
Silk Performer 21.0

.NET Explorer Help

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Performer are trademarks or registered
trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-10-21

ii

Contents

Tools and Samples ...5
Introduction ... 5
Provided Tools ...6

Silk Performer .NET Explorer ... 6
Silk Performer Visual Studio Extension ... 6
Silk Performer Java Explorer .. 6
Silk Performer Workbench ..7

Sample Applications for testing Java and .NET .. 7
Public Web Services .. 7
.NET Message Sample .. 8
.NET Explorer Remoting Sample ... 8
Java RMI Samples ... 8

Sample Test Projects .. 9
.NET Sample Projects .. 9
Java Sample Projects ...10

Silk Performer .NET Framework ..11
Testing .NET Components .. 11

The .NET Framework Approach ...11
The .NET Explorer Approach ... 11

Understanding the .NET Framework Platform .. 11
Working with Silk Performer .NET Framework ... 11
Silk Performer .NET Framework Overview ...12
Intermediate Code ..13
Silk Performer Helper Classes ... 13
Silk Performer Visual Studio Extension ... 13

Tour of the UI .. 15
Overview ... 15
Design Tab .. 16

Loaded Components Pane ...16
Classes Tab ..17
Objects Tab .. 17
References Tab .. 18

Code Tab ...18
Output Tab ...19

Setting Up .NET Explorer Projects ... 20
Creating .NET Explorer Projects ... 20
Test Case Definition .. 20
Using the Load File Wizard ... 20
Viewing and Comparing WSDL Files .. 21
Defining Client Certificates for a Web Service .. 22
Test Case Characteristics ... 22

Setting Up Tests ... 24
Customizing Input Parameters .. 24
Storing Output Values in Variables ..24
Defining Global Variables ..25
Defining Output Value Verifications ...26
Adding Method Calls ... 26
Updating Method Calls ..26
Complex Input/Output Data ...27

Storing Array or Object Output Data as Variable ..27

Contents | 3

Taking Array Object Data From a Variable ... 27
Defining Each Member of a Variable Individually ... 27
Defining Array Elements ...27
Defining a Column-Bound Variable .. 27

Testing .NET Remoting ... 28
Negative Testing ..29

Animated Runs ... 31
Executing an Animated Run ..31
Viewing Status of Animated Runs ...31

Analyzing Results .. 33
Viewing Result Files ..33
User Report ...33
TrueLog for Web Service Calls ..34
Error Report .. 34
Animated Log .. 34
Analyzing Request/Response Network Traffic .. 34

Configuring Option Settings ... 35
Configuring Project-Wide Default Values .. 35
Application Settings ...35
Code Settings ..36
Verification Settings ...36
Animated Run Settings ... 37
Editing the Loaded File Drop List .. 37
Configuring Proxy Connection Settings .. 37

Exporting Projects ... 38
Exporting a .NET Explorer Project .. 38
Exporting a Project to Silk Performer .. 38
Exporting a Project to Microsoft Visual Studio .. 39
Exporting a BDL Script ..39
Exporting a Standalone Console Application ..39

Recording a Console Application With Silk Performer ... 40
Command Line Execution ... 41

4 | Contents

Tools and Samples
Explains the tools, sample applications and test projects that Silk Performer provides for testing Java
and .NET.

Introduction
This introduction serves as a high-level overview of the different test approaches and tools, including Java
Explorer, Java Framework, .NET Explorer, and .NET Framework, that are offered by Silk Performer Service
Oriented Architecture (SOA) Edition.

Silk Performer SOA Edition Licensing

Each Silk Performer installation offers the functionality required to test .NET and Java components. Access
to Java and .NET component testing functionality is however only enabled through Silk Performer licensing
options. A Silk Performer SOA Edition license is required to enable access to component testing
functionality. Users may or may not additionally have a full Silk Performer license.

What You Can Test With Silk Performer SOA Edition

With Silk Performer SOA Edition you can thoroughly test various remote component models, including:

• Web Services
• .NET Remoting Objects
• Enterprise JavaBeans (EJB)
• Java RMI Objects
• General GUI-less Java and .NET components

Unlike standard unit testing tools, which can only evaluate the functionality of a remote component when a
single user accesses it, Silk Performer SOA Edition can test components under concurrent access by up to
five virtual users, thereby emulating realistic server conditions. With a full Silk Performer license, the
number of virtual users can be scaled even higher. In addition to testing the functionality of remote
components, Silk Performer SOA Edition also verifies the performance and interoperability of components.

Silk Performer SOA Edition assists you in automating your remote components by:

• Facilitating the development of test drivers for your remote components
• Supporting the automated execution of test drivers under various conditions, including functional test

scenarios and concurrency test scenarios
• Delivering quality and performance measures for tested components

Silk Performer offers the following approaches to creating test clients for remote components:

• Visually, without programming, through Java Explorer and .NET Explorer
• Using an IDE (Microsoft Visual Studio)
• Writing Java code
• Recording an existing client
• Importing JUnit or NUnit testing frameworks
• Importing Java classes
• Importing .NET classes

Tools and Samples | 5

Provided Tools
Offers an overview of each of the tools provided with Silk Performer for testing Java and .NET.

Silk Performer .NET Explorer
Silk Performer .NET Explorer, which was developed using .NET, enables you to test Web Services, .NET
Remoting objects, and other GUI-less .NET objects. .NET Explorer allows you to define and execute
complete test scenarios with different test cases without requiring manual programming; everything is done
visually through point and click operations. Test scripts are visual and easy to understand, even for staff
members who are not familiar with .NET programming languages.

Test scenarios created with .NET Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing, and to Microsoft Visual Studio for further customization.

Silk Performer Visual Studio Extension
The Silk Performer Visual Studio extension allows you to implement test drivers in Microsoft Visual Studio
that are compatible with Silk Performer. Such test drivers can be augmented with Silk Performer features
that facilitate test organization, verification, performance measurement, test data generation, and reporting.

Tests created with the extension can be run either within Microsoft Visual Studio, with full access to Silk
Performer's functionality, or within Silk Performer, for concurrency and load testing scenarios.

The extension offers the following features:

• Writing test code in any of the main .NET languages (C# or VB.NET).
• Testing Web services / .NET Remoting objects and redirecting HTTP traffic over the Silk Performer Web

engine to take advantage of features such as modem simulation and IP-address multiplexing. SOAP
envelopes can also be explored using TrueLog Explorer.

• Defining virtual users and their transactions through .NET custom attributes. A BDL script is generated
automatically based on the custom attributes that have been applied to classes/methods.

• Running TryScript tests from within Microsoft Visual Studio with the ability to watch virtual user output in
a tool window within Microsoft Visual Studio.

• Exploring the results of Try Scripts.

.NET Resources

• http://msdn.microsoft.com/net

Silk Performer Java Explorer
Silk Performer Java Explorer, which was developed using Java, enables you to test Web Services,
Enterprise JavaBeans (EJB), RMI objects, and other GUI-less Java objects. Java Explorer allows you to
define and execute complete test scenarios with multiple test cases without requiring manual programming.
Everything can be done visually via point and click operations. Test scripts are visual and easy to
understand, even for personnel who are not familiar with Java programming.

Test scenarios created with Java Explorer can be exported to Silk Performer for immediate reuse in
concurrency and load testing.

Note: Java Explorer is only compatible with JDK versions 1.2 and later (v1.4 or later recommended).

6 | Tools and Samples

http://msdn.microsoft.com/net

Java Resources

• http://java.sun.com
• http://www.javaworld.com

Silk Performer Workbench
Remote component tests that are developed and executed using Java Explorer or .NET Explorer can be
executed within Silk Performer Workbench. Silk Performer is an integrated test environment that serves as
a central console for creating, executing, controlling and analyzing complex testing scenarios. Java
Explorer and .NET Explorer visual test scripts can be exported to Silk Performer by creating Silk Performer
Java Framework and .NET Framework projects. While Java Explorer and .NET Explorer serve as test-beds
for functional test scenarios, Silk Performer can be used to run the same test scripts in more complex
scenarios for concurrency and load testing.

In the same way that Silk Performer is integrated with Java Explorer and .NET Explorer, Silk Performer is
also integrated with Silk Performer's Visual Studio .NET Add-On. Test clients created in Microsoft Visual
Studio using Silk Performer's Visual Studio .NET Add-On functionality can easily be exported to Silk
Performer for concurrency and load testing.

Note: Because there is such a variety of Java development tools available, a Java tool plug-in is not
feasible. Instead, Silk Performer offers features that assist Java developers, such as syntax
highlighting for Java and the ability to run the Java complier from Silk Performer Workbench.

In addition to the integration of Silk Performer with .NET Explorer, Java Explorer, and Microsoft Visual
Studio, you can use Silk Performer to write custom Java and .NET based test clients using Silk Performer's
powerful Java and .NET Framework integrations.

The tight integration of Java and .NET as scripting environments for Silk Performer test clients allows you
to reuse existing unit tests developed with JUnit and NUnit by embedding them into Silk Performer's
framework architecture. To begin, launch Silk Performer and create a new Java or .NET Framework-based
project.

In addition to creating test clients visually and manually, Silk Performer also allows you to create test clients
by recording the interactions of existing clients, or by importing JUnit test frameworks or existing Java/.NET
classes. A recorded test client precisely mimics the interactions of a real client.

Note: The recording of test clients is only supported for Web Services clients.

