
Silk TrueLog Explorer 20.0

Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-04-16

ii

Contents

TrueLog Explorer 20.0 ...5
Getting Started ..5

TrueLog Explorer Overview .. 5
What You Can Do with TrueLog Explorer .. 5
Tour of the UI ..6
Best Practice Use of TrueLog Explorer ... 10
Understanding TrueLog .. 11
Analyzing Tests .. 14
Working With Silk Performer ... 20
TrueLog Explorer for Silk Test ..21
Perspectives ... 21
Sample Applications ...22

Customizing Session Handling ... 27
Session-Handling Overview ... 27
Determining When to Customize Session Handling ...28
Customizing Session Handling ...29
Self-Learning Recorder .. 31
Parsing Functions ...31
Session Handling for Web Applications ..32
Session-Handling Customization Process ... 33
Using HTTP Parsing Rules ...36

Adding Verifications ...38
Verifications Overview .. 38
Verification Checks ...39
Inserting Content-Verification Functions .. 40
HTML Verification Functions .. 40
Response-Data Verification Functions ... 45

Customizing User Data ... 48
User-Input Data .. 48
User-Data Customization Scenarios .. 48
Customizing HTML User Data ..49
Form Data View ..51
Multi-Column Data Files ... 51

Working With Database Applications .. 51
Working With Database Applications - Overview ... 51
Sample Database Application - Customer OCI .. 52
Database TrueLog Structure .. 52
Correlations .. 53
Database Parsing Function .. 57
Input Parameter Customization .. 57
Verifications for Result-Set Data ...59

Working With XML Applications .. 60
Working With XML Applications - Overview ... 61
XML TrueLog Structure .. 61
XML Parsing Functions .. 64
Customizing Session Handling for XML Applications ...64
User-Input Data Customization .. 64
Verification Functions for XML Applications ... 64

Working With SAPGUI Applications ..66
SAPGUI TrueLog Structure .. 66
SAPGUI TrueLog Functions ... 66

Contents | 3

Stepping Through SAPGUI TrueLogs .. 67
Analyzing SAPGUI Test Scripts ..67
Replay and Record TrueLogs ...68
SAPGUI Test-Script Customization .. 69
Verification and Parsing Functions ... 70

Working With Oracle Forms Applications ..72
Working With Oracle Forms Applications - Overview ...72
Customizing Oracle Applications 12i Session Information 72
Oracle Forms TrueLog Structure .. 73
Oracle Forms User-Input Data Customization ... 79
Content Verification Functions for Oracle Forms ..81
Completing Your Oracle Forms Script Customizations ...82

Working With Citrix Applications ... 82
Silk Performer Citrix Player ...82
Citrix TrueLogs ... 82
Synchronization Problems in Citrix Scripts ...84
Citrix User-Input Data Customization ... 84
Citrix Parsing and Verification Functions ..85
OCR Verification and Parsing ...87

Working With TCP/IP and UDP-Based Applications ...88
TCP/IP and UDP TrueLog Structure ...89
Setting ASCII and Hexadecimal Viewing Options .. 90
Comparing TCP/IP and UDP Record and Replay TrueLogs 90

Working With Terminal-Emulation Applications ...91
Working With Terminal-Emulation Applications - Overview91
Terminal-Emulation TrueLog Structure ...91
Customizing Host Screen Display .. 92
Stepping Through Terminal-Emulation TrueLogs ... 92
Analyzing Terminal-Emulation Test Scripts .. 93
Comparing Replay and Record TrueLogs .. 93
Terminal-Emulation TrueLog Functions .. 94
Customizing User Input Data ... 94
Verification Functions for Terminal-Emulation Applications95
Parsing Functions for Terminal-Emulation Applications ... 96

Working With AJAX-Enhanced Web Applications ...98
AJAX-Support Overview ...98
Enabling Pretty-Formatted JSON and XML Viewing in TrueLog Explorer99

Customizing TrueLog Explorer ... 99
TrueLog Explorer Option Settings .. 99
Customizing Toolbars and Commands ...100
View Modes ..101
Data Animation ...102
TrueLog Impact on Scalability .. 103
Custom Content Types and File Extensions ...103
TrueLog Generation Settings ..104
TrueLog Tree Filter ... 105

4 | Contents

TrueLog Explorer 20.0
Welcome to TrueLog Explorer 20.0.

TrueLog Explorer supports Silk Performer testing efforts with a framework from which you can customize
test scripts and perform exhaustive analysis of returned test results.

With an array of tools and reports, TrueLog Explorer helps you build automatic content verification into
scripts, insert parsing functions for static session data, and gain insight into the root causes of errors via
TrueLog On Error functionality.

Getting Started
This section provides overview information regarding TrueLog Explorer, TrueLog files, analyzing tests, and
the sample applications.

TrueLog Explorer Overview
TrueLog Explorer supports Silk Performer testing efforts with a framework from which you can customize
test scripts and perform exhaustive analysis of returned test results.

With an array of tools and reports, TrueLog Explorer helps you build automatic content verification into
scripts, insert parsing functions for static session data, and gain insight into the root causes of errors via
TrueLog On Error functionality.

Built-in load testing methodology

TrueLog Explorer has been designed around a best-practice approach to load-test script customization and
error analysis that guides you from session-handling customization and content verification to user-data
customization and, finally, to error analysis. TrueLog Explorer’s workflow bar guides you through this
methodology step by step, enabling you to augment tests with session handling, verification checks, and
parameterized input data. Ultimately, the workflow bar enables you to run TrueLog On Error analysis.

Note: Most of the examples included in this help system relate specifically to Web applications.
However, many of the illustrated concepts can be applied to database, Citrix, Oracle Forms, SAPGUI,
AJAX-enhanced Web, terminal emulation-screen applications, and XML-based applications. Many of
the concepts can also be applied to the testing of UDP- and TCP/IP-based applications, such as
POP3, SMTP, and custom protocols. TrueLog analysis is available for these applications, but script
customization is not.

What You Can Do with TrueLog Explorer
TrueLog Explorer enables you to perform the following tasks:

• Find replay errors quickly and easily – Using TrueLog compare mode, you can automatically detect
differences between record and replay sessions to determine whether your application is functioning as
intended. Both record and replay sessions are rendered visually so you can compare differences side
by side and view errors as they appear to the user.

• Customize session handling – TrueLog Explorer parsing functions allow you to replace static session
IDs in scripts with dynamic session IDs, thereby maintaining state information for successful load-test
runs. These functions are available for Web, database, and XML applications.

TrueLog Explorer 20.0 | 5

Note: Silk Performer's recording techniques automatically generate scripts with session data that
is specific to the recorded test run. Scripts themselves do not contain static session information.
So customization of session handling is generally not required for most applications.

• Parameterize input data – With user-data customization, you can make your test scripts more realistic
by replacing static, recorded, user-input data with dynamic, parameterized user data that varies with
each transaction. Manual scripting is not required to run such data-driven tests. This feature is available
for Web, database, XML, Citrix, SAPGUI, terminal emulation, and Oracle Forms applications.

• Add verifications to test scripts – With the Add Verifications tool, you can gain insight into data that
is downloaded during tests, enabling you to verify that content sent by servers is received by clients.
Verifications remain useful after system deployment for ongoing performance management. This feature
is available for Web, database, XML, SAPGUI, Citrix, terminal emulation, and Oracle Forms
applications. TrueLog Explorer supports bitmap and window verification for applications that are hosted
by Citrix servers.

• Analyze TrueLog On Error – TrueLog On Error files provide complete error histories of all errors that
occur during tests, making them uniquely well-suited for root-cause analysis. TrueLogs allow you to drill
down through real content to analyze error conditions. They display errors in the context of the sessions
within which they occur and are closely integrated with test scripts.

• Visualize and customize database operations – Database operations such as SQL queries can be
customized in the same way that HTML operations are customized. Verifications can also be applied to
result-set data.

• Visualize and customize XML – TrueLog Explorer includes an intuitive XML viewer that enables close
inspection of all XML-based data, including SOAP requests and responses. Customization and visual
verification of XML data is also available.

• Visualize and customize Citrix – You can record, replay, and customize onscreen events such as
mouse moves, mouse clicks, keyboard inputs, and window creations/destructions for Citrix-enabled
applications. Screen synchronization functions are also available for verification purposes.

• Visualize and customize terminal emulation – You can record, replay, and customize test scripts for
terminal emulation protocols VT100+, IBM 3270, and IBM 5250. Test scripts can be customized with
value parsing, status-value parsing, value verification, and status-value verification.

• Analyze TCP/IP and UDP test results – Record and replay TrueLogs for applications that use UDP
and TCP/IP based protocols, such as POP3, SMTP, and custom protocols, can be compared to identify
session-dependent information and analyze errors.

• Analyze GUI-level test results – Record and replay TrueLogs for the testing of GUI-level (fat client)
applications in remote desktop sessions.

Tour of the UI
Take some time to acquaint yourself with the TrueLog Explorer interface to make your test-script
customization and verification tasks easier to organize and perform.

The main sections of the TrueLog Explorer interface are highlighted below.

6 | TrueLog Explorer 20.0

Main Menu

The main menu provides access to TrueLog Explorer results-analysis and script-customization features.

Note: Depending on the protocol type of the open TrueLog, certain menu items may not be
accessible.

Toolbar

The toolbar provides access to frequently used features.

Note: Depending on the protocol type of the open TrueLog, certain toolbar buttons may not be
accessible.

Workflow Bar

The workflow bar facilitates the primary actions related to analyzing test-run results and customizing
scripts. The workflow bar reflects TrueLog Explorer's built-in load-testing methodology by supporting its five
primary tasks:

• analyzing test runs
• customizing session handling
• customizing user data
• adding verifications
• analyzing TrueLog On Error

API Node Tree Menu

TrueLog Explorer 20.0 | 7

The menu tree, located on the left side of the interface, allows you to expand and collapse each TrueLog
API node. Click a node to display its contents on the Content pane and its history details on the
Information pane.

Content Pane

TrueLog Explorer provides multiple views of all sent and received data. Depending on the type of
application under test (Web, XML, database, TCP/IP, UDP, Oracle Forms, SAPGUI, Citrix, or other), the
Content pane offers different viewing options:

Response (Web-based applications only)

The Response page displays the visually rendered response from the server. HTML,
XML, and JSON can be visually rendered. All other content cannot be rendered and will
display in their raw format. In such a case, the tab displays Response (Raw). To change
the render mode, right-click the Response tab and select a mode.

SQL
Command

(database applications only)

The SQL Command page displays SQL statements associated with the selected
database call, including input and result data. It is the same as the Response page for
other protocols.

Differences (Web-based applications only)

The Differences page lists the In Body differences between selected nodes. This page
is helpful in finding dynamic information in server responses. It is the first place to look
for session information.

Note: The Differences page is only available in difference mode.

Request (Web-based applications only)

The Request page displays out-data (data sent by an application to a server) in a
rendered format. With XML, an XML menu tree representation is displayed. With HTML,
posted data (either the POST data of a HTTP-POST command or the query string data
of a HTTP-GET command) are displayed within the HTML page that includes the HTML
form that corresponds to the posted data. Only context-full HTML form data submissions
(HTML form data submitted with WebPageSubmit, not submissions via WebPageForm)
are displayed on the Request page. Elements are displayed in magenta. Attributes are
displayed in cyan.

To search for content in rendered view, right-click in the rendered view and choose Find.
The global find option is not able to search rendered view.

Note: Response and Request pages can display content from different API
nodes simultaneously. When the Response page is the result of an HTML-FORM
submission of a preceding Web page, the Request page displays the Web page
that contains the submitted values. These values are visible via mouse-over.

Form Controls (Oracle Forms only)

The Form Controls page displays the properties of Oracle Forms controls (state and
content). In compare mode, this page compares the states of controls between record
and replay.

Screen (Citrix only)

The Screen page displays rendered application GUIs, window synchronization
functions, and user input values.

Window (Citrix only)

8 | TrueLog Explorer 20.0

Displays the window that is referenced by the window parameter of the current function.

Start Request (SAPGUI only)

The Start Request page displays the state of a SAPGUI application before each server
round trip.

End Request (SAPGUI only)

The End Request page displays the state of a SAPGUI application after each server
round trip.

Host Screen (Terminal-emulation applications only)

The Host Screen page displays the visually rendered response from the server for the
selected API node in a terminal view.

Information Pane

The Information pane offers data regarding testing scripts and test runs, including BDL scripting, HTTP
headers, and timing statistics. Depending on the type of application under test (Web, XML, database,
Oracle Forms, SAPGUI, Citrix, TCP/IP, UDP, or other), the Information pane offers different views.

Info

The Info page displays general information about the open TrueLog file and the selected API node.

BDL

The BDL page displays the BDL script that corresponds to the open TrueLog. The BDL script is
automatically positioned to the line of the selected API node.

References

This page is active only for nodes that return HTML data. The References page displays a
simple DOM (Document Object Model) of the selected HTML including the elements
Hyperlinks, Frames,Embedded documents, and Forms.

Form Data

A convenient tool for viewing and working with all customizable controls that are included on
Oracle Forms screens or submitted to Web servers.

Out Header

The Out Header page contains the exact HTTP header that the application (Silk Performer
in the case of replay TrueLogs, the browser in the case of record TrueLogs) sends to the
server.

Out
Body

In the case of HTTP, this page contains data sent with HTTP-POST commands from the
application to the server. For TCP/IP and UDP, this page contains data sent with WebTcpipSend
functions from the application to the server. For Citrix, this page contains data strings. When
using the Oracle Forms log levels of Normal and Debug (this can be set in replay profile
settings), the Out Body page contains Oracle Forms messages that are sent for current actions
(for example, clicking a button).

You can switch between hexadecimal and textual presentation of data (Settings > Options >
Display > Data Format). By default TrueLog Explorer selects the best representation of data
(for example, binary for images, text for HTML documents).

TrueLog Explorer 20.0 | 9

In Header

The In Header page contains the exact HTTP header that the server sends to the application.

In Body

The In Body page contains data received by the application from the server. The data is
presented in raw format as it is received from the server (no rendering for HTML, no menu tree
representation for XML).

Statistics

For Web applications on protocol-level, the Statistics page shows timing statistics for Web
pages. It includes timing information for each Web page component and communication
element. It shows exact response times, including the composition for each individual
component, in graphical view. This assists you in pinpointing the root causes of errors and
slow page downloads. The Statistics page includes the following data for each page
component:

• DNS lookup time: The time taken to resolve an IP address from the domain / host name
supplied

• Connect time: The time taken for the simulated user to connect to the server
• Time for SSL handshake: The time taken to exchange encryption keys with the server
• Time for sending of data: The time from the first byte of the client request until the last byte

of the client request
• Server busy time: Measures the time from the last byte of the client request until the first

byte of the server response
• Response receive time: The time from the first byte of the server response until the last

byte of the server response, including all docs but not embedded objects
• Cache statistics

For Web browser-driven - AJAX applications, the Statistics page shows timing statistics for Web pages. It
includes timing information for each Web page component and communication element. It shows exact
response times, including the composition for each individual component, in graphical view. This assists
you in pinpointing the root causes of errors and slow page downloads. The Statistics page includes the
following data for each page component:

• DNS lookup time: The time taken to resolve an IP address from the domain / host name supplied
• Connect time: The time taken for the simulated user to connect to the server
• Net round trip: The time from the first byte of the client request until the last byte of the server response,

including all documents but not embedded objects.
• Cache statistics

Controls

The Controls page is a convenient tool for viewing and working with customizable control
values that are included within SAPGUI windows.

Host
Screen Info

The Host Screen Info page logs additional information for each host screen, including
status (a name/value pair). When a field name is selected, the corresponding field in the
Host Screen window above is selected. General screen information. For example, cursor
position and screen dimensions is also included.

Best Practice Use of TrueLog Explorer
Best practice use of TrueLog Explorer involves the following steps.

10 | TrueLog Explorer 20.0

Most likely you will not perform these steps in a simple one-time-through sequence. These tasks are to be
performed iteratively. For example, you may make a customization, check the outcome, then make another
customization, and check the outcome of that customization.

Note: To enable the insertion of timers and other script-modification features, your TrueLog must be
up-to-date (in sync). If your TrueLog is not up-to-date, execute a Try Script run to synchronize it.

Analyzing a
Test

This process involves examining the outcome of a previous test run, reviewing a Virtual
User Summary Report, locating replay errors, and comparing a replay session
alongside an original record session. This process allows for the error checking of script
customizations.

Customizing
Session
Handling

Session-handling errors occur when outdated session data that is embedded in a load-
test script is rerun in a subsequent test run. TrueLog Explorer automates the process of
identifying such static data and replacing it with dynamic data to facilitate successful
test runs. No manual editing of code is required.

Note: Because the Silk Performer script recording techniques generate context-
full scripts that do not contain static session information, session handling
customization is generally not required.

Customizing
User Data

To better simulate real-world conditions during load testing, the actions that virtual
users take against servers should vary with each simulated transaction. User input data
customization allows the specification of data files (for example, lists of names/
addresses, numbers, and products) from which data is to be pulled when the test script
simulates such user tasks as form-field data entry. With random functions, randomized
data can also be generated for input fields.

Customizing
User Data

To better simulate real-world conditions during load testing, the actions that virtual
users take against servers should vary with each simulated transaction. User input data
customization allows the specification of data files (for example, lists of names/
addresses, numbers, and products) from which data is to be pulled when the test script
simulates such user tasks as form-field data entry. With random functions, randomized
data can also be generated for input fields.

Adding
Verification
Functions

After the completion of customizing how a test script handles session information and
virtual user data input, functions can be built into scripts to automatically check if the
application under test returns accurate data. Such content verifications confirm whether
or not elements, such as graphics and data, are actually received by clients under real-
world conditions. When such elements are not received, verifications raise errors.

Extending Customization
via Silk Performer

Although TrueLog Explorer automates most BDL scripting automatically,
more sophisticated verifications and customizations can be coded into
scripts manually via Silk Performer.

Analyzing
TrueLog On
Error

After a test has been run, TrueLog On Error files provide complete histories of all
erroneous transactions that are encountered during testing. TrueLog On Error enables
you to drill down through real content to perform root-cause analysis on system and
application faults.

Understanding TrueLog
Provides an overview of the history files in which extensive detail regarding data/page requests and server
responses are recorded during testing.

TrueLog Explorer 20.0 | 11

TrueLog Overview
Because Silk Performer links sessions with test scripts and captures all data sent between clients and
servers, it is uniquely able to incorporate replay results into the customization and verification of scripts.

This TrueLog technology represents a tremendous advantage in error reproduction and root-cause
analysis. TrueLogs are history files in which extensive detail regarding data and page requests and server
responses are recorded during testing. For Web testing, this detail includes complete page contents. Such
information is valuable for identifying the causes of system failures.

TrueLogs allow you to drill down through real content that is captured during error conditions in client-
server and Web-based applications. For HTML applications, TrueLog Explorer allows for the analysis and
manipulation of TrueLog files by way of an intuitive, rendered HTML interface that mirrors what virtual users
see during testing, including session context.

Because TrueLogs are tightly coupled with sessions and test scripts, they enable script customization in
real-time. When a script customization is made, its effects can instantly be checked using a trial script run,
or Try Script run, by reviewing the TrueLog to determine whether the customization worked. If a
customization does not work, a TrueLog shows you the system requests and responses in the session that
led to the error. This process can be repeated until all customizations operate as intended.

TrueLog and TrueLog On Error files carry the file extension .xlg. XLZ files are zipped TrueLog files that
are handled as unzipped TrueLog files within TrueLog Explorer. Zipped TrueLogs minimize download times.
Silk Performer does not use zipped TrueLogs.

Visual Verification Under Load
Web-based applications do not commonly use HTTP error codes to send error information. Instead, they
typically send error information within HTML content. In such scenarios, errors are normally detected only
when scripts attempt to call links on pages that include error messages rather than their original content.
Such attempts typically lead to link not found errors. Such messages generally are insufficient for
uncovering the reasons why errors occurred and determining how errors can be reproduced in debugging
environments. The only way to track down the causes of such elusive errors is to record error histories
under load and determine the actions of the virtual users and the server before the error occurred.

TrueLogs provide this information even when several thousand virtual users are simulated and errors occur
only occasionally over long periods of time.

TrueLogs facilitate visual verification under load, which reveals elusive application-level errors that usually
are encountered only by subsets of users when applications are under heavy load. For most applications,
this sort of load is only experienced once an application is deployed. Typical non-HTTP errors for Web
applications include incorrect text on Web pages, incorrect value computations, and application-related
messages such as Servlet Error and Server Too Busy.

Request and Response Logs for Root-Cause Analysis
Visual verification under load on its own does not provide much value because it does not indicate the root
causes of application-level errors. For this reason TrueLogs record all relevant user interactions and server
responses, including those that occur in the moments preceding errors.

A virtual user may run into an application-level error if a link not found error is displayed when a
returned Web page does not include a certain link. The Web server might not have been able to return the
complete Web page, or the application server might not have been able to deliver the page’s dynamic
content in a timely manner. Using TrueLog Explorer to analyze the TrueLog history that was recorded in the
moments preceding such an error allows you to visually inspect the click path that led to the error. Such
TrueLog history offers valuable information that can be used to identify the root cause of the error and
ultimately fix it.

The following image offers a visual log that reveals the click path of a transaction that led to an error. This
TrueLog reveals that a title-verification error resulted from an error message returned by the Web server.

12 | TrueLog Explorer 20.0

TrueLog On Error Files
Because TrueLog files can become large in size, Silk Performer can be configured to generate TrueLogs
only when they encounter errors during load testing. Nothing is recorded while systems run accurately.
Such targeted TrueLog generation is known as TrueLog On Error and results in smaller TrueLog files that
are focused on error conditions.

When errors are encountered during test runs, TrueLog On Error files reveal the sources of the errors. After
a test run, click Analyze TrueLog On Error on the workflow bar to access and analyze the corresponding
TrueLog file.

Stepping Through TrueLogs
The Step through TrueLog dialog box assists you in advancing through recorded TrueLog data at a
specified interval.

1. Select a TrueLog in the TrueLog menu tree. TrueLog content appears on the Response and
Information pages.

2. Choose Edit > Step through TrueLog .

Alternative: Click Step through TrueLog on the toolbar.

The Step through TrueLog dialog box opens.

3. Specify the interval at which you want to advance through the TrueLog's recorded-data nodes.

4. Click Find Next and Find Previous to navigate between nodes at the specified interval.

TrueLog Explorer 20.0 | 13

Specifying Protocol-Based TrueLog Types
The TrueLog Explorer feature set varies based on the protocol of the open TrueLog. For example, the
Form Data tab is available only when a Web TrueLog is open; the Round trips option is available on the
Step through TrueLog dialog box only when an SAPGUI TrueLog is open; and the Stable Screen option
is available on the Step through TrueLog dialog box only when a terminal emulation TrueLog is open

1. Choose Edit > TrueLog Type .

2. Choose the feature set that you want TrueLog Explorer to load.

The default protocol is Web.

Note: Oracle Forms is a mixed protocol that often incorporates Web calls in its scripts. You may
want to select the Web-based protocol feature set to customize session handling, parse values out
of HTML, and run searches on the HTML included in Oracle Forms scripts.

Analyzing Tests
Once a BDL-formatted test script has been recorded and saved using the Silk Performer Recorder, you
should test the script by performing a Try Script run. Try Script runs are not actual load tests; they are trial
test runs that provide you the opportunity to see if your script requires debugging. It is recommended that
you perform a Try Script run each time a customization is added to a script. When a Try Script run is
initiated via the Try Script button, TrueLog Explorer opens automatically with the TrueLog of the most
recent test run open.

Test analysis with TrueLog Explorer involves the following three tasks:

• Viewing Virtual User Summary reports
• Finding errors
• Comparing replay test runs with recorded test runs

Visual Analysis
TrueLog Explorer can visually render the Web content that is displayed by applications under test, showing
you exactly what your virtual users see during tests.

Though SQL commands, Oracle Forms controls, TCP/IP operations, and UDP operations do not have
high-level interfaces comparable to Web content, TrueLog Explorer compare mode allows the comparison
of recorded database, Oracle Forms, Citrix, TCP/IP, and UDP TrueLogs with replayed database, Oracle
Forms, Citrix, TCP/IP, and UDP TrueLogs.

Opening a TrueLog

1. Choose File > Add TrueLogs or File > Add TrueLog On Error Files . The Open dialog box opens with
the specified file type selected in the Files of Type list box.

2. Navigate to the directory of the relevant test and select the file to be explored.

3. Optional: Check the Open in Compare View check box to open the file in Compare view.

4. Click OK.

Note: Multiple TrueLogs can be open in TrueLog Explorer
simultaneously.

Analyzing a Test Run

1. Open the TrueLog you want to analyze or modify.

14 | TrueLog Explorer 20.0

2. Click Analyze Test on the workflow bar. The Workflow - Analyze Test dialog box opens.

3. Select one of the following options:

• Show the virtual user summary report
• Find errors
• Compare your test

Virtual User Summary Reports
Explains how virtual user summary reports summarize Try Script runs with basic descriptions and timing
averages.

Virtual User Summary Reports Overview

Virtual user summary reports are summary reports of individual Try Script runs that offer basic descriptions
and timing averages. Each report tracks a single virtual user. Data is presented in tabular format.

Note: Because virtual user summary reports require significant processing, they are not generated by
default.

To enable the automatic display of virtual user reports at the end of animated Try Script runs, or when
clicking the root node of a TrueLog file in the menu tree, check the Display virtual user report check box
at Settings > Options > Workspace > Reports .

Virtual user summary reports include details related to:

• Virtual users
• Uncovered errors
• Response time information tracked for each transaction defined in a test script
• Page timer measurements for each downloaded Web page
• Measurements related to each Web form declared in a test script, including response time

measurements and throughput rates for form submissions using POST, GET, and HEAD methods.
• Individual timers and counters used in scripts (Measure functions)
• Information covering IIOP, Web forms, TUXEDO, SAP, and others

Displaying a Virtual User Summary Report

1. Open the TrueLog you want to analyze or modify.

2. Click Analyze Test on the workflow bar. The Workflow - Analyze Test dialog box opens.

3. Click the Show the virtual user summary report link.

Finding Errors
TrueLog Explorer helps you find errors quickly after Try Script runs. Erroneous requests can then be
examined and necessary customizations can be made.

Note: When viewed in the menu tree, API nodes that contain replay errors are tagged with red “X”
marks.

1. Open the TrueLog you want to analyze or modify.

2. Click Analyze Test on the workflow bar. The Workflow - Analyze Test dialog box opens.

3. Click the Find errors link. The Step through TrueLog dialog box appears with the Errors option
selected.

4. Click Find Next to step through TrueLog result files one error at a time.

You can select different increments by which to advance through the TrueLog to visually verify that the
script worked as intended (Whole pages, HTML documents, Form submissions, or API calls).

TrueLog Explorer 20.0 | 15

Inserting Timer Functions
To insert a new timer session, you must load a replay TrueLog and enable TrueLog Explorer Explorer
mode.

Note: To enable the insertion of timers and other script-modification features, your TrueLog must be
up-to-date (in sync). If your TrueLog is not up-to-date, execute a Try Script run to synchronize it.

Measure functions, or timers, can be inserted into BDL scripts to measure the amount of time that
transpires from the execution of one transaction to the execution of the next transaction. The results of
measure functions are displayed along with summary reports for virtual users.

Note: You can insert a new timer session between the MeasureStart and MeasureStop functions
of any preexisting timer.

1. Right-click an API node in the menu tree where the timer is to begin and choose Start New Timer. The
Start Timer dialog box opens.

2. Enter a name for the timer and click OK. A new MeasureStart function is inserted into the BDL script
at that node.

3. Right-click the API node where the timer is to end and choose Stop Timer. The Stop Timer dialog box
opens.

4. Select the timer that you want to stop and click OK. A new MeasureStop function is inserted into the
BDL script at that node.

Note: When inserting multiple timers into a single script, or if you are uncertain if you have stopped all
inserted timers, use the New Timer Session function to stop all previous timers before inserting
timers. New Timer Session inserts a MeasureStop function for all unresolved timers before
inserting a MeasureStart for a new timer session.

Performance Analysis (HTTP)
After verifying the accuracy of a test run, TrueLog Explorer can analyze the performance of the application
under “no-load” conditions via the Statistics tab under the Information pane. The Overview page details
total page response times, document download times (including server busy times), and time elapsed for
receipt of embedded objects.

Detailed Web page statistics show exact response times for individual Web page components. These
detailed statistics assist you in pinpointing the root causes of errors and slow page downloads.

Detailed Web page drill-down results include the following data for each page component:

Time Description

DNS The time to translate a host name into an IP address.

Connect The time to establish a connection to a server.

SSL Handshake The time to establish a secure layer on an existing
connection. The client and server exchange certificates
and agree on an encryption technology including related
keys to secure data transmission.

Send The time to hand over the request data from Silk
Performer to the operating system. This value does not
include the time required to send the request data from
the operating system to the server.

Server busy The time to send the request data from the operating
system to the server, the time to calculate the response
data on the server, and the time to send the first byte of

16 | TrueLog Explorer 20.0

Time Description

the response data from the server to the client (including
network latency).

