTD in a stylesheet caused a validation error on
load. A DTD is required if the stylesheet uses entity references that are not
predefined by XML. Stylesheets with HTML or XHTML entity references, such
as " " and "©" are often generated by commonly used stylesheet
generator tools. The tool may not generate the DTD, so the DTD must be added
manually after the XSLT stylesheet is generated. For more information, see
Document Type Definition Support (on page 53) in Chapter 4: XML
Considerations.

• Improved Namespace Support for Schema Validation. The XML
VALIDATE FILE/TEXT statements would fail in the LoadSchema function
if the specified schema contained a targetNamespace attribute. This has been
fixed so that the schema loads successfully and is properly referenced in the
schema collection by the URL used as the value of the targetNamespace
attribute of the schema.

About Your Documentation
XML Extensions for RM/COBOL documentation consists of a user’s guide, which is
distributed electronically in Portable Document Format (PDF) as part of the XML
Extensions software distribution CD-ROM and at http://www.liant.com/docs.

Note To view and print PDF files, you need to install Adobe Acrobat Reader, a free
program available from Adobe’s Web site at www.adobe.com.

The XML Extensions User’s Guide is designed to allow you to quickly locate the
information you need. The following lists the topics that you will find in the manual
and provides a brief description of each.

Chapter 1—Installation and Introduction. This chapter describes the installation
process and system requirements, and provides a general overview of XML
Extensions for RM/COBOL.

Chapter 2—Getting Started with XML Extensions. This chapter presents the
basic concepts used in XML Extensions for RM/COBOL by creating an example
XML-enabled application.

Chapter 3—COBOL Considerations. This chapter provides information specific
to using RM/COBOL when developing an XML-enabled application.

Chapter 4—XML Considerations. This chapter provides information specific to
using XML when using XML Extensions with RM/COBOL to develop an XML-
enabled application.

Chapter 5—cobtoxml Utility Reference. This chapter describes the cobtoxml
utility (cobtoxml.exe on Windows and cobtoxml on UNIX) used by XML
Extensions and the XML document files, known as model files, that are produced
when the cobtoxml utility processes the symbol table of a previously compiled
RM/COBOL object file.

Chapter 6—xmlif Library Reference. This chapter describes the xmlif library, a
32-bit dynamic link library on Windows (xmlif.dll) or a shared object on UNIX
(xmlif.so), used by XML Extensions for RM/COBOL.

http://www.liant.com/docs

Related Publications
Preface

4 XML Extensions
 First Edition

Appendix A—XML Extensions Examples. This appendix contains descriptions of
programs or program fragments that illustrate how the xmlif library statements are
used. These example programs are included with the development system in the
XML Extensions examples directory, Examples.

Appendix B—XML Extensions Sample Application Programs. This appendix
provides information about the self-contained XML Extensions sample application
programs that are included with the development system in the XML Extensions
samples directory, Samples.

Appendix C—XML Extensions Error Messages. This appendix lists and
describes the messages that can be generated during the use of XML Extensions
for RM/COBOL.

Appendix D—Summary of Enhancements. This appendix reviews the new
features and enhancements that were added to earlier releases of XML Extensions.

The XML Extensions manual also includes a glossary and an index.

Related Publications
For additional information, refer to the following publications:

• RM/COBOL User’s Guide

• RM/COBOL Language Reference Manual

• RM/COBOL Syntax Summary

Symbols and Conventions
The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1. Words in all capital letters indicate COBOL reserved words, such as statements,
phrases, and clauses; acronyms; configuration keywords; environment variables,
and RM/COBOL Compiler and Runtime Command line options.

2. Text that is displayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). This type style is also used for
sample command lines, program code and file listing examples, and sample
sessions.

3. Bold, lowercase letters represent filenames, directory names, programs, C
language keywords, and attributes.

Words you are instructed to type appear in bold. Bold type style is also used for
emphasis, generally in some types of lists.

4. Italic type identifies the titles of other books and names of chapters in this guide,
and it is also used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for information
you supply, as described below.

 Registration
Preface

 XML Extensions 5
 First Edition

5. The symbols found in the COBOL syntax charts are used as follows:

a. italicized words indicate items for which you substitute a specific value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown
(although not necessarily in uppercase).

c. ... indicates indefinite repetition of the last item.

d. | separates alternatives (an either/or choice).

e. [] enclose optional items or parameters.

f. { } enclose a set of alternatives, one of which is required.

g. {| |} surround a set of unique alternatives, one or more of which is required,
but each alternative may be specified only once; when multiple alternatives
are specified, they may be specified in any order.

6. All punctuation must appear exactly as shown.

7. Key combinations are connected by a plus sign (+), for example, Ctrl+X. This
notation indicates that you press and hold down the first key while you press the
second key. For example, “press Ctrl+X” means to press and hold down the Ctrl
key while pressing the X key. Then release both keys.

8. The term “Windows” in this document refers to 32-bit Microsoft Windows
operating systems, excluding Windows 95.

9. RM/COBOL Compile and Runtime Command line options may be preceded by
a hyphen. If any option on a command line is preceded by a hyphen, then a
leading hyphen is required for all options. When assigning a value to an option,
the equal sign is optional if leading hyphens are used.

Registration
Please take a moment to fill out and mail (or fax) the registration card you received
with RM/COBOL. You can also complete this process by registering your Liant
product online at: http://www.liant.com.

Registering your product entitles you to the following benefits:

• Customer support. Free 30-day telephone support, including direct access to
support personnel and 24-hour message service.

• Special upgrades. Free media updates and upgrades within 60 days of
purchase.

• Product information. Notification of upgrades, revisions, and enhancements as
soon as they are released, as well as news about other product developments.

You can also receive up-to-date information about Liant and all its products via our
Web site. Check back often for updated content.

Technical Support
Preface

6 XML Extensions
 First Edition

Technical Support
Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the RM/COBOL family of products. The technical support staff is
committed to providing you prompt and professional service when you have
problems or questions about your Liant products.

These technical support services are subject to Liant’s prices, terms, and conditions
in place at the time the service is requested.

While it is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each product.
For customers who elect not to upgrade to the most current release of the products,
support is provided on a limited basis, as time and resources allow.

Support Guidelines
When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name and contact information.

2. Liant product serial number (found on the media label, registration card, or
product banner message).

3. Product version number.

4. Operating system and version number.

5. Hardware, related equipment, and terminal type.

6. Exact message appearing on screen.

7. Concise explanation of the problem and process involved when the
problem occurred.

Test Cases
You may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

• The smaller the test case is, the faster we will be able to isolate the cause
of the problem.

• Do not send full applications.

• Reduce the test case to one or two programs and as few data files as possible.

• If you have very large data files, write a small program to read in your current
data files and to create new data files with as few records as necessary to
reproduce the problem.

• Test the test case before sending it to us to ensure that you have included all
the necessary components to recompile and run the test case. You may need
to include an RM/COBOL configuration file.

 Technical Support
Preface

 XML Extensions 7
 First Edition

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include
information regarding the hardware, operating system, and versions of all
relevant software (including the operating system and all Liant products). It
must also include step-by-step instructions to reproduce the behavior.

2. Program source files. We require source for any program that is called during
the course of the test case. Be sure to include any copy files necessary for
recompilation.

3. Data files required by the programs. These files should be as small as
possible to reproduce the problem described in the test case.

Technical Support
Preface

8 XML Extensions
 First Edition

 Before You Start
Chapter 1: Installation and Introduction

 XML Extensions 9
 First Edition

Chapter 1: Installation and
Introduction

This chapter describes the system requirements and installation processes for
development and deployment on both Windows and UNIX operating systems. It
also provides a general overview of XML Extensions for RM/COBOL and the
benefits it offers to the COBOL programmer.

Note You should have a basic understanding of XML in order to use XML
Extensions. Depending on the complexity of your application, you may also need
to know about XSLT stylesheets.

Before You Start
Before you follow the instructions for installing XML Extensions for RM/COBOL
(on page 11), make sure that your computer configuration meets the following
minimum hardware and software requirements for each of the supported
architectures, and that your XML Extensions package contains the necessary items
for development and deployment.

Note You may wish to use Microsoft Internet Explorer, version 6 or greater, as a
convenient tool for viewing XML documents.

System Requirements
To run XML Extensions for RM/COBOL, you must have certain hardware and
software installed on your computer.

For Windows

The system requirements for Windows include the following:

• The XML Extensions hardware and software requirements are the same as
RM/COBOL version 9 for 32-bit Windows. (See the RM/COBOL User’s Guide,
First Edition or later.) Additionally, XML Extensions may be used in
conjunction with Terminal Server.

Before You Start
Chapter 1: Installation and Introduction

10 XML Extensions
 First Edition

• Microsoft’s XML parser, MSXML 4.0 or greater, is also required. (A schema
processor and an XSLT transformation processor are included in the Microsoft
MSXML 4.0 parser.)

Note The MSXML 4.0 parser may fail to install correctly if the target system
does not have either Microsoft Windows Installer or Internet Explorer installed.
Both of these products are freely available from Microsoft. To obtain these
applications, follow the www.microsoft.com/downloads/search.asp link and
search for the keywords “windows installer 2.0” or “internet explorer”, as
needed.

For UNIX

The system requirements for UNIX include the following:

• The XML Extensions hardware and software requirements are the same as
RM/COBOL version 9 for UNIX. (See the RM/COBOL User’s Guide, First
Edition or later.)

Note 1 The XML parser (libxml) and the XSLT transformation processor
(libxslt) from the C libraries for the Gnome project are included in XML
Extensions.

Note 2 While the Windows implementation continues to support the use of
schema files (on page 55), the UNIX implementation does not currently support
this capability. Schema support in the underlying XML parser (libxml) is still
under development.

XML Extensions Package
The XML Extensions for RM/COBOL package contains the following items for
development and deployment.

Development

The XML Extensions development system includes the following files:

• Deployment files. These files are listed in the Deployment (on page 11) section.

• cobtoxml command line utility (cobtoxml.exe on Windows and cobtoxml on
UNIX). For more information, see Chapter 5: cobtoxml Utility Reference (on
page 57).

• XML document files used by the cobtoxml utility (toxdr.xsl, toxdrb.xsl,
toxsd.xsl, and toxsl.xsl).

• Copy files (lixmlall.cpy, lixmldef.cpy, lixmldsp.cpy, lixmlrpl.cpy, and
lixmltrm.cpy). For more details, see Copy Files (on page 46).

• Example files. These programs or program fragments illustrate how xmlif
library statements are used. For further information, see Appendix A: XML
Extensions Examples (on page 87). The example programs can be found in the
XML Extensions example directory, Examples.

• Sample files. These self-contained, working application programs, which
include the complete source, can be used in your own applications by modifying
or customizing them, as necessary. See Appendix B: XML Extensions Sample
Application Programs (on page 175) for more details. The sample application
programs can be found in the XML Extensions sample directory, Samples.

http://www.microsoft.com/downloads/search.asp

 Installing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 11
 First Edition

Deployment

The XML Extensions deployment system consists of the following files:

• xmlif COBOL-callable subprogram library (xmlif.dll on Windows and xmlif.so
on UNIX). For more information, see Chapter 6: xmlif Library Reference (on
page 63).

• For Windows, MSXML 4.0, the Microsoft XML parser, schema processor, and
XSLT transformation processor (msxml4.dll, msxml4a.dll, and msxml4r.dll).

For UNIX, the XML parser and XSLT transformation processor libraries
(libxml and libxslt, respectively). Currently, these libraries are linked into the
xmlif.so file and do not need to be installed separately.

The developer should deploy the model files that were generated by the cobtoxml
utility along with the COBOL program files. Normally, these files are stored in the
same location as the COBOL program files. For more information, see Model Files
(on page 28).

Installing XML Extensions
The following sections describe the distribution media options, and how to install the
XML Extensions for RM/COBOL development and deployment systems on
Windows (see page 12) and UNIX (see page 14). XML Extensions is available as a
development system and a deployment system. The development system is designed
to operate in conjunction with an RM/COBOL development system. The
deployment system is designed to operate in conjunction with an RM/COBOL
runtime system.

For development, both the XML Extensions development system and Liant’s
RM/COBOL version 9 development system are required. For deployment, both the
XML Extensions deployment system and the RM/COBOL version 9 runtime system
are required.

Distribution Media Options
The XML Extensions for RM/COBOL software is available on CD-ROM media and
via Electronic Software Delivery.

Electronic Software Delivery allows XML Extensions to be downloaded from the
Liant Electronic Software Delivery Web site in any of the following three formats.
Simply follow the instructions on the Web site for downloading and decompressing
the file for the format selected:

• Windows Self-Extracting EXE. The download format for Windows Self-
Extracting EXE does not contain a full product. In order to reduce the size of
the download file, the AutoPlay and Adobe Acrobat Reader software, normally
available on the CD, are not present. Furthermore, the XML Extensions manual
is included in the deliverable download file but the installation script to install
the manual is not. The XML Extensions manual, formatted as a PDF file, can be
installed simply by copying it to the desired location. After the deliverable has
been downloaded and uncompressed, and the installation components have been
created from the Windows Self-Extracting EXE format, follow the instructions
under Installing on Windows (on page 12).

Installing XML Extensions
Chapter 1: Installation and Introduction

12 XML Extensions
 First Edition

• UNIX ISO CD Image. The download format for ISO CD Image contains the
full product. Use CD-ROM Burning software, such as Nero
(http://www.nero.com) or Roxio’s Easy CD Creator (http://www.roxio.com),
to create the physical CD-ROM media. See the instructions for loading the
distribution media (on page 17) on specific versions of UNIX. After the CD is
created, proceed with normal CD installation as described in Performing the
Installation (on page 18).

• UNIX GUNZIP TAR. The download format for UNIX GUNZIP TAR
download does not contain a full product. In order to reduce the size of the
download file, the AutoPlay and Adobe Acrobat Reader software, normally
available on the CD, are not present. Furthermore, the XML Extensions manual
is included in the deliverable download file but the installation script to install
the manual is not. The XML Extensions manual, formatted as a PDF file, can be
installed simply by copying it to the desired location.

Note If the distribution was via Electronic Software Delivery using UNIX
GUNZIP TAR, after the downloaded file has been decompressed into an
installation components directory, no further steps are necessary to load the
distribution media.

Installing on Windows
This section contains instructions on how to install the XML Extensions for
RM/COBOL development system and deployment system on Windows.

Install the Development System on Windows

To install the XML Extensions for RM/COBOL development system
(XMLEXT_D.EXE) on Windows:

1. Restart Windows. (Be sure not do not start any other applications.)

2. Insert the XML Extensions for RM/COBOL Development Installation CD into
your CD-ROM drive.

The installation program starts automatically.

3. Click I Agree to accept the license agreement.

4. In the Installation Options dialog box, select XML Examples (if desired), and
then click Next to continue.

5. In the Installation Directory dialog box, accept the location presented or click
Browse to select another location.

Note The installation automatically locates the RM/COBOL development
system and selects this directory as the default location for the XML Extensions
development system installation.

6. Click Install to continue.

7. When the Liant License File dialog box opens, insert the license diskette that
accompanied the installation CD in the diskette drive in your computer.

8. Enter the complete file name for the Liant license file. The default name is
a:\liant.lic.

Note If you are using a drive other than A, be sure to correct the location of the
license file in the Liant License File dialog box. If necessary, the liant.lic

 Installing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 13
 First Edition

license file can be copied to a location on a hard drive and that location can be
specified during installation.

9. Click Next to continue.

10. When the installation completes, the Completion dialog box is displayed. Click
Close to dismiss this dialog box.

11. At the “Setup has completed. View readme file now?” prompt, do one of the
following:

• Select Yes to view the README file.

• Select No to open the XML Extensions for RM/COBOL window.

Install the Deployment System on Windows

To install the XML Extensions for RM/COBOL deployment system
(XMLEXT_R.EXE) on Windows:

Note The XML Extensions deployment system is provided as a self-extracting
executable that installs the deployment system components of XML Extensions.
It is delivered on the XML Extensions Development Installation CD as
redist\XMLEXT_R.EXE.

1. Start Windows.

2. Insert the XML Extensions for RM/COBOL Development Installation CD into
your CD-ROM drive.

3. When the XMLEXT_R.EXE file is executed, the Installation Directory dialog
box is displayed.

4. In the Installation Directory dialog box, accept the location presented or click
Browse to select another location.

The installation program automatically locates and selects the RM/COBOL
runtime system directory as the default location for the XML Extensions
deployment system installation.

5. Click Install to continue.

6. When the installation completes, the Completion dialog box is displayed. Click
Close to dismiss the dialog box.

Notes

• Your license for this product does not allow you to redistribute the entire XML
Extensions development system with your application. You may redistribute
only the deployment system.

• Provide the file, XMLEXT_R.EXE, to your end-users along with your
application. Either package this file in an installation process so that it is
executed on the target platform or instruct your end-users to execute the file
once on their system to install the necessary components as part of setting up
the application.

Installing XML Extensions
Chapter 1: Installation and Introduction

14 XML Extensions
 First Edition

Installing on UNIX
This section contains instructions on how to install the XML Extensions for
RM/COBOL development system and deployment system on UNIX.

Install the Development System on UNIX

XML Extensions for RM/COBOL is delivered on media suitable for your
configuration. In order to use this product, you must install the contents of the
distribution media onto your hard disk.

There are four main steps to installing the XML Extensions development system
for UNIX:

1. Loading the license file (see the following topic).

2. Loading the distribution media (on page 17).

3. Performing the installation (on page 18).

4. Unloading the distribution media (on page 18).

Loading the License File

The Liant license file is a normal text file distributed on an MS-DOS-formatted
diskette. Not all UNIX operating systems, however, can read an MS-DOS-formatted
diskette, and not all UNIX server machines have diskette drives. To make the license
file available to the RM/COBOL for UNIX installation script, two techniques are
provided:

1. Mount the diskette as an MS-DOS file system.

2. Transfer the Liant license file via FTP from a Windows client.

Mount the Diskette as an MS-DOS File System

Use this option to load the license file if the UNIX operating system supports MS-
DOS file systems and your hardware has a diskette drive installed. Instructions for
specific platforms and versions of UNIX are provided.

• Digital UNIX (Tru64), HP-UX, and IBM AIX, and Intel UNIX System V
Release 4. These platforms do not support mounting MS-DOS diskettes. Use
the FTP instructions on page 16 to transfer the license file to the UNIX server.

• Linux

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount –t msdos /dev/fd0H1440 /mnt/floppy

c. Copy the license file to the /tmp directory:

cp /mnt/floppy/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the
diskette from the diskette drive:

umount /mnt/floppy

 Installing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 15
 First Edition

• SCO OpenServer 5

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount –f DOS,lower /dev/fd0 /floppy

Note It may be necessary to create the mount directory, /floppy, before
executing this command.

c. Copy the license file to the /tmp directory:

cp /floppy/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the
diskette from the diskette drive:

umount /floppy

• SCO UnixWare 7 and OpenServer 6 (SCO SVR5)

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount –F dosfs /dev/dsk/f0q18dt /Disk_A

c. Copy the license file to the /tmp directory:

cp /Disk_A/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the
diskette from the diskette drive:

umount /Disk_A

• Sun Solaris

a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

volcheck

c. Copy the license file to the /tmp directory:

cp /floppy/liant/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the
diskette from the diskette drive:

eject floppy

Installing XML Extensions
Chapter 1: Installation and Introduction

16 XML Extensions
 First Edition

Transfer the Liant License File via FTP from a Windows Client

To transfer the Liant license file from a Windows client to the UNIX server, use one
of the many graphical FTP utilities available on Windows and transfer the liant.lic
license file as a text file. You can also follow this procedure:

1. On the Windows client, insert the diskette into the diskette drive.

These instructions assume that this is drive A. If it is another drive, change the
drive letter to the appropriate letter in the remaining instructions.

2. Open an MS-DOS Prompt window by clicking Start on the task bar, point to
Programs, and then click MS-DOS Prompt.

3. Connect to the UNIX server by entering:

ftp UnixServerName

where UnixServerName is the network name of your UNIX server.

4. Change the directory to the /tmp directory:

cd /tmp

5. Specify a text file transfer:

ASCII

6. Send the license file to the UNIX server:

send A:\LIANT.LIC liant.lic

7. Disconnect from the UNIX server:

bye

8. Close the MS-DOS Prompt window with the following command and then
remove the diskette form the diskette drive:

Exit

 Installing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 17
 First Edition

Loading the Distribution Media

To load the distribution media on the UNIX machine:

1. Insert the RM/COBOL for UNIX CD-ROM in the appropriate CD-ROM drive.

2. Log in as root.

3. Enter the appropriate mount command for your system. See the examples
listed below.

Note 1 In the list that follows, the standard mount directory names are used where
the UNIX operating system has such a standard. If the operating system does not
follow a standard, the name /cdrom is used. In such cases, it will be necessary either
to create the directory /cdrom or to substitute the preferred mount directory name
for /cdrom.

Note 2 The device names below are examples. The actual device name is dependent
on the hardware configuration of your UNIX server. It may be necessary to
substitute the proper value for your system. Consult your UNIX System
Administrator for more details.

System Mount Command

Digital UNIX (Tru64) mount -t cdfs -o ro,noversion /dev/rz4c /cdrom

HP-UX mount –F cdfs –o ro,cdcase /dev/dsk/c0t4d0 /cdrom

IBM AIX mount –o ro –v cdrfs /dev/cd0 /cdrom

Intel UNIX System V
Release 4

mount –o ro –F cdfs /dev/cdrom/c0t4l0 /cdrom

Linux mount –o ro –t iso9660 /dev/cdrom /mnt/cdrom

SCO OpenServer 5 mount –o ro –f ISO9660,lower /dev/cd0 /cdrom

SCO UnixWare 7 and
OpenServer 6 (SCO SVR5)

mount –F cdfs –o ro /dev/cdrom/c1b0t0l0 /CD-ROM_1

Sun Solaris If Solaris does not automatically load the CD-ROM, log in as
root and enter: volcheck

Installing XML Extensions
Chapter 1: Installation and Introduction

18 XML Extensions
 First Edition

Performing the Installation

After the CD-ROM has been successfully mounted, you will need to do the
following:

1. Change the directory to the mount point for the CD-ROM. For example, enter:

cd /cdrom

2. From the mount point, execute the installation script using the following
command:

sh ./install.sh

3. The installation script prompts you for all the information that it needs before
beginning the actual installation. Answer the prompts of the installation script
accordingly.

Messages are displayed periodically indicating the status of the installation.

Note The development and deployment systems are installed separately. The
installation script will present you with a prompt to install: A: Development System
or B: Deployment System. You choose the one you wish to install.

Unloading the Distribution Media

To unload (remove) the distribution media from the hardware:

1. Enter the appropriate command for your system. See the examples listed below.

2. Remove the distribution media from the CD-ROM drive.

System Umount Command

Digital UNIX (Tru64)
HP-UX
IBM AIX
Intel UNIX System V Release 4
SCO OpenServer 5

umount /cdrom

Linux umount /mnt/cdrom

SCO UnixWare 7 and
OpenServer 6 (SCO SVR5)

umount /CD-ROM_1

Sun Solaris eject cdrom

Install the Deployment System on UNIX

For deploying COBOL applications that use XML Extensions, install the XML
Extensions deployment system on each platform that runs the application. You may
do this using the XML Extensions installation disk.

 Introducing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 19
 First Edition

Introducing XML Extensions
XML Extensions for RM/COBOL allows RM/COBOL applications to interoperate
freely and easily with other applications that use the Extensible Markup Language
(XML) standard. To accomplish this, XML Extensions leverages the similarities
between the COBOL data model and the XML data model in order to turn
RM/COBOL into an “XML engine.” Of primary importance to this goal is the
ability to import and export XML documents to and from standard COBOL data
structures.

Note A COBOL data structure is a COBOL data item. In general, it is a group data
item, but in some cases, it may be a single elementary data item. The cobtoxml
utility, a component of XML Extensions that is described in Chapter 5: cobtoxml
Utility Reference (on page 57), captures the COBOL data structure, including
transformed data-names of the data items and subordinate data items, if any, so that a
mapping between the actual COBOL data structure and an XML representation of
the COBOL data structure can be accomplished in either direction at runtime.

By allowing standard COBOL data structures to be imported from and exported to
XML documents, XML Extensions enables the direct processing and manipulation of
XML-based electronic documents by the RM/COBOL application programmer.
Furthermore, XML Extensions does this without requiring the application
programmer to become thoroughly familiar with the numerous XML-related
specifications and the time-consuming process required to emit and consume
well-formed XML.

Specifically, an XML document may be imported into a COBOL data structure under
COBOL program control using a single, simple COBOL statement, and, similarly,
the content of a COBOL data structure may be used to generate an XML document
with equal simplicity. XML Extensions’ approach handles both simple and
extremely complex structures with ease. Individual data elements are automatically
converted as needed between their COBOL internal data types and the external
coding used by XML. Not only can the transition to and from XML take place when
this happens, but powerful transforms, which are coded using Extensible Stylesheet
Language Transformations (XSLT), can be applied at the same time. This powerful
mechanism gives XML Extensions the capabilities needed to be useful in a wide
range of e-commerce and Web applications.

In order to add this powerful document-handling capability to a COBOL application,
the programmer need only describe the information to be received or transmitted to
the external components as COBOL data definitions. In many cases, this description
will simply be the already-existing data area defined in the COBOL application.
Once the “document” content is described in this way, a simple command-line utility
program (cobtoxml.exe on Windows and cobtoxml on UNIX), referenced
throughout this document as the cobtoxml utility, is run, specifying the data
structures to be “opened” to the XML world. This utility captures all the information
needed in a set of XML documents called model files. At application execution time,
a COBOL statement, accessed via a library of statements defined in copy files
supplied with XML Extensions, is used to call a subprogram which implements the
complete runtime functionality of XML Extensions. This COBOL-callable
subprogram library (xmlif.dll on Windows and xmlif.so on UNIX) is referenced
throughout this document as the xmlif library. For more information, see
Chapter 5: cobtoxml Utility Reference (on page 57), and Chapter 6: xmlif Library
Reference (on page 63).

Introducing XML Extensions
Chapter 1: Installation and Introduction

20 XML Extensions
 First Edition

What is XML?
In this document, XML refers to the entire set of specifications and products related
to a particular approach to representing structured information in text-based form.
Specifically, the World Wide Web Consortium (W3C) has specified a markup-based
language called XML. Closely related to HTML, XML was designed to build on
what had been learned with that, now ten-year-old, technology. Among other things,
XML was designed to be much more generally useful than HTML, while exhibiting
the simplest possible expression. HTML is about displaying information. It was
designed to display data and to focus on how the data looks. XML, meanwhile, is
about describing information. It was designed to describe data and focus on what the
data is. Since XML’s definition, a constellation of XML-related specifications has
been produced and is in progress to leverage the power of this new form of
information expression.

For the COBOL programmer, it is best to view XML not as a markup language for
text documents, but rather as a text-based encoding of a general abstract data model.
It is this data model, and its similarity to COBOL’s data model, that yields its power
as an adjunct to new and legacy COBOL applications needing to interact with other
applications and systems in the most modern way possible.

XML is extremely important to the COBOL programmer for two key reasons. First,
it is rapidly becoming the standard way of exchanging information on the Web, and
second, the nearly perfect alignment of the COBOL way of manipulating data and
the XML information model results in COBOL being arguably the best possible
language for expressing business data processing functions in an XML-connected
world.

COBOL as XML

What does XML look like? Start with the assumption that it is a textual encoding of
COBOL data (although this is not quite accurate, it is sufficient for now). Suppose
you have the following COBOL definition in the Working-Storage Section:

01 contact.
 10 firstname pic x(10) value "John".
 10 lastname pic x(10) value "Doe".
 10 address.
 20 streetaddress pic x(20) value "1234 Elm Street".
 20 city pic x(20) value "Smallville".
 20 state pic x(2) value "TX".
 20 postalcode pic 9(5) value "78759".
 10 email pic x(20) value "jd@aol.com".

What does this information look like if you simply WRITE it out to a text file? It
looks like this:

John Doe 1234 Elm Street Smallville TX78759jd@aol.com

You can see that all the “data” is here, but the “information” is not. If you received
this, or tried to read the file and make sense out of it, you would need to know more
about the data. Specifically, you would have to know how it is structured and the
sizes of the fields. It would be helpful to know how the author named the various
fields as well, since that would probably give you a clue as to the content.

This is not a new problem; it is one that COBOL programmers (as well as other
application programmers) have had to deal with on an ad hoc basis since the

http://www.w3.org/

 Introducing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 21
 First Edition

beginning of the computer age. But now, XML gives us a way to encode all of the
information in a generally understandable way.

