
Silk Performer 20.5

SAPGUI Tutorial

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-28

ii

Contents

Introduction .. 4
Client and Server Requirements ... 6
Available Functions ... 7

Recording SAPGUI Test Scripts ..8
Generating Test Scripts ...8
Exploring Recorded Scripts .. 14

Executing TryScripts ...14
How Silk Performer Handles SAPGUI Replay ..15
Exploring TrueLogs ...15

Customizing SAPGUI Test Scripts ..17
SAPGUI TrueLog Structure ...17
Customizing Input Parameters .. 18
Customizing SAPGUI User Input Data ..21
Analyzing Result Files ...26
Further Steps for Load Testing ..27

Best Practices for Testing SAPGUI ...28
Prerequisites for SAPGUI Load Tests ... 28
SAPGUI Client Versions ..28
Testing Logon Sequences ...28
Customizing Input Data ...30
Prerequisites for Using Silk Central ...30

Customizing Scripts ..30
Defining Verification Loads ...31
Using Silk Performer Projects in Silk Central ... 31

Accessing Low-Level Properties ... 32
Handling Unexpected Windows .. 33
Known SAP Issues ..34
Settings for Large Load Tests ..34

SAP eCATT Integration with Silk Performer ...36
Setting Up Integration ... 36

Registering Silk Performer in eCATT ..36
Creating a Specific User Account ...37
Installing the Client Software ..37
Setting the Registry from Behind a SAP Gateway ... 37
Configuring SAP eCATT Connection ..37
Configuring eCATT Extended Results ..38

Interacting with eCATT from Silk Performer .. 39
Uploading a Project to eCATT .. 39
Opening a Project from eCATT .. 40
Defining Import/Export Arguments ...40

Interacting with Silk Performer from eCATT .. 40
Creating a New Silk Performer Script ...40
Editing/Viewing an Existing Silk Performer Script .. 41
Executing a Silk Performer Script ...42

Limitations ... 42

Contents | 3

Introduction
Overview

This tutorial provides the information you need to record and customize SAPGUI test scripts.

Silk Performer offers recording and replay support for the load testing and functional testing of SAP
systems that use the SAPGUI scripting interface. Silk Performer's unique content verification feature
enables you to verify application functionality even under real-world load conditions - and thereby intercept
application errors that occur only under load.

Test scripts created for functional testing can be reused for load testing purposes, without requiring any
changes.

Together with its outstanding support for the load testing of Web applications, Silk Performer supports load
and functional testing of SAP R/3 4.6C, SAP R/3 Enterprise (4.7), and mySAP Business Suite (and higher)
through SAPGUI Client 6.2 (and higher) for Windows and HTML, as well as with mySAP Enterprise Portal.

Note: This tutorial offers only a brief overview of the functionality that is available with Silk Performer
and TrueLog Explorer. Please see the Silk Performer Help and the TrueLog Explorer Help for full
details of available functionality.

Scripting

In addition to a powerful BDL API for SAP that enables programmers to effectively customize SAP test
scripts, Silk Performer also provides TrueLog technology for SAP—offering easy visual script analysis and
customization.

TrueLogs provide complete visual representation of all actions and results that are generated by test
scripts. Screenshots are captured during test runs and details regarding all visible GUI controls are logged.
Using TrueLog Explorer’s intuitive point-and-click interface, you can visually customize all user-input data
and create content verification checks for return data. Simply select the input values that you wish to
customize, or the result values that you wish to verify, and then choose any appropriate parsing,
parameterization, or verification functions. All customization and verification functions are then
automatically generated and inserted into your BDL script. No manual scripting is required.

Functional testing

Silk Performer provides functional and load testing with a single tool. Simply reuse your scripts as both
functional and load testing scripts using the same script API.

Front-end analysis

Using Silk Performer’s TrueLog On Error functionality for SAP, you can visually inspect the actions of SAP
virtual users and SAP system responses that result in error conditions. In this way, you can visually analyze
error conditions from the virtual-user perspective (the front-end).

SAP monitoring

Silk Performer offers five Performance Explorer monitors that enable you to query SAP server-side
performance values.

SAP eCATT

SAP’s eCATT (Extended Computer Aided Test Tool) facility allows you to create test scripts in SAP using
the scripting language of your choice. eCATT allows you to use external test tools such as Silk Performer

4 | Introduction

while utilizing eCATT as a repository for your test scripts. See SAP eCATT Integration With Silk Performer
for details.

Enabling SAP scripting

SAPGUI record/replay technology is based on the SAPGUI Scripting API, which must be enabled on both
the server and client side.

The SAPGUI Scripting API is not available in all SAPGUI client versions; therefore you must confirm your
patch level. Please refer to Enable SAP Scripting in the Silk Performer Help for details.

Checking SAP patch level

SAPGUI scripting is not supported by all versions of SAP. Therefore it is necessary that you confirm that
your installation offers this support. Make sure that you have the latest SAPGUI patch level.

To confirm the SAPGUI patch level:

1. Launch the SAPGUI logon window by clicking Start > Programs > SAP Front End > SAPLogon and
choose the About SAP Logon menu item from the window menu.

2. The SAPGUI version information dialog box opens and displays the current patch level.

Profile settings

Silk Performer SAPGUI support is configurable through Silk Performer profile settings.

Note: Make sure that in replay profile settings the Log control information in TrueLog option is not
checked. When this option is turned on during load tests, each virtual user builds TrueLog with
information for all controls on every window in transactions. Depending on your transactions and the
number of controls that are on screen, you may experience heavy performance impact with this
setting enabled.

Recording settings

The following recording settings can be configured on the profile settings’ Recording tab:

Script logon as
single function

When enabled, the logon procedure is scripted as a SapGuiLogon API call. When
disabled, multiple API calls, for example setting username, setting password, and
hitting Enter, are scripted.

Script low level
functions

Rather than scripting high-level API functions, for example SapGuiSetText, low-
level API functions are scripted, for example SapGuiInvokeMethod and
SapGuiSetProperty.

Script timers Most SAPGUI API functions take an optional timer parameter. When such a
parameter is defined, measures are generated during replay. When this option is
enabled, the SAPGUI recorder automatically scripts appropriate timer names for
each function.

Attach to existing
SAP session

When enabled, the SAPGUI recorder attaches to an existing SAPGUI session
without recording the SapGuiOpenConnection statement.

Record window
title verification

When enabled, the SAPGUI recorder scripts SapGuiSetActiveWindow with the
window title so that the title can later be verified during replay.

Common settings The following settings are common to both recording and replay.

Log level Defines the logging level. For troubleshooting, Debug should be used. Otherwise
Normal should be used. When running large load tests, logging can be Disabled
to reduce memory consumption.

Introduction | 5

Capture
screenshots

When enabled, screenshots are captured for each new window that is activated.
This option is only available when Show SAP GUI during replay is enabled during
script replay.

Capture
screenshots for
every action

When enabled, screenshots are captured for each user action that causes a round-
trip to the SAP server. This option is only available when Capture screenshots is
enabled.

Log control
information in
TrueLog

When enabled, control information for each control on the active window is logged
to the TrueLog. This allows you to use TrueLog Explorer’s customization feature.
This option should be disabled when running load tests as it consumes additional
resources.

Log control
information on
error

When enabled, control information for each control on the active window is logged
to the TrueLog when errors occur during replay. This allows you to troubleshoot
replay problems by capturing the current state of all controls on the screen when
errors occur. It is recommended that you use this option during load tests rather
then Log control information in TrueLog, which is resource intensive.