Receive The time to receive the entire response data.

Cache statistics

Performance Analysis (AJAX)
After verifying the accuracy of a test run, TrueLog Explorer can analyze the performance of the application
under “no-load” conditions via the Statistics tab under the Information pane. The Overview page details
total action times and document download times (including server busy times and time elapsed for receipt
of embedded objects).

Detailed Web page statistics show exact response times for individual Web page components. These
detailed statistics assist you in pinpointing the root causes of errors and slow page downloads.

Detailed Web page drill-down results include the following data for each page component:

• DNS lookup time
• Connection time
• Net round trip
• Cache statistics

Viewing an Overview Page

1. Select an API node for which you would like to view statistics.

2. Click the Statistics tab. The Statistics view opens.

Replay and Record TrueLogs
By comparing a TrueLog that has been generated during the script development process alongside the
corresponding TrueLog was recorded originally, you can verify that the test script runs accurately.

Replay and Record TrueLogs Overview

By comparing a TrueLog that has been generated during the script development process alongside the
corresponding TrueLog was recorded originally, you can verify that the test script runs accurately.

With Web application testing, TrueLog Explorer shows the actual Web pages that are received during tests.
Live monitoring of downloaded data is available via TrueLog Explorer animated mode. Data is displayed as
it is received during testing.

For Web testing, TrueLog Explorer provides different views of sent and received data in the Content pane:

• the Response tab: displays the received data either as rendered HTML, as pretty-formatted JSON,
XML or in raw format. If the default display mode is not suitable, right-click the tab and select a different
option.

• the Differences tab: displays the differences between replay and record TrueLogs
• the Request tab: displays posted data from pages that include user interface controls such as text entry

fields.

Note: Windows displaying content presented during replay have green triangles in their upper left
corners. Windows displaying content originally displayed during application recording have red
triangles in their upper left corners.

Tip: If your analysis shows invalid session handling, click Customize Session Handling on the
workflow bar.

TrueLog Explorer 20.0 | 17

Note: Multiple entry points and approaches are available for the comparison of TrueLogs. Replay
TrueLogs do not necessarily need to be open in the replay menu tree and record TrueLogs do not
necessarily need to be open in the record menu tree. Two TrueLogs can even be compared with one
another. The procedure is the same for all TrueLog comparisons.

Comparing Replay and Record TrueLogs

1. Choose File > Add TrueLogs or File > Add TrueLog On Error Files . The Open dialog box opens with
the specified file type selected in the Files of Type list box.

2. Navigate to the directory of the relevant test and select the file to be explored.

3. Optional: Check the Open in Compare View check box to open the file in Compare view.

4. Click OK.

5. Click Analyze Test on the workflow bar. The Workflow - Analyze Test dialog box opens.

6. Click Compare your test. The corresponding record TrueLog opens in Compare view and the Step
through TrueLog dialog box displays with the Whole pages option selected. With this selected, node-
by-node comparison of the TrueLogs can be conducted.

7. Click Find Next to step through TrueLog result files one page at a time.

Experiment with different increments by which to advance through the TrueLogs to visually verify that
your script ran as intended (HTML documents, Errors, Form submissions, or API calls).

Note: Sub-panes related to record sessions have red triangles in their upper-left corners, while
sub-panes related to replay sessions are marked with green triangles.

Synchronizing Replay and Record TrueLogs

In compare mode you can synchronize corresponding API nodes between replay and record TrueLogs to
identify differences between recorded values and replayed values.

Note: This feature is disabled when automatic synchronization of TrueLogs is enabled.

1. Enable compare mode by doing one of the following:

• Choose View > Compare Mode .
• Click the Compare Mode button on the toolbar.

2. Open a set of corresponding record and replay TrueLogs.

3. Right-click an API node and choose Synchronize TrueLogs. TrueLog Explorer locates the API node in
the matching TrueLog that best correlates with the selected API node.

Auto-Syncing Replay and Record TrueLogs

In compare mode you can maintain automatic synchronization between corresponding API nodes in replay
and record TrueLogs.

1. Enable compare mode by doing one of the following:

• Choose View > Compare Mode .
• Click the Compare Mode button on the toolbar.

2. Open a set of corresponding record and replay TrueLogs.

3. Synchronize the TrueLogs by doing one of the following:

• Click Keep TrueLogs Synchronized on the toolbar.
• Choose View > Keep TrueLogs Synchronized.

Now when you click an API node in either TrueLog, TrueLog Explorer automatically selects the API
node in the other TrueLog that best correlates with the selected API node.

18 | TrueLog Explorer 20.0

TrueLog On Error
TrueLog On Error files provide complete histories of the transactions that precede errors uncovered during
load tests. They enable you to drill-down through real content to analyze error conditions.

TrueLog On Error files maintain histories of all client requests and server responses. Because they present
errors in the context of the sessions within which they occur and are closely integrated with test scripts,
TrueLog On Error files are uniquely suited for root-cause analysis of system and application faults.

Because TrueLog On Error is recorded only when errors are encountered, it is much less of a drain on
memory and processing than is standard TrueLog.

It is typical after running a test to have multiple TrueLog On Error files open in TrueLog Explorer (one
TrueLog for each virtual user who returns an error). With the TrueLog Explorer Find Errors feature, errors
can be identified chronologically, regardless of which TrueLogs the errors were recorded in. This simplifies
the process of analyzing errors. There is no need to manually review all open TrueLogs to find the next
error in a sequence.

Analyzing TrueLog On Error

Complete a load test.

1. Click the Silk Performer Explore Results button. The Workflow - Explore Results dialog box appears.

2. Click TrueLog Explorer.

Note: The TrueLog Explorer option is disabled if no TrueLogs are found.

TrueLog Explorer launches with all of the TrueLog On Error files that were generated for the current test
open. The Find Error dialog box is displayed.

Note: If more than 100 TrueLog files are associated with the test, a dialog appears stating that
only the first 100 TrueLogs will be opened automatically.

3. Select All Open TrueLogs (the default) from the Search in list box.

Search sequentially for errors in all open TrueLogs.

4. Select a TrueLog in the menu tree

5. Select selected TrueLog only from the Search in list box.

Search sequentially for errors in only a selected TrueLog.

Note: TrueLog On Error files are listed chronologically.

6. Select the type of error you’re looking for (error, warning or informational) in the Find what portion of
the dialog.

7. Specify a search strategy (Start from selected node or Start with first error) in the Search strategy
portion of the dialog.

8. Navigate between errors using the Find Next and Find Previous buttons.

Tip: When testing Web applications, errors often occur one or two steps before they manifest
themselves in page content as non-loading images, error messages, etc.

Closing a TrueLog
Once you have finished analyzing a TrueLog, you may want to close it to clean up the menu tree.

1. In the TrueLog menu tree, select the TrueLog that you want to close.

2. Choose File > Remove selected TrueLog .

Alternative: To close all open TrueLogs, choose File > Remove all TrueLogs .

TrueLog Explorer 20.0 | 19

Working With Silk Performer
It is assumed that you are already familiar with Silk Performer functionality. Refer to Silk Performer Help for
full details regarding its use and interaction with TrueLog Explorer.

Exploring TrueLogs from Silk Performer
TrueLog Explorer opens automatically with the most recently generated TrueLog when you initiate a Try
Script run by clicking Try Script on Silk Performer's workflow bar. Additionally, TrueLog Explorer can be
opened from Silk Performer by any of the following methods:

• The replay TrueLog of the most recent Try Script run can be opened at the corresponding node by right-
clicking within the script in Silk Performer's script editor and choosing Locate In Recent Try Script
TrueLog.

• The replay TrueLog of the current run can be opened at the corresponding node by right-clicking a
virtual user output in Silk Performer’s Output view on the Virtual User page and choosing Explore
TrueLog.

• Record TrueLogs can be opened by right-clicking scripts in Silk Performer’s project menu tree and
choosing Explore Recorded TrueLog.

• The replay TrueLog of the most recent Try Script run can be opened by right-clicking a script in Silk
Performer’s project menu tree and choosing Explore Recent Try Script TrueLog.

• Replay TrueLogs can be opened by choosing Results > Explore TrueLog .
• The replay TrueLog of the current run can be opened by right-clicking virtual users in Silk Performer’s

Monitor/Virtual User view and choosing Explore TrueLog.

Enabling TrueLog Via Silk Performer
TrueLog Explorer relies on Silk Performer for the writing of TrueLog and TrueLog On Error files. With Try
Script runs, which are the most common scenario for use of TrueLog files, TrueLog files are automatically
enabled. No configuration is necessary.

Because normal TrueLog generation can produce large amounts of data and degrade performance,
consider TrueLog On Error, which only records TrueLog information when transactions fail.

The following table identifies the options for enabling TrueLog and TrueLog On Error:

Options Steps

Silk Performer Results toolbar Click Generate TrueLog Files on the Silk Performer
Results toolbar to record all TrueLog activity, or click
Generate TrueLog On Error Files to generate TrueLog
only when failed transactions occur.

Silk Performer menu Choose Settings > Active Profile > Results > TrueLog .

Check the TrueLog files (.xlg) check box to record all
activity, or check the TrueLog On Error files (.xlg) check
box to generate TrueLog only when failed transactions
occur.

Click OK.

Silk Performer’s Workload Configuration page To enable TrueLog On Error for your tests, check the
check box in the Settings section on Silk Performer’s
Workload Configuration page.

20 | TrueLog Explorer 20.0

Try Script Runs
Try Script runs are Silk Performer test runs that are used to evaluate the readiness of test scripts. In Try
Script runs, original recorded sessions are compared against replay sessions to identify session
information that may require parsing or to test verification functions.

Executing a Try Script Run from TrueLog Explorer

Choose Script > Do a Try Script Run . Silk Performer then opens and runs the specified test script.

Executing a Try Script Run from Silk Performer

1. On the Silk Performer workflow bar, click Try Script. The Try Script dialog box opens.

2. Click Run.

Note: To open TrueLog Explorer during the Try Script run, select the Animated Run with TrueLog
Explorer check box on the Try Script dialog box.

TrueLog Explorer for Silk Test
An alternative version of TrueLog Explorer ships with Silk Test, Silk’s functional-testing tool. The version of
TrueLog Explorer that accompanies Silk Test is set to Viewer mode, meaning that Silk Test TrueLogs
support only the examination of results within test cases. They do not offer script customization, which is
available for most Silk Performer-based TrueLogs.

Silk Performer utilizes Silk Test to execute GUI-level (fat client) tests in remote-desktop sessions. For full
details, see the Silk Performer Help.

For information about Silk Test’s interaction with TrueLog Explorer, refer to the TrueLog Explorer Help that
ships with Silk Test.

Perspectives
TrueLog Explorer offers two viewing modes, or perspectives, to accommodate various TrueLog types. The
default, most commonly used view perspective for Silk Performer users is the Explorer perspective.
Explorer perspective offers the full range of script customization features offered by TrueLog Explorer.
Explorer perspective enables all functionality offered by the TrueLog Explorer workflow bar. By default,
attended Silk Performer tests always produce Explorer-perspective TrueLogs.

Viewer perspective enables only a subset of the context-menu commands across all TrueLog Explorer
views and disables the workflow bar. The intent of this perspective is to offer a simplified view for users who
are not customizing their scripts, and to support TrueLog types for which script customization is
unavailable. By default, unattended Silk Performer tests and Silk Test tests always produce Viewer-
perspective TrueLogs.

Switching to Viewer Perspective
Toggling between Explorer and Viewer perspectives is enabled for TrueLog types that offer the Explorer
perspective. For TrueLog types that do not support the Explorer perspective, Viewer perspective is the only
available mode.

Choose one of the following options:

• Click Enable Viewer perspective (the eye icon on the toolbar).
• Choose View > Perspective > Viewer .

TrueLog Explorer 20.0 | 21

Switching to Explorer Perspective
Toggling between Explorer and Viewer perspectives is enabled for TrueLog types that offer the Explorer
perspective. For TrueLog types that do not support the Explorer perspective, Viewer perspective is the only
available mode.

Choose one of the following options:

• Click Enable Explorer perspective (the magnifying glass icon on the toolbar).
• Choose View > Perspective > Explorer .

Sample Applications
This Help references three sample applications: a Web 2.0 application, a classic pure HTML Web
application, and a database application. Use these applications to acquaint yourself with Silk Performer’s
and TrueLog Explorer’s functionality before you begin working with sensitive data.

Sample Web 2.0 Application
Silk Performer offers a modern sample Web application that you can use to learn about Web 2.0
application testing. The InsuranceWeb sample Web application is built upon ExtJS and JSF frameworks,
uses AJAX technology, and communicates via JSON and XML.

The sample application is hosted at http://demo.borland.com/InsuranceWebExtJS/.

22 | TrueLog Explorer 20.0

http://demo.borland.com/InsuranceWebExtJS/

Sample Classic Web Application
ShopIt simulates a simple, pure HTML e-commerce Web site with a catalog of camping merchandise that
is available for simulated online purchase. Use this application to experiment with TrueLog Explorer’s pure
HTML Web-application capabilities.

ShopIt Overview

ShopIt simulates a simple e-commerce Web site with a catalog of camping merchandise that is available
for simulated online purchase. Use this application to experiment with TrueLog Explorer’s Web-application
capabilities.

ShopIt is designed to generate errors, including session errors and missing Web links that are the result of
out-of-stock merchandise. The session errors are the result of session information that is embedded in
JavaScript and is not detectable by Silk Performer’s context management. The test script that includes this
hard-coded session data must be customized before the script can run error-free.

Note: See the ShopItV60.exe readme, which is available in the setup, for the latest information
about ShopIt.

TrueLog Explorer 20.0 | 23

Software Requirements for ShopIt

A Windows operating system that includes IIS 4 or IIS 5 with Active Server Pages and Microsoft Internet
Explorer (version 5.0 or later) is required.

Installing ShopIt V 6.0

The Silk Performer sample web application is ShopIt V 6.0. ShopIt V 6.0 simulates a simple e-commerce
website with a catalog of camping merchandise that is available for simulated online purchase. Use this
application to experiment with Silk Performer's web application capabilities. ShopIt V 6.0 is designed to
generate errors, including missing links (due to merchandise being out of stock) and session errors.

Before you install ShopIt V 6.0, refer to the Release Notes to ensure that your system supports the use of
ShopIt V 6.0.

You can download the ShopIt V 6.0 setup from the product updates site.

1. Double-click the file ShopItV60.exe

Note: IIS (Internet Information Server) must be installed on the computer. For IIS 7, also install
Role Services ASP and ISAPI Extensions.

2. The Welcome page displays. Click Next.

3. The Choose Destination Location page displays. To change the default installation directory, click
Browse, specify a folder, and click OK. Click Next.

4. Enter the name of the virtual directory for the web application. This is the name of the directory that will
be created on the web server. Click Next.

5. Setup installs the files and configures IIS to run the ShopIt V 6.0 web application.

6. The Installation Complete dialog displays. Click Finish.

7. For IIS 7: Add the virtual directory to IIS manually.

• Alias: ShopItV60
• Physical path: Install directory of ShopIt.

Note: Make sure that ASP is available in IIS.

The ShopIt V 6.0 web application is now ready for use. You can access ShopIt V 6.0 with a browser of your
choice by entering the following URL:

http://<computer name>/<virtual directory name>/

If the name of your computer is JohnSmith and you have not modified the default value ShopItV60 for
the virtual directory, the URL is:

http://JohnSmith/ShopItV60/

Sample Database Application - Customer OCI
Customer OCI, the sample database application, simulates a simple application that allows you to add,
edit, and delete customer contact information.

Customer OCI Overview

Customer OCI, the sample database application, simulates a simple application that allows you to add,
edit, and delete customer contact information. Use this application to record sample database sessions
that include the insertion of new customer records and database queries. You can use the resulting
TrueLogs to acquaint yourself with TrueLog Explorer database functionality.

Two versions of Customer OCI are provided:

• Person PB V6 - OCI7

24 | TrueLog Explorer 20.0

http://supportline.microfocus.com/websync/productupdatessearch.aspx

• Person PB V7 - OCI8

Both versions are identical except they use different versions of PowerBuilder (versions 6 and 7) and
different versions of OCI (versions 7 and 8).

Note: The sample TrueLogs were created using Person PB V7 - OCI8.

Software requirements for Customer OCI

To run Customer OCI, you must have:

• Oracle8 or Oracle9 client installation
• Access to an Oracle database

Accessing Customer OCI

Use Customer OCI, the sample database application, to record sample database sessions that include the
insertion of new customer records and database queries. Customer OCI is part of the Silk Performer
installation.

Determine which version you want to access and then perform one of the following steps:

• To access PersonPB V6 - OCI7, choose Start > Programs > Silk > Silk Performer 20.0 > Sample
Applications > Database Samples > PersonPB V6 - OCI7 sample application .

• To access PersonPB V7 - OCI8, choose Start > Programs > Silk > Silk Performer 20.0 > Sample
Applications > Database Samples > PersonPB V7 - OCI8 sample application .

PersonPB

The PersonPB application that accompanies Silk Performer is required to perform all steps described in the
Oracle tutorials of the Silk Performer Tutorials book. The application provides a simple user interface to
search an Oracle database for customers, to update customer records, to insert new customer records,
and to remove obsolete customer data.

Keep in mind that the application was developed chiefly for demonstration purposes. Database traffic
generated by the application can easily be recorded with the Silk Performer Recorder and BDL scripts
based on the captured database traffic are easy to understand since they contain mostly simple Oracle API
function calls.

To work with the PersonPB application, you need one of the following:

• Oracle 9.x database or later
• SQLNet client (with compatible database version)

Setting Up PersonPB

Once you have successfully installed Silk Performer, the PersonPB application is located in the
SampleApp subdirectory. For more details on how to install Silk Performer, refer to the installation help.

The PersonPB application provides a number of settings to specify the application behavior. Since these
settings affect the SQL statements rather than the user interface, you need to record the database traffic
using the Silk Performer API Recorder for the differences to become visible.

To set up the application parameters:

1. From the PersonPB menu bar, click File > Parameter.

2. Specify the Static Bind setting.

If this option is checked, each select-list item is defined separately. Otherwise, all select-list items are
described using a single operation.

3. Specify the Disable Bind setting.

TrueLog Explorer 20.0 | 25

If this option is checked, parameters within SQL statements are replaced with constants rather than
being bound to the corresponding program variables.

4. Enter the number of Rows to fetch per iteration.

Only the specified number of rows is available after a fetch operation.

5. Specify the SQL cache size.

This setting determines the maximum number of database cursors used by the application.

6. Click OK to save your changes.

7. In the Customer OCI window, select either the Serializable option or the Read Committed option.

See the Oracle documentation for an exact isolation level description. The isolation level determines
how transactions modifying the database are handled.

Note: To replay a test script using multiple virtual users, the isolation level of the traffic-generating
application has to be set to Read Committed.

Working with PersonPB

This section describes the PersonPB user interface provided to search a database for customers, to update
customer records, to create new customer records, and to remove obsolete customer data.

Connecting PersonPB to a Database

Before you can work with PersonPB, you must establish a connection between PersonPB and your Oracle
database. To connect to an Oracle database using OCI 7, start with step one. To connect to an Oracle
database using OCI 8, start with step two.

1. Launch the PersonPB V6 application for OCI 7 by clicking Start > Programs > Silk > Silk Performer
<version number> > Sample Applications > Database Samples > PersonPB V6 - OCI7 Sample
Application.

2. Launch the PersonPB V7 application for OCI 8by clicking Start > Programs > Silk > Silk Performer
<version number> > Sample Applications > Database Samples > PersonPB V7 - OCI8 Sample
Application.

3. On the Login dialog box, enter the connection string to access your Oracle database.

A connection string is used to request a connection to a remote Oracle database. The SQL Net Easy
Configuration tool, part of the Oracle client software, can be used to set up connection strings. For more
information, refer to the documentation accompanying your Oracle software.

4. Enter your user name and your password and click Login. The Customer OCI window displays.

Searching for Customers

Before you can search the database for customer records, follow the steps in the topic Connecting to a
Database.

1. On the Customer OCI dialog box, click Cancel.

2. Specify any search criteria (Firstname, Lastname, Address 1, and so on).

3. Click Select. The search results display in the customer list.

Updating a Customer Record

Before you can update customer records, follow the steps in the topic Connecting to a Database.

1. On the Customer OCI dialog box, select a customer.

2. Update the customer information in the corresponding fields.

3. Click Update. The updated information displays in the customer list.

26 | TrueLog Explorer 20.0

Creating a Customer Record

Before you can create customer records, follow the steps in the topic Connecting to a Database.

1. On the Customer OCI dialog box, click Cancel.
2. Enter the new customer data, at least the first name and the last name.

3. Click Insert.

Note: Since the new customer record is not selected automatically, you have to click Select for the
new customer to become visible in the list.

Removing a Customer Record

Before you can remove customer records, follow the steps in the topic Connecting to a Database.

1. On the Customer OCI dialog box, select at least one customer.

2. From the customer list, select the customer record you want to remove.

3. Click Delete.

Using Stored Procedures

Before you can create a stored procedure to insert a new customer, follow the steps in the topic
Connecting to a Database.

The PersonPB application supports stored procedures to insert new customer records. Stored procedures
are available mainly to demonstrate additional Silk Performer Recorder features.

1. On the Customer OCI dialog box, make sure no stored procedures exist.

2. Click Create. You can now use the stored procedure to insert a new customer.

3. Click Cancel.
4. Enter the new customer data, at least its first and its last name.

5. Click Insert using SP.

Note: Since the new customer record is not selected automatically, you have to click Select for the
new customer to become visible.

6. To drop a stored procedure, click Drop.

Customizing Session Handling
Illustrates how to parse out hard-coded session data that sometimes appears in record TrueLogs. Session-
handling customization enables you to maintain state information during testing.

Session-Handling Overview
Session-handling customization is the process of manipulating server responses in such a way that
application state information is preserved during load testing.

In their responses to clients, servers often generate information at runtime that is used to identify future
client requests as coming from the same computer during the same user session. Servers may send out
unique strings, commonly known as session IDs. If not updated in test scripts, such session information
can create problems in subsequent test runs.

When replayed test runs are compared to originally recorded test runs and outdated session information is
discovered, that information must be replaced with dynamic variables in future test runs. Otherwise test
scripts pass along invalid session IDs or other session information.

TrueLog Explorer identifies differences that are relevant for customization in yellow and non-relevant
differences that do not require customization in blue.

TrueLog Explorer 20.0 | 27

Note: Because Silk Performer recording techniques generate context-full scripts that do not contain
static session information, session handling customization is generally not required for most
applications. So if you do not detect any problems when you analyze your test you can skip session-
handling customization and proceed with user data customization.

Note: The examples presented here relate specifically to Web applications, however, the same
principles can be applied to database and XML-based applications. Though Oracle Forms, SAPGUI,
Citrix, terminal emulation, TCP/IP and UDP record/replay TrueLogs can be compared using TrueLog
Explorer, session-handling customization is not available for those application types.

Determining When to Customize Session Handling
When a WebPageUrl call in a script uses a URL that contains a session ID as part of the query string, that
same hard-coded static session ID will be sent to the server when the script is replayed. The session ID,
however, will not correctly identify the replay session. It will only identify the earlier recorded session,
causing the script replay to generate an error.

Without replacing static session IDs in scripts with dynamic values generated at runtime, Web applications
are likely to generate errors, such as Your session has expired. Please return to the
login screen.

Because of Silk Performer session-handling methods, session customization is not required for most Web
applications. In the rare instances where manual session customization is required, TrueLog Explorer
facilitates the process.

Silk Performer uses two session-ID handling methods that reduce the need for manual handling of hard-
coded session IDs:

Cookie Management

Silk Performer automatically handles dynamic session ID values for servers that use cookies to exchange
session information. Because Silk Performer accurately emulates browser cookie management, it can send
cookies to servers in the same way that browsers do, and thereby eliminate the need for manual interaction
to maintain state.

Page-level Web API

Using page-level API for recording (the default setting) delivers scripts that generate context-full Web API
function calls, such as WebPageLink and WebPageSubmit. Context-full Web API calls work at the HTML
level, not the HTTP level, and therefore don't use URLs as parameters. Manual session customization isn't
required for context-full API calls. The Silk Performer page-level API is used when the application type Web
business transaction (HTML/HTTP) is selected in the Outline Project dialog box.

Note: It is strongly recommended that the Silk Performer page-level API be used rather than the Silk
Performer low-level, browser-based API.

When client-side JavaScript is relied upon for the dynamic generation of HTML, the Silk Performer
Recorder occasionally loses HTML context and scripts context-less Web API calls. Context-less Web API
calls, such as WebPageUrl and WebPageForm, contain URLs as parameters. In these rare instances
scripts may contain hard-coded session IDs that can be found in the URL parameters of Web API calls and
in the form fields declared in the DCLFORM sections of scripts.

Example

The following context-full script does not require customization.

transaction TMain
 begin
 WebPageUrl("http://myHost/ShopIt/"); // first call always
context-less
 WebPageLink("Join the experience!");
 WebPageSubmit("Enter", SHOPIT_MAIN_ASP001);

28 | TrueLog Explorer 20.0

 WebPageLink("Products");
 end TMain;

dclform
 SHOPIT_MAIN_ASP001:
 "SessionID" := "" <USE_HTML_VAL>, // hidden value:
 //
LGIJALLCGEBMIBIMFKOEJIMM2
 // recognized as a
hidden
 // form field, the
value is
 // taken from the
actual
 // HTML form field.
 "name" := "Tester", // changed
 "New Name Button" := "" <USE_HTML_VAL>; // unchanged value:
"Enter"

Example

Following is a script with context-free functions (static session data that needs to be
customized is included in the DCLFORM section):

transaction TMain
begin
 WebPageUrl("http://myHost/ShopIt/"); // first call always
context-less
 WebPageUrl("http://myHost/ShopIt/main.asp", NULL,
SHOPIT_MAIN_ASP001);
 WebPageForm("http://myHost/ShopIt/main.asp",
SHOPIT_MAIN_ASP002);
 WebPageUrl("http://myHost/ShopIt/products.asp");
end TMain;

dclform
 SHOPIT_MAIN_ASP001:
 "from" := "welcome";

 SHOPIT_MAIN_ASP002:
 "SessionID" := "LGIJALLCGEBMIBIMFKOEJIMM2",
 "name" := "Tester",
 "New Name Button" := "Enter";

Customizing Session Handling
You can create a new recording rule in TrueLog Explorer using values that you have specified in a parsing
function. For example, creating a recording rule from a session-customization parsing function allows you
to record an application while avoiding session customization issues entirely.

1. Select a TrueLog in the menu tree.

2. Click Customize Session Handling on the workflow bar. The Workflow - Customize Session
Handling dialog box opens.

3. Click the Find differences link to view a differences table on the Differences page.

This step reveals instances in which the server responded with different (or dynamic) information during
the replay session compared to of the record session. Such static information may need to be replaced
with a variable.

TrueLog Explorer 20.0 | 29

Note: When the corresponding record TrueLog is not already open, a dialog box opens asking if
you want to have the corresponding record TrueLog opened.

a) Click OK.

4. Step through the HTML server responses using the Step Through TrueLog dialog box.

Recorded responses are displayed alongside the corresponding replayed responses. Only those
differences that indicate that static information is included in the test script and being sent back to the
server need to be parsed. For example, a difference between replay and record sessions might be due
to an e-commerce site running out of stocked merchandise. Such a difference would not be appropriate
for script customization because it is not session related.

Tip: The column headers on the Differences page offer helpful mouse-over tooltips that describe
the elements contained in each column.

5. Double-click one of the errors listed on Differences page. The Insert parsing function dialog box
opens with the boundary values already inserted. There is no need to locate and enter these values
manually.

6. Optional: Click Create Recording Rule to create a recording rule based on the values of the parsing
function. This enables you to record the application in the future without having to care about session
customization again.

7. Back on the Insert parsing function dialog box, click OK.

8. Click Customize Session Handling on the workflow bar once the script has been successfully
modified.

9. Click Try Script Run to see if the script runs correctly now that session handling has been modified. A
new Try Script run is initiated.

30 | TrueLog Explorer 20.0

10.Analyze the results of the subsequent test run to determine whether or not session handling
customization was successful.

Self-Learning Recorder
The Silk Performer self-learning Recorder is adept at supporting applications that rely heavily on client-side
scripting. Equipped with advanced context management techniques, the recorder is able to generate Web
scripts that maintain page context even when page requests are executed via JavaScript functions.

Maintaining page context means that Web pages are requested in the context of the links or submit forms
that call them. Such context-full Web page request functions reference Web pages via their links or form
names rather than simply by their URLs. To do this, Silk Performer parses through Web-server traffic for
links for form submissions to identify the pages that called the content.

Parsing Functions
Parsing functions can be used to maintain state information during load testing and to simulate real-world
user-data input. Parsing functions (which are stored in BDL variables) read session-related values in server
responses. They then use parsed values as parameterized data that is sent back to servers as part of a
query string post or URL data.

Note: Parsing functions are different from verification functions, which only check for the presence of
specified input values.

