Silk Performer 20.5

SAPGUI Tutorial

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-28

Contents

INTFOAUCTION oottt e e e e e e e e e e e e e e e s e s bbb b e e e e ee s 4
Client and Server REQUINEMENTS uiiiiiiiiiieee ettt e e e e e e e e e e s nabbn e eeeaeaaeas 6
AVaAIlable FUNCHIONS ..ottt e e e s e e e snbee e e e e e 7

Recording SAPGUI TESE SCHIPIS ooviiiiieeiiiiiieie e e e e e e 8
GEeNErating TESt SCIPLS oiiiiiiiiiiiiie et ettt e e e e e et e et e e e e e e e e e s e bbb b e areeeaaaeaeeaaanns 8
EXpPIoring RECOrded SCHPIS oottt e e e e e e e e e s e eeeee 14

EXECULING TrYSCIIPIS oottt e e e e et e e e e e e e e e e e e e annneees 14
How Silk Performer Handles SAPGUI Replay oeiiiiiiiiiiiiiiiecee e 15
EXPIONNG TrUBLOGS coieeiiiiitite ettt ettt e e e e e e e e e e st bnaeeeeaeas 15

Customizing SAPGUI TESt SCHIPLS ..uuvviiiiiiiiiiiiiiiiiieeee e 17
SAPGUI TrUELOG SITUCTUINE .oeeiiiiiiiiie ittt e e e e 17
Customizing INPUE PArameters ...t 18
Customizing SAPGUI USEr INPUE DAA ..ooooiiiiiiieiiiiieee ettt 21
ANAlyzZiNg RESUIL FIlES ..o 26
Further Steps for Load TESHING ..oeviiiiiiieeeiiiiete ettt 27

Best Practices for Testing SAPGUI ..o 28
Prerequisites for SAPGUI LOAd TESES ...eeeiiiiiiiiiiiiiie et 28
SAPGUI CHENE VEISIONS oottt ettt e et e e e e s e e 28
TESHNG LOGON SEQUENCES iiiiiiiiiieie et e e e e e ettt e e e e e e e e s s bbb et e e e e e e e e e e e s s nnabbeeeeeeaaaaeaas 28
Customizing INPUE DALA ...ttt e e e e e e e e e st eeeeeaaeeeeeanas 30
Prerequisites for Using Silk Central ... 30

CUSLOMIZING SCIIPLS weeeieiiiiiiee ettt e e e e e e e e s s s sabb b e e e e e e e e e e e e e e aaaane 30
Defining Verification LOBOS uueiiiiiiiiiiiiiiie e 31
Using Silk Performer Projects in Silk Central —ooeiiiiiiiiiii s 31
AcCeSSING LOW-LEVEI PrOPErtIE®S ...eeeieeiiiiiieee ettt 32
Handling Unexpected WINAOWS ..ottt e et e e e e e e e e e e nnees 33
KNOWN SAP ISSUEBS ittt e e e r et e e e e e e e s 34
Settings for Large LOAO TESES ..ooiiiiiiiiiiiiiee ettt e s e e ee e 34

SAP eCATT Integration with Silk Performer —..........cccoiiiiiiiiiiiee e, 36

Setting Up INTEGration oottt e e e e e e e e e e e e e e e as 36
Registering Silk Performer in @CATT oo 36
Creating a Specific USEr ACCOUNT ...eeiiiiiiiei ittt 37
Installing the Client SOftWare ... 37
Setting the Registry from Behind a SAP Gateway ..., 37
Configuring SAP @CATT CONNECLION .ooiiiiiiiiiiiieiiieie ettt e e 37
Configuring eCATT Extended RESUILS oeiiiiiiiiiiaii e 38

Interacting with eCATT from Silk Performer ... 39
Uploading a Project t0 @CATT oottt e e e e e e e 39
Opening a Project from @CATT oo e e e e e e 40
Defining IMPOrt/EXPOrt ArQUMENTS ittt ee e e e e e e 40

Interacting with Silk Performer from @CATT ..o 40
Creating a New Silk Performer SCHPt ...eeeeiiiiiiiiee e 40
Editing/Viewing an Existing Silk Performer SCript ccoieiiiiiiiiiiee e 41
Executing a Silk Performer SCrpt ..o 42

[0 T1 = 11 o] £ £SO P TP E PP PP PPPR PP 42

Contents | 3

4

Introduction

Introduction

Overview
This tutorial provides the information you need to record and customize SAPGUI test scripts.

Silk Performer offers recording and replay support for the load testing and functional testing of SAP
systems that use the SAPGUI scripting interface. Silk Performer's unique content verification feature
enables you to verify application functionality even under real-world load conditions - and thereby intercept
application errors that occur only under load.

Test scripts created for functional testing can be reused for load testing purposes, without requiring any
changes.

Together with its outstanding support for the load testing of Web applications, Silk Performer supports load
and functional testing of SAP R/3 4.6C, SAP R/3 Enterprise (4.7), and mySAP Business Suite (and higher)
through SAPGUI Client 6.2 (and higher) for Windows and HTML, as well as with mySAP Enterprise Portal.

Note: This tutorial offers only a brief overview of the functionality that is available with Silk Performer
and TrueLog Explorer. Please see the Silk Performer Help and the TrueLog Explorer Help for full
details of available functionality.

Scripting

In addition to a powerful BDL API for SAP that enables programmers to effectively customize SAP test
scripts, Silk Performer also provides TrueLog technology for SAP—offering easy visual script analysis and
customization.

TrueLogs provide complete visual representation of all actions and results that are generated by test
scripts. Screenshots are captured during test runs and details regarding all visible GUI controls are logged.
Using TrueLog Explorer’s intuitive point-and-click interface, you can visually customize all user-input data
and create content verification checks for return data. Simply select the input values that you wish to
customize, or the result values that you wish to verify, and then choose any appropriate parsing,
parameterization, or verification functions. All customization and verification functions are then
automatically generated and inserted into your BDL script. No manual scripting is required.

Functional testing

Silk Performer provides functional and load testing with a single tool. Simply reuse your scripts as both
functional and load testing scripts using the same script API.

Front-end analysis

Using Silk Performer’s TrueLog On Error functionality for SAP, you can visually inspect the actions of SAP
virtual users and SAP system responses that result in error conditions. In this way, you can visually analyze
error conditions from the virtual-user perspective (the front-end).

SAP monitoring

Silk Performer offers five Performance Explorer monitors that enable you to query SAP server-side
performance values.

SAP eCATT

SAP’s eCATT (Extended Computer Aided Test Tool) facility allows you to create test scripts in SAP using
the scripting language of your choice. eCATT allows you to use external test tools such as Silk Performer

while utilizing eCATT as a repository for your test scripts. See SAP eCATT Integration With Silk Performer
for details.

Enabling SAP scripting

SAPGUI record/replay technology is based on the SAPGUI Scripting API, which must be enabled on both
the server and client side.

The SAPGUI Scripting API is not available in all SAPGUI client versions; therefore you must confirm your
patch level. Please refer to Enable SAP Scripting in the Silk Performer Help for details.

Checking SAP patch level

SAPGUI scripting is not supported by all versions of SAP. Therefore it is necessary that you confirm that
your installation offers this support. Make sure that you have the latest SAPGUI patch level.

To confirm the SAPGUI patch level:

1. Launch the SAPGUI logon window by clicking Start > Programs > SAP Front End > SAPLogon and
choose the About SAP Logon menu item from the window menu.

2. The SAPGUI version information dialog box opens and displays the current patch level.

Profile settings
Silk Performer SAPGUI support is configurable through Silk Performer profile settings.

Note: Make sure that in replay profile settings the Log control information in TrueLog option is not
checked. When this option is turned on during load tests, each virtual user builds TrueLog with
information for all controls on every window in transactions. Depending on your transactions and the
number of controls that are on screen, you may experience heavy performance impact with this
setting enabled.

Recording settings

The following recording settings can be configured on the profile settings’ Recording tab:

Script logon as When enabled, the logon procedure is scripted as a SapGuiLogon API call. When

single function disabled, multiple API calls, for example setting username, setting password, and
hitting Enter, are scripted.

Scrip_t low level Rather than scripting high-level API functions, for example SapGuiSetText, low-

functions level API functions are scripted, for example SapGui InvokeMethod and
SapGuiSetProperty.

Script timers Most SAPGUI API functions take an optional timer parameter. When such a

parameter is defined, measures are generated during replay. When this option is
enabled, the SAPGUI recorder automatically scripts appropriate timer names for
each function.

Attach to existing when enabled, the SAPGUI recorder attaches to an existing SAPGUI session
SAP session without recording the SapGuiOpenConnection statement.

Record window When enabled, the SAPGUI recorder scripts SapGuiSetActiveWindow with the
title verification window title so that the title can later be verified during replay.

Common settings The following settings are common to both recording and replay.

Log level Defines the logging level. For troubleshooting, Debug should be used. Otherwise
Normal should be used. When running large load tests, logging can be Disabled
to reduce memory consumption.

Introduction

5

Capture
screenshots

Capture

screenshots for

every action

Log control
information in
TruelLog

Log control
information on
error

Highlight controls

(replay only)

Replay settings

When enabled, screenshots are captured for each new window that is activated.
This option is only available when Show SAP GUI during replay is enabled during
script replay.

When enabled, screenshots are captured for each user action that causes a round-
trip to the SAP server. This option is only available when Capture screenshots is
enabled.

When enabled, control information for each control on the active window is logged
to the TrueLog. This allows you to use TrueLog Explorer’'s customization feature.
This option should be disabled when running load tests as it consumes additional
resources.

When enabled, control information for each control on the active window is logged
to the TrueLog when errors occur during replay. This allows you to troubleshoot
replay problems by capturing the current state of all controls on the screen when
errors occur. It is recommended that you use this option during load tests rather
then Log control information in TrueLog, which is resource intensive.

With this setting, controls that are accessed during replay by any API call will be
highlighted on the SAPGUI Client. This option is only valid when Show SAP GUI
during replay is enabled.

The following replay settings can be set on the profile settings’ Replay tab:

Replay
timeout

Show
SAPGUI
during replay

Enable client-
side scripting

Use new SAP
Visual Design

On the server:

RZ11.

Defines timeout during replay. When there is no response from the server within this
timeout period, a transaction-exit error is thrown and the affected VUser is restarted.

When enabled, the SAP GUI client is shown during replay. This option can only be used
for TryScripts. By default, replay for load tests is GUI-less.

SAPGUI Scripting must be enabled on each client machine through the Options menu of
the SAPGUI client application. When running a load test on multiple agents, this setting
must be changed manually on each machine before the load test begins. By enabling this
option, Silk Performer changes this setting automatically on each agent before starting
load tests.

SAPGUI can be run in one of two visual modes: original design or new design mode.
This setting can be changed through the SAP Configuration Tool. By enabling/disabling
this option, Silk Performer performs these changes automatically before starting load
tests. This option allows you to compare resource consumption between the old and new
visual designs. The measure tab contains settings for replay measurement.

You can either enable all timers for all control types, or select only those timers that are of
interest to you. Timers are only created for those method calls that have the optional
timer parameter specified.

For a description of these timers, please refer to SAP Results in the Silk Performer Help.

Client and Server Requirements

required patch level for SAPGUI support must be installed
Sapgui/user_scripting: profile parameter must be set to True. This can be changed using the transaction

On the client:

 SAPGUI Client 6 or 7
« latest patch level
e SAPGUI scripting must be installed and enabled. To enable SAPGUI scripting:

« Start the SAPGUI client.

* Open the Options dialog.

* Select the Scripting tab.

« Select Enable Scripting and uncheck the two security check boxes.