To create a Web Service test client based on the recording of an existing Web Service client, launch Silk
Performer and create a new project of application type Web Services/XML/SOAP.

Sample Applications for testing Java and .NET
The sample applications provided with Silk Performer enable you to experiment with Silk Performer's
component-testing functionality.

Sample applications for the following component models are provided:

• Web Services
• .NET Remoting
• Java RMI

Public Web Services
Several Web Services are hosted on publicly accessible demonstration servers:

• http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Tools and Samples | 7

http://java.sun.com
http://www.javaworld.com
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

• http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
• http://demo.borland.com/OrderWebService/OrderService.asmx
• http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Note: OrderWebService provides the same functionality as OrderWebServiceEx, however it makes
use of SOAP headers in transporting session information, which is not recommended as a starting
point for Java Explorer.

.NET Message Sample
The .NET Message Sample provides a .NET sample application that utilizes various .NET technologies:

• Web Services
• ASP.NET applications communicating with Web Services
• WinForms applications communicating with Web Services and directly with .NET Remoting objects.

To access the .NET Message Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
21.0 > Sample Applications > .NET Framework Samples .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 21.0 >
Sample Applications > .NET Framework Samples .

.NET Explorer Remoting Sample
The .NET Remoting sample application can be used in .NET Explorer for the testing of .NET Remoting.

To access the .NET Explorer Remoting Sample:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
21.0 > Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 21.0 >
Sample Applications > .NET Explorer Samples > .NET Explorer Remoting Sample .

DLL reference for .NET Explorer: <public user documents>\Silk Performer 21.0\SampleApps
\DOTNET\RemotingSamples\RemotingLib\bin\debug\RemotingLib.dll.

Java RMI Samples
Two Java RMI sample applications are included:

• A simple RMI sample application that is used in conjunction with the sample Java Framework project
(<public user documents>\Silk Performer 21.0\Samples\JavaFramework\RMI).

To start the ServiceHello RMI Server, go to: Start > Programs > Silk > Silk Performer 21.0 > Sample
Applications > Java Samples > RMI Sample - SayHello.

• A more complex RMI sample that uses RMI over IIOP is also available. For details on setting up this
sample, go to: Start > Programs > Silk > Silk Performer 21.0 > Sample Applications > Java
Samples > Product Manager. This sample can be used with the sample test project that is available at
<public user documents>\Silk Performer 21.0\SampleApps\RMILdap.

Java RMI can be achieved using two different protocols, both of which are supported by Java Explorer:

• Java Remote Method Protocol (JRMP)
• RMI over IIOP

8 | Tools and Samples

http://demo.borland.com/OrderWebServiceEx/OrderService.asmx
http://demo.borland.com/OrderWebService/OrderService.asmx
http://demo.borland.com/AspNetDataTypes/DataTypes.asmx

Java Remote Method Protocol (JRMP)

A simple example server can be found at <public user documents>\Silk Performer
21.0\SampleApps\Java.

Launch the batch file LaunchRemoteServer.cmd to start the sample server. Then use the Java Explorer
Start Here Wizard to begin testing RMI objects. Select RMI and click Next.

The next dialog asks for the RMI registry settings and a classpath where the RMI interfaces for the client
can be found. Here are the settings to be used for this example:

Host: localhost

Port: 1099

Client Stub Class: <public user documents>\Silk Performer 21.0\SampleApps\Java\Lib
\sampleRmi.jar.

RMI over IIOP

A simple example server can be found at: <public user documents>\Silk Performer
21.0\SampleApps\Java.

Launch the batch file LaunchRemoteServerRmiOverIiop.cmd to start the sample server.

Use the Java Explorer Start Here Wizard to begin testing RMI objects. Select Enterprise
JavaBeans/RMI over IIOP and click Next.

The next step asks for the JNDI settings and a classpath where the RMI interfaces for the client can be
found. Here are the settings to be provided for this example:

Server: Sun J2EE Server

Factory: com.sun.jndi.cosnaming.CNCtxFactory

Provider URL: iiop://localhost:1050

Stub Class: Click Browse and add the following jar file: <public user documents>\Silk
Performer 21.0\SampleApps\Java\Lib\sampleRmiOverIiop.jar.

Sample Test Projects
The following sample projects are included with Silk Performer. To open a sample test project, open Silk
Performer and create a new project. The Workflow - Outline Project dialog opens. Select the application
type Samples.

.NET Sample Projects

.NET Remoting

This sample project implements a simple .NET Remoting client using the Silk Performer .NET Framework.
The .NET Remoting test client, written in C#, comes with a complete sample .NET Remoting server.

Web Services
This sample shows you how to test SOAP Web Services with the Silk Performer .NET Framework. The
sample project implements a simple Web Services client. The Web Services test client, written in C#,
accesses the publicly available demo Web Service at: http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx

Tools and Samples | 9

http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx

Java Sample Projects

JDBC

This sample project implements a simple JDBC client using the Silk Performer Java Framework. The JDBC
test client connects to the Oracle demo user scott using Oracle's "thin" JDBC driver. You must configure
connection settings in the databaseUser.bdf BDL script to run the script in your environment. The
sample accesses the EMP Oracle demo table.

RMI/IIOP

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
uses IIOP as the transport protocol and connects to a RMI server provided as a sample application. For
detailed instructions on setting up this sample project, see <public user documents>\Silk
Performer 21.0\SampleApps\RMILdap\Readme.html.

The Java RMI server can be found at: <public user documents>\Silk Performer
21.0\SampleApps\RMILdap.

RMI

This sample project implements a Java RMI client using the Silk Performer Java Framework. The test client
connects to a RMI server provided as a sample application. For detailed instructions on setting up this
sample project, see <public user documents>\Silk Performer 21.0\SampleApps\RMILdap
\Readme.html.

To access the Java RMI server:

If you have Silk Performer SOA Edition: Go to Start > Programs > Silk > Silk Performer SOA Edition
21.0 > Sample Applications > Java Samples > RMI Sample - SayHello .

If you have Silk Performer Enterprise Edition: Go to Start > Programs > Silk > Silk Performer 21.0 >
Sample Applications > Java Samples > RMI Sample - SayHello.

10 | Tools and Samples

Silk Performer .NET Framework
Silk Performer’s .NET Framework enables developers and QA personnel to coordinate their development
and testing efforts while allowing them to work entirely within their specialized environments: Developers
work exclusively in Visual Studio while QA staff work exclusively in Silk Performer—there is no need for
staff to learn new tools. Silk Performer’s .NET Framework thereby encourages efficiency and tighter
integration between QA and development. The Silk Performer .NET Framework (.NET Framework)
and .NET Add-On enable you to easily access Web services from within .NET. Microsoft Visual Studio
offers wizards that allow you to specify the URLs of Web services. Microsoft Visual Studio can also create
Web-service client proxies to invoke Web-service methods.

Testing .NET Components
Silk Performer’s Visual Studio .NET Add-On provides functionality to developers working in .NET-enabled
languages for generating Silk Performer projects and test scripts entirely from within Visual Studio.0

The .NET Framework Approach
The .NET Framework approach to testing is ideal for developers and advanced QA personnel who are not
familiar with coding BDL (Silk Performer’s Benchmark Description Language) scripting language, but are
comfortable using Visual Studio to code .NET-enabled languages such as C#, COBOL.NET, C++ .NET, and
Visual Basic.NET. With Silk Performer’s Visual Studio .NET Add-On, developers can generate Silk
Performer projects and test scripts entirely from within Visual Studio by simply adding marking attributes to
the methods they write in Visual Studio. The Add-On subsequently creates all BDL scripting that is required
to enable the QA department to invoke newly created methods from Silk Performer.

The .NET Explorer Approach
.NET Explorer is a GUI-driven tool that is well suited to QA personnel who are proficient with Silk Performer
in facilitating analysis of .NET components and thereby creating Silk Performer projects, test case
specifications, and scripts from which load tests can be run.

Developers who are proficient with Microsoft Visual Studio may also find .NET Explorer helpful for quickly
generating basic test scripts that can subsequently be brought into Visual Studio for advanced
modification.

Understanding the .NET Framework Platform
.NET Framework is a powerful programming platform that enables developers to create Windows-based
applications. The .NET Framework is comprised of CLR (Common Language Runtime, a language-neutral
development environment) and FCL (Framework Class Libraries, an object-oriented functionality library).

Visit the .NET Framework Developer Center for full details regarding the .NET Framework.

Working with Silk Performer .NET Framework
The Silk Performer .NET Framework allows you to test Web services and .NET components. The
framework includes a set of the Benchmark Description Language (BDL) API functions of Silk Performer
and an add-on for Microsoft Visual Studio.

Silk Performer .NET Framework | 11

http://msdn.microsoft.com/netframework/

Note: For additional details regarding the available BDL API functions, refer to the Benchmark
Description Language (BDL) Reference.

The framework allows you to either code your BDL calls to .NET objects manually in Silk Performer or use
generated BDL code from the Visual Studio .NET Add-On. One benefit of the latter approach is that the
developer of the .NET test driver doesn't require BDL skills, because BDL script generation is handled
"behind the scenes" by the Visual Studio .NET Add-On. BDL Scripts can be launched for testing purposes
from within Microsoft Visual Studio through the Add-On. All user output and generated output files, like
TrueLogs, logs, output, and others, can be viewed from within Microsoft Visual Studio.