Parsing Functions Overview
Parsing functions are typically used for the following tasks:

• Replacing static session IDs in scripts with dynamic session IDs that maintain state information.
• Building enhanced content verifications into scripts that can not be achieved with verification functions

alone. For example, a parsing function might verify that a value in column 2 of row 3 of a database table
is equal to the sum of the values in column 2 of row 1 and column 2 of row 2. This can be achieved by
generating parsing functions that parse out the three values and compare them in a script.

• Conditionally executing part of a testing script that is dependent on data returned from a server. For
example, an HTTP request returns an HTML page that includes the following results: <nnn> items
found. Different actions need to be executed against the value <nnn>. Say the transaction is designed
to:

• Exit if <nnn> = 0.
• Link to a details page if <nnn> = 1.
• Link to the next page if <nnn> is greater than 1.

To accomplish this, the value <nnn> must be parsed from the HTML page, and scripted actions must be
run based on the parsed values.

TrueLog Explorer allows you to insert parsing functions visually in Rendered and Source views. TrueLog
Explorer automatically generates parsing functions in scripts, so no manual writing of code is required.
TrueLog Explorer offers wizards that add parsing functions to your scripts to parse control values at any
time during an application's life cycle. To add a parsing function, right-click in the Value column of a control
that you wish to parse and select the relevant context menu.

HTML Content Parsing Functions
HTML content parsing functions can be applied to rendered, visible HTML content. They are applied in
TrueLog Explorer Rendered view. HTML parsing functions allow for the parsing of HTML content that can
be viewed in Web browsers.

The following HTML content parsing functions are available:

TrueLog Explorer 20.0 | 31

• WebParseHtmlBound and WebParseHtmlBoundEx
• WebParseHtmlBoundArray (not supported by TrueLog Explorer)
• WebParseHtmlTitle

• WebParseTable

• WebParseResponseTag (not supported by TrueLog Explorer)
• WebParseResponseTagContent (not supported by TrueLog Explorer)

Response Data Parsing Functions
Data parsing functions can be applied to response data returned by servers. In cases where HTML
documents are returned from servers, this includes the complete source code of documents. These
parsing functions are applied on the TrueLog Explorer Source page.

The following data parsing functions are available:

• WebParseDataBound and WebParseDataBoundEx (these functions replace the obsolete
WebParseResponseData functions)

• WebParseDataBoundArray (not supported by TrueLog Explorer)
• WebParseResponseHeader (not supported by TrueLog Explorer)

Note: Visual parsing with TrueLog Explorer is not currently available for TCP/IP and UDP-based
applications. However, BDL functions that allow you to parse response data from WebTcpipRecv
functions are available.

Session Handling for Web Applications
Session IDs are sent to clients in a number of ways. Most often they are included in cookies, hyperlink
URLs, URLs of embedded objects, and HTML form fields. Session IDs are likewise returned to servers
within cookies, URLs, and HTTP post data. See the examples below:

Example: Session information included in a cookie:

Information sent to the client:

Set-Cookie: SessionID=LGIJALLCGEBMIBIMFKOEJIMM; path=/

Information returned to the server:

Cookie: SessionID=LGIJALLCGEBMIBIMFKOEJIMM

Example: Session information included in a URL:

Information sent to the client:

<html>
 …
<a href="/ShopIt/acknowledge.asp?
SessionID=LGIJALLCGEBMIBIMFKOEJIMM" >
 Enter Shop

…
</html>

Information returned to the server:

GET /ShopIt/acknowledge.asp? SessionID =
LGIJALLCGEBMIBIMFKOEJIMM HTTP/1.1

32 | TrueLog Explorer 20.0

Example: Session information hidden in a form field:

Information sent to the client:

<html>
 …
<form action="kindofpayment.asp" method="post" >
 Currently we only accept Credit Cards
<input type="hidden" name="SessionID"
value="LGIJALLCGEBMIBIMFKOEJIMM">
<input type="text" name="name" value="Jack " >
 <input type="submit" name="paymentButton" value="Submit">
</form>
…
</html>

Information returned to the server:

POST /ShopIt/kindofpayment.asp HTTP/1.1
…
SessionId=LGIJALLCGEBMIBIMFKOEJIMM&name=Jack&paymentButton=Submi
t

Session-Handling Customization Process
Session-handling customization typically follows a standard process. The high-level steps outlined below
should be followed for each session ID:
1. Determine whether or not a session ID needs to be customized.
2. Search for the first response (Web API call in a script) in which the session ID is sent from the server to

the client.
3. Parse the session ID in the response into a variable.
4. Replace all occurrences of the hard-coded session ID in the script with the variable.

Session ID Identification
Because session IDs differ between recorded and replayed sessions, they are easily identified by
comparing a record TrueLog to a replay TrueLog.

Session IDs can be found easily with TrueLog Explorer. Click Customize Session Handling on the
workflow bar to automatically open the recorded TrueLog file that is associated with the open replay
TrueLog. By reading through record and replay TrueLogs line by line, the differences in HTML responses
between record and replay scripts can easily be identified

Note: Manual line-by-line reading is not required because the Differences page automatically lists
the differences for you.

Session IDs should be customized when differing phrases in server response data from recorded sessions
can also be found in the URLs of Web API calls or in form fields included in the DCLFORM sections of
scripts.

Not all differences between returned data from record sessions and returned data from replay sessions are
relevant for session customization. Only when the differences between record and replay sessions are
embedded in scripts should session customization be considered. Such instances are indicated by a yellow
warning message on the Differences page and by the column BDL Occurrences (when it has a value
greater than 0).

Differences that most likely require customization are indicated by orange exclamation points on the
Differences page. Differences that most likely do not require customization are indicated with blue
question marks (replacing the occurrences of such strings in HTML is not recommended; parsing functions
may be inserted for them, but replacements will not be made). Blue exclamation points are informational
comments only.

TrueLog Explorer 20.0 | 33

Searching for the First response (Web API)
Session-handling customization requires that you search for the first response (Web API call in a script) in
which a session ID is sent from a server to a client.

1. Select a replay TrueLog from the menu tree.

2. Click Compare mode on the toolbar.

3. Click Diff Mode on the toolbar. The Differences page lists any differences it identifies between the
TrueLogs.

4. Right-click a listing on the Differences page and choose either Go to First Occurrence in BDL script
or Go to First Occurrence in HTML.

Parsing and Replacing Session IDs
Once the session IDs and Web API calls of BDL scripts that return session IDs have been identified, the
session IDs must be parsed from the responses to the Web API calls. All occurrences of hard-coded
session IDs must be replaced with variables. TrueLog Explorer supports this task so that manual
customization of scripts is not required. TrueLog Explorer generates appropriate parsing and replacement
statements automatically.

Parsing and Replacing Session IDs

1. Select a replay TrueLog from the menu tree.

2. Click Customize Session Handling. The Workflow - Customize Session Handling dialog box opens.

3. Click Find Differences. A dialog box displays, asking you if you want TrueLog Explorer to locate and
display the associated record TrueLog.

4. Click Yes. The associated record TrueLog opens in Compare View and the Step through TrueLog
dialog box opens.

Note: The Differences page identifies differences between record and replay data that may
require customization. Use the Step through TrueLog dialog box to step through Whole pages
of content and advance between API nodes until you find a difference that requires customization.

5. Double-click a listing on the Differences page to open the Insert Parsing Function dialog box.

6. Right-click a listing and choose Customize Session Handling. The Insert Parsing Function dialog
box opens.

7. The Insert Parsing Function dialog box offers parameters by which the parsing function can be
adjusted. Though the default settings will likely be correct, you can adjust the following :

a) Case sensitivity - Select this option if you want the parsing function to be case sensitive.
b) Variable name - Enter the name of the variable that should receive the result of the parsing function.
c) Left boundary - This field displays the left boundary of the specified text (the text that is located

before the specified text).
d) Right boundary - This field displays the right boundary of the specified text (the text that follows the

specified text).
e) Insert informational statement into script - Select Print statement to insert an informational print

statement into the script after the Web page call. This will write the result of the parsing function to
the Silk Performer Virtual User Output window.

f) Select Writeln Statement (write line Statement) to write the parsed value to an output file to
facilitate debugging (in addition to writing the value to the Virtual User Output window as a Print
statement does). Because generating output files alters the time measurements of load tests, these
files should only be used for debugging purposes and should not be generated for full load tests.

g) Replace with variable - Checking this check box replaces all occurrences of the parsed text with the
specified variable.

34 | TrueLog Explorer 20.0

8. Optional: Click Create Recording Rule if you want to create a recording rule based on the values you
have specified. Refer to the Silk Performer Help for detailed information on creating recording rules.

9. Click OK. Parsing and replacement statements required for customizing the handling of the selected
session ID are generated.

10.Run a Try Script to verify the customization and ensure that the session handling issue has been
resolved. API nodes marked with green check marks indicate that no session errors were encountered
during the Try Script run. Red X marks indicate that script replay errors are still present.

Parsing and Replacement Statements - Example

The sample code below shows an example of the parsing and replacement statements that are required for
the customization of session handling.

Note: The original session ID has been commented out, but it is still visible in the script.

The WebParseDataBoundEx function generated by TrueLog Explorer parses the value found between the
boundaries name=\" and \" in the HTML document returned from the subsequent WebPageLink call. It
then stores the actual value in the sSessionInfo1 variable. The parsing function must be specified before
the Web API call from which the response data is to be parsed. To facilitate debugging, TrueLog Explorer
inserts a Print statement that writes the parsed value to the Silk Performer Virtual User Output window.
The session ID variable is assigned to the sFormSid1 form field variable, which is used directly in the
DCLFORM script section in place of the constant session ID value (858891446).

Example

transaction TMain
begin
 ...
 WebParseDataBoundEx(sSessionInfo1, STRING_COMPLETE,
 "name=\"", 3, "\"", WEB_FLAG_IGNORE_WHITE_SPACE |
 WEB_FLAG_CASE_SENSITIVE, 1);
 WebPageLink("Check out", "ShopIt - Check Out"); // Link 3
 Print("sSessionInfo1: " + sSessionInfo1);

 ...

 sFormSid1 := sSessionInfo1;
 WebPageUrl("http://lab3/ShopItV60/kindofpayment.asp",
 "kindofpayment.asp", SHOPITV60_KINDOFPAYMENT_ASP004);
 ...
end TMain;

dclform
 ...
 SHOPITV60_KINDOFPAYMENT_ASP004:
 ...
// "sid" := "858891446";
 "sid" := sFormSid1;
 ...

Manual Selection of Differences

Selecting differences manually on the In Body page rather than relying on the Differences page allows for
more control over how phrases are parsed out.

For example, using the Differences page when a session ID is embedded in multiple places in an HTML
page, only the first occurrence of the phrase is parsed out. This is true even if the boundaries used for
parsing are not adequate.

TrueLog Explorer 20.0 | 35

Manually selecting an occurrence that you want to parse out allows you to select more accurate
boundaries.

Selecting Differences Manually

1. Select a replay TrueLog from the menu tree.

2. Click Compare mode on the toolbar.

3. Identify a difference between the TrueLogs on the In Body page.

4. Right-click the different phrase in the record TrueLog. If the phrase selected is static data contained in
the BDL script, a context menu displays.

5. Choose Customize Session Handling. The Insert Parsing Function dialog box opens.

You must now configure the parsing function as required.

Parsing Functions in Scripts

Parsing functions must be inserted into scripts at a point before the Web API calls that initiate the parsing/
verification of response data. Multiple parse/verification functions can be specified before each Web API
call.

The order of parse/verification functions is not relevant. An exception to this rule includes
WebParseDataBound and WebVerifyDataBound using the flag WEB_FLAG_SYNCHRON.

Example

Example of a BDL script utilizing a verification function:

WebVerifyHtml("Proper equipment leads to a successful trip",
1, ...);
WebPageLink("ShopIt");

Using HTTP Parsing Rules
The HTTP parsing example is designed to give you an overview of Silk Performer recording-rule
capabilities.

HTTP parsing rules specify when the recorder is to generate the parsing function
WebParseDataBoundEx() for dynamically changing values and where it substitutes parsing results.
Parsing rules enable the recorder to automatically generate working scripts. It typically eliminates the need
for visual session customization with TrueLog Explorer.

Web Application Parsing Rule - Example
ShopIt, the sample Web application, was deliberately built so that the Silk Performer recorder must script
the context-less function WebPageUrl() with a form definition that contains a session ID. This is achieved
by having JavaScript assemble the URL. Recording ShopIt without recording rules results in a script that
has a hard-coded session ID.

In this guided HTTP parsing rule example the context less function WebPageUrl() is scripted with a form
definition that contains a session ID. Upon executing a Try Script run, the hard-coded session ID causes a
replay error.

The session-handling customization feature of TrueLog Explorer solves this problem by modifying the script
as shown below:

Example

var
 sFormSid1 : string (100);

36 | TrueLog Explorer 20.0

 sSessionInfo1 : string (100);

 ...

 WebParseDataBoundEx(sSessionInfo1, STRING_COMPLETE,
 "name=\"", 5, "\"", WEB_FLAG_IGNORE_WHITE_SPACE, 1);
 WebPageLink("Check out", "ShopIt - Check Out"); // Link 3
 Print("sSessionInfo1: " + sSessionInfo1);

 ...

 sFormSid1 := sSessionInfo1;
 WebPageUrl(sParsedUrl,
 "Unnamed page", SHOPITV60_KINDOFPAYMENT_ASP004);

 ...

dclform
 ...
 SHOPITV60_KINDOFPAYMENT_ASP004:
 "choice" := "CreditCard",
 "price" := "115.8",
// "sid" := "858891471";
 "sid" := sFormSid1;

Custom Recorder Details

The script runs correctly now that it has been customized. However a problem exists in that each script that
is to be recorded in the future will also have be customized.

HTTP parsing rules enable the Silk Performer recorder to continue this type of customization automatically
in the future; recorded scripts can be generated automatically without manual interaction.

To do this, research must be done into how each session ID can be parsed. The customization offered by
TrueLog Explorer reveals the API calls where each session ID first occurs, and the boundaries that can be
used to parse each session ID.

Using TrueLog Explorer, the first occurrence of each session ID can be located in the HTML code.

<script LANGUAGE="JavaScript">
 function doProcess(mylink)
 {
 scheme="http://";
 server="lab3";
 serverport="";
 path="/ShopItV60/";
 file="kindofpayment.asp?";
 name="858891471";
 price="115.8";
 choice="CreditCard";
 mylink.href=scheme + server + serverport + path + file + "choice=" +
 choice + "&price=" + price + "&sid=" + name;
 }
</script>

The left boundary name=" and the right boundary " identified by TrueLog Explorer are good choices for
the parsing of the session ID.

Now an initial version of an HTTP parsing rule can be written for the Recorder.

<?xml version="1.0" encoding="UTF-8"?>
<RecordingRuleSet>

 <HttpParsingRule>
 <Name>ShopIt V5.1 Session Id</Name>

TrueLog Explorer 20.0 | 37

 <Search>
 <SearchIn>Body</SearchIn>
 <LB>
 <Str>name="</Str>
 </LB>
 <RB>
 <Str>"</Str>
 </RB>
 </Search>

 <ScriptGen>
 <VarName>ShopItSessionId</Varname>
 </ScriptGen>

 </HttpParsingRule>

</RecordingRuleSet>

Since ShopIt session IDs do not appear in HTTP response headers, it is specified that only response
bodies are to be searched (using the Search\SearchIn attribute).

It is specified that the session ID can be found by searching for the left boundary (the boundary is specified
in the Search\LB\Str attribute).

Note: The quotation symbol (") has been encoded in XML using the character sequence ".

A single quotation symbol marks the end of the session ID. This is specified with the Search\RB\Str
attribute. Here again, the quotation symbol has been encoded.

Finally, specifics have been defined regarding how the variable for the parsing result is to be named. The
name is specified using the ScriptGen\VarName attribute.

This rule file can be saved to the Silk Performer Include directory to make it globally available to all
projects. The file name can be of any length, but the file extension .xrl must be used. Alternatively, if the
recording rule is to be used with only one project, the file can be saved to the Documents directory of a
specific Silk Performer project.

Adding Verifications
This section provides an overview of creating verification checks for HTML page titles, HTML content,
HTML tables, and HTML source code.

Note: Content verifications are currently unavailable for TCP/IP- and UDP-based applications.

Verifications Overview
TrueLog Explorer enables you to create Web content verification checks for HTML page titles, HTML
content, HTML tables, and HTML source code. By selecting text that you want to verify either in HTML
source code or directly in rendered HTML view, all required verification functions can be generated and
automatically inserted into your BDL script.

Visual Data Verification

TrueLog Explorer offers you two approaches to content verification. The easiest approach enables you to
create content verification checks via a simple point-and-click interface.

38 | TrueLog Explorer 20.0

Response Data Verification

Response data verification offers a more powerful, but more complex means of verifying server
functionality. As with visual data verification, response data verification is also set up via a point-and-click
interface. With visual data verification, you work in rendered HTML view and verify content that the
application exposes to the end user. With response data verification, you verify data that are returned by
servers that are not visible to the end user, such as HTML code and XML code.

Depending on the functions you select, TrueLog Explorer can generate response-data verification functions
that apply to complete response data returned by servers or only to selections within specified boundaries.

Verification Checks
Explains the advantages of including verification checks in test scripts.

When to Use Verification Checks
Application errors often do not result in erroneous HTTP responses. More commonly, applications respond
with incorrect data values or error messages that are incorporated into HTML content, such as Servlet
Exception Occurred or Server Too Busy error messages. Because checks of HTTP status code do
not uncover this class of error, application errors are often overlooked unless verification functions that
check for non-standard HTTP errors are built into test scripts.

When verifications are built into test scripts, tests go from being simple load tests to hybrid load/
functionality tests. Such scripts can be utilized without incurring significant performance loss, even in large
load test scenarios. This functionality allows you to detect a class of error that other load tools are unable
to detect because errors that occur only under load are undetected with standard load test scripts.

TrueLog Explorer offers the following means of enhancing test scripts with verification functionality:

• Enabling the Silk Performer Recorder to automatically generate verification checks during recording.
• Allowing users to apply verification checks visually in Rendered view via a point-and-click interface. No

editing of BDL code is required. TrueLog Explorer automatically adds verification functions to scripts.
• Directly enhancing scripts by manually inserting coded verification functions.

Automatically Generating Verifications During Recording
To enable the automatic generation of verifications during Silk Performer script recording:

1. Within Silk Performer, choose Settings > Active Profile . The Profile - [<profile name>] - Simulation
dialog appears.

2. Select Record > Web in the shortcut list, then click the Verification tab.
3. In the Recording section, check the Record title verification and Record digest verification check

boxes.
4. Click OK.

Verification Checks with TrueLog Explorer
TrueLog Explorer enables you to insert content-verification functions into test scripts to verify the accuracy
of content that is returned by application servers during testing.

TrueLog Explorer offers wizards that add verification functions to your scripts to verify control values at any
time during an application's life cycle. To add a verification function, right-click in the Value column of a
control that you wish to verify and select the relevant context menu.

When you identify the content that you want to verify, all required verification functions can be generated
and automatically inserted into your test script. To identify content that is to be verified (within rendered
HTML, HTML source code, SQL commands, Oracle Forms, or elsewhere), select and right-click it.

Verifications can be applied visually inTrueLog Explorer Rendered and Source views using any of the
following methods:

TrueLog Explorer 20.0 | 39

• Script menu
• Add Verifications dialog box
• Context menus within Rendered, Source, and Form Controls views
• workflow bar

Enabling Verification Checks During Replay
See verification settings options for a list of possible verification checks that you can enable or disable
during script replay.

Tip: Profile settings in scripts can be overridden using the WebSetOption BDL function.

1. Within Silk Performer, choose Settings > Active Profile . The Profile - [<profile name>] - Simulation
dialog appears.

2. Select Replay > Web in the shortcut list, then click the Verification tab.

3. In the HTML / XML and Data areas, check which verification checks you want to enable during replay.

Inserting Content-Verification Functions
1. Open the TrueLog you want to analyze or modify.

2. Select a TrueLog API node that includes content that you want to have verified (for example, text or an
image).

3. Select the content that is to be verified on the Source page.

Note: This step is not required for page-title and page-digest verification functions.

4. Click Add Verifications on the workflow bar. The Workflow - Add Verifications dialog box opens.

5. Select a pre-enabled verification:

• Verify the page title
• Verify the selected text
• Verify the selected text in an HTML table
• Verify the digest

6. Complete the following dialog box.

Specify how verification functions should be inserted into the BDL script.

Note: Left and right boundaries are automatically identified for you.

7. Repeat the process for each verification you want to add to the BDL script.

8. Click Yes on the Workflow - Add Verifications dialog box. A Try Script run is initiated.

9. Confirm that verifications have passed successfully.

API nodes that include verifications are indicated with blue “V” symbols.

The load testing script should be ready to run without error when the following tasks have been completed:

• Customize how the application handles session information and user-input data.
• Insert any required verification functions.
• Complete any required manual BDL script editing via Silk Performer.

HTML Verification Functions
HTML verifications check rendered, visible Web content. They verify text-based content that is displayed in
Web browsers. The following HTML verification functions can be applied in Rendered view:

40 | TrueLog Explorer 20.0

• WebVerifyHtmlTitle – Verifies page title.
• WebVerifyHtml – Verifies text-based content.
• WebVerifyHtmlBound(Ex) – Verifies content within bounds.
• WebVerifyTable – Verifies content within an HTML table.
• WebVerifyHtmlDigest – Verifies the digest of an HTML page.

Generating a Title-Verification Function
The WebVerifyHtmlTitle function checks the titles (contents of HTML <title> tags) of selected
HTML pages. No text selection is required to apply title verifications.

1. In the menu tree, select the Web page that you want to verify.

2. Perform one of the following steps:

• Choose Script > Verify Page Title .
• Click Add Verifications and then click Verify page title on the Workflow - Add Verifications dialog

box.

The page title is included in the constant value text box, and the constant value option button is
selected.

3. Optional: To verify against an existing parameter or a new parameter, click the parameter value option
button.

a) Click [...] to browse to and select a parameter.
b) If no parameters exist, click Next to open the Parameter Wizard and create a new parameter.

4. From the Verify that the page title list box, select one of the following choices:

• is equal to
• is different from
• contains
• does not contain

5. Check the relevant check boxes to make the verification case-sensitive or to apply it as a script-wide
rule.

6. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

7. Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for title verifications:

transaction TMain
begin
 ...
 WebVerifyHtmlTitle("ShopIt - Greetings",
 WEB_FLAG_IGNORE_WHITE_SPACE |
 WEB_FLAG_EQUAL | WEB_FLAG_CASE_SENSITIVE, 1,
 SEVERITY_ERROR, bVerifyTitleSuccess1);
 WebPageUrl("http://myHost/shopit");
 ...

Generating a Text-Verification Function
The WebVerifyHtml function verifies selected text in Rendered view. TrueLog Explorer automatically
detects the number of occurrences of selected text in HTML documents.

1. In the menu tree, select the Web page that you want to verify.

TrueLog Explorer 20.0 | 41

2. In Rendered view, select the appropriate text.

3. Perform one of the following steps:

• Choose Script > Verify Selected Text .
• Right-click the selected text and choose Verify Selected Text.
• Click Add Verifications and choose Verify selected text in HTML page from the Workflow - Add

Verifications dialog box.

The selected text is displayed in the constant value text box, and the constant value option button is
selected.

4. Optional: To verify against an existing parameter or a new parameter, click the parameter value option
button.

a) Click [...] to browse to and select a parameter.
b) If no parameters exist, click Next to open the Parameter Wizard and create a new parameter.

5. Optional: To make the verification more tolerant, adjust the following settings:

Note: The settings on this dialog box are automatically set to values that guarantee a successful
verification for the current page. Only in cases in which you want to make a verification more
tolerant should these settings be changed (for example, by changing "exactly" "2" times to "at
least" "1" time, or by making a verification case-insensitive).

a) From the Occurs list box, select one of the following choices:

• exactly
• at least
• at most

b) Type a number in the time(s) in this page text box.

6. Check the relevant check boxes to make the verification case-sensitive or to apply it as a script-wide
rule. A result variable name is displayed in the Result variable name text box.

7. Optional: Edit the Result variable name.

8. Ensure that the Require boundary strings check box is unchecked.

9. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

10.Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for HTML text
verifications:

transaction TMain
begin
 ...
 WebVerifyHtml("Hi Tester! ", 1, WEB_FLAG_IGNORE_WHITE_SPACE
|
 WEB_FLAG_EQUAL | WEB_FLAG_CASE_SENSITIVE, NULL,
 SEVERITY_ERROR, nVerifyHtmlResult1);
 WebPageSubmit("Enter", SHOPIT_MAIN_ASP001, "ShopIt - Main
menu");
 ...

Generating a Text-Verification Function Within Boundaries
The WebVerifyHtmlBound(Ex) function verifies text selected in Rendered view. TrueLog Explorer
automatically detects unique boundaries that identify the position of selected text.

42 | TrueLog Explorer 20.0

Note: With Silk Performer, TrueLog Explorer uses WebVerifyHtmlBoundEx instead of
WebVerifyHtmlBound.

1. In the menu tree, select the Web page that you want to verify.

2. In Rendered view, select the appropriate text.

3. Perform one of the following steps:

• Choose Script > Verify Selected Text .
• Right-click the selected text and choose Verify Selected Text.
• Click Add Verifications and choose Verify selected text in HTML page from the Workflow - Add

Verifications dialog box.

The selected text is displayed in the constant value text box, and the constant value option button is
selected.

4. Optional: To verify against an existing parameter or a new parameter, click the parameter value option
button.

a) Click [...] to browse to and select a parameter.
b) If no parameters exist, click Next to open the Parameter Wizard and create a new parameter.

5. Check the relevant check boxes to make the verification case-sensitive or to apply it as a script-wide
rule. A result variable name is displayed in the Result variable name text box.

6. Optional: Edit the Result variable name.

7. Check the Require boundary strings check box. This disables the occurs frequency settings.

Left and right boundaries appear in the Left boundary and Right boundary text boxes. Boundary
strings cannot be edited from this dialog box.

8. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

9. Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for HTML text
verifications within boundaries:

transaction TMain
begin
 ...
 WebVerifyHtmlBound("Name:", "Address", "Tester",
 WEB_FLAG_IGNORE_WHITE_SPACE | WEB_FLAG_CASE_SENSITIVE,
 NULL, SEVERITY_ERROR, bVerifyHtmlBoundSuccess2);
 WebPageSubmit("Submit", SHOPIT_KINDOFPAYMENT_ASP002”);
 ...

Generating an HTML Text-Verification Function
The WebVerifyTable function verifies text selected within an HTML table cell in Rendered view. TrueLog
Explorer automatically identifies the HTML table as well as the row and column of the selected cell.

1. In the menu tree, select the Web page that you want to verify.

2. In Rendered view, select the relevant text in a table cell.

3. Perform one of the following:

• Choose Script > Verify Selected Text in HTML Table .
• Click Add Verifications and select Verify selected text in HTML table on the Workflow - Add

Verifications dialog box.

TrueLog Explorer 20.0 | 43

The selected row and column are displayed in the Verify that list boxes. Specify a different row or
column as required.

4. From the list box, select one of the following choices:

• is equal to
• is different from
• contains
• does not contain

The selected text is displayed in the value text box, and the value option button is selected.

5. Optional: To verify against an existing parameter or a new parameter, click the parameter value option
button.

a) Click [...] to browse to and select a parameter.
b) If no parameters exist, click Next to open the Parameter Wizard and create a new parameter.

6. Specify whether the verification is to be Case sensitive.

7. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

8. Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for HTML table
verifications:

transaction TMain
begin
 ...
 WebVerifyTable(7, 3, 1, "115.8",
 WEB_FLAG_IGNORE_WHITE_SPACE |
 WEB_FLAG_CONTAINS | WEB_FLAG_CASE_SENSITIVE,
 NULL, SEVERITY_ERROR, bVerifyTableSuccess1);
 WebPageLink("Add to basket", "ShopIt - Basket");
 ...

Generating an HTML Digest Verification Function
The WebVerifyHtmlDigest function calculates and verifies a Web page digest against a precalculated
digest. A digest is a character frequency table that is calculated for certain characters within a rendered
HTML page. If an HTML document is contained within a frame set, text is verified only for the frame that
contains the selected text, not the entire page.

1. In the menu tree, select the Web page that you want to verify.

2. Choose Rendered view.

3. Perform one of the following steps:

• Choose Script > Verify Page Digest .
• Click Add Verifications and then click Verify digest on the Workflow - Add Verifications dialog

box.

A name for the digest is displayed in the Constant name text box.

4. Optional: Edit the Constant name text box.

5. In the Verify group box, specify how the verification should be applied:

• All characters
• Printable characters
• Alphanumeric characters

44 | TrueLog Explorer 20.0

6. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

7. Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for HTML digest
verifications:

const
 HTML_DIGEST_1 :=
"\h01910000000011D063032CCB7D023EFBBD020000000000000000000000000
00000001
602010601010703010108010503020201"
"\h03010201030502010105010403070103010205050402060107050102";

transaction TMain
begin
 ...
 WebVerifyHtmlDigest(HTML_DIGEST_1, 79, 0, 0, NULL,
 SEVERITY_ERROR);
 WebPageLink("Check out", "ShopIt - Check Out"); // Link 3
 ...