Here is how this information would be displayed in an XML document:

<contact>
 <firstname>John</firstname>
 <lastname>Doe</lastname>
 <address>
 <streetaddress>1234 Elm Street</streetaddress>
 <city>Smallville</city>
 <state>TX</state>
 <postalcode>78759</postalcode>
 <email>jd@aol.com</email>
</contact>

In XML, the COBOL group-level item is coded in what is called an “element.”
Elements have names, and they contain both text and other elements. As you can
see, an XML element corresponds to a COBOL data item. In this case, the 01-level
item “contact” becomes the <contact> element, coded as a start “tag” (“<contact>”)
and an end tag (“</contact>”) with everything in between representing its “content.”
In this case, the <contact> element has as its content the elements <firstname>,
<lastname>, <address>, and <email>. This corresponds precisely to the COBOL
Data Division declaration for “contact.” Similarly, the 10-level group item,
“address”, becomes the element <address>, made up of the elements <streetaddress>,
<city>, <state>, and <postalcode>. Each of the COBOL elementary items is coded
with text content alone. Notice that in the XML form, much of the semantic
information is missing from the raw COBOL output form of the data. As a bonus,
you no longer have the extraneous trailing spaces in the COBOL elementary items,
so they are removed. In other words, the XML version of this record contains both
the data itself and the structure of the data.

Now, what if the COBOL data had looked like the following:

01 contact.
 10 email pic x(20)
 10 firstname pic x(10).
 10 lastname pic x(10).
 10 address.
 20 city pic x(20).
 20 state pic x(2).
 20 postalcode pic 9(5).
 20 streetaddresslines pic 9.
 20 streetaddresses.
 30 streetaddresses occurs 1 to 9 times
 depending on streetaddresslines pic x(20).

Introducing XML Extensions
Chapter 1: Installation and Introduction

22 XML Extensions
 First Edition

Two things have changed in this example: the initial values have been removed and
there can now be up to nine “streetaddress” items. This is much more similar to what
you might expect in a real application. After the application code sets the values of
the various items from the Procedure Division, the XML coding of the result might
look like this:

<contact>
 <email>bs@aol.com</email>
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcode>61401</postalcode>
 <streetaddresslines>3</streetaddresslines>
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
</contact>

Notice the repeating item “streetaddress” has become three <streetaddress> elements.
In this example, COBOL acts as an XML programming language, providing both the
structure (schema) of the data and the data itself.

Even though these examples are very simple, they illustrate how powerful the
compatibility between the COBOL data model and the XML information model can
be. COBOL structures of arbitrary complexity have a straightforward XML
representation. There are, it turns out, some things that you can specify in a COBOL
data definition that cannot be coded as XML, but these can easily be avoided if you
are programming your application for XML.

XML as COBOL

In the previous cases, you saw how structured COBOL data could be coded as an
XML document. In this section, you will examine how an arbitrary XML document
can be represented as a COBOL structure. This requires that you look at some other
aspects of the XML information model that are not needed to represent COBOL
structures, but might be present in XML, nonetheless.

So far, you have seen that XML has elements and text. Although, these are the
primary means of representing data in XML documents, there are some other ways
of representing and structuring data in XML. Suppose you have the following
XML document:

<contact type="student">
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address form="US">
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcode zipplus4="N">61401</postalcode>
 <email>bs@aol.com</email>
</contact>

 Introducing XML Extensions
Chapter 1: Installation and Introduction

 XML Extensions 23
 First Edition

In the example document shown here is now a new kind of data, known as an
“attribute” in XML. Notice that the <contact> element tag has what appears to be
some kind of parameter named “type.” This is, in fact, an attribute whose value is set
to the text string “student.” In XML, attributes are another way of coding element
content, but in a way that does not affect the text content of the element itself. In
other words, attributes are “out-of-band” data associated with an element. This
concept has no parallel in standard COBOL. In COBOL, all data associated with a
data item is part of the COBOL record content. This means that if you are to capture
all of the content of an XML document, you must have a way to capture and store
attributes.

You do this with the help of an important XML tool called an external XSLT
stylesheet file (see page 55). (In this document, “external XSLT stylesheet” is used
to differentiate an XSLT stylesheet provided by the user from the “internal XSLT
stylesheet” generated as one of the model files by the cobtoxml utility and used
automatically as part of importing XML documents into COBOL.) For now, assume
that an XSLT stylesheet can transform an XML document into any desired
alternative XML document. If this is true (and it is), you must code the incoming
attributes as something that has a direct COBOL counterpart. This would be as a
data item represented as a text element in XML.

The example document, after external XSLT stylesheet transformation, might look
like this:

<contact>
 <email>bs@aol.com</email>
 <attr-type>student</attr-type>
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address>
 <attr-form>US</attr-form>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcodegroup>
 <attr-zipplus4>N</attr-zipplus4>
 <postalcode>61401</postalcode>
 </postalcodegroup>
 <streetaddresslines>3</streetaddresslines>
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
</contact>

Introducing XML Extensions
Chapter 1: Installation and Introduction

24 XML Extensions
 First Edition

Several things have been changed. The attributes have been turned into elements,
but with a special name prefixed by “attr-“ and a new element, <streetaddresslines>
has been added containing a count of the number of <streetaddress> elements. In the
case of <postalcode>, a new element has been added to wrap both the real
<postalcode> value, and the new attribute. All of these changes are very easy to
make using a simple XSLT stylesheet, and you now have a document with a direct
equivalent in COBOL:

01 contact.
 10 email pic x(20).
 10 attr-type pic x(7).
 10 firstname pic x(10).
 10 lastname pic x(10).
 10 address.
 20 city pic x(20).
 20 state pic x(2).
 20 postalcodegroup.
 30 attr-zipplus4 pic x.
 30 postalcode pic 9(5).
 20 attr-form pic xx.
 20 streetaddresslines pic 9.
 20 streetaddresses.
 30 streetaddress occurs 1 to 9 times
 depending on streetaddresslines pic x(20).

 Overview
Chapter 2: Getting Started with XML Extensions

 XML Extensions 25
 First Edition

Chapter 2: Getting Started with
XML Extensions

This chapter presents the basic concepts used in XML Extensions for RM/COBOL
by creating an example XML-enabled application. It also discusses how XML
Extensions locates files.

Overview
Because the COBOL information model can largely be expressed by the XML
information model, there is a natural relationship between XML documents and
COBOL data structures. Both present similar views of the data; that is, the entire
data is visible. You may view the content of a COBOL data record and you may
view the text of an XML document. In XML, markup is used both to name and
describe the text elements of a document. In COBOL, the data structure itself
provides names and descriptions of the elements within a document.

XML Extensions has many capabilities. The major features support the ability to
import and export XML documents to and from a COBOL program’s Data Division.
Note that data may be anywhere in the Data Division. Specifically, XML Extensions
allows data to be imported from an XML document by converting data elements, as
necessary, and storing the results into a matching COBOL data structure. Similarly,
data is exported from a COBOL data structure by converting the COBOL data
elements, as necessary, and storing the results in an XML document.

XML Extensions consists of the following two main components:

• The cobtoxml utility (cobtoxml.exe on Windows and cobtoxml on UNIX),
which runs as a post-compile step. This program creates a set of XML
documents, called model files (on page 28), which describe a selected COBOL
data structure as a set of XML documents.

• The xmlif library (xmlif.dll on Windows and xmlif.so on UNIX), which is a
COBOL-callable runtime library used to implement a series of COBOL
statements that are available to the developer for directing the importing and
exporting of COBOL data as XML.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

26 XML Extensions
 First Edition

Typical Development Process Example
This section provides an example of how to produce an XML-enabled application.
These instructions assume that both the XML Extensions for RM/COBOL
development system and the RM/COBOL development system (version 8 or later)
are installed on your computer.

Note More examples and information about complete sample application programs
can be found in:

• Appendix A: XML Extensions Examples (on page 87)

• Appendix B: XML Extensions Sample Application Programs (on page 175)

• The XML Extensions examples and samples directories (Examples and
Samples, respectively)

There are five basic steps to developing an XML-enabled application:

1. Design the COBOL data structure (on page 27). Develop a COBOL program, or
modify an existing one, using statements that refer to the xmlif library.

2. Compile the program (on page 27). Compile the COBOL program with the
RM/COBOL Compile Command Y Option enabled in order to place the symbol
table in the object file.

3. Run the cobtoxml utility (on page 27). Run the cobtoxml utility in order to
generate a set of XML model files that describe a data structure within the
COBOL program.

4. Execute the COBOL program (on page 30). Test the program and repeat steps 1
through 4, as necessary.

5. Deploy the application (on page 35). After stripping the symbol table
information from the COBOL object program, distribute the XML Extensions
deployable files. These files consist of the xmlif library and the underlying
XML parser that this library uses.

The sections that follow describe each of the basic steps involved in the example
provided, and they include explanations of how more functionality is added to
the program.

 Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

 XML Extensions 27
 First Edition

Design the COBOL Data Structure
The first step is to design a COBOL data structure that describes the data to be placed
in a corresponding XML document. The following simple example illustrates this
step using typical mailing address information. An adequate program skeleton has
been included to allow the program to compile without error.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Binary.

This COBOL data structure contains only one numeric element: the zip code. For
demonstration purposes, it is represented as binary.

Compile the Program

In the second step, you compile the program with the following command line:

rmcobol getstarted y

This compilation uses the Y Compile Command Option to provide a symbol table in
the COBOL object, which is required by the cobtoxml utility.

Run the cobtoxml Utility
The third step is to execute the cobtoxml utility from the command line by entering:

cobtoxml getstarted customer-address

The first parameter, getstarted, is the name of the COBOL object file. An
extension of .cob is automatically assumed, if no extension is provided. The second
parameter is the name of the data structure that will be used by the runtime
components of XML Extensions.

When the cobtoxml utility is run, it generates a set of XML model files that describe
a data structure within the COBOL program. The following section describes each
of these model files and provides examples.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

28 XML Extensions
 First Edition

Model Files

The cobtoxml utility creates a set of files that are XML documents, known as model
files. Model files have the same root name as the object file, although each filename
has a unique, predetermined extension. In this case, the following types of model
files are created:

• Example file (getstarted.xml)

• Template file (getstarted.xtl)

• Internal XSLT stylesheet file (getstarted.xsl)

• Schema file (getstarted.xsd)

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

The XML model files created in this example are described in more detail in the
following sections. See also Referencing XML Model Files (on page 61).

Example File

The XML document, getstarted.xml, is an example file created primarily as a
reference for the COBOL developer. It illustrates the form that the COBOL data
structure will take when encoded as an XML document. No actual data content is
included and the xmlif library does not use this file. You may use Microsoft Internet
Explorer to view this XML document, which looks like the following. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <customer-address>
 <name />
 <address-1 />
 <address-2 />
 <address-3>
 <city />
 <state />
 <zip />
 </address-3>
 </customer-address>
</root>

Even if you are not familiar with XML, it is easy to see how the XML document is
derived. XML is a markup language—a set of rules (you may also think of them as
guidelines or conventions) for designing text formats that let you structure your data.
In that way, it is similar to HTML. Markup is descriptive information inserted in
the text of a document. Like HTML, XML makes use of tags (words bracketed by
'<' and '>') and attributes (of the form name="value").

Nesting of elements is done by using a matched set of beginning (start tags) and
ending (end tags) markup. In this example, <root> marks a beginning and
</root> marks an ending. The tags <customer-address> and
<address-3> also both have start tags and end tags. In addition, XML allows a
shortcut notation that may be used when a start tag is immediately followed by an
end tag (that is, when there is no intervening content). This is known as an “empty
element.” The end tag may be omitted by terminating the start tag with the “/>”

 Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

 XML Extensions 29
 First Edition

sequence. In this example, <name /> is shorthand for the <name></name>
sequence. The meaning of both forms is the same, and they can be used
interchangeably. Microsoft Internet Explorer recognizes an end tag immediately
following a start tag and displays the shorthand instead of the longer version. If
you use a text editor (such as Notepad) instead of Internet Explorer to view this
XML document, you will observe that the shorthand sequence is not used by an
example file.

Since this XML document is intended simply as a reference for the programmer, it
contains no text, only markup. Notice that the first line is an XML header, which is
always generated. The <root> tag also is always generated. Nested inside the
root element is the customer-address element. This was generated from the
customer-address data-name in the COBOL program. Because names in
XML are case sensitive and names in COBOL are case insensitive, the name in the
COBOL program is converted to all lowercase for consistency.

Template File

The XML document, getstarted.xtl, is a template file that is used by the xmlif
library when exporting a document (converting from COBOL to XML). It is similar
to the example file, but it includes much more information. This document contains
XML attributes in addition to elements. The attributes provide the additional
information the xmlif library needs to encode the COBOL data properly as XML at
runtime.

Attributes are associated with an element tag and contain information that describes
the element content. If you look at markup for the tag name (<name
type="nonnumeric" kind="ANS" length="128" offset="4" id="Q244"
/>), you are able to observe several attributes associated with this element. An
attribute has the form name="value". For example, the type attribute for the
name element has a value of "nonnumeric". This information tells the xmlif
library to obtain data from the COBOL data structure and convert the data from
COBOL data format to a text format for the XML document.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- produced by cobtoxml version n.00.00 for RM/COBOL version n.00 or greater on:
 Thur May 15 10:14:26 2003 -->
<!-- data item "customer-address" in program "GETTING-STARTED" in file
 "C:\xmlexample\getstarted.cob" -->
<root type="nonnumeric" kind="GRP" compiledTimeStamp="2003-05-14T12:34:12"
 cobtoxmlRevision="1.0">
 <customer-address type="nonnumeric" kind="GRP" length="454" offset="4" uid="Q1">
 <name type="nonnumeric" kind="ANS" length="128" offset="4" uid="Q2" />
 <address-1 type="nonnumeric" kind="ANS" length="128" offset="132" uid="Q3" />
 <address-2 type="nonnumeric" kind="ANS" length="128" offset="260" uid="Q4" />
 <address-3 type="nonnumeric" kind="GRP" length="70" offset="388" uid="Q5">
 <city type="nonnumeric" kind="ANS" length="64" offset="388" uid="Q6" />
 <state type="nonnumeric" kind="ANS" length="2" offset="452" uid="Q7" />
 <zip type="numeric" kind="NBU" length="4" offset="454" scale="0"
 precision="5" uid="Q8" />
 </address-3>
 </customer-address>
</root>

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

30 XML Extensions
 First Edition

Internal XSLT Stylesheet File

The XML document, getstarted.xsl, is an internal XSLT stylesheet file. XSLT
stylesheet files, such as this, are used to transform an XML document into some
other data representation (usually, but not necessarily, another XML document).
getstarted.xsl is used by the xmlif library when importing an XML document
(converting from XML to COBOL). This internal XSLT stylesheet transforms the
imported XML into a new, internal XML document that contains the attributes
shown in the template file. This allows the xmlif library to convert the text in an
XML document to an internal COBOL format and store the data in the appropriate
location in the COBOL program’s memory.

This internal XSLT stylesheet is complex and performs many additional functions. It
is not shown here since it is meaningful only to an experienced XML designer adept
at reading and writing XSLT stylesheets.

In addition to internal XSLT stylesheets, the user may code and provide external
XSLT stylesheets for importing, exporting, or transforming XML documents.

Schema File

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

The XML document, getstarted.xsd, is a schema file used to validate the content of
an XML document. A schema file is a description of how data is structured. Schema
files are about the data rather than the data itself. In XML, the term “valid” means
that a particular XML document is both well-formed (that is, it has correct XML
syntax), and that it is structured and contains content consistent with the constraints
intended by the designer of the document. In this case, the getstarted.xsd file
provides a schema file that would catch errors, such as the entry of a nonnumeric
value for a zip code.

There are cases where validation by schema files is not appropriate. In such
instances, the cobtoxml utility has an option to disable the generation of a schema
file, as described in Schema Options (on page 60). Furthermore, the xmlif library
has options to validate or not validate the content of an XML document, as detailed
in XML VALIDATE FILE (on page 71) and XML VALIDATE TEXT (on page 72).

The schema file for the Windows implementation is not presented here because it,
too, is meaningful only to an experienced XML designer adept at reading and writing
schema files.

Note If the application wishes to use several COBOL data structures as separate
XML documents within the same COBOL application, it is necessary to run the
cobtoxml utility once for each data structure, using an optional parameter to provide
a name for the model files.

Execute the COBOL Program
In the fourth step, you execute and test the program.

The following sections explain how—in several stages—you can build upon the
preceding steps by adding increasingly more functionality to the COBOL data
structure (designed in step 1 of this example), and then compiling and running the
program after each stage.

 Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

 XML Extensions 31
 First Edition

In the first stage, the original program fragment is developed into a working COBOL
program that calls the xmlif library. Next, the XML EXPORT FILE statement is
used to create an XML document from the content of the COBOL data structure.
Finally, the XML document is fully populated with data values. With each iteration,
the program is recompiled and the cobtoxml utility is executed in order to produce
the necessary model files.

Making a Program Skeleton

Step 1 started with just a fragment of the program in order to show the COBOL data
structure and allow program compilation so that it would be possible to examine the
model files generated by the cobtoxml utility.

The interface to the xmlif library, a COBOL-callable subprogram, is simplified by
using some COBOL copy files that perform source text replacement. This means
that the developer may write XML commands, which are much like COBOL
statements, rather than writing CALL statements that directly access entry points in
the xmlif library. The COBOL copy files also define program variables that are used
in conjunction with the XML commands. The copy file, lixmlall.cpy, must be
copied in the Working-Storage Section of the program in order to use XML
Extensions. For more information, see Copy Files (on page 46).

To call the xmlif library, add the following lines (shown in blue) to the COBOL
program fragment from step 1:

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

< insert COBOL PROCEDURE DIVISION logic here >

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

The COPY statement is placed in the Working-Storage Section after the COBOL
data structure.

The Procedure Division header is entered, followed by the paragraph-name, A..

The XML INITIALIZE statement produces a call to the xmlif library. The XML
INITIALIZE statement may be thought of as similar to a COBOL OPEN statement.

Termination logic is placed at the end of the program. The paragraph-name, Z., is
used as a GO TO target for error or other termination conditions.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

32 XML Extensions
 First Edition

The copy file, lixmltrm.cpy, is used to generate a correct termination sequence.
A call to XML TERMINATE (similar to a COBOL CLOSE statement) is in this
copy file. If errors are present, the logic in this copy file will perform a procedure
defined in the copy file, lixmldsp.cpy, which will display any error messages.

The original program fragment is now a working COBOL program that calls the
xmlif library. Its only function is to open and close the interface to the library.

Note Whenever you recompile the source program, you must run the cobtoxml
utility again, even if the data structure has not changed. This is necessary because
the xmlif library must have access to the model files that correctly describe the
COBOL data structures. In order to assure this, the xmlif library ascertains that the
model files were produced from the same object that is being run.

Compile and run the program from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address
runcobol getstarted

The first parameter is the name of the COBOL object program.

If you place the xmlif library in the rmautold directory, as this action assumes, you
do not have to specify the library name on the command line.

Making a Program that Exports an XML Document

The next stage is to create an XML document from the content of a COBOL data
structure. To do this, more logic is added to the original COBOL program. The
added text is shown in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Value 0 Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

 XML EXPORT FILE
 Customer-Address
 "Address"
 "getstarted".
 If Not XML-OK Go To Z.

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

 Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

 XML Extensions 33
 First Edition

The XML EXPORT FILE statement is used to create an XML document from the
content of a COBOL data structure. This statement has three arguments: the data
structure name, the desired filename, and the root name of the model files.

A value of zero is added to the zip code field so that the field has a valid
numeric value.

As you would expect, the data structure name is customer-address. This
name must correspond to the name used when running the cobtoxml utility
(cobtoxml getstarted customer-address address). The desired
filename is specified as address, which will cause a file (containing the XML
document) with the name of address.xml to be generated. Almost all of the XML
statements may set an unsuccessful or warning status value; that is, a status value for
which the condition-name XML-OK is false following the execution of the XML
statement. It is good practice to follow every XML statement with a status test, such
as, If Not XML-OK Go To Z.

The program is again compiled and run from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address address
runcobol getstarted

This time the program creates an XML document in the example file, address.xml.
You may use Microsoft Internet Explorer to examine the document. The resulting
XML document is displayed as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <customer-address>
 <name />
 <address-1 />
 <address-2 />
 <address-3>
 <city />
 <state />
 <zip>0</zip>
 </address-3>
 </customer-address>
</root>

Since the data structure contained only spaces (with the exception of the zip field),
the generated document is almost identical to the example file that was generated by
the cobtoxml utility.

Typical Development Process Example
Chapter 2: Getting Started with XML Extensions

34 XML Extensions
 First Edition

Populating the XML Document with Data Values

The next stage is to populate the COBOL program with data values. Changes to the
program are again shown in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Value 0 Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

 Move "Liant Software Corporation" to Name.
 Move "8911 Capitol of Texas Highway, North"
 to Address-1.
 Move "Suite 4300" to Address-2.
 Move "Austin" to City.
 Move "TX" to State.
 Move 78759 to Zip.

 XML EXPORT FILE
 Customer-Address
 "Address"
 "getstarted".
 If Not XML-OK Go To Z.

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

A series of simple MOVE statements are used to provide content for the data
structure.

Again, the program is compiled and run from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address
runcobol getstarted

 How XML Extensions Locates Files
Chapter 2: Getting Started with XML Extensions

 XML Extensions 35
 First Edition

This time the XML document is fully populated with data values, as shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <customer-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capitol of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 </customer-address>
</root>

Deploy the Application

The final step is to deploy the application. Use the RM/COBOL Combine Program
utility, rmpgmcom, which is included with the RM/COBOL development system, to
strip symbol table information from the COBOL object program. The rmpgmcom
utility combines multiple RM/COBOL object files into a single program file library.
This utility is used primarily to reduce the size of the deployable application.

The following DOS commands illustrate how the rmpgmcom utility may be used to
strip symbol table information:

move /y myprogram.cob tmp.cob

start /w runcobol rmpgmcom A='STRIP,myprogram.cob,tmp.cob'

del tmp.cob

Deploy the xmlif library and the underlying XML parser that it uses along with the
model files that were generated by the cobtoxml utility. Normally, these files are
stored in the same location as the COBOL program files.

For deploying COBOL applications that use XML Extensions, install the XML
Extensions deployment system on each platform that runs the application. You may
do this by using the XML Extensions installation disk.

How XML Extensions Locates Files
Like other RM/COBOL products, XML Extensions uses the following environment
variables to locate various files:

• PATH. The PATH environment variable is used to locate executable programs,
such as cobtoxml. This environment variable should contain a reference to the
RM/COBOL installation directory, which allows the operating system to locate
the cobtoxml utility. For example:

On Windows

set PATH=C:\RMCOBOL

On UNIX

setenv PATH /usr/bin

How XML Extensions Locates Files
Chapter 2: Getting Started with XML Extensions

36 XML Extensions
 First Edition

• RMPATH. The RMPATH environment variable is used by the RM/COBOL
compiler to locate source files. This environment variable should contain a
reference to the RM/COBOL installation directory, which allows the
RM/COBOL compiler to locate copy files that are referenced by COBOL
programs that use XML statements. For example:

On Windows

set RMPATH=C:\RMCOBOL

On UNIX

setenv RMPATH=/usr/rmcobol

• RUNPATH. The RUNPATH environment variable is used by the RM/COBOL
runtime and by the xmlif support module (a 32-bit dynamic link library on
Windows named xmlif.dll, and a shared object on UNIX named xmlif.so) to
locate files at runtime. For example:

On Windows

set RUNPATH=C:\MYFILES

On UNIX

setenv RMPATH=/usr/myfiles

The use of RUNPATH by the xmlif support module is similar but not
completely identical to that used by the RM/COBOL runtime. The RUNPATH
search sequence for XML Extensions has been modified to ignore directory
names that use the Universal Naming Convention (UNC) notation (for example,
"//system/directory"). UNC names are normally used in an application that uses
RM/InfoExpress. XML Extensions cannot access files directly through
RM/InfoExpress. By ignoring UNC directory names, unnecessary time delays
are avoided when performing a RUNPATH search.

For additional information locating files, see the following topics:

• Automatic Search for Files (on page 37)

• File Naming Conventions (on page 38)

• UNIX Character Encoding (on page 41)

• Windows Character Encoding (on page 41)

 File Management
Chapter 3: COBOL Considerations

 XML Extensions 37
 First Edition

Chapter 3: COBOL
Considerations

This chapter provides information specific to using RM/COBOL when developing an
XML-enabled application. The primary topics discussed in this chapter include the
following:

• File management (see the following topic)

• Data conventions (on page 39)

• Copy files (on page 46)

• Miscellaneous considerations (on page 47)

• Limitations (on page 48)

• Optimizations (on page 50)

File Management
The management of data files when using XML Extensions for RM/COBOL is
similar, but not identical, to other RM/COBOL data file management issues. These
issues include the following:

• Automatic search for files (as discussed below)

• File naming conventions (on page 38)

Automatic Search for Files
During development with XML Extensions, remember the following points when
searching for a file not found in the current working directory:

• The RM/COBOL runtime support for resolving leading or subsequent names in
a path name is not provided by XML Extensions when the xmlif library locates
files. That is, XML Extensions does not honor the RESOLVE-LEADING-
NAME or RESOLVE-SUBSEQUENT-NAMES keywords of the RUN-FILES-
ATTR configuration record.

• The RUNPATH environment variable is searched to locate the XML model
files, as necessary. XML model files, such as template files (modelname.xtl)

File Management
Chapter 3: COBOL Considerations

38 XML Extensions
 First Edition

and internal XSLT stylesheet files (modelname.xsl), are produced when the
cobtoxml utility processes the symbol table of a previously compiled
RM/COBOL object file.

• If the RUNPATH environment variable contains UNC references (directory
names beginning with “//” or “\\”), the xmlif library will skip those names.
UNC references typically refer to foreign file systems that are accessed through
RM/InfoExpress. These names are skipped in order to avoid server performance
degradation.

• The RUNPATH environment variable is also searched to locate input XML data
document files and all external XSLT stylesheet files.

For more information, see Model Files (on page 28) and Referencing XML Model
Files (on page 61).

File Naming Conventions
File extensions are either used “as is” or forced to be a predetermined value. The
conventions governing particular filename extensions when using XML Extensions
are described in the topics that follow.

Note A filename extension is never added if the filename is a URL, that is, begins
with “http:” or “https:”.

Model File Naming Conventions

Model files, the XML documents generated by the cobtoxml utility, have
predetermined extensions. The cobtoxml utility generates a set of three (or four)
files from a single filename with different extensions. A set of model files consist of
the following:

• One example file (.xml)

• One template file (.xtl)

• One internal XSLT stylesheet file (.xsl)

• One schema file (.xsd)

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

For a more detailed discussion, see Model Files (on page 28).

The xmlif library uses the model files only as input files. When the xmlif library
references a model file, the appropriate predetermined extension is added, regardless
of the presence or lack of an extension on the model file parameter supplied by the
COBOL program. For more information, see Referencing XML Model Files (on
page 61).

The xmlif library uses the RUNPATH environment variable to locate a model file
(with the appropriate extension added) except when:

• the model filename contains a directory separator character (such as “\”
on Windows);

• the file exists; or

• the filename is a URL (that is, the name begins with “http:” or “https:”).

 Data Conventions
Chapter 3: COBOL Considerations

 XML Extensions 39
 First Edition

External XSLT Stylesheet File Naming Conventions

In addition to the internal XSLT stylesheet that is produced as part of the model file
set, external XSLT stylesheets may be referenced by the xmlif library. If the
filename parameter supplied by the COBOL program does not contain an extension,
the value .xsl is added to the filename.

The xmlif library uses the RUNPATH environment variable to locate an external
XSLT stylesheet file (with the .xsl extension added) except when:

• the external XSLT stylesheet filename parameter supplied by the COBOL
program contains a directory separator character (such as “\” on Windows);

• the file exists; or

• the filename is a URL (the name begins with “http:” or “https:”).

Other Input File Naming Conventions

All other input files referenced by the xmlif library will have a value of .xml added if
the filename parameter supplied by the COBOL program does not contain an
extension. No RUNPATH environment variable search is applied.

Other Output File Naming Conventions

All other output files referenced by the xmlif library will have a value of .xml added
if the filename parameter supplied by the COBOL program does not contain an
extension. No RUNPATH environment variable search is applied.

If the filename supplied by the COBOL program is a URL, then an error is returned
because it is not possible to write directly to a URL.

