
Silk Performer 20.5

Browser-Driven Web Load Testing
Tutorial

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-28

ii

Contents

Browser-Driven Web Load Testing Tutorial ... 4
Browser-Driven Load Testing Overview .. 4

Support for Pop-Up Windows ... 4
Sample Web 2.0 Application .. 4
Pop-Up Window in the Sample Application .. 5
Support for HTML Dialog Boxes ...5
Native Replay ... 6

Web Browser Configuration Settings .. 6
Running Multiple Virtual Users ...7

Creating a Test Script ..8
Defining a Browser-Driven Web Load Test Project .. 8
Recording a Test Script .. 8
Browser Application and Locator Spy Usage ... 9
Locator Verification in Browser Application .. 11
Inserting Mouse Move .. 11
Inserting a Verification Function ... 11
Including Elements in the TTI ...12
Try Script Runs ...12
Trying Out Your Test Script ... 13
Using Step-by-Step Try Script Replay .. 13
Common Replay Errors ..13

Analyzing Test Scripts ... 14
Visual Analysis with TrueLog Explorer ... 14
Analyzing a Test Run ..15
Viewing a Summary Report ... 15
Displaying a Virtual User Summary Report ..16
Enabling Summary Reports ... 16
Finding Errors in a TrueLog .. 16
Viewing Page Statistics .. 16
Viewing an Overview Page ...17
Comparing Record and Replay Truelogs ... 17

Configuring Project Profile Settings .. 17
Configuring Browser-Driven Recording Settings ..17
Configuring Browser-Driven Replay Settings ... 18

Advanced Concepts for Browser-driven Tests ...19
Defining Browser Window Dimensions for Recording .. 19
Testing Websites That Use Non-system Codepage Characters 19
Time to Interact .. 19

Troubleshooting Browser-Driven Load Testing Issues .. 21
Browser-Driven Virtual Users on Remote Agents .. 21
Recommended Internet Explorer settings on agents ... 21
Handling Client Certificates ..22
Removing Certificate Errors ... 22
Excluding URLs from AJAX Synchronization ... 23
Limitations for Replay with Different Browsers ... 23

Contents | 3

Browser-Driven Web Load Testing Tutorial
This tutorial will assist you in the process of using Silk Performer to load-test Web 2.0 applications,
especially those that rely on AJAX technologies, and get you up and running as quickly as possible. It will
help you take full advantage of Silk Performer's ease of use and leading-edge functionality that is
embodied in e-business' load-testing tool of choice.

Browser-Driven Load Testing Overview
In addition to facilitating testing of today's modern Web applications on the protocol level (HTTP), Silk
Performer now enables you to use real Web browsers (Internet Explorer, Firefox, and Chrome) to generate
load. In this way, you can leverage the AJAX logic built into Web applications to precisely simulate complex
AJAX behavior during testing. This powerful testing approach provides results that reflect real-world end
user browsing experience, including rendering time and protocol-level statistics.

Unlike other load-testing solutions that only support specific AJAX frameworks (and of those, only specific
versions or a subset of controls), Silk Performer supports the full range of Web applications that are
developed for (and tested with) Internet Explorer, Firefox, and Chrome.

With the browser-driven load testing support, Silk Performer strives to offer the same functionality and
behavior across all supported browsers. This makes it possible to record your scripts in the Internet
Explorer-based Browser Application and replay them with Firefox and Chrome.

In some rare cases however, this abstraction might not work as expected due to inherent differences
among the browsers. For example: The Browser Application might generate a locator that cannot be
resolved by Chrome or Firefox. For more information, see Limitations for Replay with Different Browsers.

Most browsers follow a frequent and silent update policy. For a load testing environment, this is not ideal,
because it influences the consistency of the results. Furthermore, Silk Performer might not have been
tested with the latest browser versions, especially if these have been published after the latest Silk
Performer release. As a general rule: To avoid problems, stick to the tested browser versions listed in the
section Tested Software in the release notes and install the latest hotfixes.

Support for Pop-Up Windows
Silk Performer browser-driven testing supports sites that utilize pop-up windows (for example, login dialog
boxes). Pop-up browser windows often include input fields in which users enter values that are passed
back to the main page (for example, username and password strings). Multiple browser-window support is
available by default when you create a Silk Performer project of type Web browser-driven (AJAX).

A new tab is created in the Browser Application each time a pop-up window is generated during application
recording. Each pop-up window that is encountered results in a tab being created in the Browser
Application. Each time you click a tab in the Browser Application during recording a
BrowserActivateWindow function is scripted automatically.

Note: The manual opening of windows and tabs during recording (via menu bars, context menus, or
keyboard shortcuts) is not supported.

Sample Web 2.0 Application
Silk Performer offers a modern sample Web application that you can use to learn about Web 2.0
application testing. The InsuranceWeb sample Web application is built upon ExtJS and JSF frameworks,
uses AJAX technology, and communicates via JSON and XML.

4 | Browser-Driven Web Load Testing Tutorial

The sample application is hosted at http://demo.borland.com/InsuranceWebExtJS/.

Pop-Up Window in the Sample Application
The sample Web 2.0 application includes pop-up window functionality that you can use to experiment with
Silk Performer support for multiple browser windows.

1. To generate the pop-up window, visit the sample Web 2.0 application at http://demo.borland.com/
InsuranceWebExtJS/.

2. From the Select a Service or Log in drop list, select Agent Lookup.

3. On the Find an Insurance Co. Agent page, click the Open in new window link at the bottom of the
page. The Find an Insurance Co. Agent page loads in a new tab within the Browser Application.

Click the Close Window link at the bottom of the page to close the tab.

Support for HTML Dialog Boxes
Silk Performer recognizes the following dialog types:

Browser-Driven Web Load Testing Tutorial | 5

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

JavaScript dialogs supported in all browsers

Print dialogs not supported

File Save & File Open dialogs supported in Internet Explorer

Modal windows and modeless windows (HTML dialogs)* supported in Internet Explorer

* HTML dialogs display as windows. Note that modal and modeless windows are a specific feature of
Internet Explorer, hence they are only supported in Internet Explorer.

Native Replay
This topic applies to Internet Explorer only. For the other browsers, Silk Performer does not provide native
replay capabilities.

The concept of native replay makes replaying a script more reliable. This is achieved by using Windows
API-level events instead of JavaScript events for frequently used functions.