The .NET Framework allows you to route all HTTP/HTTPS traffic that is generated by a .NET component
over the Silk Performer Web engine. This feature logs TrueLog nodes for each SOAP or .NET Remoting
Web request, that is made by a .NET component.

This architecture provides good separation between test driver code and the test environment. There are
also mechanisms for defining interaction between BDL and .NET, so you can design a fully
customizable .NET test driver from a generated Silk Performer BDL script.

Silk Performer .NET Framework Overview

The Silk Performer .NET Framework integration allows you to instantiate .NET objects and then call
methods on them.

The Microsoft .NET Common Language Runtime (CLR) is hosted by the Silk Performer virtual user
process when BDF scripts contain DotNet BDL functions.

HTTP/HTTPS traffic that is generated by instantiated .NET objects can be routed over the Silk Performer
Web engine. Each WebRequest/WebResponse is logged in a TrueLog, allowing you to see what is sent
over the wire when executing Web service and .NET Remoting calls.

Depending on the active profile setting, which is a .NET application domain setting, either each virtual user
has its own .NET application domain where .NET objects are loaded, or alternately all virtual users in the
process can share an application domain.

A .NET application domain isolates its running objects from other application domains. An application
domain is like a virtual process where the objects running in the process are safe from interruption by other
processes. The advantage of having one application domain for each virtual user is that the objects that
are loaded for each user don't interrupt objects from other users, since they are isolated in their own
domains.

The disadvantage is that additional application domains require additional administrative overhead of the
CLR. This overhead results in longer object-loading and method-invocation times.

12 | Silk Performer .NET Framework

Intermediate Code
.NET code is not compiled into binary “machine” code. .NET code is intermediate code. Intermediate code
is descriptive language that delivers instructions, for example “call this method” or “add these numbers”, to
functions that are available in libraries or within remote components.

.NET code runs within a machine-independent runtime, or “execution engine,” which can be run on any
platform—Windows, Unix, Linux, or Macintosh. So, regardless of the platform you’re running, you can run
the same intermediate code. The drawback of this cross-platform compatibility is that, because
intermediate code must be integrated with a runtime, it’s slower than compiled machine code.

.NET code calls basic Microsoft functionality that is available in .NET class libraries. These are the “base”
classes. “Specific” classes, for creating Web applications, Windows applications, and Web Services are
also available. In the runtime itself you also have some classes that are offered by Microsoft for building
applications—all of this comprises the .NET Framework upon which intermediate code can be written using
one of a number of available .NET-enabled programming languages.

It doesn’t matter which language is used to create the intermediate code that delivers instructions to the
available classes through the .NET runtime—the resulting functionality is the same.

Silk Performer Helper Classes
.NET helper classes serve as an interface between Silk Performer’s BDL language and the .NET language.
Although Silk Performer is able to call the .NET Framework through the basic functions that it offers, helper
classes are required to enable .NET to call back to Silk Performer. With helper classes, which are
generated automatically with .NET Explorer and the Visual Studio .NET Add-On, .NET developers can take
full advantage of developing test code in .NET and don’t need to learn BDL. The test code that developers
deliver to QA, by making use of helper classes, can be called from Silk Performer or scheduled in load
tests using Silk Central.

Silk Performer Visual Studio Extension
The Silk Performer Visual Studio extension allows you to implement test drivers in Microsoft Visual Studio
that are compatible with Silk Performer. Such test drivers can be augmented with Silk Performer features
that facilitate test organization, verification, performance measurement, test data generation, and reporting.

Tests created with the extension can be run either within Microsoft Visual Studio, with full access to Silk
Performer's functionality, or within Silk Performer, for concurrency and load testing scenarios.

The extension offers the following features:

• Writing test code in any of the main .NET languages (C# or VB.NET).
• Testing Web services / .NET Remoting objects and redirecting HTTP traffic over the Silk Performer Web

engine to take advantage of features such as modem simulation and IP-address multiplexing. SOAP
envelopes can also be explored using TrueLog Explorer.

• Defining virtual users and their transactions through .NET custom attributes. A BDL script is generated
automatically based on the custom attributes that have been applied to classes/methods.

• Running TryScript tests from within Microsoft Visual Studio with the ability to watch virtual user output in
a tool window within Microsoft Visual Studio.

• Exploring the results of Try Scripts.

.NET Resources

• http://msdn.microsoft.com/net

Silk Performer .NET Framework | 13

http://msdn.microsoft.com/net

Installing the Visual Studio Extension
By default, the Silk Performer Visual Studio Extension is not installed with the main Silk Performer installer.
To create and run Silk Performer .NET Framework projects in Visual Studio, you need to install the
extension:

1. In the Silk Performer installation directory, open Templates\DotNet.

2. Execute the file SpVsExtension.vsix.

Starting the Visual Studio Extension
Perform one of the following steps to start the Visual Studio extension:

• Click Start > All Programs > Microsoft Visual Studio > Microsoft Visual Studio and create a new
Silk Performer Visual Studio project.

• Click Start > All Programs > Silk > Silk Performer 21.0 > Silk Performer Workbench and create a
new project with the application type .NET > .NET Framework using Visual Studio .NET Add-On.

14 | Silk Performer .NET Framework

Tour of the UI
Explains the view tabs that are offered by .NET Explorer.

Overview
The main sections of the .NET Explorer interface are highlighted below.

Workflow Bar

The .NET Explorer workflow bar assists you in configuring and running your tests. The buttons on the
workflow bar enable you to perform the following commands:

• Start Here: Opens the Load File Wizard, which guides you through selecting the type of testing that
you want to perform and loading the required components.

• Test Class: Allows you to create a new test case for a class, or to add methods to an existing test case.
This button is enabled when you select a class in the Loaded Components menu tree.

• Invoke: Invokes the selected method in the Loaded Components menu tree and adds it to the
selected test case in the Test Scenario menu tree.

• Customize: Lets you store data as variables. This button is enabled when you select an input
parameter in the Input Data menu tree, or an output parameter in the Output Data menu tree.

• Verification: Allows you to define verifications for variables. This button is enabled when you select an
output parameter in the Output Data menu tree that has been stored as a variable.

• Run Test: Performs an animated run of your test cases.
• Results: Lets you explore the results of your last test run through user report, TrueLog, error report, or

log file analysis.

Tour of the UI | 15

• Net Traffic: Displays the request and response network traffic of the method call that is selected in the
Test Scenario menu tree.

WSDL/DLL Address Field

The WSDL/DLL address field allows for the loading of either WSDLs or .NET assemblies.

Loaded Components Pane

The Loaded Components pane includes three tabs:

• Classes: A list of loaded Web services, remotable classes/interfaces and other .NET classes. Allows
you to instantiate objects, connect to remote objects, or call static methods.

• Objects: A list of instantiated objects, global and random variables. Allows you to call methods on those
kind of objects.

• References: A list of loaded files (assemblies, WSDL‘s).

Method Call Pane

• The Input Data menu tree shows input parameters (both headers and bodies) for the selected method
call.

• The Input Data Properties field shows the properties of the input parameters (value, type, pass, null,
etc).

• The Output Data menu tree shows the output parameters (header and body) of the last/selected
method call.

• The Output Data Properties field shows the properties of the output parameters (value, type, pass,
null, etc).

Test Scenario Pane

The Test Scenario pane lists the current test cases along with all added method calls.

Design Tab
The Design tab is the primary mode used to access the majority of .NET Explorer functionality. The
Design tab offers the display of loaded components, invocation of methods, customization of input/output
data, and the design of test scenarios.

Loaded Components Pane
The Loaded Components pane, on the Design tab, distinguishes between classes and objects and
displays these components within different tree menus.

On the Classes tab you see all loaded classes with their members (methods, fields, and properties) that
can be accessed without the need of an object context. Normally these are static members and
constructors.

When you instantiate a class, the created object is shown on the Objects tab with all instance members
(methods, fields, and properties).

The two exceptions are Web services and interfaces. As an object instance is not required for Web
Services (which are objects that expose static methods), all methods offered by Web services are shown
on the Classes tab.

Interfaces are displayed in the Remotable Interfaces menu node. .NET Remoting allows for WellKnown
remotable objects, which implement interfaces. Therefore it is not necessary to instantiate objects that work
with WellKnowns (only one instance exists on the server). This is why .NET Explorer treats remotable
interfaces like Web services. All members of interfaces are shown on the Classes tab. When you first

16 | Tour of the UI

attempt to invoke a method you must supply the endpoint of the remotable interface (as you must provide
endpoints for Web services).

Classes Tab
All loaded classes and Web services are listed in the .NET Explorer Loaded Components pane on the
Classes tab.

Only constructors, static methods, and members are displayed, as there is no object context required to
call them.

Web services and remotable interfaces are treated as if they only have static methods.

The following folders are available in Classes view:

Web Services

Classes that are derived from SoapHttpClientProtocol are included in this folder. Asynchronous
method calls are not allowed and therefore are not shown.

Remotable Classes

Classes that are derived from MarshalByRefObjects are included in this folder. Activation information
(type and URL) can be set at the class node.

To create a remote object, call one of the constructors or use the context menu.

Remotable Interfaces

Interfaces are included in this folder. Interfaces are treated like Web services.

An activation URL to a WellKnown object can be defined for each interface. If an interface is configured for
remote access to a WellKnown object, simply call a method.

COM Classes

COM classes are COM wrapper classes that have been imported to be callable from .NET.