Avalilable Functions

Silk Performer uses a testing interface called SAPGUI scripting API, which has been introduced by SAP for
SAPGUI Windows clients.

To record and replay SAPGUI scripts, some requirements must be met. To prepare your environment for
SAP testing, refer to SAP Patch Levels in the Help.

Silk Performer offers both a low- and high-level API for testing SAP systems. Please see the Help for a
complete list of functions and function descriptions.

Introduction | 7

Recording SAPGUI Test Scripts

Silk Performer offers record and replay support for the load testing and functional testing of SAP systems
that use the SAPGUI scripting interface.

This section shows you how to generate a test script by recording a SAPGUI application and then how to
analyze the resultant test script by replaying it in a trial run.

Generating Test Scripts

To generate a test script by recording a SAPGUI application session:

1. In Silk Performer, click File > New Project.
2. Enter a project name and optionally a project description.
3. Select the application type ERP/CRM > SAP > SAPGUI and click Next.

Waorkflow - Qutline Project >

LV Choose a type and name your project

Name

‘ V| yel | SapProject

- Description
5| Web Browser ~ o

4 Internet. Default Project
B Terminal Emulation
~ 1 ERP/CRM
{ v Sk SAP
H - sapsuUI
H e SAP NetwWeaver (Web)
i - Clarify 810 (Tuxedo)
A=) Oracle
-s% PeopleSoft
4% Remedy |
-s% Siebel
L ;f:ieh Services i] S_e\e-: SAPGUI to test an SAP application that uses a SAPGUIL
| Database client.
-3 Application Server/Component Models
“& Terminal Services
B mET
A Java
¥ Frameworks
B Monioring v
o

Revision

Next Cancel

4. If the SAPGUI application profile displays in the Application Profile field, skip the next step.

5. If the SAPGUI profile does not display, you do not have a SAPGUI client installed on your computer.
Install it and continue. If SAPGUI still does not display, you need to create the application profile
manually: Click Settings. The Application Profiles tab of the system settings displays. Click Add and
specify saplogon.exe in the Application path field. In the Protocol selection area, check the
SAPGUI check box. Click OK to add the profile and OK to close the system settings.

6. Click Start recording to launch saplogon.exe.

8 | Recording SAPGUI Test Scripts

7. Specify the SAP application server that is to be te

9.

sted. This tutorial illustrates the testing of a SAP

= SAP Logon 750 _ B x
Log On Variable Logon New Item Change ltem More -~ Explorer View ~
Connections El | Filter items
|"_—| Favorites MName | SID GrouprServer Instance No. Sy._.
[Shoricuts |2 MiniSAP NetWeaver 7.0 NSP ATLIV-MSAPO1 00 |
[5 Connections L=BSAP Walldorf (C41) C41 cpcdio 05
2 SAP Walldorf (CF5) CF5 cpcfs01 05
2 SAP Walldorf (E16) E16 cpel601 01

calendar application.

&

. On multi-lingual SAP systems it is recommended that you specify the language that is to be used by the

SAPGUI client before recording begins. This prevents possible language differences between recording

and replay, for example different languages may be selected by

different load test agents, which will

lead to Window Title Verification errors. This change can be made on the Properties dialog of each
SAP connection in the SAPGUI login application. Edit the properties of each connection and switch to

the Codepage tab.
Instead of Default, select your preferred language. Click OK.

System Entry Properties

Connection Metwork Code Page

Select code pages for communication between SAP GUI and application server / file upload and

download.

Communication Language / Code Page

Thig language detemmines the code page for communication between SAP GUI and

application server. Adjusting this is required only in very rare cases when legacy products are

uszed (zee SAP GUI documentation for more information).

I 2
Language: ~
ik
Upload/Download Encoding

This specifies the encoding of the files transfered from or to the back end. The file will be or is

cumently stored on the client machine hard drive.
Encoding: (Default - ANSI for Unicode Systems) N

QK Cancel Help

Recording SAPGUI Test Scripts | 9

10.Now simulate the actions of a typical user transaction. Login with a user name and password.

[User System Help

ax
V] v« N O %
SAP
New password
-
Client 200 Information o
‘Welcome to ICC Test-System C41
r 2
User [] sapERe Central Component 6.04 IDES
Password AXKNNNNNNNRN]
Client for RAC usage is 800
Language EN. In case of problems please contact:
4Y rac-support@sap.com
Support Availabiity: 5x8h
Communication type: Email
Times for Processing:
Reguest type Initial Reaction Maximum Processing
High priority requests 24h 72h
Normal priority requests 48h 120h
Setup new system access 72h 240h
Consufting Requests 72h N/A
-
v
SAP4 « 4

11.Expand the tree and double-click the Owner item.

[Menu Edit Favorites Extras System Help B x

o v K SHE D000 0T 0%
SAP Easy Access
E & %
- Favorites
¥ W SAP menu
A Office
& Workplace
Telephone Integration
Appointment Calendar
:
= 4 Employee
Room Reservations
&3 start Workflow
Business Documents
MNotification

-

<

v

v v

| SAP DEMO SYSTEMS

E”";?"E_"GT”_CESD””E”G ; THE BEST-RUN DEMOS RUN IDES
0 oration Froje E

Logistics IDES ERP
Accounting

Human Resources
Information Systems
Tools

R

10 | Recording SAPGUI Test Scripts

12.Right-click a time frame and select Create Appointment.

[Appointment calendar

V)

Edit Goto

KT 000 &

System Help

N 0%

Display appointments: Borland Software corporation ISP#290949

22.01.2018 [«]=| D]]i[x]E=]=]
WN MO TU WE TH FR SA SU ~
443031 1 2 3 4 5 +~|22.01.2018-28.01.2018
E 436 7 &8 910 11 12 Time Monday Tuesday
= 4613 14 15 16 17 18 19
O 47 30 21 22 23 24 25 26 0800
48 27 28 29 30 1 2 3 :
w456 7 8 910 |08
5011 12 13 14 15 16 17 0%:00
o 5118 19 20 21 22 23 24 09:30
™ 52 35 25 27 28 29 30 31 10:00
L 1123455867 10:30
T 2 8 9 10 11 12 13 14 11:00 [
S 3 1516 17 18 19 20 21 | 199 I
4222324252 2728 [o
L, 52230311 2 3 4 12:30
& 6 5 6 7 8 9 10 11 :
§ 7 1213 14 15 16 17 18 | 1300
8 19 20 21 22 23 24 25 13:30
9 262728 1 2 3 4 14:00
m 105 6 7 8 91011 14:30
9@ 11 12 13 14 15 16 17 18 15:00
F 1219 20 21 22 23 24 25 | qmqp
13 26 27 28 20 30 31 1 AT
¥4 2 3 456 7 8
T 15 9 10 11 12 13 14 15 16:30
w0
B 16 16 17 18 19 20 21 22 ~| 17:00
17 23 24 25 26 27 28 29 ¥ | 17:30
=

Wednesday

|| Today|| s current week|[32 |

Thursday Friday Saturday

o

Previous week

Mext week

Create appointment
Choose

cut

Copy to Buffer
Monthly view
Settings

Refresh

Today

Current week
Display in Time Zone Central E

Sunday

“ 4

13.Define the appointment by setting Title, Appointment Type, Time, and Priority. Then click Save.

& Appointment Calenda

eate Appointment

Appt. Part. List | Part. Avalbiity |
Appointment Data
Title My First Appointment
Appt. Type Meeting v
Start Date 24.01.2018 E StartTime 13:00 Al-Day Event
End Date 24-0l-2018§| End Time 14:30 +/ Display in Local Time
Room Time zon Central Europe ~
Attributes
- = T
veotey putlc v prorey
Time Period Reserved v Appointment Status Taking Place v
Description

Lil,Col

Description Changeable by All Users

Ln1-Ln1of1lines

Recording SAPGUI Test Scripts | 11

14.Now edit the appointment you created by double-clicking it.

[Appointment calendar Edit Goto System Help B x

o TKE 00 = N @ %

Display appointments: Borland Software corporation ISP#290949

22.01.2018 =] g XER]x]) || Today|| T Current week| |55 |
WN MO TU WE TH FR SA SU ~
44303 1 2 3 4 5 +|22.01.2018-28.01.2018
E{ 456 7 8 9101112 Time Monday Tuesday Wednesday Thursday Friday Saturday Sunday
= 46 13 14 15 16 17 18 19
R 472021 2203242526 |
48 27 28 29 30 1 2 3 :
N %456 7 8 910 | 0830
Z 50 11 12 13 14 15 16 17 08:00
o 5118 19 20 21 22 23 24 09:30
™ 52 25 26 27 28 29 30 31 10:00
H11234567 10:30
28 9101112131 11:00
g 3 151617 18 1920 21 |45
4222324252627 28 [0
L, 52230311 2 3 4 1230
$ 6 56 7 8 9 10 11 g — 1
S 7 12 13 14 15 16 17 18 13:00 {My First Ap__._|
8 10 20 21 22 23 24 25 | 1330 Meeting
9 262728 1 2 3 4 14:00
m 105 6 7 8 9 1011 14:30
B 11 12 13 14 15 16 17 18 | 15:00
8 12 10 20 21 22 23 24 25 15:30
13 26 27 28 29 30 31 1 P
. 14234506738 1630
% 15 9 10 11 12 13 14 15 :
§ 1616 17 18 19 20 21 22 ~| 1700
17 23 24 35 26 27 28 20 | 17:30
@ The appointment was created SARS « 4

15.Click Delete (the trash can icon) to delete the appointment. A confirmation dialog opens. Click Yes.

& Appointment Calenda 1ange Appointment

Part. Lst | Part. Avaiabilty |

Appointment Data

Title My First Appaointment

Appt.Type Meeting v

Start Date 24.01.2018 E StartTime 13:00 All-Day Event

End Date 24.01.2018 E End Time 14:30 +/ Display in Local Time

Room Time zon Central Europe ~

Attributes

Visibility public b Priority High v
Time Period Reserved ~ Appointment Status Taking Place ~
Description

Lil, Col Ln1-Ln1ofllnes

tion Changeable by Al Users

Processor @

12 | Recording SAPGUI Test Scripts

16.Click Exit (the yellow circular button) to exit the calendar application.

[Appointment calendar Edit Goto System Help O x
0 K5 Bbo B DY 0%
Display appointments: BOrIandﬂare corporation ISP#290949
22.01.2018 =] D] [X]= |\ 4|l | £2]1|)| |7 Today| s Current week|| &3
WNMO TUWE TH FR SA SU ~
443031 1 2 3 4 5 ~|22.01,2018-28.01.2018
9_' 45 6 7 8 910 11 12 Time Monday Tuesday Wednesday Thursday Friday Saturday Sunday
46 13 14 15 16 17 18 19
S 47 20 21 22 23 24 25 26 T
48 27 28 29 30 1 2 3 .
%456 7 8 91 |0830
5011 12 13 14 15 16 17 08:00
o 5118 19 20 21 22 23 24 09:30
® 52 25 26 27 28 29 30 31 10:00
Ll 12345567 10:30
F 2 8 9 10111213 14 11:00
S 3 15 16 17 18 19 20 21 | 4,.
8 i 11:30
4 22 23 24 25 26 27 28 B
o 22930311 2 3 4 12:30
w 6 5 6 7 8 9 1011 2 - |
§ 7 1213 14 15 16 17 18 | 1300 L 4
8 19 20 21 22 23 24 25 13:30
9 262728 1 2 3 4 14:00
m 105 6 7 8 9 1011 14:30
2 11 12 13 14 15 16 17 18 15:00
(=3
& E 19 20 21 22 23 24 25 | y5.3y
26 27 28 29 30 31 1 AT
L 42345678 e
@ 15 9 10 11 12 13 14 15 .
B 16 16 17 18 19 20 21 22 ~| 17:00
17 23 24 35 26 27 28 329 v | 17:30
= “d
17.Click Exit again and confirm that you wish to exit the application.
[Menu Edit Favorites Extras System Help O ox
v
SAP Easy Access z
E X %
Favorites
h SAP menu
A Office
= £ Workplace
> Telephone Integration
- Appointment Calendar
- g
’ Rol Unsaved data will be lost.
= H¥ Sta
= e Do you want to log off?
> [Bu
> I No
N C In = T = SAP DEMO SYSTEMS
: cm\;: e | ° THE BEST-RUN DEMOS RUN DES
Lo} OracoT oy =
> I Logistics IDES ERP
H Accounting
> Human Resources
> Information Systems
> Tools
Sicg “d

18.Close the SAPLogon application. This ends your simulated user transaction.