In the context of native replay we are using two special terms: native replay and legacy input mode. Note
that native replay is the opposite of legacy input mode. If you turn on legacy input mode, native replay is
automatically turned off, or the other way around. In this sense, we can also distinguish between native
functions and legacy functions.

• Native functions are using Windows API-level events.
• Legacy functions are using JavaScript events.

The following functions can be called legacy functions, since they all have a native equivalent. If one of
these legacy functions is detected during replay, then ...

• BrowserClick is replayed like BrowserNativeClick
• BrowserDoubleClick is replayed like BrowserNativeDoubleClick
• BrowserSetText is replayed like BrowserTypeKeys
• BrowserSetPassword is replayed like BrowserTypeKeys
• BrowserMouseMove is replayed like BrowserNativeMouseMove

If a native function cannot be performed instead of the legacy function, the legacy function is used as
fallback and a warning message is logged. This can be the case if, for example, no mouse position can be
determined to click the element.

Native replay is enabled by default. You can disable it in the Profile Settings: Click Settings > Active
Profile > Web (Browser Driven). On the General tab, enable Legacy input mode. Alternatively, you can
add the following function to your script: BrowserSetOption(BROWSER_OPT_LEGACY_INPUT_MODE,
true)

Legacy input mode is enabled by default for all project profiles created with Silk Performer 9.0 or earlier.

Web Browser Configuration Settings
Several browser settings are critical to maintaining stable test executions. Although Silk Performer works
without changing any settings, there are several reasons why you may want to change these browser
settings in Internet Explorer.

• Increase replay speed

• Use about:blank as the home page, rather than a slowly loading Web page
• Avoid unexpected browser behavior

• Disable pop-up windows and warning dialog boxes
• Disable auto-complete features

6 | Browser-Driven Web Load Testing Tutorial

• Disable password wizards
• If Silk Performer runs on a Windows Server operating system, disable Internet Explorer Enhanced

Security Configuration (IE ESC).
• Prevent browser malfunctions

• Disable third-party plug-ins

The following table explains where you can find these settings within the Internet Explorer GUI.

Note: Browser settings are located at Tools > Internet Options.

Tab Name Option Configuration Comments

General Home page Set to about:blank Minimizes start-up time of
new tabs.

General Tabs • Disable warning for
closing multiple tabs

• Enable switch to new
tab when tabs are
created

• Avoids unexpected
dialog boxes

• Links that open new
tabs may not otherwise
replay correctly

Privacy Pop-up blocker Disable pop-up blocker Ensures that your Website
can open new windows.

Content Auto Complete Turn off • Avoids unexpected
dialog boxes

• Avoids unexpected data
input while typing

Programs Manage add-ons Only enable required add-
ons

• Third-party add-ons
may contain defects

• Third-party add-ons
may be incompatible

Advanced Settings • Disable Automatically
check for Internet
Explorer updates

• Enable Disable script
debugging (Internet
Explorer)

• Enable Disable script
debugging (other)

• Disable Display
notification about
every script error

• Disable all Warn...
settings

Avoids unexpected dialog
boxes.

Note: Depending on
your browser
version, not all
settings may be
available.

Running Multiple Virtual Users
When running multiple browser sessions in parallel, Silk Performer must make sure that these sessions
operate independently from each other. Cache, cookie data base, and history in particular must not be
shared across virtual users to simulate real user load. The separation of virtual users with regards to
browsers is called browser sandboxing, meaning each virtual user runs its browser in its own environment.

To run browsers in sandboxed mode, Silk Performer uses different browser-dependent techniques.

Browser-Driven Web Load Testing Tutorial | 7

Internet Explorer

For performance and resource reasons, Silk Performer does not use a full Internet Explorer browser
instance to simulate a virtual user, but an Internet Explorer ActiveX control. The default behavior of the
Internet Explorer control is to maintain a single cookie database, cache, and history across browser
instances started by a particular Windows user. For load tests, Silk Performer reconfigures an Internet
Explorer control to maintain one cookie database, cache, and history for each virtual user.

As each virtual user has its own independent Internet Explorer sandbox, it is possible to accurately
simulate first-time and revisiting user behavior, as is used in the protocol-based approach to Web
simulation.

Chrome and Firefox

These browsers provide their own mechanism to create independent browser sessions. As a driver engin,
Silk Performer uses the corresponding WebDriver interface and some custom enhancements to enable
them to run in a load testing environment.

Creating a Test Script
The easiest approach to creating a test script is to use the Silk Performer Recorder, the Silk Performer
engine for capturing and recording Web traffic and generating test scripts based on the captured traffic.

The Silk Performer Recorder captures and records the traffic that moves between the client application and
the server under test. When recording is complete, the Silk Performer Recorder automatically generates a
test script that is based on the recorded traffic. Scripts are written in the Silk Performer scripting language,
Benchmark Description Language (BDL).

Defining a Browser-Driven Web Load Test Project
1. Click Start here on the Silk Performer workflow bar.

Note: If another project is already open, choose File > New Project from the menu bar and
confirm that you want to close your currently open project.

The Workflow - Outline Project dialog box opens.

2. In the Name text box, enter a name for your project.

3. Enter an optional project description in Description.

4. From the Type menu tree, select Web browser-driven (AJAX).

5. Click Next to create a project based on your settings.

The Workflow - Model Script dialog box appears.

Recording a Test Script
Recording browser-driven scripts is available for Internet Explorer only.

1. Click Model Script on the workflow bar. The Workflow - Model Script dialog box appears.

2. Select Silk Performer Browser Application from the Recording Profile list.

3. In the URL field, enter the URL that is to be recorded.

Note: The InsuranceWeb sample Web 2.0 application is available at http://demo.borland.com/
InsuranceWebExtJS/. In the Select a Service or login list, the Auto Quote and Agent Lookup
services are available for testing while the other listed services do not provide any functionality.

4. Click Start recording.

8 | Browser-Driven Web Load Testing Tutorial

http://demo.borland.com/InsuranceWebExtJS/
http://demo.borland.com/InsuranceWebExtJS/

The Silk Performer recorder opens in minimized form along with the Silk Performer Browser Application
(Internet Explorer).

Note: To specify the dimensions of the browser window for recording, go to View > Resize
Browser Window and define Width and Height pixel values.