Other Classes

Other classes that do not fit in the above listed categories are included in this folder.

Objects Tab
When an object is instantiated through a constructor or returned by a method and stored in a variable, the
object is listed in the Loaded Components pane on the Objects tab. Instance members and methods that
can then be invoked by the user are displayed.

The Objects tab shows objects stored in variables that have global scope and those that have a local
scope of the currently selected test case.

Objects

By default, unless changed in the Options dialog box, only objects that differ from the basic types (for
example, strings and integers) are listed here as objects. Instance methods and members are displayed to
allow for easy invokation.

Members and properties have get/set accessors to enable the getting and setting of values.

Local test case objects are included in the Local Test Case Objects folder. Global test case objects
are included in the Global Test Case Objects folder.

Tour of the UI | 17

Variables

By default variables that store simple datatypes such as strings and integers are listed in the Global
Random Variables folder, not as objects but as simple variables.

To work with variables of simple data types like objects, select Show Primitive Types as Objects on the
Options dialog box.

References Tab
The References tab offers a list of loaded files (for example, assemblies and WSDLs).

Code Tab
Code view displays generated code files for the current test scenario. The following code types are
available:

Client Proxy Code

The Client Proxy tab displays generated WebClient proxy code. When loading a WSDL file to access a
Web Service, a WebClient proxy class is created. Proxy classes are created on method and type
information in WSDL files. When Web Service methods return complex types, additional classes are
declared. These additional classes are used to represent the complex types in the method calls that take
complex parameters. For detailed information about WebClient Proxy generation, consult the MSDN for
details regarding WSDL.EXE, a tool that creates proxy classes in the same way.

Test Driver Code

The test driver Test Code tab displays code generated for the test driver. This code can be compiled to a
standalone console application. The main method for the application contains the calls to the test cases
that are defined in your current test scenario. The test case methods contain all the calls that you have
defined in your scenario for the respective test case.

When you export a standalone console application (via the Export menu) and then run the application, you
will see output information regarding successful/failed methods in the console window.

Silk Performer .NET Framework Code

The Silk Performer .NET Framework Test Code tab displays test code for Silk Performer .NET Framework.
For each test case in your current test scenario you will find a method with the [Transaction] attribute
applied to it. These transaction methods contain all the calls that you have defined in your test scenario for
the respective test case.

This code can either be exported to Microsoft Visual Studio as a Silk Performer .NET Project, or it can be
exported directly to Silk Performer. In either case, results will be reported to Silk Performer and can be
viewed in the log files or virtual user output.

Native BDL Script

The BDL Native tab displays native BDL script for Web Service calls. When testing Web Services, .NET
Explorer can create BDL scripts with WebPagePost API calls for each Web Service method call in the
current test scenario. WebPagePost methods are called with posted HTTP traffic from .NET Explorer
during the last execution of the current test scenario.

Exporting to a native BDL script allows you to test a Web Service by sending its HTTP traffic without using
the .NET Framework to generate the HTTP traffic.

18 | Tour of the UI

BDL for .NET Framework

Th BDL FW tab displays BDL script for Silk Performer .NET Framework. When exporting a project as a Silk
Performer .NET Framework project, .NET Explorer uses the code in the Silk Performer .NET Framework
code pane, compiles the code to a .NET Assembly (DLL), and creates a BDL script that loads the DLL and
calls the methods that have been marked with the [Transaction] attribute. The BDL script is shown
here, but it is not shown in the final state that will be generated upon export. Only a skeletal BDL script is
displayed.

Output Tab
The Output tab displays log output during test runs. The Output tab shows details about each call of the
most recent animated run. Statistics regarding execution time and executed methods are also shown.

Example Animated Log Output

Test started: 08.10.2004 08:01:50
Test stopped: 08.10.2004 08:01:53
Method calls: 1
Success calls: 1
Error calls: 0
TestWebProxies.Service1.echoStringArray
Parameters : System.String[](string)
Return Value: System.String[](string)

Note: The Output tab can also be accessed by clicking
Results on the Workflow Bar.

Tour of the UI | 19

Setting Up .NET Explorer Projects
This section shows you how to set up projects and define tests with .NET Explorer. A sample Web service
is used for demonstration purposes.

.NET Explorer requires that Microsoft .NET Framework 4.0 or later is installed. Microsoft .NET Framework
is available on Microsoft's .NET Framework Downloads page.

Creating .NET Explorer Projects
Upon opening .NET Explorer you are prompted to either open an existing project or create a new project.

1. Click the Create a new project option button.

2. Enter a name for your project in the text box.

3. Click OK.

Your new project is created and the .NET Explorer GUI displays.

Test Case Definition
Three approaches are available for defining tests with .NET Explorer:

• Use the Load File Wizard to define where the information for the object you wish to test is located. The
wizard then displays the available classes, automatically instantiates the available objects, and calls
methods on those objects. This approach is more involved, but it offers more control.

• Enter the location of the Web services’ WSDL file directly into .NET Explorer’s WSDL/DLL field and
click Load. Information about the methods and objects is then displayed, however objects are not
instantiated and methods are not called. This approach offers a quick, simple approach to analyzing
remote service functionality.

• Import a COM wrapper via the Load COM Type Libraries dialog (Model > Test COM Classes).

For demonstration purposes this Help uses the Load File Wizard to instantiate the objects available on the
sample Web service, which is available at http://demo.borland.com/BorlandSampleService/
BorlandSampleService.asmx?WSDL.

Using the Load File Wizard
1. Click Start Here on the workflow bar.

The Load File Wizard dialog box displays.

2. To test a Web service, you must provide a Web Services Description Language (WSDL) document.
Click the Web Services option button and specify a path or URL to the WSDL document using the
browse (...) button.

Note: To test .NET Remoting or other .NET classes, click the corresponding option button (.NET
Remoting or Other .NET Classes) and then specify a .NET Assembly (DLL or EXE) that defines
the class.

3. Click Next. The WSDL file now loads and finds out what is available on the Web service. A WSDL file is
an XML description of the functionality that is offered by the Web service.

20 | Setting Up .NET Explorer Projects

http://www.microsoft.com/net/Download.aspx
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL
http://demo.borland.com/BorlandSampleService/BorlandSampleService.asmx?WSDL

Note: The sample Web service offers a minimum of functionality. It simply echoes back some
values.

4. Select the Web service class you wish to test from the Class list box. Normally there will be only one
class, but it is possible that the loaded WSDL will define multiple Web services.

5. Using the URL (Endpoint) text box, you can change the endpoint of the service. The default endpoint is
the one defined in the WSDL document. If required, you can change Web service proxy and
authentication settings for the Web server by clicking browse (...) and entering information into the Web
Proxy Settings Wizard dialog box.

6. Click Next. The Method invocation page displays.

7. Check the check boxes beside the methods that you want to have tested, for example
echoFloat(Single) and echoString(String). Methods are called using the default parameters.

Note: To see the member functions of the base classes, click Inherited. This feature is generally
only applicable to the testing of .NET Remoting and other .NET classes.

8. To adjust the sequence in which the methods are called, use the up and down arrow buttons. This way,
you can move methods up and down the invocation list. The button between the up and down arrow
buttons enables you to invert the selection of methods, meaning that all unmarked methods become
marked, and vice versa.

Note: Login and logout methods must be in first and last positions, respectively.

9. Click Next. The Select a test case page displays.

10.Select the test case to which the testing methods should be added. You can select from the following:

• Init Test Case: This is the first test case that is called in test runs. Select this test case if your
method calls are related to initialization, logging in, or start-up.

• Existing Test Case: You can add to an existing test case. Choose the test case from the list box to
the right of this selection.

• New Test Case: A new test case is created and the methods are added to the new test case. Using
the text box to the right of this selection, give the new test case a unique name.

• End Test Case: This is the last test case that is called in test runs. Select this test case if your
method calls are related to clean-up, for example logging off.

11.Click Finish.

Note: A message displays if you have selected a method that takes parameters, letting you know
that default parameters will be used for the method, which may result in an exception being
thrown. Methods that throw exceptions will be excluded from your test scenario. If you do not want
to proceed, click No, then go back, deselect the method in question, and add it later manually with
a more meaningful parameter value.

The Web Service has been loaded in the Loaded Components menu tree and the selected methods have
been called and added to the selected test case.

Viewing and Comparing WSDL Files
WSDL files are stored in project files. For older projects, you must update Web Service Proxy classes to
store WSDL documents. This is done by updating individual Web Service Proxy classes with a new WSDL
file.

1. Select a Web Service Proxy class in the Loaded Components menu tree. A property called WSDL is
displayed in the Input Data Properties field.

2. Select the WSDL parameter and click browse (...). The WSDL View dialog box opens, which includes the
original URL, the date the WSDL file was downloaded, and the contents of the WSDL file.

3. Enter a URL in the Compare With text box and click Compare. The content check functionality
compares the string contents of both files.

Setting Up .NET Explorer Projects | 21

You are informed whether or not there is a difference between the files’ contents, but not what the specific
difference is.

Defining Client Certificates for a Web Service
For Web services that require client certificates for authentication, client certificates must be defined in
Web service properties.

1. Select a Web service class in the Loaded Components menu tree. A property called
ClientCertificates is displayed in the Input Data Properties field.

2. Select the ClientCertificates parameter and click browse (...). The Client Certificate dialog box
opens, where certificates can be added or removed.