19.Stop the Silk Performer Recorder and save the recorded script file.

/ Note: If no script has been recorded, review Client and Server Requirements.

Note the following in the generated BDL script:

The connection is opened with the full connection string.
During replay, new active windows are verified based on their titles.

The login string must be customized with a parameter because the password value was not retrieved

during recording.

Recording SAPGUI Test Scripts | 13

14

Sill Performer Workbench - SapProject - [SapProject.bf]

: File Edit Record Script Project Run Results Tools View Settings Window Help

DDRS O FEa bIMp Jio ¢ X0l L sFormsid7
2 e
COutline Project Model Script Try Seript

Project L x |4 Start Page ' [T] SapProjecthdf x

=%

M IR &

Loqg in to your Build Portal Account

~ {2] Project 'SapProject’
] Profiles
~ 12 Scripts
' SapProject.bdf
Include Files (3)
L[y Data Files
A Agents "LOAD_CP=2", "SapGuiOpenConnection");
) -igfy Workloads
L.{gmy Performance Level;

transaction TMain
var
begin
// Connecting to SAP
gsConnID := SapGuiOpenConnection(

SapGuisetActiveConnection(gsConnID);

SapGuiSetActiveSession("ses[8]");
< >

= 1/ SAP

[ZProject [Active Script

Results R x
7| Local Results

SapGuikindowResize (195, 33, false, "SapGuillindowResize”);
// Logon to SAP System

ThinkTime(142.4);

/{ SAP Easy Access

ThinkTime(2.4);

Ready Ln 39, Col 102

SapGuisetActivellindow("wnd[8]", "SAP", SAPGUI_MATCH_ExactMoCase);

SapGuilogen("sapuser”, EEESTES" “gag" “EN", "SapGuilogon”);

SapGuilgnoreError (SAPENGINE STATUSBAR CHANGED, SEVERITY SUCCESS);

/SAP_CODEPAGE=1100 J/FULLMENU SNC_PARTNERMAME=\"\" SNC_QOP=-1 /H/18.5.12.61/H/155.56

/{ Before running a test you have to customize the password parameter!

SapGuisetActiveWindow("wnd[@]", "SAP Easy Access”, SAPGUI_MATCH_ExactNoCase);

Exploring Recorded Scripts

The first step in analyzing and customizing a test script is executing a trial run to look for replay errors.

Both the recorded and replayed test scripts can be opened in TrueLog Explorer. TrueLog Explorer supports
the visualization of SAPGUI requests and responses in the same way it supports the visualization of HTTP
client requests and HTTP/HTML server responses. See SAPGUI Test-Script Customization and the

TrueLog Explorer Help for full details regarding TrueLog Explorer.

Executing TryScripts

The default settings for TryScript runs include live display of data downloaded during testing and the writing
of log and report files. With TryScript runs, only a single virtual user is run and the stress test option is

enabled so that there is no think time or delay between transactions.

To execute a TryScript run:

1. Click Try Script on the workflow bar. The Try Script dialog opens.

2. To view rendered page transitions during a TryScript run, enable Animated Run with TrueLog

Explorer
3. Click Run.

Note: You are not running an actual load test here, only a test run to see if your script requires

debugging.

Recording SAPGUI Test Scripts

Warkflow - Try Script

Perform a trial run of the test script

Perform a trial run, with a single virtual user, of the test script that was created during script modeling to evaluate the readiness of the script.

Seript SapProject.bdf 1R

Profie Profilel ~| | Setfings...
U

Isergroup Usergroup VUsers
éﬁjVUwr 1

[Animated run with TrueLog Explorer
[OExecute think times

Parameterize your script with project attributes to make it more flexible.
Project Atfributes...

What happens during a Try Script run? Run Cancel

4. The TryScript run starts. The Monitor window opens, giving you detailed information about the
progress.

Note: If you enable the Animated setting, TrueLog Explorer opens, showing you the data that is
actually downloaded during the trial run. Each main SAPGUI window accessed during recording is
listed as a high-level SapGuiSetActiveWindow API node in the TrueLog Explorer tree view. All
recorded server round-trips and user actions are listed as subnodes of corresponding
SapGuiSetActiveWindow nodes. Animated mode for TryScripts is not really necessary as replay
includes the GUI by default - having an additional animated TrueLog might confuse results.

How Silk Performer Handles SAPGUI Replay

For SAPGUI script replay, Silk Performer uses an architectural de-coupling of the Silk Performer virtual
user and the SAPGUI ActiveX control. This means that when there is a crash or failure of the SAPGUI
process, Silk Performer virtual user measurements are retained. This is achieved by running a separate
SAPGUI replay process, called PerfSapGuiReplay.exe, for each virtual user. Upon a SAPGUI API
timeout or crash, the affected virtual user process automatically restarts in the background. Silk Performer
thereby recognizes and reports potential instabilities of the SAPGUI client. This minimizes test failures
when problems occur within SAPGUI itself and allows for more reliable testing.

Note: The SapGuiRestart() function enables you to force a restart of the SAPGUI engine when an
unstable or inconsistent state is detected.

Exploring TrueLogs

Once you have executed a trial run, you can explore the TrueLog that was generated by the script run by
clicking on the Explore TrueLog file on the Try Script Summary page.

Recording SAPGUI Test Scripts | 15

Silk Performer Workbench - SapProject - [Try Script Summary]

File Edit Record Script Project Run Results Tools View Settings Window Help
DDREOEFE SN b 83X x 5o X @ L sfomsid
= [4] |

Outlne Project ~ Model Scipt Try Seipt Upload Project Morering Weskdow | 180
ji R x Start Page | IZ SapProject.bdf | EJ Monitoy Try Script Summary % 3

Project
~ [Project ‘SapProject’

+ [Profiles Try Script Summary
w02 Seripts
T2 SspProject belf SapProjectbdf/VUser SN D

») Include Files (3)

Log in to your Build Portal Accourt

Data Files Next Steps
be Agents o No errors occurred during Try Script run.
» gl Workloads
ﬁ Customize user data

i Performance Level
4
W Add verifications

(® Quick Summary
< >
[Project | [} Active Script Duration [hh:mm:ss] Users Agents

~ ¥4 Local Results

Analyze Result Files

~ [RecentTryScriptTest Errars Failed transactions Successful transactions @ Explore log file
5] Try Seript Summ 0 0 2
+ B TrueLog Files [Explore report file

| User Results

Open results folder

Help Topics

Try Script Ovenview
Visual Analysis with TrueLog Explorer

16 | Recording SAPGUI Test Scripts

Customizing SAPGUI Test Scripts

This section explains how to customize a SAPGUI load test script based on the results of a TryScript run.

Once you have recorded a test script and identified session-specific errors through a TryScript run, use
TrueLog Explorer to customize the test script so that it can handle session-specific strings, for example
user IDs, password, and others.

Note: TrueLog Explorer is a powerful test script customization tool that offers much more functionality
than is demonstrated in this tutorial. Refer to othe TrueLog Explorer Help for details regarding content
verifications, content parsing, comparison of record/replay TrueLogs, and more.

Once you have generated a load test script with Silk Performer and executed a TryScript run, TrueLog
Explorer can help you customize the script by:

« Adding content verifications: Using the Add Verifications tool, you can gain tremendous insight into
data that is downloaded during load tests, enabling you to verify that the content that is to be sent by the
server is correct. Verifications remain useful after system deployment for ongoing performance
management. Refer to the TrueLog Explorer Help for details.

* Adding parsing functions: TrueLog Explorer allows you to insert SAPGUI parsing functions visually in
Source screenshot view and the Control view tab. Manual code writing is not required. TrueLog
Explorer automatically generates parsing functions in scripts. Refer to the TrueLog Explorer Help for
details.

« Parameterizing input data: With user data customization you can make your test scripts more realistic
by replacing static recorded user input data with dynamic, parameterized user data that changes with
each transaction. Manual scripting is not required to create such "data-driven" tests.

For each SAPGUI function call that changes input data, you can verify return values, parse values, and
customize input data. These operations can be executed from both Source screenshot view, by right-
clicking within a control, and the Controls tree view.

SAPGUI TruelLog Structure

The three windows that are displayed with SAPGUI TrueLogs are:

* Tree list (left-hand pane): Lists all SAPGUI API calls that were included in the test run.

* Source window (upper right-hand pane): Displays the state of the GUI at each API node. The End
Request and Start Request view tabs enable you to view both the initial and final states of each
SAPGUI server request, to see how the server request has affected the GUI display, for example the
display of a new dialog box or error message.

i Note: TrueLog screengrabs are captured only during TryScript runs, not load tests.

e Information window (lower right-hand pane):

Displays data regarding the most recent test run. The view tabs in this pane that are active and
applicable to SAPGUI TrueLogs are Info, BDL, and Controls. The Controls tab offers a convenient
means of viewing and working with all customizable controls that are included on each GUI screen.

Customizing SAPGUI Test Scripts | 17

| g
File Edit Script Animation

[@l:amm s slvelo
[Q i W

Settings Tools View Help

‘oe BEA BRI EER hw mEp E

B |
xLG

Agaze Customize Add paslze —
est User Data Verfications TrueLog On Emor
| S8 Tinit (#1)
=4 TMain (52) Part. List | Part. Availabilty
@} SapGuiOpenConnection (/SAP_CODEPAGE=1
5% SapGuiSetActiveWindow [SAP) Appomtment Dats
=2 SapGulSEtActweWmduw (SAP Easy Access)
p dow (Display app Title My First Appaintment
(Display Appt.Type Meeting v
2 SapGulSEtActweWmduw (Appointment Calend:
B gﬂ;‘”f:;zz:‘:i;’:ﬁ%y st Appotntment] Start Date 24.01.2018 % SGrtT.lme Afmav .E\'ent
M SapGuiSetFocus (usr/tabsTAB_0010/tabp || ENG Date 24.01.2018/7] End Time 14:30 +/|Disnley in Local Time
- B SapGuiSelectComboBoxEntry (MEETING] Room Time zon Central Europe v
@ SapGuiRoundtrip (2} 3 Period
T SapGuiSetText (13:00)
T} SapGuiSetText (14:30) Attributes
| ¥ SapGuiSelectComboBoxEntry (3) =
| ¥ SapGuiSetFocus (usr/tabsTAB_0010/tabp Visiility public d Prioricy High v
-5 sapGuiPressButton (tbar[0]/btn[3]) S 24
s spGuiSetA (Display a End Request Differences | M Start Request b
=r dow (Display app
i] SapGulSEtA(thWmdnw (Appointment Calendg | <ol R — "\‘;;‘”:MAD ot L‘;“’: fg“ﬁﬁ ~
- irst Appointme 77
= SepGuiSetActiveWindow (Appointment Calend: = SCSDYNFLDS TXT AP At Type P A Pl
L% sapGuiSetActiveWindow (Delete appointment) 5 /ombSCSDYNFLDSAPPT_. Mesting NA CID-780F
a (Display 1] . AbISCSDYNFLDSDATE_FR... Start Date WA CID781F
i | SEFGUISEtAmveWmdDW (SAP Easy Access) [. /ctiSCSDYNFLDS-DATE_F.. 24.01.2018 N/A CID:782 F
..[5% SapGuiSetActiveWindow (SAP Easy Access) [E] . Abl%#AUTOTEXT00Z StartTime N/A CID783F
3 sapGuiSetActiveWindow (Log OFf) 3] .A4SCSOYNFLDS-TIME_FR... SO0 A CID:784 F
1] ../chkSCSDYNFLDS-DOMIN... false /A el

<
4 @ Info | [B) BOL [P References, iz

Done - L - .