To see a report of the actions that occur during recording, maximize the recorder dialog box by clicking
 on the recorder toolbar.

5. Using the Browser Application Recorder, interact with the sample application in the same way that you
want your virtual users to act during the test (for example, click links, type data into fields, submit data,
and open the pop-up window). Your actions will be captured and recorded by the Browser Application
Recorder.

• Click (Pause/Resume Recording) to briefly stop and restart recording.
• Click (Stop Recording) to end script recording and save your script.

6. When you are finished, close the browser window and click Stop Recording. The Save As dialog box
displays.

7. Type a meaningful name for the script and click Save.

A BDL test script that is based on the user actions you performed appears in the Script window.

Browser Application and Locator Spy Usage
To enable convenient record/replay, Silk Performer provides its own Browser Application. The application
offers the following main parts:

• Browser Window (the Internet Explorer control)
• Locator Spy
• Record/Replay Window

The following image shows the most important elements of the Browser Application.

Browser-Driven Web Load Testing Tutorial | 9

Note: Tracking of UI elements must be enabled before you can select a DOM object. When tracking is
enabled, a green rectangle appears around UI elements as your cursor passes over them. Click
Enable Tracking if tracking is not currently enabled.

Record/Replay Window

This window displays logging information during both record and replay. It allows you to start/stop and
pause/resume recording during record mode and to pause/resume replay during replay mode.

Browser Navigation Bar

The bar enables standard browser navigation.

Highlighted DOM Element

When you move your mouse over a web page, the DOM elements under the cursor are being highlighted in
green. The green rectangles help you to get a feeling for the architecture of the web page and its DOM
hierarchy.

Inspected DOM Element

Pressing Pause/Break triggers the following actions:

• The highlighted DOM element becomes the inspected DOM element.
• The position of the inspected DOM element is indicated by blue highlighting.
• The DOM hierarchy tree of the current page is determined and displayed in the Locator Spy by the

HTML tags of the DOM elements.
• The path to the inspected DOM element is expanded and the inspected DOM element is selected.
• The attributes of the inspected DOM element are displayed.
• The locator for the inspected DOM element is determined and displayed in the Locator field.

To search within the Locator Spy, press Ctrl+F on your keyboard. Alternatively, select Actions > Find in
DOM Tree. You can search for strings within Tags, Property names, or Property values.

To change the inspected DOM element, press Pause/Break on any highlighted DOM element or select
another DOM element within the DOM hierarchy tree.

When you select another DOM element in the DOM hierarchy tree, the locator for the DOM element is
determined and displayed next to its HTML tag. The locator field is updated and the DOM element is
highlighted in blue.

When a page’s DOM becomes invalid after pressing Pause/Break and the locator for the newly selected
DOM element can not be found, a red border is displayed around the locator field. Press Pause/Break to
refresh the hierarchy tree and to highlight the current DOM object. Locator strings in the DOM hierarchy
tree are also removed as they are now invalid.

Locator Field

The locator field shows the locator string of the currently inspected DOM element. Whenever the inspected
DOM element changes, the locator string is updated.

The locator field can be used to copy a locator string to another location, for example to a BDL script. Or
you can use the field to manually edit locator strings. When you edit a locator, it is automatically being
validated. If the locator is invalid, it is highlighted in red. If the locator is valid, it is highlighted in green.

If you want to add a verification during a try script run, pause the replay and click Add Verification. Adding
verifications during a try script run works exactly as during recording.

In the right window of the Locator Spy, you can right-click a property and copy the property name, the
property value, or both to the clipboard. If you copy both, the string will be saved in the form

10 | Browser-Driven Web Load Testing Tutorial

@name='value'. A real-world example is @hideFocus='false'. This way, you can conveniently
exchange properties in the locator field.

Attributes of Inspected DOM Element

This is a list of attributes (name/value pairs) belonging to the currently inspected DOM element. If the
current locator string does not fit your needs, you can manually build a specific locator string using some of
the listed attributes.

Locator Verification in Browser Application
The Browser Application offers commands that make it easier to analyze and navigate locator information
in the Replay window. Right click any API call in the Replay window to access context-sensitive commands
for copying that call's locator information, copying the content of the Info column, and displaying the locator
of the call in the Locator Spy DOM hierarchy tree.

Such commands can be useful when, for example, a locator verification or an API call fail. You can use the
locator of the API call to locate the call in Locator Spy, troubleshoot the issue, and edit the script
accordingly. You can also use the Copy command to copy and paste API details into emails and issue
reports.

Inserting Mouse Move
When you are testing websites where items only appear if you are hovering with your mouse over certain
elements (for example a button or a menu item), you will get an error during the replay of the script. Silk
Performer cannot detect the item because the hovering event is not recorded. Menus that are built with
JavaScript are a good example for such a case. However, with Silk Performer you can fix this problem
during the replay of a script.

In the Browser Application, you can click the Troubleshoot button when the error occurs, select Insert
Mouse Move from the list, move the mouse over the UI element, press <Pause/Break> on your keyboard,
click Insert, and click Rerun Script. Now the script will run without an error.

Inserting a Verification Function
1. During browser-driven script recording using the Browser Application, select a DOM object that contains

a value you want to later verify during script replay (press Pause/Break on your keyboard to select a
DOM object).

Note: Tracking of UI elements must be enabled before you can select a DOM object. When
tracking is enabled, a green rectangle appears around UI elements as your cursor passes over
them. Click Enable Tracking if tracking is not currently enabled.

The locator of the selected UI object appears in the Locator text box and the DOM hierarchy is
displayed in the tree menu.

2. Click Add Verification.

The Add Verification button is enabled when a locator value appears in the Locator field.

The Add Verification Function dialog box appears with the locator value preloaded in the Locator
field.

3. Select a DOM Property name (For example, href, class, onmousedown, or textContents).

To serve as a meaningful verification function, the selected property name should have a verifiable
Property value. For example, property name href should have a property value of a specific URL.

4. Click Okay to insert a BrowserVerifyProperty verification function for the selected DOM element
and its corresponding property name/value pair into the script.

Browser-Driven Web Load Testing Tutorial | 11

The verification action is recorded in the Record Window and the verification function is inserted into the
BDL script.