Highlight controls
(replay only)

With this setting, controls that are accessed during replay by any API call will be
highlighted on the SAPGUI Client. This option is only valid when Show SAP GUI
during replay is enabled.

Replay settings

The following replay settings can be set on the profile settings’ Replay tab:

Replay
timeout

Defines timeout during replay. When there is no response from the server within this
timeout period, a transaction-exit error is thrown and the affected VUser is restarted.

Show
SAPGUI
during replay

When enabled, the SAP GUI client is shown during replay. This option can only be used
for TryScripts. By default, replay for load tests is GUI-less.

Enable client-
side scripting

SAPGUI Scripting must be enabled on each client machine through the Options menu of
the SAPGUI client application. When running a load test on multiple agents, this setting
must be changed manually on each machine before the load test begins. By enabling this
option, Silk Performer changes this setting automatically on each agent before starting
load tests.

Use new SAP
Visual Design

SAPGUI can be run in one of two visual modes: original design or new design mode.
This setting can be changed through the SAP Configuration Tool. By enabling/disabling
this option, Silk Performer performs these changes automatically before starting load
tests. This option allows you to compare resource consumption between the old and new
visual designs. The measure tab contains settings for replay measurement.

You can either enable all timers for all control types, or select only those timers that are of
interest to you. Timers are only created for those method calls that have the optional
timer parameter specified.

For a description of these timers, please refer to SAP Results in the Silk Performer Help.

Client and Server Requirements
On the server:

• required patch level for SAPGUI support must be installed
• Sapgui/user_scripting: profile parameter must be set to True. This can be changed using the transaction

RZ11.

6 | Introduction

On the client:

• SAPGUI Client 6 or 7
• latest patch level
• SAPGUI scripting must be installed and enabled. To enable SAPGUI scripting:

• Start the SAPGUI client.
• Open the Options dialog.
• Select the Scripting tab.
• Select Enable Scripting and uncheck the two security check boxes.

Available Functions
Silk Performer uses a testing interface called SAPGUI scripting API, which has been introduced by SAP for
SAPGUI Windows clients.

To record and replay SAPGUI scripts, some requirements must be met. To prepare your environment for
SAP testing, refer to SAP Patch Levels in the Help.

Silk Performer offers both a low- and high-level API for testing SAP systems. Please see the Help for a
complete list of functions and function descriptions.

Introduction | 7

Recording SAPGUI Test Scripts
Silk Performer offers record and replay support for the load testing and functional testing of SAP systems
that use the SAPGUI scripting interface.

This section shows you how to generate a test script by recording a SAPGUI application and then how to
analyze the resultant test script by replaying it in a trial run.

Generating Test Scripts
To generate a test script by recording a SAPGUI application session:

1. In Silk Performer, click File > New Project.

2. Enter a project name and optionally a project description.

3. Select the application type ERP/CRM > SAP > SAPGUI and click Next.

4. If the SAPGUI application profile displays in the Application Profile field, skip the next step.

5. If the SAPGUI profile does not display, you do not have a SAPGUI client installed on your computer.
Install it and continue. If SAPGUI still does not display, you need to create the application profile
manually: Click Settings. The Application Profiles tab of the system settings displays. Click Add and
specify saplogon.exe in the Application path field. In the Protocol selection area, check the
SAPGUI check box. Click OK to add the profile and OK to close the system settings.

6. Click Start recording to launch saplogon.exe.

8 | Recording SAPGUI Test Scripts

7. Specify the SAP application server that is to be tested. This tutorial illustrates the testing of a SAP

calendar application.
8. On multi-lingual SAP systems it is recommended that you specify the language that is to be used by the

SAPGUI client before recording begins. This prevents possible language differences between recording
and replay, for example different languages may be selected by different load test agents, which will
lead to Window Title Verification errors. This change can be made on the Properties dialog of each
SAP connection in the SAPGUI login application. Edit the properties of each connection and switch to
the Codepage tab.

9. Instead of Default, select your preferred language. Click OK.

Recording SAPGUI Test Scripts | 9

10.Now simulate the actions of a typical user transaction. Login with a user name and password.

11.Expand the tree and double-click the Owner item.

10 | Recording SAPGUI Test Scripts

12.Right-click a time frame and select Create Appointment.

13.Define the appointment by setting Title, Appointment Type, Time, and Priority. Then click Save.

Recording SAPGUI Test Scripts | 11

14.Now edit the appointment you created by double-clicking it.

15.Click Delete (the trash can icon) to delete the appointment. A confirmation dialog opens. Click Yes.

12 | Recording SAPGUI Test Scripts

16.Click Exit (the yellow circular button) to exit the calendar application.

17.Click Exit again and confirm that you wish to exit the application.

18.Close the SAPLogon application. This ends your simulated user transaction.
19.Stop the Silk Performer Recorder and save the recorded script file.

Note: If no script has been recorded, review Client and Server Requirements.

Note the following in the generated BDL script:

• The connection is opened with the full connection string.
• During replay, new active windows are verified based on their titles.
• The login string must be customized with a parameter because the password value was not retrieved

during recording.

Recording SAPGUI Test Scripts | 13

Exploring Recorded Scripts
The first step in analyzing and customizing a test script is executing a trial run to look for replay errors.

Both the recorded and replayed test scripts can be opened in TrueLog Explorer. TrueLog Explorer supports
the visualization of SAPGUI requests and responses in the same way it supports the visualization of HTTP
client requests and HTTP/HTML server responses. See SAPGUI Test-Script Customization and the
TrueLog Explorer Help for full details regarding TrueLog Explorer.

Executing TryScripts
The default settings for TryScript runs include live display of data downloaded during testing and the writing
of log and report files. With TryScript runs, only a single virtual user is run and the stress test option is
enabled so that there is no think time or delay between transactions.

To execute a TryScript run:

1. Click Try Script on the workflow bar. The Try Script dialog opens.

2. To view rendered page transitions during a TryScript run, enable Animated Run with TrueLog
Explorer

3. Click Run.

Note: You are not running an actual load test here, only a test run to see if your script requires
debugging.

14 | Recording SAPGUI Test Scripts

4. The TryScript run starts. The Monitor window opens, giving you detailed information about the
progress.

Note: If you enable the Animated setting, TrueLog Explorer opens, showing you the data that is
actually downloaded during the trial run. Each main SAPGUI window accessed during recording is
listed as a high-level SapGuiSetActiveWindow API node in the TrueLog Explorer tree view. All
recorded server round-trips and user actions are listed as subnodes of corresponding
SapGuiSetActiveWindow nodes. Animated mode for TryScripts is not really necessary as replay
includes the GUI by default - having an additional animated TrueLog might confuse results.

How Silk Performer Handles SAPGUI Replay
For SAPGUI script replay, Silk Performer uses an architectural de-coupling of the Silk Performer virtual
user and the SAPGUI ActiveX control. This means that when there is a crash or failure of the SAPGUI
process, Silk Performer virtual user measurements are retained. This is achieved by running a separate
SAPGUI replay process, called PerfSapGuiReplay.exe, for each virtual user. Upon a SAPGUI API
timeout or crash, the affected virtual user process automatically restarts in the background. Silk Performer
thereby recognizes and reports potential instabilities of the SAPGUI client. This minimizes test failures
when problems occur within SAPGUI itself and allows for more reliable testing.