Data Conventions
In XML Extensions for RM/COBOL, several suppositions have been made about
data transformations between COBOL and XML, including those relating to the
following issues:

• Data representation (on page 40)

• FILLER data items (on page 42)

• Missing intermediate parent names (on page 43)

• Sparse COBOL records (on page 45)

Data Conventions
Chapter 3: COBOL Considerations

40 XML Extensions
 First Edition

Data Representation
COBOL numeric data items are represented in XML as a numeric string. A leading
minus sign is added for negative values. Leading zeros (those appearing to the left
of the decimal point) are removed. Trailing zeros (those appearing to the right of
the decimal point) are likewise removed. If the value is an integer, no decimal point
is present.

COBOL nonnumeric data items are represented as a text string and have trailing
spaces removed (or leading spaces, if the item is described with the JUSTIFIED
phrase). In addition, any embedded XML special characters are represented by
escape sequences; the ampersand (&), less than (<), greater than (>), quote (”), and
apostrophe (‘) characters are examples of such XML special characters.

On Windows platforms, nonnumeric displayable data are normally encoded using
Microsoft’s OEM data format. On output, these data are converted to the standard
Unicode 8-bit transformation format, UTF-8. On input, data is converted to the
OEM data format. If the XML SET ENCODING (on page 85) statement is used to
specify “UTF-8”, then the internal data format is UTF-8. For more information, see
the discussion of Windows character encoding on page 41.

On UNIX platforms, nonnumeric displayable data are normally encoded using a
“local” character encoding that the UNIX system uses. Typically, this may be Latin-
1 or Latin-9. On output, these data are converted to the standard Unicode 8-bit
transformation format, UTF-8. On input, data is converted to the systems internal
format. If the XML SET ENCODING statement is used to specify “UTF-8”, then
the internal data format is UTF-8. For more information on selecting an appropriate
“local” character encoding, refer to the discussion of UNIX character encoding on
page 41.

COBOL and Character Encoding

The xmlif library uses UTF-8 character encoding for exporting XML documents.
(UTF-8 is a byte-oriented encoding form of Unicode that has been designed for ease-
of-use with existing ASCII-based systems.) Imported documents are interpreted
according to the character encoding specified in the XML header, resulting in an
internal Unicode representation of the characters. Because XML is Unicode-based
and RM/COBOL is not, a transcoding is generally required when moving character
data between COBOL and XML. The xmlif library supports various means of
specifying the transcoding that should occur in these cases. The following sections
have related information regarding character encoding considerations.

RM_ENCODING Environment Variable

The RM_ENCODING environment variable is used to specify the “local” character
encoding. This environment variable is ignored if the XML SET ENCODING (on
page 85) statement sets the encoding to UTF-8. The interpretation of this
environment variable also varies between Windows and UNIX character encoding,
as discussed in the next topics.

 Data Conventions
Chapter 3: COBOL Considerations

 XML Extensions 41
 First Edition

Windows Character Encoding

Under Windows, the RM/COBOL runtime uses OEM character encoding.
Therefore, the Windows implementation of XML Extensions also supports OEM
character encoding. The RM_ENCODING environment variable is ignored by the
Windows implementation of XML Extensions.

Note Microsoft originally introduced OEM character encoding for MS-DOS. While
there are multiple OEM code pages in use, the Windows operating system provides
interfaces that allow conversion between the OEM code page in use and Unicode.
XML Extensions does not need to differentiate between code pages.

UNIX Character Encoding

Under UNIX, the RM/COBOL runtime is normally not concerned with the data
encoding used by the underlying operating system. Liant, however, has decided that
Latin-1 (ISO-8859-1) is important for the U.S. and that Latin-9 (ISO-8859-15) is
significant for Western Europe because it contains the Euro currency symbol.

The RM_ENCODING environment variable (on page 40) may specify the built-in
and predefined values of RM_LATIN_1 and RM_LATIN_9. These values are used
to designate that either Latin-1 or Latin-9 is being used as the local character
encoding. Internal translation functions convert between either Latin-1 or Latin-9
(in COBOL memory) and UTF-8 (in the XML document). The value of the
environment variable is case insensitive with hyphen and underscore characters
being optional. For example, “RM_LATIN_9”, “Rm-Latin-9”, and “rmlatin9”
are equivalent.

If the value of the RM_ENCODING environment variable is not specified, then
RM_LATIN_9 is used as the default.

If the value of the RM_ENCODING environment variable is specified with a value
that is not RM_LATIN_1 or RM_LATIN_9, then the value that is passed must be a
name recognized by the iconv library. The iconv library can perform other
conversions. In this case, the spelling may need to be exact (for example, the value
may be case sensitive, and hyphens and underscores would be required). The exact
spelling of the value of the RM_ENCODING environment variable is specific to the
iconv library on the platform in use.

Note Liant does not provide an iconv library. The developer must acquire an
appropriate package.

The value of the RM_ICONV_NAME environment variable, if one is defined, is
used to locate the iconv library (which must be a shared object) on the local system.
For example:

RM_ICONV_NAME=/usr/local/bin/libiconv.so

If the RM_ICONV_NAME environment variable is not set, then the PATH
environment variable is searched for either of the specific names, iconv.so or
libiconv.so (in that order).

Data Conventions
Chapter 3: COBOL Considerations

42 XML Extensions
 First Edition

FILLER Data Items
Unnamed data description entries, referred to as FILLER data items in this section,
may be used to generate XML text without starting a new XML element name.
Specifying named and unnamed elementary data items subordinate to a named group
generates XML mixed content for an element named by the group name.

Numeric FILLER data items will not reliably produce well-formed XML sequences.
For this reason, FILLER data items should always be nonnumeric PIC X or PIC A.

For example, the following COBOL sequence:

01 A.
 02 FILLER Value "ABC".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following well-formed XML sequence:

<a>ABCDEFGHI

FILLER data items, however, are treated differently than named data. All leading
and/or trailing spaces are preserved, so that the length of the data is the same as the
COBOL data length.

In addition, the data is treated as PCDATA. That is, embedded XML special
characters are preserved. This allows short XHTML sequences, such as “break” to
be represented as FILLER (for example,
). XHTML (eXtensible HyperText
Markup Language) is based on HTML 4, but with restrictions such that an XHTML
document is also a well-formed XML document. For example, the following
COBOL sequence:

01 A.
 02 FILLER Value "
".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following well-formed XML sequence:

<a>
DEFGHI

Care must be taken in placing XML special characters in FILLER data items, since
the resultant XML sequence might not be well-formed. For example, the following
COBOL sequence:

01 A.
 02 FILLER Value "<br".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following syntactically malformed XML sequence:

<a><brDEFGHI

 Data Conventions
Chapter 3: COBOL Considerations

 XML Extensions 43
 First Edition

Whenever FILLER data items are present in a data item that is referenced by the
XML EXPORT statements, the resulting document is checked to ensure that the
resultant XML document is well-formed.

Missing Intermediate Parent Names
A capability for handling missing intermediate parent names has been included to
make programs that deal with “flattened” data items, such as Web services, less
complicated.

Sometimes it is possible for XML Extensions to reconstruct missing intermediate
parent names in a COBOL data structure. These missing names may be generated in
either of two ways:

• Unique element names (see the next topic). Use this technique to determine
whether the element name is unique. If this is true, then the intermediate parent
names are generated by the internal XSLT stylesheet model file.

• Unique identifier (on page 44). Use this method to determine whether the
unique identifier (uid) attributes of the element name are provided. If this is
true, then the intermediate parent names may also be generated.

Unique Element Names

Consider the following COBOL data structure:

01 Liant-Address.
 02 Name Pic X(64).
 02 Address-1 Pic X(64).
 02 Address-2 Pic X(64).
 02 Address-3.
 03 City Pic X(32).
 03 State Pic X(2).
 03 Zip Pic 9(5).
 02 Time-Stamp Pic 9(8).

A well-formed and valid XML document that could be imported into this structure is
shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>13263347</time-stamp>
 </liant-address>
</root>

Data Conventions
Chapter 3: COBOL Considerations

44 XML Extensions
 First Edition

A well-formed (but not valid) “flattened” version of an XML document that could
also be imported into this structure is displayed here:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <name>Wild Hair Corporation</name>
 <address-1>8911 Hair Court</address-1>
 <address-2>Sweet 4300</address-2>
 <city>Lostin</city>
 <state>TX</state>
 <zip>70707</zip>
 <time-stamp>99999999</time-stamp>
</root>

Note This last XML document may be used only if the cobtoxml utility does not
generate a schema to validate the document. To prevent the creation of a schema
file, use the -sn (schema none) option on the cobtoxml utility. You may also delete
an existing schema model file (.xsd) or choose not to deploy the schema model file
with the application. Furthermore, under UNIX, the schema file that is produced by
the cobtoxml utility is ignored by the xmlif library.

Unique Identifier

The unique identifier (uid) attribute is generated by an XML EXPORT FILE (on
page 64) or XML EXPORT TEXT (on page 66) statement if XML attributes are
enabled. Attributes may be enabled by using the XML ENABLE ATTRIBUTES
(on page 82) statement before the XML EXPORT statements.

Using the same COBOL data structure illustrated for unique element names
(described in the previous section), a well-formed XML document (generated by
XML EXPORT), which contains attributes—including uids, that could be imported
into this structure is shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP"
 compiledTimeStamp="2003-05-14T10:57:22" cobtoxmlRevision="1.0">
 <liant-address type="nonnumeric" kind="GRP" length="239" offset="4"
 uid="Q1">
 <name type="nonnumeric" kind="ANS" length="64" offset="4"
 uid="Q2">Liant Software Corporation</name>
 <address-1 type="nonnumeric" kind="ANS" length="64" offset="68"
 uid="Q3">8911 Capital of Texas Highway North</address-1>
 <address-2 type="nonnumeric" kind="ANS" length="64" offset="132"
 uid="Q4">Suite 4300</address-2>
 <address-3 type="nonnumeric" kind="GRP" length="39" offset="196"
 uid="Q5">
 <city type="nonnumeric" kind="ANS" length="32" offset="196"
 uid="Q6">Austin</city>
 <state type="nonnumeric" kind="ANS" length="2" offset="228"
 uid="Q7">TX</state>
 <zip type="numeric" kind="NSU" length="5" offset="230" scale="0"
 precision="5" uid="Q8">78759</zip>
 </address-3>
 <time-stamp type="numeric" kind="NSU" length="8" offset="235"
 scale="0" precision="8" uid="Q9">10572765</time-stamp>
 </liant-address>
</root>

A well-formed “flattened” version of an XML document that could also be imported
into this structure is displayed below. The uid attributes were captured from an XML
document (such as the one shown previously) that was generated by an XML

 Data Conventions
Chapter 3: COBOL Considerations

 XML Extensions 45
 First Edition

EXPORT statement. These attributes may be captured by an XSLT stylesheet or
other process, and then added again before the XML IMPORT FILE (on page 67) or
XML IMPORT TEXT (on page 68) statement. This is accomplished by combining
the element name and the uid attribute value to form a new element name. For
example, <name uid=“Q2”>, could be used to generate a new element name
“name.Q2”.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <name uid="Q2">>Wild Hair Corporation</name>
 <address-1 uid="Q3">>8911 Hair Court</address-1>
 <address-2 uid="Q4">>Sweet 4300</address-2>
 <city uid="Q6">Lostin</city>
 <state uid="Q7">TX</state>
 <zip uid="Q8">70707</zip>
 <time-stamp uid="Q9">99999999</time-stamp>
</root>

Note This last XML document may be used only if the cobtoxml utility does not
generate a schema to validate the document. To prevent the creation of a schema
file, use the -sn (schema none) option on the cobtoxml utility. You may also delete
an existing schema model file (.xsd) or choose not to deploy the schema model file
with the application. Furthermore, under UNIX, the schema file that is produced by
the cobtoxml utility is ignored by the xmlif library.

Sparse COBOL Records
An input XML document need not contain all data items defined in the original
structure. This applies to both scalar and array elements. In order to place array
elements correctly, a subscript must be supplied when array elements are not in
canonical order.

For example, the following XML document uses the subscript attribute to position
the array to the second element and then to the fourth element.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1 subscript="2">
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1 subscript="4">
 <x>D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

Copy Files
Chapter 3: COBOL Considerations

46 XML Extensions
 First Edition

If the input XML document might be sparse (that is, missing some elements), then
the schema generated by the cobtoxml utility will cause the document load to fail.
For this reason, if you anticipate using sparse XML documents, you should run the
cobtoxml utility with the -sn (schema none) option. You may also delete an
existing schema model file (.xsd) or choose not to deploy the schema model file with
the application.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

Copy Files
Under most circumstances, you should make use of the copy files that are provided
in XML Extensions for RM/COBOL. Various points to consider when using copy
files with XML Extensions include the following:

• Statement definitions (as discussed in the following topic)

• Displaying status information (as discussed below)

• Application termination (on page 47)

Statement Definitions
The copy file, lixmlall.cpy, is required to define the XML statements and to define
some data-items that are referenced. This copy file should be copied in the Working-
Storage Section of the program. In general, do not modify the contents of this copy
file or the copy files that it copies (lixmdef.cpy and lixmlrpl.cpy). An exception to
this practice is discussed in the following topic.

Displaying Status Information
The copy file, lixmldsp.cpy, is provided as an aid in retrieving and presenting status
information. This copy file defines the Display-Status paragraph and contains the
following text:

Display-Status.
 If Not XML-IsSuccess
 Perform With Test After Until XML-NoMore
 XML GET STATUS-TEXT
 Display XML-StatusText
 End-Perform
 End-If.

The DISPLAY statement, Display XML-StatusText, displays status
information on the terminal display. You may edit this statement, as necessary, for
your application. For example, the definition of the XML-StatusText field in
the lixmldef.cpy copy file may be altered from the default of 80 to change the size of
the buffer used to contain XML status information.

 Miscellaneous Considerations
Chapter 3: COBOL Considerations

 XML Extensions 47
 First Edition

While this logic is normally used in the application termination logic, it may be used
at any time in the program flow. For example:

 XML TRANSFORM FILE "A" "B" "C".
 Perform Display-Status.

Application Termination
The copy file, lixmltrm.cpy, provides an orderly way to shut down an application.
This copy file contains the following text:

 Display "Status: " XML-Status.
 Perform Display-Status.
 XML TERMINATE.
 Perform Display-Status.

The first line may be modified or removed, as you choose. The first PERFORM
statement displays any pending status messages (from a previous XML statement).
The XML TERMINATE statement shuts down XML Extensions. The second
PERFORM statement displays any status from the XML TERMINATE operation.

The following logic is sufficient to successfully terminate XML Extensions:

Z.
Copy "lixmltrm.cpy".
 Stop Run.
Copy "lixmldsp.cpy".

The Z. paragraph-name is where the exit logic begins. The flow of execution may
reach here by falling through from the previous paragraph or as the result of a
program branch. The STOP RUN statement is used to prevent the application from
falling through to the Display-Status paragraph. An EXIT PROGRAM or GOBACK
statement also may be used, if appropriate.

Miscellaneous Considerations
This section describes a number of items related to using XML Extensions with
RM/COBOL, including the following:

• Anonymous COBOL data structures (on page 48)

• Relaxed time stamp checking (on page 48)

Limitations
Chapter 3: COBOL Considerations

48 XML Extensions
 First Edition

Anonymous COBOL Data Structures
XML Extensions now supports the use of an anonymous COBOL data structure
when exporting and importing documents. An anonymous data structure is any data
area that is the same size or larger than the data structure indicated by the template
file. This means that exporting or importing can be done to Linkage Section data
items that are based on either arguments passed to a called program or a pointer
using the SET statement (for example, into allocated memory). Importing and
exporting can also occur with data items having the external attribute. (An external
attribute is the attribute of a data item obtained by specification of the EXTERNAL
clause in the data description entry of the data item or of a data item to which the
subject data item is subordinate.)

Relaxed Time Stamp Checking
Time stamp checking is used to guarantee that the correct model files are referenced
in the XML import and export statements. (These statements are described in the
topic, Document Processing Statements on page 64). In the first release of XML
Extensions, it was necessary for the compilation time stamp in the object program to
match the cobtoxml time stamp in the template file. However, the program may now
be recompiled without running the cobtoxml utility. It is necessary to run cobtoxml
only when the relevant data structure(s) are changed. Therefore, it is the
programmer’s responsibility to specify the correct and current model file. Specifying
an incorrect or non-current model file may result in the wrong data being exported
or imported.

Limitations
This section describes the limitations of XML Extensions for RM/COBOL and the
way in which those limitations affect the development of an XML-enabled
application. The topics discussed in this context include:

• Data items (data structures), as discussed below

• Edited data items (on page 49)

• Wide and narrow characters (on page 49)

• Data item size (on page 49)

• OCCURS restrictions (on page 49)

• Reading, writing, and the Internet (on page 49)

Data Items (Data Structures)

Data items that are passed to XML Extensions must be in memory that is local to the
COBOL program. Therefore, EXTERNAL data items or data items in the Linkage
Section may not be used for import or export operations.

The import and export statements operate on a single COBOL data item. This data
item is the second command line parameter when using the cobtoxml utility. As you
would expect, this data item may be (and usually will be) a group item. The COBOL
program must move all necessary data to the selected data item before using the

 Limitations
Chapter 3: COBOL Considerations

 XML Extensions 49
 First Edition

XML EXPORT FILE (on page 64) or XML EXPORT TEXT (on page 66)
statements and retrieve data from the data item after using the XML IMPORT FILE
(on page 67) or XML IMPORT TEXT (on page 68) statement.

The referenced data item—and any items contained within it, if it is a group item—
has the following limitations:

1. REDEFINES and RENAMES clauses are not allowed.

2. FILLER data items must be nonnumeric.

3. The data item must be the same size or larger than the data item specified when
building the model files with the cobtoxml utility, but it is not required to be the
same data item. For additional information, see Anonymous COBOL Data
Structures (on page 48).

Edited Data Items
Numeric edited, alphabetic edited, and alphanumeric edited data items are allowed.
The data items are represented in an XML document in the same format as the data
items would exist in COBOL internal storage. That is, no editing or de-editing
operations are performed for edited data items during import from XML or export to
XML. Leading and trailing spaces are preserved.

Wide and Narrow Characters
XML was developed to use wide (16-bit) Unicode characters as its natural mode.
RM/COBOL uses narrow (8-bit) ASCII characters. All XML data that is generated
by XML Extensions is represented in UTF-8 format, which is essentially ASCII with
extensions for representing 16-bit and larger characters and is compatible with
Unicode. (UTF-8 is a form of Unicode.)

Data Item Size

By its nature, XML has no limits on data item size. COBOL does have size
limitations for its data items. Many XML documents have been standardized and
such standards include limitations on data items, but the COBOL program must still
be written to deal with data item size constraints.

OCCURS Restrictions

Although, XML has no limits on the number of occurrences of a data item, COBOL
does have such occurrence limits. As with data item size, the COBOL program must
deal with this difference.

Reading, Writing, and the Internet

It is possible to read any XML document (including XML model files) from the
Internet via a URL. However, it is not possible to write or export an XML document
directly to the Internet via a URL.

Optimizations
Chapter 3: COBOL Considerations

50 XML Extensions
 First Edition

Optimizations
Some optimizations have been added to the xmlif library to improve performance
and reduce the size of the generated documents. Refer also to Chapter 6: xmlif
Library Reference (on page 63) for more information.

Occurs Depending
As expected, on output, the XML export statements will limit the number of
occurrences of a group to the value of the DEPENDING variable. Additional
occurrences may be omitted if they contain no data. For more information, see
Empty Occurrences (on page 50).

On input, the XML import statements will store the value of the DEPENDING
variable. The XML import statements will also store all occurrences in the document
(up to the maximum occurrence limit), regardless of the value of the DEPENDING
variable. However, if a schema file is generated by the cobtoxml utility, the schema
file will report an error if not all of the elements specified by the DEPENDING
variable are present.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

Empty Occurrences

On output, the XML EXPORT FILE (on page 64) or XML EXPORT TEXT
(on page 66) statements recognize occurrences within a group that contain no
information. Specifically, an empty data item is a string that contains either all
spaces or zero characters, or a number that contains a zero value.

If all of the elementary data items in an occurrence of a group are empty and if the
occurrence is not the first occurrence, then no data is generated for that occurrence.
This prevents the repetition of occurrences that contain no information.

On input operations with XML IMPORT FILE (on page 67) or XML IMPORT
TEXT (on page 68) statements, a schema file may detect an error if not all expected
occurrences of an item are present. In order to prevent this, you may enable all
occurrences using the XML ENABLE ALL-OCCURRENCES (on page 81)
statement, when generating the document (with XML export operations).

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

 Optimizations
Chapter 3: COBOL Considerations

 XML Extensions 51
 First Edition

Cached XML Documents
Since XSLT stylesheet, template, and schema documents are largely invariant,
performance can usually be improved by caching previously loaded versions of these
documents in memory.

For some applications, it may be useful to disable caching. If XSLT stylesheet,
template, or schema files are generated or replaced in real time, then the cached
documents would need to be replaced as well.

If system resource availability becomes critical because a large number of documents
are occupying virtual memory, then caching may cause system degradation.

Several XML statements may be used to enable or disable document caching. These
statements include:

• XML ENABLE CACHE (on page 83)

• XML DISABLE CACHE (on page 82)

• XML FLUSH CACHE (on page 83)

By default, caching is enabled.

Optimizations
Chapter 3: COBOL Considerations

52 XML Extensions
 First Edition

 XML and Character Encoding
Chapter 4: XML Considerations

 XML Extensions 53
 First Edition

Chapter 4: XML Considerations

This chapter provides information specific to using XML when using XML
Extensions with RM/COBOL to develop an XML-enabled application. The primary
topics discussed in this chapter include:

• XML and character encoding (as discussed in the following topic)

• Document type definition support (as discussed below)

• XSLT stylesheet files (on page 55)

• Schema files (on page 55)

XML and Character Encoding
For internal representation, XML documents use the Unicode character encoding
standard. Unicode represents characters as 16-bit items. For external representation,
most XML documents are encoded using the standard Unicode transformation
formats, UTF-8 or UTF-16. XML documents created by XML Extensions are
always encoded for external presentation using the UTF-8 representation. UTF-8
is a method of encoding Unicode where most displayable characters are represented
in 8-bits. Characters in the range of 0x20 to 0x7e (the normal displayable character
set) are indistinguishable from standard ASCII.

Document Type Definition Support
It is possible to specify a document type definition (DTD) when exporting XML
documents. A DTD can be used to define entity names that are referred to by the
values of FILLER data items in the COBOL data structure being exported. For
example, if the COBOL data structure is generated using the webtocobol utility from
a page layout created by Microsoft Front Page, one or more FILLER data items may
have entity references for non-breaking spaces (). The nbsp entity is not
among the predefined XML entities, which are presumed to be declared in all XML
documents. (The predefined XML entities are lt, gt, amp, apos, and quot.) If the
COBOL data structure containing the nbsp entity reference is exported, it will not be
valid XML unless a DTD is provided that causes the nbsp entity to be declared.
XML entities can only be declared within a DTD.

Document Type Definition Support
Chapter 4: XML Considerations

54 XML Extensions
 First Edition

The XML EXPORT FILE (on page 64) and XML EXPORT TEXT (on page 66)
statements allow specifying a document prefix parameter. The document prefix
parameter provides a string, which is exported between the XML header and the first
element of the document. This string may specify a DTD when one is needed. The
DTD may declare entities in the internal subset directly in the provided DTD, or it
may specify an external subset through a URL reference. For example, the nbsp
entity is declared in the HTML markup declarations, which can be accessed with a
prefix of the form:

78 HTML-Entity-Defs VALUE
 "<!DOCTYPE root [" &
 "<!ENTITY % HTMLlat1 PUBLIC " &
 """-//W3C//ENTITIES Latin 1 for XHTML//EN"" " &
 """http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent""" &
 "> %HTMLlat1; " &
 "<!ENTITY % HTMLsymbol PUBLIC " &
 """-//W3C//ENTITIES Symbols for XHTML//EN"" " &
 """http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent""" &
 "> %HTMLsymbol; " &
 "<!ENTITY % HTMLspecial PUBLIC " &
 """-//W3C//ENTITIES Special for XHTML//EN"" " &
 """http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent""" &
 "> %HTMLspecial;]>".

In contrast, Example C: Export File with Document Prefix (on page 167),
demonstrates using an internal subset to declare entities in the DTD itself.

When a document prefix is specified in the XML export statements, XML
Extensions will cause the document to be loaded after it is created. This load of the
document will verify that the created document is well-formed.

Note In the Windows implementation, the Microsoft MSXML parser 4.0 ignores the
DTD when validating an XML document against a schema file. Any entities
declared in the DTD will not be defined and cannot be referenced. If any entities
other than the predefined XML entities are referenced, the document is not well-
formed and will fail to load, much less validate. Any XML document that contains
entity references, other than the predefined XML entities, must be transformed with
an XSLT stylesheet prior to validation against a schema file when using the
Microsoft MSXML parser 4.0. For more information, see Schema Files (on
page 55).

A DTD is also required in an external XSLT stylesheet that uses entity references
other than the predefined XML entity references. Using non-predefined entity
references commonly occurs when the XSLT stylesheet is generated by tools for
generating transformations from XML to HTML or XHTML, that is, to generate a
page to be displayed by a browser. Often the tool will not add the DTD. A DTD
that defines the entities must be added after the XSLT stylesheet is generated and
before it is used by XML Extensions. Here is an example of such a DTD for
XHTML entities:

<!DOCTYPE root [
 <!ENTITY % HTMLlat1 PUBLIC
 "-//W3C//ENTITIES Latin 1 for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent"> %HTMLlat1;
 <!ENTITY % HTMLsymbol PUBLIC
 "-//W3C//ENTITIES Symbols for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent"> %HTMLsymbol;
 <!ENTITY % HTMLspecial PUBLIC
 "-//W3C//ENTITIES Special for XHTML//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent"> %HTMLspecial;]>

 XSLT Stylesheet Files
Chapter 4: XML Considerations

 XML Extensions 55
 First Edition

XSLT Stylesheet Files
XSLT stylesheet files are used to transform an XML document into another XML
document or another type of document—not necessarily in XML format; for
example, HTML, PDF, RTF, and so forth. An XSLT stylesheet is an XML
document. The xmlif library has a specific statement, XML TRANSFORM FILE
(on page 70), which is used for performing XSLT stylesheet transformations. In
addition, the import and export statements, XML IMPORT FILE (on page 67),
XML IMPORT TEXT (on page 68), XML EXPORT FILE (on page 64), and
XML EXPORT TEXT (on page 66), allow an external XSLT stylesheet to be
specified as a parameter, making it possible to transform a document while importing
or exporting XML documents. One of the model files generated by the cobtoxml
utility is the internal XSLT stylesheet, which is applied automatically during import
of an XML document into COBOL. The internal XSLT stylesheet is applied after
the external XSLT stylesheet where the XML IMPORT FILE/TEXT statement
specifies the optional external XSLT stylesheet parameter.

The format of XML documents generated by XML Extensions matches the form of
the specified COBOL data structure. Often the COBOL developer must process
XML documents that are defined by an external source. It is likely that the format of
the COBOL-generated XML document will not conform to the document format that
meets the external requirements.

The recommended course of action is to use an external XSLT stylesheet file to
transform between the COBOL-generated XML document format and the expected
document format. XSLT stylesheets are extremely powerful. You may wish to use
an XSLT stylesheet editing tool to design your XSLT stylesheets (for example,
Microsoft’s BizTalk Mapper, which is part of BizTalk Server 2000).

Keep in mind that XSLT stylesheets are unidirectional. Therefore, it is possible
that you will have to design two external XSLT stylesheets for each COBOL data
structure: one for input, which converts the required document format to COBOL
format, and one for output, which converts COBOL format to the required
external format.

Schema Files
Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

Schema files are used to assure that the data within an XML document conforms to
expected values. For example, an element that contains a zip code may be restricted
to a numeric integer. Schema files can also limit the length or number of occurrences
of an element as well as guarantee that elements occur in the expected order.

A schema file may be applied to an XML document using any of the following
methods:

• The entire schema file may reside within the document. (This situation
is rare.)

• A link to the schema file may be placed in the document. (This technique is
more common.)

• A process that loads a given XML document may also load a schema file that
controls the document.

Schema Files
Chapter 4: XML Considerations

56 XML Extensions
 First Edition

It is this third approach that is used by the xmlif library in XML Extensions for
RM/COBOL. The cobtoxml utility optionally generates a schema file as one of the
model files. This schema file is used to validate XML documents that are loaded by
the XML IMPORT FILE or XML IMPORT TEXT statements. To skip this
validation, specify the -sn (schema none) option on the cobtoxml utility to disable
the generation of a schema file or simply delete the schema file (.xsd).