Including Elements in the TTI
1. Click File > New Project to create a new browser-driven project. If you want to use an existing project,

click Model Sript on the workflow bar and skip to step 3.
2. Select Web browser-driven (AJAX) in the tree, enter a Name and Description and click Next.
3. Enter the URL of the application you want to record and click Start recording. The Browser

Application launches.
4. Navigate through the application to record your actions. To tag an element as TTI-relevant, move your

mouse over the element, press Pause/Break and click Include in TTI. You can include as many
elements as you want. Silk Performer will add a BrowserTtiIncludeElement() function to the
script.

Attention: Make sure to not click the element before you include it. In such a case, the function
BrowserTtiIncludeElement() will be tied to the click function, which might result in issues
during playback.

5. Close the Browser Application, stop the recording, and save your script.

Try Script Runs
Once you have generated a test script, determine if the script runs without error by executing a Try Script
run. A Try Script run determines if a script accurately recreates the actions that you recorded with the
Browser Application-Based Recorder. It also determines if the script contains any context-specific session
information that you must parameterize before the script can run error free.

12 | Browser-Driven Web Load Testing Tutorial

With Try Script runs, only a single virtual user is run and the stress test option is enabled so that there
is no think time or delay between transactions.

Note: The default option settings for browser-driven Try Script runs do not include live display of
content downloaded during testing (via TrueLog Explorer), though they do include the writing of log
files, report files, and replay within the Browser Application Replay window.

Trying Out Your Test Script
1. Click Try Script on the workflow bar. The Try Script dialog box appears with the script you created

selected in the Script list and the active profile selected in the Profile list. The VUser virtual user group
is selected in the Usergroup group box.

2. Configure settings as follows:

a) Select a Browser from the list: Internet Explorer, Mozilla Firefox, or Chrome.
b) Enable the Visible client option so that the browser Replay window will display the web page

content.

Screenshots of the application state are made before each API function call.

Note: Simulation settings are not applied when replaying your script with the browser.

c) Enable the Step by step execution option to run your script step by step. This option is available for
Internet Explorer only.

3. Click Run.

Note: You are not running an actual load test here, only a test run with a single virtual user to see
if your script requires debugging.

The Try Script run begins. The Monitor window opens, giving you detailed information about the run’s
progress.

Using Step-by-Step Try Script Replay
When you enable Step by step execution on the Try Script dialog box, you are given the option of
advancing your Try Script replay one step at a time. This option is available for Internet Explorer only.

1. Execute a Try Script run as explained above.

Enable the Step by step execution option on the Try Script dialog box.

2. Use the buttons in the Replay Window to control replay:

• Click (Replay Step) to execute the current API call.
• Click (Replay Run) to execute the remaining API calls without further interruption.
• Click (Stop Replay) to end the Try Script run.

Common Replay Errors
Some typical reasons why scripts do not play accurately after recording are listed below. In such instances
you will need to customize your test script.

• Stateful scripts: Recorded scripts only work when the application under test has the same state during
replay that it had during script recording. For example, a script that includes user login can only be run
correctly when the application is in a logged-out state. You can work around this issue by either setting
the application state by manually adding logic to your script, or you can ensure that your recorded
scripts do not change application state in the first place (for example, you could include user log out
during the recording of your script).

• Temporarily generated DOM attributes: Some AJAX frameworks generate attributes that change
each time a page is loaded (for example, x-auto values in ext). If a locator relies on such attributes,

Browser-Driven Web Load Testing Tutorial | 13

script replay will fail. You will need to add the attributes to the ignored attributes list to prevent them from
being recorded in the future.

• Missing mouse movements: When you are testing websites where items only appear if you are
hovering with your mouse over certain elements (for example a button or a menu item), you will get an
error during the replay of the script. Silk Performer cannot detect the item because the hovering event is
not recorded. Menus that are built with JavaScript are a good example for such a case. However, with
Silk Performer you can fix this problem during the replay of a script. In the Browser Application, you
can click the Troubleshoot button when the error occurs, select Insert Mouse Move from the list, move
the mouse over the UI element, press <Pause/Break> on your keyboard, click Insert, and click Rerun
Script. Now the script will run without an error.

• Calls that run into the synchronization timeout: Built-in AJAX synchronization waits until the browser
is in an idle state before API calls are returned. This is a key factor in reliable testing of AJAX-based
applications. However, in some situations there is no idle state (for example, if a page uses polling or
keeps connections open for server-push events). In such situations the synchronization waits until it
runs into a timeout. You can work around this issue by temporarily setting the synchronization mode
back to HTML.

Analyzing Test Scripts
In contrast to the Web-protocol approach to load testing, browser-driven Web load testing uses the browser
itself for script validation.

The benefits of having Try Script runs performed in the browser are as follows:

• Live application state is presented in the browser.
• Locator Spy functionality for advanced script modification and adaption (supported for Internet Explorer

only).
• Scripts can be executed in step-by-step mode (supported for Internet Explorer only).
• Screenshots are captured before each browser API call and stored in the TrueLog for future analysis.

Once a Try Script run is shown to be successful in the Browser Application, you can analyze the results of
the Try Script run with TrueLog Explorer. Test script analysis with TrueLog Explorer involves the following
tasks:

• Viewing Virtual User Summary Reports
• Finding errors
• Comparing replay test runs with recorded test runs

Visual Analysis with TrueLog Explorer
One of TrueLog Explorer’s most powerful features is its ability to visually render Web content that is
displayed by applications under test. In effect, it shows you what virtual users see when they interact with
an application.

The TrueLog Explorer interface is comprised of the following sections:

• The Workflow Bar acts as your primary interface as you work with TrueLog Explorer. The Workflow Bar
reflects TrueLog Explorer’s built-in testing methodology by supporting its five primary tasks.

• The API Node Tree menu on the left of the interface allows you to expand and collapse TrueLog data
downloaded during tests. Each loaded TrueLog file is displayed here along with links to all relevant API
nodes. You can click a node to display a screen shot in the Screen pane and history details in
Information view.

• The Content pane provides multiple views of all received data.
• The Information pane displays data regarding testing scripts and test runs, including general

information about the loaded TrueLog file, the selected API node, BDL script, and statistics.

14 | Browser-Driven Web Load Testing Tutorial

Note: To launch TrueLog Explorer from Silk Performer, choose Results > Explore TrueLog.

Analyzing a Test Run
1. With the TrueLog from a Try Script run loaded into TrueLog Explorer, click the Analyze Test button on

the Workflow bar.