Note: The SapGuiRestart() function enables you to force a restart of the SAPGUI engine when an
unstable or inconsistent state is detected.

Exploring TrueLogs
Once you have executed a trial run, you can explore the TrueLog that was generated by the script run by
clicking on the Explore TrueLog file on the Try Script Summary page.

Recording SAPGUI Test Scripts | 15

16 | Recording SAPGUI Test Scripts

Customizing SAPGUI Test Scripts
This section explains how to customize a SAPGUI load test script based on the results of a TryScript run.

Once you have recorded a test script and identified session-specific errors through a TryScript run, use
TrueLog Explorer to customize the test script so that it can handle session-specific strings, for example
user IDs, password, and others.

Note: TrueLog Explorer is a powerful test script customization tool that offers much more functionality
than is demonstrated in this tutorial. Refer to othe TrueLog Explorer Help for details regarding content
verifications, content parsing, comparison of record/replay TrueLogs, and more.

Once you have generated a load test script with Silk Performer and executed a TryScript run, TrueLog
Explorer can help you customize the script by:

• Adding content verifications: Using the Add Verifications tool, you can gain tremendous insight into
data that is downloaded during load tests, enabling you to verify that the content that is to be sent by the
server is correct. Verifications remain useful after system deployment for ongoing performance
management. Refer to the TrueLog Explorer Help for details.

• Adding parsing functions: TrueLog Explorer allows you to insert SAPGUI parsing functions visually in
Source screenshot view and the Control view tab. Manual code writing is not required. TrueLog
Explorer automatically generates parsing functions in scripts. Refer to the TrueLog Explorer Help for
details.

• Parameterizing input data: With user data customization you can make your test scripts more realistic
by replacing static recorded user input data with dynamic, parameterized user data that changes with
each transaction. Manual scripting is not required to create such "data-driven" tests.

For each SAPGUI function call that changes input data, you can verify return values, parse values, and
customize input data. These operations can be executed from both Source screenshot view, by right-
clicking within a control, and the Controls tree view.

SAPGUI TrueLog Structure
The three windows that are displayed with SAPGUI TrueLogs are:

• Tree list (left-hand pane): Lists all SAPGUI API calls that were included in the test run.
• Source window (upper right-hand pane): Displays the state of the GUI at each API node. The End

Request and Start Request view tabs enable you to view both the initial and final states of each
SAPGUI server request, to see how the server request has affected the GUI display, for example the
display of a new dialog box or error message.

Note: TrueLog screengrabs are captured only during TryScript runs, not load tests.

• Information window (lower right-hand pane):

Displays data regarding the most recent test run. The view tabs in this pane that are active and
applicable to SAPGUI TrueLogs are Info, BDL, and Controls. The Controls tab offers a convenient
means of viewing and working with all customizable controls that are included on each GUI screen.

Customizing SAPGUI Test Scripts | 17

SAPGUI TrueLog functions

Two of the main SAPGUI function types that TrueLog Explorer relies on are:

• SapGuiSetActiveWindow: These are top-level API nodes that indicate the generation of new GUI
windows. All actions taken on windows are grouped below their corresponding
SapGuiSetActiveWindow functions.

• SapGuiRoundTrip: These are virtual nodes; there are in fact no API calls called SapGuiRoundTrip
that are sent to the server. These nodes are used to group all client-side actions that occur in the
course of each server round-trip. Both the before and after states of round-trips can be viewed. Multiple
roundtrip nodes may be included under each SapGuiSetActiveWindow node.

Customizing Input Parameters
In the previous section, replay execution was halted when the replay engine checked for ****** in the
password field and an error resulted. Until the password string is customized with a variable, the script will
not replay correctly.

To customize an input parameter:

1. Select the failed SapGuiLogon method API call in TrueLog Explorer's tree view.

2. Select the password field in the rendered GUI window.

3. Right-click in the field and select Customize Value.

18 | Customizing SAPGUI Test Scripts

Note: All GUI controls on the window at the selected API node are alternately displayed below on
the Controls tree window. Fields that are changed by the current call, and can therefore be
customized, are highlighted in orange. You can right-click values in the Controls window to access
the same customization functions that are available above in the rendered GUI window. Most
controls can be parsed for their values. Verifications can also be defined for most controls. All
available functions are accessible through context menus.

4. The Parameter Wizard opens. The Parameter Wizard enables you to create a new parameter for the
recorded password. To keep this example simple, a constant parameter type will be used. Click the
Create new parameter option button and click Next.

Note: Refer to the Silk Performer Help for full details regarding the Parameter Wizard.

Customizing SAPGUI Test Scripts | 19

5. Click the Constant value option button and click Next.

6. The data type to be used is string. Click Next.

20 | Customizing SAPGUI Test Scripts

7. Define a meaningful Name for the new parameter and enter your user password as the string Value.

8. Now execute a new TryScript run. Your password parameter will automatically be inserted into the
replayed test script and the script should run without error.

Customizing SAPGUI User Input Data
Under real world conditions, SAPGUI application users submit unpredictable combinations of data into
forms. One goal of effective SAPGUI application testing is to emulate such irregular and diverse user
behavior using test scripts.

You can customize the user input data that’s entered into forms during testing with TrueLog Explorer's
Parameter Wizard. The Parameter Wizard lets you specify values to be entered into form fields—enabling
your test scripts to be more realistic by replacing recorded user input data with randomized, parameterized
user data.

To customize user input data for a form field:

1. Select the Step through TrueLog toolbar button to display the Step through TrueLog dialog box.

2. Click the Customizable calls option button and click Find Next to step through all form fields in the
TrueLog that offer input customization.

3. When you arrive at a control field that reflects user data input that you wish to customize, right-click in
the control and select Customize Value.

Note: For this example, select the Priority field. Controls that can be customized are outlined in
orange. Controls that have already been customized are outlined in green. Controls that are
outlined in blue can have their values parsed or verified, but they cannot be customized.

Customizing SAPGUI Test Scripts | 21

4. With the Parameter Wizard you can modify script values in one of two ways. You can either use an
existing parameter that’s defined in the dclparam or dclrand section of your script, or you can create a
new parameter, based on either a new constant value, a random variable, or values in a multi-column
data file. Once you create a new parameter, that parameter is added to the existing parameters and
becomes available for further customizations.

Note: This example demonstrates the process of creating a parameter based on a new random
variable. Refer to the Silk Performer Help for complete details regarding the functionality of the
Parameter Wizard.

22 | Customizing SAPGUI Test Scripts

5. Click the Create new parameter option button and click Next to create a new parameter.

6. The Create New Parameter dialog box opens. Select the Parameter from Random Variable option
button and click Next.

7. The Random Variable Wizard opens with the Individual strings random variable type selected. A brief
description of the highlighted variable type displays in the lower window.

Customizing SAPGUI Test Scripts | 23

8.

Click Next.

9. The Name the variable and specify its attributes screen opens. With SAPGUI applications, all available
list box values are pre-loaded with weight values of 1. Enter a name for the variable in the Name text
box and click Next.

24 | Customizing SAPGUI Test Scripts

10.Per usage random value generation is selected by default. Click Finish.

11.Click Finish to modify the BDL form declaration of your test script so that it uses the random variable for
the given form field in place of the recorded value. The new random variable function displays below in
BDL view.