Response-Data Verification Functions
Response-data verification functions verify that correct response data is returned by servers. In the case of
Web applications, data verifications include comprehensive source code checks.

Response data verification functions can be applied visually by selecting data, such as code or text, in
Source view. TrueLog Explorer can generate the following data-verification functions:

• WebVerifyData – Verifies selected data.
• WebVerifyDataBound(Ex) – Verifies selected data within boundaries.
• WebVerifyDataDigest – Verifies a data digest.

Generating an HTML Data-Verification Function
The WebVerifyData function verifies selected data, such as code or text, in Source view. TrueLog
Explorer automatically detects the number of occurrences of selected data in selected HTML documents.

1. In the menu tree, select the Web page that you want to verify.

2. Select the relevant data in Source view.

3. Perform one of the following steps:

• Choose Script > Verify Selected Text .
• Right-click the selected text and choose Verify Selected Text.
• Click Add Verifications and choose Verify selected text in HTML page from the Workflow - Add

Verifications dialog box.

The selected text is displayed in the constant value text box, and the constant value option button is
selected.

4. Optional: To verify against an existing parameter or a new parameter, click the parameter value option
button.

a) Click [...] to browse to and select a parameter.
b) If no parameters exist, click Next to open the Parameter Wizard and create a new parameter.

5. Specify the frequency by which the selected text is to appear, as follows:

TrueLog Explorer 20.0 | 45

a) From the Occurs list box, select one of the following choices:

• exactly
• at least
• at most

b) Type a number in the time(s) in this page text box.

6. Check the relevant check boxes to make the verification case-sensitive or to apply it as a script-wide
rule. A result variable name is displayed in the Result variable name text box.

7. Optional: Edit the Result variable name.

8. Ensure that the Require boundary strings check box is unchecked.

9. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

10.Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for data verifications:

transaction TMain
begin
 ...
 WebVerifyData("main.asp?from=welcome", 1,
 WEB_FLAG_IGNORE_WHITE_SPACE |
 WEB_FLAG_EQUAL | WEB_FLAG_CASE_SENSITIVE, 1,
 SEVERITY_ERROR, nVerifyDataResult1);
 WebPageUrl("http://myHost/shopit/", "ShopIt - Greetings");
 ...

Generating a Data-Verification Function Within Boundaries
The WebVerifyDataBound(Ex) function verifies selected data, such as code or text, in Source view.
TrueLog Explorer automatically detects unique boundaries that identify the position of selected data.

Note: TrueLog Explorer uses WebVerifyDataBoundEx instead of WebVerifyDataBound.

1. In the menu tree, select the Web page that you want to verify.

2. Select the relevant data in Source view.

3. Perform one of the following steps:

• Choose Script > Verify Selected Text .
• Right-click the selected text and choose Verify Selected Text.
• Click Add Verifications and choose Verify selected text in HTML page from the Workflow - Add

Verifications dialog box.

The selected text is displayed in the constant value text box, and the constant value option button is
selected.

4. Optional: To verify against an existing parameter or a new parameter, click the parameter value option
button.

a) Click [...] to browse to and select a parameter.
b) If no parameters exist, click Next to open the Parameter Wizard and create a new parameter.

5. Check the relevant check boxes to make the verification case-sensitive or to apply it as a script-wide
rule. A result variable name is displayed in the Result variable name text box.

6. Optional: Edit the Result variable name.

7. Check the Require boundary strings check box. This disables the occurs frequency settings.

46 | TrueLog Explorer 20.0

Left and right boundaries appear in the Left boundary and Right boundary text boxes. Boundary
strings cannot be edited from this dialog box.

8. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

9. Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for data verifications
within boundaries:

transaction TMain
begin
 ...
 WebVerifyDataBound("ahref=\"", "\"", "main.asp?
from=welcome",
 WEB_FLAG_IGNORE_WHITE_SPACE | WEB_FLAG_CASE_SENSITIVE, 1,
 SEVERITY_ERROR, bVerifyDataBoundSuccess1);
 WebPageUrl("http://myHost/shopit/", "ShopIt - Greetings");
 ...

Generating an HTML Data-Digest Verification Function
The WebVerifyDataDigest function calculates a Web page digest and then subsequently verifies
content against the precalculated digest. In the case of HTML or XML source code, a digest consists of a
character-frequency table, which is calculated for certain characters in a page-response body.

1. In the menu tree, select the Web page that you want to verify.

2. Open Source view.

3. Perform one of the following steps:

• Choose Script > Verify Page Digest .
• Click Add Verifications and then click Verify digest on the Workflow - Add Verifications dialog

box.

A name for the digest is displayed in the Constant name text box.

4. Optional: Edit the Constant name text box.

5. In the Verify group box, specify how the verification should be applied:

• All characters
• Printable characters
• Alphanumeric characters

6. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

7. Click OK. The function is then added to your test script.

Code Example

The following sample code (in bold) is generated automatically for data digest
verifications:

const
 DATA_DIGEST_1 :=
"\h019200000000E7FBEFFFAEF7FD2AFEFFFF2B0000000000000000000000000
00000004
F06040072000800020038000600060002"
"\h0006000A0035004B0024000E00050001000100010001000200010002000F0
059005A0
058000100030007000300020003000100";

TrueLog Explorer 20.0 | 47

"\h1200010001000600020003000100150013000200010001000300010003000
300A1002
30047003E00BA002100710056009B0001"
"\h000D0062003C00620079003E000300AE006D00BC0023000E002C0005000E0
00200020
0";

transaction TMain
begin
 ...
 WebVerifyDataDigest(DATA_DIGEST_1, 188, 0, 0, 1,
 SEVERITY_ERROR);
 WebPageUrl("http://lab3/ShopItV60/default.asp", "ShopIt -
Greetings");
 ...

Customizing User Data
This section explains how user-input data can be parameterized to better emulate real-world user activity
during load testing.

User-Input Data
The visual user-input data customization feature allows you to make your test scripts more realistic by
replacing recorded user-input data with parameterized data.

Without user-input data customization, all simulated transactions are identical and do not account for the
variables that are typically experienced in real world environments.

For example, you can customize the user-input data that is entered into forms during testing using the
Parameter Wizard. The Parameter Wizard lets you specify the values that are to be entered into form
fields during testing. This enables test scripts to be more realistic by replacing recorded user-input data
with randomized, parameterized user data.

User data customization can be used to:

• Perform functional tests by challenging servers with different values each time certain transactions are
executed.

• Simulate realistic user behavior by selecting submitted values based on given probability distributions.

TrueLog Explorer Workflow

User data customization is best performed:

• After session information has been parsed from test scripts
• Before server responses have been verified

User-Data Customization Scenarios
There are five scenarios within which user-data customization is typically employed:

• The posting of HTML forms by means of WebPageSubmit
• The posting of XML data by means of WebUrlPostBin or WebCustomRequestBin
• The posting of data for database applications by means of binding input data to SQL commands and

stored procedures for database applications including Oracle OCI, DB2 CLI, and ODBC (by means of
OraSet*, Ora8Set*, and OdbcSet*).

• The posting of Oracle Forms control value changes (user input) by means of OraForms*Set functions.

48 | TrueLog Explorer 20.0

• The posting of Citrix user-input actions (for example, mouse events and keyboard inputs) by means of
CitrixKey* and CitrixMouse* functions.

Note: User-data customization is not supported for terminal emulation applications, though input
parameters can be manually edited in terminal-emulation test scripts.

In the case of HTML, parameterization is performed via form declarations. Parameterization replaces hard-
coded form field values, as declared in the dclform sections of test scripts, with random variables.

For XML and database applications, parameterization takes place in the parameters of the above-
mentioned function calls, where hard-coded parameter values are replaced with data-driven variables or
random variables.

Customizing HTML User Data
Explains how to customize HTML user data based on parameters.

Customizing HTML User Data With a New Parameter
Before proceeding, ensure that all static session information has been removed from your test script and
that the most recent Try Script run produced a TrueLog that is open in TrueLog Explorer.

With HTML-based applications, the goal of user-data customization is to customize values submitted to
form fields.

This task explains the process of creating a parameter based on a random variable.

1. Choose File > Add TrueLogs to load a TrueLog into TrueLog Explorer.
The TrueLog must be based on a Try Script that has had all static session information removed from it.

2. Click Customize User Data on the workflow bar. The Workflow - Customize User Data dialog box
opens.

3. Click the Customize user input data in HTML forms link. TrueLog Explorer then performs the
following actions:

• Selects the first WebPageSubmit API call node in the menu tree.
• Opens the Step through TrueLog dialog box (with the Form submissions option button selected).
• Displays Request view

Request view shows the page that contains the HTML form that was submitted by the selected
WebPageSubmit call. When your cursor passes over a form control, a tool tip shows the control’s
name in addition to its initial and submitted values; an orange line indicates the corresponding BDL
form field declaration in Form Data view below.

4. Click Find Next or Find Previous on the Step through TrueLog dialog box to browse through all
WebPageSubmit calls in the TrueLog (these are the calls that are candidates for user-data
customization).

Note: Highlighted HTML controls in Request view identify form fields that can be customized.

5. On the Request page, right-click the form control that you want to customize and choose Customize
Value.
You can replace the recorded values with various types of input data (including predefined values from
files and generic random values) and generate code into your test script that substitutes recorded input
data with your customizations.

The Parameter Wizard opens.

With the Parameter Wizard you can modify script values in two ways:

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

TrueLog Explorer 20.0 | 49

After you create a new parameter, that parameter is added to the existing parameters and is available
for further customizations.

6. Click the Create new parameter option button and then click Next to create a new parameter. The
Create New Parameter page opens.

7. Click the Parameter from Random Variable option button and then click Next. The Random Variable
page opens.

8. From the list box, select the type of random variable that you want to insert into your test script and then
click Next.

A brief description of the selected variable type appears in the lower window.

The Name the variable and specify its attributes page opens.

9. Enter a name for the variable in the Name text box.

10.Optional: Create a new random variable file by clicking New in the File group box.

11.Specify whether the values should be called in Random or Sequential order.

The Strings from file random variable type generates data strings that can either be selected randomly
or sequentially from a specified file.

12.In the File group box, select a preconfigured data source from the Name list box and then click Next.
The Choose the kind of usage page displays.

13.Specify the new random value to use by selecting one of the following choices:

• Per usage
• Per transaction
• Per test

14.Click Finish. Your test script now uses the random variable for the given form field in place of the
recorded value. The new random variable function appears on the BDL page.

Initiate a Try Script run with the random variable function in your test script to confirm that the script runs
without error.

Customizing HTML User Data With an Existing Parameter

1. Choose File > Add TrueLogs to load a TrueLog into TrueLog Explorer.

The TrueLog must be based on a Try Script that has had all static session information removed from it.

2. Click Customize User Data on the workflow bar. The Workflow - Customize User Data dialog box
opens.

3. Click the Customize user input data in HTML forms link.

4. Click Find Next or Find Previous on the Step through TrueLog dialog box to browse through all
WebPageSubmit calls in the TrueLog.

Note: These are the calls that are candidates for user data customization.

The Request page shows the page that contains the HTML form that was submitted by the selected
WebPageSubmit call. When the cursor passes over a form control, a tool tip shows the name of the
control in addition to its initial and submitted values.

Note: Highlighted HTML controls on the Request page identify form fields that can be customized.

5. On the Request page, right-click the form control that you want to customize and choose Customize
Value.

You can replace the recorded values with various types of input data (including predefined values from
files and generic random values) and generate code into your test script that substitutes recorded input
data with your customizations.

The Parameter Wizard opens.

50 | TrueLog Explorer 20.0

With the Parameter Wizard you can modify script values in two ways:

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

After you create a new parameter, that parameter is added to the existing parameters and is available
for further customizations.

6. Select Use existing parameter.

This allows specification of an existing parameter that is defined in the dclparam or dclrand sections
of the test script.

7. From the list box, select the datatype to use.

This list shows all the variables that have been defined in the dclparam and dclrand sections of the
test script.

8. Click Finish. The test script will be modified with the new parameter.

9. Click Find Next on the Step through TrueLog dialog box to locate the next form field to be customized.

Form Data View
For each function call that changes input data, you can customize input data from both the Request view
and the Form Data view. The Form Data view offers a convenient means of viewing and customizing all
customizable form fields. The Form Data view is a representation of the forms section of the BDL script
with all included name/value pairs.

Right-click a control and choose Customize Value (just as with Request view) to open the Parameter
Wizard.

Controls for which user data has already been customized are displayed with a green outline.

Multi-Column Data Files
Parameterization from multi-column data files is a powerful means of parameterizing data. It defines files in
which specific combinations of string values are stored. Each column in a data file corresponds to a
specific parameter. Multi-column data files enable a data-driven test model and allow you to cover all user-
data input with a single data file.

Working With Database Applications
This section explains how to apply TrueLog Explorer script-customization features to the testing of
applications that rely on common database APIs.

Working With Database Applications - Overview
Silk Performer offers enhanced database support, including enhanced support for Microsoft ODBC and
Oracle Call Interface 8 (OCI8), the standard interface for accessing Oracle databases (versions 8 and 9).

Silk Performer database support includes the following APIs:

• Oracle OCI 7.0
• Oracle OCI 8.0
• Microsoft ODBC
• IBM DB2/CLI

For database applications, TrueLog Explorer offers the same script customization features that are
available for Web-based applications, including:

TrueLog Explorer 20.0 | 51

• User input-data customization
• Verification functions
• Customization of output-input correlations (comparable to session-handling customization in Web

applications)

Note: TrueLog On Error Analysis for databases is not currently supported.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

Sample Database Application - Customer OCI
Customer OCI, the sample database application, simulates a simple application that allows you to add,
edit, and delete customer contact information.

Database TrueLog Structure
TrueLog Explorer supports the visualization of database requests and responses in the same way that it
supports the visualization of HTTP client requests and HTTP/HTML server responses for Web applications.
Although with database TrueLogs, a readable database format is presented rather than a GUI as is the
case with HTML TrueLogs.

TrueLog Explorer acts as a database browser in which SQL statements and their corresponding input
parameters and output parameters can be viewed concurrently. Each supported database API presents
data in the same TrueLog format.

The five windows that are offered with database TrueLogs are as follows:

• Menu tree - Lists all relevant database API calls (those that send or retrieve data).
• Input parameter - SQL input (bind) data sent to the database.
• SQL command - Corresponding SQL command.
• Result set - Output SQL data received by the client.
• Information - Data regarding the test run.

The only view tabs that are active and applicable to database TrueLogs are SQL Command, Info, and
BDL.

52 | TrueLog Explorer 20.0

Correlations
This section explains how to identify correlations between database input and output parameters.

TrueLog Explorer 20.0 | 53

Output-Input Correlations
TrueLog Explorer output-input correlation allows you to step through record and replay API calls side-by-
side. It also identifies correlations between database input and output parameters. Similar to session-
handling customization for Web applications, output-input correlation compares replay test runs to record
sessions to identify differences that may indicate session-relevant values. The differing values are then
used as the basis for searches of correlations between output and input values within test-run scripts.
Ultimately, TrueLog Explorer enables you to modify identified dynamic values in your test scripts.

The output-input correlation feature is accessible from the workflow bar when database TrueLogs are open
in TrueLog Explorer.

Database-error types are specific to the database type under test. Unique constraint errors typically result
when identical data is submitted to a database multiple times. Such errors commonly present themselves
when unique values that are used as primary keys in database tables, such as user IDs and order
numbers, are submitted. When such personal information is submitted more than once, errors are raised.
This type of duplication is the sort of session information that can be identified in test scripts and
customized using TrueLog Explorer.

An output-input correlation is illustrated in the following two BDL code examples. The input parameter of
the execution call is 2288. Because this value occurred in an output parameter table of a previous call, a
correlation has been identified.

The value of the output parameter (2290) is parsed into a variable (sParam1) so that it can be used to set
the value of the input parameter in future test runs.

54 | TrueLog Explorer 20.0

Replacing Session Data with Variables
1. Choose File > Add TrueLogs . The Open dialog box opens.

2. Select a replay database TrueLog and click OK. The replay TrueLog opens in TrueLog Explorer.

3. Click Output-Input Correlations on the workflow bar. The Workflow - Output-Input Correlations
dialog box displays.

4. Click Find Differences. A message box asks if you want to have the associated record TrueLog opened
automatically.

5. Click OK. Compare mode is enabled. The record TrueLog is opened and the Step through
Correlations dialog box displays.

6. Using the default selections (Different result sets and Record TrueLog value) click Find Next to
advance to the first difference between recorded result set data and replayed result set data.
Differences are dynamic data returned by the database server, which are potential candidates for
correlation. If dynamic data are used in further SQL commands or stored procedures as input
parameters, then they constitute correlations between output and input data.

7. Click Correlate. The Output - Input Correlations dialog box opens.

If a dynamic value occurs as an input value in another SQL command or stored procedure, the
statement/procedure name will appear in the Use output parameter value as input for following
calls window. TrueLog Explorer can create a variable to subsequently replace the input parameter
values of these calls with output parameter values.

Note: If No correlating values appears in the Use output parameter value as input for
following calls window, then no correlations have been found. Click Cancel to return to the Step
through Correlations dialog box.

8. Click Check to select the identified statement name (there may be several).

9. Click Goto to see the input value in the context of the test script.

10.If you believe that the input value should be customized, click Customize to modify the input
parameters in the test script by replacing them with variables.

TrueLog Explorer 20.0 | 55

Initiate a Try Script run to confirm that the script runs without error.

56 | TrueLog Explorer 20.0

Manual Correlation
Manual correlation is only recommended for applications with which you have advanced knowledge. To
perform manual correlation, right-click a replay parameter in the SQL Command view and choose Find
Correlation.

Manual correlation is available in In Body view (input parameters), Out Body view (result sets), and SQL
Command view. When used in In Body view, TrueLog Explorer searches for correlating values (in Out
Body view) that precede the SQL command. When used in Out Body view, TrueLog Explorer searches for
correlating values (in In Body view) that follow the SQL command. When used in SQL Command view,
TrueLog Explorer searches for correlating values (in Out Body view) that precede the SQL command, in
case parameters are hard-coded in SQL commands.

For example:

INSERT INTO MY_PERSON (P_NO, P_FIRSTNAME, P_LASTNAME)
VALUES (2289, "Michael", "Smith")

Database Parsing Function
For database TrueLogs, TrueLog Explorer offers a single parsing function, Parse Element Value. This
parsing function is available from the context menu in the SQL window’s Output data view.

The function generates a parsing statement for one element of a result set. Example:

Ora8StmtExecute(ghSvcCtx0, ghStmt0);
Ora8StmtFetch(ghStmt0, ORA_FETCH_ALL, 100); // rows fetched: 1
sParam2 := RsGetString("1", 4);
Print("sParam2: " + sParam2);

Depending on the data type (number, float, or string), the appropriate parsing function is
then generated (RsGetInt, RsGetFloat, or RsGetString).

Input Parameter Customization
For effective load testing, it is recommended that parameterized input data be assigned to SQL statements
so that values are submitted each time database tests are run. Otherwise, identical recorded input
parameter values will be sent with each test run, which is not a realistic simulation of real-world user
activity. TrueLog Explorer enables you to visually generate code in your test scripts that substitutes
recorded input parameter values with customized input parameters.

Note: The same method is used with the customization of user data for Web applications.

You can use Customer OCI, the sample database application, to experiment with the customization of
user-input data. Scripts that replay simple recorded business transactions can be customized with
variables that input randomized data into otherwise constant data fields. Input-data values may be constant
values, random values, or values drawn from preconfigured data files, such as CSV files.

Creating an Input Parameter Based on a Multi-Column Data File
Parameterization from multi-column data files is a powerful means of parameterizing data. It defines files in
which specific combinations of string values are stored. Each column in a data file corresponds to a
specific parameter. Multi-column data files enable a data-driven test model and allow you to cover all user-
data input with a single data file.

TrueLog Explorer 20.0 | 57

1. Choose File > Add TrueLogs . The Open dialog box opens.

2. Select a replay database TrueLog and click OK. The replay TrueLog opens in TrueLog Explorer.

3. Click Customize Input Parameters on the workflow bar. The Workflow - Customize Input
Parameters dialog box opens.

4. Click Customize input parameters. The first API node in the test script that includes input parameters
is selected and the Step through TrueLog dialog box opens with the Input parameters option button
selected.

Note: If you do not want to customize input parameters for the selected node, click Find Next to
advance to the next node that incorporates input parameters.

5. In Input Parameter or SQL Command view, right-click an input parameter and choose Customize
Value.

Two methods are available for modifying values in scripts. You can use an existing parameter that has
previously been defined in the dclparam or dclrand sections of the BDL script, or you can create a
new parameter. New parameters can be created from constant values, random variables, or variables
based on data in multi-column data files.

The Parameter Wizard - Customize Value dialog box opens.

6. Click the Parameter from Multi-column Data File option button and click Next. The Parameter
Wizard - Parameter from Multi-column Data File page opens.

7. Perform one of the following steps:

• Select a preconfigured multi-column data file from the File name list box.
• Create a new multi-column CSV (Comma Separated Values) file by clicking New file. Then, enter a

name for the new file and click OK.

8. Right-click columns to edit column names, add/delete rows, or add/delete entire columns.

Note: Each column represents a separate parameter that is assignable to a single input value.

9. Type data into the data fields as appropriate.

Alternatively, you can select column header names directly to customize them.

58 | TrueLog Explorer 20.0

10.Customize Handle name or the Parameter name as required.

11.Click Next to save the file. The Choose the Insert Attribute of the Parameter page opens.

12.In the Row selection order group box specify the order in which the values from the multi-column data
file are to be assigned:

• Random - Using function FileGetRndRow, the parameter will be assigned from a random row in
the data file.

• Sequential (machine-wide) - Using the functions FileCSVLoadGlobal and FileGetNextRow,
the parameter will be assigned from the next sequential row in the data file, on a machine-wide
basis. All virtual users on a machine will use the same global row pointer for the current row.

• Sequential (test-wide) - Using the functions FileCSVLoadGlobal and
FileGetNextUniqueRow, the parameter will be assigned from the next sequential row in the data
file, on a test-wide basis. All virtual users across all machines will use the same global row pointer
for the current row. Check Remove used data rows to automatically remove data from the data file,
once it has been used.

Note: The removed data cannot be restored.

13.In the Attribute group box, specify the frequency at which new insertions should be inserted.
For example, specify if a new username should be inserted with each transaction or only once per test.

• Per transaction
• Per test

All available user groups and transactions are available from the Per transaction list boxes.

14.Click Finish. TrueLog Explorer modifies the test script and saves the multi-column data file.

Customized input parameters are indicated in green.

Initiate a Try Script run with the random variable function in your test script to confirm that the script runs
without error.

Verifications for Result-Set Data
TrueLog Explorer allows you to apply verifications to the result sets of database operations such as SQL
queries. Verifications enhance your test results by raising errors when anticipated test results are not
returned during test runs. By selecting output data and applying simple commands, all required verification
functions can be generated and automatically inserted into your BDL scripts.

TrueLog Explorer offers two database operation verification options:

• Verification of element values
• Verification of result-set row counts

Verifying a Database Operation Element Value

1. Choose File > Add TrueLogs . The Open dialog box opens.

2. Select a replay database TrueLog and click OK. The replay TrueLog opens in TrueLog Explorer.

3. Choose Edit > Step through TrueLog .

Alternative: Click Step through TrueLog on the toolbar.

The Step through TrueLog dialog box opens.

4. Click the Result sets option button.

5. Click Find Next to advance to the first database command that returns a result set.
For example, you might want fetch commands, such as Ora8StmtFetch.
The first data element in the set is selected.

6. Perform one of the following steps:

TrueLog Explorer 20.0 | 59

• Right-click a data element to verify and choose Verify Element Value.
• Click Add Verifications on the workflow bar and click Verify the element value.

The identified data element and its row or column specifications display in the value text box, and the
value option button is selected.

7. Optional: To verify against an existing parameter or a new parameter, click parameter value.

a) Click [...] to browse to and select a parameter.

If no parameters exists, the Parameter Wizard opens, enabling you to create a new parameter.
b) Click OK.

8. In the Severity group box, specify the severity that is raised if the verification returns a negative result.

9. Check the appropriate check boxes to make the verification case-sensitive or apply it as a script-wide
rule. A result variable name is displayed in the Result variable name text box.

10.Click OK. The function is added to the test script.

Initiate a Try Script run to confirm that the script runs without error.

Verifying a Database Result Set Row Count
Result set row-count verifications confirm that returned database result-sets include the specified number
of rows. Errors are raised if returned result sets have less or more than the specified number of rows.

1. Choose File > Add TrueLogs . The Open dialog box opens.

2. Select a replay database TrueLog and click OK. The replay TrueLog opens in TrueLog Explorer.

3. Choose Edit > Step through TrueLog .

Alternative: Click Step through TrueLog on the toolbar.

The Step through TrueLog dialog box opens.

4. Click the Result sets option button.

5. Click Find Next to advance to the first database command that returns a result set.
For example, you might want fetch commands, such as Ora8StmtFetch.
The first data element in the set is selected.

6. Perform one of the following steps:

• Right-click a data element to verify and choose Verify Result Set Row Count.
• Click Add Verifications on the workflow bar and click Verify the row count.

The row count of the current database result is displayed in the value text box, and the value option
button is selected.

7. Optional: To verify against an existing parameter or a new parameter, click parameter value.

a) Click [...] to browse to and select a parameter.

If no parameters exists, the Parameter Wizard opens, enabling you to create a new parameter.
b) Click OK.

8. Specify whether or not the row count must match exactly, at least, or at most the current row
count.

9. In the Severity group box, specify the severity that is raised if the verification returns a negative result.

10.Click OK. The function is added to the test script.

Initiate a Try Script run to confirm that the script runs without error.

Working With XML Applications
This section describes the script-customization and TrueLog-analysis features that are provided for the
testing of XML-based applications.

60 | TrueLog Explorer 20.0

Working With XML Applications - Overview
TrueLog Explorer offers the same support for XML-based applications that it does for HTML-based
applications, including:

• Session handling
• Input-data customization
• Verification functions
• TrueLog On Error analysis

The TrueLog Explorer Web-service support features an intuitive XML data interface that facilitates
interaction and analysis of XML TrueLogs.

The TrueLog Explorer XML API works comparably to its Web API. XML data access functions for querying
and verifying hold an advantage over Web functions because they allow you to specify the exact locations
of values, even when values are specified multiple times. The Web API only allows for the specification of
left/right boundaries using WebParseDataBound functions that are not flexible enough to adapt to server
data changes.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

Sample Web Service

The sample scripts included in this chapter are based on SOAP/XML messages taken from the sample
Web service. The scripts were generated using .NET Explorer and exported for use with Silk Performer.

To view the sample Web service using .NET Explorer, navigate to: http://demo.borland.com/
BorlandSampleService/BorlandSampleService.asmx?WSDL

XML TrueLog Structure
XML TrueLogs support the visualization of XML elements, attributes, and values via a readable XML menu
tree presentation.

UI Overview of XML TrueLogs
XML TrueLogs support the visualization of XML elements, attributes, and values via a readable XML menu
tree presentation. This XML control displays the response data of selected API calls in an intuitive XML
interface on the Rendered page. The In Body page presents the raw data that is returned by the server.
Out Body presents the raw data that is sent to the server.

See the following topics for details on the three main elements of an XML TrueLog.

TrueLog Explorer 20.0 | 61

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

Menu Tree
The menu tree, located on the left side of the interface, allows you to expand and collapse each TrueLog
API node. Click a node to display its contents on the Content pane and its history details on the
Information pane.

Content Pane
TrueLog Explorer provides multiple views of all received data. Depending on the type of application under
test (Web, XML, database, TCP/IP, or UDP), the Content pane offers different viewing options:

Item Description

Response (HTML & XML) The Response page displays the visually rendered
response from the server for the selected API node in the
menu tree. HTML responses are rendered by an Internet
Explorer control running behind the Response page. XML
responses are displayed by an XML control that displays
XML data in a menu tree format. Responses that are
neither HTML or XML are not rendered and must be
viewed using the In Body page. You can right-click
elements and attributes in the XML control to expand the
menu tree by one or more levels.

SQL Command Suppressed for XML

Differences (HTTP based applications) The Differences page lists the In Body differences
between selected nodes. This page is helpful in finding
dynamic information in server responses. It is the first
place to look for session information.

62 | TrueLog Explorer 20.0

Item Description

Only applicable in difference mode.

Request (HTML & XML) Displays the request data returned by the server. It
displays posted XML data in a menu-tree formatted XML
control. Elements are displayed in magenta. Attributes are
displayed in cyan.

Information Pane
The Information pane offers data regarding testing scripts and test runs, including BDL scripting, HTTP
headers, and timing statistics. Depending on the type of application under test (Web, XML, database,
Oracle Forms, SAPGUI, Citrix, TCP/IP, UDP, or other), the Information pane offers different views.

Item Description

Info The Info page displays general information about the open
TrueLog file and the selected API node.

BDL The BDL page displays the BDL script that corresponds to
the open TrueLog. The BDL script is automatically
positioned to the line of the selected API node.