< > Controls [T Out Header | B Out Body | B In Header u»

{15 | —

SAPGUI TrueLog functions
Two of the main SAPGUI function types that TrueLog Explorer relies on are:

e SapGuiSetActiveWindow: These are top-level APl nodes that indicate the generation of new GUI
windows. All actions taken on windows are grouped below their corresponding
SapGuiSetActiveWindow functions.

e SapGuiRoundTrip: These are virtual nodes; there are in fact no API calls called SapGuiRoundTrip
that are sent to the server. These nodes are used to group all client-side actions that occur in the
course of each server round-trip. Both the before and after states of round-trips can be viewed. Multiple
roundtrip nodes may be included under each SapGuiSetActiveWindow node.

E--ig_.':‘l localhost@SapProject_VUser-Profilel 1.tz
..... A Tinit (21)
- % TMain (£2)
----- Qj SapGuilpenCennection (/SAP_CODEPAGE=1100 /FULL
m‘ SapGuiSetActiveWindow (SAP)
m SapGuiSetActiveWindow (SAP Easy Access)
@ SapGuiRcundtrip (1)
ﬁ' SapGuiTreeExpandMode (Office)
ﬁ' SapGuiTreeExpandMeode (Appointment Calendar)

Customizing Input Parameters

In the previous section, replay execution was halted when the replay engine checked for ****** |n the
password field and an error resulted. Until the password string is customized with a variable, the script will
not replay correctly.

To customize an input parameter:
1. Select the failed SapGuiLogon method API call in TrueLog Explorer's tree view.

2. Select the password field in the rendered GUI window.
3. Right-click in the field and select Customize Value.

18 | Customizing SAPGUI Test Scripts

Note: All GUI controls on the window at the selected API node are alternately displayed below on
the Controls tree window. Fields that are changed by the current call, and can therefore be
customized, are highlighted in orange. You can right-click values in the Controls window to access
the same customization functions that are available above in the rendered GUI window. Most
controls can be parsed for their values. Verifications can also be defined for most controls. All
available functions are accessible through context menus.

‘Customize value

Silk TrueLog Explorer - SapProject\RecentTryScriptTest\localhost@SapProject WUser-Profilel_1.tlz - [u} x
File Edit Script Animation Seftings Tools View Help
BB B BT L oclR@A BB ERRe e HMEE E
% 5|
Q po) i W
Analyze Custornize Customize: Add foalpe
Test Session Handing User Data Verfications TrueLog On Emor &
-5 localhost@SapProject_YUser-Profilel_1.tlz @
S Tinit (51) [User System Hep
-4 TMain (£2)
&} SapGuiGpenConnection /SAP_CODEPAGE=1 (v} MRS ol
2% SapGuiSetActiveWindow (SAP) SAP
=@ SapGuiRoundtrip (1)
{53 sapGuiWindowResize (SAP) New password
Eg# SapGuilogon (| =+ 800, EN)
[2 SapGuiSethctiveWindow [SAP Easy Access) client 200 Information
phut ° ng‘p:“" Welcome to ICC Test-System C41
P isplay app
7% sapGuiSetActiveWindow (Appointment Calend; | U8 [| sapEre central Component 6.04 IDES
[3% SapGuiSetActiveWindow (Display sppointments | Password |“ o m—
- pGui dow (Display app Tt N e is 800
[2% SapGuiSetActiveWindow (Appointment Calend L N please contact:
3 SapGuiSetActiveWindow (Appointment Calendi
pGui dow (Delete 2pp) =% Customize Value p.com .
L3 sap (Display dl< c >
3% SapGuiSetActiveWindow (SAP Easy Access) q End Request Di el CDWEMWHD s 3
- [28 SapGuiSetActiveWindow (SAP Easy Access)
[SapGuiSetActiveWindow (Log Off) Control Value Type Addtional A
+[E] .AbIRSYST-BNAME User /A CID:141F
AbIRSYST-BCODE Password N/A CID:143F
/pwdRSYST-BCODE P A CID:144 F
ABIRSYSTLANGU Language N/A CID:145F
/sbar N/A CIDA47F
< >
< 5| 4 @ info BDL | %1§ References™, t2 Controls [0% Out Header | M OutBody | O InHeader | |»

[|

. The Parameter Wizard opens. The Parameter Wizard enables you to create a new parameter for the
recorded password. To keep this example simple, a constant parameter type will be used. Click the
Create new parameter option button and click Next.

f Note: Refer to the Silk Performer Help for full details regarding the Parameter Wizard.

Pararmeter Wizard - Customize Value

Choose the value customization varant .

ped

There are two ways to modify a value in the script.

One way is to use an existing parameter defined in the dclparam or

dclrand section.

The other way is to create a new constant value, random variable or

a variable where the data comes from a multi-column data file.

Parameter customization
Use existing parameter

(®) Create new parameter

< Back Mext =

Cancel

Customizing SAPGUI Test Scripts | 19

20

5. Click the Constant value option button and click Next.

Parameter Wizard - Create Mew Parameter >
Choose the type of parameter creation

Select the type of creation for the new variable.
The type of creation defines the value assignment of the variable.

Type of parameter creation
(®) Constant value

i) Parameter from Random Variable
(") Parameter from Multi-column Data File

< Back Mext = Cancel

6. The data type to be used is string. Click Next.

Parameter Wizard - Variable >

Choose the variable's data type

From the drop-down list, select the data type of the variable that you

want to insert into your test script. A short type description is provided
in the area below the drop-down list.

Data type: string “

This data type represents an tem composed of character data.

< Back Mext = Cancel

Customizing SAPGUI Test Scripts

7. Define a meaningful Name for the new parameter and enter your user password as the string Value.

Parameter Wizard - Vanable >

MName the variable and specify its attributes

Type a name for the varable and specify the varable attrbutes. The
attributes you have to specify depend on the type of the varable.

Data type: |5tring |

Name: |sF‘asswu:|n:| |

Value: myPazaword|

Show Preview < Back Cancel

8. Now execute a new TryScript run. Your password parameter will automatically be inserted into the
replayed test script and the script should run without error.

Customizing SAPGUI User Input Data

Under real world conditions, SAPGUI application users submit unpredictable combinations of data into
forms. One goal of effective SAPGUI application testing is to emulate such irregular and diverse user
behavior using test scripts.

You can customize the user input data that's entered into forms during testing with TrueLog Explorer's
Parameter Wizard. The Parameter Wizard lets you specify values to be entered into form fields—enabling
your test scripts to be more realistic by replacing recorded user input data with randomized, parameterized
user data.

To customize user input data for a form field:

1. Select the Step through TruelLog toolbar button to display the Step through TruelLog dialog box.

2. Click the Customizable calls option button and click Find Next to step through all form fields in the
TrueLog that offer input customization.

3. When you arrive at a control field that reflects user data input that you wish to customize, right-click in
the control and select Customize Value.

Note: For this example, select the Priority field. Controls that can be customized are outlined in
orange. Controls that have already been customized are outlined in green. Controls that are
outlined in blue can have their values parsed or verified, but they cannot be customized.

Customizing SAPGUI Test Scripts | 21

Silk TrueLog Explorer - SapProject\RecentTryScriptTest\lo: pProject_VUser-Profile]_1.tiz - o X

File Edit Script Animstion Settings Tools View Help

BY B %S BV eHE L m2oQ BB BEE EE Rw SR BEE B
Q W W i
Agslyze Customize Add frslae
est User Data Verfications TrueLog On Emor
=25 localhost@SapProject VUser-Profile]_.tiz leeting v a
S Tinit (#1)

- TMain (£2)

= . 24.01.2018(¢ (] 13:00
&} SapGuiOpenConnection (/SAP_CODEPAGE=1 | StartTime AlDay Event
{23 sapGuiSetActiveWindow (SAP) 24.01.2018(7| End Time 14:30 +/ Display in Local Time
3 SapGuiSetActiveWindow (SAP Easy Access) Time zon Central Europe -
pGui dow (Display app —

P (Display :
£33 SapGuiSetActiveWindow (Appointment Calends
=@ SapGuiRoundtrip (1)
T} SapGuiSetText (My First Appointment) public v Priority |hiah -]
1 SapGuiSetFocus (usr/tabsTAB_0010/taby Reserved v Appointment Status Taking Place ~
-} SapGuiSelectComboBoxEntry (MEETING
@ SapGuiRoundtrip (2)
T SapGuiSetText (13:00)
T} SapGuiSetText (14:30)

¥ SapGuiSelectComboBoxEntry (3) v
1 SapGuiSetFocus (usr/tabsTAB 0010/taby | € bd
-} SapBuiPressButton (tbar{0)/btn[5]) q End Request Differences | DM Start Request b
3% SapGuiSetActiveWindow (Display appointments
i dow (Display app o | Control Value Tipe Addtional &

/biCLASS Visibility N/A CID:797 F
/embSCSDYNFLDSCLASS public N/A CID:798 F
/blPRIORITY

- P
[SapGuiSetActiveWindow (Appointment Calend
3 SapGuiSetActiveWindow (Appointment Calendi
£33 sapGui dow (Delete app)
L3 sap (Display
3% SapGuiSetActiveWindow (SAP Easy Access)

-.[5% SapGuiSetActiveWindow (SAP Easy Access)

[SapGuiSetActiveWindow (Log Off)

@ | Parse Value.

../embSCSDYNFLDS-BUSY
. /BISTATUS Appoirtme

o2 | Verify Value. caF

% Customize Value..