3. Click browse (...) next to the File text box to locate and select a certificate (.cer) file. The selected
client certificate is listed in the File text box.

4. Add a certificate file to the list of certificates by clicking the + button. Multiple certificates can be defined.
Certificates can be removed by clicking the - button.

5. Click OK.

Once client certificates have been added, the ClientCertificates property description is updated with
the number of assigned certificates.

Generated Code

The following code is generated for the test framework and standalone code:

mWebProxy1 = new TestWebProxies.Service1();
mWebProxy1.ClientCertificates.Add(System.Security.Cryptography.X
509Certificates.
X509Certificate.CreateFromCertFile("C:\\TestX509.cer"));

When exporting to a native BDL script, the following comment appears:

// You have to add the following certificate(s) to your profile!
// C:\TestX509.cer

Test Case Characteristics
Following is an overview of the characteristics of test cases as they relate to .NET Explorer:

• Each test scenario includes an Init test case and an End test case. Multiple Main test cases may also
be defined. An Init test case is the first test case that is called during a test run. Init test cases often
include method calls that are related to initialization, logging in, or start-up. An End test case is the last
test case that is called during a test run. End test cases often include method calls that are related to
clean-up, for example logging off.

• Main test cases are executed between Init and End test cases and may include any sort of method
call.

• A local variable is only valid within a single test case and cannot be passed to another test case. Only
global variables can be used to pass values between test cases.

• Each test case must have a unique name.
• Test case properties can be edited by selecting a test case in the Test Scenario menu tree and defining

field values in the Output Data Properties field:

• StopAtError is the attribute that defines the number of errors that can occur during an animated
run. If this number is reached, the animated run aborts. Setting this attribute to 0 specifies that errors
will be ignored.

22 | Setting Up .NET Explorer Projects

• CallCount is the attribute that defines the number of times that a test case will be called during an
animated run.

• You can create, copy, and remove test cases by right-clicking a test case in the Test Scenario menu
tree and selecting the respective menu item.

Setting Up .NET Explorer Projects | 23

Setting Up Tests
This section explains how to set up and customize your tests with .NET Explorer. Topics include an
introduction to GUI elements, customization of input parameters, definition of output value verifications, and
generation of random variables. The section concludes with an explanation of how to use .NET Explorer to
test .NET Remoting.

Customizing Input Parameters
When a method has input headers or parameters, its values are displayed in the Input Data pane with their
default values. Select the method you want to invoke in the Loaded Components pane. Parameters are
displayed with their default values in the Input Data pane, and you can configure the option settings
through Tools > Options .

To change a value, select a parameter. If a parameter is a simple data type, which means a string, float, or
integer, you can enter the value directly into the InputValue text box in the Input Data Properties pane. If
the parameter is a complex type, which means an object or array, or you want to use a random value or a
value from a stored variable, click (...) to open the Input Value Wizard.

1. Select an InputValue row in the Input Data Properties pane to display the Input Value Wizard (...)
button.

2. Click (...). The Input Value Wizard opens.

3. Define the input value for the parameter of the method.

You can pass a null value, a value from a variable, or a constant value.

• Click Is Null to pass a null value. This value is only valid for strings, objects, and arrays.
• If you have already stored a variable that holds values of the parameter’s type, click Use Variable

and select the variable from the list box.

If the parameter is an array, type the index into the Index Array text box.
• If the parameter is not an object or array, you can specify a constant value such as a string, integer,

or double value. Click the Constant value option button.
• If you do not want to use a constant value and would rather use a random value for types such as

string, integer, or float, you can create a new random value by clicking New random variable. If a
random value of the parameter type has already been created, click Random variable and select
the variable from the list box.

4. Click OK.

Once input parameters have been defined, you can invoke a method to have that method automatically
added it to the selected test case in the Test Scenario pane. From there, corresponding output values can
either be stored as variables or verifications can be set up for them.

Storing Output Values in Variables
Using the Output Data and Output Data Properties panes, you can store output values as variables for
later use or you can define verifications for the values.

1. Invoke a method by clicking Invoke on the Workflow bar (or by right-clicking a method in the Input Data
pane and selecting Invoke/Add to Test Case) and explore the output data.

2. Select an output value node in the Output Data pane.

You can store such values in variables that can be used as input values for other method calls.

24 | Setting Up Tests

3. Select an OutputValue row in the Output Data Properties pane to display the (...) button. Click (...) to
invoke the Output Value Wizard and store the value.

Note: The Output Value Wizard can also be launched by clicking Customize on the Workflow
bar, or by right-clicking an output parameter in the Output Data pane.

4. In the Output Value Wizard, type a name for the output value variable in the Variable name text box.

5. Define the scope of the variable.

The default is Local, which means that the variable can only be used within the test case within which it
has been created. Global scope means that the variable can be used within any test case. Global scope
enables you to pass information between test cases.

6. Click OK.

Verifications can be executed against variables. The Verification Wizard dialog box offers two text
boxes for this purpose: Variable and Array Index (which defines the array index when a variable is an
array).

Defining Global Variables
Global variables can be shared between test cases. These vary from local variables, which are only
available to specific test cases.

Global variables can be used as input parameters for function calls and can also be used to store return
values. Global variables are configured with an initial value, which makes them useful when you need to
have the same value used for multiple function calls. Each time a test run begins, global variables are
initialized with the defined initial value. The initial value can be changed if the variable is used to store
result values.

When exporting global variables to Silk Performer, the global attribute can be retained as a Silk Performer
project attribute, enabling you to also configure the initial values of global variables. To be able to modify
the project attribute value in Silk Performer, you must set the UseAttribute value of the External
Access property in the Input Data Properties pane to True before exporting the project.

Note: Global variables of type string and byte[] can be initialized from data files (.txt files). This
is useful when a lot of content must be passed to a method call. Rather than manually typing the
content into the edit control, you can initialize a variable from a specified file. The From File text box
is only enabled when the variable type is System.String or System.Byte[].

1. Select the Objects tab. Right-click an object in the Objects tree menu and select New Global Variable.
The Global Variable dialog box displays.

2. Type a name for the variable in the Variable Name text box.

3. Select a Variable type.

The following types are available:

• string
• integer
• boolean
• double
• single
• byte
• byte array
• date/time

4. Each variable has an initial value and a current value. When tests are run, all global variables are
initialized to their initial values. Specify an intial value for the variable in the Initialize Value text box. You
can also take the initial value from a file by clicking the from File option button and then specifying the
file location by clicking (...).

Setting Up Tests | 25

5. Click OK.

Defining Output Value Verifications
1. Select Verification in the Output Data Properties pane to display the (...) button.

2. Click (...) to open the Verification Wizard.

• Select No Verification if you do not want the value to be verified.
• Select NULL verification to verify that the value is either null, by checking the Should be null check

box, or not null. This option verifies whether or not a value is present.
• Select Constant string to verify that the value exactly matches a constant string.
• Select Reg. expression to verify a string value.
• Select Range if you are verifying integers or doubles. Then specify a range for the value using the

From and To text boxes.
• Select Variable to verify that the value exactly matches the value of the variable. If the variable is an

array you can also define the Array index for the element that should be used for the verification.

3. Select the Severity of error that should be thrown if the verification fails. The following severity options
are available:

Severity Option Description

Success, no error No error is thrown.

Informational An informational message is logged.

Warning A warning is thrown.

Error, simulation continues An error is thrown, but the simulation continues.

Error, the active test case is
aborted

An error is thrown, the simulation continues, however the active
test case is aborted.

Error, the simulation is aborted An error is thrown and the simulation is aborted.

Custom A section is inserted into the .NET code where special error
handling code can be inserted.

4. Click OK.

Adding Method Calls
1. Within the Loaded Components or Method Call pane, select the method to be added.

2. Invoke the method by clicking Invoke. The invoked method is added automatically to the currently
selected test case.

Updating Method Calls
1. From the Test Scenario pane, select the method that is to be changed.

2. Make modifications to the input/output parameters of the method in the Input Data or Output Data
panes. Updates are automatically accepted when you exit the Input Data or Output Data panes.

26 | Setting Up Tests

Complex Input/Output Data
.NET Explorer supports complex data types such as arrays and objects as both input data and output data.
The Output Value Wizard assists you in using such data as variables.

Storing Array or Object Output Data as Variable
1. Select the complex output parameter in the Output Data pane.

2. Click (...) to open the Output Value Wizard.

3. Specify the variable’s name and scope.

Taking Array Object Data From a Variable
1. Select a complex input parameter in the Input Data pane.

2. Click (...) to open the Input Value Wizard.

3. Define the input value.

Defining Each Member of a Variable Individually
1. Select individual members of an object in the Input Data pane.

2. Define input values in the InputValue text box.

For example, you can specify a random value from a value list as one input value and specify a constant
value as another input value.

Defining Array Elements
1. The default length for arrays is 1. To change the number of elements in an array, select the array node

in the Input Data pane.

2. In the Length text box, enter the number of elements in the array. .NET Explorer than automatically
adds or removes the required elements.

3. To specify an element’s value, select the element in the array and specify the value in the InputValue
text box.

4. Array members or an entire array can be assigned input parameters from a variable. To specify input
parameters from a variable, click (...) to open the Input Value Wizard.

5. Click Use variable on the Input Value Wizard and select a preconfigured variable from the list box. All
variables of the current parameter type are listed.