The Analyze Test dialog box displays.

2. Proceed with one of the following options:

• View a virtual user summary report
• Look for errors in the TrueLog
• Compare the replay test run to the recorded test run

Viewing a Summary Report
Virtual user summary reports are summary reports of individual Try Script runs that offer basic descriptions
and timing averages. Each report tracks a separate virtual user and presents data in tabular format.

Virtual user summary reports include details regarding the following:

• Virtual users
• Uncovered errors

Browser-Driven Web Load Testing Tutorial | 15

• Response time information tracked for each transaction defined in a test script
• Page timer measurements for each downloaded Web page
• Individual timers and counters used in scripts (Measure functions)

Displaying a Virtual User Summary Report
1. With the TrueLog generated by your Try Script run loaded into TrueLog Explorer, click the Analyze Test

button.

2. Click the Show the virtual user summary report link.

Enabling Summary Reports
Because virtual user summary reports require significant processing resources, they are not generated by
default. To enable the automatic display of virtual user reports at the end of animated TryScript runs (or by
clicking the root node of a TrueLog file in the API Node Tree menu) enable the Display virtual user report
option (Settings > Workspace > Reports).

Note: Virtual user reports can also be viewed within Silk Performer by right-clicking a virtual user
name and selecting Show Virtual User Report File.

Finding Errors in a TrueLog
TrueLog Explorer helps you find errors quickly after Try Script runs. Erroneous requests can be examined
and necessary customizations can be made via TrueLog Explorer.

Note: When viewed in the API Node Tree menu, API nodes that contain replay errors are tagged with
red “X” marks.

1. With the TrueLog generated by your Try Script run loaded into TrueLog Explorer, click the Analyze Test
button.

2. Click the Find errors link. The Step through TrueLog dialog appears with the Errors option selected.

3. Click Find Next to step through TrueLog result files one error at a time.

Viewing Page Statistics
After verifying the accuracy of a test run, you can analyze the performance of your application under “no-
load” conditions via page statistics.

Overview pages detail:

• Action time: Total page response times, including processing and rendering in the browser.
• Documents time: Document download times (including server busy times), and time elapsed for receipt

of embedded objects.

Detailed action statistics show exact response times for individual Web page components, allowing you to
easily pinpoint the root causes of errors and slow page downloads.

Because Try Script runs do not include think times, the measurements they produce cannot be used to
predict real-world performance.

Detailed action statistics include the following data for each page component:

• DNS lookup time
• Connection time
• Round-trip time
• Cache statistics

16 | Browser-Driven Web Load Testing Tutorial

Note: Compared to the protocol-based approach, browser-driven test statistics do not include certain
low-level/protocol-related metrics.

Viewing an Overview Page
1. From the API Node Tree menu, select the API node for which you would like to view statistics.

2. Select Browser Nodes on the Step through TrueLog dialog box.

3. Click the Statistics tab to open Statistics view.

4. Select specific components listed in the URL column for detailed analysis and page drill-down.

Comparing Record and Replay Truelogs
With Web application testing, TrueLog Explorer shows the actual Web pages that are received during tests.
Live monitoring of downloaded data is available via TrueLog Explorer animated mode. Data is displayed as
it is received during testing.

By comparing a TrueLog that has been generated during the script development process alongside the
corresponding TrueLog was recorded originally, you can verify that the test script runs accurately.

1. Click the Analyze Test button on the Workflow Bar. The Workflow - Analyze Test dialog box appears.

2. Click Compare your test run.

3. The corresponding recorded TrueLog opens in Compare view and the Step through TrueLog dialog
box appears with the Browser Nodes option selected, allowing you to run a node-by-node comparison
of the TrueLogs.

4. Click the Find Next button to step through TrueLog result files one page at a time.

Note: Windows displaying content presented during replay have green triangles in their upper left
corners. Windows displaying content originally displayed during application recording have red
triangles in their upper left corners.

Configuring Project Profile Settings
Silk Performer offers a variety of browser-driven Web load-testing profile settings. Web (browser-driven)
profile settings are project-specific settings that relate to synchronization and object locator generation.
These settings are specified on a per-project basis.

Note: For the purposes of this tutorial, you do not need to change the default settings.

Configuring Browser-Driven Recording Settings
1. Right-click the Profiles node in the Project tree menu and select Edit Active Profile. The Profile -

[Profile1] - Simulation dialog box displays at the Simulation tab (Replay category).

2. Click Record.

3. Scroll down and select Web (Browser Driven).

4. Select the Recording tab.

5. Type any DOM attribute names that should be ignored during recording in the Ignored DOM attribute
names text field. Attribute names that match any pattern in the Ignored DOM attribute names field will
be ignored during recording.

6. Type any DOM attribute values that should be ignored during recording in the Ignored DOM attribute
values text field. Attribute values that match any pattern in the Ignored DOM attribute values field will
be ignored during recording.

Browser-Driven Web Load Testing Tutorial | 17

7. The Preferred DOM attribute names option configures the name of the custom attributes that are
recorded.

8. Click OK.

Configuring Browser-Driven Replay Settings
1. In the Projects tree menu, right-click the Profiles node and select Edit Active Profile. The Profile -

[Profile1] - Simulation dialog box opens at the Simulation tab.

2. Click the Replay category button.

3. Scroll down to and select Web (Browser Driven). The Web (Browser Driven) / General tab displays.

4. Select the browser you want to use for this settings profile from the list.

5. Use the Simulation group box to set options for realistic simulation of users visiting Web sites:

• Click the First time user option button to generate a realistic simulation of users who visit a Web site
for the first time.

Persistent connections will be closed, the Web browser emulation will be reset, and the document
cache, the document history, the cookie database, the authentication databases, and the SSL
context cache will be cleared after each transaction. In such instances, Silk Performer downloads the
complete sites from the server, including all files.

• Click the Revisiting user option button to generate a realistic simulation of users who revisit a Web
site. Non-persistent sessions will be closed, but the document history, the persistent cookie
database, and the context cache will not be cleared after each transaction. In such cases, pages are
not downloaded if they exist in the document cache.

• Select the IE Compatibility Mode to define the rendering mode that Internet Explorer (IE) uses to
display automatic replaying on the user's Web browser. The Default value depends on the user's
Internet Explorer browser version.