< > 4

- Copy Centrol ID
Customize value

Silk TrueLog Explorer - SapProject\RecentTryScriptTest\localhost@SapProject_VUser-Profile1_1.tlz - O x

File Edit Script Animation Seftings Tools View Help

BY B B sHE L o BEE BEE EERw -lEie :
% B
Q i W
Analyze Customize: Add foalpe
Test User Data Verfications TrueLog On Emor
55 localhost@SapProject_YUser-Profile]_l tlz e s e B s a
£ Tinit (#1)
=48 TMain (2) I ot st | Part. Avaibiity
&} SapGuiGpenConnection (/SAP_CODEPAGE=1
[sapGuiSetActiveWindow (SAP) Appaintment Dta
[3& SapGuiSetActiveWindow (SAP Easy Access)
5% SapGuiSetActiveWindow (Display sppointments Title |y First Ap P
pGui dow (Display app ApDE.Type Meetng | o~ - ~
[sapGuiSetActiveWindow (Appointment Calend 2 Verify Value.

s
o# SapGuiRoundtip (1} Start Date 24.01.20 en
- SapGuiSetText (My First Appointment)

§ Customize Value. Al-Day Event

8§ sapGuiSetFocus (usr/tabsTAB_0010/taby End Date 24.01.20 P ~//Display in Local Time
B} SapGuiSelectComboBoxEntry (MEETING] Room 13 Copy Contral Europe v
=@ SapGuiRoundtrip (2) % period

T SapGuiSetText (13:00)

? x
L] SapGu!SEtTExt (14:30) Attributes
.. SapGuiSelectComboBoxEntry (3) e —— T e
5 SapGuiSetFocus (usr/tabsTAB_010/taby | € | Opicas n
B SapGuiPressButton (thar[0)/btn[5]) q End Request Differences | B o Rounctrps Find Previous 3
i dow (Display app : 2
= o (Displa SapGuiSetactiveuindow("wnd[1]", 1 O Wndows . SAPGUI_MATC A
poul Py @ Customizable calls
[SapGuiSetActiveWindow (Appointment Calend - O b
ex =
-.[28 SapGuiSetActiveWindow (Appointment Calend; apGuiSetText First Appd Cancel
% sap (Delete)
57 sapGui dow (Display zpp Tt SapGuiSetFocus(”usr/tabsTAB_8018/tabpTAB_8A16_FC1/ssubTAB_B@10_SCA:SAPLSSCD:@811/cmbSCS
2% SapGuiSetActiveWindow (SAP Easy Access) "sapGuisetfocusiiteeting”);

a2 SapGuisetictivelWindow (SAP Easy Access] SapGuiselectComboBoxEntry(usr/tabsTAB_g@1/tabpTAB_201¢_FC1/5subTAB_BP16_SCAISAPLSSCD: v
[sapGuiSetActiveWindow (Log Off) B

<
< 5| 4 S\ @ Info,) 0L [P References | 72 Controls | O OutHeader | ® OutBody | 5% In Header | |»

Customize value | [— ez

4. With the Parameter Wizard you can modify script values in one of two ways. You can either use an
existing parameter that’s defined in the dclparam or dclrand section of your script, or you can create a
new parameter, based on either a new constant value, a random variable, or values in a multi-column
data file. Once you create a new parameter, that parameter is added to the existing parameters and
becomes available for further customizations.

Note: This example demonstrates the process of creating a parameter based on a new random
variable. Refer to the Silk Performer Help for complete details regarding the functionality of the
Parameter Wizard.

22 | Customizing SAPGUI Test Scripts

5. Click the Create new parameter option button and click Next to create a new parameter.

Parameter Wizard - Customize Value

Choose the value customization variant.

et

There are two ways to modify a value in the script.
One way is to use an existing parameter defined in the dclparam or
declrand section.

The other way is to create a new constant value, random variable or
a variable where the data comes from a multi-column data file.

Parameter customization
() Uze existing parameter
(®) Create new parameter

< Back Mext = Cancel

6. The Create New Parameter dialog box opens. Select the Parameter from Random Variable option

button and click Next.

Parameter Wizard - Create Mew Parameter

Choose the type of parameter creation

et

Select the type of creation for the new variable.
The type of creation defines the value assignment of the variable.

9
. L]
s . Type of parameter creation
L
~ ® () Constant value
'.1 : (®) Parameter from Random Variable
[\ .
; = A (") Parameter from Multi-column Data File
1% |""..
g "‘-"’I
=

< Back Mext = Cancel

7. The Random Variable Wizard opens with the Individual strings random variable type selected. A brief

description of the highlighted variable type displays in the lower window.

Customizing SAPGUI Test Scripts | 23

Parameter Wizard - Random Variable =4

Choose the type of random vanable

From the drop-down list, select the type of the random varable that
you want to insert into your test script. A short type description is

N ariad " v dtwed provided in the areas below the drop-down list.
~ Random type: Individual strings ~
- .) Distribution: |ir1di'n.ridua| |
L]
> . Walue type: |strir1g |
-
'y o = This type defines a randam variable that generates ether whole
[I" 'p' numbers or stings. The parameters specify the range of values
y * L along with their probability.
" . '..'-‘.. I
™ ‘\: -
< Back Mext = Cancel

Click Next.

9. The Name the variable and specify its attributes screen opens. With SAPGUI applications, all available

list box values are pre-loaded with weight values of 1. Enter a name for the variable in the Name text
box and click Next.

Parameter Wizard - Random Variable >

Mame the variable and specify its attributes

Type a name for the varable and specify the varable attrbutes. The
attributes you have to specify depend on the type of the varable.

T e diwarsa
marmned widgwad

Type: |Rndind |

Name: |rAndind1 |

b [Parameter type Parameter:
'
L]
W (®) String ~
™ 1 Low 1
- Mumb
- ol 2 |Wedium 1
i 3 W l- 3 High 1
' 5 @ 4 Very high 1
; .'.“-"-'. E
1 "-'., 3
Nz
_ v
Show Preview < Back Mext = Cancel

24 | Customizing SAPGUI Test Scripts

10.Per usage random value generation is selected by default. Click Finish.

Choose the kind of usage.

(®) Per usage:;

The random varable itself is used. Each use of the random
varable generates a new random value.

(") Per transaction:
The value fram the randam variable is assigned to a parameter at
the beginning of the selected transaction. You can reuse the
value and a new value will be generated for each transaction
call.

() Pertest:
The value fram the randam variable is assigned to a parameter in
the init transaction. You can reuse the value, but the value wil be
the same for the entire test.

|sergroup: @ Wllser

Transaction: % TMain

< Back Cancel

Parameter Wizard - Random Vanable >

11.Click Finish to modify the BDL form declaration of your test script so that it uses the random variable for
the given form field in place of the recorded value. The new random variable function displays below in

BDL view.

12.Initiate a TryScript run with the random variable function in your test script to confirm that your script

runs without error.

[y Note: Control that have been customized display with green highlighting.

Silk TrueLog Explorer - SapProject\RecentTrySeript Testilocalhost@SapProject VUser-Profilel_1.tiz - o X
File Edit Script Animation Settings Tools View Help
i p ¢ &) B | P WHEiR c2 i BEm BB EE E[Rw SRl EEE B
Q ®
A= Cigopies VerhiShora Truel o B o
5 b Emor
555 localhost@SapProject VUser-Profile]_1.tlz 1eeLny hd "
B Tinit (#1)
=] %IME‘" (=2) 24.01.2018|c7| StartTime 13:00 All-Day Event
3 g i:sg::f;::g:z:ﬁzZ:V((SASP‘?F*CODEPAGE’1 24.01.2018 (7| End Time 14:30 </ Display in Local Time
75 SapGuiSetActiveWindow (SAP Easy Access) Time zon Central Europe v
p dow (Display app
p (isplay z
% SapGuiSetActiveWindow (Appointment Calend
-@# SapGuiRoundtrip (1)
g}m SapGuiSetText (My First Appointment) public hd Priority Hoh]
0 SapGuiSetFocus (usr/tabsTAB_0010/taby Reserved ~ Appointment. Status Taking Place v
B sapGuiSelectComboBoxEntry (MEETING
-8 SapGuiRoundtrip (2)
T SapGuiSetText (13:00)
I} SapGuiSetText (14:30)
¥ SapGuiSelectComboBoxEntry (3) v
1B SapGuiSetFocus (usr/tabsTAB_0010/tab| | < >
& sapGuiPressButton (toar[0Ybin[S]) 4 End Request Differences | TM Start Request b
13 SapGuiSeta (Display Tt
2% SapGui dow (Display app || Control Value Type Addtional A
5% SapGuiSetActiveWindow (Appointment Calend /biniCON_PERIOD Period N/A CID-785F
5 SapGuisetActiveWindow (Appointment Calend, JooxFRANE_ATTRIBUTES Aftrbutes NA D736 F
4 Sapti dowe (Delte opp) bICLASS Visibily NA CID797F
/embSCSOYNFLDSCLASS... public N/A ciD:738 F
F sapGui (Display _/BIPRIORITY Prcity N/A D795 F
53 SapGuiSethctiveWindow (SAP Essy Access) /cmbSCSDYNFLDSPRIOR... [Figh /A CIDA00F
-.[73 SapGuiSetActiveWindow (SAP Easy Access) _/bIBUSY Time Period N/A CID:B01F
3% sapGuisetActiveWindow (Log Off) P S s mm Y
a >/ 4 @ info [[El BOL [P References™ %z Cantrols [T Out Header | ® OutBady | = InHeader | b
Done 7| :

You may find that additional customizations are useful, for example randomizing username and
appointment-time input parameters for load testing purposes. Customization is possible for nodes that

Customizing SAPGUI Test Scripts | 25

involve changes of text, combo boxes, check boxes, and option-button controls. Refer to the TrueLog
Explorer Help for full details regarding available script customizations.

Note: It is recommended that you not verify or parse values that occur in the last nodes of round-trips.
This is because functions are scripted after selected API calls. For example, if you verify a
SAPGLUIiPressButton function that closes the current window, the verification function will subsequently
attempt to verify a control on a window that has already been closed—and a replay error will occur.

Analyzing Result Files

Each TryScript run generates an Overview Report. See example below.

Depending on measure settings in the active profile, measures are generated for method calls that have
the optional timer parameter defined and also force a round-trip to the SAP server. Note that not all API
calls force server round-trips.

SapGuilogon

Round trips 4,000 4,000 4,000 1 1 0,000

Interpretation Time [s] 0,672 0,672 0,672 (| (| 0,000

Flushes 3,000 3,000 3,000 1 1 0,000

Response time [s] 1,000 1,000 1,000 1 1 0,000

SapGuiPressButton\Appointment Calendar: Change Appointment

Round trips 2,000 2,000 2,000 1 1 0,000

Interpretation Time [5] 0,156 0,156 0,156 1 1 0,000

Flushes 1,000 1,000 1,000 1 1 0,000

Response time [s] 0,293 0,293 0,293 (| (| 0,000

SapGuiPressButton\Appointment Calendar: Create Appointment

Round trips 3,000 3,000 3,000 1 1 0,000

Interpretation Time [s] 0,231 0,281 0,281 (| (| 0,000

Flushes 2,000 2,000 2,000 1 1 0,000

Response time [s] 0,438 0,438 0,438 1 1 0,000
Each server round-trip creates the following measures:

Round Trips Before SAPGUI sends data to the server it locks the user

interface. In many cases it will not unlock the interface
after data is returned by the server, but instead sends a
new request to the server. Controls use this technology to
load data they need for visualization. A count of these
token switches between SAPGUI and the server is
offered with this measure.

Flushes Counts the number of flushes in the automation queue
during server communication.

Interpretation Time [s] The interpretation time begins after data has arrived from
the server. It comprises the parsing of the data and the
distribution to the SAPGUI elements.

Response Time [s] This is the time that is spent on network communication
from the moment data is sent to the server to the moment
the server response arrives.

26 | Customizing SAPGUI Test Scripts

Note: An overall counter for all round trips is shown in Silk Performer's Monitor window during load
tests. This counter can also be monitored in Performance Explorer as a Silk Performer controller/
agent measure.

Further Steps for Load Testing

This tutorial offers only a brief overview of the steps that you may require for your load test scenario. Other
steps that you will likely need to address are listed below. Refer to the Silk Performer Help for details
regarding these additional steps.

e run a baseline test

» define your workload

« setup your monitors (new SAPGUI monitor for monitoring SAP servers)
e run your load tests

e analyze load test results

Customizing SAPGUI Test Scripts | 27

28

Best Practices for Testing SAPGUI

This section explains best practices for load testing SAPGUI with Silk Performer.

Prerequisites for SAPGUI Load Tests

The following issues need to be considered before you begin load testing SAPGUI:

Issues with agents

SAPGUI scripting

Test data

Test cases

Determining your goals

To run huge load tests you need to consider your Agent
setup. Please see the Agents section for details.

Ensure that SAPGUI scripting is installed on all agents
and the controller. Also ensure that SAPGUI scripting is
enabled on the servers.

For data-driven testing, it's important to use accurate data
as input. See Customizing Input Data to learn what
should be considered.