6. Click OK.

Defining a Column-Bound Variable
1. Right-click the Global Random Variables tree menu node (Loaded Components pane, Objects tab)

and select New Multi-Column Variable.

2. On the Multi Column Parameter Wizard, select a file that contains multi-column data. The files that
are displayed in the combo box control are the CSV files that are available in the Data directory.

3. When a CSV file uses a specific column separator, select the Separator so that .NET Explorer can
accurately populate the grid displaying the contents of the file.

4. Specify a name for the Handle name variable. A file handle variable is a handle that is assigned a row
in a multi-column file.

Setting Up Tests | 27

5. Select the column that should be bound to the new variable by clicking within one of the column’s cells.
The currently selected column is marked with an (*) at the end of the column name. Handle name
and Parameter name are automatically generated when you change the file or select a different column
if the user has not already changed the name manually.

6. Specify a File name for the new bound variable.

7. Click Finish to open the CSV file in the registered client application (for example, Microsoft Excel).
Changing the file in the client application and re-selecting it in the combo box will reload the file with the
revised content.

You will see the new file handle and the new column variable in the Global Random Variables tree menu
node. To bind another variable to another column in the file, right-click another file handle element in the
tree menu and select New Multi-Column Variable. The wizard will reappear with read-only file properties
(File name, Handle name, and Separator).

These variables can now be used as input parameters for method calls. They will appear in the Input
Parameter page variable list.

Defining How Column Variables are Bound
Before proceeding with this task you must have defined a column-bound variable.

1. Double-click a multi-column file handle in the Global Random Variables tree menu node (Loaded
Components pane, Objects tab). The Input Data Properties table allows you to change the sequence
of row access and the amount of time that passes before each subsequent row is selected. When a new
row is selected, the bound column variables are set to the values defined in the file.

2. Specify if rows should be selected randomly or sequentially by selecting an option from the
RowSelection list box.

3. Click within the InitTestCase list box and select the test case in which each new row should be
selected (for example, If you select a main test case that runs multiple times during each animated run,
a new row will be accessed with each run).

Testing .NET Remoting
.NET Explorer supports both Client Activated Objects (CAO), which are remote objects in which clients
create new instances of objects on remoting servers, and Server Activated Objects (SAO), or WellKnown
remote objects, in which a server offers one instance of a special type (class) and clients access the same
object on the remoting server.

Both CAOs and SAOs are accessed through URLs. For CAOs, the Activation URL is the URL where a new
CAO can be created, for example http://localhost. For SAOs, the URL is the location where the SAO
object can be accessed, for example http://localhost/RemoteObject.rem.

CAO classes can only be derived from the base class MarshalByRefObject. SAOs can be derived from
MarshalByRefObject or by implementing an interface.

To create a CAO or activated object, right-click a MarshalByRef object and select Create Remote
Object. You will be prompted for the Activation URL and for the variable name that will be associated with
the created object.

To call methods on a SAO or WellKnown object, simply call the method. You will then be prompted for the
Activation URL.

For full details regarding .NET Remoting, refer to the MSDN Online Library at http://msdn.microsoft.com.

28 | Setting Up Tests

http://msdn.microsoft.com

Negative Testing
Negative testing is testing in which test methods are designed to throw exceptions. Such methods are only
considered successfully executed when the anticipated exception type is thrown.

Silk Performer offers an attribute that can be applied to test methods to indicate that a specific exception
type is expected. If the specified exception is not thrown during execution, then the test method fails.

The Handle Exception dialog box opens whenever a method throws an exception. The dialog box enables
you to specify what to do with the method:

• Do not add this method to the test case
• Add to test case

The method is added. If the method throws the exception again during the animated run, it is
considered an error.

• Add to test case and expect this exception during test run

The method is added. If the method throws the exception again during the animated run, it is
considered a success. If the exception is not thrown, it is considered an error.

Click Details to view detailed exception information. The Explorer Exception dialog box displays the
thrown exception and all inner exceptions. The exception detail grid shows all properties of the exception
object. Place your cursor over the value column to display a tool-tip that includes complete content. This is
especially useful for the StackTrace property as it is a multi-line property.

Expected Exceptions

Each method call that is added to a test case has a property called Expected Exceptions. This
property holds a list of exception types that are expected to be thrown during an animated run. If you
selected Add to test case and expect this exception during test run on the Handle Exception dialog
box, the thrown exception type will automatically be added to this list.

Click (...) in the Output Data Properties pane to display the Expected Exceptions dialog box. This dialog
box enables you to add/remove expected exception types.

The Possible Exceptions list is populated with the system exceptions. You can enter an exception type
that is not of the system types, though to proceed you must click OK on a confirmation dialog box informing
you of potential impact.

The following code is generated for method calls when the exception SoapException is expected:

public void TestWebProxies_Service1__GetRandomNumber1() {
try {
Bdl.MeasureStart("Service1::GetRandomNumber");
 mWebProxy1.GetRandomNumber(5, 1);
 Bdl.MeasureStop("Service1::GetRandomNumber");
 Bdl.LogVerification(
 "Expected exception of the type(s):
System.Web.Services.Protocols.SoapException "+
 "has not been thrown!", Bdl.Severity.SEVERITY_ERROR);
} catch (System.Web.Services.Protocols.SoapException expected_0) {
 Bdl.MeasureStop("Service1::GetRandomNumber");
 Bdl.LogException(expected_0, Bdl.Severity.SEVERITY_SUCCESS);
} catch (SilkPerformer.StopException stopExcp) {
 Bdl.MeasureStop("Service1::GetRandomNumber");
 Bdl.LogException(stopExcp);
 throw stopExcp;
} catch (System.Exception e) {
 Bdl.MeasureStop("Service1::GetRandomNumber");
 Bdl.LogException(e);

Setting Up Tests | 29

}
}

If an exception is not thrown, a verification of severity Error will be logged. The log will contain the
exception types that were expected but not thrown.

30 | Setting Up Tests

Animated Runs
Animated runs or test runs execute all test methods that are assigned to your test cases, with
corresponding input and output data displayed in the Input Data and Output Data windows as they are
submitted/received. Status symbols indicate the success/failure status of method calls after they have run.

Output of animated runs includes several logs and reports that help you to identify problems with tested
components.

To configure settings for animated runs go to Tools > Options > Options tab. The following settings are
available:

• Always run Init test case
• Always run End test case
• Run all test cases during animated run
• Invoke Delay (time delay between method calls, in ms)

Note: By default, there is a 2-second (2000 ms) delay between the invocation of method calls. This is
because .NET Explorer is designed to test the functionality of components, but not to overtax them
with excessive load. Invocation delay settings can be configured on the Options tab.

Executing an Animated Run
1. Click Run Test. The Animated Run dialog box displays.

2. Select the test cases that are to be executed during the test run (InitTestCase, TestCase, or
EndTestCase). The default selections vary based on your option settings.

Note: When test cases depend on each other for accessing global objects, ensure that you do not
exclude test cases that define objects that are used by other test cases.

3. Check the Do verifications check box to specify that verifications that have been defined for output
parameters should be performed.

4. Click OK to begin the animated run. All global variables are initialized to their initial values. All random
variables are reset.

If you have specified a different calling count for your test cases than the default (1), the test cases will
be executed the number of times defined in this property.

If the number of method calls reporting an error exceeds the number of allowed errors defined in the
test case properties, the test case will be aborted.

Note: Animated runs can be aborted manually by either hitting Esc on your keyboard or by
selecting Stop Run from the Run menu. Animated runs are aborted automatically when a
verification with severity Error, the simulation is aborted fails.

Viewing Status of Animated Runs
Depending on the number of times a test case is called (CallCount property) you can see which iteration
is currently executing in the Test Scenario window. Each test case and test method has one of the
following status icons:

• OK - Green checkmark
• Verified - Blue V icon

Animated Runs | 31

• Warning - Yellow triangle with exclamation mark
• Error - Red X

Methods that fail due to thrown exceptions or failed verifications display failed or warning method call icons
next to them. If a method call fails you can view a description of the failure by holding your cursor over the
method.

32 | Animated Runs

Analyzing Results
.NET Explorer enables developers and testers to explore the TCP/HTTP network traffic that is sent and
received with each Web Service and .NET Remoting call.

Once you have completed a test run, you can view four files to assist you in analyzing test results:

• User report - View the user report generated during the last animated run. The report contains
statistical information about each test case and each test method call.

• TrueLog for Web Service calls - View the TrueLog generated during the last animated run. The TrueLog
contains detailed information about Web Service calls.

• Error report - View the error report generated during the last animated run. The report contains a
description for every error that occurred.

• Animated log - This file contains information about every method that has been called with their
parameters and errors that occurred.

Viewing Result Files
Before proceeding with this task you must execute a test.

1. Click Results on the Workflow bar to display the Explore Results dialog box.

2. Select the result type you want to generate.

Alternately, result files can be selected from the .NET Explorer Results menu.

User Report
The user report is based on the Silk Performer virtual user report. This report offers information regarding
time elapsed for each test case and test-method call.

User reports are comprised of four sections:

• Test case summary
• Test case details
• Test method summary
• Errors

The Test case summary section offers information about the number of executed test cases and the
number of errors that occurred during the test run.

The Test case details table gives you information about each test case:

• Number of executions per test case
• Execution time of each test case

The Test method summary table offers information about each test method that has been called. You
receive information about execution times, number of errors that occurred, and when testing Web Services
or .NET Remoting, the number of bytes that were transmitted.