References Suppressed for XML

Out Header (HTTP) The Out Header page contains the exact HTTP header
that the application (Silk Performer in the case of replay
TrueLogs, the browser in the case of record TrueLogs)
sends to the server.

In Header (HTTP) The In Header page contains the exact HTTP header that
the server sends to the application.

Out Body (HTTP, TCP/IP, UDP) Contains data sent with HTTP-POST commands from the
application to the server.

In Body (HTTP, TCP/IP, UDP) The In Body page contains data received by the
application from the server. The data is presented in raw
format as it is received from the server (no rendering for
HTML, no menu tree representation for XML).

Statistics (HTTP) For Web browser-driven - AJAX applications, the
Statistics page shows timing statistics for Web pages. It
includes timing information for each Web page component
and communication element. It shows exact response
times, including the composition for each individual
component, in graphical view. This assists you in
pinpointing the root causes of errors and slow page
downloads. The Statistics page includes the following
data for each page component:

• DNS lookup time: The time taken to resolve an IP
address from the domain / host name supplied

• Connect time: The time taken for the simulated user to
connect to the server

• Net round trip: The time from the first byte of the client
request until the last byte of the server response,
including all documents but not embedded objects.

• Cache statistics

TrueLog Explorer 20.0 | 63

XML Parsing Functions
XML parsing functions can be applied in a structured manner to XML content returned by servers. XML
parsing functions parse out the values of specific elements and attributes within XML documents.

Note: XML parsing is recommended only for enhanced verifications and customizations, not session-
handling customization.

Elements and attributes are accessed via XML Path Language (XPath), a standardized language for
addressing elements within XML documents. XML parsing functions are applied on the Rendered page.
Web API style parsing can be executed against XML via the Source page.

XML parsing functions include:

• WebXmlParseNodeValue

• WebXmlParseNodeAttribute

Note: Hierarchical structured values can not be parsed out using the XML control.

Customizing Session Handling for XML Applications
Normally session information is not included in XML code, so XML session-handling customization is rarely
required.

In those rare instances where session information is included in XML code, proceed with the session-
handling customization process outlined for Web-based applications.

User-Input Data Customization
The goal of user-input data customization is to customize the values of submitted XML data elements and
attributes. Data that may, for example, come from recorded SOAP traffic.

With HTML, hard-coded form-field values, as declared in the DCLFORM sections of test scripts, are replaced
with random variables. In such instances, parameterization takes place in form declarations.

With XML, hard-coded element and attribute values, as declared by the post data parameters of
corresponding functions, are replaced with random variables. Parameterization takes place in the post
data parameters of WebUrlPostBin, WebCustomRequestBin, and WebPagePost calls
(WebPagePost is generated by .NET Explorer. It is the page-level API call used for HTTP-POST
commands).

User-input data customization can be used for the following:

• Perform functional tests by challenging servers with different values each time certain transactions are
executed.

• Simulate real-world user behavior by selecting submitted values based on given probability distributions.

Note: To set up parameterization for the values of submitted XML data elements and attributes,
proceed with the user-input data process outlined for Web-based applications.

Verification Functions for XML Applications
XML verification functions verify the values of specified XML elements and attributes (which are identified
by XPath queries) during test runs.

64 | TrueLog Explorer 20.0

Verification Functions for XML Applications
XML verification functions verify the values of specified XML elements and attributes (which are identified
by XPath queries) during test runs. XML verification functions are inserted by right-clicking within the
Rendered page.

TrueLog Explorer offers the following XML verification functions:

• WebXmlVerifyNodeValue - Checks a selected element’s value. This function is generated when
Verify Element Value is selected from the XML tree-control context menu.

• WebXmlVerifyNodeAttribute - Checks a selected attribute’s value. This function is generated when
Verify Attribute Value is selected from the XML tree-control context menu.

Verification Checks During Replay

Verification functions can be enabled/disabled via Silk Performer profile settings. From within Silk
Performer, choose Settings > Active Profile , then choose Replay > Web > Verification > HTML > XML .

The XML Verification check box enables/disables the functions WebXmlVerifyNodeValue and
WebXmlVerifyNodeAttribute.

Profile settings in scripts can be overridden using the WebSetOption BDL function.

Inserting an XML Verification Function
All parsing and verification functions must be specified before the Web API calls that initiate the parsing/
verification of response data. Multiple parse/verification functions can be specified before each Web API
call.

Note: The order in which parsing/verification functions are inserted into a test script is not relevant.

1. Select and right-click an XML element or attribute on the Rendered page and choose Verify Element
Value.

Alternative: When verifying an attribute, the context menu instead offers the Verify Attribute Value
command.

The Insert XML Verification Function dialog box opens. The selected element value is pre-loaded into
the value edit box and the value option button is selected.

2. To verify against a parameter, click the parameter option button.

In addition to being able to verify against a constant value, you can also verify against either an existing
parameter or a new parameter.

a) Click [...].

• If a parameter already exists, you can browse to and select the parameter.
• If no parameters exist, click [...]. The Parameter Wizard opens enabling you to create a new

parameter.

3. Specify the frequency by which the selected element is to appear:

• Select exactly, at least, or at most from the occurs list box.
• Enter a number in the time(s) field.

Note: The settings on this dialog are automatically set to values that guarantee a successful
verification for the current page. Only in cases in which you want to make the verification more
tolerant should these settings be changed (for example, by changing exactly 2 times to at
least 1 time, or by making a verification case-insensitive).

4. Check the exact XPath query check box if the element is to be verified only in the specified XPath.

TrueLog Explorer 20.0 | 65

5. Specify whether or not the verification is to be applied as a script-wide rule and/or case sensitive by
checking the appropriate check boxes. A pre-loaded result variable name appears in the Result
variable name text box; edit this name as required.

6. In the Severity portion of the dialog, specify the severity that is to be raised if the verification returns a
negative result (Error, Warning, Informational, or Custom).

7. Click OK to add the function to your test script.

XML attribute verification is identical to XML element verification, except that an attribute name must
also be specified.

8. Initiate a Try Script run to confirm that your script customization runs accurately.

Working With SAPGUI Applications
For SAPGUI-based applications, TrueLog Explorer offers TrueLog recording, TrueLog replay, basic TrueLog
analysis, data parsing, content verification, and user-input data customization.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

SAPGUI TrueLog Structure
SAPGUI TrueLogs have a similar structure to Oracle Forms TrueLogs. Each SapGuiSetActiveWindow
call results in a new top-level node. A SapGuiSetActiveWindow call is scripted for each window that is
activated during a recording session. All actions that are performed on windows (for example, control edits,
list entry selections) are shown as sub-nodes grouped by a virtual SapGuiRoundtrip node.

SAPGUI TrueLog Functions
TrueLog Explorer offers two high-level SAPGUI functions:

• SapGuiActiveSetWindow – These are top-level API nodes that indicate the generation of a new GUI
window. All actions taken on windows are grouped below a SapGuiActiveSetWindow function.

• SapGuiRoundTrip – These are virtual nodes; there are in fact no API calls called SapGuiRoundTrip
that are sent to the server. These nodes are used to group all client-side actions that occur in the

66 | TrueLog Explorer 20.0

course of a server round-trip. Both the before and after states of round-trips can be viewed. Multiple
round-trip nodes may be included under each SapGuiSetActiveWindow node.

Stepping Through SAPGUI TrueLogs
Following tests, it is typical to have multiple TrueLog On Error files open in TrueLog Explorer (one TrueLog
for each virtual user who returns an error). You can jump from one error to the next sequentially as they
occurred in time. This feature simplifies the process of analyzing errors because there is no need for you to
manually review all open TrueLogs to find the next error in a sequence.

1. After the completion of a load test, click Silk Performer Explore Results.

Note: TrueLog On Error files are generated only when the Silk Performer Generate TrueLog On
Error option is enabled.

The Explore Results dialog box displays.

2. Click TrueLog Explorer.

Note: The TrueLog Explorer button is disabled when either no errors are detected during a test or
when Truelog On Error is not enabled. In such instances, proceed directly to analyzing results with
Performance Explorer.

TrueLog Explorer launches with the TrueLog On Error files that were generated for the current test, and
the Step through TrueLog dialog box displays.

3. In the Step through TrueLog dialog box, select the appropriate option button. You can advance
through:

• All API calls (each API node)
• All Roundtrips (SapGuiRoundtrip calls)
• All Windows (SapGuiSetActiveWindow nodes)
• All Customizable calls (the next node in which field value changes can be customized)
• All errors

TrueLog On Error files are searched sequentially, as they are recorded in time.

4. Click Find Next to advance to the first API call, roundtrip, window, customizable call, or error.

Error messages are displayed in the Info pane. Each API node that contains a replay error is tagged with a
red “X” in the TrueLog menu tree.

Analyzing SAPGUI Test Scripts
Following the generation of a test script, you can determine if the script runs without error by running a Try
Script run. A Try Script run determines if a script accurately recreates the intended transactions.

The default option settings for Try Script runs include live display of data downloaded during testing and the
writing of log and report files.

With Try Script runs, only a single virtual user is run and the stress test option is enabled so that there is no
think-time delay between transactions.

TrueLog Explorer 20.0 | 67

1. Click Try Script on the Silk Performer workflow bar. The Try Script dialog box displays.

2. To view rendered page transitions during a Try Script run, check the Animated Run with TrueLog
Explorer check box.

3. Click Run.

Note: You are not running an actual load test here, only a test run to see if your script requires
debugging.

The Try Script run begins. The Silk Performer Monitor pane opens, giving you detailed information
about the run’s progress.

TrueLog Explorer opens, showing you the data that is downloaded during the Try Script run. Each main
SAPGUI window accessed during recording is listed as a high-level SapGuiSetActiveWindow API
node in the TrueLog menu tree. All recorded server round-trips and user actions are listed as subnodes
of corresponding SapGuiSetActiveWindow nodes.

Replay and Record TrueLogs
This section explains how to analyze differences between SAP record and replay TrueLogs.

Comparing Replay and Record TrueLogs
When testing SAPGUI applications, differences can occur in corresponding control values between replay
and record TrueLogs. Some differences may result in replay errors.

1. Open a replay Truelog and click Analyze Test. The Analyze Test dialog box displays.

2. Click Compare your test. The associated record TrueLog opens in compare view. The Step through
TrueLog dialog box displays.

3. In the Step through TrueLog dialog box, select the appropriate option button. You can advance
through:

• All API calls (each API node)
• All Roundtrips (SapGuiRoundtrip calls)
• All Windows (SapGuiSetActiveWindow nodes)
• All Customizable calls (the next node in which field value changes can be customized)
• All errors

TrueLog On Error files are searched sequentially, as they are recorded in time.

4. Click Find Next to advance to the first API call, roundtrip, window, customizable call, or error.

5. Visually compare the values and states of the controls and screenshots to see if there are any
differences. Based on any differences you discover, complete any required customizations.

6. Click Try Script Run to confirm that your customizations run without error.

7. Repeat this procedure as many times as is required until your script is fully customized and all
necessary customizations have been added.

8. Turn off compare mode by performing one of the following steps:

• Choose View > Compare Mode .
• Click the Compare Mode icon.

Synchronizing Replay and Record TrueLogs
In compare mode you can synchronize corresponding API nodes between replay and record TrueLogs to
identify differences between recorded values and replayed values.

Note: This feature is disabled when automatic synchronization of TrueLogs is enabled.

68 | TrueLog Explorer 20.0

1. Enable compare mode by doing one of the following:

• Choose View > Compare Mode .
• Click the Compare Mode button on the toolbar.

2. Open a set of corresponding record and replay TrueLogs.

3. Right-click an API node and choose Synchronize TrueLogs. TrueLog Explorer locates the API node in
the matching TrueLog that best correlates with the selected API node.

SAPGUI Test-Script Customization
After you generate a test script with Silk Performer and execute a Try Script run, TrueLog Explorer can help
you customize the script with the following:

• Content-verification functions – Using the Add Verifications tool, you can gain insight into data that is
downloaded during tests, enabling you to verify that the content that is to be sent by the server is in fact
received. Verifications remain useful after system deployment for ongoing performance management.

• Parsing functions – TrueLog Explorer allows you to insert SAPGUI parsing functions visually in Source
view and on the Controls page. Manual code writing is not required; TrueLog Explorer automatically
generates parsing functions in scripts.

• Parameterized input data – With user data customization, you can make your test script more realistic
by replacing static user-input data with dynamic, parameterized data that changes with each
transaction. Manual scripting is not required to create these data-driven tests.

For each SAPGUI function call that changes input data, you can verify return values, parse values, and
customize input data. These operations can be executed from both Source view (by right-clicking within a
control) and the Controls menu tree.

Customizing User-Input Data for a Form Field
Under real world conditions, SAPGUI-application users submit unpredictable combinations of data into
forms. One goal of effective SAPGUI application testing is to emulate such irregular and diverse user
behavior in test scripts.

You can customize the user-input data that is entered into forms during testing with the Parameter Wizard.
The Parameter Wizard lets you specify values to be entered into form fields, enabling your test scripts to be
more realistic by replacing recorded user input data with randomized, parameterized data.

1. Select a TrueLog in the TrueLog menu tree. TrueLog content appears on the Response and
Information pages.

2. Choose Edit > Step through TrueLog .

Alternative: Click Step through TrueLog on the toolbar.

The Step through TrueLog dialog box opens.

3. Click the Customizable calls option button and click Find Next to step through all form fields in the
TrueLog that offer input customization.

Note: Controls that can be customized are outlined in orange. Controls that have already been
customized are outlined in green. Controls that are outlined in blue can have their values parsed or
verified, but they cannot be customized.

4. On the Request page, right-click the form control that you want to customize and choose Customize
Value.

You can replace the recorded values with various types of input data (including predefined values from
files and generic random values) and generate code into your test script that substitutes recorded input
data with your customizations.

The Parameter Wizard opens.

With the Parameter Wizard you can modify script values in two ways:

TrueLog Explorer 20.0 | 69

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

After you create a new parameter, that parameter is added to the existing parameters and is available
for further customizations.

5. Click the Create new parameter option button and then click Next to create a new parameter. The
Create New Parameter page opens.

6. Click the Parameter from Random Variable option button and then click Next. The Random Variable
page opens.

7. From the list box, select the type of random variable that you want to insert into your test script and then
click Next.

A brief description of the selected variable type appears in the lower window.

The Name the variable and specify its attributes page opens.

8. Enter a name for the variable in the Name text box.

9. Click Finish. Your test script now uses the random variable for the given form field in place of the
recorded value. The new random variable function appears on the BDL page.

Initiate a Try Script run with the random variable function in your test script to confirm that the script runs
without error.

Multi-Column Data Files
Parameterization from multi-column data files is a powerful means of parameterizing data. It defines files in
which specific combinations of string values are stored. Each column in a data file corresponds to a
specific parameter. Multi-column data files enable a data-driven test model and allow you to cover all user-
data input with a single data file.

SAPGUI Controls Menu Tree
For each SAPGUI function call that changes input data, you can verify return values, parse values, and
customize input data from both Source view and the Controls menu tree in the information pane. The
Controls menu tree offers a convenient means of viewing and customizing form fields. The Controls menu
tree is a visual representation of the form section of the BDL script, with all included name/value pairs.

Controls that can be customized are outlined in orange or blue. Controls that are outlined in orange
generally offer value parsing, value verification, and user-input data customization. Controls that are
outlined in blue offer value parsing and value verification, but not user-input data customization. Right-click
a control and choose the script customization type that you want to execute.

Controls for which user data has already been customized appear with a green outline.

Copy Control ID Function
The Copy Control ID function copies the control ID of a selected SAPGUI control to the clipboard. This
eases non-visual scripting of special calls within Silk Performer. To copy a control ID, right-click a GUI
control and choose Copy Control ID. The control ID is then copied to the clipboard.

Note: Controls can be selected either in Source view or in the Controls menu tree.

Verification and Parsing Functions
Verifications and parsing are possible with most control types. TrueLog Explorer offers standard verification
and parsing wizards for SAPGUI TrueLogs. All you need to do to access a wizard, is right-click a control in
a screenshot or on the control tree. Via a context menu you can then launch the verification and parsing
wizards.

70 | TrueLog Explorer 20.0

Verification and parsing functions are scripted after the currently selected API node in the tree. Replay
errors can result when verification and parsing functions are inserted after the last API call of a window. For
example, if a currently selected API node is a button press on a Close button, the current window and all
the controls of that window will be destroyed by this action. A verification/parsing function scripted after this
call will therefore fail with a Handler not found error during replay. For this reason TrueLog Explorer
prompts you to confirm that you wish to add verification/ parsing functions that are inserted on the last
nodes of windows.

TrueLog Explorer allows you to add content checks to verify whether the content that is to be sent by
servers is in fact received by clients under real-world conditions. For any SAPGUI function call in which
input data is inserted, you can insert a return value verification function. Verification functions can be
inserted from either Source view or the Controls menu tree.

By comparing replay test runs with record test runs, TrueLog Explorer allows you to confirm visually
whether or not text, graphics, field data, and more are downloaded and displayed by clients while SAPGUI
applications are under heavy load. This comparison allows you to detect a class of errors that other
SAPGUI traffic simulation tools are not able to detect: Errors that occur only under load that are not
detected with standard test scripts.

Content verification functions remain useful after system deployment as they can be employed in ongoing
performance management.

Adding a Value Verification
By right-clicking a SAPGUI control that you want to have verified, the required verification function can be
generated and inserted into your BDL script. TrueLog Explorer offers one pre-enabled value verification
function for SAPGUI applications.

1. In either Source view or the Controls menu tree, select a control field for which you want to verify the
return value.

Controls that can be verified have blue outlines around them. Most controls that are outlined in orange
can also be verified.

2. Right-click within the control field and choose Verify Value. The Insert Value Verification Function
dialog box displays. Use this dialog to specify the type of verification function that should be inserted
into the BDL script.

3. From the Verify that the value of the selected control list box, select is equal to or is not equal to
(based on your requirements).

4. Specify whether the verification should use a constant value or a parameter value.

5. Specify whether the verification is to be Case sensitive and if white spaces should be ignored.

6. In the Severity group box, specify the severity that should be raised if the verification returns a negative
result.

7. Click OK. The function is then added to your test script.

Once the BDL script has been successfully modified, repeat this process for each verification that you want
to add to your BDL script.

Adding a SAPGUI Parsing Function
For any SAPGUI function call in which input data is inserted, you can insert a parse-value function. Value
parsing can be useful for enabling replay when session-specific strings must be parameterized to enable
accurate replay. For instance, you might parse customer IDs into a parameter that is inserted into a
customer ID field.

Though toolbars and title bars cannot be parsed, most common controls can be parsed, including text
fields, field labels, combo boxes, buttons, and more.

1. In Source view or the Controls menu tree, select a control field for which you want to parse a value.

TrueLog Explorer 20.0 | 71

Controls that can be verified have blue outlines around them. Most controls that are outlined in orange
can also have their values parsed.

2. Right-click within the control field and choose Parse Value. The Insert Value Parsing Function dialog
box opens and offers settings by which the parsing function can be adjusted.

3. Optional: In the Parameter name text box, enter a name for the parameter that is to receive the result of
the parsing function.

4. Optional: In the Informational statement insertion area, click Print statement to insert an
informational print statement into the script. The result of the parsing function will be written to the Silk
Performer Virtual User Output window.

5. Optional: In the Informational statement insertion area, click Writeln statement (write line
statement) to write the parsed value to an output file to facilitate debugging (in addition to writing the
value to the Virtual User Output window as a Print statement does).
Because generating output files alters the time measurements of load tests, these files should only be
used for debugging purposes and should not be generated for full load tests.

6. Click OK. The parsing statement is inserted into your test script.
Once you have customized how your script handles session information and user-input data, you have
added all necessary verification functions, and have completed any required manual BDL script editing via
Silk Performer, your testing script should run without error.

Working With Oracle Forms Applications
This section explains how to customize an Oracle Forms test script based on the results of a Try Script run.

Working With Oracle Forms Applications - Overview
Oracle Forms, previously called “SQL*Forms”, is part of Oracle’s Internet Developer Suite (iDS). It is a 4GL
Rapid Application Development (RAD) environment that allows forms to be deployed across the Web via
Oracle’s Internet Application Server (iAS) Forms Services.

Because Oracle Forms is based on Java technology, before you can record and replay Oracle Forms
transactions, you must configure Java Virtual Machine using Silk Performer profile settings. The Java Just-
In-Time Compiler must also be disabled while recording Oracle Forms 6i or higher.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

Customizing Oracle Applications 12i Session
Information
Ensure that the icx_ticket parameter has been customized correctly.

1. Perform a trial run of the script by clicking the Try Script button on the Workflow Bar.

Note: TrueLog generation must be enabled in Silk Performer

2. Open the resulting Try Script TrueLog with TrueLog Explorer. Typically, an HTML page (appearing soon
after login) will show errors.
Example error:

72 | TrueLog Explorer 20.0

3. Click the Analyze Test button on the Workflow Bar.
4. Select Compare your test run on the Workflow - Analyze Test wizard page.

5. Close the Step through Truelog dialog.

6. Select the TrueLog node that corresponds to the recorded application’s login page.

7. Right-click the node and select Synchronize Truelogs from the context menu.

8. Select Edit > Truelog Type > Web from the TrueLog Explorer menu bar.

9. Click the Differences tab.

10.Right-click any rows that show differences between the recorded TrueLog and the replay TrueLog that
also occur in the script and therefore likely contain session information (highlighted in yellow) that
should be customized.

11.Run another Try Script run in Silk Performer to verify that your session information customizations have
been successful.

Oracle Forms TrueLog Structure
This section explains the Oracle Forms TrueLog structure and the Form Controls window.

Oracle Forms TrueLog Structure - Overview
Oracle Forms applets are commonly incorporated into applications that are built on both the Oracle Forms
protocol and the HTTP protocol. When such applications are recorded, the resulting BDL scripts include
both Oracle Forms and Web function calls. Oracle Forms TrueLogs support such mixed protocols. The
TrueLog menu tree lists both the Oracle Forms and HTTP function calls that are included in the active BDL
script. Each API node in the menu tree signifies a unique function call.

Oracle Forms TrueLogs feature a Form Controls window that displays the elements of the selected Oracle
Forms applet window in tabular-data representation (otherwise this binary protocol would be unreadable).
For the HTTP calls that call the HTML pages in which Oracle Forms applets are embedded, the Form
Controls window displays fully rendered HTML.

Oracle Forms TrueLogs have a unique structure. Each OraFormsSetWindow call results in a new top-
level node. An OraFormsSetWindow call is scripted for each window that is activated during a recording
session. All actions that are performed on a window (for example, editing of a text control, selecting a list
entry, etc.) are shown as sub-nodes of each OraFormsSetWindow.

OraFormsInit is included in the Init transaction. OraFormsDestroy is included in the End transaction.
The first Oracle API call in the main transaction is OraFormsConnect.

TrueLog Explorer 20.0 | 73

Node Information
Each Oracle Forms node stores information about the current state of all controls of the active window. If
you select a OraFormsSetWindow node that represents a window's first appearance, you will see all the
controls and initial values as they existed when the form was initially created.

If you select a subnode, you will see the state and values of all controls as they existed after the action you
selected was fulfilled. For example, if you select an OraFormsEditSet you will see the state of the
controls after this action was fulfilled.

If a window is reactivated (meaning that an alternate window was activated in the meantime) and you
select the OraFormsSetWindow of the reactivated window, you will see the status of the controls as they
were after the reactivation (which in most cases is the same status they had when the window was
deactivated).

Working With Web Calls
In addition to Oracle Forms API calls, Web calls that download HTTP content are also included in
TrueLogs. The first call in each main transaction is the Web call that downloads the initial page of the
Oracle Forms application under test.

The TrueLog Explorer feature set varies based on the protocol of the open TrueLog. Because Oracle
Forms is a mixed protocol that often incorporates Web calls in scripts, TrueLog Explorer enables you to
alternate between a tabular data-based representation view for binary Oracle Forms applets and a
rendered HTML view for HTML pages. The Web-based protocol is significant because it enables you to
customize session handling, insert verification functions, parse values out of HTML, and run searches on
HTML included in Oracle Forms scripts.

1. Choose Edit > TrueLog Type .

2. Select Web (default).

In Body / Out Body Pages
The data that is communicated between Silk Performer and an Oracle Forms server can be tracked on the
In Body and Out Body pages. During Oracle Forms replay, the In Body page displays the data that is
received by Silk Performer from the Oracle Forms server. The Out Body page displays the data that is sent
by Silk Performer to the Oracle Forms server.

Note: These messages are only available when you set the logging options in the Profile Settings
dialog to Debug.

Messages can be ignored during data customization (except when customizing GET messages). However
if a problem arises and Customer Care is contacted, this information will be required for analysis. You may
notice major differences between record and replay TrueLogs. All messages are likely to be included, but
they may not be logged at the corresponding nodes; they may be logged one node earlier or later.

Each message block (OraForms call) that is communicated between Silk Performer and the Oracle Forms
server is comprised of one or more of the following messages types:

Item Description

Create Indicates that a new UI element must be created. Each UI
object to be created is given a class, properties, and an
ID.

Example: The server tells the client to create a text box of
a given type, with a given name, and a given ID, at a
given location.

Destroy Indicates that a UI element must be destroyed.

74 | TrueLog Explorer 20.0

Item Description

Example: When a window is closed, all of the controls on
the window must be destroyed.

Update Indicates what an element within the applet should look
like (for example, position, focus, and selection status).

Example: The client tells the server where the mouse
cursor should be positioned. The server then responds by
changing the mouse cursor position within the applet’s
interface.

Get Indicates internal communication between the client and
server. Get messages are not visible in the UI.

Example: The server asks the client what the ID of a
certain control is. Get messages are typically terminated
with Terminal 3 messages.

Terminal Indicates the end of a communication round trip. Each
message block is terminated with a terminal message.
Three terminal types are available:

• Terminal 1
• Terminal 2
• Terminal 3

The most common message block type involves the client sending an update message to the server and
ending the communication with a Terminal 1 message. The server then typically responds with a create or
destroy message that is terminated by a terminal 1 message.

Example In Body/Out Body message block:

With a mouse click function, the client sends an update message to the server with
some properties. One of the properties is the mouse cursor location. Another property is
that the mouse should be in the pressed-down state. The round trip of the
communication is then closed with a Terminal message. The server then responds,
indicating that the cursor has been repositioned and set to the pressed-down state.

 MSGTYPE: UPDATE
 CLASS: 0/0
 ID: 2824
 TITLE: N/A
 RESPONSE: 0
 PROPERTIES:
 TYPE: PROP_TYPE_INTEGER
 Name: MENU_MENUUPDATE/367
 Value: 2855

 MSGTYPE: DESTROY
 CLASS: 0/0
 ID: 2855
 TITLE: N/A
 RESPONSE: 0
 PROPERTIES:

 MSGTYPE: GET
 CLASS: 0/0
 ID: 1644
 TITLE: N/A
 RESPONSE: 0
 PROPERTIES:
 TYPE: PROP_TYPE_VOID
 Name: VALUE/131

TrueLog Explorer 20.0 | 75

 Value: null

 MSGTYPE: TERMINAL
 CLASS: 0/0
 ID: 0
 TITLE: N/A
 RESPONSE: 3
 PROPERTIES:

Terminal Messages
Terminal messages are used to end communication round-trips between client and server. There are three
terminal-message types:

Terminal 1
messages:

This is the most straightforward message-termination method. Terminal 1 messages are
always initiated by the client. An example is the client asking the server, “The user just
pressed this button, what should I show in the UI?” The server then responds with the
requested answer and terminates the exchange with a Terminal 1 message.

Terminal 2
messages:

Sometimes, communication between client and server is more complicated. For example,
if the client says, “The user just pressed this button, what should I show in the UI?” but
the server needs more information from the client before it can provide an answer. The
server responds with a Terminal 2 message, asking something like, “What is the state of
option button XYZ?” If the client has a prepared, scripted response for this request, it will
provide the answer to the server’s question and end communication with a Terminal 2
message. The server will then provide a scripted response to the client’s original question
and end the communication with a Terminal 1 message.

This type of exchange can be illustrated as follows:

1. Request from client (Terminal 1, Out Body tab)
2. Request from server (Terminal 2, In Body tab)
3. Response from client (Terminal 2, Out Body tab)
4. Response from server (Terminal 1, In Body tab)

Terminal 3
messages:

Indicates that the server has spontaneously initiated a Get call requesting a value from
the client. These are requests that are not initiated by the client. Example: The server
says, “I have emptied my cache, please tell me the value of option button XYZ again.”
The client then needs to respond with the appropriate answer and terminate
communication with a Terminal 3 message.

Terminal 3 messages sometimes result in replay-script breakage. Because these server
requests are unanticipated, the client can only provide a default answer, such as null. If
the server accepts the default answer provided by the client, for example if the server
does not really need a specific answer to its Get call, then replay will continue (this is
often the case). If however the server finds the default response to be unacceptable, you
must manually script an OraFormsSet and an OraFormsOnMessageGet function to
prepare the correct response for the server’s Get call.