12.Initiate a TryScript run with the random variable function in your test script to confirm that your script
runs without error.

Note: Control that have been customized display with green highlighting.

You may find that additional customizations are useful, for example randomizing username and
appointment-time input parameters for load testing purposes. Customization is possible for nodes that

Customizing SAPGUI Test Scripts | 25

involve changes of text, combo boxes, check boxes, and option-button controls. Refer to the TrueLog
Explorer Help for full details regarding available script customizations.

Note: It is recommended that you not verify or parse values that occur in the last nodes of round-trips.
This is because functions are scripted after selected API calls. For example, if you verify a
SAPGuiPressButton function that closes the current window, the verification function will subsequently
attempt to verify a control on a window that has already been closed—and a replay error will occur.

Analyzing Result Files
Each TryScript run generates an Overview Report. See example below.

Depending on measure settings in the active profile, measures are generated for method calls that have
the optional timer parameter defined and also force a round-trip to the SAP server. Note that not all API
calls force server round-trips.

Each server round-trip creates the following measures:

Round Trips Before SAPGUI sends data to the server it locks the user
interface. In many cases it will not unlock the interface
after data is returned by the server, but instead sends a
new request to the server. Controls use this technology to
load data they need for visualization. A count of these
token switches between SAPGUI and the server is
offered with this measure.

Flushes Counts the number of flushes in the automation queue
during server communication.

Interpretation Time [s] The interpretation time begins after data has arrived from
the server. It comprises the parsing of the data and the
distribution to the SAPGUI elements.

Response Time [s] This is the time that is spent on network communication
from the moment data is sent to the server to the moment
the server response arrives.

26 | Customizing SAPGUI Test Scripts

Note: An overall counter for all round trips is shown in Silk Performer's Monitor window during load
tests. This counter can also be monitored in Performance Explorer as a Silk Performer controller/
agent measure.

Further Steps for Load Testing
This tutorial offers only a brief overview of the steps that you may require for your load test scenario. Other
steps that you will likely need to address are listed below. Refer to the Silk Performer Help for details
regarding these additional steps.

• run a baseline test
• define your workload
• setup your monitors (new SAPGUI monitor for monitoring SAP servers)
• run your load tests
• analyze load test results

Customizing SAPGUI Test Scripts | 27

Best Practices for Testing SAPGUI
This section explains best practices for load testing SAPGUI with Silk Performer.

Prerequisites for SAPGUI Load Tests
The following issues need to be considered before you begin load testing SAPGUI:

Issues with agents To run huge load tests you need to consider your Agent
setup. Please see the Agents section for details.

SAPGUI scripting Ensure that SAPGUI scripting is installed on all agents
and the controller. Also ensure that SAPGUI scripting is
enabled on the servers.

Test data For data-driven testing, it’s important to use accurate data
as input. See Customizing Input Data to learn what
should be considered.

Test cases Test cases that are to be tested must be well
documented.

Determine if varying input data in input controls will result
in the display of different screens or change the
availability of any onscreen controls.

Determining your goals The most critical measure of an SAP system is the
number of dialog steps that can be executed during a
specified timeframe, for example 100,000 dialog steps in
an hour).

From the SAPGUI perspective, a dialog step is a
transition from one screen to the next. Certain dialog
steps are simple. Others are complex and cause
additional server load. Therefore it is necessary to have a
good mix of test scripts that cover most of the common
transactions that are used within companies.

The dialog steps can be monitored with different ST
transactions within SAP. Our SAP monitor, which uses
ST03N, can also be used.

SAPGUI Client Versions
It is recommended that you always use the latest version of the SAPGUI client, with the latest patch.

The latest patches can be downloaded from http://service.sap.com/swdc (username and password
required). Navigate to SAP Support Packages / Entry by Application Group / Frontend Components.

Testing Logon Sequences
The logon sequence is a resource-intensive task that should not be tested. The logon sequence should be
extracted and executed within the TInit transaction. The TMain transaction should only contain those
transaction steps that are to be tested, ending again at the screen that follows logon. The logout sequence
should be moved to the TEnd transaction. To return to the initial screen, use the “/n” transaction code.

28 | Best Practices for Testing SAPGUI

Here is a sample customized script for reference:

dcluser
 user
 VUser

 transactions
 TInit : begin;
 TMain : 1;
 TEnd : end;

 var
 gsConnID : string;

dclrand

dcltrans
 transaction TInit
 begin
 // Connecting to SAP
 gsConnID := SapGuiOpenConnection(" /SAP_CODEPAGE=1100 /FULLMENU /H/
111.111.111.111/S/3299/H/222.222.222.222/S/3297/H/cpce801 75 /3",
 "SapGuiOpenConnection");
 SapGuiSetActiveConnection(gsConnID);
 SapGuiSetActiveSession("ses[0]");
 // SAP
 SapGuiSetActiveWindow("wnd[0]", "SAP", SAPGUI_MATCH_ExactNoCase);
 SapGuiWindowResize(175, 28, false, "SapGuiWindowResize");
 // Logon to SAP System
 // Before running a test you have to customize the password
 parameter!
 SapGuiLogon("user", "pwed", "850", "", "SapGuiLogon");
 // SAP Easy Access
 SapGuiIgnoreError(SAPENGINE_STATUSBAR_CHANGED, SEVERITY_SUCCESS);
 end TInit;

 transaction TMain
 var
 begin
 // start with the SapGuiSetActiveWindow
 SapGuiSetActiveWindow("wnd[0]", "SAP Easy Access",
SAPGUI_MATCH_ExactNoCase);
 // now lets do the transaction specific tasks
 //
 // end the end you need to make sure that the last calls brings
you back to the SAP Easy Access window
 // so that the next TMain iteration can successfully call the

 SapGuiSetActiveWindow

 SapGuiSetOKCode(“tbar[0]/okcd”, “/n”); // this can be used to switch
 back to the SAP Easy Access window
 end TMain;

 transaction TEnd
 begin
 SapGuiPressButton("tbar[0]/btn[15]", "SapGuiPressButton\\btn[15]");
 // Log Off
 SapGuiSetActiveWindow("wnd[1]", "Log Off", SAPGUI_MATCH_
 ExactNoCase);
 // Yes
 SapGuiPressButton("usr/btnSPOP-OPTION1", "SapGuiPressButton\\Yes");
 end TEnd;

Best Practices for Testing SAPGUI | 29

Customizing Input Data
Data-driven testing is required for this type of load test. This means that you need CSV files that contain
input data for virtual users. For example, CSV files may contain material numbers or document IDs that are
used by virtual users in transactions.

Inputting different types of materials may result in the display of different screens. So, when virtual users
pick certain materials, verifications may fail because resulting screen contain different controls with different
information.

To solve this problem, do one of the following:

• Use input data that contains materials, or documents, that are similar and will return the same screens.
• Adjust your script to check for the type of screen that is displayed, that is, the controls that are available.

You can use SapGuiVerifyObjectAvailability here to verify if a control is available. Multiple
recordings should be performed in which different types of materials are accessed. Then you will see
what controls to expect in different situations and, based on whether or not the controls appear,
configure the verifications.

Prerequisites for Using Silk Central

Customizing Scripts
If you are going to upload your SAP scripts to Silk Central, you should perform some customizations in
your script to make your uploaded project easily reusable for different projects and test definitions within
Silk Central.