Note In the Windows implementation, the Microsoft MSXML parser 4.0 ignores the
document type definition (DTD) when validating an XML document against a
schema file. Any entities declared in the DTD will not be defined and cannot be
referenced. If any entities other than the predefined XML entities are referenced, the
document is not well-formed and will fail to load, much less validate. Thus, when a
DTD is generated to define entities in an exported document, either the cobtoxml
option to suppress generation of the schema file should be specified if the exported
document is also imported “as is” or the exported document should be transformed
prior to being imported so as not to contain entity references. See Document Type
Definition Support (on page 53) for information on generating a DTD to define
entity references.

 What is the cobtoxml Utility?
Chapter 5: cobtoxml Utility Reference

 XML Extensions 57
 First Edition

Chapter 5: cobtoxml Utility
Reference

This chapter describes the cobtoxml utility used by XML Extensions for
RM/COBOL and the XML document files, known as model files, that are produced
when the cobtoxml utility processes the symbol table of a previously compiled
RM/COBOL object file.

What is the cobtoxml Utility?
The cobtoxml utility is an application program. It processes the symbol table of a
previously compiled RM/COBOL object file and produces a set of XML documents.
These XML documents are called model files and are described in more detail in
Model Files (on page 28) and Referencing XML Model Files (on page 61).

To use the cobtoxml utility, you specify (at a minimum) the name of a COBOL
object file and the name of a COBOL data item within that file. You may use the
cobtoxml utility multiple times against the same object file to process different
data items.

The cobtoxml utility requires that the COBOL object program be compiled with the
RM/COBOL Compile Command Y Option enabled in order to place symbol table
information in the object file. However, since there are no runtime requirements for
the symbol table, the symbol table may be removed once applications are ready to
be deployed.

Note An older version of the cobtoxml utility may be unable to handle an object
produced by a newer RM/COBOL compiler. This can occur because the COBOL
object version that is produced by the newer compiler contains features that are
unsupported and unavailable in the earlier release of XML Extensions. In such
cases, the RM/COBOL Compile Command Z Option may allow you to force the
compiler to produce an object acceptable to cobtoxml.

Command Line Interface
Chapter 5: cobtoxml Utility Reference

58 XML Extensions
 First Edition

Command Line Interface
The cobtoxml utility (cobtoxml.exe on Windows and cobtoxml on UNIX) is
executed with the following command:

cobtoxml cob-file-name data-item-name [model-file-name] [options]

cob-file-name, the first positional parameter, is the name of the RM/COBOL object
file. The RM/COBOL source program must have been compiled with the symbol
table option specified by the RM/COBOL Compile Command Y Option. The value
of this name is treated as case sensitive. If this parameter contains an extension, it
will be used as entered. If the extension is omitted, .cob will be added. No directory
search (on the PATH or RMPATH environment variables) is performed.

data-item-name, the second positional parameter, is the name of the selected data
item within a COBOL program. While the most common use may be as the name of
a group, the data item need not be a record name (01 level). The value entered for
this parameter is not case sensitive. The data-name must be defined exactly once in
the program file. In the case of program libraries, all programs are searched.

model-file-name, the optional third parameter, is the base name used to create a set of
XML documents, called model files, having a single filename with different,
predetermined extensions (.xml, .xtl, .xsl, and .xsd). The value of this name is
treated as case sensitive. If this parameter already contains an extension, it will be
ignored.

options represents command line options, which are described in Command Line
Options (on page 59). Although this parameter is shown as the last parameter, it may
occur anywhere after cobtoxml on the command line. Additionally, options may be
specified multiple times. Option letters are case insensitive; that is, the following
combinations are equivalent: “-bc”, “-bC”, “-Bc” and “-BC”. The options parameter
is divided into three categories: banner, name, and schema.

Note Under Windows, when no command line parameters are entered, the following
cobtoxml.exe usage message is displayed:

RM/COBOL cobtoxml utility - Version nn.nn.nn for 32-Bit Windows.
Copyright (c) 2001-2nnn by Liant Software Corp. All rights reserved.

Usage: cobtoxml cob-file-name data-item-name model-file-name
 cob-file-name: case-sensitive name of the RM/COBOL object file
 data-item-name: case-insensitive name of the COBOL data item
 model-file-name: optional case-sensitive name for the XML file(s)
 options: a sequence of option letters preceded by a hyphen

 Command Line Interface
Chapter 5: cobtoxml Utility Reference

 XML Extensions 59
 First Edition

Command Line Options
The following options are available on the cobtoxml command line: banner, name,
and schema.

Banner Options

The banner options control the amount of information displayed during the
execution of the cobtoxml utility. A banner option is created by entering a hyphen
character (-) followed by the letter “b” and then by one of the following letters: “c”,
“n”, or “v”.

The following table lists several examples of supported banner option combinations:

Option Description

-bc Displays the Liant copyright message only. (This is the default.)
-bn Displays no banner information.
-bv Displays verbose banner.

Banner options do not affect the display of any error or status messages.

Name Options

The name options control the format of tag names in XML documents. An XML tag
is generated for each data-name in the specified COBOL data structure. Since
COBOL data-names are case insensitive and XML tag names are case sensitive, it is
necessary to have rules for generating XML tag names. By default, the cobtoxml
utility generates XML tag names in lowercase.

A name option is generated by entering a hyphen character (-) followed by the letter
“n” and then by one or more of the following letters (in any order): “a”, “f”, “h”, “l”,
“m”, “p”, and “u”.

Command Line Interface
Chapter 5: cobtoxml Utility Reference

60 XML Extensions
 First Edition

Option letters that may follow the letter “-n” have the following meaning:

Option Description

a (After parent) Ensures that each tag name is unique. If a COBOL data-
name within the specified group item is not unique in the
COBOL program file, the tag name is formed by recursively
adding the sequence “.of.” and the parent name after the
data-name. For example, if there were a variable named “B”
in a COBOL data structure named “A”, the tag name would
be “B.of.A”. This is done until the tag name becomes
unique.

f (First) Specifies that the first letter of the tag name be capitalized.
h (Hyphen out) Removes hyphen characters in the COBOL data-name from

the tag name.
l (Lowercase) Unless overridden by the “f” or “m” options, specifies that

all characters in the tag name be represented in lowercase.
m (Mixed case) Specifies that the first letter after a hyphen character in the

COBOL data-name be represented as uppercase in the
generated tag name.

p (Prefix out) Removes all characters in the COBOL data-name up to and
including the first hyphen. This option is useful where all
data items in a structure begin with the same sequence.
However, use this option with care. If the item name
contains no hyphen characters, then the generated tag name
will be empty.

u (Uppercase) Specifies that all characters in the COBOL data-name be
represented as uppercase in the generated tag name.

Schema Options

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

By default, a schema file is generated that will be used to validate an XML
document. The schema file has the same base name as the other XML model files
and has an extension of .xsd. Four formats of schema files are defined: XDR
(BizTalk), XDR, Schema, and None.

A schema option is generated by entering a hyphen character (-) followed by the
letter “s” and then by one of the following letters: “b”, “d”, “s”, or “n”.

Supported schema options include the following:

Option Description

-sb The generated schema file complies with the older XDR (XML Data
Reduced) schema format, with additions that make it compatible with
BizTalk Mapper.

-sd The generated schema file complies with the older XDR (XML Data
Reduced) schema format.

-ss The generated schema file complies with the current schema
definition. (This is the default.)

-sn No schema file is generated.

 Referencing XML Model Files
Chapter 5: cobtoxml Utility Reference

 XML Extensions 61
 First Edition

Referencing XML Model Files
XML model files (on page 28) may be referenced by the COBOL application by
means of a traditional path name or by an Internet address. Examples of references
to XML model files are shown in the following table:

Filename Type of Referencing

c:\myfiles\myapp.xml Simple path name
\\mysystem\myfiles\myapp.xml UNC (Universal Naming Convention)
http://myserver/myfiles/myapp.xml URL (Universal Resource Locator)

The cobtoxml utility generates up to four XML documents (called model files) for
each data structure that is specified. Three of these files are used internally by the
COBOL application while one is provided for information purposes only. These
XML documents include the following:

• Example file. The example file (a file having the .xml extension) is an XML
document that does not contain any text values. It is identical to the template
file, except that the COBOL attributes have been removed. The xmlif library
does not use the example file. The example file is provided as a reference to
assist the developer in designing any external XSLT stylesheets that may
be needed.

• Template file. The template file (a file having the .xtl extension) is an XML
document that does not contain any text values. Each element contains several
COBOL-like attributes that describe the data. The xmlif library uses the
template file to generate an XML document.

• Internal XSLT stylesheet file. The internal stylesheet (a file having the .xsl
extension) is an XSLT stylesheet. It adds COBOL-like attributes to an existing
XML document. The xmlif library automatically applies the internal XSLT
stylesheet when importing an XML document into COBOL. The internal XSLT
stylesheet is applied after the external XSLT stylesheet where the XML
IMPORT FILE/TEXT statement specifies the optional external XSLT stylesheet
parameter.

• Schema file. The xmlif library uses the schema file (a file having the .xsd
extension), if present, to validate the content of an imported XML data
document. If the schema file is absent, no validation is performed.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

Referencing XML Model Files
Chapter 5: cobtoxml Utility Reference

62 XML Extensions
 First Edition

 What is the xmlif Library?
Chapter 6: xmlif Library Reference

 XML Extensions 63
 First Edition

Chapter 6: xmlif Library
Reference

This chapter describes the xmlif library, which is used by XML Extensions for
RM/COBOL at runtime.

What is the xmlif Library?
The xmlif library is a 32-bit dynamic link library on Windows (xmlif.dll) or a shared
object on UNIX (xmlif.so) that is callable from RM/COBOL object programs. It
provides facilities to process, manipulate, and validate XML documents.

On Windows, the xmlif library uses the Microsoft MSXML 4.0 parser; on UNIX,
the xmlif library uses the XML parser (libxml) and the XSLT transformation
processor (libxslt) from the C libraries for the Gnome project. For additional
information, see Installing XML Extensions (on page 11) and the “Deployment”
section in XML Extensions Package (on page 10).

The statements used by the xmlif library are grouped into the following categories:

• Document Processing Statements (on page 64). These statements are used to
process, manipulate, or validate XML documents.

• Document Management Statements (on page 72). These statements are used
to copy an XML document from an external file to an internal text string and
vice versa.

• Directory Management Statements (on page 75). These statements are useful
when implementing directory-polling schemes.

• State Management Statements (on page 78). These statements are used to
control the state or condition of the xmlif library.

Note Each statement contains zero or more positional parameters. These parameters
are used to specify such items as the source or destination data item, source or
destination XML document, model files produced by the cobtoxml utility, and flags.
In some statements, trailing positional parameters are optional and may be omitted,
as specified in the statement descriptions in this chapter.

Document Processing Statements
Chapter 6: xmlif Library Reference

64 XML Extensions
 First Edition

Document Processing Statements
Document processing statements are used to process, manipulate, or validate XML
documents. They are grouped by function as follows:

• Export statements. These statements are available to convert the content of
a COBOL data item to an XML document that may be represented as an
external file or an internal text string. See XML EXPORT FILE (on page 64)
and XML EXPORT TEXT (on page 66).

• Import statements. These statements are available to convert the content of an
XML document—either an external file or an internal text string—to a COBOL
data item. See XML IMPORT FILE (on page 67) and XML IMPORT TEXT
(on page 68).

• Test and validation statements. These statements are available to verify
that an XML document—either an external file or an internal text string—is
well-formed or valid. They include:

- XML TEST WELLFORMED-FILE (on page 69)

- XML TEST WELLFORMED-TEXT (on page 70)

- XML VALIDATE FILE (on page 71)

- XML VALIDATE TEXT (on page 72)

• Transformation statement. Lastly, XML TRANSFORM FILE (on page 70)
transforms an XML document in an external file into a new external file by
applying an XSLT stylesheet. The resulting file may have almost any form,
including XML, HTML, PDF, RTF, and so forth.

XML EXPORT FILE
This statement has the following parameters:

Parameter Description

DataItem The name of the COBOL data item that contains data to
be exported.

DocumentName The name of a file that will receive the exported XML
document.

ModelFileName The name of the set of XML files produced by the cobtoxml
utility that describe the COBOL data item. For more
information, see Model Files (on page 28).

[StyleSheetName] Optional. The name of an external XSLT stylesheet that will
be used to transform the generated XML document before it
is stored.

[DocumentPrefix] Optional. A literal or the name of a COBOL data item that
contains a document prefix; for example, a document type
definition (DTD), which is to be output between the XML
header and the first element of the exported XML document.
For more information, see Document Type Definition
Support (on page 53).

 Document Processing Statements
Chapter 6: xmlif Library Reference

 XML Extensions 65
 First Edition

Description

The XML EXPORT FILE statement exports the content of the COBOL data item
indicated by the DataItem parameter. The content of the data item is converted to an
XML document using one or more files indicated by the ModelFileName parameter.
The output of this conversion is to the file specified by the DocumentName
parameter. If the optional StyleSheetName parameter is present, the external XSLT
stylesheet is used to transform the document after it has been generated but before it
is stored in the data file.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Examples

Without an External XSLT Stylesheet:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

Without an External XSLT Stylesheet and With a Document Prefix:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE"
 OMITTED *> no stylesheet
 "<!DOCTYPE root [" &
 "<!ENTITY CURRENCY ""$"">" &
 "]>".
IF NOT XML-OK GO TO Z.

Document Processing Statements
Chapter 6: xmlif Library Reference

66 XML Extensions
 First Edition

XML EXPORT TEXT
This statement has the following parameters:

Parameter Description

DataItem The name of the COBOL data item that contains data to
be exported.

DocumentPointer The name of a COBOL pointer data item that will point to
the generated XML document as a text string after
successful completion of the statement.

ModelFileName The name of the set of XML files produced by the cobtoxml
utility that describe the COBOL data item. For more
information, see Model Files (on page 28).

[StyleSheetName] Optional. The name of an external XSLT stylesheet that will
be used to transform the generated XML document before it
is stored.

[DocumentPrefix] Optional. A literal or the name of a COBOL data item that
contains a document prefix, for example, a document type
definition (DTD), which is to be output between the XML
header and the first element of the exported XML document.
For more information, see Document Type Definition
Support (on page 53).

Description

The XML EXPORT TEXT statement exports the content of the COBOL data item
indicated by the DataItem parameter. The content of the data item is converted to
an XML document using one or more files indicated by the ModelFileName
parameter, and then it is output as a text string. The address of the text string is
placed in the COBOL pointer data item specified by the DocumentPointer parameter.
If the optional StyleSheetName parameter is present, the external XSLT stylesheet is
used to transform the document after it has been generated but before it is stored as a
text string.

A block of memory is allocated to hold the generated XML document. The
descriptor of this memory block overrides any existing address descriptor in the
COBOL pointer data item. The COBOL application is responsible for releasing this
memory when it is no longer needed by using XML FREE TEXT (on page 73).

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Examples

Without an External XSLT Stylesheet:

XML EXPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

 Document Processing Statements
Chapter 6: xmlif Library Reference

 XML Extensions 67
 First Edition

With an External XSLT Stylesheet:

XML EXPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

Without an External XSLT Stylesheet and With a Document Prefix:

XML EXPORT TEXT
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE"
 OMITTED *> no stylesheet
 "<!DOCTYPE root [" &
 "<!ENTITY CURRENCY ""$"">" &
 "]>".
IF NOT XML-OK GO TO Z.

XML IMPORT FILE

This statement has the following parameters:

Parameter Description

DataItem The name of the COBOL data item that is to receive the
imported data.

DocumentName The name of the file that contains the XML document to be
imported.

ModelFileName The name of the set of XML files produced by the cobtoxml
utility that describe the COBOL data item. For more
information, see Model Files (on page 28).

[StyleSheetName] Optional. The name of an external XSLT stylesheet that will
be used to transform the imported XML document before it
is stored in the data item.

Description

The XML IMPORT FILE statement imports the content of the file indicated by the
DocumentName parameter. If the optional StyleSheetName parameter is present, the
external XSLT stylesheet is first used to transform the document. The content of the
XML document is converted to COBOL format using one or more files specified by
the ModelFileName parameter, including the internal XSLT stylesheet, and then is
stored in the data item specified by the DataItem parameter.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Document Processing Statements
Chapter 6: xmlif Library Reference

68 XML Extensions
 First Edition

Examples

Without an External XSLT Stylesheet:

XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML IMPORT TEXT
This statement has the following parameters:

Parameter Description

DataItem The name of the COBOL data item that is to receive the
imported data.

DocumentPointer The name of a COBOL pointer data item that points to an
XML document that is stored in memory as a text string.

ModelFileName The name of the set of XML files produced by the cobtoxml
utility that describe the COBOL data item. For more
information, see Model Files (on page 28).

[StyleSheetName] Optional. The name of an external XSLT stylesheet that will
be used to transform the imported XML document before it
is stored in the data item.

Description

The XML IMPORT TEXT statement imports the content of the text string indicated
by the DocumentPointer parameter. If the optional StyleSheetName parameter is
present, the external XSLT stylesheet is used to transform the document before being
converted to COBOL data format. The content of the XML document is converted
to COBOL format using one or more files specified by the ModelFileName
parameter, including the internal XSLT stylesheet, and then is stored in the data item
specified by the DataItem parameter.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

 Document Processing Statements
Chapter 6: xmlif Library Reference

 XML Extensions 69
 First Edition

Examples

Without an External XSLT Stylesheet:

XML IMPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With an External XSLT Stylesheet:

XML IMPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-FILE
This statement has the following parameter:

Parameter Description

DocumentName The name of the file that contains the XML document to
be tested.

Description

The XML TEST WELLFORMED-FILE statement tests the XML document
specified by the DocumentName parameter to see if it is well-formed. However, the
content of the document may or may not be valid.

A well-formed XML document is one that conforms to XML syntax rules. A valid
XML document has content that conforms to rules specified by an XML schema file.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

XML TEST WELLFORMED-FILE
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

Document Processing Statements
Chapter 6: xmlif Library Reference

70 XML Extensions
 First Edition

XML TEST WELLFORMED-TEXT
This statement has the following parameter:

Parameter Description

DocumentPointer The name of a COBOL pointer data item that points to an
XML document that is stored in memory as a text string.

Description

The XML TEST WELLFORMED-TEXT statement tests the XML document
specified by the DocumentPointer parameter to see if it is well-formed. However,
the content of the document may or may not be valid.

A well-formed XML document is one that conforms to XML syntax rules. A valid
XML document has content that conforms to rules specified by an XML schema file.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

XML TEST WELLFORMED-TEXT
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML TRANSFORM FILE
This statement has the following parameters:

Parameter Description

InputDocumentName The filename of the document to transform (the input
document).

StyleSheetName The filename of the XSLT stylesheet used for the
transformation.

OutputDocumentName The filename of the transformed document (the output
document).

Description

The XML TRANSFORM FILE statement transforms the XML document specified
by the InputDocumentName parameter using the XSLT stylesheet specified by the
StyleSheetName parameter into a new document specified by the
OutputDocumentName parameter. The new document may or may not be an XML
document depending on the XSLT stylesheet.

Note Specifying the internal XSLT stylesheet, one of the model files (see page 28),
for the StyleSheetName parameter can be used to test the internal XSLT stylesheet

 Document Processing Statements
Chapter 6: xmlif Library Reference

 XML Extensions 71
 First Edition

transform, which is occasionally helpful in debugging problems with importing
documents into COBOL.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

XML TRANSFORM FILE
 "MY-IN-DOCUMENT"
 "MY-STYLESHEET"
 "MY-OUT-DOCUMENT.
IF NOT XML-OK GO TO Z.

XML VALIDATE FILE

This statement has the following parameters:

Parameter Description

DocumentName The name of the file that contains the XML document to be
tested.

SchemaName The name of the schema file that will be used to validate the
XML document specified in DocumentName.

Description

The XML VALIDATE FILE statement tests the XML document specified by the
DocumentName parameter to see if it is well-formed and valid.

A well-formed XML document is one that conforms to XML syntax rules. A valid
XML document has content that conforms to rules specified by an XML schema file.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Note In the Windows implementation of XML Extensions, the Microsoft XML
parser 4.0 ignores the document type definition (DTD) when validating an XML
document against a schema file. Thus, any entities declared in the DTD will not be
defined and cannot be referenced. Any XML document that contains entity
references, other than the predefined XML entities, must be transformed with an
XSLT stylesheet prior to validation against a schema file when using the Microsoft
XML parser 4.0 so that any non-predefined entity references are removed.
Otherwise, the document will fail validation.

Example

XML VALIDATE FILE
 "MY-DOCUMENT"
 "MY-SCHEMA".
IF NOT XML-OK GO TO Z.

Document Management Statements
Chapter 6: xmlif Library Reference

72 XML Extensions
 First Edition

XML VALIDATE TEXT
This statement has the following parameters:

Parameter Description

DocumentPointer The name of a COBOL pointer data item that points to an
XML document that is stored in memory as a text string.

SchemaName The name of the schema file that will be used to validate the
XML document specified in DocumentPointer.

Description

The XML VALIDATE TEXT statement tests the XML document specified by the
DocumentPointer parameter to see if it is well-formed and valid.

A well-formed XML document is one that conforms to XML syntax rules. A valid
XML document has content that conforms to rules specified by an XML schema file.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Note In the Windows implementation of XML Extensions, the Microsoft XML
parser 4.0 ignores the document type definition (DTD) when validating an XML
document against a schema file. Thus, any entities declared in the DTD will not be
defined and cannot be referenced. Any XML document that contains entity
references, other than the predefined XML entities, must be transformed with an
XSLT stylesheet prior to validation against a schema file when using the Microsoft
XML parser 4.0 so that any non-predefined entity references are removed.
Otherwise, the document will fail validation.

Example

XML VALIDATE TEXT
 "MY-DOCUMENT"
 "MY-SCHEMA".
IF NOT XML-OK GO TO Z.

Document Management Statements
A number of statements are available to copy an XML document from an external
file to an internal text string and vice versa. These document management
statements include the following:

• XML FREE TEXT (on page 73)

• XML GET TEXT (on page 73)

• XML PUT TEXT (on page 74)

• XML REMOVE FILE (on page 74)

 Document Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 73
 First Edition

XML FREE TEXT
This statement has the following parameter:

Parameter Description

DocumentPointer The name of a COBOL pointer data item that points to an
XML document.

Description

The XML FREE TEXT statement releases the COBOL memory referred to by the
COBOL pointer data item specified by the DocumentPointer parameter.

Example

XML FREE TEXT
 MY-POINTER
IF NOT XML-OK GO TO Z.

XML GET TEXT
This statement has the following parameters:

Parameter Description

DocumentPointer The COBOL pointer data item that will point to the
in-memory text after successful completion of the statement.

DocumentName The filename of XML document containing the text to load
into memory.

Description

The XML GET TEXT statement copies the content of an XML document from the
file specified by the DocumentName parameter to COBOL memory. A block of
memory is allocated to contain the document. The address and size of the memory
block are returned in the DocumentPointer parameter.

When the program has finished using the in-memory document, a call to XML FREE
TEXT (on page 73) should be made to release the allocated memory.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

XML GET TEXT
 MY-POINTER
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

Document Management Statements
Chapter 6: xmlif Library Reference

74 XML Extensions
 First Edition

XML PUT TEXT
This statement has the following parameters:

Parameter Description

DocumentPointer The COBOL pointer data item that points to the in-memory
text.

DocumentName The filename that will contain the XML document upon
successful completion of the statement.

Description

The XML PUT TEXT statement copies the content of the in-memory XML
document specified by the DocumentPointer parameter to the external file specified
by the DocumentName parameter.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

XML PUT TEXT
 MY-POINTER
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML REMOVE FILE

This statement has the following parameter:

Parameter Description

FileName The name of file to be removed.

Description

The XML REMOVE FILE statement deletes the file specified by the FileName
parameter. If the specified filename does not contain an extension, then .xml is
appended to the name. If the file does not exist, no error is returned.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

XML REMOVE FILE
 MY-FILE-NAME.
IF NOT XML-OK GO TO Z.

 Directory Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 75
 First Edition

Directory Management Statements
This section describes the statements that are useful when implementing directory-
polling schemes:

• XML FIND FILE (on page 76)

• XML GET UNIQUEID (on page 77)

Directory polling, as related to XML documents, allows two or more independent
processes to pass XML documents between the processes. For example, one or
more writer processes may place XML documents in a well-known directory (a
well-known directory is a directory name that is known to all of the interested
processes). Each XML document must have been given a unique name. A reader
process finds, processes, and removes XML documents from the same well-known
directory.

Directory polling may be used to communicate with Microsoft’s BizTalk server and
other message-driven communications systems. It is a technique that may also be
used between various RM/COBOL applications.

The RM/COBOL runtime is not scalable in the traditional sense; however, scalability
can be achieved by using multiple RM/COBOL runtime systems (preferably running
on separate hardware platforms) on the same local area network (LAN). Each of
these separate runtime systems can use directory polling (to a directory that is
available on the network) as a means of improving throughput.

It is not feasible to use multiple reader processes on the same directory because the
XML FIND FILE statement, invoked from separate processes, could find the same
file. For the Windows implementation, a sample C language program (DirSplit) is
provided that will poll a single directory and distribute files to subdirectories as they
arrive. This will allow separate COBOL programs each to process a separate
subdirectory.

Note The following problems have been encountered on Windows systems running
the older FAT32 file system:

• When a program is adding XML document files to a directory concurrently with
another program that is moving XML document files to different directory using
the C library function rename or the Windows API function MoveFile, it is
possible for the wrong file to be moved or for the file to be moved to the wrong
location. This failure can occur without the participation of XML Extensions.

• When a large number of XML document files are written to a directory by XML
Extensions using XML EXPORT FILE (on page 64), it is possible that files will
not be placed in the directory and no error will be returned by the operating
system either to XML Extensions or to the program issuing the statement. It
appears that the FAT32 file system may be limited to 65,535 files per directory
(at least under certain conditions). Furthermore, if long filenames are used,
multiple directory entries may be needed for each filename, further reducing the
number of files per directory.

For these reasons, Liant recommends that directory polling be used only on Windows
NT-based systems (that is, those running NTFS). These NT-based systems include
Windows NT, Windows 2000, and Windows XP. However, these NT-based systems
also could be configured to run the older FAT32 file system.

Directory Management Statements
Chapter 6: xmlif Library Reference

76 XML Extensions
 First Edition

XML FIND FILE
This statement has the following parameters:

Parameter Description

DirectoryName The name of the directory to check for XML documents
(files ending with the .xml extension).

FileName The name of one XML document (file ending with the .xml
extension) that was found in the specified directory.

Description

The XML FIND FILE statement looks in the directory specified by the
DirectoryName parameter for an XML document (a file with the .xml extension). If
there are one or more XML documents in the specified directory, the name of one of
the files will be returned in the FileName parameter.

If the statement succeeds (the condition XML-IsSuccess is true), the XML
document specified by the FileName parameter may be processed by using XML
IMPORT FILE (on page 67).

Before calling XML FIND FILE again (to process the next file), you must call XML
REMOVE FILE (on page 74) to delete the XML document that was just processed.
Otherwise, the next call to the XML FIND FILE statement may return the same file.

A status value is returned in the XML-data-group data item, which is defined
in the copy file, lixmldef.cpy. The condition XML-IsDirectoryEmpty will be
true if the directory is empty.

Example

FIND-DOCUMENT.
 PERFORM WITH TEST AFTER UNTIL 0 > 1
 XML FIND FILE
 "MY-DIRECTORY"
 MY-FILE-NAME
 IF XML-IsSuccess
 EXIT PERFORM
 END-IF
 IF XML-IsDirectoryEmpty
 CALL "C$DELAY" USING 0.1
 END-IF
 IF NOT XML-OK GO TO Z.
 END-PERFORM
*> Process found document

 Directory Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 77
 First Edition

XML GET UNIQUEID
This statement has the following parameter:

Parameter Description

UniqueID The unique value returned by this statement is a string
representation having the same format as an UUID
(Universal Unique Identifier). The string is a series of
hexadecimal digits with embedded hyphen characters. The
string is enclosed in brace characters ({ and }). The entire
string is 38 characters in length.
On Windows systems, the value is an actual UUID. On
UNIX systems, the value is a string having the same format
as an UUID, but constructed by an internal algorithm. This
algorithm uses various components, including the system id,
the start time of the run unit, the current time, and an internal
counter, to generate a unique value.

Description

The XML GET UNIQUEID statement generates a unique identifier that may be used
to form a unique filename. Please note that the return value might not contain any
alphabetic characters. Therefore, it would be a good programming practice to add an
alphabetic character to the name for those systems where filenames require at least
one alphabetic character (see the following example).

This statement may be used in conjunction with the COBOL STRING statement to
generate a unique filename.