Example:

OraFormsSetRectangle("VISIBLERECT", 0, 0, 119, 24,
ORA_SET_TYPE_MESSAGEGET);
OraFormsOnMessageGet("LINE_CUSTOMER_ITEM_DSP_0"); // Requested
Item
OraFormsMouseClick("LINE_CUSTOMER_ITEM_DSP_0", 70, 18, 0); //
Requested Item

Terminal -1
messages:

Indicates an error in communication between client and server. Replay has failed
because the server has received an unacceptable answer to its request.

76 | TrueLog Explorer 20.0

Analyzing Errors in Oracle Forms Tests
Complete an Oracle Forms load test.

After tests, it is typical to have multiple TrueLog On Error files open in TrueLog Explorer (one TrueLog for
each virtual user who returns an error). With the TrueLog Explorer Find Errors feature, you can jump from
one error to the next chronologically, regardless of which TrueLogs the errors were recorded in. This
simplifies the process of analyzing errors because there is no need for you to manually review all open
TrueLogs to find the next error in a sequence.

1. Click the Silk Performer Results button.

Note: TrueLog On Error files are generated only when the Silk Performer Generate TrueLog On
Error option is enabled.

The Explore Results dialog box opens.

2. Click TrueLog Explorer.

Note: The TrueLog Explorer button is disabled in the following situations:

• No errors are detected during a test
• Truelog On Error is not enabled

In such instances, proceed directly to analyzing results with TrueLog Explorer.

TrueLog Explorer launches, with the TrueLog On Error files that were generated for the current test and
the Step through TrueLog dialog box open.

3. Advance through all Forms windows (OraFormsSetWindow calls), all API calls (each API node), or
all errors.

a) Select the appropriate radio button on the dialog box.

TrueLog On Error files are searched chronologically.

4. Click Find Next to advance through the TrueLog.

Error messages are displayed on the Info page.

API nodes that contain replay errors are tagged with red “X” marks in the TrueLog menu tree.

Analyzing Oracle Forms Test Scripts
Once you have generated a test script you can determine if the script runs without error by performing a
Try Script run. A Try Script run determines if a script accurately recreates the recorded interactions.

Default option settings for Try Script runs include live display of data downloaded during testing and the
writing of log and report files.

With Try Script runs, only a single virtual user is run and the stress test option is enabled so that there is no
think-time delay between transactions.

1. In Silk Performer, click Try Script on the workflow bar. The Try Script dialog box opens.

2. Check the Animated Run with TrueLog Explorer check box to view page transitions during the Try
Script run.

3. Click Run.

Note: You are not running an actual load test here, only a test run to see if your script requires
debugging.

The Try Script run begins. The Monitor pane opens, giving you detailed information about the progress
of the run.

4. Silk Performer opens, showing you the data that is downloaded during the Try Script run.

Each main Oracle Forms window accessed during recording is listed as a high-level API node in the
TrueLog Explorer menu tree. All recorded actions are listed as subnodes.

TrueLog Explorer 20.0 | 77

5. If any errors occur during the Try Script run, TrueLog Explorer will assist you in locating them and
customizing your script.

Comparing Oracle Forms Replay and Record TrueLogs
Open a TrueLog with TrueLog Explorer.

When testing Oracle Forms applications, differences can occur in corresponding control values between
replay and record TrueLogs. More severe errors can also result in differences between record and replay
TrueLogs (for example, a message box might indicate that a duplicate record has been entered (likely
because a required input-data customization has not been performed on the test script).

1. Click Analyze Test. The Workflow - Analyze Test dialog box opens.

2. Click Compare your test. The associated record and replay TrueLogs open in compare view. The Step
through TrueLog dialog box also opens.

3. Select a criteria by which to search:

• Forms windows

• API calls

• Errors

4. Click Find Next. The first set of corresponding Forms windows, API calls, or errors in the record and
replay TrueLogs are displayed.

5. Compare the states of the controls to see if there are differences. TrueLog Explorer highlights any name
or control value that changes between record and replay. This helps you identify where customizations
may be necessary and where verifications may be beneficial.

6. Complete any required customizations (based on differences you have discovered).

a) Click Try Script Run.

Tests to see if the customizations run without error.

7. Repeat this procedure as many times as is required until all necessary customizations have been
added.

8. Click Compare Mode to disable compare mode.

Unanticipated Get Calls
The vast majority of server requests are anticipated and accurately handled by recorded scripts.
Occasionally during script replay a server spontaneously sends out additional Get calls that it did not send
out during script recording. In such instances the client can only respond with default answers to the
server. If the server accepts a default answer, replay continues without error. If the server finds the default
answer to be unacceptable though, you must manually script an OraFormsSet and an
OraFormsOnMessageGet function to prepare the correct response for the server’s Get call.

For example, the server spontaneously sends a Get request asking for the VALUE property of a certain UI
control. Because there is no scripted function in the script to handle this Get request, the client responds
with the default value of null for strings. The server does not accept this answer. Connection to the client
is aborted and the replay script runs into errors.

To prepare for manual scripting of an additional Get function to manage this situation, it is necessary that
you analyze the in-data and out-data that is exchanged between the client and server. This analysis can
only be conducted if you have set the Silk Performer logging level to debug.

Note: If logging level was not set to debug before your test was run, after you change the setting you
will need to rerun your test to generate the required debug data.

Note: Also, the record=names parameter on the Oracle Forms server must be enabled to allow
accurate recording of scripts.

The OraFormsOnMessageGet function that you script must provide an answer that is different than the
default answer for the subsequent Get call on the relevant UI element.

78 | TrueLog Explorer 20.0

Note: It is actually an OraFormsSet function that provides the answer in the script (in the line
preceding the OraFormsOnMessageGet function call).

As the following BDL script example illustrates, when a Get call is handled, you have to read the script
from bottom to top:

Example

OraFormsSetRectangle("VISIBLERECT", 0, 0, 119, 24,
ORA_SET_TYPE_MESSAGEGET);
OraFormsOnMessageGet("LINE_CUSTOMER_ITEM_DSP_0"); // Requested
Item
OraFormsMouseClick("LINE_CUSTOMER_ITEM_DSP_0", 70, 18, 0); //
Requested Item

This code sample can be read as: The client will perform a mouse click on the UI
element LINE_CUSTOMER_ITEM_DSP_0. This is represented by the
OraFormsMouseClick function. Upon the mouse click, you expect to receive a Get
call from the server. To prepare for the Get call in advance of the mouse click, you
insert the OraFormsOnMessageGet function. You then expect the server to ask for the
property VISIBLERECT so you place the property value of type rectangle on the
stack before the OraFormsOnMessageGet function using the
OraFormsSetRectangle function.

Setting Silk Performer Log Level to Debug
To prepare for manual scripting when an unanticipated get call is received, it is necessary that you
analyze the in-data and out-data that is exchanged between the client and server. This analysis can only
be conducted if you have set the Silk Performer log level to debug.

1. In Silk Performer, choose Settings > System .

2. Click the Oracle Forms group button.

3. Select debug from the Log level list box.

Oracle Forms User-Input Data Customization
Once you have generated a test script with Silk Performer and executed a Try Script run, TrueLog Explorer
can help you customize the script with parameterized input data.

With user data customization you can make your test scripts more realistic by replacing static recorded
user input data with dynamic, parameterized user data that changes with each transaction. Manual
scripting is not required to create such data-driven tests.

Multi-Column Data Files
Parameterization from multi-column data files is a powerful means of parameterizing data. It defines files in
which specific combinations of string values are stored. Each column in a data file corresponds to a
specific parameter. Multi-column data files enable a data-driven test model and allow you to cover all user-
data input with a single data file.

Customizing Oracle Forms User-Input Data
Under real world conditions, Web application users submit unpredictable combinations of data into forms.
One goal of effective Web application testing is to emulate such irregular and diverse user behavior using
test scripts.

You can customize the user-input data that is entered into forms during testing with the TrueLog Explorer
Parameter Wizard. The Parameter Wizard lets you specify values to be entered into form fields, enabling

TrueLog Explorer 20.0 | 79

your test scripts to be more realistic by replacing recorded user input data with randomized, parameterized
user data.

1. Select a node in the TrueLog menu tree that includes user-data input.

You can customize the input values of controls that have yellow backgrounds.

2. Right-click in the Value column of a control and choose Customize Value.

With the Parameter Wizard, you can modify script values in either of the following ways:

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

3. Click the Create new parameter option button.

a) Click Next

The Create New Parameter dialog box opens.

4. Click the Parameter from Random Variable option button.

a) Click Next

The Random Variable Wizard opens.

5. Select the type of random variable you want to insert into your test script from the list box

A brief description of the highlighted variable type appears in the lower pane.

a) Click Next

The Name the variable and specify its attributes page appears. The Strings from file random
variable type generates data strings that can either be selected randomly or sequentially from a
specified file.

6. Type a name for the variable in the Name field.

a) Select the order in which the values are to be called.

• Random
• Sequential

7. Select a preconfigured datasource from the File/Name list box.

Alternative: New random variable files can be created by clicking New.

8. Select Per test random value generation.

a) Click Finish.

This modifies the BDL form declaration of your test script so that it uses the random variable for the
given form field in place of the recorded value. The new random variable function appears below in BDL
view.

Initiate a Try Script run with the random variable function in your test script to confirm that the script runs
without error.

Input Data Customizable Functions
TrueLog Explorer offers a wizard that enables you to customize the input values of controls that have been
changed by the user during recording. Input values can be customized at the same position where input
originally occurred during recording. Here is a list of the functions that can be customized:

Function Description

OraFormsEditSet Customizes the value of a text control.

OraFormsRadioSet Specifies whether a radio button is to be selected.

OraFormsCheckboxSet Specifies whether a check box is to be selected.

OraFormsListSelect Specifies which element of a list box is to be selected.

80 | TrueLog Explorer 20.0

Function Description

OraFormsPopListSelect Specifies which element of a pop-up list box is to be
selected.

OraFormsLogon Customizes logon credentials on the Logon dialog.

OraFormsLovFind Customizes the search pattern on a List Of Values dialog.

OraFormsLovSelect Customizes the selection on a List Of Values dialog.

OraFormsEditorDialogOK Customizes a text control value in an editor dialog.

Content Verification Functions for Oracle Forms
TrueLog Explorer offers pre-enabled verification functions for Oracle Forms applications. Simply right-click
the objects that you want to have verified and choose a verification function. The specified verification
function will be generated and inserted into your BDL script automatically.

TrueLog Explorer enables you to insert content-verification functions into test scripts to verify the accuracy
of content that is returned by application servers during testing.

By comparing replay test runs with record test runs (a uniquely powerful approach to the challenge of
testing end-user experience in client/server environments) TrueLog Explorer allows you to confirm visually
whether or not embedded objects, text, graphics, table data, SQL responses and more are actually
downloaded and displayed by clients while systems are under load. This allows you to detect a class of
errors that other Web-traffic simulation tools are not able to detect: errors that occur only under load that
are not detected with standard load test scripts.

Content verifications remain useful after system deployment as they can be employed in on-going
performance management.

Inserting an Oracle Forms Verification Function
Perform an Oracle Forms Try Script test run. Open the resulting TrueLog in TrueLog Explorer.

1. With an Oracle Forms TrueLog open in TrueLog Explorer, select a TrueLog node that offers verifiable
data.

2. Right-click a verifiable value and choose Verify Value. The Add Forms Control Verifications dialog
box opens.

3. Click the Verify the Value link. The Insert Value Verification Function dialog box appears.

4. Select one of the following values from the drop list:

• is equal to

• is different from

• contains

• does not contain

5. Specify verification case sensitivity and white space details.

6. Specify the severity that is to be raised if the verification returns a negative result.

7. Specify if verification should be against a parameter.

8. Click OK on the Insert Value Verification Function dialog box. The verification function is added to
your test script.

9. Click Yes on the Add Verifications dialog box to perform a Try Script run.

10.Confirm that verifications have been passed successfully.

API nodes that include verifications are indicated with blue “V” symbols

TrueLog Explorer 20.0 | 81

Completing Your Oracle Forms Script Customizations
Once the following steps have been completed your Oracle Forms test script should run without error.

• Customize how the script handles session information and user-input data.
• Add any required verification functions.
• Complete any required manual BDL script editing via Silk Performer.

Working With Citrix Applications
In addition to offering TrueLog recording, TrueLog replay, and basic TrueLog analysis for the testing of
applications that are hosted by Citrix servers, TrueLog Explorer also offers user-input data customization.
The functionality described here can also be applied to the testing of Citrix NFuse sessions.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

Note: For detailed information regarding the use of Silk Performer in testing applications that are
hosted by Citrix servers, refer to the Citrix Tutorial.

Silk Performer Citrix Player
Silk Performer relies on its own Citrix player for replay, rather than TrueLog Explorer. The Silk Performer
Citrix player opens when Try Script runs begin, replaying all recorded actions in full animation. Mouse
movements and operations are simulated with an animated mouse icon.

The Silk Performer Citrix player includes a Log window with three panes that detail different aspects of
each Try Script run:

Script This pane lists all of the executed BDL script functions and the currently executing BDL
function.

Windows This pane includes a stack of all the client windows that are accessed during the current
session, including window captions, styles, sizes, and positions. Top-level windows carry a
window icon and are listed above sub-windows.

Log This pane lists all informational messages and events, including executed BDL functions, and
window creation/activation/destruction.

Citrix TrueLogs
TrueLog Explorer may optionally be opened along with the Citrix player during Try Script runs (by selecting
the Animated Run with TrueLog Explorer check box on the Try Script dialog box). TrueLog Explorer
displays the data that is actually downloaded during Try Script runs. Each main window accessed during
recording is listed as a top-level API node in the TrueLog Explorer menu tree. Actions recorded against
those windows are listed as subnodes.

By selecting a high-level synchronization node you see a window as it appeared after the last
synchronization function (the bitmap captured during replay).

Window synchronization functions are visualized with colored borders. Window creations are indicated with
green borders. Window activations are indicated with blue borders. Window destructions are indicated with
yellow borders.

TrueLogs work in complement with the Citrix player by visualizing screen states. For example, if you are not
sure which window is indicated by a certain window ID that is listed in the Citrix Player Log window, you
can find the corresponding synchronization function in the corresponding TrueLog and thereby access a
bitmap that shows the window in question.

82 | TrueLog Explorer 20.0

User input nodes (CitrixUserInput and related functions) reflect keyboard and mouse input.
CitrixMouseClick functions offer two track vector parameters (X and Y coordinates). Red squares
indicate mouse-click start points. Red cross-marks indicate mouse release points. A red line between a
start and end point indicates the path of the mouse. If there is no move while the button is pressed then
only a red cross is displayed. Onscreen tool tips offer additional information (right-click, left-click, double-
click, etc).

Value strings (keyboard input) are visualized onscreen as floating red text until target window captions are
identified (in subsequent nodes) to indicate where strings are to be input.

TrueLog Explorer 20.0 | 83

Synchronization Problems in Citrix Scripts
Windows may fail to be activated and screen synchronizations may fail when the Citrix player encounters
different values during replay than were captured during recording. Sometimes the causes of
synchronization problems are not apparent, they may be due to a change in screen position of only a single
pixel. Such differences are best assessed visually using a bitmap viewing program.

More common than screen synchronization failures are windows not being activated during replay. In such
cases, the screenshots associated with the corresponding user actions may explain the fault. Sometimes
there is no user fault and a window is activated only sporadically. In such cases, you must remove the
associated CitrixWaitForWindow function.

TrueLog Explorer captures screenshots when errors occur (the default setting) and writes these bitmaps to
disk. Visual comparison of record and replay screens can be achieved by comparing TrueLog On Error
bitmaps with the bitmaps that are captured by Silk Performer along with each synchronization function (the
default setting). By default the recorder writes screenshots to the screenshots directory in the project
directory. Replay stores screenshots in the current result directory.

Note: The Silk Performer Dump window region of unsuccessful screen synchronizations Citrix
option must be activated (the default) to have these bitmaps captured and saved.

Citrix User-Input Data Customization
With user-input data customization you can make your test scripts more realistic by replacing static
recorded input data with dynamic, parameterized data that changes with each transaction. Manual scripting
is not required for such data-driven tests.

During testing you can customize the user input that is entered into applications that are hosted by Citrix
terminal services in two ways:

• The Parameter Wizard allows you to specify values to be entered with keyboard events, enabling your
test scripts to be more realistic by replacing recorded user-input data with randomized, parameterized
user data.

• Visual customization allows you to customize mouse events such as clicks, drags, and releases by
right-clicking within rendered screenshots that are captured during recording.

84 | TrueLog Explorer 20.0

Customizing Citrix User-Input Data
Use the Parameter Wizard to make your test scripts more realistic by replacing static recorded input data
with dynamic, parameterized data.

1. Select a node in the menu tree that reflects user data input (for example, select a CitrixKeyString
node that specifies a keyboard data string).

2. Right-click the input data string (shown as floating red text) and choose Customize User Input.
3. The Parameter Wizard opens. Select Create new parameter and click Next.

With the Parameter Wizard, you can modify script values in either of the following ways:

• Use an existing parameter that is defined in the dclparam or dclrand sections of your script.
• Create a new parameter based on a new constant value, random variable, or values in a multi-

column data file.

4. The Create New Parameter dialog box opens. Select the Parameter from Random Variable option
button and click Next.

5. The Choose the kind of usage dialog box opens. Specify whether the new random value should be
used Per usage, Per transaction, or Per test.

6. Click Finish to modify the BDL form declaration of your test script so that it uses the random variable for
the given form field in place of the recorded value. The new random variable function displays below in
BDL view.

7. Initiate a Try Script run with the random variable function in your test script to confirm that the script
runs without error.

Customizing Mouse Events
The behavior of recorded mouse events can be visually customized.

1. In the menu tree, select a CitrixMouseClick node that includes mouse activity. Red squares
indicate mouse-click start points. Red cross-marks indicate mouse-release points. A red line between a
start and end point indicates the path of the mouse. Onscreen tooltips offer additional information (right-
click, left-click, double-click, etc).

2. Right-click anywhere on the screen and select Customize User Input. The Customize Mouse Event
dialog box opens.

3. Click at the screen position where you want the customized mouse move to begin.

4. Click Customize to accept the customization and modify the BDL script accordingly.

Your mouse event customization now appears in the recorded TrueLog bitmaps in green. The mouse
customization also appears in the BDL script in green text. CitrixMouseClick functions offer two track
vector parameters (X and Y coordinates). The next time this script executes, it will use the new screen
coordinates you have specified.

Citrix Parsing and Verification Functions
Silk Performer support for optical character recognition (OCR) simplifies session-dependent verifications
and parsing by recognizing text values in the screenshots of captured application states. As is the case
with other TrueLog formats (Web, database, etc), verification and parsing functions are added via TrueLog
Explorer after script recording.

Note: To enable optical character recognition (OCR) for parsing and verification functions in TrueLog
Explorer, you must first generate a font database using Silk Performer system settings.

Window Position and State

Window positions and state (maximized/minimized) are important for ensuring accurate replay as TrueLog
Explorer scripts screen coordinates where selected text is to be read relative to the desktop, not individual

TrueLog Explorer 20.0 | 85

windows. So if a window appears in a different position during replay than it did during recording, OCR
operations will not locate the specified text. If it is not possible to specify an absolute position of a
conversion-region, your script must be manually updated using coordinates that are relative to windows.

Verification Functions
Although input value verification and response data verification are not supported for Citrix, Silk Performer
does support bitmap and window verification for applications that are hosted by Citrix servers.

Inserting OCR Verification Functions
Bitmap and window verification for applications hosted by Citrix servers does not allow for the verification of
session-dependent data (for example, login names). However, using OCR techniques, Silk Performer
enables the storing of recognizable text values in variables, thereby simplifying session-dependent
verifications in Citrix load tests.

1. Using Silk Performer, record a Citrix session.

2. Run a Try Script run, with the Animated Run with TrueLog Explorer check box checked on the Try
Script dialog box. This opens TrueLog Explorer.

3. When the Try Script run is complete, select the API node that includes the bitmap screengrab of the
screen on which you want to verify text.

4. Click and drag your cursor onscreen to select the screen region that includes the text you want to use
for verification.

5. Right-click in the selected area and choose Verify Text.

6. The Insert Text Verification Function dialog box opens. The selected text is pre-loaded into the
constant value text box and the constant value option button is selected by default.

Tip: In addition to verifying against a constant value, you can also verify against a parameter
(either an existing parameter or a new parameter). To verify against a parameter, select the
parameter option button. If a parameter already exists, clicking [...] allows you to browse to and
select a parameter. If no parameters exist, clicking [...] launches the Parameter Wizard, enabling
you to create a new parameter.

7. Specify the OCR technique that should be used to verify the text. While font-based OCR needs fewer
resources, the fuzzy OCR produces better results for texts displayed with font smoothing techniques.
Help the fuzzy OCR to provide better results by specifying the language of the text.

8. From the Verify that the text in the selected rectangle is list box, select equal or not equal.

9. Specify whether or not the verification is to be Case sensitive and if it should Ignore
whitespaces.

10.In the Severity portion of the dialog box, specify the severity that is to be raised if the verification
returns a negative result (Error, Warning, Informational, or Custom). Click OK.

11.A confirmation dialog box opens. Click OK to add the OCR verification function to your Citrix test script.

Inserting OCR Parsing Functions

1. Using Silk Performer, record a Citrix session.

2. Run a Try Script run, with the Animated Run with TrueLog Explorer check box selected on the Try
Script dialog box. This opens TrueLog Explorer.

3. When the Try Script run is complete, select the API node that includes the bitmap screengrab of the
screen from which you want to parse text.

4. Click and drag your cursor onscreen to select the screen region that includes the text you want to parse.

5. Right-click in the selected area and select Parse Text.

6. The Insert Parsing Function dialog box offers parameters by which the parsing function can be
configured. Though the default settings will likely be correct, you can adjust:

86 | TrueLog Explorer 20.0

Parameter name Enter the name of the parameter that is to receive the result of the parsing function.

Informational
statement
insertion

• Select Print statement to insert an informational Print statement into the
script after the Web page call. This writes the result of the parsing function to
Silk Performer's Virtual User Output window.

• Select Writeln statement (“write line” statement) to write the parsed value to an
output file to facilitate debugging (in addition to writing the value to the Virtual
User Output window as a Print statement does). Because generating output
files alters test-time measurements, these files should only be used for
debugging purposes and should not be generated for full load tests.

OCR Technique Specify the OCR technique that should be used to verify the text. While font-based
OCR needs fewer resources, the fuzzy OCR produces better results for texts
displayed with font smoothing techniques. Help the fuzzy OCR to provide better
results by specifying the language of the text.

7. Click OK.
8. A confirmation dialog box opens. Click OK to add the OCR parsing function to your Citrix script.

OCR Verification and Parsing
This section explains how to parse and verify strings that are generated through OCR.

How OCR Verification and Parsing Works
String verification through optical character recognition (OCR) is achieved using CitrixVerifyText or
CitrixVerifyTextFuzzy API calls. These functions are inserted via TrueLog Explorer during script
customization. CitrixVerifyText and CitrixVerifyTextFuzzy functions compare text strings in
replay bitmaps to determine if they are identical.

CitrixParseText and CitrixParseTextFuzzy functions are available for parsing text.

Silk Performer offers two distinct OCR techniques:

1. Font-based OCR approach: The font-based approach compares text bitmaps to bitmaps of system
fonts. This approach relies on pattern databases to recognize varying fonts and text styles. Font
databases must be generated before font-based OCR can be used. Characters are only recognized if
they can be exactly reproduced by a system font and its styles. OCR results may be poor if font
smoothing techniques such as anti-aliasing or ClearType are used. The font-based OCR approach is
optimized for performance and resource consumption.

2. Fuzzy OCR with language affinity: Through fuzzy text recognition this approach analyzes text images
using a character and language knowledge base. Rather than comparing images to font bitmaps, the
fuzzy OCR uses proprietary text and language recognition algorithms.

Only Citrix TrueLogs show verification and parsing API calls in the menu tree. With other TrueLog modes
(for example, Web and database), new API nodes are not added to the menu tree.

Note: OCR operations should be performed on static content. When synchronizing on window events
it is possible that screen refresh may be slightly delayed, which will result in timing-dependent
outcomes. If a screen changes too frequently the correct image may not be selected for comparison if
timing is off. Therefore you should script a wait or a CitrixWaitForScreen function call before all
OCR verification or parsing functions.

Configuring Silk Performer for OCR
To enable optical character recognition (OCR) for Citrix parsing and verification functions using the font-
based OCR approach, you must generate a font database via Silk Performer system settings.

Font-based optical character recognition relies on font, or “pattern” databases to recognize fonts and text
styles in bitmaps. The default set of fonts covers most scenarios, however in some situations you may wish

TrueLog Explorer 20.0 | 87

to add additional fonts or font styles. A new database should be generated whenever new fonts are added
or removed from the system.

Including too many fonts in the database can slow down processing and lead to contradictory reading, so it
is recommended that you only include those fonts that are used in the bitmaps from which you will be
capturing text strings.

1. In Silk Performer, go to Settings > System... and choose the Citrix icon.

2. On the Font-based OCR page, use Add >> and Add All to move those fonts that you want to have
used for OCR from the System Fonts list box to the Chosen Fonts list box.

3. Use Remove All and << Remove to delete unnecessary fonts from the Chosen Fonts list box.

4. In the Sizes text box, specify the font size range that should be used (for example, 8-20).

5. Define which font styles should be included by checking the Italic, Bold, and Underlined check boxes.

6. Click Generate Font Database.

7. The Build Font Base dialog box opens. Click OK to confirm that you want to replace the existing font
database with a new database.

8. Click the Fuzzy OCR tab and select a language. This setting helps the fuzzy OCR engine to deliver
better results for a particular language.

9. Click OK on the System Settings dialog box to accept the changes.

Generating a Text-Synchronization Function
TrueLog Explorer offers the CitrixWaitForText synchronization function that pauses script execution
until specified text or a text pattern appears at a specified screen position. This feature can be used to
synchronize screens and user input. For example, you might want a script to pause execution until a
specified dialog text says "ready" instead of "processing" before pressing OK. Such an action is difficult to
synchronize when you are not sure of processing duration. The scripting of this function would read
CitrixWaitForText(... "ready", ...), preceding a CitrixMouseClick(...) function.

1. Using Silk Performer, record a Citrix session.

2. Run a Try Script run with the Animated Run with TrueLog Explorer check box selected on the Try
Script dialog box. TrueLog Explorer launches.

3. When the Try Script run is complete, select the API node that includes the bitmap screengrab of the
screen on which you want to wait for a specific text string.

4. Click and drag your cursor onscreen to select the screen region that includes the text you want to
synchronize.

5. Right-click in the selected area and choose Synchronize Text.

6. The Insert Text Synchronization Function dialog box opens. Enter a constant value for which the
script should wait, or select a parameter value. Click OK to insert the function into your script.

Working With TCP/IP and UDP-Based Applications
This section explains how to apply TrueLog On Error and test-script analysis features to the testing of
TCP/IP and UDP protocol based applications.

TrueLog Explorer serves as an effective viewer for TCP/IP and UDP based TrueLogs (For example, SMTP,
POP3, and custom protocols). TrueLog Explorer enables you to compare replay TrueLogs with record
TrueLogs. Script customizations (session handling, user-input data parameterization, and verification
functions) are not available for TCP/IP and UDP TrueLogs.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

88 | TrueLog Explorer 20.0

TCP/IP and UDP TrueLog Structure
TCP/IP and UDP TrueLogs are structured and viewed in the same way that HTML TrueLogs are structured
and viewed. One exception is that TCP/IP and UDP do not offer a high-level rendered interface as HTML
does.

Display of the Response page is suppressed for TCP/IP and UDP TrueLogs, except when Web API calls
are included in them.

Content Pane

For TCP/IP and UDP based TrueLogs, TrueLog Explorer provides the following data views in the Content
pane:

Item Description

Response Suppressed for TCP/IP and UDP, except when Web API
calls are included.

Differences The Differences page lists the In Body differences
between selected nodes. This page is helpful in finding
dynamic information in server responses. It is the first
place to look for session information.

Note: The Differences page is only available in
difference mode.

Request Suppressed for TCP/IP and UDP.

Information Pane

TrueLog Explorer 20.0 | 89

The Information pane offers data regarding TCP/IP and UDP test scripts and test runs. It offers the
following views:

Item Description

Info The Info page displays general information about the open
TrueLog file and the selected API node.

BDL The BDL page displays the BDL script that corresponds to
the open TrueLog. The BDL script is automatically
positioned to the line of the selected API node.

References Suppressed for TCP/IP and UDP

Out Header Suppressed for TCP/IP and UDP

In Header Suppressed for TCP/IP and UDP

Out Body For TCP/IP and UDP, this page contains data sent with
WebTcpipSend functions from the application to the
server.

In Body Contains the responses that are sent from the server to
the application (for example, WebTcpipRecv functions)

Statistics Suppressed for TCP/IP and UDP

Setting ASCII and Hexadecimal Viewing Options
Though Auto view mode automatically selects the most appropriate data representation mode for you (for
example, binary for images, text for HTML documents), TrueLog Explorer gives you the option of
changing your view of TCP/IP and UDP functions between ASCII and hexadecimal format.