Note: Simulation settings are not applied when replaying your script with the Browser Application.
However, all caching settings that you configure within Internet Explorer's Internet options will be
applied to your browser-driven tests.

6. Select a replay compatibility to define how locators are generated. Setting this option ensures flawless
replay of older scripts with newer versions of Silk Performer and therefor helps to avoid compatibility
issues. You can also define the replay behavior for every single script by manually scripting the
BrowserReplayCompatibility function.

7. Ensure that the Legacy input mode setting is disabled.

8. Click the Synchronization tab.

9. Configure Synchronization settings as required.

• The Synchronization mode option configures the algorithm that is used to wait for the ready state
of a browser invoke call (pre and post invocation).

• The Synchronization timeout option configures the maximum time in milliseconds that is used to
wait for an object to be ready (pre and post invocation).

• In the URLs to exclude from synchronization text box, type the entire URL or a fragment of the
URL for any service or Web page that you want to exclude. Some AJAX frameworks or browser
applications use special HTTP requests, which are permanently open in order to retrieve
asynchronous data from the server. These requests may let the synchronization hang until the
specified synchronization timeout expires. To prevent this situation, either use the HTML
synchronization mode or specify the URL of the problematic request here. Separate multiple entries
with a comma.

• The Object resolve timeout option configures the maximum time in milliseconds to wait for an
object to be resolved during replay.

• The Object resolve retry interval option configures the time in milliseconds after which another
replay attempt should be made following an object not resolving.

18 | Browser-Driven Web Load Testing Tutorial

10.Click OK.

Advanced Concepts for Browser-driven Tests

Defining Browser Window Dimensions for Recording
Launch the Browser Application for browser-driven load testing .

Note: Browser dimensions can only be defined during script recording.

1. To define specific browser-window dimensions for recording, go to View > Resize Browser Window.
The Resize Browser Window dialog box is displayed.

2. Specify a Width setting (in pixels).

3. Specify a Height setting (in pixels).

4. Click OK.

Testing Websites That Use Non-system Codepage
Characters
Silk Performer is a multibyte character set (MBCS) based application. When you use browser-driven load
testing, you must set the correct system codepage. This ensures that the characters displayed on the
website are processed correctly.

To enable browser-driven load testing of websites that use non-displayable characters, Silk Performer
converts these characters. For example: The following string is converted to a set of numbers:

The numbers represent the Unicode value of each character in the hexadecimal format. When you replay a
script, Silk Performer converts the string back and uses it while driving the browser.

Note: Silk Performer applies the conversion only in Browser-Driven API calls. Do not use non-
displayable characters in other API calls.

Time to Interact
Testing AJAX websites is challenging

Measuring the user experience of AJAX websites with the timings the browser provides can be difficult. A
user can consider a web page as ready, although the processing in the background is not yet completed.
Also, the processing might be completed, but the web page is not yet ready for the user at that point in
time. Essential page elements might be loaded asynchronously, that is after the onLoad Function phase
and during the Asynchronous Application Logic phase. In such a case, the perceived loading time of a web
page can differ considerably from the measured loading time. As a result, Silk Performer introduced the so-
called Time to Interact (TTI).

The Time to Interact

In Silk Performer terminology, the Time to Interact is defined as the time from a user interaction (such as
navigating to a URL or a click on a link) until all relevant elements a user requires to interact with the page
are ready; even if the page has not yet completely loaded. Identifying the relevant elements of a page can
not simply be automated, as it heavily depends on the use case and on the perspective which elements to
consider relevant. For example: A web shop company can test their website from their own perspective and

Browser-Driven Web Load Testing Tutorial | 19

from the perspective of their customers. From the company-perspective, the elements that contain the
special offers might be considered relevant. But from the customer-perspective, just the search field might
be considered relevant.

Therefore, the performance engineer has to tag all TTI-relevant elements during recording. The Recorder
then generates a BrowserTtiIncludeElement() function for each of these tagged elements. During
replay, Silk Performer measures how long it takes to load each TTI-relevant element and reports the
maximum as the Time to Interact.

Browser-driven Measures

For browser-driven tests, Silk Performer provides the following measures:

Measure Description

Dom interactive Reflects the time span from the request until the browser has completed
parsing all HTML elements and constructing the DOM.

Dom complete Reflects the time span from the request until the browser has completed
downloading and processing all resources (images, stylesheets, scripts,
and so on).

Load End Reflects the time span from the request until the browser has completed
executing the onLoad function. As a final step in every page load process
the browser sends an onLoad event, which triggers the onLoad function.
Once the onLoad functions are executed, additional application logic
might be executed.

20 | Browser-Driven Web Load Testing Tutorial

Measure Description

First paint Reflects the time span from the request until the page begins to display.
This measure is available for Internet Explorer only.

Time to interact Reflects the time span from the request until all TTI-relevant elements
are available on the page. At this point in time, the user can interact with
the web page.

Action time Reflects the time span from the request until the browser has completed
downloading and processing all resources. The end of this time span
varies, depending on the defined synchronization mode: If the
synchronization mode HTML is defined, the action time ends when the
onLoad function is completed. If the synchronization mode AJAX is
defined, the action time ends during the Asynchronous Application Logic
phase.

Note: DOM interactive, DOM complete, and Load end can be described as consecutive events.
These events all end during the Processing phase. In contrast, First paint and Time to interact are
completely website-dependent; they can end in the HTTP Response phase, in the Processing, and in
the Asynchronous Application Logic phase.

Troubleshooting Browser-Driven Load Testing Issues
Learn how to start the perfrun process using an actual user account, handle client certificates, and exclude
specific URLs from AJAX synchronization.

Note: Browser-driven load testing is supported for Internet Explorer 11.

Browser-Driven Virtual Users on Remote Agents
Starting a remote agent with an actual user account rather than the system account, which is the default,
makes a big difference for browser-driven virtual users. Each virtual user employs its own Internet Explorer
instance, which loads the settings stored in the Microsoft Windows user's profile.

Under the system account, Internet Explorer loads different settings than under a user account. Typically
Internet Explorer utilizes fewer or different HTTP headers than with user accounts. In order to avoid the
issue of recorded traffic differing from generated traffic, it is recommended to run remote agents under a
user account.

Note: Ensure that the specified user account is a member of the Remote Desktop Users Windows
group on the remote agent.