Test cases that are to be tested must be well
documented.

Determine if varying input data in input controls will result
in the display of different screens or change the
availability of any onscreen controls.

The most critical measure of an SAP system is the
number of dialog steps that can be executed during a
specified timeframe, for example 100,000 dialog steps in
an hour).

From the SAPGUI perspective, a dialog step is a
transition from one screen to the next. Certain dialog
steps are simple. Others are complex and cause
additional server load. Therefore it is necessary to have a
good mix of test scripts that cover most of the common
transactions that are used within companies.

The dialog steps can be monitored with different ST
transactions within SAP. Our SAP monitor, which uses
STO3N, can also be used.

SAPGUI Client Versions

It is recommended that you always use the latest version of the SAPGUI client, with the latest patch.

The latest patches can be downloaded from http://service.sap.com/swdc (username and password
required). Navigate to SAP Support Packages / Entry by Application Group / Frontend Components.

Testing Logon Sequences

The logon sequence is a resource-intensive task that should not be tested. The logon sequence should be
extracted and executed within the TInit transaction. The TMain transaction should only contain those
transaction steps that are to be tested, ending again at the screen that follows logon. The logout sequence
should be moved to the TEnd transaction. To return to the initial screen, use the “/n” transaction code.

Best Practices for Testing SAPGUI

Here is a sample customized script for reference:

dcluser
user
VUser
transactions
TInit : begin;
TMain : 1;
TEnd : end;

var

gsConnlD : string;

dclrand

dcltrans

transaction TInit

begi

111.111.

end

n
// Connecting to SAP

gsConnlID := SapGuiOpenConnection(" /SAP_CODEPAGE=1100 /FULLMENU /H/
111.111/S/3299/H/222 222 222 .222/S/3297/H/cpce801 75 /3",
""SapGuiOpenConnection™);

SapGuiSetActiveConnection(gsConnliD);
SapGuiSetActiveSession(''ses[0]™);

// SAP

SapGuiSetActiveWindow("'wnd[0]", "'SAP", SAPGUI_ MATCH_ExactNoCase);
SapGuiWindowResize(175, 28, false, "SapGuiWindowResize");

// Logon to SAP System

// Before running a test you have to customize the password
parameter!

SapGuilLogon(*'user', "pwed", '850",
// SAP Easy Access

SapGui lgnoreError (SAPENGINE_STATUSBAR_CHANGED, SEVERITY_SUCCESS);
TInit;

, 'SapGuilLogon'™);

transaction TMain

var
begi

n
// start with the SapGuiSetActiveWindow
SapGuiSetActiveWindow("'wnd[0]", "'SAP Easy Access",

SAPGUI_MATCH_ExactNoCase) ;

// now lets do the transaction specific tasks
// .
// end the end you need to make sure that the last calls brings

you back to the SAP Easy Access window

end

// so that the next TMain iteration can successfully call the
SapGuiSetActiveWindow
SapGuiSetOKCode(“tbar[0]/okcd™”, “/n”); // this can be used to switch

back to the SAP Easy Access window
TMain;

transaction TEnd

begi

end

n
SapGuiPressButton("tbar[0]/btn[15]", "SapGuiPressButton\\btn[15]");
// Log OfFfF

SapGuiSetActiveWindow("'wnd[1]", "Log OFffF", SAPGUI_MATCH_
ExactNoCase) ;

// Yes

SapGuiPressButton("'usr/btnSPOP-OPTION1", "'SapGuiPressButton\\Yes');
TENnd;

Best Practices for Testing SAPGUI

29

Customizing Input Data

Data-driven testing is required for this type of load test. This means that you need CSV files that contain
input data for virtual users. For example, CSV files may contain material numbers or document IDs that are
used by virtual users in transactions.

Inputting different types of materials may result in the display of different screens. So, when virtual users
pick certain materials, verifications may fail because resulting screen contain different controls with different
information.

To solve this problem, do one of the following:

< Use input data that contains materials, or documents, that are similar and will return the same screens.

« Adjust your script to check for the type of screen that is displayed, that is, the controls that are available.
You can use SapGuiVerifyObjectAvailability here to verify if a control is available. Multiple
recordings should be performed in which different types of materials are accessed. Then you will see
what controls to expect in different situations and, based on whether or not the controls appear,
configure the verifications.

Prerequisites for Using Silk Central

Customizing Scripts

If you are going to upload your SAP scripts to Silk Central, you should perform some customizations in
your script to make your uploaded project easily reusable for different projects and test definitions within
Silk Central.

The following values in scripts should be customized to use project attributes:

» Connection strings
e User names

+ Passwords

¢ Client numbers

e Languages

If you create these five project attributes and customize your script so that the SapGuiOpenConnection
and SapGuilLogon methods use the values of the attributes, your script can easily be customized with
different values for the attributes from Silk Central.

Here is a sample script that shows you how your SAP logon sequence should look:

var
gsConnliD : string;
sServer I string;
sUsername : string;
sPassword : string;
sClientNum : string;
sLanguage : string;

dclrand

dcltrans
transaction TInit
begin

AttributeGetString("'SAPServer', sServer);
AttributeGetString("'SAPUser", sUsername);
AttributeGetString("'SAPPass", sPassword);

30 | Best Practices for Testing SAPGUI

AttributeGetString('ClientNum™, sClientNum);

AttributeGetString(''Language'™, sLanguage);

// Connecting to SAP

gsConnlID := SapGuiOpenConnection(sServer, 'SapGuiOpenConnection');

SapGuiSetActiveConnection(gsConnliD);

SapGuiSetActiveSession(*'ses[0]');

// SAP

SapGuiSetActiveWindow("'wnd[0]", "'SAP", SAPGUI_MATCH_ExactNoCase);

SapGuiWindowAction(SAPGUI_WND_MAXIMIZE, *SapGuiWindowAction\
\SAPGUI_WND_MAXIMIZE™);

// Logon to SAP System

// Before running a test you have to customize the password
parameter!

ThinkTime(5.9);

SapGuilLogon(sUsername, sPassword, sClientNum,
sLanguage, ""'SapGuiLogon™™);

// SAP Easy Access

SapGui lgnoreError (SAPENGINE_STATUSBAR_CHANGED, SEVERITY_SUCCESS);

end TInit;

Now you need to define these project attributes through Silk Performer's Project Attributes Configuration
dialog.

Defining Verification Loads

If you are going to upload a functional SAP test to Silk Central you should define a verification workload in
your Silk Performer project. Remember that when you upload a Silk Performer project to Silk Central, Silk
Central actually executes the workload of the uploaded project. The verification workload is designed for
one-user script executions. Therefore you need to change your workload to be a verification workload and
specify which script should be executed by it.

To Specify “verification” workload and select a script for execution:

1. Click Adjust Workload on the workflow toolbar.

2. Select Verification and click Next. The Verification Workload Configuration dialog box opens.

3. Select the profile and script to be executed by the workload and specify how you want TrueLog to be
generated. Click OK.

4. Select the Save Project command from the File menu to save your workload configurations.

Before uploading the project to Silk Central, you should run the verification test at least once in Silk
Performer.

Using Silk Performer Projects in Silk Central

After you have uploaded a Silk Performer project to Silk Central, the project will be executed with the
default values of the project attributes that you have defined. From Silk Central you can now change those
project attributes for the test definition that you created while uploading the project, or you can create new
test definitions that reference the uploaded project and then specify different attribute values for those test
definitions.

When creating a test definition in Silk Central, browse for the uploaded project in your current source
control profile. On the Parameters tab, specify different values for the Silk Performer project attributes
(connection string, username, password, etc).

This feature enables you to create SAP scripts for common tasks that can be reused to test servers in
different environments.

Best Practices for Testing SAPGUI

31

32

Accessing Low-Level Properties

The functions SapGui InvokeMethod, SapGuiSetProperty, and SapGuiGetProperty can be used
to access the low level properties of each control on the current screen. This makes it possible to, for
example, verify whether or not a text control is read-only, or determine the background color of a label.

The SAPGUI scripting API that is used to perform SAPGUI testing is a large COM library that allows Silk
Performer to access controls and perform actions. The same COM library can be used with the above
mentioned API calls. To access the list of methods and properties that individual controls offer, you must
inspect the type library of the SAPGUI scripting API.

You need a tool that allows inspection of type libraries, such as the Ole32View tool that comes with Visual
Studio. You need to open the sapfewse.ocx file, which can be found in the SAPGUI installation directory
under \FrontEnd\SapGui.

To, for example, get the name of a control where you know the control ID, you would use the following call:

SapGuiGetProperty(“/usr/Ibl[1,2]”, “Name”, sOutValue);
Print(“The control has the following name:” + sOutValue);

Most properties return a simple type, such as a string, number, or Boolean. Some properties return
another object. An example is the Parent property that returns the parent control of the current control.
Whenever a property returns another control, this control is temporarily held in cache and can be accessed
with the constant SAPGUI_ACTIVE_OBJECT. Here is an example call for retrieving the name of the parent
property:

SapGuiGetProperty(“/usr/1bl[1,2]”, “Parent™);

SapGuiGetProperty(SAPGUI _ACTIVE_OBJECT, “Name”, sOutValue);
Print(“The parent control has the following name:” + sOutValue);

Properties that are of the type Boolean are also returned in string representation because
SapGuiGetProperty only returns string values. As SAPGUI scripting is a COM library, you get the string
representation of the two possible values, VARIANT_TRUE and VARIANT _FALSE. VARIANT_TRUE is -1
and VARIANT_FALSE is 0.

Here is an example that verifies if a Boolean property is true or false:
SapGuiGetProperty("'/usr/txtName", '"Changeable', sOutValue);

IT(sOutvalue = "-1'") then
Print(""The text control is changeable!!');
End;

Properties overview
Everything in SAP is a component and therefore has the following properties (ComClass GuiComponent):

« Name - Name of the control.

« Type - Type of the control as text (for example, GuiButton or GuiTextField).

« TypeAsNumber - All types have internal numbers (for example, 30=GuilLabel, 31=GuiTextField).

< ContainerType - Boolean property that defines if the control is a container. Containers contain other
controls as children (for example, a toolbar is a container that contains toolbar buttons).

» ID - This is the unique ID of the control.

» Parent - If this control is contained within a container, this will return the parent control.

Visual components such as controls have additional properties (ComClass GuiVComponent):

« Text - The main text of a control. For example, the text in a text control or the text on a button.

e Left, Top, Width, Height, ScreenLeft, and ScreenTop - Number values that return information about
screen coordinates and coordinates within parent containers.

e Changeable and Modified - Boolean parameters that indicate the current state of a control, for example
whether or not the control is changeable or read-only or whether or not the control as been modified.

Best Practices for Testing SAPGUI

Each control type can have additional properties that can be seen in the COM type library using
Ole32View.

Handling Unexpected Windows

If you know that at a point in a script a dialog box may be generated, a dialog box will not display in each
iteration, you must handle the additional dialog box. You can either use an error handler or you can use the
API to query if a certain dialog box has been activated.

For example, if you enter values in a text field and press the Execute button, depending on the entered
value, a dialog box may open on which you have to press an additional button to continue. Then the
transaction continues with a subsequent screen.