The following values in scripts should be customized to use project attributes:

• Connection strings
• User names
• Passwords
• Client numbers
• Languages

If you create these five project attributes and customize your script so that the SapGuiOpenConnection
and SapGuiLogon methods use the values of the attributes, your script can easily be customized with
different values for the attributes from Silk Central.

Here is a sample script that shows you how your SAP logon sequence should look:

var
 gsConnID : string;
 sServer : string;
 sUsername : string;
 sPassword : string;
 sClientNum : string;
 sLanguage : string;

dclrand

dcltrans
 transaction TInit
 begin
 AttributeGetString("SAPServer", sServer);
 AttributeGetString("SAPUser", sUsername);
 AttributeGetString("SAPPass", sPassword);

30 | Best Practices for Testing SAPGUI

 AttributeGetString("ClientNum", sClientNum);
 AttributeGetString("Language", sLanguage);
 // Connecting to SAP
 gsConnID := SapGuiOpenConnection(sServer, "SapGuiOpenConnection");
 SapGuiSetActiveConnection(gsConnID);
 SapGuiSetActiveSession("ses[0]");
 // SAP
 SapGuiSetActiveWindow("wnd[0]", "SAP", SAPGUI_MATCH_ExactNoCase);
 SapGuiWindowAction(SAPGUI_WND_MAXIMIZE, "SapGuiWindowAction\
\SAPGUI_WND_MAXIMIZE");
 // Logon to SAP System
 // Before running a test you have to customize the password
parameter!
 ThinkTime(5.9);
 SapGuiLogon(sUsername, sPassword, sClientNum,
sLanguage,"SapGuiLogon");
 // SAP Easy Access
 SapGuiIgnoreError(SAPENGINE_STATUSBAR_CHANGED, SEVERITY_SUCCESS);
 end TInit;

Now you need to define these project attributes through Silk Performer's Project Attributes Configuration
dialog.

Defining Verification Loads
If you are going to upload a functional SAP test to Silk Central you should define a verification workload in
your Silk Performer project. Remember that when you upload a Silk Performer project to Silk Central, Silk
Central actually executes the workload of the uploaded project. The verification workload is designed for
one-user script executions. Therefore you need to change your workload to be a verification workload and
specify which script should be executed by it.

To Specify “verification” workload and select a script for execution:

1. Click Adjust Workload on the workflow toolbar.

2. Select Verification and click Next. The Verification Workload Configuration dialog box opens.

3. Select the profile and script to be executed by the workload and specify how you want TrueLog to be
generated. Click OK.

4. Select the Save Project command from the File menu to save your workload configurations.

Before uploading the project to Silk Central, you should run the verification test at least once in Silk
Performer.

Using Silk Performer Projects in Silk Central
After you have uploaded a Silk Performer project to Silk Central, the project will be executed with the
default values of the project attributes that you have defined. From Silk Central you can now change those
project attributes for the test definition that you created while uploading the project, or you can create new
test definitions that reference the uploaded project and then specify different attribute values for those test
definitions.

When creating a test definition in Silk Central, browse for the uploaded project in your current source
control profile. On the Parameters tab, specify different values for the Silk Performer project attributes
(connection string, username, password, etc).

This feature enables you to create SAP scripts for common tasks that can be reused to test servers in
different environments.

Best Practices for Testing SAPGUI | 31

Accessing Low-Level Properties
The functions SapGuiInvokeMethod, SapGuiSetProperty, and SapGuiGetProperty can be used
to access the low level properties of each control on the current screen. This makes it possible to, for
example, verify whether or not a text control is read-only, or determine the background color of a label.

The SAPGUI scripting API that is used to perform SAPGUI testing is a large COM library that allows Silk
Performer to access controls and perform actions. The same COM library can be used with the above
mentioned API calls. To access the list of methods and properties that individual controls offer, you must
inspect the type library of the SAPGUI scripting API.

You need a tool that allows inspection of type libraries, such as the Ole32View tool that comes with Visual
Studio. You need to open the sapfewse.ocx file, which can be found in the SAPGUI installation directory
under \FrontEnd\SapGui.

To, for example, get the name of a control where you know the control ID, you would use the following call:

SapGuiGetProperty(“/usr/lbl[1,2]”, “Name”, sOutValue);
Print(“The control has the following name:” + sOutValue);

Most properties return a simple type, such as a string, number, or Boolean. Some properties return
another object. An example is the Parent property that returns the parent control of the current control.
Whenever a property returns another control, this control is temporarily held in cache and can be accessed
with the constant SAPGUI_ACTIVE_OBJECT. Here is an example call for retrieving the name of the parent
property:

SapGuiGetProperty(“/usr/lbl[1,2]”, “Parent”);
SapGuiGetProperty(SAPGUI_ACTIVE_OBJECT, “Name”, sOutValue);
Print(“The parent control has the following name:” + sOutValue);

Properties that are of the type Boolean are also returned in string representation because
SapGuiGetProperty only returns string values. As SAPGUI scripting is a COM library, you get the string
representation of the two possible values, VARIANT_TRUE and VARIANT_FALSE. VARIANT_TRUE is -1
and VARIANT_FALSE is 0.

Here is an example that verifies if a Boolean property is true or false:

SapGuiGetProperty("/usr/txtName", "Changeable", sOutValue);
If(sOutValue = "-1") then
Print("The text control is changeable!!");
End;

Properties overview

Everything in SAP is a component and therefore has the following properties (ComClass GuiComponent):

• Name - Name of the control.
• Type - Type of the control as text (for example, GuiButton or GuiTextField).
• TypeAsNumber - All types have internal numbers (for example, 30=GuiLabel, 31=GuiTextField).
• ContainerType - Boolean property that defines if the control is a container. Containers contain other

controls as children (for example, a toolbar is a container that contains toolbar buttons).
• ID - This is the unique ID of the control.
• Parent - If this control is contained within a container, this will return the parent control.

Visual components such as controls have additional properties (ComClass GuiVComponent):

• Text - The main text of a control. For example, the text in a text control or the text on a button.
• Left, Top, Width, Height, ScreenLeft, and ScreenTop - Number values that return information about

screen coordinates and coordinates within parent containers.
• Changeable and Modified - Boolean parameters that indicate the current state of a control, for example

whether or not the control is changeable or read-only or whether or not the control as been modified.

32 | Best Practices for Testing SAPGUI

Each control type can have additional properties that can be seen in the COM type library using
Ole32View.

Handling Unexpected Windows
If you know that at a point in a script a dialog box may be generated, a dialog box will not display in each
iteration, you must handle the additional dialog box. You can either use an error handler or you can use the
API to query if a certain dialog box has been activated.

For example, if you enter values in a text field and press the Execute button, depending on the entered
value, a dialog box may open on which you have to press an additional button to continue. Then the
transaction continues with a subsequent screen.