1. Choose Settings > Options > Display .

2. Uncheck the Auto view mode check box in the Data format section of the dialog box.

3. Check the Show binary data check box.

4. Click OK.

Comparing TCP/IP and UDP Record and Replay
TrueLogs
When a TCP/IP and UDP replay TrueLog is compared alongside a corresponding record TrueLog and the
dynamics of the protocols are uncovered, those dynamics must be customized for future test runs
otherwise session-relevant data will be passed along during tests and errors will result. To customize the
dynamics of these protocols, TrueLog Explorer offers TCP/IP and UDP recording rules.

Note: Automatic session handling customization is not available for TCP/IP and UDP based
applications. Dynamic BDL parsing functions must be coded manually via Silk Performer.

1. In compare mode, open a TCP/IP or UDP replay TrueLog and the corresponding record TrueLog.

2. Click the Response tab.

Note: Difference tables are not enabled for binary content, so the Differences page is not
available.

3. Click Step through TrueLog. The Step Through TrueLog dialog box opens.

4. Click the API calls option button. The TrueLog API calls with the recorded responses are displayed
alongside the corresponding replay responses. Those differences that indicate that dynamics are
included in the test script must be customized via Silk Performer recording rules.

90 | TrueLog Explorer 20.0

Working With Terminal-Emulation Applications
This section explains how to customize a terminal emulation test script based on the results of a Try Script
run.

Working With Terminal-Emulation Applications -
Overview
In addition to offering TrueLog recording, TrueLog replay, and basic TrueLog analysis for terminal-emulation
applications, TrueLog Explorer also offers parsing, content verification, and input-parameter customization.
TrueLog functionality is supported for the following protocols: VT100+, IBM 3270, and IBM 5250.

Before proceeding with this chapter, it is essential that you familiarize yourself with TrueLog Explorer basic
functionality.

User Data Customization

User data customization via TrueLog Explorer and the Parameter Wizard is supported for both TN3270 and
TN5250 protocol terminal emulation applications.

On-Screen Event Synchronization

Functions are available for synchronization of on-screen events in record and replay scenarios, though the
functions cannot be inserted using TrueLog Explorer.

Note: For additional details regarding Silk Performer support for terminal emulation applications,
please see Miscellaneous Tutorials, a PDF that accompanies your Silk Performer installation
at Documentation > Tutorials.

Terminal-Emulation TrueLog Structure
TrueLog Explorer supports the visualization of terminal emulation requests and responses in the same way
that it supports the visualization of HTTP client requests and HTTP/HTML server responses.

The three windows that are displayed with terminal emulation TrueLogs are listed below:

• TrueLog menu tree – Lists all terminal emulation API calls that were included in the test run.
• Content pane – Displays the state of the terminal emulation application at each API node.
• Information pane – Displays data related to the most recent test run. The view tabs in this pane that

are active and applicable to terminal emulation TrueLogs are Info, BDL, In Body, Out Body, and Host
Screen Info.

TrueLog Explorer 20.0 | 91

Customizing Host Screen Display
You can change the font or font size of text displayed in Host Screen view (within the Content pane). This
may be necessary if the pre-defined font (lucida console) does not correctly display the characters that are
received by the application under test.

Font type:

To change the font, you must change the following key in the Windows registry:

HKEY_CURRENT_USER\Software\Silk\Silk Performer\20.0\SystemSettings\Layout
\GreenScreen Font Name

Font size:

To change the size of the displayed characters, you must change the following key in the Windows registry:

HKEY_CURRENT_USER\Software\Silk\Silk Performer\20.0\SystemSettings\Layout
\GreenScreen Font Size

Enter the size of the font (default is 10).

Stepping Through Terminal-Emulation TrueLogs
After tests, it is typical to have multiple TrueLog On Error files open in TrueLog Explorer (one TrueLog for
each virtual user who returns an error). With TrueLog Explorer Find Errors feature, you can jump from one
error to the next sequentially as they occurred in time, regardless of which TrueLogs the errors were
recorded in. This simplifies the process of analyzing errors. There is no need for you to manually review all
open TrueLogs to find the next error in a sequence.

1. After the completion of a test, within Silk Performer, click Explore Results.

92 | TrueLog Explorer 20.0

Note: TrueLog On Error files are generated only when the Silk Performer Generate TrueLog On
Error option is enabled.

The Explore Results dialog box opens.

2. Click TrueLog Explorer.

Note: TrueLog Explorer is disabled both when no errors are detected during a test and when
Truelog On Error is not enabled. In such instances, proceed directly to analyzing results with
Performance Explorer.

TrueLog Explorer opens with the TrueLog On Error files that were generated for the current test, and the
Step through TrueLog dialog box opens.

3. Using the Step through TrueLog dialog box, click the appropriate option button to advance through all
Stable Screens (WebTelnetRecvCommand calls), API calls (each API node), and Errors.

TrueLog On Error files are searched sequentially as they were recorded in time.

Note: When multiple WebTelnetRecvCommand calls are clustered in a sequence, clicking Find
Next with the Stable Screens option automatically advances focus to the final
WebTelnetRecvCommand call in the sequence.

4. Click Find Next to advance to the first stable screen, API call, or error.

Error messages are displayed on the Info page.

API nodes that contain replay errors are tagged with red “X” marks in the menu tree.

To view the originally recorded TrueLog that corresponds to the open replay TrueLog, right-click the replay
TrueLog’s virtual-user node in the menu tree and choose Open Associated Record TrueLog. Each server
response is then available for viewing on the Host Screen page.

Analyzing Terminal-Emulation Test Scripts
Once you have generated a test script you should determine if the script runs without error by performing a
Try Script run. A Try Script run will determine if the script accurately recreates the recorded interactions.

The default option settings for Try Script runs include live display of data downloaded during the test run
and the writing of log and report files.

With Try Script runs only a single virtual user is run and the stress test option is enabled so that there is no
think-time delay between transactions.

1. Click Try Script on the workflow bar. The Try Script dialog box opens.

2. To view rendered page transitions during a Try Script run, check the Animated Run with TrueLog
Explorer check box.

3. Click Run.

Note: You are not running an actual load test here, only a test run to see if your script requires
debugging.

The Try Script run begins. The Monitor window opens, giving you detailed information about the run’s
progress.

TrueLog Explorer opens, showing you the data that is actually downloaded during the Try Script run.
Each main terminal emulation window accessed during recording is listed as a high-level
WebTelnetRecvCommand API node in the menu tree.

Comparing Replay and Record TrueLogs
When testing terminal emulation applications, differences can occur in corresponding field values between
replay and record TrueLogs. Some differences may result in replay errors.

TrueLog Explorer 20.0 | 93

1. Open a replay TrueLog and click Analyze Test on the workflow bar. The Analyze Test dialog box
opens.

2. Click Compare your test run.
3. The associated record TrueLog opens in compare view. The Step through TrueLog dialog box also

opens.
4. Select an interval to search by (Stable Screens, API nodes, or Errors).

5. Click Find Next to advance to the first set of corresponding stable screens, API calls, or errors in the
record and replay TrueLogs. Visually compare the values and states of the controls and screenshots to
see if there are any differences.

6. Once you have completed any required customizations (based on differences you have discovered),
click Try Script Run to confirm that your customizations run without error.

7. Analyze the results of subsequent test runs to determine whether your customizations were successful
or if further customization is required.

8. Click Compare Mode to disable compare mode.
9. Repeat this procedure as many times as is required until your script is fully customized and all

necessary customizations have been added.

Synchronizing Record and Replay TrueLogs
When in compare mode, you can synchronize corresponding API nodes between replay and record
TrueLogs.

1. Enable compare mode.
2. Open a set of record and replay TrueLogs.
3. Right-click an API node for which you want to establish synchronization.
4. Select Synchronize TrueLogs. TrueLog Explorer then locates the API node in the matching TrueLog

that best correlates with the selected API node.

Terminal-Emulation TrueLog Functions
Six terminal emulation functions are available for insertion into test scripts.

WebTelnetScreenVerifyText Verifies onscreen text (available from Host Screen view).

WebTelnetScreenGetText Parses onscreen text (available from Host Screen view).

WebTelnetScreenVerifyField Verifies a text field (available from Host Screen Info view).

WebTelnetScreenGetField Parses text from a field (available from Host Screen Info view).

WebTelnetScreenVerifyStatus Verifies a field's status (available from both views).

WebTelnetScreenGetStatus Parses a field's status (available from both views).

Customizing User Input Data
Note: Visual user input data customization for terminal emulation is supported for both TN3270 and
TN5250 protocol scripts.

1. With a terminal emulation TrueLog loaded into TrueLog Explorer, select the
WebTelnetSendRecordExecute API call (in the API node tree menu) that includes the user input
data that is to be customized.

2. Select the Host Screen tab.
The Host Screen tab displays a screen capture of the user input screen.

3. Select the Host Screen Info tab.
The Host Screen Info tab includes a list of all user input data fields that are available on the selected
screen. The input fields are numbered and listed in the order in which they appear on the screen. When

94 | TrueLog Explorer 20.0

you select an input field entry on the Host Screen Info tab the corresponding field is highlighted in the
screen capture on the Host Screen tab.

Note: Only input fields that had data entered into them during recording are highlighted and
available for customization.

4. On the Host Screen Info tab, right-click the field entry that you want to customize and select
Customize User Input. The Parameter Wizard launches.

5. Use the Parameter Wizard to define how you want input data parameters to appear in your script.

See Silk Performer Help for details on working with the Parameter Wizard.

Modifications that you make to your script using the Parameter Wizard can be viewed on the BDL tab.

Execute a Try Script run to verify that the new parameter inserts user input data as required.

Verification Functions for Terminal-Emulation
Applications
This section explains how to verify content and fields for terminal emulation API calls.

Verification Functions for Terminal-Emulation Applications
TrueLog Explorer allows you to easily add content verifications to test scripts to verify that the content that
is to be sent by servers is in fact received by clients under real-world conditions. Content verification
functions may be inserted for any terminal emulation API call. For example, for a
WebTelnetSendCommand function call in which input data is entered, you can insert a return value
verification function. Verification functions can be inserted through context menus in both Host Screen
view and Host Screen Info view.

By comparing replay test runs with record test runs, a uniquely powerful approach to the challenge of
testing end-user experience in client/server environments, TrueLog Explorer allows you to confirm visually
whether or not input data are actually downloaded and displayed by clients while terminal-emulation
applications are under heavy load. This allows you to detect a class of errors that other terminal emulation
traffic simulation tools are not able to detect: errors that occur only under load that are not detected with
standard load test scripts.

Content verifications remain useful after system deployment as they can be employed in ongoing
performance management.

By right-clicking an input field that you want to have verified in Host Screen or Host Screen Info views,
the required verification function can be generated and inserted into your BDL script. TrueLog Explorer
offers three pre-enabled verification functions (WebTelnetScreenVerifyText,
WebTelnetScreenVerifyField, and WebTelnetScreenVerifyStatus).

Content Verification vs. Field Verification

Content verifications enable you to select and setup verifications for onscreen text strings in Host Screen
view, regardless of their placement on screen. Field verifications enable you to set up verifications for pre-
defined regions (fields) within a terminal view. An application might define an entire screen as a single field,
or a page might be built of header fields, footer fields, body fields, and so forth. Fields are often used as
input areas, but they do not necessarily need to accept input. On-screen characters do not necessarily
need to reside within fields.

Inserting a Content-Verification Function

1. In Host Screen Info view, right-click an input field for which you want to verify the return value.

2. Select Verify Selected Text.

TrueLog Explorer 20.0 | 95

3. The Insert Verification Function dialog box opens. Use this dialog box to specify the type of
verification function that should be inserted into the BDL script. From the Verify that the sequence of
characters starting at column x, row x list box, select is equal to or is not equal to.

4. Specify if the verification should be against a constant value or a parameter value.

5. Specify whether or not the verification is to be Case sensitive and if white spaces should be
ignored.

6. In the Severity portion of the dialog box, specify the severity that is to be raised if the verification
returns a negative result (Error, Warning, Informational, or Custom).

7. Click OK to add the verification function to your test script. Once the BDL script has been successfully
modified, repeat this process for each verification you want to add to the BDL script.

Inserting a Status-Verification Function
A status-verification function enables you to verify a status value in a terminal-emulation input field. A
status is a name-value pair (it is the value of the status name that is verified).

1. Right-click an input field in Host Screen Info view.

2. Choose Verify Status Value.

3. The Insert Status Value Verification Function dialog box opens. Use this dialog box to specify the
type of verification function that should be inserted into the BDL script. From the Verify that the value
of the status list box, select the name of the status you want to verify.

4. Select is equal to or is not equal to to define the status state you want to verify.

5. Specify if the verification should be against a constant value or a parameter value.

6. Specify whether or not the verification is to be Case sensitive and if white spaces should be
ignored.

7. In the Severity portion of the dialog box, specify the severity that is to be raised if the verification
returns a negative result (Error, Warning, Informational, or Custom).

8. Click OK to add the status-verification function to your test script. Once the BDL script has been
successfully modified, repeat this process for each status verification that you wish to add to the BDL
script.

Inserting a Field-Verification Function
You can define a field-verification function for a terminal-emulation input field to verify text in the field.

1. Right-click a field in Host Screen Info view and choose Verify field.

2. The Insert Field Verification Function dialog box opens. Use this dialog box to specify the type of
verification function that should be inserted into the BDL script.

3. Select is equal to (or is not equal to) as the operator for the verification.

4. Specify if the verification should be against a constant value or a parameter value.

5. Specify whether or not the verification is to be Case sensitive and if white spaces should be
ignored.

6. In the Severity portion of the dialog box, specify the severity that is to be raised if the verification
returns a negative result (Error, Warning, Informational, or Custom).

7. Click OK to add the verification function to your test script. Once the BDL script has been successfully
modified, repeat this process for each additional verification that you want to add to your BDL script.

Parsing Functions for Terminal-Emulation Applications
This section explains how value parsing can be used to enable accurate replay when session-specific
strings must be parameterized.

96 | TrueLog Explorer 20.0

Parsing Functions for Terminal-Emulation Applications
A parsing function can be inserted for any screen text, field, or status in a terminal-emulation TrueLog.
Value parsing can be useful for enabling replay when session-specific strings must be parameterized to
enable accurate replay (for example, you might parse newly created customer IDs into parameters that are
inserted into the customer ID fields of invoices).

Content Parsing vs. Field Parsing

Content parsing functions enable you to select and set up parsing for onscreen text strings in Host Screen
view, regardless of their placement on screen. Field parsing functions enable you to set up parsing for pre-
defined regions (fields) within a terminal view. An application may define an entire screen as a single field,
or a page may be built of header fields, footer fields, or body fields. Fields are often used as input areas,
but they do not necessarily need to accept input. Onscreen characters do not necessarily need to reside
within fields.

Inserting a Content-Parsing Function

1. Within Host Screen view, select text for which you want to parse a value.

2. Right-click and choose Parse Selected Text.

3. The Insert Parsing Function dialog box offers settings by which the parsing function can be adjusted.

Though the default settings will likely be appropriate, you can adjust the following settings:

• Parameter name: Enter a name for the parameter that is to receive the result of the parsing
function.

• Informational statement insertion: Check Print statement to insert an informational Print
statement into the script. This will write the result of the parsing function to the Silk Performer Virtual
User Output window. Check Writeln statement to write the parsed value to an output file to
facilitate debugging (in addition to writing the value to the Virtual User Output window as a Print
statement does). Because generating output files alters the time measurements of tests, these files
should only be used for debugging purposes and should not be generated for full load tests.

4. Click OK to insert the parsing statement into your test script.

Inserting a Status-Parsing Function

1. Right-click a status in Host Screen Info view and choose Parse Status Value.

Note: This function can also be accessed by right-clicking a field in Host Screen view.

2. The Insert Status Parsing Function dialog box offers settings by which the parsing function can be
adjusted.

Though the default settings will likely be appropriate, you can adjust the following settings:

• Status: From the list box of existing status names, select the status for which you want to insert a
parsing function.

• Parameter name: Enter a name for the parameter that is to receive the result of the parsing
function.

• Informational statement insertion: Check Print statement to insert an informational Print
statement into the script. This will write the result of the parsing function to the Silk Performer Virtual
User Output window. Check Writeln statement to write the parsed value to an output file to
facilitate debugging (in addition to writing the value to the Virtual User Output window as a Print
statement does). Because generating output files alters the time measurements of tests, these files
should only be used for debugging purposes and should not be generated for full load tests.

3. Click OK to insert the parsing statement into your test script.

TrueLog Explorer 20.0 | 97

Inserting a Field-Parsing Function

1. Right-click a field in Host Screen Info view and choose Parse Field Text.

2. The Insert Field Parsing Function dialog box offers settings by which the parsing function can be
adjusted. Though the default settings will likely be appropriate, you can adjust the following settings:

• Parameter name: Enter a name for the parameter that is to receive the result of the parsing
function.

• Informational statement insertion: Check Print statement to insert an informational Print
statement into the script. This will write the result of the parsing function to the Silk Performer Virtual
User Output window. Check Writeln statement to write the parsed value to an output file to
facilitate debugging (in addition to writing the value to the Virtual User Output window as a Print
statement does). Because generating output files alters the time measurements of tests, these files
should only be used for debugging purposes and should not be generated for full load tests.

3. Click OK to insert the parsing statement into your test script.

Working With AJAX-Enhanced Web Applications
This section explains how to "pretty" format JSON and XML data and how to apply TrueLog Explorer script
customization features to the testing of applications that utilize AJAX techniques.

The Silk Performer recorder can record and (with the assistance of TrueLog Explorer) replay Web
applications that utilize AJAX (Asynchronous JavaScript and XML) requests. This is possible because Silk
Performer recognizes asynchronous AJAX requests and responses that arrive in the form of either XML or
JSON within HTML responses.

For more information about AJAX, see the Silk Performer Help.

AJAX-Support Overview
TrueLog Explorer and Silk Performer enable access to values within AJAX requests. This facilitates
TrueLog Explorer script customizations such as input-data parameterization, verification functions, parsing
functions, and session-information customization within AJAX responses.

Pretty Formatted JSON and XML Data

JSON and XML are data-structure formats commonly used in AJAX applications, REST techniques, and
other environments. TrueLog Explorer supports pretty-formatted viewing of XML and JSON-formatted byte
streams in recorded scripts. Enhanced rendering of JSON formatted data enables the customization of
string values via TrueLog Explorer customization functions, such as string verification and parsing.

Pretty-formatted JSON view is also supported in compare mode, in which you can compare record and
replay sessions side by side and automatically detect differences.

Note: TrueLog Explorer offers the option of viewing JSON data in either pretty-formatted JSON-
rendering view or as a raw JSON byte stream, though script customization features such as
verification and parsing are not supported in raw data view.

Pretty-formatted data viewing is also available in Silk Performer to facilitate readability and B.F. script
customizations.

98 | TrueLog Explorer 20.0

Enabling Pretty-Formatted JSON and XML Viewing in
TrueLog Explorer
Enable pretty-formatted JSON and XML viewing on the Response page if TrueLog Explorer is unable to
detect JSON or XML data. If TrueLog Explorer detects JSON and XML data, it is automatically pretty-
formatted on the Response page.

1. Select a node on the TrueLog menu tree that includes JSON- or XML-formatted data (for example, a
HTTP Post command node).

2. Click the Response tab.

3. Right-click JSON or XML data and choose Render As > JSON or Render As > XML to pretty-format
the data.

Customizing TrueLog Explorer
This section explains how to adapt TrueLog Explorer customization, view, and TrueLog generation features
to your specific needs. TrueLog Explorer option settings enable you to configure the display of data, the
definition of delimiters for detecting differences, and the generation of virtual user reports. Customization
features enable you to customize UI commands and the display of toolbars.

Compare mode enables the direct comparison of record and replay TrueLogs, one API node at a time.
Differences mode automatically identifies and lists differences between record and replay TrueLogs for
Web, XML, and database applications via the Differences page. Differences mode also displays
differences in text-based format on the In Body, Out Body, In Header, Out Header, and BDL pages by
rendering differing text in green and red.

When enabled, TrueLog Explorer animation displays replay content (graphics, text, and SQL commands) in
real-time as it is downloaded.

Finally, as the generation of TrueLog files can be CPU/memory intensive, this section shows you how to
use Silk Performer to adjust the characteristics of TrueLogs and the criteria by which they are generated.

TrueLog Explorer Option Settings
TrueLog Explorer option settings, available on the Options dialog box, enable you to configure application
settings such as the display of HTML documents, incoming and outgoing data, the definition of delimiters
(which pinpoint differences between TrueLogs), and the generation of virtual user reports.

Setting Display Options

1. Choose Settings > Options . The Display page opens.

2. Specify how HTML documents are rendered.

• To enable the execution of client-side scripts when rendering HTML documents, check the Script
execution check box.

• To view images or frames when rendering HTML documents, check the Frame and image loading
check box.

• To enable the execution of applets or ActiveX controls when rendering HTML documents, check the
Applet execution check box.

3. Specify how incoming and outgoing data should be displayed on the Out Header, Out Body, In
Header, and In Body pages.

• To view text-formatting symbols, such as \r\n for a carriage return and new line and "." for a white
space, check the Show white spaces check box.

TrueLog Explorer 20.0 | 99

This option is only relevant when viewing data in text format.
• To view data in binary format, check the Show binary data check box.

4. Click OK.

Inserting Delimiter Characters
TrueLog Explorer general compare tags allow you to define delimiters, which are characters or text that
delimit differences between TrueLogs. Delimiters determine if a sequence is handled as a single difference
or as multiple differences. Delimiters are used for all document types except HTML.

1. Choose Settings > Options and then click the Compare tags tab. The Compare tags page opens.

2. In the General compare tags table, type character or text delimiters.

Tip: Click Default to discard your changes and revert to the default settings.

3. Click OK.

Inserting HTML Delimiter Characters
HTML delimiters are characters or text that delimit differences between HTML TrueLogs. They determine if
a sequence is handled as a single difference or as multiple differences.

1. Choose Settings > Options and then click the Compare tags HTML tab. The Compare tags HTML
page opens.

2. In the HTML compare tags table, type character or text delimiters.

Tip: Click Default to discard your changes and revert to the default settings.

3. Click OK.

Setting Workspace Options

1. Click Settings > Options and the Workspace tab.

2. To enable the automatic display of virtual user reports at the end of animated Try Script runs or when
the root nodes of TrueLog files are selected in the tree, check the Display virtual user report check
box.

3. To automatically expand your XML trees by a specific number of levels, set the Auto expansion level
of XML tree.

4. To automatically expand your project tree by a specific number of levels, set the Auto expansion level
of Log tree.

5. To store the expansion levels of project trees and automatically apply them when reopening a TrueLog,
check the Retain expansion state check box.

6. Click OK.

Customizing Toolbars and Commands
This section explains how to customize toolbars and the commands that display on toolbars.

Specifying Which Toolbars are Displayed
You can customize the set of toolbars that appear on the TrueLog Explorer interface.

1. Choose Settings > Customize . The Toolbars page opens.

2. Check the check boxes next to the toolbars that you want to have displayed.

3. Optional: To specify that you want to enable tooltips (roll-over UI control descriptions), check the Show
Tooltips check box.

100 | TrueLog Explorer 20.0

4. Optional: To specify that you want to enable TrueLog Explorer “cool look,” check the Cool Look check
box. Cool look replaces Windows 3.1 style drop-shadow buttons with non-drop-shadow buttons.

5. Click OK.

Alternative: Click Apply to immediately apply your selections to the UI.

Creating a Custom Toolbar

1. Choose Settings > Customize . The Toolbars page opens.

2. Click the Toolbars tab.

3. Click New. The New Toolbar dialog box opens.

4. Enter a name for the toolbar and then click OK.

5. Click OK.

Customize the command buttons that are displayed on the new toolbar.

Customizing Toolbar Command Buttons
You can define which command buttons display on specific toolbars.

Note: The Menu toolbar cannot be customized.

1. Choose Settings > Customize . The Toolbars page opens.

2. Click the Commands tab.

3. In the Categories list box, select the toolbar for which you want to customize the command buttons.

4. Click available commands in the Buttons box to read their descriptions in the Description box.

5. Drag the commands that you want to include on the toolbar onto the toolbar name in the Categories list
box.

6. Click OK.

View Modes
You can view differences in TrueLogs using compare and difference modes. Compare mode enables the
direct comparison of record and replay TrueLogs, one API node at a time. Differences mode automatically
identifies and lists differences between record and replay TrueLogs for Web, XML, and database
applications via the Differences page. Differences mode also displays differences in text-based format on
the In Body, Out Body, In Header, Out Header, and BDL pages by rendering differing text in green and
red.

Compare Mode
In compare mode, replay TrueLogs are compared alongside the corresponding TrueLogs that were
generated during application recording. Default view displays replay TrueLogs (with a green triangle in the
upper-left corner). Compare view displays record TrueLogs (with a red triangle in the upper-left corner).

TrueLogs are opened in compare view when a corresponding record TrueLog is open or when the Open in
Compare View check box is checked on the Open dialog box.

Note: TrueLogs are automatically opened in compare mode when you execute Find Differences from
the Workflow - Customize Session Handling dialog box.

Enabling Compare Mode

Use compare mode to compare a replay TrueLog alongside a corresponding record TrueLog to analyze
playback errors. When you check the Open in Compare View check box on the Open dialog box,
TrueLogs are opened in compare mode automatically. Otherwise, TrueLogs are opened in default view.

TrueLog Explorer 20.0 | 101

Note: Compare mode offers the option of having record and replay Source pages oriented vertically
rather than horizontally. To compare Source pages vertically, choose View > Compare Vertically .

1. Select a TrueLog in the TrueLog menu tree.

2. Perform one of the following steps:

• Click Compare Mode.
• Choose View > Compare Mode .

Note: Multiple entry points and approaches are available for the
comparison of TrueLogs.

Difference Mode
Comparing TrueLogs that are generated during Try Script runs alongside the corresponding TrueLogs that
were generated during application recording is an effective means of pinpointing problems in load testing
scripts.

Difference tables, available from the Differences page, automatically list the differences that are detected
between replay TrueLogs and corresponding record TrueLogs.

Difference mode, which is enabled by default, is a special kind of compare mode in which text differences
in the In Body, Out Body, In Header, and Out Header pages are marked in color (red and green with a
gray background).

Enabling Difference Mode

Note that difference mode is enabled by default.

Perform one of the following steps:

• Choose View > Diff Mode .
• Click the Diff Mode icon.

Viewing a Difference Table

Ensure that difference mode is enabled before you begin this task (difference mode is enabled by default).

1. Open a pair of corresponding record and replay TrueLogs.

2. Enable compare mode by choosing View > Compare Mode .

3. Click the Differences tab. The differences that are detected between replay TrueLogs and
corresponding record TrueLogs are listed automatically.

Data Animation
When animation is enabled, content received from servers during virtual user execution is displayed in real
time, as users would see it. In the case of Web application testing, this means that you can see page
content loading (graphics, text, and embedded objects) as virtual users see it. Animation is enabled by
default.

TrueLog animation is helpful when you execute a load test with TrueLog On Error enabled and you detect
errors with individual users using the error count in Silk Performer Virtual User view in the Monitor
window. You can view TrueLog On Error files immediately using the context menu within Virtual User view
by clicking Explore TrueLog. However, this only works for virtual users that are running on the controller
machine, as you do not have access to TrueLogs for remote agents during load tests.

102 | TrueLog Explorer 20.0

Pausing, Resuming, and Stopping Animation

To pause or resume animation choose Animation > Pause Animation . Alternative: Press Ctrl+P on
your keyboard.

To stop animation choose Animation > Abort Animation .

TrueLog Impact on Scalability
TrueLog generation is only useful in as much as it is adaptable to your load-testing environment. Therefore,
memory and performance requirements must be kept to a minimum.

The two major factors affecting TrueLog scalability are:

• Performance downgrade
• Memory usage

Performance Downgrade

Performance downgrades related to TrueLog generation can range from 0% - 10%. This is because
runtime keeps all relevant data in memory and attempts to keep necessary memory allocations to a
minimum. Note that the performance impact of TrueLog On Error is negligible.

Memory Usage

In terms of scalability, there is a tremendous difference between TrueLog and TrueLog On Error. The
TrueLog feature immediately writes each request and response to a TrueLog file. The formatting of the
TrueLog file produces high internal CPU usage and a large amount of IO for the writing of the TrueLog file.

As a result, TrueLog generation is often not suitable for load testing.

Since TrueLogs can become large in size, you can configure Silk Performer to generate TrueLogs only
when errors are encountered during testing. While systems run accurately, nothing is recorded. Such
targeted TrueLog generation is known as TrueLog On Error and results in smaller, focused TrueLog files.

Memory requirements for TrueLog On Error are largely dependant on the BDL scripts that are utilized.
Therefore, generic percentages can not be given, especially in cases where TrueLog On Error is configured
to log complete transactions. Note that this applies only to TrueLog On Error files for which the non-default
Store TrueLog for one transaction setting has been selected. In such cases, memory usage correlates
with the number and size of requested Web pages included in transactions. With the default Store
TrueLog based on content history setting, the length of transactions has no impact. Content histories
usually do not exceed five Web pages, and these are the only pages that must be stored.