You can use SapGuiVerifyWindowAvai lability if a window with a certain ID or title is currently
available. Make sure that you define the severity parameter as informational. Otherwise, the method
will throw an error in cases where the window does not display. Here is an example:

// here is our first screen - we enter some value and hit enter
SapGuiSetActiveWindow("'wnd[0]", "First screen'™);
SapGuiSetText("'usr/txtl", "some text");
SapGuiSendVKey(SAPGUI_VKEY_ENTER);

// now we check for a specific popup
if(SapGuiVerifyWindowAvailability("wnd[1]", "Some Popup Window", false,
SEVERITY_INFORMATIONAL)) then

SapGuiSetActiveWindow("'wnd[1]", "'Some Popup Window'™);
SapGuiPressButton("'usr/btnPOP-OPTION1™);

end;

// we go on with our next screen that we expect in both cases
SapGuiSetActiveWindow("'wnd[0]", "'Next screen');

If there is a situation where different dialog boxes can open and you have to handle each dialog box
individually, you can just verify for the window ID and then check the window title. Here is an example:
// now we check for a new window
if(SapGuiVerifyWindowAvailability("'wnd[1]", null, false, SEVERITY_

INFORMATIONAL)) then
SapGuiSetActiveWindow("'wnd[1]');

// now - check what the window title is and depending on that do some
action

sWindowTitle := SapGuiGetActiveWindowTitle();

if(sWindowTitle = "Some Alert™) then
SapGuiPressButton("'usr/btnPOP-OPTION1");

end;

if(sWindowTitle = "Some other alert'™) then
SapGuiPressButton("'usr/btnPOP-OPTION2™);

end;

end;

Handling windows that have dynamic titles

It's common to see window titles that contain dynamic values (for example, “Change Material 1110 —
(Finished Product)”) when you execute MMO2 transactions to change products. In this example, the
material number is part of the window title.

By default, the recorder scripts the following method call when this window opens:

SapGuiSetActiveWindow(“wnd[0]’, ‘“Change Material 1110 (Finished Product)”,
SAPGUI_MATCH_ExactNoCase);

If you customize your script so that you choose a random material number, then your script will throw an
error as the window title verification will fail. So if your virtual user, for example, picks material number

Best Practices for Testing SAPGUI | 33

“1111”, the resulting title will be “Change Material 1111 (Finished Product)”. This will cause an error as the
verification is performed on the recorded title.

SapGuiSetActiveWindow not only allows you to verify against a constant value, it also allows you to verify
against wildcard expressions and regular expressions. To solve the above described example problem, you
could use the following change to SapGuiSetActiveWindow:

SapGuiSetActiveWindow(“wnd[0]””, “Change Material *, SAPGUI_MATCH WildCard);

Or, if you don’t want to perform a title verification, you can leave the last two parameters. They are optional.
No verification will then be performed.

Known SAP Issues

This topic describes workarounds for issues that may be related to SAP internal issues.

Tables with single rows

When there is only one row in a table, the row count is returned as ‘2’ (‘rowcount=2"). It seems that there is
a second empty row added to these tables. Tables with more than one row entry return the correct number
of rows.

Selecting the second entry in this example would result in an error as the entry is not valid. Therefore,
before selecting an entry, you should confirm that the entry is not empty.

SAP API calls only work in first TMain iteration
The following two method calls have been known to cause problems:

e SapGuiGridGetRowCount
e SapGuiGridSelectCell

These methods have been known to fail in the second iteration of TMain, and also in loops. The internal
COM interface may not be up-to-date. To update the internal COM reference to the control, call the
SapGuiGetProperty method. This method updates the internal COM pointer. You need to call
SapGuiGetProperty on the control just before you see a call that fails in a second iteration. It is
recommended that you use the Name property as every control has this property.

Here is an example:

SapGuiGetProperty(“/usr/somecontrol”, “name”);
SapGuiGridGetRowCount(“/usr/somecontrol”, nCount);

Settings for Large Load Tests

When running large load tests, you should evaluate the following issues:

Agents

Installed Versions: Ensure that all your agents have the same version as the installed SAPGUI client. The
SAPGUI scripting API needs to be installed on all agents. The API needs to be enabled and warning
message boxes need to be disabled.

Numbers of Users on an Agents: To run large load tests you need more agents, rather than stronger
agents. Typically 20 virtual users can be simulated per machine. A normal desktop machine would usually
be able to handle 100 users. This is not the case however. GDI resources begin to run out at that point.
GDlI is the Graphical Device Interface in Windows. When virtual users are simulated, each virtual user
actually uses the SAPGUI client and therefore requires GDI resources for each control on the individual
screens. So, theoretically it is possible to run more than 20 users, but tests and feedback have shown that
Windows resource limitations appear beyond that point. By distributing virtual users across more the one

34 | Best Practices for Testing SAPGUI

windows session on a Windows server OS, you can achieve much higher virtual user numbers, though. In
the System Settings under Agents enable the setting Create multiple sessions and enter the user
credentials required for session creation.

Replay profile settings

Make sure that in replay profile settings the Log control information in TrueLog option is not checked. When
this option is turned on during load tests, each virtual user builds TrueLog with information for all controls
on every window in transactions. Depending on your transactions and the number of controls that are on-
screen, you may experience heavy performance impact with this setting enabled. Therefore, this option
should be turned off during load tests. Only the Log control information on error option should be selected.
This option logs control information for the current window when errors occur. Ensure that you turn this
option on when running Try-Scripts as you want to have this control information in Try-Script Trueogs.

Testing login sequences

Logon sequences are resource intensive and should not be tested in large load tests.

Server-side changes

When running a large load test you may have to change certain server-side parameters that allow
additional users from other machines connecting to the servers. Please consult SAP documentation related
to the rdisp/rfc_max_own_used_wp parameter.

SAP gateways

If your SAP environment uses a SAP gateway machine to connect to your SAP servers, you may run into
the problem that your gateway no longer accepts new connections. This is caused by SAP gateways do not
always recognizing when existing connections are shut down. Sudden aborting of load tests and ungraceful
system shut-downs do not always result in gateway connections to servers being closed. If too many
connections are left open, you may receive a cannot open more client connections error. To
resolve this problem, reboot your gateway service.

Best Practices for Testing SAPGUI

35

SAP eCATT Integration with Silk Performer

SAP eCATT (Extended Computer Aided Test Tool) has been integrated with Silk Performer. SAP’s eCATT
facility allows you to create test scripts in SAP using the scripting language of your choice. eCATT allows
you to use external test tools (i.e., Silk Performer) while utilizing eCATT as a repository for your test scripts.
eCATT also serves as a basic test management solution for triggering script executions. Not only can both
internal and external scripts be executed individually, they can also be combined and executed in
sequence.

eCATT offers import arguments, a mechanism for calling scripts with special input values. Scripts can not
only receive input values, scripts can also set output values when they are executed—scripts can be
executed in sequence, using input values derived from the output values of earlier script executions.

i Note: For more information regarding eCATT, please consult SAP documentation.

Setting Up Integration

This section includes detailed instructions for each of the steps that must be completed to make use of Silk
Performer's eCATT integration. To configure Silk Performer's eCATT integration:

1. On your SAP server, register Silk Performer as an external tool for eCATT.
2. On your SAP server, create a new user account.

3. On the client machine where you will be using Silk Performer in combination with eCATT, install both
Silk Performer and the SAPGUI client.

4. If you access your SAP server via a SAP gateway, you must create a registry key on the client that
defines your default SAPGUI connection.

5. Within Silk Performer system settings, configure SAP eCATT server connection data.

6. Within Silk Performer system settings, define a SAP eCATT directory for extended Silk Performer test
results.

Registering Silk Performer in eCATT

Silk Performer must be registered in the ECCUST_ET SAP table. This is done by calling the
SET_EXTERNAL_TOOL function module, which creates the necessary entries in the ECCUST_ET table.
You need to method using the following values for the parameters:

Parameter Value

TOOL_NAME Silk Performer

PROG_ID SAPeCATTPlugin.BorlandSPeCATT
TOOL_DESC Silk Performer for eCATT
TOOL-DATABASE <blank>

TOOL_RUN_DB <blank>

TOOL_NO_PWD X

TOOL_NO_DB X

You can call this method using the SE37 transaction. On the first screen, enter the function module name
SET_EXTERNAL_TOOL. Then select Test / Single Test from the Function Module menu. In the following
window, enter the parameter values as described above and press the Execute button (F8).

36 | SAP eCATT Integration with Silk Performer

Creating a Specific User Account

To take advantage of eCATT integration using external tools, a standard user must be generated in your
system by your system administrator. This is done by executing the ECATT_GENERATE_ET_USER
program in SE38 (once per system).

After running the report, the following steps should be executed to activate the newly created user role:

1. Intransaction PFCG, enter role SAP_ECET, and select Change. Ignore the subsequent warning that
appears.

2. Switch to the Authorizations tab and select Change Authorization Data.

3. Place your cursor over the top node of the tree display (SAP_ECET) and select Authorizations /
Generate.

4. Click Back to return to the role maintenance screen.
5. Click Save.

Installing the Client Software

On the machine where you plan to use Silk Performer with the eCATT integration, you must first install your
SAPGUI client and afterward apply the Silk Performer installation. Whenever eCATT initiates the integration
between Silk Performer and eCATT, Silk Performer installs a COM object on the agent that is called by SAP
eCATT.

Setting the Registry from Behind a SAP Gateway

If you are accessing your SAP system via a SAP gateway, you must create a registry key for the
communication between Silk Performer and eCATT. eCATT forwards the connection that is to be used to
Silk Performer, but it is unaware of gateways. Therefore the connection string that is passed from eCATT
cannot be used if you are behind a gateway.

You have to create a registry key under HKLM\Software\Si lk. The key must be a string value with the
name SAPeCATTLogonID; the value must be the SAP login ID that you use when logging in to your system
(i.e., the name of your SAP connection that you specify in SAPLOGON).

i Note: On 64-bit machines the key is HKLM\Software\Wow6432Node\Si I k.

Configuring SAP eCATT Connection

Connection details for Silk Performer's communication with SAP eCATT must be specified in Silk Performer
system settings. There are two options for connecting to SAP—you can either specify a SAPLOGONID or
you can specify AS Host, RFC Type, and SystemNr settings. With either option you must specify client,
language, username, and password details. Note that when you select a SAPLOGONID the AS Host, RFC
Type, and SystemNr fields are grayed out.

To specify SAP eCATT connection data:

1. Select the System command from the Silk Performer settings menu.
2. On the System Settings - Workbench dialog, select the SAPGUI group icon.

3. The eCATT Connection tab is selected by default. From the SAPLogon drop box, select your SAP login
ID. This box is preconfigured with all available SAP login IDs.

4. In the AS Host edit field, enter the combined router/application-server string (e.g., H/195.61.176.22/H/
194.117.106.130/S/3297/H/cpce801).

5. In the RFC Type edit field, enter either ‘3’ (for R/3) or ‘2’ (for R/2).

SAP eCATT Integration with Silk Performer

37

38

6. Inthe System NR edit field, enter the SAP system number.

7. In the Client edit field, enter the internal client ID number from the SAP server (i.e., the value that must
be entered on the SAP login screen).

8. From the Language drop box, select your language preference. The values ‘EN’ (English) and ‘DE’
(German) are preconfigured, though you can specify any other language abbreviation string.

9. In the Username edit field, enter your SAP eCATT username.
10.In the Password edit field, enter your SAP eCATT password.

11.0nce you have completed this dialog, click Test Connection to confirm that you have specified accurate
connection details. If your connection attempt is unsuccessful, please confirm your settings.

12.Click the OK button once you have completed configuring SAP eCATT connection settings.

System Settings - SAP ? e
| Sysem | eCATTConnection eCATT Resuits
SAP eCATT connection parameters
- é SAPLogon: | <none> ~
r AS Host: | |
r RFC Type: | |
(2] System Nr.: | |
e Client: [|
language: [EN v|
. Usemame: | |
Password: | |
Test Connection. ..