You can use SapGuiVerifyWindowAvailability if a window with a certain ID or title is currently
available. Make sure that you define the severity parameter as informational. Otherwise, the method
will throw an error in cases where the window does not display. Here is an example:

// here is our first screen - we enter some value and hit enter
SapGuiSetActiveWindow("wnd[0]", "First screen");
SapGuiSetText("usr/txt1", "some text");
SapGuiSendVKey(SAPGUI_VKEY_ENTER);

// now we check for a specific popup
if(SapGuiVerifyWindowAvailability("wnd[1]", "Some Popup Window", false,
SEVERITY_INFORMATIONAL)) then
SapGuiSetActiveWindow("wnd[1]", "Some Popup Window");
SapGuiPressButton("usr/btnPOP-OPTION1");
end;

// we go on with our next screen that we expect in both cases
SapGuiSetActiveWindow("wnd[0]", "Next screen");

If there is a situation where different dialog boxes can open and you have to handle each dialog box
individually, you can just verify for the window ID and then check the window title. Here is an example:

// now we check for a new window
if(SapGuiVerifyWindowAvailability("wnd[1]", null, false, SEVERITY_
INFORMATIONAL)) then
SapGuiSetActiveWindow("wnd[1]");

// now - check what the window title is and depending on that do some
action
sWindowTitle := SapGuiGetActiveWindowTitle();
if(sWindowTitle = "Some Alert") then
SapGuiPressButton("usr/btnPOP-OPTION1");
end;
if(sWindowTitle = "Some other alert") then
SapGuiPressButton("usr/btnPOP-OPTION2");
end;
end;

Handling windows that have dynamic titles

It’s common to see window titles that contain dynamic values (for example, “Change Material 1110 –
(Finished Product)”) when you execute MM02 transactions to change products. In this example, the
material number is part of the window title.

By default, the recorder scripts the following method call when this window opens:

SapGuiSetActiveWindow(“wnd[0]”, “Change Material 1110 (Finished Product)”,
SAPGUI_MATCH_ExactNoCase);

If you customize your script so that you choose a random material number, then your script will throw an
error as the window title verification will fail. So if your virtual user, for example, picks material number

Best Practices for Testing SAPGUI | 33

“1111”, the resulting title will be “Change Material 1111 (Finished Product)”. This will cause an error as the
verification is performed on the recorded title.

SapGuiSetActiveWindow not only allows you to verify against a constant value, it also allows you to verify
against wildcard expressions and regular expressions. To solve the above described example problem, you
could use the following change to SapGuiSetActiveWindow:

SapGuiSetActiveWindow(“wnd[0]”, “Change Material *”, SAPGUI_MATCH_WildCard);

Or, if you don’t want to perform a title verification, you can leave the last two parameters. They are optional.
No verification will then be performed.

Known SAP Issues
This topic describes workarounds for issues that may be related to SAP internal issues.

Tables with single rows

When there is only one row in a table, the row count is returned as ‘2’ (‘rowcount=2’). It seems that there is
a second empty row added to these tables. Tables with more than one row entry return the correct number
of rows.

Selecting the second entry in this example would result in an error as the entry is not valid. Therefore,
before selecting an entry, you should confirm that the entry is not empty.

SAP API calls only work in first TMain iteration

The following two method calls have been known to cause problems:

• SapGuiGridGetRowCount
• SapGuiGridSelectCell

These methods have been known to fail in the second iteration of TMain, and also in loops. The internal
COM interface may not be up-to-date. To update the internal COM reference to the control, call the
SapGuiGetProperty method. This method updates the internal COM pointer. You need to call
SapGuiGetProperty on the control just before you see a call that fails in a second iteration. It is
recommended that you use the Name property as every control has this property.

Here is an example:

SapGuiGetProperty(“/usr/somecontrol”, “name”);
SapGuiGridGetRowCount(“/usr/somecontrol”, nCount);

Settings for Large Load Tests
When running large load tests, you should evaluate the following issues:

Agents

Installed Versions: Ensure that all your agents have the same version as the installed SAPGUI client. The
SAPGUI scripting API needs to be installed on all agents. The API needs to be enabled and warning
message boxes need to be disabled.

Numbers of Users on an Agents: To run large load tests you need more agents, rather than stronger
agents. Typically 20 virtual users can be simulated per machine. A normal desktop machine would usually
be able to handle 100 users. This is not the case however. GDI resources begin to run out at that point.
GDI is the Graphical Device Interface in Windows. When virtual users are simulated, each virtual user
actually uses the SAPGUI client and therefore requires GDI resources for each control on the individual
screens. So, theoretically it is possible to run more than 20 users, but tests and feedback have shown that
Windows resource limitations appear beyond that point. By distributing virtual users across more the one

34 | Best Practices for Testing SAPGUI

windows session on a Windows server OS, you can achieve much higher virtual user numbers, though. In
the System Settings under Agents enable the setting Create multiple sessions and enter the user
credentials required for session creation.

Replay profile settings

Make sure that in replay profile settings the Log control information in TrueLog option is not checked. When
this option is turned on during load tests, each virtual user builds TrueLog with information for all controls
on every window in transactions. Depending on your transactions and the number of controls that are on-
screen, you may experience heavy performance impact with this setting enabled. Therefore, this option
should be turned off during load tests. Only the Log control information on error option should be selected.
This option logs control information for the current window when errors occur. Ensure that you turn this
option on when running Try-Scripts as you want to have this control information in Try-Script Trueogs.

Testing login sequences

Logon sequences are resource intensive and should not be tested in large load tests.

Server-side changes

When running a large load test you may have to change certain server-side parameters that allow
additional users from other machines connecting to the servers. Please consult SAP documentation related
to the rdisp/rfc_max_own_used_wp parameter.

SAP gateways

If your SAP environment uses a SAP gateway machine to connect to your SAP servers, you may run into
the problem that your gateway no longer accepts new connections. This is caused by SAP gateways do not
always recognizing when existing connections are shut down. Sudden aborting of load tests and ungraceful
system shut-downs do not always result in gateway connections to servers being closed. If too many
connections are left open, you may receive a cannot open more client connections error. To
resolve this problem, reboot your gateway service.

Best Practices for Testing SAPGUI | 35

SAP eCATT Integration with Silk Performer
SAP eCATT (Extended Computer Aided Test Tool) has been integrated with Silk Performer. SAP’s eCATT
facility allows you to create test scripts in SAP using the scripting language of your choice. eCATT allows
you to use external test tools (i.e., Silk Performer) while utilizing eCATT as a repository for your test scripts.
eCATT also serves as a basic test management solution for triggering script executions. Not only can both
internal and external scripts be executed individually, they can also be combined and executed in
sequence.

eCATT offers import arguments, a mechanism for calling scripts with special input values. Scripts can not
only receive input values, scripts can also set output values when they are executed—scripts can be
executed in sequence, using input values derived from the output values of earlier script executions.

Note: For more information regarding eCATT, please consult SAP documentation.

Setting Up Integration
This section includes detailed instructions for each of the steps that must be completed to make use of Silk
Performer's eCATT integration. To configure Silk Performer's eCATT integration:

1. On your SAP server, register Silk Performer as an external tool for eCATT.

2. On your SAP server, create a new user account.

3. On the client machine where you will be using Silk Performer in combination with eCATT, install both
Silk Performer and the SAPGUI client.

4. If you access your SAP server via a SAP gateway, you must create a registry key on the client that
defines your default SAPGUI connection.

5. Within Silk Performer system settings, configure SAP eCATT server connection data.

6. Within Silk Performer system settings, define a SAP eCATT directory for extended Silk Performer test
results.

Registering Silk Performer in eCATT
Silk Performer must be registered in the ECCUST_ET SAP table. This is done by calling the
SET_EXTERNAL_TOOL function module, which creates the necessary entries in the ECCUST_ET table.
You need to method using the following values for the parameters:

Parameter Value

TOOL_NAME Silk Performer

PROG_ID SAPeCATTPlugIn.BorlandSPeCATT

TOOL_DESC Silk Performer for eCATT

TOOL-DATABASE <blank>

TOOL_RUN_DB <blank>

TOOL_NO_PWD X

TOOL_NO_DB X

You can call this method using the SE37 transaction. On the first screen, enter the function module name
SET_EXTERNAL_TOOL. Then select Test / Single Test from the Function Module menu. In the following
window, enter the parameter values as described above and press the Execute button (F8).