A status value is returned in the XML-data-group data item, which is defined in
the copy file, lixmldef.cpy.

Example

MOVE SPACES TO MY-FILE-NAME.
XML GET UNIQUEID
 MY-UNIQUEID.
IF NOT XML-OK GO TO Z.
STRING "mydir\a" DELIMITED BY SIZE
 MY-UNIQUEID DELIMITED BY SPACE
 ".xml" DELIMITED BY SIZE
 INTO MY-FILE-NAME.

State Management Statements
Chapter 6: xmlif Library Reference

78 XML Extensions
 First Edition

State Management Statements
Calls to the following XML statements control several states or conditions of the
xmlif library, including:

• Initialization and termination. Before issuing a call to any other xmlif library
statement, XML INITIALIZE (on page 79) must be called. (If XML
INITIALIZE has not been called, any subsequent calls, for example, XML
EXPORT FILE, will fail.) Similarly, XML TERMINATE (on page 80) should
be called when the COBOL application is finished using the xmlif library. (If
XML TERMINATE has not been called prior to program termination, there are
no consequences.)

• Empty array occurrences. As an optimization, trailing “empty” occurrences
of arrays are normally not generated by the statements, XML EXPORT FILE
(on page 64) or XML EXPORT TEXT (on page 66).

An empty occurrence of an array is defined to be one where the numeric items
have a zero value and the nonnumeric items have a value equivalent to all
spaces. This is the default state and is equivalent to calling XML DISABLE
ALL-OCCURRENCES (on page 80). It is possible to force all occurrences to
be output by calling XML ENABLE ALL-OCCURRENCES (on page 81).

• COBOL attributes. For each element generated by the statements,
XML EXPORT FILE (on page 64) or XML EXPORT TEXT (on page 66), there
is a series of COBOL attributes that describe that element.

The default state is not to output these attributes. However, it is sometimes
necessary for a following activity (such as an XSLT stylesheet transformation)
to have access to these attributes (specifically, length and subscript are often
interesting to a follow-on activity). Using XML DISABLE ATTRIBUTES (on
page 81) does not allow attributes to be written (this is the default). Using
XML ENABLE ATTRIBUTES (on page 82) forces these attributes to be
written.

• Document caching. XML documents, such as XSLT stylesheets, templates,
and schemas, are normally considered to be static during the use of a production
version of the application. That is, they are generated when the application is
developed and are not modified until the application is modified.

To optimize performance, when the xmlif library loads an XSLT stylesheet, a
template, or a schema, the document is cached (that is, retained in memory) for
an indefinite period of time. This is the default behavior. However, even in
with the default behavior, a document in the cache may be flushed from memory
if the cache is full and an XSLT stylesheet, template, or schema document not
already in the cache is required for the current operation.

If XSLT stylesheets, templates, or schemas are being generated dynamically,
the user may selectively enable or disable caching. Executing XML ENABLE
CACHE (on page 83), which sets the default behavior, enables caching of
documents. Executing XML DISABLE CACHE (on page 82) disables caching,
thus forcing all documents to be loaded each time they are referenced.
Executing XML FLUSH CACHE (on page 83) flushes all documents from the
cache without changing the state of caching (that is, if caching was enabled it
remains enabled). Executing any of the following statements causes the contents
of the cache to be flushed: XML INITIALIZE, XML ENABLE CACHE, XML
DISABLE CACHE, XML FLUSH CACHE, and XML TERMINATE.

 State Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 79
 First Edition

• CodeBridge flags. The data conversions performed by the statements,
XML EXPORT FILE (on page 64), XML EXPORT TEXT (on page 66),
XML IMPORT FILE (on page 67), and XML IMPORT TEXT (on page 68),
use the CodeBridge library (which is built into the RM/COBOL runtime) to
perform these conversions. By default, the following CodeBridge flags are set:
PF_TRAILING_SPACES, PF_LEADING_SPACES, PF_LEADING_MINUS,
and PF_ROUNDED.

Note The CodeBridge flags are C macros. They are case sensitive and require
the use of the underscore character.

XML SET FLAGS (on page 86) is available to alter these defaults. Refer to the
CodeBridge manual for a more complete presentation of the CodeBridge
conversion library.

• Internal character encoding. Characters within alphanumeric data elements in
a COBOL program are normally encoded using the conventions of underlying
operating systems. Under some conditions, it may be desirable to encode these
same data items using UTF-8 encoding. (UTF-8 is a format for representing
Unicode.) XML SET ENCODING (on page 85) is provided to switch between
the local encoding format and UTF-8.

Note Both the UNIX and Windows implementations of XML Extensions allow
the in-memory representation of element content to use UTF-8 encoding. This
may be useful for COBOL applications that wish to pass UTF-8-encoded data
to other processes. XML documents are normally encoded using Unicode.
XML Extensions always generates UTF-8 data. For more information, see
COBOL and Character Encoding (on page 40) and XML and Character
Encoding (on page 53).

XML INITIALIZE
This statement has no parameters.

Description

The XML INITIALIZE statement opens a session with the xmlif library. It ensures
that the RM/COBOL runtime system is the required version (8 or greater) and
retrieves required information from the runtime system. RM/COBOL runtime
version 8 or greater is required because information needed by the xmlif library is
not available in prior runtime versions. The underlying XML parser is also
initialized.

The execution of this statement cause the document cache to be flushed from
memory.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy. Errors can occur if the library is already initialized, the
RM/COBOL runtime version is not 8 or greater, or the underlying XML parser
initialization fails.

Example

XML INITIALIZE.
IF NOT XML-OK GO TO Z.

State Management Statements
Chapter 6: xmlif Library Reference

80 XML Extensions
 First Edition

XML TERMINATE
This statement has no parameters.

Description

The XML TERMINATE statement flushes the document cache and closes a session
with the xmlif library. The interface to the underlying XML parser is also closed.
Any memory blocks that were allocated by the xmlif library are freed.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy. Errors can occur if the library is not currently initialized,
the calls to free memory fail, or the underlying XML parser termination fails.

Example

XML TERMINATE.
IF NOT XML-OK GO TO Z.

XML DISABLE ALL-OCCURRENCES
This statement has no parameters.

Description

The XML DISABLE ALL-OCCURRENCES statement causes unnecessary empty
array occurrences not to be generated by the statements, XML EXPORT FILE (on
page 64) and XML EXPORT TEXT (on page 66). An empty array is one in which
all numeric elements have a zero value and all nonnumeric elements have a value of
all spaces.

There is some interoperation with the statements, XML DISABLE ATTRIBUTES
(on page 81) and XML ENABLE ATTRIBUTES (on page 82). If attributes are
enabled (that is, XML ENABLE ATTRIBUTES has been called), then all empty
occurrences are not generated. If attributes are disabled (the default state or if XML
DISABLE ATTRIBUTES has been used), then all trailing empty occurrences are not
generated. If attributes are enabled, then the subscript is present and so leading, or
intermediate, empty occurrences are not needed as placeholders to ensure that the
correct subscript is calculated.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML DISABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

 State Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 81
 First Edition

XML ENABLE ALL-OCCURRENCES
This statement has no parameters.

Description

The XML ENABLE ALL-OCCURRENCES statement causes all occurrence of an
array to be generated by the statements, XML EXPORT FILE (on page 64) and
XML EXPORT TEXT (on page 66), regardless of the content of the array.

All occurrences of an array are generated regardless of whether attributes are enabled
or disabled.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML ENABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

XML DISABLE ATTRIBUTES
This statement has no parameters.

Description

The XML DISABLE ATTRIBUTES statement causes the COBOL attributes of
an XML element to be omitted from an exported XML document. This is the
default state.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML DISABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

State Management Statements
Chapter 6: xmlif Library Reference

82 XML Extensions
 First Edition

XML ENABLE ATTRIBUTES
This statement has no parameters.

Description

The XML ENABLE ATTRIBUTES statement causes the COBOL attributes of an
XML element to be generated in an exported XML document

Some of the COBOL attributes (such as length and subscript) may be useful to an
external XSLT stylesheet.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML ENABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

XML DISABLE CACHE
This statement has no parameters.

Description

The XML DISABLE CACHE statement disables the caching of XSLT stylesheets,
templates, and schemas. Besides disabling caching, executing this statement also
flushes the document cache.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML DISABLE CACHE.
IF NOT XML-OK GO TO Z.

 State Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 83
 First Edition

XML ENABLE CACHE
This statement has no parameters.

Description

The XML ENABLE CACHE statement enables the caching of XSLT stylesheets,
templates, and schemas, and flushes the document cache immediately, even if
document caching was already enabled.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML ENABLE CACHE.
IF NOT XML-OK GO TO Z.

XML FLUSH CACHE
This statement has no parameters.

Description

The XML FLUSH CACHE statement flushes the cache of XSLT stylesheet,
templates, and schema documents, and flushes the document cache. The enabled or
disabled state of caching is not changed by this statement.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML FLUSH CACHE.
IF NOT XML-OK GO TO Z.

State Management Statements
Chapter 6: xmlif Library Reference

84 XML Extensions
 First Edition

XML GET STATUS-TEXT
This statement has no named parameters.

Description

A non-successful termination of an XML statement may cause one or more lines of
descriptive text to be placed in a queue. The XML GET STATUS-TEXT statement
fetches the next line of descriptive text.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy. The following condition names are also described in this
copy file:

• XML-IsSuccess. A successful completion occurred (no informative,
warning, or error messages).

• XML-OK. An OK (or satisfactory) completion occurred, including informative
or warning messages.

• XML-IsDirectoryEmpty. An informative status indicating that
XML FIND FILE (on page 76) found no XML documents in the indicated
directory.

An example of processing the status information in this item is found below and in
the copy file, lixmldsp.cpy.

Example

Display-Status.
 If Not XML-IsSuccess
 Perform With Test After Until XML-NoMore
 XML GET STATUS-TEXT
 Display XML-StatusText
 End-Perform
 End-If.

Note In the lixmldef.cpy copy file, the definition of the XML-StatusText field
may be edited from the default of 80 to change the size of the buffer used to contain
XML status information. See Displaying Status Information (on page 46).

 State Management Statements
Chapter 6: xmlif Library Reference

 XML Extensions 85
 First Edition

XML SET ENCODING
This statement has the following parameter:

Parameter Description

Encoding The value of this parameter must be either “local” or “utf-8”.
If the value is “local”, then the character encoding used by
the operating system is used. If the value is “utf-8”, then the
data is treated as UTF-8 encoded. The parameter value is
case insensitive. Any hyphen and underscore characters are
optional. For example, “LOCAL”, “Local”, and “local” are
equivalent. “UTF-8”, “Utf_8”, and “utf8” are also
equivalent.

Description

The XML SET ENCODING statement allows the developer to specify the character
encoding of data within a COBOL data structure. The developer may use this
statement to switch between the local character encoding and UTF-8.

Note If the value of the Encoding parameter specifies “utf-8”, the RM_ENCODING
environment variable (on page 40) is ignored. For more information on this
environment variable, see COBOL and Character Encoding (on page 40).

Although, the XML SET ENCODING statement does not affect the character
encoding of the XML document, it does affect the character encoding of the data in
the COBOL program. For more information, see Data Representation (on page 40).

The XML SET ENCODING statement returns an error status value if the value of the
Encoding parameter is not recognized.

Example

XML SET ENCODING "local".
IF NOT XML-OK GO TO EXIT-1.

The default value is “local”. If XML SET ENCODING is never called, the default
is used.

State Management Statements
Chapter 6: xmlif Library Reference

86 XML Extensions
 First Edition

XML SET FLAGS
The statement has the following parameter:

Parameter Description

Flags A numeric value that represents one or more flags. These
flags are a subset of the flags defined for CodeBridge.

Description

The XML SET FLAGS statement sets some flag values that are used for internal data
conversion. Valid flag values are specified in the copy file, lixmldef.cpy. The
default flag setting is the OR of the following values: PF-Leading-Spaces, PF-
Trailing-Spaces, PF-Leading-Minus and PF-Rounded.

Note These flag values are 78-level constants. They are case insensitive and require
the use of the hyphen character.

A status value is returned in the data item XML-data-group, which is defined in
the copy file, lixmldef.cpy.

Example

XML SET FLAGS
 MY-FLAGS.
IF NOT XML-OK GO TO Z.

 State Management Statements
Appendix A: XML Extensions Examples

 XML Extensions 87
 First Edition

Appendix A: XML Extensions
Examples

This appendix contains a collection of programs or program fragments that illustrate
how the xmlif library statements are used. These examples are tutorial in nature and
offer useful techniques to help you become familiar with the basics of using XML
Extensions for RM/COBOL. More examples can be found in the XML Extensions
examples directory, Examples.

Note You will find it instructive to examine these examples first before referring to
Appendix B: XML Extensions Sample Application Programs (on page 175), which
describes how to use and access the more complete application programs that are
included with the XML Extensions development system.

The following example programs are provided in this appendix:

• Example 1: Export File and Import File (on page 88)

• Example 2: Export File and Import File with XSLT Stylesheets (on page 94)

• Example 3: Export File and Import File with OCCURS DEPENDING
(on page 102)

• Example 4: Export File and Import File with Sparse Arrays (on page 108)

• Example 5: Export Text and Import Text (on page 119)

• Example 6: Export File and Import File with Directory Polling (on page 125)

• Example 7: Export File, Test Well-Formed File, and Validate File (on page 132)

• Example 8: Export Text, Test Well-Formed Text, and Validate Text
(on page 139)

• Example 9: Export File, Transform File, and Import File (on page 145)

• Example A: Diagnostic Messages (on page 153)

• Example B: Import File with Missing Intermediate Parent Names (on page 160)

• Example C: Export File with Document Prefix (on page 167)

Additionally, three batch files are provided to facilitate use of the example programs.
See Example Batch Files (on page 173).

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

88 XML Extensions
 First Edition

Example 1: Export File and Import File
This program first writes (or exports) an XML document file from the content of a
COBOL data item. Then the program reads (or imports) the same XML document
and places the content in the same COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements. For more information, see Model Files (on page 28) and
Chapter 5: cobtoxml Utility Reference (on page 57).

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

 Example 1: Export File and Import File
Appendix A: XML Extensions Examples

 XML Extensions 89
 First Edition

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example1.cob.

Line Statement

1 rmcobol example1 y

2 cobtoxml example1 Liant-Address

3 move /y example1.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example1.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example1 k

Line 1 compiles the example1.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 1 object filename is example1.cob,
and the model filenames are example1.xml, example1.xtl, example1.xsl, and
example1.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 1 object
file, example1.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example1.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
that opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which could cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the content of an XML document may be converted
into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document with the filename of liant1.xml using the XML
EXPORT FILE statement.

Next, the content of the XML document is imported from the file, liant1.xml, and
placed in the same data item using the XML IMPORT FILE statement.

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

90 XML Extensions
 First Edition

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the item is a time stamp containing the time that the program was executed.
This item is included to assure the person observing the execution of the example
that the results are current. The time element in the generated XML document
should change each time the example is run and should contain the current time.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

 Example 1: Export File and Import File
Appendix A: XML Extensions Examples

 XML Extensions 91
 First Edition

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example1.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant1"
 "Example1".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address item contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant1"
 "Example1".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Example 1: Export File and Import File
Appendix A: XML Extensions Examples

92 XML Extensions
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

 Example 1: Export File and Import File
Appendix A: XML Extensions Examples

 XML Extensions 93
 First Edition

Execution Results for Example 1
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example1) produces the following display:

Example-1 - Illustrate EXPORT FILE and IMPORT FILE
Liant1.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16273191
Liant1.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16273191

You may inspect 'Liant1.xml'

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant1.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>16273191</time-stamp>
 </liant-address>
</root>

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

94 XML Extensions
 First Edition

Example 2: Export File and Import File with XSLT
Stylesheets

This program first writes (or exports) an XML document file from the content of a
COBOL data item. Then the program reads (or imports) the same XML document
and places the content in the same COBOL data item.

This example is almost identical to Example 1: Export File and Import File (on
page 88). However, an external XSLT stylesheet is used to transform the exported
document into a different format. Similarly, when the document is imported, an
external XSLT stylesheet is used to reformat the document into the form that is
expected by COBOL. For more information on stylesheets, see XSLT Stylesheet Files
(on page 55).

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Note In this example, the XML EXPORT FILE and XML IMPORT FILE
statements each contain an additional parameter: the name of the external XSLT
stylesheet being used for the transformation.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements. For more information, see Model Files (on page 28) and
Chapter 5: cobtoxml Utility Reference (on page 57).

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

 Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions 95
 First Edition

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example2.cob.

Line Statement

1 rmcobol example2 y

2 cobtoxml example2 Liant-Address

3 move /y example2.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example2.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example2 k

Line 1 compiles the example2.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 2 object filename is example2.cob,
and the model filenames are example2.xml, example2.xtl, example2.xsl and
example2.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 2 object
file, example2.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example2.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
that opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the content of an XML document may be converted
into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document with the filename of liant2.xml using the XML
EXPORT FILE statement.

Next, the content of the XML document is imported from the file, liant2.xml, and
placed in the same data item using the XML IMPORT FILE statement.

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

96 XML Extensions
 First Edition

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the structure is a time stamp containing the time that the program was
executed. This item is included to assure the person observing the execution of the
example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

 Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions 97
 First Edition

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example2.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant2"
 "Example2"
 toExt.

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the model filename,
 and the external XSLT stylesheet name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address structure contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant2"
 "Example2"
 toInt.

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the model filename,
 and the external XSLT stylesheet name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

98 XML Extensions
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are
no errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any
error messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display

any error encountered by the XML TERMINATE
statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

XSLT Stylesheets for Example 2
The two external XSLT stylesheets used in this example are for reference only (a
tutorial on XSLT stylesheet development is outside the scope of this manual). The
first is contained in the file, toExt.xsl. It is used by the XML EXPORT FILE
statement to transform the generated XML document to an external format. The
second is contained in the file, toInt.xsl, and is used by the XML IMPORT FILE
statement to transform the input XML document to match the COBOL format.

These external XSLT stylesheets are user-defined and manually generated using a
text editor program. Other tools, such as Microsoft’s BizTalk Mapper, may be used
to generate external XSLT stylesheets.

 Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions 99
 First Edition

toExt.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" encoding="UTF-8" />
 <xsl:template match="/">
 <xsl:apply-templates select="root/liant-address" />
 </xsl:template>
 <xsl:template match="liant-address">
 <LiantAddress>
 <Information>
 <xsl:attribute name="Name">
 <xsl:value-of select="name/text()" />
 </xsl:attribute>
 <xsl:attribute name="Address1">
 <xsl:value-of select="address-1/text()" />
 </xsl:attribute>
 <xsl:attribute name="Address2">
 <xsl:value-of select="address-2/text()" />
 </xsl:attribute>
 <xsl:attribute name="City">
 <xsl:value-of select="address-3/city/text()" />
 </xsl:attribute>
 <xsl:attribute name="State">
 <xsl:value-of select="address-3/state/text()" />
 </xsl:attribute>
 <xsl:attribute name="Zip">
 <xsl:value-of select="address-3/zip/text()" />
 </xsl:attribute>
 </Information>
 <TimeStamp>
 <xsl:attribute name="Value">
 <xsl:value-of select="time-stamp/text()" />
 </xsl:attribute>
 </TimeStamp>
 </LiantAddress>
 </xsl:template>
</xsl:stylesheet>

Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

100 XML Extensions
 First Edition

toInt.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" encoding="UTF-8" />
 <xsl:template match="/">
 <xsl:apply-templates select="LiantAddress" />
 </xsl:template>
 <xsl:template match="LiantAddress">
 <root>
 <liant-address>
 <name>
 <xsl:value-of select="Information/@Name" />
 </name>
 <address-1>
 <xsl:value-of select="Information/@Address1" />
 </address-1>
 <address-2>
 <xsl:value-of select="Information/@Address2" />
 </address-2>
 <address-3>
 <city>
 <xsl:value-of select="Information/@City" />
 </city>
 <state>
 <xsl:value-of select="Information/@State" />
 </state>
 <zip>
 <xsl:value-of select="Information/@Zip" />
 </zip>
 </address-3>
 <time-stamp>
 <xsl:value-of select="TimeStamp/@Value" />
 </time-stamp>
 </liant-address>
 </root>
 </xsl:template>
</xsl:stylesheet>

 Example 2: Export File and Import File with XSLT Stylesheets
Appendix A: XML Extensions Examples

 XML Extensions 101
 First Edition

Execution Results for Example 2
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example2) produces the following display:

Example-2 - Illustrate EXPORT FILE and IMPORT FILE with XSLT stylesheets
Liant2.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
10415057
Liant2.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
10415057

You may inspect 'Liant2.xml'

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant2.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<LiantAddress>
 <Information Name="Liant Software Corporation" Address1="8911 Capital of
 Texas Highway North" Address2="Suite 4300" City="Austin" State="TX"
 Zip="78759" />
 <TimeStamp Value="10415057" />
</LiantAddress>

This XML document differs from the document generated in Example 1: Export File
and Import File (on page 88). Items that were shown as individual data elements in
Example 1 are now shown as attributes of higher-level elements. Notice that this
document contains no text. All of the information is contained in the markup.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

102 XML Extensions
 First Edition

Example 3: Export File and Import File with
OCCURS DEPENDING

This program first writes (or exports) an XML document file from the content of a
COBOL data item. Then the program reads (or imports) the same XML document
and places the content in the same COBOL data item.

This program is very similar to Example 1: Export File and Import File (on page 88).
However, the data item has been modified so that an OCCURS DEPENDING clause
is present.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

 Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

 XML Extensions 103
 First Edition

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example3.cob.

Line Statement

1 rmcobol example3 y

2 cobtoxml example3 Liant-Address

3 move /y example3.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example3.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example3 k

Line 1 compiles the example3.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 3 object filename is example3.cob,
and the model filenames are example3.xml, example3.xtl, example3.xsl, and
example3.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 3 object
file, example3.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example3.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
that opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the content of an XML document may be converted
into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document with the filename of liant3.xml using the XML
EXPORT FILE statement.

Next, the content of the XML document is imported from the file, liant3.xml, and
placed in the same data structure using the XML IMPORT FILE statement.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

104 XML Extensions
 First Edition

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the copy file, liant3.cpy, is as
follows:

01 Liant-Address.
 02 Time-Stamp Pic 9(8).
 02 Name Pic X(64)
 Value "Liant Software Corporation".
 02 City Pic X(32) Value "Austin".
 02 State Pic X(2) Value "TX".
 02 Zip Pic 9(5) Value 78759.
 02 Address-Lines Pic 9.
 02 Address-Line Pic X(64)
 Occurs 1 to 5 times
 Depending on Address-Lines.

This data item stores company address information (in this case, Liant’s). This
structure differs from Example 1: Export File and Import File in that an OCCURS
DEPENDING phrase has been added to the structure. Instead of having separate
data-names for Address-1 and Address-2, a variable length array named
Address-Line has been defined. Since Address-Line is variable length, it must
be the last data item in the structure. A new data item named Address-Lines
has been added just prior to the Address-Line array. Address-Lines is the depending
variable for the array Address-Line.

The first field of the structure is a time stamp containing the time that the program
was executed. This item is included to assure the person observing the execution of
the example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the COBOL program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

 Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

 XML Extensions 105
 First Edition

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example3.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant3"
 "Example3".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address structure contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant3"
 "Example3".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

106 XML Extensions
 First Edition

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

 Example 3: Export File and Import File with OCCURS DEPENDING
Appendix A: XML Extensions Examples

 XML Extensions 107
 First Edition

Execution Results for Example 3
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example3) produces the following display:

Example-3 - Illustrate EXPORT FILE and IMPORT FILE with OCCURS DEPENDING
Liant3.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
13313414
Liant3.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
13313414

You may inspect 'Liant3.xml'

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
Liant3.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <time-stamp>13313414</time-stamp>
 <name>Liant Software Corporation</name>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 <address-lines>2</address-lines>
 <address-line>8911 Capital of Texas Highway North</address-line>
 <address-line>Suite 4300</address-line>
 </liant-address>
</root>

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

108 XML Extensions
 First Edition

Example 4: Export File and Import File with Sparse
Arrays

This example illustrates how the xmlif library may work with sparse arrays. The
xmlif library distinguishes between an empty occurrence and a non-empty
occurrence. An occurrence is an empty occurrence when all of its numeric
elementary data items have a zero value and all of its nonnumeric elementary data
items contain spaces; otherwise, the occurrence is a non-empty occurrence. A sparse
array is an array that contains a combination of empty and non-empty occurrences.
Empty occurrences need not be exported unless they are needed to locate (determine
the subscript) of a subsequent non-empty occurrence. Normally, this means that
trailing empty occurrences, that is, a contiguous series of empty occurrences at the
end of the array, are not exported. Sparse arrays may also be imported.

This program first writes (or exports) several XML document files from the content
of a COBOL data item (using various combinations of the XML ENABLE
ATTRIBUTES, XML DISABLE ATTRIBUTES, XML ENABLE ALL-
OCCURRENCES, and XML DISABLE ALL-OCCURRENCES statements). Then
the program reads (or imports) the same XML documents (plus a couple of pre-
existing documents) and places the content in the same COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML ENABLE ATTRIBUTES (on page 82), which causes exported XML
document to contain descriptive (COBOL-oriented) attributes.

Note Although the default is not to add descriptive attributes to an XML
document (see XML DISABLE ATTRIBUTES in the next item), among the
attributes that may be added is the “subscript” attribute. This attribute contains
the one-relative index of the occurrence within the array. When an XML
document is imported, this subscript attribute is used (if present) to place the
occurrence correctly within the array. If the subscript attribute is not present,
then occurrences are assumed to occur sequentially.

• XML DISABLE ATTRIBUTES (on page 81), which causes exported XML
documents not to contain descriptive attributes.

Note The default is not to add descriptive attributes to an XML document.

• XML ENABLE ALL-OCCURRENCES (on page 81), which causes all
occurrences of a data item to be exported to an XML document.

• XML DISABLE ALL-OCCURRENCES (on page 80), which causes only
certain occurrences to be exported to the XML document.

Note The default is to export only certain occurrences to the XML document.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

 Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions 109
 First Edition

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example4.cob.

Line Statement

1 rmcobol example4 y

2 cobtoxml example4 Data-Table -sn

3 move /y example4.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example4.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example4 k

Line 1 compiles the example4.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 4 object filename is example4.cob,
and the model filenames are example4.xml, example4.xtl, and example4.xsl). The -
sn (schema none) option on the cobtoxml utility disables the generation of a schema
file, which is normally used to validate the content of an XML document. Note that
under UNIX, the schema file that is produced by the cobtoxml utility is ignored by
the xmlif library.

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 4 object
file, example4.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example4.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

110 XML Extensions
 First Edition

the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how several similar XML documents are generated
from a single COBOL data item. It also illustrates how the content of several similar
XML documents may be converted into COBOL data format and stored in a COBOL
data item.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Data-Table (as defined in the copy file,
liant.cpy) to several XML documents with the filenames of table1.xml, table2.xml,
table3.xml, and table4.xml using the XML EXPORT FILE statement. Various
combinations of the XML ENABLE ATTRIBUTES, XML DISABLE
ATTRIBUTES, XML ENABLE ALL-OCCURRENCES, and XML DISABLE
ALL-OCCURRENCES statements are used to alter the content of the generated
XML documents.

Next, the content of these four XML documents (plus two additional “pre-created”
XML documents, table5.xml and table6.xml) is imported and placed in the same
data item using the XML IMPORT FILE statement. This example does not use a
schema file to validate the input because the array is fixed size and not all of the
XML documents that will be input contain all of the occurrences of the array.
These XML documents and their content are described in Execution Results for
Example 4 (on page 114).

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Data-Table.
 02 Value "[".
 02 Table-1 Occurs 6.
 03 X Pic X.
 03 N Pic 9.
 02 Value "]".

This data item contains an array with six occurrences. Each occurrence consists of a
one-character, nonnumeric data item followed by a one-digit numeric data item.
Note that the structure also contains two FILLER data items: the left brace ([)
character at the beginning and the right brace(]) character at the end. The values
of the FILLER data items are output as text in the XML document without
associated tags.

 Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions 111
 First Edition

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item. For example,
the XML EXPORT FILE statement returns a value in the XML-Status field. The
XML GET STATUS-TEXT statement accesses the XML-StatusText and
XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example4.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

112 XML Extensions
 First Edition

Exporting an XML Document

COBOL Statement Description

XML ENABLE ATTRIBUTES
If Not XML-OK Go To Z.
XML ENABLE All-OCCURRENCES
If Not XML-OK Go To Z.

Selectively ENABLE or DISABLE ATTRIBUTES and
ALL-OCCURRENCES.