Cancel Default Help

Configuring eCATT Extended Results

To enable the viewing of Silk Performer result files from within SAPGUI, you can specify a UNC path to a
public file share in which extended Silk Performer test results can be stored and accessed by users (e.g., \
\fileserver\ecattresults). Silk Performer will use the specified directory to store the results of Silk Performer
test executions initiated via SAP eCATT. Users can easily access test results by clicking a link in the SAP
eCATT sGUI.

To configure eCATT extended results:

Select the System command from the Silk Performer Settings menu.

On the System Settings — Workbench dialog, select the SAPGUI group icon.
Select the eCATT Results tab.

Select the Use SAP extended results checkbox.

In the SAP extended results directory field, browse to and select the directory that is to be used for SAP
extended results.

a s D E

SAP eCATT Integration with Silk Performer

6. Click OK to save your settings.

Systern Settings - SAP 7 >

eCATT Connection CATT Results

SAP eCATT extended results
t;,'-; lUze SAP extended results

SAP extended results root directory:
lsers'user\AppData’Local\Silk\Silk Performer 19.0\eCattExtendedResults\, [|

OK || Cancel || Defat | Hep

Interacting with eCATT from Silk Performer

Silk Performer can be run in eCATT Standalone mode. In this mode, Silk Performer can be used to:

» Upload projects to SAP eCATT
* Open projects from SAP eCATT

Silk Performer also allows you to specify import and export arguments that can be used to exchange
values between eCATT scripts.

Uploading a Project to eCATT

The menu entry Upload Project into eCATT from the File / SAP eCATT menu allows you to both upload
new projects to SAP and update existing projects. When uploading a project, the project is exported with all
of its dependent files (e.g., data files, include files) and uploaded to SAP eCATT to a Blobld and Version
that you define in the Save Project into SAP eCATT wizard.

The first step prompts you for the SAP server connection that is to be used for uploading the project:
The second wizard step prompts you for the Blobld and Version:

In the third step you have to define the user type that is to be the primary user type in the script. As you
may have multiple user types configured in your project, you must define the user type that is to be
executed by default when eCATT executes scripts:

SAP eCATT Integration with Silk Performer | 39

Opening a Project from eCATT

The menu entry Open Project from eCATT from the File / SAP eCATT menu allows you to open an existing
project from SAP eCATT.

When opening a project, the project is downloaded to a temporary directory and then imported to Silk
Performer Workbench. A downloaded project is identified by the Blobld and Version that you define in the
Open Project from SAP eCATT wizard.

The first step in the wizard prompts you for the SAP server connection that is to be used to download the
project:

The second step prompts you for the Blobld and Version of the project that is to be downloaded.

Now you can make changes to the project. If you want to update the project in eCATT after you have
completed your changes, simply upload the project using the Upload Project into SAP eCATT command on
the SAP eCATT menu.

Defining Import/Export Arguments

eCATT offers import arguments, a mechanism for calling scripts with special input values. Scripts can not
only receive input values, scripts can also set output values when they are executed—scripts can be
executed in sequence, using input values derived from the output values of earlier script executions.

To define import and export arguments, Silk Performer project attributes are used. Project attributes that
serve as input arguments must have the prefix SAPIMPORT _. Project attributes that serve as output
arguments must have the prefix SAPEXPORT _.

f Note: Only project attributes of type string are accepted, since SAP only allows string data types.

The following is an example that defines two input arguments and one output argument:

In ascript you access these input values as follows:

AttributeGetString("'SAPIMPORT_Username'™, sUsername);
AttributeGetString("'SAPIMPORT_Password", sPassword);

The output value is set as follows:
AttributeSetString("'SAPEXPORT_SomeResult', 'thats myresult'™);

Interacting with Silk Performer from eCATT

From eCATT it's possible to utilize Silk Performer as an external test tool by:

« Creating a new Silk Performer script
« Editing/Viewing an existing Silk Performer script
» Executing a script in one of three modes:

* “Normal” without Silk Performer Workbench

« “Debug Mode” with Silk Performer Workbench and the option of adjusting settings before executing
the script

« “With Surface of External Tool” with Silk Performer Workbench

Creating a New Silk Performer Script

Within SAP eCATT (SECATT transaction) you can create a new Silk Performer script by specifying a test
script name (blobID), a version, and Silk Performer for eCATT as the external tool, as shown below:

40 | SAP eCATT Integration with Silk Performer

[eCATT Object Edit Goto Utiities Enwironment System Help M| ox

0 (K B0 7T 0%
Extended Computer Aided Test Tool: Initial Screen
B s Tha GHMm
Test Configuration
= Test Script Z_TEST1
Version 1
External Tool SP FOR ECATT -
Test Data
System Data
SAF “ 4

Now click the Create Object button (or press F5). This creates an empty Silk Performer script and stores it
in the eCATT repository. On the following screen you must enter all required fields before you can edit the
script with Silk Performer. Once you have completed all required fields, click the Script toolbar button. Silk
Performer then opens and downloads the newly created project in Edit mode (for other available options,

please see the next chapter).

Editing/Viewing an Existing Silk Performer Script

Within SAP eCATT (SECATT transaction) you can both edit and view an existing Silk Performer script by

specifying the test script name (blobID) and the version, as shown below:

[eCATT Object Edit Goto Utiities Environment System Help M| ox
V] KT Q00 N 0%

Extended Computer Aided Test Tool: Initial Screen

s, WhAe eRMm s

Test Configuration

 Test Script [z_T1EsTh I
Version 1
External Tool ~

Test Data

System Data

4

«‘

SAP eCATT Integration with Silk Performer

41

42

Now you can either click the Display Object (F7) button or the Change Object (F6) button to view or edit the
eCATT script. On the following screen you can click the Script button to either view or edit the script in Silk
Performer.

If you are only viewing the script, Silk Performer downloads the project from SAP eCATT and opens it in
Read-Only mode. You can go back to eCATT by selecting Close Project without Save from the SAP eCATT
menu.

If you are opening the script in Edit mode, Silk Performer downloads the project from SAP eCATT so that
you can modify the script. Once you have completed your modifications you have three options for
returning to SAP eCATT—select one of the following from the SAP eCATT menu:

e Save Project into SAP eCATT. The project is saved to SAP eCATT and you can continue working in
SAP eCATT.

» Save Project into SAP eCATT and Continue. The project is saved to SAP eCATT, but remains open in
Silk Performer so that you can perform further modifications.

« Close Project without Save. The project is closed without saving your changes and you can continue
working in SAP eCATT.

Executing a Silk Performer Script

Within SAP eCATT (SECATT transaction) you can execute a Silk Performer script by specifying a test script
name (bloblD) and version, as shown below:

Once you have entered these values, click the Execute button (F8) to go to the execution dialog where you
can specify start options for the script.

Depending on the Mode for Ext. Tool selection, the test will either be executed without Silk Performer
Workbench (Normal), with Silk Performer Workbench (With Surface of External Tool), or in the attended
debug mode with Silk Performer Workbench (Debug Mode).

In With Surface of External Tool mode, Silk Performer launches and immediately executes the primary user
type. After executing, Silk Performer closes.

In Debug mode, Silk Performer opens the Baseline test dialog and waits for the user to begin the test. The
user can perform some modifications to the project before the test is actually executed. When the test is
finished, the user can use the Finish and Return Results command on the SAP eCATT menu to report
back the results of the most recently executed test run.

As with other eCATT scripts, Silk Performer scripts can be executed from other eCATT scripts and
executed in sequence with other scripts.

To do this, create a simple eCATT script that calls an external script using the REFEXT method. Once you
have specified the blobld and version of the script that you want to execute, double-click the second
parameter of REFEXT and explore the external project (see the example below):

You will see the various scripts that are there-one should be marked is_main. You will also see all import
and export arguments.

Limitations

The following points should be considered when working with the Silk Performer eCATT integration.

Script name lenght

When uploading a Silk Performer project, you must specify the primary script. This is the user type that will
be executed by default and marked as the main script within eCATT. The name of the user type is a
combination of the BDL script name, user group, and profile (e.g., a script called testl.bdf that defines a
user group called VUser, and a profile called Profilel, results in an internal representation of the user type
as testl.bdf VUser__ Profilel).

SAP eCATT Integration with Silk Performer

When SAP triggers Silk Performer to execute a script, SAP specifies the name of the primary script as
shown in the example above, (testl.bdf VUser__ Profilel).

A bug in the current versions of SAP eCATT truncates such passed values to 32 characters. Though SAP
will likely address this issue in future patches, it is quite possible that you are running a SAP system with
this limitation.

The problem with the 32-character limitation is that during execution in normal mode, Silk Performer can
not find the passed user type because the name has been truncated. Therefore you will receive an error
indicating that the script can not be found.

To work around this problem, make sure that the combination of script name, user group, and profile does
not exceed 32 characters—28 characters in fact as 4 underscore characters are used to separate the
values. So save your script files with short names, use short names for user groups, and use short names
for profiles.

Default values for arguments

During testing efforts with various SAP systems, a problem with default values in eCATT arguments has
been identified. With some older patch levels of SAP eCATT, default values are not passed to Silk
Performer when running script executions from external eCATT scripts. If you experience a problem of
default values not being passed for arguments, update your SAP eCATT patches.

Recording in edit-mode

When recording a SAPGUI script in Silk Performer while in the “edit” mode of an eCATT script triggered
from within SAP eCATT, you run into the following problem: When you begin a new session during
recording you actually have two SAP connections open on your system—the connection that you are
recording on and the connection that is still open from eCATT. Therefore you will see two
SapGuiOpenConnection calls scripted in your script, and the SapGuiSetActiveConnection contains a
connection ID of 1. This is what you will see in your recorded script:

gsConnlID := SapGuiOpenConnection(’" ecatt connection",
""SapGuiOpenConnection™);

SapGuiOpenConnection(*" recorded connection’,

""SapGuiOpenConnection™);

SapGuiSetActiveConnection('/app/con[1]");

You must remove the first SapGuiOpenConnection entry and change the SapGuiSetActiveConnection to
use the return value of the 2nd SapGuiOpenConnection. After this modification, the script should look like
this:

gsConnlID := SapGuiOpenConnection(" recorded

connection', '"SapGuiOpenConnection™);
SapGuiSetActiveConnection(gsConnliD);

SAP eCATT Integration with Silk Performer

43

	Contents
	Introduction
	Client and Server Requirements
	Available Functions

	Recording SAPGUI Test Scripts
	Generating Test Scripts
	Exploring Recorded Scripts
	Executing TryScripts
	How Silk Performer Handles SAPGUI Replay
	Exploring TrueLogs

	Customizing SAPGUI Test Scripts
	SAPGUI TrueLog Structure
	Customizing Input Parameters
	Customizing SAPGUI User Input Data
	Analyzing Result Files
	Further Steps for Load Testing

	Best Practices for Testing SAPGUI
	Prerequisites for SAPGUI Load Tests
	SAPGUI Client Versions
	Testing Logon Sequences
	Customizing Input Data
	Prerequisites for Using Silk Central
	Customizing Scripts
	Defining Verification Loads
	Using Silk Performer Projects in Silk Central

	Accessing Low-Level Properties
	Handling Unexpected Windows
	Known SAP Issues
	Settings for Large Load Tests

	SAP eCATT Integration with Silk Performer
	Setting Up Integration
	Registering Silk Performer in eCATT
	Creating a Specific User Account
	Installing the Client Software
	Setting the Registry from Behind a SAP Gateway
	Configuring SAP eCATT Connection
	Configuring eCATT Extended Results

	Interacting with eCATT from Silk Performer
	Uploading a Project to eCATT
	Opening a Project from eCATT
	Defining Import/Export Arguments

	Interacting with Silk Performer from eCATT
	Creating a New Silk Performer Script
	Editing/Viewing an Existing Silk Performer Script
	Executing a Silk Performer Script

	Limitations