36 | SAP eCATT Integration with Silk Performer

Creating a Specific User Account
To take advantage of eCATT integration using external tools, a standard user must be generated in your
system by your system administrator. This is done by executing the ECATT_GENERATE_ET_USER
program in SE38 (once per system).

After running the report, the following steps should be executed to activate the newly created user role:

1. In transaction PFCG, enter role SAP_ECET, and select Change. Ignore the subsequent warning that
appears.

2. Switch to the Authorizations tab and select Change Authorization Data.

3. Place your cursor over the top node of the tree display (SAP_ECET) and select Authorizations /
Generate.

4. Click Back to return to the role maintenance screen.

5. Click Save.

Installing the Client Software
On the machine where you plan to use Silk Performer with the eCATT integration, you must first install your
SAPGUI client and afterward apply the Silk Performer installation. Whenever eCATT initiates the integration
between Silk Performer and eCATT, Silk Performer installs a COM object on the agent that is called by SAP
eCATT.

Setting the Registry from Behind a SAP Gateway
If you are accessing your SAP system via a SAP gateway, you must create a registry key for the
communication between Silk Performer and eCATT. eCATT forwards the connection that is to be used to
Silk Performer, but it is unaware of gateways. Therefore the connection string that is passed from eCATT
cannot be used if you are behind a gateway.

You have to create a registry key under HKLM\Software\Silk. The key must be a string value with the
name SAPeCATTLogonID; the value must be the SAP login ID that you use when logging in to your system
(i.e., the name of your SAP connection that you specify in SAPLOGON).

Note: On 64-bit machines the key is HKLM\Software\Wow6432Node\Silk.

Configuring SAP eCATT Connection
Connection details for Silk Performer's communication with SAP eCATT must be specified in Silk Performer
system settings. There are two options for connecting to SAP—you can either specify a SAPLOGONID or
you can specify AS Host, RFC Type, and SystemNr settings. With either option you must specify client,
language, username, and password details. Note that when you select a SAPLOGONID the AS Host, RFC
Type, and SystemNr fields are grayed out.

To specify SAP eCATT connection data:

1. Select the System command from the Silk Performer settings menu.

2. On the System Settings - Workbench dialog, select the SAPGUI group icon.

3. The eCATT Connection tab is selected by default. From the SAPLogon drop box, select your SAP login
ID. This box is preconfigured with all available SAP login IDs.

4. In the AS Host edit field, enter the combined router/application-server string (e.g., H/195.61.176.22/H/
194.117.106.130/S/3297/H/cpce801).

5. In the RFC Type edit field, enter either ‘3’ (for R/3) or ‘2’ (for R/2).

SAP eCATT Integration with Silk Performer | 37

6. In the System NR edit field, enter the SAP system number.

7. In the Client edit field, enter the internal client ID number from the SAP server (i.e., the value that must
be entered on the SAP login screen).

8. From the Language drop box, select your language preference. The values ‘EN’ (English) and ‘DE’
(German) are preconfigured, though you can specify any other language abbreviation string.

9. In the Username edit field, enter your SAP eCATT username.

10.In the Password edit field, enter your SAP eCATT password.

11.Once you have completed this dialog, click Test Connection to confirm that you have specified accurate
connection details. If your connection attempt is unsuccessful, please confirm your settings.

12.Click the OK button once you have completed configuring SAP eCATT connection settings.

Configuring eCATT Extended Results
To enable the viewing of Silk Performer result files from within SAPGUI, you can specify a UNC path to a
public file share in which extended Silk Performer test results can be stored and accessed by users (e.g., \
\fileserver\ecattresults). Silk Performer will use the specified directory to store the results of Silk Performer
test executions initiated via SAP eCATT. Users can easily access test results by clicking a link in the SAP
eCATT sGUI.

To configure eCATT extended results:

1. Select the System command from the Silk Performer Settings menu.

2. On the System Settings – Workbench dialog, select the SAPGUI group icon.

3. Select the eCATT Results tab.

4. Select the Use SAP extended results checkbox.

5. In the SAP extended results directory field, browse to and select the directory that is to be used for SAP
extended results.

38 | SAP eCATT Integration with Silk Performer

6. Click OK to save your settings.

Interacting with eCATT from Silk Performer
Silk Performer can be run in eCATT Standalone mode. In this mode, Silk Performer can be used to:

• Upload projects to SAP eCATT
• Open projects from SAP eCATT

Silk Performer also allows you to specify import and export arguments that can be used to exchange
values between eCATT scripts.

Uploading a Project to eCATT
The menu entry Upload Project into eCATT from the File / SAP eCATT menu allows you to both upload
new projects to SAP and update existing projects. When uploading a project, the project is exported with all
of its dependent files (e.g., data files, include files) and uploaded to SAP eCATT to a BlobId and Version
that you define in the Save Project into SAP eCATT wizard.

The first step prompts you for the SAP server connection that is to be used for uploading the project:

The second wizard step prompts you for the BlobId and Version:

In the third step you have to define the user type that is to be the primary user type in the script. As you
may have multiple user types configured in your project, you must define the user type that is to be
executed by default when eCATT executes scripts:

SAP eCATT Integration with Silk Performer | 39

Opening a Project from eCATT
The menu entry Open Project from eCATT from the File / SAP eCATT menu allows you to open an existing
project from SAP eCATT.

When opening a project, the project is downloaded to a temporary directory and then imported to Silk
Performer Workbench. A downloaded project is identified by the BlobId and Version that you define in the
Open Project from SAP eCATT wizard.

The first step in the wizard prompts you for the SAP server connection that is to be used to download the
project:

The second step prompts you for the BlobId and Version of the project that is to be downloaded.

Now you can make changes to the project. If you want to update the project in eCATT after you have
completed your changes, simply upload the project using the Upload Project into SAP eCATT command on
the SAP eCATT menu.

Defining Import/Export Arguments
eCATT offers import arguments, a mechanism for calling scripts with special input values. Scripts can not
only receive input values, scripts can also set output values when they are executed—scripts can be
executed in sequence, using input values derived from the output values of earlier script executions.

To define import and export arguments, Silk Performer project attributes are used. Project attributes that
serve as input arguments must have the prefix SAPIMPORT_. Project attributes that serve as output
arguments must have the prefix SAPEXPORT_.

Note: Only project attributes of type string are accepted, since SAP only allows string data types.