Initialize Data-Table.
Move "B" to X (2).
Move 2 to N (2).
Move "D" to X (4).
Move 4 to N (4).

Initialize the Data-Table structure to the preferred values.

XML EXPORT FILE
 Data-Table
 "Table1"
 "Example4".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename (Table1 – Table4),
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Initialize Data-Table. Ensure that the data item contains no data.
XML IMPORT FILE
 Data-Table
 "Table1"
 "Example4".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename (Table1 – Table6),
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions 113
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

114 XML Extensions
 First Edition

Execution Results for Example 4
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example4) produces the following display:

Example-4 - Illustrate EXPORT FILE and IMPORT FILE with sparse arrays
Table1.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table2.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table3.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table4.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table1.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table2.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table3.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table4.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table5.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table6.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]

You may inspect 'Table1.xml' - 'Table6.xml'

Status: 0000
Press a key to terminate:

XML Documents

Microsoft Internet Explorer may be used to view the XML documents that are
associated with this example. (Note that Internet Explorer will differentiate among
the various syntactical elements of XML by displaying them in different colors.)

The files table1.xml, table2.xml, table3.xml, and table4.xml are generated with
XML EXPORT FILE statements. All of these documents were generated from the
same COBOL content. The files, table5.xml and table6.xml, which are supplied
with the example, describe the same COBOL content.

The only non-empty occurrences are for the second and fourth elements of the array.
The content of the six files should appear as follows.

Table1.xml

The XML DISABLE ATTRIBUTES and XML DISABLE ALL-OCCURRENCES
statements are used to determine the content of this file. Trailing empty occurrences
are deleted. However, some empty occurrences were generated so that the two non-
empty occurrences are positioned correctly.

This example also uses FILLER data items. The left brace ([) and right brace(])
characters were defined within the data item as FILLER. The text associated with
the FILLER is placed in the XML document without any tags.

 Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions 115
 First Edition

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

Table2.xml

The XML ENABLE ATTRIBUTES and XML DISABLE ALL-OCCURRENCES
statements are used to determine the content of this file. Since each non-empty
occurrence now contains a subscript attribute, none of the empty occurrences are
generated.

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP">
 <data-table type="nonnumeric" kind="GRP" length="14" offset="4" id="1514">
 [
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="2" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="2"
 id="1580">B</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="2" id="1602">2</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="4" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="4"
 id="1580">D</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="4" id="1602">4</n>
 </table-1>
]
 </data-table>
</root>

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

116 XML Extensions
 First Edition

Table3.xml

The XML DISABLE ATTRIBUTES and XML ENABLE ALL-OCCURRENCES
statements are used to determine the content of this file. These statements cause all
occurrences, whether empty or non-empty, to be generated.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>D</x>
 <n>4</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
]
 </data-table>
</root>

 Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

 XML Extensions 117
 First Edition

Table4.xml

The XML ENABLE ATTRIBUTES and XML ENABLE ALL-OCCURRENCES
statements are used to determine the content of this file. These statements produce
the most verbose listing of occurrences possible. Every occurrence is listed with its
attributes.

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP">
 <data-table type="nonnumeric" kind="GRP" length="14" offset="4" id="1514">
 [
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="1" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="1"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="1" id="1602">0</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="2" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="2"
 id="1580">B</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="2" id="1602">2</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="3" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="3"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="3" id="1602">0</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="4" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="4"
 id="1580">D</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="4" id="1602">4</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="5" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="5"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="5" id="1602">0</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="6" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="6"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="6" id="1602">0</n>
 </table-1>
]
 </data-table>
</root>

Example 4: Export File and Import File with Sparse Arrays
Appendix A: XML Extensions Examples

118 XML Extensions
 First Edition

Table5.xml

This file was manually generated using a text editor program in order to contain the
minimum amount of information possible. Of all the attributes, only the subscript
attribute is included. This allows all empty occurrences to be suppressed. In
practice, an XSLT stylesheet or other software could generate this kind of document.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1 subscript="2">
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1 subscript="4">
 <x>D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

Table6.xml

The only difference between this file and table5.xml is that the subscript reference
has been moved from the occurrence level down to an element within the occurrence.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1>
 <x subscript="2">B</x>
 <n>2</n>
 </table-1>
 <table-1>
 <x subscript="4">D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

 Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

 XML Extensions 119
 First Edition

Example 5: Export Text and Import Text
This program first writes (or exports) an XML document as a text string from the
content of a COBOL data item. Then the program reads (or imports) the same XML
document and places the content in the same COBOL data item. Finally, the text
string representation of the XML document is copied to a disk file and the memory
block that it occupied is released.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT TEXT (on page 66), which constructs an XML document (as a
text string) from the content of a COBOL data item.

• XML IMPORT TEXT (on page 68), which reads an XML document (from a
text string) into a COBOL data item.

• XML PUT TEXT (on page 74), which copies an XML document from a text
string to a data file.

• XML FREE TEXT (on page 73), which releases the memory that was allocated
by XML EXPORT TEXT to hold the XML document as a text string.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

120 XML Extensions
 First Edition

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example5.cob.

Line Statement

1 rmcobol example5 y

2 cobtoxml example5 Liant-Address

3 move /y example5.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example5.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example5 k

Line 1 compiles the example5.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 5 object filename is example5.cob,
and the model filenames are example5.xml, example5.xtl, example5.xsl, and
example5.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 5 object
file, example5.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example5.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the content of an XML document may be converted
into COBOL data format and stored in a COBOL data item. This program is similar
to Example 1: Export File and Import File (on page 88), except that the XML
document is stored as a text string instead of a disk file.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document as defined by the variable, Document-Pointer,
using the XML EXPORT TEXT statement.

 Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

 XML Extensions 121
 First Edition

Next, the content of the XML document is imported from the file, liant5.xml, and
placed in the same data item using the XML IMPORT TEXT statement.

Then, the contents of the text string are written to a disk file using the XML PUT
TEXT statement. The memory block is deallocated using the XML FREE TEXT
statement. The primary aim of using the XML PUT TEXT statement is to make the
content of the XML document available as an external file for viewing.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the structure is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the execution of
the example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT TEXT statement returns a value in the XML-Status

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

122 XML Extensions
 First Edition

field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure

The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example5.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT TEXT
 Liant-Address
 "Document-Pointer"
 "Example5".

Execute the XML EXPORT TEXT statement specifying:
 the data item address,
 the XML document pointer name,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address structure contains no data.
XML IMPORT TEXT
 Liant-Address
 "Document-Pointer"
 "Example5".

Execute the XML IMPORT TEXT statement specifying:
 the data item address,
 the XML document pointer name,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Copying an XML Document to a File

COBOL Statement Description

XML PUT TEXT
 Document-Pointer
 "Liant5".

Execute the XML PUT TEXT statement specifying:
 the XML document pointer name
 and the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

 XML Extensions 123
 First Edition

Releasing the XML Document Memory

COBOL Statement Description

XML FREE TEXT
 Document-Pointer.

Execute the XML FREE TEXT statement specifying
the XML document pointer name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Example 5: Export Text and Import Text
Appendix A: XML Extensions Examples

124 XML Extensions
 First Edition

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Execution Results for Example 5
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example5) produces the following display:

Example-5 - Illustrate EXPORT TEXT and IMPORT TEXT
Document exported by XML EXPORT TEXT
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
11232232
Document imported by XML IMPORT TEXT
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
11232232
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may inspect 'Liant5.xml'

Status: 0000
Press a key to terminate:

 Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions 125
 First Edition

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant5.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>11232232</time-stamp>
 </liant-address>
</root>

Example 6: Export File and Import File with
Directory Polling

This COBOL program illustrates how a series of XML documents may be placed in
a specific directory and how directory polling may be used to process XML
documents as they arrive in that specified directory. For more information on
directory-polling schemes, see Directory Management Statements (on page 75).

The program first writes (or exports) five XML document files from the content of a
COBOL data item. Each document has a unique name and is written to the same
directory. Then the program polls the directory looking for an XML document.
When one is found, the program reads (or imports) each XML document and places
the content in the COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

• XML GET UNIQUEID (on page 77), which is used to generate a unique
identifier that can be used to form a filename.

• XML FIND FILE (on page 76), which finds a XML document file in the
specified directory (if one is available).

• XML REMOVE FILE (on page 74), which deletes a file.

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

126 XML Extensions
 First Edition

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example6.cob.

Line Statement

1 rmcobol example6 y

2 cobtoxml example6 Time-Stamp

3 move /y example6.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example6.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example6 k

Line 1 compiles the example6.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 6 object filename is example6.cob,
and the model filenames are example6.xml, example6.xtl, example6.xsl, and
example6.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 6 object
file, example6.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example6.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,

 Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions 127
 First Edition

line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

The current time, which will become the content of an XML document, is recorded
in a COBOL data item. Note that for this example, an elementary data item is used
instead of a data item.

Because the name of each file within a directory must be unique, a unique filename is
generated using the XML GET UNIQUEID statement. The returned value is
combined with other text strings to form a path name using the STRING statement.
The current time is placed in the Time-Stamp data item using the ACCEPT
FROM TIME statement. The XML EXPORT FILE statement is used to output the
data item as an XML document. This sequence is repeated until five XML
documents have been placed in the specified directory.

Next, the program goes into a loop polling the specified directory. The XML FIND
FILE statement is used. If the return status is XML-IsSuccess, then a file has
been found and the program proceeds to process the file. If the return status is
XML-IsDirectoryEmpty, then the directory is empty and the program issues a
slight delay and then re-issues the XML FIND FILE statement. Any other status
indicates an error.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the example, which in this case, is a
single data item, is as follows:

01 Time-Stamp Pic 9(8).

This data item stores a time stamp acquired by using the ACCEPT FROM
TIME statement.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

128 XML Extensions
 First Edition

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example6.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting XML Documents with Unique Names

COBOL Statement Description

XML GET UNIQUEID
 Unique-Name
If Not XML-OK Go To Z.

Generate a unique identifier.

If the statement terminates unsuccessfully, go to the termination
logic.

Move Spaces to Unique-File-Name
String "Stamp\A" delimited by size
 Unique-Name delimited by SPACE
 ".xml" delimited by size
 into Unique-File-Name.

Convert the unique identifier into a path name.

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant6"
 "Example6".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions 129
 First Edition

Importing XML Documents by Directory Polling

COBOL Statement Description

Perform Until 0 > 1 Outer perform loop. Iterate until Exit Perform.
 Perform Compute-Curr-Time

 Compute Stop-Time
 = Curr-Time + 100

The paragraph Compute-Curr-Time ACCEPTs the current time
and converts it to an integer value.
Compute Stop-Time to be 1 second after current time.

 Perform Until 0 > 1
 XML FIND FILE
 "Stamp"
 Unique-File-Name
 If XML-IsSuccess
 Exit Perform
 End-If
 If XML-IsDirectoryEmpty
 Perform Compute-Curr-Time
 If Curr-Time > Stop-Time
 Exit Perform
 End-If
 Call "C$DELAY" Using 0.1
 End-If
 If Not XML-OK
 Go To Z
 End-If
 End-Perform

Inner perform loop. Iterate until Exit Perform.
Execute XML FIND FILE parameters:
 directory name
 and filename.
If the statement returned success,
exit the paragraph.
If the statement returns directory empty,
compute new current time, and
if the current time is greater than the stop time,
exit the perform.

Otherwise, do a short time delay.
If the statement terminates unsuccessfully,
go to the termination logic.

The end of the inner perform loop.

 If Curr-Time > Stop-Time
 Exit Perform
 End-If

Check to see if the outer perform loop should terminate.

 XML IMPORT FILE
 Time-Stamp
 Unique-File-Name
 "Example6"
 If Not XML-OK Go To Z
 End-If

Import the file that was found using:
 the data item,
 the filename,
 and the model filename.
If the statement terminates unsuccessfully, go to the
termination logic.

 XML REMOVE FILE
 Unique-File-Name
 If Not XML-OK Go To Z
 End-If

Remove the file that has just been processed;
otherwise, find it again.
If the statement terminates unsuccessfully, go to the
termination logic.

End-Perform The end of the outer perform loop.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

130 XML Extensions
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Execution Results for Example 6
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Running the program (runcobol example6) produces two displays. The first display
occurs after exporting five documents to the Stamp directory. The second display
takes place after polling the Stamp directory and importing the five documents.

 Example 6: Export File and Import File with Directory Polling
Appendix A: XML Extensions Examples

 XML Extensions 131
 First Edition

First Display

Note Pressing a key will cause the program to continue.

Example-6 - Illustrate EXPORT FILE and IMPORT FILE with directory polling
Stamp\A{b8a405c0-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303258
Stamp\A{b8a405c2-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264
Stamp\A{b8a405c4-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264
Stamp\A{b8a405c6-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264
Stamp\A{b8a405c8-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264

You may display the 'Stamp' directory

Press a key to continue:

Second Display

Note Pressing a key will terminate the program.

E:\xmlexample\Stamp\A{b8a405c0-d552-11d6-adbf-00a0cc274748}.xml imported by XMLImport
Contents: 15303258
 E:\xmlexample\Stamp\A{b8a405c2-d552-11d6-adbf-00a0cc274748}.xml imported by XMLImport
Contents: 15303264
 E:\xmlexample\Stamp\A{b8a405c4-d552-11d6-adbf-00a0cc274748}.xml imported by XMLImport
Contents: 15303264
 E:\xmlexample\Stamp\A{b8a405c6-d552-11d6-adbf-00a0cc274748}.xml imported by XMLImport
Contents: 15303264
 E:\xmlexample\Stamp\A{b8a405c8-d552-11d6-adbf-00a0cc274748}.xml imported by XMLImport
Contents: 15303264

You may now use IE to verify that the 'Stamp' directory has been emptied

Status: 0001
Informative: 1[0] - indicated directory contains no documents
Called from line 426 in EXAMPLE6(E:\xmlexample\EXAMPLE6.COB), compiled 2003/05/\
01 15:26:04.
E:\xmlexample\Stamp*.xml
Press a key to terminate.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

132 XML Extensions
 First Edition

XML Document

Microsoft Internet Explorer (or Windows Explorer) may be used to view the Stamp
directory that contains the five generated XML documents. You can click on any
document to see its content.

After continuing the program, the Stamp directory should empty out as shown.

Example 7: Export File, Test Well-Formed File, and
Validate File

This COBOL program illustrates how an XML document is generated from a
COBOL data item and then how the syntax and content of an XML document may
be verified.

The program first writes (or exports) an XML document file from the content of a
COBOL data item. Then the program verifies that the generated document is well-
formed. Finally, the program verifies that the content of the document conforms to
the schema file that was generated by the cobtoxml utility.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

 Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

 XML Extensions 133
 First Edition

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML TEST WELLFORMED-FILE (on page 69), which verifies that an XML
document conforms to XML syntax rules.

• XML VALIDATE FILE (on page 71), which verifies that the content of an
XML document conforms to rules specified by an XML schema file.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example7.cob.

Line Statement

1 rmcobol example7 y

2 cobtoxml example7 Liant-Address

3 move /y example7.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example7.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example7 k

Line 1 compiles the example7.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 7 object filename is example7.cob,

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

134 XML Extensions
 First Edition

and the model filenames are example7.xml, example7.xtl, example7.xsl, and
example7.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 7 object
file, example7.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example7.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document with the filename of liant7.xml using the XML
EXPORT FILE statement.

Next, the syntax of liant7.xml is verified using the XML TEST WELLFORMED-
FILE statement.

Following this, the content of liant7.xml is verified using the XML VALIDATE
FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

For the purposes of this example, both the XML TEST WELLFORMED-FILE and
XML VALIDATE FILE statements were used. However, the XML VALIDATE
FILE statement also tests an XML document for well-formed syntax.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

 Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

 XML Extensions 135
 First Edition

This data item stores company address information (in this case, Liant’s). The last
field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the
example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example7.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

136 XML Extensions
 First Edition

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant7"
 "Example7".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Syntax

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "Liant7".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Content

COBOL Statement Description

XML VALIDATE FILE
 "Liant7"
 "Example7".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

 XML Extensions 137
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Example 7: Export File, Test Well-Formed File, and Validate File
Appendix A: XML Extensions Examples

138 XML Extensions
 First Edition

Execution Results for Example 7
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example7) produces the following display:

Example-7 - Illustrate TEST WELLFORMED-FILE and VALIDATE FILE
Liant7.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
11205270
Liant7.xml checked by XML TEST WELLFORMED-FILE
Liant7.xml validated by XML VALIDATE FILE

You may inspect 'Liant7.xml'

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document
liant7.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>11205270</time-stamp>
 </liant-address>
</root>

 Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

 XML Extensions 139
 First Edition

Example 8: Export Text, Test Well-Formed Text, and
Validate Text

This COBOL program illustrates how an XML document is generated from a
COBOL data item and then how the syntax and content of an XML document may
be verified. Next, the program verifies that the generated document is well-formed.
Finally, the program verifies that the content of the document conforms to the
schema file that was generated by the cobtoxml utility.

Note Under UNIX, the schema file that is produced by the cobtoxml utility is
ignored by the xmlif library.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT TEXT (on page 66), which constructs an XML document (as a
text string) from the content of a COBOL data item.

• XML TEST WELLFORMED-TEXT (on page 70), which verifies that an XML
document conforms to XML syntax rules.

• XML VALIDATE TEXT (on page 72), which verifies that the content of an
XML document conforms to rules specified by an XML schema file.

• XML PUT TEXT (on page 74), which copies an XML document from a text
string to a data file.

• XML FREE TEXT (on page 73), which releases the memory that was allocated
by XML EXPORT TEXT to hold the XML document as a text string.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

140 XML Extensions
 First Edition

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example8.cob.

Line Statement

1 rmcobol example8 y

2 cobtoxml example8 Liant-Address

3 move /y example8.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example8.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example8 k

Line 1 compiles the example8.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 8 object filename is example8.cob,
and the model filenames are example8.xml, example8.xtl, example8.xsl, and
example8.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 8 object
file, example8.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example8.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document as defined by the variable, Document-Pointer,
using the XML EXPORT TEXT statement.

Next, the syntax of the generated XML document is verified using the XML TEST
WELLFORMED-TEXT statement.

Following this, the content of the generated XML document is verified using the
XML VALIDATE TEXT statement.

 Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

 XML Extensions 141
 First Edition

Next, the contents of the text string are written to a disk file using the XML PUT
TEXT statement. The memory block is deallocated using the XML FREE TEXT
statement. The primary aim of using the XML PUT TEXT statement is to make the
content of the XML document available as an external file for viewing.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

For the purposes of this example, both the XML TEST WELLFORMED-TEXT and
XML VALIDATE TEXT statements were used. However, the XML VALIDATE
TEXT statement also tests an XML document for well-formed syntax.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the
example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

142 XML Extensions
 First Edition

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT TEXT statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example8.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT TEXT
 Liant-Address
 "Document-Pointer"
 "Example8".

Execute the XML EXPORT TEXT statement specifying:
 the data item address,
 the XML document text name,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Syntax

COBOL Statement Description

XML TEST WELLFORMED-TEXT
 "Document-Pointer".

Execute the XML TEST WELLFORMED-TEXT statement
specifying the XML document text name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Content

COBOL Statement Description

XML VALIDATE TEXT
 "Document-Pointer"
 "Example8".

Execute the XML VALIDATE TEXT statement specifying:
 the XML document text name
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

 XML Extensions 143
 First Edition

Copying an XML Document to a File

COBOL Statement Description

XML PUT TEXT
 "Document-Pointer"
 "Liant8".

Execute the XML PUT TEXT statement specifying:
 the XML document text name
 and the document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Releasing the XML Document Memory

COBOL Statement Description

XML FREE TEXT
 "Document-Pointer".

Execute the XML FREE TEXT statement specifying
the XML document text name.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Example 8: Export Text, Test Well-Formed Text, and Validate Text
Appendix A: XML Extensions Examples

144 XML Extensions
 First Edition

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Execution Results for Example 8
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example8) produces the following display:

Example-8 - Illustrate TEST-WELLFORMED TEXT and VALIDATE TEXT
Document exported by XML EXPORT TEXT
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
12545201
Document checked by XML TEST WELLFORMED-TEXT
Document validated by XML VALIDATE TEXT
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may inspect 'Liant8.xml'

Status: 0000
Press a key to terminate:

 Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions 145
 First Edition

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liant8.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>12545201</time-stamp>
 </liant-address>
</root>

Example 9: Export File, Transform File, and Import
File

This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the content of an XML document may be converted
into COBOL data format and stored in a COBOL data item.

The program first writes (or exports) an XML document file from the content of a
COBOL data item. Next, the document is transformed into another format (the same
format as described in Example 2: Export File and Import File with XSLT
Stylesheets (on page 94) and then transformed back into the original output format.
Then the program reads (or imports) the same XML document and places the content
in the same COBOL data item. One additional transform is applied to add in the
COBOL attributes to the input document.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the contents of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML TRANSFORM FILE (on page 70), which uses an XSLT stylesheet to
modify (transform) an XML document into another format.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

146 XML Extensions
 First Edition

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute example9.cob.

Line Statement

1 rmcobol example9 y

2 cobtoxml example9 Liant-Address

3 move /y example9.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example9.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example9 k

Line 1 compiles the example9.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example 9 object filename is example9.cob,
and the model filenames are example9.xml, example9.xtl, example9.xsl, and
example9.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 9 object
file, example9.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes example9.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,

 Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions 147
 First Edition

line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document with the filename of liant9a.xml using the XML
EXPORT FILE statement.

Next, the content of the XML document is transformed from the format that was
used in Example 2 with an XML TRANSFORM FILE statement producing the file,
Liant9b.xml, and then transformed back into the original output format.

Next, the content of the XML document is imported from the file, liant9c.xml, and
placed in the same data item using the XML IMPORT FILE statement.

Subsequently, the content of the XML document, liant9c.xml, is transformed using
the internal XSLT stylesheet from the set of model files creating the file,
liant9d.xml. This adds all of the COBOL attributes to liant9d.xml.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the
example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

148 XML Extensions
 First Edition

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, example9.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant9a"
 "Example9".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions 149
 First Edition

Transforming to External XML Format

COBOL Statement Description

XML TRANSFORM FILE
 "Liant9a"
 "toExt"
 "Liant9b".

Execute the XML TRANSFORM FILE statement
specifying:
 the input XML document filename,
 the XSLT stylesheet filename,
 and the output XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Transforming to Internal XML Format

COBOL Statement Description

XML TRANSFORM FILE
 "Liant9b"
 "toInt"
 "Liant9c".

Execute the XML TRANSFORM FILE statement
specifying:
 the input XML document filename,
 the XSLT stylesheet filename,
 and the output XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address item contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant9c"
 "Example9".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Transforming to Include COBOL Attributes

COBOL Statement Description

XML TRANSFORM FILE
 "Liant9c"
 "Example9"
 "Liant9df".

Execute the XML TRANSFORM FILE statement
specifying:
 the input XML document filename,
 the XSLT stylesheet filename,
 and the output XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

150 XML Extensions
 First Edition

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination
Test Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph names Z, so that any error condition is obtained
here via a GO TO Z statement. If there are no errors, execution “falls through” to
these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

 Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

 XML Extensions 151
 First Edition

Execution Results for Example 9
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol example9) produces the following display:

Example-9 - Illustrate TRANSFORM FILE
Liant9a.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
14103001
Liant9a.xml transformed into Liant9b.xml by XML TRANSFORM FILE
Liant9b.xml transformed into Liant9c.xml by XML TRANSFORM FILE
Liant9c.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
14103001
Liant9c.xml transformed into Liant9d.xml by XML TRANSFORM FILE

You may inspect 'Liant9a.xml' - 'Liant9d.xml'

Status: 0000
Press a key to terminate:

XML Documents

Microsoft Internet Explorer may be used to view the generated XML documents,
liant9a.xml, liant9b.xml, liant9c.xml, and liant9d.xml. Their content of these
documents should appear as follows. (Note that Internet Explorer will differentiate
among the various syntactical elements of XML by displaying them in different
colors.)

Liant9a.xml – Internal Format (similar to Liant1.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>14103001</time-stamp>
 </liant-address>
</root>

Example 9: Export File, Transform File, and Import File
Appendix A: XML Extensions Examples

152 XML Extensions
 First Edition

Liant9b.xml – External Format (similar to Liant2.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<LiantAddress>
 <Information Name="Liant Software Corporation"
 Address1="8911 Capital of Texas Highway North"
 Address2="Suite 4300" City="Austin" State="TX" Zip="78759" />
 <TimeStamp Value="14103001" />
</LiantAddress>

Liant9c.xml – Internal Format Restored

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>14103001</time-stamp>
 </liant-address>
</root>

Liant9d.xml – Internal Format plus COBOL Attributes

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP" dateTime="2003-05-14T14:10:24">
 <liant-address type="nonnumeric" kind="GRP" length="239" offset="4"
 id="Q1568">
 <name type="nonnumeric" kind="ANS" length="64" offset="4"
 id="Q1590">Liant Software Corporation</name>
 <address-1 type="nonnumeric" kind="ANS" length="64" offset="68"
 id="Q1612">8911 Capital of Texas Highway North</address-1>
 <address-2 type="nonnumeric" kind="ANS" length="64" offset="132"
 id="Q1634">Suite 4300</address-2>
 <address-3 type="nonnumeric" kind="GRP" length="39" offset="196"
 id="Q1656">
 <city type="nonnumeric" kind="ANS" length="32" offset="196"
 id="Q1678">Austin</city>
 <state type="nonnumeric" kind="ANS" length="2" offset="228"
 id="Q1700">TX</state>
 <zip type="numeric" kind="NSU" length="5" offset="230" scale="0"
 precision="5" id="Q1722">78759</zip>
 </address-3>
 <time-stamp type="numeric" kind="NSU" length="8" offset="235" scale="0"
 precision="8" id="Q1744">14103001</time-stamp>
 </liant-address>
</root>

 Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions 153
 First Edition

Example A: Diagnostic Messages
This program illustrates the diagnostic messages that may be displayed for XML
documents that are not well-formed or valid. The program uses the XML TEST
WELLFORMED-FILE and XML VALIDATE FILE statements to test and validate
a series of XML documents. (These predefined XML documents are detailed in the
Program Description section on page 154.)

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML TEST WELLFORMED-FILE (on page 69), which verifies that an XML
document conforms to XML syntax rules.

• XML VALIDATE FILE (on page 71), which verifies that the content of an
XML document conforms to rules specified by an XML schema file.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute exampleA.cob.

Line Statement

1 rmcobol exampleA y

2 cobtoxml exampleA Liant-Address

3 move /y exampleA.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,exampleA.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol exampleA k

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

154 XML Extensions
 First Edition

Line 1 compiles the exampleA.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example A object filename is
exampleA.cob, and the model filenames are exampleA.xml, exampleA.xtl,
exampleA.xsl, and exampleA.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example A
object file, exampleA.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes exampleA.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

In this example, three different predefined XML documents are processed:

• The XLiantA1.xml file is not well-formed and will cause the XML TEST
WELLFORMED-FILE statement to return with an error status. Since this
function fails, the XML VALIDATE FILE statement is not used to process this
file.

• The XLiantA2.xml file is well-formed but not valid. The XML TEST
WELLFORMED-FILE statement will return success. The XML VALIDATE
FILE statement will return with an error status.

• The XLiantA3.xml file is both well-formed and valid. Both the XML TEST-
WELLFORMED-FILE statement and the XML VALIDATE FILE statement
will return a successful status.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

 Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions 155
 First Edition

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the
example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

156 XML Extensions
 First Edition

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, exampleA.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Testing for a Well-Formed Document

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "Xliant1".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Testing for a Valid Document

COBOL Statement Description

XML VALIDATE FILE
 "XLiantA2"
 "ExampleA".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions 157
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Execution Results for Example A
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Running the program (runcobol exampleA) produces three displays: the first is
shown after the first diagnostic message, the second is shown after the second
diagnostic message, and the third is displayed after some successful tests.

Note Because of differences in the underlying XML parsers, the results of running
Example A vary between Windows and UNIX. When a parser error occurs, the
current UNIX implementation does not display the offending line of XML text in

Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

158 XML Extensions
 First Edition

error (as shown in the first display). In addition, because the schema file that is
produced by the cobtoxml utility is ignored by the xmlif library under UNIX, errors
that would be detected by a schema are not reported (as illustrated in the second
display). The third display, however, is the same under both implementations.

First Display

Note Pressing a key will cause the program to continue.