The required account setting can be configured in System Configuration Manager on the Applications tab
or a user account can be set in the System Settings > Agents > Advanced tab if all remote agents
should run under the same user account.

Recommended Internet Explorer settings on agents
When executing browser-driven load tests using Internet Explorer, make sure that the Internet Explorer
installation on your agents is set-up as described below. Otherwise, you might experience issues during
replay.

• In Internet Explorer, open the Internet Options and set the home page to about:blank.
• In the Internet Options, on the Advanced tab, in the Security section ...

• disable Check for publisher's certificate revocation

Browser-Driven Web Load Testing Tutorial | 21

• disable Check for server certificate revocation
• disable Warn about certificate address mismatch

• In the Internet Options, on the Security tab, do the following for each zone (Internet, Local intranet,
Trusted sites, Restricted sites):

• uncheck Enable Protected Mode
• set the lowest possible security level

• In Internet Explorer, in the Compatibility View Settings ...

• disable Display intranet sites in Compatibility View
• disable Use Microsoft compatibility lists
• remove all added websites

• On Windows Server operating systems, open the Server Manager and disable the IE Enhanced
Security Configuration (IE ESC).

Handling Client Certificates
The following applies only, when you use Internet Explorer.

You can select a client certificate during script recording. Client certificates facilitate authentication against
certain Web sites. APIs are now available for importing certificates to and deleting certificates from the
Microsoft certificate store, which is used by Internet Explorer and the Silk Performer browser-driven load
testing feature.

The certificate APIs work with Microsoft Windows 7 or later, Microsoft Windows Server 2008 R2 or later,
and Internet Explorer 8 or later.

Certificate handling for browser-based Web load testing works independently of certificate handling for
protocol-based Web testing. This means that certificates need to be imported manually via Internet
Explorer's Internet Options menu entry (or the management console snap-in certmgr.msc). If
authentication works with Internet Explorer 8 it will also work for browser-based load testing.

1. When importing your certificate, disable strong private key protection:
a) On the Certificate Import wizard Password page, uncheck the Enable strong private key

protection checkbox.
2. Disable server certificate revocation:

a) Open Internet Explorer's Tools menu and select Internet Options. The Internet Options dialog
opens.

b) Click the Advanced tab.
c) Uncheck the Check for server certificate revocation* checkbox.
d) Click OK.

3. Activate prompting of the client certificate selection dialog box:
a) Open Internet Explorer's Tools menu and select Internet Options. The Internet Options dialog

opens.
b) Click the Security tab.
c) Click Custom Level... The Security Settings page opens.
d) Scroll down to Don't prompt for client certificate selection when no certificates or only one

certificate exists and select the Disable option box.
e) Click OK.
f) Restart Internet Explorer.

Removing Certificate Errors
The following applies only, when you use Internet Explorer.

During recording a Web page may appear with the message There is a problem with this
website's security certificate. Additionally the Continue to this website (not

22 | Browser-Driven Web Load Testing Tutorial

recommended) link does not work. Certificate errors can occur due to multiple reasons and you must
resolve any certificate errors before you can record a Web site browser-driven. For more information on
certificate errors, visit About certificate errors.

One of the more common problems is an address mismatch. To disable address-mismatch warnings:

1. Open Internet Explorer's Tools menu and select Internet Options. The Internet Options dialog opens.

2. Click the Advanced tab.

3. Uncheck the Warn about certificate address mismatch* checkbox.

4. Click OK.

5. Restart Internet Explorer.

Excluding URLs from AJAX Synchronization
To better facilitate the testing of AJAX-based Web applications, specific URLs can be excluded from
browser synchronization.

To illustrate the value of this, imagine that an application displays server time by polling data from the
server. This service requires a constant stream of traffic between the client and the server. This presents a
challenge to AJAX synchronization because the application never goes into an idle state. By excluding this
service from synchronization, other application processes that use different services can be accurately
tested.

1. Right-click a profile in the Project menu tree and select Edit Profile. The Profile - Simulation window
opens.

2. In the Replay group box, click the down arrow to scroll down. Click Web (Browser Driven).

3. Select the Synchronization tab.

4. Enter URLs to be excluded into the URLs to exclude from synchronization text field.

5. Click OK.

Note: When URL exclusion is not feasible due to there being multiple processes running within a
single service, you need to disable AJAX synchronization and switch to HTML mode.

Limitations for Replay with Different Browsers
Silk Performer uses Internet Explorer to record browser-driven scripts. To replay these scripts, you can use
either Internet Explorer, Firefox, or Chrome.

Although these browsers basically resemble each other, they can behave quite differently in a variety of
circumstances. This can also result in different behavior, when replaying the very same script with different
browsers.

Below you can find a number of areas where you might encounter differences or issues. Note that many of
the described issues are corner cases and rarely occur. Also note that the limitations heavily depend on
your specific use case and on the application under test, including the underlying frameworks. Therefore, it
is not possible to describe every potential limitation in every detail. If you encounter a specific limitation and
need more information, contact SupportLine.

Mouse clicks

When replaying scripts, mouse clicks are processed differently in different browsers. Or in other words: The
application under test receives different click events, depending on the used browser. For example:
Replaying a double-click, raises a click and a double-click event in Internet Explorer and Firefox - this is the
default behavior. But replaying a double-click in Chrome, raises just a double-click event.

Here is another example: When replaying a script in Chrome, the right-click event fails when the center of
the clicked element is not visible. But in Internet Explorer and Firefox, the right-click event works flawlessly,
even if the center of the clicked element is obscured.

Browser-Driven Web Load Testing Tutorial | 23

http://windows.microsoft.com/en-us/Windows7/About-certificate-errors

Key strokes

Using key strokes within browsers also results in different behavior. For example: When the cursor is
placed within a text field within Internet Explorer and you press the Esc key, everything you have typed so
far is being removed. Pressing the Esc key in the other browsers has no effect. Another example is that
Firefox and Chrome do not differentiate between the Return key and the Enter key on the numpad, while
Internet Explorer does.

Locators

A browser might use an element attribute that the other browsers do not use. For example: Internet
Explorer uses spellcheck as a generic attribute that exists for every element, while Chrome and Firefox
only use the attribute when it is explicitly specified. Since Internet Explorer is used for recording the script,
this results in an error when the script is replayed with Chrome or Firefox.