The Errors table gives you information about each error that occurred during the test run. You receive
information regarding when each error occurred, which test methods caused the errors, and short
descriptions of the errors.

Analyzing Results | 33

TrueLog for Web Service Calls
When testing Web Services, TrueLogs that contain all HTTP traffic for each tested Web Service method
are generated.

For each Web Service call there is a TrueLog node that contains request and response HTTP header and
body information. The TrueLog contains a transaction node for each test case and a Web document node
for each Web Service / .NET Remoting request.

Error Report
The error report delivers an overview of all errors that occur during test runs. They include details regarding
error time, in which test case and which test method each error occurred, severity types, and error
messages.

Animated Log
The animated log on the Output tab displays real-time information about the methods that were called in
the most recent test run. Additional information about passed parameters is also included. When
exceptions are encountered, the animated log offers detailed stack traces for the exceptions.

The animated log can be accessed at any time by selecting the Output tab.

Analyzing Request/Response Network Traffic
.NET Explorer enables developers and testers to explore the TCP/HTTP network traffic that is sent and
received with each Web service and .NET Remoting call. Such information can be helpful to developers in
seeing how large objects are serialized in XML when they are sent. It is also helpful to testers in load-
testing scenarios.

With Web service calls, which are generally XML over HTTP, the actual content of HTTP headers from the
requests and responses is displayed.

1. Right-click an invoked Web service call or .NET Remoting method in the Input Data, Output Data, or
Test Scenario pane and select Show Traffic. The Request/Response data of method call dialog box
opens.

Alternative: Select a method call and click Net Traffic on the Workflow bar.

The upper left pane of the dialog box shows you the request header information of the call. The upper-
right pane shows the reponse header information of the call. The lower-left window shows the request
body, which is a SOAP envelope in the case of Web service calls. The lower-right pane displays the
response body, which is also a SOAP envelope in the case of Web service calls.

2. Select view tabs to view data in the request body and response body panes:

• Hex View - Displays traffic data in binary (hexadecimal) view. This is useful when exploring the .NET
Remoting binary protocol.

• XML View - Displays SOAP traffic in an XML tree view. This view makes it easier to analyze the XML
content of SOAP messages.

• Text - Displays traffic data in a textual representation without formatting.

3. Click OK.

34 | Analyzing Results

Configuring Option Settings
Several application setting options are available in .NET Explorer:

• Default values
• Code
• Verifications
• Animated runs
• Loaded file drop list
• Default proxy connection

Configuring Project-Wide Default Values
The Default Values options tab enables you to change the default input parameter values for method calls.
You can set default values for the following value types:

• Boolean
• Double
• Integer
• String

Boolean can either be True or False. The other data type values must be selected from available
variables, random variables, or constant values.

1. Navigate to Tools > Options . The Default Values tab of the Options dialog box opens by default.

2. Select a default value row to display that data type's browse (...) button.

3. For Boolean, select either True or False from the list box. For all other value types, click (...) to
launch the Input Value Wizard.

4. Click OK.

Application Settings
The Microsoft .NET Framework allows you to specify settings in an application-specific configuration file.
The configuration file must have the same name as the application and carry the .config extension (for
example, myapplication.exe.config). For ASP.NET Web applications, the extension is web.config.

The configuration file is an XML file with the following schema:

<configuration>
 <startup />
 <runtime />
 <appSettings>
 <add key=”mykey” value=”myvalue />
 </appSettings>
 <system.runtime.remoting />
 …
</configuration>

When such a file is present, the .NET runtime reads the settings and configures the internal runtime. With
the key appSettings you can specify key/value pairs that can be read during runtime. A useful
application for this is connection strings or other configuration properties. By changing the settings in the
XML file, the behavior of the application can be adjusted without changing the code.

Configuring Option Settings | 35

The App Settings options tab facilitates the testing of .NET components by enabling you to specify key/
value pairs. The option page not only allows you to define settings, it also enables you to initialize settings
from an existing .config file. This saves time when you already have a .config file that contains all
settings and meaningful values.

You can browse (...) to and Load a .config file, in which case all appSettings are used to initialize the
grid control, or you can add the entries manually. Changes take effect when you click OK.

When a project is exported as a standalone application, an app.exe.config file that includes the
appSettings is exported.

When exporting to either a Microsoft Visual Studio project or a Silk Performer .NET project, a app.config
file with only the appsettings entries is created. The app.config file is read by the perfrun when a
virtual user is executed. Perfrun takes those settings and uses them to write a perfrun.exe.config file,
which contains other settings as well.

Code Settings
Multiple options are available for defining the behavior of code when working with .NET Explorer. These
settings are available on the Options dialog box, Code tab.

.NET Code Generation

These project-level options define the behavior of .NET code generation in .NET Explorer:

• Try-Catch block in every method - A try-catch block is scripted in each test method. Caught exceptions
are forwarded to Silk Performer .NET Framework. It is recommended that you select this option.

• Verifications - Verifications will be scripted in test methods. It is recommended that you select this option
to make use of verification settings.

• Test logic in BDL - Each test method call becomes a TestMethod in the Silk Performer .NET
Framework and therefore becomes a separate method call in the resulting BDL script. It is
recommended that you not select this option because test logic should remain in test case methods in
the .NET Code.

• Language - Select your preferred .NET language for code generation.

Source View

These user-level options define the behavior of the .NET Explorer source tree menu:

• Show primitive types as objects - Primitive (simple) types that are stored in global variables are normally
displayed as variables, not as objects. When this option is selected, types such as int and string are
displayed as objects and you are able to call the methods that are defined for those types, for example
String.Compare.

• Show base type information - When this option is selected, members of the base types of displayed
objects are displayed. Otherwise only the members that are declared by the object types themselves
are displayed.

• Use namespaces - When selected, the full namespace names of loaded classes are displayed in the
class tree.

• Switch to object view when storing a variable

Verification Settings
Setting options for verifications are available on the Options dialog box, Options tab.

• Automatically define a verification for stored values - When selected, default verifications are defined
whenever you store an output value in a variable.

36 | Configuring Option Settings

• Ignore case (default value) - This is the default value of the Ignore Case check box when verifying a
string value in the Verification Wizard.

• Check verifications during animated run - This is the default value for the Do Verifications check box
on the Selecting Test Cases dialog box.

Animated Run Settings
Setting options for animated runs are available on the Options dialog box, Options tab.

• Always run init test case - The init test case is checked by default on the Selecting Test Cases dialog
box.

• Always run end test case - The end test case is checked by default on the Selecting Test Cases dialog
box.

• Run all test cases during animated run - All test cases are checked by default on the Selecting Test
Cases dialog box.

• Invoke delay - Defines the delay between the invokation of method calls in animated runs. The lower the
setting, the more frequently methods are called and consequently more load is placed on execution
servers.

Editing the Loaded File Drop List
1. Navigate to Tools > Options . The Options dialog box displays.

2. Click the Layout tab. The Load file entries text box lists all recently loaded WSDL and DLL files.

3. Select a file entry and click Delete (X) to remove it from the WSDL/DLL list box.

4. Click Yes on the confirmation dialog box.

5. Click OK.

Configuring Proxy Connection Settings
1. Navigate to Tools > Options . The Options dialog box displays.

2. Click the Connection tab.

3. Type the Address of the default proxy server.

4. Type the Port number of the default proxy server.

5. Type the User who has access to the default proxy server.

6. Type the user password into the Password text box.

7. Click OK.

Configuring Option Settings | 37

Exporting Projects
.NET Explorer enables you to export projects to Silk Performer and Microsoft Visual Studio.

Exporting to Silk Performer from .NET Explorer is helpful for QA personnel who are proficient with Silk
Performer in facilitating analysis of .NET components and want to create Silk Performer projects, test case
specifications, and scripts from which load tests can be run.

Exporting to Microsoft Visual Studio from .NET Explorer is helpful for developers who want to use .NET
Explorer to quickly generate basic test scripts that can be modified in Microsoft Visual Studio.

When a developer opens an exported .NET Explorer project in Visual Studio, the virtual user classes, test
methods, and all code are generated automatically. From here a developer can add more methods, perform
modifications, or execute Try Script runs to confirm the accuracy of scripts. Once a script is ready, it can be
passed along to QA in BDL form for use in Silk Performer.

The other approach available to developers is to export projects directly to Silk Performer as .NET projects.

Exporting a .NET Explorer Project
1. Open the .NET Explorer Export menu and select the required export type:

• Silk Performer Web project
• Silk Performer .NET project

The Export Project dialog box opens.

2. Type a Project name, Project description, and destination Directory for the exported file. By default,
projects are saved to <my documents>\Silk Performer 21.0\Projects.

3. Optionally check the Open exported project after export check box.

4. Click OK.

If you will be calling a Web service on the Internet, be sure to set the correct proxy in your Silk Performer
project settings.

Exporting a Project to Silk Performer
Two options are available for exporting projects to Silk Performer:

Silk Performer Web Projects

When testing Web Services, .NET Explorer enables you to export Silk Performer Web projects with native
BDL scripts (no .NET code is included) that include WebPagePost statements for each Web service call,
enabling you to run tests in Silk Performer to test the Web services while making use of the powerful Silk
Performer Web engine and features such as TrueLog, statistical reporting, modem simulation, and IP
spoofing. All random variables, output variables, and verifications are included in exported scripts.