For Windows, the first display would be illustrated as:

Example-A - Illustrate diagnostics for invalid documents
 and documents that are not well-formed
XML TEST WELLFORMED-FILE - not well-formed
Error: 28[10] - in function: LoadDocument
Called from line 398 in EXAMPLEA(E:\xmlexample\EXAMPLEA.COB), compiled 2003/05/\
 08 13:05:56.
E:\xmlexample\XLiantA1.xml
End tag 'rm-address' does not match the start tag 'liant-address'.
line 2, position 262
<root><liant-address><name>Liant Software Corporation</name><address-1>8911 Cap\
ital of Texas Highway North</address-1><address-2>Suite 4300</address-2><address\
s-3><city>Austin</city><state>TX</state><zip>78759</zip></address-3><time-stamp\
>14525751</time-stamp></rm-address></root>
---\
---\
---\
------------------------|
Press a key to continue:

For UNIX, the first display would be shown as follows:

Example-A - Illustrate diagnostics for invalid documents
 and documents that are not well-formed
XML TEST WELLFORMED-FILE - not well-formed
Error: 28[2] - in function: LoadDocument
Called from line 431 in EXAMPLEA(/usr/xmltk/examples/examplea.cob), compiled\
 2003/05/14 13:27:55.
xliantal.xml
Press a key to continue:

 Example A: Diagnostic Messages
Appendix A: XML Extensions Examples

 XML Extensions 159
 First Edition

Second Display

Note Pressing a key will cause the program to continue.

For Windows, the second display would be illustrated as:

XML TEST WELLFORMED-FILE - well-formed – invalid
XML VALIDATE FILE - well-formed – invalid
Error: 28[10] - in function: LoadDocument
Called from line 411 in EXAMPLEA(E:\xmlexample\EXAMPLEA.COB), compiled 2003/05/\
08 13:05:56.
E:\xmlexample\XLiantA2.xml
The value of 'ABCDE' is invalid according to its data type. The element: 'zip'\
 has an invalid value according to its data type.
line 2, position 211
<root><liant-address><name>Liant Software Corporation</name><address-1>8911 Cap\
ital of Texas Highway North</address-1><address-2>Suite 4300</address-2><address\
s-3><city>Austin</city><state>TX</state><zip>ABCDE</zip></address-3><time-stamp\
>14525751</time-stamp></liant-address></root>
---\
---\
--|
Press a key to continue:

For UNIX, the second display would be shown as follows:

XML TEST WELLFORMED-FILE - well-formed – invalid
XML VALIDATE FILE - well-formed – invalid
Press a key to continue:

Third Display

Note Pressing a key will terminate the program.

XML TEST WELLFORMED-FILE - well-formed – valid
XML VALIDATE FILE - well-formed – valid
Status: 0000
Press a key to terminate:

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

160 XML Extensions
 First Edition

Example B: Import File with Missing Intermediate
Parent Names

This COBOL program illustrates how an XML document with some missing
intermediate parent names may be converted into COBOL data format and stored in
a COBOL data item. (This capability of handling missing intermediate parent names
has been included to make programs that deal with “flattened” data items, such as
Web services, less complicated.) A COBOL program and an XML document file
may contain the same elementary items, but may not have the identical structure.
XML Extensions offers a way to handle such cases where there is not a one-to-one
match between the COBOL data item and the XML document structure. Consider
the following situation, in which the COBOL program imports a predefined XML
document that has some missing intermediate parent names.

A missing intermediate parent name is an XML element name that corresponds to an
intermediate level COBOL group name. For example, in the following COBOL data
item, the XML element name, address-3, is an intermediate parent name.

01 MY-ADDRESS.
 02 ADDRESS-1 PIC X(64) VALUE "101 Main St.".
 02 ADDRESS-2 PIC X(64) VALUE "Apt 2B".
 02 ADDRESS-3.
 03 CITY PIC X(32) VALUE "Smallville".
 03 STATE PIC X(2) VALUE "KS".

The structure of the corresponding XML document would be:

<root>
 <my-address>
 <address-1>101 Main St.</address-1>
 <address-2>Apt 2B</address-2>
 <address-3>
 <city>Smallville</city>
 <state>KS</state>
 </address-3>
 <my-address>
<root>

In cases where the intermediate parent name is not needed to resolve ambiguity,
XML Extensions will attempt to reconstruct the document structure on input. For
example, if the input XML document contained the following information, then the
intermediate parent names of address-3 and my-address would be added to
produce an XML document compatible with the above document.

<root>
 <address-1>101 Main St.</address-1>
 <address-2>Apt 2B</address-2>
 <city>Smallville</city>
 <state>KS</state>
<root>

 Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

 XML Extensions 161
 First Edition

Example B illustrates this situation more fully.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML IMPORT FILE (on page 67), which reads an XML document (from a file)
into a COBOL data item.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Development

The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute exampleB.cob.

Line Statement

1 rmcobol exampleB y

2 cobtoxml exampleB Liant-Address -sn

3 move /y exampleB.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,exampleB.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol exampleB k

Line 1 compiles the exampleB.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example B object filename is
exampleB.cob, and the model filenames are exampleB.xml, exampleB.xtl, and
exampleB.xsl). The -sn (schema none) option on the cobtoxml utility disables the

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

162 XML Extensions
 First Edition

generation of a schema file, which is normally used to validate the content of an
XML document. Note that under UNIX, the schema file that is produced by the
cobtoxml utility is ignored by the xmlif library.

Lines 3, 4, and 5 are optional. They strip the symbol table from the example B object
file, exampleB.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes exampleB.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
and opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how an XML document with some missing
intermediate parent names may be converted into COBOL data format and stored in
a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy file,
liant.cpy) to an XML document with the filename of LiantB.xml using the XML
EXPORT FILE statement.

Next, the content of the XML document is imported from the file, LiantB.xml, and
placed in the same data item using the XML IMPORT FILE statement.

Additionally, the content of the predefined XML document named XLiantB.xml,
which has some missing intermediate parent names, is also imported using the XML
IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

 Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

 XML Extensions 163
 First Edition

Data Item
The content of the COBOL data item defined in the copy file, liant.cpy, is as
follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The last
field of the item is a time stamp containing the time that the program was executed.
The reason for this item is to assure the person observing the execution of the
example that the results are current. The time element in the generated XML
document should change each time the example is run and should contain the
current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, exampleB.cbl.

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

164 XML Extensions
 First Edition

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "LiantB"
 "ExampleB".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address item contains no data.
XML IMPORT FILE
 Liant-Address
 "LiantB"
 "ExampleB".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

 XML Extensions 165
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Execution Results for Example B
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol exampleB) produces the following display:

Example B: Import File with Missing Intermediate Parent Names
Appendix A: XML Extensions Examples

166 XML Extensions
 First Edition

Example-B - Illustrate IMPORT with missing intermediate names
LiantB.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16480895
LiantB.xml imported by XML IMPORT FILE:
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16480895
XLiantB.xml imported by XML IMPORT FILE:
Wild Hair Corporation
8911 Hair Court
Sweet 4300
Lostin TX70707
99999999
You may inspect 'LiantB.xml' and 'XLiantB.xml'

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
LiantB.xml and the predefined XML document XLiantB.xml. (Note that Internet
Explorer will differentiate among the various syntactical elements of XML by
displaying them in different colors.)

LiantB.xml

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>16480895</time-stamp>
 </liant-address>
</root>

XLiantB.xml

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <name>Wild Hair Corporation</name>
 <address-1>8911 Hair Court</address-1>
 <address-2>Sweet 4300</address-2>
 <city>Lostin</city>
 <state>TX</state>
 <zip>70707</zip>
 <time-stamp>0</time-stamp>
</root>

 Example C: Export File with Document Prefix
Appendix A: XML Extensions Examples

 XML Extensions 167
 First Edition

Example C: Export File with Document Prefix
This program writes (or exports) an XML document file from the content of a
COBOL data item. A document prefix is specified to declare entities referenced in
the COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (on page 79), which initializes or opens a session with the
xmlif library.

• XML EXPORT FILE (on page 64), which constructs an XML document (as a
file) from the content of a COBOL data item.

• XML TERMINATE (on page 80), which terminates or closes the session with
the xmlif library.

Note The XML EXPORT FILE statement contains an additional parameter: the
name of the document prefix being used for the XML document export.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility program
to generate a set of model files that are used by the XML IMPORT and XML
EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on the
command line (for example, runcobol myprog l=“some\path\xmlif”) or by placing
the xmlif library in the rmautold directory (this is normally a subdirectory of the
RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table information
from the COBOL object file by using the RM/COBOL Combine Program
(rmpgmcom) utility.

Batch File
The following DOS commands may be entered into a batch file. These commands
build and execute exampleC.cob.

Line Statement

1 rmcobol exampleC y

2 cobtoxml exampleC Line-Item -sn

3 move /y exampleC.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,exampleC.cob,tmp.cob'

5 del tmp.cob

6 Start /w runcobol exampleC k

Example C: Export File with Document Prefix
Appendix A: XML Extensions Examples

168 XML Extensions
 First Edition

Line 1 compiles the exampleC.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the symbol
table. By default, the model filenames are the same as the object filename with
different extensions (in this instance, the example C object filename is
exampleC.cob, and the model filenames are exampleC.xml, exampleC.xtl, and
exampleC.xsl). The -sn (schema none) option on the cobtoxml utility disables the
generation of a schema file, which is normally used to validate the content of an
XML document. Note that under UNIX, the schema file that is produced by the
cobtoxml utility is ignored by the xmlif library.

Lines 3, 4, and 5 are optional. They strip the symbol table from the example C object
file, exampleC.cob. In order to reduce the size of the deployed object files,
developers may chose to remove the symbol table from the COBOL object file
before distributing their applications. The RM/COBOL Combine Program
(rmpgmcom) utility, which is shipped with the RM/COBOL development system, is
used for this purpose.

Line 6 executes exampleC.cob. The K Option suppresses the runtime banner. On
line 6, the start /w sequence is included only as good programming practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows application
that opens a separate window when executed from DOS. The start /w part of
the DOS command instructs Windows to start the runtime and then wait (the W
Option) for its completion. This step is necessary in line 4. If this step were omitted,
line 5 could execute before the runtime completed, which would cause the input file
(tmp.cob) passed to rmpgmcom to be deleted before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the content of an XML document may be converted
into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE statement
must be successfully executed. Since it is possible for XML INITIALIZE to fail, the
return status must be checked before continuing.

Data is exported from the data item Line-Item (as defined in the copy file,
liant.cpy) to an XML document with the filename of liantC.xml using the XML
EXPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-TEXT
statement is called.

 Example C: Export File with Document Prefix
Appendix A: XML Extensions Examples

 XML Extensions 169
 First Edition

Data Item

The content of the COBOL data item Line-Item is as follows:

01 Line-Item.
 02 LI-BoilerPlate.
 03 FILLER VALUE "&BoilerPlate;".
 02 LI-Name PIC X(30).
 02 LI-Quantity PIC 9(04).
 02 LI-CurPrice.
 03 FILLER VALUE "&CURRENCY;".
 03 LI-Price PIC 9(06)V99.
 02 LI-CurExt.
 03 FILLER VALUE "&CURRENCY;".
 03 LI-Ext PIC 9(10)V99.

This data item stores line item information, such as might appear in an invoice.
There are three entity references, one to BoilerPlate and two to CURRENCY.

Document Prefix
The document prefix string is as follows:

78 DocumentPrefix Value
 "<!DOCTYPE root [" & LF &
 " <!ENTITY CURRENCY ""$"">" & LF &
 " <!ENTITY BoilerPlate ""All prices in USD"">" & LF &
 "]>".

This document prefix string provides a document type definition (DTD) that declares
two entities in the internal subset. The first entity is CURRENCY, which is defined
to be #036, the “$” in UTF-8. The second entity is BoilerPlate, which is defined to
be “All prices in USD”. The string will produce multiple lines in the exported
document file because of the line feed characters introduced by the symbolic-
character name LF.

Other Definitions

The copy file, lixmlall.cpy, should be included in the Working-Storage Section of
the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data item
named XML-data-group. The content of this COBOL data item is as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Example C: Export File with Document Prefix
Appendix A: XML Extensions Examples

170 XML Extensions
 First Edition

Various XML statements may access one of more fields of this data item. For
example, the XML EXPORT FILE statement returns a value in the XML-Status
field. The XML GET STATUS-TEXT statement accesses the XML-StatusText
and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Extensions statements. Some COBOL statements (mostly the DISPLAY statements)
have been omitted. The source of this example is in the file, exampleC.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

XML EXPORT FILE
 Line-Item
 "LiantC"
 "ExampleC"
 OMITTED *> no stylesheet
 DocumentPrefix.

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the model filename,
 the XSLT stylesheet (OMITTED),
 and the XML document prefix (DTD).

If Not XML-OK Go To Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example C: Export File with Document Prefix
Appendix A: XML Extensions Examples

 XML Extensions 171
 First Edition

Termination Test Logic

This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph named Z, so that any error condition is
obtained here via a GO TO Z statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic

This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report any
error condition that exists, and the second time to report an error (if one occurs)
from the XML TERMINATE statement. If there are no errors (the condition
XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.
 End-Perform End of the perform loop.
 End-If. End of the IF statement and the paragraph.

Example C: Export File with Document Prefix
Appendix A: XML Extensions Examples

172 XML Extensions
 First Edition

Execution Results for Example C
The following sections display the output of the COBOL program that is run and the
XML document that is generated.

COBOL Display

Note Pressing a key will terminate the program.

Running the program (runcobol exampleC) produces the following display:

Example-C - Illustrate EXPORT FILE with Document Prefix
LiantC.xml exported by XML EXPORT FILE

You may inspect 'LiantC.xml'

Status: 0000
Press a key to terminate:

XML Document

Microsoft Internet Explorer may be used to view the generated XML document,
liantC.xml. The content of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of XML
by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE root (View Source for full doctype...)>
<root>
 <line-item>
 <li-boilerplate>All prices in USD</li-boilerplate>
 <li-name>Widget</li-name>
 <li-quantity>50</li-quantity>
 <li-curprice>
 $
 <li-price>5.42</li-price>
 </li-curprice>
 <li-curext>
 $
 <li-ext>271.00</li-ext>
 </li-curext>
 </line-item>
</root>

In this display, the BoilerPlate entity reference is replaced with the DTD declared
value “All prices in USD” and the CURRENCY entity references are replaced with
the DTD declared value “$” (#036 in UTF-8). If you view the source, the original
entity references will be shown instead.

 Example Batch Files
Appendix A: XML Extensions Examples

 XML Extensions 173
 First Edition

Example Batch Files
Three batch files are provided to facilitate use of the example programs:
cleanup.bat, example.bat, and examples.bat.

Cleanup.bat

This batch file will remove various files that were created by executing the example
programs. This file contains a series of delete file commands similar to the
following:

@echo off
@echo cleanup
if exist liant*.xml del liant*.xml
if exist table1.xml del table1.xml
if exist table2.xml del table2.xml
if exist table3.xml del table3.xml
if exist table4.xml del table4.xml
if exist example*.cob del example*.cob
if exist tmp.cob del tmp.cob
if exist *.lst del *.lst
if exist example*.x* del example*.x*
if exist Stamp*.xml del Stamp*.xml
if exist Stamp rmdir Stamp

This batch file has no parameters. Run it by entering the following on the
command line:

Cleanup

Example.bat
This batch file will compile a COBOL source program, run the cobtoxml utility
against the compiled object code, delete the symbol table from the object code, and
finally execute the COBOL program. The content of this file is as follows:

 rmcobol %1 y k
 cobtoxml %1 %2 %3 –bn
 if exist tmp.cob del tmp.cob
 rename %1.cob tmp.cob
start /w runcobol rmpgmcom A='STRIP,%1.cob,tmp.cob'
start /w runcobol %1 k

This batch file uses parameters that are specified by the caller of the batch file. The
first parameter is the filename of the COBOL program (without the .cbl extension).
The second parameter is the name of a data-item within the COBOL program, from
which the cobtoxml utility will construct model files. The third parameter is used
for passing options to the cobtoxml utility.

Example Batch Files
Appendix A: XML Extensions Examples

174 XML Extensions
 First Edition

To build and run Example 1: Export File and Import File (on page 88) using this
batch file, enter the following on the command line:

example Example1 Liant-Address

Examples.bat
This batch file will clean up files that were created from a previous run and then
compile and run each example. The content of this file is similar to the following:

@echo off
call cleanup

@echo Example1 - Export / Import File.
call example example1 Liant-Address

@echo Example2 - Export / Import with XSLT stylesheets.
call example example2 Liant-Address

@echo Example3 - Export / Import with Occurs Depending.
call example example3 Liant-Address

@echo Example4 - Export / Import with sparse arrays.
call example example4 Data-Table –sn

@echo Example5 - Export / Import Text.
call example example5 Liant-Address

@echo Example6 - Export / Import with directory polling.
mkdir Stamp
call example example6 Time-Stamp

@echo Example7 - Export / Well-Formed File / Validate File.
call example example7 Liant-Address

@echo Example8 - Export / Well-Formed Text / Validate Text.
call example example8 Liant-Address

@echo Example9 - Export / Transform / Import.
call example example9 Liant-Address

@echo ExampleA - Well-Formed / Validate diagnostics.
call example exampleA Liant-Address

@echo ExampleB - Import with missing intermediate names.
call example exampleB Liant-Address -sn

@echo ExampleC - Export with document prefix.
call example exampleC Line-Item -sn

This batch file has no parameters. Run it by entering the following on the
command line:

Examples

 Accessing the Sample Application Programs
Appendix B: XML Extensions Sample Application Programs

 XML Extensions 175
 First Edition

Appendix B: XML Extensions
Sample Application Programs

XML Extensions for RM/COBOL provides several complete and useful sample
application programs. The purpose of these self-contained programs is to
demonstrate and explain how to perform typical application-building tasks in XML
Extensions within a realistic context so that you can better see how to integrate them
into your own applications.

Accessing the Sample Application Programs
The sample application programs are included in the XML Extensions samples
directory, Samples.

Each sample application program is intended to reside in a separate subdirectory.
For example, the XFORM sample resides in the directory named Samples/xform.
Documentation for the sample is contained in the directory in the form of an
HTML file.

On Windows systems, each application is packaged as a self-extracting executable
program. For example, the XFORM sample is contained in the file
Samples/xform/xform.exe. Running this application will extract its component
parts. For the XFORM sample, this will produce the files, xform.cbl and
xform.htm.

On UNIX systems, the applications were extracted when the samples were installed.
The XFORM sample in Samples/xform contains the files, xform.cbl and
xform.htm.

Accessing the Sample Application Programs
Appendix B: XML Extensions Sample Application Programs

176 XML Extensions
 First Edition

 Error Message Format
Appendix C: XML Extensions Error Messages

 XML Extensions 177
 First Edition

Appendix C: XML Extensions
Error Messages

This appendix lists and describes the messages that can be generated during the use
of XML Extensions for RM/COBOL.

Error Message Format
XML Extensions error messages may be several lines long. The general format of an
error message includes the text of the message, and, if available, the COBOL
traceback information, the name of the file or data item, and the parser information.

Note See Table 1 (on page 179) for a summary of error messages.

Message Text
The first line of the error message has the following format:

<severity> - <message number> <message text>

severity indicates the gravity and type of message: Informative, Warning, or Error.

message number is the documented message number followed by an internal
message number in bracket characters. The internal number provides information for
Liant technical support to use in diagnosing problems.

message text is a brief explanation for the cause of the error.

An example of the first line of an error message is shown below:

Error: 28[12] - in function: LoadDocument

Error Message Format
Appendix C: XML Extensions Error Messages

178 XML Extensions
 First Edition

COBOL Traceback Information
The second line of the error message, present if the information is available, contains
COBOL traceback information such as the following:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB),
compiled 2003/05/14 09:42:06.

The error-reporting facility will try to break up lines that are too long for the line
buffer provided in the COBOL program. This prevents long lines from being
truncated. A backward slash character (\) is placed in the last position of the buffer
and the line is continued on the subsequent line. For example, the traceback line
shown above may be broken up as follows:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB), co\
mpiled 2003/05/14 09:42:06.

Filename or Data Item in Error

The third line of the error message, present if the information is available, normally
contains the name of the file or data item in error being referenced.

Parser Information
Note This section applies to the Windows implementation of XML Extensions for
RM/COBOL only.

Additional lines may be present that contain parser or schema diagnostics from the
underlying XML parser, such as:

Error parsing 'a9' as number datatype.
line 5, position 16
<ItemCount>a9</ItemCount>
---------------|

The first line of parser or schema diagnostic information contains an error message.
The second line contains the line number and column position within the XML
document. The third line contains the line of XML text in error. The fourth line
contains an indicator that draws attention to the column position.

 Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions 179
 First Edition

Summary of Error Messages
Table 1 describes the messages that may be generated when an error occurs in XML
Extensions for RM/COBOL.

Table 1: XML Extensions Error Messages

Message
Number

Severity and
Message Text

Description

 0 Success A normal completion occurred. No
informative, warning, or error message was
detected.

 1 Informative - directory
contains no documents

An XML FIND FILE statement did not find
any XML documents (files with a .xml
extension) in the specified directory.

 2 Informative - document
file - no data

An XML EXPORT FILE or XML
EXPORT TEXT statement generated a
document that contained no element values.

 3 Warning - internal logic -
memory not deallocated

During process cleanup, memory blocks
that should have already been deallocated
were still allocated.

 4 Warning - invalid option -
ignored

The cobtoxml utility has detected an invalid
command line option. The option is
ignored and processing continues.

 5 Error - COBOL object
file - invalid format

The cobtoxml utility has detected that the
specified COBOL object file is not valid.
This usually means that the header
checksum is invalid.

 6 Error - COBOL object
file - open failure

The cobtoxml utility detected an error while
attempting to open the specified COBOL
object file.

 7 Error - COBOL object
file - read failure

The cobtoxml utility detected an error while
attempting to read data from the specified
COBOL object file.

 8 Error - COBOL object
file - seek failure

The cobtoxml utility detected an error while
attempting to seek to a location within the
specified COBOL object file.

 9 Error - in function:
CreateDocument

The underlying XML parser detected an
error while trying to create an XML
document. This error may occur in the
cobtoxml utility or the xmlif library.

10 Error - cannot create URL The xmlif library detected that a URL (a
string beginning with the sequence “http://”
or “https://”) was used as an output document
name.

11 Error – data item –
duplicate found

The cobtoxml utility has detected that there
is more than one occurrence of the specified
data item name in the COBOL object file or
library.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

180 XML Extensions
 First Edition

Table1: XML Extensions Error Messages (Cont.)

Message
Number

Severity and
Message Text

Description

12 Error – data item – not
found

The cobtoxml utility has detected that there
are no occurrences of the specified data
item name in the COBOL object file or
library.

13 Error – document file –
create failure

An attempt to create an XML document file
has failed. This error may occur in the
xmlif library or the cobtoxml utility.

14 Error – document file –
file open failure

The xmlif library detected an error while
attempting to open an XML document file.

15 Error – extraneous
element

The xmlif library has detected an extra
occurrence of a scalar data element.

16 Error – example file –
create failure

The cobtoxml utility detected an error while
attempting to create an example file.

17 Error – in function:
GetFirstChild

The xmlif library detected an error in the
function GetFirstChild while parsing an
XML document.

18 Error – in function:
GetNextSibling

The xmlif library detected an error in the
function GetNextSibling while parsing an
XML document.

19 Error – in function:
GetNodeData

The xmlif library detected an error in the
function GetNodeData while parsing an
XML document.

20 Error – in function:
GetRootNode

The xmlif library detected an error in the
function GetRootNode while parsing an
XML document.

21 Error – internal logic –
memory allocation

An attempt to allocate a block of memory
failed. This error may occur in either the
cobtoxml utility or the xmlif library.

22 Error – internal logic –
memory corruption

An attempt to deallocate (free) a block of
memory failed either because the block
header or trailer was corrupted or because
the free memory call returned an error.
This error may occur in either the cobtoxml
utility or the xmlif library.

23 Error – internal logic –
node not found

The xmlif library has detected an
inconsistency in its internal tables.
Specifically an expected entry in the
Document Object Model is missing.

24 Error – in function:
Initialization

Either an XML statement (other than XML
INITIALIZE) was executed without first
executing the XML INITIALIZE statement
or the XML INITIALIZE statement failed.
This error may occur in the xmlif library.
In addition, improper installation of the
underlying XML parser could cause the
cobtoxml utility to fail with this error while
attempting to generate an XSLT stylesheet
or schema.

 Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions 181
 First Edition

Table1: XML Extensions Error Messages (Cont.)

Message
Number

Severity and
Message Text

Description

25 Error – invalid data
address

The xmlif library has detected that the data
structure address specified in XML import
or export statements does not match the
data address specified in the template file.
This normally means that the COBOL
program has been re-compiled but that the
cobtoxml utility was not re-executed to
regenerate the model files.

26 Error – invalid object
time stamp

The xmlif library while attempting to
execute an XML import OR export
statements has detected that the time stamp
of the COBOL object used in generating the
model files does not match the time stamp
of the COBOL object being executed. This
normally means that the COBOL program
has been re-compiled but that the cobtoxml
utility was not re-executed to regenerate the
model files.

27 Error – license
management

The license verification logic in the
cobtoxml utility detected an error.

28 Error – in function:
LoadDocument

An error was detected while trying to load
an XML document. This normally means
that there was a problem locating the
document (either the document does not
exist or there is a problem with
permissions). This error may occur in
either the xmlif library or the cobtoxml
utility. Occasionally, XML Extensions
generates documents that are then loaded as
input documents. In the unlikely event that
the generated document contains errors, a
load document error will be encountered.

29 Error – in function:
LoadSchema

An error was detected while trying to load
an XML schema file. This normally means
that there was a problem locating the
document (either the document does not
exist or there is a problem with
permissions) or that the schema itself is in
error. This error may occur in either the
xmlif library or the cobtoxml utility.

30 Error - in function:
LoadStyleSheet

An error was detected while trying to load
an internal or external XSLT stylesheet.
This normally means that there was a
problem locating the document (either the
document does not exist or there is a
problem with permissions). Another
possible cause is that the XML parser
software is not properly installed. This
error may occur in either the xmlif library
or the cobtoxml utility.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

182 XML Extensions
 First Edition

Table1: XML Extensions Error Messages (Cont.)

Message
Number

Severity and
Message Text

Description

31 Error - in function:
LoadStyleSheetFromText

An error was detected while trying to load
an XSLT stylesheet. This normally means
that there was a problem locating the
document (either the document does not
exist or there is a problem with
permissions). Another possible cause is
that the XML parser software is not
properly installed. This error may occur in
the cobtoxml utility.

32 Error - in function:
LoadTemplate

An error was detected while trying to load
an XML template file. This normally
means that there was a problem locating the
document (either the document does not
exist or there is a problem with
permissions). Another possible cause is
that the XML parser software is not
properly installed. This error may occur in
the xmlif library.

33 Error - parameter -
COBOL object file name
missing

The cobtoxml utility has detected that the
COBOL object file name command-line
parameter is missing.

34 Error - parameter - data
item name missing

The cobtoxml utility has detected that the
name of the data item command-line
parameter is missing.

35 Error - subscript out of
range

The xmlif library, while executing an XML
IMPORT FILE or XML IMPORT TEXT
statement, has detected that a subscript
reference is out of range (the subscript
value is greater than the maximum for the
array). This may occur either when the
subscript is explicitly supplied in an
attribute or when the subscript is generated
implicitly (when an extra occurrence is
present).

36 Error - temporary file
access error

The xmlif library uncounted error while
attempting to access a temporary
intermediate file. This error can occur
during the XML IMPORT TEXT, XML
EXPORT TEXT, XML VALIDATE
TEXT, or XML TEST WELLFORMED-
TEXT statements.

37 Error - in function:
TransformDOM

An unexpected error occurred while
performing an XSLT transform of an XML
document. This is most likely an internal
error. This error may occur in either the
xmlif library or the cobtoxml utility.

38 Error - in function:
TransformText

An error occurred while performing an
XSLT transform of an XML document
using an external (user-supplied) XSLT
stylesheet. This error may occur in the
xmlif library.

 Summary of Error Messages
Appendix C: XML Extensions Error Messages

 XML Extensions 183
 First Edition

Table1: XML Extensions Error Messages (Cont.)

Message
Number

Severity and
Message Text

Description

39 Error - symbol table - not
found

This cobtoxml utility could not find the
symbol table information in the COBOL
object. This normally indicates that the
COBOL program needs to be recompiled
using the Y option.

41 Error - old runtime
version

The cobtoxml utility has detected that the
current COBOL runtime version is not
supported. An RM/COBOL version 8 or
later runtime system is required.

42 Error - in function:
WriteDocument

An error occurred while attempting to write
an XML document from the internal
Document Object Model representation.
This error may occur in either the xmlif
library or the cobtoxml utility.