The following is an example that defines two input arguments and one output argument:

In ascript you access these input values as follows:

AttributeGetString("SAPIMPORT_Username", sUsername);
AttributeGetString("SAPIMPORT_Password", sPassword);

The output value is set as follows:

AttributeSetString("SAPEXPORT_SomeResult", "thats myresult");

Interacting with Silk Performer from eCATT
From eCATT it’s possible to utilize Silk Performer as an external test tool by:

• Creating a new Silk Performer script
• Editing/Viewing an existing Silk Performer script
• Executing a script in one of three modes:

• “Normal” without Silk Performer Workbench
• “Debug Mode” with Silk Performer Workbench and the option of adjusting settings before executing

the script
• “With Surface of External Tool” with Silk Performer Workbench

Creating a New Silk Performer Script
Within SAP eCATT (SECATT transaction) you can create a new Silk Performer script by specifying a test
script name (blobID), a version, and Silk Performer for eCATT as the external tool, as shown below:

40 | SAP eCATT Integration with Silk Performer

Now click the Create Object button (or press F5). This creates an empty Silk Performer script and stores it
in the eCATT repository. On the following screen you must enter all required fields before you can edit the
script with Silk Performer. Once you have completed all required fields, click the Script toolbar button. Silk
Performer then opens and downloads the newly created project in Edit mode (for other available options,
please see the next chapter).

Editing/Viewing an Existing Silk Performer Script
Within SAP eCATT (SECATT transaction) you can both edit and view an existing Silk Performer script by
specifying the test script name (blobID) and the version, as shown below:

SAP eCATT Integration with Silk Performer | 41

Now you can either click the Display Object (F7) button or the Change Object (F6) button to view or edit the
eCATT script. On the following screen you can click the Script button to either view or edit the script in Silk
Performer.

If you are only viewing the script, Silk Performer downloads the project from SAP eCATT and opens it in
Read-Only mode. You can go back to eCATT by selecting Close Project without Save from the SAP eCATT
menu.

If you are opening the script in Edit mode, Silk Performer downloads the project from SAP eCATT so that
you can modify the script. Once you have completed your modifications you have three options for
returning to SAP eCATT—select one of the following from the SAP eCATT menu:

• Save Project into SAP eCATT. The project is saved to SAP eCATT and you can continue working in
SAP eCATT.

• Save Project into SAP eCATT and Continue. The project is saved to SAP eCATT, but remains open in
Silk Performer so that you can perform further modifications.

• Close Project without Save. The project is closed without saving your changes and you can continue
working in SAP eCATT.

Executing a Silk Performer Script
Within SAP eCATT (SECATT transaction) you can execute a Silk Performer script by specifying a test script
name (blobID) and version, as shown below:

Once you have entered these values, click the Execute button (F8) to go to the execution dialog where you
can specify start options for the script.

Depending on the Mode for Ext. Tool selection, the test will either be executed without Silk Performer
Workbench (Normal), with Silk Performer Workbench (With Surface of External Tool), or in the attended
debug mode with Silk Performer Workbench (Debug Mode).

In With Surface of External Tool mode, Silk Performer launches and immediately executes the primary user
type. After executing, Silk Performer closes.

In Debug mode, Silk Performer opens the Baseline test dialog and waits for the user to begin the test. The
user can perform some modifications to the project before the test is actually executed. When the test is
finished, the user can use the Finish and Return Results command on the SAP eCATT menu to report
back the results of the most recently executed test run.

As with other eCATT scripts, Silk Performer scripts can be executed from other eCATT scripts and
executed in sequence with other scripts.

To do this, create a simple eCATT script that calls an external script using the REFEXT method. Once you
have specified the blobId and version of the script that you want to execute, double-click the second
parameter of REFEXT and explore the external project (see the example below):

You will see the various scripts that are there-one should be marked is_main. You will also see all import
and export arguments.

Limitations
The following points should be considered when working with the Silk Performer eCATT integration.

Script name lenght

When uploading a Silk Performer project, you must specify the primary script. This is the user type that will
be executed by default and marked as the main script within eCATT. The name of the user type is a
combination of the BDL script name, user group, and profile (e.g., a script called test1.bdf that defines a
user group called VUser, and a profile called Profile1, results in an internal representation of the user type
as test1.bdf__VUser__Profile1).

42 | SAP eCATT Integration with Silk Performer

When SAP triggers Silk Performer to execute a script, SAP specifies the name of the primary script as
shown in the example above, (test1.bdf__VUser__Profile1).

A bug in the current versions of SAP eCATT truncates such passed values to 32 characters. Though SAP
will likely address this issue in future patches, it is quite possible that you are running a SAP system with
this limitation.

The problem with the 32-character limitation is that during execution in normal mode, Silk Performer can
not find the passed user type because the name has been truncated. Therefore you will receive an error
indicating that the script can not be found.

To work around this problem, make sure that the combination of script name, user group, and profile does
not exceed 32 characters—28 characters in fact as 4 underscore characters are used to separate the
values. So save your script files with short names, use short names for user groups, and use short names
for profiles.

Default values for arguments

During testing efforts with various SAP systems, a problem with default values in eCATT arguments has
been identified. With some older patch levels of SAP eCATT, default values are not passed to Silk
Performer when running script executions from external eCATT scripts. If you experience a problem of
default values not being passed for arguments, update your SAP eCATT patches.

Recording in edit-mode

When recording a SAPGUI script in Silk Performer while in the “edit” mode of an eCATT script triggered
from within SAP eCATT, you run into the following problem: When you begin a new session during
recording you actually have two SAP connections open on your system—the connection that you are
recording on and the connection that is still open from eCATT. Therefore you will see two
SapGuiOpenConnection calls scripted in your script, and the SapGuiSetActiveConnection contains a
connection ID of 1. This is what you will see in your recorded script:

gsConnID := SapGuiOpenConnection(" ecatt connection",
"SapGuiOpenConnection");
SapGuiOpenConnection(" recorded connection",
"SapGuiOpenConnection");
SapGuiSetActiveConnection("/app/con[1]");

You must remove the first SapGuiOpenConnection entry and change the SapGuiSetActiveConnection to
use the return value of the 2nd SapGuiOpenConnection. After this modification, the script should look like
this:

gsConnID := SapGuiOpenConnection(" recorded
connection", "SapGuiOpenConnection");
SapGuiSetActiveConnection(gsConnID);

SAP eCATT Integration with Silk Performer | 43

	Contents
	Introduction
	Client and Server Requirements
	Available Functions

	Recording SAPGUI Test Scripts
	Generating Test Scripts
	Exploring Recorded Scripts
	Executing TryScripts
	How Silk Performer Handles SAPGUI Replay
	Exploring TrueLogs

	Customizing SAPGUI Test Scripts
	SAPGUI TrueLog Structure
	Customizing Input Parameters
	Customizing SAPGUI User Input Data
	Analyzing Result Files
	Further Steps for Load Testing

	Best Practices for Testing SAPGUI
	Prerequisites for SAPGUI Load Tests
	SAPGUI Client Versions
	Testing Logon Sequences
	Customizing Input Data
	Prerequisites for Using Silk Central
	Customizing Scripts
	Defining Verification Loads
	Using Silk Performer Projects in Silk Central

	Accessing Low-Level Properties
	Handling Unexpected Windows
	Known SAP Issues
	Settings for Large Load Tests

	SAP eCATT Integration with Silk Performer
	Setting Up Integration
	Registering Silk Performer in eCATT
	Creating a Specific User Account
	Installing the Client Software
	Setting the Registry from Behind a SAP Gateway
	Configuring SAP eCATT Connection
	Configuring eCATT Extended Results

	Interacting with eCATT from Silk Performer
	Uploading a Project to eCATT
	Opening a Project from eCATT
	Defining Import/Export Arguments

	Interacting with Silk Performer from eCATT
	Creating a New Silk Performer Script
	Editing/Viewing an Existing Silk Performer Script
	Executing a Silk Performer Script

	Limitations