Note: .NET Framework is not required.

• Silk Performer project file
• BDL Web script
• Random files

38 | Exporting Projects

Silk Performer .NET Projects

Your test scenario can be compiled into a .NET assembly that uses the Silk Performer .NET Framework.
Silk Performer .NET projects are then created with the compiled assembly and a BDF file that contains the
calls to the assembly. In other words, .NET test code is compiled into a .NET intermediate language and
then executed through Silk Performer. The value of this is that you can utilize Silk Performer runtime and
scripting to make Web calls even though you are running .NET code and not a Web script.

Note: Microsoft Visual Studio is not required.

With this intermediate code, when a test case contains Web service calls, the calls are routed over the Silk
Performer Web engine so that you can obtain detailed information about each Web service call and make
use of features such as TrueLog, statistical reporting, modem simulation, and IP spoofing.

• Silk Performer project file
• BDL .NET script
• Random files
• Referenced assemblies

Exporting a Project to Microsoft Visual Studio
Test scenarios can be exported to C# or VB.NET files and then added to newly created Silk
Performer .NET projects, which can subsequently be used in Microsoft Visual Studio to run tests. Further
code customization in Visual Studio is also possible.

When you export a test scenario to a Silk Performer Microsoft Visual Studio project, .NET Explorer creates
a Silk Performer .NET project and a corresponding Microsoft Visual Studio project. The test code that you
define in your test scenario is added to your project and you can continue to work in Microsoft Visual Studio
to make changes to the script. The exported test code makes use of the Silk Performer .NET Framework.

Once you have finished modifying test code, you can either continue to work in Silk Performer or you can
run a test from within Microsoft Visual Studio.

When a test case contains Web service calls, the calls are routed over the Silk Performer Web engine so
that you can obtain detailed information about each Web service call and make use of features such as
modem simulation and IP spoofing.

• Silk Performer .NET project
• Visual Studio project (C# or VB)
• Source files (test driver and proxies for Web services)

Exporting a BDL Script
1. Open the .NET Explorer Export menu and select the required export type (BDL Web script or

BDL .NET Framework script).

2. On the Save as dialog box, type a name and destination for the exported BDF file. By default, projects
are saved to the Silk Performer Projects directory at <my documents>\Silk Performer
21.0\Projects.

Exporting a Standalone Console Application
.NET Explorer can compile test cases into standalone console applications that call all test case methods
in their main methods.

Exporting Projects | 39

Console applications can be used to either run test scenarios independently of .NET Explorer, or to
generate network traffic that can be recorded by Silk Performer. Silk Performer can consequently generate
Web BDL scripts based on the network traffic.

1. Open the .NET Explorer Export menu and select Standalone Console Application.

2. On the Export Standalone Console Application to File dialog box specify a name and destination for
the exported EXE file. By default, projects are saved to the Silk Performer project's Projects directory
at <my documents>\Silk Performer 21.0\Projects.

Recording a Console Application With Silk Performer
1. Launch Silk Performer and create a new Web project.

2. Create a new recording profile for the console application.

3. Specify a name for the profile.

4. Specify the path to the executable.

5. Select Custom Application as the application type.

6. Select Winsock.

7. Begin recording the application.

After recording you have a Web BDL script that contains all the HTTP/TCP calls of the console application
to a Web service or .NET Remoting component.

40 | Exporting Projects

Command Line Execution
Overview

It makes sense to run some functions from the command line, particularly those that are run numerous
times on a daily basis.

The following .NET Explorer functions can be called from the command line:

Launch .NET
Explorer

As with most applications, .NET Explorer can be launched from the command line. If
you installed Silk Performer in the default directory, the command is C:\Program
Files\Silk\Silk Performer 21.0\netexplorer.exe.

Execute animated
runs for one or all
test cases

You can launch .NET Explorer and have animated runs start immediately for one or
all test cases in a project using a command line parameter:

• To execute all test cases in a project, enter for example netexplorer.exe
myproject.nef * at the command line.

• To execute only the main test case in a project, enter for example
netexplorer.exe myproject.nef TMain at the command line.

Write log files When executing projects, result files (log, html, and error) are stored in project
directories (.nef file directories). These files receive the same name as the .nef
file, for example myproject.err, myproject.log, and myproject.html.

To define a different base name for these files, specify the log filename as an
additional parameter in the command line, for example netexplorer
myproject.nef * mylogfilename.

Usage
netexplorer netfile testcase | * [output]

Parameter Description

netfile .NET Explorer file (.nef)

testcase The name of the test case to execute, or * to execute all

output The directory to write reports to. If no path information is passed, the files are written
to the project directory. The following result files are written: .log, .html,
and .err

Command Line Execution | 41

Index
.NET

.NET Remoting 20
helper classes 13

.NET code
intermediate code 13

.NET components
testing 11

.NET Explorer
.NET message sample 8
.NET Remoting sample 8

animated runs
executing 31
viewing status 31

command line execution 41
overview 5, 6

.NET framework
overview 11
testing .NET components 11
testing Web services 11

.NET Framework
.NET message sample 8
.NET Remoting sample 8
ExtensionMicrosoft Visual Studio 6, 13
overview 5, 11, 12
understanding 11

.NET Remoting
sample project 9

.NET Remoting objects
sample 8

.NET testing
provided tools 6

A
animated runs

.NET Explorer
executing 31
viewing status 31

C
client certificate

for Web service 22
command line execution

.NET Explorer 41
writing log files 41

comparing
WSDL files 21

creating
.NET Explorer projects 20

D
defining

.NET Explorer test cases 20

E
End

End test case 22

extension
Visual Studio 14

G

GUI
.NET Explorer tour 15

H

helper classes
.NET 13

I

Init
Init test case 22

intermediate code
.NET code 13

J

Java Explorer
overview 5, 6
RMI sample 8

Java Framework
overview 5
RMI sample 8
sample project 10

Java testing
provided tools 6

JDBC test client 10

L

Load File Wizard 20

M

Microsoft Visual Studio, Extension
overview 6, 13

MS Visual Studio, Add-In 5, 7

P

project
creating .NET Explorer projects 20

R

RMI sample project 10
RMI samples, Java 8

42 | Index

S

SOA Edition
overview 5

T

test case
characteristics 22
defining .NET Explorer test cases 20

testing
Web services 20

testing .NET components
.NET framework 11

testing Web services
.NET framework 11

tour
user interface, .NET Explorer 15

U

user interface
.NET Explorer overview 15

V

Visual Studio
extension 14

Visual Studio Extension
installing 14

W

Web service
client certificate 22

Web services
testing 20

Web Services
.NET message sample 8
.NET Remoting sample 8
publicly accessible demonstration servers 7
sample project 9

workflow bar
.NET Explorer 15

WSDL
comparing files 21

WSDL/DLL address field 15

Index | 43

	Contents
	Tools and Samples
	Introduction
	Provided Tools
	Silk Performer .NET Explorer
	Silk Performer Visual Studio Extension
	Silk Performer Java Explorer
	Silk Performer Workbench

	Sample Applications for testing Java and .NET
	Public Web Services
	.NET Message Sample
	.NET Explorer Remoting Sample
	Java RMI Samples

	Sample Test Projects
	.NET Sample Projects
	Java Sample Projects

	Silk Performer .NET Framework
	Testing .NET Components
	The .NET Framework Approach
	The .NET Explorer Approach

	Understanding the .NET Framework Platform
	Working with Silk Performer .NET Framework
	Silk Performer .NET Framework Overview
	Intermediate Code
	Silk Performer Helper Classes
	Silk Performer Visual Studio Extension
	Installing the Visual Studio Extension
	Starting the Visual Studio Extension

	Tour of the UI
	Overview
	Design Tab
	Loaded Components Pane
	Classes Tab
	Objects Tab
	References Tab

	Code Tab
	Output Tab

	Setting Up .NET Explorer Projects
	Creating .NET Explorer Projects
	Test Case Definition
	Using the Load File Wizard
	Viewing and Comparing WSDL Files
	Defining Client Certificates for a Web Service
	Test Case Characteristics

	Setting Up Tests
	Customizing Input Parameters
	Storing Output Values in Variables
	Defining Global Variables
	Defining Output Value Verifications
	Adding Method Calls
	Updating Method Calls
	Complex Input/Output Data
	Storing Array or Object Output Data as Variable
	Taking Array Object Data From a Variable
	Defining Each Member of a Variable Individually
	Defining Array Elements
	Defining a Column-Bound Variable
	Defining How Column Variables are Bound

	Testing .NET Remoting
	Negative Testing

	Animated Runs
	Executing an Animated Run
	Viewing Status of Animated Runs

	Analyzing Results
	Viewing Result Files
	User Report
	TrueLog for Web Service Calls
	Error Report
	Animated Log
	Analyzing Request/Response Network Traffic

	Configuring Option Settings
	Configuring Project-Wide Default Values
	Application Settings
	Code Settings
	Verification Settings
	Animated Run Settings
	Editing the Loaded File Drop List
	Configuring Proxy Connection Settings

	Exporting Projects
	Exporting a .NET Explorer Project
	Exporting a Project to Silk Performer
	Exporting a Project to Microsoft Visual Studio
	Exporting a BDL Script
	Exporting a Standalone Console Application
	Recording a Console Application With Silk Performer

	Command Line Execution