43 Error - wrong COBOL
object version

The cobtoxml utility has determined that
the COBOL object version being used is
newer than was available when this version
of XML Extensions was released and,
therefore, may contain features that are not
supported by XML Extensions. Check with
Liant Software for updates to XML
Extensions.

44 Error - wrong cobtoxml
revision

The xmlif library has determined that the
format of the model files may be
incompatible with the xmlif library. This
normally indicates that a new version of
XML Extensions is being used but that the
model files were generated with an older
cobtoxml utility.

45 Error - invalid encoding
selection

The value of the XML SET ENCODING
parameter was neither “local” nor “utf-8”.

46 Error - invalid UTF-8
data

An XML export operation failed because
the data supplied was not valid for UTF-8.

47 Error - invalid
RM_ENCODING value

The value supplied in the RM_ENCODING
environment variable was not recognized by
the local iconv library.

48 Error - unable to locate
iconv library

The xmlif library was unable to locate and
open the iconv library.

49 Error - directory open
failure

The XML FIND FILE statement was not
able to locate and open the specified
directory.

Summary of Error Messages
Appendix C: XML Extensions Error Messages

184 XML Extensions
 First Edition

 Version 2
Appendix D: Summary of Enhancements

 XML Extensions 185
 First Edition

Appendix D: Summary of
Enhancements

This appendix summarizes the enhancements from previous releases of XML
Extensions, beginning with the most recent release.

Note Beginning with the version 9 release, the name of this product changed from
XML Toolkit to XML Extensions.

Version 2
This section summarizes the major enhancements available in version 2 of XML
Toolkit:

• Support for UNIX. XML Extensions is currently available for selected UNIX
platforms, including AIX, HP-UX, Linux, SCO OpenServer, Sun Solaris, and
UnixWare.

The Windows implementation continues to use Microsoft's XML parser,
MSXML 4.0 or greater. The UNIX implementation is based on the XML parser
(libxml) and the XSLT transformation parser (libxslt) from the C libraries for the
Gnome project. While the Windows implementation continues to support the
use of schema files, the UNIX implementation of schema support in the
underlying XML parser (libxml) is still under development.

• Document Type Definition Support (on page 53). Exporting of XML documents
has been enhanced to include the ability to specify a document type definition,
which defines the legal building blocks of an XML document. A DTD can be
used to define entity names that are referred to by the values of FILLER data
items in the COBOL data structure being exported.

• Anonymous COBOL Data Structures (on page 48). The acts of exporting and
importing of documents have been improved so that an anonymous COBOL data
structure can be used. An anonymous COBOL data structure is any data area
that is the same size or larger than the data structure indicated by the template
file. This means that exporting from and importing to a Linkage Section data
item, which is either based on an argument passed to a called program or a
pointer set by the SET statement (for example, into allocated memory), is now
possible. This same capability is also true for an external data item.

Version 1
Appendix D: Summary of Enhancements

186 XML Extensions
 First Edition

• Relaxed Time Stamp Checking (on page 48). It is no longer necessary for the
compilation time stamp in the object program to match the cobtoxml time stamp
in the template file. That is, the program may be recompiled without running the
cobtoxml utility. It is necessary to run cobtoxml only when the relevant data
structure(s) are changed.

• UTF-8 Data Encoding. Support has been added to both the UNIX and
Windows implementations of XML Extensions to allow the in-memory
representation of element content to use UTF-8 encoding. UTF-8 is a format for
representing Unicode. This may be useful for COBOL applications that wish to
pass UTF-8 encoded data to other processes. XML documents are normally
encoded using Unicode. XML Extensions always exports XML documents with
UTF-8 data encoding. For further information, see the applicable topics under:

- Data Representation (on page 40), and

- the discussion of XML and Character Encoding (on page 53)

• New XML Statement. A new XML statement has been added to XML
Extensions that allows the developer to switch between the local character
encoding (which is system-dependent) and the UTF-8 encoding format.
See XML SET ENCODING (on page 85).

Version 1
This was the initial release of the XML Toolkit. Version 1 of the XML Toolkit for
RM/COBOL ran on Microsoft Windows 32-bit operating systems, excluding
Windows 95.

The XML Toolkit for RM/COBOL is Liant Software Corporation’s facility that
allows RM/COBOL applications to access XML (Extensible Markup Language)
documents. XML is the universal format for structured documents and data on
the Web.

 Terminology and Definitions
Glossary of Terms

 XML Extensions 187
 First Edition

Glossary of Terms

The glossary explains the terminology used throughout XML Extensions.

Terminology and Definitions
The following terms are defined.

Caching

Caching is a means of increasing performance by keeping loaded XSLT stylesheets,
templates, and schema documents in memory for reuse without the need to reload
them. If the application dynamically generates new copies of such documents,
caching may be permanently or selectively disabled by the application. Caching is
enabled by default at the beginning of an application.

COBOL data structure
A COBOL data structure is a COBOL data item. In general, it is a group data item,
but in some cases, it may be a single elementary data item. The cobtoxml utility, a
component of XML Extensions, captures the COBOL data structure, including
transformed data-names of the data items and subordinate data items, if any, so that a
mapping between the COBOL data structure itself and an XML representation of the
COBOL data structure can be accomplished in either direction at runtime.

Document Type Definition (DTD)
The document type definition occurs between the XML header and the first element
of an XML document. It optionally declares the document structure and entities.
Declared entities may be referenced in the document.

Terminology and Definitions
Glossary of Terms

188 XML Extensions
 First Edition

External XSLT stylesheet
An XSLT stylesheet that is provided by the user and referenced as a parameter in the
XML EXPORT FILE/TEXT, XML IMPORT FILE/TEXT, or XML TRANSFORM
statements. (The term “external” is used in this document to differentiate, where
necessary, between the model file called the “internal XSLT stylesheet” and user-
supplied “external” XSLT stylesheets.) See also XSLT stylesheet (on page 190).

HTML
Hypertext Markup Language. A text description language related to SGML; it
mixes text format markup with plain text content to describe formatted text.
HTML is ubiquitous as the source language for Web pages on the Internet. Starting
with HTML 4.0, the Unicode Standard functions as the reference character set for
HTML content. See also SGML (on page 188), XHTML (on page 190), and
XML (on page 190).

Internal XSLT stylesheet
An XSLT stylesheet that is one of the model files created by the cobtoxml utility and
applied automatically by the XML IMPORT FILE/TEXT statements when importing
the content of a document into COBOL. See also XSLT stylesheet (on page 190).

Model files
XML document files created by the cobtoxml utility. These include the
example (modelname.xml), template (modelname.xtl), internal XSLT stylesheet
(modelname.xls), and schema (modelname.xsd) files.

Schema valid XML document

An XML document that conforms to a particular XML schema.

SGML

Standardized Generalized Markup Language. A standard framework, defined in
ISO 8879, for defining particular text markup languages. The SGML framework
allows for mixing structural tags that describe format with the plain text content of
documents, so that fancy text can be fully described in a plain text stream of data.
See also HTML (on page 188) and XML (on page 190).

Structured document
The term “structured document” describes the concept that a document can contain
content, such as words, numbers, pictures, etc., as well as information describing the
role of content elements and substructures. Adding “structure” to documents
facilitates searching, sorting, or any one of a variety of operations to be performed on
an electronic document. The benefits of adding structure to electronic documents
include portability, re-usability, inter-system operability, ease-of-storage and

 Terminology and Definitions
Glossary of Terms

 XML Extensions 189
 First Edition

retrieval, longevity, quick access, and low distribution costs. XML is a set of rules
for structuring a document using hierarchical markup.

Stylesheet

See XSLT stylesheet.

UNC

Universal Naming Convention.

Unicode

Unicode was developed to support the worldwide interchange, processing, and
display of diverse languages and technical disciplines of the world. Unicode is a
character coding system that assigns a unique number to each character in each of the
world’s principal written languages. There exist several alternatives for how a
sequence of such characters or their respective integer values can be represented as a
sequence of bytes. The two most obvious encodings store Unicode text as either 2-
or 4-byte sequences. The official terms for these encodings are UCS-2 and UCS-4,
respectively. The current version of the Unicode Standard, developed by the
Unicode Consortium, is v4.0.0. For an alternative encoding of Unicode, see also
UTF-8 (on page 189).

URL
Universal Resource Locator.

UTF-8
UTF stands for Unicode Transformation Format. UTF-8 is an encoding scheme (that
is, a method of mapping the Unicode code points to a digital representation), which is
commonly used under Unix-style operating systems and in XML documents.
Unicode is defined in ISO 10646-1:2000 Annex D and is also described in RFC
2279, as well as section 3.8 of the Unicode 3.0 standard. It is a variable length
encoding scheme from 1 to 6 bytes per character. See also Unicode (on page 189).

Valid XML document

See Schema valid XML document (on page 188).

Well-formed XML document
A well-formed XML document is one that conforms to the syntax requirements of
XML. A well-formed XML document may or may not be a valid document with
respect to a particular XML schema.

http://www.unicode.org/unicode/standard/standard.html
http://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html

Terminology and Definitions
Glossary of Terms

190 XML Extensions
 First Edition

XHTML
Extensible HyperText Markup Language. When HTML 4.0 is expressed as XML, it
is called XHTML. See also HTML (on page 188).

XML
Extensible Markup Language. A subset of SGML constituting a particular text
markup language for interchange of structured data. The Unicode Standard is the
reference character set for XML content. See also Unicode (on page 189).

XML schema
An XML schema is a document that specifies the structure and allowed content for
another XML document.

XSL

Extensible Stylesheet Language. A W3C standard defining XSLT stylesheets for
(and in) XML. See also XSLT and W3C (on page 190).

XSLT
Extensible Stylesheet Language for Transformations. XSLT is the
“Transformations” part of the Extensible Stylesheet Language (XSL). A W3C
standard, it is used to transform XML documents to other formats, including HTML,
other forms of XML, and plain text. This powerful stylesheet language allows for
more complex processing of the XML document’s data. See also XSL and W3C (on
page 190).

XSLT stylesheet

An XML document that is written in the Extensible Stylesheet Language for
Transformations. Note that XSLT stylesheets should not be confused with
Cascading Style Sheets (CSS), which are a simple method for adding style, such as
fonts, color, and spacing, to a document for final output to a browser; cascading style
sheets are closely related to HTML and XHTML.

W3C
World Wide Web Consortium. The main standards body for the World-Wide Web
(WWW). W3C works with the global community to establish international standards
for client and server protocols that enable online commence and communications on
the Internet.

 Index

 XML Extensions 191
 First Edition

Index

A
All caps, use of as a document convention 4
Anonymous COBOL data structures 48, 185
Arrays

empty occurrences 78, 80–81
sparse 45, 108

ASCII characters 49, 53
Attributes

COBOL 61, 78, 147
length 78, 80, 82
subscript 45, 78, 80, 82, 108

unique identifier (uid) 43–44
XML 23, 28, 29, 61
XML DISABLE ATTRIBUTES

statement 81, 108
XML ENABLE ATTRIBUTES statement 82,

108

B
Banner options (cobtoxml utility) 59
Batch files, using with example programs 173
Bold type, use of as a document convention 4
Brackets ([]), using with

COBOL syntax 5
XML Extensions error messages 177

C
Caching XML documents 51, 78, 82–83
Character encoding 79, 186

and COBOL 40
and XML 53
in UNIX 41
in Windows 41
RM_ENCODING environment variable 40, 85
XML SET ENCODING statement 85

Characters, wide and narrow 49

COBOL
and XML 20
attributes 61, 78, 147
character encoding 40, 79, 186
considerations

copy files 10, 19, 31, 46
data conventions 39
file management 37
limitations 48
miscellaneous 47
optimizations 50

data structures 19
anonymous 48, 185
glossary term 187

importing from and exporting to XML
documents 19

symbol table information 26, 35
cobtoxml utility

command line interface 26, 27, 58
command line options 30, 56, 59
described 10, 19, 25, 57
model files 28, 61

file naming conventions 38
locating with RUNPATH environment

variable 37
time stamp checking 48, 186

CodeBridge flags 79, 86
Conventions and symbols used in this manual 4
Copy files

display status information 46
listed 10
statement definitions, xmlif library 19, 31, 46
terminate application 47

cpy files. See Copy files

D
Data conventions

data representation 40
FILLER data items 42
intermediate parent names 43
sparse COBOL records 45

Data items, COBOL. See also Data conventions;
Data Structures, COBOL

edited 49
Internet restrictions 49
limitations 48
OCCURS restrictions 49
size 49
wide and narrow characters 49

Data representation 40
Data structures, COBOL 19

anonymous 48, 185
glossary term 187

DEPENDING variable 50

Index

192 XML Extensions
 First Edition

Directory polling 75
example program 125

Directory search 37–39, 58
Display status information (copy file) 46
Distribution media 11
Document prefix 54

example program 167
XML EXPORT FILE statement 64
XML EXPORT TEXT statement 66

Document type definition (DTD) 53, 71, 185
glossary term 187

Documentation overview 3
DTD. See Document type definition (DTD)

E
Edited COBOL data items 49
Electronic software delivery 11
Elements 21

unique names 43
Enhancements to XML Extensions 2

version 1 186
version 2 185

Entity names, defining 53, 71, 185
Environment variables

PATH 35, 41, 58
RM_ENCODING 40, 85
RM_ICONV_NAME 41
RMPATH 36, 58
RUNPATH 36–37, 38

Error messages 177
Example files 28, 61

filename extension (.xml) 38
Example programs 10, 87

batch files, using with 173
development process, typical 26
export file and import file 88
export file and import file with directory

polling 125
export file and import file with OCCURS

DEPENDING 102
export file and import file with sparse arrays 108
export file and import file with XSLT

stylesheets 94
export file with document prefix 167
export file, test well-formed file, and validate

file 132
export file, test well-formed text, and validate

text 139
export file, transform file, and import file 145
export text and import text 119
import file with missing intermediate parent

names 160
well-formed and validate diagnostic

messages 153

Extensible HyperText Markup Language
(XHTML) 42, 54

glossary term 190
Extensible Markup Language (XML), glossary

term 190. See also XML
Extensible Stylesheet Language (XSL), glossary

term 190
Extensible Stylesheet Language Transformations

(XSLT) 19, 54
error messages 182
example of 94
glossary term 190
parser (libxslt) 10–11, 63, 185
validation 71–72

Extensions, filename 38
COBOL source program (.cbl) 173
example file 38
model files 38, 58
schema file 38
template file 38
URLs 2, 38–39
XSLT stylesheet file 38

External attribute, defined 48
EXTERNAL data items 48
External XSLT stylesheet file 55

file naming conventions 39. See also XSLT
stylesheet file

glossary term 188

F
File management

automatic search for files 37
file naming conventions 38

Filenames. See Extensions, filename
Filenames, conventions used in this manual 4
FILLER data items 42, 49, 53, 110, 185
Flags, CodeBridge 79, 86

G
Glossary terms and definitions 187
Gnome project 10, 11, 185. See also libxml and

libxslt

 Index

 XML Extensions 193
 First Edition

H
HTML. See Hypertext Markup Language (HTML)
Hypertext Markup Language (HTML)

glossary term 188
vs. XML 20, 28

Hyphen (-), using with
banner options, cobtoxml 59
name options, cobtoxml 59
optional, RM/COBOL compilation and

runtime options 5
RM_ENCODING environment variable 41
schema options, cobtoxml 60
XML SET ENCODING statement 85

I
iconv library 41
Input and output files, file naming conventions 39
Installation 11

deployment package 11, 13, 18
development package 10, 12, 14
distribution media 11
on UNIX 14
on Windows 12
online 11
system requirements 9

Intermediate parent names 43, 60
example program 160

Internal XSLT stylesheet file 55
glossary term 188, 190

Internet address. See Referencing Model Files;
Universal Resource Locator (URL)

Italic type, use of as a document convention 4

K
Key combinations, document convention for 5

L
Length attribute 78, 80, 82
libxml 10, 11, 63, 185
libxslt 10, 11, 63, 185
Linkage Section 48, 185
lixmlall.cpy 10, 31, 46
lixmldef.cpy 10, 46
lixmldsp.cpy 10, 32, 46
lixmlrpl.cpy 10, 46
lixmltrm.cpy 10, 32, 47
Local character encoding. See Character encoding

M
Messages 177
Model files 32

described 25, 28
example 28, 38, 61
file naming conventions 38
glossary term 188
internal XSLT stylesheet 30, 38, 61
locating, with RUNPATH environment

variable 37
referencing 38, 61
schema 30, 38, 61
template 29, 38, 48, 61, 186
XML EXPORT FILE statement 64
XML EXPORT TEXT statement 66
XML IMPORT FILE statement 67
XML IMPORT TEXT statement 68

MSXML parser 10–11, 54, 56, 63, 185

N
Name options (cobtoxml utility) 59

O
Occurrences

empty 50
limiting 50

OCCURS DEPENDING clause 102
OCCURS restrictions 49
Online services 5
Organization of this manual 3
Output and input files, file naming conventions 39

P
Parent names. See Intermediate parent names
Parsers, XML 10–11, 54, 56, 185
PATH environment variable 35, 41, 58

R
Referencing model files 38, 61
Registration, product 5
Related publications 4
RESOLVE-LEADING-NAME keyword,

RUN-FILES-ATTR record 37
RESOLVE-SUBSEQUENT-NAMES keyword,

RUN-FILES-ATTR record 37
RM/InfoExpress 38
RM_ENCODING environment variable 40, 85
RM_ICONV environment variable 41
RMPATH environment variable 36, 58
rmpgmcom utility 35

Index

194 XML Extensions
 First Edition

RUN-FILES-ATTR configuration record
RESOLVE-LEADING-NAME keyword 37
RESOLVE-SUBSEQUENT-NAMES

keyword 37
RUNPATH environment variable 36–38

S
Sample programs 10, 175
Schema files 30, 55, 61

filename extension (.xsd) 38
on UNIX 10
validating XML documents 30

document type definitions (DTD) 54
Schema options (cobtoxml utility) 30, 56, 60
Schema, valid XML document, glossary term 188
Schema, XML, glossary term 190
SGML (Standardized Generalized Markup

Language), glossary term 188
Sparse arrays 45, 108
Standardized Generalized Markup Language

(SGML), glossary term 188
Statement definitions (copy file) 46
Statements, XML (xmlif library) 63

DISABLE ALL-OCCURRENCES 50, 80
DISABLE ATTRIBUTES 81
DISABLE CACHE 82
ENABLE ALL-OCCURRENCES 81
ENABLE ATTRIBUTES 82
ENABLE CACHE 83
EXPORT FILE 64
EXPORT TEXT 66
FIND FILE 76
FLUSH CACHE 83
FREE TEXT 73
GET STATUS-TEXT 84
GET TEXT 73
GET UNIQUEID 77
IMPORT FILE 67
IMPORT TEXT 68
INITIALIZE 79
PUT TEXT 74
REMOVE FILE 74
SET ENCODING 85
SET FLAGS 86
TERMINATE 80
TEST WELLFORMED-FILE 69
TEST WELLFORMED-TEXT 70
TRANSFORM FILE 70
VALIDATE FILE 71
VALIDATE TEXT 72

Status information display (copy file) 46, 84
Structured document 1

glossary term 188

Stylesheets. See XSLT stylesheet file
Subscript attribute 45, 78, 80, 82, 108
Support services, technical 6
Symbol table information 26, 35
Symbols and conventions used in this manual 4
System requirements 9

T
Tags, XML 21, 28, 59
Technical support services 6
Template files 29, 61

caching 51
filename extension (.xtl) 38
time stamp checking 48, 186

Terminate application (copy file) 47
Time stamp checking 48, 186

U
UNC. See Universal Naming Convention
Underscore (_), using with

RM_ENCODING environment variable 41
XML SET ENCODING statement 85

Unicode encoding standard 40, 49, 53, 79, 186
glossary term 189

Unique element names 43
Unique identifier (uid) 43–44
Universal Naming Convention (UNC)

glossary term 189
referencing files 36, 38, 61

Universal Resource Locator (URL)
glossary term 189
reading and writing XML documents,

restrictions 49
referencing files 37-38, 61

URL. See Universal Resource Locator
UTF-8 encoding format 49, 53, 79, 85, 186

glossary term 189

V
Valid XML document, glossary term 189
Validating XML documents 30, 56, 61, 71–72

document type definition (DTD) 53
example programs 132, 139, 153

 Index

 XML Extensions 195
 First Edition

W
W3C. See World Wide Web Consortium (W3C)
Web site services, Liant 5

electronic software delivery 11
Well-formed XML document 30

document type definition (DTD) 54
example programs 132, 139, 153
FILLER data items 42
flattened version 44
glossary term 189
schema files 56
XML statements 64, 69–72

Wide and narrow characters 49
Working-Storage Section 1, 20, 31, 46
World Wide Web Consortium (W3C) 20

glossary term 190

X
XHTML. See Extensible HyperText Markup

Language (XHTML)
XML

and COBOL 22
considerations 53

character encoding 53, 79, 186
schema files 55
XSLT stylesheet file 55

described 20
glossary term 190
parsers 10, 11, 54, 56, 185
stylesheet files 64, 66–68, 70
validating 30, 56, 61, 71–72
vs. HTML 20, 28
well-formed XML document 30, 189
XSLT stylesheet files 23

external 30
internal 30, 38

XML Extensions
COBOL considerations 37
cobtoxml utility 57
error messages 177
example programs 10, 87

development process, typical 26
features 185–186
getting started 25
installation 11

deployment package 11, 13, 18
development package 10, 12, 14
distribution media 11
on UNIX 14
on Windows 12
online 11
system requirements 9

model files 28, 61
overview 19

sample programs 175
XML considerations 53
xmlif library 63

XML schema, glossary term 190
xmlif library 11, 36, 63

copy files 19, 46
described 25, 63
example programs 87
model files 61
schema files 55
statements, XML 63

DISABLE ALL-OCCURRENCES 50, 80
DISABLE ATTRIBUTES 81
DISABLE CACHE 82
ENABLE ALL-OCCURRENCES 81
ENABLE ATTRIBUTES 82
ENABLE CACHE 83
EXPORT FILE 64
EXPORT TEXT 66
FIND FILE 76
FLUSH CACHE 83
FREE TEXT 73
GET STATUS-TEXT 84
GET TEXT 73
GET UNIQUEID 77
IMPORT FILE 67
IMPORT TEXT 68
INITIALIZE 79
PUT TEXT 74
REMOVE FILE 74
SET ENCODING 85
SET FLAGS 86
TERMINATE 80
TEST WELLFORMED-FILE 69
TEST WELLFORMED-TEXT 70
TRANSFORM FILE 70
VALIDATE FILE 71
VALIDATE TEXT 72

template files 29
XSLT stylesheet files 51, 55, 64, 66–68,

70, 78, 190
external 23, 30, 39, 188
internal 30, 38, 61, 188

XSL. See Extensible Stylesheet Language (XSL)
XSLT. See Extensible Stylesheet Language

Transformations (XSLT)
XSLT stylesheet file 55

caching 51, 78
example program 94, 98
external 23, 30, 39, 188
glossary term 190
internal 30, 38, 61, 188

Index

196 XML Extensions
 First Edition

	XML Extensions User's Guide
	Copyright Page
	Document Release History
	Contents
	Preface
	Welcome to XML Extensions
	What's New
	About Your Documentation
	Related Publications
	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Installation and Introduction
	Before You Start
	System Requirements
	For Windows
	For UNIX

	XML Extensions Package
	Development
	Deployment

	Installing XML Extensions
	Distribution Media Options
	Installing on Windows
	Install the Development System on Windows
	Install the Deployment System on Windows

	Installing on UNIX
	Install the Development System on UNIX
	Loading the License File
	Mount the Diskette as an MS-DOS File System
	Transfer the Liant License File via FTP from a Windows Client

	Loading the Distribution Media
	Performing the Installation
	Unloading the Distribution Media

	Install the Deployment System on UNIX

	Introducing XML Extensions
	What is XML?
	COBOL as XML
	XML as COBOL

	Chapter 2: Getting Started with XML Extensions
	Overview
	Typical Development Process Example
	Design the COBOL Data Structure
	Compile the Program
	Run the cobtoxml Utility
	Model Files
	Example File
	Template File
	Internal XSLT Stylesheet File
	Schema File

	Execute the COBOL Program
	Making a Program Skeleton
	Making a Program that Exports an XML Document
	Populating the XML Document with Data Values
	Deploy the Application

	How XML Extensions Locates Files

	Chapter 3: COBOL Considerations
	File Management
	Automatic Search for Files
	File Naming Conventions
	Model File Naming Conventions
	External XSLT Stylesheet File Naming Conventions
	Other Input File Naming Conventions
	Other Output File Naming Conventions

	Data Conventions
	Data Representation
	COBOL and Character Encoding
	RM_ENCODING Environment Variable
	Windows Character Encoding
	UNIX Character Encoding

	FILLER Data Items
	Missing Intermediate Parent Names
	Unique Element Names
	Unique Identifier

	Sparse COBOL Records

	Copy Files
	Statement Definitions
	Displaying Status Information
	Application Termination

	Miscellaneous Considerations
	Anonymous COBOL Data Structures
	Relaxed Time Stamp Checking

	Limitations
	Data Items (Data Structures)
	Edited Data Items
	Wide and Narrow Characters
	Data Item Size
	OCCURS Restrictions
	Reading, Writing, and the Internet

	Optimizations
	Occurs Depending
	Empty Occurrences
	Cached XML Documents

	Chapter 4: XML Considerations
	XML and Character Encoding
	Document Type Definition Support
	XSLT Stylesheet Files
	Schema Files

	Chapter 5: cobtoxml Utility Reference
	What is the cobtoxml Utility?
	Command Line Interface
	Command Line Options
	Banner Options
	Name Options
	Schema Options

	Referencing XML Model Files

	Chapter 6: xmlif Library Reference
	What is the xmlif Library?
	Document Processing Statements
	XML EXPORT FILE
	XML EXPORT TEXT
	XML IMPORT FILE
	XML IMPORT TEXT
	XML TEST WELLFORMED-FILE
	XML TEST WELLFORMED-TEXT
	XML TRANSFORM FILE
	XML VALIDATE FILE
	XML VALIDATE TEXT

	Document Management Statements
	XML FREE TEXT
	XML GET TEXT
	XML PUT TEXT
	XML REMOVE FILE

	Directory Management Statements
	XML FIND FILE
	XML GET UNIQUEID

	State Management Statements
	XML INITIALIZE
	XML TERMINATE
	XML DISABLE ALL-OCCURRENCES
	XML ENABLE ALL-OCCURRENCES
	XML DISABLE ATTRIBUTES
	XML ENABLE ATTRIBUTES
	XML DISABLE CACHE
	XML ENABLE CACHE
	XML FLUSH CACHE
	XML GET STATUS-TEXT
	XML SET ENCODING
	XML SET FLAGS

	Appendix A: XML Extensions Examples
	Example 1: Export File and Import File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 1

	Example 2: Export File and Import File with XSLT Stylesheets
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	XSLT Stylesheets for Example 2
	Execution Results for Example 2

	Example 3: Export File and Import File with OCCURS DEPENDING
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 3

	Example 4: Export File and Import File with Sparse Arrays
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 4

	Example 5: Export Text and Import Text
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 5

	Example 6: Export File and Import File with Directory Polling
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 6

	Example 7: Export File, Test Well-Formed File, and Validate File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 7

	Example 8: Export Text, Test Well-Formed Text, and Validate Text
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 8

	Example 9: Export File, Transform File, and Import File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example 9

	Example A: Diagnostic Messages
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example A

	Example B: Import File with Missing Intermediate Parent Names
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results for Example B

	Example C: Export File with Document Prefix
	Development
	Batch File
	Program Description
	Data Item
	Document Prefix
	Other Definitions
	Program Structure
	Execution Results for Example C

	Example Batch Files
	Cleanup.bat
	Example.bat
	Examples.bat

	Appendix B: XML Extensions Sample Application Programs
	Accessing the Sample Application Programs

	Appendix C: XML Extensions Error Messages
	Error Message Format
	Message Text
	COBOL Traceback Information
	Filename or Data Item in Error
	Parser Information

	Summary of Error Messages

	Appendix D: Summary of Enhancements
	Version 2
	Version 1

	Glossary of Terms
	Terminology and Definitions
	Caching
	COBOL data structure
	Document Type Definition (DTD)
	External XSLT stylesheet
	HTML
	Internal XSLT stylesheet
	Model files
	Schema valid XML document
	SGML
	Structured document
	Stylesheet
	UNC
	Unicode
	URL
	UTF-8
	Valid XML document
	Well-formed XML document
	XHTML
	XML
	XML schema
	XSL
	XSLT
	XSLT stylesheet
	W3C

	Index