Custom Content Types and File Extensions
TrueLog Explorer supports custom handling of special content types and URL file extensions. You can add
custom content-types and file extensions to some values in the Registry to change product behavior. The
relevant settings can be found in the registry (HKEY_CURRENT_USER\Software\Silk\Silk TrueLog
Explorer\15.5\).

The following four registry values exist, among others:

• MaskContentTypes

• MaskExtensions

• SuppressContentTypes

• SuppressExtensions

These values contain lists of content-types and file extensions that need special handling. The Mask*
values apply to textual data, which can be rendered as plain text in HTML view. The Suppress* values
apply to binary (non-text) data, which can not properly be rendered.

TrueLog Explorer 20.0 | 103

Suppressing File Download Dialog Boxes

1. In TrueLog Explorer, select the node where the file download dialog box opens.

2. Click the In Header tab and examine the page.

3. If the content-type seems unfamiliar, such as app/fireclick.x-hint.1, perform the following
steps:

a) Close TrueLog Explorer.
b) Add the unfamiliar content-type to the MaskContentTypes value.

Strings are separated by semicolons.
c) Start TrueLog Explorer.

Registry settings are only read upon startup.
d) If the download box still opens, add the previous content-type to the SuppressContentTypes

value. The File Download dialog box should no longer open.

4. If the content-type seems okay, examine the URL.

a) If you notice an extension other than .html, .js, .pl, .chtml, .jar, .class, or .vbs, close
TrueLog Explorer and examine the In Body page to see whether the response body consists of
textual or binary data.

b) If you see textual data on the In Body page, add the URL file extension to the MaskExtensions
value.

c) If the data seems to be binary, add the file extension to the SuppressExtensions value.

Extensions are separated by semicolons.
d) Start TrueLog Explorer.

Registry settings are only read upon startup.

TrueLog Generation Settings

Overview

TrueLogs are usually not enabled during load testing as they are CPU and I/O intensive. Typically,
TrueLogs are enabled during script development/verification only. TrueLog On Error files are usually
enabled during load testing as they are optimized for performance and have only a slight impact on CPU.
TrueLog On Error files can be activated for large tests without major impact on replay performance, even
when a moderate number of errors are anticipated.

Silk Performer’s generation of TrueLog On Error has a slight impact on scalability however. To keep this
impact as low as possible, the Silk Performer TrueLog recording level can be adjusted in the following
ways:

• TrueLog length
• Severity of incidents for which TrueLog is recorded
• Inclusion of embedded objects

The TrueLog generation options detailed in the following sections can be configured by choosing Settings
> Active Profile > Results > TrueLog within Silk Performer. This same page is also used to enable the
generation of TrueLog On Error (.xlg) files for each virtual user in tests (using the TrueLog On Error files
(.xlg) check box).

Length of TrueLogs

TrueLog On Error tracking can be configured to store complete transactions one transaction at a time, or in
the case of Web applications, the five most recent pages of content history.

104 | TrueLog Explorer 20.0

Generating TrueLog based on complete transactions - This setting tracks each erroneous transaction,
rather than all relevant pages (content history). As memory consumption is dependent on the length of
each transaction, use this option only when memory is of no concern or when transactions are short.

Generating TrueLog based on content history - This setting stores recent page history only, and drops
non-relevant pages from memory. This approach makes memory consumption more predictable and
manageable. Although, consumption is still dependent on the sizes of pages stored in memory.

Severity

You can define the severity of incidents that trigger the writing of TrueLog data to disk (initially stored in
RAM) using the Generate TrueLog On Error for setting.

Embedded Objects

Log all embedded objects - TrueLogs contain the response bodies of all embedded objects. Even when
request and response headers are no longer contained in the history, the content of embedded objects
may still be displayed in the browser. This can be a matter of concern when a page does not request an
image from a server because it is a cache hit or when the server responded with a 304 not modified error.
To guarantee that all embedded objects are displayed, Silk Performer stores the contents of each
embedded object in a global process-spanning cache.

Exclude cached embedded objects - When a global store for cached objects is not enabled, some
images will not load. This setting provides a small gain in performance and requires less memory.

Exclude all embedded objects - When embedded object bodies are not logged at all, embedded objects
do not load. This setting significantly reduces memory consumption. However, the visual information that is
offered with this approach is greatly compromised.

In cases where TrueLog On Error information is recorded based on content history, the impact on memory
usage per virtual user can be estimated based on sample tests. The numbers below were calculated based
on sample tests run against well known Web sites, including Amazon.com and IBM.com.

Setting Additional memory consumption

Exclude all embedded
objects

80%

Exclude cached embedded
objects

125%

Log all embedded objects 130%

Note: The settings that require the least amount of memory (storing TrueLog data based on content
history and excluding all embedded objects) are sufficient for logging all relevant data. However, the
visual information they offer is greatly compromised.

TrueLog Tree Filter
The TrueLog tree filter allows you to hide nodes and make a tree short and clear. This can be especially
helpful when you work with large TrueLog files. You may want to hide image nodes during session
customization.

Note that a filter applies to a specific TrueLog. You can apply several filters with different settings to
different TrueLogs. To enable and disable a filter, select a TrueLog in the tree and click Toggle Tree Filter
on the Tree Filter toolbar. If this toolbar is not visible, enable it by clicking View > Toolbars and Docking
Windows. When a filter is active, the keyword filtered displays beside the TrueLog root node and filter
icons display beside the visible nodes.

To configure a TrueLog tree filter, click View > Configure Tree Filter or use the button on the toolbar. You
can specify general settings and type-specific settings. Select a TrueLog type and click the check boxes to
show and hide specific nodes.

TrueLog Explorer 20.0 | 105

You can apply the filter in two ways:

• Apply filter: Applies the filter to the selected TrueLog. The filter settings are saved in a .view file,
which is located in the same folder as the TrueLog file. When you move the TrueLog file, make sure to
move the settings file as well.

• Apply filter and save as default: Applies the filter and saves the settings as default. When you open
another TrueLog of the same project and enable the filter, the default settings are applied. The default
settings are saved in a .view file, which is located in the project folder.

In Compare Mode TrueLog Explorer shows two trees, one for the main view and one for the compare view.
You can synchronize the filters in both trees by clicking View > Keep Tree Filters Synchronized.

106 | TrueLog Explorer 20.0

Index
A

action time 17
ADO

database support 51
AJAX

requests 98
sample Web 2.0 application 22
testing 98

analyzing tests
tutorial 14

analyzing TrueLog On Error
tutorial 19

animation
overview 102

API
calls 13
page based nodes 28
searching for calls 34

application
errors 28, 39

applications
ADO 51
AJAX 98
Citrix 82
DB2 CLI 51
ODBC 51
Oracle 51
SAPGUI 66
supported 5
TCP/IP 88
UDP 88

ASCII
viewing 90

B

BDL page 9
best practices

workflow 10
boundaries

response data 46
browser-driven Web testing

sample Web 2.0 application 22

C

cache statistics 10
character frequency tables 47
characters

delimiting 100
Citrix

Citrix servers 82
cutomizing mouse events 85
parsing functions 85
player 82
script synchronization issues 84
TrueLogs 82

user input data 84, 85
verification functions 85, 86

Citrix functions 48, 82, 84, 85, 87
CitrixKey 48
CitrixKeyString 85
CitrixMouse 48
CitrixMouseClick 82
CitrixParseText 87
CitrixParseTextFuzzy 87
CitrixUserInput 82
CitrixVerifyText 87
CitrixVerifyTextFuzzy 87
CitrixWaitForScreen 87
CitrixWaitForWindow 84
commands

customizing 100, 101
fetch 59
SQL 52

compare mode
overview 101
TrueLogs 5

comparing
vertically 101

connect time 10, 63
content

types 103
verification overview 5
verifications 38

Content pane
TCP/IP, UDP protocols 89

Controls page 10
cookie management 28
copy control ID 70
correlations

manual 57
output-input 54

CSV
data files 57

custom session handling
XML 64

Customer OCI
accessing 25
sample application 24
software requirements 24

customizing
commands 100, 101
file extensions 104
mouse events 85
SAPGUI user input data 69
session handling 10, 33
test scripts 10
toolbars 100
user data 10, 48, 49

customizing session handling 27
customizing user input data

terminal emulation support 94
customizing user interface 99

Index | 107

D
data animation

overview 102
data digest

generating verifications 47
data files

CSV 57
multi-column 51, 57, 70, 79
parameterizing 51, 70, 79

data values
incorrect 39

data verifications 38
database

sample application 25
database applications

element values 59
input parameters 57
manual correlation 57
output-input correlations 54
overview 51
parsing functions 57
replacing session data 55
result set data 59
result set row count 60
terminal-emulation 91
TrueLog structure 52
user input data 48
XML 61

DB2 CLI
database support 51

debug log levels 79
delimiter characters

inserting 100
settings for HTML 100

dialog boxes
File Download 104
Step through TrueLogs 13

difference mode
enabling 102
overview 102

difference tables 102
Differences page 8
display options

setting 99
DNS lookup time 10, 63

E
element values

verifying 59
End Request page 9
errors

application 28, 39
finding 15
Oracle Forms 77
replay 5

executing
Try Script runs 21

Explorer perspective
toggling 21

F
fat client

testing 5, 21

feature sets
protocol based 14

fetch commands 59
field parsing functions

inserting 98
field verification functions

inserting 96
File Download

dialog box 104
file extensions

customizing 104
filter

TrueLog tree 105
finding

content in rendered view 8
first response

searching 34
Form Controls page 8
Form Data

view 51
Form Data page 9
functions

parsing functions overview 31
verification functions overview 38

G

generating
text verifications 42, 43

GUI
testing 5, 21
TrueLog Explorer tour 6

H

hexadecimal formats
viewing 90

Host Screen Info page 10
Host Screen page 9
HTML

adding verifications 38
customizing user data 49
data digest verifications 47
delimiter characters 100
digest verifications 44
forms 48
rendered 38, 39
response data verifications 45
text verifications 41–43
title verifications 41
verifications overview 40

HTTP
parsing rules 36
SAPGUI 73

I

identifying
session IDs 33

IIS 23
in body page 10

108 | Index

in body/out body
Oracle Forms 74

in header page 10
Info page 9
Information pane

TCP/IP, UDP protocols 89
input parameter customization 91
input parameters

customizing 57
installation

ShopIt sample Web application 24
Internet application server(iAS) 72
Internet developer suite(iDS) 72

J

Java
just-in-time compiler 72
virtual machine 72

JSON
pretty format 98, 99

L

log levels 79

M

main menu 7
manual correlation 57
MeasureStart

inserting 16
MeasureStop

inserting 16
memory

TrueLog generation 103
menu tree 7, 62
menus

main 7
Microsoft ODBC

database support 51
modes

Autoview 90
compare 101
difference 101, 102

mouse events
customizing 85

multi-column data files 51, 57, 70, 79

N

net round trip 10, 63
nodes

Oracle Forms 74

O

OCI
accessing 25
database support 51
sample application 24

software requirements 24
OCR

font database 87
parsing functions 86, 87
verification functions 86, 87

ODBC
database support 51

ODBC functions
OdbcSet 48

option settings 99
Oracle

call interface 51
Oracle 12i 72
Oracle Forms

analyzing test scripts 77
errors 77
in body/out body 74
message blocks 74
message types 74
multi-column data files 79
nodes 74
replay and record 78
script customizations 82
specifying protocol type 14
terminal messages 76
TrueLog structure 73
unanticipated get calls 78
user input data 79
verification functions 81
Web calls 74

Oracle Forms Internet application server(iAS)
Internet developer suite(iDS) 72
rapid application development(RAD) 72
SQL*Forms 72

Oracle functions
Ora8Set 48
OraSet 48

out body page 9
out header page 9
output-input correlations

overview 54
overview page

viewing 17

P

pages
BDL 9
Controls 10
Differences 8
End Request 9
Form Controls 8
Form Data 9
Host Screen 9
Host Screen Info 10
in body 10
in header 10
Info 9
out body 9
out header 9
References 9
Request 8

Index | 109

Screen 8
SQL Command 8
Start Request 9
statistics 10
Window 8

panes
Content 62
Information 9, 63

Parameter wizard
Oracle Forms 79
SAPGUI 69

parameters
creating HTML 49
input 57
random variables 49, 69
SAPGUI 69
verifying 59, 60

parsing
field values 97
HTTP rules 36
selecting differences manually 35
session IDs 34
statements 35

parsing functions
Citrix 85
creating out of TrueLog Explorer 29
database 57
HTML overview 31
inserting 98
inserting in scripts 36
OCR 86, 87
overview 31
response data 32
SAPGUI 71
terminal-emulation 97
XML 64

performance
TrueLog generation 103

performance analysis (AJAX) 17
performance analysis (HTTP) 16
PersonPB

connecting to a database 26
creating customer records 27
removing customer records 27
searching for customers 26
setting up 25
stored procedures 27
updating customer records 26
working with 26

perspectives
Explorer 21
overview 21
toggling 21, 22
Viewer 22

pop-up window support
sample Web 2.0 application 22

Post Data
view 51

pretty format
JSON 98
XML 98

Print statement

SAPGUI 71
product

introduction 5
overview 5

projects
Oracle Applications 12i 72

protocol based feature sets
selecting 14

protocols
Oracle Forms 73, 74
TCP/IP 88, 89
UDP 88, 89

R

Random Variable wizard 49, 69
rapid application development(RAD) 72
record

TrueLogs 17, 18
recorder

self learning 31
recording

Oracle Applications 12i 72
recording rules

based on parsing function 34
References page 9
registry values

customizing 104
rendered HTML 38, 39, 42
replacement

statements 35
replacing

session IDs 34
replay

errors 5
TrueLogs 17, 18

replay and record
comparing SAPGUI 68
Oracle Forms 78
terminal-emulation 93
TrueLogs 18, 68

reports
overview 5
Try Script runs 15
virtual user 100
virtual user summary 15

Request page 8
response data

data digest verifications 47
generating verifications 45, 46
parsing functions 32

verification functions
data digest 47

verifications 38
verifications overview 45

response page 8
response receive time 10
result set data 52, 59
result sets

row counts 60
root cause analysis

logs 12

110 | Index

S

sample applications
Customer OCI 24
database 25
overview 22
ShopIt 23

SAPGUI
analyzing test scripts 67
comparing replay and record 68

control
menu tree 70

copy control ID 70
overview 66
parsing functions 71
stepping through TrueLogs 67
test scripts 69
TrueLog structure 66
Try Script runs 67
verification and parsing functions 70
verification functions 71
Writeln statements 71

SAPGUI functions
SapGuiActiveSetWindow 66
SapGuiRoundTrip 66

Screen page 8
scripts

parsing functions 36
self learning recorder 31
server busy time 10
servers 82
session data

replacing 55
session handling

cookie information 32
customization 27
customization overview 27
customizing 5, 10, 28, 29, 33
form field information 32
identifying information 33
process 33
self learning recorder 31
URL information 32
web applications 32

session IDs
identifying 33
parsing and replacing 34, 35
parsing manually 36
selecting differences 35

session information, Oracle Applications 12i 72
settings

HTML delimiter characters 100
options 99

ShopIt
sample application 23
software requirements 23

ShopIt sample Web application 24
SQL Command page 8
SQL commands 52
SQL*Forms 72
Start Request page 9
statements

parsing and replacing 35
Print 71

Statistics page 10
status parsing function

terminal-emulation 97
status-verification functions

inserting 96
supported applications

overview 5
synchronizing

auto-sync 18
replay and record TrueLogs 18, 68

T
tables

character frequency 47
difference 102

tabs
in body/out body 74

TCP/IP
analyzing 5
comparing replay and record 90
protocol 88
TrueLog structure 89
viewing 90

terminal emulation support
customizing user input data 94

terminal messages
Oracle Forms 76

terminal-emulation
analyzing errors 92
analyzing test scripts 93
comparing replay and record 93
Host Screen view 92
inserting parsing functions 97
overview 91
status parsing function 97
TrueLog structure 91
verification functions 95

terminal-emulation functions
WebTelnetScreenGetField 94
WebTelnetScreenGetStatus 94
WebTelnetScreenGetText 94
WebTelnetScreenVerifyField 94, 95
WebTelnetScreenVerifyStatus 94, 95
WebTelnetScreenVerifyText 94, 95
WebTelnetSendCommand 95

test runs
analyzing 10, 14

test scripts
customizing SAPGUI 69
Oracle Forms 77

testing
Oracle Applications 12i 72
overview 5
scripts 5

tests
analyzing 101

text
delimiting 100
generating verifications 41, 43

text synchronization functions 88

Index | 111

text verifications
generating 42

Time for sending of data 10
Time for SSL handshake 10
timer functions

MeasureStart 16
MeasureStop 16

title verifications
generating 41

toolbars
creating custom 101
customizing 100
customizing commands 101
displaying 100
overview 7

tooltips 100
tour

user interface, TrueLog Explorer 6
TrueLog Explorer

XML 99
TrueLog On Error

analyzing 5, 10, 19
analyzing tutorial 19
enabling 20
generation settings 104
opening 14
overview 13
TCP/IP 88
UDP 88

TrueLog structure
Oracle Forms 73

TrueLog structures
SAPGUI 66
terminal-emulation 91

TrueLogs
UDP 89
accessing 20
Citrix 82
closing 19
Compare mode 5
comparing replay and record 18, 90
database applications 52
effects on memory and performance 103
enabling 20
inserting timer functions 16
opening 14
overview 12
protocol types 14
replay and record 17, 18, 68, 78
reviewing 13
root cause analysis 12
stepping through 13
TCP/IP 89
visual verification under load 12

Try Script runs
analyzing 14
executing 21
Oracle Forms 77
overview 21
reports 15
SAPGUI 67
terminal-emulation 91, 93

tutorials
analyzing tests 14
analyzing TrueLog On Error 19

U

UDP
comparing replay and record 90
protocol 88
TrueLog structure 89
viewing 90

user data
customization scenarios 48
customizing 5, 10, 48, 49
customizing existing parameter 50
customizing SAPGUI 69
Oracle Forms 79
overview 48
parameterizing 5
randomization 5
SAPGUI 69

testing
methodology 5

workflow 48
XML 64

user interface
customizing 99
TrueLog Explorer overview 6

V

value parsing 97
variables

input attributes 49
session data 55
specifying 49

verification
adding 5

verification and parsing functions
SAPGUI 70

verification checks
automatically generating during recording 39
enabling during replay 40

verification functions
adding 10, 38
advantages 39
Citrix 85
digest 44
field 96
HTML 40
inserting content 40
OCR 86, 87
Oracle Forms 81
overview 38
response data 38, 45
response data boundaries 46
SAPGUI 69, 71
status 96
terminal- emulation 95
terminal-emulation 95
text 41–43
title 41

112 | Index

visual 38, 39
XML 61, 65

vertical-comparison view 101
view modes 21
Viewer perspective

toggling 22
views

compare mode 101
difference mode 101
Form Data 51
Host Screen 92
Post Data 51
response 8
vertical comparison 101

virtual user summary reports
displaying 15, 100
overview 15

visual analysis 14
visual data

verifications overview 38
visual verifications

under load 12

W

Web 2.0 testing
sample AJAX-based application 22

Web applications
session handling 32

Web functions
WebCustomRequestBin 48
WebPageLink 35
WebPageSubmit 48
WebPageUrl 28
WebPageUrl() 36
WebParseDataBound 32, 36
WebParseDataBoundArray 32
WebParseDataBoundEx 32, 35
WebParseHtmlBound 31
WebParseHtmlBoundArray 31
WebParseHtmlBoundEx 31
WebParseHtmlTitle 31
WebParseResponseData 32
WebParseResponseTag 31
WebParseResponseTagContent 31
WebParseTable 31

WebTcpipRecv 32
WebUrlPostBin 48
WebVerifyData 45
WebVerifyDataBound 36
WebVerifyDataBound(Ex) 45, 46
WebVerifyDataDigest 45, 47
WebVerifyHtml 40, 41
WebVerifyHtmlBound(Ex) 40, 42
WebVerifyHtmlDigest 40, 44
WebVerifyHtmlTitle 40, 41
WebVerifyTable 40, 43

welcomeTLE 5
Window page 8
workflow

customizing test scripts 10
test runs 10
user data customization 48

workflow bar
TrueLog Explorer 5, 7

Writeln statements
SAPGUI 71

X

XML
custom session handling 64
customization 5
input data 61
overview 61
parsing functions 64
posting data 48
pretty format 98, 99
session handling 61
tree control 46
TrueLog On Error 61
TrueLog structure 61
user data 64
verification functions 65
verification functions overview 65
visualizing 5

XML functions
WebXmlParseNodeAttribute 64
WebXmlParseNodeValue 64
WebXmlVerifyNodeAttribute 65
WebXmlVerifyNodeValue 65

XPath 64

Index | 113

	Contents
	TrueLog Explorer 20.0
	Getting Started
	TrueLog Explorer Overview
	What You Can Do with TrueLog Explorer
	Tour of the UI
	Best Practice Use of TrueLog Explorer
	Understanding TrueLog
	TrueLog Overview
	Visual Verification Under Load
	Request and Response Logs for Root-Cause Analysis
	TrueLog On Error Files
	Stepping Through TrueLogs
	Specifying Protocol-Based TrueLog Types

	Analyzing Tests
	Visual Analysis
	Opening a TrueLog
	Analyzing a Test Run
	Virtual User Summary Reports
	Virtual User Summary Reports Overview
	Displaying a Virtual User Summary Report

	Finding Errors
	Inserting Timer Functions
	Performance Analysis (HTTP)
	Performance Analysis (AJAX)
	Viewing an Overview Page
	Replay and Record TrueLogs
	Replay and Record TrueLogs Overview
	Comparing Replay and Record TrueLogs
	Synchronizing Replay and Record TrueLogs
	Auto-Syncing Replay and Record TrueLogs

	TrueLog On Error
	Analyzing TrueLog On Error

	Closing a TrueLog

	Working With Silk Performer
	Exploring TrueLogs from Silk Performer
	Enabling TrueLog Via Silk Performer
	Try Script Runs
	Executing a Try Script Run from TrueLog Explorer
	Executing a Try Script Run from Silk Performer

	TrueLog Explorer for Silk Test
	Perspectives
	Switching to Viewer Perspective
	Switching to Explorer Perspective

	Sample Applications
	Sample Web 2.0 Application
	Sample Classic Web Application
	ShopIt Overview
	Installing ShopIt V 6.0

	Sample Database Application - Customer OCI
	Customer OCI Overview
	Accessing Customer OCI
	PersonPB
	Setting Up PersonPB
	Working with PersonPB
	Connecting PersonPB to a Database
	Searching for Customers
	Updating a Customer Record
	Creating a Customer Record
	Removing a Customer Record
	Using Stored Procedures

	Customizing Session Handling
	Session-Handling Overview
	Determining When to Customize Session Handling
	Customizing Session Handling
	Self-Learning Recorder
	Parsing Functions
	Parsing Functions Overview
	HTML Content Parsing Functions
	Response Data Parsing Functions

	Session Handling for Web Applications
	Session-Handling Customization Process
	Session ID Identification
	Searching for the First response (Web API)
	Parsing and Replacing Session IDs
	Parsing and Replacing Session IDs
	Parsing and Replacement Statements - Example
	Manual Selection of Differences
	Selecting Differences Manually

	Parsing Functions in Scripts

	Using HTTP Parsing Rules
	Web Application Parsing Rule - Example

	Adding Verifications
	Verifications Overview
	Verification Checks
	When to Use Verification Checks
	Automatically Generating Verifications During Recording
	Verification Checks with TrueLog Explorer
	Enabling Verification Checks During Replay

	Inserting Content-Verification Functions
	HTML Verification Functions
	Generating a Title-Verification Function
	Generating a Text-Verification Function
	Generating a Text-Verification Function Within Boundaries
	Generating an HTML Text-Verification Function
	Generating an HTML Digest Verification Function

	Response-Data Verification Functions
	Generating an HTML Data-Verification Function
	Generating a Data-Verification Function Within Boundaries
	Generating an HTML Data-Digest Verification Function

	Customizing User Data
	User-Input Data
	User-Data Customization Scenarios
	Customizing HTML User Data
	Customizing HTML User Data With a New Parameter
	Customizing HTML User Data With an Existing Parameter

	Form Data View
	Multi-Column Data Files

	Working With Database Applications
	Working With Database Applications - Overview
	Sample Database Application - Customer OCI
	Database TrueLog Structure
	Correlations
	Output-Input Correlations
	Replacing Session Data with Variables
	Manual Correlation

	Database Parsing Function
	Input Parameter Customization
	Creating an Input Parameter Based on a Multi-Column Data File

	Verifications for Result-Set Data
	Verifying a Database Operation Element Value
	Verifying a Database Result Set Row Count

	Working With XML Applications
	Working With XML Applications - Overview
	XML TrueLog Structure
	UI Overview of XML TrueLogs
	Menu Tree
	Content Pane
	Information Pane

	XML Parsing Functions
	Customizing Session Handling for XML Applications
	User-Input Data Customization
	Verification Functions for XML Applications
	Verification Functions for XML Applications
	Inserting an XML Verification Function

	Working With SAPGUI Applications
	SAPGUI TrueLog Structure
	SAPGUI TrueLog Functions
	Stepping Through SAPGUI TrueLogs
	Analyzing SAPGUI Test Scripts
	Replay and Record TrueLogs
	Comparing Replay and Record TrueLogs
	Synchronizing Replay and Record TrueLogs

	SAPGUI Test-Script Customization
	Customizing User-Input Data for a Form Field
	Multi-Column Data Files
	SAPGUI Controls Menu Tree
	Copy Control ID Function

	Verification and Parsing Functions
	Adding a Value Verification
	Adding a SAPGUI Parsing Function

	Working With Oracle Forms Applications
	Working With Oracle Forms Applications - Overview
	Customizing Oracle Applications 12i Session Information
	Oracle Forms TrueLog Structure
	Oracle Forms TrueLog Structure - Overview
	Node Information
	Working With Web Calls
	In Body / Out Body Pages
	Terminal Messages
	Analyzing Errors in Oracle Forms Tests
	Analyzing Oracle Forms Test Scripts
	Comparing Oracle Forms Replay and Record TrueLogs
	Unanticipated Get Calls
	Setting Silk Performer Log Level to Debug

	Oracle Forms User-Input Data Customization
	Multi-Column Data Files
	Customizing Oracle Forms User-Input Data
	Input Data Customizable Functions

	Content Verification Functions for Oracle Forms
	Inserting an Oracle Forms Verification Function

	Completing Your Oracle Forms Script Customizations

	Working With Citrix Applications
	Silk Performer Citrix Player
	Citrix TrueLogs
	Synchronization Problems in Citrix Scripts
	Citrix User-Input Data Customization
	Customizing Citrix User-Input Data
	Customizing Mouse Events

	Citrix Parsing and Verification Functions
	Verification Functions
	Inserting OCR Verification Functions
	Inserting OCR Parsing Functions

	OCR Verification and Parsing
	How OCR Verification and Parsing Works
	Configuring Silk Performer for OCR
	Generating a Text-Synchronization Function

	Working With TCP/IP and UDP-Based Applications
	TCP/IP and UDP TrueLog Structure
	Setting ASCII and Hexadecimal Viewing Options
	Comparing TCP/IP and UDP Record and Replay TrueLogs

	Working With Terminal-Emulation Applications
	Working With Terminal-Emulation Applications - Overview
	Terminal-Emulation TrueLog Structure
	Customizing Host Screen Display
	Stepping Through Terminal-Emulation TrueLogs
	Analyzing Terminal-Emulation Test Scripts
	Comparing Replay and Record TrueLogs
	Synchronizing Record and Replay TrueLogs

	Terminal-Emulation TrueLog Functions
	Customizing User Input Data
	Verification Functions for Terminal-Emulation Applications
	Verification Functions for Terminal-Emulation Applications
	Inserting a Content-Verification Function
	Inserting a Status-Verification Function
	Inserting a Field-Verification Function

	Parsing Functions for Terminal-Emulation Applications
	Parsing Functions for Terminal-Emulation Applications
	Inserting a Content-Parsing Function
	Inserting a Status-Parsing Function
	Inserting a Field-Parsing Function

	Working With AJAX-Enhanced Web Applications
	AJAX-Support Overview
	Enabling Pretty-Formatted JSON and XML Viewing in TrueLog Explorer

	Customizing TrueLog Explorer
	TrueLog Explorer Option Settings
	Setting Display Options
	Inserting Delimiter Characters
	Inserting HTML Delimiter Characters
	Setting Workspace Options

	Customizing Toolbars and Commands
	Specifying Which Toolbars are Displayed
	Creating a Custom Toolbar
	Customizing Toolbar Command Buttons

	View Modes
	Compare Mode
	Enabling Compare Mode

	Difference Mode
	Enabling Difference Mode
	Viewing a Difference Table

	Data Animation
	TrueLog Impact on Scalability
	Custom Content Types and File Extensions
	Suppressing File Download Dialog Boxes

	TrueLog Generation Settings
	TrueLog Tree Filter