New windows

When your application under test uses a number of short-lived pop-up windows, this might result in
unstable behavior. Here is a real-world example that might cause issues: You click a link that opens a pop-
up window. This window immediately triggers another window to open, and then it closes again. When you
use Firefox or Chrome, the window might be missed during replay. A possible workaround is to use the
custom function BrowserWaitForNewWindowWithLocator, which is located in the BrowserAPI.bdh.

Invalid URLs

When you navigate to an invalid URL, Internet Explorer raises an error, while Chrome and Firefox do not.
This can be problematic when monitoring a URL. The monitor will never raise an error, although the URL
cannot be reached. For such a case, it can be useful to add a verification function to your script.

Measures

Due to the diverse replay technologies and the different architectures of the applications under test, some
measures might be missing. For example: Some traffic might not be considered, because the application
under test uses redirects or iframes.

Alert handling

When you use Firefox or Chrome to replay scripts, only JavaScript alerts and prompts can be handled.
Native dialogs, like the file save or file open dialog, are not supported.

Compatibility mode

Scripts that are created using Silk Performer 18.5 or an earlier version, use a different replay compatibility
mode. You can set the compatibility mode in the profile settings or by using the BDL function
BrowserReplayCompatibility.

In the past, locators used to be tailored to Internet Explorer, because it was the only supported browser.
Thus, the locators used in these older scripts might cause replay issues.

24 | Browser-Driven Web Load Testing Tutorial

Index
A

action time 16
AJAX

analyzing a test run 15
analyzing test scripts 14
browser configuration 6
common replay errors 13
comparing record/replay TrueLogs 17
configuring recording settings 17
creating a test script 8
defining a project 8
defining browser dimensions for recording 19
displaying a summary report 16
enabling summary reports 16
Finding errors in a TrueLog 16
Locator Spy 9
modeling a test script 8
project profile settings 17
replay settings 18
running multiple virtual users 7
sample Web 2.0 application 4

Try Script runs
step-by-step replay 13

verification functions 11
viewing a summary report 15
viewing an overview page 17
viewing page statistics 16
visual analysis withTrueLog Explorer 14

AJAX synchronization
browser-driven Web testing 23
excluding URLs 23

B

browser-driven
advanced concepts 19
limitations for replay 23
native replay 6
recommended IE settings 21

browser-driven Web testing
AJAX

synchronization 23
analyzing a test run 15
analyzing test scripts 14
browser configuration 6
certificate errors 22
client certificates 22
common replay errors 13
comparing record/replay TrueLogs 17
configuring recording settings 17
creating a test script 8
defining a project 8
defining browser dimensions for recording 19
displaying a summary report 16
enabling summary reports 16
finding errors in a TrueLog 16
Locator Spy 9

modeling a test script 8
pop-up window in the sample Web 2.0 application 5
pop-up windows 4
prerequisites 21
project profile settings 17
record and replay traffic differs 21
replay settings 18
running multiple virtual users 7
sample Web 2.0 application 4
security certificates 22
starting remote agent with user account 21
troubleshooting 21

Try Script runs
step-by-step replay 13

unexpected browser behavior 6
verification functions 11
viewing a summary report 15
viewing an overview page 17
viewing page statistics 16
visual analysis withTrueLog Explorer 14

C

certificate errors
browser-driven Web testing 22

client certificates
browser-driven Web testing 22

D

dialog boxes
support for HTML 5

E

error replaying browser-driven script 21
excluding URLs

from AJAX synchronization 23

H

HTML dialog boxes
support for 5

M

mouse move
inserting 11

N

native replay
browser-driven 6

non-displayable characters
testing websites that use 19

Index | 25

P

pop-up window support
sample Web 2.0 application 4, 5

pop-up windows
browser-driven Web testing 4

prerequisites
browser-driven Web testing 21

S

security certificates
browser-driven Web testing 22

T

time to interact
including elements in the 12

Time to Interact
TTI 19

troubleshooting
browser-driven Web testing 21

TTI
Time to Interact 19

U

unable to replay browser-driven script 21

W

Web 2.0 testing
analyzing a test run 15
analyzing test scripts 14
browser configuration 6
common replay errors 13
comparing record/replay TrueLogs 17
configuring recording settings 17
creating a test script 8
defining a project 8
defining browser dimensions for recording 19
displaying a summary report 16
enabling summary reports 16
finding errors in a TrueLog 16
Locator Spy 9
modeling a test script 8
project profile settings 17
replay settings 18
running multiple virtual users 7
sample AJAX-based application 4, 5

Try Script runs
step-by-step replay 13

verification functions 11
viewing a summary report 15
viewing an overview page 17
viewing page statistics 16
visual analysis withTrueLog Explorer 14

26 | Index

	Contents
	Browser-Driven Web Load Testing Tutorial
	Browser-Driven Load Testing Overview
	Support for Pop-Up Windows
	Sample Web 2.0 Application
	Pop-Up Window in the Sample Application
	Support for HTML Dialog Boxes
	Native Replay

	Web Browser Configuration Settings
	Running Multiple Virtual Users

	Creating a Test Script
	Defining a Browser-Driven Web Load Test Project
	Recording a Test Script
	Browser Application and Locator Spy Usage
	Locator Verification in Browser Application
	Inserting Mouse Move
	Inserting a Verification Function
	Including Elements in the TTI
	Try Script Runs
	Trying Out Your Test Script
	Using Step-by-Step Try Script Replay
	Common Replay Errors

	Analyzing Test Scripts
	Visual Analysis with TrueLog Explorer
	Analyzing a Test Run
	Viewing a Summary Report
	Displaying a Virtual User Summary Report
	Enabling Summary Reports
	Finding Errors in a TrueLog
	Viewing Page Statistics
	Viewing an Overview Page
	Comparing Record and Replay Truelogs

	Configuring Project Profile Settings
	Configuring Browser-Driven Recording Settings
	Configuring Browser-Driven Replay Settings

	Advanced Concepts for Browser-driven Tests
	Defining Browser Window Dimensions for Recording
	Testing Websites That Use Non-system Codepage Characters
	Time to Interact

	Troubleshooting Browser-Driven Load Testing Issues
	Browser-Driven Virtual Users on Remote Agents
	Recommended Internet Explorer settings on agents
	Handling Client Certificates
	Removing Certificate Errors
	Excluding URLs from AJAX Synchronization
	Limitations for Replay with Different Browsers

